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Preface

This book provides a systematic treatment of the learning approach to modeling
expectations formation in macroeconomics. This approach goes beyond rational
expectations, the current standard hypothesis about expectations in macroeco-
nomic theory. We focus on adaptive learning in which, at each moment of time,
agents make forecasts using forecast functions formulated on the basis of avail-
able data, and these forecast functions are revised over time as new data become
available. The body of this book is devoted to the statistical or econometric ap-
proach to learning which futher postulates that econometric techniques are used
to estimate the parameters of the forecast functions.

Most of the research on adaptive learning within macroeconomics has been
in this area, though other approaches have also been studied. While a number of
surveys (including two by us) are available, a full treatise has been missing and
this book aims to fill the gap.

Models of adaptive learning introduce a specific form of bounded rational-
ity, as economic agents are assumed to maximize utility or profit given their
forecasts at each moment of time, and the method used to estimate the forecast
parameters is based on standard econometric techniques such as least squares.
Rational expectations then becomes an equilibrium or fixed point of the learning
dynamics, and in fact some early contributions have informally justified rational
expectations as the outcome of a trial-and-error process. One can view the study
of adaptive learning as making this justification explicit. In contrast, rational
learning retains the rational expectations assumption continuously over time.

The study of adaptive learning offers much more than just a rationale for
rational expectations. It provides a check on the robustness of equilibria with re-
spect to expectational errors. It offers a way of selecting among multiple equilib-
ria, which is a major conundrum for many rational expectations models. Another
use of learning dynamics is computational, since the recursive algorithms pro-
vide a method for numerically computing equilibria. Learning also offers new
possibilities for modeling dynamic macroeconomic phenomena. Some of these

xv
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possible uses of adaptive learning in applied modeling have only recently been
explored by researchers.

We have tried to provide a systematic treatment of the econometric ap-
proach to adaptive learning in a way that should be accessible and useful to
both graduate students and professional economists. After an introductory part,
the presentation covers both general techniques and their application to widely
used standard frameworks. In several places we extend the state of knowledge
in directions that should prove useful in both applied and theoretical macroe-
conomics. Chapter 10 contains a systematic treatment of adaptive learning for
linear multivariate models. Until now this has not been systematically developed
in a way that is useful for applications. In Chapter 13 and 14 we provide a dis-
cussion of the implications of misspecification in learning, including dynamics
of learning with constant-gain algorithms. A further notable feature is Part II, in
which the general mathematical techniques are explained in some detail.

Who Should Read This Book and How?

We have intended this book for two audiences. First, the book should be useful
for professional economists interested in dynamic macroeconomic theory and
applied macroeconomic modeling. This includes practitioners with some pre-
vious knowledge but who need a systematic treatment of the subject. It also
includes graduate students who encounter the subject for the first time. As ex-
plained below, the book is structured so that it contains both an introduction and
a systematic treatise of the subject.

The second audience consists of researchers and graduate students in other
areas of economics and related fields in which the modeling of expectations
is an integral part of their analytical frameworks. A case in point is financial
economics in which expectations play a key role. We have not ventured far in
this field (or others), though we do discuss the standard present-value model of
asset princing.

Part I of the book provides an introduction to adaptive learning. The level
of exposition is geared towards first-year graduate students who have some fa-
miliarity with modern dynamic macroeconomic theory. It starts with a historical
overview and general discussion in Chapter 1, and this is followed by a leisurely
introduction of the basic approach and technique in Chapter 2. Chapters 3 and 4
offer, respectively, some variations on the basic approach and an exposition on
how to formulate and analyze learning in several standard models.

Part II is devoted to an exposition of the general mathematical technique on
which adaptive learning is formally based. After a background chapter on basic
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mathematical concepts, two main chapters provide a detailed discussion of the
methods of stochastic approximation. Chapter 6 is a treatment of the basic stabil-
ity and instability results for stochastic recursive algorithms. Chapter 7 contains
a number of further developments including nonstochastic algorithms, a speed-
of-convergence result for the usual algorithms, and some results for algorithms
with constant gain. These last results have quite recently found application in
economics. It should be noted that this part is technically much more demand-
ing than other parts of the book. However, its detailed reading is not necessary
since the formal theorems can be consulted when necessary.

Part III is a systematic discussion of linear models. Chapter 8 contains
the most central results for standard univariate frameworks arising from many
macroeconomic models. The level of discussion is relatively elementary, and
this chapter is accessible to anyone who has read only through Part I. Chapter 9
takes up several further specialized topics for univariate linear models. Chap-
ter 10 is devoted to multivariate linear models. This chapter develops the anal-
ysis of learning for general frameworks covering many macroeconomic models
that appear frequently in the literature. Two appendices treat the linearization of
multivariate models and the Blanchard–Kahn solution technique for both regular
and irregular models.

In Part IV attention is directed at nonlinear models with an emphasis on
stochastic frameworks that are appropriate when, for example, technology or
preference shocks are present. Chapter 11 contains the basic stability and in-
stability results for steady-state equilibria, and these are applied to a number
of specific economic models. Chapter 12 takes up nonlinear models of endoge-
nous fluctuations. Both periodic cycles and sunspot equilibria are considered,
and these types of equilibria in several models are analyzed for stability under
learning. Most of the material in this part should be accessible if the reader is
familiar with only Part I.

Part V, the last part of the book, looks at extensions and recent develop-
ments. Chapters 13 and 14 consider a number of cases in which learning does
not converge to a rational expectations equilibrium. This happens if agents are
not using all relevant information or if they use a learning rule that does not fully
converge because it allows for recurring structural shifts. Many of these issues
have only quite recently been analyzed, and our treatment both introduces and
contributes to the literature. Chapter 15 provides an overview of alternative ap-
proaches and some further issues. Finally, Chapter 16 offers some perspectives
and conclusions on the subject.

Parts of the book are designed so that they can be used during a first-year
graduate course in macroeconomics. Familiarity with standard rational expecta-
tions modeling is a prerequisite for Part I. This part, by itself or together with
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Chapters 8, 11, and 15, would form an attractive introduction to the field for
first- or second-year graduate students. Material in the other parts can be added
for specialist courses. A web site with problem sets and other supplementary
material is available at the address www.valt.helsinki.fi/geshbook/.
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Chapter 1
Expectations and the

Learning Approach

1.1 Expectations in Macroeconomics

Modern economic theory recognizes that the central difference between eco-
nomics and natural sciences lies in the forward-looking decisions made by eco-
nomic agents. In every segment of macroeconomics expectations play a key
role. In consumption theory the paradigm life-cycle and permanent income ap-
proaches stress the role of expected future incomes. In investment decisions
present-value calculations are conditional on expected future prices and sales.
Asset prices (equity prices, interest rates, and exchange rates) clearly depend on
expected future prices. Many other examples can be given.

Contemporary macroeconomics gives due weight to the role of expecta-
tions. A central aspect is that expectations influence the time path of the econ-
omy, and one might reasonably hypothesize that the time path of the economy
influences expectations. The current standard methodology for modeling ex-
pectations is to assume rational expectations (RE), which is in fact an equi-
librium in this two-sided relationship. Formally, in dynamic stochastic mod-
els, RE is usually defined as the mathematical conditional expectation of the
relevant variables. The expectations are conditioned on all of the informa-
tion available to the decision makers. For reasons that are well known, and
which we will later explain, RE implicitly makes some rather strong assump-
tions.

5



6 View of the Landscape

Rational expectations modeling has been the latest step in a very long line
of dynamic theories which have emphasized the role of expectations. The ear-
liest references to economic expectations or forecasts date to the ancient Greek
philosophers. In Politics (1259a), Aristotle recounts an anecdote concerning
the pre-Socratic philosopher Thales of Miletus (c. 636–c. 546 B.C.). Forecast-
ing one winter that there would be a great olive harvest in the coming year,
Thales placed deposits for the use of all the olive presses in Chios and Mile-
tus. He then made a large amount of money letting out the presses at high rates
when the harvest time arrived.1 Stories illustrating the importance of expecta-
tions in economic decision making can also be found in the Old Testament.
In Genesis 41–47 we are told that Joseph (on behalf of the Pharaoh) took ac-
tions to store grain from years of good harvest in advance of years in which
he forecasted famine. He was then able to sell the stored grains back during
the famine years, eventually trading for livestock when the farmers’ money ran
out.2

Systematic economic theories or analyses in which expectations play a ma-
jor role began as early as Henry Thornton’s treatment of paper credit, published
in 1802, and Émile Cheysson’s 1887 formulation of a framework which had
features of the “cobweb” cycle.3 There is also some discussion of the role
of expectations by the Classical Economists, but while they were interested
in dynamic issues such as capital accumulation and growth, their method of
analysis was essentially static. The economy was thought to be in a station-
ary state which can be seen as a sequence of static equilibria. A part of this
interpretation was the notion of perfect foresight, so that expectations were
equated with actual outcomes. This downplayed the significance of expecta-
tions.

Alfred Marshall extended the classical approach to incorporate the distinc-
tion between the short and the long run. He did not have a full dynamic theory,
but he is credited with the notion of “static expectations” of prices. The first
explicit analysis of stability in the cobweb model was made by Ezekiel (1938).
Hicks (1939) is considered to be the key systematic exposition of the temporary
equilibrium approach, initiated by the Stockholm school, in which expectations

1In giving this story, as well as another about a Sicilian who bought up all the iron from the iron
mines, Aristotle also emphasized the advantage of creating a monopoly.

