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PREFACE

There was no shortage of epidemiology books when I started writing this book
in the summer of 1996, and the intervening years have brought many new and
very useful ones. Just as it is uninspiring to do a study that ends up as one more
dot on a graph or one more line in a table, it was certainly not my goal to merely
add one more book to an overcrowded shelf. But there was a particular need that
did not seem to be very well addressed in books or journal articles—to bring to-
gether concepts and methods with real research findings in order to make in-
formed judgments about the results.

One of the most difficult tasks facing new students and even experienced prac-
titioners of epidemiology is to assess how much confidence one can have in a
given set of findings. As I discussed such issues with graduate students and col-
leagues, and contemplated my own data, it was difficult to find a reasoned, bal-
anced approach. It’s easy but uninformative to simply acknowledge epidemiol-
ogy’s many pitfalls, and not much more difficult to mount a generic defense of
the credibility of one’s findings. What was difficult was to find empirical tools
for assessing the study’s susceptibility to specific sources of error in ways that
could actually change preconceptions and go beyond intuition. This kind of ex-
amination is most fruitful when it can give good or bad news about one’s study
that was unexpected.

I knew that such approaches were out there because I found candidate tools
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in the work of others. Sometimes our discussions would lead us to a technique
applied elsewhere that was applicable to the current situation. Two elements were
lacking, however, and I have tried to address them in this book. One is the link
between methodological principles and the tools themselves, which involves tak-
ing stock of why the strategy for addressing the potential bias may or may not
actually be informative, and how it could be misleading. The other is a full list-
ing of the candidates to consider in addressing a potential problem, in the hope
of improving our ability to draw upon one tool or another in the appropriate sit-
uation. My aspiration was to have a place to turn to when trying to interpret a
study that deals with a challenging exposure measure, for example, where you
could find a repertoire of tactics to assess how well it was measured as well as
a reminder of what the consequences of error would most likely be. Ideally, at
the point of planning the study, one would anticipate the challenge and collect
the data needed to address the extent of the error upon completion of the study.
For every topic in the book, there are chapters in other texts, many of which are
excellent, and there are many journal articles on novel aspects of epidemiologic
methods, but I could not find a source book of practical guidance on linking
methodological principles with research practice. That is what this book aspires
to provide.

My original goal in developing the book was to provide a reference that could
be used when planning a study or needing to evaluate one. I believe that the book
could also be useful in an intermediate or advanced epidemiologic methods
course, supplementing a more rigorous methods text. Each chapter is intended
to be freestanding, and could be referred to without having read the ones that
precede it, but organizing the book along the lines of how research is conceptu-
alized, conducted, and analyzed offers some benefits if the sequence of chapters
is followed. Instructors might want to use this book along with evaluation of spe-
cific published papers for individual evaluation or group discussion. Using the
above example, after considering the underlying algebra of exposure misclassi-
fication and its consequences in a methods text, the corresponding chapter in this
book and a review of one or more real examples from the literature could help
tie the theory to the practice, always a challenge for new (and old) epidemiolo-
gists. Making the connection between methodological principles and specific,
substantive research applications is the most intellectually stimulating and chal-
lenging aspect of the field, in my view.

I thank Abigail Ukwuani for her excellent work in composing the manuscript
and Jeff House for his patience and encouragement. I also express my appreci-
ation to a number of distinguished epidemiologists who were kind enough to re-
view various chapters and provide general guidance and encouragement as well:
Marilie Gammon, Dana Loomis, Bob Millikan, Andy Olshan, Charlie Poole, Ken
Rothman, and Noel Weiss. Joanne Promislow was extremely helpful in going
through the manuscript in detail to capture the spirit of the book, and in com-
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pleting the challenging task of identifying suitable illustrations from the pub-
lished literature. Nonetheless, these colleagues and others who may read the book
will undoubtedly find statements with which they disagree, so their help and ac-
knowledgment should not be seen as a blanket endorsement of the book’s con-
tents. Following the spirit espoused in this book, critical evaluation is always
needed and I welcome readers’ comments on any errors in logic or omissions of
potentially valuable strategies that they may find.

Preface vii



CONTENTS

1. Introduction, 1

2. The Nature of Epidemiologic Evidence, 7
Goals of Epidemiologic Research, 7
Measurement of Causal Relations Between Exposure and Disease, 10
Inferences from Epidemiologic Research, 12
Descriptive Goals and Causal Inference, 15
Inferences from Epidemiologic Evidence: Efficacy of Breast Cancer 

Screening, 16
Inferences from Epidemiologic Evidence: Alcohol and Spontaneous 

Abortion, 18
Causal Inference, 20
Contribution of Epidemiology to Policy Decisions, 24

3. Strategy for Drawing Inferences from Epidemiologic Evidence, 29
Need for Systematic Evaluation of Sources of Error, 30
Need for Objective Assessment of Epidemiologic Evidence, 32
Estimation of Measures of Effect, 34
Conceptual Framework for the Evaluation of Error, 37
Identify the Most Important Sources of Error, 39
Strategies for Specifying Scenarios of Bias, 41

ix



Example: Epidemiologic Research on the Relation Between 
Dichlorodiphenyltrichloroethane (DDT) Exposure and 
Breast Cancer, 44

4. Selection Bias in Cohort Studies, 51
Study Designs, 51
Purpose of Comparison Groups, 53
Selection Bias and Confounding, 55
Evalution of Selection Bias in Cohort Studies, 58
Integrated Assessment of Potential for Selection Bias in 

Cohort Studies, 78

5. Selection Bias in Case–Control Studies, 81
Control Selection, 81
Evaluation of Selection Bias in Case–Control Studies, 89
Integrated Assessment of Potential for Selection Bias in 

Case–Control Studies, 111

6. Bias Due to Loss of Study Participants, 115
Conceptual Framework for Examining Bias Due to Loss of 

Study Participants, 115
Evaluation of Bias Due to Loss of Study Participants, 120
Integrated Assessment of Potential for Bias Due to Loss of 

Study Participants, 133

7. Confounding, 137
Definition and Theoretical Background, 137
Quantification of Potential Confounding, 141
Evaluation of Confounding, 145
Integrated Assessment of Potential Confounding, 157

8. Measurement and Classification of Exposure, 163
Ideal Versus Operational Measures of Exposure, 164
Evaluation of Exposure Misclassification, 172
Assessment of Whether Exposure Misclassification is Differential 

or Nondifferential, 192
Integrated Assessment of Potential for Bias Due to Exposure 

Misclassification, 201

9. Measurement and Classification of Disease, 205
Framework for Evaluating Disease Misclassification, 205
Sources of Disease Misclassification, 206

x CONTENTS



Differential and Nondifferential Disease Misclassification, 212
Assessing Whether Misclassification Is Differential by Exposure, 216
Evaluation of Disease Misclassification, 219
Integrated Assessment of Potential for Bias Due to Disease 

Misclassification, 238

10. Random Error, 243
Sequential Approach to Considering Random and Systematic Error, 245
Special Considerations in Evaluating Random Error in 

Observational Studies, 246
Statistical Significance Testing, 248
Multiple Comparisons and Related Issues, 251
Interpretation of Confidence Intervals, 255
Integrated Assessment of Random Error, 258

11. Integration of Evidence Across Studies, 261
Consideration of Random Error and Bias, 262
Data Pooling and Coordinated Comparative Analysis, 264
Synthetic and Exploratory Meta-Analysis, 268
Interpreting Consistency and Inconsistency, 273
Integrated Assessment from Combining Evidence Across Studies, 281

12. Characterization of Conclusions, 285
Applications of Epidemiology, 287
Identification of Key Concerns, 291
Integrated Consideration of Potential Bias, 293
Integration of Epidemiologic Evidence with Other Information, 294
Controversy over Interpretation, 297
The Case Against Algorithms for Interpreting 

Epidemiologic Evidence, 299

Index, 305

Contents xi



1
INTRODUCTION

This book was written for both producers and consumers of epidemiologic re-
search, though a basic understanding of epidemiologic principles will be neces-
sary at the outset. Little of the technical material will be new to experienced epi-
demiologists, but I hope that my perspective on the application of those principles
to interpreting research results will be distinctive and useful. For the large and
growing group of consumers of epidemiology, which includes attorneys and
judges, risk assessors, policy experts, clinicians, and laboratory scientists, the
book is intended to go beyond the principles learned in an introductory course
or textbook of epidemiology by applying them to concrete issues and findings.
Although it is unlikely that ambiguous evidence can be made conclusive or that
controversies will be resolved directly by applying these principles, a careful con-
sideration of the underlying reasons for the ambiguity or opposing judgments in
a controversy can represent progress. By pinpointing where the evidence falls
short of certainty, we can give questions a sharper focus, leading to a clearer de-
scription of the state of knowledge at any point in time and thus helping iden-
tify the research that could contribute to a resolution of the uncertainty that re-
mains.

Those who are called upon to assess the meaning and persuasiveness of epi-
demiologic evidence have a variety of approaches to consider. There are formal
guidelines for judging causality for an observed association, which is defined as
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a statistical dependence of two or more events (Last, 2001). A statistical associ-
ation by itself does not indicate whether one causes the other, which is the issue
of ultimate interest. The most widely cited framework for assessing the causal
implications of associations is that of Hill (1965), which has been challenged by
others (Rothman & Greenland, 1998) yet continues to be used widely by those
who evaluate research findings in epidemiology. Hill’s criteria serve as a means
of reaching conclusions about reported positive associations that can help guide
regulatory or policy decisions. The criteria, however, focus only on the inter-
pretation of positive associations, neglecting the need to evaluate the validity of
whatever association was measured or to consider the credibility of an observed
absence of association.

Statistical methods have been used both to evaluate whether observed associ-
ations are statistically significant—for example, unlikely to have been observed
if no association is present—and to quantify the strength of an association (Selvin,
1991; Clayton & Hills, 1993). A large methodological literature on confounding
(in which the effect from an exposure of interest is entangled with other con-
tributors), selection bias (in which the individuals who are included in the study
results in erroneous measures of association), and misclassification (error in meas-
urement) contributes importantly to making judgments about the validity of epi-
demiologic observations (Rothman & Greenland, 1998).

In parallel with the evolution of these more technical methodological consid-
erations, interest in understanding and using epidemiology has grown consider-
ably, reflected in media attention, courtroom applications, and interactions with
scientists in other disciplines. The views of epidemiology within these groups
are not always favorable. Many outside epidemiology have one of two extreme
reactions to the evidence we generate: They may be so impressed with our find-
ings on human beings exposed to the agents that may cause disease that observed
associations are taken as direct reflections of causal effects with little need for
scrutiny or caution. Or they may be more impressed with the lengthy list of po-
tential sources of error, the ubiquitous potential confounders, and the seemingly
unending controversy and flow of criticism among epidemiologists, and may
come to believe that all our observations are hopelessly flawed and cannot be
trusted as indicators of causal relations. Students often start with a naive, opti-
mistic view of the power of the epidemiologic approach, become dismayed with
the many sources of potential error, and then (hopefully) emerge with a sophis-
tication that intelligently balances the promise and the pitfalls. More experienced
epidemiologists appreciate that the truth lies somewhere between the extremes.
Even for those who are familiar with the tools needed to evaluate evidence, how-
ever, the integration of that evidence into a global assessment is often a highly
subjective process, and can be a contentious one.

This book is not a step-by-step manual for interpreting epidemiologic data that
guarantees drawing the correct conclusion. It is simply not possible to reduce the
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evaluation of evidence to an algorithm for drawing valid inferences. And because
the truth is unknown, we could not tell whether any such algorithm worked. A
more modest goal is to elucidate the underlying issues involved in the interpre-
tation of evidence so that unbiased, knowledgeable epidemiologists can reach
agreement or identify precisely where and why they disagree. In this book, I have
tried to develop in some detail the array of considerations that should be taken
into account in characterizing the epidemiologic evidence on a given topic, sug-
gest how to identify the key considerations, and most importantly, offer a vari-
ety of strategies to determine whether a potential methodologic problem is likely
to be influential and if so what magnitude and direction of influence it may have.
The methodologic literature, particularly the recent synthesis by Rothman and
Greenland (1998), provides the starting point for that evaluation. This book ap-
plies some methodological principles in specific and practical ways to the as-
sessment of research findings in an effort to help reach sound judgments. In some
cases traditional approaches to evaluating evidence are examined and found to
be deficient. Because they are commonly used, however, they warrant careful
examination here.

For instance, confounding is rather well-defined in theoretical terms (Green-
land & Robins, 1986; Weinberg, 1993). According to Rothman and Greenland
(1998), it is “a confusion of effects. Specifically, the apparent effect of the ex-
posure of interest is distorted because the effect of an extraneous factor is mis-
taken for or mixed with the actual exposure effect” (p. 120). Statistical methods
for controlling confounding have been clearly described (Kleinbaum et al., 1982;
Rothman & Greenland, 1998), so that if the source of confounding, i.e., the ex-
traneous factor of interest, can be measured accurately, then statistical tools can
be used to minimize or eliminate its impact. The potential for confounding is in-
herent in observational studies where the exposure of interest is often only one
of many correlated exposures. In contrast to studies where exposure is assigned
randomly and thus isolated from other exposures, the potential for confounding
cannot be readily quantified (Greenland, 1990). Nonetheless, in evaluating a
measure of association from an observational study, we must judge how likely
it is that the association has been distorted by confounding. What are the impli-
cations of a lack of knowledge of major risk factors for the disease (and thus
candidate confounders) versus having measured and controlled for known strong
risk factors? How likely is it that poor measurement of potential confounders has
left substantial distortion in the association of interest? How effective is adjust-
ment for indirect markers of potential confounders, such as educational attain-
ment as a proxy for health behaviors? What is the likely direction of confound-
ing, if present? What magnitude of association with disease or exposure would
be required to have introduced a given amount of bias? How can we use other
studies of the same association to help judge whether confounding is likely to be
present?
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The product of a careful evaluation of the study itself, drawing on the relevant
methodological and substantive literature, is an informed judgment about the plau-
sibility, direction, and strength of confounding, as well as specifying further re-
search that would narrow uncertainty about the impact of confounding. Even when
agreement among evaluators cannot be attained, the areas of disagreement should
move from global questions about study validity to successively narrower ques-
tions that are amenable to empirical evaluation. To move from general disagree-
ment about the credibility of a study’s findings to asking such focused, answerable
questions as whether a specific potential confounder has a sufficiently large asso-
ciation with disease to have markedly distorted the study results represents real
progress. The methodologic principles are needed to refine the questions that give
rise to uncertainty and controversy, which must then be integrated with substan-
tive knowledge about the phenomenon of interest to make informed judgments.
Much of this book focuses on providing that linkage between methodological prin-
ciples and substantive knowledge in order to evaluate findings more accurately.

The challenges in interpretation relate to sets of studies of a given topic as
well as individual results. For example, consistency across studies is often in-
terpreted as a simple dichotomy: consistency in findings is supportive of a causal
association and inconsistency is counter to it. But epidemiologic studies are rarely,
if ever, pure replications of one another, and thus differ for reasons other than
random error. When studies that have different methodologic features yield sim-
ilar results, it can be tentatively assumed that the potential biases associated with
those aspects of the study that differ have not introduced bias, and a causal in-
ference is thus strengthened. Consistency across studies with features that should,
under a causal hypothesis, yield different results suggests that some bias may be
operating. There may also be meaningful differences in results from similarly de-
signed studies conducted in different populations, suggesting that some impor-
tant cofactors, necessary for the exposure to exert its impact, are present in some
populations but not others. Clearly, when methodologically stronger studies pro-
duce different results than weaker ones, lack of consistency in results does not
argue against causality.

The book has been organized to the extent possible in the order that issues
arise. Chapter 2 sets the stage for evaluating epidemiologic evidence by clarify-
ing the expected product of epidemiologic research, defining the goals. Next, I
propose an overall strategy and philosophy for considering the quality of epi-
demiologic research findings (Chapter 3). The following chapters systematically
cover the design, conduct, and analysis issues that bear on study interpretation.

Beginning with Chapter 4 and continuing through Chapter 9, sources of sys-
tematic error in epidemiologic studies are examined. The rationale for dividing
the topics as the table of contents does warrants a brief explanation. Selection
bias refers to “error due to systematic differences in characteristics between those
who take part in a study and those who do not” (Last, 2001). It is the constitu-
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tion of the study groups that is the potential source of such error. The construc-
tion of study groups is different in practice (though not in theory) in cohort and
case–control studies. In cohort studies, groups with differing exposure status are
identified and monitored for the occurrence of disease in order to compare dis-
ease incidence among them. In case–control studies, the sampling is based on
health outcome; those who have experienced the disease of interest are compared
to a sample from the population that gave rise to those cases of disease. Because
the groups are constituted in different ways for different purposes in the two de-
signs, the potential for selection bias is considered in separate chapters (Chap-
ters 4 and 5). Furthermore, given that one particular source of selection bias, that
due to non-participation, is so ubiquitous and often so large, Chapter 6 addresses
this problem in detail.

Confounding, in which there is a mixing of effects from multiple exposures,
is similar in many respects to selection bias, but its origins are natural as opposed
to arising from the way the study groups were constituted. Evaluating the pres-
ence, magnitude, and direction of confounding is the subject of Chapter 7.

The consideration of measurement error, though algebraically similar regard-
less of what is being measured, is conceptually different and has different im-
plications depending on whether the exposure, broadly defined as the potential
causal factor of interest, the disease, again broadly defined as the health outcome
of interest, is measured with error. The processes by which error arises (e.g.,
memory errors producing exposure misclassification, diagnostic errors produc-
ing disease misclassification) and their implications for bias in measures of as-
sociation make it necessary to separate the discussions of exposure (Chapter 8)
and disease (Chapter 9) misclassification.

The complex topic of random error, how it arises, affects study results, and
should be characterized is addressed in Chapter 10. The sequence is intentional.
Random error is discussed after the other factors to help counter the long-held
view that it is the first or automatically the more important issue to consider in
evaluating epidemiologic evidence.

There are several increasingly popular approaches to the integration of infor-
mation from multiple studies, such as meta-analysis [defined as “a statistical syn-
thesis of the data from separate by similar studies” (Last, 2001)] and pooling
(combining data from multiple studies for reanalysis). These methods are dis-
cussed in Chapter 11. Chapter 12 deals with the integration and summary of in-
formation gained from the approaches covered in the previous chapters.

REFERENCES
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2
THE NATURE OF EPIDEMIOLOGIC EVIDENCE

GOALS OF EPIDEMIOLOGIC RESEARCH

To evaluate the quality or strength of epidemiologic evidence, we first need to
clarify what information we can expect epidemiology to provide (Table 2.1). The
effectiveness of epidemiologic research must be defined in relation to attainable,
specific benchmarks in order to make judgments about how close the evidence
comes to reaching the desired state of perfection. When we examine a study or
set of studies, we typically make a statement as to whether those studies have
individually or collectively fulfilled their expectations. Broad assessments such
as “persuasive” or “inconclusive” are commonly applied to evidence, typically
without much consideration of the standard against which it has been judged. It
would be unwise to set an unrealistically high goal for epidemiologic research
to yield absolute truth that directly benefits society, and equally unproductive to
set a low (but readily attained) standard of merely providing clues or suggestions
that will be resolved by other scientific approaches. Epidemiology functions
somewhere between those extremes.

The highest expectation for epidemiologic research is to generate knowledge
that contributes directly to improvements in the health of human populations.
Such research would yield new knowledge, and that new knowledge would have
beneficial applications to advancing public health. However appropriate this is
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as the ultimate goal for epidemiologic inquiry, it would be a mistake to use the
criterion of “improvement in public health” as the only test of whether the re-
search effort (from epidemiology or any other scientific discipline) has been suc-
cessful. Highly informative epidemiologic studies might exonerate agents sus-
pected of doing harm rather than implicate agents that cause disease. Excellent
research may show lack of benefit from an ostensibly promising therapeutic meas-
ure. Such research unquestionably informs public health practice and should ul-
timately improve health by directing our energies elsewhere, but the path from
information to benefit is not always direct.

Even where epidemiologic studies produce evidence of harm or benefit from
such agents as environmental pollutants, dietary constituents, or medications, the
link to action is an indirect one. The validity of the evidence is a necessary but
not sufficient goal for influencing decisions and policy; societal concerns based
on economics and politics, outside the scope of epidemiology, can and some-
times should override even definitive epidemiologic evidence. The goal of pub-
lic health, not epidemiology, is disease prevention (Savitz et al., 1999). Market-
ing of the discipline may benefit from claims that epidemiology prevents disease,
but many past public health successes have had little to do with epidemiology
and many past (and present) failures are not the result of inadequate epidemio-
logic research. Epidemiology constitutes only one very important component of
the knowledge base for public health practice; pertinent data are also contributed
by the basic biomedical sciences, sociology, economics, and anthropology, among
other disciplines. The metaphor of the community as patient is much more suit-
able to public health practice than to the scientific discipline of epidemiology.
Like clinical medicine, public health practice draws on many scientific disci-
plines and nonscientific considerations.

8 INTERPRETING EPIDEMIOLOGIC EVIDENCE

TABLE 2–1. Levels of Inference from Epidemiologic Evidence and Attendant Concerns

INFERENCE REQUIREMENTS

Relations between operational measurements None
among study measurements

Association between measured exposure and Accurate measurement of exposure; 
disease among study participants accurate measurement of disease

Causal effect of exposure on disease in study Freedom from confounding
population

Causal effect of exposure on disease in Generalizability (external validity)
external populations

Prevention of disease through elimination or Amenability of exposure to
reduction of exposure modification

Substantial public health impact from Large attributable fraction
elimination or reduction of exposure



At the other extreme, the goals of epidemiologic research ought not to be con-
strained as so modest and technical in nature that even our successes have no
practical value. We could define the goal of epidemiology as the mechanical
process of gathering and analyzing data and generating statistical results, such
as odds ratios or regression coefficients, divorced from potential inferences and
applications. Theoretical and logistical challenges disappear one by one as the
benchmark is lowered successively. If a study’s intent is defined as assessment
of the association between the boxes checked on a questionnaire and the read-
ing on the dial of a machine for those individuals who are willing to provide the
information, then success can be guaranteed. We can undoubtedly locate pencils,
get some people to check boxes, find a machine that will give a reading, and cal-
culate measures of association. Focusing on the mechanical process of the re-
search is conservative and modest, traits valued by scientists, and averts the crit-
icism that comes when we attempt to make broader inferences from the data.
While in no way denigrating the importance of study execution (Sharp pencils
may actually help to reduce errors in coding and data entry!), these mechanical
components are only a means to the more interesting and challenging end of ex-
tending knowledge that has the potential for biomedical and societal benefit.

Beyond the purely mechanical goal of conducting epidemiologic research and
generating data, expectations for epidemiology are sometimes couched in terms
of “measuring associations” or “producing leads,” with the suggestion that sci-
entific knowledge ultimately requires corroborative research in the basic or clin-
ical sciences. The implication is that our research methods are so hopelessly
flawed that even at their very best, epidemiology yields only promising leads or
hints at truth. In one sense, this view simultaneously undervalues epidemiology
and overvalues the other disciplines. Epidemiologic evidence, like that from all
scientific disciplines, is subject to error and misinterpretation. Because of com-
pensatory strengths and weaknesses, integrating epidemiologic evidence with that
produced by other disciplines is vital to drawing broader inferences regarding
causes and prevention of disease. Epidemiologists, however, can and do go well
beyond making agnostic statements about associations (ignoring causality) or
generating hypotheses for other scientists to pursue. Epidemiology produces ev-
idence, like other scientific disciplines, that contributes to causal inferences about
the etiology and prevention of disease in human populations.

For the purposes of this book, I define the goal for epidemiologic research as
the quantification of the causal relation between exposure and disease. Although
the research itself generates only statistical estimates of association, the standard
by which the validity of those measures of association is to be judged is their
ability to approximate the causal relation of interest. The utility of those esti-
mated associations in advancing science and ultimately public health generally
depends on the extent to which they provide meaningful information on the 
underlying causal relations. As discussed below, the term exposure is really a
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shorthand notation for agents, interventions, conditions, policies, and anything
that might affect health, and disease is analogously the broad of array of health
conditions that we would seek to be able to understand and ultimately modify,
including physiologic states, mental health, and the entire spectrum of human
diseases.

The ideal study yields a quantitative measure of association that reflects the
causal influence of exposure on disease. Methodologic problems and errors cause
a deviation between the study results and this ideal measure, and improvements
in research are reflected in bringing the study results closer to a measure of the
causal effect. There is no distinction between a study that correctly indicates an
absence of a causal association, i.e., an accurate measure of the causal relation
indicates none is present, and one that correctly indicates the presence of a causal
association; both constitute valid epidemiologic research.

MEASUREMENT OF CAUSAL RELATIONS BETWEEN 
EXPOSURE AND DISEASE

Estimation of causal effects as the focus of epidemiology was initially empha-
sized by Rothman (1986), who tried to dislodge epidemiologists from testing sta-
tistical hypotheses as a goal and persuade them to focus on quantifying meas-
ures of association. With measurement as the goal, assessment of epidemiologic
evidence focuses on the aspects of study design, conduct, and analysis that may
introduce distortion or enhance the accuracy of measurement. Error, a deviation
between the measured result and the true causal relation between exposure and
disease, arises from both random and systematic processes. There is no funda-
mental distinction between accurately measuring a null association and any other
association, in direct contrast to the framework of statistical hypothesis testing
which focuses on the deviation (or lack thereof) between the study results and
those predicted under the null hypothesis. The null hypothesis or lack of associ-
ation is just another possible state of nature that a valid study seeks to identify.
Measurement of a causal relation between exposure and disease focuses on the
quantitative index that characterizes the strength of association, which can be a
ratio or difference measure, or a regression coefficient in which disease is the
dependent variable.

Causality is a complex issue in both philosophical and practical terms (Susser,
1991; Greenland, 1988; Lanes, 1988). Even though causality is an abstraction,
not subject to objective determination, it provides a crucial benchmark for dis-
cussing the validity of study findings. Epidemiologists or their critics sometimes
claim that they do not address causal relations, only statistical associations, per-
haps in a well-intentioned effort to acknowledge the limitations in their data.
Even more narrowly, we actually measure how questionnaire responses or 
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laboratory assay results relate to other bits of information found in medical
records or obtained by using various instruments. The operational activities of
epidemiology, like those of other sciences, are far removed from lofty notions
like causality. However, the goal of the research is not to check boxes or calcu-
late statistics, but to make inferences about causal relations. If we were satisfied
with measuring empirical associations and not interested in causality, there would
be no concept of confounding and no interest in identifying exposures that might
be manipulated in order to reduce the burden of disease. The recognition of epi-
demiology’s limitations in measuring causal relations should come in the inter-
pretation of the evidence when trying to draw conclusions, not in the statement
of research goals or study design and conduct phases. In practice, it is rare to
calculate measures of association without interest in the possibility of some causal
relation being present. When we calculate a risk ratio of 2.0, the question of
whether exposure has doubled the risk of disease is a concern with causality
whether or not it is labeled as such.

Epidemiology is well suited to address a wide range of exposures and diseases,
not just the prototypic chemical or drug causing a well-defined illness. Exposure
includes any potential disease determinant, encompassing age, gender, time pe-
riod, social conditions, geographic location, and health care in addition to more
conventional individual exposures such as diet, stress, or exposure to chemical
pollutants. The specific attributes of those diverse exposures pose different chal-
lenges, of course, for epidemiologic research. As discussed by Susser (1991), we
are interested in many types of determinants of disease, not just exogenous, mod-
ifiable causes. The vast literature on gender differences reflects an interest in the
causal role of being male or female, with no direct implications for gender mod-
ification as a public health intervention.

Similarly, disease is used as shorthand for all health variants of interest, in-
cluding clinical disease, disability, physiologic alterations, and social disorder.
To fit within the framework of epidemiologic inquiry applied in this book, the
health measure should be of some ultimate clinical or public health relevance.
We would probably exclude from the scope of epidemiology efforts to predict
cigarette brand preference, for example, even though it is important to public
health, or voting patterns or migration, for example, even though the tools used
by marketing researchers, political scientists, and sociologists are very similar to
those of epidemiologists. Once the realm of health is defined, exposure consti-
tutes everything that potentially influences it.

The exposures and diseases we wish to study are often abstract constructs that
cannot be directly measured. Thus, the data that are collected for study are not
direct assessments of the exposure and disease but only operational measures
based on available tools such as questionnaires, biological measurements, and
findings from physical examination. Some such measures come closer than oth-
ers to capturing the condition or event of ultimate interest. Nevertheless, it is 
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important to keep in mind that the operational measures are not the entities of
interest themselves (e.g., deposition of graphite on a form is not dietary intake,
a peak on a mass spectrometer printout is not DDT exposure), but serve as in-
direct indicators of broader, often more abstract, constructs.

A key issue in evaluating epidemiologic evidence is how effectively the op-
erational definitions approximate the constructs of ultimate interest. The meth-
ods of measurement of exposure and disease are critical components of epi-
demiologic study design. The concept of misclassification applies to all the
sources of error between the operational measure and the constructs of interest.
The most obvious and easily handled sources of misclassification are clerical er-
ror or faulty instrumentation, whereas failure to properly define the relevant con-
structs, failure to elicit the necessary data to reflect those constructs, and as-
sessment of exposure or disease in the wrong time period illustrate the more
subtle and often more important sources of misclassification. We would like to
measure causal relations between what is often an abstract construct of exposure
and disease, but the study yields a measure of association between an operational
measure of exposure and disease. The nature and magnitude of disparity between
what we would like and what we have achieved calls for careful scrutiny. Chap-
ters 8 and 9 focus on examination of that gulf between the construct and the op-
erational measures of exposure and disease, respectively.

INFERENCES FROM EPIDEMIOLOGIC RESEARCH

If accurate estimation of causal relations is the goal of epidemiologic studies,
then success has been attained when the measure of effect accurately quantifies
the causal impact of the exposure on disease in the population under investiga-
tion. Even if this goal is completely fulfilled, more is needed. Public health prac-
tice and policy requires extrapolation of the findings to other defined populations
or to people in general. Such generalization does not result from a single study,
nor is it a matter of statistical sampling and inference (Rothman, 1986). Only a
series of internally valid studies can result in a body of evidence to help judge
(not prove) whether some more universal causal relation is operating that would
apply to populations not yet studied.

Extrapolation of findings to previously unstudied populations, by definition,
goes beyond the available data, and is thus vulnerable to error in addition to what-
ever error is contained in the studies that provide the basis for the extrapolation.
Universal causal relations (Smoking causes lung cancer.) reflect the ultimate ex-
trapolation, synthesizing a series of individual studies into the untestable asser-
tion about what exposure would do to disease risk in all possible past, present,
and future populations. Nonetheless, when we use epidemiologic evidence to
guide decisions about individual behavior and public policy, we are implicitly
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extrapolating a set of research observations to just such new and previously
untested situations and populations. Causality is assessed based on judgments
about the validity of individual studies, the accumulation of those studies, 
and extrapolation of the results beyond the study populations that generated the
findings.

Application of epidemiologic evidence to other populations, to individual de-
cision-making, or to public health policy requires caution. There are concentric
layers of application for epidemiologic evidence. A narrow one might be the use
of the data to estimate, within the study population, the quantitative effect of ex-
posure on the occurrence of disease. Somewhat broader would be the use of that
evidence to estimate the effect of exposure on disease for a broader population
outside the study but otherwise socially and demographically similar to the study
population, perhaps to help formulate policy. Assuming that the policy experts
are well informed, they will be able to accurately evaluate the strength and clar-
ity of the epidemiologic evidence.

As the information reaches clinicians or the public at large, the questions may
go well beyond what can be gleaned directly from epidemiologic data, for ex-
ample, asking whether a change in clinical practice or individual behavior is war-
ranted. It is thus important for epidemiology to examine the full spectrum of po-
tential consequences of a change in policy or practice on the public’s health,
identifying unanticipated consequences of altered exposure as well as desired
outcomes. These are often the most important considerations in setting policy,
and epidemiology has a unique role to fulfill in generating critical information.

Beyond the scope of epidemiology comes the feasibility and costs of actually
modifying exposure through behavior change, clinical guidelines, or regulation.
As the goal is expanded, moving from a characterization of the risks and bene-
fits of alternative courses of action to the question of what should be done and
how to achieve the desired end, the sufficiency of even impeccable epidemio-
logic information diminishes and considerations outside of epidemiology often
become increasingly prominent. There may be tension between the cautiousness
of researchers who wish to ask narrow, modest questions of the data (for which
it may be well-suited) and the public who wish to ask the broadest possible ques-
tions of ultimate societal interest (for which the data are often deficient).

Even among researchers, different questions can be asked of the same data,
and the quality of a given body of data for one type of application may well dif-
fer from the same data used for other purposes. Tabulations of cervical cancer
mortality in relation to women’s occupation (Savitz et al., 1995) have several
possible applications, for example. We might ask what guidance such data can
provide for cervical cancer screening, making no assumptions whatsoever re-
garding why some occupational groups have higher risk than others, accepting
at face value the observation that they have such elevated risk. If women 
who work in the manufacturing industry show increased rates of cervical cancer,
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worksite screening programs in the manufacturing sector might be encouraged.
A different application of this observation would be to address the etiologic ba-
sis for why some occupational groups show higher risks than others. If we are
concerned with the effect of workplace chemical exposures in the etiology of
cervical cancer, the exact same data documenting differential risk by employ-
ment sector are far less effective since we are lacking needed information on ac-
tual workplace exposure. The very same study may answer some questions very
effectively, e.g., “Which work sectors are at higher risk?” and others poorly or
not at all, e.g., “Do workplace chemicals cause cervical cancer?” Thus, the study’s
value must be defined relative to a specific application.

The distinctions between the goals of the data generator and data interpreter
are especially apparent for descriptive epidemiology, such as demographic pat-
terns, time trends in disease, and to some extent, patterns across groups de-
fined by such broad attributes as gender, social class, and occupation. Such
data are often generated for administrative purposes or perhaps to stimulate
new ideas about why risks vary across time and populations. Nevertheless,
clever interpreters often bring such data to bear in evaluation of causal hy-
potheses, such as the effect of the introduction or removal of potential causes
of disease on time trends in disease occurrence, or the effectiveness of a newly
introduced therapy in reducing mortality from a given disease. Even techni-
cally accurate data do not guarantee that the inferences that rely on those data
are free of error. It depends on the match between the information and the use
to which is it put.

The diverse interests of those who evaluate epidemiologic data, including those
who generate it, serve as a useful reminder that the data are the object of inquiry
rather than the character or intelligence of those who generate it. Individuals of
the highest intelligence and moral character can generate flawed information, and
those of limited talent can stumble into important and trustworthy findings. The
elusive search for objectivity in generating and interpreting epidemiologic evi-
dence is well served by a single-minded focus on the product and application of
the information rather than the people who generate or use that product. Efforts
to judge evidence based on the track record or mental processes of the investi-
gator can only be a distraction. Although it may sound obvious that it is only the
quality of the data that counts, this issue arises in considerations of disclosure of
financial support for research that that may bias the investigator (Davidoff et al.,
2001), the interpretation of data based on the intent or preconceptions of the in-
vestigator (Savitz & Olshan, 1995), and most insidiously, when research is judged
based on the track record of those who generated it. As we make use of epi-
demiologic data to draw inferences, it is necessary to step back not only from
the investigators as human beings but even from the original study goals to ask
how effectively the information answers a specific question and contributes to a
specific inference.
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DESCRIPTIVE GOALS AND CAUSAL INFERENCE

Although inferences derived from epidemiologic data are generally concerned
with causality, sometimes accurate measurement of the occurrence or pattern of
disease is an end in itself. The research is successful to the extent that the meas-
urement is accurate. A classic descriptive goal is to measure disease prevalence
or the pattern of disease in demographic subgroups of the population for the pur-
pose of planning and allocating health services. There is no explicit or implicit
question about how the pattern of disease came about, only that it is present. The
preponderance of women with dementia relative to the number of men with the
disease has direct bearing on the provision of extended health care services to
the elderly. The fact that this is largely or entirely the result of women’s longer
survival relative to men’s rather than a higher incidence of dementia among
women is irrelevant to those who provide care to those with dementia, who must
contend with the larger proportion of women than men in need of care. The very
concept of confounding by age is applicable only to the goal of drawing etio-
logic inferences regarding the association between gender and dementia, not a
concern in meeting health service needs.

Accepting the goal of accurate measurement, avoiding any consideration of
causality, there are still several requirements for the research to be valid and there-
fore useful. Distortion can arise due to problems in subject selection or partici-
pation (selection bias). For example, if women with dementia were cared for in
institutional settings to a greater extent than men, perhaps due to lack of avail-
ability of a spouse as caregiver, an assessment restricted to those receiving insti-
tutional care would generate an inaccurate reflection of the true magnitude of 
gender differences. Similarly, errors in measuring exposure or disease (misclassi-
fication) are detrimental to any conceivable use of the data. If the diagnosis of de-
mentia is in error, whether planning health services or studying etiology, the value
of the study is diminished. The ill-defined process of random error also intro-
duces uncertainty in the study results, independent of any concern with etiologic
inference. If instead of conducting a full census of dementia in the service area,
a random sample is chosen for enumeration, deviation between the sample and
the total population is problematic for optimal service allocation. Each of these
processes can result in a measure that is an inaccurate descriptor of the popula-
tion under study. If we wished to compare dementia prevalence among men and
women, non-response, erroneous classification of dementia (or gender), and ran-
dom error due to sampling would contribute to an inaccurate comparison.

The initial goal of epidemiologic research is accurate measurement of the oc-
currence of disease or measurement of an association. Selection bias, misclassi-
fication, and random error thus reduce accuracy for even these purposes. Going
beyond describing associations, epidemiologic studies can address causal rela-
tions, placing greater demands on the research and making it more vulnerable to
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error. Such inferences require consideration of whether the desired constructs have
been captured accurately, more challenging for etiologic than descriptive purposes,
and whether confounding is present, a concern unique to causal inference.

INFERENCES FROM EPIDEMIOLOGIC EVIDENCE: 
EFFICACY OF BREAST CANCER SCREENING

A specific example illustrates the range of potential questions that can be applied
to epidemiologic data (Table 2.1) and how a given study may answer some ques-
tions effectively and others rather poorly. Assume that the exposure under study
is participation in a regular mammography screening program and the disease 
of interest is fatal breast cancer. Such a study has potential relevance to many
questions.

1. What is the mortality rate among women who participated in the mam-
mography screening program?

Answering this question requires, at a minimum, accurate data on par-
ticipation and mortality. Loss to follow up can interfere with the accurate
description of the experience of women enrolled in the program, and ac-
curate measurement of breast cancer mortality is required for the mortality
rate to be correct. Note that accurate estimation of mortality does not re-
quire consideration of confounding, information on breast cancer risk fac-
tors, or concern with self-selection for participation in the program. The
goal is largely a descriptive one, accurately estimating a rate.

2. Is breast cancer mortality different in women who participated in the mam-
mography screening program than women who did not participate?

Beyond the requirement of accurate measurement of participation and
mortality is the need to compare participants to nonparticipants. Note that
the question as stated does not raise questions of causality, but only makes
a comparison of rates. Even if we try to restrain our desire to make infer-
ences about the causal effect of participation, questions arise regarding a
suitable comparison group, and the desire to make broader inferences be-
comes increasingly difficult to escape. Women who did not participate
could, under this general statement of the goal, be any women who did not
do so, unrestricted by age, geography, breast cancer risk factors, etc. It is
rare to make comparisons without some degree of interest in measuring a
causal role for the attribute that distinguishes the groups. Claims of agnos-
ticism should be scrutinized carefully—are the investigators just trying to
forestall criticism by pretending to be uninterested in a causal inference?
Wouldn’t they really like to know what the breast cancer mortality rate
among participants in the screening program would have been if they had

16 INTERPRETING EPIDEMIOLOGIC EVIDENCE



not participated, and isn’t that the inference they will make based on the
nonparticipants?

3. Has participation in the mammography screening program caused a re-
duction in breast cancer mortality among those who participated in the 
program?

This question directly tackles causality and thus encounters a new series
of methodologic concerns and questions. In the counterfactual conceptual-
ization of causality (Greenland & Robins, 1986), the goals for this com-
parison group are much more explicit than in Question 2. Now, we would
like to identify a group of women who reflect the breast cancer mortality
rate that women who participated in the mammography screening program
would have had if they had not in fact participated. (The comparison is
counterfactual in that the participants, by definition, did participate; we wish
to estimate the risk for those exact women had they not done so.) We can
operationalize the selection of comparison women in a variety of imperfect
ways but the conceptual goal is clear. Now, issues of self-selection, base-
line risk factors for breast cancer mortality in the two groups, and con-
founding must be considered, all of which threaten the validity of causal
inference.

4. Do mammography screening programs result in reduced mortality from
breast cancer?

This question moves beyond causal inference for the study population of
women who participated in the screening program, and now seeks a more
universal answer for other, larger populations. Even if the answer to Ques-
tion 3 is affirmative, subject to social and biological modifiers, the very
same program may not result in reduced mortality from breast cancer in
other populations. For example, the program would likely be ineffective
among very young women in whom breast cancer is very rare, and it may
be ineffective among women with a history of prior breast cancer where
the recurrence risk may demand a more frequent screening interval. In or-
der to address this question, a series of studies would need to be consid-
ered, examining the reasons for consistent or inconsistent findings and mak-
ing inferences about the universality or specificity of the association.

5. Is breast cancer screening an effective public health strategy for reducing
breast cancer mortality?

Given that we have been able to generate accurate information to answer
the preceding questions, this next level of inference goes well beyond the
epidemiologic data deeply into the realm of public health policy. This global
question, of paramount interest in applying epidemiology to guiding pub-
lic policy, requires examination of such issues as the protocol for this screen-
ing program in relation to other screening programs we might have adopted,
problems in recruiting women for screening programs, financial costs of
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such programs relative to alternatives, what types of women are expected
to benefit from the program, etc.

Answering the first question with confidence is readily within our grasp, and
taken literally, the second question as well. The ability to make accurate meas-
urements of exposure and disease is sufficient for addressing those narrow ques-
tions, and necessary but not sufficient for addressing the subsequent ones. The
second question concerns a comparison but tries at least to defer any causal im-
plications of the comparison—Are the mortality rates different for participants
than nonparticipants? The third question is of the nature that much of this book
focuses on, namely making causal inferences within a given study, spilling over
into the fourth question, which is a broader inference about a series of epidemi-
ologic studies. Question 5 goes well beyond epidemiology alone, though epi-
demiologic findings are clearly relevant to the broader policy judgment. The spe-
cific research question under consideration must be kept in focus, evaluating the
quality of evidence for a specific purpose rather than generically. Study designs
and data can only be evaluated based on the application of the evidence they gen-
erate, and the inferences that are to be made.

INFERENCES FROM EPIDEMIOLOGIC EVIDENCE: 
ALCOHOL AND SPONTANEOUS ABORTION

Another illustration of the different levels of inference about epidemiologic ev-
idence and the challenges at each level concerns the relation between maternal
alcohol intake in early pregnancy and the risk of spontaneous abortion, preg-
nancy loss prior to 20 weeks’ gestation. The initial descriptive goal is to accu-
rately measure alcohol consumption in a population of pregnant women, and then
to monitor the incidence of spontaneous abortion. These measurement issues pres-
ent a substantial challenge for both the exposure and the health endpoint. Gen-
erating accurate rates of pregnancy loss across groups with differing alcohol con-
sumption (regardless of the desired application or interest) is fraught with
potential error. Alcohol use is notoriously susceptible to erroneous measurement
in the form of underreporting, irregular patterns of intake, potentially heteroge-
neous effects across beverage type, and variability in metabolism. Furthermore,
there are no good biological markers of exposure that integrate information over
time periods of more than a day. Early pregnancy is also difficult to identify ac-
curately without a rather intensive biological monitoring protocol of daily hor-
mone levels. Inaccuracy in identifying the onset of pregnancy introduces the po-
tential for a differential reported rate of loss simply as a function of the
completeness with which pregnancy is recognized in the earliest, most vulnera-
ble period.
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To make accurate assessments that extend beyond the individual women en-
rolled in the study, we need to ask whether those women on whom data are avail-
able provide an accurate representation of that segment of the study population
that is of interest (freedom from selection bias). For example, do the heavy al-
cohol users recruited into the study provide an accurate reflection of the risk of
spontaneous abortion among the larger target population of heavy alcohol users?
Are only the most health-conscious drinkers willing to enroll in such a study,
who engage in a series of other, risk-lowering behaviors, yielding spuriously low
rates of spontaneous abortion among heavy drinkers relative to the target popu-
lation of heavy drinkers? Selection among those in the exposure stratum that dis-
torts the rate of spontaneous abortion limits any inferences about the effects of
that exposure. Similarly, losses to follow-up may occur in a non-random man-
ner, for example, if those who choose to have elective abortions would have dif-
fered in their risk of spontaneous abortion had they allowed their pregnancies to
continue, and decisions regarding elective abortion may well differ in relation to
alcohol use. These losses may distort the measured rate of spontaneous abortion
within a stratum of alcohol use and introduce bias into the evaluation of a po-
tential causal effect of alcohol.

Beyond the potential for misrepresentation of alcohol use, which would dis-
tort the results for any conceivable purpose, choices regarding the index and tim-
ing of alcohol use must be examined. Even an accurate estimate of the rate of
spontaneous abortion in relation to average daily alcohol consumption would not
address consumption at specific time intervals around conception, the effects of
binge drinking, and the impact of specific beverage types, for example. The in-
ference might be perfectly accurate with respect to one index yet quite inaccu-
rate in fully characterizing the effect of alcohol consumption on risk of sponta-
neous abortion. If we were only interested in whether alcohol drinkers serve as
a suitable population for intensified medical surveillance for pregnancy loss dur-
ing prenatal care, for example, average daily alcohol intake might be quite ade-
quate even if it is not the index most relevant to etiology. Misclassification and
information bias are assessed relative to the etiologic hypothesis regarding an ef-
fect of alcohol on spontaneous abortion.

Technically, the study can only examine the statistical association between
verbal or written response to questions on alcohol use and hormonal, clinical, or
self-reported information pertinent to identifying spontaneous abortion. A truly
agnostic interpretation of such measures is almost unattainable, given that the
very act of making the comparisons suggests some desire to draw inferences
about the groups being compared. To make such inferences correctly about
whether alcohol causes spontaneous abortion, epidemiologic studies must be
scrutinized to assess the relationship between the operational definitions of ex-
posure and disease and the more abstract entities of interest. Criticism cannot be
avoided by claiming that a study of questionnaire responses and pathology records
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has been conducted. Rather, the effectiveness of the operational measures as prox-
ies for the constructs of interests is a critical component of interpreting epi-
demiologic evidence.

Our ultimate interest in many instances is in whether alterations in alcohol
consumption would result in alterations in risk of spontaneous abortion. That is,
would women who are high alcohol consumers during pregnancy assume the risk
of low alcohol consumers if they had reduced their alcohol consumption? To ad-
dress this question of causality, we would like to compare the risk among high
alcohol consumers to what their risk would have been had they been otherwise
identical but nondrinkers or low consumers of alcohol (Greenland & Robins,
1986). Our best estimate of that comparison is derived from the actual non-
alcohol consumers with some additional statistical adjustments to take into ac-
count factors thought to be related to spontaneous abortion that distinguish the
groups. Beyond all the measurement and selection issues within groups of dif-
fering alcohol use, we now have to ask about the comparability of the groups to
one another. Confounding is a concern that only arises when we wish to go be-
yond a description of the data and make hypothetical inferences about what would
happen if the exposed had not been exposed. The burden on the data rises in-
crementally as the goal progresses from pure description to causal inference.

CAUSAL INFERENCE

Others have discussed the philosophical issues underlying causal inference in
some detail, including the challenges of making such inferences from observa-
tional studies (Lanes, 1988; Susser, 1977, 1991; Rothman & Poole, 1996). The
key point is that causal inference is just that—an inference by the interpreter of
the data, not a product of the study or something that is found within the evi-
dence generated by the study. Given its nature, formulaic approaches to defin-
ing when it has been attained, as though the evidence were dichotomous instead
of distributed continuously, and affirmative proof of causality should be avoided.
Even the widely used criteria for causality (US Surgeon General, 1964; Hill,
1965) have limited value except as a broad set of guidelines of indirect value in
assessing the potential for biased measures of association.

Causal inference in epidemiology is based on exclusion of non-causal expla-
nations for observed associations. There are many possible reasons for the re-
ported measures of association obtained in epidemiologic studies to be inaccu-
rately reflecting the causal impact of exposure on disease. Random error and the
familiar epidemiologic concepts of confounding, selection bias, and information
bias are mechanisms for producing data that do not correctly quantify the causal
component of the association of interest. Although researchers are sometimes re-
luctant to use the word causality because of modesty or the realization that their
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study falls short of definitively resolving the presence or absence of causality
(and they are always right), articulating the goal of measuring the magnitude of
causal effects helps to guide discussion of the evidence that has been obtained.
With the exception of studies that seek a pure description, most epidemiologic
research has an explicit or implicit goal of contributing toward a broader, causal
inference. Making the goal explicit and ambitious helps to focus the evaluation
of the evidence that was obtained.

The cliché that epidemiologic studies generate only measures of association,
not causation is meaningless. The same is true of experimental studies, of
course, even though the opportunity to randomly allocate exposure provides
important advantages in making inferences beyond the immediate results. Nev-
ertheless, even experiments just generate measures of association as well. We
could just as accurately say that epidemiologic studies just generate numbers
or binary codes in computers. It would be technically true, but not at all help-
ful in assessing what can be done with those numbers. Perhaps what is intended
by emphasizing the inability of epidemiologic studies to address causality is
that in epidemiology, like other sciences, we generate inferences from the data,
trying to impose a meaning that is not inherent in the data. The data yield meas-
ures of association and those who examine the data make inferences about
causality.

Drawing inferences is a speculative process, and acknowledging that fact ad-
vances rather than detracts from the value of epidemiologic research. Intelligent
speculation is precisely the way to make complete, maximally useful assessments
of epidemiologic research—Has the study accurately measured the constructs of
interest? Does the measure of association accurately reflect the experience of the
study population? Did the exposure contribute to an increased risk of disease in
this population? Would the elimination of exposure reduce the risk of disease?
Would exposure have the same effect in other populations? Without using the
word causal, answers to each of these questions bear directly on causal infer-
ence. All questions concerning distortion of the measure of association help to
accurately assess the causal effect of exposure, and any questions about whether
the observed relation would hold in other populations and how much impact there
would be from reducing the exposure make use of the presumed causal associ-
ation that has been measured.

We ought not set the bar too high for studies to serve as the basis for consid-
ering causality—it is not required that the studies be flawless to justify such
scrutiny. Once causal inference is recognized to fall along a continuum of inter-
pretation, even descriptive or methodologically weak studies are fodder for the
assessment of causality. There is no basis for setting a threshold of effect size or
study quality as a prerequisite to enter the realm of causal inference. Studies that
contribute modestly to a causal evaluation should be recognized and valued as
doing exactly that.
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Those who conduct the research need not even provide a comprehensive or
definitive interpretation of their own data, an elusive goal as well. A perfectly
complete, unbiased, accurate representation of the study results is also unattain-
able. The principal goal of the investigators should be to reveal as much as pos-
sible about their study methods and results in order to help themselves and oth-
ers make appropriate use of their research findings. Given that the challenges to
causal inference can often be anticipated, data that bear on the threats to such in-
ference are needed to interpret the results. Many of the strategies suggested in
this book require anticipation of such a challenge at the time of study design and
execution. If a key confounder is known to be present, e.g., tobacco use in as-
sessing alcohol effects on bladder cancer, detailed cross-tabulations may be de-
sirable to help assess whether confounding has been successfully eliminated. If
the assessment of a construct poses special challenges, e.g., measurement of work-
place stress, then the instrument needs to be described in great detail along with
relevant data that bear on its validity. Ideally, this complete description of meth-
ods and results is conducted with the goal of sharing as much of the information
as possible that will assist in the interpretation by the investigators and others.
The formal discussion of those results in the published version of the study pro-
vides an evaluation of what the study means to the authors of the report. Al-
though the investigators have the first opportunity to make such an evaluation,
it would not be surprising if others among the thousands of reviewers of the pub-
lished evidence have more helpful insights or can bring greater objectivity to bear
in making the assessment. Rather than stacking the deck in providing results to
ensure that the only possible inferences are concordant with those of the origi-
nal researchers, those who can provide enough raw material for readers to make
different inferences should be commended for their full disclosure rather than
criticized for having produced findings that are subject to varying interpretations.
This pertains to revealing flaws in the study as well as fully elucidating the pat-
tern of findings. In the conventional structure of publication, the Methods and
Results are the basis for evaluation and inference; the Discussion is just a point
of view that the investigators happen to hold.

We sometimes have the opportunity to directly evaluate the role of potential
biases, for example, assessing whether a given measure of association has been
distorted by a specific confounding factor. Generating an adjusted measure of as-
sociation tells us whether potential confounding has actually occurred, and also
provides an estimate of what the association would be if confounding were ab-
sent. Note that the exercise of calculating a confounder-adjusted result is also in-
herently speculative and subject to error, for example, if the confounder is poorly
measured. An example of a concern that is typically less amenable to direct eval-
uation is the potential for selection bias due to non-response, usually evaluated
by comparing participants to nonparticipants. The hypothesis that the association
has been distorted by confounding or non-response is evaluated by generating
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relevant data to guide those who review the evidence, including the authors, in
making an assessment of the likelihood and extent of such distortion.

In an ideal world, causal inference would be the end product of systematic
evaluation of alternative explanations for the data, with an unambiguous con-
clusion regarding the extent to which the measured association accurately reflects
the magnitude of the causal relationship. In practice, a series of uncertainties pre-
clude doing so with great confidence. The list of alternative explanations is lim-
ited only by the imagination of critics, with insightful future reviewers always
having the potential to change the status of the evidence. Judgment of whether
a particular alternative explanation has truly been eliminated (or confirmed) is
itself subjective. Hypotheses of bias may be more directly testable than the hy-
pothesis of causality, but they remain challenging to definitively prove or dis-
prove. The culmination of the examination of individual contributors to bias is
a judgment of how plausible or strong the distortion is likely to be and how con-
fidently such an assertion can be made rather than a simple dichotomy of pres-
ent or absent. Thus, the answer to the ultimate question of whether the reported
association correctly measures the etiologic relationship will always be “maybe,”
with the goal of making an accurate assessment of where the evidence fits within
the wide spectrum that extends from the unattainable benchmarks of “yes” 
or “no.”

The array of potential biases that limit certainty regarding whether an etiologic
association (or its absence) has been measured accurately is valuable in specify-
ing the frontier for advancement of research. If the major concerns remaining af-
ter the most recent study or series of studies can be clearly articulated, the agenda
for refinement in the next round of studies has been properly defined. If the some-
what mundane but real problem were one of small study size and imprecision,
then a larger study with the strengths of the previous ones would be suggested.
If uncertainty regarding the role of a key confounder contributes importantly to
a lack of resolution, then identifying a population free of such confounding (by
randomization or identifying favorable circumstances in which the exposure and
confounder are uncoupled) or accurate measurement and control of the con-
founder may be needed. Precisely the same process that is needed to judge the
strength of evidence yields insights into key features needed for subsequent stud-
ies to make progress.

The most challenging and intellectually stimulating aspect of interpreting epi-
demiologic evidence is in the process of assessing causality. A wide array of
methodological concerns must be considered, integrating the data from the study
or studies of interest with relevant substantive knowledge and theoretical princi-
ples. We are rarely able to fully dispose of threats to validity or find fatal flaws
that negate the evidence, leaving a list of potential biases falling somewhere along
the continuum of possibility. With this array of such considerations in mind, a
balanced, explicit judgment must be made. On the one hand, the need to make
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such complex assessments is threatening and all but guarantees disagreement
among experts. On the other hand, viewed in this manner, each increment in
knowledge of the methodological and substantive issues yields benefits in mak-
ing wiser judgments. Whether moving from a point of near certainty toward cer-
tainty or from complete ignorance to slightly more informed speculation, progress
made by research can be appreciated.

CONTRIBUTION OF EPIDEMIOLOGY TO POLICY DECISIONS

Viewing causal inference in epidemiology as falling on a continuum of certainty,
never reaching a clearly defined point of resolution, may sound like a formula
for inaction. If tobacco use has not actually been proven, beyond all possible
doubt, to cause disease based on epidemiologic studies, then how can actions to
curtail or eliminate use of tobacco be justified? In fact, the spectrum of scien-
tific certainty has been used cynically at times to argue that control of tobacco
or other hazards should await definitive proof, quite possibly with the knowledge
that such proof will never come. It would be much easier to explain and market
epidemiologic evidence to outsiders if we set a quantitative threshold for proven
as is done in court (more probable than not). In opposition to such an approach
is the inability to measure certainty in such formal, quantitative terms, the 
incentive it would create to understate or exaggerate the certainty of epidemio-
logic evidence, and the real possibility that errors of overinterpretation and 
underinterpretation of epidemiologic research would become more rather than
less common.

Policy decisions or individual behavioral decisions can be viewed as an inte-
grated assessment of the risks and benefits among alternative courses of action.
There are always a variety of options available, including inaction, whether or
not such lists are formally articulated. In the case of tobacco, three simple op-
tions are (1) lack of regulation, (2) complete banning, and (3) policies to dis-
courage its use. Among the components of such a decision are economic con-
cerns with tobacco farmers, cigarette manufacturers, and the retail trade industry,
the value placed on individual freedom, the magnitude of health harm from to-
bacco use, and the burden on the health care system from tobacco-related dis-
ease. Note that the policy decision is not based solely on epidemiologic evidence,
though epidemiology contributes importantly to the decision. Even if we had
some accepted threshold for proven, reaching that threshold would not make the
appropriate policy clear.

Restricting discussion to the epidemiologic component of the information
needed for wise decision-making, a variety of issues must be considered. The
probability that tobacco contributes to specific diseases and the quantitative 
assessment of such effects is critical to policy makers. Because the ultimate 
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decision integrates epidemiology with many other lines of evidence, however, a
given amount of epidemiologic evidence may be sufficient for some purposes
and insufficient for others. That is, the definition of “sufficient epidemiologic ev-
idence” is specific to the situation, depending on the weight of other factors pro-
moting or discouraging the different policy options. For a given level of epi-
demiologic evidence, extraneous considerations define whether the balance tips
in favor of one action or another. In a simple illustration, assume the epidemio-
logic evidence of potential adverse effects is identical for two food additives, one
of which prevents life-threatening microbial contamination and the other merely
enhances the visual appeal of the product. The epidemiologic evidence could be
appropriately viewed as insufficient to warrant elimination of the first product
but sufficient to warrant elimination of the second, but what really differs is the
competing considerations outside of the epidemiologic evidence concerning the
food additive’s potential for harm.

A clearer, more honest appraisal of the role of epidemiologic evidence as the
basis for action has several benefits, in spite of the potential for abuse resulting
from a more open acknowledgment of the uncertainties. Full evaluation of risks
and benefits should, in principle, lead to wiser actions than attempts to over-
simplify the decision, e.g., “health harm must be avoided at any costs” or “the
epidemiologic evidence demands action.” Acknowledging the subtle balance
among the various considerations that influence policy can help to define where
further epidemiologic evidence would be most helpful. Research priorities in epi-
demiology should be influenced by an appreciation of those situations in which
more definitive answers would tip the balance on important policy issues, fo-
cusing investment of resources on those situations in which the balance is frag-
ile and can be shifted with refined epidemiologic information.

In some instances, even a wide range of inferences from epidemiologic evi-
dence all fall in a range that would have the same policy implications. In exam-
ining the influence on public policy regarding tobacco use, the ongoing contro-
versies about differential effects on lung cancer by cell type, different effects
among men and women, and quantification of the interaction with diet or occu-
pational exposures are of scientific importance and may yield important insights
regarding mechanisms of disease causation, but their resolution is unlikely to af-
fect the key message for those who must decide tobacco policy. A wide range
of reasonable interpretations of the epidemiologic evidence all lead to the same
policy choice.

Recognizing that epidemiology is but one of many scientific approaches to in-
forming policy (Savitz et al., 1999) might liberate epidemiologists somewhat
from their fear of overinterpretaion or unwarranted speculation. Weak or pre-
liminary epidemiologic findings might well be injected into the policy dis-
cussion and correctly limited in their impact. There is great concern about fear-
mongering and rapidly changing evidence at early stages of the evolution of 
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research (Taubes, 1995). However, if correctly interpreted, those early findings
often are and should be superseded at the policy level by other scientific and
non-scientific concerns. Weak contributory evidence is not the same as no evi-
dence or counterproductive evidence.

It is important for epidemiologists to recognize that scientific disciplines such
as toxicology contribute independent evidence to be used in assessing health risks
and benefits, not just assisting in the interpretation of epidemiology. Absolved
of the fear that their data might be taken too literally and isolated from other im-
portant scientific and non-scientific considerations, epidemiologists might be less
inhibited about generating evidence on matters of public controversy such as
health risks and benefits of medically induced abortion or the identification of
risk factors associated with intentional injury.

A perceived drawback to the use of epidemiologic evidence is the highly vis-
ible and persistent controversies that surround it, which can be inconvenient for
policy makers and at times, disconcerting to the public at large (Taubes, 1995).
There is no evidence that the proportion of published findings from epidemiol-
ogy that are inaccurate or misleading differs from that in other scientific disci-
plines. The cold fusion story illustrates that even in physics, science does not fol-
low straight lines of progress, building one accurate, and properly interpreted
finding on top of the other.

Most associations reported in the epidemiologic literature probably do not pro-
vide an accurate reflection of the exact causal relation they are intended to ad-
dress. Perusal of any issue of an epidemiology journal contains dozens, some-
times hundreds, of estimates of association regarding how diet, medications, and
workplace exposures might affect health, and few readers would take those in-
dividual findings and interpret them as quantitative reflections of the underlying
causal effects. Capturing causal relations with accuracy is tremendously chal-
lenging. Epidemiologic measures of association are distorted to varying extent
by random error or bias, or perhaps reflect a real phenomenon that is not exactly
what it purports to be. By and large, researchers appropriately treat those find-
ings as leads to be challenged and pursued. Whereas experimental approaches
may well have a better rate of success in having their observed associations re-
flect causality, the challenge there is often one of applicability to the human
health conditions of ultimate interest.

Perhaps the unique feature of epidemiology is how amenable it is to overin-
terpretation and sensationalism in the media. Most publications in physics and
molecular biology, right or wrong, reach others in the field and do not engage
media or public interest. When the alarms are found to be false alarms, the sci-
ence moves forward without shame. The same phenomenon in epidemiology,
played out in a much more public arena, yields an impression of incompetence,
exaggeration of the value of research findings, and endless acrimony among com-
peting factions.
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There are two possible solutions to this dilemma: (1) The optimal, infeasible
solution is to ensure that published epidemiologic evidence is valid. (2) The al-
ternative is to continue to put forward fallible observations, debate their merits,
and seek a systematic, objective appraisal of the value of the information. The
remaining chapters of this book are devoted to that goal of organizing the scrutiny
and interpretation of epidemiologic evidence.

The importance of epidemiologic evidence in decision-making at a societal
and personal level is generally recognized, sometimes excessively so, but the
unique strengths of epidemiology in that regard are worth reiterating. Study of
the species of interest, humans, in its natural environment with all the associated
biological and behavioral diversity markedly reduces the need for extrapolation
relative to many experimental approaches with laboratory animals or cell cul-
tures. It has been suggested that experimental approaches to understanding hu-
man health obtain precise answers to the wrong questions whereas epidemiology
obtains imprecise answers to the right questions. Just as those who design ex-
periments seek to make the inferences as relevant as possible to the ultimate ap-
plications in public health and clinical medicine, epidemiologists must strive to
make their information as valid as possible, not losing the inherent strength of
studying free-living human populations.
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3
STRATEGY FOR DRAWING INFERENCES 
FROM EPIDEMIOLOGIC EVIDENCE

Validity of epidemiologic results refers broadly to the degree to which the in-
ferences drawn from a study are warranted (Last, 2001). The central goal in eval-
uating epidemiologic evidence is to accurately define the sources of uncertainty
and the probability of errors of varying magnitude affecting the results. Validity
cannot be established by affirmatively demonstrating its presence but rather by
systematically considering and eliminating, or more often reducing, the sources
of bias that detract from validity. The goal of this scrutiny is to quantify the un-
certainty resulting from potential biases, considering the probability that the dif-
ferent sources of potential bias have introduced varying magnitudes of distor-
tion. Part of this assessment can be made on theoretical grounds, but whenever
possible, pertinent data should be sought both inside and outside the study to as-
sess the likely magnitude of error. Sometimes the information needed to evalu-
ate a potential source of error is readily available, but in other instances research
has to be undertaken to determine to what extent the hypothesized source of er-
ror actually may have affected the study results. In fact, an important feature of
the data collection and data analysis effort should be to generate the information
needed to fairly and fully assess the validity of the results. In principle, with all
relevant data in hand from the set of pertinent studies, a comprehensive evalua-
tion of sources of uncertainty would yield a clear and accurate inference regard-
ing the present state of knowledge and identify specific methodologic issues that
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need to be addressed to advance knowledge in future studies. This ideal com-
prehensive, quantitative, objective assessment of evidence is, of course, unat-
tainable in practice, but serves as a standard to which interpreters of epidemio-
logic evidence should aspire.

An easier and perhaps more commonly used approach to assessing evidence
is to rely on a summary judgment of experts, either individually or as a com-
mittee. Peer review of manuscripts submitted for publication, informal assess-
ment by colleagues, and consensus conferences typically fall into this category.
Although the experts can and often do apply objective criteria, in practice the
summary pronouncements are often sweeping and lacking in statements of prob-
ability: the data are inconclusive or causal inference is justified or the evidence
is weak. The advantages of relying on authoritative individuals or groups are the
speed with which a summary of the evidence can be generated, the ease of ex-
plaining the process (at least at a superficial level) to outsiders, and the credi-
bility that authorities have among both experts and nonexperts. In the absence of
information on the basis for such assessments however, there is no assurance that
the evidence was considered comprehensively, quantitatively, or objectively. De-
composing the evaluation into its component parts allows others to understand
and challenge the steps that led to the final conclusion. By revealing the process
by which conclusions were drawn, the assumptions, evidence, and inferences are
made clear for all to understand (and criticize). In principle, the conclusion that
evidence is convincing could only come from having considered and determined
that potential sources of bias have little impact, and the evidence that led to that
conclusion is essential to assess whether it is likely to be correct. Similarly, the
assessment that the evidence from reported associations is weak or inconclusive
must arise from having identified sources of bias and evidence that those biases
have distorted the results to a substantial degree. The underlying pieces of 
information that led to the final evaluation are as important as the conclusion 
itself.

NEED FOR SYSTEMATIC EVALUATION OF SOURCES OF ERROR

To serve the goal of accurate interpretation of epidemiologic evidence, there are
substantial intellectual and practical advantages to a systematic, component-by-
component evaluation:

1. Conclusions drawn from the results of epidemiologic studies are more likely
to be valid if the evaluation is truly comprehensive, enumerating and care-
fully considering all potentially important sources of bias. Although this
thorough examination may make the ultimate inferences more, not less,
equivocal, the conclusions will be more accurately linked to the evidence.
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Even (especially?) experts have preconceptions and blind spots, and may
well be prone to evaluating evidence based on an initial, subjective overview
and then maintaining consistency with their initial gut impressions. For ex-
ample, a study done by talented investigators at a prominent institution and
published in a prestigious journal may convey an initial image of certain
validity, but none of those characteristics provide assurance of accuracy nor
does their absence provide evidence that the results are in error. System-
atic scrutiny helps to ensure that important limitations are not overlooked
and ostensibly important limitations are examined to determine whether
they really are likely to have had a substantial impact on the study results.

2. Intellectual understanding of the phenomenon of interest and methodologic
issues is enhanced by a detailed, evidence-based examination. Even if ex-
perts were capable of taking unexplained shortcuts to reach an accurate as-
sessment of the state of knowledge (epidemiologic intuition), without un-
derstanding of the process by which the judgment was reached, the rest of
us would be deprived of the opportunity to develop those skills. Further-
more, the field of epidemiology makes progress based on the experience of
new applications, so that the scholarly foundations of the discipline are ad-
vanced only by methodically working through these steps over and over
again. Reaching the right conclusion about the meaning and certainty of
the evidence is of paramount importance, but it is also vital to understand
why it is correct and to elucidate the principles that should be applied to
other such issues that will inevitably arise in the future.

3. Research needs are revealed by describing specific deficiencies and uncer-
tainties in previous studies that can be remedied. Bottom line conclusions
reveal little about what should be done next—What constructive action fol-
lows from a global assessment that the evidence is weak or strong? By ex-
plaining the reasoning used to draw conclusions, a natural by-product is a
menu of candidate refinements for new studies. Quantifying the probabil-
ity and impact of sources of potential error helps to establish priorities for
research. The most plausible sources of bias that are the most capable of
producing substantial error are precisely the issues that need to be tackled
with the highest priority in future studies, whatever the current state of
knowledge. In practice, it is often only a few methodological issues that
predominate to limit the conclusiveness of a study or set of studies, but this
becomes clear only through systematic review and evaluation.

4. Reasons for disagreement among evaluators will only be revealed by defin-
ing the basis for their judgments. Multiple experts often examine the same
body of evidence and come to radically different conclusions, puzzling other
scholars and the public at large. If those who held opposing views would
articulate the component steps in their evaluations that generated their sum-
mary views, and characterize their interpretations of the evidence bearing
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on each of those issues, the points of disagreement would be much better
understood. Whether the disagreement concerns substantive or method-
ologic issues, narrower issues are more amenable to resolution than sweep-
ing, summary evaluations. The discourse is much more informative for oth-
ers as well when the argument is in specific terms (e.g., “Is a particular
confounder associated strongly enough with disease to have yielded a rel-
ative risk of 2.0 under the null hypothesis?”), as opposed to one reviewer
claiming the evidence for an association is convincing and the other as-
serting that it is weak.

NEED FOR OBJECTIVE ASSESSMENT OF EPIDEMIOLOGIC EVIDENCE

The need to strive for impartiality in the evaluation of evidence must be stressed,
partly because there are strong forces encouraging subjectivity. Among the most
vital, exciting aspects of epidemiology are its value in understanding how the
world we live in operates to affect health and the applicability of epidemiologic
evidence to policy. Epidemiologic research bears on the foods we eat, the med-
ications we take, our physical activity levels, and the most intimate aspects of
our sexual behavior, emotional ties, and whether there are health benefits to hav-
ing pets. Putting aside the scholarly arguments made in this book, I am sure every
reader “knows” something about what is beneficial and harmful, and it is diffi-
cult to overcome such insights with scientific evidence. (I don’t need epidemio-
logic research to convince me that there are profound health benefits from own-
ing pet dogs, and I am equally certain that pet cats are lacking in such value.)
Epidemiologic evidence bearing on such issues is not interpreted in a vacuum,
but rather intrudes on deeply held preconceptions based on our cultures, reli-
gions, and lifestyles. Judgments about epidemiologic evidence pertinent to pol-
icy inevitably collide with our political philosophy and social values. In fact, sus-
picion regarding the objectivity of the interpretation of evidence should arise
when researchers generate findings that are consistently seen as supporting
strongly held ideology.

Beyond the more global context for epidemiologic evidence, other challenges
to impartiality arise in the professional workplace. On a personal level, we may
not always welcome criticism of the quality of our own work or that of valued
colleagues and friends, or be quite as willing as we should be to accept the ex-
cellent work done by those we dislike. The ultimate revelation of an ad hominem
assessment of evidence lies in the statement that “I didn’t believe it until we saw
it in our own data.” Such self-esteem may have great psychological value but is
worrisome with regard to objectivity. Epidemiologists may also be motivated to
protect the prestige of the discipline, which can encourage us to overstate or un-
derstate the conclusiveness of a given research product. We may be tempted to
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close ranks and defend our department or research team in the face of criticism,
especially from outsiders. Such behavior is admirable in many ways, but counter
to scientific neutrality.

Perhaps most significant for epidemiologists, who are often drawn to the field
by their strong conviction to promote public health agendas, is the temptation to
promote those public health agendas in part through their interpretations of sci-
entific evidence (Savitz et al., 1999). The often influential, practical implications
of epidemiology, the greatest strength of the discipline, can also be its greatest
pitfall to the extent that it detracts from dispassionate evaluation. The implica-
tions of the findings (quite separate from the scientific merits of the research it-
self) create incentives to reach a particular conclusion or at least to lean one way
or another in the face of true ambiguity. The greatest service epidemiologists can
provide those who must make policy decisions or just decide how to live their
lives is to offer an objective evaluation of the state of knowledge and let 
the many other pertinent factors that bear on such decisions be distilled by the
policy maker or individual in the community, without being predigested by the
epidemiologist.

For example, advocates of restrictions on exposure to environmental tobacco
smoke may be inclined to interpret the evidence linking such exposures to lung
cancer as strong whereas the same evidence, viewed by those who oppose such
restrictions, is viewed as weak. A recent review of funding sources and conclu-
sions in overviews of the epidemiologic evidence on this topic finds, not sur-
prisingly, that tobacco industry sponsorship is associated with a more skeptical
point of view (Barnes & Bero, 1998). Whereas judgment of the epidemiologic
evidence is (or should be) a matter for science, a position on the policy of re-
stricting public smoking is, by definition, in the realm of advocacy—public pol-
icy decisions require taking sides. However, the goal of establishing sound pub-
lic policy that advances public health is not well served by distorting the
epidemiologic evidence. 

Fallible epidemiologic evidence on the health effects of environmental tobacco
smoke may well be combined with other lines of evidence and principles to jus-
tify restricted public smoking. Believing that public smoking should be curtailed
is a perfectly reasonable policy position but should not be used to retrofit the epi-
demiologic evidence linking environmental tobacco smoke to adverse health ef-
fects and exaggerate its strength. Similarly, strongly held views about individual
liberties may legitimately outweigh epidemiologic evidence supporting adverse
health effects of environmental tobacco smoke in some settings, and there is no
need to distort the epidemiologic evidence to justify such a policy position. As
discussed in Chapter 2, epidemiologic evidence is only one among many sources
of information to consider, so that limited epidemiologic evidence or even an ab-
sence of epidemiologic evidence does not preclude support for a policy of such
restriction nor does strong epidemiologic evidence dictate that such a policy must
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be adopted. Cleanly separating evaluation of epidemiology from applications of
that evidence to policy encourages a more dispassionate assessment of the epi-
demiology and ultimately more rational, informed policy.

A primary goal of this book is to help make the evaluation of epidemiologic
evidence more objective, in large part by making the criticisms and credibility
of those criticisms more explicit, quantitative, comprehensive, and testable
through empirical evaluation. Even when scientists disagree about the proper
course of action, which they inevitably will do, just as nonscientists disagree,
they may still agree about the key sources of uncertainty in the epidemiologic
literature and the direction and magnitude of the potential biases.

At first glance, revealing epidemiology’s “dirty laundry” by exposing and
dwelling on the sources and magnitude of error may be seen as threatening to its
credibility among other scientists and the public at large. Elevating the debate to
focus on concrete, testable hypotheses of bias is more likely to have the benefi-
cial by-product of enhancing the image of epidemiology in the broader scientific
community. There seems to be the impression that epidemiologists have limit-
less criticisms of every study and thus they are unable to present a clear con-
sensus to other scientists, policy makers, and the public. Such criticism and de-
bate should not be restrained for public relations purposes, but to be useful the
debate should focus on important issues in the interpretation of the evidence, ex-
plain why those issues are important, and point toward research to resolve those
concerns. If those who held opposing viewpoints were better able to reach agree-
ment on the specific points of contention that underlie their differences, work to
encourage the research that would resolve their disagreements, and accept the re-
sults of that improved research, other scientists and the public could better un-
derstand that epidemiologists engage in the same process of successive approx-
imations of the truth as other scientific disciplines. The disagreements would be
clearly seen as constructive debate that helps to refine the study methods and
reach greater clarity in the results and encourages the investment of resources in
the research to resolve important controversies, not as personal bickering or petty
disagreements over arcane, inconsequential issues. The ultimate test of the value
of the disagreement is in whether it leads to improvements in the research and
advancements in knowledge.

ESTIMATION OF MEASURES OF EFFECT

The starting point for evaluating the validity of results is to calculate and pres-
ent estimates of the effect measure or measures of primary interest. This esti-
mate might be disease prevalence, a risk ratio or risk difference, or a quantita-
tive estimate of the dose-response function relating exposure to a health outcome.
In order to consider the extent to which the study has successfully measured what
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it sought to measure, the key outcomes must be isolated for the most intense
scrutiny. The question of validity is operationalized by asking the degree to which
the estimated measure of effect is accurately representing what it purports to
measure.

The measure of interest is quantitative, not qualitative. Thus, the object of eval-
uation is not a statement of a conclusion, e.g., exposure does or does not cause
disease, or an association is or is not present. Instead, the product of the study
is a measurement of effect and quantification of the uncertainty in that estimate,
e.g., we estimate that the risk of disease is 2.2 times greater among exposed than
unexposed persons (with a 95% confidence interval of 1.3 to 3.7), or for each
unit change in exposure, the risk of disease rises by a 5 cases per 1000 persons
per year (95% confidence interval of 1.2 to 8.8). Statement of the result in quan-
titative terms correctly presents the study as an effort to produce an accurate
measurement rather than to create the impression that studies generate dichoto-
mous results, e.g., the presence or absence of an association (Rothman, 1986).
The simplification into a dichotomous result, based either on statistical tests or
some arbitrary, subjective judgments about what magnitude of association is real
or important hinders the goal of quantitative, objective evaluation.

The alternative approach, driven by conventional frequentist statistical con-
cepts, is to focus on the benchmark of the null hypothesis, motivated perhaps by
a desire for neutral, restrained interpretation of evidence. In this framework, study
results are viewed solely to determine whether the data are sufficiently improb-
able under the null hypothesis to lead to rejection of the null hypothesis or a fail-
ure to reject the null hypothesis. For studies that generate ratio measures of ef-
fect, this is equivalent to asking whether we reject or fail to reject the null
hypothesis that the relative risk is 1.0. Rejecting the null hypothesis implies that
the relative risk takes on some other value but tells us no more than that. The
null value is just one hypothetical true value among many with which the data
can be contrasted, not the only or necessarily the most important one. The mag-
nitude of uncertainty in an estimated relative risk of 1.0 is not conceptually dif-
ferent than the uncertainty in estimates of 0.5 or 5.0. Also, focusing on the meas-
ure as the study product avoids the inaccurate impression that successful studies
yield large measures of effect and unsuccessful studies do not. Successful stud-
ies yield accurate measures of effect, as close as possible to the truth with less
uncertainty than unsuccessful ones.

The measure of interest is determined by the substantive study question, pre-
sented in common language rather than statistical jargon. For example, a study
may suggest that persons who drink 4 or more cups of coffee per day have 1.5
times the risk of a myocardial infarction compared to persons who drink fewer
than 4 cups of coffee per day, with a 95% confidence interval of 0.8 to 2.6. Study
products are not expressed in terms of well-fitting models or regression coeffi-
cients, nor should the results be distilled into test statistics such as t-statistics or
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chi-squared statistics or as p-values. In the above example, an indication that the
comparison of the risk of myocardial infarction among persons drinking 4 or
more cups of coffee versus those drinking fewer than 4 cups of coffee yielded a
chi-square statistic of 8.37 or a p-value of 0.074 is not a result that can be di-
rectly related to the substantive question driving the study. These statistical meas-
ures are generated only to serve as tools to aid in the interpretation of epidemi-
ologic evidence about disease or relations between exposure and disease, not as
the primary study product. The product of the study is the quantitative estimate
of effect and accompanying uncertainty, which is generated by statistical analy-
sis, but the statistical analysis is not the product in its own right. In some in-
stances, the translation of a statistical to a substantive measure is trivial, such as
converting a logistic regression coefficient into an adjusted odds ratio as a meas-
ure of effect. In other instances, particularly when viewed from a rigid statisti-
cal testing framework or from the perspective of fitting statistical models, the
quantitative measure of interest can become obscure. In one example, a key re-
sult was that a term did not enter the model in a stepwise regression (Joffe & Li,
1994) so that the reader could only infer the estimate of effect must be small
and/or imprecise (Savitz & Olshan, 1995a). “Not entering the model” is a rather
indirect statement about the magnitude and precision of the effect estimate. Sim-
ilarly, a statistically significant p-value is not a measure of direct interest any
more than a response proportion or a measure of reliability. They are all tools to
assist in assessing the validity of the truly important measure, the one that quan-
tifies the relation of interest. In serving that purpose, some statistical products
are more valuable than others.

Many intermediate and peripheral statistical results are typically generated in
addition to the primary estimate of effect and those can certainly help in the in-
terpretation of the primary result. All the preliminary efforts to describe the study
population, characterize respondents and nonrespondents, and evaluate associa-
tions between exposure or disease and potential confounders are important for
assessing validity. However, they play a supporting, not the leading role as prod-
ucts of the study. Except for methodologic efforts in which the primary aim is
to examine a hypothesized source of bias rather than a causal relation between
exposure and disease, studies are not typically undertaken to measure response
proportions or quantify confounding. When statistical procedures are used in an
attempt to remove bias, such as adjustment for confounders or corrections for
measurement error, the study result that constitutes the object of scrutiny may
then become the adjusted measure of effect. Therefore, the process by which the
measure was generated, including statistical adjustments intended to make it more
accurate, needs to be examined to assess the validity of the final result. In ask-
ing if the study generated an accurate measure of effect, it is important to know
whether confounding or measurement error was successfully addressed. If a po-
tential source of bias in the measure has been identified and corrected, then ob-
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viously it is no longer a source of bias. On the other hand, attempts to make such
corrections can be ineffective or, at worst, harmful.

Data collection efforts often yield numerous analyses and contribute substan-
tively to many different lines of research (Savitz & Olshan, 1995b). For the pur-
poses of examining and discussing validity of measurement, each analysis and
each key measure must be considered separately. While there are techniques for
refining individual estimates based on an array of results that address random er-
ror (Greenland & Robins, 1991), for evaluating systematic biases, the focus is
not the study or the data set but rather the result, since a given study may well
yield accurate results for one question but erroneous results for others. Features
of the study uncovered through one analysis may bear positively or negatively
on the validity of other analyses using the same data set, in that the same sources
of bias can affect multiple estimates. However, the question of whether the study
product is accurate must be asked for each such product of the study.

Some confusion can arise in discussing accurate measurement of individual
variables versus accurate measures of association. If the study is designed to
measure disease prevalence, for example, the study product and object of scrutiny
is the prevalence measure. We ask about sources of distortion in the observed
relative to the unknown true value of disease prevalence. When the focus is on
measures of association, the measure of association is the key study product. Er-
rors in measurement of the pertinent exposure, disease, or confounders all may
produce distortion of the measure of association, but the focus is not on the meas-
urement of individual variables; it is on the estimate of the association itself.

CONCEPTUAL FRAMEWORK FOR THE EVALUATION OF ERROR

Viewing the study product as a quantitative measure makes the evaluation of the
accuracy of the study equivalent to a quantitative evaluation of the accuracy of
the measure. Just as studies are not good or bad but fall along a continuum, the
accuracy of the study’s findings are not correct or incorrect but simultaneously
informative and fallible to varying degrees. This quantitative approach to the ex-
amination of bias is contrasted with an evaluation that treats biases as all-or-none
phenomena. If the product of a study is presented as a dichotomy, e.g., exposure
is/is not associated with disease, then sources of potential error are naturally ex-
amined with respect to whether or not they negate that association: Is the asso-
ciation (or lack of association) due to random error? Is the association due to re-
sponse bias? Is the association due to confounding? The search for error is viewed
as an effort to implicate or exonerate a series of potentially fatal flaws that could
negate the results of the study. Such an approach simplifies the discussion but it
does not make full use of the information available to draw the most appropri-
ate inference from the findings.
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A more constructive approach to the consideration of bias would consider the
role of systematic error in much the same way that random error is viewed—as
a ubiquitous source of some amount of error, but for which the focus is on how
much error is present with what probability. In fact, to consider biases as hav-
ing all-or-none effects on the results is just as inappropriate as considering ran-
dom error to be present or absent. Just as larger studies have less random error
than small studies, soundly designed and conducted studies have less systematic
error than less well designed and conducted studies.

Another important parallel is the magnitude of potential error. Random error
may cause small deviations between the estimated measure of effect and the un-
derlying parameter value, but becomes increasingly improbable as a cause of
more substantial deviations. Similarly, it is generally reasonable to assume that
biases may cause small amounts of measurement error more readily than large
amounts of such error. Unfortunately, the underlying theoretical and quantitative
framework for characterizing the impact of sampling error or error that arises in
the randomization of subjects does not apply so readily to observational studies
(Greenland, 1990), and the extension of that framework to non-random error is
even less readily translated into formal quantitative terms even though it remains
a useful goal.

A more quantitative assessment of bias has two distinct components, both tak-
ing on a spectrum of possible values: How probable is it that a specific source
of bias has yielded distortion of a given magnitude? It would be possible for a
candidate bias to be very likely or even certain to be present and introduce a
small amount of error, for example, selection bias from non-response, but to be
very unlikely to introduce a large amount of error. Rather than asking, “How
likely is it that selection bias from non-response introduced error?” we would
like to know, “How much does selection bias shift the position and change the
width of the confidence interval around the estimated measure of effect?”

For example, initially ignoring the contribution of selection bias or misclassi-
fication, it may be inferred that an observed relative risk of 2.0 under the null
hypothesis seems highly unlikely to result from random error, whereas once the
information on these sources of bias are incorporated, such a disparity becomes
much more plausible. The interpretation for other candidate deviations between
estimated effects and hypothesized true values would also shift with the incor-
poration of an understanding of the potential for selection bias, the strength of
the study’s results for some candidate hypotheses becoming stronger and for other
candidate hypotheses becoming weaker. There are families of questions that cor-
respond to probabilities of distortion of specified amounts, and assessing the po-
tential for such distortion requires an integration of the probability and magni-
tude of the phenomenon.

The ideal form of an answer to the series of questions regarding bias would
be a revised point estimate and confidence interval for the estimated measure of
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effect that is now positioned to account for the distortion resulting from each bias
and has a width that takes into account the possibility that the source of bias
yields varying magnitudes of error. Starting with the conventionally constructed
confidence interval derived solely from considerations of random error, there
might be a shift in the general placement of the interval to account for a given
form of bias to be more likely to shift results upward than downward, but there
would also be a widening of the confidence interval, perhaps asymmetrically, de-
pending on how probable it is that varying magnitudes of distortion are present.
Additional sources of bias could, in principle, be brought into consideration, each
one providing a more accurate reflection of the estimate of the measure of ef-
fect, integrating considerations of bias and precision.

In practice, the ability to quantify sources of bias other than random error poses
a great challenge, but the conceptual benchmark remains useful. This attempt at
quantification reminds us that even in an ideal world, hypothetical biases would
not be proven present or absent, but their possible effect would be quantified,
and the estimated measure of effect would shift as a result. In some instances,
we may have the good fortune of finding that the range of plausible effects of
the bias are all negligible, enabling us to focus our energies elsewhere. When we
find that the bias is capable or even likely to introduce substantial distortion,
those are the biases that need to be countered in subsequent studies in order to
remove their effect or at least to more accurately account for their impact and
reduce uncertainty. The strategies of the following chapters are intended to help
in estimating the direction and magnitude of distortion resulting from various bi-
ases, focusing wherever possible on the use of empirical evaluation to help bridge
the gap between the ideal quantitative, probabilistic insights and what is often a
largely intuitive, informal characterization of the impact of bias that is commonly
applied at present. Collecting and analyzing additional data, conducting sensi-
tivity analyses, and incorporating information from outside the study of interest
are among the strategies that are proposed to help in this challenging mission.

IDENTIFY THE MOST IMPORTANT SOURCES OF ERROR

Examination and critical evaluation of a study result should begin with an enu-
meration of the primary sources of vulnerability to error, either by the authors
as the first ones to see and evaluate the findings, or by the users of such infor-
mation. Although this seems obvious, there may be a temptation to focus on the
sources that are more easily quantified (e.g., nondifferential misclassification) or
to enumerate all conceivable biases, giving equal attention to all. Instead, the first
stage of evaluation, to ensure that the scrutiny is optimally allocated, should be
to identify the few possibilities for introducing large amounts of error. Project-
ing forward to conceptualize that unknown but ideal integrated measure of 
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effect that incorporates all sources of distortion, we are trying to anticipate as
best we can which sources of error, both random and systematic, will dominate
the overall, integrated function. Those potential biases that are either not likely
to be present at all, or if present are unlikely to have a major quantitative im-
pact, will have minimal influence on the position and degree of dispersion in the
estimate and need not be given much attention.

Perhaps the most common misallocation of attention is the traditional focus
on random error, analogous to looking for a lost key near the lamppost solely
because the light is brightest there. Just because the conceptual and quantitative
framework is most advanced for considering random error (though actually only
for experiments), there is no reason to overemphasize its importance relative to
concerns for which the technology is less advanced. Interpreting study results
based on whether they are statistically significant or whether a confidence inter-
val includes or excludes some particular value of interest gives undue attention
to random error. In small studies, imprecision may indeed be one of the princi-
pal sources of uncertainty and deserves primary attention, but in many cases there
is no justification for a primary focus on random error rather than bias. The temp-
tation to focus on random error may arise from copying the approach applied to
experimental studies, in which random allocation and the ability to control ex-
perimental conditions isolates random error as the principle concern if the other
features of the study are conducted optimally. Similarly, the algebra of misclas-
sification has advanced to the point that correction formulae are widely available
(Copeland et al., 1977; Kleinbaum et al., 1982; Flanders et al., 1995), making it
relatively easy to consider simple scenarios of misclassification patterns and their
effect on the study results. Although these techniques for quantification of the
impact of misclassification are of tremendous value and the repertoire of such
techniques needs to be markedly expanded and used more often, their availabil-
ity should not unduly influence the focus of the evaluation of study results on
misclassification. Mundane and often intractable problems such as non-response
or the conceptual inaccuracy of measurement tools should be given the priority
they warrant, not downplayed solely because they are more difficult to address
in a rigorous, quantitative manner. The importance of a given issue is not nec-
essarily correlated with the availability of tools to address it.

Although each study will have distinctive attributes that define its strengths
and vulnerabilities, a subset of candidate biases can often be expected to be near
the top of the list. Structural features of the study that directly rather than indi-
rectly influence the estimated measure of interest are of particular concern. Gen-
erally, selection factors (e.g., non-comparability of controls and cases, underly-
ing reasons why some persons are and are not exposed) and measurement errors
in the primary exposure or disease variables (often based on a limited corre-
spondence between the available data and the desired data) will be of impor-
tance. Confounding and related issues (e.g., incomplete control of confounding)
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are often not as compelling unless there are rather strong risk factors that are likely
to be associated with the exposure of interest. This situation is perhaps less uni-
versal than the problems of non-response and measurement error. In small stud-
ies, where some of the cells of interest contain fewer than 10 subjects, random er-
ror may be the overwhelming concern that limits the strength of study results.

For each study or set of studies under review, the critical issues, which are
generally few in number, should be specified for close scrutiny to avoid super-
ficial treatment of an extensive list of issues that mixes trivial with profound con-
cerns. These critical issues are distinguished by having a sufficiently high prob-
ability of having a quantitatively important influence on the estimated measure
of effect. If such candidates are considered in detail and found not to produce
distortion, the strength of the evidence would be markedly enhanced. These is-
sues are important enough to justify conducting new studies in which the po-
tential bias can be eliminated, sometimes simply requiring larger studies of sim-
ilar quality, or to suggest methodological research that would determine whether
these hypothetical problems have, in fact, distorted past studies.

STRATEGIES FOR SPECIFYING SCENARIOS OF BIAS

Specifying hypotheses about biases is analogous to specifying substantive hy-
potheses in that they should address important phenomena, be specific (in order
to be testable), and be quantitative in their predictions (Hertz-Picciotto, 2000).
The conditions by which the estimated measure of effect could provide an inac-
curate reflection of the causal relation between exposure and disease must be
stated clearly so that the plausibility of those conditions that would produce such
bias can be evaluated. In the case of random error, ill-defined random processes
are invoked (see Chapter 10), though the anticipated effect on the results can be
postulated with clarity. The probability of at least some random error influenc-
ing the measured results is always 100%, but there is no direct way to determine
where the observed data fit in the distribution of possible values.

For hypotheses of systematic error, specific relationships or patterns of error
in measurement can be proposed and evaluated. For non-response to have biased
the exposure–disease association, for example, a pattern of response in which ex-
posure and disease jointly influence the probability of responding must occur
(Greenland, 1977; Greenland & Criqui, 1981). If information bias or misclassi-
fication is suggested, then the hypothesis pertains to the source of measurement
error, how it operates among subsets of study subjects, and its quantitative im-
pact in contributing to the disparity between the causal parameter of interest and
the estimated measure of effect.

Some degree of error due to confounding, selection bias, and misclassification
will be present based solely on random processes. For example, in the same way
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that randomized exposure assignment inevitably leaves some confounding due
to non-comparability (which becomes smaller as study size becomes larger), a
random contribution to confounding is surely present in observational studies as
well. Similarly, even when a perfectly suitable mechanism of control selection
is chosen for a case–control study, some selection bias will be present due to ran-
dom processes alone, a result of sampling. Aside from the systematic reasons
that misclassification may occur, there is a random element to assigning the in-
correct value (whether based on a laboratory technique, human memory, or writ-
ten records) that causes some amount of error to be ubiquitous. On average, there
may be no error, but a given study is likely to contain some amount. These man-
ifestations of random error may be viewed as the source of the random error that
we routinely consider in our analyses and interpretation, and as expected, the pre-
dicted impact diminishes as study size becomes larger.

On the other hand, there are sources of error that have a structural explana-
tion, that do not diminish in size as study size becomes larger, and that can be
examined and tested like other hypothesized explanations for study findings. The
first issue to be examined in evaluating whether a potential bias has affected the
results should focus on the likely direction of potential error—is it symmetrical
on either side of the observed value or more likely to make the estimated meas-
ure of effect an overestimate or underestimate of its correct value? For some bi-
ases such as those resulting from exposure misclassification, movement in rela-
tion to the null value provides the basis for predictions, i.e., starting from the true
value, is our estimate likely to be closer or further from the null? Random error
is generally presumed to be symmetrical around the true value, on the appropri-
ate scale of measurement. Non-response biases are typically described in terms
of the direction from the true value. If non-response is independent of exposure
and disease status, or related to exposure and disease but independently, no bias
is expected in measures of association even though precision is lost (Greenland
& Criqui, 1981). If non-response were thought to be greater among exposed per-
sons with disease or unexposed persons without disease, then the bias would be
toward a spurious reduction in measures of effect, whereas if non-response were
greater among exposed persons without disease or unexposed persons with dis-
ease, the bias would be toward an increased observed measure of effect. These
various scenarios serve to define the array of possibilities for explaining how,
given candidate true values for the measure of association, the observed results
may have been obtained. Some candidate biases serve to raise the deviations from
the true values only to one side or another of the observed measure, whereas oth-
ers increase the probabilities on both sides of the observed value, as occurs for
random error.

The second step in the specification of bias scenarios requires consideration
of the magnitude of distortion. For selected hypothetical true values for the pa-
rameter of interest, we ask about the probability that bias has introduced vary-
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ing magnitudes of distortion. When considering random error, this estimate of
the disparity between true and measured values is asked in terms of the proba-
bility of a random sampling process having yielded a sample which is as or more
deviant under the null (or some other specific) hypothesis. The same type of as-
sessment needs to be made for other sources of error. In the case of non-response,
for example, varying degrees and patterns of non-response associated with ex-
posure and disease status yield predictable amounts of distortion. Specifying the
pattern of response in relation to exposure and disease directly determines the
magnitude of disparity between some assumed true value and the observed meas-
ure (Kleinbaum et al., 1982). Although many different combinations of circum-
stances would lead to the same magnitude of bias, we can view them in princi-
ple as a set of scenarios for which the probability of occurrence should be
considered.

Another way to quantify the magnitude of bias is to evaluate the probability
that deviations of a specified magnitude from the true value of the measure of
effect have resulted from the specific source of bias. That is, starting from some
benchmark of interest for the correct measure, we can ask about the probability
of there having been enough error from specified sources to generate the results
we obtained. In contrast to sampling theory, which serves as the basis for eval-
uating random error generically, in evaluating the probability of biases of vary-
ing magnitudes, we would like to make use of all relevant substantive informa-
tion bearing on the scenario of bias. This includes evidence from within the study,
methodological research that addresses the problem more generically, and stud-
ies similar to the one of interest that may provide information concerning the po-
tential bias. Integrating these diverse sources of information into a comprehen-
sive, quantitative assessment requires judgment about the underlying process by
which bias is thought to have been produced and the relevance or weight 
assigned to the various lines of evidence. Such an assessment should strive to 
integrate the statistical, biologic, and epidemiologic evidence that bear on the 
issue.

In assessing the potential for a given magnitude of bias from non-response,
for example, one might consider the most directly applicable information first.
The absolute magnitude of non-response is clearly critical. Any evidence re-
garding patterns of non-response in the specific study from a more intensively
recruited subset or available data on nonparticipants would contribute substan-
tially to the inferences about the probability of bias of a given magnitude. The
reasons for non-response, such as patient refusal, physician refusal, or being un-
traceable would enter into the evaluation, considering whatever is known about
the people lost through such processes. Comparison of results of the study un-
der scrutiny to results from similarly designed studies that had a better response
could be helpful in making an assessment, but the evidence must be extrapolated.
Generic information about nonrespondents in other study settings and influence
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of non-response more generally would also be of interest but even less directly
applicable. Integration of these diverse threads of information into an overall as-
sessment is a challenge and may well lead to discordant judgments.

A natural by-product of this effort is the identification of gaps in knowledge
that would help describe and quantify probabilities of biases that would distort
the findings in a specific direction of some specified magnitude. That is, in at-
tempting to implement the ambitious strategy of specifying, quantifying, and as-
sessing the probabilities of specific types of bias, limitations in our knowledge
will be revealed. Sometimes those limitations will be in the conceptual under-
standing of the phenomenon that precludes assessment of the potential bias, point-
ing toward need for further methodological work. Questions may arise regard-
ing such issues as the pattern of non-response typically associated with
random-digit dialing, which points toward empirical methodological research to
evaluate this technique in order to produce generalizable information. Often, the
solution must be found within the specific study, pointing toward further analy-
ses or additional data collection. Finally, and perhaps most importantly, the largest
and most likely potential biases in one study or in the set of studies suggests re-
finement required in the next attempt to address the hypothesized causal rela-
tionship.

Even though the ambitious attempt to delineate and quantify biases as pro-
posed above will always fall short of success, the uncertainties revealed by the
effort will be constructive and specific. Instead of being left with such unhelp-
ful conclusions as “the evidence is weak” or “further studies are needed,” we are
more likely to end up with statements such as “the pattern of non-response is not
known with certainty, but if exposed, non-diseased persons are underrepresented
to a sizable extent, the true measure of association could be markedly smaller
than what was measured.” Moving from global, descriptive statements to spe-
cific, quantitative ones provides direction to the original investigators, future 
researchers, and to those who must consider the literature as a basis for policy
decisions.

EXAMPLE: EPIDEMIOLOGIC RESEARCH ON THE RELATION 
BETWEEN DICHLORODIPHENYLTRICHLOROETHANE (DDT) 
EXPOSURE AND BREAST CANCER

To illustrate the strategy, if not the complete implementation, of an evaluation
of sources of error in epidemiologic studies, the first major epidemiologic study
on persistent organochlorides and breast cancer by Wolff and colleagues (1993)
is examined. The hypothesis they considered was that persistent organochloride
compounds, including the pesticide DDT, its metabolite dichlorodiphenyldi-
chloroethane (DDE), and the industrial pollutant, polychlorinated biphenyls

44 INTERPRETING EPIDEMIOLOGIC EVIDENCE



(PCBs), might increase the risk of developing breast cancer. A major motivation
for such inquiry is the experimental evidence of carcinogenicity of these com-
pounds and the postulated effects of such compounds on estrogenic activity in
humans and other species (Davis et al., 1993). Prior to 1993, studies in humans
had generally been small and were based largely on comparisons of normal and
diseased breast tissue rather than on an evaluation of exposure levels in women
with and without breast cancer. Because the report by Wolff et al. (1993) was a
major milestone in the literature and stood essentially in isolation, it provides a
realistic illustration of the interpretive issues surrounding a specific epidemio-
logic study. The fact that a series of subsequent evaluations have been largely
negative (Hunter et al., 1997; Moysich et al., 1998; Millikan et al., 2000) does
not detract from the methodologic issues posed at the time when the initial study
was first published and evaluated.

In order to evaluate the possible association between exposure to persistent
organochloride compounds and breast cancer, Wolff et al. (1993) identified over
14,000 women who had been enrolled in a prospective cohort study between
1985 and 1991 that included collection of blood samples for long-term storage.
From this cohort, all 58 women who developed breast cancer and a sample of
171 controls who remained free of cancer had their sera analyzed for levels of
DDT, DDE, and PCBs. After adjustment for potential confounders (family his-
tory of breast cancer, lifetime history of lactation, and age at first full-term preg-
nancy), relative risks for the five quintiles of DDE were 1.0 (referent), 1.7, 4.4,
2.3, and 3.7. Confidence intervals were rather wide (e.g., for quintile 2, approx-
imately 0.4–6.8 as estimated from the graph, and for quintile 5, 1.0–13.5).

The focus here is on the critical interpretation of these results in terms of epi-
demiologic methods, but the contribution of this study to expanding interest in
the potential environmental influences on breast cancer generally is a notable
achievement with implications yet to be fully realized. The first step in examin-
ing these data is to define the result that is to be scrutinized for potential error.
Although PCBs were examined as well as DDT and DDE, we will focus on DDE
and breast cancer, for which the evidence was most suggestive of a positive as-
sociation. An entirely different set of criticisms might arise in evaluating the va-
lidity of the measured absence of association (or very small association) identi-
fied for PCBs.

There were three main calculations undertaken for DDE: a comparison of
means among cases versus controls (of dubious value as a measure of associa-
tion), adjusted odds ratios calculated across the five quintiles (as provided above),
and an estimated adjusted odds ratio for increasing exposure from the 10th to
90th percentile of 4.1 (95% confidence interval: 1.5–11.2), corresponding to an
assumed increase from 2.0 ng/mL to 19.1 ng/mL. Although the latter number
smoothes out the irregularities in the dose–response gradient that were seen across
the quintiles, and may mask non-linearity in the relationship, it provides a 

Drawing Inferences from Epidemiologic Evidence 45



convenient single number for scrutiny. The question we focus on is whether
changing a woman’s serum DDE level from 2.0 to 19.1 ng/mL would actually
cause her risk of breast cancer to rise by a factor of 4.1.

What are the primary sources of uncertainty in judging whether the reported
association accurately reflects the causal relationship between DDE and the de-
velopment of breast cancer? We ask first whether the association between the
study variables was likely to have been measured accurately, deferring any con-
sideration of whether the association is causal. The underlying study design is a
cohort, in which healthy women were identified and followed prospectively over
time for the occurrence of breast cancer. Given the identification of all cases and
appropriate sampling of controls from within this well-defined cohort, selection
bias is unlikely. The constitution of the study groups being compared is thus not
likely to have distorted the measure of association other than by having drawn
an aberrant sample of the cohort to serve as controls, which is accounted for in
the measures of precision. Although there is always some degree of laboratory
error in the assays of DDE given the technical challenges in measuring the low
levels of interest, the masking of case–control status suggests that such errors
would be similar for cases with breast cancer as for controls without breast can-
cer. As discussed at length in Chapter 8 and elsewhere (Kleinbaum et al., 1982),
nondifferential misclassification of this nature is most likely to be associated with
some shift in the relative risk toward the null value. Furthermore, quality con-
trol procedures described in the manuscript make laboratory error an unlikely
source of major distortion.

Random error is an important concern, as reflected by the wide confidence in-
tervals. Based on the confidence interval reported for the point estimate of a rel-
ative risk of 4.1, 1.5 to 11.2, true values of 3 to 6 or 7 could readily have yielded
the observed estimate of 4.1 through random error. The data are not likely to
have arisen however, under assumptions about more extreme values that would
markedly change the substantive interpretation of the study, such as the null value
or relative risks of 10 or 15.

Accepting the observed association as a reasonable if imprecise estimate, the
possibility of an association being present without reflecting a causal relation be-
tween DDE and breast cancer must be considered. Two key concerns are as fol-
lows:

1. Is there some metabolic consequence of early breast cancer that increases
the serum level of DDE among cases? Given that serum was collected
in the six months or more prior to breast cancer diagnosis, latent disease
may have affected the balance between fat stores and serum levels of
DDE in a manner that artifactually raised (or lowered) the serum DDE
level of cases. A detailed evaluation of the metabolism of DDE in serum
is beyond the scope of this discussion, but any such effect on cases would

46 INTERPRETING EPIDEMIOLOGIC EVIDENCE



directly distort the measured relative risk given that the controls did not
experience the disease of concern. Assessment of the validity of this hy-
pothesis requires examination of the literature on metabolism, storage,
and excretion of persistent organochlorides and an understanding of the
physiologic changes associated with the early stages of breast cancer. In-
dependent of this study, examining patterns of association for cases with
varying stages of disease might help to evaluate whether such bias oc-
curred, with the expectation that the bias would result in stronger influ-
ence among cases with more advanced disease and little or no influence
among cases with carcinoma in situ of the breast (Millikan et al., 1995).
Such a bias might also be expected to be strongest for cases diagnosed
close to the time of serum collection (when latent disease is more likely
to be present) as compared to cases diagnosed later relative to serum col-
lection.

2. Has lactation or childbearing confounded the measured association between
serum DDE and breast cancer? The investigators reported that lactation was
associated with a decreased risk of breast cancer (Wolff et al., 1993) as re-
ported by others, and that adjustment for lactation markedly increased the
relative risk. Lactation is known to be a major pathway to eliminating stored
organochlorides and thus causes lower measured levels of these compounds
in the body. Whatever exposure level was truly present prior to the period
of lactation, the level measured after lactation would be lower. If adjust-
ment affected the reported relative risk for the comparison of 10th to 90th
percentile of DDE to the same extent as it affected their categorical meas-
ure of relative risk of DDE, the odds ratio without adjustment for lactation
would have been around 2.4 instead of 4.1. Thus, the validity of the lacta-
tion-adjusted estimate warrants careful scrutiny (Longnecker & London,
1993).

If early-life DDE levels are etiologically important, lactation presumably
has artificially lowered later-life serum levels and introduced error relative
to the exposure of interest (prelactation levels). If lactation reduced the risk
of breast cancer (independent of its DDE-lowering influence), then lacta-
tion would be expected to introduce positive confounding and falsely ele-
vate the relative risk (Longnecker & London, 1993). Lactation would lower
the measure of exposure and lower breast cancer risk, so that failure to ad-
just for lactation would result in a spuriously elevated relative risk for DDE
and breast cancer, and adjustment for lactation would therefore lower the
relative risk. The reason for the opposite effect of adjustment for lactation
is not clear (Dubin et al., 1993), but it suggests that lactation history 
was associated with a higher level of DDE rather than a lower level of 
DDE in this population. The high proportion of nulliparous (and thus 
never-lactating) women in the Wolff et al. (1993) study may influence the
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observed impact of lactation in comparisons of those with and without such
a history.

On the other hand, focusing on lactation as a means of reducing body
burden (unfortunately, through exposure to the infant), if later-life DDE lev-
els are critical, and lactation’s beneficial impact on breast cancer risk is me-
diated by reduced DDE levels, then adjustment for lactation is inappropri-
ate given that it is an exposure determinant but not a confounder. The
preferred relative risk for estimating the causal effect of DDE would not in-
clude adjustment for lactation history. Lactation would be no different than
working on a farm or consuming DDT-contaminated fish in that it affects
merely the DDE levels but has no independent effects on breast cancer.

Resolution of these uncertainties regarding the role of lactation in the
DDE/breast cancer association requires further evaluation of the temporal
relationship between exposure and disease, improved understanding of the
epidemiology of lactation and breast cancer, and a methodological appre-
ciation of the subtleties of confounding and effect measure modification. 
If we were able to have measurements available from both early life 
(e.g., prereproduction and lactation) as well as later life but prior to the 
development of disease, we could empirically assess the relationship of
those measurements to one another and to the risk of breast cancer. The
resolution of the role of lactation and breast cancer is also complex (e.g.,
Newcomb et al., 1994; Furberg et al., 1999), but is an active area of 
investigation.

Each of these issues could affect the true (unknown) measure of the relative
risk in comparison to the observed value of 4.1. We would like to be able to as-
sign probabilities to these alternative scenarios given that they have implications
for the interpretation of the study results. If these potential biases were incorpo-
rated, the distribution of values around the point estimate would not necessarily
be symmetrical, as is presumed for random error, but may take other shapes. For
example, metabolic effects of early disease seem more likely to artificially ele-
vate case serum DDE levels relative to controls rather than lower them, so that
the confidence interval might be weighted more on the lower relative risk end.
Lactation may require several curves to address its potential role according to the
alternative hypotheses. Insofar as it reflects a true confounder of the DDE/breast
cancer association, more refined measurement and adjustment for the relevant as-
pects of lactation might be predicted to further elevate the DDE/breast cancer as-
sociation in the Wolff et al. (1993) study (Greenland & Robins, 1985; Savitz &
Barón, 1989). As a marker only of reduced body burden of DDE, it should not
have been adjusted and thus the smaller relative risks reported without adjustment
may be more valid, making true values below 4.1 more compatible with the ob-
served results than values above 4.1. On the other hand, since the confounding
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influence of lactation was counter to the expected direction (Longnecker & Lon-
don, 1993), we may wish to raise questions about the assessment of lactation or
DDE, and spread the probability curve more broadly in both directions.

Evaluation of results through specifying and working through the consequences
of a series of potential biases, focusing on two principal ones in some detail, has
not answered the question of whether the measured association of DDT/DDE and
breast cancer was accurate, but it helped to refine the question. Instead of ask-
ing whether the study’s results are valid, we instead ask a series of more focused
and answerable questions that bear on the overall result. Does preclinical breast
cancer distort measured levels of serum DDE, and if so, in which direction? Is
lactation inversely related to breast cancer, independent of DDE? Is serum DDE
level a more accurate reflection of early-life exposure among non-lactating
women? Some of these questions point toward research outside of the scope of
epidemiology, but other approaches to addressing these questions would involve
identifying populations in which the threat to validity is much reduced. The lac-
tation issue could be examined in a population in which breastfeeding is absent,
not resolving the questions about lactation, DDE, and breast cancer, but ad-
dressing DDE and breast cancer without vulnerability to distortion by lactation.
These refined questions are, in principle, testable and would help to resolve the
questions raised by the Wolff et al. (1993) study. The critical evaluation of study
results should enhance intellectual grasp of the state of the literature, help us
judge the credibility of the measured association, and identify testable hypothe-
ses that would clarify a study’s results and advance knowledge of the issue.
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4
SELECTION BIAS IN COHORT STUDIES

STUDY DESIGNS

Except for research that seeks simply to characterize the frequency of disease
occurrence in a population, epidemiologic studies make comparisons between
two or more groups. The goal is to draw inferences about possible causal rela-
tions between some attribute that may affect health, generically called exposure,
and some health outcome or state, generically called disease. The exposure may
be a biological property, such as a genotype or hormone level; an individual be-
havior, such as drug use or diet; or a social or environmental characteristic, such
as living in a high-crime neighborhood or belonging to a particular ethnic group.
Disease also covers many types of health events, including a biochemical or phys-
iologic state, for example, elevated low density lipoprotein cholesterol, a clini-
cal disease, for example, gout, or an impairment in daily living, for example, the
inability to walk without assistance.

The study designs used to examine exposure–disease associations were clearly
organized by Morgenstern et al. (1993). All designs are intended to allow infer-
ences about whether exposure influences the occurrence of disease. Two axes
serve to define the universe of possible study designs. The first concerns the way
in which the health outcome is measured. The health event can be assessed in
the form of disease incidence, defined as the occurrence of disease in persons
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previously free of the condition, or prevalence, defined as the proportion of the
population affected by disease at a given point in time. The second axis concerns
the approach to selecting study subjects, specifically whether or not sampling is
based on the health outcome. Health outcome-dependent sampling occurs when
inclusion in the study is based at least in part on whether or not the disease has
already occurred in the subjects, for example, selecting all cases of disease but
only evaluating a fraction of the population at risk. Sampling without regard to
health outcome will be referred to as a cohort study, and sampling based on health
outcome as a case–control study. Thus, there are cohort studies of disease inci-
dence, cohort studies of disease prevalence, case–control studies based on inci-
dent cases, and case–control studies based on prevalent cases.

In contrast to some past views that case–control studies are fundamentally dif-
ferent in their logic or structure, their only defining characteristic is sampling for
inclusion based in part on having experienced the health outcome of interest. Se-
lection for study that does not depend on health status results in a cohort design,
where participants may constitute the whole population, may be chosen randomly,
or may be selected based on their exposure status or other attributes that are re-
lated to disease but not of primary interest, such as age or gender. The defining
feature is that there is not selective sampling based on the health outcome of in-
terest. Once chosen, the health experience of the entire population that generates
the cases is characterized, whereas in case–control studies, only a segment of the
population experience that produced the cases is monitored for exposure or other
factors of interest.

Note that this terminology eliminates the notion of a cross-sectional study,
since selection of a population without regard to exposure or disease status, typ-
ically used to define cross-sectional studies, constitutes a cohort design because
there is no selection based on the health outcome. In practice, the efficiency of
a cohort study can often be enhanced by manipulating the distribution of expo-
sure that naturally occurs in the population. Often, there is value in oversampling
the most (or least) exposed, relatively rare groups, to ensure adequate numbers
in the limiting part of the exposure spectrum. If interested in the long-term im-
pact of dietary fat on the development of prostate cancer, we could simply se-
lect all men in some source population, e.g., retired members of a labor union,
or we could selectively oversample men who have especially low and especially
high levels of fat consumption. Either design is referred to as a cohort study.

With or without selective sampling based on exposure status, we can expect
to have a full continuum of dietary fat intakes in the population in the above ex-
ample concerning dietary fat and prostate cancer. Though contrasts in exposure
groups are emphasized for conceptual clarity throughout this chapter, most ex-
posures are not true dichotomies. Exposures may be measured in the form of
nominal categories (e.g., ethnicity of Asian, African-American, or European an-
cestry), ordinal categories (e.g., nonsmoker, light smoker, heavy smoker), or on
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a truly continuous scale (e.g., dietary intake of folate). Nonetheless, it is con-
ceptually easier to consider contrasts among groups than to consider differences
along a continuum. There are statistical models that fully accommodate the spec-
trum of exposure, imposing varying degrees of assumptions on the shape of the
dose-response curve, but it is difficult to grasp the underlying principles without
considering exposure groups, even when those groups have to be formed from
continuous measures of exposure.

PURPOSE OF COMPARISON GROUPS

The purpose of making comparisons of disease occurrence among groups of dif-
fering exposure, as is done in cohort studies, is entirely different than the pur-
pose of making comparisons of exposure prevalence between cases and a 
sample of the study base, as is done in case–control studies. There is the temp-
tation to draw false parallels because both are steps toward estimating measures
of association.

In case–control studies, the controls are selected to provide an estimate of ex-
posure prevalence in the study base that gave rise to the cases. The goal for
achieving a coherent study, or the manifestation of a problem in subject selec-
tion, is a disparity not between the cases and the controls, but rather between the
controls who were chosen and the study base that generated the cases (Mietti-
nen, 1985). This is discussed at some length in Chapter 5.

In cohort studies, the purpose of the unexposed group is to provide an esti-
mate of the disease rate that the exposed group would have had, had they not
been exposed (Greenland & Robins, 1986). That is, the ideal comparison would
be the counterfactual one in which the same individuals would be monitored for
disease occurrence under one exposure condition and simultaneously monitored
for disease occurrence under another exposure condition. Under that scenario,
the comparison of disease rates among subjects with and without exposure would
indicate precisely the causal effect of the exposure. Obviously we cannot do this.
Even in the most favorable situation, in which subjects can be observed for the
outcome under both exposed and unexposed conditions in sequence, there is still
an order to the treatments to be balanced and considered, and there are uninten-
tional but inevitable changes in conditions with the passage of time. More im-
portantly, there are few health endpoints that are ethically and feasibly studied
in this manner, requiring a brief time course for etiology, complete reversibility
of effects, and minimal severity of the health endpoint being evaluated. Inabil-
ity to study the same subjects simultaneously exposed to contrasting exposures
(impossible) or even the same subjects under different conditions imposed at dif-
ferent times (rarely feasible) calls for alternative strategies for making compar-
isons of health outcomes among groups with differing exposures.
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Experiments or randomized controlled trials are built on the assumption that
randomized assignment of exposure generates groups that are interchangeable
with respect to baseline risk of disease. These provide a far clearer basis for iso-
lating the causal effect of exposure than can typically be achieved in observa-
tional studies, even though there are often compromises required in randomized
studies with regard to the inclusion of subjects or range of exposure that can be
considered. The randomization process is intended to produce groups that would,
in the absence of intervention, have identical health experiences.

Thus, after randomization, the incidence of disease among those who are un-
exposed is thought to be a very good estimate of the incidence that would have
occurred among the exposed, had they not been exposed. In large studies in which
the randomization is effectively implemented and maintained, the comparison
between those who get the treatment (exposed) and those who do not get the
treatment (unexposed) should approximate the causal effect of exposure, with
deviations resulting solely from random error. In this design, random error re-
sults from an effective random allocation process yielding groups that are not,
in fact, perfectly balanced with respect to baseline disease risk. If the random-
ization process were to be repeated over and over, there would be a distribution
of values for the baseline disparity in disease risk, clustered around the absence
of any difference, but a bell-shaped curve with small differences commonly ob-
served and large differences more rarely produced. In a single randomized allo-
cation, there is no way to know where the chosen sample fits on that distribu-
tion. Note, however, that the process itself is assumed to be conceptually and
operationally perfect, with the only deviations caused by random error.

As we move to a purely observational design, in which exposure states are ob-
served rather than assigned randomly, we still make the same inference about
causal effects of exposure. The challenges in doing so however, are far more pro-
found. We would like to be able to claim that the unexposed provide a good es-
timate of the disease risk that the exposed persons would have experienced had
they not been exposed. The confidence in our ability to constitute groups at equal
baseline risk of the health outcome due to randomized allocation is lost, and we
must carefully scrutinize the actual mechanism by which the groups are created.
The potential for random error that is present even with a perfect allocation
process remains, as described above, but we must add to this a concern with the
distortion that results from the non-random allocation of exposure. The goal re-
mains to compare disease incidence in two groups defined by their exposure,
e.g., exposed and unexposed, and isolate the causal effect of that exposure. To
argue that the disease rate among the unexposed reflects what the disease rate
among the exposed would have been in the absence of exposure requires the as-
sumption that the groups would have had identical disease experience had it not
been for the exposure.

In practice, it is common for the design of a cohort study to begin with an
identified exposed group, e.g., oral contraceptive users or marathon runners. Es-
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tablishment of the exposed group places the burden on the investigator to iden-
tify an unexposed group that approximates the disease incidence that the exposed
group would have had if they had not been exposed. In the absence of any true
influence of the exposure on disease occurrence, the exposed and unexposed
groups should have equal disease incidence and confounding or selection bias is
said to be present if this condition is not met. Distinguishing between differences
in disease incidence due to the causal effect of exposure and differences in dis-
ease incidence due to selection bias or confounding is an essential challenge in
the interpretation of cohort studies. There is no direct way of isolating these con-
tributors to the observed differences (or lack of differences) in disease occur-
rence, but this chapter offers a number of tools to help in this assessment.

Because the key issue is comparability between two groups with varying ex-
posure rather than the actual constitution of either group, it is somewhat arbi-
trary to “blame” one of the groups when the two are not comparable. The dis-
cussion of cohort studies focuses on obtaining a non-exposed group that is
comparable to the exposed group, but the challenge could be viewed with equal
legitimacy as identifying an exposed group that is comparable to the non-exposed
one. Whether beginning with an exposed group and seeking a suitable unexposed
group or the reverse, what matters is their comparability.

The focus in this chapter is on examining whether the method by which the
groups were constituted has produced selection bias. The algorithm for generat-
ing the comparison groups is the subject of evaluation, though the actual consti-
tution of the group depends on both the algorithm as it is defined and the process
of implementing it to form the study groups. No matter how good the theoreti-
cal properties of the selection mechanism, non-response or loss to follow up can
introduce distortion or, under rather optimistic scenarios, correct errors resulting
from a faulty group definition. Non-response is a form of selection bias, but be-
cause it is so pervasive and important in epidemiologic studies, a separate chap-
ter (Chapter 6) addresses that issue alone. Another source of error in constitut-
ing the study groups, which is not discussed in this chapter, is when the
mechanism for selection of subjects does not perform as intended due to random
processes. This possibility is accounted for in generating variance estimates and
confidence intervals, with random selection of subjects one of the few sources
of readily quantifiable sampling error in epidemiologic studies (Greenland, 1990)
(Chapter 10). In asking whether selection bias has arisen, it is useful to distin-
guish between a faulty mechanism for selection and a good mechanism that gen-
erated an aberrant result. This chapter focuses on the mechanism.

SELECTION BIAS AND CONFOUNDING

There are two closely related processes that introduce bias into the comparison
of exposed and unexposed subjects in cohort studies. When there is a distortion
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due to the natural distribution of exposures in the population, the mixing of ef-
fects is referred to as confounding. When there is a distortion because of the way
in which our study groups were constituted, it is referred to as selection bias. In
our hypothetical cohort study of dietary fat intake and prostate cancer, we may
find that the highest consumers of dietary fat tend to be less physically active
than those who consume lower amounts of dietary fat. To the extent that physi-
cal activity influences the risk of disease, confounding would be present not be-
cause we have chosen the groups in some faulty manner, but simply because
these attributes go together in the study population. In contrast, if we chose our
high dietary fat consumers from the labor union retirees, and identified low fat
consumers from the local Sierra Club, men who are quite likely to be physically
active, there would be selection bias that results in part from the imbalance be-
tween the two groups with respect to physical activity, but also quite possibly
through a range of other less readily identified characteristics.

Confounding tends to be the focus when the source of non-comparability is
measurable at least in principle and can therefore be adjusted statistically. To the
extent that the source of non-comparability can be identified, whether it arises
naturally (confounding) or as the result of the manner in which the study groups
were chosen (selection bias), its effects can be mitigated by statistical ad-
justment. When the concern is with more fundamental features of the groups to
be compared and seems unlikely to be resolved through measurement of co-
variates and statistical control, we usually refer to the consequence of this non-
comparability as selection bias.

The potential for selection bias depends entirely on the specific exposures and
diseases under investigation, since it is the relation between exposure and dis-
ease that is of interest. Groups that seem on intuitive grounds to be non-compa-
rable could still yield valid inferences regarding a particular exposure and dis-
ease, and groups that seem as though they would be almost perfectly suited for
comparison could be problematic. Similarly, there are some health outcomes that
seem almost invariant with respect to the social and behavioral factors that in-
fluence many types of disease and other diseases subject to a myriad of subtle
(and obvious) influences.

For example, incidence of acute lymphocytic leukemia in childhood varies at
most modestly in relation to social class, parental smoking, or any other expo-
sures or life circumstances examined to date (Chow et al., 1996). If we wished
to assess whether the incidence of childhood leukemia in the offspring of men
who received therapeutic ionizing radiation as treatment for cancer was increased,
the selection of an unexposed group of men might be less daunting since the vari-
ability in disease incidence appears to be independent of most potential deter-
minants studied thus far. That is, we might be reasonably confident that rates
from general population registries would be adequate or that data from men who
received medical treatments other than ionizing radiation would be suitable for
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comparison. In other words, the sources of non-comparability in the exposed and
unexposed populations are unlikely to have much effect, if any, on the acute lym-
phocytic leukemia rates in the offspring.

In contrast, if we were interested in neural tube defects among the offspring
of these men, we would have to contend with substantial variation associated
with social class (Little & Elwood, 1992a), ethnicity (Little & Elwood, 1992b),
and diet (Elwood et al., 1992). The same exposure in the same men would vary
substantially in vulnerability to selection bias depending on the outcome of in-
terest and what factors influence the risk of that outcome. Selection bias is a
property of a specific exposure–disease association of interest, not an inherent
property of the groups.

Despite the danger of relying solely on intuition, we often start with intuitive
notions of group comparability based on geography, demographic characteris-
tics, or time periods. Do the exposed and unexposed groups seem comparable?
Social or demographic attributes are related to many health outcomes, so achiev-
ing comparability on these indicators may help to reduce the chance that the
groups will be non-comparable in disease risk. If location, time period, and de-
mography effectively predict comparability for a wide range of other unmeasured
attributes, then the similarity is likely to be beneficial, on average, even if it pro-
vides no absolute assurance that the many unmeasured factors that might distin-
guish exposure groups are also balanced.

Sociodemographic or geographic comparability helps to ensure balance with
respect to many known and unknown determinants of disease, but does non-
comparability with regard to sociodemographic or other broad characteristics
make it likely that selection bias is present? The answer depends entirely on the
exposure and disease outcomes of interest and whether adjustment is made for
readily identified determinants of disease risk. In fact, the more general question
of whether imbalance between groups matters, i.e., whether it introduces bias, is
most conveniently interpreted as a question of whether the imbalance introduces
confounding. Is the attribute on which the groups are non-comparable associated
with exposure, whether naturally (as in confounding) or due to the investigator’s
methods of constituting the study groups (as in selection bias)? Is the attribute
associated with the disease of interest, conditional on adjusting for measured con-
founders? Just as natural imbalance on some attributes does not introduce con-
founding and imbalance in others does, some forms of inequality in the consti-
tution of the study groups can be ignored and other forms cannot.

Continuing to focus on whether the selection of study groups introduces con-
founding, some sources of non-comparability are readily measured and con-
trolled, such as gender or age, whereas others are quite difficult to measure and
control in the analysis, such as health-care seeking or nutrient intake. The chal-
lenges, discussed in more detail in the chapter on confounding (Chapter 7), are
to anticipate, measure, and control for factors that are independently related to
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exposure and disease. Whether non-comparability between the exposure groups
based on measurable attributes is viewed as confounding or selection bias is
somewhat arbitrary in cohort studies. In general, epidemiologists pay little at-
tention to asking why the exposure and the confounder are associated, only ask-
ing whether they are. A true confounder could be controlled or exacerbated by
the manner in which study groups are selected, as in matching (Rothman, 1986).
What is critical to evaluating selection bias is to recognize that if the sources of
potential bias can be measured and controlled as confounding factors, the bias
that they introduce is removed. Some forms of selection that lead to non-com-
parability in the study groups can be eliminated by statistical adjustments that
make the study groups comparable.

EVALUATION OF SELECTION BIAS IN COHORT STUDIES

Multiple sources of information, both within and outside the study, can help in
the assessment of whether selection bias is likely to be present. These indicators
do not provide definitive answers regarding the probability that selection bias of
a given direction and magnitude is present, which is the desired goal. Nonethe-
less, by drawing upon multiple threads of information, the ability to address these
critical questions is markedly enhanced. While the goal is a fully defined distri-
bution of probabilities for bias of varying magnitude, a more realistic expecta-
tion for these tools is to begin to sketch out that information and use the dis-
parate pieces of information as fully and appropriately as possible. Not all the
tools suggested below are applicable in every study, but a more systematic con-
sideration of the repertoire of these approaches should yield insights that would
not otherwise be obtained. In some instances, the very lack of information needed
to apply the tool provides relevant information to help characterize the certainty
of the study’s findings and suggests approaches to develop better resources for
addressing the potential bias.

Compare Unexposed Disease Rates to External Populations

Comparison of the absolute rate of disease occurrence in the unexposed portion of
the cohort with the rate of disease in an appropriate external reference population
may help to determine whether the unexposed group is likely to provide a suitable
benchmark of comparison for the exposed study group. The purpose of this strat-
egy is to evaluate whether the unexposed group is likely to be effective in its role
of measuring what the disease rate would have been in the exposed group had they
not been exposed. The scrutiny of the unexposed group could help to reveal whether
some unidentified peculiarity caused an anomalous deviation in disease occurrence,
upward or downward, that would translate directly into a distortion in the measure
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of association between exposure and disease. The reason to focus on the unexposed
group is that the exposed group’s disease rates may differ from an external popu-
lation either due to a true effect of the exposure or to the same sort of idiosyn-
crasies alluded to above with regard to the unexposed group. If the rate of disease
in the unexposed group differs substantially from an external reference population,
however, it is clearly not due to the exposure but due to some other characteristics
of the unexposed population.

An important challenge to implementing this approach is that only a few dis-
eases have standardized ascertainment protocols and readily available informa-
tion on frequency of disease occurrence in populations external to the study. For
example, cancer registries comprehensively document the occurrence of diag-
nosed disease using rigorous protocols and publish rates of disease on a regular
basis (Ries et al., 1996). When conducting a study of the possible carcinogenic-
ity of an industrial chemical, for example, in which the strategy is to compare
cancer incidence in exposed workers to workers without that exposure, it would
be informative to compare the cancer incidence observed among the unexposed
workers to the incidence in populations under surveillance as part of the Sur-
veillance, Epidemiology, and End Results (SEER) Program or other geographi-
cally suitable cancer registries. Some assurance that the rate difference or ratio
comparing the exposed to unexposed workers is valid would be provided if the
cancer rate in the unexposed workers were roughly comparable to that of the
general population. If a notable discrepancy were found between the unexposed
workers and the community’s incidence rate more generally, the suitability of
the unexposed workers serving as the referent for the exposed workers might be
called into question.

A critical assumption in applying this strategy is that the methods of ascer-
tainment need to be comparable between the unexposed group in the study and
the external referent population. For some outcomes, for example, overall mor-
tality rates, comparisons can be made with some confidence in that the diagno-
sis and comprehensiveness of ascertainment is likely to be comparable between
the unexposed subset of the cohort and an external population. However, for
many diseases, the frequency of occurrence depends heavily on the ascertain-
ment protocol, and the sophistication of methods in a focused research enterprise
will often exceed the quality of routinely collected data. Comparing an unex-
posed segment of the cohort in which disease is ascertained using one method
with an external referent population with a substantially different method of dis-
ease ascertainment is of little value, and observing discrepancies has little or no
bearing on the suitability of the unexposed as a referent. If the direction and ide-
ally the magnitude of the disparity between the methods of disease ascertainment
were well understood, such a comparison might help to provide some assurance
that the disparity in the disease occurrence across groups is at least in the ex-
pected direction.
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As an illustration of the strategy and some of the complexity that can arise in
implementation, consider a study of the relationship between pesticide exposure
and reproductive outcomes in Colombia (Rostrepo et al., 1990). Using ques-
tionnaires to elicit self-reported reproductive health outcomes for female work-
ers and the wives of male workers, the prevalence of various adverse outcomes
was tabulated, comparing reproductive experiences before exposure onset to their
experiences after exposure onset (Table 4.1). In principle, the prevalence before
exposure should reflect a baseline risk, with the prevalence after onset of expo-
sure reflecting the potential effect of pesticides.

A number of the odds ratios are elevated, but concerns were raised by the au-
thors regarding the credibility of the findings based on the anomalously low fre-
quency of certain outcomes, most notably spontaneous abortion. Whereas one
would generally expect a risk of approximately 8%–12% based on self-reported
data, the results here show only 3.6% of pregnancies ending in spontaneous abor-
tions among female workers prior to exposure and 1.9% among wives of male
workers prior to their partners’ exposure. This could reflect in part the very low
risk expected for a selectively healthly population, by definition younger than
those individuals after exposure onset. Much of the aberrantly low prevalence of
spontaneous abortion is likely due to erroneous underreporting of events in both
groups, however, an issue of disease misclassification. Regardless, the strategy
of comparing outcome frequency among the unexposed to that of an external
population was informative.

In selected areas of the country, congenital malformations are comprehensively
tabulated and data on prevalence at birth are published. Information from vital
records, including birth records (birth weight, duration of gestation) and death
data used to generate cause-specific mortality, constitutes a national registry for
the United States and provides a readily available benchmark for studying health
events that can be identified in such records. Yet the ascertainment methods even
for these relatively well-defined conditions can differ markedly between a given
research protocol and the vital records protocol. For example, identification of
congenital malformations depends strongly on whether medically indicated abor-
tions are included or excluded as well as the frequency of such abortions, how
systematically newborn infants are examined, how far into life ascertainment is
continued (many malformations only become manifest some time after birth),
etc. Cumulatively, those differences can cause substantial differences between
groups that would be identical if monitored using a consistent protocol. Even for
monitoring gestational age or birth weight of infants, differences can arise based
on the algorithm for estimating conception date (e.g., the use of ultrasound ver-
sus reliance on last menstrual period for dating), and inclusion or exclusion of
marginally viable births.

For many chronic health conditions of interest, both diagnosed diseases and
less clearly defined symptoms, data from comparable populations may be un-
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TABLE 4.1. Comparison of Prevalence Ratios for Reproductive Outcomes Before and After Onset of Potential Pesticide Exposure, Colombia

Female Workers Wives of Male Workers

Risks (%) Risks (%)

BEFORE AFTER BEFORE AFTER

PREGNANCY OUTCOME EXPOSURE EXPOSURE OR 95% CI EXPOSURE EXPOSURE OR 95% CI

Induced abortion 1.46 2.84 1.96 1.47–2.67 0.29 1.06 3.63 1.51–8.70
Spontaneous abortion 3.55 7.50 2.20 1.82–2.66 1.85 3.27 1.79 1.16–2.77
Premature baby 6.20 10.95 1.86 1.59–2.17 2.91 7.61 2.75 2.01–3.76
Stillbirth 1.35 1.34 0.99 0.66–1.48 1.01 0.89 0.87 0.42–1.83
Malformed baby 3.78 5.00 1.34 1.07–1.68 2.76 4.16 1.53 1.04–2.25

OR, odds ratio; CI, confidence interval.

Rostrepo et al., 1990.



available or insufficiently comparable for making informative comparisons. For
example, in a study of physical activity and incidence of diabetes, comparisons
of diagnosed diabetes in an external population with comprehensively ascertained
diabetes based on screening in a cohort are likely to be uninformative since dif-
ferences are likely to arise as a result of the thoroughness of medical care in de-
tecting marginal cases of disease. Even when we know that differences in 
ascertainment protocols are likely to produce differences in measures of inci-
dence, however, we may be comforted somewhat by finding that the application
of a more comprehensive protocol for identifying cases in the cohort study re-
sults in the expected higher incidence of diabetes than is found in the external
population.

Rarely will such outside populations provide a perfectly suitable comparison
without some adjustment for basic social and demographic determinants of dis-
ease such as age, gender, and race. The more relevant question then is compa-
rability within and across more homogeneous subsets of the population. If the
study of physical activity and diabetes had a different age or gender composi-
tion or a different distribution of body mass index than the external referent pop-
ulation, we would need to stratify on gender, age, and body mass index to make
the comparison informative. Criteria for establishing cutpoints for the diagnosis
of diabetes would need to be comparable, or diagnoses of one of the populations
might need to be truncated by restriction to make them comparable. We would
also need to ensure that a comparable protocol for measuring glucose levels was
applied in the two settings. One approach to ensuring that a valid comparison
can be made between the unexposed and the external referent is to anticipate the
desire to make this comparison in the planning stage of the study, and to ensure
that comparable methods are used or at least can be reconstructed from the data
obtained so that the outcome occurrence can be legitimately compared once the
study is completed.

When disease rates are at least approximately comparable between the unex-
posed and outside population, some comfort can be taken in that selection bias
is less likely than if the rates vary considerably for inexplicable reasons. If they
differ because of applying different diagnostic protocols, then the comparison is
uninformative. Even when similar outcome rates are observed, it is, of course,
still possible for the unexposed group in the study to provide a poor estimate of
the disease frequency that the exposed population would have experienced in the
absence of exposure. Both the unexposed group and the external population may
be aberrant in a similar manner and both may be poorly reflective of the expe-
rience the exposed group would have had absent the exposure.

Where the unexposed population differs for unexplained reasons from the ex-
ternal population, selection bias becomes more plausible, but such differences do
not prove that the unexposed group is an inappropriate comparison population.
The contrast between the unexposed group and the external population is moti-
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vated by an interest in detecting some problem in the constitution of the unex-
posed group that yields an aberrant disease rate. In addition to that possible ba-
sis for a disparity between the unexposed group and an external referent, the un-
exposed group may differ because they provide a superior referent for the exposed
group and the differences simply reflect the unsuitability of the external referent
population for comparisons. The main reason for including an unexposed group
in the study when external population disease rates are available is to tailor the
unexposed group to be most useful for making a counterfactual comparison with
the exposed population. Even after taking into account simple sociodemographic
factors to make the external population as comparable as possible to the unex-
posed group, there may well be characteristics of the study populations that make
them comparable to one another but different from the external population.

In the example above, if there were some regional effect on the occurrence of
diabetes, perhaps related to the ethnic composition of both the exposed and un-
exposed populations or distinctive dietary habits in the region, then a disparity
in diabetes incidence between the unexposed population (persons with low phys-
ical activity) and the U.S. population would be expected and the unexposed pop-
ulation would remain a suitable group for generating baseline disease rates for
comparison to the exposed (highly physically active) individuals. Despite efforts
to ensure comparable methods of ascertainment of disease, the subtleties of the
methods for measuring and classifying diabetes might differ between the unex-
posed segment of the cohort and the external population whereas we would have
imposed an identical protocol for measurement on the exposed and unexposed
cohort members. If the external referent population were certain to be the more
suitable comparison population for the exposed individuals, there would have
been no point in generating disease rates for an unexposed population in the first
place. The unexposed study population is thought to be the preferred group for
generating baseline disease rates, and the comparison to external populations pro-
vides a point of reference and can add some information to support a more thor-
ough evaluation of the potential for selection bias, but not a definitive test for its
presence or absence.

Assess Whether Expected Patterns of Disease are Present

For most diseases, epidemiologic understanding has advanced to the point that
we can make predictions with some confidence about patterns of risk in relation
to certain attributes and exposures. Many diseases rise with age, vary in pre-
dictable ways with gender or social class, or are known to be associated with to-
bacco or alcohol use. For example, if studying the influence of a drug that may
prevent osteoporosis in middle-aged and elderly women, we would expect to ob-
serve decreased risk of osteoporosis among African-American women and among
those who are most physically active as has been found in many previous stud-
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ies. Verification that such expected patterns are present within the study cohort
provides indirect evidence against some forms of selection bias as well as some
evidence against extreme measurement error.

This strategy is illustrated in a recent study of the possible role of anxiety and
depression in the etiology of spontaneous labor and delivery (Dayan et al., 2002),
a topic for which results of previous studies have not led to firm conclusions. A
cohort of 634 pregnancies was identified during 1997–1998 in France, and women
were administered instruments to measure anxiety and depression as well as a
range of other known and suspected risk factors for preterm birth. In addition to
examining and presenting results for anxiety and depression, exposures of un-
known etiologic significance, the authors presented results for a range of factors
for which the associations are well established (Table 4.2). Despite the impreci-
sion in this relatively small cohort, increased risk associated with heavy smok-
ing, low prepregnancy body mass index, prior preterm delivery, and genitouri-
nary tract infection was confirmed. This does not guarantee that the results found
for anxiety and depression are certain to be correct, but it increases confidence
somewhat that the cohort is capable of generating results compatible with those
of most previous studies for other, more extensively examined, predictors of risk.

For demographic and social predictors, the internal comparisons help to assess
whether there has been some differential selection that has markedly distorted
the patterns of disease. If we conducted a study of osteoporosis in which African-
American women experienced comparable rates of osteoporosis or higher rates
than white women, we would be motivated to ask whether there had been some
unintended selection that yielded an aberrant group of African Americans or
whites or both. When men and women or young and old persons show the ex-
pected pattern of disease risk relative to one another, then it is less likely that
the pattern of selection differed dramatically in relation to gender or age. That
is, the young men who were enrolled show the disease patterns expected of young
men, and the older women who were enrolled show the disease patterns expected
of older women.

It is possible, of course, to select an entire cohort that has aberrant disease
rates but ones that are uniformly aberrant across all subgroups. We would thus
find the expected pattern by making such comparisons within the cohort. We
may find that all enrolled persons show a lower or higher than expected rate of
disease, but that subgroups differ as expected relative to one another. A uniformly
elevated or depressed rate of disease occurrence may well be less worrisome in
that the goal of the study is to make internal comparisons, i.e., among exposed
versus unexposed persons. The choice of the study setting or population may
yield groups with atypically high or low overall rates. For example, in almost
any randomized clinical trial the high degree of selectivity for enrollment in the
trial does not negate the validity of the comparison of those randomized to dif-
ferent treatment arms.
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TABLE 4.2. Sociodemographic and Biomedical Characteristics of Pregnant Women,
France, 1987–1989

CHARACTERISTICS NO. %

Age (years)

� 20 31 4.9
20–34 516 81.4
� 35 87 13.7

Marital status

Living alone 71 11.2
Married or cohabiting 563 88.8

Ethnicity

Europe 598 94.3
Others 36 5.7

School education

Primary school 50 7.9
Secondary school 420 66.2
Higher education 164 25.9

Occupation

Not employed 243 38.3
Lower level of employment 262 41.3
Middle and higher level of employment 129 20.3

Smoking habits during pregnancy

Nonsmoking 416 65.6
1–9 cigarettes daily 142 22.4
10 cigarettes or more daily 76 12.0

Parity

0 236 37.2
1–2 333 52.5
� 3 65 10.3

Prepregnancy body mass index*

� 19 93 14.7
19–� 25 398 62.8
� 25 143 22.6

Prior preterm labor

No 575 90.7
Yes 59 9.3

(continued)
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Prior preterm birth

No 600 94.6
Yes 34 5.4

Prior miscarriage

No 494 77.9
Yes 140 22.1

Prior elective termination

No 517 81.5
Yes 117 18.5

Other complications in previous pregnancies

No 565 89.1
Yes 69 10.9

Conception

Natural 589 92.9
Contraceptive failure 21 3.3
Medically assisted 24 3.8

Gestational age at the first consultation

� 12 weeks 573 90.4
� 12 weeks 61 9.6

Vaginal bleeding

No 558 88.0
Yes 76 12.0

Urinary tract infection

No 579 91.3
Yes 55 8.7

Cervical and vaginal infection

No 533 84.1
Yes 101 15.9

Other medical risk factors

No 595 93.8
Yes 39 6.2

Consultation

Not stressful 558 88.0
Stressful 78 12.0

*Weight (kg)/height (m)2.

Dayan et al., 2002.

TABLE 4.2. Sociodemographic and Biomedical Characteristics of Pregnant Women,
France, 1987–1989 (continued)

CHARACTERISTICS NO. %



Note that the known determinants of disease patterns in relation to sociode-
mographic attributes or established etiologic exposures are not, of course, the
ones under study. The primary interest is rarely in documenting that the expected,
established bases for differences in disease are found in a particular population.
Rather, some suspected but unproved determinant of disease incidence is typi-
cally the object of the study. The critical assumption is that observing expected
patterns for known predictors increases confidence in the validity of patterns for
the unknown effects of the exposure of interest. Failure to find the expected pat-
terns of disease would raise substantial concern, whereas observing the expected
patterns provides only limited reassurance.

Assess Pattern of Results in Relation to Markers of 
Susceptibility to Selection Bias

Although the actual amount of selection bias cannot readily be measured since
that would require independent knowledge of the true causal effect, under an hy-
pothesized mechanism for the production of selection bias, subsets of the cohort
may be identified in which the amount of that bias is likely to be more severe or
less severe. Stratifying the cohort into groups with greater and lesser potential
for distortion due to selection bias, and calculating the estimated measure of ef-
fect within those subgroups, can yield two important observations: (1) the stra-
tum that is most likely to be free of the source of bias, or in which the bias is
weakest, should yield the most valid results, all other conditions equal, and (2)
by assessing the gradient of results in relation to the hypothesized levels of se-
lection bias, the overall importance of the source of bias in affecting the study
can be better understood. If the results differ little or not at all across groups in
which the bias is very likely to be more or less severe, it is probably not having
a major influence on the results at all. In contrast, if the results show a strong
dose-response gradient in relation to the amount of selection bias thought to be
present, the source of bias is likely to be an important influence on study results.
Even if no subgroup that is completely free of the source of bias can be isolated,
it may be possible to extrapolate based on the gradation that is created. If the
magnitude of the measure of association is diminishing steadily as the dose of
the hypothesized bias decreases, one might speculate that the association would
be even weaker than it is in the stratum least susceptible to bias if the bias were
fully eliminated.

For example, one might postulate that the challenges of recruiting elderly par-
ticipants in research would lead to a greater vulnerability to selection bias in the
upper age strata compared to the lower age strata. Stratifying on age as a poten-
tial marker of the magnitude of such bias, and assessing the magnitude of asso-
ciation in subgroups defined by age, would provide information on selection bias
that differs by age. If elderly participants show a stronger or weaker association
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than younger study participants, that deviation may be an indicator of the oper-
ation of selection bias, with the younger group generating the more valid result.

The challenge in interpretation is that selection bias across strata would pro-
duce the exact same pattern as effect measure modification across the same strata.
For example, although selection bias that is more extreme for elderly participants
would produce different measures of association than among younger partici-
pants, the stronger or weaker association among the elderly may reflect true ef-
fect modification in the absence of any bias. Elderly people may truly respond
to the putative causal agent differently than younger people. Of course, both se-
lection bias and effect measure modification can be operating, either in the same
direction or in opposite directions. Thus, the absence of such a pattern does not
persuasively rule out the potential for selection bias. Perhaps the elderly really
do experience a weaker association between exposure and disease, and selection
bias masks that pattern by increasing the strength of association among the eld-
erly and thereby eliminating the appearance of effect measure modification.

In some instances, the mechanism thought to underlie selection bias may be
directly amenable to empirical evaluation. A classic selection bias is the healthy
worker effect in studies that compare health and mortality among industrial work-
ers with health and mortality patterns in the community population. The demand
for fitness at the time of hire and for sustained work in physically demanding
jobs gives rise to an employed group that is at lower risk of mortality from a
range of causes as compared to the general population (Checkoway et al., 1989),
literally through selection for employment. Consistent with the approach sug-
gested for examining selection bias, the more highly selected subgroups are in
regard to the physical or other demands of their job that predict favorable health,
such as education or talent, the more extreme the discrepancy tends to be (Check-
oway et al., 1989). One might expect the magnitude of selection to be greater
for a job requiring intense physical labor, such as longshoreman, or one that re-
quires specialized talents, such as carpenter, as compared to jobs that are less de-
manding physically (e.g., clerk) or professionally (e.g., janitor).

The effect of this selection for hire tends to diminish over time, presumably
because the good health that was required at the time of hire has faded. Those
chosen to be fit have become less fit relative to their peers, even though there is
typically still some level of selectivity for sustained employment (Checkoway et
al., 1989). Those who leave work before retirement age show evidence of se-
lectively unfavorable mortality, for example, in comparison to those who sustain
their employment. By elucidating the pattern and extent of the healthy worker
effect, our understanding of the phenomenon has markedly increased and there-
fore our ability to recognize and control its effects has been greatly enhanced. It
is difficult to identify any other form of selection bias that is so well understood
because addressing the healthy worker effect over the past 30 years has been fun-
damental to progress in studies of occupational disease. This elucidation of the
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healthy worker effect has required extensive effort to dissect the process (Choi,
1992; Arrighi & Hertz-Picciotto, 1994), develop specialized analytic approaches
to minimize its impact (Steenland & Stayner, 1991), and recognize that failure
to account for the phenomenon adequately substantially weakens the validity of
research in occupational epidemiology.

In studies of prevalence, a particular form of selection bias concerns the loss
of potentially eligible individuals prior to the time of assessment. A study of fe-
male garment workers compared the prevalence of musculoskeletal disorders to
that of hospital workers who did not have jobs associated with the putative er-
gonomic stressors (Punnett, 1996). She reported a crude prevalence ratio of 1.9,
but was concerned with the possibility of a stronger causal effect that was masked
by the more affected garment workers selectively leaving employment, with those
remaining to be included in the prevalence study showing a lower prevalence of
the disorder. To address this possibility, she examined the incidence of new on-
set of pain in relation to the number of years prior to the survey (Fig. 4.1). This
figure demonstrates that the onset of musculoskeletal pain among garment work-
ers was markedly greater in the period proximal to the survey and rare in the ear-
lier years, consistent with the hypothesized attrition of workers whose pain on-
set was earlier. No such pattern was found among hospital workers. The
magnitude of selection, and thus selection bias, is least for the recent period prior
to the survey and much greater for the more temporally remote time period.

Like other approaches to identifying bias, stratifying on indicators of severity
of selection bias is fallible, but can yield informative clues. Even in the absence
of a mechanistic understanding of the underlying process, hypothesizing a plau-
sible pathway for selection bias, examining results within strata of differing 
vulnerability to the hypothesized selection, and observing whether there are 
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FIGURE 4.1. Conditional incidence density of musculoskeletal pain by calendar year,
among 158 female garment assembly workers and 69 female hospital employees, Mass-
achusetts, 1972–1981 (Punnett, 1996).



differences in the pattern of association across those strata provides valuable ev-
idence to assess the probability and magnitude of selection bias.

Assess Rates for Diseases Known Not to Be Affected by the Exposure

For most exposures of possible health relevance, we have sufficient background
knowledge to delineate some health outcomes that are likely to be affected (typ-
ically the ones that motivate the study and similar diseases) and other health out-
comes that are highly unlikely to be affected. The conventional wisdom is falli-
ble, of course. There are notable historical examples of erroneous assumptions
about health outcomes that were certain to be unaffected by a given exposure.
For example, men with chronic bronchitis were selected as controls in early
case–control studies of lung cancer because chronic bronchitis was believed to
be unaffected by tobacco smoking. Humans have a way of surprising epidemi-
ologists with unanticipated associations, but in general, we can specify some dis-
eases that are very likely to be affected by the exposure of interest based on cur-
rent knowledge and diseases that are very unlikely to be affected by that exposure.
Within the bounds of random error, and in the absence of selection bias, we
would expect rates of disease that are not causally related to the exposure to 
be similar among exposed and unexposed groups. In other words, should differ-
ences be found in the rates of certain diseases in relation to exposure, and the
possibility that such differences result from a causal effect of the exposure is 
remote, random error and selection bias become the most plausible candidate 
explanations.

For example, in a study of the effects of sunscreen use on risk of developing
melanoma (an illustration from an oral presentation by Diana Petitti, Kaiser Per-
manente of Southern California), we would not expect sunscreen use to influ-
ence the risk of myocardial infarction, breast cancer, or motor vehicle injury. To
determine whether our group of nonusers of sunscreen is a good counterfactual
comparison group to the sunscreen users, reflecting the risk that the sunscreen
users would have had in the absence of sunscreen use, we might find it useful
to examine an array of causes of death that include some that should not differ
due to a causal impact of sunscreen use. Even if our assumptions are incorrect
in some of the diseases thought to be unrelated to sunscreen use, examination of
the overall pattern of results across a range of presumably unrelated diseases
would reveal whether a systematic tendency is present for exposed and unex-
posed groups to differ. If, for example, we observed consistently depressed dis-
ease rates across a series of causes of death thought not to be causally related to
sunscreen use, the comparability of the groups for studying melanoma might be
called into question. We may well find that users experience a lower risk of my-
ocardial infarction, for example, due to other manifestations of the health con-
sciousness that led them to be sunscreen users and may have lower rates of mo-
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tor vehicle injury due to seat belt use, likely correlated with sunscreen use as a
preventive health measure. We would be reminded to look carefully for other,
correlated preventive health measures that may lead to more (or less) favorable
patterns of melanoma incidence among sunscreen users, such as more frequent
examination by a physician. If the sunscreen users had disease patterns similar
to nonusers, except for the one of interest, i.e., melanoma, the potential for se-
lection bias would be reduced.

A recent report on the impact of fine particulate air pollution on mortality from
respiratory and cardiovascular disease, plausible consequences of such exposure,
also considered a residual set of deaths from other causes (Pope et al., 2002).
The extraordinarily large study of volunteers enrolled by the American Cancer
Society into the Cancer Prevention II Study, 1.2 million adults, provided the ba-
sis for this investigation. As is often the case with studies of this issue, the meas-
ures of association between pollutants and mortality are modest in magnitude but
highly precise, given the large population (Table 4.3). The categories of partic-
ular interest and plausibility, lung cancer and cardiopulmonary disease, showed
increments in risk of 6% to 13% per 10 �g/m3 over the time intervals examined,
contributing to an association with all-cause mortality that was present but lower
in magnitude. Once deaths from lung cancer and cardiopulmonary disease are
removed, the residual category showed essentially no association, as one might
expect from a conglomeration of other cancers, infectious diseases, injury mor-
tality, etc. That is, observing an association between fine particular air pollution
and deaths from causes other than those most plausible would raise the serious
possibility that some selection bias for persons living in high exposure commu-
nities was operating and would suggest that the apparent effect of particulates on
lung cancer and cardiopulmonary diseases might be due to some non-specific as-
pect of living in more highly exposed communities.
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TABLE 4.3. Adjusted Mortality Relative Risk Associated with a 10 �g/m3 Change in
Fine Particles Measuring Less Than 2.5 �m in Diameter, American Cancer Society
Cancer Prevention II Study

Adjusted RR (95% CI)*

CAUSE OF MORTALITY 1979–1983 1999–2000 AVERAGE

All-cause 1.04 (1.01–1.08) 1.06 (1.02–1.10) 1.06 (1.02–1.11)
Cardiopulmonary 1.06 (1.02–1.10) 1.08 (1.02–1.14) 1.09 (1.03–1.16)
Lung cancer 1.08 (1.01–1.16) 1.13 (1.04–1.22) 1.14 (1.04–1.23)
All other cause 1.01 (0.97–1.05) 1.01 (0.97–1.06) 1.01 (0.95–1.06)

*Estimated and adjusted based on the baseline random-effects Cox proportional hazards model,
controlling for age, sex, race, smoking, education, marital status, body mass, alcohol consumption,
occupational exposure, and diet.

RR, relative risk; CI, confidence interval.

Pope et al., 2002.



Like all criteria for assessing selection bias, this approach can also be mis-
leading. As already noted, diseases thought to be unrelated to exposure may turn
out to be causally related to the exposure, so that we would erroneously infer se-
lection bias when it is not present. Many if not all known causes of disease af-
fect more than one specific entity. Conversely, comparability for diseases other
than the one of interest is only indirectly pertinent to whether the exposure groups
are comparable for the disease of interest. A selection bias may be present or ab-
sent solely for the health outcome of interest, so that reassuring patterns for other
outcomes are misinterpreted as indicative of valid results for the outcome of in-
terest. The patterns of disease other than the one of interest are a flag to exam-
ine the issue further, not a definitive marker of the presence or absence of bias.

Assess and Adjust for Baseline Differences in Risk of Disease

As noted previously, differences between the exposed and unexposed groups that
affect risk of disease can sometimes be measured and statistically adjusted as
confounding factors. In the case of selection bias, those differences arise or are
modified based on the way in which the study groups were constituted. Specif-
ically, the link between exposure and the confounding factor is a result of se-
lection bias instead of occurring naturally as in classical confounding. The means
of identifying and controlling such markers of selection bias is identical to that
for other sources of confounding (Rothman & Greenland, 1998).

The nature of the selection bias that introduces confounding should be exam-
ined to yield insights into the mechanism by which the bias was produced. By
enhancing understanding of the origins of the selection bias that can be controlled
statistically, we will be better able to evaluate the potential for differences in ex-
posure groups that cannot be so readily controlled, including residual selection
bias related to the influences that we have attempted to remove in the analysis.
The phenomenon is exactly analogous to that of residual confounding—when
there are large differences between groups, and the measure of the determinant
of those differences is imperfect, then adjustment for that imperfect measure will
yield incompletely adjusted results (Greenland & Robins, 1985). Empirically, we
might expect that large baseline differences in important risk factors for disease
will be more likely to leave residual selection bias after adjustment as compared
to smaller baseline differences or weaker risk factors for disease. As with resid-
ual confounding (Savitz & Barón, 1989), we can observe the impact of adjust-
ing using the best available indicators, and speculate (even speculate quantita-
tively) about what the result would be with a more complete adjustment.

Consider the example of trying to isolate the independent effect of physical
exertion on coronary heart disease from other determinants of this health out-
come. If the highly active members of the cohort are recruited from running clubs
and fitness facilities, and the low or normal exertion group is chosen from a
health care provider roster, the high exertion group may well have other dis-
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tinctive attributes that predict a reduced risk of coronary heart disease, beyond
any influence of their regimen of physical exertion. In an effort to isolate the ef-
fect of physical exertion and control for confounding, we would measure and ad-
just for suspected influential differences in diet, medication use, preventive health
care, etc. The goal is to make this group, which has been self-selected to be phys-
ically active, less deviant and better approximate the group that would have re-
sulted from randomized assignment of intense exercise. It seems likely that the
proposed adjustments would help to move the results in the desired direction, but
unlikely that the adjustments would be completely successful given that such
self-selection is an elusive construct. By observing the change in pattern of re-
sults with successive adjustments, information is generated to speculate about the
impact of the unattainable complete adjustment for the selection bias. If adjust-
ment diminishes the observed benefits of intense physical activity substantially
compared to the crude results, then the possibility that complete adjustment would
fully eliminate observed benefits is more plausible. We might infer that the ob-
served benefits in the unadjusted comparison are a result of incomplete control
for selection bias. In some instances, this problem of baseline comparability is
so severe as to demand a randomized study, despite the daunting logistical as-
pects of such an undertaking for exposures such as physical exercise. Short of
eliminating the problem, the goals of understanding its origins, reducing it, and
speculating about the impact of its elimination must suffice.