2The forecasting methods used in these stories provide an interesting contrast with those ana-
lyzed in this book. Thales is said to have relied on his skill in the stars, and Joseph’s forecasts were
based on the divine interpretation of dreams.

3This is pointed out in Schumpeter (1954, pp. 720 and 842, respectively). Hebert (1973) dis-
cusses Cheysson’s formulation. The bibliographical references are Cheysson (1887) and Thornton
(1939).
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of future prices influence demands and supplies in a general equilibrium con-
text.4 Finally, Muth (1961) was the first to formulate explicitly the notion of
rational expectations and did so in the context of the cobweb model.5

In macroeconomic contexts the importance of the state of long-term expec-
tations of prospective yields for investment and asset prices was emphasized by
Keynes in his General Theory.6 Keynes emphasized the central role of expec-
tations for the determination of investment, output, and employment. However,
he often stressed the subjective basis for the state of confidence and did not
provide an explicit model of how expectations are formed.7 In the 1950s and
1960s expectations were introduced into almost every area of macroeconomics,
including consumption, investment, money demand, and inflation. Typically, ex-
pectations were mechanically incorporated in macroeconomic modeling using
adaptive expectations or related lag schemes. Rational expectations then made
the decisive appearance in macroeconomics in the papers of Lucas (1972) and
Sargent (1973).8

We will now illustrate some of these ways of modeling expectations with
the aid of two well-known models. The first one is the cobweb model, though
it may be noted that a version of the Lucas (1973) macroeconomic model is
formally identical to it. The second is the well-known Cagan model of inflation
(see Cagan, 1956). Some other models can be put in the same form, in particular
versions of the present-value model of asset pricing.

These two examples are chosen for their familiarity and simplicity. This
book will analyze a large number of macroeconomic models, including linear
as well as nonlinear expectations models and univariate as well as multivariate
models. Recent developments in modeling expectations have gone beyond ratio-
nal expectations in specifying learning mechanisms which describe the evolu-
tion of expectation rules over time. The aim of this book is to develop systemat-
ically this new view of expectations formation and its implications for macroe-
conomic theory.

4Lindahl (1939) is perhaps the clearest discussion of the approach of the Stockholm school.
Hicks (1965) has a discussion of the methods of dynamic analysis in the context of capital accumu-
lation and growth. However, Hicks does not consider rational expectations.

5Sargent (1993) cites Hurwicz (1946) for the first use of the term “rational expectations.”
6See Keynes (1936, Chapter 12).
7Some passages, particularly in Keynes (1937), suggest that attempting to forecast very distant

future events can almost overwhelm rational calculation. For a forceful presentation of this view, see
Loasby (1976, Chapter 9).

8Most of the early literature on rational expectations is collected in the volumes Lucas and
Sargent (1981) and Lucas (1981).
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1.2 Two Examples

1.2.1 The Cobweb Model

Consider a single competitive market in which there is a time lag in production.
Demand is assumed to depend negatively on the prevailing market price

dt =mI −mppt + v1t ,

while supply depends positively on the expected price

st = rI + rpp
e
t + v2t ,

where mp , rp > 0 and mI and rI denote the intercepts. We have introduced
shocks to both demand and supply. v1t and v2t are unobserved white noise ran-
dom variables. The interpretation of the supply function is that there is a one-
period production lag, so that supply decisions for period t must be based on
information available at time t − 1. We will typically make the representative
agent assumption that all agents have the same expectation, but at some points
of the book we explicitly take up the issue of heterogeneous expectations. In
the preceding equation pet can be interpreted as the average expectation across
firms.

We assume that markets clear, so that st = dt . The reduced form for this
model is

pt =µ+ αpet + ηt , (1.1)

where µ = (mI − rI )/mp and α = −rp/mp. Note that α < 0. ηt = (v1t −
v2t )/mp so that we can write ηt ∼ iid(0, σ 2

η ). Equation (1.1) is an example of a
temporary equilibrium relationship in which the current price depends on price
expectations.

The well-known Lucas (1973) aggregate supply model can be put in the
same form. Suppose that aggregate output is given by

qt = q̄ + π
(
pt − pet

)+ ζt ,

where π > 0, while aggregate demand is given by the quantity theory equation

mt + vt = pt + qt ,
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where vt is a velocity shock. Here all variables are in logarithmic form. Finally,
assume that money supply is random around a constant mean

mt = m̄+ ut .

Here ut , vt , and ζt are white noise shocks. The reduced form for this model is

pt = (1+ π)−1(m̄− q̄)+π(1+ π)−1pet + (1+ π)−1(ut + vt − ζt ).

This equation is precisely of the same form as equation (1.1) with α = π(1+
π)−1 and ηt = (1+ π)−1(ut + vt − ζt ). Note that in this example 0 < α < 1.

Our formulation of the cobweb model has been made very simple for il-
lustrative purposes. It can be readily generalized, e.g., to incorporate observable
exogenous variables. This will be done in later chapters.

1.2.2 The Cagan Model

In a simple version of the Cagan model of inflation, the demand for money
depends linearly on expected inflation,

mt −pt =−ψ
(
pet+1 − pt

)
, ψ > 0,

where mt is the log of the money supply at time t , pt is the log of the price level
at time t , and pet+1 denotes the expectation of pt+1 formed in time t . We assume
that mt is iid with a constant mean. Solving for pt , we get

pt = αpet+1 + βmt, (1.2)

where α =ψ(1+ψ)−1 and β = (1+ψ)−1.
The basic model of asset pricing under risk neutrality takes the same form.

Under suitable assumptions all assets earn the expected rate of return 1 + r,

where r > 0 is the real net interest rate, assumed constant. If an asset pays
dividend dt at the beginning of period t , then its price pt at t is given by
pt = (1+ r)−1pet+1 + dt .9 This is clearly of the same form as equation (1.2).

1.3 Classical Models of Expectation Formation

The reduced forms (1.1) and (1.2) of the preceding examples clearly illustrate
the central role of expectations. Indeed, both of them show how the current

9See, e.g., Blanchard and Fischer (1989, pp. 215–216).
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market-clearing price depends on expected prices. These reduced forms thus
describe a temporary equilibrium which is conditioned by the expectations. De-
velopments since the Stockholm School, Keynes, and Hicks can be seen as dif-
ferent theories of expectations formation, i.e., how to close the model so that it
constitutes a fully specified dynamic theory. We now briefly describe some of
the most widely used schemes with the aid of the examples.

Naive or static expectations were widely used in the early literature. In the
context of the cobweb model they take the form of

pet = pt−1.

Once this is substituted into equation (1.1), one obtains pt = µ+ αpt−1 + ηt ,
which is a stochastic process known as an AR(1) process. In the early literature
there were no random shocks, yielding a simple difference equation pt = µ+
αpt−1. This immediately led to the question whether the generated sequence of
prices converged to the stationary state over time. The convergence condition is,
of course, |α|< 1. Whether this is satisfied depends on the relative slopes of the
demand and supply curves.10 In the stochastic case this condition determines
whether the price converges to a stationary stochastic process.

The origins of the adaptive expectations hypothesis can be traced back to
Irving Fisher (see Fisher, 1930). It was formally introduced in the 1950s by
Cagan (1956), Friedman (1957), and Nerlove (1958). In terms of the price level
the hypothesis takes the form

pet = pet−1 + λ
(
pt−1 − pet−1

)
,

and in the context of the cobweb model one obtains the system

pet = (1− λ(1− α))pet−1 + λµ+ ληt−1.

This is again an AR(1) process, now in the expectations pet , which can be ana-
lyzed for stability or stationarity in the usual way.

Note that adaptive expectations can also be written in the form

pet = λ

∞∑
i=0

(1− λ)ipt−1−i ,

which is a distributed lag with exponentially declining weights. Besides adap-
tive expectations, other distributed lag formulations were used in the litera-

10In the Lucas model the condition is automatically satisfied.
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ture to allow for extrapolative or regressive elements. Adaptive expectations
played a prominent role in macroeconomics in the 1960s and 1970s. For ex-
ample, inflation expectations were often modeled adaptively in the analysis of
the expectations-augmented Phillips curve.

The rational expectations revolution begins with the observations that adap-
tive expectations, or any other fixed-weight distributed lag formula, may provide
poor forecasts in certain contexts and that better forecast rules may be readily
available. The optimal forecast method will in fact depend on the stochastic pro-
cess which is followed by the variable being forecast, and as can be seen from
our examples this implies an interdependency between the forecasting method
and the economic model which must be solved explicitly. On this approach we
write

pet =Et−1pt and pet+1 =Etpt+1

for the cobweb example and for the Cagan model, respectively. Here Et−1pt

denotes the mathematical (statistical) expectation of pt conditional on variables
observable at time t − 1 (including past data) and similarly Etpt+1 denotes the
expectation of pt+1 conditional on information at time t .

We emphasize that rational expectations is in fact an equilibrium concept.
The actual stochastic process followed by prices depends on the forecast rules
used by agents, so that the optimal choice of the forecast rule by any agent is
conditional on the choices of others. An RE equilibrium imposes the consis-
tency condition that each agent’s choice is a best response to the choices by
others. In the simplest models we have representative agents and these choices
are identical.

For the cobweb model we now have pt = µ+ αEt−1pt + ηt . Taking con-
ditional expectations Et−1 of both sides yields Et−1pt =µ+ αEt−1pt , so that
expectations are given by Et−1pt = (1− α)−1µ and we have

pt = (1− α)−1µ+ ηt .

(This step implicitly imposes the consistency condition described in the previous
paragraph.) This is the unique way to form expectations which are “rational” in
the model (1.1).