Similarly, understanding the health risks and benefits for women using post-
menopausal estrogen therapy has been extremely challenging, in that the women
who do and do not elect to use such therapy are not comparable in baseline risk
of cardiovascular disease. Matthews et al. (1996) compared future users of es-
trogen replacement therapy with future nonusers, and users were shown to have
a consistently favorable profile on a number of attributes (Table 4.4). Cohorts of
users and nonusers clearly would not reflect women at equal baseline risk of
coronary heart disease. Investigators who address the risks and benefits of es-
trogen replacement therapy are aware of this threat to validity, and make attempts
to adjust for a wide array of factors. For example, analyses of the Nurses Health
Study data (Stampfer et al., 1991) adjusted for a long list of candidate baseline
differences and still found a marked reduction in heart disease incidence among
users (Table 4.5). Whether comparability was truly achieved despite these efforts
is open to debate; recent findings from the Women’s Health Initiative suggest
the observational studies were in error (Writing Group for the Women’s Health
Initiative Investigators, 2002).

Restrict Study Groups to Enhance Comparability

The fact that groups naturally differ in exposure provides the opportunity to con-
duct observational studies, but is also the basis for selection bias. The ideal study
is one in which those exposure differences arise from random or effectively ran-
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dom assignment, of course. In non-randomized studies, exposure differences arise
in diverse ways, and the vulnerability to selection bias differs as a function of
how the exposure differences arose. A link between the reasons for being ex-
posed or unexposed and the risk of disease suggests susceptibility to selection
bias. For that reason, studies of medical interventions, including drugs, are es-
pecially susceptible to such bias. Treatments are not randomly assigned by cli-
nicians, one would hope, but given in response to a specific condition in a par-
ticular individual. Interventions are provided for medical conditions, of course,
and those medical conditions may themselves influence the occurrence of the
disease of interest. As always, randomized exposure assignment is the optimal
way to overcome such bias, but there are alternative strategies to consider.

Where there are distinctive, multiple pathways by which exposure occurs, sep-
aration of exposed subjects based on the reasons for exposure into those distinct
pathways may help to understand and control selection bias. Some of the rea-
sons for exposure may be very unlikely to have an independent effect on disease
risk, and thus be free of such bias, whereas others are hopelessly confounded by
the indications for exposure and therefore ill-suited to measure the causal effect
of exposure. Instead of simply aggregating all exposed persons as a single en-
tity, we would create subgroups defined by the reasons for exposure. Just as it
was proposed to stratify by vulnerability to selection bias to assess whether the
patterns of results differed across strata, we would stratify by reasons for expo-
sure to determine whether the groups with the greater risk of selection bias yield
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TABLE 4.4. Mean � Standard Error Levels of Other Biologic Characteristics and
Health Behaviors of Premenopausal Examination of Subsequent Users and Nonusers of
Estrogen Replacement Therapy, Pittsburgh, Pennsylvania, 1983–1992.

SUBSEQUENT T-TEST P

CHARACTERISTIC USER NONUSER OR �2 VALUE

Blood pressure (mmHg)
Systolic 107.1 � 0.8 112.1 � 1.1 3.73 � 0.001
Diastolic 71.4 � 0.6 73.8 � 0.7 2.68 0.008

Glucose (mmol/liter)
Fasting 4.81 � 0.05 4.88 � 0.07 0.95 0.35
Two-hour 5.03 � 0.10 5.27 � 0.14 1.43 0.15

Fasting insulin (�U/liter) 7.66 � 0.44 9.10 � 0.55 2.13 0.03
Height (m) 1.64 � 0.005 1.63 � 0.005 0.24 0.81
Weight (kg) 64.2 � 0.9 68.5 � 1.1 3.01 0.003
Alcohol intake (g/day) 9.7 � 0.8 7.5 � 0.8 2.01 0.05
Weekly physical activity 7158 � 791 5122 � 369 2.33 0.02

(Kjoules)
Ever smoker (%) 61.8 55.0 1.53 0.22
Current smokers (%) 28.7 34.1 1.13 0.29

Matthews et al., 1996.



TABLE 4.5. Relative Risk of Cardiovascular Disease Among Current and Former Postmenopausal Hormone Users as Compared with Those Who Never
Used Postmenopausal Hormones, After Adjustment for Age and Multiple Risk Factors, Nurses Health Study

Major Coronary Fatal Cardiovascular Subarachnoid

NO. OF
Disease Disease Total Stroke Ischemic Stroke Hemorrhage

PERSON- NO. OF NO. OF NO. OF NO. OF NO. OF

GROUP* YEARS CASES RR (95% CI) CASES RR (95% CI) CASES RR (95% CI) CASES RR (95% CI) CASES RR (95% CI)

No hormone 179,194 250 1.0 129 1.0 123 1.0 56 1.0 19 1.0
use

Current 73,532
hormone 
use

Adjusted — 45 0.51 21 0.48 39 0.96 23 1.26 5 0.80 
for age (0.37–0.70) (0.31–0.74) (0.67–1.37) (0.78–2.02) (0.30–2.10)

Adjusted — 0.56 0.61 0.97 1.46 0.53 
for age (0.40–0.80) (0.37–1.00) (0.65–1.45) (0.85–2.51) (0.18–1.57)
and risk 
factors

Former 85,128
hormone 
use

Adjusted — 110 0.91 55 0.84 62 1.00 34 1.14 12 1.42 
for age (0.73–1.14) (0.61–1.15) (0.74–1.36) (0.75–1.74) (0.70–2.90)

Adjusted — 0.83 0.79 0.99 1.19 1.03
for for age (0.65–1.05) (0.56–1.10) (0.72–1.36) (0.77–1.86) (0.47–2.25)
and risk 
factors

*Women with no hormone use served as the reference category in this analysis. The risk factors included in the multivariate models were age (in five-year categories), cigarette
smoking (none, former, current [1 to 14, 15 to 24, and � 25 cigarettes per day]), hypertension (yes, no), diabetes (yes, no), high serum cholesterol level (yes, no), parental 
myocardial infarction before the age of 60 (yes, no), Quetelet index (in five categories), past use of oral contraceptives (yes, no), and time period (in five two-year periods).

RR, relative risk; CI, confidence interval.

Stampfer et al., 1991.



measures of association that differ from groups that are less susceptible. If we
find such a pattern, more stock should be placed in the findings for the exposed
group that is less vulnerable, and if we do not, then there is some evidence that
the hypothesized selection bias has not materialized and we can be somewhat
more confident that there is no need to subdivide the exposed group in that 
manner.

For example, the potential effect of sexual activity in late pregnancy on risk
of preterm birth has been considered in a number of studies (Read & Klebanoff,
1993; Sayle et al., 2001). The comparison of sexually active to sexually inactive
women is fraught with potential for selection bias. Some women undoubtedly re-
frain from sexual activity due to discomfort or irritation associated with genital
tract infection, which may well be a marker of increased risk of preterm birth
(French & McGregor, 1997). Others may refrain from sexual activity because of
concerns associated with a history of previous poor pregnancy outcomes, a strong
predictor of subsequent adverse pregnancy outcome. For some women, the lack
of a partner may be the basis for abstinence, possibly correlated with lack of so-
cial support or economic stress. In order to try to isolate a subgroup of women
for whom the level of sexual activity is least susceptible to selection bias, analy-
ses may be restricted to women who are thought to have equal baseline risk 
of preterm birth. In an attempt to reduce or eliminate selection bias, we would
eliminate those women who were told to refrain from sexual activity by their
physicians, based on perceived elevated risk and those who experienced symp-
toms associated with genital tract infection as the basis for remaining sexually
inactive. We might eliminate those who are unmarried or not living with a part-
ner. The goal is to find a subset of women for whom the allocation of sexual ac-
tivity is as random as possible, i.e., to simulate as closely as possible a random-
ized trial in which the allocation of exposure is independent of baseline risk,
accepting that some reasons for being unexposed are too closely tied to disease
risk to be informative.

An illustration of a specific candidate source of selection bias is provided by
studies of whether physical activity protects against depression. A key issue is
whether those who are inactive due to disability, and are more likely to be de-
pressed as a result of their disability, should be excluded from such studies. The
potential gain in validity from excluding disabled participants was examined by
Strawbridge et al. (2002) using data from the Alameda County Study, a prospec-
tive cohort study of nearly 7000 adults. The authors examined the 1947 adults
who were over age 50 and living in 1999 and had all essential data for address-
ing physical activity and depression. Disability was defined as the inability to
walk 0.25 miles, walk up 10 stairs without resting, stand from a stooping or kneel-
ing position, or stand after sitting in a chair. Considering various potential con-
founding factors, those who were more physically active had a 25% lower risk
of depression (Table 4.6). Excluding the 151 individuals who were disabled ac-
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TABLE 4.6. Sequential Logistic Regression Models Showing Relations Between 1994 Physical Activity and Depression in 1994 and 1999, with Adjust-
ments for Other Risk Factors Among 1947 Men and Women, Alameda County Study, California, 1994–1999

Incident 1999 Depression (Longitudinal Analyses)

Prevalent 1994 Depression
with 1994 Depressed Subjects Excluded

(cross-sectional analyses) with Disabled Included Disabled Excluded
All Subjects Included (n � 1947) (n � 1802) (n � 1651)

MODEL AND 1994 CONVARIATES OR* 95% CI† OR 95% CI OR 95% CI

1. Age, sex, and ethnicity 0.75 0.68, 0.84 0.75 0.66, 0.85 0.73 0.63, 0.85

2. Model 1 � education, financial strain, 0.78 0.70, 0.87 0.76 0.67, 0.87 0.75 0.65, 0.87
and neighborhood problems

3. Model 2 � physical disability,† chronic 0.86 0.76, 0.96 0.82 0.72, 0.94 0.78 0.67, 0.91
conditions, BMI, smoking, and alcohol
consumption

4. Model 3 � no. of relatives, no. of friends, 0.90 0.79, 1.01 0.83 0.73, 0.96 0.79 0.67, 0.92
and satisfaction with relations

*Odds ratios (OR) represent the approximate relative likelihood of being depressed associated with a one-point increase in the physical activity scale. Because the incidence
rate for depression is relatively small (5.4%), the resulting odds ratios for the longitudinal analyses closely approximate relative risks.
†This variable is omitted from models in which physically disabled subjects were excluded.

CI, confidence interval; BMI, body mass index.

Strawbridge et al., 2002.



cording to the above criteria made no material difference in the results, with no
tendency whatsoever to move closer to the null value. In this example, it ap-
peared that omission of disabled persons was not necessary to enhance validity
and only produced a small loss in precision. Nonetheless, the strategy of re-
stricting to evaluate selection bias is well illustrated by this study, with regard
to methods, implementation, and interpretation.

INTEGRATED ASSESSMENT OF POTENTIAL FOR 
SELECTION BIAS IN COHORT STUDIES

The evaluation of potential selection bias in cohort studies is much like the eval-
uation of confounding. We first specify known determinants of the health out-
come of interest, since it is only selection in relation to such factors that can gen-
erate erroneous comparisons. Those markers may be broad (e.g., social class,
geographic setting) or narrow (e.g., biological indices of risk, dietary con-
stituents). The question of selection bias is whether, conditional on adjustment
for known determinants of disease risk, the exposed and unexposed groups are
comparable except for differing exposure status. Since we cannot repeat the ex-
periment and assign the exposed population to a no exposure condition to meas-
ure their true baseline risk, we need to make statistical adjustments and ultimately
make a judgment regarding the comparability of the groups. Accepting the ex-
posed population as given, the challenge is to evaluate whether the unexposed
population has done its job, i.e., generated disease rates that approximate those
that would have been found in the exposed population had they lacked exposure.

A number of indirect tools can be applied to address the following questions:

1. Is the disease rate in the unexposed population similar to that in external
populations, conditional on adjusting for known influences?

2. Do the patterns of disease risk within the unexposed population correspond
to those expected from the literature?

3. For postulated mechanisms of selection bias, do the strata in which selec-
tion bias is least likely to be present show similar results to the total co-
hort? Is there a gradient of association across the gradient of hypothesized
selection bias?

4. Are disease rates for conditions thought to be unrelated to the exposure sim-
ilar for the exposed and unexposed groups?

5. Were there markers of disease risk introduced by selection bias that needed
to be controlled? Is it likely that residual selection bias is present after mak-
ing those adjustments?

6. Can the reasons for exposure be divided into those more and less vulnera-
ble to selection bias? What is the pattern of results among those who are
least likely to be affected by selection bias?
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Though none of these is a definitive test for selection bias, all bear on the prob-
ability of selection bias of varying magnitudes. An array of favorable responses
adds markedly to the evidence against selection bias, and responses suggestive of
selection bias would warrant more refined analysis or even further data collection
to examine the possibility. Again, the model of the healthy worker effect in occu-
pational epidemiology illustrates the fundamental importance of selection bias but
also how much progress can be made with concerted effort to elucidate and con-
trol the sources of bias. Most specific scenarios of selection bias can be postulated
and tested using the above tools, either diminishing the credibility of the results
through discovery that significant amounts of bias are likely to be present or
strengthening the credibility by refuting these hypothesized sources of bias.
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5
SELECTION BIAS IN CASE–CONTROL STUDIES

For many years, there was the misperception that case–control studies were fun-
damentally inferior to cohort designs, suffering from backward logic (health out-
come leading to exposure rather than exposure to health outcome). As the con-
ceptual basis for the design is more fully understood (Miettinen, 1985), it has
become clear that the only unique threat to validity is the susceptibility to se-
lection bias. The logistics of selecting and enrolling cases and controls are often
fundamentally different from each other, making the concern with selection bias
justifiably prominent.

CONTROL SELECTION

Subject Selection in Case–Control and Cohort Studies

A case–control study involves the comparison of groups, namely cases and con-
trols, in order to estimate the association between exposure and disease. By choos-
ing persons with the adverse health outcome of interest (cases) and a properly
constituted sample from the source population (controls), we assess exposure
prevalence in the two groups in order to estimate of the association between ex-
posure and disease. A cohort study also has the same goal, estimating the asso-
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ciation between exposure and disease, and also does so by comparing two groups,
i.e., the exposed and the unexposed. Unfortunately, there is a temptation to se-
lect cases and controls in a manner that mimics the selection of exposed and un-
exposed subjects in a cohort study. The role of an unexposed group in a cohort
study however, and a control group in a case–control study are entirely differ-
ent. In a cohort study, the goal is to select an unexposed group that has identi-
cal baseline risk of disease as the exposed group other than any effect of the ex-
posure itself. If that goal is met, then the disease experience of the unexposed
group provides a valid estimate of the disease risk the exposed persons would
have had if they had not been exposed (counterfactual comparison). Cohort stud-
ies attempt to mimic a randomized trial or experiment in which the exposure 
of interest is manipulated to ensure, to the maximum extent possible, that the 
exposed and unexposed are identical in all respects other than the exposure of
interest.

In a case–control study, by contrast, given a set of cases with the disease, the
goal is to select controls who approximate the exposure prevalence in the study
base, that is, the population experience that generated the cases. The key compar-
ison to assess whether the control group is a good one is not between the cases and
the controls, but between the controls and the study base they are intended to ap-
proximate. The available cases define the scope of the study base, namely the pop-
ulation experience that gave rise to that particular set of cases. Once defined clearly,
the challenge for control selection is unbiased sampling from that study base. If
this is done properly, then the case–control study will give results as valid as those
that would have been obtained from a cohort study of the same population subject
to sampling error. It should be noted, however, that biases inherent in that under-
lying cohort, such as selection bias associated with exposure allocation, would be
replicated in the case–control study sampled from that cohort.

Consider two studies of the same issue, agricultural pesticide exposure and the
development of Parkinson’s disease. In the cohort study, we identify a large pop-
ulation of pesticide users to monitor the incidence of Parkinson’s disease and an
unexposed cohort that is free of such exposure. We would then compare the in-
cidence of Parkinson’s disease in the two groups. In the case–control study, as-
sume we have a roster of Parkinson’s disease cases from a large referral center
and select controls for comparison from the same geographic region as the cases,
in order to assess the prevalence of exposure to agricultural pesticides in each
group and thereby estimate the association. The methodologic challenge in the
cohort study is to identify an unexposed cohort that is as similar as possible to
the exposed group in all other factors that influence the risk of developing Parkin-
son’s disease, such as demographic characteristics, tobacco use, and family dis-
ease history. Bias arises to the extent that our unexposed group does not gener-
ate a valid estimate of the disease risk the pesticide-exposed persons would have
had absent that exposure.
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Bias arises in case–control studies not because the cases and controls differ on
characteristics other than exposure but because the selected controls do not ac-
curately reflect exposure prevalence in the study base. In our efforts to choose
appropriate controls for the referred Parkinson’s disease cases, we need to first
ask what defines the study base that generated those cases—what is the geo-
graphic scope, socioeconomic, and behavioral characteristics of the source pop-
ulation for these cases, which health care providers refer patients to this center,
etc. Once we fully understand the source of those cases, we seek to sample with-
out bias from that study base. The critical comparison that defines whether we
have succeeded in obtaining a valid control group is not the comparison of con-
trols to Parkinson’s disease cases but the comparison of controls to the study
base that generated those cases. Only if the cases are effectively a random sam-
ple from the study base, that is, only if it is a foregone conclusion that there are
no predictors of disease, would the goal of making controls as similar as possi-
ble to cases be appropriate.

Properly selected controls have the same exposure prevalence, within the range
of sampling error, as the study base. Selection bias distinctive to case–control
studies arises when the cases and controls are not coherent relative to one an-
other (Miettinen, 1985), i.e., the groups do not come from the same study base.
Thus, the falsely seductive analogy that “exposed and unexposed should be alike
in all respects except disease” in cohort studies and therefore “cases and controls
should be alike in all respects except disease” is simply incorrect.

Selection of Controls from the Study Base

A key concept in case–control studies that guides control selection is the study base
(Miettinen, 1985), defined simply as the person–time experience that gives rise to
the cases. Conceptually, the study base is populated by the people at risk of be-
coming identified as cases in the study if they got the disease during the time pe-
riod in which cases are identified. Note that this is more than just being at risk of
developing the disease in that membership in the study base also requires that if
the disease should develop, the individual would end up as part of the case group
for that study. The question of “Who would have become a case in this study?”
often has a complex, multifaceted answer. Beyond the biological changes involved
with disease development, it may involve behavioral response to symptoms or seek-
ing medical care from certain physicians or hospitals, if those are components of
becoming recognized, enrolled cases in the study. If the constitution of the study
base can be unambiguously defined in both theoretical and operational terms, then
sampling controls is reduced to a probability sampling protocol. In fact, one of the
major virtues of case–control studies nested within well-defined cohorts is pre-
cisely that clarity: all members of the study base are enrolled in the cohort, and
sampling from that roster is straightforward in principle and in practice.
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In many case–control studies, however, the very definition of the study base
is complex. In some instances, the study base is defined a priori, e.g., all persons
enrolled in a given health care plan for a defined period of time, or all persons
who reside in a given geographic area over some time period, and the challenge
is to accurately identify all cases of disease that arise from that study base 
(Miettinen, 1985). Given that the investigator has chosen the study base, the con-
ceptual definition is clear, though practical aspects of sampling from that base
in an unbiased manner may still pose a challenge. Random sampling from a ge-
ographically defined population is often not easy, at least in settings in which
population rosters are lacking.

In other instances, a roster of cases is available, for example, from a given
medical practice or hospital, and even the conceptual definition of the study base
is unclear. The investigator must consider the entire set of attributes that are pre-
requisites to being enrolled as a case. The conceptual definition of the study base
producing cases may include whether symptoms come to attention, whether peo-
ple seek a diagnosis for those symptoms, whether they have access to medical
care, and who they choose as their health care provider (Savitz & Pearce, 1988).
Thus, the assessment of whether a particular mechanism of control selection has
generated an unbiased sample from the study base (Miettinen, 1985) requires
careful evaluation and informed judgment.

Obtaining perfectly coherent case and control groups from the same study base
guarantees that there will be no additional selection bias introduced in the
case–control sampling beyond whatever selection bias may be inherent in the un-
derlying cohort. The failure to do so, however, does not automatically produce
selection bias; it just introduces the possibility. In a cohort study, the ultimate
purpose of the unexposed group is to estimate the disease risk of the exposed
group absent exposure. In a case–control study, the purpose of the controls is to
generate an accurate estimate of the exposure prevalence in the study base that
gave rise to the cases. Given this goal, by good fortune or careful planning, a
control group that is not coherent with the cases may nevertheless generate a
valid estimate of exposure prevalence in the study base that gave rise to the cases.
If, for example, the exposure of interest in a case–control study of melanoma
among women were natural hair color (associated with skin pigmentation and
response to sunlight), and we knew that hair color was not related to gender, we
might well accept the exposure prevalence estimates among male controls in a
geographically defined study base as a valid estimate for female cases. In no
sense could we argue that the controls constitute a random sample from the study
base that produced the cases, which must be exclusively female, yet the expo-
sure prevalence of the controls would be a valid estimate of the exposure preva-
lence in that study base under the assumptions noted above.

A second consideration is that a control group can be well suited to address
one exposure and yet be biased for assessing others. If controls are sampled in

84 INTERPRETING EPIDEMIOLOGIC EVIDENCE



a valid manner from the proper study base, then they will generate accurate es-
timates of prevalence for all possible exposures in the study base, and thus
case–control comparisons of exposure prevalence will generate valid measures
of association. However, with deviations from the ideally constituted controls,
the potential for selection bias needs to be considered on an exposure-by-
exposure basis. In the above example of a case–control study of melanoma, males
would not serve well as controls for female cases in efforts to address the preva-
lence of sunscreen use or diet, let alone reproductive history and oral contra-
ceptive use. The question of whether the controls have generated a good esti-
mate of exposure prevalence in the study base, and thus a valid measure of the
exposure–disease association of concern, must be considered for each exposure
of interest.

Among the most challenging exposures to evaluate are those that are associ-
ated with social factors or discretionary individual behaviors, e.g., diet, exercise,
tobacco use. These characteristics are often susceptible to selection bias in that
they may well be related to inclination to seek medical care, source of medical
care, and willingness to voluntarily participate in studies. In contrast, if exposure
were determined solely by genetic factors, e.g., blood type or hair color, or those
not based on conscious decisions, e.g., public water source, eating at a restau-
rant discovered to employ a carrier of hepatitis, then selection bias is less likely.
Therefore, it is much easier to choose controls for studies of some exposures,
such as blood type, than others, such as psychological stress or diet.

In asking whether a particular method of control selection constitutes an un-
biased method of sampling from the study base, corrections can be made for in-
tentionally unbalanced sampling, e.g., stratified sampling by demographic at-
tributes or cluster sampling. Consideration of confounding may justify
manipulation of the sampling of controls to better approximate the distribution
of the confounding factor among cases. Such manipulation of control selection
is a form of intentional selection bias (Rothman, 1986), which is then removed
through statistical adjustment. When it is known that stratification and adjust-
ment for the confounding factor will be required to obtain valid results, then there
may be some benefit from manipulating the distribution of the confounding fac-
tor among the controls. If that stratified sampling makes the distribution of the
confounding factor among controls more similar to the distribution among cases,
then the stratified analysis will be more statistically efficient and thus generate
more precise results than if the distribution were markedly different among cases
and controls.

For example, we may be interested in the question of whether coffee con-
sumption is associated with the risk of developing bladder cancer. We know that
tobacco use is a major determinant of bladder cancer and also that coffee con-
sumption and smoking tend to be positively associated. Thus, we can anticipate
that in our analysis of the association between coffee consumption and bladder
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cancer, we will need to make adjustments for a confounding effect of cigarette
smoking. If we take no action at the time of control selection, we will have many
more cases who are smokers than controls (given that tobacco use is a strong
risk factor for bladder cancer). We lose precision by creating strata of smoking
in which there is gross imbalance of cases and controls, i.e., many controls who
are nonsmokers relative to the number of cases and few controls who are heavy
smokers relative to the number of cases. In anticipation of this problem, we may
well choose to distort our control sampling to oversample smokers, i.e., inten-
tionally shift the balance using probability sampling among strata of smokers and
nonsmokers to make the smoking distribution of controls more similar to that of
the cases. We will still need to adjust for smoking, as we would have without
stratified sampling, but now when we do adjust we will have a better balance of
cases and controls across the smoking strata, and a more statistically precise re-
sult for the estimated measure of association.

Given the ability to account for stratified sampling from the study base, we do
not need a mechanism to achieve a simple random sample that represents expo-
sure prevalence but only a mechanism to achieve a defined probability sample from
the study base. Even when the uneven sampling in relation to measured attributes
is unintentional, we can correct for it in data analysis. For example, if a door-to-
door sampling procedure inadvertently oversamples older women, we can readily
adjust for age and gender distribution in the analysis. The key question then is
whether the exposure prevalence reflects that in the study base within those strata
known to be unbalanced. In the example with overrepresentation of elderly women,
we need only assurance that the exposure prevalence among older women in the
study base has been sampled accurately and that the exposure prevalence among
young women and men of all ages in the study base has also been sampled accu-
rately, not necessarily that the proportion of women and men in the study base has
been sampled accurately (unless gender is the exposure of interest). Conversely,
selecting a sample that is representative with regard to social and demographic fac-
tors does not guarantee that it reflects accurately exposure prevalence and thus
would generate an unbiased estimate of the association between exposure and dis-
ease. Exposed persons may be oversampled (or undersampled) inadvertently in
each of the age-sex strata even if the distribution by age and sex is perfectly rep-
resentative of the study base. For example, participants in studies generally are less
likely to be users of tobacco than are nonparticipants. This might well be true in
all age and gender strata so that a control sample that is perfectly balanced across
age and gender could well underestimate tobacco use in all those strata and yield
a biased measure of association between tobacco use and disease.

Coherence of Cases and Controls

Focusing on coherence between cases and controls emphasizes that it is not one
of the groups that is at fault if they cannot be integrated to yield valid measures
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of the association between exposure and disease, but rather their composition rel-
ative to one another. Thus, there is no such thing as poorly constituted cases or
poorly constituted controls, only groups that are incoherent with one another. In
practice, once one group, cases or controls, has been operationally defined, then
the desired attributes of the other is defined and the challenge is a practical one
of meeting that conceptual goal. Miettinen (1985) coined the terms primary study
base and secondary study base. With a primary study base, the definition of the
population-time experience that produces the cases is explicitly demarcated by
calendar periods and geographic boundaries. In such instances, the challenge is
to fully ascertain the cases that arise from within that study base and to accu-
rately sample controls from that study base. A secondary base corresponds to a
given set of cases identified more by convenience, such as those that appear and
are diagnosed at a given hospital, posing the challenge of identifying a means of
properly sampling controls from the ill-defined study base.

In reality, there is a continuum of clarity in the definition of study bases, with
the goal being the identification of a study base that lends itself to selection of
coherent cases and controls. A choice can be made in the scope of the study base
itself that will make coherent case and control selection more or less difficult. It
may be more useful to focus on the identification of a coherent base for identi-
fying both cases and controls than to first focus on making case or control se-
lection alone as easy as possible and then worrying about how to select the other
group. The ability to formally define the geographic and temporal scope of a
study base is less critical than the practical ability to identify all the cases that
are produced in a study base and to have some way to properly sample controls
from it.

Coherence may sometimes be achieved by restricting the constitution of one
of the groups to make the task easier. For example, in a study of pregnancy
outcome based in prenatal care clinics, the case group may include women who
began normal pregnancies and developed the disease of interest, e.g., preg-
nancy-induced hypertension, as well as women who began prenatal care else-
where and were referred to the study clinic because they developed medical
problems, including the one of interest. The source of referrals is very difficult
to identify with clarity, since it depends on financial incentives, patient and
physician preferences, etc. Therefore, one option would be to simply exclude
those referred from other prenatal care providers from the case group and
thereby from the study base itself, and instead study non-referred cases and a
sample of patients who enrolled in prenatal care at the study settings without
necessarily being at high risk. Note that the problem is not in identifying re-
ferred cases, which is straightforward, but rather in sampling from the ill-
defined pool of pregnant women who would, if they had developed health prob-
lems, have been referred to the study clinics. Restricting cases and controls to
women who began their care in the study clinics improves the ability to ensure
that they are coherent.
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In this example, as in most case–control studies, the burden is placed on proper
selection of controls given a roster of cases. Selection bias is defined not as hav-
ing chosen a set of cases from an ill-defined, intractable study base but rather
having the inability to identify and sample controls from that base. Given a set
of cases, we ask whether the chosen controls accurately reflect the prevalence of
exposure in the study base that generated them, regardless of how complex the
definition of that study base may be. One of the primary reasons to conduct
case–control studies is the rarity of disease, in that a full roster of cases plus a
sample from the study base is more efficient than the consideration of the entire
study base, as is done in cohort studies. Given the goal of including as many
cases as possible for generating precise estimates, solutions such as the one pro-
posed for referrals to prenatal care clinics that require omission of sizable num-
bers of cases are likely to be unattractive. Typically, all possible cases are sought,
and the search is made for suitable controls.

The more idiosyncratic the control sampling method and the more it deviates
from a formal, random sample from the study base, the more scrutiny it requires.
Sometimes, we have a clearly defined, enumerated study base, as in case–
control studies fully nested within a defined cohort. When cases of disease arise
in a population enrolled in a health maintenance organization, there is often a
data set that specifies when each individual joins and leaves the program. Those
are precisely the individuals who would have been identified as cases if they had
developed the condition of interest (aside from those persons who for some rea-
son forego the benefits of the plan and seek their care elsewhere). Medical care
coverage affords the opportunity to comprehensively define the population at risk
and thus sample from it. One of the primary strengths of epidemiologic studies
in health maintenance organizations is the availability of a roster of persons who
receive care, and are thus clearly at risk of becoming identified as cases.

As we move away from clear, enumerated sampling frames, the problems of
control selection become more severe. Even in studies conducted within a defined
geographic area, there is the challenge of identifying all cases of disease that oc-
cur in the area. Doing so is easier for some conditions than for others. Several dis-
eases are fully enumerated by registries in defined geographic areas, most notably
cancer and birth defects. Vital records provide a complete roster of births, and thus
certain associated birth outcomes, and deaths, including cause of death. For most
conditions of interest, however, there is not a geographically based register in place.
Chronic diseases such as diabetes, myocardial infarction, or osteoporosis require
essentially developing one’s own register to fully ascertain cases in a geographi-
cally defined population, tabulating information from all medical care providers,
developing a systematic approach to defining cases, etc. Beyond the potential dif-
ficulties in identifying all cases from a given region in most countries, probability
sampling from geographically defined populations is extremely difficult and be-
coming more difficult over time. As privacy restrictions increase, accessibility of
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such data sources as drivers’ license rosters is becoming more limited. Further-
more, public wariness manifested by increased proportions of unlisted telephone
numbers and use of telephone answering machines to screen calls has made tele-
phone based sampling more fallible. At their best, the available tools such as ran-
dom-digit dialing telephone sampling, neighborhood canvassing, or use of drivers’
license rosters are far from perfect, even before contending with the problems of
non-response that follow. Conceptually, a geographically defined study base is at-
tractive, but it may not be so on logistical grounds.

Sampling from the study base that generates patients for a particular hospital or
medical practice raises even more profound concerns. The case group is chosen
for convenience and constitutes the benchmark for coherent control sampling, but
the mechanisms for identifying and sampling from the study base are daunting.
Without being able to fully articulate the subtleties of medical care access, prefer-
ence, and care-seeking behavior, diseased controls are often chosen on the as-
sumption that they experience precisely the same selection forces as the cases of
interest. To argue that choosing patients hospitalized for non-malignant gastroin-
testinal disease, for example, constitutes a random sample from the population that
produced the cases of osteoporotic hip fracture may be unpersuasive on both the-
oretical and empirical grounds. Such strategies are rarely built on careful logic and
there is no way to evaluate directly whether they have succeeded or failed, even
though by good fortune they may yield valid results. Their potential value would
be enhanced if it could be demonstrated that the other diseases are not related to
the exposure of interest and that the sources of cases are truly identical.

Selection in still more conceptually convoluted ways, such as friend controls,
is also not amenable to direct assurance that they represent the appropriate study
base. We need to ask whether friend controls would have been enrolled as cases
in the study had they developed the condition of interest and whether they con-
stitute a random sample of such persons. Viewed from a perspective of sampling,
it is not obvious that such methods will yield a representative sample with re-
spect to exposure. When the procedure seems like an odd way of sampling the
study base, attention should be focused on the ultimate question of whether the
controls are odd in the only way that actually matters—Do they reflect the ex-
posure prevalence in the study base that produced the cases? That question is
synonymous with “Is selection bias present?”

EVALUATION OF SELECTION BIAS IN 
CASE–CONTROL STUDIES

Temporal Coherence of Cases and Controls

A critical initial exercise is to enumerate, in conceptual terms, the specific re-
quirements for enrollment as a case in the study versus the requirements for en-
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rollment as a control. Some of the relevant attributes are easily and routinely con-
sidered, such as age range for eligibility and geographic scope of residence, but
others may be more subtle and difficult to assess.

Calendar time is an often-neglected component in the definition of the study
base, particularly when cases were diagnosed over some period of time in the
past. Case registries for diseases such as cancer are a convenient resource for
mounting case–control studies, but obtaining an adequate number of cases often
necessitates including not just cases diagnosed subsequent to the initiation of the
study, but also some who were diagnosed and registered in the past. Because the
cases occurred over some period of historical calendar time, the study base from
which controls are recruited should accommodate the temporal aspects of case
eligibility if the exposure prevalence may change over time. At the extreme, if
we had enrolled cases of colon cancer aged 45–74 diagnosed in metropolitan At-
lanta, Georgia during 1992–1995, the roster of Atlanta residents aged 45–74 in
1990 or 1998 would not be coherent with the cases due to the changes that oc-
curred in the dynamic cohort of residents. The questions must be asked, “Were
all members of the study base eligible for control selection at the time of case
occurrence, considering time-varying factors such as residence, age, and health
status? Would the roster of potential controls available at the instant of case oc-
currence correspond to those from which controls were actually sampled?” In the
ideal study, we would have enrolled cases as they occurred, in the period
1992–1995. As each case occurred, controls would be randomly sampled from
the roster of the persons in the community. Note that the roster would be differ-
ent in 1990, 1992, and 1995 due to changes in age, in- and out-migration, and
death. Only if the prevalence of exposure is invariant, and thus the prevalence
in 1990, 1992, 1995 and every year in between is the same, can we safely assess
exposure among controls over a different period of time than for cases and thus
employ a non-coherent study base.

Several studies addressing the potential association of elevated levels of mag-
netic fields from electric power lines in relation to childhood cancer selected con-
trols, at least in part, some years after the cancer cases had been diagnosed (Savitz
et al., 1988; London et al., 1991; Preston-Martin et al., 1996). Given the rarity of
childhood leukemia or brain cancer, accrual of a sufficient number of cases through
prospective monitoring of the population is challenging. This requires either con-
ducting the study in a very large population from which cases arise, as was done
in a study in large segments of the Midwest and eastern United States (Linet et al.,
1997) and in the United Kingdom (United Kingdom Childhood Cancer Study In-
vestigators, 1999), or by sustaining an active study to accrue cases over many years.
It is much more efficient in time and expense to extend the case accrual period
into the past using historical cancer registry data rather than solely into the future.

For example, in the study conducted in Denver, data collection began in 1984,
yet cases diagnosed as early as 1976 were eligible (Savitz et al., 1988). Given a
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case that occurred several years before data collection for the study began, for
example in 1976 or 1977, how do we properly select controls from the study
base of the past that no longer exists?

Imagine the fate of the roster of eligible controls for a case occurring eight
years before the start of the study. Over the intervening years, the population of
the geographic area has changed, some otherwise eligible children have died, and
those children of similar age as the case are now much older. Age is easily back-
calculated to determine who, based on current age, would have been eligible at
some point in the past. Past residence is a much more serious concern. Of all the
potentially eligible controls at the time of case occurrence, a small number of
children have died, but many may have moved out of the geographic area and
many new children have probably moved into the geographic area. One source
of ineligibility for control selection is rather easily addressed, namely whether
the potential control resided in the study area at the time in the past when the
case occurred. We can simply ask this present-day resident where they were liv-
ing at the relevant time in the past. The otherwise eligible potential control who
has left the geographic area, however, cannot readily be identified. We simply
have no convenient way of tracking and including those who moved elsewhere
but would have been eligible for sampling if we had been conducting our study
at the optimal time in the past. Thus, our ideal roster of controls is inaccessible
in the absence of true historical population registers, such as those that can be
reconstructed in Sweden (Feychting & Ahlbom, 1993).

In the Denver study of magnetic fields and cancer, we chose to restrict the
controls to those who resided in the area at the time of case diagnosis and con-
tinued to reside there at the time the study was initiated (Savitz et al., 1988; Savitz
& Kaune, 1993a). There have been concerns raised over the consequences of our
inability to fully sample from the study base and the resulting exclusion of res-
identially mobile controls (Jones et al., 1993). The magnitude of bias from this
restriction is difficult to assess directly. A suggested solution to this problem is
to restrict the cases comparably to those who remained residentially stable fol-
lowing their diagnosis. The logic of restricting on postdiagnosis experience, how-
ever, is questionable and it is quite possible that the reasons for moving would
differ among families who suffered from having a child diagnosed with cancer
compared to other families.

The optimal solution to the temporal incoherence of cases and controls is to
eliminate it. If there were rosters from times in the past, we could effectively
sample from the study base. As noted, records in Sweden allow reconstruction
of neighborhoods as they were configured in the past. Records from schools,
health care plans, birth records, town records, telephone directories, drivers’ li-
cense rosters, or voter registration lists are examples of data resources that allow
stepping back to the time of interest. Each has imperfections and potential sources
of selection bias, and the challenge of locating persons who are identified through
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such historical rosters is apparent. Any archival information that allows for se-
lection from the desired historical population roster is worthy of serious consid-
eration. The only alternative is to mount studies in large enough populations to
permit control selection to be concurrent with case diagnosis.

Selection bias from non-concurrent case and control selection can arise when
trying to define a suitable sampling frame for cases whose disease began prior
to the initiation of data collection for the study. Often, cases diagnosed in the
past are combined with those newly diagnosed as the study progresses, leading
to subsets of concurrent (for newly diagnosed cases) and non-concurrent (for past
cases) controls. Even within the stratum of non-concurrent, the more remote in
time, the more susceptible to selection bias, whatever the exact mechanism that
produces it. Controls selected for marginally non-concurrent cases, e.g., those in
the past year, are less susceptible to this bias than controls selected for cases di-
agnosed in the more remote past, e.g., five years ago. Critiques of studies of res-
idential magnetic fields associated with power lines near homes and childhood
leukemia had appropriately raised concerns about the influence of selection bias
due to this phenomenon (Poole & Trichopoulos, 1991; Jones et al., 1993) in a
study in Denver, Colorado (Savitz et al., 1988). Specifically, the study data col-
lection began in 1983, with cases diagnosed over the period 1976–1983. The
most direct test to address all conceivable problems of non-concurrence is to
stratify cases by degree of non-concurrence using the year of diagnosis, i.e.,
1976–1979 (more non-concurrent) and 1980–1983 (less non-concurrent), to as-
sess the patterns of association in those groups. In this instance, the magnitude
of association was stronger, not weaker, for the most recently diagnosed cases
(Table 5.1), suggesting this form of selection bias was unlikely to have biased
the odds ratio upwards (Savitz & Kaune, 1993b).

Consider Discretionary Health Care of Cases and Controls

In addition to experiencing the biological process of disease occurrence, in many
studies the identified cases of disease either recognized a manifestation of the bi-
ological problem and sought treatment for it, or had incidental contact with the
health care system that led to a diagnosis. In some instances, the investigators
engage in systematic case-finding and eliminate the discretionary component of
being diagnosed, but often the cases in case–control studies are identified through
a health care provider. The questions to be asked for characterizing the study
base, and thereby evaluating the suitability of controls, must include the implicit
steps between developing the disease of interest and coming to be identified as
a case in the study.

Identifying suitable hospital controls or ill controls for cases selected from a
health care provider poses a particular challenge. The major motivation in se-
lecting such ill controls is the convenience of access, often from the same source
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as the cases. Another consideration is the tradeoff between potential selection
bias (from choosing ill controls) and non-response (often a greater problem among
controls selected from the community than from the hospital). Our focus here is
on the concern with selection bias, with non-response addressed in detail in Chap-
ter 6. Assume, for example, that a set of cases, e.g., women with osteoporotic
hip fracture, have been identified at a large medical center and we are interested
in determining whether there is an increased risk associated with low levels of
calcium intake during adulthood. The hypothetical source of controls consists of
those women who would, had they developed osteoporotic hip fracture, have
come to the hospital at which case ascertainment is occurring. How do we op-
erationally define this requirement that they “would go to that hospital” if they
experienced a hip fracture?
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TABLE 5.1. Sratum-Specific Results for High Wire Code Versus Low Wire Code: Den-
ver, Colorado, 1976–1983, Interviewed Subjects

Total Cancers Leukemia Brain Cancer

PARAMETER OR CI OR CI OR CI

Age at diagnosis
0–4 years 1.9 0.9–4.2 3.9 1.4–10.6 1.0 0.2–5.3
5–9 years 1.8 0.3–10.2 2.3 0.3–19.0 2.3 0.3–19.0
10–14 years 2.9 1.0–8.5 4.1 0.9–19.0 6.2 1.0–38.2

Gender
Male 1.6 0.8–3.3 2.4 1.0–6.0 1.7 0.5–6.2
Female 3.3 1.2–9.1 7.0 1.9–26.3 2.4 0.5–11.2

Father’s education
� 16 years 1.8 0.9–3.8 4.2 1.6–11.1 2.3 0.8–7.0
� 6 years 2.3 0.8–6.2 2.5 0.7–8.9 —

Per capita income
� $7000/year 2.1 1.0–4.4 3.6 1.5–8.9 1.7 0.6–5.2
�$7000/year 1.8 1.1–3.1 2.8 0.7–11.4 1.8 0.2–18.5

Year of diagnosis
Before 1980 1.3 0.5–3.5 1.8 0.5–6.3 0.9 0.2–5.0
1980 or later 3.7 1.4–9.7 7.1 2.3–22.1 3.8 1.5–9.9

Residential stability
Unstable 2.9 1.3–6.6 4.7 1.8–12.5 1.7 0.4–7.1
Stable 1.5 0.6–3.6 2.7 0.8–9.4 2.1 0.5–8.5

Residence type
Single family 2.1 1.1–4.1 3.9 1.7–8.9 2.0 0.6–6.2
Other 2.0 0.4–11.2 2.8 0.3–28.3 1.4 0.1–13.6

OR, odds ratio; CI, confidence interval.

Savitz & Kaune, 1993.



First, we must focus on exactly how and why the cases ended up going to that
particular hospital, beyond the fact of their health condition. Location of resi-
dence or workplace is often influential. If there are a small number of cases who
came to that hospital for peculiar reasons, for example, they were visiting friends
who live in the area when their hip fracture occurred, we may prefer to exclude
them since the roster of such visitors would be virtually impossible to identify
for control selection purposes. The identity of the woman’s regular physician, or
whether she even has a regular physician, may influence the specific hospital she
would go to when hip fracture occurs. Financial aspects of their health care, such
as insurance plan or Medicare/Medicaid eligibility, could influence the patient’s
likely source of care.

All the steps that resulted in the identification of these cases contribute to the
definition of the study base, and therefore are elements to be considered in con-
stituting the sampling frame for selection of controls. If the geographic coverage
of the hospital is well defined, then only persons who reside in that area are part
of the study base. In fact, if the medical care system were based solely on ge-
ography, then residence would unambiguously determine source of medical care.
In the United States and many other settings, however, geography alone does not
determine the health care provider. The choice of physician, insurance coverage,
and physician and patient preferences are often relevant considerations in the se-
lection of a hospital. If medical practices constituted the network for patient re-
ferral, then the study base would consist of patients seen within those practices,
since they would have come to the study hospital in case of a hip fracture. If par-
ticular insurance plans direct patients to that hospital, then to be eligible as a con-
trol, the woman should be insured through such a plan. One reason that health
maintenance organizations are particularly attractive for epidemiologic research,
as noted above, is that the source population is unambiguously defined by en-
rollment in the plan. In the current, largely disorganized system of medical care
in the United States, anticipating who would go to a given health care facility
for a particular condition is a complex and only partially predictable process de-
pendent on physician inclination, whether alternative facilities are available, fi-
nances, and subjective considerations of physician and patient preferences.

In light of this complexity, the traditional approach is to try to identify other
health conditions that have a comparable source population (Miettinen, 1985),
even without being able to articulate just what is required to be a member of that
source population. Thus, we may speculate that women who come to the hospi-
tal for acute gastrointestinal conditions (gallstones, appendicitis) effectively rep-
resent a random sample from the study base, at least with respect to the expo-
sure of interest. The conditions that define the source of controls must be unrelated
to calcium intake, of course, for this strategy to be valid. Inability to operationally
define the study base and thereby circumscribe the roster of potential controls
constitutes a major disadvantage in evaluating the suitability of the chosen con-

94 INTERPRETING EPIDEMIOLOGIC EVIDENCE



trols. Some degree of luck is required for the sampling mechanism of choosing
persons with other diseases to yield an effectively random sample from the study
base, and there is no direct way to determine if one has succeeded. It is clearly
not a conceptually appropriate control group in terms of identifying and sam-
pling from a well-defined roster, and will yield a valid measure of association
only under the assumption that it nonetheless yields an accurate estimate of the
prevalence of the exposure of interest in the study base.

Choosing controls based on having other, specific health conditions presumes
that the exposure of interest has no direct or indirect positive or negative relation
to the controls’ diseases. The classic concern is that the exposures are as yet undis-
covered risk factors for the control disease, as occurred in choosing patients with
chronic bronchitis as controls in an early study of lung cancer and cigarette smok-
ing (Doll & Hill, 1950). At that time, it was believed that smoking was unlikely
to be related to bronchitis, so that choosing bronchitis patients would give a good
estimate of smoking prevalence in the source population. Given the epidemiolo-
gists’ well-founded belief that disease does not occur randomly, it is difficult to ar-
gue with confidence that a given exposure has no relation, direct or indirect, pos-
itive or negative, with a given disease. When we choose the presence of a disease
as the basis for sampling controls, and the exposure of interest is related through
any means, not necessarily causal, to the disease for which controls are sampled,
the estimate of exposure prevalence in the study base will be distorted.

There are also more subtle ways in which persons with illness may have ex-
posures that are not representative of those in the appropriate study base, espe-
cially when health behaviors or other aspects of lifestyle are involved. Continu-
ing with the interest in calcium intake and osteoporotic hip fracture, assume the
goal is to identify hospitalized patients whose past diet is representative of the
study base of patients with hip fracture and we have chosen patients with benign
gynecologic conditions. Assume that these hospitalized patients are truly mem-
bers of the study base, i.e., if they had experienced a hip fracture, they would
have become cases in the study. Thus, the only question is whether the sampling
mechanism of other diseases is suitable.

First, diet is likely to have an etiologic relationship with a wide range of con-
ditions, some of which have not yet been discovered. It is difficult to argue that
any health condition is certain to be free of dietary influences. Second, early or
preclinical illness is likely to alter diet subtly so that even in the absence of a
causal relationship with the other diseases, reported diet may be distorted. Even
when respondents are asked to report on diet at times in the more remote past,
they tend to be influenced by recent diet (Wu et al., 1988), and may well report
diet that has been altered by early or subclinical disease. Third, even if past diet
were truly representative of the study base, the reporting of it may be affected
by the presence of an unrelated illness. The psychological impact of the illness
may well cause patients to misreport diet. (The point concerns information bias
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or misclassification rather than selection bias, and is discussed in more detail in
Chapter 8.) An argument for the use of ill controls is that their reporting ten-
dencies will be more comparable to the cases and thus yield more valid meas-
ures of association. The benefits of creating such offsetting biases are uncertain
and difficult to evaluate empirically.

The proposed solutions to the problem of varying degree of medical surveil-
lance can themselves introduce bias. In the 1970s and 1980s, there was a major
controversy about the question of whether exogenous estrogen use caused en-
dometrial cancer or simply brought existing cancers to diagnosis by producing
vaginal bleeding, a symptom which led to medical care that in turn led to diag-
nosis. There was no question that an association was present, but its etiologic
significance was debated intensely.

In order to address a concern with detection of such cancers, specifically whether
the increased medical surveillance associated with receipt of estrogen therapy re-
sulted in identification of otherwise subclinical disease, some investigators had pro-
posed using as controls women who had undergone dilatation and curettage (D&C)
(Horwitz & Feinstein, 1978). In that study, there was little association between es-
trogen use and endometrial cancer, in contrast to virtually all the previous studies.
Hulka et al. (1980) conducted a case–control study in which they included alter-
nate control groups to address specific hypothesized biases. Under the scenario that
estrogen use increases bleeding and thereby brings latent cancer to light, an ap-
propriate control group would consist of women who experienced bleeding for
other reasons and thus were subjected to the same diagnostic scrutiny. Compared
to results for more conventionally constituted hospital or community controls (Table
5.2), those controls who underwent D&C showed markedly reduced odds ratios.
According to the proponents of the detection bias argument, these reduced meas-
ures of association reflect the benefit of removing bias due to enhanced surveil-
lance among the estrogen users. In addition, the constitution of a control group
based on having undergone a specific gynecologic procedure has compromised all
other principles of control selection, namely the generation of a sample that rep-
resents the exposure prevalence in the study base that generated the cases. The pro-
posed solution to examining a case group that reflects both a medical condition
and health care that resulted in diagnosis was to generate a control group with an
equally convoluted path to identification as a non-case. As demonstrated convinc-
ingly by Hulka et al. (1980) and others subsequently, the proposed solution gen-
erates an aberrantly reduced measure of association through inflating the preva-
lence of estrogen use among controls.

Compare Exposure Prevalence in Controls to an External Population

Analogous to the manner in which disease rates in the unexposed cohort may be
compared to disease rates in external populations as one means of assessing
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TABLE 5.2. Effect of Duration of Estrogen Use on Relative Risks, Using Three Control Groups Among White Women: Case-Control Study of Endome-
trial Cancer and Exogenous Estrogen, North Carolina, 1970–1976

Controls

DURATION NO. OF
D&C Gynecology Community

OF USE CASES NO. RR 95% CI NO. RR 95% CI NO. RR 95% CI

None used 125 136 118 172
� 6 months 8 13 0.7 (0.3, 1.8) 12 0.7 (0.3, 1.8) 20 0.8 (0.3, 1.9)
6 months–� 3.5 years 9 14 0.7 (0.3, 1.7) 9 0.9 (0.3, 2.6) 21 0.7 (0.3, 1.6)
3.5 years–� 6.5 years 9 16 0.8 (0.3, 1.8) 1 7 1.7 (0.7, 4.7)

3.8 (1.2, 12.1)
6.5 years–� 9.5 years 9 11 1.2 (0.5, 3.1) 2 5 2.5 (0.8, 7.4)
� 9.5 years 19 10 2.0 (0.8, 4.7) 2 5.1 (1.4, 18.5) 4 5.5 (1.9, 16.2)
No data on duration 7 8 9

*Age-adjusted with four age groups: � 50, 50–59, 60–69, and 70� years.

D&C � dilatation and curettage; CI, confidence interval; RR, relative risk.

Hulka et al., 1980.









whether they fall within an expected range, with appropriate caution, exposure
prevalence among controls can sometimes be beneficially compared to the ex-
posure prevalence in external populations. Because typically we have less exten-
sive information concerning exposure prevalence than disease patterns in exter-
nal populations, however, the opportunity to apply this strategy in case–control
studies is more limited than the corresponding approach in cohort studies.

Controls are selected in a case–control study to provide an estimate of expo-
sure prevalence in the study base; for example, the proportion of women using
estrogen replacement therapy or the proportion of men aged 50–59 who eats five
or more servings of beef per week. If data from population surveys on preva-
lence of use of estrogen replacement therapy were available, for example, strat-
ified as needed by age, social class, and other important influences on patterns
of use, then a comparison could be made between exposure prevalence in the
study controls and exposure prevalence in the general population. Data are most
widely available for exposures of general interest, such as reproductive history,
use of medications, tobacco and alcohol use, diet, and certain social and eco-
nomic factors. Even when such data are available, however, the exact method of
measuring and reporting them may differ from the methods used in the case–
control study and thereby diminish the informativeness of the comparison. If per-
fectly suitable data were already available from an appropriate population, then
there would be no need to identify and collect information from controls at all.
At best, data from somewhat similar populations on roughly comparable expo-
sures can yield comparisons with the study controls that can identify gross aber-
rations. If supplemental estrogen use from sociodemographically similar popu-
lations to those in the study ranges from 10% to 20%, and the controls in our
study report 3% use or 53% use, we would have reason to look carefully at the
manner in which the controls were chosen (as well as our methods for ascer-
taining supplemental estrogen use). If we measured exposure in the reported range
or close to it, however, we would have some added confidence that the controls
are more likely to be appropriately constituted and the exposure was properly 
assessed.

Continuing with the example of estrogen use and endometrial cancer intro-
duced previously, Hulka et al. (1980) examined the question of whether select-
ing controls based on having had a D&C would produce an erroneous estimate
of the prevalence of estrogen use in the population. They examined three con-
trol selection strategies, one consisting of community controls (the “gold stan-
dard” for this purpose), the second consisting of women with other gynecologi-
cal conditions, and the third consisting of women who had undergone D&Cs. As
anticipated, relative to the community controls, the D&C controls had an inflated
prevalence of estrogen use, reflecting selection bias (Table 5.3). Approximately
35% of white women and 24% of African-American women had used estrogens
in the D&C group as compared to 27% and 8% of white and African-American
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TABLE 5.3. Percent of Cases and Controls Reporting Any Estrogen Use, by Race: Case-Control Study of Endometrial Cancer and Exogenous Estrogen,
North Carolina, 1970–1976

Controls

Cases D&C Gynecology Community

Estrogen Estrogen Estrogen Estrogen

RACE TOTAL NO. NO. % TOTAL NO. NO. % TOTAL NO. NO. % TOTAL NO. NO. %

White 186 61 32.8 208 72 34.6 153 35 22.9 236 64 27.1
African-American 70 7 10.0 108 26 24.1 71 9 12.7 85 7 8.2

D&C, dilatation and curettage.

Hulka et al., 1980.



women, respectively, in the community controls. It appears that the distortion is
especially pronounced for African-American women.

If comparisons of exposure prevalence are to be made between study controls
and an external population, it will usually be necessary to make adjustments for
known determinants of exposure. At a minimum, differences in such attributes
as age, sex, race, and social class would have to be considered, as well as cal-
endar time, if exposure prevalence has changed. For supplemental estrogens, there
may well be differences related to geographic region, health care coverage, and
reproductive history. The comparison is then made between the external popu-
lation and the controls within strata that are more likely to show comparable ex-
posure patterns, strengthening the value of the comparison. Some surveys such
as the National Health and Nutrition Examination Survey and other large, na-
tional, probability samples conducted by the National Center for Health Statis-
tics allow for isolation of subgroups most comparable to the study population of
interest because of their size and diversity. To estimate supplemental estrogen
use among Hispanic women aged 60–64 in the southwestern United States would
be quite feasible, for example.

If the exposure prevalences are roughly similar between study controls and the
external population, modest comfort may be taken that extreme selection bias is
less likely to be present. If the observed prevalence in the study controls is grossly
discrepant from that in the external population, one of two conclusions may be
drawn. The study base may simply be substantially different from the sample
that generated the external prevalence measure, and thus the disparity is not in-
dicative of a problem within the study. There may be such profound regional and
socioeconomic differences in exposure prevalence as to render national data un-
informative, for example. The potential for large disparities needs to be evalu-
ated using what is known about the determinants of exposure and interpreted ac-
cording to the level of confidence that the external population should be similar
to the study population. Powerful, but previously unrecognized, determinants of
exposure may be present.

If there is no explanation for the disparity based on known determinants of ex-
posure, then the constitution of the control group may be called into question and
the argument for selection bias becomes more tenable. Information would need
to be gathered on whether the controls appear to overstate or understate the ex-
posure prevalence in the study base and on the amount of over- or underestima-
tion that would therefore be expected in the measure of association. The expo-
sure prevalence in the external population could be substituted for the exposure
prevalence observed in the controls and odds ratios based on external and inter-
nal controls compared to characterize the importance of the disparity. In addi-
tion to selection bias, the potential for information bias would need to be enter-
tained given that the methods by which exposure is ascertained could markedly
influence the reported exposure level. In fact, the problems in ascertainment could
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come from either the controls in the study or from the external population sur-
vey to which they are compared. Like many “red flags,” the disparity in expo-
sure prevalence is a trouble sign but not a definitive indicator that trouble is pres-
ent or just what has caused the trouble.

Determine Whether Exposure Prevalence Varies as 
Expected Among the Controls

An aberration in the manner in which controls are selected may manifest itself
as an unusual pattern of exposure among subsets of controls if the faulty selec-
tion does not apply equally to all segments of the study base. Often we know
from previous research that exposure prevalence varies by subgroup, e.g., men
tend to drink more alcohol than women, White smokers tend to smoke more
heavily than African-American smokers, leisure-time physical activity is greater
among persons of higher socioeconomic status. If some erroneous method of se-
lection has been applied that is similarly problematic for all subgroups of con-
trols, defined by gender, race, age, etc., then the pattern of exposure prevalence
across those markers of exposure may be as expected. If, however, the problems
in selection are more extreme for some groups than others, or simply affect sub-
groups differentially, we will observe patterns of exposure comparing subsets of
controls that deviate from those that would normally be expected.

To evaluate this possibility, the pattern of exposure among controls must be
examined to determine whether it conforms to expectations based on external
knowledge of patterns among subgroups. For this exercise to be helpful, there
must be some basis for such expectations, ideally empirical evidence of expo-
sure patterns from previous surveys. Even reasonably justified intuitive expecta-
tions may be helpful as a benchmark, however, recognizing that deviations be-
tween our expectations and the data may be a result of our intuition being
incorrect. Health-related behaviors such as diet, alcohol and tobacco use, physi-
cal activity, and preventive health behaviors, are frequently considered in popu-
lation surveys. The predictors of such attributes or behaviors often include so-
cial and demographic characteristics such as age, race, education, occupation, or
location of residence. Confirming the presence of expected patterns among the
controls lends support to the contention that the controls have been properly con-
stituted, as well as some evidence that the exposure was accurately measured.

For example, if we chose controls for a study of physical activity and my-
ocardial infarction among women through driver’s license rosters, our sampling
frame might be quite suitable for younger women, but could be increasingly in-
effective with advancing age. As people age, and particularly as they age and be-
come more physically impaired, they may be less inclined to maintain a drivers’
license. If the older age groups were increasingly different from the source pop-
ulation in that age range, we might see an aberrant pattern in which physical 
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activity levels did not decline with advancing age among the controls and per-
haps even rose with advancing age. This would run counter to the expected pat-
terns of declining physical activity with advancing age, suggesting that we had
obtained a sample that was deviant among older age groups.

An empirical application of this strategy comes from a study of serum lycopene
(an antioxidant form of carotenoid found in fruits and vegetables) in relation to
the risk of prostate cancer (Vogt et al., 2002). A multicenter case–control study
was conducted in the late 1980s in Atlanta, Detroit, and 10 counties in New Jer-
sey. Controls were chosen through random-digit dialing for men under age 65
and through the Health Care Financing Administration records for men age 
65 and older. Among a much larger pool of participants, 209 cases and 228 con-
trols had blood specimens analyzed for lycopenes. Serum lycopene was inversely
associated with risk of prostate cancer and found to be lower among African-
American controls as compared to white controls (Table 5.4). To corroborate 
the plausibility of lower levels among African Americans (who experience a
markedly higher risk of prostate cancer generally), the authors examined perti-
nent data from the National Health and Nutrition Examination Survey. In fact,
there is strong confirmatory evidence that African Americans in the United States
do have lower lycopene levels than whites across the age spectrum (Fig. 5.1).
Other methodological concerns aside, this pattern provides evidence in support
of having enrolled reasonably representative African-American and white men
into the case–control study.

Internal comparisons could, of course, reveal the patterns that would be ex-
pected based on prior information, but still have stratum-specific and overall ex-
posure prevalences that are disparate from that in the study base. If we recruited
our controls for the study of physical activity and myocardial infarction by ran-
dom digit dialing, and had a resulting preference for women who stayed at home
across the age spectrum, we might well over-sample physically inactive women
with some fraction of such women unable to maintain employment due to lim-
ited physical ability. The patterns by age might still be exactly as expected, but
with a selectively inactive sample within each stratum and therefore a biased
sample overall. Nonetheless, for at least some hypothesized mechanisms of se-
lection bias, we would expect the extent of it to vary across strata of other ex-
posure and disease predictors, and for those candidate pathways, examination of
exposure prevalence across subgroups may be useful.

Examine Markers of Potential Selection Bias in Relation 
to Measures of Association

Based on the postulated mechanism for the occurrence of selection bias, predic-
tions can be made regarding segments of the study base in which the problem
would be more or less substantial, even if it pervades all groups to some degree.
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TABLE 5.4. Median Serum Carotenoid Concentrations (10th–90th Percentile) for African-American Cases and Controls, and White Cases and Controls,
from a U.S. Multicenter Case-Control Study of Prostate Cancer, 1986–1989

African-American Whites

Cases Controls Cases Controls

SERUM CAROTENOIDS 10TH–90TH 10TH–90TH 10TH–90TH 10TH–90TH

(�G/DL) MEDIAN PERCENTILE MEDIAN PERCENTILE MEDIAN PERCENTILE MEDIAN PERCENTILE

�-Carotene 3.2 0.8–6.80 3.1 0.8–6.00 3.6 1.1–9.00 3.5 1.0–8.20
�-Carotene 17.6 6.0–40.8 16.5 6.6–36.8 15.6 5.8–37.9 13.8 5.1–32.8
�-Cryptoxanthin 7.7 3.5–19.1 7.5 3.9–16.0 6.8 3.5–15.7 6.6 3.0–14.5
Lutein/zeaxanthin 25.3 12.1–44.9 21.2 11.1–41.20 18.9 9.3–34.6 18.3 9.7–31.8
Lycopene 14.5 3.7–32.3 15.4 4.8–32.0 16.9 6.5–31.9 18.7 6.3–35.9
Total carotenoids 75.4 37.8–128.7 66.8 35.3–117.3 64.6 33.9–120.4 63.5 33.5–115.6

Vogt et al., 2002.



To address this possibility, we can evaluate measures of association between ex-
posure and disease within strata that are expected to suffer from greater and lesser
degrees of the selection bias.

In the earlier example in which controls for a study of physical activity and
myocardial infarction were to be recruited from a drivers’ license roster, we might
expect that the sampling frame would be quite good for younger women, say un-
der age 60, and become increasingly non-representative for older women. We
may even have external data to indicate the proportion of women in each age
stratum who have a driver’s license. In the subset of the study population that is
thought to be relatively free of selection bias, for example women under age 60,
we would expect the odds ratio to be free from that source of bias. With higher
and higher age strata, we would expect increasing amounts of selection bias to
be present, so that the measures of association would be biased downward to in-
creasing degrees (uncharacteristically active control women in the older age
strata).

Referring to the Denver childhood cancer study examining magnetic field ex-
posure (Savitz et al., 1988; Savitz & Kaune, 1993a), a major concern was with
selection bias related to socioeconomic status. Despite reasonably consistent ev-
idence from cancer registries that childhood leukemia is more common in higher
social classes, nearly all case–control studies find the opposite pattern, i.e., higher
risk in lower social classes. The presumed mechanism for this is underrepresen-
tation of lower social class controls. Case response is generally better across the
socioeconomic spectrum, whereas control response is thought to be poorer among
persons of lower education and income. In order to examine the potential for
such bias and to isolate the strata in which such bias is less severe, results were
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stratified by father’s education and per capita income in the family (Table 5.1).
The expected pattern of results would be to observe less bias in the upper edu-
cation and income groups. In this case, there is some tendency for the measures
of association to be less elevated among upper socioeconomic status participants
overall, but subject to the imprecision in stratified analyses, the odds ratios are
not markedly different across strata.

One of the challenges in interpreting the results of this aspect of potential se-
lection bias is the inability to distinguish between measures of association that
truly differ across subgroups (effect measure modification) and varying meas-
ures of association across strata that result from differential selection bias across
strata. In the above examples, if physical activity truly had a different effect on
risk of myocardial infarction among younger and older women, the exact same
pattern might be seen as the one that would result from selection bias that af-
fects younger and older women differently. Similarly, in the example of resi-
dential magnetic fields and childhood cancer, if there were some reason that the
pattern of risk truly differed by socioeconomic status, the effect of selection bias
could not be isolated from a genuine modification of the measure of association
across strata of education or income. If there were changes in the prevalence of
other conditions necessary for the causal process to operate or changes in the na-
ture of the exposure across socioeconomic groups, the exact same pattern of re-
sults could be found. As is often the case, outside evidence and insights need to
be applied in assessing the implications of apparent effect measure modification.

Adjust Measures of Association for Known 
Sources of Non-Comparability

When we can identify and measure the process by which selection bias is thought
to operate, we can adjust for those determinants just as we adjust for confounders.
Some forms of selection bias can be viewed as unintentional stratified sampling,
exactly comparable to intentional stratified sampling as discussed earlier under
Selection of Controls from the Study Base if the selection acts to sample ran-
domly within the strata. Thus, if the method of sampling from the study base has
generated an excess (or deficit) of men, or younger people, or those who reside
in one county rather than another, we can readily stratify and adjust for those at-
tributes in the analysis. The question then is whether there is selection bias within
the strata, i.e., whether among young men sampled from a given county the ex-
posure prevalence is reflective of young men in that county.

In the conventional application of sampling principles, the question of selec-
tion bias is equivalent to a question of whether the exposure prevalence is cor-
rectly estimated within strata. In the above example using a drivers’ license reg-
istry to sample women for a case–control study of physical activity and
myocardial infarction, the sampling is distinctly non-random across age strata.
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Intentionally stratified sampling, as is done in frequency matching, uses algo-
rithms for selection that are intended to generate unbiased samples within the
strata. Whether the imbalance is intentional or unintentional, the strata in the cho-
sen controls are not weighted as they are in the study base, and proper analyses
must take this imbalance into account and make necessary adjustments by re-
weighting the strata. When we choose to sample unevenly across strata, we are
careful about implementing a random algorithm and monitoring its effectiveness.
In contrast, when we unintentionally sample unevenly across strata, there is no
such planning and control, and thus biased sampling is more likely. Some amount
of good fortune is required for the biased sampling to function as an effective
mechanism of stratified sampling. To the extent that the selection bias is even
partially acting like stratified sampling, however, confounding by the stratifica-
tion factors may be introduced, and removed at least partially through adjustment
(Rothman, 1986).

Consider a case–control study of the role of cocaine use in relation to migraine
headache, built on a case register from a regional referral hospital that special-
izes in the treatment of migraine headaches. If we select controls by random-
digit dialing from the same geographic area as the cases, we will have to con-
tend with the potential biases arising from differential tendency to seek medical
care and particularly, medical care from this institution. Socioeconomic status is
likely to be one such influence on the opportunity and ability to access care at
this referral center, so that we recognize and accept that there will not be a nat-
ural balance between the social class distribution of selected controls and the true
(but unknown) study base for these cases seen at this health care facility. Fur-
thermore, social class is one predictor of cocaine use, with greater prevalence
among lower social class persons. Adjusting for socioeconomic status will be
beneficial to the extent that this one source of non-comparability, imbalance
across social class, is ameliorated. In order for the adjustment to be fully effec-
tive, the prevalence of cocaine use among selected controls within social class
strata would have to accurately reflect the prevalence of cocaine use in that seg-
ment of the study base.

The extent to which a community sample selected by random digit dialing dif-
fers from the results of a privately conducted census was examined empirically
for Otsego County in New York State (Olson et al., 1992). Given that so many
case–control studies rely on random digit dialing as a method of control selec-
tion, any systematic tendency to overrepresent some groups and underrepresent
others introduces potential bias and suggests that adjustment be made for mark-
ers of participation. Overall, the sample selected by random digit dialing and the
census yielded very similar distributions. There was a tendency however, for the
random digit dialing controls to have participated to a greater extent in certain
medical screening tests (Table 5.5), suggesting greater health consciousness or
more access to health care. If we were conducting a case–control study of post-
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menopausal estrogen use and osteoporosis, there might be no causal relation be-
tween screening history and that outcome. If there were an association between
screening and use of estrogens, however, which is plausible, then the distortion
due to random digit dialing would require adjustment in the analysis. The con-
trol sampling mechanism would have generated an association with disease sta-
tus because of the overrepresentation of women who tend to have more health
screening (and may well have a higher prevalence of estrogen use as well).
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TABLE 5.5. Distribution of Sample Chosen by Random Digit Dialing and Census Popu-
lation Aged 40–74 Years According to Whether Respondents Had Certain Screening
Tests, Otsego County, New York, 1989

Random
Digit Dialing Census

Sample Population

SCREENING TEST NO. % NO. %

Had blood pressure checked in past 2 years
Yes 306 89.7 13,403 86.1
No 30 8.8 1503 9.7
No response 5 1.5 657 4.2
Total 341 100.0 15,563 100.0

Had cholesterol checked in past 2 years*
Yes 230 67.4 8699 55.9
No 102 29.9 5855 37.6
No response 9 2.6 1009 6.5
Total 341 99.9 15,563 100.0

Ever had stool test or rectal examination 
for colon cancer
Yes 174 51.0 7215 46.4
No 155 45.5 7238 46.5
No response 12 3.5 1110 7.1
Total 341 100.0 15,563 100.0

Among women only

Ever had Papanicolaou test for cervical cancer
Yes 157 89.2 6890 84.9
No 15 8.5 738 9.1
No response 4 2.3 492 6.1
Total 176 100.0 8120 100.1

Ever had mammogram for breast cancer
Yes 110 62.5 4475 55.1
No 61 34.7 3104 38.2
No response 5 28 541 6.7
Total 176 100.0 8120 100.0

a�2 � 12.72, df � 1; p � 0.001 (based on those responding).



The impact of factors that cannot be captured directly or completely can still
be addressed to some extent. We rarely have a measure of the precise indicator
of the source of selection bias, e.g., proclivity to seek medical care or health con-
sciousness or willingness to participate in telephone surveys. We may have mark-
ers however, that are at least associated to some extent with those attributes, for
example, insurance coverage, frequency of routine physical examinations, and
level of education. In the same manner that adjustment for an imperfectly meas-
ured confounder adjusts only partially, adjustment for these imperfect markers
would adjust partially for the selection bias. Not only might adjustment for such
factors yield a less biased measure of association, but the comparison of unad-
justed and adjusted measures of association would help to determine the direc-
tion of bias and estimate how large the residual effect is likely to be, analogous
to the examination of residual confounding (Savitz & Barón, 1992). If adjust-
ment for the proxy indicator shifted the measure of association in a given direc-
tion, then we can safely expect that a refined measure of that attribute would
have shifted the measure of association even further in the same direction, and
if adjusting for the marker has a large impact on the measure of association, more
complete adjustment is likely to move the estimate farther still.

Confirm Known Exposure–Disease Associations

A direct approach to examining not just the suitability of controls but rather the
coherence between cases and controls is to determine whether known or strongly
suspected exposure–disease associations are corroborated in a given study. Typ-
ically, case–control studies include information on a spectrum of potential risk
factors, and known influences on disease are incorporated as potential con-
founders of the association(s) of primary interest in the study. To the extent that
some of these are firmly established, there is potential value in conducting pre-
liminary analyses to determine whether we can confirm the obvious. When we
do so, there is some assurance that our subject selection mechanisms have not
gone seriously awry. When we fail to confirm known associations, the question
must be raised more seriously as to whether (and how) our study methods may
have generated deviant study groups.

For example, in a Swedish study of the role of dietary retinol intake on risk
of hip fracture, Melhus et al. (1998) were addressing a relatively unexplored is-
sue so that their results for the primary hypothesis could not be used to demon-
strate the efficacy of their approach to the research. There are a number of well-
established risk factors for hip fracture however, that could be considered for this
purpose. Before focusing on dietary retinol, the pattern of other known risk fac-
tors was characterized by analyzing the 247 hip fracture cases and 873 controls
(Table 5.6). Well-established associations with lean body mass index, physical
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TABLE 5.6. Odds Ratios for Covariates in the Hip Fracture Study, Swedish 
Mammography Cohort, 1987–1995

CASE– ODDS RATIO

PATIENTS CONTROLS (95% CI)

VARIABLE n

Body mass index

� 23.0 kg/m2 93 206 1.0 (reference)
23.0–25.2 kg/m2 50 206 0.44 (0.28–0.69)
25.3–27.9 kg/m2 50 210 0.49 (0.31–0.78)
� 27.9 kg/m2 39 207 0.37 (0.23–0.61)

Daily energy intake

� 1183 kcal 56 218 1.0 (reference)
1183–1437 kcal 69 219 1.49 (0.96–2.29)
1438–1695 kcal 54 218 1.20 (0.76–1.91)
� 1695 kcal 68 219 1.27 (0.82–1.98)

Physical activity

Quartile 1 (lowest activity) 76 185 1.0 (reference)
Quartile 2 57 151 1.05 (0.66–1.67)
Quartile 3 68 324 0.58 (0.38–0.88)
Quartile 4 (highest activity) 40 175 0.59 (0.36–0.97)

Former athletic activity

Never 233 845 1.0 (reference)
Ever 14 29 1.60 (0.72–3.55)

Menopausal age

� 49 years 77 268 1.0 (reference)
49–50 years 107 305 1.35 (0.92–1.99)
51–52 years 26 129 0.71 (0.41–1.21)
� 52 years 37 172 0.78 (0.48–1.27)

Menopausal status

Premenopausal 29 124 1.0 (reference)
Postmenopausal 218 750 1.10 (0.66–1.81)

Smoking status

Never smoker 161 653 1.0 (reference)
Former smoker 42 128 1.40 (0.90–2.18)
Current smoker 44 93 1.87 (1.18–2.98)

(continued)
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inactivity, and use of hormone replacement therapy were verified, providing a
general indication that the selection of subjects was successful and thereby in-
creasing confidence that the patterns of association for uncertain risk factors is
more likely to be valid as well.

Conventional wisdom can be incorrect, of course, with supposedly known as-
sociations subject to error in previous studies. Furthermore, the prevalence of im-
portant cofactors may vary across populations, so that an exposure that operates
as a risk factor in one population may truly not operate in that manner in an-
other. As discussed above, the potential for selection bias will vary across risk
factors, with a given study able to generate valid measures of association for one
exposure yet incapable of doing so for others. Even if valid for confirming known
associations, the study may not be valid for addressing the association of pri-
mary interest. Finally, there is the ever-present random error to consider, a par-
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TABLE 5.6. Odds Ratios for Covariates in the Hip Fracture Study, Swedish 
Mammography Cohort, 1987–1995 (continued)

CASE– ODDS RATIO

PATIENTS CONTROLS (95% CI)

VARIABLE n

Hormone replacement therapy

Never user 229 741 1.0 (reference)
Former user 15 80 0.58 (0.32–1.08)
Current user 3 53 0.11 (0.02–0.49)

Oral contraceptives

Never user 232 812 1.0 (reference)
Ever user 15 62 0.73 (0.35–1.56)

Oral cortisone

Never user 227 815 1.0 (reference)
Ever user 17 53 1.18 (0.65–2.14)

Diabetes mellitus

No diabetes 219 835 1.0 (reference)
Oral treatment of diabetes 17 30 2.45 (1.24–4.86)
Insulin treatment of diabetes 11 9 5.10 (1.87–13.9)

Previous osteoporotic fracture

Never 165 709 1.0 (reference)
Ever 82 165 2.29 (1.61–3.25)

CI, confidence interval.

Melhus et al., 1998.



ticular concern in attempting to corroborate well-accepted associations that are
modest in magnitude. Failure to confirm an association between a history of
heavy cigarette smoking and lung cancer would raise serious doubts about the
validity of other measures of association with lung cancer identified in a
case–control study, whereas many of the established risk factors for diseases such
as breast cancer are so modest in magnitude that random error alone could well
yield a spurious absence of measurable association. For example, although a pos-
itive association between alcohol intake and breast cancer is generally accepted
(Longnecker, 1994), the magnitude is modest. Thus, studies that fail to find it, a
non-trivial proportion of all studies (Singletary & Gapstur, 2001), are not by any
means rendered invalid as a result. Like the other strategies, the examination of
known and strongly suspected associations helps to direct the effort to scrutinize
potential selection bias without providing conclusions in isolation from other 
considerations.

INTEGRATED ASSESSMENT OF POTENTIAL FOR 
SELECTION BIAS IN CASE–CONTROL STUDIES

The initial step in evaluation of selection bias is to articulate in very specific
terms what is required for the cases to be enrolled as cases in the study. The el-
igibility criteria start with the structural requirements based on age, gender, and
geography, but often go well beyond these attributes to include medical care de-
terminants, behaviors, and even attitudes. With the cases well defined, the study
base will also be conceptually well defined as the population experience that gen-
erated those cases. Such a conceptual understanding however, is only one step
toward translation into a sampling frame for the controls. Without undue worry
regarding feasibility, initially at least, the study base should be fully described.

The chosen controls need to be evaluated against the ideal controls, a random
sample from the study base that generated the cases. Now, we must contend with
the practical constraints that interfere with identifying and sampling the study
base. We encounter unmeasurable notions of what individuals would have done
had they developed the disease and inaccessible members of the study base that
should have been included in the ideal sampling frame. Errors of inclusion, in
which controls were selected who were not part of the study base, and errors of
exclusion, in which segments of the study base were not represented, should be
described, ideally in quantitative terms: What is the nature and magnitude of de-
viation from the ideal? Can we exclude those who are truly not members of the
study base? Can we estimate the number and likely effect of excluding those who
should have been included but could not be?

This evaluation needs to occur with a focus on a particular exposure, includ-
ing the nature of the exposure, how it is distributed in the population, and what
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impact imperfect selection mechanisms are likely to have on estimating its preva-
lence. Consideration of the deviations from the ideal method of sampling from
the study base should focus on the impact on exposure prevalence. Are the er-
roneously included or excluded segments of the study base likely to have an ex-
posure prevalence that differs from the properly constituted study base? If so, in
which direction and by how much?

Evaluation of control selection strategies that are not closely linked to a de-
fined study base, such as selection of hospital controls, must go directly to the
evaluation of whether the exposure prevalence that has been generated is likely
to be similar to that which would have been obtained by sampling the appropri-
ately defined study base. In other words, the mechanism of control selection is
so far removed from sampling the study base that we can only consider whether
it is likely to have yielded a valid result, not whether the mechanism was a good
one. A distinct disadvantage of such an approach is the difficulty in addressing
this question with empirical evidence.