Similarly, in the Cagan model we have pt = αEtpt+1 + βmt and if mt is
iid with mean m̄, a rational expectations solution is Etpt+1 = (1−α)−1βm̄ and

pt = (1− α)−1αβm̄+ βmt .
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For this model there are in fact other rational expectations solutions, a point we
will temporarily put aside but which we will discuss at length later in the book.

Two related observations should be made. First, under rational expectations
the appropriate way to form expectations depends on the stochastic process fol-
lowed by the exogenous variables ηt or mt. If these are not iid processes, then
the rational expectations will themselves be random variables, and they often
form a complicated stochastic process. Second, it is apparent from our exam-
ples that neither static nor adaptive expectations are in general rational. Static or
adaptive expectations will be “rational” only in certain special cases.

The rational expectations hypothesis became widely used in the 1970s and
1980s and it is now the benchmark paradigm in macroeconomics. In the 1990s,
approaches incorporating learning behavior in expectation formation have been
increasingly studied.

Paralleling the rational expectations modeling, there was further work refin-
ing the temporary equilibrium approach in general equilibrium theory. Much of
this work focused on the existence of a temporary equilibrium for given expec-
tation functions. However, the dynamics of sequences of temporary equilibria
were also studied and this latter work is conceptually connected to the learn-
ing approach analyzed in this book.11 The temporary equilibrium modeling was
primarily developed using nonstochastic models, whereas the approach taken in
this book emphasizes that economies are subject to random shocks.

1.4 Learning: The New View of Expectations

The rational expectations approach presupposes that economic agents have a
great deal of knowledge about the economy. Even in our simple examples, in
which expectations are constant, computing these constants requires the full
knowledge of the structure of the model, the values of the parameters, and that
the random shock is iid.12 In empirical work economists, who postulate rational
expectations, do not themselves know the parameter values and must estimate
them econometrically. It appears more natural to assume that the agents in the
economy face the same limitations on knowledge about the economy. This sug-
gests that a more plausible view of rationality is that the agents act like statisti-

11Many of the key papers on temporary equilibrium are collected in Grandmont (1988). A recent
paper in this tradition, focusing on learning in a nonstochastic context, is Grandmont (1998).

12The strong assumptions required in the rational expectations hypothesis were widely discussed
in the late 1970s and early 1980s; see, e.g., Blume, Bray, and Easley (1982), Frydman and Phelps
(1983), and the references therein. Arrow (1986) has a good discussion of these issues.
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cians or econometricians when doing the forecasting about the future state of the
economy. This insight is the starting point of the adaptive learning approach to
modeling expectations formation. This viewpoint introduces a specific form of
“bounded rationality” to macroeconomics as discussed in Sargent (1993, Chap-
ter 2).

More precisely, this viewpoint is called adaptive learning, since agents ad-
just their forecast rule as new data becomes available over time. There are alter-
native approaches to modeling learning, and we will explain their main features
in Chapter 15. However, adaptive learning is the central focus of the book.

Taking this approach immediately raises the question of its relationship to
rational expectations. It turns out that in many cases learning can provide at least
an asymptotic justification for the RE hypothesis. For example, in the cobweb
model with unobserved iid shocks, if agents estimate a constant expected value
by computing the sample mean from past prices, one can show that expecta-
tions will converge over time to the RE value. This property turns out to be quite
general for the cobweb-type models, provided agents use the appropriate econo-
metric functional form. If the model includes exogenous observable variables or
lagged endogenous variables, the agents will need to run regressions in the same
way that an econometrician would.13

Another major advantage of the learning approach arises in connection with
the issue of multiple equilibria. We have briefly alluded to the possibility that
under the RE hypothesis the solution will not always be unique. To see this
we consider a variation of the Cagan model pt = αEtpt+1 + βmt , where now
money supply is assumed to follow a feedback rule mt = m̄+ ξpt−1 + ut . This
leads to the equation

pt = βm̄+ αEtpt+1 + βξpt−1 + βut .

It can be shown that for many parameter values this equation yields two RE
solutions of the form

pt = k1 + k2pt−1 + k3ut , (1.3)

where the ki depend on the original parameters α,β, ξ, m̄. In some cases both
of these solutions are even stochastically stationary.

13Bray (1982) was the first to provide a result showing convergence to rational expectations in
a model in which expectations influence the economy and agents use an econometric procedure
to update their expectations over time. Friedman (1979) and Taylor (1975) considered expectations
which are formed using econometric procedures, but in contexts where expectations do not influence
the economy. The final section in Chapter 2 provides a guide to the literature on learning.
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Figure 1.1.

For rational expectations this is a conundrum. Which solution should we
and the agents choose? In contrast, in the adaptive learning approach it is sup-
posed that agents start with initial estimates of the parameters of a stochastic
process for pt taking the same functional form as equation (1.3) and revise their
estimates, following standard econometric procedures, as new data points are
generated. This provides a fully specified dynamical system. For the case at
hand it can be shown that only one of the RE solutions can emerge in the long
run. Throughout the book the multiplicity issue will recur frequently, and we
will pay full attention to this role of adaptive learning as a selection criterion.14

In nonlinear models this issue of multiplicity of RE solutions has been fre-
quently encountered. Many nonlinear models can be put in the general form

yt = F
(
yet+1

)
,

where random shocks have here been left out for simplicity. (Note that this is
simply a nonlinear generalization of the Cagan model.) Suppose that the graph of
F(·) has the S-shape shown in Figure 1.1. The multiple steady states ȳ = F(ȳ)

occur at the intersection of the graph and the 45-degree line. We will later give
an example in which y refers to output and the low steady states represent coor-

14Alternative selection criteria have been advanced. The existence of multiple equilibria makes
clear the need to go in some way beyond rational expectations.
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dination failures. Under learning, a number of interesting questions arise. Which
of the steady states are stable under adaptive learning? Are there statistical learn-
ing rules for which there can be rational or nearly rational fluctuations between
the steady states? We will treat these and other issues for nonlinear models, al-
lowing also for random shocks.

Finally, the transition under learning to rational expectations may itself be
of interest. The process of learning adds dynamics which are not present under
strict rationality and they may be of empirical importance. In the cases we just
described, these dynamics disappear asymptotically. However, there are various
situations in which one can expect learning dynamics to remain important over
time. As an example, if the economy undergoes structural shifts from time to
time, then agents will need periodically to relearn the relevant stochastic pro-
cesses. Moreover, if agents know that they are misspecifying a model which
undergoes recurrent shifts, they may allow for this in their learning in a way
which leads to persistent learning dynamics.

1.5 Statistical Approach to Learning

As already discussed, the approach taken in this book views economic agents
as behaving like statisticians or econometricians when they make forecasts of
future prices and other economic variables needed in their decision making. As
an illustration, consider again the cobweb model (1.1).

Assume that agents believe that the stochastic process for the market price
takes the form pt = constant+ noise, i.e., the same functional form as the RE
solution. The sample mean is the standard way for estimating an unknown con-
stant, and in this example the estimate is also the forecast for the price. Thus,
suppose that agents’ expectations are given by

pet =
1

t

t−1∑
i=0

pi.

Combining this with equation (1.1) leads to a fully specified stochastic dynami-
cal system. It can be shown that the system under learning converges to the RE
solution if α < 1. This result holds, too, for the basic Cagan model (1.2) with iid
shocks.

It is easy to think of generalizations. If the economic model incorporates
exogenous or lagged endogenous variables, it is natural for the agents to estimate
the parameters of the perceived process for the relevant variables by means of
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least squares. As an illustration, suppose that an observable exogenous variable
wt−1 is introduced into the cobweb model, so that equation (1.1) takes the form

pt =µ+ αpet + δwt−1 + ηt . (1.4)

It would now be natural to forecast the price as a linear function of the observable
wt−1. In fact, the unique RE solution is of this form.15 Under learning, agents
would forecast according to

pet = at−1 + bt−1wt−1, (1.5)

where at−1 and bt−1 are parameter estimates obtained by a least squares regres-
sion of pt on wt−1 and an intercept.16

This way of modeling expectations formation has two major parts. First, the
economy is taken to be in a temporary equilibrium in which the current state of
the economy depends on expectations. Second, the statistical approach to learn-
ing makes the forecast functions and the estimation of their parameters fully
explicit. A novel feature of this situation is that the expectations and forecast
functions influence future data points. Mathematically, this self-referential fea-
ture makes these systems nonstandard. Analyzing their dynamics is not trivial
and requires special techniques. An overview of those techniques is in the next
chapter, and they are presented more formally in later chapters.

1.6 A General Framework

The examples described in the previous sections can be placed in a more gen-
eral framework. As already noted, the approach taken in this book is adaptive
in the sense that expectation rules are revised over time in response to observed
data. We use the phrase “adaptive learning” to contrast the approach with both
“eductive learning” and “rational learning.” In eductive approaches agents en-
gage in a process of reasoning and the learning takes place in logical or notional
time. The central question is whether coordination on an REE (rational expec-
tations equilibrium) can be attained by a mental process of reasoning based on

15The unique REE is pt = ā + b̄wt−1 + ηt , where ā = (1− α)−1µ and b̄= (1− α)−1δ.
16Bray and Savin (1986) and Fourgeaud, Gourieroux, and Pradel (1986) analyzed cobweb and

Cagan models for learning.



Expectations and the Learning Approach 17

common knowledge assumptions.17 Rational learning takes place in real time,18

but retains the rational expectations equilibrium assumptions, at each point in
time, which we do not want to impose a priori. The adaptive learning approach
instead assumes that agents possess a form of bounded rationality, which may,
however, approach rational expectations over time.

To describe our general framework, let yt be a vector of variables that agents
need to forecast and let yet denote the expectations formed by the agents. yt could
include future values of variables of interest as well as unknown current values.
(If agents are heterogeneous in the sense that they have differing expectations,
then one can treat this by letting yet (k) denote the expectations of agents k. One
would then need to examine the evolution of yet (k) for each agent. For simplicity,
we continue the discussion under the assumption of homogeneous expectations.)
If the optimal actions of agents depend on the second or higher moments as well
as the mean of certain variables, then this can be treated by including powers
of these variables in yt . Similarly, expectations of nonlinear functions of several
variables may also be included as components of yt . Thus, at this stage our
framework is very general.

Suppose that agents, when they are making their forecasts yet , have obser-
vations on a vector of variables Xt . Xt might include a finite number of lags of
some or all components of yt , and could also include lagged values of yet as well
as other exogenous and endogenous observables. The forecasts yet are assumed
to be a function of the observables so that

yet =�(Xt, θt−1),

where θt−1 is a vector of parameters that may evolve over time. Inclusion of
the parameter θt−1 is a crucial aspect of the adaptive learning approach, as we
will discuss. However, the framework so far is broad enough to include static
expectations, adaptive expectations, and rational expectations as special cases
with appropriate fixed values of θ .19

Under the statistical approach to learning, the forecast rule �(Xt, θ) is
based on an econometric model specification, i.e., on a perceived law of mo-

17We briefly discuss the eductive approach in Section 15.4 of Chapter 15. There are close links
between the stability analyses of eductive and adaptive learning. For a forceful presentation of the
eductive viewpoint see Guesnerie (1999).

18An example of fully rational learning is Townsend (1978). See the section on the discussion of
the literature in Chapter 2 for further references.

19Under rational expectations yet = �(Xt ) ≡ E(yt | Xt ), the mathematical conditional expec-
tation of yt given Xt , provided E(yt | It ) = E(yt | Xt ), where It = {Xt,Xt−1, . . . ,X0} is the
information set at time t . This will often hold if Xt is chosen appropriately.
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tion for the variables of interest, and the vector θ represents unknown param-
eters which must be estimated statistically in order to implement the forecast
rule. As an example, in the cobweb model the forecast rule (1.5) for yet = pet is
a linear function of the observables, where Xt includes the variables 1 and wt

and θt−1 includes the parameters at−1 and bt−1. The forecasting framework is
completed by specifying a rule for estimating θ and updating the estimates over
time as data is accumulated. We will assume that this takes a recursive form
θt = G(t, θt−1,Xt ). It is convenient to write this in the equivalent form20

θt = θt−1 + γtQ(t, θt−1,Xt ),

where γt is a given deterministic “gain” sequence which governs how responsive
estimate revisions are to new data.21 Recursive estimators are sometimes called
“on-line,” in contrast to “off-line” estimators in which θt could depend on the full
history X1, . . .Xt . However, as we will see, many standard statistical estimators
such as least squares can be rewritten in recursive form. A simple special case
is that the sample mean at = t−1 ∑t

i=1pi , for t = 1,2,3, . . . , can be written
in recursive form as at = at−1 + t−1(pt − at−1), where a1 = p1. Thus, while
not completely general, our formulation remains quite general. The recursive
version of least squares estimation will be developed in Chapter 2.

The system as a whole is specified once the dynamic process governing
the state variables Xt is described. Since the model is self-referential, the de-
pendence of key variables on expectations, manifest in the cobweb model via
equations (1.4) and (1.5), will be reflected either in the specification of the pro-
cess followed by Xt or in the specification of the updating equation Q(·) for the
parameter estimates θt , or both. This self-referential aspect is what prevents us
from analyzing the resulting stochastic dynamic systems using standard econo-
metric tools.

We have thus arrived at a stochastic dynamic system in which economic
variables depend through the forecasts of agents on the agents’ estimates of
key parameters and those parameters are updated over time in response to the
evolution of the variables themselves. Analyzing the evolution of this stochas-
tic dynamic system over time is the heart of the adaptive learning approach to
expectations formation and the subject of this book.

20As we will see in the next chapter, in order to make possible a recursive formulation, θt must
often include auxiliary parameters in addition to the parameters of interest.

21The importance of a recursive formulation for obtaining general adaptive learning results was
stressed in Marcet and Sargent (1989c).
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1.7 Overview of the Book

In the remainder of Part I we describe the adaptive learning approach to expecta-
tions formation in some detail and illustrate it with numerous examples from the
recent macroeconomic literature. The analysis in Part I is presented in simplified
terms to show the key features and applicability of the approach. The level of
exposition is aimed at graduate students and other economists with some famil-
iarity of standard macroeconomic theory. In other parts of the book the style of
analysis is rigorous and requires familiarity with techniques presented in Part II.
However, Chapters 8, 11, 13, and 15 should be by and large accessible after
reading Part I.

Chapter 2 spells out the details of the approach in the context of the cob-
web model with agents updating their forecast parameters using recursive least
squares. This model, in which there is a unique rational expectations equilibrium
(REE), is particularly convenient for introducing the technical framework. We
show explicitly how to represent the model under learning as a stochastic recur-
sive algorithm (SRA), how to approximate the system with an associated ordi-
nary differential equation (ODE), and how the asymptotic stability of the REE
under learning hinges on a stability condition called “expectational stability” or
“E-stability.” The discussion of the techniques in this chapter is introductory,
emphasizing the heuristic aspects. Chapter 3 shows how some simple variations
can lead to interesting further results. In particular, we explore the implications
of modifying or misspecifying the recursive least squares learning rule. In that
chapter we also discuss a simple form of adaptive learning which can be used
in nonstochastic models. The standard coordination failure model is used as an
illustration of learning in a nonstochastic context.

Chapter 4, the last chapter of Part I, shows how to use the techniques to
study adaptive learning in a wide range of frequently encountered models. The
examples include the standard overlapping generations model, the Ramsey opti-
mal growth model, simple linear stochastic macro models, the Diamond growth
model, and a model with increasing social returns. We give examples of conver-
gence to REEs, and illustrate the possibility of REEs which are not stable under
adaptive learning. In this chapter we also provide an illustration of convergence
to a “sunspot” solution, i.e., to a solution which depends on extraneous variables
because agents learn to coordinate their expectations on these variables.

Part II provides a systematic treatment of the technical tools required for
the analysis of SRAs. Chapter 5 provides a summary of standard results on eco-
nomic dynamics, with an emphasis on stability results. Topics include difference
and differential equations, both deterministic and stochastic, as well as a num-
ber of specialized results which will be needed. Chapter 6 presents a formal
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statement of the key technical results on the stability of SRAs which makes pos-
sible the systematic study of adaptive learning in macroeconomic models with
expectations. Separate local stability, global stability, and instability results are
given. As an illustration we obtain the stability conditions for convergence to
the unique REE in the multivariate cobweb model. Chapter 7 presents some
additional technical results, including speed of convergence and asymptotic ap-
proximations for constant-gain algorithms.

In Parts III and IV we apply the techniques systematically to linear and non-
linear economic models. In these parts we continue to focus on the issue of the
conditions under which adaptive learning converges to REE. A major emphasis
of these two parts is the possibility of multiple equilibria. As we have already
stressed, macroeconomic models in which the state of the economy depends on
expectations have the potential for “self-fulfilling prophecies,” taking the form
of multiple REEs. Local stability under learning provides a natural selection
principle for assessing these equilibria.

Part III is a systematic treatment of linear models. Chapters 8 and 9 ex-
amine univariate linear models, covering many of the standard workhorses of
macroeconomics. Part III begins with a full treatment of several special cases in
which the full set of REEs can be readily listed. The solutions take the form of
one or more minimal state variable (MSV) solutions and one or more continua
of ARMA solutions, possibly depending on “sunspot” variables. In some cases
there is a unique REE which is nonexplosive, but examples with multiple station-
ary solutions do arise. In looking at the local stability of these solutions under
least squares learning, we emphasize the role of the E-stability conditions, and
we distinguish “weak E-stability conditions,” which govern local stability when
the REE is correctly specified, and “strong E-stability” conditions, which are
relevant when the perceived law of motion estimated by the agents overparam-
eterizes the REE solution of interest. We show how to use the tools of Part II
to prove that these conditions govern local stability and instability, under least
squares learning, for certain classes of solutions, and we provide supporting nu-
merical simulations for other cases where formal proofs are not available.

Economic examples covered in Chapters 8 and 9 include the Sargent–
Wallace “ad hoc” model, Taylor’s real balance and overlapping contracts mod-
els, the Cagan inflation model, asset price models, investment under uncertainty,
Muth’s inventory model, and a version of Dornbusch’s exchange rate model.
Recent dynamic general equilibrium models, such as the Real Business Cy-
cle (RBC) model, are inherently multivariate, as are conventional large-scale
macroeconometric models. Although the RBC model is nonlinear, a good ap-
proximation is often given by linearized versions. In Chapter 10 we take up mul-
tivariate linear expectations models. We show how our techniques to assess the
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local stability of REE under least squares learning can be extended in a straight-
forward way to the multivariate setting and we present the E-stability conditions
for REE in multivariate linear models. This chapter discusses both “regular”
cases, for which there is a unique stationary REE, and “irregular cases” with
multiple stationary REE. Economic examples include an IS-LM-new Phillips
curve model, the RBC model, and the Farmer–Guo irregular model.