Sometimes, the prevalence of exposure can be compared to suitable external
populations to determine whether the chosen controls are roughly similar to oth-
ers who have been appropriately constituted and measured. The pattern of ex-
posure distribution among the controls may be compared to known or expected
patterns to determine whether there is likely to have been a differential selection
bias among the controls. If there are segments of the study base that are likely
to have been sampled more effectively than others, measures of association should
be generated with stratification on those potential markers of the degree of se-
lection bias. The more valid result comes from the stratum in which selection
bias is least likely to have occurred. The influence of adjustment for markers,
both direct and indirect, of selection bias should be evaluated to determine the
direction and amount of influence of adjustment. Where there is an imperfect
proxy measure of the basis for selection bias rather than the exact measure of in-
terest, the influence of the unmeasured factor on the results should be estimated
and the bias controlled in the same manner as confounding. The ability to repli-
cate known and strongly suspected exposure–disease associations should be at-
tempted and failures to do so considered in more detail. All these tools are suit-
able for control selection mechanisms that attempt to choose directly from the
study base as well as for those mechanisms that do not. The more that the method
of control selection deviates from sampling the study base, however, the greater
the need for evidence that the result is valid.

Whereas a perfectly coherent set of controls for a given set of cases assures
freedom from selection bias, a non-coherent control group does not guarantee
that bias will occur. That depends entirely on the exposure of interest and whether
that exposure is related to the source of the lack of coherence. In the example
regarding residential mobility and magnetic field exposure from power lines,
there would be no selection bias if residential mobility were not associated with
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nearby electrical wiring and residential magnetic fields. If the source of non-
coherence were unrelated to the exposure, then restricting the sampling to those
potential controls who did not change residences over the period between case
diagnosis and study conduct would introduce no bias. Sampling in an unbalanced
way from those who are residentially stable relative to those who are residen-
tially mobile is only a problem if residential mobility is related to the exposure
of interest. A group that is not coherent based on having omitted residentially
unstable members could still generate the correct estimate of exposure preva-
lence in the study base and thus the correct measure of association. Using as a
benchmark the ideal source of controls, critical evaluation must focus on the ex-
tent to which the less than ideal control group has generated a valid result. The
question that must be asked is whether omitting parts of the study base or in-
cluding experience outside the study base has distorted the estimate of exposure
prevalence.
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6
BIAS DUE TO LOSS OF STUDY PARTICIPANTS

CONCEPTUAL FRAMEWORK FOR EXAMINING BIAS 
DUE TO LOSS OF STUDY PARTICIPANTS

The previous chapters addressed the mechanism by which subjects were selected
and the distinctive biases that may result from the methods of selection in co-
hort and case–control studies. The focus in those chapters was on the manner in
which the groups were constituted, and whether, if implemented as designed, the
selection process would yield a valid measure of association. With a poor choice
for the non-exposed group in a cohort study, even flawless execution of that se-
lection method would yield biased results. Similarly, if the control group defined
for a case–control study fails to reflect the prevalence of the exposure of inter-
est in the study base, then selection bias is present regardless of how success-
fully we identify and recruit subjects from that poorly chosen sampling frame.
The concern in previous chapters was in the definition of the study groups, not
in the implementation of the selection method. In this chapter, we focus on the
potential for bias that arises in the implementation of the selection process, fo-
cusing on the problems resulting from the inability of researchers to enroll and
follow the individuals who were chosen for the study. Even with a perfectly valid
plan that meets all the conceptual goals for a valid study, systematic loss from
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the defined study groups is such a common source of bias that it warrants ex-
tended discussion.

Many of these problems with attrition are unique to studying free-living human
populations. Controlled laboratory experiments do not have to contend with ro-
dents moving and leaving no forwarding address, or bacteria that refuse to permit
the investigator to impose the potentially noxious exposure. If the organism and
experimental conditions are properly chosen and implemented, with the investiga-
tor in complete control, there is little room for the selective loss of subjects to yield
an erroneous result. On occasion, an outbreak of infection will disrupt laboratory
experiments or failures to follow the protocol will occur due to human or machine
error. However, the experimental control of the investigator is rather complete.

Contrast that tight experimental control with the typical situation in observa-
tional epidemiology and to a large extent, in experimental studies in human pop-
ulations. The investigator designates a study group of interest, for example, all
men diagnosed with ulcerative colitis in a given geographic area or a randomly
selected sample of children who receive medical care through a health mainte-
nance organization. Even with the good fortune of starting with complete rosters
of eligible participants, a rare situation in practice, there are multiple opportuni-
ties for losses in going from those desired to those who actually contribute data
to the final analysis. The disparity between the persons of interest and those who
are successfully enrolled in the study and provide the desired data poses a sig-
nificant threat to validity.

Complete documentation of study methods in epidemiology includes a com-
plete and honest accounting of eligible subjects and the numbers lost for various
reasons, culminating in the tally of those who were included in the final analy-
ses. This accounting is vital to quantifying the potential for biased results through
evaluation of the disparity between those sought for the study and those actually
in the study. Multiple processes contribute to those losses, with the reason for
the losses critical to evaluating the potential impact on the validity of the study
results. These losses are not failings of the investigators or research staff, but an
inherent and undesirable feature of studying human populations.

All other considerations equal, the smaller the volume of loss, the less sus-
ceptible the study is to erroneous results of a given magnitude. Also, the more
random the losses are, the less damage they do to the validity of results. A per-
fectly random pattern of loss only reduces precision and can, if the sampling
frame is large enough, be compensated by increasing the sampling fraction. For
example, if a computer error deleted every tenth subject from a randomly or-
dered list, there would be no impact on validity, and increasing the sampling
fraction by 10% would result in no loss in precision either. In sharp contrast, loss
of 10% of eligible subjects because they could not be contacted by telephone is
a distinctly non-random process, not compensated by increasing the sampling
fraction by 10%.
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The key question is whether those who remain in the study after losses are
systematically different in their key attributes (risk of disease in cohort studies,
prevalence of exposure in case–control studies) compared to those in the initial
sampling frame. Some mechanisms of loss are likely to be very close to random.
For example, in studies that recruit from patients in a clinic setting, sometimes
there are insufficient resources to recruit during all clinic hours so that otherwise
eligible patients are lost because of lack of staff coverage at particular times of
day or certain days of the week. Even for such ostensibly random sources of loss,
however, questions may be raised about whether subjects who come to a clinic
at inconvenient times (weekends, nights) are different than those who come at
times that staff are more readily available (weekdays).

In a recent study in which pregnant women were recruited in a prenatal care
setting, those lost due to missed opportunity to recruit were somewhat different
than women who were contacted, more often young and less educated (Savitz et
al., 1999). We hypothesized that one of the reasons for our inability to contact
women in the clinic was that they had changed names or rescheduled visits on
short notice, events quite plausibly related (though indirectly) to risk of adverse
pregnancy outcome as a result of a less favorable demographic profile. In fact,
those women who we were unable to contact in the clinic had a slightly higher
risk of preterm birth as compared to women we could speak to and attempt to
recruit for the study.

Mechanisms of loss that are based on the decisions or lifestyle of potential
participants, such as refusal, absence of access to a telephone, screening calls
with an answering machine, not being home during the day, or changing resi-
dences are more obviously non-random in ways that could well affect the study’s
result. Socioeconomic and demographic characteristics, behavioral tendencies,
exposures of interest, and disease risk are often intertwined. This same complex
set of factors is likely to extend to the determinants of the ability to be located,
the inclination to agree to be enrolled, and the decision to drop out once enrolled.
With a little imagination, the many correlates of “difficult to contact” or “un-
willing to contribute time to research” make such losses non-random with regard
to the exposures and health outcomes of interest to epidemiologists.

Table 6.1 illustrates some of the processes by which subjects may be lost across
the phases of a study, and suggests some of the underlying mechanisms that may
be operative. Not all of these phases apply to every study, nor is the list ex-
haustive. Limited data are available to empirically assess which reasons for losses
are more tolerable, i.e., closer to random losses, than others. Even when data on
the nature of such losses are available from other studies, the patterns of reasons
for loss and the implications for study validity are likely to vary across popula-
tions, time periods, and for different exposures and diseases of interest, making
it difficult to generalize. These processes are in large part cultural, sociological,
and psychological, so that universal predictors that apply to all humans are un-
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likely to exist. Nonetheless, repeated documentation of the magnitude and pat-
tern of losses is extremely helpful to investigators who plan and evaluate stud-
ies. Decisions must be made regarding where to target resources and informed
decisions are needed for allocating those resources optimally. If losses due to
changing residence are typically more or less important as a potential source of
bias than losses due to respondent refusal, then our energy (and funds) for con-
ducting a study and scrutinizing its results can be allocated accordingly.

The ultimate impact of the losses is a function of the magnitude of loss and
how aberrant those lost are with regard to their health or exposure status. Al-
though we focus here on losses and the reasons for loss, the study will actually
be analyzing those not lost. The concern with potential for bias focuses on how
those available compare to the full complement of those of interest. Obviously,
if those lost are notably deviant, those available will differ from the original pool
of participants. The quantitatively greatest sources of loss tend to be the most
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TABLE 6.1. Mechanisms of Subject Loss and Potential Implications

Insufficient staff coverage in clinical setting

• Employment affects timing of medical care
• Social support or economic resources affects timing of medical care

Physician refusal of access to subject

• Perceived vulnerability of patient
• Perceived hostility (lawsuit potential) of patient
• Physician attitude toward patient autonomy

Unable to locate subject

• Limited economic resources leaves few leads (credit bureau, employer, telephone)
• Extensive economic resources permit privacy (unlisted numbers, answering machines,

isolation from neighbors)
• Greater geographic mobility due to desire to move, economic need, or job opportuni-

ties

Subject refusal

• Hostility towards research based on bad experience or limited understanding
• Poor health precludes provision of data
• Protective of privacy due to engagement in embarrassing or illegal behaviors
• Overburdened with work or family responsibilities and thus lacking in time
• Self-confidence to refuse requests from authorities

Missing data

• Refusal to provide information that is unusual, embarrassing, or illegal
• Exhaustion due to poor health that precludes completion of survey
• Poor communication skills or low educational attainment



worthy of attention in assessing the potential for bias. Most often, participant re-
fusal is the dominant reason for loss, and its familiarity and inevitability should
not be misinterpreted as an indication that it is benign. The magnitude of devi-
ation between those lost and those enrolled is ideally evaluated empirically, but
since this requires information that is often unavailable, indirect evidence may
be brought to bear on the issue. After enumerating and quantifying the many
sources of loss, priorities can be defined regarding which problems deserve
scrutiny, validation substudies, or sensitivity analyses.

Like other forms of selection bias, if the losses are related to measured at-
tributes, like age and educational level, but random within strata of those attrib-
utes, then adjustment for the measured factors will eliminate bias just as it elim-
inates confounding. That is, if refusals are more common among less educated
eligible subjects, but random within strata defined by education, then after ad-
justment for education, the bias due to non-participation will be reduced. Ques-
tions must be asked regarding whether the measured attributes (e.g., educational
level) adequately approximate the attributes of ultimate interest (e.g., proclivity
to participate in studies) in order to fully adjust for the potential bias. Even though
adjustment can ameliorate the bias, it is very unlikely to fully eliminate it.

The specific exposures and diseases under investigation must be scrutinized care-
fully in order to assess the potential for bias. The abstract question of whether those
available in the analysis are or are not representative of the desired study popula-
tion has little meaning without consideration of the particular characteristics of con-
cern. The guiding question is whether the omission of some eligible participants
affects the disease rate in a cohort study or the exposure prevalence in a case–
control study. In studying a disease that is closely associated with a number of
health behaviors, such as lung cancer or coronary heart disease, subjects lost due
to refusal to participate are likely to introduce distortion due to deviant smoking
and dietary habits, for example, relative to those who enroll. It has been found re-
peatedly across diverse modes of data collection that smokers tend to refuse study
participation more frequently than do nonsmokers (Criqui et al., 1978; Macera et
al., 1990; Psaty et al., 1994). In contrast, for diseases less closely related to such
behaviors, e.g., prostate cancer, the distortion due to refusals may well be less, or
perhaps we simply lack sufficient information at present to make an informed judg-
ment for such diseases. Analogously, when assessing the impact of losses due to
physician refusal to permit patient contact in a case–control study, we might have
little concern if the exposure of interest were a genetic variant, not likely to be di-
rectly related to physician judgment, whereas if the exposure were the level of psy-
chological stress, physician refusals could have disastrous consequences if the cases
perceived to have the highest stress levels were systematically eliminated.

Several years ago, the patterns of loss that would and would not produce bias
were clearly specified (Greenland, 1977; Greenland & Criqui, 1981). In a cohort
study, loss of subjects from the exposed and unexposed groups that are not dif-
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ferential by disease status do not result in bias, even if losses are unequal for the
exposed and unexposed groups. Furthermore, even losses that are selective for per-
sons with (or without) the disease of interest do not introduce bias in ratio meas-
ures of association, so long as those disease-selective losses are quantitatively the
same in the exposed and unexposed groups. In case–control studies, losses that dis-
tort the exposure prevalence among cases and controls are tolerable so long as the
losses are comparably selective for the two groups. Even if exposed (or unexposed)
subjects are preferentially lost, so long as the magnitude of that preferential loss is
comparable in cases and controls, bias in the odds ratio will not result.

Only when the losses are differential by exposure and disease status is there
selection bias. That is, in cohort studies, the key question is whether there is a
preferential loss of diseased subjects that differs for the exposed and unexposed.
If each group loses 10% of diseased and 5% of non-diseased, there is no bias,
but if the exposed lose 10% of diseased and 10% of non-diseased and the unex-
posed lose 5% of diseased and 10% of non-diseased, bias will result. Similarly,
if losses of subjects from a case–control study are related to exposure and of dif-
ferent magnitude for cases and controls, for example, 10% of exposed subjects
and 10% of non-exposed subjects are lost from the control group whereas 5% of
exposed subjects and 10% of non-exposed subjects are lost from the cases. The
harmful pattern can be summarized as occurring when response status acts as an
effect–modifier of the exposure–disease association. Under such circumstances,
the magnitude of the exposure–disease relation differs among those who partic-
ipate in the study and those who do not.

EVALUATION OF BIAS DUE TO LOSS OF 
STUDY PARTICIPANTS

The ultimate solution to the problem of response bias is to eliminate it altogether
or at least minimize the magnitude of non-response from all sources. Before dis-
cussing the approaches to assessing or minimizing the impact of non-response,
the compelling preference for addressing it directly through increasing response
should be noted. Non-response can rarely be avoided entirely, but efforts to re-
duce it deserve great attention in study design and implementation. All other ap-
proaches to evaluating its impact or attempting to make corrections are indirect
and subject to substantial uncertainty. Given that non-response is inevitable, how-
ever, careful examination of the magnitude and patterns can be helpful in indi-
cating how much bias is likely to be present and the direction of that bias.

Characterize Nonparticipants

A straightforward approach to assessing the potential impact of non-response on
measures of association is to characterize a sample of nonrespondents with re-
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gard to key attributes of exposure and disease, as well as other important pre-
dictors of disease. A sample of subjects lost for each major reason (refused, not
traceable, etc.) is subjected to the intense effort required to obtain the desired in-
formation, anticipating at least partial success in obtaining information on some
of the potential participants who had been initially considered lost. This approach
is predicated on the assumption that there is a gradation of effort that can be ex-
pended to obtain participation and a corresponding gradation of difficulty in re-
cruiting potential respondents. Every study balances available resources with the
expected yield, and some limit must be placed on the amount of effort that can
be devoted to reaching and obtaining the participation of all eligible subjects. 
In general, expanding the effort to locate or recruit nonparticipants will yield
some additional participants and data obtained from those recovered participants
is informative.

Subject refusal probably remains the predominant reason for losses in most
epidemiologic studies. Even after intensive efforts to persuade subjects to par-
ticipate in interviews or specimen collection have failed, uniquely talented, mo-
tivated interviewers can usually persuade a sizable proportion of subjects who
had initially refused to change their minds (refusal converters). Locating subjects
is even more clearly tied to resources expended. Commercial tracking compa-
nies typically have an explicit policy—the more money you are willing to spend
to locate a given person, the more intensive the effort, and the more likely it is
that they will be able to locate that person. Thus, after a reasonable, affordable
level of effort has been expended to locate subjects, a subset of formerly un-
traceable subjects can be subjected to more intensive tracking methods and lo-
cated to generate the desired data. The product of these refusal conversions or
intensive tracking efforts is information on formerly nonparticipating subjects
who can help us make some inferences about the otherwise eligible subjects who
remain nonparticipants.

Assuming that at least some of the former nonrespondents can be enrolled, the
goal is to characterize the exposure or health outcome of primary interest. In a
cohort study, the occurrence or non-occurrence of disease is central. After nor-
mal follow-up procedures, some fraction of the original cohort is likely to re-
main lost to follow-up. To evaluate the impact of that loss, a fraction of those
lost to follow-up would be located through more intensive means in order to de-
termine their disease outcomes. With that information in hand, formal correc-
tions can be made if one assumes that those former nonrespondents who were
found represent their counterparts who remain nonrespondents. For example, if
the disease incidence among the 10 subjects who were formerly lost to follow-
up but located through intensive effort were 20%, one might assume that of the
total 100 subjects lost to follow-up, 20 of them developed disease as well. Such
a calculation assumes that those who were converted from lost to found repre-
sent those who were permanently lost, which is subject to uncertainty. When the
recovered subjects constitute a complete roster of a randomly chosen subset, con-
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fidence in generalizing to all those remaining lost is much greater than when
those who are recovered are simply the most easily recovered from the pool of
those initially lost and are thus likely to differ systematically from those who re-
main lost. Incorporating the data on those subjects who were found directly 
reduces the non-response, whereas extrapolating from that subset that could be
found to the entire roster of those lost is more akin to a sensitivity analysis.
(“What if those lost had the disease experience of those we could find?”) Nev-
ertheless, the alternative assumption that nonrespondents are identical to re-
spondents is lacking in any empirical support and thus far more tenuous.

Beyond the reduction in non-response that results from these intensive follow-
up efforts, and the subsequent ability to estimate the association of interest with-
out such losses, this strategy can provide additional insight into the underlying
reasons for non-participation. In some cases, direct inquiry built into the follow-
up process can reveal the ways in which those who were included differ from
those who initially were not. In the case of subject refusal, information on social
and demographic attributes, occupation, medical history, etc. will help to describe
the patterns and potential bias, but also to better understand why they refused in
the first place. Former refusals can be queried directly regarding their reason for
having been reluctant to participate in the study. To the extent that honest an-
swers can be generated, there is the opportunity to examine whether study meth-
ods could be refined to improve response or at least add to the understanding of
the process that resulted in their having been lost.

Similarly, eligible subjects who were initially untraceable and then located can
be evaluated to reveal why they were untraceable or at least to characterize the
types of persons who fall into that category. Perhaps they were less likely to 
use credit cards or more likely to be self-employed. Such general descriptors of
the lost individuals and informed speculation about the underlying process help
the investigator and reviewer to judge the potential for biased measures of asso-
ciation among the participants who were included. Also, information may be gen-
erated to indicate cost-effective approaches to reducing the magnitude of non-
response in the ongoing study or at least in future ones.

In comparing those who were lost to those who participated, investigators of-
ten focus on broad demographic attributes of the two groups because those are
most readily available. Unwarranted comfort may be taken when the demographic
profile of those lost is similar to those who were enrolled. Such a pattern is used
to infer that those lost are effectively a random sample of those enrolled, and
thus, on average, participants would generate measures of association equivalent
to those from all eligible subjects. Data sources on nonrespondents, such as pub-
lic records or city directories typically provide some information on gender, age,
and sometimes occupation or educational level. Such descriptors do provide some
insight into the process by which subjects were lost, and provide limited data to
address the hypothesis that the loss process has generated a random sample from
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those eligible. The reassurance that can be provided by sociodemographic simi-
larity of respondents and nonrespondents is not directly relevant to assessing po-
tential for bias, however, which depends on the specific exposure and disease
under study. The ultimate question is not whether they are socially and demo-
graphically similar, but rather whether, conditional on those social and demo-
graphic factors that are readily measured and adjusted as needed, the losses re-
sult in distortion of disease rates or exposure prevalence.

In a cohort study, what we would really like to know is whether disease in-
cidence is similar among nonparticipants and participants within cells defined
by social and demographic factors. Do those women aged 40–49 with 12 years
of education who did not enroll in the study have the same disease risk as
women aged 40–49 with 12 years of education who did enroll? Determination
of whether the proportion who are women aged 40–49 with 12 years of edu-
cation differs between participants and nonparticipants does not help a great
deal in making this assessment. Whether or not the sociodemographic profile
is similar, within gender, age, and education cells, disease risk may be consis-
tently greater among nonparticipants. A small sample with the information of
ultimate interest on exposure or health outcome may be of greater value in as-
sessing bias than assessing demographic data on a larger proportion of non–
participants.

A thorough analysis of several sources of potential bias in a large case–
control study of magnetic fields and childhood leukemia provides a useful illus-
tration of examining nonrespondents (Hatch et al., 2000). One of the major
methodologic concerns in the original analysis was the potential for non-response
to have distorted study findings pertaining to two indices of magnetic field ex-
posure, wire codes that estimate magnetic fields in the home and measurements
of magnetic fields in the home. Information on complete nonrespondents was un-
available, of course, but they did have two indicators of partial participation—
subjects who refused to permit indoor magnetic field measurements but could be
characterized by measurements at the front door, and subjects who did and did
not agree to participate in the interview phase of the study. By comparing com-
plete and partial participants, patterns were identified that help to assess the
broader concern with non-response (Table 6.2).

The profile that emerges is that those who provided only part of the desired
data (i.e., front door measurement only, those without interview) tended to be of
lower social class based on not residing in a single family home, lower income,
and less education, as well as showing some indication of higher levels of mag-
netic field exposure indices. Interestingly, these patterns were reported to hold
for both cases and controls, but to be stronger among controls. That is, the so-
cioeconomic gradient of partial response (and thus, perhaps, non-response) was
stronger among controls, introducing the potential for biased measures of asso-
ciation to the extent that socioeconomic status could not be fully adjusted.

Bias Due to Loss of Study Participants 123



Consider Gradient of Difficulty in Recruitment

Although participation is ultimately dichotomous, i.e., individual subjects are or
are not located and they do or do not agree to participate in the study, there are
several ways in which a spectrum or gradient of difficulty in recruitment can be
examined. The rationale for examining such a gradient is to understand the pat-
terns going from those who were readily enrolled to those who were less read-
ily enrolled and then extrapolate to those who did not participate at all. This strat-
egy is built on the assumption that the many reasons for failure to participate in
the study act probabilistically, and that those who fall at one end of the contin-
uum of participation predictors are extremely likely to enroll and those at the
other end of the continuum are almost certain not to enroll, with all potential par-
ticipants falling somewhere along that spectrum. Under this scenario, those in-
dividuals who have some of the non-participation profile but are still recruited
can tell us something about those who have the more extreme version of the non-
participation profile and do not participate. For example, potential participants
who moved but were located or who were located only with intensive effort may
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TABLE 6.2. Selected Characteristics of Subjects with Indoor Magnetic Field 
Measurements vs. Subjects with Front Door Magnetic Field Measurements Only 
and of Wire Coded Subjects with and without In-Person Interview, National Cancer 
Institute Childhood Leukemia Study

SUBJECTS

WITH

SUBJECTS FRONT WIRE CODED WIRE CODED

WITH DOOR SUBJECTS SUBJECTS

INDOOR MEASUREMENTS WITH WITHOUT

MEASUREMENTS ONLY INTERVIEW INTERVIEW

CHARACTERISTIC (N � 1101) (N � 147) (N � 1052) (N � 107)

Living in single 83 58 78 70
family home

With income 12 23 14 29
� $20,000

Mothers with 38 46 40 55
� high school 
education

Rented residence 18 40 22 35
Unmarried mothers 10 25 13 22
Urban 22 23 25 30
� 0.2 �T 12.7 15.6
VHCC 6.3 8.8 6.7 8.4
Controls 47 67 48 76

VHCC, Very High Current Configuration wire code

Hatch et al., 2000.



give hints about those who moved and could not be found. Similarly, we might
expect that those who were reluctant to participate but were ultimately persuaded
to do so would fall in between the eager participants and those who chose not to
participate at all. Estimation of a quantitative dose-response function of nonpar-
ticipation and formal extrapolation to nonrespondents would be the ultimate goal,
but a qualitative assessment may be all that is feasible.

In mail surveys, the design typically calls for a series of steps to enhance re-
sponse (Dillman, 1978), each step yielding more respondents and depleting the
pool of refusals. Some respond directly to the initial questionnaire, some respond
only to reminder postcards, others respond only to repeat mailing of the ques-
tionnaire, continuing to those who must be interviewed by telephone because
they ignore all mailed material. It can be difficult in practice to determine ex-
actly which action precipitated a response, but through careful coding of ques-
tionnaires, monitoring mailing and receipt dates, and some inferences based on
those dates, a gradient of willingness to cooperate can be defined among the par-
ticipants. Those who promptly returned the questionnaire without a reminder are
at one end of that spectrum, and those who responded only after the most ex-
treme efforts, e.g., telephone calls, are at the other end of the spectrum.

The characteristics of those who responded at each stage can be examined,
both to describe them in broad social and demographic terms, but more impor-
tantly to determine their statuses with regard to the variables of primary interest
and the estimated measure of effect for that subgroup. In a cohort study in which
disease is ascertained by questionnaire, the proportion affected by the disease,
stratified by the effort required to elicit a response, would indicate whether the
ultimate nonrespondents were likely to have higher or lower disease rates than
the respondents. Stratifying by exposure might address the critical question of
whether exposed nonrespondents are likely to have a different health outcome
than unexposed nonrespondents. Similarly, in a case–control study, the exposure
prevalence can be assessed across strata of cooperativeness, separately for cases
and controls, to extrapolate and assess whether the ability to include the remaining
nonrespondents would be likely to change the pattern of results. In a sensitivity
analysis, the nonrespondents could be assumed to have the traits of reluctant re-
spondents, or a more extreme version of the reluctant respondent profile, and an
assessment made of the expected results for the full study population. In contrast
to making arbitrary and implausible extreme assumptions (e.g., all those missing
are exposed cases), the evaluation of reluctant respondents provides a basis for
much more credible estimates.

In a community survey in Montreal, Siematycki and Cambell (1984) exam-
ined participant characteristics for those who responded at the first stage of the
survey that was conducted by mail, compared to the cumulation of first- and sec-
ond-stage responders, with second-stage participants only responding with fur-
ther contact, including a home interview if needed. As shown in Table 6.3, few

Bias Due to Loss of Study Participants 125



differences were noted between results based on the first stage alone versus the
first and second stages combined. Note however, that this presentation of results
does not isolate the second-stage respondents, who in fact had a lower level of
education and were more likely to be current smokers, but not to a sufficient ex-
tent to influence the cumulative sample.

By isolating those responding in each of the stages, there is an opportunity to
extrapolate to those who did not participate at all. In studies that are large enough,
measures of association can be calculated for subgroups defined by the stage at
which they responded. In a study using a mailed questionnaire, for example, the
relative risk for those responding to the first questionnaire, the reminder post-
card, the second questionnaire, and the telephone interview can be calculated to
identify a gradient and estimate what the relative risk would be in those who did
not participate at all. Through this approach, it is possible to assess directly
whether inclusion of all eligible participants is likely to generate a relative risk
that is larger or smaller than that found for the participants alone, and even to
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TABLE 6.3. Selected Characteristics and Responses of Early Respondents Compared
with All Respondents in a Mail Strategy in Montreal

FIRST STAGE ALL RESPONDENTS:
RESPONDENTS: MAIL, TELEPHONE,

MAIL HOME

(N � 1065) (N � 1258)
% � SE % � SE

Sociodemographic characteristics
Female 52.6 � 1.5 52.1 � 1.4
Age distribution: 17–35 36.9 � 1.5 36.4 � 1.4

36–55 34.1 � 1.5 34.6 � 1.3
56� 28.4 � 1.4 27.8 � 1.3

11 or more years of schooling 59.1 � 1.5 58.1 � 1.4
Live in a household with children 39.1 � 1.5 38.7 � 1.4

Reported morbidity and health care
Has chronic condition 16.2 � 1.1 15.7 � 1.0
Was unable to carry out usual activities 18.0 � 1.2 18.4 � 1.1

in past month due to illness
Reported 3 or more symptoms in 37.9 � 1.5 38.1 � 1.4

checklist of 14
Saw physician in past 2 weeks 25.4 � 1.3 24.6 � 1.2
Saw dentist in past 2 weeks 9.3 � 0.9 9.1 � 0.8
Took prescribed medication in past 2 weeks 25.7 � 1.3 25.8 � 1.2
Ever smoked cigarettes 69.0 � 1.4 69.1 � 1.3
Current cigarette smoker 48.5 � 1.5 49.4 � 1.4

SE, standard error.

Siemiatycki & Campbell, 1984.



provide some quantitative basis for how much different it would be. If the gra-
dient of relative risks moving from easy to difficult response were 1.2, 1.4, 1.4,
and 1.7, one might guess that the relative risk for those who did not participate
would be approximately 1.8–2.0, and therefore conduct a sensitivity analysis un-
der that assumed value. Although this is subject to uncertainty, the alternative is
to assume nonrespondents are identical to respondents, and the data make that
assumption even less tenable.

Telephone and in-person interviews have a comparable spectrum of difficulty,
though it may be less easily measured as compared to mailed questionnaires. In-
terviewed respondents vary greatly in their initial enthusiasm for the study, with
some requiring intensive efforts to persuade them to become involved and oth-
ers much more readily agreeable. The amount of persuasion that is required is
worth noting to facilitate extrapolation to those who could not be persuaded even
with intensive effort. The number of telephone calls required to reach a respon-
dent is another dimension of difficulty in recruitment, reflective of accessibility
or cooperativeness. Those who require many calls may give some insights into
those who would have required an infinite number of calls (i.e., those who were
never reached). Subjects who ultimately participate after one or more missed ap-
pointments may be reflective of those who repeatedly miss appointments and ul-
timately become nonrespondents for that reason. Because refusal to participate
has multiple etiologies, including lack of belief in the value of research, insuffi-
cient time, and inability to be located, there is some danger in seeking a single
dose-response function for recruitability. It may be more informative to separate
out the degrees of reluctance for each causal pathway and extrapolate for each
specific reason they could not be enrolled,

The other major source of loss is due to the inability to locate presumably el-
igible subjects. Efforts to locate individuals can be documented and placed into
ordinal categories of required effort. For example, some subjects are readily found
through the available address or telephone number, or they are listed in the tele-
phone directory at the expected address. Others can be traced through a for-
warding address or are found in directories at their new address. Further down
the list, some are found by contacting neighbors or by calling former employers.
Studies generally follow a well-defined sequential algorithm based on the nature
of the population and the impressions of the investigators regarding the most ef-
ficient approach. Whatever series of steps is followed, the documentation of what
was ultimately required to locate the subject should be noted and examined so
that the pattern of results can be extrapolated to those never found. Here the gra-
dient of traceability may be more obvious than for refusals, since those who move
multiple times or are lost would be expected to be similar to those who move
and are found, only more so.

An important caveat with this strategy is that ultimate nonrespondents may be
qualitatively different than reluctant respondents. That is, there may be a dis-
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continuity in which easy and reluctant respondents are similar to one another and
intransigent nonrespondents are altogether different from either group. There is
no easy way to detect this, in that the most uncooperative subjects or those most
difficult to locate will remain nonparticipants regardless of the amount of effort
that is expended. To the extent that this is true, the sensitivity analysis that as-
sumes otherwise will be misleading, and this untestable possibility should tem-
per the degree to which extrapolation to nonrespondents is viewed as a solution
rather than an exploration of the problem.

Stratify Study Base by Markers of Participation

If subgroups can be identified in which participation is more complete and thus
less susceptible to bias, then stratification on those markers of participation can
be informative for several purposes. The stratum in which participation is more
favorable provides more valid estimates of the association of interest, less vul-
nerable to bias from non-response. Moreover, if there is a gradient of nonpar-
ticipation across strata, then examining the pattern of measures of association
across strata of diminishing participation may reveal the pattern of selection bias,
if any, that has been produced. Like any causal hypothesis, if it is postulated that
nonparticipation causes an upward or downward bias in the measure of effect,
then estimates of the measure of effect across levels of non-participation will be
highly informative regarding that hypothesis.

For example, if geographic location were a marker of the likelihood of par-
ticipation in a multicenter study, the measure of association could be stratified
by geographic area to identify the presumably more valid estimate in certain ge-
ographic areas with a high response proportion, and provide effect estimates
across areas of increasing vulnerability to selection bias. If, in fact, the estimates
of association were similar across strata that are known to vary in the proportion
participating, then the potential for selection bias due to non-response in the study
can be inferred to be less likely to be present at all. If response proportions dif-
fered across geographic area in a multicenter study, yet the measures of associ-
ation were similar across those sites, then bias due to non-response would be less
likely to be a problem overall, including in the areas with lower participation
proportions. Such data would be counter to the hypothesis that selection bias has
distorted the study results. If, on the other hand, results differed in relation to the
degree of response, such evidence would be consistent with the presence of se-
lection bias and the strata in which selection bias was minimal could be assumed
to generate the most valid results.

A limitation in this exercise is that selection bias due to non-response is rarely
if ever the only possible basis for subgroups to differ or not differ from one an-
other. The extent of other biases may differ across those same strata or there
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may be true effect measure modification across subgroups. If no gradient in ef-
fect estimates is found across subgroups with varying completeness of response,
other biases may be compensating for the bias due to non-response to hide 
its effect. Analogously, and perhaps even more plausibly, observation of a gra-
dient in relation to the marker of participation may be indicative of true effect-
modification by the marker of response proportion rather than a product of se-
lection bias. Markers of participation, such as socioeconomic factors, ethnicity,
and geographic location, may well be true modifiers of the effect of exposure,
and simultaneously influence the participation proportion. These competing 
explanations cannot readily be separated empirically and require informed 
judgment based on knowledge of the specific exposure and disease under 
investigation.

Impute Information for Nonparticipants

Several of the strategies already considered, including generating estimates for
a subset of nonparticipants and extrapolating from reluctant respondents to non-
respondents, can be extended to more formal strategies for imputation of re-
sponses for nonparticipants. That is, explicit guesses are made regarding what
the responses of nonrespondents would have been, and those imputed responses
are used in the analysis. Such imputation can be viewed as another form of sen-
sitivity analysis, in that it does not eliminate concern with non-response but makes
reasonable assumptions about the missing data.

As an example of research in which selective response and missing data could
markedly distort findings, a number of mail surveys were conducted in the 1970s
and 1980s to address the hypothesis that exposure of pregnant workers to anes-
thetic gases might be associated with increased risk of spontaneous abortion (Tan-
nenbaum & Goldberg, 1985). Operating room staff and health-care workers lack-
ing such exposure were surveyed by mail and reported their reproductive
experiences. Given the growing awareness of a potential association between
anesthetic gases and adverse pregnancy outcome, it is quite plausible that re-
sponse would be exaggerated for exposed cases, i.e., women who worked in such
settings and had a spontaneous abortion, with the work setting and the experi-
ence motivating response to the survey. To the extent that such a phenomenon
occurred, we would find a much stronger association among respondents than
among all eligible participants. Faced with such results, we could either accept
them with caveats or attempt to address the potentially critical concern of non-
response with imputation of data for nonrespondents.

Many epidemiologists have a great reluctance to use imputed data, based on
very legitimate concerns. At the extreme, imputation can be misused to gloss
over the fact that the data are truly missing. That is, imputed data are not as
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good as actual data, and confidence in the validity of the results should be re-
duced due to the missing data, yet imputation can make it tempting to act as
though the non-response problem has been solved. In many national surveys
distributed by the National Center for Health Statistics, for example, the data
are complete but with an imputation “flag.” It is actually more convenient to
use the full data set, including imputed values, than to regenerate a data set in
which imputed values are treated as missing. Missing data should not be hid-
den or disguised, because non-response needs to be known to make an accu-
rate assessment of the study’s susceptibility to bias. Even when presented hon-
estly as a sensitivity analysis, (“What would the results be if we made the
following assumptions about nonparticipants?”) it is intuitively unappealing to
many to impute not just social or demographic factors but exposure or disease
status. Imputation seems to violate our ingrained demands for real data, ob-
jectively described.

On the other hand, once we determine that there are eligible subjects who have
not been enrolled, we are faced with a range of imperfect alternative approaches.
Inevitably subjects are lost, and the proportions are typically in the range of
20%–30% in even the most meticulously conducted studies, with losses of
40%–50% not uncommon. Given that the losses have occurred, we can (1) ig-
nore the losses altogether; (2) describe the losses by analyzing patterns among
those who provided data, using a variety of tools and logic described in previ-
ous sections to speculate about the impact of those losses on the study results;
or (3) impute data for nonparticipants, analyzing the combined set of subjects
with real and imputed data, and discussing the strengths and limitations of the
imputation.

When the analysis is restricted to those subjects who provided data, we are as-
suming that they are a random sample from the pool of eligibles and that results
are valid, though somewhat less precise, as a result of those losses. As discussed
above, that is a highly questionable assumption, with self-selection in particular
unlikely to be random. To the extent that participants are a non-random sample
with respect to key attributes of exposure or disease or both, the measures of as-
sociation may be distorted (Rothman & Greenland, 1998).

Imputation makes a different set of assumptions, with a variety of techniques
available but all are built on the strategy of using known attributes to impute un-
known attributes. Regression techniques use information from all subjects with
complete data to develop predictive equations for each of the missing measures.
Those predictive models are then applied to those with some data available to
predict values for missing items, and those predicted values are substituted for
the missing ones. Another approach is to identify a set of subjects with complete
data who are similar to the lost subject with respect to known attributes and use
a randomly selected individual subject’s profile to substitute for the missing one.
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In any event, the guess is an informed one, though not subject to verification.
The underlying assumption of imputation is that attributes can be predicted for
those who are nonparticipants based on information from participants. To the ex-
tent that this is in error, then the data generated by imputation will be incorrect
and the results using the imputed data will be biased.

Given the two options, accepting missing information as missing and imput-
ing missing information, each with positive and negative aspects, perhaps the op-
timal approach is to do the imputation but retain the ability to examine results
for subjects with measured data and the combined population with measured plus
imputed data separately. In that way, the evaluator of the evidence, including the
investigators who generated it, can consider the plausibility of the assumptions
and make an informed judgment about which results are likely to be more valid.
Similar results under the two approaches provides evidence that bias due to non-
participation is less likely, whereas different results for complete and imputed
subjects suggests that the losses may have introduced distortion and, subject to
the level of confidence in the imputation process, that the more valid result is
obtained through imputation.

An evaluation of the ability to impute data and assess its impact on study
results is provided by Baris et al. (1999). They considered a study of mag-
netic fields and childhood leukemia conducted by the National Cancer Insti-
tute in which some of the children had lived in two or more homes. The “gold
standard” measure of exposure in such instances was considered to be the
time-weighted average of measurements in the two residences, but they were
interested in comparing more cost-efficient approaches to determine whether
information would be lost by failing to obtain measurements in both homes.
To examine this, they presented results based on various approaches to im-
puting the value of the unmeasured home using available information on one
measured home chosen as the longest-occupied or currently occupied (at the
time of the study).

Using the exposure indices presented in Table 6.4, the gold standard meas-
urements yielded odds ratios and 95% confidence intervals across the three
groups above 0.065 microTesla (�T), a measure of magnetic flux density, as
follows: 0.97 (0.52–1.81), 1.14 (0.63–2.08), and 1.81 (0.81–4.02), with a p-
value for trend of 0.2. Whether overall means for study subjects were used
for imputation (results on left) or case and control group-specific means were
used (results on right), there was severe attenuation of the pattern from using
imputed results. What had been a weak gradient, with some indication of higher
risk in the highest exposure stratum, disappeared upon using imputed data for
the second home. Even with a reasonable correlation of fields across homes,
the loss of information to characterize exposure–disease associations was sub-
stantial in this instance.
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TABLE 6.4. Odd Ratios (95% CI) from Different Imputation Strategies Categorized According to Initial Cut Off Points of Magnetic Field 
Exposure, National Cancer Institute Childhood Leukemia Study

Relative Risk for Acute Lymphoblastic Leukaemia Calculated With:

Control Mean Imputation*

TWA Based on Longer Lived in Homes Plus TWA Based on Current Lived in Homes Plus 
Imputed Values for Shorter Lived in Homes Imputed Values for Former Lived in Homes

EXPOSURE MEAN MEAN

CATEGORIES (�T) CASES OR 95% CI (�T) CASES OR 95% CI

� 0.065 �T 0.056 26 1.00 — 0.058 22 1.00 —
� 0.065–� 0.099 �T 0.080 61 0.99 0.51 to 1.95 0.083 74 0.74 0.36 to 1.55
� 1.00–� 0.199 �T 0.134 45 1.14 0.56 to 2.32 0.124 46 0.85 0.39 to 1.86
� 0.200 �T 0.330 17 1.00 0.41 to 2.45 0.278 7 0.68 0.20 to 2.33

ptrend � 0.8 ptrend � 0.8
� 0.065 �T 0.056 23 1.00 — 0.058 21 1.00 —
� 0.065–� 0.099 �T 0.081 63 1.17 0.59 to 2.31 0.083 74 0.78 0.37 to 1.63
� 1.00–� 0.199 �T 0.134 46 1.31 0.64 to 2.72 0.124 47 0.91 0.41 to 2.00
� 0.200 �T 0.331 17 1.13 0.46 to 2.80 0.279 7 0.71 0.21 to 2.47

ptrend � 0.6 ptrend � 0.6

*Shorter lived in homes were imputed from observed mean of longer lived in control homes; former lived in homes were imputed from observed mean of current lived in
control homes.

†Shorter lived in homes were imputed from case mean of longer lived in homes (if case) or from control mean of longer lived in homes (if control); former lived in homes
were imputed from case mean of current lived in homes (if case) or from control mean of current lived in homes (if control).

CI, confidence interval; OR, odds ratio; TWA, time � weighted average

Baris et al., 1999.



INTEGRATED ASSESSMENT OF POTENTIAL FOR BIAS 
DUE TO LOSS OF STUDY PARTICIPANTS

Among the threats to the validity of epidemiologic studies, none is more ubiq-
uitous or severe than the problem of non-participation. By choosing to study free-
living humans, epidemiologists face an unavoidable loss due to the characteris-
tics distinguishing those who are eligible and those who provide all the desired
information. The loss of desired participants is rarely random with respect to the
attributes of interest, and thus the participants will often be non-representative
on key attributes and have serious potential to generate biased measures of 
association.

The only unambiguous solution, free of assumptions, is to eliminate non-
response. Before embarking on indirect, fallible approaches to assessing or con-
trolling effects of nonparticipation, every effort should be made to eliminate or
at least minimize the magnitude of the problem. At the point of choosing a study
population, attention should be given to seeking study settings in which the losses
will be minimized. There is often some tension between studying highly selec-
tive, cooperative groups, perhaps distinctive for being of higher social class or
belonging to some motivated group (e.g., nurses), and the ultimate interest in ap-
plying findings to more diverse populations. Unless the study questions demand
inclusion of a range of persons who differ in availability and willingness to par-
ticipate, starting with a series of valid studies in highly selected populations may
be the preferred strategy.

To evaluate the impact of nonparticipation, the specific pathways of subject
loss need to be isolated, perhaps even more finely than is typically done in epi-
demiologic studies. Refusal due to distrust of medical researchers may have dif-
ferent implications than refusal due to lack of available time, for example. We
are concerned with systematic (non-random) losses and whether those losses are
related to the exposure and disease of concern. The more specificity with which
the mechanism of loss can be stated, the greater our opportunity to consider em-
pirically or theoretically the effect such losses will have on the study results.
Those losses most likely to be related to the occurrence of disease in a cohort
study or the prevalence of exposure in a case–control study deserve the greatest
scrutiny. The potential for distortion plus the magnitude of loss combine to de-
termine the importance of the phenomenon.

Within each of the pathways of loss, there are several parallel approaches to
assessing the impact on study results: Intensive effort can usually rescue some
proportion of those lost. This allows a comparison of the characteristics of those
successfully enrolled despite initial failure to those enrolled more readily. In turn,
if those who were rescued can be assumed to have traits in common with the
nonparticipants, the impact of non-response can be estimated. If there is a gra-
dient associated with the mechanism of loss, e.g., degree of reluctance or diffi-
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culty of tracing, the pattern of results across that spectrum can be analyzed to
project to those who remained lost. Characteristics of those with lesser doses of
the tendency to be lost can be compared to those with greater amounts of that
same tendency and then extrapolated to the most extreme subset (who remain
lost). Subsets of the study base in which the loss was less severe can be exam-
ined and compared to subsets in which there was greater loss, both to assess the
pattern in measures of association across that spectrum as well as to generate re-
sults for subsets in which non-response bias is unlikely to be a major problem.
Finally, methods of imputation should be considered, with appropriate caveats,
to estimate what the results would have been without losses.

Many of these techniques depend on the foresight of the investigators in ac-
quiring and presenting relevant data. Without presenting the needed information
on study attrition, the reviewer may be left with much more generic speculation
about non-response and its impact. Published papers typically give some clues
at least regarding the reasons for loss and some characteristics of those not 
participating. With those clues regarding the sources and magnitude of non-
participation, the key questions can at least be formulated and partial answers
provided. Non-participation represents a challenge in which greater effort is likely
to yield reduced risk of bias and revealing more information is certain to help
the user of information from the study to draw more valid inferences.
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7
CONFOUNDING

DEFINITION AND THEORETICAL BACKGROUND

Confounding is one of the fundamental methodological concerns in epidemiol-
ogy. Although rarely as explicitly examined in other disciplines, and sometimes
identified with different terminology, confounding is also a theme in other
branches of science. Wherever one is concerned with identifying causal associ-
ations, whether through observational or experimental studies, a key focus of
study design and analysis is to address the potential effects of confounding.

The concept of confounding can be expressed in a number of different ways.
One simple definition refers to confounding as the mixing of effects, in which
there is “distortion of the effect estimate of an exposure on an outcome, caused
by the presence of an extraneous factor” (Last, 2001). A more conceptually com-
plete view is the counterfactual definition of confounding (Greenland & Robins,
1986). The ideal comparison group for the exposed group is the exposed group
itself but under the condition of not having been exposed, an experience that did
not, in fact, occur (thus it is counterfactual). If we could observe this experience
(which we cannot), we would be able to compare the disease occurrence under
the situation in which exposure has occurred to the counterfactual one in which
everything else is the same except exposure was not present. Instead, we choose
some other group, sometimes one that has been randomized not to receive ex-
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posure, to provide an estimate of what the experience of the exposed group would
have been absent the exposure. Ignoring various forms of selection and mea-
surement error and random processes, the reason that comparing the exposed to
the unexposed group would fail to accurately measure the causal effect of ex-
posure is confounding. That is, the unexposed group may have other influences
on disease, due to both measurable factors and unknown influences, which make
its disease experience an inaccurate reflection of what the exposed subjects them-
selves would have experienced had they not been exposed. Other disease deter-
minants have rendered the comparison of disease risk across exposure levels an
inaccurate reflection of the causal impact of exposure. This has been referred to
as non-exchangeability in that the exposed and unexposed are not exchangeable,
aside from any effect of the exposure itself.

There is an important distinction to be made between the concept of con-
founding as defined above and the definition of a confounder or confounding
variable. A confounding variable is a marker of the basis for non-comparability.
It provides at least a partial explanation for the underlying differences in disease
risk comparing the exposed and unexposed aside from the exposure itself. If we
wish to assess the influence of coffee drinking on the risk of bladder cancer, we
should be concerned that coffee drinkers and abstainers may not have compara-
ble baseline risk of disease independent of any effects of coffee itself, i.e., con-
founding is likely to be present. One important source of such non-comparability
would be attributable to the fact that persons who habitually drink different
amounts of coffee also tend to differ in cigarette smoking habits, and cigarette
smoking is a known cause of bladder cancer. Thus, we are concerned with cig-
arette smoking as a confounder or marker of the non-comparability among per-
sons who consume different amounts of coffee. Put in other terms, we would like
for the disease experience of the non-coffee drinkers in our study to accurately
reflect the disease experience that the coffee drinkers themselves would have had
if they had not been coffee drinkers. If smoking habits differ between the two
groups, however, then the consequences of coffee drinking will be mixed with
those of cigarette smoking and give an inaccurate representation of the effect of
coffee drinking as a result.

Because the concept of confounding based on the counterfactual model relies
on unobservable conditions, epidemiologists usually concentrate on the more
practical approach of searching for specific confounders that may affect the com-
parison of exposed and unexposed, and make extensive efforts to control for con-
founding. Although this effort is often fully justified and can help markedly to
remove bias, we should not lose appreciation for the underlying conceptual goal.
Exchangeability of exposed and unexposed is the ideal and the search for mark-
ers of non-exchangeability is undertaken to better approximate that ideal. Statis-
tical adjustment for confounding variables is simply a means toward that end.

The inability to identify plausible candidate confounding variables, for exam-
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ple, or extensive efforts to control for known and suspected confounding vari-
ables by no means guarantees the absence of confounding. Doing one’s best is
laudable, but circumstances outside the control of the investigator often make
some degree of confounding inescapable. In observational studies in which ex-
posure cannot be assigned randomly, the attainment of exchangeability is a very
high aspiration. When randomization of exposure is feasible, the opportunity to
force the exposed and unexposed groups to be exchangeable is greatly enhanced.
The randomization process itself is precisely for the purpose of making sure that
the groups are exchangeable. If exposure is assigned randomly, those persons (or
rats or cell cultures) that receive the exposure should be exchangeable with those
that do not receive the exposure. Regardless of how extensive the measurement
and control of extraneous determinants of disease may be in observational stud-
ies, producing groups that are functionally randomized is a nearly unattainable
goal.

Consider efforts to truly isolate the effects of specific dietary practices, occu-
pational exposures, or sexual behavior. The challenges are apparent in that these
exposures are not incurred in any sense randomly. The choice of diet, job, or
sexual partner is integrally tied to many other dimensions of a person’s life, at
least some of which are also likely to affect the risk of disease. We obviously
cannot ethically or feasibly randomize such experiences, however, and thus must
accept the scientifically second-best approach of trying to understand and con-
trol for the influences of other associated factors. We must reflect carefully on
other known determinants of the health outcomes of interest that are likely to be
associated with the exposure of primary interest and make statistical adjustment
for those markers, simulating to the extent possible a situation in which the ex-
posures themselves had been randomly allocated. Accepting that the ideal is not
attainable in no way detracts from the incremental value of feasible approaches
to improve the degree of comparability of exposed and unexposed.

Statistical methods of adjusting for confounding variables are exercises in
which we estimate the results that would have been obtained had the exposure
groups been balanced for those other disease determinants even though, in fact,
they were not. For the extraneous disease determinant or confounder, which is
associated with the exposure of interest, we estimate the influence of exposure
on disease after statistically removing any effect of the extraneous exposures.
The most straightforward approach is to stratify on the potential confounding fac-
tor, creating subgroups in which the extraneous factor is not related to exposure.
In the above illustration, in which our interest was in isolating the effect of cof-
fee drinking on bladder cancer from that of cigarette smoking, we can stratify on
smoking status and estimate the coffee–bladder cancer association separately
among nonsmokers, among light smokers, and among heavy smokers. Within
each of those groups, cigarette smoking would not distort the association because
smoking is no longer related to coffee drinking. We can, if desired, then pool the
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estimate of the association across levels of smoking to generate a summary es-
timate that addresses coffee drinking and bladder cancer under the scenario in
which smoking is not associated with coffee drinking.

Stratification by smoking simulates a population in which smoking is not as-
sociated with coffee drinking. It is hypothetical, not the actual experience of
the population, because in the real population coffee drinking and cigarette
smoking are associated. The product of the stratification is the removal of the
effects of the specific confounding factor, to the extent it was accurately meas-
ured and analyzed properly. We can say that the association of coffee drink-
ing and bladder cancer has been adjusted for cigarette smoking, or that ciga-
rette smoking no longer confounds the association. That is not to say that all
confounding has been removed so that coffee drinking is now effectively ran-
domly allocated, but rather one of the likely sources of non-exchangeability of
coffee drinkers and nondrinkers has been addressed. To the extent we have
been successful, we have moved closer to the situation in which coffee drink-
ing was incurred randomly.

Viewing confounding as non-exchangeability serves as a reminder that the di-
rection and magnitude of confounding depend on the specific determinants of
disease and how they are distributed with respect to the exposure. The disease
risk of the unexposed may be greater or less than the hypothetical disease risk
the exposed would have experienced had they not been exposed. If the disease
risk of the unexposed exceeds that of the exposed group absent exposure, i.e.,
the unexposed have a higher risk than the exposed would have had if not ex-
posed, then the bias in the risk ratio is downwards, towards a smaller value. An
exposure that truly increases disease will appear to pose less of a hazard and an
exposure that protects against disease will appear to have a greater benefit. If the
disease risk of the unexposed is less than that of the exposed group absent ex-
posure, i.e., the unexposed are of lower risk than desired for the counterfactual
comparison, then an exposure that increases risk of disease will have a spuri-
ously elevated risk ratio and one that protects against disease will show less of
a benefit than it otherwise would.

Thus, confounding variables can act as positive confounders, raising the meas-
ure of effect above what it would otherwise be, or they can be negative con-
founders, falsely lowering the measure of effect. The null value does not serve
as an anchor or reference point in assessing confounding. Following from this,
efforts to recognize and control confounding should not be limited to a focus on
challenging positive associations. There is no logical reason to postulate con-
founding solely for positive associations, asking what factors may have spuri-
ously created it. Confounding is just as plausibly present when we observe no
association, having masked a truly positive or negative association. At the ex-
treme, we might even observe an inverse association due to confounding of a
positive association or vice versa.
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A final point about confounding concerns the role of randomization in re-
moving confounding. By assigning exposure randomly in a sufficiently large
study, the potential for confounding can be minimized to any desired extent.
Known confounding factors are likely to be balanced across exposure groups,
though they can be measured and adjusted if the randomization does not achieve
perfect balance. More importantly, unknown influences on disease are increas-
ingly likely to be balanced as well as study size increases. That is, without be-
ing able to even identify what those determinants are, one can achieve a balance
of pre-existing risk such that the remaining differences between exposed and un-
exposed are due to the exposure, or with measurable probability, due to random
error arising from the exposure allocation process (Greenland, 1990). In contrast
to the arbitrary and largely uninterpretable use of statements about probability
and random error in observational studies, the statistical methods to generate 
p-values are directly interpretable as “the probability of having obtained as or
more extreme values under the null hypothesis” with random assignment of ex-
posure. In the latter condition, random error corresponds to the failure of the ran-
domization process, for reasons of chance, to yield a balanced baseline risk across
exposure groups. It is quantifiable and can be minimized by increasing the study
size, unlike confounding in observational studies, which is not necessarily ame-
liorated as study size increases.

QUANTIFICATION OF POTENTIAL CONFOUNDING

The conceptual underpinnings of confounding concern counterfactual comparisons
and exchangeability, but the focus in conducting and analyzing studies is on how
much distortion confounding has produced in the measure of effect with what
probability. We would like to know what the unconfounded measure is, and there-
fore wish to estimate how deviant the observed measure of effect is likely to be
relative to that unconfounded value. Equivalently, the goal is to estimate the mag-
nitude of confounding. If we obtain a risk ratio of 1.5 relating coffee drinking to
the risk of bladder cancer, and have not made adjustments for cigarette smoking
or are concerned that we have not fully adjusted for cigarette smoking, we would
like to be able to estimate how much of an impact the confounding might have
relative to the unknown unconfounded measure of interest. How probable is it that
the unconfounded measure of the risk ratio is truly 1.4 or 1.0 or 0.7? In the con-
text of randomized exposure assignment, the probability of obtaining an aberrant
allocation of subjects can be considered equivalent to the probability of con-
founding of a given magnitude, and the formal tools of statistical inference have
direct applicability (Greenland, 1990). In contrast, in observational studies in
which exposure is not randomly allocated, this assessment is based on informed
speculation, quantitative if possible, but hypothetical in nature.
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To move forward in understanding, controlling, and estimating the magnitude
of uncontrolled confounding, specific sources of the confounding must be hy-
pothesized. There is little benefit to noting that exposed and unexposed groups
may differ in baseline disease risk for unspecified reasons. While this is always
true, it is of no value given that without further specification the statement just
constitutes an inherent feature of observational studies and to some extent, a fea-
ture of studies in which exposure is randomized. Instead, the basis for the con-
founding must be hypothesized in measurable terms to be useful in the interpre-
tation of potential causal associations.

The magnitude of confounding due to an extraneous variable is a function of
two underlying associations, namely that of the confounding variable with ex-
posure and the confounding variable with disease. A full algebraic description
of both of these associations predicts the direction and magnitude of confound-
ing that the extraneous variable will produce. If both associations are fully known
and quantified, the confounding can be measured and removed, which is the pur-
pose of stratified or regression analyses, in which the confounder–exposure as-
sociation is eliminated.

In general, the magnitude of both the confounder–exposure and confounder–
disease associations must be considered to assess the extent of confounding, not
just one alone. At the extremes, however, meaningful inferences can be made
based on knowledge regarding one of those associations. If there is either no con-
founder–exposure or no confounder–disease association present, that is, the po-
tential confounding variable is not related to disease or it is not related to expo-
sure, the magnitude of the other association is irrelevant: no confounding could
possibly be present. If speculating about confounding factors in the smoking–lung
cancer association, one might initially (and naively) ask about match carrying as
a potential confounder given that it is such a strong correlate of tobacco smok-
ing. We would find that carrying matches has no independent relation to lung
cancer, however, and in the absence of an association with lung cancer, it can-
not possibly be a confounder of the association between smoking and lung can-
cer. Similarly, there are clearly genetic factors that predispose to the develop-
ment of lung cancer, but if it could be demonstrated that the distribution of those
genetic factors were completely unrelated to cigarette smoking, a hypothesis to
be tested empirically and not one to be casually dismissed as implausible, then
the genetic factor could not confound the smoking–lung cancer association.

The other extreme case in which either the confounder–exposure or con-
founder–disease association yields definitive information regardless of the other
is when the potential confounding variable is completely associated with expo-
sure or disease. Regardless of the magnitude of the other association, when there
is complete overlap of the confounder with exposure or disease, there is no op-
portunity to isolate the component of the association due to the exposure of in-
terest from the association due to the confounding factor. In the above example,
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imagine that coffee drinkers were always smokers, and that the only non-coffee
drinkers were never smokers. We would be unable to extricate the effect of cof-
fee drinking from that of smoking and vice versa, even though in theory the ob-
served association with disease may be wholly due to one or the other or par-
tially due to both. One exposure might well confound the other but there would
be no opportunity to measure or control that confounding. Similarly, if some 
condition is completely predictive of disease, such as exposure to asbestos and
the development of asbestosis, then we cannot in practice isolate that exposure
from others. We cannot answer the question, “Independent of asbestos exposure,
what is the effect of cigarette smoking on the development of asbestosis?” The 
confounder–disease association is complete, so that we would be able to study
only the combination and perhaps consider factors that modify the association.

In practice, such extreme situations of no association and complete associa-
tion are rare. Potential confounding variables will more typically have some de-
gree of association with both the exposure and the disease and the strength of
those associations, taken together, determines the amount of confounding that is
present. In examining the two underlying associations, the stronger association
puts an upper bound on the amount of confounding that could be present and the
weaker association puts a lower bound on the amount of confounding that is plau-
sible. If one association is notably less well understood than the other, some in-
ferences may still be possible based on estimates for the one that is known.

In practice, much of the attention focuses on the confounder–disease associa-
tion, given that this association is often better understood than the confounder–
exposure association. Epidemiologists typically focus on the full spectrum of po-
tential causes of disease and less intensively on the ways in which exposures re-
late to one another. The strength of the confounder–disease association places an
upper bound on the amount of confounding that could be present, which will
reach that maximum value when the exposure and confounder are completely as-
sociated. That is, if we know that the risk ratio for the confounder and disease
is 2.0, then the most distortion that the confounder could produce is a doubling
of the risk. If we have no knowledge at all about the confounder–exposure as-
sociation, we might infer that an observed risk ratio for exposure of 1.5 could be
explained by confounding (i.e., the true risk ratio could be 1.0 with distortion
due to confounding accounting for the observed increase), a risk ratio of 2.0 is
unlikely to be fully explained (requiring a complete association between con-
founder and exposure), and a risk ratio of 2.5 could not possibly be elevated
solely due to confounding.

As reflected by its dependence on two underlying associations between the po-
tential confounding variable and disease and between the potential confounding
variable and exposure, the algebraic phenomenon of confounding is indirect rel-
ative to the exposure and disease of interest. In contrast to misclassification or
selection bias, which directly distorts the exposure or disease indicators and their
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association by shifting the number of observations in the cells that define the
measure of effect, confounding is a step removed from exposure and disease. In
order for confounding to be substantial, both the underlying associations, not just
one of them, must be rather strong. Such situations can and do arise, but given
the paucity of strong known determinants for many diseases, illustrations of
strong confounding that produces spurious risk ratios on the order of 2.0 or more
are not common.

The amount of confounding is expressed in terms of its quantitative impact on
the exposure–disease association of interest. This confounding can be in either
direction, so it is most convenient to express it in terms of the extent to which
it distorts the unconfounded measure of association, regardless of whether that
unconfounded value is the null, positive, or negative. Note that the importance
of confounding is strictly a function of how much distortion it introduces, with
no relevance whatsoever to whether the magnitude of change in the confounded
compared to the unconfounded measure is statistically significant. Similarly, there
is no reason to subject the confounder–exposure or confounder–disease associa-
tions to statistical tests given that statistical testing does not help in any way to
evaluate whether confounding could occur, whether it has occurred, or how much
of it is likely to be present. The sole question is with the magnitude, not preci-
sion, of the underlying associations.

The more relevant parameter to quantify confounding is the magnitude of de-
viation between the measure of association between exposure and disease with
confounding present versus the same measure of association with confounding
removed. We often use the null value of the association as a convenient bench-
mark of interest but not the only one: Given an observed association of a spec-
ified magnitude in which confounding may be present, how plausible is it that
the true (unconfounded) association is the null value? We might also ask: “Given
an observed null measure of association in which confounding may be present,
how likely is it that the unconfounded association takes on some other specific
value?” Based on previous literature or clinical or public health importance, we
might also ask: “How likely it is that the unconfounded association is as great
as 2.0 or as small as 1.5?”

The amount of confounding can also be expressed in terms of the confounding
risk ratio, which is the measure of distortion it introduces. This would be the
risk ratio which, when multiplied by the true (unconfounded) risk ratio would
yield the observed risk ratio, i.e., RR (confounding) � RR (true) � RR (ob-
served). If the true risk ratio were the null value of 1.0, then the observed risk
ratio would be solely an indication of confounding whether above the null or
below the null value. A truly positive risk ratio could be brought down to the
null value or beyond, and a truly inverse risk ratio (�1.0) could be spuriously
elevated to or beyond the null value. Quantitative speculation about the mag-
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nitude of confounding consists of generating estimates of RR (confounding)
and the associated probabilities that those values occur.

EVALUATION OF CONFOUNDING

The assessment and control of confounding should be recognized as an effort to
mitigate non-comparability through statistical adjustment for indirect markers,
not as a complete solution to the problem of non-comparability of disease risk
among the exposed and unexposed. When we speculate that confounding may
be present, and we define the variables that are thought to serve as markers for
that confounding, we are entertaining a hypothesis. The hypothesis in this case
is that underlying disease risks differ between exposed and unexposed groups
because a particular characteristic that is predictive of disease is associated with
exposure status. When statistical adjustments are made for this hypothesized
marker of confounding, we generate results that will be more valid only if the
initial hypothesis was correct. If our initial hypothesis about the presence of con-
founding or the role of the specific variable in producing that confounding was
incorrect, or the measure of the confounder is faulty, then the adjusted estimate
may well be no more valid or even less valid than the unadjusted measure. Un-
fortunately, we have no direct way of assessing which hypothesis is correct in
that the truth is unknown. Therefore, rather than viewing adjusted estimates as
correct or even necessarily better than the unadjusted estimates, the plausibility
of the confounding hypothesis and approach to addressing it need to be critically
examined. The statistical evidence comparing unadjusted and adjusted measures
of effect will not reveal the underlying phenomenon or provide information on
which estimate is more valid.

Despite the somewhat speculative nature of postulating and adjusting for
confounding, this approach has the virtue of providing a means of quantifying
the extent of possible confounding empirically. That is, we can say that if the
confounding is present, and if the confounding variable captures the phenom-
enon to at least some extent, then the statistically adjusted measure is closer to
the correct value than the unadjusted measure. In order for a hypothesis re-
garding confounding to have practical value in the interpretation of epidemio-
logic evidence, there must be an opportunity to evaluate its implications through
some form of adjustment. Some hypotheses regarding confounding are so
generic as to be untestable and therefore of little value. For example, the sug-
gestions that exposed and unexposed are inherently non-comparable or that
some unknown confounding factor may be present are untestable and therefore
of no value in assessing the potential for confounding to have affected the study
results.
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More constructive hypotheses pose specific scenarios by which confounding
arises, even if those are not necessarily amenable to measurement and control.
If a medication is given solely for a specific disease, and some adverse health
conditions are associated with the use of that drug, confounding by indication
may be present. That is, the underlying disease for which the drug was given
may be responsible for the adverse health consequences that are mistakenly at-
tributed to the drug. Even though the hypothesis is clear and the means for ad-
dressing it is clear in principle, evaluation of the hypothesized confounding re-
quires the availability of persons who have the disease and do not receive the
drug and persons who receive the drug who do not have the disease. Such per-
sons may not actually exist. All persons with the disease may be given the drug,
and only those with the disease are given the drug. If that is the case, then the
evaluation of confounding by indication must be through approaches other than
empirical evaluation of the data, for example, consideration of biologic mecha-
nisms or historical evidence on the sequelae of the disease before the drug of
concern became available. Even when there is not a straightforward empirical
test of the hypothesized confounding by indication, the development of the sce-
nario is useful in the scrutiny and interpretation of the results of a study of po-
tential effects of the drug of interest.

Another challenge to addressing confounding occurs when the hypothesized
confounding arises through a construct that is very difficult to measure and thus
evaluate or control. If we wish to evaluate the effect of social contacts on main-
tenance of functional ability in the elderly, we may have concern that the un-
derlying motivation to sustain both social and physical functioning confounds
the relationship. That is, rather than social contacts directly benefiting functional
ability, both are reflective of the underlying inspiration required to expend effort
socially and to be self-sufficient in activities of daily living. While worthy of ex-
amination, the postulated confounding factor of motivation is very difficult to
measure and isolate from the exposure and disease of concern. The scenario of
confounding is worthy of consideration, but tests of the hypothesized confound-
ing are subject to great uncertainty and unlikely to yield definitive evidence sim-
ply because the construct is so challenging to measure.

Assess Consequences of Inaccurate Confounder Measurement

The markers of confounding that are available inevitably fall short, to varying
degrees, of the ideal, just as exposure measures generally do not capture pre-
cisely the construct that they were intended to measure. In seeking to measure
and control for confounding factors, we look for handles on the basis for non-
comparability of the unexposed and exposed groups, a challenging mission that
is almost guaranteed to be less than totally successful. The groups to be com-
pared are not naturally comparable, in which case there would be no confound-

146 INTERPRETING EPIDEMIOLOGIC EVIDENCE



ing, nor has randomized exposure assignment been employed to address the prob-
lem without needing to fully understand its origins. Our goal is to measure and
control for the attributes that will make these non-comparable groups as compa-
rable as possible. Viewed in this manner, effectiveness is not measured as a di-
chotomy, in which we succeed in eliminating confounding completely or fail to
have any beneficial impact, but should be viewed as a continuum in which we
mitigate confounding to varying degrees.

The conceptual challenge is to identify those characteristics of exposed and
unexposed subjects, other than exposure, which confer differing disease risks.
The underlying basis for the confounding may be such elusive constructs as so-
cioeconomic status or tendency to seek medical care. Undoubtedly, information
is lost as we operationalize these constructs into measures such as level of edu-
cation or engaging in preventive health behaviors. Just as for exposures of in-
terest, something is often lost in moving from the ideal to operational measures,
and although it is often difficult to quantify that loss, it is an important contrib-
utor to incomplete control of confounding. Misclassification at the level of con-
ceptualizing and operationalizing the construct of interest dilutes the ability to
control confounding through statistical adjustment.

The more familiar problems concern accuracy of measurement of the poten-
tial confounding variable and the way in which the variable is treated in the analy-
sis, e.g., categorized versus continuous, number of categories used. Errors arise
in all the ways considered in the discussion of exposure measurement (Chapter
8): clerical errors, misrepresentation on self-report, faulty instrumentation, etc.
In addition, for a given confounding variable, there is an optimal way of mea-
suring it and constructing it to maximize its association with disease, thus en-
hancing the extent to which confounding is controlled. If we are concerned about
a confounding effect of cigarette smoking in studying exposure to air pollution
and lung cancer, then we can measure tobacco smoking in a number of ways,
including “ever smoked,” “years of smoking,” “cigarettes per day,” or
“pack–years of smoking.” In choosing among these measures, the guiding prin-
ciple is to choose the one that best predicts risk of developing lung cancer, typ-
ically “pack–years of smoking.” By choosing the one most strongly related to
the health outcome, adjustment would be most complete, far better than if we re-
lied on a crude dichotomy such as “ever versus never smoked.”

There are different ways the confounding variable can be handled in the sta-
tistical analysis phase, and the same goal applies: define the measure to maxi-
mize its association with disease. A measure like “pack–years of smoking” could
be treated as continuous measure and included in a logistic regression model in
which the relationship with disease is presumed to be log-linear. Alternatively,
it could be categorized into two or more levels, with many potential cutpoints,
or modeled using more flexible approaches such as spline regression (Greenland,
1995). All these options apply to assessing the exposure of primary interest as
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well, but for the confounding variable, the goal is to remove its effect, not nec-
essarily to fully understand its effect.

Regardless of the underlying reasons for imperfect measurement of the sources
of confounding, the effect is the same: incomplete control for the confounding
that arises from the specific phenomenon it is intended to address. That is, what-
ever the amount of confounding that was originally present, only a fraction will
be removed through the adjustment efforts and the size of that fraction is de-
pendent on the quality of assessment (Greenland & Robins, 1985; Savitz & Barón,
1989). If a perfectly measured confounder completely adjusts for the distortion,
and a fully misclassified measure is of no benefit, adjustment for an imperfectly
measured confounder falls somewhere in between. The more the measure used
for adjustment deviates from the ideal, the less of the confounding is eliminated.
This dilution of confounder control can arise by poor selection of an operational
measure, measurement error, or inappropriate choices for categorization in the
analysis.

The magnitude of confounding present after attempts at adjustment depends
on both the magnitude of confounding originally present and the fraction of that
confounding that has been effectively controlled. Incomplete control of con-
founding due to imperfect assessment and measurement of the confounding vari-
ables is proportionate to the amount of confounding originally present. If the
amount of original confounding was substantial, then whatever the fraction that
was controlled, the amount that is not controlled, in absolute terms, may still be
of great concern. On the other hand, if the amount of confounding originally
present were small, which is often the case, then leaving some fraction of it un-
controlled would be of little concern in absolute terms.

Kaufman et al. (1997) provide a quantitative illustration of a common prob-
lem of inaccurate confounder measurement. There is often an interest in isolat-
ing the effects of race from the strongly associated socioeconomic factors that
both differ by race and are strongly associated with many health outcomes. The
goal is generally to isolate some biological differences between African Ameri-
cans and whites from their socioeconomic context. The challenge, of course, is
to effectively eliminate the influence of such a strong confounder despite its elu-
sive nature, often reverting to simplistic approaches such as adjusting for edu-
cation. In a simulation, Kaufman et al. (1997) illustrate four ways in which fre-
quently applied methods of adjustment for socioeconomic status fall short of
controlling confounding of racial differences. One simple one suffices to illus-
trate the point—residual confounding due to categorization.

Many health outcomes vary continuously by measures of socioeconomic sta-
tus, so that when a dichotomous measure or even one that has several levels is
used, there will be residual confounding within strata. This problem is exacer-
bated in the case of racial comparisons when the mean levels are markedly dif-
ferent in the two groups and no single cutpoint will do justice to the two 
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disparate distributions. In a series of simulations, the slope of the effect of edu-
cation on disease was varied from 	0.10 to 	1.00 (on a log scale) in a logistic
regression model using a realistic estimate of the difference in years of educa-
tion between African Americans and whites (Table 7.1). In each case, the crude
difference showed excess risk among African Americans solely as a result of so-
cioeconomic differences, and the mean adjusted relative risk was also elevated,
despite adjusting for a dichotomous measure of education. Note that adjustment
for a continuous measure of education would have eliminated the effect of race
entirely in this simulation. In most cases, the adjusted measure of African Amer-
ican/white differences was positive, and attenuated but not eliminated by the at-
tempt at adjustment for education.

Measures of confounding, unless completely lacking in value, also provide
some insight regarding the nature of the confounding that is likely to be present
and help to estimate the unconfounded measure of effect. Statistical adjustments
for markers of confounding, while known not to fully capture all confounding
that is present, provide information for extrapolation to what the true measure of
effect might be if confounding could be fully eliminated. By noting the direction
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TABLE 7.1. The Spurious Association of African American Race with “Disease” 
Owing to Categorization Bias in the Exposure Variable: Results for Simulations with
1000 African Americans, 1000 Whites*

MEAN CRUDE MEAN ADJUSTED REPETITIONS WITH

OR FOR AFRICAN OR FOR AFRICAN OR � 1.0
� AMERICAN RACE† AMERICAN RACE‡ (%)§

	0.10 1.07 1.03 60
	0.20 1.13 1.05 70
	0.30 1.19 1.07 74
	0.40 1.27 1.09 81
	0.50 1.33 1.11 86
	0.60 1.40 1.13 90
	0.70 1.47 1.16 92
	0.80 1.53 1.18 94
	0.90 1.59 1.19 96
	1.00 1.65 1.21 97

*“Disease” generated randomly as: p(d) � 1000 repetitions at each �; Zwhite �

N(0.30, 1) and ZAfrican-American � N(	0.30, 1), representing “education.”
†From the model: logit(disease) � � � �1race � �, where race is coded 1 � African-American,
0 � white.
‡From the model: logit(disease) � � � �1education � �2race � �, where education is di-
chotomized at Z � 0 and race is coded 1 � African-American, 0 � white.
§The percentage of replications with adjusted odds ratios for African-American � 1.0.

OR, odds ratio.

Kaufman et al., 1997.

e(�z)


1 � e(�z)



of movement resulting from statistical adjustment, the direction of the con-
founding can be discerned and it can be predicted that better measures would
move the measure of effect farther in the direction that the imperfect proxy has
suggested. If adjustment for the proxy moved the measure of effect upward, then
more complete adjustment would be expected to move it further upward, and
similarly if the adjustment for the proxy moved the measure of effect downward.
If there were no change whatsoever resulting from the proxy measure, then ei-
ther there is no confounding present from the phenomenon that the proxy is in-
tended to reflect, or the proxy is so poorly reflective of the phenomenon of in-
terest to make it useless as a marker.

Some inferences can also be made based on what adjustment for the proxy
measure of confounding did not do. For a specific source of confounding, if ad-
justment for the proxy measure moves the effect estimate in one direction, it is
very unlikely that a more optimal measure of that source of confounding would
move the effect estimate in the opposite direction. If the crude risk ratio were
2.0 and the adjusted risk ratio using an imperfect confounder marker were 1.8,
then fully adjusted values of greater than 2.0 are unlikely. Fully adjusted values
of 1.7 or even 1.5 may be quite plausible, however, given that it would require
only more movement in the direction suggested by the proxy.

Techniques are available to estimate how much confounding is likely to re-
main based on the magnitude of change in the measure of effect resulting from
adjustment using the available (imperfect) measure of the confounder (Savitz &
Barón, 1989). Comparison of the unadjusted and partially adjusted measures,
combined with an estimate of the extent of confounder misclassification, con-
veys useful information to assess how much confounding is likely to remain. If
there is substantial change in the measure of effect from controlling a marker of
confounding, and the measure is likely to be far from optimal, the amount of re-
maining confounding is likely to be substantial. If the measure is already quite
good, then little residual confounding will be present. If the measure is only fair
but the change in the measure of effect from adjustment for the exposure of in-
terest is modest, then the amount of confounding remaining after adjustment is
likely to be small.

Quantitative speculation is also possible, with an array of assumptions required
to do so (Savitz & Barón, 1989). Quantification of the magnitude of change in
the measure of effect due to adjusting for the imperfectly captured confounding
variable, combined with assumptions about the quality of the measure of the con-
founding factor relative to an ideal measure of the source of confounding, pro-
vide the basis for estimating the fully adjusted association that would have been
obtained had the confounding variable been measured perfectly. In simple terms,
if adjustment for an imperfect marker causes a substantial shift in the measure
of effect, then the additional shift that would result from improved measurement
of the confounding factor may be substantial. In the above illustration in which
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the unadjusted risk ratio was 2.0, consider two situations: in one, adjustment for
a marker of confounding yields a risk ratio of 1.8, in the other instance, adjust-
ment yields a risk ratio of 1.4. If asked to make an assessment of how likely it
is that a fully adjusted risk ratio would be at or close to the null value, it is more
plausible in the second than the first scenario. That is, an imperfectly measured
confounder that yields an adjusted risk ratio of 1.4 compared to the crude value
of 2.0 indicates a more substantial amount of confounding than if the adjustment
had yielded an adjusted risk ratio of 1.8, assuming that the quality of measure-
ment is roughly comparable.

An illustration of this concern arises in assessing a potentially beneficial im-
pact of barrier contraception on the risk of pelvic inflammatory disease, which
can result in subsequent infertility. A potential confounding effect of sexually
transmitted disease history must be considered, given that choice of contracep-
tion may well be related to risk of acquiring a sexually transmitted infection, and
such infections are strong determinants of the risk of pelvic inflammatory dis-
ease. Virtually all approaches to measuring sexually transmitted infection are in-
complete, with self-report known to be somewhat inaccurate, but even biologic
measures are subject to uncertainty because they can only reflect prevalence at
a given point in time. Assume we have obtained self-reported information on
sexually transmitted diseases to be evaluated as a potential confounder of the bar-
rier contraception—pelvic inflammatory disease association. Further assume that
the unadjusted measure of association shows an inverse association with a risk
ratio of 0.5. If adjustment for self-reported sexually transmitted diseases increased
the risk ratio to only 0.6, we might argue that even with a perfect measure of
sexually transmitted diseases, the adjustment would be unlikely to go all the way
to the null value and perhaps 0.7 or 0.8 is the more accurate measure of associ-
ation. On the other hand, if the adjusted measure rose from 0.5 to 0.8, we might
infer that a more complete adjustment could well yield a risk ratio at or very
close to 1.0. Insight into the quality of the confounder measure (often known in
qualitative if not quantitative terms), unadjusted measure, and partially adjusted
measure (always available) helps to assess the extent of incompleteness in the
control of confounding and generate an estimate of what the (unknown) fully ad-
justed measure would be.

The ideal marker of confounding is presumed not to be available, because if
it were, it would be used in preference to any speculation about residual con-
founding from suboptimal measures. There is often the option of examining con-
founders of varying quality within the range available, however, which would
allow for assessing the impact of adjustment using markers of varying quality.
The impact of successive refinements in control of a particular source of con-
founding can be informative in estimating what impact full adjustment would
have, as described for exposure measures more generally in Chapter 8. No ad-
justment at all corresponds to a useless marker of confounding, and as the marker
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gets better and better, more and more of the confounding is controlled, helping
to extrapolate to what the gold standard measure would accomplish.

For this reason, the opportunity to scrutinize unadjusted and adjusted meas-
ures is critical to assessing the extent to which confounding has been controlled.
Merely providing the results of a multivariate analysis, without being able to as-
sess what effect the adjustment for confounding variables had, limits the reader’s
ability to fully consider the amount of residual confounding that is likely to be
present. As noted above, an adjusted risk ratio of 1.4 has a different interpreta-
tion if the crude measure was 2.0 and control of confounding is likely to be in-
complete than if the crude measure were 1.5, and important potential confounders
have been well controlled and properly analyzed. Even if the adjusted measure
is conceded to be the best available, some attention needs to be paid to the source
and pattern of any confounding that has been removed.

Apply Knowledge of Confounding Based on Other Studies

Although a specific confounding variable may not have been measured or not
measured well in a particular study, there may be other similar research that can
help to assess the potential for confounding. Previous research may provide a ba-
sis for judging whether the required confounder–exposure and confounder–
disease associations are likely to be present, and even suggest the direction and
magnitude of confounding that is likely to result from those associations. Alter-
natively, previous studies of the same exposure–disease association may have
obtained relevant data on potential confounding variables and generated estimates
of the magnitude of change in the effect estimate resulting from controlling con-
founding factors. If, for example, in previous studies of the exposure–disease 
association of interest, careful measurement and adjustment for the potential con-
founding factor had no impact, then concern with the failure to measure and in-
ability to adjust for that factor in a given study would be diminished.

Extrapolation of results from one study to another carries a risk as well. The
underlying basis for the associations of interest must be considered in order to
judge whether relations found in one study would apply in other studies. Some
exposures are associated with one another for largely sociological or cultural rea-
sons, and such relations could not necessarily be extrapolated from one study
population to another. Foundry workers in the United States who are exposed to
silica may tend to be heavy cigarette smokers but extrapolation of that observa-
tion to assess potential for confounding in a study of silica exposure and lung
cancer among Korean foundry workers would be tenuous. There is no biologi-
cal basis for the confounding observed in the United States, driven by the higher
smoking prevalence among blue-collar workers, to apply elsewhere. In some de-
veloping countries, smoking may be concentrated among the higher social classes
or unrelated to social class.
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In other cases, the basis for potential confounding is much more likely to be
universal, and thus be more readily extrapolated from one study to another. If
we are interested in the effect of one dietary constituent found in fruits and veg-
etables, for example, beta carotene, and concerned about confounding from other
micronutrients found in fruits and vegetables, for example, vitamin C, the po-
tential for confounding would be more universal. That is, if the same food prod-
ucts tend to contain multiple constituents or if people who consume one type of
fruit or vegetable tend to consume others, then the amount and direction of con-
founding observed in one study may be applied to other studies.

The information on confounder–disease associations will more often be gen-
eralizable from one study to another to the extent that it reflects a basic biolog-
ical link given that such relations are more likely to apply broadly. Once an as-
sociation has been firmly established in a set of studies, it is reasonable to assume
that the association would be observed in other populations unless known effect-
modifiers are operative to suggest the contrary. We can safely assume, for ex-
ample, that cigarette smoking will be related to risk of lung cancer in all popu-
lations, so that in seeking to isolate other causes of lung cancer, confounding by
tobacco use will be a concern.

If attempts to identify and control confounding fail to influence the measure
of effect, despite a strong empirical basis for believing that confounding should
be present, concerns arise about whether the study has successfully measured the
confounding variable of interest. In the above example of silica exposure and
lung cancer, if we attempted to measure cigarette smoking and found it to be un-
related to risk of lung cancer, and thus not a source of confounding, we should
question whether cigarette smoking had truly been measured and controlled. The
strategies for evaluating potential exposure misclassification (Chapter 8) apply
directly to confounding factors, which are just exposures other than those of pri-
mary interest.

To illustrate, when Wertheimer and Leeper (1979) first reported an associ-
ation between residential proximity to sources of magnetic field exposure and
childhood cancer, one of the challenges to a causal interpretation of the asso-
ciation was the potential for confounding. Because they had relied on public
records, there was no opportunity to interview the parents and assess a wide
range of potential confounding factors such as parental tobacco use, medica-
tions taken during pregnancy, and child’s diet. When a study of the same ex-
posure–disease association in the same community was undertaken roughly a
decade later (Savitz et al., 1988), it included extensive consideration of poten-
tial confounding factors, and found essentially no indications of confounding.
Although it is theoretically possible that undetected confounding due to those
factors was present in the earlier study, the later study makes that possibility
far less likely. That does not negate the possibility that both studies suffer from
confounding by as yet undiscovered risk factors for those cancers, but at least
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the usual suspects are less of a concern in the earlier study based on the results
of the latter study.

Ye et al. (2002) provide a quantitative illustration of the examination of con-
founding using evidence from previous studies. In a cohort study of alcohol abuse
and the risk of developing pancreatic cancer in the Swedish Inpatient Register,
information on smoking, a known risk factor for pancreatic cancer, was not avail-
able. The investigators applied indirect methods using the observed association
found for alcohol use (relative risk of 1.4). By assuming a relative risk for cur-
rent smoking and pancreatic cancer of 2.0, 80% prevalence of smoking among
alcoholics and 30% in the general population of Sweden, a true relative risk of
1.0 for alcohol use would rise to 1.4 solely from confounding by smoking. That
is, “The observed excess risk in our alcoholics without complications may be al-
most totally attributable to the confounding effect of smoking.” (Ye et al., 2002,
p. 238). Although this may not be as persuasive as having measured smoking in
their study and adjusting for it directly, the exercise provides valuable informa-
tion to help interpret their findings with some appreciation of the potential for
the role of confounding.

To make appropriate use of information on confounding in studies other than
the one being evaluated, the phenomenon occurring in the other studies needs to
be fully understood. The ability to extrapolate the relations between the con-
founder and both exposure and disease should be carefully considered before as-
serting that the presence or absence of confounding in one study has direct im-
plications for another study. If the study settings are sociologically similar and
the study structures are comparable, such extrapolation may well be helpful in
making an informed judgment. Extrapolation is not a substitute for measurement
and control of confounding in the study itself, but speculation informed by pre-
vious research can be far superior to speculation without such guidance.

Assessing Confounding When Risk Factors Are Unknown

One of the most challenging situations for speculation about confounding arises
when the risk factors for disease are largely unknown. Absence of known risk
factors can give a false sense of security that there is freedom from confound-
ing, but the inability to specify confounding variables does not protect against
confounding. Something, as yet unidentified, is clearly causing the disease to oc-
cur, and just because those influences are currently unknown does not guard
against their ability to introduce confounding. Inability to address the issue does
not imply the issue is unimportant.

The available options for evaluation and control of confounding are limited
when causes, and thus potential confounding factors, are largely unknown. Broad
markers of exposure that often predict health and disease can be assessed, such
as age, geographic region, social class, and occupation. None are direct causes,
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in that they are only markers of underlying etiologic relations. Geography per se
does not cause disease, though it may enhance the probability of exposure to an
infectious agent, and low income does not cause disease, though it can affect
availability of certain foods that prevent disease. Given that these are intention-
ally non-specific indicators of many potential exposures, and imperfectly reflec-
tive of any one exposure, underlying confounding by specific exposures will not
be fully controlled. Nevertheless, some insight would be gained regarding the
potential for substantial confounding to be present based on these broad proxy
measures.

Hypothetical scenarios can be described, indicating the strength of association
between the confounder, exposure, and disease required to yield various alter-
native measures of effect, in the same manner as described above for imperfectly
measured confounders. That is, the general marker can be viewed as a proxy con-
founder measure, and various candidate gold standard measures might be con-
sidered to ask about how much confounding may yet remain. As discussed pre-
viously, if control for the non-specific marker has no impact whatsoever, none
of the exposures it reflects are likely to have an impact, whereas if it does change
the measure of effect, we would expect that a sharper focus on the pertinent ex-
posure would yield a more sizable change in the effect measure.

The danger of failing to control for true confounding factors in the face of ig-
norance is a threat, but also there is a danger of controlling for anything that hap-
pens to be measured if such adjustment changes the association of interest. When
little is known about the causes of a particular disease, unnecessary adjustment
for a broad range of factors that are not truly confounders results in a loss of pre-
cision under the assumption that the relations found reflect only random processes
(Day et al., 1980). Moreover, if only those factors that reduce the association of
interest are selected for adjustment, there will be bias toward the null value even
when all associations are the product of random error (Day et al., 1980). When
a lengthy list of candidate factors is screened for confounding, without adequate
attention to the plausibility of their having an association with the health out-
come based on mechanistic considerations and findings of prior studies, there is
a danger of finding associations by chance and producing an adjusted effect es-
timate that is more rather than less biased than the unadjusted one.

Dose-Response Gradients and Potential for Confounding

It is possible for confounding to spuriously generate or mask a dose-response
gradient, not just to produce distortion of measures based on dichotomized ex-
posure indicators. When the confounding factor is associated with disease, and
it is also associated with the exposure of interest in a stepwise fashion, then the
amount of confounding will differ across levels of exposure. Assuming that the
confounding variable is positively associated with the exposure, then more 
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confounding will be present at higher as compared to lower levels of exposure
generating the appearance of a dose-response gradient between the exposure of
interest and the health outcome. Instead of simply asking if the exposure is as-
sociated with the confounding factor, we need to ask whether they are associ-
ated in a dose-response pattern.

Depending on the reasons for the exposure–confounder association, con-
founding that exaggerates or masks dose-response gradients may require in-
creasingly implausible scenarios. For example, in the case of silica exposure and
lung cancer being confounded by cigarette smoking, a global comparison of
foundry workers and the general population may suffer from positive confound-
ing if cigarette smoking is not carefully controlled. On the other hand, assume
we now have information on levels of silica exposure, based on job activity and
years of employment. The hypothesis that those individuals who have accrued
greater amounts of silica exposure are heavier smokers, accounting for age, seems
less plausible. That is, the sociological basis for foundry workers being more
likely to smoke does not extend to an expectation that more heavily exposed
foundry workers would be more likely to smoke than less heavily exposed
foundry workers. The association of smoking with exposure only applies to em-
ployment in the foundry versus other types of work, not to the specific work lo-
cation and job tasks within the foundry.

On the other hand, if the confounding is more tightly linked to the exposure
itself, such as foods sharing multiple constituents that could confound one an-
other, then it is likely that those who accumulate higher levels of one nutrient
will consistently accumulate higher levels of another across the exposure spec-
trum. It may be difficult to obtain high levels of beta-carotene from fruits and
vegetables without also obtaining large amounts of fiber and various micronu-
trients. The very source of exposure guarantees that confounding will follow a
dose-response gradient.

The substantive knowledge of the reason for the confounder–exposure asso-
ciation demands closer evaluation and understanding than it typically receives
from epidemiologists. We have to ask why smoking is associated with foundry
work, at least to the extent that such understanding helps us assess whether the
relationship is likely to extend to subgroups of foundry workers who differ in
silica exposure. Unlike the confounder–disease association, which is of direct in-
terest to epidemiologists and thus for which there is likely to be a relevant sci-
entific literature, the confounder–exposure association is not of direct interest to
epidemiologists. An understanding of why exposures are associated and the pat-
tern of that association, however, would help markedly in anticipating, elimi-
nating, and evaluating confounding.

An example showing that in some instances, the confounding factor may be
associated in a dose-response fashion with the exposure of interest, is offered by
coffee consumption and cigarette smoking in relation to cancer. Unlike the hy-
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pothetical example of a workplace association with smoking, the correlation
among lifestyle factors has the potential to be much stronger and dose depen-
dent. Stensvold and Jacobsen (1994) conducted a large prospective cohort study
in Norway focused on the potential association between coffee drinking and can-
cer incidence. Over 43,000 men and women were given a questionnaire (self-
administered) that included amount of coffee consumed and number of cigarettes
smoked per day in addition to a range of other factors. The incidence of cancer
over the subsequent 10-year period was evaluated.

Recognizing the strong potential for confounding of the coffee–cancer asso-
ciation by cigarette smoking, the authors presented data on the relationship be-
tween coffee consumption and smoking (Table 7.2). For both men and women,
the probability of smoking daily rose steadily across levels of coffee consump-
tion, and among smokers, the number of cigarettes smoked per day rose steadily
across levels of coffee consumption. Given this pattern, it is not surprising that
without adjustment for cigarette smoking, a gradient was observed for coffee
consumption and total cancers as well as for smoking-related cancers. Across the
coffee dose groups presented in Table 7.2, the relative risks of total cancer among
men were 1.0 (referent), 1.08, 1.05, and 1.24. After adjustment for cigarettes per
day, age, and county of residence, the relative risks were 1.0 (referent), 1.04,
0.96, and 0.99. For lung cancer, the relative risks prior to adjustment for smok-
ing were 1.0 (referent group including � 5 cups/day), 1.6, and 4.1, whereas af-
ter adjustment, the relative risks for the upper two groups were 1.4 and 2.4, at-
tenuated but still clearly elevated. For lung cancer, this may be reflective of
residual confounding or perhaps a true effect of coffee consumption.

INTEGRATED ASSESSMENT OF POTENTIAL CONFOUNDING

In order to evaluate the extent to which confounding may have biased the results
of an epidemiologic study, the conceptual basis for confounding must first be ex-
amined. The question of exchangeability of exposed and unexposed needs to be
posed for the specific research question under consideration: Do nonsmokers have
the risk of lung cancer that smokers would have had if they had not smoked? Do
women with low levels of calcium intake have the same risk of osteoporosis that
women with high levels of calcium intake would have had if their intakes had
been low? This question, posed in the grammatically awkward but technically
correct counterfactual manner serves to focus interest on the phenomenon of con-
founding rather than available covariates, which are at best, a means of addressing
and mitigating the lack of comparability of the groups. The goal is not to achieve
statistical control of covariates or to consider the longest possible list of poten-
tial confounders but rather to reduce or eliminate confounding. In some instances,
there is little or no confounding present, or the confounding is readily addressed
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TABLE 7.2. Characteristics of the Study Population According to Their Consumption of Coffee, Norway

Coffee Consumption, Cups per Day

Men Women

� 2 3–4 5–6 � 7 � 2 3–4 5–6 � 7

Number at risk 2855.00 5599.00 6528.00 6753.0 2648.0 7350.0 6820.0 4420.0
Age (years) 45.9 46.5 46.2 45.1 46.0 46.5 45.9 44.9
Menopause (% yes) 27 30 27 24
Body mass index (g/cm2) 2.54 2.55 2.55 2.54 2.46 2.50 2.50 2.50
Smoke daily (% yes) 23.00 33 47 66 17 23 38 57
No. of cigarettes per day 11.5 11.6 12.6 15.5 9.1 8.6 9.8 12.1

(among cigarette smokers)
Total cholesterol (mmol/l) 5.95 6.20 6.29 6.47 6.01 6.19 6.27 6.37
Triglycerides (mmol/l) 2.17 2.21 2.13 2.07 1.50 1.47 1.48 1.47
Physical inactivity (% sedentary) 15.00 14 15 20 17 15 17 22
History of cardiovascular disease 11.00 11 10 8 11 10 9 8

and/or diabetes (% yes)
Beer consumption in an ordinary 27.00 25 25 26 8 7 6 6

week (% yes)
Wine/liquor consumption in an 26.00 28 27 32 11 10 12 13

ordinary week (% yes)
Residence (% in Finnmark) 12.00 16 24 43 15 18 25 41

Stensvold & Jacobsen, 1994.



with one or two markers, and in other instances, even a comprehensive effort
with many potential confounders measured and adjusted will fall far short. By
focusing on the conceptual basis for confounding, attention to confounding is
less likely to be mistaken for elimination of confounding.

With the question clearly in mind regarding exchangeability, and reason to be-
lieve that the exposed and unexposed groups are not exchangeable, the next step
is to consider what attributes may serve as markers of the basis for non-
exchangeability. That is, if there is reason for concern about confounding in com-
paring exposed and unexposed, what are the underlying reasons for that con-
founding? Are the groups likely to differ in behaviors that go along with the one
under investigation? Might the groups tend to interpret symptoms differently and
have differential access to medical care? To the extent that the source of the con-
founding can be identified, it can be addressed through statistical methods. Again,
the question is not “What variables are available to examine for their effect on
the exposure–disease association?” but rather “What are the disease determinants
which may make the exposed and unexposed non-exchangeable?”

Having identified the factors that are thought to generate the confounding, we
now have to take on the challenge of measuring those factors for purposes of sta-
tistical control. Some sources of confounding are more easily measured than oth-
ers due to the clarity of the concept and accessibility of information. An assess-
ment of the effectiveness with which the construct of interest has been captured
is helpful in addressing the question of how effectively that source of confounding
has been controlled. Referring back to the underlying phenomenon of con-
founding, the availability and quality of markers should be contrasted with the
ideal set of markers one would like to have available to control this source of
confounding. If we are concerned with confounding by social class, and have
data only on education, and none on income, occupation, wealth, etc., then we
must acknowledge and contend with the inherent shortcoming in our control for
confounding by social class. The potential for incomplete control of confound-
ing draws upon substantive knowledge of the phenomenon, but also can be as-
sessed to some extent within the available data. The change in the measure of
effect resulting from the adjustment process can help in estimating what the meas-
ure of effect would have been had adjustment been complete.

Once candidate confounders have been operationalized and measured, the im-
pact of statistical adjustment on the exposure–disease association can be assessed.
Note again how many considerations arise prior to this point in the evaluation,
all emanating from the concept of non-exchangeability. Errors in reasoning or
measurement between the concept and the covariate will diminish or negate the
effectiveness of control of confounding. Making statistical adjustments for 
confounding is an exercise, a form of sensitivity analysis, in that new informa-
tion is generated to help in understanding the data and evaluating the hypothe-
sis of interest. In order for the adjusted measure of effect to be superior to the
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unadjusted measure, a chain of assumptions about the phenomenon of con-
founding is required. If the marker of confounding is very poorly measured, there
may be little effect of adjustment, with little impact on whatever confounding
effect was originally present. On the other hand, the adjustment may have an in-
fluence on the measure of effect, but the adjusted estimate is not more valid than
the unadjusted estimate. Errors in logic or implementation will not be revealed
through the adjustment process or through scrutiny of the results that are gener-
ated. The adjusted results must be used to help interpret the presence, direction,
and amount of confounding, but they do not necessarily eliminate the problem.

Hypotheses regarding confounding are subject to criticism and evaluation, just
as hypotheses of causality are. The evidence tending to support or refute the hy-
pothesis of confounding is derived through the conventional tools applied to ob-
servational data. Regardless of how thorough and careful that evaluation may be,
uncontrolled confounding remains a candidate hypothesis to explain an observed
association or lack of association. It is important, however, to consider the con-
tinuum of evidence in support of the hypothesized confounding. All observa-
tional studies, by their very nature, are vulnerable to confounding, but invoking
exposure correlates that are unrelated to disease or risk factors for disease that
are not related to exposure provides no support for the presence of confounding.
Those who would put forward the hypothesis that confounding has influenced
study results need to develop the logical and empirical basis to suggest that it is
present. The more quantitative and testable the hypothesis of confounding can
be made, the more effectively it can be addressed and confirmed or refuted in
subsequent research.
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8
MEASUREMENT AND CLASSIFICATION 
OF EXPOSURE

Many of the concepts and much of the algebra of misclassification are applica-
ble to assessing and interpreting errors in exposure and disease misclassification.
Differences arise based on the structure of epidemiologic studies, which are de-
signed to assess the impact of exposure on the development of disease and not
the reverse. Also, the sources of error and the ways in which disease and expo-
sure are assessed tend to be quite different, and thus the mechanisms by which
errors arise are different as well. Health care access, a determinant of diagnosis
of disease, does not correspond directly to exposure assessment, for example.
Health and disease, not exposure, are the focal points of epidemiology, so that
measurement of exposure is driven by its relevance to health. The degree of in-
terest in an exposure rises or falls as the possibility of having an influence on
health evolves, whereas the disease is an event with which we are inherently con-
cerned, whether or not a particular exposure is or is not found to affect it. Once
an exposure has been clearly linked to disease, e.g., tobacco or asbestos, then it
becomes a legitimate target of epidemiologic inquiry even in isolation from stud-
ies of its health impact.

The range of exposures of interest is as broad, perhaps even broader, than the
spectrum of health outcomes. Exposure, as defined here, includes exogenous
agents such as drugs, diet, and pollutants. It also includes genetic attributes that
affect ability to metabolize specific compounds; stable attributes such as height
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or hair color; physiologic characteristics such as blood pressure; behaviors such
as physical exercise; mental states such as stress or depression; the social envi-
ronment, including poverty and discrimination; and participation in health care,
such as disease screening and receipt of immunizations. As a consequence of this
remarkable range of interests that fall within the scope of epidemiology, there is
a corresponding diversity of methods for measuring exposure (Armstrong et al.,
1992). Tools include biological assessment based on specimens of blood or urine,
physical observation, assessment of the social and physical environment, review
of paper or computerized records and a broad array of tools based on self-report
and recall, including instruments to evaluate stress, diet, and tobacco use. The
distinctive features of the exposure of interest pose specific challenges to accu-
rate measurement, and thus there are many different strategies for evaluating ex-
posure accuracy and misclassification. Nevertheless, some generic principles or
questions can be described.

IDEAL VERSUS OPERATIONAL MEASURES OF EXPOSURE

The accuracy of an operational approach to exposure ascertainment is best de-
fined in relation to the ideal measure, which would often if not always be im-
practical or unethical to obtain. If we are interested in alcohol intake, for exam-
ple, we might wish to have an exact measure of the ounces of ethanol ingested
over the individual’s entire life. We may have a particular interest in when the
exposure occurred, e.g., total ethanol ingested in the 10-year period prior to dis-
ease occurrence or total ethanol ingested from ages 30 to 39. Additional details
of exposure might be important, for example, number of occasions at which five
or more ounces of ethanol was ingested in a two-hour period. Establishing the
benchmark of validity, preferably in specific, quantitative terms, is useful in eval-
uating how closely we are able to approximate that ideal, and conversely, in iden-
tifying sources and magnitude of distortion relative to that ideal measure. Epi-
demiologists often set modest, practical benchmarks for what is desired,
confusing feasible goals with ideal goals, rather than seeking ways to overcome
logistical constraints to better approximate the measure that is of real interest.
Even in validation studies, in which a more intensive method of assessment can
be applied to a subset of study participants, the comparison is usually between
an inferior and superior method, not with the ideal measure.

Biologically Effective Exposure

Assuming the goal of the research is to understand the etiologic relationship be-
tween exposure and disease, the biological process by which exposure might
cause disease is central to defining the ideal exposure indicator. All of the other
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issues considered below are really just amplifications of this basic goal—
measure the exposure that is most pertinent to the etiology of the disease of in-
terest. Though such a strategy may be obvious for exposures to chemicals or
viruses, it is equally applicable to psychological or social conditions that may in-
fluence the occurrence of disease. The overriding goal is to approximate the ex-
posure measure that contributes to the specific etiologic process under investi-
gation. Of course, in many if not all situations, the mechanisms of disease
causation will not be understood sufficiently to define the exact way in which
exposure may influence disease, but intelligent guesses should be within reach,
resulting in a range of hypothesized etiologic pathways that can be articulated to
define clearly the goals of exposure assessment.

In evaluating an exogenous agent such as exposure to DDT/DDE in the cau-
sation of breast cancer, we might begin by delineating the cascade leading from
exposure to disease: The use of DDT for pesticide control leads to persistent en-
vironmental contamination, which leads to absorption and persistence in the body,
which leads to a biological response that may affect the risk of developing breast
cancer. Residues of DDT and its degradation product, DDE, are ubiquitous in
the soil due to historical use and persistent contamination.

One option for an exposure measure would be average DDT/DDE levels in
the county of current residence. Obviously, this is an indirect measure of expo-
sure: county averages may not apply directly to environmental levels where the
individual lives and works; the individuals of interest may not have always lived
in the county in which they resided at the time of their participation in the study;
and the present levels of contamination in the environment are likely to have dif-
fered in the past. For these reasons, this measure of environmental contamina-
tion is not likely to approximate individual exposure levels very accurately. Re-
finements in spatial resolution to finer geographic levels and incorporation of
individual residential history and historical levels of contamination in the area
would move us closer to the desired measure of exposure. Note that if our goal
was defined solely as the accurate characterization of the county’s average ex-
posure in the year 1995, we could carefully sample the environment, ensure that
the laboratory equipment for measuring DDT and DDE in soil samples was as
accurate as possible, and employ statistical methods that are optimal for charac-
terizing the geographic area appropriately. Nevertheless, without consideration
of historical changes, residential changes, and individual behaviors that influence
exposure and excretion, even the perfect geographic descriptor will not neces-
sarily provide a valuable indicator of the individual biologically effective expo-
sure. Accuracy must be defined in relation to a specific benchmark.

Measurement of present-day blood levels of DDT/DDE in women with breast
cancer and suitably selected controls would reflect absorption and excretion over
a lifetime, integrating over the many subtle behavioral determinants of contact
with contaminated soil, food, water, and air, and better reflecting the dose that

Measurement and Classification of Exposure 165



has the potential to affect development of cancer. The temporal aspects of ex-
posure relevant to disease etiology must still be considered, encouraging us to
evaluate what the ideal measure would be. Perhaps the ideal measure would be
a profile, over time, of DDT/DDE levels in breast tissue from puberty to the time
of diagnosis, or over some more circumscribed period in that window, e.g., the
interval 5–15 years past or the interval prior to first birth. By hypothesizing what
the biologically effective exposure measure would be, we could evaluate con-
ceptually, and to some extent empirically, the quality of our chosen measure of
current serum level. Research can examine how closely serum measures gener-
ally correspond to levels in breast tissue. Archived serum specimens from the
distant past can be examined to determine how past levels correspond to current
levels and what factors influence the degree of concordance over time. If our
only goal were to accurately measure the existing serum DDT/DDE levels, a nec-
essary but not sufficient criterion for the desired measure, then we need only en-
sure that the laboratory techniques are suitable. As important as the technical ac-
curacy of the chosen measure may be, the loss of information is often substantial
in going from the correctly ascertained exposure to the conceptually optimal
measure.

Defining the ideal exposure marker requires a focus on the exposure charac-
teristics that have the greatest potential for having a biologic influence on the
etiology of the disease. Often, exposure has many features of potential rele-
vance, such as timing, intensity, duration, and the specific agents from within
a group that require decisions and hypotheses regarding the biologically rele-
vant form. As one moves outward from that unknown, biologically relevant form
of exposure, and incorporates sources of variability in exposure that are not rel-
evant to disease etiology, there is a loss of information that will tend to reduce
the strength of association with disease. Assuming DDT in breast tissue in the
interval 5–15 years past was capable of causing cancer, the association with
DDT in present-day serum would be somewhat weaker because present-day lev-
els would correlate imperfectly with integrated exposure over the desired time
period. The association with DDT in the environment would be weaker still for
the reasons noted previously. The quality of these surrogate measures, which
epidemiologic studies always rely on to one degree or another, affects the abil-
ity to identify causes of disease. We are still able to make progress in identify-
ing causes of disease even when we measure some aspect of exposure other than
the ideal, but only if the measure we choose is strongly correlated with the right
measure and the underlying association is sufficiently strong to be identifiable
despite this shortcoming. We will observe some diluted measure of association,
with the magnitude of dilution dependent on the degree of correlation between
the ideal and actual values (Lagakos, 1988). If the ideal exposure measure is
strongly related to disease, we may take comfort in still being able to observe
some modest effect of a surrogate indicator of exposure on disease, but if the
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true relationship is weak, the effect may fall below a level at which it can be
detected at all.

As biological markers become increasingly diverse and accessible, there can
be confusion regarding where a refined exposure marker ends and an early dis-
ease marker begins. Indicators of a biological interaction between the exposure
and target tissue, e.g., formation of DNA adducts, illustrate exposure biomark-
ers that come very close to a biologic response relevant to, if not part of, the
process of disease causation. Biological changes indicative of early breast can-
cer would, empirically, be even more closely related to risk of clinical breast can-
cer than the most refined measure of exposure to DDT, but such events are in-
creasingly removed from the environmental source and not directly amenable to
intervention or prevention. Each step in the cascade from environmental agent
to clinical disease is of scientific interest and therefore worthy of elucidation, but
the conceptual distinction between exposure and disease needs to be retained for
considering measures to alter exposure to reduce risk of disease.

Temporally Relevant Exposure

The timing of exposure relative to disease occurrence is among the most un-
derappreciated aspects of exposure assessment and thus merits special empha-
sis. Some exposures are constant over time, such as genetic constitution or at-
tributes defined at birth. However, exogenous exposures such as diet,
medication use, social circumstances, and chemical pollutants vary over time,
often substantially. Any choice of exposure measure implicitly or explicitly in-
cludes an assumption about the exposure interval that is relevant to disease eti-
ology. The critical time window may be based on calendar time, age at expo-
sure, or exposure relative to the occurrence of other exposures or events
(Rothman, 1981). A corollary to the need to isolate the biologically relevant
exposure is to pinpoint the etiologically relevant time window of exposure so
that we can ignore etiologically irrelevant exposure that occurs outside that
window. Inclusion of irrelevant exposure constitutes exposure misclassifica-
tion relative to the ideal measure.

In examining the role of cigarette smoking in the causation of lung cancer, for
example, we recognize that there is some interval between exposure and the oc-
currence of disease that is not relevant to its causation. The number of cigarettes
smoked on the day of diagnosis is clearly not relevant, for example, nor are the
cigarettes smoked during the period in which the tumor was present but undiag-
nosed. Under some hypothesized mechanisms, the exposure for months or years
prior to the diagnosis may be irrelevant. In the face of such uncertainty, Roth-
man (1981) has argued for flexibility in evaluating temporal aspects of exposure.
A series of reasoned hypotheses may be put forward based on alternative theo-
ries about disease causation.
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In some instances, different timing of exposure corresponds to entirely differ-
ent etiologic pathways. The role of physical exertion in relation to myocardial
infarction appears to include an acute adverse effect, such that intense exertion
is followed by some relatively brief period of increased risk (Siscovick et al.,
1984; Albert et al., 2000), as well as a chronic beneficial effect, such that regu-
lar exercise over periods of months or years reduces risk of a myocardial in-
farction (Rockhill et al., 2001). The timing of the intense activity levels relative
to the long-term history of activity may also be relevant, with a change from
long-term inactivity to a higher level of activity a possible threat to health. Any
attempt to measure physical activity in order to evaluate its association with risk
of myocardial infarction would require carefully formulated etiologic hypothe-
ses that address the temporal aspects of exposure and effect.

In other etiologic pathways, the critical exposure window may be defined
not in relation to the timing of disease but based on stage of development. Re-
gardless of when congenital malformations come to attention, precisely timed
developmental events indicate the days and weeks of gestation in which cer-
tain defects can be produced by external insults (Kline et al., 1989). Similarly,
it has been hypothesized that physical activity among adolescent girls is influ-
ential on their long-term risk of osteoporosis (US DHHS, 1996). For illustra-
tive purposes, assume that this window of adolescence is the only period in
which physical activity is pertinent to osteoporosis. A study that measured life-
time physical activity or physical activity from ages 40 to 49 would suffer from
misclassification and observe the expected inverse association only to the ex-
tent that physical activity at those measured ages corresponded to physical ac-
tivity in adolescence.

Optimal Level of Exposure Aggregation

Analogous to disease lumping and splitting, exposures can be conceptualized in
a number of ways with regard to aggregation and disaggregation, depending on
the etiologic hypothesis. The goal is to group together the contributors that share
a specific etiologic pathway, leaving none out, but to exclude exposures that are
irrelevant to that etiologic pathway. Focusing on only a subset of contributors to
a given exposure index would constitute a lack of sensitivity in exposure as-
signment, and including some irrelevant elements in the construction of that in-
dex would represent a lack of specificity. In either case, relative to the optimal
exposure category, it is misclassification.

For example, if we were interested in the possible effect of caffeine on risk of
miscarriage, then the ideal measure of caffeine would be comprehensive and in-
clude all sources of dietary caffeine, such as coffee, tea, and chocolate, as well
as caffeine-containing medications. Under the hypothesis that caffeine is the crit-

168 INTERPRETING EPIDEMIOLOGIC EVIDENCE



ical agent, study of caffeine from coffee alone would constitute underascertain-
ment of exposure, and the exposure that was assigned would be lower to the ex-
tent that women were exposed to unmeasured sources of caffeine. A closely re-
lated but distinctive hypothesis however, concerns the possible effect of coffee
on risk of miscarriage, in which constituents of the coffee other than caffeine are
considered as potential etiologic agents. To address this hypothesis, aggregation
of caffeinated and decaffeinated coffee would be justified. Under that hypothe-
sis, coffee alone is the appropriate entity to study. Once the hypothesis is clearly
formulated, then the ideal measure of exposure is defined, and the operational
approaches to assessing exposure can be compared with the ideal.

Nutritional epidemiology provides an abundance of opportunities for creating
exposure indices and demands clear hypotheses about the effective etiologic
agent. Much research has been focused on specific micronutrients, such as beta-
carotene or dietary fiber, and with such hypotheses, the goal is to comprehen-
sively measure intake of that nutrient. An alternative approach is to acknowledge
the multiplicity of constituents in foods, and develop hypotheses about fruit and
vegetable intake, for example, or even more holistically, hypotheses about dif-
ferent patterns of diet. A hypothesis about beta-carotene and lung cancer is dis-
tinct from a hypothesis about fruit and vegetable intake and lung cancer, for ex-
ample, with different demands on exposure assessment. Exposure indices must
be defined with sufficient precision to indicate which potential components of
exposure should be included and which should be excluded, and how the meas-
ure should be defined.

In practice, there are circumstances in which exposure is considered in groups
that are not optimal for considering etiology but are optimal for practical reasons
or for considering mitigation to reduce exposure. For example, there is increas-
ingly clear evidence that small particles in the air (particulate air pollution) ex-
acerbate chronic lung and heart disease and can cause premature mortality (Kat-
souyanni et al., 1997; Dominici et al., 2000). The size and chemical constituents
of those particles differ markedly, and their impact on human disease may dif-
fer in relation to those characteristics as well. Technology now allows isolation
of small particles, � 10 microns or � 2.5 microns, so that it is feasible to regu-
late and monitor compliance with regulation for the particle sizes thought to be
most harmful to human health. It is not feasible however, to monitor the chem-
ical constituents of those particles and thus regulations do not consider particle
chemistry. We seek to reduce exposure to particulates, accepting that the effect
of the mixture of particles with greater and lesser amounts of harmful constituents
is accurately reflected in their average effect. Perhaps stronger associations would
be found for subsets of particles defined by their chemical constitution, but the
measured effect of particulates in the aggregate is still useful for identifying eti-
ology and suggesting beneficial mitigation of exposure.
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Operational Measures of Exposure

With a precise definition of the optimal exposure measure, or more plausibly, a
set of exposure measures, each addressing a particular hypothesis, we can com-
pare candidate operational measures of exposure to the ideal ones. The exact
means by which the exposure indicator is constructed needs to be scrutinized,
focusing on the operational details that go into the final assignment of individ-
ual exposure. The goal is to reveal the compromises that have been made, many
without explicit consideration, and the resulting potential for disparity between
the operational and ideal exposure measures.

For example, we may be interested in total ethanol intake over a lifetime in
relation to cardiovascular disease endpoints, such as angina or myocardial in-
farction. Obviously, we will not have installed an alcohol meter at birth or di-
rectly observed alcohol intake over a lifetime. We may instead have self-report
of typical weekly ingestion of beer, wine, and liquor averaged over adulthood,
or intake of those beverages for specific periods of life, and use that information
to construct a quantitative estimate of lifetime exposure. There is an abundance
of opportunities for this operational measure to deviate from the ideal exposure
measure, including inaccurate recall and intentional deception. Also there may
be error even if the self-report is perfect in that there is likely to be variability
in alcohol consumption over time and variable alcohol content of beverages. The
etiologic process may require consideration of the amount of alcohol consumed
on each occasion or drinking at different ages or different intervals relative to
disease onset, introducing additional forms of misclassification when comparing
the operational to the ideal measure.

Thus there are two ways in which the operational and ideal measures of ex-
posure deviate from one another. One arises from conceptual problems in the
approach to exposure assessment, such that a perfectly executed data collec-
tion effort would still result in an imperfect match with the etiologically rel-
evant exposure. The error arises in the very choice of the operational defini-
tion of exposure. Second, superimposed on any conceptual misclassification
is the more traditional misclassification based on errors in implementing the
chosen approach. Environmental measurements contain sampling error and
technical imprecision in characterizing chemical and physical agents, for ex-
ample. Self-reported information on exposure inevitably introduces erroneous
recall, which would exacerbate the inherent imperfections in the operational
exposure definition. Recall may be distorted due to faulty memory, intentional
deception, or bias related to the occurrence of disease in studies in which ex-
posure is reported after disease occurrence. Laboratory data are often less sub-
ject to error in the conventional sense of imprecise measurement, but often
more susceptible to conceptual error in not reflecting the exposure of ultimate
interest.

170 INTERPRETING EPIDEMIOLOGIC EVIDENCE



A nearly ubiquitous challenge in collecting accurate data on exposure is the
difficulty of gathering information over the potential etiologic period of interest.
That is, the ideal definition often includes a time dimension over which expo-
sure needs to be integrated or monitored. Even our most elegant tools, whether
based on self-report, environmental measurements, or biological markers, rarely
capture the exposure of interest over the period of interest. If we are interested
in several years or decades of dietary intake of a specific nutrient, our options
for data collection are limited. We can ask for people to use their memories to
integrate over the interval, we can obtain more precise measurements at a point
or several points over the interval, or some combination, such as a precise meas-
ure at one point and self-report regarding stability over a longer interval. In many
instances, the most sophisticated, detailed, and accurate exposure indicators are
only applicable to a brief period around the time of measurement. A rare ex-
ception to the generalization that lifetime exposure markers are unavailable is the
collection of occupational ionizing radiation exposure through the use of film
badges. These instruments, deployed at the time of hire and used throughout the
period of employment, provide quarterly or annual measurements of all external
ionizing radiation encountered. Subject to compliance and an interest restricted
to occupational as opposed to other sources of ionizing radiation, the desired tem-
poral information will be available from longitudinal data collection.

A variety of biochemical markers of tobacco use, for example, urinary or sali-
vary cotinine, or carboxyhemoglobin, are precise indicators that are reflective of
hours or at most a day of exposure. The alternative approach to assessing to-
bacco exposure is the ostensibly cruder measure of self-report, subject to the abil-
ity and willingness of respondents to recall their smoking behavior. If the ideal
measure is lifetime (or long term) exposure, however, self-report is likely to be
superior even to a series of biochemical measures only because the latter cannot
integrate over time the way the participants’ memories can. If the ideal exposure
measure were lifetime inhalation of tar from tobacco combustion, the operational
definition based on self-report of cigarettes smoked daily over specified periods
of life is likely to be far more strongly correlated with that ideal measure than
any present or recent biochemical markers of recent exposure. If our “gold stan-
dard” definition were inhalation of tar from tobacco combustion in the past 24
hours, the biochemical indicators would likely be far superior to self-report. The
hypothesized temporal course of the relationship between exposure and disease
should guide the selection of the optimal marker.

For those who generate research on challenging exposures (and nearly all ex-
posures are challenging to measure), sufficient information should be provided
on both the ideal and operational definition to compare them. While researchers
are trained or even forced to reveal exactly what was done in the study, i.e., the
operational exposure measure, they often neglect to be specific about the ideal
exposure measure for addressing the hypothesis under study. In reviewing 

Measurement and Classification of Exposure 171



research reports, the often implicit definitions of the “gold standard” need to be
extricated so that the actual methods of exposure assessment can be compared
to the ideal. Readers should be watchful for the temptation on the part of re-
searchers to state their goals in modest, attainable terms whereas the more etio-
logically appropriate index is less readily approximated. Problems can arise 
in the choice of the ideal exposure measure as well as in implementing that 
measure.

EVALUATION OF EXPOSURE MISCLASSIFICATION

All operational exposure measures are related only indirectly to the exposure
of ultimate interest. Self-reported information clearly is removed from the eti-
ologically effective exposures in that the verbal utterance in an interview does
not constitute exposure nor does the checking of a box on a questionnaire con-
stitute the exposure that results in disease. Even biological markers are to vary-
ing degrees proxies for the disease-causing factor, with compromises made
with regard to the timing or site of assessment. Often, the measurement is
taken at the feasible rather than ideal time (e.g., present versus past), and the
assumption is made that the measure can be extrapolated to the critical time
for addressing disease etiology. Similarly, collection of accessible specimens
such as urine or blood is extrapolated to the exposure of interest in a less ac-
cessible site such as the kidneys or heart. As noted above, there is the ever-
present potential for lumping too broadly, combining irrelevant with relevant
exposures, or too narrowly, omitting key contributors to the exposure of 
interest.

Epidemiologists are well aware that use of imperfect exposure markers intro-
duces error and should be viewed as opportunities for improvement in study
methods. Sometimes we are deceived however, by advances in technology for
biological or environmental evaluation, believing that laboratory sophistication
automatically confers an advantage over the crudeness of self-report or paper
records. We can lose sight of the fact that even measures that employ sophisti-
cated technology also contain error relative to the desired information (Pearce et
al., 1995). Even if the technology for measuring environmental or biological spec-
imens is highly refined, the sources of error often arise at the point where the
times and sites of collection of samples are decided. Accepting that epidemiol-
ogy relies on indirect measures of the exposure of ultimate interest, the critical
questions concern how effective the proxies are and the impact of the misclas-
sification that they introduce relative to the unattainable “gold standard.” The
preferred option, of course, would be to obtain the ideal information and avoid
the need to evaluate error and assess its impact. Accepting that this can never be
achieved, there are a number of useful strategies for assessing the presence of

172 INTERPRETING EPIDEMIOLOGIC EVIDENCE



exposure misclassification and the consequences of such errors on measures of
association.

Compare Routine Measure to Superior Measures

In selecting the approach to evaluating exposure, some of the contenders must
be dismissed due to lack of knowledge, unavailable technology, or ethical pro-
hibitions. Among otherwise feasible options, however, some compromises are
based on constraints that can, theoretically, be overcome, such as limited money,
staff time, or respondent cooperation. Whatever routine exposure measure has
been selected for the study, there are nearly always opportunities to obtain more
sophisticated, accurate measures of exposure, even though there are remaining
challenges that prevent attainment of the idealized gold standard. In designing a
study, the investigator should consider options for assessing exposure, recogniz-
ing the tradeoffs between expanded study size and reduction in the level of ex-
posure measurement accuracy that is attainable as a result of that increase in size.
In many instances, small studies with accurate measurements as derived from re-
peated assessment of individuals or use of more prolonged sampling periods, for
example, are more informative than larger studies that use less valid approaches
(Phillips & Smith, 1993). Nevertheless, whatever the level of quality that was
chosen, there is nearly always a better one that would have been feasible for a
smaller study or one with a larger budget or longer timeline or more persuasive
recruiters, and that superior measure constitutes a useful benchmark of compar-
ison for the one that was routinely applied.

This strategy requires that the routine exposure assessment applied to all par-
ticipants in the study be expanded by collecting more valid exposure data for a
subset of study participants. In some cases, the more detailed information auto-
matically has embedded within it the less sophisticated, routine measure. Diet
inventories, for example, contain variable numbers of items depending on the
amount of time one is willing to devote to the assessment, and the more items
included, the better the measure is thought to be. The difference between a longer
diet inventory and a shorter one can be assessed by collecting the full list and
comparing the measure to what would have been found had only the shorter list
been available. Similarly, if one is interested in exposure to environmental to-
bacco smoke and uses personal monitors, the duration of data collection might
be 48 hours for all subjects except for a subset that is monitored using the exact
same approach but for a full week.

More often, the routine and superior measures require distinct data collection
efforts. Routine use of a questionnaire to be compared to a superior biological
marker of exposure requires collection of both measures on a subset of partici-
pants. The questionnaire is not embedded within the biological marker in the
same way a less complete food inventory is embedded within the more complete
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inventory. In either circumstance, with both the routine and superior measure
available for the subset, the values can be compared to assess how closely the
routine measure approximates the superior measure. With this information, esti-
mates and judgments can be made as to what the results would have been if the
superior measure had been applied routinely.

The more closely the routine exposure measure approximates the superior ex-
posure measure, the less exposure misclassification is likely to be present. If they
were perfectly correlated, then the “inferior” measure would simply represent a
more efficient approach to gathering exactly the same information. More typi-
cally, there will be some inaccuracy in the routine measure relative to the more
refined one, and the amount and pattern of inaccuracy can be assessed in a sub-
set of study subjects. What this effort will not reveal is how close or distant both
the routine and superior measures are from the ideal measure. They could be
close to one another, giving the impression that the routine measure is quite good,
yet both have substantial error relative to the unattainable ideal measure. Alter-
natively, there could be a major difference between the two, yet even the supe-
rior measure is far from optimal. What would be desirable but is rarely known
is not just the ordinal ranking of the quality of the alternative measures but the
absolute quality of each relative to the gold standard.

An important challenge to the interpretation of two measures that are presumed
to be ordinal in quality is that the allegedly superior measure may just be dif-
ferent without really being better. When the basic strategies are similar, e.g., diet
inventory or environmental measurements, and the superior measure has more
detail or covers a more extended time period, the probability that it is better in
absolute quality is quite high. When the approaches are qualitatively different,
however, e.g., self-report versus biological marker, there is less certainty that the
approaches can be rank-ordered as better and worse. Similarity between the su-
perior and routine measure may give a false assurance regarding the quality of
the routine measure if the allegedly superior measure really is not better. Worse
yet, the ostensibly superior measure could be worse, so that a disparity is mis-
interpreted entirely. The common temptation is to accept any biological marker
as superior to any form of self-report, and to downgrade confidence regarding
the quality of self-report when they are not in close agreement. Biological mark-
ers of exposure often reflect a precise measure for a very brief period around the
time of specimen collection, however, whereas self-report can represent an inte-
gration over long periods of time. Remembering that the ideal measure includes
consideration of the etiologically relevant time period, it is not certain that a pre-
cise measure for the wrong time period from a biological marker is superior to
an imprecise measure for the relevant time period based on self-report. Both
strategies need to be compared to the ideal measure to the extent possible.

Assuming that there is a clear gradient in quality, what such comparisons be-
tween the inferior and superior measures provide is the basis for a quantitative
assessment of the loss of information and expected reduction in measures of as-
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sociation based on the inferior measure relative to the superior one (Lagakos,
1988; Armstrong, 1990). Using the readily calculated correlation coefficient be-
tween the two measures, an estimate can be generated regarding how much of
the information in the superior measure is lost by using the inferior one, using
the expression 1 	 r2, where r is the correlation coefficient. For example, if the
correlation is 0.5, this expression equals 0.75, so that 75% of the information
contained in the superior measure is lost by relying on the inferior one. Corre-
lations of 1 and 0 correspond to values of 0% being lost and 100% being lost.
Though a number of assumptions are made to justify this interpretation, it is a
useful general rule of thumb.

An illustration of the loss of information in using an inferior compared to a
superior exposure measure was provided by Baris et al. (1999) in a methodologic
examination of exposure assignment methods for a study of residential magnetic
fields and childhood leukemia. When children lived in two homes over the course
of their lives, both were measured and integrated as a time-weighted average ex-
posure, considered the “gold standard” relative to measurements in a single home.
Various approaches to choosing the single home to measure were considered, in-
cluding the duration of occupancy and whether or not it was currently occupied.
Correlation coefficients between the gold standard and various surrogates (Table
8.1) indicate a range of values across the more limited measurement approaches,
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TABLE 8.1. Pearson Correlation Coefficients Between Subjects’ Estimated Time-
Weighted Average Magnetic Field from Two Homes Measured, and Time-Weighted
Averages Based on One Home Only or One Home Conjunction with Imputed Values
for the Second Homes, National Cancer Institute Childhood Leukemia Study

CORRELATION

SUBJECT’S TWA CALCULATED FROM DIFFERENT STRATEGIES COEFFICIENT

TWA, two homes measured 1.00
Longer lived in homes only 0.95
Shorter lived in homes only 0.55
Former lived in homes only 0.90
Current lived in homes only 0.62
Longer lived in home plus shorter lived in homes imputed:

With control mean* 0.95
With status specific mean† 0.95

Current lived in homes plus former lived in homes imputed:
With control mean‡ 0.62
With status specific mean§ 0.62

*Shorter lived in homes were imputed from observed mean of longer lived in control homes.

†Shorter lived in homes were imputed from case mean of longer lived in homes (if case) or from
control mean of longer lived in homes (if control).

‡Former lived in homes were imputed from observed mean of current lived in control homes.

§Former lived in homes were imputed from case mean of current lived in homes (if case) or from
control mean of current lived in homes (if control).

Baris et al., 1999.



from 0.55 to 0.95. Among the simpler indices, the home that was lived in for the
longer period provides the better proxy for the time-integrated measure, as ex-
pected. Counter to expectation, however, when the measures of association were
computed using the various indices (Table 8.2), results for both former homes
and currently occupied homes yielded results closer to the operational “gold stan-
dard” measure than the longest lived-in home. The relative risk in the highest
exposure group was attenuated for all of the surrogate indices of exposure rela-
tive to the time-weighted average, suggesting that the extra expense of collect-
ing data on multiple homes was a worthwhile investment of resources.

Examine Multiple Indicators of Exposure

It is preferable to have a single, perfect “gold standard” to serve as the referent
for the routine exposure measure, or at least a measure that better approximates
the “gold standard.” It may still be informative however, to have another expo-
sure proxy of similar quality to the routinely applied measure but differing in
character, and thus in the nature of the error it contains. Neither the routine ex-
posure measure nor the alternative measure in isolation is necessarily a better ap-
proximation of the exposure of interest, but we would expect them to be associ-
ated with one another to at least some extent because both are associated with
the true exposure.

For example, in measuring exposure to environmental tobacco smoke over
long periods of time, there are two basic strategies available: biochemical mark-
ers of short-term exposure and self-reported information on proximity to active
smokers. The biochemical markers are precise indicators over short periods of
time. Assuming that the measurement period represents a sample from the long-
term period of etiologic interest, the accurate short-term measure has some value
as a marker of long-term exposure. The self-report of proximity to smokers is
capable of integration over the extended time period of etiologic interest, given
that questions can be focused on specific periods of interest and the respondent
can presumably reflect on and recall the period of interest. Self-report is vulner-
able to the uncertainties of perception and recall, however, including potential
biases in perceiving the presence of tobacco smoke and faulty memory in re-
calling those experiences. What type of association might we expect to observe
between these markers, both of which are imperfect relative to the “gold stan-
dard,” but for very different reasons? How do we interpret measures of their re-
lationship to one another and the relationship of each marker to disease status?

First, it is important to remember that the accurate indicator of short-term ex-
posure does not serve as the “gold standard” for the imprecise indicator of long-
term exposure. Both are approaches to estimating the long-term exposure of eti-
ologic interest, and both are inferior to concurrent measurement of exposure
throughout the etiologic period as might be accomplished in a true prospective
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TABLE 8.2. Odds Ratios and 95% Confidence Intervals for Magnetic Field Exposure and Acute Lymphocytic Leukemia from Different Residences, 
Categorised According to Initial Cutoff Points of Magnetic Field Exposure, National Cancer Institute Childhood Leukemia Study

Relative Risk for Acute Lymphoblastic Leukaemia Calculated With:

TWA from Measurement from Longer Measurement from Former Measurement from Currently

EXPOSURE
Two Homes Measured Lived in Home Only Lived in Home Only Lived in Home Only

CATEGORIES MEAN MEAN MEAN MEAN

(�T) (�T) CASES OR 95% CI (�T) CASES OR 95% CI (�T) CASES OR 95% CI (�T) CASES OR 95% CI

� 0.065 0.047 53 1.00 — 0.042 64 1.00 — 0.042 59 1.00 — 0.042 66 1.00 —
� 0.065– 0.082 33 0.97 0.52 to 0.080 27 1.23 0.62 to 0.083 22 0.85 0.43 to 0.079 31 1.28 0.68 to 

� 0.099 1.81 2.39 1.68 2.44
� 0.100– 0.137 40 1.14 0.63 to 0.137 35 1.28 0.69 to 0.140 39 1.35 0.73 to 0.133 32 1.09 0.59 to 

� 0.199 2.08 2.38 2.47 2.02
� 0.200 0.350 23 1.81 0.81 to 0.374 23 1.15 0.57 to 0.370 29 1.65 0.82 to 0.322 20 1.47 0.67 to 

4.02 2.33 3.32 3.20
ptrend � 0.2 ptrend � 0.3 ptrend � 0.1 ptrend � 0.4

OR, odds ratio; CI, confidence interval; TWA, time-weighted average

Baris et al., 1999.



study. Because both are believed to be related to long-term exposure, however,
one expects some association between the two measures and it would be trou-
bling if they were completely unrelated. The magnitude of the association be-
tween two measures, even if both are associated with a third (e.g., the true value),
however, can be quite small. Two variables can show a correlation coefficient
as high as 0.7 with a third variable, for example, yet have a correlation of 0 with
one another (Berkson, 1946). Thus, it would be possible for each of two prox-
ies to be rather strongly related to the “gold standard,” yet not related strongly
to each other. In the absence of a “gold standard” measure, interpretation of the
association between two imperfect indicators is thus of limited value in assess-
ing the quality of either one.

Ideally, substantive understanding of each of the exposure measures could be
used to create an integrated measure of exposure that takes advantage of the in-
formation provided by each. That is, with recognized strengths and deficiencies in
each of two or more markers of exposure, those information sources might be com-
bined into a single measure that is expected to be better than any of them would
be in isolation. There is no generic approach to integrating these sources of expo-
sure data because it depends on the way in which the information they provide is
complementary. It might be known that when certain combinations of results oc-
cur, one measure should override the other. For exposures in which measurement
is known to be highly insensitive, e.g., illicit drug use, we might accept that any
of self-report, metabolites in urine, or metabolites in hair constitutes exposure. We
might know that one measure is more accurate in a certain range of exposure or
for certain respondents and another measure is better under other circumstances.
For example, in comparing a biological measure with self-report, there may be
known sources of interference from certain medications, unusual dietary habits, or
illness. If self-report were negative, and the biological measure were positive but
with an indication of a metabolic disease that can create false positive readings,
one might simply override the biological marker for that individual and classify
the person as negative. Similarly, there may be persons in whom the quality of
self-report is thought to be fallible due to poor cooperation according to the inter-
viewer, and we would then rely instead on the biological marker.

In the absence of substantive understanding of how errors in one measure or
the other arises, one simplistic approach is to combine their information empir-
ically into a composite variable, i.e., define exposed as positive on both markers
or as positive on either of two markers. If the major problem is known to be one
of sensitivity, then an algorithm might be applied in which being positive on ei-
ther marker is used to infer that exposure is present. This will enhance the sen-
sitivity relative to using either measure in isolation, and decrease the specificity.
Alternatively, if specificity is the problem one wishes to minimize, classification
as exposed may require being positive on both indicators, with only one being
positive resulting in assignment as unexposed. Preferable to either extreme would
be an examination of the pattern of results across all combinations of the two ex-
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posure measures, i.e., both positive, one measure positive and one measure neg-
ative, and both negative. Unless one or both of the measures is behaving very
strangely, it would be expected that these levels would correspond to a monot-
onic gradient of true exposure, less subject to misclassification than use of either
measure in isolation.

When one of the data sources on exposure can be viewed as a “gold standard,”
it provides an opportunity to better understand and ultimately refine the routine
measure. For example, with a combination of self-reported exposure to environ-
mental tobacco smoke over long periods in the past, and short-term biochemical
markers, there is an opportunity to integrate the information to validate the self-
report. Self-reported exposure can be generated over the time frame of ultimate
interest, as well as for the brief time period reflected by the biochemical mea-
sure of exposure, i.e., the recent past. With that information and accepting the
biochemical marker as a gold standard for the recent past, predictive models can
be developed in which the self-reported information is optimized to estimate ac-
tual exposure. In the example of environmental tobacco smoke, self-report of ex-
posure in the preceding 24 or 48 hours might be queried, for which the bio-
chemical indicator would be a legitimate gold standard. With that quantitative
prediction model now in hand, the questionnaire components for the period of
etiologic relevance, typically a prolonged period in the past, can be weighted to
generate a more valid estimate of historical exposure. The data would be used to
determine which self-reported items are predictive of measured exposure to en-
vironmental tobacco smoke and the magnitude of the prediction, through the use
of regression equations. Although there is no direct way to demonstrate that this
extrapolation from prediction over short periods to prediction over long periods
is valid, the availability of a “gold standard” for brief periods offers some as-
surance. The development of the predictive model linking self-reported exposure
data to biological markers need not include all the study subjects and could be
done on similar but not identical populations. The relationship between perceived
experiences and actual exposure may well differ among different populations,
however, suggesting that the validation be done on the study population or a
group that is quite similar to the actual study subjects.

Multiple exposure indicators also may be used when it is unclear which is the
most influential on the health outcome of interest. A sizable body of research has
addressed particulate air pollution and health, particularly morbidity and mortal-
ity from cardiovascular and respiratory disease. As the research has evolved, there
has been an increasing focus on the small particles, those � 10 �g/m3 or � 2.5
�g/m3 in diameter. In a large cohort study of participants in the American Can-
cer Society’s Cancer Prevention II Study, air pollution measures in metropolitan
areas were examined in relation to mortality through 1998 (Pope et al., 2002).
To examine the nature of the relationship between particulate air pollution and
mortality, a range of indices were considered, defined by calendar time of mea-
surement, particle size, and sulfate content (Fig. 8.1). These results suggest once
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again that the fine particles (� 2.5 �m) are more clearly associated with mor-
tality from cardiopulmonary disease, lung cancer, and total mortality, as com-
pared to inhalable coarse particles or total suspended particulates. The associa-
tions for measurements in different calendar times are similar to one another, and
sulfate particles are similar to fine particles in their effects. Examination of mul-
tiple indices suggests that the associations are rather consistent across measure-
ment period but specific to fine particles.

180 INTERPRETING EPIDEMIOLOGIC EVIDENCE

FIGURE 8.1. Adjusted mortality relative risk (RR) ratio evaluated at subject weighted mean
concentration of particulate and gaseous air pollution in metropolitan areas, American
Cancer Society Cancer Prevention II Study (Pope et al., 2002). PM2.5 indicates particles
measuring less than 2.5 �m in diameter; PM10, particles measuring less than 10 �m in
diameter; PM15, particles measuring less than 15 �m in diameter; PM15-2.5, particles meas-
uring between 2.5 and 15 �m in diameter; and CI, confidence interval.
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Examine Gradient of Exposure Data Quality

It is often possible to construct an ordinal gradient of exposure classification ac-
curacy. Where a variety of alternative exposure measures are available or can be
constructed, there is the opportunity to examine the measure of exposure–disease
association across a series of alternative exposure assessment methods. The more
valid exposure indicator should yield the more valid measure of association, and
data for a series of markers that can be rank-ordered from better to worse pro-
vide the opportunity to extrapolate even when all available measures are imper-
fect to one degree or another. That is, the spectrum of quality in exposure data
will often be incomplete, lacking the true “gold standard” exposure measure of
ultimate interest, but observing the pattern of association across a gradient of
measures of varying quality may help to speculate more accurately about what
would have been observed had the “gold standard” been available. This is a form
of dose-response analysis, where the dose measure is not the amount of expo-
sure received but rather the probability that exposure is accurately classified.

If measures of increasing quality show a gradient of increasing magnitude of as-
sociation with disease, this suggests that an association of presumably greater mag-
nitude would have been observed if a superior exposure measure outside the range
of what was feasible had been obtained. In contrast, if the spectrum of available
exposure measures shows no clear pattern of differences in the magnitude of as-
sociation with disease, or indicates that the better measures of exposure show
weaker associations, it may be inferred that a causal association is less likely to be
present. In order to assess the influence of exposure measures of varying quality,
there must, of course, be such a spectrum available. In addition, the interpretation
of the results must consider the possibility that what is thought to constitute a gra-
dient in quality of exposure data may not actually be a gradient. That is, the as-
sessment of which measures are better and worse is subject to error.

Consider a study to evaluate the role of socioeconomic status in relation to
prevalence of hypertension, where multiple measures of socioeconomic status of
varying quality are available. If median income for the census tract in which the
individual resides shows a relative risk of 1.5, contrasting lowest and highest so-
cioeconomic levels, individual level of education has a relative risk of 2.0 com-
paring least to most educated, and income relative to poverty level indicates a
relative risk of 2.5 from lowest to highest, one might infer that a measure that
truly captures the underlying construct of socioeconomic deprivation would show
a more marked gradient in risk. That is, the etiologically critical aspects of so-
cioeconomic status are elusive to define and measure, but we might accept that
the average income in the area, educational level, and personal income form a
gradient in quality with an expected (but unproven) stronger association if we
could derive the ideal measure. Observing such a pattern is consistent with the
hypothesis that there is a causal association between socioeconomic status and
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hypertension and that all of the available measures reflect the magnitude of that
association imperfectly.

Examine Subsets of the Population with Differing Exposure Data Quality

Accuracy of exposure assignment may vary in predictable ways in relation to at-
tributes such as gender, education, or age. Based on previously reported research
or based on validation studies contained within the study of interest, groups may
be defined for whom the routine exposure measure is more likely to be valid than
it is for other groups in the study. Younger persons may show a greater or lesser
concordance of the routine and superior exposure measures than older persons,
or women may report more or less accurately than men. Often, groups expected
to have superior cognitive function, e.g., younger participants versus the elderly,
or those without a history of alcohol and drug abuse compared to those with such
a history, are likely to provide better quality information through recall and self-
report. In fact, when the disease itself is associated with cognitive decline, e.g.,
studies of chronic neurodegenerative disease, case–control studies are suscepti-
ble to bias because cases provide data of inferior accuracy relative to controls.
Some individuals in the study may have experienced the etiologically relevant
period in the more distant past than others. All other considerations equal, those
who are reporting for a more recent calendar period may well provide better data
than those reporting for a more remote time.

Physiologic differences among individuals may also make the exposure meas-
ure more accurate for some than others. Differences arising from genetic varia-
tion or induced metabolic changes can create variation in the biologically effec-
tive dose for a given level of exogenous exposure. Depending on the particular
exposure of interest, a variety of hypotheses might be put forward regarding sub-
groups of participants in whom the accuracy of data would be higher or lower.
For example, in addressing the question of whether historical exposure to
organochlorines such as DDT and PCBs may be related to the development of
breast cancer, a major challenge is in accurately reconstructing historical expo-
sure. In case–control studies, in particular, measurements of present-day serum
residues of the chemicals of interest serve as an exposure indicator for lifetime
exposure history. While there are a number of factors that influence the changes
in body stores and serum levels over time, lactation is a primary means by which
such organochlorines are excreted. All other considerations equal, serum
organochlorines in women who have lactated are less indicative of long-term his-
torical exposure levels than for women who have not.

This understanding of lactation as a modifier of exposure was exploited in re-
cent studies of organochlorines and breast cancer to define strata in which the
present-day serum markers are more valid markers of long-term exposure (Mil-
likan et al., 2000). The association between serum levels of DDE and PCBs were
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examined in relation to breast cancer in strata of women who were nulliparous,
parous but never breastfed, and those who were parous and had breastfed (Table
8.3). These data suggest a weak positive association, though without a dose-
response gradient, limited to women who had never breastfed, i.e., the first two
strata. Among those who had breastfed, the odds ratios were close to or some-
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TABLE 8.3. Odds Ratios for Lipid-Adjusted DDE and PCBs and Breast Cancer, Strati-
fied by Parity and History of Breastfeeding, North Carolina, 1993–1996

Referent

CASES CONTROLS OR* (95% CI) OR† (95% CI)

Nulliparous

DDE‡
� 0.394 41 25
0.394 to � 1.044 36 23 1.28 (0.59–2.78) 1.24 (0.54–2.82)
� 1.044 35 17 1.87 (0.67–5.20) 1.48 (0.49–4.46)
Total PCBs§
� 0.283 37 25
0.283 to � 0.469 39 21 1.51 (0.69–3.33) 2.06 (0.88–4.85)
� 0.469 36 19 1.74 (0.67–4.54) 1.62 (0.57–4.58)

Parous, Never Breastfed

DDE
� 0.394 131 102
0.394 to � 1.044 122 123 0.86 (0.59–1.26) 0.96 (0.65–1.42)
� 1.044 134 111 1.07 (0.91–2.15) 1.23 (0.80–1.89)
Total PCBs
� 0.283 115 112
0.283 to � 0.469 159 125 1.51 (1.04–2.20) 1.50 (1.01–2.23)
� 0.469 113 99 1.40 (0.91–2.15) 1.30 (0.82–2.06)

Parous, Ever Breastfed

DDE
� 0.394 102 93
0.394 to � 1.044 73 73 0.94 (0.60–1.48) 1.16 (0.70–1.90)
� 1.044 74 92 0.71 (0.41–1.21) 0.80 (0.45–1.44)
Total PCBs
� 0.283 87 82
0.283 to � 0.469 68 74 0.92 (0.58–1.47) 0.90 (0.55–1.48)
� 0.469 94 102 0.95 (0.57–1.57) 0.84 (0.49–1.44)

*Adjusted for age, age-squared, and race.

†Adjusted for age, age-squared, race, menopausal status, BMI, body mass index, HRT, hormone re-
placement therapy use, and income.

‡p,p�-DDE in �g/g lipid.

§Total PCBs in �g/g lipid.

Millikan et al., 2000.



what below the null. Such results, though suggestive at most, may be reflective
of the superiority of the serum measures as an exposure indicator for women who
had never breastfed and accurately reflect a small increase in risk associated with
the exposure.

As illustrated by the above example, information on predictors of accuracy
in exposure classification can be used to create homogeneous strata across
which the validity of exposure data should vary in predictable ways. All other
influences being equal, those strata in which the exposure data are better would
be expected to yield more accurate measures of association with disease than
those strata in which the exposure data are more prone to error. Identifying
gradients in the estimated validity of the exposure measure and examining pat-
terns of association across those gradients serves two purposes—it can pro-
vide useful information to evaluate the impact of exposure misclassification
and also generate estimates for subsets of persons in whom the error is least
severe. Note that it is not helpful to adjust for indicators of data quality as
though they were confounding factors, but rather to stratify and determine
whether measures of association differ across levels of hypothesized exposure
data quality.

The quality of women’s self-reported information on reproductive history and
childhood social class was evaluated in a case–control study of Hodgkin’s dis-
ease in northern California using the traditional approach of reinterviewing some
time after the initial interview (Lin et al., 2002). Twenty-two cases and 24 con-
trols were reinterviewed approximately eight months after their initial interview,
and agreement was characterized by kappa coefficients for categorical variables
and intraclass correlation coefficients for continuous measures. Whereas cases
and controls showed similar agreement, education was rather strongly associated
with the magnitude of agreement (Table 8.4). Across virtually all the measures,
women who had more than a high school education showed better agreement
than women of lower educational level, suggesting that the more informative re-
sults from the main study would be found within the upper educational stratum.

Non-specific markers of exposure data quality such as age or education may
also yield strata that differ in the magnitude of association for reasons other than
the one of interest. There may be true effect measure modification by those at-
tributes, in which exposure really has a different impact on the young compared
to the old, or there may be other biases related to non-response or disease mis-
classification that cause the association to differ. When the identification of per-
sons who differ in the quality of their exposure assignment is based on specific
factors related to exposure, such as having been chosen for a more thorough pro-
tocol or having attended a clinic or worked in a factory in which more extensive
exposure data were available, then the observed pattern of association is more
likely to be reflective of the accuracy of the exposure marker as opposed to other
correlates of the stratification factor.
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Evaluate Known Predictors of Exposure

Although the nature of the association between exposure and the disease of in-
terest is uncertain to at least some extent, or there would be no motivation to
conduct the study, there may be well-established predictors of exposure that are
known with certainty. If accurately assessed exposure can safely be assumed to
have certain such predictors, assessing whether the expected associations with
exposure are present would help to indicate whether the exposure data are valid.

Exposure predictors are generally not of direct interest in relation to disease,
so that this information will not always be collected unless the application of
such information to the validation of exposure measurement is anticipated. The
basis for the linkage between the antecedent and the exposure need not be causal,
in that a well-established non-causal statistical predictor would serve the same
purpose of helping to indicate that exposure has (or has not) been measured suc-
cessfully. When such a predictor of exposure is available, and the expected re-
lation to exposure is very strong, the predictor may even be a useful proxy meas-
ure of exposure.

For example, assessment of the use of illicit drugs is a great challenge. It is
well known however, that a strong predictor, and perhaps a causal determinant,
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TABLE 8.4. Kappa or Intraclass Correlation Coefficients Among Subjects (n � 46)
Reinterviewed between 1992 and 1995 in a Case-Control Study of Hodgkin’s Disease,
Stratified by Education, Northern California

Kappa or Intraclass Correlation
Coefficient*

HIGH SCHOOL OR LESS MORE THAN HIGH SCHOOL

VARIABLE (N � 9) (N � 37)

Age at first period 0.827 (n � 9) 0.920 (n � 33)
Age at first period† 0.541 (n � 5) 0.848 (n � 27)
Number of pregnancies 0.584 (n � 8) 0.823 (n � 37)
Number of live births 0.632 (n � 8) 0.887 (n � 37)
Use of birth control pills or shots 0.769 (n � 9) 0.877 (n � 37)
Number of playmates at age 8 0.158 (n � 8) 0.779 (n � 36)
Birth weight in pounds 0.943 (n � 5) 0.966 (n � 29)
History of mononucleosis 0.000 (n � 9) 0.907 (n � 37)
Mean reliability‡ 0.558 0.876
(95% CI) (0.345, 0.735) (0.837, 0.912)

*Calculation of kappa and intraclass correlation coefficients does not include missing or unknown
responses.

†Calculated by subtracting year of birth from reported year at first period.

‡Bootstrapped difference between means (more than high school-high school or less) and 95% CI:
0.319 (0.147, 0.521).

CI, confidence interval.

Lin et al., 2002.



is the pattern of drug use among friends. Therefore, it would be expected that
those who are using illicit drugs would also report having friends who do so.
Thus, to avoid at least part of the sensitivity and stigma associated with such be-
havior, questionnaires might include items pertaining to drug use among friends,
something that respondents may be more willing to admit to than their own drug
use. Such information can be used to determine whether the expected positive
association is found with self-reported drug use, and also to create a category of
uncertain drug use when the individual reports not using drugs but having friends
who do so.

Another illustration of ascertaining and using information on the predictors of
exposure is often applied in the assessment of use of therapeutic medications.
There are certain illnesses or symptoms that serve as the reasons for using those
medications, and the credibility of reports of drug use (or even non-use) can be
evaluated to some extent by acquiring information on the diseases that the drug
is used to treat. When a respondent reports having an illness that is known to be
an indicator for using a specific medication, along with recall of using that med-
ication, confidence is enhanced that they are accurately reporting the medication
use. Those who had an illness that should have resulted in use of the drug but
did not report doing so, and those who reported using the medication but with-
out having reported an illness for which that medication is normally used, would
be assigned a less certain exposure status.

In a study of the potential association between serum selenium and the risk of
lung and prostate cancer among cigarette smokers, Goodman et al. (2001) pro-
vided a rather detailed analysis of predictors of serum selenium concentrations
(Table 8.5). In addition to addressing concerns with the comparability of collec-
tion and storage methods across study sites, they were able to corroborate the
expected reduction in serum selenium levels associated with intensity and re-
cency of cigarette smoking. Even though the background knowledge is limited
to help anticipate what patterns to expect, confirming the inverse association with
smoking adds confidence that the measurements were done properly and are more
likely to be capturing the desired exposure.

Even when the linkage of antecedent to exposure is less direct, as in the case
of social and demographic predictors, there may still be value in assessing ex-
posure predictors as a means of evaluating the accuracy of exposure information.
Weaker associations with exposure or those that are less certain will be less con-
tributory but can help to provide at least some minimal assurance that the expo-
sure information is reasonable. If assessing the consequences of otitis media in
children on subsequent development, the known positive association of the ex-
posure with attendance in day care and sibship size and patterns of occurrence
by age (Hardy & Fowler, 1993; Zeisel et al., 1999) may be helpful in verifying
that otitis media has been accurately documented. As always, when the data con-
flict with prior expectations, the possibility that prior expectations were wrong
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needs to be considered as an alternative to the inference that the data are in 
error.

Evaluate Known Consequences of Exposure

In some instances, exposures are known to have specific health consequences,
and verification of the expected associations with those other outcomes offers a
means of assessing the accuracy of exposure assessment. Presumably the prin-
cipal research question concerns potential health consequences of exposure that
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TABLE 8.5. Adjusted Mean Serum Selenium (�g/dl) Concentration in Control 
Participants, Carotene and Retinol Efficacy Trial, 1985–1999

ADJUSTED MEAN (SE)* P†

Gender 0.30

Male 11.55 (0.07)
Female 11.75 (0.17)

Race 0.99

White 11.58 (0.07)
African American 11.57 (0.32)
Other/Unknown 11.64 (0.37)

Exposure Population 0.06

Asbestos 11.31 (0.16)
Heavy smokers 11.72 (0.09)

Study Center 0.0001

Baltimore 9.89 (0.27)
Irvine 10.76 (0.22)
New Haven 11.20 (0.28)
Portland 11.96 (0.13)
San Francisco 10.99 (0.30)
Seattle 12.01 (0.10)

Blood Draw Smoking Status 0.0001

Current 11.34 (0.09)
Former 11.86 (0.09)

*Adjusted means from model including all variables with p � 0.1 except years quit smoking for the
heavy-smoker population. Adjusted means for blood draw year (p � 0.28) not given because this
was a linear variable in the model.

†p for test of heterogeneity.

SE, standard error.

Goodman et al., 2001.



are not fully understood or the study would be of little value. When data can be
obtained to assess whether strongly expected associations with exposure are
found, in the same sense as a positive control in experimental studies, confidence
regarding the validity of exposure measurement is enhanced. If expected associ-
ations are not found, serious concern is raised about whether the exposure is re-
flective of the construct that was intended.

In a cohort study designed to examine the effect of heavy alcohol use on the
risk of myocardial infarction, we might examine the association between our
measure of heavy alcohol use and risk of cirrhosis, motor vehicle injuries, or de-
pression, since these are established with certainty as being associated with heavy
alcohol use. If feasible, we might evaluate subclinical effects of alcohol on liver
function. If the study participants classified as heavy alcohol users did not show
any increased risk for health problems known to be associated with heavy alco-
hol use, the validity of our assessment of alcohol use would be called into ques-
tion. If the expected associations were found, then confidence in the accuracy of
the measure would be enhanced.

An examination of the effect of exercise on depression made use of known
consequences of physical activity to address the validity of the assessment, il-
lustrating this strategy. In a prospective cohort study of older men and women
in Southern California, the Rancho Bernardo Study (Kritz-Silverstein et al.,
2001), exercise was addressed solely with the question “Do you regularly engage
in strenuous exercise or hard physical labor?” Given the simplicity and brevity
of this query, it is reasonable to ask whether it has successfully isolated groups
with truly differing activity levels. Building on previous analyses from this co-
hort, they were able to refer back to an examination of predictors of cardiovas-
cular health. Reaven et al. (1990) examined a number of correlates and potential
consequences of self-reported engagement in physical activity (Table 8.6). There
was clear evidence of a lower heart rate and higher measure of HDL cholesterol
among men and women who responded affirmatively to the question about reg-
ular exercise. Though differences were not large, they do indicate some validity
to the question in distinguishing groups who truly differ in level of physical ac-
tivity. Note that the ability to make this inference depends on the knowledge that
activity is causally related to these measures, which must come from evidence
obtained outside the study.

Ideally, we would like to go beyond this qualitative use of the information to
increase or decrease confidence in the accuracy of exposure measures and actu-
ally quantify the quality of exposure data. Few exposure–disease associations are
understood with sufficient precision however, to enable us to go beyond verify-
ing their presence and examine whether the actual magnitude of association is at
the predicted level or whether exposure misclassification has resulted in attrition
of the association. For the few exposure–disease associations for which the mag-
nitude of association is known with some certainty, e.g., smoking and lung can-
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cer, and the misclassification can be assumed to be nondifferential with respect
to disease, estimates of the amount of exposure misclassification required to ob-
serve a diluted association of a given magnitude can be derived (Kleinbaum et
al., 1982; Copeland et al., 1977). The need for a series of assumptions regarding
the expected magnitude of association, freedom from other sources of error, and
applicability to the specific study population of interest limit the quantitative eval-
uation. Nevertheless, the concept may be helpful in the interpretation of the pat-
terns of association between exposure and its known consequences.

Examine Dose-Response Gradients

If we are able to specify the etiologically relevant measure of the amount of ex-
posure, and the amount of that exposure varies over the range that affects 

Measurement and Classification of Exposure 189

TABLE 8.6. Relation Between Regular Exercise Status and Mean Plasma Lipid Levels
Lipoprotein Levels and Other Variables Adjusted for Age in Men and Women Aged 50
to 89 Who Were Not Currently Using Cholesterol-Lowering Medications, Rancho
Bernardo, California, 1984–1987

Regular Exercise in Regular Exercise in
Men (n � 1019) Women (n � 1273)

NO YES P VALUE NO YES P VALUE

Other Variables

Age* (year) 172.000 167.400 � 0.001 1170.811 67.611 � 0.001
BMI 26.1 25.8 0.12 24.6 24.1 0.10
WHR 0.918 0.909 0.03 110.798 0.788 0.04
Cigarettes (per day) 2.8 0.5 � 0.001 2.3 2.0 0.53
Alcohol (mL/week) 131.6 115.0 0.14 78.2 81.3 0.69
Heart rate (beats 61.9 58.9 � 0.001 64.5 62.0 � 0.001

per minute)
PME use (% — — — 27.0 34.0 0.03

who use)

Lipid and Lipoprotein 
Levels (mg/dL)

Cholesterol 210.1 209.3 0.76 228.0 231.7 0.19
HDL 52.7 55.9 � 0.01 67.5 72.0 0.001
LDL 132.2 132.8 0.79 137.6 137.3 0.93
Triglyceride 108.3 91.7 � 0.001 102.7 99.2 0.37
n 758 261 1022 251

BMI, body mass index; WHR, waist-to-hip ratio; PME, postmenopausal estrogen use; HDL, high-
density lipoproteins; LDL, low-density lipoproteins.