Part IV turns to nonlinear models. From the viewpoint of formal macroe-
conomic theory these models give rise to the possibility of multiple steady-state
REEs, as well as (in nonstochastic models) perfect-foresight cycles and stochas-
tic equilibria which depend on an extraneous variable, a “sunspot.” The possibil-
ity of multiple steady-state REEs in nonstochastic models is considered in Part I
but is more systematically discussed in Chapter 11. This chapter also considers
solutions to nonlinear models subject to white noise intrinsic shocks, for exam-
ple due to random technology, preference, or policy shocks, and we show the
existence of “noisy steady states” for nonlinear models with small white noise
shocks. We obtain the E-stability conditions and show that they govern local
stability under adaptive learning for steady states and noisy steady states. In ad-
dition to the overlapping generations (OG) models, with and without stochastic
shocks, our examples include the increasing social returns model, the hyperin-
flation (seignorage) model, and the Evans–Honkapohja–Romermodel of growth
cycles.

Chapter 12 continues the systematic treatment of nonlinear models. Perfect-
foresight cycles can arise in nonlinear models such as the OG model.22 Chap-
ter 12 shows the possibility of “noisy cycles” in nonlinear models with white
noise shocks. We then obtain the E-stability conditions for (perfect-foresight or
noisy) cycles and show that these govern the local stability of these cycles under
adaptive learning. We derive both weak E-stability conditions, in which the per-
ceived law of motion held by the agents correctly specifies the order of the cycle
under consideration, and strong E-stability conditions, which are required for
stability when the agents overparameterize the order of the cycle. Sunspot equi-
libria were originally discovered to exist in nonlinear models, taking the form
of Markov chains.23 Chapter 12 also obtains corresponding weak and strong
E-stability conditions and shows that these govern the local stability of station-
ary sunspot equilibria (and noisy stationary sunspot equilibria) under adaptive

22See Grandmont (1985).
23See Shell (1977), Azariadis (1981), Azariadis and Guesnerie (1982), and Cass and Shell

(1983). The possibility of convergence to sunspots under adaptive learning was shown by Wood-
ford (1990).
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learning. Particular attention is paid to the E-stability conditions for Markov
sunspot solutions which are close to REE cycles or pairs of steady states.

Part V returns to general issues in adaptive learning. We have been modeling
the economic agents as making forecasts in the same way as econometricians.
This is a weakening of the rational expectations assumption, but one which
would appear reasonable since, after all, economists themselves use economet-
rics as the principal tool for forecasting. As with all bounded rationality assump-
tions, one can consider further strengthening or weakening of the degree of ratio-
nality. The emphasis of much of the book is on the possibility that econometric
learning will asymptotically converge to fully rational expectations. Indeed, we
have advocated local stability under adaptive learning as a selection criterion
when multiple REEs exist. Chapters 13 and 14 consider the possibility that nat-
ural econometric learning rules may fail to converge fully to REEs even in the
limit.

In Chapter 13 we consider the implications of agents using a misspecified
model. When the perceived law of motion estimated by the agents does not nest
the REE under consideration, convergence of learning to that REE is, of course,
impossible. This does not, however, preclude convergence of the estimators. We
give several examples in which underparameterized learning converges to a re-
stricted perceptions equilibrium under least squares learning. This equilibrium,
though not rational, may be optimal given the restricted class of perceived laws
of motion entertained by the forecasters. In the cobweb model the stability con-
dition is unaffected, but in other examples misspecification can affect the sta-
bility condition as well as the asymptotic point of convergence. This chapter
and the next also discuss the model of misspecified learning by monetary policy
makers recently set forth in Sargent (1999).

If agents have a misspecified model, they may, however, be aware of the
possible misspecification and make allowances for this in their learning rule.
One way this can be done is to choose the “gain” sequence, which measures
the sensitivity of estimates to new data points, so that it is bounded above zero
asymptotically. This is in contrast to standard statistical procedures, like least
squares, in which the gain shrinks to zero over time as more data is accumu-
lated. Such nondecreasing or constant-gain estimators have the disadvantage in
correctly specified models that estimators fluctuate randomly in the limit, pre-
cluding convergence to full rationality. But they have the advantage, in some
kinds of misspecified models, of being able to track an economic structure which
is evolving in some unknown way. Chapter 14 discusses the implications of
constant-gain learning in the context of the cobweb model, the increasing social
returns model, and Sargent’s inflation model. In some cases, dramatic and new
persistent learning dynamics can arise because of the incomplete learning.
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Chapter 15 contains a discussion of extensions, alternatives, and new ap-
proaches to adaptive learning that have been recently employed. Genetic algo-
rithms, classifier systems, and neural networks are alternative forecasting meth-
ods available from the computational intelligence literature. We also discuss
eductive approaches, as well as extensions which permit agents to use nonpara-
metric methods or to weigh the costs and benefits of improving forecasts. The
chapter ends with a discussion of experimental work and recent empirical appli-
cations.

Chapter 16 concludes the book with a perspective on what has been
achieved and points out some issues for further research.
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Chapter 2
Introduction to the Techniques

2.1 Introduction

In this second introductory chapter we will introduce the main analytical tech-
nique which we will use to study convergence under learning dynamics when
the economy is subject to stochastic shocks. We will do this in the context of
a simple economic model: the cobweb market model introduced in Chapter 1.
Our presentation in this chapter will be heuristic and the techniques will be rigor-
ously developed subsequently. Later chapters will also show how to apply these
tools to study the dynamics of learning in numerous macroeconomic models.

In the cobweb model there is a unique rational expectations equilibrium
(REE). Even if there is a unique REE, convergence under learning is far from
obvious since the situation is not analogous to the standard econometric setup.
Because in general the economic variables depend on forecasts, they depend
on the agents’ estimates.1 Thus the agents are estimating the parameters of a
system which in turn depend on the estimates. It is thus possible, and we will
see examples, that if agents’ estimates deviate from the parameter values of an
REE, the actual law of motion under these perceptions will be best described by
parameters which are even farther from the REE. In consequence, the estimates
will be driven farther and farther from the REE values over time, so that the REE
is unstable.

We will develop conditions, called expectational stability conditions, which
govern whether or not a given REE is stable. When there are multiple REE,

1This is the sense in which such systems are “self-referential.”

25
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these conditions must be interpreted as local stability conditions since then the
evolution of the system, and its possible rest points, will depend on the initial
perceptions as well as other factors. In fact, it is within models with multiple
equilibria that the study of adaptive learning is most fruitful since it provides
guidance on what can happen in such models: can the economy become stuck
in inefficient steady states? Can it converge to cycles or random fluctuations,
even when a deterministic steady state exists? Can the economy begin to track
explosive bubble paths? Once we have the technical apparatus in hand, we will
consider all of these issues in later parts of the book.

Besides focusing on a version of bounded rationality which makes a min-
imal deviation from RE, we will also focus, through most of the book, on the
asymptotic issue of whether adaptive learning converges to a particular REE in
the limit. There are other questions of considerable interest: how fast does con-
vergence take place? What are the properties of the transitional paths en route to
the REE? If the economy undergoes frequent structural shifts, will the estimates
still converge and how should adaptive agents allow for this? In the last part of
the book we will take up these issues. However, we begin with what is clearly
the central question: if agents estimate a statistical model which is a correct
specification of an REE, under what circumstances will the estimates converge
to that REE?

2.2 The Cobweb Model

In this book we will address this issue of stability in the context of a wide variety
of stochastic economic models: linear and nonlinear, univariate and multivariate.
These will cover a wide range of the macroeconomic models which are currently
employed or which have been employed over the last 25 years. In particular, we
will be able to study in detail the issue of what solutions emerge under adaptive
learning when multiple equilibria are present. However, to present the central
techniques it is most convenient to consider a linear univariate model with a
unique REE: the cobweb model of supply and demand in an isolated market.
This is in fact the model investigated by Muth (1961) in his classic formula-
tion of rational expectations. As noted in the previous chapter, its properties
under least squares learning were investigated by Bray and Savin (1986) and
Fourgeaud, Gourieroux, and Pradel (1986).

The structural model consists of demand and supply equations:

dt = mI −mppt + v1t ,

st = rI + rpp
e
t + r ′wwt−1 + v2t ,
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where mp , rp > 0 and v1t and v2t are unobserved white noise shocks. The for-
mulation here generalizes the version given in Chapter 1 by permitting supply
to depend on a vector of observable shocks wt−1. Bray and Savin (1986) make
the assumption that wt is an iid process. This is much stronger than necessary.
One can, for example, permit wt to follow a stationary exogenous VAR (vec-
tor autoregression), driven by a multivariate white noise shock with bounded
moments. For convenience we assume that Ewt = 0, and we denote the uncon-
ditional second moment matrix by Ewtw

′
t =�.

Assuming market clearing, st = dt , yields the reduced form

pt =µ+ αpet + δ′wt−1 + ηt , (2.1)

where µ = (mI − rI )/mp, δ = −m−1
p rw , and α = −rp/mp . Note that α < 0.

ηt = (v1t −v2t )/mp , so that we can write ηt ∼ iid(0, σ 2
η ). Under rational expec-

tations, pet = Et−1pt , where Et−1pt denotes the expectation of pt conditional
on information available at time t − 1. Operating with Et−1 on both sides of
equation (2.1) and solving for Et−1pt , we obtain

Et−1pt = (1− α)−1µ+ (1− α)−1δ′wt−1.

Since also pt −Et−1pt = ηt , it follows that there is a unique rational expecta-
tions equilibrium given by

pt = ā+ b̄′wt−1 + ηt ,

where
ā = (1− α)−1µ and b̄= (1− α)−1δ.

We remark that the reason why this model has a unique REE is that pt does not
depend on expected future prices.

2.3 Econometric Learning

Although the REE is unique, we can still ask whether it is learnable in the fol-
lowing sense. Suppose that firms believe that prices follow the process

pt = a + b′wt−1 + ηt , (2.2)

corresponding to the REE, but that a and b are unknown to them. There are dif-
ferent possible explanations for this. Firms may be unable to calculate the REE,
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although they know the form of the economic structure, because the structural
parameters are unknown. Alternatively, the form of the structure may be un-
known, but firms may reasonably assume that pt depends linearly on the vector
of exogenous observable shocks. In any event, we assume that equation (2.2)
is the perceived law of motion of the firms and that they attempt to estimate
a and b. This is our key bounded rationality assumption: we back away from
the rational expectations assumption, replacing it with the assumption that, in
forecasting prices, firms act like econometricians.2

Under this assumption we have the following model of the evolution of
the economy. Suppose that firms have data on the economy from periods i =
0, . . . , t − 1. Thus the time-(t − 1) information set is {pi,wi}t−1

i=0. We suppose
that firms estimate a and b by a least squares regression of pi on wi−1 and
an intercept. Their estimates will be updated over time as more information is
collected. Letting (at−1, bt−1) denote the estimates through time t − 1, their
forecasts at t − 1 are given by

pet = at−1 + b′t−1wt−1. (2.3)

The standard least squares formula gives the equations

(
at−1

bt−1

)
=

(
t−1∑
i=1

zi−1z
′
i−1

)−1 ( t−1∑
i=1

zi−1pi

)
, (2.4)

where
z′i =

(
1 w′i

)
.

We now have a fully specified dynamic system defined by the equations (2.1),
(2.3), and (2.4): at time t − 1, expectations are formed according to equations
(2.3) and (2.4). Given wt−1 and the random draw for ηt , the time-t price is de-
termined by equation (2.1). Then parameters can be updated. Adding (pt ,wt−1)

to the data set, revised estimates at and bt are computed. Given the random draw
for wt , forecasts pet+1 are made, which together with the new shock ηt+1 deter-
mine pt+1, and this process is continued over time. The question of interest is
whether at → ā and bt → b̄ as t→∞.

In the cobweb model the key parameter satisfies α < 0, but there are other
structural models with the same reduced form, so we can pose the problem more

2As indicated in Chapter 1, in making this assumption we are modifying our view of firms to
make them behave more like economists who believe the economy is in an REE and use data to
estimate the parameters of the REE law of motion.
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generally, allowing α to be unrestricted. This is illustrated by the following ex-
ample.

Example: Lucas Aggregate Supply Model. In Chapter 1 we presented the fol-
lowing model, due to Lucas (1973), consisting of aggregate supply function

qt = q̄ + π(pt − pet )+ ζt ,

where π > 0, and aggregate demand function

mt + vt = pt + qt ,

where vt is a velocity shock. We now assume that velocity depends in part on
exogenous observables wt−1 so that

vt =µ+ γ ′wt−1 + ξt ,

and that money supply follows the policy rule

mt = m̄+ ut + ρ′wt−1.

Here ut , ξt , and ζt are white noise shocks. The reduced form is

pt = (1+π)−1(m̄+µ− q̄)+ π(1+ π)−1pet + (1+ π)−1(ρ + γ )′wt−1

+ (1+ π)−1(ut + ξt − ζt ).

This equation is precisely of the form (2.1) with α = π(1 + π)−1 and ηt =
(1+ π)−1(ut + ξt − ζt ). Note that in this example, 0 < α < 1.

The answer to the question of whether, under least squares learning, the
system converges to the unique REE is given by the following result.

Theorem 2.1. Consider the dynamic system (2.1), (2.3), and (2.4). If α < 1,

then
(
at
bt

)
→

(
ā

b̄

)
with probability 1. If α > 1, then convergence occurs with

probability 0.

Thus the REE is stable under least squares learning for both of our examples. An
example of an unstable REE would be the cobweb model in which the demand
curve is upward sloping and steeper than the supply curve, i.e., mp < 0 with
|mp |< rp .
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Theorem 2.1 is an extremely strong global result, both in the positive case
and in the negative case. The positive result was proved in Bray and Savin (1986)
using direct arguments based on martingale convergence theorems. The negative
result, which should be interpreted as stating that when α > 1, (at , b′t ) converges
with probability 0 to any point (a, b′), can be shown using the techniques for
stochastic recursive algorithms, in particular results from Ljung (1977), as was
demonstrated by Marcet and Sargent (1989c). Because in the coming chapters
we will develop general techniques suitable for application to a wide range of
economic applications, we will not present the proof of Bray and Savin, but
instead provide a heuristic development of the techniques we will use throughout
the book.

2.4 Expectational Stability

The condition α < 1 can be interpreted in terms of a general stability principle,
known as “expectational stability” or “E-stability.” Since, as we will see, this
principle works quite generally to provide the condition for the stability of an
REE under adaptive learning, we introduce the concept now.

The basic required concept is the map from the perceived law of motion
(PLM) to the actual law of motion (ALM). The E-stability principle stated in
its most comprehensive form is that the mapping from the PLM to the ALM
governs the stability of equilibria under learning. More specifically, E-stability
conditions obtained from this mapping provide the conditions for asymptotic
stability of an REE under least squares learning. We focus here on obtaining
this condition for the cobweb model.

We begin with the assumption that agents have a PLM which they use to
make forecasts of the variables of interest. Usually we take the form of the PLM
to correspond to the REE of interest. Thus in the current case we take the PLM to
be of the form (2.2), pt = a+b′wt−1+ηt . For a = ā and b= b̄, the PLM would
be the REE, but we allow for the possibility that agents have “nonrational” ex-
pectations. For any given values of a and b, the appropriate time-(t−1) forecast
of pt is given by

pet = a + b′wt−1. (2.5)

Inserting equation (2.5) into equation (2.1), one can solve for the actual law of
motion, or ALM, implied by the PLM:

pt = (µ+ αa)+ (δ+ αb)′wt−1 + ηt . (2.6)
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This implicitly defines the mapping from the PLM to the ALM

T

(
a

b

)
=
(
µ+ αa

δ + αb

)
. (2.7)

The interpretation of the ALM is that it describes the stochastic process followed
by the economy if forecasts are made under the fixed rule given by the PLM.

We can now define E-stability in the form appropriate for determining the
stability of the REE under least squares learning. Note first that the unique REE
for our model is the unique fixed point of the T -map (2.7). Consider the differ-
ential equation

d

dτ

(
a

b

)
= T

(
a

b

)
−
(
a

b

)
, (2.8)

where τ denotes “notional” or “artificial” time. We say that the REE is expec-
tationally stable, or E-stable, if the REE is locally asymptotically stable under
equation (2.8). Intuitively, E-stability determines the stability of the REE under a
stylized learning rule in which the PLM parameters a and b are adjusted slowly
in the direction of the implied ALM parameters. The REE (ā, b̄′)′ is E-stable if
small displacements from (ā, b̄′)′ are returned to (ā, b̄′)′ under this rule.

Expectational stability in this form was introduced in Evans (1989) and
Evans and Honkapohja (1992). The closely related notion of iterative expecta-
tional stability, which appeared earlier in the literature, will be discussed below.

To determine E-stability in our example, combine equations (2.7) and (2.8)
and write the differential equation component by component to obtain

da

dτ
= µ+ (α− 1)a,

dbi

dτ
= δi + (α− 1)bi, for i = 1, . . . , n,

where n is the dimension of w. It follows that the REE is E-stable if and only if
α < 1. Note that this is precisely the condition obtained by Bray and Savin for
convergence of least squares learning.

The connection between E-stability and the convergence of least squares
learning turns out to be quite general, applying in a very wide range of models.
This is a great advantage since E-stability conditions are often easy to work
out, while the technical analysis of the convergence of econometric learning is
substantially more involved.
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2.5 Rational vs. Reasonable Learning

Before discussing the analysis of econometric learning, i.e., the justification of
Bray and Savin’s result, we briefly note the sense in which we are assuming
bounded rationality. Recall that agents assume that data is being generated by
the process pt = a+b′wt−1+ηt , but that they do not know the parameters a and
b. At time t they have estimates (at , bt ) which they use to make their forecasts,
so that pet is given by equation (2.3). It follows that under least squares learning,
the true process followed by pt is given by

pt = µ+ α(at−1 + b′t−1wt−1)+ δ′wt−1 + ηt ,

or
pt = (µ+ αat−1)+ (δ+ αbt−1)

′wt−1 + ηt ,

so that the “intercept” and the coefficient on wt−1 are not constant but are evolv-
ing over time. Agents are thus estimating an econometrically misspecified model
and this is the sense in which they are not fully rational.

However, note that least squares learning may be (in Bray’s words) “rea-
sonable” even if it is not fully rational. The first and most important point is
that if α < 1, then (at , b′t )′ → (ā, b̄′)′ as t→∞. Thus, asymptotically the mis-
specification is vanishingly small as the coefficients of the process cease to vary
over time. Second, the misspecification may not even be statistically detectable
during the transition. This will depend on the details: the initial deviation from
(ā, b̄′)′, the value of Var(ηt ), and the size of α. Bray and Savin (1986) investi-
gate this issue and show that in many cases the temporary misspecification dur-
ing the transition to REE would not be detectable by standard good econometric
practice.