*Age is unadjusted.

Reaven et al., 1990.



disease risk, then, by definition, more of that exposure will result in a greater
probability of developing the disease. We will observe a dose-response gradient,
in which increasing exposure results in an increasing risk of disease. The re-
strictions and uncertainties inherent in this evaluation should be recognized
(Weiss, 1981). The critical aspect of the exposure that will yield increasing risk
of disease may not be obvious, with the default approach based solely on some
index of cumulative dose subject to uncertainty and error. What may be more
important than the total amount of exposure is the form of the exposure, its bi-
ological availability, peak exposures, when it occurs, etc. A rather detailed un-
derstanding of the biologic process linking exposure and disease is required to
quantify the relevant dose accurately. Furthermore, the shape of the dose-response
function, if one is present at all, will vary across levels of exposure, potentially
having a subthreshold range in which there is no response with increasing dose
as well as ranges in which the maximum response has been attained and dose no
longer matters. If the variation in the exposure levels that are available to study
are all below or above the range in which disease risk responds to varying ex-
posure, then no dose-response gradient will be found. Nonetheless, the potential
value in identifying gradients in disease risk in relation to varying levels of ex-
posure is always worthy of careful evaluation. When such a gradient is observed,
it is informative and can support a causal hypothesis, but when it is absent, a
causal association is by no means negated.

The hypothesized etiologic relationship under study should include at least a
general specification of the type of exposure that would be expected to increase
the risk of disease. The hypothesis and available data need to be scrutinized care-
fully for clues to the aspects of exposure that would be expected to generate
stronger relations with disease. Total amount of exposure, generally measured as
intensity integrated over time, is commonly used. Even in the absence of any
measures of intensity, the duration of exposure may be relevant. More complex
measures such as maximum intensity or average intensity over a given time pe-
riod may also be considered.

For example, assume we are evaluating the relationship between oral contra-
ceptive use and the development of breast cancer. If the hypothesis suggests that
dose be defined by cumulative amount of unopposed estrogen, we would exam-
ine specific formulations of oral contraception and the duration of time over
which those formulations were used. If the hypothesis concerns the suppression
of ovulation, then the total number of months of use might be relevant. If the hy-
pothesis concerned a permanent change in breast tissue brought about by oral
contraceptive use prior to first childbirth, we would construct a different dose
measure, one that is specific to the interval between becoming sexually active
and first pregnancy.

In a study of oral contraceptives and breast cancer in young women (� 45
years of age), Brinton et al. (1995) examined several such dose measures. A mul-
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tisite case–control study enrolled 1648 breast cancer cases and 1505 controls
through random-digit dialing with complete data for analysis of oral contracep-
tive use. To examine varying combinations of duration of use and timing of use
(by calendar time and by age), relative risks were calculated for a number of dif-
ferent dose measures (Table 8.7). Except for some indication of increased risk
with more recent use, no striking patterns relative to duration and timing of oral
contraceptive use were identified.

There is no universally applicable optimal measure because the specific fea-
tures of the etiologic hypothesis lead to different ideal exposure measures. Mul-
tiple hypotheses of interest can be evaluated in the same study, each hypothesis
leading to a specific exposure measure. In many cases, the various indices of ex-
posure will be highly correlated with one another. On the positive side, even if
we specify the wrong index of exposure (relative to the etiologically effective
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TABLE 8.7. Relative Risks and 95% Confidence Intervals of Breast Cancer by 
Combined Measures of Oral Contraceptive Use Patterns: Women Younger Than 45
Years of Age, Multicenter Case-Control Study, 1990–1992

Used 6 months 
to � 5 years Used 5–9 years Used � 10 years

NO. RR (95% CI) NO. RR (95% CI) NO. RR (95% CI)

No. of Years 
Since First Use

� 15 136 1.44 (1.1–1.9) 66 1.55 (1.0–2.3) 22 1.27 (0.7–2.4)
15–19 221 1.14 (0.9–1.4) 120 1.45 (1.1–2.0) 93 1.58 (1.1–2.2)
� 20 292 1.29 (1.0–1.6) 190 1.10 (0.8–1.4) 119 1.11 (0.8–1.5)

No. of Years 
Since Last Use

� 5 80 1.66 (1.1–2.4) 87 1.49 (1.0–2.1) 131 1.37 (1.0–1.8)
5–9 66 1.28 (0.9–1.9) 71 1.49 (1.0–2.2) 66 1.13 (0.8–1.7)
� 10 503 1.21 (0.9–1.5) 218 1.14 (0.9–1.5) 37 1.34 (0.8–2.3)

Age at First 
Use, Years

� 18 79 1.04 (0.7–1.5) 80 1.55 (1.1–2.2) 75 1.47 (1.0–2.2)
18–21 342 1.32 (1.1–1.6) 224 1.21 (0.9–1.5) 122 1.12 (0.8–1.5)
� 22 228 1.29 (1.0–1.6) 72 1.21 (0.8–1.8) 37 1.68 (0.9–3.0)

*Adjusted for study site, age, race, number of births, and age at first birth. All risks relative to women
with no use of oral contraceptives or use for less than 6 months (389 patients and 431 control sub-
jects).

RR, relative risk; CI, confidence interval.

Brinton et al., 1995.



measure), it will be sufficiently correlated with the correct one to observe a dose-
response gradient. On the other hand, correlations among candidate indices of
exposure make it difficult or sometimes impossible to isolate the critical aspect
of exposure.

ASSESSMENT OF WHETHER EXPOSURE MISCLASSIFICATION 
IS DIFFERENTIAL OR NONDIFFERENTIAL

Definitions

Consideration of the pattern of error is critical to evaluating its likely impact on
measures of association. The most important question is whether the pattern of
error in exposure ascertainment varies in relation to disease status. If the nature
of the error is identical for persons with and without the disease of interest, the
misclassification is referred to as nondifferential. If the pattern of exposure mis-
classification varies in relation to disease status, it is called differential misclas-
sification. In the absence of other forms of error, nondifferential misclassifica-
tion of a dichotomous exposure indicator leads to a predictable bias towards the
null value for the measure of the exposure–disease association (Copeland et al.,
1977). A number of exceptions to this principle have been identified, for exam-
ple, multiple exposure levels in which misclassification may occur across non-
adjacent categories (Dosemeci et al., 1990) and categorization of a continuous
measure (Greenland, 1995). Nonetheless, the determination of whether disease
status is affecting the pattern of error in exposure assignment remains a critical
step in assessing the potential consequences of misclassification. When the qual-
ity of exposure assignment differs in relation to disease status, there are no read-
ily predictable consequences and the direction of bias needs to be assessed on a
case-by-case basis. In many, even most, cases of non-differential misclassifica-
tion, the bias tends to be toward the null value.

The source of exposure misclassification that arises from the disparity between
the ideal, etiologically relevant exposure indicator and the feasible, operational
definition of exposure would for the most part apply equally to persons with and
without disease. That is, inaccuracy in exposure assessment that results from in-
herent limitations in the ability to capture the construct of interest would usually
be independent of disease status. In contrast, the errors that arise going from the
operational definition to the acquisition of the relevant data through monitoring,
interviews, and specimen collection are often susceptible to distortion related to
the past or even future occurrence of disease. There are almost always dispari-
ties between the operational definition of exposure and the information on which
that assignment is based, and the processes by which such errors arise (recall,
perception, behaviors, physiology) often differ in relation to disease status.
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Mechanisms of Differential Exposure Misclassification

Disease May Distort Reporting or Perception of Exposure. Assuming a given
amount or level of exposure has occurred, there must be some mechanism by
which information on that exposure is ascertained. Questionnaires or interviews
are usually at least a component of the exposure assessment process, whether
done in a clinical setting and recorded in a medical record, elicited by an inter-
viewer exclusively for the study, or through a mailed questionnaire. The re-
spondent is asked to tell about his or her exposure, either directly or indirectly.
Therefore, the opportunity for their representation of that exposure to be influ-
enced by current or past health experience needs to be scrutinized.

One classic mechanism by which disease distorts reporting of exposure is
through conscious concerns with the potential exposure–disease association un-
der study. If an individual has heard or believes that exposure causes a disease,
and he or she is suffering from that disease, he or she may be more inclined to
believe and report that he or she was exposed. What is only a vague memory
may be reported as fact, or rumination about whether he or she did or did not
have the putative causal exposure may result in erroneously reporting that he or
she did. While this phenomenon is appropriately invoked as a concern in stud-
ies that require reporting of exposure after disease onset, usually case–control
studies, the circumstances under which it would occur are limited. Although there
is much speculation about disease-inspired reporting of exposure because it seems
reasonable to anticipate it, there are few instances in which this biased reporting
has been documented.

One of the issues of concern has been the reporting of exposure to medica-
tions during pregnancy in relation to the risk of having a child with a congeni-
tal defect (Klemetti & Saxén, 1967). Mothers who have suffered the emotional
trauma of having an affected child are postulated to overreport use of medica-
tions that they did not truly take. A number of studies indicate that recall of med-
ications and many other exposures during pregnancy is often incomplete, but
overreporting is quite rare (Werler et al., 1989). In addition, the patterns of er-
roneous underreporting tend to be similar among those with and without the dis-
ease. The susceptibility to differentially incomplete reporting depends in large
part on how susceptible the exposure is to incomplete reporting more generally.
Recall of relatively inconsequential events, such as taking cold medications dur-
ing pregnancy, is highly vulnerable to faulty, often incomplete, recall. In con-
trast, recall of whether medications to control epilepsy were taken during preg-
nancy is likely to be much more comprehensively recalled and thus is less likely
to differ for those with and without an adverse health outcome.

In order for the completeness of recall to be affected by the health outcome,
the respondent must consciously or unconsciously establish a link between the
exposure and outcome. Therefore, the potential for biased reporting of exposure
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depends in part on perception among respondents of a link between exposure and
disease, and those relations that have a high level of media attention and public
interest are therefore more vulnerable. Many putative associations gather wide-
spread public interest and awareness, making it difficult to elicit information
without some contamination based on the participants’ expectations. Investiga-
tors sometimes will ask directly if the participant has heard about or believes that
the exposure of interest can cause the disease under study, allowing for stratifi-
cation by those who do and do not believe it does. Although it can be argued
that those lacking suspicion would generate the more accurate responses, it could
also be hypothesized that those who are most attentive to media reports are also
the most attentive to their own exposures and provide the more accurate data.

An additional determinant of susceptibility to biased recall is the degree of
subjectivity in defining the exposure. Events such as prior surgery or level of ed-
ucation, for example, are unambiguous and not subject to varying interpretation.
In contrast, history of diseases based on self-diagnosis, such as frequent headaches
or conditions that are inherently subjective such as perceived stress are much
more vulnerable to differential misclassification in that the reporting contains an
element of judgment.

There are several approaches to evaluating how likely it is that such biased re-
call has occurred and if it has occurred, how much it has affected the study re-
sults. As always, the opportunity to validate reported exposure is optimal, in this
case requiring validation of reports from a sufficient number of persons with and
without the disease to contrast the two groups. Both the absolute level of accu-
racy, as an indicator of potential bias due to exposure misclassification gener-
ally, and relative level of accuracy among those with and without disease, as an
indicator of potential bias due to differential exposure misclassification, are of
interest. The closer the validation measure is to the gold standard, the better, but
even a measure of similar quality that is less vulnerable to distortion due to dis-
ease may be helpful. That is, an equally fallible exposure indicator that could not
possibly be affected by development of disease, such as record-based exposure
ascertained long before disease development, can be compared to self-reported
exposure among cases and non-cases to determine whether there is evidence of
differential error, even if the absolute level of error is not known.

Another approach is to examine some exposures that are very unlikely to 
affect the occurrence of disease but otherwise meet all the criteria for biased 
reporting. Exposures that are widely perceived as being related to disease cau-
sation are most vulnerable to reporting error. If data on such an exposure or ide-
ally, multiple exposures, are available, and show no evidence of differing in 
relation to disease status, this would provide reassurance that it is unlikely to be
present for exposures that are less widely perceived as being related to disease
or more objective in nature. If there is evidence of recall bias for those 
exposures most susceptible to biased reporting, then further examination of the
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potential for bias in the measurement of exposures of interest is warranted. Data
on a spectrum of exposures can be helpful in looking for patterns of this sort.

Often, this can be readily incorporated into study of multiple specific agents,
e.g., medications, dietary constituents. Even if the true interest is in a single med-
ication or a narrow class of medications, for example, the investigators might ob-
tain a somewhat longer list to use the other drugs as markers of susceptibility to
differential misclassification. That is, if medications thought to be very unlikely
to cause disease are nevertheless reported more commonly by those with disease
than those without, differential exposure misclassification for those drugs as well
as the ones of primary interest might be inferred as being more probable. Ap-
plication of this strategy requires placebo exposures that are perceived by the
public to be potential causes but unlikely to actually affect disease.

An example from the literature serves to illustrate several of these pathways
for differential exposure misclassification. The possibility that head trauma may
affect risk of developing brain tumors has been evaluated rather extensively
(Ahlbom et al., 1986; Burch et al., 1987), and always in case–control studies.
This is the sort of hypothesis that is more intuitively appealing to the public than
to most investigators, who are skeptical about whether a plausible mechanism
might link physical trauma to tumor development. In a series of case–control
studies reporting a positive association, there is a persistent concern with over-
reporting by cases. In order to address that possibility, more objective measures
of head trauma have been sought by restricting the severity. Whereas recall of
minor bumps on the head over one’s life may be highly vulnerable to distortion,
memory of head trauma resulting in loss of consciousness or medical treatment
is less susceptible to individual interpretation and selective recall. The ratio of
reports of major, verifiable head trauma to unverifiable minor head trauma might
be examined for cases and controls. Other ostensibly significant exposures in the
head area might be queried as markers of biased reporting, e.g., cuts, insect bites.
The proportion of participants who believe that head trauma may play a role in
the development of brain tumors would be of interest, giving some sense of the
level of vulnerability to biased reporting.

Disease May Distort the Measure of Exposure. Analogous to the phenome-
non in which the occurrence of disease may alter perception or self-report of ex-
posure, disease may alter biological measures of exposure if those measures are
taken after or even near the time of disease onset. Despite many attractive fea-
tures of biological markers of exposure, the question of whether their accuracy
has somehow been altered by the disease of interest deserves careful appraisal.
For diseases that develop over extended periods of time before becoming clini-
cally apparent, including many chronic diseases such as neurodegenerative 
disease, cancer, and atherosclerotic heart disease, measures taken months or 
even several years before the manifestation of disease could reflect, in part, the
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evolving disease itself. Early stages of disease or disease precursors could alter
the measure of exposure and produce an association between measured exposure
and disease that has no etiologic significance.

Research on chlorinated hydrocarbons and breast cancer illustrates the con-
cerns that can arise about whether the disease or its treatment might affect mea-
sured serum levels of DDT, DDE, and other stored compounds (Ahlborg et al.,
1995). If, in fact, early stages of breast cancer result in the release of some of
the persistent organochlorines that are stored in fat tissue, then women who go
on to develop clinically apparent breast cancer will have had some period prior
to diagnosis during which blood levels of those compounds were elevated, solely
as a result of the early disease process. A prospective study that uses measure-
ments obtained in the period shortly before case diagnosis could be affected. In
a case–control study in which blood levels of organochlorines are measured af-
ter diagnosis and treatment of disease, there is even greater susceptibility to hav-
ing case–control differences arise as a result of metabolic changes among cases.
The problem arises when the measure of exposure is also, in part, reflecting the
consequence of the disease itself.

One way to evaluate the potential influence of disease on measures of expo-
sure is through a thorough understanding of the biological determinants of the
exposure marker, allowing assessment of whether the disease process would be
expected to modify the measure. Obviously, this requires substantive knowledge
about the often complex pathways affecting the measure and a thorough under-
standing of the biologic effects over the course of disease development. In the
case of breast cancer and chlorinated hydrocarbons, the pathways are quite com-
plex and make it difficult to predict the combined effect of the disease on me-
tabolism, influence of disease-associated weight loss, etc.

A better approach is to empirically assess the influence of disease on the ex-
posure marker, through obtaining measurements before the disease has occurred,
ideally even before the time when disease precursors would have been present,
as well as after disease onset. The interest is in exposure during the etiologic pe-
riod before the disease has begun to develop, so the measure prior to the onset
of the disease can be viewed as the “gold standard” and the accuracy of the mea-
sure taken after onset can be evaluated for its adequacy as a proxy. This requires
having stored specimens for diseases that are relatively rare and develop over
long periods of time, so that a sufficient number of prediagnosis measurements
are available. One study was able to use specimens obtained long before the man-
ifestation of disease (Krieger et al., 1994), but did not report any comparisons of
prediagnosis with postdiagnosis measures from the same women. One study did
evaluate the effect of treatment for breast cancer on such markers (Gammon et
al., 1996), and verified that the values just prior to initiation of treatment were
quite similar to those observed shortly after treatment began, addressing at least
one of the hypothesized steps at which distortion might arise.

196 INTERPRETING EPIDEMIOLOGIC EVIDENCE



Even if the ideal data are not available, strategies exist for indirectly assess-
ing the likely impact, if any, of disease on the measure of exposure. The disease
may have varying degrees of severity, with influences on exposure measures
more likely for severe than mild forms of the disease. For example, breast can-
cer ranges from carcinoma in situ, which should have little if any widespread bi-
ologic effects, to metastatic disease, with profound systemic consequences. If the
association between chlorinated hydrocarbons and breast cancer were similar
across the spectrum of disease severity, it would be unlikely to merely reflect
metabolic changes associated with disease given that the severity of those meta-
bolic changes would be quite variable among breast cancer cases. Examining the
pattern of results across the spectrum of disease severity would reveal the extent
to which the disease process had altered measurements, with results for the least
severe disease (carcinoma in situ) most valid and the results for late-stage dis-
ease least valid.

The timing of exposure ascertainment relative to the onset of disease has been
examined as well to indicate the likely magnitude of distortion. A series of stud-
ies in the 1970s and early 1980s had suggested that low levels of serum choles-
terol were related to development of a number of types of cancer, with choles-
terol assessed prior to the onset of disease (Kritchevsky & Kritchevsky, 1992).
Nonetheless, there was great concern with the possibility that even cancer in its
early, preclinical stage may have affected the serum cholesterol levels. Under
this scenario, low levels of cholesterol followed within a limited period, say 6 to
12 months, by the diagnosis of cancer, may have been low due to the develop-
ing cancer itself. The approach taken to assess this problem has been to exam-
ine risk stratified by time since the measurement in longitudinal studies, in or-
der to determine whether the pattern of association with disease differs across
time. It would be more plausible that preclinical cancer that became manifest in
the first 6 months following cholesterol measurement had affected the choles-
terol measure than it would for cancers diagnosed 5 years or 10 years after cho-
lesterol measurement.

Disease May Cause Exposure. For certain types of exposure, it is possible for
early disease not just to distort the measure of exposure, as described above, but
also to actually cause the exposure. This is especially problematic for exposures
that are closely linked to the early symptoms of the disease of concern, which
may include medications taken for those symptoms or variants of the symptoms
themselves. Prior to being diagnosed, early disease may lead to events or be-
haviors that can be mistakenly thought to have etiologic significance. The causal
sequence is one in which preclinical disease results in exposure, and then the dis-
ease evolves to become clinically recognized.

Among the candidate influences on the etiology of brain tumors are a number
of diseases or medications, including the role of epilepsy and drugs used to 

Measurement and Classification of Exposure 197



control epilepsy (White et al., 1979; Shirts et al., 1986). It is clear that epilepsy
precedes the diagnosis of brain tumors, and medications commonly used to treat
epilepsy are more commonly taken prior to diagnosis by brain tumor cases than
controls in case–control studies. What is not clear is whether the early symptoms
of brain tumors, which are notoriously difficult to diagnose accurately in their
early stages, include epilepsy, such that the disease of interest (brain tumor) is
causing the exposure (epilepsy and its treatments). Similar issues arise in study-
ing medications used to treat early symptoms of a disease, e.g., over-the-counter
medications for gastrointestinal disturbance as a possible cause of colon cancer.

Similarly, undiagnosed chronic disease has the potential to distort certain ex-
posures of interest as potential causes, illustrated in a recent study of depression
as a potential influence on the risk of cancer. In a large cohort study in Denmark,
Dalton et al. (2002) evaluated the association between depression and other af-
fective disorders in relation to the incidence of cancer. By stratifying their re-
sults by years of follow-up (Table 8.8), they were able to consider the time course
of depression and cancer incidence to better understand the etiologic significance
of the results. Focusing on the results for the total cohort, note that brain cancer
risk was substantially elevated for the first year of follow-up only, returning to
near baseline thereafter. Although it could be hypothesized that depression is
causally related to brain cancer with a short latency, it seems much more likely
that undiagnosed brain cancer was a cause of the depressive symptoms given
what is known about the time course of cancer development. That is, the disease
of interest, brain cancer, undiagnosed at the time of entry into the cohort, may
well have caused the exposure of interest, depression. The likelihood that undi-
agnosed brain cancer becomes manifest many years after entry, distorting mea-
sures of association years later, is much less plausible so that the overall pattern
is suggestive of reverse causality.

Identification of Subgroups with Nondifferential 
Exposure Misclassification

Because the effects of errors in exposure that are the same for diseased and non-
diseased individuals tend to produce more predictable errors, often leading to
bias toward the null value, there is value in trying to create strata in which the
error is likely to be nondifferential. It would be preferable, of course, to avoid
error altogether, but stratification to achieve nondifferential misclassification is
still of benefit.

When a determinant of exposure accuracy, for example, educational level, is
also associated with disease, the results will be distorted due to differential mis-
classification of exposure if education is ignored. In other words, the imbalance
in educational levels among those with and without disease, and the association
between educational level and accuracy of reported exposure, results in differ-
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TABLE 8.8. Standardized Incidence Ratios for All Types of Cancer Combined and for Tobacco-Related Cancers, by Diagnostic Group, in Patients 
Hospitalized with an Effective Disorder in Denmark, 1969–1993

Portion of Follow-up Period

Total First Year of Follow-up 1–9 Years of Follow-up � 10 Years of Follow-up

DIAGNOSIS OBS SIR* 95% CI OBS SIR 95% CI OBS SIR 95%CI OBS SIR 95% CI

Total Cohort 9922 1.05 1.03, 1.07 654 1.19 1.11, 1.29 4655 1.02 0.99, 1.05 4613 1.07 1.03, 1.10

Tobacco-related cancers† 2813 1.21 1.16, 1.25 182 1.37 1.18, 1.59 1224 1.09 1.03, 1.16 1407 1.30 1.23, 1.37
Non-tobacco-related cancers 7109 1.00 0.98, 1.02 472 1.14 1.04, 1.25 3431 1.00 0.97, 1.03 3206 0.99 0.95, 1.02
Brain cancer 277 1.18 1.00, 1.32 46 3.27 2.39, 4.36 142 1.24 1.04, 1.46 89 0.84 0.67, 1.03
Other 6832 0.99 0.97, 1.02 426 1.06 0.97, 1.17 3289 0.99 0.96, 1.02 3117 0.99 0.96, 1.03

Diagnostic Level‡

Bipolar psychosis 1217 0.99 0.93, 1.03 62 1.16 0.89, 1.49 557 1.00 0.92, 1.09 598 0.94 0.87, 1.02
Tobacco-related cancers† 292 0.92 0.82, 1.04 18 1.30 0.77, 2.06 133 0.94 0.78, 1.11 141 0.88 0.74, 1.04
Non-tobacco-related cancers 925 1.00 0.93, 1.06 44 1.11 0.80, 1.48 424 1.02 0.93, 1.12 457 0.97 0.88, 1.06
Brain cancer 26 0.82 0.53, 1.20 4 2.72 0.73, 6.97 12 0.81 0.42, 1.42 10 0.64 0.31, 1.17
Other 899 1.00 0.94, 1.07 40 1.04 0.75, 1.42 412 1.03 0.93, 1.13 447 0.98 0.89, 1.07

Unipolar Psychosis 4345 0.98 0.95, 1.01 290 1.00 0.89, 1.12 2176 0.94 0.90, 0.98 1879 1.03 0.99, 1.08

Tobacco-related cancers† 1144 1.05 0.99, 1.11 76 1.07 0.84, 1.34 538 0.95 0.87, 1.03 530 1.18 1.08, 1.29
Non-tobacco-related cancers 3201 0.96 0.93, 1.00 214 0.98 0.85, 1.12 1638 0.94 0.90, 0.99 1349 0.98 0.93, 1.04
Brain cancer 119 1.19 0.99, 1.43 21 3.10 1.92, 4.75 58 1.11 0.84, 1.43 40 0.99 0.70, 1.34
Other 3082 0.96 0.92, 0.99 193 0.91 0.79, 1.05 1580 0.94 0.89, 0.99 1309 0.98 0.93, 1.04
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TABLE 8.8. Standardized Incidence Ratios for All Types of Cancer Combined and for Tobacco-Related Cancers, by Diagnostic Group, in Patients 
Hospitalized with an Effective Disorder in Denmark, 1969–1993 (continued)

Portion of Follow-up Period

Total First Year of Follow-up 1–9 Years of Follow-up � 10 Years of Follow-up

DIAGNOSIS OBS SIR* 95% CI OBS SIR 95% CI OBS SIR 95%CI OBS SIR 95% CI

Reactive Depression 2075 1.13 1.08, 1.18 184 1.62 1.39, 1.87 997 1.12 1.05, 1.19 894 1.07 1.00, 1.14

Tobacco-related cancers† 663 1.41 1.30, 1.52 58 2.03 1.54, 2.62 297 1.32 1.17, 1.48 308 1.43 1.27, 1.59
Non-tobacco-related cancers 1412 1.03 0.98, 1.09 126 1.48 1.23, 1.76 700 1.06 0.98, 1.14 586 0.95 0.87, 1.02
Brain cancer 59 1.20 0.92, 1.55 14 4.55 2.48, 7.63 29 1.21 0.81, 1.74 16 0.73 0.42, 1.18
Other 1353 1.03 0.97, 1.08 112 1.36 1.12, 1.64 671 1.05 0.97, 1.13 570 0.95 0.88, 1.03

Dysthymia 2285 1.18 1.13, 1.23 118 1.32 1.09, 1.58 925 1.15 1.08, 1.23 1242 1.19 1.13, 1.26

Tobacco-related cancers† 714 1.56 1.45, 1.68 30 1.58 1.07, 2.26 256 1.40 1.24, 1.59 428 1.68 1.52, 1.84
Non-tobacco-related cancers 1571 1.06 1.01, 1.12 88 1.25 1.00, 1.54 669 1.07 0.99, 1.16 814 1.04 0.97, 1.11
Brain cancer 73 1.34 1.05, 1.68 7 2.54 1.02, 5.24 43 1.80 1.30, 2.43 23 0.82 0.52, 1.23
Other 1498 1.05 1.00, 1.11 81 1.19 0.95, 1.48 626 1.04 0.97, 1.13 791 1.04 0.97, 1.12

*Observed number of cases/expected number of cases. The expected number of cases was the number of cancer cases expected on the basis of age-, sex-, and calendar-year-
specific incidence rates of first primary cancers in Denmark.

†Cancers of the buccal cavity, larynx, lung, esophagus, pancreas, kidney, and urinary bladder.

‡Bipolar psychosis: ICD-8 codes 296.39, 296.19, and 298.19; unipolar psychosis: ICD-8 codes 296.09, 296.29, 296.89, and 296.99; reactive depression: ICD-8 code 298.09,
dysthymia: ICD-8 codes 300.49 and 301.19.

Obs, observed; SIR, standardized incidence ratio; CI, confidence interval; ICD-8, International Classification of Diseases, Eighth Revision.

Dalton et al., 2002.



ential misclassification of exposure. The solution in this example is simple: strat-
ify on educational level and examine the exposure–disease association within edu-
cation strata. Within the strata, the accuracy of reporting exposure is more homo-
geneous in that one source of variability has been controlled, so that remaining errors
are more nondifferential in character. There may be other contributors to differen-
tial exposure accuracy that remain or educational level may have been the sole ba-
sis for the differential. Regardless, stratification by education will be beneficial.

Note that education, in this example, is a marker of accuracy, not a confounder,
and should therefore not be adjusted. In fact, under the assumption that more highly
educated respondents provide more accurate data, the expectation would be that
the most accurate results would be obtained in the high education stratum (less
nondifferential misclassification). In order to implement this strategy, the markers
of classification accuracy must be known, measured, and not too strongly related
to disease status. At the extreme, if the marker of accuracy is perfectly correlated
with disease status, it cannot be separated from disease in the analysis.

INTEGRATED ASSESSMENT OF POTENTIAL FOR BIAS 
DUE TO EXPOSURE MISCLASSIFICATION

Exposure misclassification has been recognized as ubiquitous in epidemiologic
studies (Rothman & Greenland, 1998; Armstrong et al., 1992), and thus the fo-
cus is on the magnitude and severity of exposure misclassification in the inter-
pretation of epidemiologic study results. Clearly, accuracy of exposure mea-
surement deserves great attention in the study design phase. Inaccuracy arises
through diverse pathways, and all the conceptual and practical limitations that
produce a disparity between the operational measure and the ideal measure of
exposure need to be considered. Investigators may be reluctant to articulate pre-
cisely what they would truly like to know, in that such honesty reveals how much
they have to compromise to arrive at a feasible study plan. In particular, the in-
surmountable limitations in exposure assessment are often ignored or downplayed
simply because there is little that can be done to address them. The hypothesis
under study often directs attention to a specific pathway, with the ideal exposure
measure the one that is biologically and temporally matched to the disease
process. Decisions about lumping and splitting exposure are analogous to those
for disease: select the level of aggregation that is pertinent to the hypothesized
etiologic pathway.

Given a completed study, the presence of exposure misclassification and its
influence on the measure of association should be evaluated. Where possible,
measures that are superior to those routinely obtained should be sought, allow-
ing a comparison between them to better assess the quality of the routine meas-
ure. Assessing such accuracy for those with and without disease can reveal 
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differential exposure misclassification. In addition, by examining results across
a spectrum of exposure measures of differing quality, inferences can be made
about how results might look with a more perfect indicator. Even when there are
not demonstrably superior measures of exposure available, useful information
can be obtained through multiple, imperfect exposure measures that can then be
combined in a variety of ways or compared. Consideration of known exposure
determinants or consequences can help to assess the extent to which the meas-
ure is functioning as desired.

The potential for differential exposure misclassification deserves special at-
tention, given that its influences on measures of effect are not readily predictable.
The presence of disease may influence the way people report or interpret expo-
sure, a problem that occurs when disease onset precedes exposure ascertainment.
Distinct from the awareness of the disease affecting exposure, the biologic process
of the disease, even at early, preclinical stages may alter biologic exposure mea-
sures. Sometimes, symptoms associated with the early stages of undiagnosed dis-
ease actually cause the exposure to occur, such as the use of medications to treat
preclinical symptoms. Opportunities to convert differential to non-differential ex-
posure misclassification should be pursued where possible by stratifying on dis-
ease predictors that also affect exposure data quality.

Measurement technologies have different strengths and pitfalls, and these con-
siderations have been discussed in great detail (Armstrong et al., 1992). Self-
reported exposure has obvious potential for error, due to the fallibility of human
memory and cognition, and the possible influence of the disease process on such
error needs to be carefully examined. Biological measures, ostensibly more pre-
cise in one sense, also have pitfalls, most notably a limited ability to reflect the
etiologic period of interest and susceptibility to distortion by the disease itself.
As new, increasingly elaborate technologies become available to assess expo-
sure, whether based on molecular biology or more cognitively sophisticated in-
terviewing strategies, the guiding question remains the same: How well does the
operational measure of exposure approximate the ideal?
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9
MEASUREMENT AND CLASSIFICATION 
OF DISEASE

In this chapter, the challenges that arise in accurately identifying the occurrence
of disease, or more broadly, health outcomes, are considered. Also, considera-
tion is given to the methods for detecting such errors and quantifying their im-
pact on measures of association. Some amount of error in assessment is inevitable,
with the extent of such error dependent on the nature of the health outcome of
interest, the ability to apply definitive (sometimes invasive) tests to all partici-
pants, and human and instrument error associated with gathering and interpret-
ing the information needed to assess the outcome.

FRAMEWORK FOR EVALUATING DISEASE MISCLASSIFICATION

Misclassification or measurement error refers to a phenomenon in which the val-
ues assigned to study variables (exposure, disease, or confounders) are incorrect
relative to their true values. For a dichotomous measure of disease, some per-
sons who in fact have the disease are misidentified as disease-free or those who
are free of the disease are falsely labeled as having the disease. For measures
with multiple categories, individuals are assigned the wrong level of the vari-
able, or for measures that are continuous, e.g., blood pressure, serum glucose,
the quantitative score they are given is in error relative to their actual score.
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The consequence of misclassification on the measure of association is some-
times referred to as information bias. The concept applies as much to continu-
ous as to categorical variables, though the terminology differs slightly—with con-
tinuous measures, we usually describe the phenomenon as measurement error, in
which the true and measured values differ from one another. The closer the true
and measured values are to one another, on average, the less measurement error
exists. In the case of categorical variables, we consider the probabilities of clas-
sifying an individual into the correct category and failure to do so as misclassi-
fication. The methodological literature often focuses on dichotomous variables
and uses terminology derived from the concepts of screening for disease: sensi-
tivity refers to the proportion of subjects with the attribute who are correctly iden-
tified as having the attribute and specificity refers to the proportion of subjects
without the attribute who are correctly identified as lacking it. In the screening
literature, these terms are used to evaluate the accuracy of an imperfect indica-
tor of disease relative to the gold standard diagnosis, whereas in the application
to misclassification, the routinely applied measure is the counterpart of a screen-
ing test that is evaluated against a superior, ideally perfect, indicator of the pres-
ence or absence of disease.

Typically, disease is categorized into a dichotomy, present or absent, even
though the underlying biological phenomenon often falls along a continuum, as
discussed below. Most of the discussion in this chapter is focused on dichoto-
mous measures of disease, in part for simplicity but also because many health
events truly are present or absent. Death is perhaps the most distinctly dichoto-
mous, and even where there is a biological phenomenon on a continuous scale
(blood pressure, glucose tolerance), clinical medicine often considers disease to
be present when some threshold is exceeded and the value falls outside the nor-
mal range. All the concepts that are developed for disease dichotomies would
apply to health outcomes measured in multiple categories and continuously as
well.

SOURCES OF DISEASE MISCLASSIFICATION

The most obvious source of disease misclassification is outright error, for ex-
ample, a clerical error in which a healthy person is assigned the wrong labora-
tory result and is incorrectly labeled as diseased. Conversely, an individual who
truly has a disease may be examined, but through clinician oversight, critical
symptoms are not queried or the appropriate diagnostic tests are not conducted.
This oversight results in a false negative diagnosis and the patient is erroneously
labeled as being free of disease. In the conventional table of a dichotomous dis-
ease cross-classified with exposure, the person who belongs in the diseased cell
is placed in the non-diseased cell or vice versa.
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There are many variations and complexities in disease ascertainment that re-
sult in some form of misclassification. One level beyond simple errors at the
individual level is error in the very definition of disease that is chosen and ap-
plied in the study. Sometimes the rules for disease ascertainment, even if fol-
lowed precisely, predictably generate false positive and false negative diag-
noses. For many diseases, such as rheumatoid arthritis or Alzheimer’s disease,
the diagnosis requires meeting a specified number of predesignated signs and
symptoms, which has the virtue of providing a systematic, objective method
of classification. Systematic and objective does not necessarily mean valid,
however, only reliable. At best, such criteria are probabilistic in nature, with
cases that are identified by meeting the diagnostic criteria likely or even very
likely to be diseased, and those assigned as noncases very likely to be free of
the disease. Even when the rules are followed precisely however, some pro-
portion of false positives and false negatives are inevitable. Often, the diagno-
sis based on a constellation of symptoms is truly the best that can be done on
living patients, but sometimes there is an opportunity to evaluate the validity
of the diagnosis at some future date when diagnostic information is refined.
Where a definitive diagnosis can be made after death, as in Alzheimer’s dis-
ease, the diagnostic accuracy based on applying clinical criteria can be quan-
tified. In other instances, such as many psychiatric diagnoses, there is no such
anchor of certainty so that the patient’s true status is unknown and the effec-
tiveness of the diagnostic criteria is not readily measured.

As a reminder that disease assignment can be a fallible process, expert com-
mittees periodically evaluate diagnostic criteria and modify them as concepts and
empirical evidence evolve. Clearly, either the initial criteria, the revised criteria,
or both had to contain systematic error relative to the unknown gold standard.
If, in fact, some of those signs and symptoms should not have been included as
criteria or if some components of the diagnosis that should have been included
were omitted, errors of diagnosis must have resulted from proper application of
the rules. Even an optimally designed checklist has probabilistic elements in that
a given constellation of symptoms cannot definitively lead to a specific diagno-
sis and exclude all others. Regardless of the origins of the problem, under this
scenario all relevant signs and symptoms will be elicited properly, recorded ac-
curately, and integrated according to the best rules available, yet a certain frac-
tion of persons labeled as diseased will not have the disease and some of those
labeled as non-diseased will actually have it.

Beyond the likelihood of error in properly applied operational definitions of
disease, the actual process by which individuals come to be identified as cases
in a study provides many additional opportunities for errors to arise. Typically,
a sequence of events and decisions are made to become a diagnosed case such
that overcoming one hurdle is required to proceed with the next on the pathway
leading to disease identification and inclusion as a case in the study. These 
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include both technical considerations based on disease signs and symptoms, but
also hurdles defined by recognition of symptoms and clinician insights.

False positives tend to be more readily identified and corrected than false neg-
atives. False positives are often less likely because those who meet a given mile-
stone on the path to diagnosis are evaluated more intensively at the next stage
and can thus be weeded out at any point along the way. On the other hand, fail-
ure to identify a person as needing further scrutiny in any step along the path-
way to diagnosis can result in elimination from further consideration and a false
negative diagnosis. Once a potential case of disease comes to the attention of the
health care system, substantial effort can be devoted to verifying the presence of
disease as a prelude to choosing among treatment options.

Optimally, a series of sequential screening efforts of increasing cost and so-
phistication is designed to end up with true cases, starting with a rather wide net
that is highly sensitive and not terribly specific, and proceeding to increasingly
specific measures. If the early stages of screening are not highly sensitive, then
false negative errors will occur and not have the opportunity to be identified given
that potential cases will leave the diagnostic pathway. Once such an error is made
in the early phase of identifying disease, it is inefficient for the massive num-
bers of presumptively negative individuals to be re-evaluated to confirm the ab-
sence of disease. People do not always recognize symptoms, they may fail to
seek treatment for the symptoms they do recognize, and even after seeking treat-
ment, they may not be diagnosed accurately. Each of these steps in reaching a
diagnosis constitutes the basis for terminating the search, affording numerous op-
portunities for underascertainment.

Many diseases, defined as a specific biologic condition, are simply not
amenable to comprehensive ascertainment for logistical reasons. For example, a
sizable proportion (perhaps 10%–15%) of couples are incapable of reproducing,
and some fraction of that infertility is attributable to blockage in the fallopian
tubes, preventing the transport of the ovum from the ovary to the uterus. This
specific biologic problem, obstruction of the fallopian tubes, is considered as the
disease of interest in this illustration. Under the right set of circumstances, such
couples will be accurately diagnosed as having infertility and further diagnostic
assessment will result in identification of occlusion of the fallopian tubes as the
underlying basis for the infertility. In order for this diagnosis to be made, how-
ever, the otherwise asymptomatic individual has to meet a number of criteria that
are dependent in part on choices and desires. The intent to have a child has to
be present. Persons who are not sexually active, those sexually active but using
contraception, and even those who engage in unprotected intercourse without the
intent of becoming pregnant would not define themselves as infertile and would
thus not undergo medical evaluation and diagnosis. Many women who in fact
have occlusion of the fallopian tubes are not diagnosed because they do not seek
the medical attention required to be diagnosed (Marchbanks et al., 1989).
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In principle, the problem could be circumvented by conducting the definitive
evaluation on all women in a given population, regardless of their reproductive
intentions, but the application of such procedures would be questionable on eth-
ical and logistical grounds. The problem of undiscovered cases due to the lack
of interest in conceiving cannot readily be overcome. Under the right conditions,
the underlying medical problem would be revealed, but the biological problem
is not a clinical or health problem until that occurs. It could be argued that a
defining element of tubal infertility is the self-identification of infertility, not just
the underlying biological condition.

Another mechanism resulting in systematic and often substantial underdiag-
nosis is when the biological condition often remains asymptomatic, as in most
cases of prostate cancer in older men or atherosclerosis that falls below the thresh-
old of producing symptoms. Advanced technologies capable of non-invasive as-
sessment are being developed to comprehensively screen and identify such con-
ditions, but under routine clinical care, false negatives (assuming that the
underlying pathophysiologic process is defined as the disease of interest) are quite
common.

Misclassification is only avoided by defining the disease, somewhat arbitrar-
ily, as the combination of an underlying biologic condition and the symptoms
that lead to its diagnosis. When the prevalence of subclinical disease is high, the
distinction between those who are identified as diseased and those who are not
is often based on decisions and behaviors unrelated to the disease process of in-
terest. Some diagnoses may be incidental in the course of being evaluated for
other health problems. To some extent, identification may reflect the idiosyn-
crasies that make some individuals perceive and report symptoms for a given
condition whereas other individuals, with an ostensibly identical condition, do
not. A particular challenge this can introduce is that any factors that are related
to the tendency to be diagnosed can be mistaken as risk factors for the develop-
ment of the disease. If wine consumption were positively associated with the de-
sire to have children, for example, then wine consumption might well be asso-
ciated with increased risk of diagnosed tubal infertility.

Poor choice of the quantitative scale on which disease is classified can intro-
duce another form of misclassification, if the clinical classification methods con-
flict with the underlying biological phenomenon. Blood pressure follows a con-
tinuous distribution and it appears that the risk of adverse health consequences
increases continuously with rising blood pressure (Rose, 1985). For the purpose
of determining treatment, however, a dichotomous category of hypertension is
established, and this may well be an entirely appropriate decision rule regarding
the point at which the benefits of treatment outweigh the risks. Even here, how-
ever, a diagnosis of borderline hypertension suggests recognition that the di-
chotomy is arbitrary. Labeling those who fall below the threshold for diagnos-
ing hypertension as disease free and those who fall over the threshold as diseased
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constitutes a form of misclassification, insofar as the disease of hypertension is
defined in order to accurately reflect the relationship of blood pressure to heart
disease and stroke. Choosing an operational definition of the disease variable that
is not optimal for evaluating the consequences of the condition represents a form
of misclassification, whether it involves inappropriately dichotomizing, setting
the wrong cutpoint for a dichotomy, or evaluating a continuum when in reality
a dichotomy is more useful.

Another continuum, gestational age at the time of delivery, is often di-
chotomized at 37 weeks’ completed gestation as preterm delivery (diseased) ver-
sus term delivery (non-diseased). If one uses the prediction of infant health and
survival as the gold standard for classification of gestational age at delivery into
preterm versus term, the dichotomy has some merits in that risk increases
markedly prior to completion of 37 weeks’ gestation but there is little discernible
benefit to advancing beyond 38 weeks. The grouping of very early (e.g., � 32
weeks’ gestation) infants with marginally early births (e.g., 35–36 weeks’ ges-
tation) is problematic however, because the risk of infant death is many times
higher for very early as compared to marginally early births. Examination of de-
terminants of the entire spectrum of gestational age, tempting because of seem-
ingly improved statistical power to evaluate a continuous measure, would not be
a good strategy in this case. After 37 weeks, duration of gestation has little im-
pact on survival (until the extreme high end of postterm births), and a continu-
ous measure will be dominated by differences in the range of 37–41 weeks given
that that is when most births occur but it is a period in which differences in du-
ration of gestation are clinically inconsequential. In this case, the problem with
a dichotomy of 37 weeks’ gestation is the implication that births prior to that cut-
point are equally at risk, when they are not, and the problem with a continuous
measure is that it implies duration of gestation across the entire spectrum, in-
cluding the over 37 week period is important, when it is not. Some more com-
plex definition of the outcome may be more appropriate, e.g., multiple categories
below 37 weeks’ gestation.

The exposure of interest, or more generally, the etiologic process under study,
is also pertinent to defining and measuring disease. A phenomenon like mental
retardation has some features of a continuum of intellectual and cognitive abil-
ity, with an arbitrary cutpoint, as well as some features of a true dichotomy, in
which severe cases are not simply part of the normal distribution but rather a dis-
tinct entity. For studying possible influences on the etiology of mental retarda-
tion, we need to be explicit about which condition is of interest. Lead exposure,
within the range typically encountered, is thought to result in a modest diminu-
tion in intellectual function across the entire spectrum (Schwartz, 1994), with an
increased proportion of children expected to fall into the range defined as men-
tally retarded because the whole distribution is shifted downward. In this instance,
the most informative outcome would be the continuous measure of intellectual

210 INTERPRETING EPIDEMIOLOGIC EVIDENCE



function such as IQ score or the proportion below a threshold for mild retarda-
tion. On the other hand, in the case of certain viral infections during pregnancy,
such as rubella, severe losses of intellectual ability would be anticipated, so that
the proper disease endpoint for study is the dichotomy severe mental retardation
or absence of severe mental retardation. Alcohol consumption during pregnancy
may be capable of causing both a shift toward lower intellectual ability and cases
of severe mental retardation in the form of fetal alcohol syndrome, depending on
the dose. The consequences of inappropriately categorizing or failing to catego-
rize can be viewed as forms of misclassification.

A commonly encountered decision in selecting a disease endpoint is the opti-
mal level of aggregation or disaggregation, sometimes referred to as lumping ver-
sus splitting. The decision should be based on the entity that is most plausibly
linked to exposure, reflecting an understanding of the pathophysiology of the dis-
ease generally and the specific etiologic process that is hypothesized to link ex-
posure to the disease. There are unlimited opportunities for disaggregation, with
subdivisions of disease commonly based on severity (e.g., obesity), age at oc-
currence (e.g., premenopausal versus postmenopausal breast cancer), exact
anatomic location (e.g., brain tumors), microscopic characteristics (e.g., histo-
logic type of gastric cancer), clinical course (e.g., Alzheimer’s disease), molec-
ular traits (e.g., cytogenetic types of leukemia), or prognosis (e.g., aggressive-
ness of prostate cancer). For any given disease, experts are continually deriving
new ways in which the disease might be subdivided, particularly through the use
of refined biological markers. There are a number of laudable but distinctive
goals for such refined groupings, including identification of subsets for selecting
appropriate treatment, assessing prognosis, or evaluating etiology. The goals of
the epidemiologic study must be matched to the classification system to identify
the optimal level of aggregation. There is no generic answer to the lumping ver-
sus splitting dilemma; it depends on the goal.

In principle, errors of excessive subdivision should only affect statistical power.
That is, subdividing on irrelevant features of the disease, such as the day of the
week on which it was diagnosed or the clinician’s zodiac sign, would not lead
to a loss of validity but only a loss of precision. It would be as though a random
number was assigned to each event and they were grouped on the basis of the
numerical assignment. By definition, selection based on an attribute that is un-
related to etiology constitutes a random sample. The loss of precision is not a
small concern, however, given that imprecision and random error are frequently
major barriers to distinguishing the signal from the noise. In studies of genetic
susceptibility markers, for example, imprecision resulting from an interest in ef-
fect modification places severe burdens on study size (Greenland, 1983) and can
result in a degree of imprecision that renders studies virtually uninformative. If
greater aggregation is biologically appropriate, more informative studies can be
conducted.
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Errors of excessive aggregation adversely affect validity (Rothman, 1986). The
motivation to lump is often an increase in statistical power or lack of awareness
of the opportunity for disaggregation. If, in fact, the correct choice is made to
aggregate potential subgroups, then precision is enhanced without sacrificing va-
lidity. In the above example, if we had foolishly divided the cases based on the
clinician’s zodiac sign, and some clever researcher was wise enough to reaggre-
gate them, the precision of the study’s results would be enhanced. The risk of
lumping is as follows: if the subset of disease that is affected by an exposure is
lumped with other subsets of disease that are unrelated to exposure, inclusion of
those irrelevant cases is a form of misclassification that produces a diluted mea-
sure of association. The addition of irrelevant cases is identical to what would
be produced by adding non-cases, an infusion of subjects with the exposure preva-
lence characteristic of the study base.

Assume that two diseases, for example, Hodgkin’s disease and non-Hodgkin’s
lymphoma are entirely distinctive in their etiology. When we create a disease en-
tity called lymphoma by aggregating the two, and conduct research to address
the etiology of this condition, relative to studies of Hodgkin’s disease alone or
non-Hodgkin’s lymphoma alone, the study suffers from misclassification. For
purposes of studying Hodgkin’s disease, infusing cases of non-Hodgkin’s lym-
phoma is tantamount to infusing healthy persons who were incorrectly diagnosed,
and conversely, if our purpose were to examine the etiology of non-Hodgkin’s
lymphoma. We can create entities such as lymphoma or even cancer or all ill-
ness and try to study the etiology of such diffuse entities. We can accurately
measure and quantify the association between exposure and various diseases, re-
flecting a mixture of the subsets that are truly influenced by exposure and those
that are not. In one sense, the misclassification is semantic in that the associa-
tion between a given exposure and the inappropriately broad set of diseases is
accurately measured. A more informative basis for inferring etiology however,
would be the quantification of the association for the subset that is etiologically
related to exposure and a documentation of the absence of association for the
subset that is not related to exposure. If we are unaware of the heterogeneity
among cases, what may be measured is a very small association that falls below
the level of the study’s resolution and is therefore simply not detected at all.

DIFFERENTIAL AND NONDIFFERENTIAL DISEASE MISCLASSIFICATION

In addition to the special substantive issues that apply to disease misclassifica-
tion and its consequences, there are a number of methodological issues that need
to be appreciated to assess the consequences of different patterns of misclassifi-
cation. A key distinction is between subtypes of disease misclassification that are
invariant with respect to exposure (non-differential misclassification of disease)
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versus those that differ as a function of exposure status (differential misclassifi-
cation of disease).

The result of nondifferential disease misclassification depends on the type of
design (cohort versus case–control), whether the error is due to disease under-
ascertainment (false negatives) or overascertainment (false positives), and the
measure of association (ratio or difference). The general principle is that non-
differential misclassification in a dichotomous variable tends to produce bias to-
wards the null (Rothman, 1986). Whatever the value would have been without
misclassification, whether above or below the null value, nondifferential mis-
classification in a dichotomous variable will most often bias the effect estimate
by moving it closer to the null value (Kleinbaum et al., 1982). If the association
is truly inverse, then the bias will be upward toward the null, and if the associ-
ation is positive, then the bias will be downward toward the null. While this rule
applies to many of the circumstances in which disease misclassification occurs,
there are also some important exceptions to the rule in which no bias is expected
to occur on average (Poole, 1985). Situations in which bias is absent should be
identified and even sought out if the investigator or evaluator of the data has such
an opportunity.

The consequences of erroneous assessment of disease depend on the study de-
sign. In a case–control study, the process by which potential cases are identified
needs to be examined (Brenner & Savitz, 1990). Underascertainment of disease,
if non-differential with respect to exposure, is tantamount to randomly sampling
cases. In other words, a disease assessment mechanism that has a sensitivity of
80% is functionally equivalent to having decided to randomly sample 80% of el-
igible cases. The exposure prevalence among cases should not be altered due to
underascertainment, though precision will be reduced due to the unnecessary loss
of otherwise eligible cases. On the other hand, if undiagnosed cases remain un-
der consideration as eligible potential controls past the time of disease onset, they
will introduce selection bias since they have the exposure prevalence expected
of cases and should have been removed from the study base once their disease
began. Only under the null hypothesis, when exposure prevalence is identical
among cases and the study base, will no bias result. Alternatively, if those cases
who were erroneously not identified (and thus excluded) can be identified and
omitted from the study base from which controls are sampled, then this bias can
be averted. Inclusion of cases in the study base from which controls are to be
sampled after their disease has begun will yield a biased sample. For reasonably
rare diseases, however, the proportion of false negative cases among the pool of
controls should have a negligible quantitative impact on the results.

In contrast, in a case–control study, disease overascertainment (imperfect speci-
ficity) will mix true cases with a potentially sizable number of misdiagnosed
(false positive) cases, particularly if the disease is reasonably rare. Thus, the iden-
tified case group will have a blend of the exposure prevalence among true cases
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and the exposure prevalence among erroneously diagnosed false positive cases.
This mixing will yield a bias towards the null, giving the observed case group
an exposure prevalence between that of true cases and that of a random sample
of the study base, represented by the false positives. Only when there is no as-
sociation between exposure and disease, whereby cases would have the same ex-
posure prevalence as the study base, will no bias result. Given the risk of over-
whelming true cases with false positives when disease is rare, it is important in
case–control studies to seek the maximum level of specificity even at the ex-
pense of some loss in sensitivity (Brenner & Savitz, 1990). Therefore, compar-
ing results for varying levels of disease sensitivity and specificity (see Section
below, “Examine results across levels of diagnostic certainty”) suggests that the
most valid estimates will be obtained for the most restrictive, stringent disease
definitions. Given that only ratio measures of effect (odds ratios) can be assessed
in case–control studies, all of the comments about bias due to nondifferential
misclassification refer to the odds ratio.

In contrast, nondifferential underascertainment of disease in cohort studies does
not produce a bias in ratio measures of effect (risk ratios, odds ratios) (Poole,
1985; Rothman & Greenland, 1998). Assume that the disease identification mech-
anism, applied identically among exposed and unexposed subjects, successfully
identifies 80% of the cases that are truly present. The absolute rate of disease
will be 0.80 times its true value in both the exposed and unexposed groups. For
ratio measures of effect, the sampling fractions cancel out, such that there is no
bias—0.80 times the disease rate among exposed subjects divided by 0.80 times
the disease rate among unexposed subjects produces an unbiased estimate of the
risk ratio. Note the minimal assumptions required for this to be true: only dis-
ease underascertainment is present and it is identical in magnitude for exposed
and unexposed subjects. If these constraints can be met, either in the study de-
sign or by stratification in the analysis, then unbiased measures of relative risk
can be generated. In this situation, however, the measure of rate difference will
be biased, proportionately smaller by the amount of underascertainment. For a
given sampling fraction, for example, 0.80, the rate difference will be 0.80 times
its true value: 0.80 times the rate in the exposed minus 0.80 times the rate in the
unexposed equals 0.80 times the true difference.

For non-differential disease overascertainment, the consequences are the op-
posite with respect to ratio and difference measures, i.e., bias in ratio measures
but not in difference measures of effect. In contrast to underascertainment, in
which a constant fraction of the true cases are assumed to be missed, overascer-
tainment is not proportionate to the number of true cases but instead to the size
of the study base or denominator. That is, the observed disease incidence is the
sum of the true disease incidence and the incidence of overascertainment, with
the total number of false positive cases a function of the frequency of over-
ascertainment and the size of the study base. If the disease incidence due to
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overascertainment is identical for exposed and unexposed subjects, the effect is
an addition of the same constant to the true incidence in both groups. For ratio
measures of effect (rate ratios, odds ratios), the addition of a constant to the nu-
merator and denominator will yield an estimate that is biased towards the null.
On the other hand, for measures of effect based on differences (risk or rate dif-
ference), the extra incidence due to false positive diagnoses will cancel out. As-
sume that the true incidence of disease is 10 per 1000 per year among the ex-
posed and 5 per 1000 per year among the unexposed for a rate ratio of 2.0
(10/1000 / 5/1000) and a rate difference of 5 per 1000 per year (10/1000 	

5/1000). If the overascertainment due to false positive diagnoses were 2 per 1000
per year among both the exposed and unexposed, the rate ratio would be biased
toward the null as follows: Among the exposed, the observed incidence rate would
be 12 per 1000 (10/1000 true positives plus 2/1000 false positives) and among
the unexposed, the observed incidence rate would be 7 per 1000 (5/1000 true
positives plus 2/1000 false positives) for a rate ratio of 1.7 (12/1000 / 7/1000),
biased toward the null. In general, the ratio of X plus a constant divided by Y
plus a constant is closer to 1.0 than X divided by Y (bias in ratio measures to-
ward the null), so that the overascertainment always yields a bias toward the null.
The rate difference however, would not be affected: the observed rate difference
of 12/1000–7/1000 � 5/1000 is the same as the true rate difference, 10/
1000–5/1000 � 5/1000. In general, X plus a constant minus Y plus a constant is
the same as the difference between X and Y (no bias in rate difference). If we
are aware that non-differential disease overascertainment is present, then differ-
ence measures would have an advantage over ratio measures in avoiding bias.

When disease overascertainment or underascertainment differs according to ex-
posure status (differential misclassification), the direction and magnitude of bias
can still be predicted based on the direction and magnitude of error by determin-
ing which groups will be spuriously large and which groups will be spuriously
small. If disease ascertainment is less complete among the unexposed, for exam-
ple, then a bias towards a falsely elevated measure of association results. If dis-
ease overascertainment occurs preferentially among the unexposed, then the meas-
ure of effect will be biased downward. Any errors that inflate the rate of disease
among the exposed or reduce the rate of disease among the unexposed will bias
the measure of effect upwards, and errors that reduce the rate of disease among
the exposed or inflate the rate of disease among the unexposed will bias the meas-
ure of effect downwards. Note that the null value does not provide a meaningful
benchmark in assessing the effects of differential misclassification. The predicted
direction of bias cannot be generalized as moving toward the null or away from
the null given that the movement of the effect estimate due to misclassification is
defined solely by its absolute direction, up or down. The true measure of effect,
the one that would be obtained in the absence of disease misclassification, is arti-
ficially increased or decreased, and may cross the null value.
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With this background on the consequences of disease misclassification, the
challenge is to make practical use of the principles to assess the potential for bias
and to develop methods for minimizing or eliminating bias. First, we have to de-
termine the situation that is operating in a specific study to know which princi-
ple to invoke. Identification of the study design should be straightforward, de-
fined solely by whether sampling is outcome-dependent (case–control design) or
not (cohort design) (Morgenstern & Thomas, 1993). Determining whether dis-
ease underascertainment, overascertainment, or both are present is not so easily
achieved, requiring careful scrutiny of methods and results. The following dis-
cussion provides some strategies for evaluating the type and amount of disease
misclassification, as well as methods for seeking to ensure that a given study has
a known type of error that can be more readily managed. If the form of disease
misclassification can be defined or constrained to one type, the impact on the re-
sults is at least predictable if not correctable. When both false positive and false
negative errors are present in a dichotomous outcome and those errors are non-
differential with respect to exposure, regardless of the design or measure of ef-
fect, bias toward the null will result.

ASSESSING WHETHER MISCLASSIFICATION IS 
DIFFERENTIAL BY EXPOSURE

In evaluating the influence of possible disease misclassification, careful consid-
eration must be given to whether the errors are likely to differ as a function of
the exposure of interest. Misclassification of disease that is differential by expo-
sure directly distorts the measure of effect, and therefore even relatively modest
differences are capable of generating spurious increases or decreases in the esti-
mated measures of effect. Non-differential misclassification of disease may pro-
duce no bias, but may also result in bias toward the null.

An understanding of the processes that generate erroneous assignment of disease
status provides the basis for judging whether the source of error is likely to be in-
dependent of exposure. If the misclassification results from clerical errors, for ex-
ample, then the critical question concerns the potential for such clerical errors be-
ing somehow influenced by exposure status. Certainly if the clerk is aware of the
person’s exposure status, the potential for differential error is enhanced whether by
conscious tendencies to assign disease status taking exposure into account or by un-
conscious proclivities. The basis for differences can be quite subtle. For example,
does the medical record quality and clarity differ for exposed and unexposed sub-
jects, making one group more prone to error than another? If, for example, expo-
sure information is also obtained from medical records and better records are more
likely to mention the exposure of interest, those same higher quality records that
note exposure may also be more likely to comprehensively identify disease.
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Exposures may directly or indirectly affect the likelihood of seeking medical
attention and thereby the opportunity to be diagnosed. Health behaviors such as
tobacco and alcohol use have a number of psychological and sociological corre-
lates as well as direct biologic effects on health. If, for example, heavy alcohol
users are less likely to seek medical care for health conditions that do not always
come to medical attention, e.g., colon polyps or infertility, then whatever the true
incidence of disease among drinkers and nondrinkers, drinkers will be less likely
to be diagnosed with those conditions. Disease misclassification will be differ-
ential, with more undiagnosed cases among drinkers than nondrinkers, and what-
ever the true relative risk may be between heavy alcohol use and the health out-
come, the measured relative risk will be biased downward.

Other exposures of interest sometimes serve as a marker or signal of more reg-
ular or intensive medical care and thus provide a greater opportunity for diag-
nosis of subclinical disease. For example, among the variety of contraceptive
methods that are commonly used, oral contraceptives are unique in requiring a
regular schedule of visits to a physician for renewal of the prescription. In-
trauterine devices, diaphragms, and condoms do not require regular office visits.
As a by-product of obtaining regular medical examinations, blood pressure
screening will be more frequent for women using oral contraceptives than for
women who use other methods of contraception. Asymptomatic hypertension is
therefore almost certain to be found proportionately more often among oral con-
traceptive users than among women using other methods of contraception or no
contraception, under the realistic assumption that there is much undetected hy-
pertension in the population that is diagnosed only if medical care is sought for
other purposes. The extent of underdiagnosis is presumably reduced among
women who take oral contraceptives relative to women who use other forms of
contraception. Unless the intensified surveillance of women using oral contra-
ceptives is taken into account, the association between oral contraceptive use and
hypertension will be spuriously elevated.

For some well-established risk factors for disease, the association between ex-
posure and disease may be so familiar as to become a marker for greater scrutiny
or even function as a diagnostic criterion. An extreme case is in the diagnosis of
certain occupational pulmonary diseases, such as silicosis or asbestosis, in which
a history of exposure to the presumed agent (silica or asbestos) is required, along
with radiographic findings and pattern of symptoms. Exposure history literally
is a component of the definition of disease. In the complex diagnostic process
that begins with a patient presenting to a physician, the entire avenue of explo-
ration, request for diagnostic tests, interpretation of those tests, elicitation of in-
formation on symptoms, and final diagnosis would be affected by the reported
history of occupational exposure. A person employed as a clerk and one em-
ployed as an insulation worker would travel down different diagnostic paths when
presenting with pulmonary symptoms, and accurate determination of whether or
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not the person has asbestosis would undoubtedly be affected by the presumed
history of asbestos exposure.

More subtle forms of exposure-driven diagnosis can also result in differential
disease misclassification, typically creating a spuriously strong association if the
exposure increases the probability of more accurate or complete diagnosis. To-
bacco use is a firmly established, major cause of a variety of diseases, including
cancer of the lung and bladder, coronary heart disease, and chronic obstructive
pulmonary disease. While several of these diseases have unambiguous diagnoses,
such as advanced lung cancer, there are others such as chronic bronchitis or
angina that can involve a certain amount of discretionary judgment on the part
of the physician. Integration of the complete array of relevant data to reach a fi-
nal diagnosis is likely to include consideration of the patient’s smoking history.
This can be viewed as good medical practice that takes advantage of epidemio-
logic insights since the probabilities of one diagnosis or another are truly altered
by the smoking history. Incorporation of the exposure history into the diagnos-
tic evaluation however, may well result in a more complete assessment or even
overdiagnosis of diseases known to be related to tobacco among patients with a
smoking history. In some instances, the greater reluctance to diagnose a non-
smoker as having bronchitis and the greater willingness to diagnose a smoker as
having bronchitis may help make the diagnoses more accurate, but such expo-
sure-driven judgments also have the potential to introduce disease misclassifica-
tion that is differential in relation to smoking history.

Another way in which differential disease misclassification may arise is as a nat-
ural consequence of the exposure of interest rather than as a result of the behavior
of the affected individual or the predilections of the person making the diagnosis.
The exposure may alter our ability to accurately diagnose the disease. In examin-
ing the causes of spontaneous abortion, for example, we have to contend with am-
biguity of diagnosis, particularly in the first few weeks of pregnancy. Early spon-
taneous abortion may not be recognized at all or misinterpreted as a heavy menstrual
period, and conversely, a late, heavy menstrual period may be misinterpreted as a
spontaneous abortion. If we are interested in examining the influence of menstrual
cycle regularity or other menstrual bleeding characteristics on the risk of sponta-
neous abortion, a problem arises. Our ability to make accurate diagnoses will be
greatest for women who have regular menstrual cycles, which may be viewed as
the unexposed group, and the exposed women with irregular menstrual cycles will
be less accurately diagnosed. The solution to such a problem may reside in a di-
agnostic method such as evaluation of hormone metabolites in urine (Wilcox et al.,
1988), thus freeing the diagnosis from the influence of menstrual cycle regularity.
Such an approach to diagnosis eliminates the association between the exposure of
interest and the accuracy of disease diagnosis.

The many opportunities for differential misclassification should be considered
comprehensively, addressing all the ways in which exposure could directly or in-

218 INTERPRETING EPIDEMIOLOGIC EVIDENCE



directly affect the accuracy of disease classification. Of course, if there is little
or no disease misclassification at all, then there is little or no differential mis-
classification. The greater the absolute magnitude of error, all other things being
equal, the greater the potential for that error to be differential across exposure
groups. If the sensitivity and specificity of classification are both 98%, then there
is little room for exposure to influence it, whereas if sensitivity and specificity
are 80% or 50%, there is abundant opportunity for important variation in the ac-
curacy of disease classification among exposure groups to arise.

All the events that lie between the occurrence of the underlying biologic phe-
nomenon of interest and identification as a case of disease in a particular study
must be examined. The cascade of events typically includes symptom recogni-
tion, seeking of medical care, diagnostic evaluation, assignment of a diagnosis,
notation in some database, and ascertainment from that data base, or sometimes
a diagnostic process designed specifically for the study. For assessing under-
ascertainment, it may be helpful to work backwards from the diagnosed cases of
disease, asking, “What had to happen for me to know of their disease?” Moving
all the way back to the development of the underlying pathophysiology should
help to reveal, at each step, how the recognized case made it into the study and
how others who had made it through the preceding steps could have been lost.
For each such source of loss, we ask whether the probability of its occurrence
would have been likely to differ in relation to exposure. The role of exposure in
this process must be examined broadly, in that it may influence each one of those
steps through biological, behavioral, or social processes.

EVALUATION OF DISEASE MISCLASSIFICATION

In this section, a variety of options for examining, understanding, and in some
cases mitigating the adverse consequences of disease misclassification are con-
sidered. None even approximates the avoidance of misclassification altogether,
of course, but for many reasons that may include ethical constraints, lack of con-
trol over clinical evaluations, or resource limitations, disease misclassification is
inevitable to some extent. Given results from a completed study, what can be
done to determine whether there is bias due to disease misclassification or to
eliminate bias that may be present?

Examine Results Across Levels of Diagnostic Certainty

The certainty of disease diagnoses can often be categorized at least in ordinal if
not quantitative terms, such as definite, probable, and possible. These levels may
be assigned based on established systems for tabulating clinical and laboratory
findings, or formulated specifically for application in a given study. What is 
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postulated in assigning such labels is that if the absolute truth were known, those
classified as definite would contain the highest proportion of persons with the
disease present, those labeled as probable the next highest, and those called pos-
sible having the lowest proportion of truly diseased persons. The only inference
is ordinal, such that these three groups might contain 100%, 80%, and 60% who
truly have disease or 50%, 30%, and 10%. Although it would be more desirable
to be able to attach precise quantitative probabilities to these categories, even in-
formation on the relative degree of certainty has value in interpreting study re-
sults. The improved sensitivity in going from possible to probable to definite is
virtually certain to be accompanied by a loss in specificity, i.e., increasing num-
bers of persons erroneously excluded (false negatives).

As noted previously, the greater concern in misclassification of relatively rare
diseases is usually with false positives, since even a modest loss in specificity
can result in overwhelming the few true positives with many false positives. Sen-
sitivity is critical for enhancing precision, since false negative cases are not con-
tributing to the pool of identified cases, but the infusion of a handful of false
negatives into a large group of true negatives would have little impact on mea-
sures of effect. Given those considerations, bias in measures of association should
be least when using the most stringent, restrictive case definitions and greatest
for the more uncertain, inclusive categories. Because specificity is presumably
highest for the most restrictive definition, when a gradient in measures of effect
across levels of diagnostic certainty is found, the most valid result is likely to be
for the most definite cases—whether those show the strongest or weakest mea-
sure of association.

If, in fact, the most certain cases yield the most valid results, one might ques-
tion the value of considering the other categories at all. In other words, why not
just set up a highly restrictive case definition at the outset and accept the loss of
some true cases in order to weed out a greater proportion of the non-cases? First,
the opportunity to examine a gradient in certainty of classification is informa-
tive. The contrast between results for more versus less certain cases generates a
spectrum of information that is helpful in assessing the magnitude and impact of
disease misclassification. Observing a risk ratio of 2.0 for definite cases in iso-
lation may be less informative than observing a risk ratio of 2.0 for definite cases,
1.5 for probable cases, and 1.2 for possible cases. The opportunity to assess pat-
tern of risk in relation to diagnostic certainty is an incentive to retain strata of
cases that are less certain. Nevertheless, if resource limitations force us to com-
mit to only one case definition, then the more restrictive one would generally be
preferred. Second, our initial assessment of certainty of diagnosis may be in er-
ror, in which case we would lose precision and not gain validity by restricting
cases to the highest level of diagnostic certainty. Observing relative risks around
2.0 for definite, probable, and possible cases may suggest that all three categories
are equally likely to contain true positive cases, even if we do not know exactly
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what the proportion is. If, in fact, there were empirical evidence that the groups
were similar with regard to their patterns of risk, aggregating them would be a
reasonable strategy for enhancing precision with little or no loss in validity.

Many physiologic parameters have no true threshold for abnormal, so that the
more restrictive and extreme the cutpoint, the more likely it is that persons la-
beled as abnormal will suffer clinical consequences. This phenomenon is clearly
illustrated in that case of considering semen parameters related to male infertil-
ity, in which the cutpoints for normality are rather arbitrary relative to the clin-
ical consequences for fertility. In fact, as the abnormal semen parameters are de-
fined with increasingly restrictive criteria, the certainty that there is a clinically
important functional abnormality present is enhanced. For example, when sperm
concentration reaches 0 per ml, conception will be impossible, when it is very
low, e.g., � 5 million per ml, conception is very unlikely, etc. In a study of in-
fertility patients treated in the Netherlands (Tielemans et al., 2002), the investi-
gators considered three case definitions of increasing restrictiveness, using a com-
bination of sperm concentration, motility, and morphology as characterized in
the table footnote (Table 9.1). As more stringent standards were applied to de-
fine sperm abnormality, the association with cigarette smoking became stronger
but also less precise. This pattern is consistent with a true effect of tobacco use
on semen parameters, but one that is diluted by misclassification using more lib-
eral disease definitions. The restricted study population referred to in the table
excluded those who were least likely to be aware of the cause of their infertility
as described in detail in the manuscript.

An important potential drawback to this approach is the possibility that a
strategy intended to establish levels of diagnostic certainty might instead re-
flect fundamentally different disease subsets that have different etiologies. For
example, definite cases with a key symptom required to label them as certain
may actually have a different condition than those lacking that symptom and
labeled possible. Severity, often used to establish certainty, may also be asso-
ciated with qualitative differences in etiology, as illustrated earlier in this chap-
ter for mental retardation. Severe mental retardation is diagnosed with greater
certainty than mild mental retardation, but may well also represent a funda-
mentally different entity with a different pathogenesis and different determi-
nants. If a study were conducted that found a given exposure was associated
with a risk ratio of 2.0 for severe mental retardation and 1.5 for mild mental
retardation, it would not necessarily correspond to more disease misclassifica-
tion among those individuals labeled as having mild mental retardation. Both
results could be perfectly valid, reflecting differing magnitudes of association
with different health outcomes. The judgment about whether the groups iden-
tified as more or less certain to have the disease reflect the same entity with
differing quality or different entities has to be made based on substantive knowl-
edge about the exposures and diseases under investigation. The study results
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TABLE 9.1. Estimated Odds Ratios for Abnormal Semen Parameters and Male Cigarette Smoking in the Total Study Population and the Restricted 
Population, the Netherlands, 1995–1996*

Total Population Restricted Population

NO.† OR 95% CI OR 95% CI NO. OR 95% CI OR 95% CI

Case Definition A‡

Male smoking 153 1.25 0.88, 1.79 1.34 0.90, 2.00 51 1.98 0.96, 4.11 2.07 0.95, 4.51
Female smoking 137 0.86 0.58, 1.29 41 0.90 0.42, 1.93

Case Definition B§

Male smoking 75 1.69 1.11, 2.57 1.97 1.20, 3.24 23 2.30 1.00, 5.27 2.99 1.17, 7.67
Female smoking 58 0.73 0.44, 1.21 13 0.51 0.19, 1.38

Case Definition C¶

Male smoking 20 1.92 0.98, 3.74 2.62 1.22, 5.61 7 2.45 0.77, 7.81 4.58 1.20, 17.47
Female smoking 12 0.50 0.22, 1.14 1 0.09 0.01, 0.87

*Smoking by the male partner was entered alone and simultaneously with female smoking into logistic regression models.

†Number of cases with the particular risk factor.

‡Sperm concentration below 20 � 106/ml, less than 50% spermatozoa with forward progression and also less than 25% spermatozoa with rapid progression, less than 14% sper-
matozoa with normal forms, or abnormal values for more than one parameter.

§Sperm concentration below 5 � 106/ml, less than 10% spermatozoa with forward progression, less than 5% spermatozoa with normal forms, or abnormal values for more than
one parameter.

¶Azoospermia

OR, odds ratio (calculations based on the control group with the following characteristics: sperm concentration of 20 � 106/ml or more, 50% or more spermatozoa with for-
ward progression of 25% or more spermatozoa with rapid progression, and 14% or more spermatozoa with normal forms); CI, confidence interval.

Tielemans et al., 2002.



alone will not make it clear which is operative if the magnitude of association
differs across groups.

Evaluate Alternate Methods of Disease Grouping

The constitution of disease groups is subject to varying definition, sometimes
based on pathologic characteristics, sometimes based on clinical manifestations
or disease course, and increasingly based on molecular analyses. Designing epi-
demiologic research requires making decisions about what constitutes a mean-
ingful disease entity for study, and that question depends in part on the exposure
of interest. If our interest is in the effect of heat waves on mortality, for exam-
ple, all cause mortality may be the appropriate entity to consider if the mecha-
nism is one in which persons whose health is compromised for any reason are
more susceptible. On the other hand, we may believe that only a subset of dis-
eases will mediate an effect of heat on mortality, perhaps heart or respiratory dis-
ease only if we believe that the isolated effect is one of cardiopulmonary stress,
and heat would not be expected to increase risk of death due to injury or infec-
tion. The rationale for considering and choosing the optimal disease entity is a
focus on what set of conditions may reasonably be expected to be influenced by
the exposure under study. As we zero in on heart disease deaths, omitting deaths
that are not thought to be plausibly related to heat, the adverse effects of high
temperature should become increasingly clear. When we study all deaths from a
wide range of factors not likely to be related to the heat wave, such as cancer,
motor vehicle injury, and infant deaths from congenital anomalies, the inclusion
of those entities not truly related to heat will generate a correct measure of the
impact of heat on total mortality but the strength of association (relative risk)
will be reduced even though in principle the risk difference would not be af-
fected.

Selection of the proper disease entity depends on our understanding of the eti-
ologic process. There is almost always some degree of uncertainty regarding the
etiologic mechanism that might link a particular exposure and disease outcome,
even for extensively researched topics. Furthermore, different hypothesized eti-
ologic mechanisms often lead to different expectations regarding the disease sub-
set that is likely to be causally related to the exposure under study. The optimal
grouping of diseases to evaluate as the study outcome measure is the complete
aggregation that is plausibly related to the exposure, including cases that could
be affected and excluding cases that are not potentially affected. Exclusion of
relevant cases leads to loss of power or precision, and inclusion of cases of dis-
ease that are not potentially related to the exposure of interest in the analysis bi-
ases the measure of the relationship between exposure and disease as a form of
misclassification. The additional cases of disease that are not plausibly related to
the exposure represent false positives relative to the exposure–disease relation-
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ship under study, and have the same impact as any other source of false posi-
tives on the results.

If benzene exposure truly caused only one form of leukemia, acute myeloid
leukemia, as some have argued (Wong, 1995), then studies of benzene and
leukemia that include other forms, such as chronic myeloid leukemia and acute
lymphocytic leukemia would be expected to yield weaker ratio measures of as-
sociation. That weaker measure would accurately reflect the impact of benzene
on total leukemia, but would reflect a smaller magnitude than would be found
for acute myeloid leukemia alone. Those cases of other forms of leukemia would
act analogously to false positive cases of acute myeloid leukemia, diluting the
measured association. Under the hypothesis of an effect limited to acute myeloid
leukemia, the exposure pattern of cases of other types of leukemia would be iden-
tical to those of persons free of disease. On the other hand, if multiple types of
leukemia are in fact affected by benzene, as suggested in a recent review (Savitz
& Andrews, 1997) and a report from a large cohort study (Hayes et al., 1997),
then restricting an already rare disease, leukemia, to the subset of acute myeloid
leukemia, is wasteful. Relative to studying all leukemias, there would be a sub-
stantial loss of precision, and may not be a gain in specificity of association with
benzene exposure.

Often we are faced with uncertainty and reasonable arguments that would sup-
port more than one approach to disease grouping. Rather than arbitrarily adopt-
ing one strategy, the best approach may be to examine the results under several
scenarios and consider what impact misclassification would be likely to have had
under those alternative assumptions. If, in fact, there is a causal association with
at least some subset of disease, then the analysis that is restricted to that subset
will show a stronger exposure–disease association than analyses that are more
inclusive. If there is reasonable doubt about whether etiologically distinctive sub-
sets of disease may be present, there is an incentive to present and evaluate re-
sults for those subsets. Should the subsets all yield similar measures of effect,
then one might infer that nothing was gained and the exposure has similar con-
sequences for all the subgroups of disease. On the other hand, generating data
for disease subsets is the only means for discovering that some subsets are af-
fected by the exposure whereas others are not.

For example, we hypothesized that among all cases of preterm delivery, dis-
tinctive clinical presentations may correspond to different etiologic mechanisms:
some occur following spontaneous onset of labor, some following spontaneous
rupture of the chorioamniotic membranes, and some result from medical inter-
ventions in response to health complications of the mother or fetus that require
early delivery, such as severe pre-eclampsia or fetal distress (Savitz et al., 1991).
If this is a valid basis for dividing cases to study etiology, then associations with
subsets of cases will be stronger than for the aggregation of all preterm delivery
cases. At present, the empirical evidence regarding such heterogeneity is mixed,
with some risk factors distinctive by subtype whereas other potential causes of
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preterm birth appear to be associated with two or all three subgroups (Lang et
al., 1996; Berkowitz et al., 1998).

Some diseases are aggregations of subgroups, in a sense demanding consid-
eration of subtypes of a naturally heterogeneous entity. Brain cancer is defined
solely by the anatomic location of the tumor, with a wide range of histologic
types with varying prognosis and quite possibly varying etiology. In a rather so-
phisticated examination of the issue of magnetic field exposure and brain cancer
in a Canadian case–control study, Villeneuve et al. (2002) hypothesized that the
exposure acts as a tumor promoter and would thus show the strongest associa-
tion for the most aggressive subtypes of brain cancer. Subsets of brain cancer
were examined empirically (Table 9.2) and there was clear heterogeneity in pat-
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TABLE 9.2. The Risk of Brain Cancer According to the Highest Average Level of 
Occupational Magnetic Field Exposure Ever Received by Histological Type. Canadian
National Enhance Cancer Surveillance System, Male Participants, 1994–1997

HIGHEST AVERAGE

OCCUPATIONAL

EXPOSURE

MAGNETIC FIELDS ODDS ODDS

EVER RECEIVED CASES CONTROLS RATIO* 95% CI RATIO† 95% CI

All Brain Cancers

�0.3 �T‡ 410 420 1.0 1.0
�0.3 �T 133 123 1.11 0.84–1.48 1.12 0.83–1.51
�0.6 �T 42 29 1.38 0.79–2.42 1.33 0.75–2.36

Astrocytomas

�0.3 �T 163 160 1.0 1.0
�0.3 �T 51 54 0.93 0.60–1.44 0.93 0.59–1.47
�0.6 �T 12 16 0.61 0.26–1.49 0.59 0.24–1.45

Glioblastoma 
Multiforme

�0.3 �T 143 156 1.0 1.0
�0.3 �T 55 42 1.50 0.91–2.46 1.48 0.89–2.47
�0.6 �T 18 6 5.50 1.22–24.8 5.36 1.16–24.78

Other

�0.3 �T 92 94 1.0 1.0
�0.3 �T 23 21 1.11 0.59–2.10 1.10 0.58–2.09
�0.6 �T 9 7 1.50 0.53–4.21 1.58 0.56–4.50

*Unadjusted odds ratio obtained from the conditional logistic model.

†The odds ratio was adjusted for occupational exposure to ionizing radiation and vinyl chloride.

‡Referent group.

Villeneuve et al., 2002.



terns of association across tumor groupings. A modest association was found for
brain cancer in the aggregate (relative risks of 1.3–1.4 in the highest exposure
category), with markedly stronger associations for the more aggressive subtype,
glioblastoma multiforme, with relative risks over 5.0. Whether this pattern re-
flects a causal effect or not, the heterogeneity in risk across subtypes provides
informative suggestions and helps to focus additional research that addresses the
same hypothesis or actually refine the hypothesis about whether and how mag-
netic fields might affect brain cancer.

As in many suggested approaches to epidemiologic data analysis, there is no
analysis that can discern the underlying truth. Hypotheses are proposed, results
are generated, and then interpretations are made, with greater information pro-
vided when informative disease subsets can be isolated, and considered. Several
caveats to this approach must be noted however. Alternative grouping schemes
need to have a logical basis in order for the results to be interpretable. A plau-
sible theoretical foundation is needed for each approach to grouping that is then
examined in order for the association to have any broader meaning and to ad-
vance understanding of disease etiology. To note that an arbitrarily chosen sub-
set of cases, such as those who came to the clinic on Tuesdays, shows a stronger
relationship to disease than cases in the aggregate, is of little help in evaluating
misclassification and understanding the causal process. Through random
processes, there will always be disease subsets more and less strongly related to
exposure, but to be worthy of evaluation, finding such heterogeneity or even the
absence of heterogeneity that might have been expected under some plausible
hypothesis should advance knowledge. In fact, random error becomes a much
greater problem for case subgroups than for the disease group in the aggregate,
simply due to a diminution of the numbers of cases in the analysis. Arbitrary,
excessive splitting of cases for analysis has the danger of generating false leads
based solely on random error. Nonetheless, except when imprecision is extreme,
it would often be preferable to have a less precise result for the subgroup of cases
that is truly affected by the exposure than to have a more precise result for a
broader aggregation of cases, some of which are affected by the exposure and
some of which are not.

Verify Diagnostic Accuracy for Subset of Study Participants

Empirical evidence on the accuracy of disease ascertainment for a subset of study
participants is very useful in judging the extent to which the study results may
have been distorted by misclassification. As noted above, subjecting persons who
are thought to have the disease to a more thorough diagnostic evaluation is of-
ten feasible since there are a relatively modest number of such persons to ex-
amine. Even if it is not feasible to verify all diagnoses in this manner, a suffi-
cient number can be evaluated to estimate the proportion of identified cases that
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are false positives. Ideally, a sufficient number of exposed and unexposed cases
can be evaluated to determine whether the proportion who are erroneously la-
beled as diseased is associated with or independent of exposure status (i.e.,
whether disease misclassification is differential or non-differential).

On the other hand, assuming disease is relatively rare, there are many persons
presumptively identified as disease-free, and subjecting each one to definitive di-
agnostic evaluation to correct false negatives is generally not feasible or neces-
sary. Instead, some sample of individuals identified as free of disease can be
evaluated with more definitive diagnostic tests to verify the absence of disease.
Often, the challenge is to screen a sufficient number of presumptive non-cases
to identify any false negatives or know that a sufficient number have been eval-
uated, even if no missed cases of disease are found.

With quantitative estimates of the frequency of disease misclassification, an
estimate of the magnitude of association in the absence of those errors can be
made through simple algebra (Kleinbaum et al., 1982). Within an exposure stra-
tum, for example, a certain proportion of those labeled as having the disease rep-
resent false positives and the correction for that false positive proportion is to
deplete the cell by that amount. If there were 100 persons classified as having
disease, and the false positive proportion were 8%, then 8 persons would be
moved to the no disease cell, leaving 92. If there were also some fraction of those
labeled disease-free who represent false negatives, then some number of persons
would need to be shifted from the no disease to the disease cell. Assuming that
there were originally 900 persons classified as free of disease and that 2% are
false negatives, then 18 persons would move across cells. The net change in the
proportion with disease would be from 100/1000 � 0.10 to 110/1000 � 0.11. A
comparable adjustment would be made in the other exposure strata to produce
adjusted measures of the rate ratio. More sophisticated methods are available that
account for the imprecision in the correction terms, and incorporate the precision
of that estimate in the variability of the adjusted measures (Rothman & Green-
land, 1998, pp. 353–355). Additional refinements would incorporate misclassi-
fication of exposure and adjustment for confounding factors, making the algebra
much more complex.

This approach was applied to the evaluation of chronic obstructive pulmonary
disease in the Nurses Health Study (Barr et al., 2002). In such large cohort stud-
ies, direct confirmation is infeasible due to the geographic dispersion of partici-
pants and the lengthy interval over which diagnoses occur. Using self-reported
information from the questionnaire, women were classified as definite, probable,
or possible cases, depending on the amount of detail that they were able to pro-
vide to document the diagnosis of chronic obstructive pulmonary disease. A ran-
dom sample of 422 women who reported the disease was initially selected, and
medical records were obtained for 376 women to allow for the direct confirma-
tion of physician-diagnosed chronic obstructive pulmonary disease. The propor-
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tion confirmed in this manner was 78%, with a greater proportion of those as-
signed as definite confirmed than among those classified initially as probable or
possible (Table 9.3). Note that this reflects the opportunity to examine and con-
firm (or refute) self-reported diagnoses, but does not allow for assessment of false
negative reports, i.e., women who would be considered to have chronic obstruc-
tive pulmonary disease based on medical record review but who did not report
it on the questionnaire.

Assess Number of Erroneous Diagnoses to Change the Results

A simpler evaluation of the potential impact of misclassification addresses the
number of errors of a given type that would be required to shift results by some
specified amount. By focusing on the absolute number of such shifted cases, both
the magnitude and precision of the observed pattern are addressed in this exer-
cise. Having identified a positive association between exposure and disease, we
might ask how many false positive cases among exposed subjects would have
been required to produce a spurious association of that magnitude if there really
were no association, or how many false negatives would have been required
among unexposed study participants to produce such a pattern spuriously. Al-
ternatively, with a finding of no association, we might ask how many missed
cases among the exposed or false positive cases among the unexposed would
have been required to have produced a spurious absence of association if the true
relative risk were 1.5 or 2.0 or some other value of interest based on previous
literature.

The pattern of misclassification in such an assessment is often considered to
be completely differential with respect to exposure, i.e., that all false positives
occur among exposed subjects or all false negatives occur among the unexposed,
which is often unrealistic. Even where tendencies exist to enhance the form of
disease misclassification across exposure groups, it would rarely be so complete,
making the worst case scenarios highly improbable ones. Also, even though the
result that is derived is quantitative, i.e., a given number of errors made, it can
only be examined intuitively for its plausibility: Does it seem plausible that a
given number of false positive or false negative diagnoses could have occurred?
In general, it would seem more plausible for a small number of cases to be in
error than a large number, but little more can be said based on such an evalua-
tion. More complex scenarios of false positive and false negative diagnoses dis-
tributed across exposure strata would tend to be more realistic and thus more
useful than extreme scenarios.

This strategy was applied in an examination of the potential for detection bias
to produce a spurious positive association between estrogen use and endometrial
cancer (Hulka et al., 1980), examining a scenario that is more complicated than
a simple count of false positive or negatives. The debate was based on the pre-
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TABLE 9.3. Proportion of Cases Confirmed* Among Participants with a Self-Reported Physician Diagnosis of Chronic Obstructive Pulmonary Disease in
the Nurses’ Health Study, United States, 1976–2000

Self-report of COPD Method of Confirmation‡

CASES CHEST FEV1 %
CONFIRMED PULMONARY RADIOGRAPH PREDICTED§

RECORDS IN MEDICAL FUNCTION TEST OR COMPUTED PHYSICIAN (MEAN

OBTAINED RECORD RESULT TOMOGRAPHY NOTATION (STANDARD

CRITERION† (NO.) (%) (%) (%) (%) DEVIATION))

Definite 73 86 81 51 60 45 (18)
Probable 218 80 71 50 64 50 (19)
Possible 273 78 67 48 67 50 (19)

*Confirmed using medical records and uniform diagnostic criteria.

‡All three elements were not available for some participants.

§Among participants with pulmonary function test reports.

COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 1 second.

Barr et al., 2002.



vious suggestion that inferred positive associations between estrogen use and en-
dometrial cancer were largely attributable to estrogen causing vaginal bleeding,
which led to more intensive diagnostic surveillance and detection of otherwise
subclinical cancers. In a case–control study, this would manifest itself as a spu-
riously high proportion of cases who had experienced bleeding compared to con-
trols, and was cited as the rationale for choosing controls who had themselves
experienced vaginal bleeding and would thus have been carefully scrutinized for
the presence of endometrial cancer.

Hulka et al. (1980) conducted a number of relevant analyses, including a sim-
ulation of the potential magnitude of such a bias, if present. In a hypothetical
population of 100,000 women age 50 and older, an estimate was made of the
proportion of women with asymptomatic cancer (the pool in which selective de-
tection could occur), the proportion of women using estrogen, and the number
of diagnosed endometrial cancer cases (who would be enrolled in a study). As
shown in Figure 9.1, only the women who fall into the intersection of those three
groups contribute to the bias, i.e., asymptomatic cancer, estrogen user, diagnosed
cases. In this scenario, there would be only 5 such cases. Their inclusion would
yield a relative risk of 3.9 comparing estrogen users to nonusers, and their ex-
clusion (eliminating the hypothesized detection bias) would yield a relative risk
of 3.7. Under a set of reasonable assumptions, the hypothesized bias is therefore
negligible in magnitude.

Create Subgroups with Accurate Ascertainment or 
Non-Differential Underascertainment

For a number of reasons, accurate ascertainment of disease may be unattainable
for the entire study population. There may be subgroups within the study popu-
lation, however, in which disease ascertainment is accurate. Some diseases are
largely asymptomatic, for example carcinoma in situ of the cervix, but among
women who obtain annual Pap smear screening the diagnosis is likely to be vir-
tually complete. Valid results can therefore be obtained within the subset of the
population in which ascertainment is complete, in this instance among women
who obtain annual screening. The potential disadvantage of this approach is that
the marker of completeness of ascertainment may well be a marker of other fac-
tors that affect the occurrence of disease. That is, the attributes required to have
complete diagnosis may also be true modifiers of the effect of interest. If ob-
taining regular Pap smear screening acts as a modifier of the risk factor under
investigation, then the stratum-specific result among those obtaining Pap smears
would be valid, but the result may apply only to women who obtain annual Pap
smear screening.

This strategy is applicable to studies in which a common but often subclini-
cal disease outcome is of interest, such as adenomatous polyps of the colon
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(Smith-Warner et al., 2002). In a case–control study conducted within a large
colonoscopy trial in Minneapolis, cases were defined as those individuals
screened and found to be positive for adenomatous polyps, and controls were de-
fined as a sample of individuals screened and found to be negative. Essentially,
the experience of having undergone a colonoscopy defines a stratum in which
polyp status is more accurately defined than for an unscreened population. As
the authors recognized, however, restricting the source of controls in this man-
ner may address the problem of disease misclassification through underdiagno-
sis, but introduces a potential problem with selection bias in that the study base
has been implicitly sampled through having received a colonoscopy.

The selection to be screened may well be a source of distortion in the distri-
bution of the exposure of interest, dietary intake of fruits and vegetables and
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FIGURE 9.1. Detection bias and endometrial cancer: diagnosed cases and asymptomatic
cases. Assuming a hypothetical population of 100,000 women age �50 years, three groups
are formed: Group I � the 5-year cumulative incidence of diagnosed cancer; Group II �
the 5-year period prevalence of estrogen use; Group III � the 5-year period prevalence
of asymptomatic cancer (Hulka et al., 1980).

NOTES TO FIGURE 9.1

1. Incidence of diagnosed endometrial cancer � 1/1000/year* � 5 years � 100,000
women � 500 diagnosed cases (Group I).

2. 5-year period prevalence of estrogen use � 10%† of 100,000 women � 10,000 women
having used estrogen (Group II).

3. 5-year period prevalence of asymptomatic cancers � 3/1000 (27,28) � 100,000
women � 300 asymptomatic cancers (Group III).

4. 30% of diagnosed cases used estrogen � 0.30 � 500 � 150.
5. 10%† of asymptomatic cases used etrogen � 0.10 � 300 � 30.
6. 20%‡ of estrogen users with previously asymptomatic cancer bled and became diag-

nosed cases � 0.20 � 30 � 5.
7. 6% of non-estrogen-using diagnosed cases were asymptomatic � 0.06 � 350 � 21.

Group III: 
300

Asymptomatic
Cancers

Group II:
 10,000 Estrogen Users

9825

25145

BIAS

21329 249

5

Group I: 
500

Diagnosed
Cases



thereby bias measures of association. For that reason, another control group was
selected from the general population using drivers’ license records, referred to
as community controls. As shown in Table 9.4, the two control groups yielded
generally similar results for both men and women, subject to some imprecision.
For vegetable intake among men, results for the community controls tended to
show stronger inverse gradients than the colonoscopy-negative controls. Except
for juice intake among women, associations were generally absent or weak. In-
clusion of the two control groups, one of which was diagnosed accurately to be
free of polyps, allows evaluation of the impact, if any, of incomplete diagnosis
and selection bias, but only relative to each other and not relative to a true “gold
standard” that is free of either potential bias.

Even if a stratum cannot be created in which disease ascertainment is accu-
rate, perhaps subgroups can be isolated in which there is only non-differential
underascertainment and an absence of false positives. In such a study, ratio mea-
sures of association will be nearly unbiased (Rothman & Greenland, 1998). En-
suring the absence of overascertainment is essential for this approach to be 
effective. By creating strata with varying degrees of underascertainment, infor-
mation is also generated for examining a dose-response gradient in potential for
bias due to differential underascertainment. That is, if we can define strata of
low, moderate, and high degrees of underascertainment, examining measures of
association across those strata may help to indicate whether bias is present.

Attempts to create strata with accurate disease ascertainment or non-differential
underascertainment will result either in finding that the exposure–disease asso-
ciation does or does not differ in relation to the presumed indicator of the mag-
nitude of non-differential disease underascertainment. When the estimated meas-
ure of association differs, then as long as the basis for stratification is valid, the
more accurate measure comes from the stratum that is free of overascertainment
or influenced solely by non-differential underascertainment. When the results are
similar across strata, then there are several possible explanations. The effort to
isolate the subset that is affected only by non-differential underascertainment may
have been unsuccessful, i.e., all strata continue to suffer from such bias. Alter-
natively, there may have been no bias due to disease misclassification in the first
place so that stratification failed to generate the expected pattern.

Restrict Inference to Disease Outcome That Can Be 
Ascertained Accurately

Many, perhaps most, diseases have a spectrum of severity, with the probability
of manifesting symptoms and being detected increasing as the severity of the
condition increases. Prostate cancer in older men, for example, is extremely com-
mon and usually asymptomatic, but the form of the disease that is more aggres-
sive and metastasizes to bone results in clinical symptoms that more often lead
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TABLE 9.4. Multivariate-Adjusted Odds Ratios* for Colorectal Adenomas by Quintile of Fruit and Vegetable Intake for Women and Men, Minnesota
Cancer Prevention Research Unit Case-Control Study, 1991–1994

Mean Intake Cases vs. Colonoscopy-Negative Controls Cases vs. Community Controls

(Servings/week) Women Men Women Men

FOOD GROUP QUINTILE WOMEN MEN OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Fruits

1 3.3 2.1 1.00 1.00 1.00 1.00
2 7.4 5.9 0.95 0.52, 1.72 0.79 0.46, 1.36 0.65 0.34, 1.25 0.73 0.43, 1.23
3 11.2 9.6 0.91 0.50, 1.63 1.06 0.61, 1.84 0.78 0.40, 1.52 1.00 0.59, 1.68
4 15.8 14.7 1.10 0.59, 2.05 0.79 0.44, 1.43 0.61 0.30, 1.20 0.62 0.36, 1.06
5 27.5 26.9 1.34 0.66, 2.69 0.66 0.35, 1.24 0.68 0.32, 1.43 0.75 0.41, 1.35
p trend 0.54 0.16 0.29 0.44

Vegetables

1 10.1 8.8 1.00 1.00 1.00 1.00
2 17.6 15.1 1.12 0.62, 2.01 1.29 0.75, 2.23 1.08 0.56, 2.07 0.67 0.39, 1.13
3 23.8 20.2 1.16 0.62, 2.16 1.11 0.64, 1.93 0.86 0.44, 1.68 0.73 0.43, 1.26
4 31.6 27.1 2.26 1.23, 4.14 1.30 0.72, 2.34 1.34 0.69, 2.59 0.59 0.34, 1.03
5 51.4 44.7 1.70 0.87, 3.34 0.90 0.48, 1.69 1.40 0.67, 2.92 0.55 0.30, 0.98
p trend 0.10 0.69 0.24 0.16

(continued)



TABLE 9.4. Multivariate-Adjusted Odds Ratios* for Colorectal Adenomas by Quintile of Fruit and Vegetable Intake for Women and Men, Minnesota Can-
cer Prevention Research Unit Case-Control Study, 1991–1994 (continued)

Mean Intake Cases vs. Colonoscopy-Negative Controls Cases vs. Community Controls

(Servings/week) Women Men Women Men

FOOD GROUP QUINTILE WOMEN MEN OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Juice

1 0.5 0.5 1.00 1.00 1.00 1.00
2 2.2 1.9 0.81 0.48, 1.39 1.53 0.86, 2.73 0.97 0.53, 1.78 1.16 0.67, 2.01
3 4.8 4.2 0.72 0.41, 1.27 1.24 0.73, 2.10 0.80 0.43, 1.51 0.83 0.51, 1.35
4 7.7 7.4 0.61 0.34, 1.09 0.88 0.52, 1.51 0.56 0.31, 1.03 0.75 0.45, 1.26
5 14.2 15.1 0.50 0.27, 0.92 0.98 0.55, 1.73 0.56 0.30, 1.06 0.97 0.56, 1.67
p trend 0.02 0.97 0.04 0.58

Total Fruits 
and Vegetables

1 18.4 16.5 1.00 1.00 1.00 1.00
2 31.8 26.8 0.76 0.42, 1.38 0.80 0.46, 1.38 0.61 0.32, 1.18 0.76 0.45, 1.30
3 41.8 36.1 1.06 0.59, 1.92 1.05 0.60, 1.83 1.01 0.52, 1.94 0.95 0.56, 1.61
4 53.8 48.5 1.48 0.79, 2.78 0.82 0.44, 1.51 0.71 0.36, 1.38 0.46 0.27, 0.80
5 82.8 75.9 0.96 0.47, 1.96 0.61 0.31, 1.22 0.76 0.34, 1.66 0.60 0.32, 1.12
p trend 0.79 0.40 0.86 0.20

*Adjusted for age (continuous), energy intake (continuous), fat intake (continuous), body mass index (continuous), smoking status (never, current, former), alcohol status (non-
drinker, former drinker, current drinkers consuming �1 drink/week, current drinkers consuming �1 drink/week), nonsteroidal antiinflammatory use (yes, no), multivitamin use
(yes, no), and hormone replacement therapy use (yes, no in women only).

OR, odds ratio; CI, confidence interval.

Smith-Warner et al., 2002.



to an accurate diagnosis. Endometriosis, in which there is endometrial tissue lo-
cated at abnormal anatomic locations in the abdominal cavity, is quite common
and largely undetected, but the form of the disease that is more extensive ap-
pears to be more likely to produce symptoms that lead to diagnosis. Some of the
confusion is semantic, i.e., whether disease is truly present when the requisite bi-
ologic changes have occurred but there are no overt symptoms and such symp-
toms may never arise. For studying etiology, however, the biologic entity itself
is often of primary interest, so that variability in symptom occurrence, recogni-
tion, care-seeking, and ultimately disease diagnosis represent opportunities for
misclassification. An accurate diagnosis often requires many steps, as discussed
above, but the probability of all those events occurring is often highest when the
disease is most severe in terms of stage or scope.

The most informative approach to the study of diseases with a spectrum of sever-
ity is to comprehensively identify all cases across the spectrum of disease, even
the least severe, in order to determine empirically whether risk factors differ for
more versus less severe variants of the condition. When comprehensive diagnosis
is infeasible due to the invasiveness or expense of the methods for definitive di-
agnosis, e.g., laparoscopic surgery to diagnose endometriosis, compromise in the
study design is required. Shifting interest to the study of severe endometriosis or
aggressive prostate cancer is one strategy for conducting a valid study that is ca-
pable of comprehensive ascertainment, accepting the consequent inability to ex-
amine potential influences on less severe variants of the disease. That is, a more
readily studied endpoint is substituted for the less feasibly studied one.

In a case–control study of prostate cancer, analyses were divided based on case
aggressiveness to evaluate the potential implications of both selection bias (in-
complete ascertainment of cases) as well as true biologic differences in etiology
for more versus less aggressive tumors (Vogt et al., 2002). This multicenter
case–control study was conducted in the late 1980s in Atlanta, Detroit, and 10
counties in New Jersey. Controls were chosen through random-digit dialing for
men under age 65 and through the Health Care Financing Administration records
for men age 65 and older. Among a much larger pool of participants, 209 cases
and 228 controls had blood specimens analyzed for lycopenes and other specific
types of carotenoids, antioxidants found in fruits and vegetables. For lycopenes
(Table 9.5), the inverse association with prostate cancer risk was much more pro-
nounced among aggressive cases as compared to nonaggressive cases (as defined
in the footnote to the table), with odds ratios of 0.37 versus 0.79 in the highest
compared to lowest quartile. For the other categories of carotenoids, however,
differences were not striking or consistent in direction. Nevertheless, these data
are helpful in considering the potential for a bias due to incomplete ascertain-
ment of non-aggressive prostate cancer cases.

The spectrum of severity may be based on the actual size of an anatomic
change, e.g., tumor size, the exact location of the pathologic alteration, e.g.,
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TABLE 9.5. Prostate Cancer Odds Ratios for All Cases and for Nonaggressive and Aggressive Cases from a U.S. Multicenter Case-Control Study,
1986–1989

Quartile of Serum Carotenoid

TEST1 (low)†
FOR

ODDS RATIO
2 3 4 (high)

TREND,
RANGE (REFERENCE)‡ RANGE ODDS RATIO RANGE ODDS RATIO RANGE ODDS RATIO P VALUE

�-Carotene (�g/dl) 0.0–1.4 1.5–3.2 3.3–4.7 4.8–29.4

All cases 1.00 1.40 1.29 1.24 0.60
Nonaggressive cases§ 1.00 1.08 1.30 0.95 0.91
Aggressive cases 1.00 1.65 1.01 1.91 0.17

�-Carotene (�g/dl) 0.3–8.2 8.3–14.8 14.9–23.1 23.2–117.5

All cases 1.00 1.56 1.54 1.64 0.22
Nonaggressive cases 1.00 1.16 1.48 1.54 0.20
Aggressive cases 1.00 1.57 1.34 1.61 0.41

�-Cryptoxanthin (�g/dl) 0.3–4.9 5.0–7.1 7.2–11.1 11.2–44.3

All cases 1.00 1.39 1.29 0.98 0.65
Nonaggressive cases 1.00 1.09 1.27 0.93 0.82
Aggressive cases 1.00 2.03 1.57 1.22 0.84



Lutein/zeaxanthin (�g/dl) 3.6–14.1 14.2–19.6 19.7–26.6 26.7–80.8

All cases 1.00 1.11 1.03 1.51 0.17
Nonaggressive cases 1.00 1.04 1.35 1.32 0.36
Aggressive cases 1.00 0.91 0.57 1.73 0.10

Lycopene (�g/dl) 0.5–10.7 10.8–17.1 17.2–24.7 24.8–57.4

All cases 1.00 0.97 0.74 0.65 0.09
Nonaggressive cases 1.00 1.05 0.72 0.79 0.36
Aggressive cases 1.00 0.93 0.79 0.37 0.04

†Quartile cutpoints were based on the distribution for each exposure among controls.

‡All models were adjusted for age, race, study center, and month of blood draw.

§Among cases, distributions by stage and grade, respectively, were as follows: 146 localized, 23 regional, and 21 distant; 75 well differentiated, 70 moderately differentiated,
38 poorly differentiated, and one undifferentiated. Stage and grade were combined to form categories of disease aggressiveness. After the exclusion of 33 subjects because of
missing information on grade and/or stage, “nonaggressive” disease included 111 cases with well- or moderately differentiated grade and localized stage. “Aggressive” disease
included 65 cases with poorly differentiated to undifferentiated grade and/or regional to distant stage. This system of categorization seeks to distinguish between disease that is
more versus less likely to progress and become fatal (Gann et al., Cancer Res 1999;59:1225–30).

Vogt et al., 2002.



whether it results in recognizable symptoms, or other features of the disease
process. It is quite possible that these peculiarities of size and location are of no
etiologic significance and represent random variations in a single disease entity
that extends into the range in which misclassification is more common. If that is
true, a study of diagnosable disease should yield information that is applicable
to undiagnosable disease under the assumption that the diagnosable fraction rep-
resents incomplete underascertainment of the total spectrum of disease that is
present. If the subsets of disease that are and are not recognizable have different
etiologies, then of course, the study of recognizable disease will still be valid for
the endpoint it examines, and a strong case can be made that the more severe
version of the disease is the one that is more important to understand and ulti-
mately prevent.

Pregnancy loss illustrates these issues nicely, since there is a spectrum of sever-
ity, ranging from very early loss that is unrecognizable other than through daily
hormone assays, to the medically and emotionally severe outcome of a fetal loss
in the second trimester of pregnancy. Reliance on clinically recognized or med-
ically treated miscarriage is vulnerable to incomplete ascertainment relative to
the universe of pregnancy losses, in that women will vary in recognizing symp-
toms of pregnancy and pregnancy loss and may or may not seek medical care in
response to an uncomplicated pregnancy loss. On average, the more advanced
the pregnancy at the time of the loss, the more likely it is to result in recogniz-
ing symptoms and seeking medical care. Study of risk factors for pregnancy loss
using medical records for case identification (Savitz et al., 1994) is capable of
considering only a part of the spectrum of pregnancy loss. Early losses (before
6 weeks) are subject to grossly incomplete ascertainment, and a rising propor-
tion of losses will be identified through medical care up to approximately 12–15
weeks’ gestation, at which time the ascertainment is thought to become virtually
complete. A study based on medically treated spontaneous abortion may be ex-
cellent for pregnancies that survived to 14–20 weeks’ gestation, acceptable for
pregnancies that reached 10–14 weeks’ gestation, and completely inadequate for
pregnancies that ended prior to 10 weeks’ gestation.

INTEGRATED ASSESSMENT OF POTENTIAL FOR BIAS DUE 
TO DISEASE MISCLASSIFICATION

The first requirement in evaluating the implications of disease misclassification
is to articulate clearly the nature of the error and its consequences. This, in turn,
requires a clear articulation of the sequence of biological, behavioral, and med-
ical care events required to become a recognized case in a given study. With that
in hand, hypotheses regarding the process through which disease overascertain-
ment or disease underascertainment or both may have occurred can be specified.
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In speculating about these errors, special attention needs to be given to whether
the error is likely to be related to or independent of exposure, since the conse-
quences differ greatly. Several of the most plausible scenarios of error should be
specified, without trying to be exhaustive in including those that are very un-
likely to have had a material effect on the results.

Next, the consequences of each of those pathways of error in disease ascer-
tainment should be considered first in qualitative terms, with appropriate con-
sideration of the study design. That is, the predicted direction of bias should be
specified, recognizing that this can vary for ratio versus difference measures, and
may or may not be absolute in direction (upward or downward) or operate rela-
tive to the null value (bias toward or away from the null). The product of this
effort is a statement about the direction of bias that would result from each of
the mechanisms for disease misclassification.

Finally, and most challenging, is the need to quantify the magnitude of 
potential bias. To do so formally requires quantifying the amount of misclassi-
fication that is likely to have occurred, or more feasibly, considering a range of
potential errors and their consequences on the study results in the form of a sen-
sitivity analysis. With a limited number of the most plausible scenarios, and a
few alternative estimates of the magnitude of misclassification, it is possible to
derive a sense of whether disease misclassification may have had a major effect
on the final results. If only some scenarios lead to the suggestion of a large ef-
fect, then those scenarios should be examined further and others should be noted
as unlikely to have produced substantial error and dropped from further consid-
eration. For those that remain of concern, further empirical evaluation or vali-
dation studies might be considered, or opportunities to do further research on the
topic that overcomes that source of potential bias would be sought.

Data analysis can help to address whether bias due to disease misclassifica-
tion has occurred. A number of strategies were suggested to isolate subsets of
subjects or disease with less misclassification. Creating a gradient of diagnostic
certainty allows evaluation of the pattern of results for more definite compared
to less certain cases. There are often questions about the optimal extent of dis-
ease aggregation (lumping versus splitting), and in light of such uncertainty,
measures of association based on alternate grouping schemes can be informative.
The overriding goal should be to focus on the disease entity most plausibly re-
lated to the exposure(s) of interest. Verification of the accuracy of disease clas-
sification in a subgroup, if not feasible for the entire population, can help to as-
sess what results would have been produced had this refinement been applied to
the entire study population. Closely related is an examination of the number of
classification errors required to change the results by a given amount or to yield
measures of the association of interest. Given that nondifferential disease un-
derascertainment generally produces unbiased ratio measures of effect, opportu-
nities can be sought to create strata in which nondifferential disease underascer-
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tainment is the only form of error. Finally, when misclassification makes it im-
possible to study the full spectrum of a disease entity, including the subset that
is highly susceptible to misclassification, the interest can sometimes be shifted
to a subset of the disease that is more tractable, i.e., the more severe and there-
fore more accurately diagnosed cases. Some degree of disease misclassification
is inherent in epidemiologic studies, but through careful evaluation of the source
and manifestation of the problems, the consequences can be mitigated or at least
understood for accurate interpretation of the study results.
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10
RANDOM ERROR

Previous chapters considered the role of systematic error or bias in the evalua-
tion of epidemiologic evidence. In each case, specific phenomena were consid-
ered which would predictably result in erroneous estimates of effect, and the dis-
cussion was focused on evaluating whether the underlying conditions that would
lead to the bias were present. Hypotheses of bias constitute candidate explana-
tions, ideally specific and testable, for why the observed results might not reflect
the true causal relation or lack of relation between exposure and disease. Ran-
dom error is different in character, despite the fact that it also generates estimates
of effect that deviate from the correct measurement. The key difference is that
random error, by definition, does not operate through measurable, testable causal
pathways, making it a more elusive concept. We can ask why a coin does not
land as heads or tails exactly 50% of the time in a series of trials. Perhaps the
subtle differences in the way it was flipped or the wind speed and direction hap-
pened to favor heads or tails slightly. Although there is a physical process in-
volving movement and gravity that could in principle lead to a predictable result
on any given trial or series of trials, we ascribe the deviation of a series of out-
comes from the expected 50/50 split as random error.

The two pathways that lead to statistically predictable patterns of random er-
ror are sampling and random allocation. Sampling black and white balls from an
urn, there will be a predictable pattern of deviation from the true ratio in a 
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series of selections. Similarly, we can describe in statistical terms a distribution
of outcomes from a series of random allocations to two groups and how proba-
ble it is that a sample will deviate from some known true value by a given amount.
In simple experiments, the probability of obtaining a sample that deviates from
the population by a given amount or more can be calculated, e.g., the probabil-
ity of obtaining 5 or more heads in 7 coin flips. Without working out the precise
physics that leads to the toss of heads on any given flip of the coin, we can pre-
dict the pattern. Similarly, when we randomly assign exposure using a perfectly
unbiased allocation procedure, giving some rats the active agent and some the
placebo, we can calculate the probability of all 10 rats who get the active agent
being less prone to disease and all 10 rats who get the placebo being suscepti-
ble to disease, generating a false impression that the agent is more beneficial than
it truly is. Why our unbiased algorithm for assignment went wrong and when it
will go wrong are unknown but we can calculate the probability that it did. Thus,
the pattern of deviation can be predicted but the effect of random error on any
given result cannot be predicted logically in either direction or magnitude no mat-
ter how much it is scrutinized or how well the statistical properties of sampling
distribution are understood. Random error is therefore a source of uncertainty
that allows for the possibility that our measured results deviate from the correct
result, but it cannot be put forward as a deterministic explanation for a given re-
search finding to be tested or measured directly. Going from the simple sampling
or randomized allocation mechanisms noted above to the complexity of an ob-
servational epidemiologic study, the statistical principles that guide our inter-
pretation of random error apply qualitatively, at best (Greenland, 1990). Because
of random error, the true causal parameter will never be identical to the observed
estimate, even in the absence of systematic biases. Random error characterizes
the uncertainty or unexplained variability in such estimates relative to their true
value.

The direction of deviation between the true and measured effect distorted by
random error is equally likely to be positive or negative; that is, random error is
equally likely to produce higher or lower estimates relative to the true value.
Where errors in measurement of exposure or disease result in distorted estimates
of effect, we can predict the impact of those errors to some extent by examining
the degree and pattern of misclassification. There is also a random element in
how any given systematic bias operates, such that the translation of a well-
understood source of misclassification, selection bias, or confounding into the
precise error that results in a given study has a probabilistic aspect to it. Never-
theless, the etiology of those sources of bias can be traced and sometimes cor-
rected, in contrast to random error, which cannot.

Despite the inability to describe what causes random error to be present or to
define the pathways by which it operates in a given study, we have some ad-
vantages in evaluating its impact relative to systematic error. First, we can pre-
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sume that small deviations between the true and measured values are more prob-
able than large deviations, and with some assumptions, we can even estimate the
probability that deviations of differing magnitudes between the measured and
true values will occur. Second, as the study size becomes larger, the probability
of a deviation of at least a given magnitude decreases, in contrast to all the other
forms of bias that have been discussed. If there is bias from non-response or con-
founding, increasing study size will not make it go away. None of these attri-
butes actually define the underlying phenomenon that generates random error,
but they do suggest ways to evaluate and minimize its possible influence on the
results of epidemiologic research.

SEQUENTIAL APPROACH TO CONSIDERING RANDOM 
AND SYSTEMATIC ERROR

One of the common practices pertaining to addressing random error in evaluat-
ing epidemiologic research findings, often applied in other scientific disciplines
as well, is to give the consideration of random error undue prominence. This of-
ten takes the form of postponing discussion of potential bias until there is firm
statistical evidence for an association (Hill, 1965), presuming the other biases are
only operative or important when (1) a positive association is found, and (2) that
association is not attributed to random error. Both implications are erroneous.

First, there is no reason whatsoever to limit consideration of random error to
situations in which a positive (or negative) association has been observed. Ran-
dom error produces distortion that depends on study size and in no way on the
magnitude of measured association: null, positive, and inverse associations are
equally susceptible to distortion by random error. Ostensibly null findings war-
rant just as much scrutiny for the contribution of random error as positive asso-
ciations do. A wide confidence interval, reflecting susceptibility to substantial
random error, is just as problematic whether the point estimate is near the null
or not—in either case, we are uncertain to a substantial degree about the true
value for the measurement.

Second, random error does not automatically deserve primacy over consider-
ation of systematic error as study results are scrutinized. Approaches that first
scan results for statistical significance or confidence intervals that exclude the
null value reflect an implicit decision that random error must be somehow dis-
proven as a candidate explanation before considering confounding, measurement
error, or selection bias. In the extreme case, only results that are found to be sta-
tistically significant are examined for systematic error, suggesting that not only
is random error more important but also that systematic biases are incapable of
generating results that are spuriously close to the null or at least not significantly
different from the null. Perhaps the focus on associations that deviate from the
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null is motivated in part by looking for interesting findings (i.e., non-null results)
at the expense of focusing on the comprehensive, critical evaluation of all the
scientifically important findings. Surely, if the results are worth generating, given
all the effort that requires, they are worthy of evaluation in a comprehensive, sys-
tematic manner.

The credibility of the findings is a function of freedom from both systematic
and random error. Practically, we do need to focus our effort on the major sources
of distortion that operate, and in small studies, random error may well be at the
top of the list, whereas in larger studies, various forms of systematic error will
likely predominate. Perhaps the availability of a refined statistical framework for
examining random error that is far better developed and more widely applied
than those for other forms of error may tempt epidemiologists to give special at-
tention to this concern, like looking for lost keys where the light is brightest. In-
stead, we need to look for the lost keys in the location where they were most
likely lost.

SPECIAL CONSIDERATIONS IN EVALUATING 
RANDOM ERROR IN OBSERVATIONAL STUDIES

Observational studies make the conventional tools for evaluation of random er-
ror far more tenuous than in experimental studies (Greenland, 1990). There are
two considerations that make the application of classical frequentist statistics less
applicable to observational research: First, there is generally not a formal sam-
pling of participants from a defined roster, except in some instances in recruit-
ing cohorts or selecting controls in case–control studies. More often, the choice
of study setting and participants is based on a variety of scientific and logistical
decisions that do not resemble a random sampling procedure. Second, whereas
in experiments, the exposure or treatment is randomly assigned (as in laboratory
studies on animals or in randomized controlled trials in humans), in observational
studies, exposure occurs through a diverse and often ill-defined implicit alloca-
tion method.

The frequentist statistical framework for measuring and describing random er-
ror is based on sampling theory and the probability of obtaining deviant samples
or deviant allocation through purely random processes. The random sampling in-
volved in the allocation of the exposure or treatment is critical because one can
formally consider the universe of other ways in which the units could have been
sampled or assigned. That is, if we allocate 20 rats or 20 people to one of two
treatments, 10 per group, we can formally delineate all the ways treatment could
be distributed across those participants. Given random allocation, one can ask
the critical question of how probable is it, under some assumption about the truth,
that a perfectly unbiased method of assigning treatment has generated results that
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deviate by specified amounts from that assumed, true value. We are not consid-
ering a biased method in assigning treatment but a perfectly valid one that will
still yield groups that are not perfectly balanced in regard to baseline risk, and
will occasionally generate assignments that are substantially deviant from equal
baseline risk. Sampling theory is used to quantify the probability of obtaining
deviant samples of any given magnitude.

Even in the case of a randomized trial, however, a focus solely or primarily
on random error is justified only when other critical features of the study have
been properly designed and managed. Characteristics of the study such as biased
assessment of outcomes by participants or researchers, control for other deter-
minants of outcome that happen to be unequally distributed, and compliance with
study protocols need to be considered alongside the possibility that a perfectly
random procedure for allocation went awry. Nevertheless, in a carefully designed
trial, those other issues may be put to rest with greater confidence than in an ob-
servational study, giving greater relative importance to the role of random error.

In the case of observational studies, the model of random allocation and a dis-
tribution of potential imbalances in that allocation as the basis for the interpre-
tation of statistical results is simply not applicable (Greenland, 1990). That is,
the framework for generating estimates of variability due to random sampling
cannot be justified based on a random sampling or random assignment process.
It is difficult to develop a compelling rationale for treating exposures that result
from societal forces or individual choice as though they were randomly assigned,
and thus the interpretation of results that are predicated on such allocation must
be less formal, at a minimum. There are elements of chance in observational
studies, of course, such as selection of the study setting and time period. Such
qualitative elements of randomness however, fall far short of a justification for
direct application of the technology that was generated for experiments in which
the exposure of interest is randomly allocated. The concept of random error still
applies to observational epidemiologic studies, in that we believe that random
forces will prevent us from measuring precisely the causal association of inter-
est, but its origins and thus its statistical properties are poorly defined. Nonethe-
less, like random error in experimental studies, the scatter introduced by random
error in observational studies is presumed to be symmetrical, and big studies suf-
fer less from the problem than small studies. Thus, in observational studies, there
is a desire to quantify the role of random error, despite recognition that we can-
not do so precisely.

We thus have a dilemma in which it is recognized that random error contributes
to observational studies but the dominant statistical framework was constructed
for other types of research. It is not surprising that epidemiologists have turned
to that approach as a means of addressing random error, nor is it surprising that
the lack of direct applicability of the framework is often neglected. The recom-
mended approach, subject to much-needed improvement, is to apply the tools
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that are built on the random sampling paradigm in a flexible manner so as to in-
form judgments about the potential impact of random error on the study find-
ings, while recognizing that the product is at best a guideline or clue to inter-
pretation. As discussed in the section, “Interpretation of Confidence Intervals,”
confidence intervals should not be used to define boundaries or dichotomize re-
sults as compatible or incompatible with other findings, but to broadly charac-
terize the study’s precision and convey some notion of how influential random
error may have been (Poole, 2001). Probability values, used on a continuous scale
and cautiously interpreted may also have value for the same purpose (Weinberg,
2001). What is indefensible in observational studies, and questionable even in
experimental ones, is a rigid, categorical interpretation of the results epitomized
by statistical significance testing or equivalently, examination of confidence in-
terval boundaries. The evidence itself is not categorical: random error does not
act in an all-or-none fashion, the underlying assumptions for statistical testing
are not met, and any attempt to claim that the study results are “due to chance”
or “not due to chance” is unwarranted.

STATISTICAL SIGNIFICANCE TESTING

Despite eloquent arguments against relying on a comparison of observed p-
values to some critical threshold, typically 0.05 or 0.01 (Rothman, 1978; Poole,
1987, 2001; Greenland, 1990), epidemiologic study results, like those of most
other sciences, continue to be commonly presented and interpreted (some have
said degraded) using this benchmark. Sophisticated statisticians and most epi-
demiologists appreciate that systematic error is often as serious (or more serious)
a threat to study validity as random error, and they recognize in principle that
rigid, simplistic interpretation of statistical tests is not a valid or useful approach
to the assessment of study findings. In fact, it was recently suggested that in prac-
tice, epidemiologists generally have the good sense to consider a constellation
of statistical, methodological, and biological factors as they interpret their data
(Goodman, 2001). Nevertheless, despite many admonitions, the first question typ-
ically asked by those who are interested in the interpretation of epidemiologic
findings continues to be, “Were the results statistically significant?” Students of
epidemiology seem to understand the arguments against statistical significance
testing, yet many are seduced by the shorthand, “Is it significant?” as an ap-
pealing substitute for thinking more comprehensively about the evidence.

The reasons for the persistence of this bad habit are worthy of some consid-
eration. One motive is a laudable effort to restrain the temptation of an exces-
sively exhuberant investigator to overinterpret each association as important.
There is good reason to believe, however, that statistical testing actually en-
courages rather than discourages overinterpretation (Goodman, 1999a,b; Poole,
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2001). The desire for a simple approach to categorize study findings as positive
(statistically significant) or negative (not statistically significant) is understand-
able, since the alternative is much less tidy.

The parallel approach to systematic error, in which we would categorize re-
sults as susceptible to misclassification versus immune from misclassification or
prone to selection bias versus free of selection bias would be no less absurd. It
is obvious that such methodologic issues do not occur in an all-or-none manner,
nor is the probability that they are present zero or one. Particularly when stud-
ies generate many findings, it is tempting to find some approach to help whittle
down the results into a more manageable short list of those that really deserve
scrutiny. The alternative to arbitrary dichotomization of findings is to scrutinize
each and every result for the information it provides to advance knowledge on
one narrowly defined hypothesis (Cole, 1979). If there is a narrowing of focus
to selected findings it should be based on the magnitude of prior interest and the
quality of information generated by the study.

Unfortunately, as pervasive as statistical testing remains in epidemiology
(Savitz et al., 1994), the concepts of statistical testing are more entrenched in
other branches of research; communication with colleagues, as well as lawyers
and policy makers, often places unrelenting pressure on epidemiologists to gen-
erate and use statistical tests in the interpretation of their findings. Just as it is a
challenge to substitute a more valid, but complex, interpretation of results for
communication among epidemiologists, it is a challenge to explain to those out-
side the discipline what is required to make meaningful inferences in epidemi-
ology. The argument that “everyone else does it” is specious, but unfortunately
many epidemiologists are not so secure as to be comfortable in deviating from
the (inappropriate) norms of our colleagues working in more advanced scientific
disciplines.

Results of statistical tests are often posed and interpreted as asking whether
the results are likely to have occurred by chance alone. More formally, we esti-
mate the probability of having obtained results as or more extremely divergent
from the null as those observed, under the assumption that the null hypothesis is
true. Then we ask whether the calculated p-value falls below the critical value,
typically 0.05, and if it does, we declare the results unlikely to have arisen by
chance alone if the null hypothesis is true. If we cannot conclude that the results
are unlikely to have arisen by chance alone—i.e., they do not pass this screen-
ing—a conclusion is drawn that the results could have arisen by chance alone
even if the null hypothesis is true. It is then inferred that no meaningful associ-
ation is present—i.e., what has been observed as a deviation from the null re-
flects random error, and therefore there is no need for discussion of other po-
tential biases that might have yielded this association. If the result passes the
screening and is found to be statistically significant, then an association may 
be declared as established and further examined for contributing biases or the
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possibility of applying a causal interpretation. There are a series of important
problems with this conventional strategy built around statistical significance test-
ing that are detrimental to valid interpretation of epidemiologic study results.

The premises for generating probability values themselves, even without con-
sidering their use to dichotomize findings, are highly contrived. The precise ques-
tion that is asked for which p-values are the answer is as follows: Assuming that
the null hypothesis is correct (e.g., the relative risk is 1.0), what is the probabil-
ity of obtaining results as extreme or more extreme as the one which was ob-
served? The null hypothesis is assumed to be correct, not tested; it is the com-
patibility of the data with the null hypothesis that is evaluated, not the legitimacy
of the null hypothesis itself. Since we are truly interested in how likely it is that
the null hypothesis or some other hypothesis is correct, there are approaches to
more directly evaluate the strength of support the data provide for or against par-
ticular hypotheses (Goodman, 1999a,b). Though the decision-making framework
leads us to reject or not reject the null hypothesis, the only concrete information
we typically have available is how probable the data are assuming the null hy-
pothesis to be true, not the probability of the hypothesis being true given the data
obtained.

As noted previously, observational epidemiology studies lack a random sam-
pling or random allocation element that would justify the calculation and con-
ventional interpretation of p-values (Greenland, 1990). The premise for estimat-
ing the probability of a given set of results under the null hypothesis is based on
sampling theory, where one can imagine repeating the assignment of exposure
over and over, generating a distribution of results from those random assign-
ments, and comparing the results that were obtained with the distribution of re-
sults that would have been obtained if the allocation were made over and over.
Without that anchor, the p-values themselves are less relevant and certainly not
so reliable as to make sharp distinctions.

The p-value that is generated is subjected to one more important, arbitrary sim-
plification by testing it against some set value, typically 0.05 or 0.01, with the
results then dichotomized as statistically significant or not statistically signifi-
cant. The observed data are declared compatible with the null and the null hy-
pothesis is not rejected or they are found to be incompatible with the null and
the null hypothesis is rejected. The null hypothesis is designated the sole bench-
mark of interest, and rather than assessing the degree of compatibility of the data
with the null hypothesis (or some other hypothesis of interest), a decision is made
to reject or fail to reject the null hypothesis. The decisiveness, formality, sim-
plicity, and ostensibly scientific character of this rule holds great appeal to epi-
demiologists and other scientists, but we should always look skeptically when
dichotomies are created from information that logically must fall along a con-
tinuum. It seems far more plausible that results provide varying degrees of sup-
port for varying hypotheses, one of which is the null, but that information is lost,

250 INTERPRETING EPIDEMIOLOGIC EVIDENCE



not gained, in forcing a dichotomous decision. We do not really need to decide
anything from a given study, in the sense of choosing a drug or making a pol-
icy judgment, and there is no reason to pretend that such a dichotomous deci-
sion hangs in the balance. In practice, epidemiologists and other scientists inte-
grate the statistical considerations with a wide array of other aspects of the
evidence to judge the overall state of the science on any given topic (Goodman,
2001). Even if we were somehow called upon to “get off the fence” and decide
the truth (as statistical testing would imply), rigid adherence to formal statistical
tests would be a terrible strategy for doing so.

Our original goal of examining and describing the extent to which random er-
ror may have distorted study results and finding a means of quantifying the supe-
riority of large studies over small studies has been diverted (not solved) by the
framework of p-values and especially statistical significance testing. Whether the
measured value is the null or some value other than the null, we are interested in
assessing and quantifying the role of random error. A preferable way of quantify-
ing random error for any estimate that is generated, including the null value, is
through construction of confidence intervals, which can help to avoid dichotomiz-
ing results and characterize the improved precision as study size increases.

The primacy given to statistical significance testing gives an undue emphasis
to the importance of random over systematic error, and although often touted as
a way of ensuring conservatism in the interpretation of results, the practice may
actually encourage overinterpretation of positive findings (Goodman, 1999a). In
observational studies, the additional sources of error make attainment of statis-
tical significance a weak benchmark for identifying causal associations. Testing
does not discriminate findings that are real, and thus potentially causal, versus
findings that are likely to be due to chance. Given all the work that is required
to develop and conduct epidemiologic studies, consuming substantial financial
and human resources, it is terribly wasteful not to fully appreciate what the study
results can tell us and degrade the findings into a statistical test.

MULTIPLE COMPARISONS AND RELATED ISSUES

The concern with random error has also been applied to the interpretation of the
array of results within a given study or even more broadly, to a broader universe
of results from the same data collection effort or generated by the same investi-
gator. Here the concern as typically raised is not with the evaluation of precision
in a specific measure of association, which is the focus in generating a confi-
dence interval, but rather with using the broader array of results to help judge a
specific findings.

When examining an array of results, one can ask about the probability that 
a specified number of those findings will appear to be statistically significantly
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different from the null value. That is, a conventional critical p-value of 0.05 ap-
plies to a single observed result, but if one is interested in maintaining this crit-
ical value for an array of results, for example 10 measures of association, then
the critical p-value for each of those measures must be smaller to ensure that the
critical p-value for the aggregate of findings remains 0.05, i.e., that there is a 5%
probability of one p-value of less than 0.05 if all the null hypotheses are true. A
formula that provides the basis for calculating the actual critical p-value for one
or more statistically significant results is 1 	 (1 	 alpha)n where alpha is the crit-
ical p-value for each measure, typically 0.05, and n is the number of such cal-
culations that are made. Taking this experiment-wise error into account using the
Bonferroni correction is intended to be and is, of course, conservative. Fewer
findings will be declared statistically significant, but of course there is also a
tremendous loss of statistical power that results from making the critical p-
values more stringent. The formal statistical hypothesis that is addressed is how
likely is it that we would observe an array of findings that is as extreme or more
extreme than the array we obtained under the assumption that all associations
being explored are truly null? We assume that there are no associations present
in the whole array of data, just as we assume the individual null hypothesis is
true to generate a p-value for an individual finding.

Consideration of an array of findings is most often used to ask whether a given
result from a study that attains some critical p-value is nevertheless likely to have
arisen by chance. Consideration of the number of such calculations made in the
course of analyzing data from the study is used to address the question, “How
many statistically significant measures of association would we expect even if
none are truly present?” Assuming that the universal null hypothesis is correct,
and that there are truly no associations present in the data, the number of statis-
tically significant results that are generated will increase as the number of asso-
ciations that are examined increases. From this perspective, a result that emerges
from examination of many results is more likely to be a false positive finding
than a result that is generated in isolation or from a small array of results. Ac-
cording to the formal technology of generating p-values and assigning statistical
significance, this is certain to be true.

Despite the technical accuracy of this line of reasoning, there are a number of
serious problems with attempts to use the concept of multiple testing, as con-
ventionally applied, to interpret individual study results (Savitz & Olshan, 1995).
The relevant constellation of results that defines the universe of interest is arbi-
trarily defined, sometimes consisting of other results reported in a given publi-
cation, but it could just as legitimately be based on the results generated from
that data collection effort or by that investigator. Each measure of effect that is
generated addresses a different substantive question, and lumping those results
together simply because the same data collection effort produced them all makes
no logical sense. It would be no less arbitrary to group all the results of a given
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investigator, all those in a given issue of a journal, or those generated on sub-
jects in the same city (Rothman, 1990). Should the context include all past and
future uses of the data set, accounting for analyses not yet done?

By shifting the frame of reference from the individual comparison to a set
of comparisons from the same study or data set, it follows that the threat of
random error in a given measure of association is somehow affected by other
past and future analyses of the data. Independent of the process of generating
the data, it is implied that the very act of generating additional measures of as-
sociation bears upon the interpretation of the one of interest. Short of data fab-
rication, nothing that is done with the data set will affect a given result; so how
can the data “know” what else you’ve done with them? Given the expense of
conducting epidemiologic studies, and the desire to generate relevant informa-
tion on an array of scientifically important issues, pressure to constrain ex-
ploitation of data could only be harmful and inefficient. Each result, even if
many are generated, needs to be scrutinized and challenged on its own merits
(Cole, 1979). All the usual concerns with potential bias apply, and random er-
ror is certainly among those concerns. The amount of random error in a given
measure of association is a function of study size, however, not of other analy-
ses done with the data.

On a slightly more abstract level, but also motivated by a concern with mul-
tiple comparisons, the question may be raised as to how the hypothesis origi-
nated. In particular, was it conceived before the data were analyzed (a priori hy-
pothesis) or after the data were analyzed (post hoc hypothesis)? Under this line
of reasoning, independent of the quality of the data and the background state of
knowledge based on previous epidemiologic studies and other lines of relevant
research, results addressing hypotheses that were postulated before the conduct
of data analyses are viewed as more credible than those that emerged later. The
sequence of hypothesis formulation and data analysis is seen as critical to inter-
pretation of study results, but on closer consideration this makes no sense. Such
an argument assigns an almost mystical property to the data—the numbers are
somehow thought to “know” when the idea arose and deserve to be discounted
more if the idea arose later rather than earlier. A given result does not “know”
when the idea arose and its validity and precision are not affected by such issues
(Poole, 1988; Cole, 1993). Undoubtedly, questions conceived prior to the study
will often tend to be based on more extensive background literature and will of-
ten lead to more refined efforts at data collection. Where prior hypotheses lead
to more careful measurement of the exposure of interest and optimized designs
to address the study question, those improvements should translate into more
credible findings. Evaluating the totality of evidence after the study certainly
must include ancillary support from previous studies, and strong prior evidence
will often be associated with formulation of a priori hypotheses and associated
with more conclusive cumulative findings when the study is completed. How-
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ever, it is solely the quality of the evidence that determines its value, not the tim-
ing of data analysis or the mental processes of the investigator.

In practice, many who interpret epidemiologic data continue to put a great deal
of stock in the multiple comparisons issue. Arguments are made that a result
should be given more credence because it came from an a priori hypothesis or
less credence because it did not. Sometimes investigators will be careful to point
out that they had a question in mind at the inception of the study, or to make
special note of what the primary basis was for the study having been funded. Re-
viewers of manuscripts sometimes ask for specification of the primary purpose
of the study, particularly when presenting results that address issues other than
the one that justified initial funding of the research. At best, these are indirect
clues to suggest that the investigators may have been more thorough in assess-
ing the relevant background literature on the primary topic before the study as
compared to secondary interests. Perhaps that effort helped them to refine data
collection or to choose a study population that was especially well-suited to ad-
dress the study question. The only consequence of interest is in how the data
were affected, and it is the quality of the data that should be scrutinized rather
than the investigators’ knowledge and when it arose. If all that foresight and plan-
ning failed to result in a suitable study design, there should be no extra points
awarded for trying and if they were just lucky in having ideal data for an unan-
ticipated study question, then no points should be deducted for lack of foresight.

Analogous arguments are commonly made that a result should be given less
credence because it came from an ex post facto hypothesis, sometimes referred
to as data dredging or fishing. Such criticisms are without merit, other than per-
haps to focus attention to the possibility of substantive concerns. If a particular
finding has little context in the literature, then even with the addition of new sup-
porting evidence, the cumulative level of support is likely to remain modest. If
an issue was not anticipated in advance, this may result in lower quality data to
address the question, with inferior exposure or disease measurement or lack of
data on relevant potential confounders. Any such problems warrant close exam-
ination and criticism. What does not warrant scrutiny is how many analyses were
done, what other uses have been made of the data, or how and when the analy-
sis plans came about.

Where selective analyses and reporting of findings become important is in the
dissemination of findings through presentations at research meetings and espe-
cially in the published literature. Often, the primary hypothesis is of sufficient
importance that investigators will be motivated to publish the results regardless
of the outcome, whether confirming or refuting previous literature. On the other
hand, secondary hypotheses may well be dismissed quickly if the results are not
interesting (i.e., not positive), and thus the body of published literature is not
only incomplete but is a biased sample from the work that has been done (Dick-
ersin et al., 1987; Chalmers, 1990). If data are dredged not simply to glean all
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that can be obtained from the data but to find positive results (at its worst, to
skim off statistically significant findings), then the available literature will pro-
vide a poor reflection of the true state of knowledge. At the level of the indi-
vidual investigator, results-based publication constitutes a disservice to science,
and decisions by editors to favor positive over null findings would exacerbate
the difficulty in getting the scientific literature to accurately reflect the truth.

Techniques have recently been proposed and are becoming more widespread
that make beneficial use of the array of findings from a study to improve each
of the estimates that are generated (Greenland & Robins, 1991; Greenland &
Poole, 1994). The goal is to take advantage of information from the constella-
tion of results to make more informed guesses regarding the direction and amount
of random error and thereby produce a set of revised estimates that are proba-
bilistically, in the aggregate, going to be closer to their true values. Estimates are
modified through empirical Bayes or Bayesian shrinkage; the most extreme and
imprecise estimates in an array of results are likely to have random error that in-
flated the estimates, just as those far below the null value are likely to suffer
from random error that reduced the estimates. By using this information on likely
direction and magnitude of random error, obtainable only from the constellation
of findings, outliers can be shrunk in light of presumed random error toward
more probable estimates of the magnitude of association. Instead of simply giv-
ing less attention to extreme, imprecise results informally, the findings from other
analyses of the data help to produce a better estimate. The nature of random er-
ror, which will tend to generate some erroneously high and some erroneously
low measures of association is exploited to make extremely high and low im-
precise values less extreme since it is almost certain that random error has in-
troduced distortion that contributes to their being outliers. A better guess of their
values, free of random error, is that they would be closer to the null on average.

INTERPRETATION OF CONFIDENCE INTERVALS

Random error is always present to some extent and generates error in estimating
measures of effect. Furthermore, larger studies suffer less distortion from ran-
dom error than smaller studies. Thus, some method is needed to quantify the
amount of random error that is present. Though the underlying rationale for con-
structing confidence intervals is based on the same sampling theory as p-values,
they are useful for characterizing the precision in a much more general way. The
statistical framework is used to help make an assessment of the role of random
error, but it is advisable to step back from the formal underpinnings and not at-
tempt to make fine distinctions about values within or outside the interval, to
screen results as including or excluding the null value, or to let the confidence
interval dominate the basis for drawing conclusions.
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Starting with a known true value for the measure of interest, the confidence
interval is the set of values for which the p-value will be greater than 0.05 (for
a 95% confidence interval) in a test of whether the data deviate from the true
value. That is, assuming the point estimate is the correct value, all those values
up to the boundary of the interval would genreate p-values of 0.05 or greater if
tested using the given study size. Obviously, as the study size gets larger, the
array of values that would generate p � 0.05 becomes smaller and smaller, and
thus the confidence interval becomes narrower and narrower. A consequence of
the manner in which the interval is constructed is that the true value for the pa-
rameter of interest will be contained in such intervals in a specified proportion
of cases, 95% if that is the chosen coverage. Confidence intervals, despite be-
ing based on many of the same unrealistic assumptions as p-values and statis-
tical tests, are much more useful for quantifying random error, so long as they
are not merely used as substitutes for statistical tests. If one uses the formal sta-
tistical properties of confidence intervals, the bounds of the interval can be in-
terpreted as two-tailed statistical tests of the null hypothesis—if the lower bound
of a 95% confidence interval exceeds the null value, then the p-value is less
than 0.05. If the interpretation of the confidence interval is solely based on
whether that interval includes or excludes the null value, then it functions as a
statistical test and suffers from all the drawbacks associated with an arbitrary
dichotomization of the data. Instead, confidence intervals should be used as in-
terval estimates of the measure of interest, conveying a sense of the precision
of that estimate.

Only marginally better is the use of confidence intervals to define bounds of
compatibility, i.e., interpreting the interval as a range within the true value is
likely to lie. In this view, the confidence interval is treated as a step function
(Poole, 1987), with values inside the interval presumed to be equally likely and
values outside the interval equally unlikely. In reality, the point estimate and val-
ues near it are far better estimates of the true value based on the data than val-
ues further away but still within the interval. Similarly, values toward the ex-
tremes of the interval and values just outside the interval are not meaningfully
different from one another either. A slight variant of the exclusionary interpre-
tation of confidence intervals is to compare confidence intervals from two or
more studies to assess whether they overlap. If they do overlap, the interpreta-
tion is that the results are statistically compatible and if they do not, the results
are believed to be statistically different from one another. If the goal is to test
the statistical difference in two estimates, or an estimate and a presumed true
value, there are more direct ways to do so. In fact, if such a difference is of par-
ticular interest, the point estimate of that difference can be calculated and a con-
fidence interval constructed around the estimated difference.

Confidence intervals are useful to convey a sense of the random variation in
the data, with a quantitative but informal interpretation of the precision of that
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estimate. Values toward the center of the interval are more compatible with the
observed results than values toward the periphery, and the boundary point itself
is rather improbable and unworthy of special focus. The p-value function is a de-
scription of the random error that is present, and the bounds of the confidence
interval help to describe how peaked or flat the p-value function is around the
point estimate. In a large study, the p-value function will be highly peaked, with
the most probable values very close to the point estimate, whereas in a small
study, it will be flatter, with fairly probable values extending more widely above
and below the point estimate. The confidence interval, while ill-suited to mak-
ing fine distinctions near the extremes of the interval, is nonetheless very useful
for providing a rough indication of precision.

The information provided by the confidence interval can be used to compare
the precision of different studies, again not focusing on the exact values but more
generally on the width of the interval. A simple measure, the confidence limit
ratio (Poole, 2001) has very attractive features for characterizing precision and
making comparisons across studies. Two studies with point estimates of a rela-
tive risk of 2.0, one with a 95% confidence interval of 1.1 to 3.3, and the other
with a confidence interval of 0.9 to 4.3 (confidence limit ratios of 3.3/1.1 � 3.0
and 4.4/0.9 � 4.8) are different but not substantially different in their precision.
A study with a confidence interval of 0.4 to 9.6 (confidence limit ratio �

9.6/0.4 � 24) is well worth distinguishing as less precise, perhaps so imprecise
as to render any inferences meaningless

Confidence intervals are helpful in comparing results from one study to results
from others, not formally testing them but assessing whether they are close to or
far from the point estimate, taking the imprecision of that point estimate and
overlap of intervals into account. Broadly characterizing the extent of overlap in
confidence interval coverage (not dichotomizing as overlapping versus non-over-
lapping) can be helpful in describing the similarity or differences in study find-
ings. For example, a study with a relative risk of 1.0 and a confidence interval
of 0.4 to 2.0 is fairly compatible with a study yielding a relative risk of 1.5 with
a confidence interval of 0.8 to 3.0. Two larger studies with narrower confidence
intervals but the same point estimates—for example, a relative risk of 1.0, with
a confidence interval of 0.8–1.2, and a relative risk of 1.5, with a confidence in-
terval of 1.1–2.2—would be interpreted as more distinctly different from one an-
other. Beyond the formal comparisons across studies, confidence intervals allow
for a rapid assessment of the magnitude of imprecision, especially to describe
whether it is at a level that calls into serious question the information value of
the study. Studies with cells of 2 or 3 observations, which tend to generate ex-
tremely imprecise estimates and confidence limit ratios of 10 or more, can quickly
be spotted and appropriately discounted. This informal interpretation of confi-
dence intervals, aided by calculation and examination of the confidence interval
ratio, is a valuable guide to imprecision.
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INTEGRATED ASSESSMENT OF RANDOM ERROR

Random error contributes to the uncertainty in estimated measures of effect and
therefore warrants close scrutiny as a contributor to the deviation between the
results of epidemiologic studies and the true causal effect of exposure on dis-
ease. Because the framework for quantification is so much more fully developed
and familiar than that for other forms of error, however, it may be given undue
prominence. Furthermore, a well-justified concern with the role of random error
is often translated into an inappropriate method for interpreting study results. The
central role given to the statistical null hypothesis is not warranted. The tech-
nology of experiments has been transferred directly to observational studies, yet
it is not directly applicable because of the lack of randomization in exposure as-
signment. What we would like from an examination of random error is a clear
characterization of the imprecision in study results, not a test of whether the data
or more extreme data are unlikely to have been observed assuming the null hy-
pothesis is true. A simple goal of taking imprecision into account in the inter-
pretation of study results is often made convoluted and difficult to apply for the
intended purpose.

In evaluating random error, the most conventional approach is to test statisti-
cal significance, either openly or covertly through the calculation and presenta-
tion of confidence intervals. These intervals are then used to dichotomize results
based on whether the null value is included within or excluded from the confi-
dence interval (Savitz et al., 1994). The focus should be on the extent to which
random error may have distorted the study’s results, rather than compatibility of
the data with the null hypothesis. Random error can bias results in either direc-
tion, and it is of interest for measurements at or near the null, as well as meas-
urements more deviant from the null. There is no basis for dichotomizing ran-
dom error as important or not important but instead the goal should be to quantify
its potential impact on the study’s findings.

Confidence intervals are more useful than p-values or statistical tests for quan-
tifying the impact of random error. Confidence intervals should not be interpreted
as statistical tests or bounds defining compatible and incompatible results, but
rather for their width or narrowness, indicating how imprecise or precise the es-
timates are. Informal use of confidence intervals assists in comparing results
across studies for general compatibility, assessing the extent to which random
error is a major or minor problem in a given study, quantifying the benefits of
increased study size, and conveying information about the role of random ver-
sus various forms of systematic error. For these purposes, a simple measure like
the confidence limit ratio of the upper to the lower bound is a useful adjunct to
the position of the interval itself.

A series of more advanced approaches have become popular recently that can
use information on an array of study findings to make more informed estimates
about the direction and magnitude of random error, and thereby produce improved
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estimates that are likely to be closer to the value that would have been obtained in
the absence of random error (Greenland & Robins, 1991). Instead of the usual sit-
uation in which the influence of random error is assumed to be symmetric (on the
appropriate scale) around the observed value, consideration of a distribution of re-
sults can suggest that certain values are deviantly high or low, likely to be due in
part to random processes. Therefore, the better estimate is not the original (naive)
estimate but one that is shrunk by some amount in the direction of the null value.
Such approaches go beyond quantifying random error and begin to compensate for
it to produce improved estimates, reflecting significant progress in refining epi-
demiologic data analysis. Efforts to incorporate other random elements such as
those that are part of misclassification are being developed, as well as more com-
prehensive approaches to the integration of random and systematic error.
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11
INTEGRATION OF EVIDENCE ACROSS STUDIES

As in other sciences, results from a single epidemiologic study are rarely if ever
sufficient to draw firm conclusions. No matter how much care is taken to avoid
biases and ensure adequate precision, idiosyncrasies inherent to any study ren-
der its results fallible. If nothing else, the chosen study population may demon-
strate a different exposure—disease relation than other populations would show,
so that the bounds of inference would need to be tested. Furthermore, limitations
in methods ranging from subtle methodologic pitfalls to mundane clerical errors
or programming mistakes render conclusions even for the study population itself
subject to error. Therefore, rather than seeking a single, perfect study to provide
clear information on the phenomenon of interest, the full array of pertinent re-
sults from a series of imperfect studies needs to be considered in order to accu-
rately summarize the state of knowledge and draw conclusions.

Multiple studies provide an opportunity to evaluate patterns of results to draw
firmer conclusions. Not only can the hypothesis of a causal relation between ex-
posure and disease be examined using the full array of information, but hy-
potheses regarding study biases can be evaluated as well. The concept of repli-
cation reflects a narrow, incomplete subset of the issues that can be fruitfully
evaluated across a series of studies that address the same causal relationship. As
often applied, the search for replicability refers to a series of methodologically
similar studies which enables the reviewer to examine the role of random error
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in accounting for different findings across those studies. Given that research de-
signs and study methods inevitably differ in epidemiology, however, the ques-
tion is not simply, “Are the studies consistent with one another?” but rather,
“What is the summary of evidence provided by this series of studies?” A series
of studies yielding inconsistent results may well provide strong support for a
causal inference when the methodologic features of those studies are scrutinized
and the subset of studies that support an association are methodologically
stronger, while those that fail to find an association are weaker. Similarly, con-
sistent evidence of an association may not support a causal relation if all the stud-
ies share the same bias that is likely to generate spurious indications of a posi-
tive association. In order to draw conclusions, the methods and results must be
considered in relation to one another, both within and across studies.

CONSIDERATION OF RANDOM ERROR AND BIAS

There has been a dramatic rise in interest and methodology for the formal, quan-
titative integration of evidence across studies, generally referred to as meta-
analysis (Petitti, 1994; Greenland, 1987, 1998). In the biomedical literature, much
of the motivation comes from a desire to integrate evidence across a series of
small clinical trials. The perceived problem that these tools were intended to ad-
dress is the inability of individual trials to have sufficient statistical power to de-
tect small benefits, whereas if the evidence could be integrated across studies,
statistical power would be enhanced. If subjected to formal tests of statistical sig-
nificance, which is the norm in assessing the outcome of a clinical trial, many
individual trials are too small to detect clinically important benefits as statisti-
cally significant. When such non-significant tendencies are observed across re-
peated studies, there is an interest in assessing what the evidence says when ag-
gregated. Note that the intended benefits were focused on reducing random error
through aggregation of results, implicitly or explicitly assuming that the indi-
vidual studies are otherwise compatible with regard to methods and freedom from
other potential study biases.

The value of this effort to synthesize rather than merely describe the array of
results presumes an emphasis on statistical hypothesis testing. A rigid interpre-
tation of statistical testing can and does lead to situations in which a series of
small studies, all pointing in the same direction, for example, a small benefit of
treatment, would lead to the conclusion that each of the studies found no effect
(based on significance testing). If the evidence from that same series of studies
were combined, and summarized with a pooled estimate of effect, evidence of a
statistically significant benefit would generate a very different conclusion than
the studies taken one at a time. Obviously, if a series of small studies shows sim-
ilar benefit, those who are less bound by adherence to statistical testing may well
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infer that the treatment appears to confer a benefit without the need to assess the
statistical significance of the array of results. Those who wish to compare the ar-
ray of results to a critical p-value, however, are able to do so. In fact, as dis-
cussed below in the section on “Interpreting Consistency and Inconsistency,” the
consistency across studies with at least slightly different methods and the po-
tential for different biases might actually provide greater confidence of a true
benefit. Identically designed and conducted studies may share identical biases
and show similar effects across the studies due to those shared errors.

As discussed in Chapter 10, in well-designed and well-executed randomized
trials, the focus on random error as the primary source of erroneous inferences
may be justified. That is, if the principles of masked, objective assessment of
outcome are followed, and an effective randomization procedures is employed
to ensure that baseline risk does not differ across exposure groups, the major
threat to generating valid results is a failure of the random allocation mechanism
to yield groups of baseline comparability. Generating a p-value addresses the
probability that the random allocation mechanism has generated an aberrant sam-
ple under the assumption that there is no true difference between the groups.
Thus, repetition of the experiment under identical conditions can be used to ad-
dress and reduce the possibility that there is no benefit of treatment but the al-
location of exposure by groups has, by chance, generated such a pattern of re-
sults. A series of small, identical randomized trials will yield a distribution of
results, and the integration of results across those trials would provide the best
estimate of the true effect. In the series of small studies, the randomization itself
may not be effective, although the deviation in results from such randomization
should be symmetrical around the true value. Integration of information across
the studies should help to identify the true value around which the findings from
individual studies cluster.

The randomized trial paradigm and assumptions have been articulated because
the direct application of this reasoning to observational studies is often prob-
lematic, sometimes severely so. Just as the framework of statistical hypothesis
testing has limited applicability to a single epidemiologic study, the framework
of synthetic meta-analysis has limited applicability to a set of observational 
studies.

Observational studies are rarely if ever true replications of one another. The
populations in which the studies are conducted differ, and thus the presence of
potential effect-modifiers differs as well. The tools of measurement are rarely
identical, even for relatively simple constructs such as assessment of tobacco use
or occupation. Exact methods of selecting and recruiting subjects differ, and the
extent and pattern of nonparticipation varies. Susceptibility to confounding will
differ whenever the underlying mechanism of exposure assignment differs. Thus,
the opportunity to simply integrate results across a series of methodologically
identical studies does not exist in observational epidemiology. Glossing over these
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differing features of study design and conduct, and pretending that only random
error accounts for variability among studies is more likely to generate mislead-
ing than helpful inferences.

Closely related to this concern is the central role assigned to statistical power
and random error in the interpretation of study results. The fundamental goal of
integrating results is to draw more valid conclusions by taking advantage of the
evidence from having several studies of a given topic rather than a single large
study. While enhanced precision from the larger number of subjects accrued in
multiple studies is an asset, the more valuable source of insight is often the op-
portunity to understand the influence of design features on study results. This
can only be achieved by having multiple studies of differing character and scru-
tinizing the pattern that emerges, not suppressing it through a single synthetic es-
timate. Imagine two situations, one with a single study of 5000 cases of disease
in a cohort of 1,000,000 persons, and the other a series of 10 studies with 500
cases each from cohorts of 100,000 persons. The single, extremely precise study
would offer limited opportunity to learn from the methodologic choices that were
made since a single protocol would have been followed. Differing approaches to
measurement of exposure and disease, control of confounding, and modification
of the estimated effect by covariates would be limited because of the lack of di-
versity in study methods. In contrast, the variation in methodologic decisions
among the 10 studies would provide an opportunity to assess the pattern of re-
sults in relation to methods. With variability in attributes across studies (viewed
as a limitation or barrier to deriving a single estimate), one can gain an under-
standing of how those study features influence the results (an advantage in eval-
uating hypotheses of bias and causality).

DATA POOLING AND COORDINATED COMPARATIVE ANALYSIS

Pooling is the ultimate aggregation of evidence from multiple studies addressing
the same topic in a similar manner. In this instance, it is not just the final results
that are synthesized, but the raw data that are merged in the analysis. This proce-
dure obviously requires data from each of the component studies rather than rely-
ing on published information. Furthermore, it requires a certain minimum degree
of compatibility across studies in the structure of the data (study design and meas-
urements). The ideal situation for data pooling, of course, is when a true multi-
center study has been conducted, where identical research protocols were followed
to assure that the data would be identical in all respects. Sometimes the equivalent
of a multicenter study with a common protocol results from a systematic effort by
a consortium of investigators or a funding agency to ensure such compatibility.

In pooling data across studies that were not designed to be so fully compati-
ble, some compromises or assumptions are necessary to allow the integration of
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results. In fact, such efforts should be viewed with appropriate skepticism as to
whether a single estimate from the aggregation of studies is the most informa-
tive way to understand the evidence that the set of studies are providing. The
only goal of pooling is to reduce random error by merging multiple studies. The
logic behind this approach is straightforward: if a series of studies are indistin-
guishable with regard to methods, then any differences among their results is pre-
sumably due to random error. It is as though one large study was done and the
results had been arbitrarily subdivided, losing precision in such a division with
no compensating gains in validity. Under those conditions, nothing could be
learned from examining the variability among the studies about the influence of
study design and conduct on results. The most succinct presentation of results,
and the one that would most accurately describe the role of random error, would
be a pooled estimate. In practice, it is very rare for epidemiologic studies to be
so comparable in design and conduct that the differences among them are unin-
formative.

An evaluation of the role of residential magnetic field exposure and the risk
of childhood leukemia (Greenland et al., 2000) provides a useful illustration of
the value and limitations of the approach. A series of studies largely from the
United States and Western Europe had evaluated the hypothesis that prolonged
residential exposure to elevated levels of magnetic fields from outside power
lines and electrical wiring in the home might lead to an increased risk of leukemia
in children. Many methodologic concerns within each of the studies and the ir-
regular pattern of results rendered the findings inconclusive regarding a causal
relation between magnetic field exposure and cancer (NRC, 1997; Portier and
Wolfe, 1998). Although there were many concerns, only one of those issues, ran-
dom error, could be addressed by data pooling. In this instance, the most in-
formative results might come from studying the occupants of homes with the
very highest levels of magnetic fields, but such homes were rare in each of the
studies (Table 11.1). Thus, enhancing precision for the higher dose portion of
the dose–response curve was a perfectly valid, if narrow, goal.