2.6 Recursive Least Squares

We now return to the problem of showing convergence under least squares learn-
ing. In the remainder of this chapter we will outline the techniques which we will
be using throughout this book to establish whether convergence to an REE takes
place. The crucial first step is to reformulate the dynamic system as a stochastic
recursive algorithm.

We begin by noting that the standard least squares regression formula has
a recursive formulation. In fitting the equation yi = c′xi + ei using data i =
1, . . . , T on the k × 1 independent vector xi and the dependent variable yi, the
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value of the k× 1 coefficient vector c which minimizes
∑T

i=1 e
2
i is given by the

least squares formula3

c=
( T∑
i=1

xix
′
i

)−1( T∑
i=1

xiyi

)
.

c can instead be computed using the recursive least squares (RLS) formulas

ct = ct−1 + t−1R−1
t xt (yt − x ′t ct−1),

Rt = Rt−1 + t−1(xtx
′
t −Rt−1).

(2.9)

ct and Rt denote the coefficient vector and the moment matrix for xt using data
i = 1, . . . , t . To generate the least squares values, the initial value for the recur-
sion must be set appropriately.4 With these initial values, equation (2.9) gener-
ates the usual least squares formula for ct , the least squares coefficient vector
using data i = 1, . . . , t , and c above is given by c= cT . This can be verified by
induction.5 Note that (yt − x ′t ct−1) is the most recent forecast error at t .

We now apply the RLS formulas to our learning problem. Our agents are
running a least squares regression of pi on zi−1, where z′i = ( 1 w′i ). For con-
venience, write

φt =
(
at

bt

)
for the vector of coefficients including the intercept. Applying the RLS formulas,
we obtain

φt = φt−1 + t−1R−1
t zt−1

(
pt − φ′t−1zt−1

)
,

Rt = Rt−1 + t−1(zt−1z
′
t−1 −Rt−1

)
.

Since pt is given by equations (2.1) and (2.3), we have

pt = (µ+ αat−1)+ (δ+ αbt−1)
′wt−1 + ηt

3Letting y denote the T × 1 column vector with ith component yi and X denote the T × k

matrix given by X = (x1, . . . , xT )
′, the formula can be equivalently written in the better known

form c= (X′X)−1X′y.
4Assuming Xk = (x1, . . . , xk)

′ is of full rank and letting yk denote yk = (y1, . . . , yk)
′, the

initial value ck is given by ck = (X′
k
Xk)

−1X′
k
yk = X−1

k
yk and the initial value Rk is given by

Rk = k−1X′kXk = k−1 ∑k
i=1 xix

′
i .

5Using the formulas Rt = t−1 ∑t
i=1 xix

′
i and ct = t−1R−1

t

∑t
i=1 xiyi , the recursions (2.9)

can be seen to lead to the least squares formula.
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or

pt = T (φt−1)
′zt−1 + ηt , (2.10)

where T (φ)≡ T
(
a

b

)
is given by equation (2.7). Note that pt is determined by the

ALM generated by the perceptions φ′t−1 = (at−1, b
′
t−1). Combining equations,

we arrive at the stochastic recursive system

φt = φt−1 + t−1R−1
t zt−1

(
z′t−1(T (φt−1)− φt−1)+ ηt

)
, (2.11)

Rt = Rt−1 + t−1(zt−1z
′
t−1 −Rt−1

)
. (2.12)

We want to know whether equations (2.11)–(2.12) converge as t→∞. Let φ̄′ ≡
(ā, b̄′). Our claim, following Bray and Savin, is that if α < 1, then φt → φ̄ with
probability 1. Since T (φ̄)= φ̄, it also follows from equation (2.10) that the price
process converges to the REE.

To show convergence formally requires results from the stochastic approx-
imation literature.

2.7 Convergence of Stochastic
Recursive Algorithms

There is a substantial literature in statistics and engineering which concerns it-
self precisely with the convergence of stochastic recursive algorithms such as
equations (2.11)–(2.12). (This method is also called stochastic approximation.)
Marcet and Sargent (1989c) showed how this technique, in particular the results
of Ljung (1977), could be applied in economics to the analysis of adaptive learn-
ing. In Chapter 6 we will provide the technical details for this tool, and in this
section we provide the central technique.

We consider a stochastic recursive algorithm (SRA) of the form

θt = θt−1+ γtQ(t, θt−1,Xt ), (2.13)

where θt is a vector of parameter estimates, Xt is the state vector, and γt is a
deterministic sequence of “gains.” The function Q expresses the way in which
the estimate θt−1 is revised in line with the last period’s observations. In our
example, θt−1 will include all components of φt−1 and Rt , Xt will include the
effects of zt−1 and ηt , and γt = t−1. In the following section we give the de-
tails of how equations (2.11)–(2.12) can be put into the form (2.13). Although,
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in our example, Xt follows an exogenous process, this is not at all essential.
In particular, in the general framework, Xt can be permitted to follow a VAR
(vector autoregression) with parameters that may depend on θt−1. This issue is
discussed fully in Chapters 6 and 7.

The stochastic approximation approach associates an ordinary differential
equation (ODE) with the SRA,

dθ

dτ
= h(θ(τ)),

where h(θ) is obtained as

h(θ)= lim
t→∞EQ(t, θ,Xt ), (2.14)

provided this limit exists. E denotes the expectation of Q(t, θ,Xt), for θ fixed,
taken over the invariant distribution of the stochastic process Xt. If Xt is not
exogenous, but depends on θt−1, then one needs to use the more general formu-
lation

h(θ)= lim
t→∞EQ

(
t, θ, X̄t (θ)

)
,

where X̄t (θ) is the stochastic process for Xt obtained by holding θt−1 at the
fixed value θt−1 = θ .

The stochastic approximation results show that the behavior of the SRA is
well approximated by the behavior of the ODE for large t . In particular, possible
limit points of the SRA correspond to locally stable equilibria of the ODE.

Before elaborating on this statement, it will be helpful to recall some basic
stability results for ODEs.6 θ̄ is an equilibrium point of dθ/dτ = h(θ) if h(θ̄)=
0. θ̄ is said to be locally stable if for every ε > 0, there exists δ > 0 such that∣∣θ(τ )− θ̄

∣∣< ε for all
∣∣θ(0)− θ̄

∣∣< δ. θ̄ is said to be locally asymptotically stable
if θ̄ is locally stable and in addition θ(τ )→ θ̄ for all θ(0) in some neighborhood
of θ̄ . We say that θ̄ is locally unstable if it is not locally stable.

It can be shown that the condition for local stability of θ̄ is based on the
derivative matrix (or “Jacobian”) Dh(θ̄ ):

(i) If all eigenvalues ofDh(θ̄ ) have negative real parts, then θ̄ is a locally stable
equilibrium point of dθ/dτ = h(θ).

6Chapter 5 provides a review of stability results for ODEs.
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(ii) If some eigenvalue of Dh(θ̄ ) has a positive real part, then θ̄ is not a locally
stable equilibrium point of dθ/dτ = h(θ).

We remark that in the cases not covered (where there are roots with zero real
parts, but no root with a positive real part), more refined techniques are required
to determine stability.

The stochastic approximation results can be stated as follows:

Under suitable assumptions, if θ̄ is a locally stable equilibrium point of the
ODE, then θ̄ is a possible point of convergence of the SRA. If θ̄ is not a
locally stable equilibrium point of the ODE, then θ̄ is not a possible point of
convergence of the SRA, i.e., θt → θ̄ with probability 0.

Although the above statements appear fairly straightforward, the precise theo-
rems are complex in detail. There are two reasons for this. First, there are vari-
ous ways to formalize the positive convergence result (when θ̄ is a locally stable
equilibrium point of the ODE). In certain cases, when there is a unique solution
and the ODE is globally stable, it can be shown that under the SRA, θt → θ̄ with
probability 1 from any starting point. When there are multiple equilibria, how-
ever, such a strong result will not be possible, and indeed there may be multiple
stable equilibria. In this case, if one artificially constrains θt to an appropri-
ate neighborhood of a locally stable equilibrium θ̄ (using a so-called “projec-
tion facility”), one can still obtain convergence with probability 1. Alternatively,
without this device, one can, for example, show convergence with positive prob-
ability from appropriate starting points. The different ways of expressing local
stability of θ̄ under the SRA are fully discussed in Chapter 6.

Second, a careful statement is required of the technical assumptions under
which the convergence conditions obtain. There are three broad classes of as-
sumptions:

(i) regularity assumptions on Q,
(ii) conditions on the rate at which γt → 0,

(iii) assumptions on the properties of the stochastic process followed by the
state variable Xt .

For condition (ii) on the gain sequence, a standard assumption is that
∑
γt =∞

and
∑
γ 2
t <∞. This is satisfied in particular by γt = t−1.

The precise statement of the conditions (i)–(iii) depends on the precise ver-
sion of the stability or instability result, and in some cases, there are alterna-
tive sets of assumptions. Again, we will discuss these issues fully in Chapters 6
and 7. Finally, we remark that the formal instability result does not cover the
case in which Dh(θ̄ ) has roots with zero real parts but no postive roots.



Introduction to the Techniques 37

2.8 Application to the Cobweb Model

In this section we show how to apply the results of the previous section to the
recursive formulation (2.11)–(2.12) of the cobweb model with learning to obtain
the stability and instability results stated in Section 2.3. We begin by showing
how equations (2.11)–(2.12) can be rewritten in the standard form (2.13) for the
SRA. Then we explicitly compute the associated ODE using equation (2.14) and
determine its stability conditions.