Only a handful of cases and controls had been identified in each of the stud-
ies whose home measurements were above 0.2 microTesla, and even fewer above
0.3 microTesla, with the vast majority of homes between 0.05 and 0.2 microTesla
(Table 11.1). To generate improved estimates of the dose–response function re-
lating measured magnetic fields to childhood leukemia risk, Greenland et al.
(2000) obtained raw data from all the investigators who had conducted relevant
studies of this topic and pooled the data to generate dose–response estimates
across a wide exposure range. The results are most interesting: no indication of
increasing leukemia risk with increasing exposure was found for the range be-
low 0.2 microTesla, whereas above that level, a clear (though still imprecise) in-
dication was found of increasing risk with increasing exposure (Fig. 11.1). Risk
estimates for exposure in the range of 0.3 to 0.6 microTesla, which no individ-

Integration of Evidence Across Studies 265



TABLE 11.1. Study-Specific Distributions of Magnetic-Field Data, Pooled Analysis of Magnetic Fields, Wire Codes, and Childhood Leukemia

Magnetic-Field Category (�T)

FIRST AUTHOR† � 0.1 � 0.1–� 0.2 � 0.2–� 0.3 � 0.3–� 0.4 � 0.4–� 0.5 � 0.5 TOTAL NO MEASURE*

Cases

Coghill 48 5 2 0 1 0 56 0
Dockerty 72 9 3 1 1 1 87 34
Feychting 30 1 1 2 0 4 38 0
Linet 403 152 41 20 13 9 638 46
London 110 30 5 9 4 4 162 68
McBride 174 77 32 11 1 2 297 102
Michaelis 150 17 3 3 3 0 176 0
Olsen 829 1 0 0 0 3 833 0
Savitz 24 7 2 3 0 0 36 62
Tomenius 129 16 5 0 0 3 153 0
Tynes 146 2 0 0 0 0 148 0
Verkasalo 30 1 0 0 1 0 32 3

Controls

Coghill 47 9 0 0 0 0 56 0
Dockerty 68 13 1 0 0 0 82 39
Feychting 488 26 18 10 2 10 554 0
Linet 407 144 41 17 5 6 620 69
London 99 28 6 2 2 6 143 89
McBride 194 96 28 5 3 3 329 70
Michaelis 372 29 7 4 0 2 414 0
Olsen 1658 3 2 2 0 1 1666 0
Savitz 155 28 10 3 2 0 198 67
Tomenius 546 119 24 4 2 3 698 21
Tynes 1941 25 7 5 4 22 2004 0
Verkasalo 300 9 6 4 0 1 320 30

*No measure for a residence at or before time of diagnosis (cases) or corresponding index date (for controls).

†See Greenland et al. (2000) for citations to original reports.

Greenland et al., 2000.



ual study could address, were the most supportive of a positive relation between
magnetic fields and leukemia. Note that the myriad limitations in the design of
individual studies, including potential response bias, exposure misclassification,
and confounding were not resolved through data pooling, but the sparseness of
the data in a range of the dose–response curve in which random error was a pro-
found limitation was overcome to some extent.

A technique that is often better suited to maximizing the information from a se-
ries of broadly comparable studies, which also requires access to the raw data or at
least to highly cooperative collaborators willing to undertake additional analyses, is
comparative analysis. In this approach, rather than integrating all the data into the
same analysis, parallel analyses are conducted using the most comparable statisti-
cal techniques possible. That is, instead of the usual situation in which different el-
igibility criteria are employed, different exposure categories are created, different
potential confounders are controlled, etc., the investigative team imposes identical
decision rules on all the studies that are to be included. Applying identical decision
rules and analytic methods removes those factors as candidate explanations for in-
consistent results and sharpens the focus on factors that remain different across stud-
ies such as the range of exposure observed or selective non-response.

The basic design and the data collection methods are not amenable to modi-
fication at the point of conducting comparative analysis, of course, except for
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those that can be changed by imposing restrictions on the available data (e.g.,
more stringent eligibility criteria). The series of decisions that proceed from the
raw data to the final results are under the control of the investigators conducting
the comparative analysis. Methodologically, the extent to which the choices made
account for differences in the results can be evaluated empirically. When multi-
ple studies address the same issue in a similar manner and yield incompatible re-
sults, the possibility of artifactual differences resulting from the details of ana-
lytic methods needs to be entertained. Comparative analysis addresses this
hypothesized basis for differences in results directly, and either pinpoints the
source of disparity or demonstrates that such methodologic decisions were not
responsible for disparate findings. The opportunity to align the studies on a com-
mon scale of exposure and response yields an improved understanding of the ev-
idence generated by the series of studies.

Lubin and Boice (1997) conducted such an analysis to summarize the evidence
on residential radon and lung cancer. A series of eight pertinent case–control
studies had been conducted, but both the range of radon exposure evaluated and
the analytic approaches differed, in some cases, substantially, across studies. They
found that the radon dose range being addressed across the series of studies dif-
fered markedly (Fig. 11.2), and the results could be reconciled, in part, by more
formally taking the dose range into account. Each study had focused on the in-
ternal comparison of higher and lower exposure groups within their study set-
tings, yet the absolute radon exposure levels that the studies addressed were quite
distinctive, with the highest dose group ranging from approximately 150 Bq/m3

to approximately 450 Bq/m3. If in fact the studies in a lower dose range found
no increase in risk with higher exposure, and those in the higher dose range did
find such a pattern, it would be difficult to declare the studies inconsistent in a
sense. They would be internally inconsistent but consistent relative to one an-
other.

In this instance, the results were largely compatible when put on a common
scale, with a combined relative risk estimate for a dose of 150 Bq/m3 of 1.14
(Table 11.2). Even the combination of evidence across residential and occupa-
tional exposures from miner studies, where the doses are typically much higher,
showed compatible findings when put on a common dose scale. Few exposures
permit the quantification of dose to reconcile study findings, but this example
clearly illustrates the need to go beyond the notion of consistent or inconsistent
in gleaning the maximum information from a set of studies.

SYNTHETIC AND EXPLORATORY META-ANALYSIS

Instead of data pooling, which is logistically difficult due to the need to obtain
raw data and conduct new analyses, epidemiologists have increasingly turned to
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FIGURE 11.2. Relative risks (RRs) for
radon concentration categories and fitted
exposure–response models for each
case–control study. Fitted lines are ad-
justed to pass through the quantitative
value for the baseline category. Models fit
to the logarithm of the RRs are linear with
respect to radon. There was a significant
departure from linearity in the Finland-I
data, and also shown is the model which
is linear and quadratic with respect to
radon (Lubin & Boice, 1997, page 53).
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meta-analysis as a quantitative approach to integrating information from a set of
published studies on the same topic. In meta-analysis, the unit of observation is
the individual study and statistical tools are applied to the array of study results
in order to extract the most objective, useful information possible about the phe-
nomenon of interest. The methods and results of the included studies are ana-
lyzed to draw inferences from the body of relevant literature. The tools of meta-
analysis have been described in detail elsewhere (Petitti, 1994; Greenland, 1998).

In synthetic meta-analysis, the goals are comparable to those of data pooling.
The large number of observations acquired by integrating multiple studies are
used to derive a more precise measure of effect than could be obtained from any
of the individual studies. The goal is to generate a precision-weighted average
result from across the series of studies, as illustrated in Table 11.2 for the esti-
mated relative risk of 1.14 (95% confidence interval � 1.01–1.30) for lung can-
cer from exposure to 150 Bq/m3 in the meta-analysis of Lubin and Boice (1997).
Statistical methods are available that take the variability among studies into ac-
count and derive a common point and interval estimate. Obviously, by taking
into account all the data that comprise the individual studies, the overall estimate
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TABLE 11.2. Estimates of the Relative Risk at 150 Bq/m3 and the 95% Confidence 
Interval for Each Study and for All Studies Combined, Meta-Analysis of Epidemiologic
Studies of Residential Radon and Lung Cancer

REPORTED IN

STUDY RR* 95% CI ORIGINAL PAPER†

Finland-I‡ 1.30 1.09–1.55 NA
Finland-II 1.01 0.94–1.09 1.02
New Jersey 1.83 1.15–2.90 1.77
Shenyang 0.84 0.78–0.91 0.92§

Winnipeg 0.96 0.86–1.08 0.97
Stockholm 1.83 1.34–2.50 1.79
Sweden 1.20 1.13–1.27 1.15
Missouri 1.12 0.92–1.36 NA
Combined¶ 1.14 1.01–1.30

*Values shown are estimated RR at 150 Bq/m3, i.e., exp(b � 150), where b was the estimate of �
obtained from a weighted linear regression fitting the model log(RR) � �(x 	 x0), where x0 is the
quantitative value for the lowest radon category and x is the category-specific radon level.

†RR at 150 Bq/m3, based on or computed from exposure-response relationship provided in original
reports. Exposure response was not available (NA) in Finland-I and Missouri studies.

‡For Finland-I, there was a significant departure from linearity (P � 0.03). The estimated RR for
150 Bq/m3 under a linear-quadratic model was 1.71.

§Taken from results in pooled analysis (18).

¶Combined estimate and CI based on a random effects model. Fixed effects estimate was 1.11 (95%
CI � 1.07–1.15).

RR, relative risk; CI, confidence interval.

Lubin & Boice, 1997.



is markedly more precise than any of the original studies taken in isolation. Cyn-
ics suggest that the main goal of meta-analysis is to take a series of studies that
demonstrate an effect that is not statistically significant and combine the studies to
derive a summary estimate that is statistically significant, or worse yet, to take a
series of imprecise and invalid results and generate a highly precise invalid result.

One of the challenges in conducting such meta-analyses is to ensure that the
studies that are included are sufficiently compatible methodologically to make
the exercise of synthesizing a common estimate an informative process. The al-
gebraic technology will appear to work even when the studies being combined
are fundamentally incompatible with respect to the methods used to generate the
data. In practice, studies always differ from one another in potentially important
features such as study locale, response proportion, and control of confounding,
so that the decision to derive a summary estimate should be viewed at best as an
exercise, in the same spirit as a sensitivity analyses. The question that is ad-
dressed by a meta-analysis is as follows: If none of the differing features of study
methods affected the results, what would be the best estimate of effect from this
set of studies? The value and credibility of that answer depends largely on the
credibility of the premises.

An alternative approach to synthetic meta-analysis focused on the derivation
of a single, pooled estimate, is to apply the statistical tools of meta-analysis to
examine and better understand the sources of heterogeneity across the compo-
nent studies. By focusing on the variability in results as the object of study, we
can identify and quantify the influences of study methods and potential biases
on study findings, rather than assume that such methodologic features are unim-
portant. The variability in study features, which are viewed as a nuisance when
seeking a summary estimate, is the raw material for exploratory meta-analysis
(Greenland, 1998).

In exploratory meta-analysis, the structural features of the study, such as lo-
cation, time period, population source, and the measures of study conduct such
as response proportion, masking of interviewers, and amount of missing infor-
mation, are treated as potential determinants (independent variables) of the study
results. Through exploratory meta-analysis, the manner in which study methods
influence study results can be quantified, perhaps the most important goal in eval-
uating a body of epidemiologic literature. In parallel with the approach to ex-
amining methods and results within a single study, the focus of previous chap-
ters, the same rationale applies to the examination of methods and results across
studies. Just as the insights from such analyses of potential biases within a study
help to assess the credibility of its findings, the pattern of results across a series
of studies helps to more fully understand the constellation of findings and its
meaning.

Sometimes, systematic examination of the pattern of results across studies
yields a clear pattern in which methodologic quality is predictive of the results.
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That is, studies that are better on average tend to show stronger (or weaker) mea-
sures of association, suggesting where the truth may lie among existing results
or what might be expected by extrapolating to studies that are even better than
the studies conducted thus far. For example, if higher response proportions were
independently predictive of stronger associations, one would infer, all other things
being equal, that a stronger association would be expected if non-response could
be eliminated altogether. The studies with the higher response proportion are pre-
sumably yielding more valid results, all other things equal, and thus the obser-
vation that these studies yield stronger associations supports an association be-
ing truly present and stronger in magnitude than was observed even in the study
with the best response thus far. The opposite pattern, higher response proportions
predicting weaker association, would suggest that no association or only a weak
one is present. Heterogeneity of results across studies is being explained in a
manner that indicates both which results among completed studies are more likely
to be valid and the basis for projecting what would be found if the methodologic
limitation could be circumvented altogether. In meta-regression, such indepen-
dent effects of predictors can be examined with adjustment for other features of
the study that might be correlated with response proportions. With a sufficient
number of observations, multiple influences on study findings can be isolated
from one another.

Interpretation of the patterns revealed by exploratory meta-analysis is not al-
ways straightforward, of course, just as the corresponding relation between meth-
ods and results is not simple within individual studies. For example, one might
observe that studies conducted in Europe tend to yield different results (stronger
or weaker associations) than those conducted in North America. Neither group
is necessarily more valid, but this pattern would encourage closer scrutiny of is-
sues such as the methods of diagnosis, available tools for selecting controls in
case–control studies, cultural attitudes toward the exposure of interest, or even
the very nature of the exposure, which may well differ by geographic region.
Sometimes there are time trends in which results of studies differ systematically
as a function of the calendar period of study conduct, again subject to a variety
of possible explanations. Even when features of the studies that do not corre-
spond directly to indices of quality are predictive of results, much progress has
been made beyond simply noting that the studies are inconsistent. The product
of examining these attributes is refinement of the hypotheses that might explain
inconsistent results in the literature.

The requirements for the application of exploratory meta-analysis are sub-
stantial, and often not met for topics of interest. The key feature is having a suf-
ficient number of studies to conduct regression analyses that can examine and
isolate multiple determinants of interest. The number of available studies deter-
mines in part the feasibility of conducting meta-regression with multiple predic-
tors, just as the number of individual subjects does so in regression analyses of
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individual studies (Greenland, 1998). A second requirement is sufficient vari-
ability in potential influences on study results for informative evaluation, as in
any regression analysis. If all studies of a given topic use a population-based
case–control design, the influence of design on results cannot be examined. The
alternative to exploratory meta-analysis, which is not without its advocates, is a
careful narrative review and description of the relationship between study meth-
ods and results, without a formal statistical analysis of that pattern. The tradi-
tional detailed review of the literature without quantitative analysis may lend it-
self to closer scrutiny of individual study methods and their results. In addition,
narrative reviews avoid the potential for the appearance of exaggerated certainty
resulting from the meta-analysis. Ostensibly precise, quantitative information can
be misleading if the assumptions that went into its generation are not kept firmly
in mind. On the other hand, without statistical tools, it is difficult if not impos-
sible to isolate multiple determinants from one another and discern patterns
clearly. The reasons for a multivariate approach to examining influences on re-
sults across studies is identical to the rationale for multivariate analysis in stud-
ies of individuals: without it, there is no way to understand how multiple influ-
ences operate, independent of and in relation to one another.

INTERPRETING CONSISTENCY AND INCONSISTENCY

Among the most complex issues in the interpretation of a body of scientific lit-
erature is the meaning of consistency and inconsistency in results across studies.
For those unwilling or unable to grapple with the details, a sweeping pro-
nouncement of consistent implies that the phenomenon is understood and all the
studies are pointing in the same (correct) direction. On the other hand, inconsis-
tency among studies may be interpreted as lack of support for the hypothesis, an
indication that the truth is unknown, or evidence that all the studies are subject
to error. The reality in either case is more complex. Examined in detail, a series
of studies addressing the same question will always show some inconsistencies,
regardless of the truth and the quality of the individual studies.

The search for consistency may derive from the expectations of laboratory ex-
periments in which replication is expected to yield identical results, subject only
to random error, if the phenomenon is operating as hypothesized. When differ-
ent researchers in different laboratories apply the same experimental conditions,
and they observe similar results, it suggests that the original finding is valid. The
ability to consistently generate a predicted result across settings strongly supports
the hypothesized phenomenon. In contrast, inconsistency across laboratories, for
example, or across technicians within a laboratory suggests some error has been
made in the experiment or that some essential element of the phenomenon has
not yet been identified. If the originally reported phenomenon cannot be 
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replicated despite multiple attempts to do so, then the original study is appro-
priately assumed to be in error. Certainly, epidemiologists seek confirmation, but
pure replication is never feasible in observational epidemiology in that the con-
ditions (populations, study methods) inevitably differ across studies.

Inconsistent Findings

As commonly applied, the criticism that studies are inconsistent has several im-
plications, all of them interpreted as suggesting that the hypothesized association
is not present: (1) No association is present, but random error or unmeasured bi-
ases have generated the appearance of an association in some but not all studies.
(2) No conclusions whatsoever can be drawn from the set of studies regarding
the presence or absence of an association. (3) The literature is methodologically
weak and pervasive methodologic problems are the source of the disparate study
findings. An equally tenable explanation is that the studies vary in quality and
that the strongest of the studies correctly identify the presence of an association
and the methodologically weaker ones do not, or vice versa. Unfortunately, the
observation of inconsistent results per se, without information on the character-
istics of the studies that generated the results and the nature of the inconsistency,
conveys very little information about the quality of the literature, whether infer-
ences are warranted, and what those inferences should be. Inconsistencies across
studies can arise for so many reasons that without further scrutiny the observa-
tion has little meaning.

Random error alone inevitably produces inconsistency in the exact measures
of effect across studies. If the overall association is strong, then such deviations
may not detract from the overall appearance of consistency. For example, if a
series of studies of tobacco use and lung cancer generate risk ratios of 7.0, 8.2,
and 10.0, we may legitimately interpret the results as consistent. In contrast, in
a range of associations much closer to the null value, or truly null associations,
fluctuation of equal magnitude might well convey the impression of inconsis-
tency. Risk ratios of 0.8, 1.1, and 1.5 could well be viewed as inconsistent, with
one positive and two negative studies, yet the studies may be estimating the same
parameter, differing only due to random error. When the precision of one or more
of the studies is limited, the potential for random error to create the impression
of inconsistency is enhanced. While the pursuit of substantive explanations for
inconsistent findings is worth undertaking, the less intellectually satisfying but
often plausible explanation of random error should also be seriously entertained.
Results that fluctuate within a relatively modest range do not suggest that the
studies are flawed, but rather may simply suggest that the true measure of the
association is somewhere toward the middle of the observed range and the scat-
ter reflects random error. Conversely, substantial variability in findings across
studies should not immediately be assumed to result from random error, but ran-
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dom error should be included among the candidate contributors, particularly when
confidence intervals are wide.

Those who compile study results will sometimes tally the proportion of the
studies that generate positive or negative associations, or count the number of
studies that produce statistically significant associations. While there are ways to
infer whether the count of studies deviates from the expectation under the null
(Poole, 1997), it is far preferable to examine the actual measures of effect and
associated confidence intervals. To count the proportion of studies with relative
risks above or below the null sacrifices all information on the magnitude of ef-
fect and variation among the studies generating positive and inverse associations.
A focus on how many were statistically significant hopelessly confounds mag-
nitude of effect with precision. A series of studies with identical findings, for ex-
ample, all yielding risk ratios of 1.5, could well yield inconsistent findings with
regard to statistical significance due to varying study size alone. Variability in
study size is one easily understood basis for inconsistency due to its affect on
precision. As suggested in Chapter 10, statistical significance is of little value in
interpreting the results of individual studies, and the problems with using it are
compounded if applied to evaluating the consistency of a series of studies.

Another mechanism by which a series of methodologically sound studies could
yield inconsistent results is if the response to the agent in question truly differs
across populations, i.e., there is effect measure modification. For example, in a
series of studies of alcohol and breast cancer, one might find positive associa-
tions among premenopausal but not postmenopausal women, with both sets of
findings consistent and valid. Some studies may include all or a preponderance
of postmenopausal women and others predominantly premenopausal women. If
the effect of alcohol varies by menopausal status, then the summary findings of
those studies will differ as well. Whereas the understanding of breast cancer has
evolved to the point that there is recognition of the potential for distinctive risk
factors among premenopausal and postmenopausal women, for many other dis-
eases the distinctiveness of risk factors in subgroups of the population is far less
clear. Where sources of true heterogeneity are present, and the studies vary in
the proportions of participants in those heterogeneous groups, the results will in-
evitably be inconsistent. All studies however may well be accurate in describing
an effect that occurs only or to a greater extent in one subpopulation.

This differing pattern of impact across populations is one illustration of effect
modification. In the above example, it is based on menopausal status. Analogous
heterogeneity of results might occur as a function of baseline risk. For example,
in studies of alcohol and breast cancer, Asian-American women, who generally
have lower risk, might have a different vulnerability to the effects of alcohol
compared to European-American women, who generally have higher risk. The
prevalence of concomitant risk factors might modify the effect of the one of in-
terest. If the frequency of delayed childbearing, which confers an increased risk
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of breast cancer, differed across study populations and modified the effect of al-
cohol, the results would be heterogeneous across populations that differed in their
childbearing practices.

Where strong interaction is present, the potential for substantial heterogeneity
in study results is enhanced. For example, in studies examining the effect of al-
cohol intake on oral cancers, the prevalence of tobacco use in the population will
markedly influence the effect of alcohol. Because of the strong interaction be-
tween alcohol and tobacco in the etiology of oral cancer, the effect of alcohol
intake will be stronger where tobacco use is greatest. If there were complete in-
teraction, in which alcohol was influential only in the presence of tobacco use,
alcohol would have no effect in a tobacco-free population, and a very strong ef-
fect in a population consisting of all smokers. Even with less extreme interac-
tion and less extreme differences in the prevalence of tobacco use, there will be
some degree of inconsistency across studies in the observed effects of alcohol
use on oral cancer. If we were aware of this interaction, of course, we would ex-
amine the effects of alcohol within strata of tobacco use and determine whether
there is consistency within those homogeneous risk strata. On the other hand, if
unaware of the interaction and differing prevalence of tobacco use, we would
simply observe a series of inconsistent findings.

There is growing interest in genetic markers of susceptibility, particularly in
studies of cancer and other chronic diseases (Perera & Santella, 1993; Tockman
et al., 1993; Khoury, 1998). These markers reflect differences among individu-
als in the manner in which they metabolize exogenous exposures, and should
help to explain why some individuals and not others respond to exposure to the
same agent. If the proportion that is genetically susceptible varies across popu-
lations, then the measured and actual effect of the exogenous agent will vary as
well. These molecular markers of susceptibility are not conceptually different
from markers like menopausal status, ethnicity, or tobacco use, although the
measurement technology differs. All provide explanations for why a specific
agent may have real but inconsistent effects across populations.

Until this point, we have considered only inconsistent results among a set of
perfectly designed and conducted studies that differ from one another solely due
to random error or true differences in the effect. Introducing methodological lim-
itations and biases offers an additional set of potential explanations for incon-
sistent results. By definition, biases introduce error in the measure of effect.
Among an array of studies of a particular topic, if the extent and mix of biases
varies across studies, results will vary as well. That is, if some studies are free
of a particular form of bias and other studies are plagued to a substantial degree
by that bias, then results will be inconsistent across those sets of studies. Sus-
ceptibility to bias needs to be examined on a study-by-study basis, and consid-
ered among the candidate explanations for inconsistent results. In particular, if
there is a pattern in which the findings from studies that are most susceptible to
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a potentially important bias differ from those of studies that are least suscepti-
ble, then the results will be inconsistent but highly informative. The studies that
are least susceptible to the bias would provide a more accurate measure of the
association.

In order to make an assessment of the role of bias in generating inconsistent
results, the study methods must be carefully scrutinized, putting results aside.
Depending on preconceptions about the true effect, there may be a temptation to
view those studies that generate positive or null results as methodologically su-
perior because they yielded the right answer. In fact, biases can distort results in
either direction, so that unless truth is known in advance, the results themselves
give little insight regarding the potential for bias in the study. Knowing that a
set of studies contains mixed positive and null findings tells us nothing about
which of them is more likely to be correct or whether all are valid or all are in
error. In particular, there is no logical reason to conclude from such an array of
results that the null findings are most likely to be correct, by default—mixed
findings do not provide evidence to support the hypothesis of no effect. The de-
mand on the interpreter of such evidence is to assess which are the stronger and
weaker studies and examine the patterns of results in relation to those method-
ologic attributes.

Consistent Findings

There are basically two ways to generate a series of consistent findings: they may
be consistently right or consistently wrong. When an array of studies generates
consistent findings, a reasonable inference might be that despite an array of po-
tential biases in the individual studies, the problems are not so severe as to pre-
vent the data from pointing in the direction of the truth. Hypothesized biases
within an individual study cannot be confirmed or refuted, but it may be possi-
ble to define a gradation of susceptibility to such biases across a series of stud-
ies. If a series of studies with differing strengths and limitations, and thus vary-
ing vulnerability to bias, all generate broadly comparable measures of association,
one might infer that the studies are all of sufficient quality to have accurately ap-
proximated the association of interest.

Unfortunately, it is also possible for a series of studies to generate consistently
incorrect findings. There are often similarities across studies in the design or
methods of conduct that could yield similarly erroneous results. For example, in
studies of a stigmatized behavior, such as cocaine use, in relation to pregnancy
outcome, there may be such severe underreporting as to yield null results across
a series of studies. On the other hand, cocaine use is strongly associated with
other adverse behaviors and circumstances that could confound the results, in-
cluding tobacco and alcohol use and sexually transmitted infection. These ten-
dencies may well hold across a wide range of populations. Thus, the observation
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of a consistent association with adverse pregnancy outcome (Holzman & Paneth,
1994) may well be a result of consistent confounding. Perhaps the key differ-
ence between asking whether a single study has yielded an erroneous result and
whether a series of studies has consistently done so is that in the latter case, the
search is for attributes common to the studies.

The credibility assigned to consistent results, often implicit rather than explicit,
is that the studies compensate for one another’s weaknesses. The possibility of
substantial bias resulting from a methodologic flaw in a single study is countered
by evidence from other studies that do not suffer from this weakness yet show
the same result. This manner in which studies can compensate for one another’s
weaknesses is central to the interpretation of a series of studies, and therefore
warrants closer examination.

Compensating Strengths Across Studies

Replication in Epidemiology. Aside from reducing random error, in the tradi-
tion of confirmation, the major benefit to conducting multiple studies of the same
topic is the opportunity to assess the pattern of results across diverse studies that
are conducted in different settings and populations using methods that differ from
one another. One of Bradford-Hill’s criteria for causality was consistency (Hill,
1965), but it needs further elaboration to be useful. Consistency of results can
sometimes demonstrate that features of the study setting and methods that are
expected to be inconsequential under a causal hypothesis do not in fact affect the
study results. Such study features as questionnaire design, interviewer training
and interview methods, and techniques of data analysis preclude one study from
being identical to another, yet identification of an etiologic relationship should
not be highly dependent on such methodologic details. When study findings are
consistent across studies that differ only in such details of implementation, such
as the wording of the questionnaire or a particular instruction given to the inter-
viewers, the association is less likely to be the result of some idiosyncrasy in one
study or another.

When results across such similar studies are not consistent with one another,
the inference is that random error or methodologic biases have influenced at least
some of the results. Under a causal hypothesis, we would expect the findings to
be robust to minor differences in study technique and differ primarily due to ran-
dom error. Conceptually, there are aspects of random error that go beyond the
conventional view of random error arising from statistical variation in random-
ized assignments. There is a random element in the choice of interviewers to be
hired for the study, the sequence in which the questions are asked, and many
other details of data collection and analysis that are likely to have at least sub-
tle effects on the results. One very mundane problem that undoubtedly affects
isolated studies is simple programmer error. Given how often coding or analytic

278 INTERPRETING EPIDEMIOLOGIC EVIDENCE



errors are uncovered and corrected, surely there are times that they escape 
detection. These inadvertent sources of erroneous results are highly unlikely to 
occur across multiple studies, just as a biased or dishonest data collector can dis-
tort results from a single study, but is not plausible that a series of studies on the
same topic would all suffer from such misfortune. The problems will increase
the dispersion of study findings, creating the potential for unexplained inconsis-
tencies.

Sometimes, under a causal hypothesis, some features of the study setting and
methods should influence the results, and if that does not occur, the consistent
evidence may argue against a causal association. One of the key ways in which
this can occur is a function of dose. Where markedly different doses evaluated
across studies yield similar measures of association, the consistency may run
counter to a causal explanation. For example, oral contraceptives have changed
markedly in the estrogen content over the years, with notably lower doses at pres-
ent compared to in the past. If we observed identical associations between oral
contraceptive use and thromboembolism for those past high doses and the pres-
ent low doses, as a form of consistency, we would be advised to call into ques-
tion whether we have accurately captured an effect of the oral contraceptives or
some selective factor associated with oral contraceptive users. That is, consis-
tency despite critical differences may suggest that a shared bias accounts for the
results.

When trying to evaluate the role of a specific potential bias, an array of stud-
ies offers the opportunity to examine the relationship between vulnerability to
those biases and the pattern of results. A single study always has the potential
for spurious findings due to its methods, both design and conduct. While close
scrutiny of that study is helpful in assessing the likelihood, direction, and mag-
nitude of potential bias, there are real limits in the strength of inference that can
be made from a single result in evaluating hypotheses of bias or causality. The
vulnerability to bias may be assessed in qualitative terms in an individual study,
but not with any anchor of certainty. In contrast, a series of studies that clearly
differ in their susceptibility to bias, ranging from highly vulnerable to virtually
immune, offers an opportunity to examine whether the gradient of susceptibility
corresponds to a gradient of results. If there is a clear pattern across studies, for
example, in which higher quality of exposure assessment corresponds to stronger
associations, then it may be inferred that a true association is present that is di-
luted, to varying degrees, from exposure misclassification. On the other hand, if
the series of studies with differing quality of exposure assessment were invari-
ant in their results, a causal association would seem less likely to be present and
explanations of some consistent bias should be entertained.

Evolution of Epidemiologic Research. The ideal manner in which a series of
studies should evolve is to build sequentially upon those that precede them, with

Integration of Evidence Across Studies 279



the new ones addressing specific deficiencies in those that precede them. Ideally,
each subsequent study would combine all the strengths of its predecessors and
remedy at least one limitation of the prior studies. In such a system for the evo-
lution of the literature, each study would address a non-causal explanation for an
observed association and either reveal that the previous studies had been in er-
ror because they had not been quite so thorough, or demonstrate that the hy-
pothesized source of bias was not influential. If the improvement resulted in a
major shift in the findings, the new study would suggest that the previous stud-
ies were deficient and suffered from a critical bias that had been identified and
eliminated. While discovering that a potentially important refinement had no im-
pact may seem like a disappointment, such an observation could be of profound
importance in addressing and eliminating a non-causal explanation. Assume, for
example, a key potential confounder was neglected in a series of studies, and the
next study provided precise measurement and tight control for that potential con-
founding factor, but the study results do not differ from those that came before.
It might be inferred that all the previous studies were also free from confound-
ing, though this could not be addressed directly within those studies. In this sim-
ple view of how studies evolve, exonerating a potential bias in one study negates
the possibility of that bias in the studies that came before, since the improve-
ments are cumulative.

We now move from this ideal model, in which studies build perfectly and log-
ically on one another through cumulative improvements, to a more realistic one
in which studies are stronger in some respects than previous ones, but are often
weaker in other respects. For logistical reasons, making one refinement tends to
incur sacrifices along other dimensions. Applying a demanding, detailed mea-
surement protocol to diminish the potential for information bias may well reduce
the response proportions and increase the potential for selection bias, for exam-
ple. Choosing a population that is at high risk for the disease and thus yields
good precision may incur some cost in terms of susceptibility to confounding.
Conducting a study that is extremely large may sacrifice rigor in the assessment
of exposure or disease. In epidemiology, as in life, there’s no “free lunch.”

The critical question is whether, when a series of studies with differing
strengths and weaknesses are conducted and consistent results are found, an in-
ference can be made that none of the apparent deficiencies distorted the results
and all are pointing in the correct direction. If one study is susceptible to con-
founding, another to bias in control selection, and yet another to exposure mea-
surement error, but all yield the same measure of effect, can one infer that none
of the hypothetical problems are of great importance? This question is different
from the situation in which a series of studies share the same deficiency, and
may yield consistent but biased results due to common unidentified problems. It
also differs from the situation in which one or more studies are free of all major
threats to validity.
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There are two reasons that a series of studies with differing strengths and weak-
nesses may yield consistent results: either the disparate deficiencies all yield errors
of the same nature to produce consistently erroneous results or the deficiencies are
all modest in their impact and the studies yield consistently valid results. The dis-
tinction between these two possibilities requires a judgment based on the credibil-
ity of the two scenarios, specific to the substantive and methodologic issues under
consideration. Generally, it is unlikely that a series of studies with differing method-
ological strengths and weaknesses would yield similar results through different bi-
ases acting to influence findings in a similar manner. Faced with such a pattern, the
more plausible inference would be that the potential biases did not distort the re-
sults substantially and, thus, the series of studies are individually and collectively
quantifying the causal association between exposure and disease accurately.

It is also possible that despite the recognition of potential biases that were re-
solved in one or more of the studies, all the studies might share a remaining lim-
itation that has not been identified or is known but cannot readily be overcome.
For example, many exposures simply cannot be randomized for ethical or logis-
tical reasons, and thus no matter how much study designs vary, all address ex-
posure that is incurred due to circumstances outside the investigator’s control.
While the studies may vary with regard to some potential remediable biases be-
ing present or absent, all may continue to share an insurmountable, important
limitation. Consistency across such studies suggests that the weaknesses that vary
across studies are unlikely to account for spurious results but any deficiency that
the studies have in common may still do so. Only the variation in methodologic
strengths and weaknesses across existing studies can be examined, not the pos-
sible effects of improvements not yet undertaken.

INTEGRATED ASSESSMENT FROM COMBINING 
EVIDENCE ACROSS STUDIES

Several conclusions can be drawn from this discussion of consistency and in-
consistency in aggregation of results across a series of epidemiologic studies.
First, without considering study quality and specific methodologic features of
the studies, there is little value in simply assessing the pattern of results. To
dichotomize studies as positive or null and examine whether a preponderance
fall in one category or another yields no credible insights about the literature.
This is the case whether those studies are consistent or inconsistent with one
another, though traditionally a series of studies that generate similar results are
viewed as correct whereas inconsistent results are viewed as inconclusive or
weak. If consistent, it needs to be asked as if the studies share a methodologic
deficiency. When such a flaw common to the studies cannot be detected, and
there is not a clear case for different errors producing bias in the same direc-

Integration of Evidence Across Studies 281



tion across the studies, then it is more reasonable to infer that they are likely
to be valid.

If inconsistent, there is a need to first consider whether there are specific
reasons to expect the results to differ across studies—for example, the study
populations differ in the prevalence of an important effect modifier. Evalua-
tion of the patterns continues with the examination of gradients of quality and
specific methodologic strengths and weaknesses among the studies. Such an
evaluation, with or without the tools of meta-analysis, yields hypotheses re-
garding the operation of biases. Which of the results are most likely to be valid
depends on the estimated effect of those different biases and a judgment about
what the findings would have been in the absence of the consequential biases.
Among the completed studies may well be one or more that have those desir-
able attributes.

The process for scrutinizing inconsistent findings helps to define the bound-
aries of current knowledge. By evaluating the methodologic details of studies
and their results, judgments can be made about the most important candidate ex-
planations for the inconsistency. Those are precisely the study design, conduct,
and analysis features that would help to resolve the controversy. One may also
infer that some potential sources of bias do not seem to be of consequence, and
therefore in assessing the tradeoffs inherent in designing and conducting research,
other threats to validity may be given greater attention even at the expense of the
bias now believed to have been ameliorated. This evaluation of the evidence gen-
erates not just an accurate assessment of the state of knowledge, but also some
indication of its certainty and the requirements for further research to enhance
its certainty.

This evaluation process involves judgments about the impact that hypothesized
biases are likely to have had on the results. Several approaches can be used to
make such judgments. Evidence from other studies that were free of such limi-
tations suggests whether there was any effect. Assessment of the direction of bias
and potential magnitude based on differing scenarios, or sensitivity analyses,
combined with information on the plausibility of those scenarios generates use-
ful information. Methodological literature, in the form of theoretical or quanti-
tative consideration of biases or empirical evaluations of bias is critical.

Careful evaluation of results across a series of studies is highly informative,
even when it does not provide definitive conclusions. Juxtaposing results from
studies with differing strengths and limitations, with careful consideration of the
relationship between design features and results, is essential both in drawing the
most accurate conclusions possible at a given point in time and in planning how
to advance the literature. Substantive understanding of the phenomenon inte-
grated with appreciation of the relation of study design features to potential bi-
ases is required. While far more subtle and challenging than the simple search
for consistency or its absence, it is also far more informative.

282 INTERPRETING EPIDEMIOLOGIC EVIDENCE



REFERENCES

Bradford-Hill AB. The environment and disease: association or causation? Proc Royal
Soc Med 1965;58:295–300.

Greenland S. Quantitative methods in the review of epidemiologic literature. Epidemiol
Rev 1987;9:1–30.

Greenland S. Can meta-analysis be salvaged? Am J Epidemiol 1994;140:783–787.
Greenland S. Meta-analysis. In Rothman KJ, Greenland S, Modern epidemiology.

Philadelphia: Lippincott-Raven Publishers, 1998;643–673.
Greenland S, Sheppard AR, Kaune WT, Poole C, Kelsh. A pooled analysis of magnetic

fields, wire codes, and childhood leukemia. Epidemiology 2000;11:624–634.
Holzman C, Paneth N. Maternal cocaine use during pregnancy and perinatal outcomes.

Epidemiol Rev 1994;16:315–334.
Khoury MJ. Genetic epidemiology. In Rothman KJ, Greenland S, Modern epidemiology.

Philadelphia: Lippincott-Raven Publishers, 1998;609–621.
Lubin JH, Boice JD Jr. Lung cancer risk from residential radon: meta-analysis of eight

epidemiologic studies. J Natl Cancer Inst 1997;89:49–57.
National Research Council. Possible health effects of exposure to residential electric and

magnetic fields. Committee on the Possible Effects of Electromagnetic Fields on Bi-
ological Systems, Board on Radiation Effects Research, Commission on Life Sciences,
National Research Council. Washington, DC: National Academy Press, 1997.

Perera FP, Santella R. Carcinogenesis. In Schulte PA, Perera FP (eds), Molecular epi-
demiology: principles and practices. San Diego: Academic Press, Inc., 1993;277–300.

Petitti DB. Meta-analysis, decision analysis, and cost-effectiveness analysis in medicine.
New York: Oxford University Press, 1994.

Poole C. One study, one vote: ballot courting in epidemiologic meta-analysis. Am J Epi-
demiol 1997;145:S85.

Portier CJ, Wolfe MS, eds. Assessment of health effects from exposure to power-line fre-
quency electric and magnetic fields. Working group report. In: US Department of
Health and Human Services, National Institute of Environmental Health Sciences, Na-
tional Institutes of Health publication no. 98-3981, 1998.

Tockman MS, Gupta PK, Pressman NJ, Mulshine JL. Biomarkers of pulmonary disease.
In Schulte PA, Perera FP (eds), Molecular epidemiology: principles and practices. San
Diego: Academic Press, Inc., 1993;443–468.

Integration of Evidence Across Studies 283



This page intentionally left blank 



12
CHARACTERIZATION OF CONCLUSIONS

The final product of the evaluation of epidemiologic evidence is some form of
conclusion about what the research tells us. The audiences for that interpreta-
tion are quite varied, ranging from researchers seeking to identify the next fron-
tier to be explored to policy makers who would like to incorporate the infor-
mation appropriately into their decisions. This inference goes beyond the
delineation of potential biases, or evidence for and against a causal associa-
tion, and inevitably extends beyond the bounds of objective criteria into the
realm of judgment that should begin with logical integration. While the re-
finements in evaluating evidence presented in the preceding chapters are in-
tended to take broad questions about the evidence—“How strong is it?”—and
make them much more specific and testable—“How likely is it that the expo-
sure–confounder relationship is strong enough to fully explain the observed as-
sociation?”—there is nevertheless a need for informed speculation as narrower
questions are integrated into a broader judgment. Even if the elements required
to reach a judgment are clearly defined and the evidence regarding each of
those components is objectively presented, knowledgeable people will still
come to different conclusions at the end because of the manner in which they
combine the threads of evidence.

A constant challenge in the interpretation of evidence, especially problem-
atic in trying to present a true bottom line, is the desire to provide clarity,
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whether or not the evidence warrants a clear statement. Many of those who
wish to make use of the knowledge encourage or may even demand such clar-
ity, including policy makers, attorneys, journalists, or the general public, as
well as scientists. At a given point in the evolution of our understanding, the
only justifiable assessment may be a murky, complex one that includes alter-
nate scenarios and some probability that each is correct. Explaining such a state
of affairs is often tedious to those who are only mildly interested and may de-
mand a rather sophisticated understanding of epidemiologic methods to be fully
understood. Thus, there will often be pressure to provide a simpler inference,
placing the evidence on some scale of adjectives such as suggestive, strong, or
weak. For example, the International Agency for Research on Cancer has a
well-developed system for classifying carcinogens into such categories as prob-
able and possible (Vainio, 1992). A common question from reporters or the
lay public to the technical expert that seeks to cut through the often complex
and seemingly wishy-washy conclusions is “What would you do?” as a result
of the new information. The idea is that good scientists prefer to remain non-
committal and focus on the points of uncertainty, but that they nevertheless
have the ability as human beings to wisely integrate the evidence so that their
personal application of the information reflects such wisdom. Behavioral de-
cisions of the scientist, like those of anyone else, will typically go well beyond
the assessment of the epidemiologic evidence and incorporate other lines of re-
search and even the personal values that affect life decisions, realms that even
the most expert epidemiologist is not uniquely qualified to address in a gener-
alizable manner.

Researchers who wish to justify their grant application or argue why their pub-
lication is useful may have the opposite temptation, seeking out or even exag-
gerating the uncertainty to make their contribution seem more important. No one
is free of incentives and values when it comes to the distractions from objectiv-
ity in the interpretation of evidence. While much attention is focused on those
with a direct financial interest, such as private corporations or the opposing par-
ties in legal conflicts, the sources of personal bias are much broader. A topic as
seemingly neutral as whether coronary heart disease has continued to decline in
the 1990s (Rosamond et al., 1998) raises great concern not just from researchers
who have found conflicting results, but from those who believe that more radi-
cal changes are needed in social systems to effect benefit, from those who ad-
minister programs intended to reduce coronary heart disease, and from those who
wish to defend or criticize the cost of medications associated with the preven-
tion and treatment of these diseases. No one is neutral. In this chapter, the basis
for drawing conclusions from epidemiologic data is discussed, and a range of
purposes and audiences with interest in those epidemiologic conclusions is con-
sidered.
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APPLICATIONS OF EPIDEMIOLOGY

In order to enjoy the benefits of epidemiologic research in applications to pub-
lic health policy, clinical medicine, or individual decision-making, inferences
must be drawn. Providing results from individual studies or even results with dis-
cussion of their validity is insufficient. Addressing issues of disease patterns and
causation in populations is not an academic exercise but fundamentally a search
for insights that will provide benefit to public health decisions, broadly defined.
As evidence moves from the purely scientific arena to the realm of decisions,
there is a temptation to move from what is truly a continuum of certainty to a
dichotomy. It is often asked whether the epidemiologic evidence does or does
not justify a particular action, since the decision itself is truly dichotomous even
though the evidence that supports one approach or another is not. By character-
izing the epidemiologic evidence more fully, not just as sufficient or insufficient,
decision-makers will be armed with the information they need to incorporate the
epidemiologic insights more accurately. The evidence will often be less tidy, but
by being more faithful to the true state of affairs, the ultimate decisions should
be wiser.

One temptation to be avoided is the assertion that the epidemiologic evidence
has not advanced to the point of making a useful contribution to policy decisions
at all; for example, because it is inconclusive, we ask that it not be used in set-
ting policy or that no policy be made. Either approach is undesirable. Any in-
formation is better than no information in applications to decision-making, so
long as the quality of the available evidence is accurately portrayed and prop-
erly used. Even relatively weak epidemiologic studies may at least put some
bounds on the possibilities—for example, demonstrating that the relative risk is
unlikely to be above 50 or 100. Similarly, the suggestion that there may be a
hazard associated with a given exposure, even if based on one or two studies of
limited quality, should not be neglected altogether, nor should the policy deci-
sion be unduly influenced by preliminary, fallible data. Weak evidence may well
be of very limited value in discriminating among viable policy options, but lim-
ited evidence would generally be expected to be of limited (not zero) value. The
consequence of assigning the epidemiologic evidence a weight of zero is simply
to increase the weight assigned to other lines of evidence used to make the de-
cision, both other scientific approaches to the issue and nonscientific concerns.

The argument that decisions be suspended altogether until good evidence has
accumulated is also unrealistic, in that no action is just one of many courses of
action, and is no less a decision than other courses of action. Policy makers will
continue to set policy, regulate environmental pollutants, evaluate drugs for ef-
ficacy and safety, and recommend dietary guidelines with explicit or implicit sci-
entific input. Individuals will continue to choose the foods they eat, purchase and

Characterization of Conclusions 287



use medications, engage in sexual activity, and drive automobiles with or with-
out conclusive epidemiologic evidence. Because public health issues for which
epidemiologic evidence is relevant pervade society, many decisions made col-
lectively and individually could benefit from epidemiologic insights, even those
that are based on evolving information.

Epidemiologic evidence remains forever inconclusive in the sense that scien-
tific certainty is an elusive goal. The potential for erroneous conclusions can be
successively narrowed through increasingly refined studies, but there is no point
at which the potential for bias has been completely eliminated. Instead, the lines
of evidence bearing on a public health decision, with epidemiologic data pro-
viding one of the critical streams of information, reach a point where the prac-
tical benefits of further epidemiologic information and refinement are limited.
For well-studied issues such as the health hazards of asbestos or benefits of us-
ing seat belts, epidemiology has offered much if not all that it can for informing
the basic policy decision—asbestos exposure should be minimized; seat belt use
should be maximized. Further refining the risk estimates or extending the infor-
mation to previously unstudied subgroups is not without value, but the evidence
has accumulated to the point that major shifts in policy resulting from that new
knowledge are highly unlikely. (The effectiveness of interventions, for example,
may still benefit from epidemiologic scrutiny; perhaps refining the understand-
ing of dose–response functions for asbestos or the benefits of seat belt use in
conjunction with air bags could help to further refine policy.)

An example of a situation in which each bit of epidemiologic evidence is ben-
eficial to policy decisions is drinking water safety. The balancing of risks and
benefits in regard to drinking water treatment in the United States must incor-
porate the well-established risk of waterborne infection associated with inade-
quate treatment, the potential adverse effects of low levels of chlorination 
by-products on cancer and reproductive health, and myriad economic and engi-
neering considerations associated with alternate approaches to providing drink-
ing water to the public (Savitz & Moe, 1997). Decisions about changing from
chlorination to other methods of treatment (e.g., ozonation), as well as decisions
regarding specific methods of drinking water chlorination, are based on a pre-
carious balance of epidemiologic, toxicologic, economic, and other considera-
tions, including public perception. Shifts in any of those considerations may well
lead to a modification of policy. For example, if the threat of waterborne infec-
tion were found to be greater than previously thought, or if the chlorination lev-
els required to reduce the threat of waterborne infection were found to be greater
than expected, support for increased levels of chlorine treatment would be
strengthened despite the present ambiguous indications regarding adverse health
effects of chlorination by-products. If the epidemiologic evidence linking chlo-
rination by-products to bladder and colon cancer were to be increased through
improved study methods, then the scales would be tipped toward efforts to de-
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crease chlorination by-product levels, either through accepting some greater risk
of waterborne infection or through more sophisticated and expensive engineer-
ing approaches. Similarly, toxicologic research demonstrating toxicity at lower
levels of chlorination by-products than previously observed would tip the bal-
ance, as would engineering breakthroughs making alternatives to chlorination
cheaper or more effective. In this realm of policy, changes in the epidemiologic
evidence matter a great deal.

A counter example, no less controversial, in which refined epidemiologic ev-
idence is unlikely to have significant policy influence is active cigarette smok-
ing. While the full spectrum of health effects, dose–response relations, and re-
sponsible agents in tobacco smoke remain to be elucidated, the epidemiologic
evidence of a monumental public health burden from tobacco use is clear. The
policy controversies tend to focus more on uncertainty in the most effective meas-
ures to prevent adoption of smoking by teenagers, management of adverse im-
plications for tobacco farmers, and issues of personal freedom. Refining the epi-
demiologic evidence linking tobacco use with disease is not likely to have a major
impact on policy. The level of certainty for major tobacco-related diseases such
as lung and bladder cancer and coronary heart disease is so high that minor shifts
upward or downward from additional studies would still leave the certainty within
a range that the epidemiology encourages policy that aggressively discourages
tobacco use. Whether or not tobacco smoking causes leukemia or delayed con-
ception is not going to have much effect on the overall policy. The epidemio-
logic evidence has, in a sense, done all it can with regard to the basic question
of health impact of active smoking on chronic disease, particularly lung and other
cancers and heart disease in adults. Nonetheless, the concerns with environmen-
tal tobacco smoke, potential impact of tobacco smoking on myriad other diseases
such as breast cancer and Alzheimer’s disease, the mechanisms of causation for
diseases known to be caused by smoking, and measures for reduction in smok-
ing call for additional epidemiologic research for these and other purposes.

Identifying policy decisions that would be affected by modest shifts in the epi-
demiologic evidence is one consideration in establishing priorities for the field.
Those decisions that are teetering between nearly equally acceptable alternatives
are the ones most likely to be tipped by enhancing the quality of the epidemio-
logic evidence, whatever the results of those additional studies might show.
Strengthening or weakening the degree of support would have bearing on pub-
lic health decisions. Research needs to continue even when the evidence is so
limited that a strikingly positive epidemiologic study would fail to tip the bal-
ance, since such research is building toward future influence on policy. At the
other end of the spectrum of knowledge, further understanding of well-
established relationships may clarify biological mechanisms or help to point the
way to discoveries involving other causative agents or other health conditions.

This framework suggests how epidemiologic evidence should be presented to
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be optimally useful in addressing specific public health issues or decisions. The
goal is not to have epidemiologic evidence dominant over other scientific evidence
or other considerations (Savitz et al., 1999), but rather to ensure that the influence
of epidemiology is commensurate with its quality. Thus, the obligation on those
who explain and interpret the evidence is not to provide absolute truth, but to ac-
curately characterize the state of the evidence so that the epidemiologic research
is weighed appropriately. Ideally, toxicologists, economists, and others will offer
the same even-handed evaluation of the contributions from their disciplines. Much
work is needed to better formulate explanations of epidemiologic evidence that
serve this goal—for example, identifying the descriptive approach that would be
most helpful to those who must use the information, whether policy experts or in-
dividuals making personal decisions about their lives. It is clearly not a service to
oversimplify for the sake of clarity, even if it gives the consumer of the informa-
tion illusory peace of mind. To treat probable evidence for an effect as certain or
established or to treat weak evidence as no evidence may give temporary relief to
those who must set and defend policy, but in the long run, the decisions that are
made will not be as beneficial as if the uncertainty were properly quantified and
accurately conveyed. Since epidemiologic research will continue, evidence pre-
sented prematurely as established may unravel, and evidence that is presently weak
but misrepresented as absent may become stronger. The area of risk communica-
tion as applied to epidemiology is at an early stage of development, but represents
an important interface between epidemiology and its applications.

One form of potentially useful information would be to provide an array of
potential measures of effect and their corresponding probabilities of being cor-
rect. This probability distribution would presumably have some range of values
designated as most likely and some distribution around those values. We could
answer such questions as, “How likely is it that the true measure of effect is so
close to the null as to be negligible?” with the consumer of the information hav-
ing freedom to define negligible. Similarly, the user could ask, “How likely is it
that the true measure of effect exceeds a given value?” Policy experts would wel-
come such insights, though less sophisticated audiences, including politicians,
the media, and the general public may not. Part of the problem is that the de-
scriptors that go along with quantitative probabilities are not used or interpreted
consistently—one person’s negligible is another person’s weak evidence.

What such a characterization of the spectrum of possibilities and associated
probabilities would do is to emphasize that there is some degree of uncertainty
present (there is a range, not a point estimate), but also that the research has
something to offer (not all outcomes are equally probable). Progress would be
demarcated by higher peaks with less dispersion or lower probabilities for cer-
tain ranges of possible values. Even if the exact quantification of the uncertainty
in the evidence were subject to error, the general shape and distribution of pos-
sible values would be informative.
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This relevance to policy and life in general is both a blessing and a curse to
the field of epidemiology. The opportunity to contribute to issues of societal con-
cern and issues that affect people’s daily lives is inspiring to practitioners of epi-
demiology and a principal incentive to fund research and disseminate the find-
ings. On the other hand, the hunger for answers to the questions epidemiologists
ask can also lead to public dissemination of incorrect findings, exaggerated claims
of certainty, or unwillingness to accept evidence that is counter to otherwise de-
sirable policy or lifestyle choices.

IDENTIFICATION OF KEY CONCERNS

Some efforts have been made to catalog all forms of potential bias in epidemi-
ologic studies (Sackett, 1979), though such lists tend to become exercises in nam-
ing similar biases that arise in slightly different ways. Rather than serving as a
checklist to ensure all concerns have been considered, they tend to serve more
like a dictionary for looking up terms or as a demonstration of how fallible epi-
demiology is. Instead of such laundry lists of potential bias, a small number of
concerns typically predominate in evaluating a specific study or set of studies.
Rather than asking, without consideration of the specific phenomenon under study
or the design of that study, “What are the ways that the results could be in er-
ror?,” one needs to focus on the specifics of the phenomenon and design to de-
termine the major threats to validity. Because a serious evaluation of a single
source of potential bias is a painstaking process, involving a detailed, thought-
ful examination of data from within and outside the study, consideration of more
than a handful of such issues is impractical.

The uncertainty that limits conclusions based on the research is generally not
evenly distributed among dozens of limitations, each accounting for a small
amount of the potential error. More often, a handful of issues account for the
bulk of the uncertainty, and perhaps dozens more each contribute in presumably
minor, perhaps even offsetting, ways. Major concerns often include control se-
lection in case–control studies or misclassification of disease or exposure. Among
the myriad minor concerns are dishonesty by the investigators or data collectors,
data entry errors, or programming errors—the potential is always present, but
with reasonable attention, the probability of such problems having a sizable im-
pact on the results is minimal. With an initial triage to identify the few critical
concerns, resources can be brought to bear to examine the key problems in de-
tail, and plans can be made for the next study of the phenomenon to improve
upon one or more of the key limitations.

For the major sources of potential error, a critical review calls for speculation
about the direction and magnitude of bias. A thorough assessment includes ex-
amination of the patterns of results within the study data, where possible, as well
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as consideration of results from other studies and methodological research on the
topic. Where such an examination leads to the conclusion that the bias may well
be present and of sufficient magnitude to have an important influence on the
overall interpretation of the literature, further research may be needed to resolve
the question of how important it is and ultimately take measures to mitigate its
effect. While structural problems with studies can rarely be solved outright, they
can almost always be elucidated to increase understanding or be better managed
to reduce their impact.

Those who propose new research to advance our understanding have the bur-
den of demonstrating that their efforts will do more than add another observa-
tion or data point. Epidemiologic studies are too expensive and time consuming
to merely add another observation to a meta-analysis without having additional
methodologic strengths that extend the literature that has come before. If a new
study is merely as good as those that precede it, only random error is being ad-
dressed. Only if the current state of knowledge were faulty largely due to ran-
dom error would another study of similar quality add markedly to the array of
previous findings. Epidemiologic research is rarely limited solely or primarily by
random error. The goal for a new study should be to identify a specific limita-
tion of previous work, make the case that this limitation is likely to be conse-
quential, and propose to improve the research methods in a manner that will re-
fine our understanding by overcoming that limitation. When studies are based on
such a strategy, progress is guaranteed as a result of the methods alone, regard-
less of the findings. If overcoming a strongly suspected source of bias has no im-
pact on the findings relative to previous studies, then the credibility of the pre-
vious results is significantly bolstered. An important potential bias that reduced
confidence in previous findings would have been put to rest. If overcoming a
suspected bias does have a material effect on the results, then the credibility of
preceding studies is substantially reduced. Not only does the new study advance
the literature by being stronger than the one that preceded it, but when the spe-
cific reason that the previous study or studies were in error can be identified, the
strength of the conclusion from the studies taken in the aggregate is markedly
enhanced. Instead of two studies with differing results, or even a stronger study
that contradicts a weaker one, we have an explanation of how the previous study
went astray and an understanding of the impact of that error based on the later,
superior one.

Sometimes the need is not for more substantive studies addressing the 
exposure–disease association directly, but rather for empirical methodological re-
search. For example, the validity of a commonly used exposure measure may
need to be examined in detail, or the relation between willingness to participate
in studies and the prevalence of disease may warrant evaluation. Building such
methodologic work onto substantive studies is one strategy, but often the method-
ologic issue can be addressed more optimally in isolation from the application
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to a specific exposure–disease association. Such research advances knowledge
about the hypothesis of interest, where such issues are significant sources of un-
certainty, and may actually advance many lines of investigation simultaneously
if the problem has broader relevance. For example, a better appreciation of the
quality of self-reported alcohol use would be potentially applicable to research
on alcohol’s effect on cardiovascular disease, oral cancer, fetal growth, and mo-
tor vehicle injury, as well as studies of patterns and determinants of alcohol use.
Even studies of other sensitive, personal behaviors, such as drug use or sexual
activity, may be enhanced by such research. Similarly, examination of biases as-
sociated with selecting controls in case–control studies through random-digit di-
aling would be pertinent to a wide range of exposures and diseases that have
been based on that method of control selection.

INTEGRATED CONSIDERATION OF POTENTIAL BIAS

Even if we could successfully identify the small set of critical limitations, and
accurately characterize the potential for bias associated with each of those con-
cerns, we would still face the challenge of integrating this information into an
overall evaluation of a study or set of studies addressing the same hypothesis.
What we would really like to know is the probability distribution for the causal
relation between exposure and disease, that is, a quantitative assessment of the
probability that the causal impact of exposure on disease takes on alternate val-
ues. This assessment would integrate observed results with hypothesized biases.
Information of this quality and certainty is not readily obtained, but there are
simplified approaches to integration of evidence that move in that direction.

One simple but important question to address is the direction of bias most
likely to result from the array of methodological considerations. If all the sources
of bias are predicted to result in errors of a particular direction (overestimation
or underestimation of the effect), the presumption would be that the effects are
cumulative, and that more extreme biases may result than would be predicted
from each factor operating in isolation. The overall probability that the measured
value deviates from the true value in one direction is increased relative to the
probability that it deviates in the opposite direction, and the probability that the
magnitude of error is extreme would likewise be increased.

If the major sources of potential bias are in conflicting directions, some most
likely to inflate the measure of effect, others likely to reduce it, then the inte-
gration may increase the probability assigned to values closer to the one that was
observed. Because it is unknown which bias will predominate, there may be a
range on either side of the observed value with relatively high probabilities as-
signed, but extreme deviations are less plausible if the biases counteract one an-
other than if the biases act synergistically.
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Only direction of bias has been considered so far, but of course the magnitude
of bias is critical as well. In some instances, there may be absolute bounds on
the amount of error that could be introduced; for example, if all nonrespondents
had certain attributes or if an exposure measure had no validity whatsoever, these
extreme cases would usually be assigned low probabilities. Quantification of the
magnitude of individual biases more generally would be valuable in assessing
their relative importance. Where multiple biases operate in the same direction, if
one predominates quantitatively over the others, assessment of its impact alone
may provide a reasonable characterization of the range of potential values. Where
biases tend to compensate for one another, the overall impact of the combina-
tion of biases would likely reside with the largest one, tempered to only a lim-
ited extent by the countervailing biases.

The terminology used to provide the bottom line evaluation of potential bias
is important to consider. The evaluation should incorporate benchmarks of par-
ticular concern for differing responses to the evidence. The observed measure of
effect is one such benchmark, but others would include the null value and val-
ues that would be of substantial policy or clinical importance. If a doubling of
risk associated with exposure would reach some threshold for regulatory action,
for example, then information on the observed results and potential biases should
be brought together to address the probability that the true value meets or ex-
ceeds that threshold. Short of generating the full probability distribution of true
effects, some estimation of the probability that the observed measure is likely to
be correct, the probability that the null value is accurate, or the probability that
the measure of effect is in a range of policy or clinical relevance would be help-
ful in characterizing the state of the evidence.

INTEGRATION OF EPIDEMIOLOGIC EVIDENCE 
WITH OTHER INFORMATION

As discussed in Chapter 2, a comprehensive evaluation of health risks or bene-
fits ought never be based solely on epidemiologic information. Other biomedical
disciplines, including toxicology, genetics, and pathology have relevance to hu-
man health. An understanding of the pathophysiology of disease, even though
not directly applicable to assessing causes in populations, is clearly pertinent to
the evaluation of whether a hypothesized cause of disease is likely to be influ-
ential in populations. Even basic chemistry is applicable to assessing health con-
sequences of exposure—for example, in assessing the risks or benefits of a com-
pound with unknown consequences that bears a structural similarity to a chemical
with known effects. In the study of environmental pollutants, information on the
sources and pathways of exposure is important. All information that helps to as-
sess the pathways through which an exposure might operate, drawing on knowl-
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edge from a range of basic and clinical sciences, helps to assess the potential for
human health effects and will help in making a probabilistic judgment regarding
health risks or benefits in populations.

Epidemiologists have to guard against being defensive and thus insufficiently
attentive to evidence from other disciplines. Although basic biomedical disci-
plines often enjoy greater prestige and their practitioners sometimes fail to ap-
preciate the value of epidemiology, epidemiologists should not retaliate by un-
dervaluing those approaches. Critics from disciplines other than epidemiology
(and some epidemiologists) may place excessive weight on the more tightly con-
trolled but less directly relevant lines of research and insufficient weight on epi-
demiology in drawing overall conclusions. Similarly, epidemiologists and occa-
sionally other scientists mistakenly believe an integrated evaluation of the array
of relevant evidence should place all the weight on observed health patterns in
populations (i.e., epidemiology), and none on other approaches to evaluating and
understanding the causes of disease. The key point is that these other disciplines
and lines of evidence are not done solely to assist in the interpretation of epi-
demiologic evidence, i.e., evaluating the plausibility of the epidemiology, but
rather to help in making the broader evaluation of health risks and correspon-
ding policy decisions.

An argument can be made that perfectly constructed epidemiologic informa-
tion is the most relevant basis for assessing the presence or absence of human
health effects in populations. Epidemiology alone examines the relevant species
(humans) under the environmental conditions of concern (i.e., the actual expo-
sures, susceptibility distribution, and concomitant exposures of interest). There
is no extrapolation required with regard to species, agent, dose, etc. Epidemiol-
ogists alone have the capability of studying the people whose health is adversely
affected. Even if the detailed understanding of mechanisms of disease causation
requires other disciplines, the basic question of whether humans are being af-
fected would be answered by epidemiology—if only it could be done perfectly.

Epidemiology alone however, is never sufficient for fully assessing human
health risks. The principal limitation is the uncertainty regarding epidemiologic
findings and the inescapable challenge and fallibility of inferring causal relations.
The very strength of epidemiology, studying humans in their natural environ-
ment, imposes limitations on causal inference that are only partially surmount-
able. While perfect epidemiologic evidence would provide a direct indication of
the true effects in human populations, epidemiologic evidence is never without
uncertainty, whether it points toward or away from a causal association. In prac-
tice, the complementary strengths of epidemiology and more basic biomedical
evidence always provide a clearer picture than could be generated by epidemi-
ology in isolation. Even where epidemiology has been most autonomous, for ex-
ample in identifying the substantial excess risks of lung cancer associated with
prolonged, heavy cigarette smoking, confidence was bolstered by identifying the

Characterization of Conclusions 295



mutagenicity of tobacco combustion products and evolving knowledge of the
pathophysiology of tobacco’s effects on the respiratory system. In evaluating
much more modest elevations in risk, the burden on these other disciplines is
much greater to interpret whether the weak associations (or their absence) from
epidemiology accurately reflect the role of the agent of concern. Evaluation of
potential health risks from environmental tobacco smoke, with relative risks for
lung cancer in the range of 1.2 to 1.5 draws heavily on other lines of research to
make the assessment of whether a causal association is likely to be present.

Sufficiently strong evidence from toxicology that an agent is harmful, as ex-
ists for dioxin, for example, reduces the need for epidemiologic data to make de-
cisions about regulation and control of exposure. At the extreme, the need for
direct epidemiologic evidence as the basis for regulation may be negated. If the
probability of harm to human health is sufficiently high independent of the epi-
demiologic evidence, then sound policy decisions can be made without awaiting
such information. In contrast, for extremely low-frequency electromagnetic
fields, for example, there is some epidemiologic evidence supportive of a weak
association, but an absence of demonstrated mechanisms of disease causation or
evidence of adverse effects in experimental systems (NRC, 1997). Because the
epidemiology is both fallible and indicative of only small associations, when
combined with the lack of support from other scientific approaches, the evidence
for harm to human health is very weak.

The epidemiology and lines of evidence from other biomedical disciplines can
be either parallel or truly integrative. Often, the epidemiologic observation is sup-
ported by mechanistic or biological evidence solely as another, independent in-
dication that the agent may have health consequences. The agent is found to be
associated with increased risk of disease based on epidemiologic data, and one
or more reasonable biological pathways through which such an effect might be
causal are suggested and have some empirical support. Human biology is suffi-
ciently complex that imaginative, knowledgeable researchers can almost always
derive reasonable pathways to explain an epidemiologic observation of an asso-
ciation, making candidate mechanisms of only modest value in bolstering the
epidemiology. The credibility and empirical evidence supporting those pathways
will vary, of course. Nevertheless, under this scenario, the information provided
is parallel to the epidemiology, but not truly synergistic.

A more beneficial integration of the biological and epidemiologic evidence oc-
curs when postulated mechanisms can be tested directly in the epidemiologic re-
search and vice versa: there is a feedback loop of information across disciplines.
Instead of merely lending credibility to the epidemiology, the biologic evidence
suggests testable hypotheses for epidemiologists to pursue. For example, the pro-
posed mechanism may suggest which forms of exposure should be most potent
or which subset of disease a given agent should most directly influence. Ideas
regarding intermediate outcomes or effect modifiers, including indicators of ge-
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netic susceptibility, may be generated. The value of such biologically grounded
hypotheses is not that they are somehow inherently superior or more likely to be
correct for having been built upon other disciplines. Rather, if the research bears
out the suggestion, then the epidemiologic evidence itself will be much stronger
(larger measures of effect, clear indications of effect-modification) and the co-
herence with the biological evidence will be stronger. Clues from mechanistic
research should be scrutinized in planning epidemiologic studies to derive testable
hypotheses, not merely to take comfort that such research exists (Savitz, 1994).
In turn, the epidemiologic findings should provide feedback to laboratory inves-
tigators regarding hypotheses to pursue through experimental systems. If the epi-
demiologic observations are sound, then they can be a rich source of hypotheses
to be examined through experimental approaches in the laboratory. When such
epidemiologically driven studies are found to support the epidemiologic evidence
then the overall coherence of the findings across disciplines and the cumulative
evidence will be stronger.

CONTROVERSY OVER INTERPRETATION

Epidemiologists and often non-epidemiologists lament the controversy, some-
times bordering on hostility, which is common to many important topics for which
the evidence is truly uncertain. Those who are not scientists can interpret this
discord as a troubling barrier to knowing the right thing to do, focusing on the
disagreement as the underlying problem rather than the lack of conclusive evi-
dence as the basis for the disagreement. In some cases, the scientific evidence
may be quite clear but there is disagreement over the appropriate policy or per-
sonal decision-making that cannot be answered even with perfect scientific in-
formation. Those who would like to fine tune their diets to minimize risk of
chronic disease face variable interpretations of truly inconsistent research, but
also indications that the very actions that may reduce risk of one disease may in-
crease the risk of another. There is some tendency to blame the messenger in the
face of such a dilemma.

Epidemiologists are sometimes troubled by the public disharmony as well. The
implication that epidemiologists cannot agree on anything is viewed as discred-
iting the science, or implying that no matter how much research we do, we can-
not uncover truth. Of course, the specific sides in such a debate will have their
own criticisms of the logic or even integrity of the other side. Those who believe
a causal association is present will lament that their critics are nitpicking, taking
small or hypothetical problems and exaggerating their importance. It’s been said
that “epidemiologists eat their young” with regard to the unlimited ability to find
fault with research. Those who believe that premature or false assertions of causal-
ity have been made, however, argue that harm is being done by misleading or
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worrying the public unnecessarily, and that these assertions will later be proven
false, discrediting the field.

A more sanguine view is that thoughtful, non-rancorous debate is beneficial
for the field and helpful, not harmful, in characterizing the current state of knowl-
edge and its implications for policy. All sciences engage in such assertions and
challenges, from physics to anthropology, and the underlying science is not and
should not be called into question as a result. Nor should the controversy in epi-
demiology be viewed as evidence against the rigor and value of the discipline.
Presentation of new research findings is a form of debate, using data rather than
isolated logical arguments. New research is designed to enter into the ongoing
debate, hypothesizing that the proposed study will shift the evidence in one di-
rection or the other. Direct challenges in the form of debates at research meet-
ings, in editorial statements, or face-to-face in informal settings can only stimu-
late thinking and move the field forward; if spurious issues are raised they can
be put to rest as a result of being aired. Obviously, when the debate becomes
personal or ideological, progress will be inhibited and objectivity compromised.
If the benefit of controversy is clarity about the evidence and the identification
of strategies for enhancing the quality of evidence, emotion and ego detract from
the realization of such benefits.

In proposing principles for the evaluation of epidemiologic evidence, the in-
tent is not to provide a framework that will enable all knowledgeable, objective
epidemiologists to reach the same conclusions. That would imply that the truth
is known and if we could just sit down together, have the same base of infor-
mation available, and apply the same methodologic principles, we would reach
the same conclusions. Because the information is always incomplete to varying
degrees, we are extrapolating from what is currently known to what would be
known if the evidence were complete. Even the methodologic principles do not
ensure unanimity of interpretation, because the inference about potential biases
is just that—an informed guess about what might be. The goal of applying the
tools and principles summarized in this book is to change the debate from one
based on global impressions and subjective biases to one that is specific, in-
formed, and generates clarity regarding research needs, pinpointing issues for
further methodologic development.

Starting from the premise that all bodies of research are inconclusive to some
extent, the principal need is to determine precisely where the gaps are. Such state-
ments such as “The evidence is weak” or “Studies are inconsistent” or “Some-
thing is going on there” invite disagreement of an equally subjective and global
nature. A debate over conflicting, superficial impressions offers no benefit either
in clarifying where the current evidence stands or in pinpointing what is needed
to reach firmer conclusions. The basis for those conflicting inferences needs to
be elucidated. If the evidence is perceived to be weak by some and strong by
others based on, for example, differing views of the quality of exposure assess-
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ment, then we need to reframe the debate by compiling available evidence re-
garding the quality of exposure assessment. We may find that validation studies
are the most pressing need to advance this avenue of research. If controversy is
based on adequacy of control for confounding, we have tools to address the plau-
sibility of substantial uncontrolled confounding. Placing the controversy on more
secure foundations will not produce agreement, and may even anchor both sides
more firmly in their original positions. Again, the goal is not consensus, but an
informative and constructive debate.

For the major issues that underlie differing conclusions (not all possible
methodologic issues), the evidence needs to be dissected. The evidence from
studies of the topic of concern, as well as ancillary methodological work and
other sources of extraneous information should be brought to bear. Typically,
there will be some support for each of the opposing sides, and a disagreement
over the summary judgment may well remain after a complete examination of
the issues. What should emerge, however, is a much more specific argument that
helps to define empirical research that would alter the weight of evidence. Each
side may bring the preconception that the additional research will confirm what
they believe to be true, but making the argument specific and testable is a sig-
nificant step forward.

THE CASE AGAINST ALGORITHMS FOR INTERPRETING 
EPIDEMIOLOGIC EVIDENCE

Identifying the specific points of disagreement about epidemiologic research in
order to objectively and comprehensively scrutinize the study methods and re-
sults and thus assess the potential for bias has been proposed as a useful strat-
egy. Imposing this structure on the examination of evidence should lead to clar-
ity and point toward the researchable bases for disagreement. It might be argued
that formalizing this process further through the development of algorithms or
checklists for the interpretation of epidemiologic evidence would be the next log-
ical step. In its ultimate form, attributes of individual studies or collections of
studies could be entered into a computer program and a measure of the certainty
would be produced, along with a priority list of research needs to improve the
certainty of that evidence, rank-ordered based on the evidence that would most
influence the certainty score.

The only widely used checklist is that proposed by Hill some 35 years ago for
assessing the likelihood of a causal relation based on observational data (Hill,
1965). A number of characteristics of epidemiologic study results are enumer-
ated that are relevant to an assessment of causality, but even the author warned
against any attempts to apply those guidelines as criteria that demonstrate causal-
ity if attained or its absence if not completed. As discussed in some detail else-
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where (Rothman & Poole, 1996), the items that are enumerated provide clues to
potential for bias and there would be greater benefit on focusing directly on the
potential for bias than on these indirect markers.

Strong associations or those that show dose–response gradients, Hill’s first two
criteria, provide evidence against the association being entirely due to con-
founding, under the assumption that confounding influences are more likely to
be weak than strong and not likely to follow the exposure of interest in a dose–
response manner. Preferably, one can focus directly on the question of con-
founding, and gather all the evidence from within and outside the study to sug-
gest the presence or absence of distortion of varying magnitude. In fact, a strong
association may be influenced by confounding of modest magnitude and still re-
main a fairly strong association, whereas a weak association is more likely to be
obliterated. Hill’s rationale is very likely to be valid, but there are more strate-
gies for assessing confounding than he offered, and all are potentially valuable.

Other considerations proposed by Hill—such as specificity, in which causal-
ity is more likely if there is a single agent influencing a single disease—are of
little value, except as a reminder to be watchful for selection bias or recall bias
that might produce spurious associations with an array of exposures or outcomes.
One approach suggested in this book is the examination of whether associations
are observed that are unlikely to be causal, and thus call the association of in-
terest into question. The menu of strategies is much broader than Hill’s brief list
would suggest.

The linkage to biological plausibility and coherence looks to evidence outside
of epidemiology for support, whereas the evidence from other disciplines should
be integrated with the epidemiologic evidence for an overall appraisal, not merely
used to challenge or buttress the epidemiology. Concern with temporal sequence
of exposure and disease is a reminder to be wary of the potential for disease to
influence the exposure marker, such as early stages of cancer possibly reducing
serum cholesterol levels (Kritchevsky & Kritchevsky, 1992), leading to an erro-
neous inference that low serum cholesterol is causally related to the development
of cancer.

Hill’s criteria are of value in helping to remind the interpreters of epidemio-
logic evidence to consider alternatives to causality, even when a positive asso-
ciation has been observed. A preferable approach to evaluating a study or set of
studies is to focus on sources of distortion in the measure of effect, isolating any
causal relation from distortion due to bias or random error. That process over-
laps directly with issues raised by Hill but attempts to be more direct in pin-
pointing sources of error that can then be tested. The Hill criteria were intended
to assess causality when an observation of an association had been made, not to
interpret epidemiologic evidence more generally. For null associations, for ex-
ample, the Hill criteria are not applicable, whereas the results nevertheless call
for scrutiny and interpretation.
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More extensive, formal schemes for assessing epidemiologic methods and ev-
idence have been proposed. In some instances, the goal is to enumerate attributes
that make epidemiologic studies credible (Chemical Manufacturers Association,
1991; Federal Focus Inc, 1996), focusing on methods or on the description of
methods. A recent proposal for the use of an “episcope” (Maclure & Schneeweiss,
2001) would be a welcome formalization of the evaluation of bias, very much
concordant with the ideas expressed here. Encouragement to provide informa-
tion that helps to make informed judgments of the epidemiologic evidence can
only be helpful. As the focus turns to making sense of the evidence that has been
generated, rigid application of the checklists becomes more problematic. A skep-
tical interpretation is that epidemiologists prefer to shroud their expertise in some
degree of mystery to ensure long-term job security. So long as an epidemiolo-
gist, rather than a computer program, is needed to interpret epidemiologic re-
search, we remain a valued and relatively scarce resource. There are more valid
reasons however, that such approaches can serve at best as a reminder of the is-
sues to be considered but not as an algorithm for judgment.

The universe of issues that could potentially influence study results is quite
extensive, even though the considerations are often grouped into a few categories,
such as confounding, selection bias, and information bias. Within each of these,
the application to a specific topic, study, or set of studies involves dozens of
branches, tending toward very long lists of specific manifestations. The relative
importance of these concerns is based not on some generic property resulting
from the nature of the bias, but rather depends on the specific characteristics of
the phenomenon being addressed in a given study. The sociologic characteristics
of the population, the nature of exposure and disease measurement, the details
of study conduct, and the methods of statistical analysis all have direct bearing
on the potential for bias. The use of ancillary information from other relevant
studies adds yet another dimension to the evaluation, requiring inferences re-
garding the applicability of data from other studies, for example, based on sim-
ilarities and differences from the population at hand. Integrative schemes require
some approach to weighting that synthesizes the highly distinctive issues into
scores, so that even if the menu of items could be stipulated, their relative im-
portance could not. In contrast to any predesignated weighting scheme, each sit-
uation calls for examination of the key concerns and a tentative assignment of
relative importance based on epidemiologic principles. In one set of studies, non-
response may be the dominant concern and deserve nearly all the attention of
evaluators; in other studies, exposure measurement error may dominate over the
other issues. Any scheme that assigns generic relative weights to non-response
and to exposure measurement error is surely doomed to failure.

The alternative to an algorithm for evaluating epidemiologic evidence is eval-
uation by experts. There is a loss in objectivity, in that one expert or set of ex-
perts may well view the evidence differently than another expert or set of ex-
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perts. The goal throughout this book has been to identify the specific basis for
such variation, specifying the considerations that lead to a final judgment. Ide-
ally, experts attempt to examine the spectrum of methodologic concerns in rela-
tion to the results, identify sources of uncertainty, evaluate the plausibility and
implications of that uncertainty, and reach appropriate conclusions regarding the
strength of the evidence and key areas in need of refinement.

While discussions about epidemiologic evidence often focus on an assignment
of the proper adjective, such as strong, moderate, or weak evidence, in reality,
the assessment is made to determine whether a specific decision is justified. In
purely scientific terms, the bottom line questions concern the validity of study
results, distortions introduced in the measure of effect, and the probability that
the true association takes on different values. In applications of epidemiologic
evidence, the question is how the information bears on personal and policy de-
cisions. One might ask whether the epidemiologic evidence is strong enough to
impose a regulation or to modify one’s behavior, taking other scientific and non-
scientific considerations into account. This balancing of epidemiologic evidence
against other factors makes the judgment even more complex, less suitable for
checklists and algorithms, but it may be helpful in making the uses of the epi-
demiology more explicit. The practical decision is not between differing views
of epidemiologic evidence, but rather between differing courses of action. The
incentive to invoke weak epidemiologic evidence as strong, or vice versa, in or-
der to justify a decision would be avoided, and epidemiologists could focus on
characterizing the evidence without the distraction of how that assessment will
be used. Clarity and accuracy in the presentation of the evidence from epidemi-
ology must be the overriding goal, trusting that others will use the information
wisely to chart the appropriate course of action.
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