To show that the system can be put in standard form, we would like to define
θt to include all the components of φt and Rt . However, there is a complication
which arises in equation (2.11): on the right-hand side of the equation, the vari-
able Rt rather than Rt−1 is present, while the standard form allows only the
lagged value θt−1. To deal with this we define St−1 = Rt . The system (2.11)–
(2.12) can then be rewritten

φt = φt−1 + t−1S−1
t−1zt−1

(
z′t−1(T (φt−1)− φt−1)+ ηt

)
, (2.15)

St = St−1 + t−1
(

t

t + 1

)(
zt z

′
t − St−1

)
. (2.16)

Note that the second equation has been advanced by one period to accommo-
date the redating of Rt . This system is now implicitly in standard form with the
following definitions of variables:

θt = vec
(
φt St

)
,

Xt =


1
wt

wt−1

ηt

 ,

γt = t−1.

Recall that z′t = ( 1 w′t ). Thus all the components of zt and zt−1 have been
included in Xt . Here vec denotes the matrix operator which stacks in order the
columns of the matrix ( φt St ) into a column vector. The functionQ(t, θt−1,Xt )

is now fully specified in equations (2.15)–(2.16). The first components of Q,
giving the revisions to φt−1, are given by

Qφ(t, θt−1,Xt )= S−1
t−1zt−1

(
z′t−1(T (φt−1)− φt−1)+ ηt

)
,
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and the remaining components are given by

QS(t, θt−1,Xt )= vec
((

t

t + 1

)
(zt z

′
t − St−1)

)
.

Having shown that the system can be placed in standard SRA form, the next
step is to compute the associated ODE. To do this we fix the value of θ in
Q(t, θt−1,Xt ) and compute the expectation overXt. Fixing the value of θ means
fixing the values of φ and S, so that we have

hφ(φ,S) = lim
t→∞ES−1zt−1

(
z′t−1(T (φ)− φ)+ ηt

)
,

hS(φ,S) = lim
t→∞

t

t + 1
E
(
ztz

′
t − S

)
.

h(θ)= vec(hφ(φ,S),hS(φ,S)), but it is easier to continue to work directly with
the separate vector and matrix functions hφ(φ,S) and hS(φ,S). Since

Eztz
′
t =Ezt−1z

′
t−1 =

(
1 0
0 �

)
≡M,

Ezt−1ηt = 0, and limt→∞ t/(t + 1)= 1, we obtain

hφ(φ,S) = S−1M(T (φ)− φ),

hS(φ,S) = M − S.

We have therefore arrived at the associated ODE

dφ

dτ
= S−1M(T (φ)− φ), (2.17)

dS

dτ
= M − S. (2.18)

This system is recursive and the second set of equations is a globally stable
system with S→M from any starting point. It follows that S−1M → I from
any starting point, provided S is invertible along the path, and hence that the
stability of the differential equations (2.17)–(2.18) is determined entirely by the
stability of the smaller dimension system

dφ

dτ
= T (φ)− φ. (2.19)

There are technical details required to establish this equivalence, since one must
show that the possibility of a noninvertible S can be sidestepped. The technical
arguments on this point are given in Chapter 6.
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Recalling that φ′ = ( a b′ ), note that equation (2.19) is identical to the dif-
ferential equation (2.8) which defines E-stability. We have already seen that
φ̄′ ≡ (ā, b̄′) is stable under equation (2.8) provided α < 1. Indeed, using the
definition of T (φ) in equation (2.7), we can write

T (φ)− φ =
(
µ

δ

)
+ (α− 1)Iφ,

where I is the identity matrix. Equation (2.19) is thus a linear differential equa-
tion with coefficient matrix (α − 1)I, all of whose eigenvalues are equal to
α − 1. φ̄ is thus a globally stable equilibrium point of equation (2.19) if α < 1,
but is unstable if α > 1. Applying the stochastic approximation results, it fol-
lows that under the SRA (2.15)–(2.16), (φt , St )→ (φ̄,M) with probability 1,
from any starting point, if α < 1. In particular, φt → φ̄ if α < 1. If α > 1,
(φt , St )→ (φ̄,M) with probability 0. Since St →M with probability 17 even if
α > 1, it follows that φt → φ̄ with probability 0 if α > 1. Since the dynamic sys-
tem of least squares learning (2.1), (2.3), and (2.4) can be expressed as the SRA
(2.15)–(2.16), we at last obtain the results stated in the theorem of Section 2.3.

To illustrate results for the cobweb model, we exhibit a simulation with re-
duced form parameters µ= 5, δ = 1, and α = −0.5 (recall that in the cobweb
model α < 0). The observable wt is a one-dimensional normal white noise pro-
cess with standard deviation 1, and the unobservable white noise process ηt has
standard deviation 0.5. We simulate equations (2.10), (2.11), and (2.12) with ini-
tial values a0 = 1, b0 = 2, and R0 equal to the 2× 2 identity matrix. Figure 2.1
shows the trajectories for at , bt , and pt . Clearly, convergence to the REE values
ā = 10/3 and b̄= 2/3 occurs quite rapidly.

2.9 The E-Stability Principle

In the remainder of the book we elaborate on the techniques described in this
chapter and show how they can be extended to most standard theoretical and
applied macroeconomic models. These models can have different types of equi-
libria such as ARMA or VAR processes, (noisy) k-cycles, or sunspots. It turns
out that E-stability will play a central role in determining the stability of the REE
under adaptive learning for the different models studied in this book.

7This is the strong law of large numbers applied to the process zt z′t , and holds, in particular, if
wt is an exogenous stationary VAR. Alternatively, it follows from applying the stochastic approxi-
mation techniques to the subsystem (2.16).
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Figure 2.1.

A general definition of E-stability is a straightforward extension of the ex-
ample in this chapter. Starting with an economic model, we consider its REE
solutions. Assume that any particular solution can be described as a stochastic
process with particular parameter values φ̄. Here φ might be, for example, the
parameters of an ARMA process or of a VAR or the mean values at the differ-
ent points in a k-cycle. Under adaptive learning the agents are assumed not to
know φ̄, but try to estimate it using data from the economy. This leads to statisti-
cal estimates φt at time t , and the issue will be whether φt → φ̄ as t→∞. We
will in each case set up the problem as an SRA in order to examine the stability
of the solution φ̄. We will continue to find that stability of φ̄ under learning can
be determined by the E-stability equation, i.e., by the stability of

dφ

dτ
= T (φ)− φ, (2.20)

in a neighborhood of φ̄, where T (φ) is the mapping from the perceived law
of motion φ to the implied actual law of motion T (φ). [Note that REEs corre-
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spond to fixed points of T (φ).] Formally, φ̄ is said to be E-stable if it is locally
asymptotically stable under the differential equation (2.20).

The correspondence between E-stability of an REE and its stability under
adaptive learning we call the E-stability principle. In this book we primarily
consider least squares and related statistical learning rules. Here there is strong
support for the principle, and it also seems to hold for some non-statistical learn-
ing schemes. We regard the validity of the E-stability principle as an operating
hypothesis.

It will become clear from the analysis of this book that the validity of the
E-stability principle requires restricting attention to the standard case of gain de-
creasing to zero (in some cases a sufficiently small constant gain can be accom-
modated). Another assumption that is needed is that the information variables,
on which the estimators are based, remain bounded. The general validity of the
principle, i.e., general conditions under which the principle holds, remains to be
determined.

An issue which will become increasingly important in our development is
the precise specification of the learning rule followed by the agents. If we assume
that our agents are behaving like econometricians, they will have to face some
of the practical difficulties of econometricians, most importantly the issue of
specifying the appropriate forecasting model. In our discussion of the cobweb
model above, we implicitly assumed that the agents knew the correct asymptotic
specification, i.e., they knew the appropriate vector of explanatory variables for
forecasting next period’s price. We will continue to focus on this case in our
analysis of more general economic models. However, it is reasonable to ask
how misspecification would alter the results. Suppose agents overparameterize
the solution, e.g., suppose the REE being examined follows an ARMA process
and the agents fit a process with a higher AR or MA degree. Or suppose the
REE being examined is a k-cycle and agents overfit with an nk-cycle. Will such
overfitting alter the stability conditions? It turns out that this is an important
issue to be examined particularly when there are multiple REEs. We can also
consider the effect of agents underparameterizing an REEs solution. Here the
agents cannot converge to the solution, but we can still ask if they converge and,
if so, to what process?

The issue of overparameterization has a simple reflection in terms of E-
stability. If agents overparameterize an REE solution, the solution can be rep-
resented as a higher-dimensional vector φ̃′ = (φ1, φ2) with component values
(φ̄,0) at the REE in question. We can now look at the stability of

dφ̃

dτ
= T̃ (φ̃)− φ̃, (2.21)
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where T̃ is the mapping from the perceived to the actual law of motion for this
expanded set of parameters. Indeed, it is useful to introduce some terminology
to represent this distinction. If the REE φ̄ is locally stable under equation (2.20)
but (φ̄,0) is not locally stable under equation (2.21), then we say that it is weakly
E-stable, while if (φ̄,0) is also stable under equation (2.21), then we say that the
REE is strongly E-stable. As we will see, weak and strong E-stability govern
whether the corresponding adaptive learning rules are stable. By expanding the
dimension of φ appropriately, one can also allow for heterogeneous expecta-
tions across agents and determine whether allowing for heterogeneity alters the
stability conditions for convergence of adaptive learning. In an analogous way,
the concept of E-stability can also be adapted to determine conditions for the
convergence of underparameterized learning rules by reducing the dimension
of φ.

One could also consider structural heterogeneity, i.e., models in which in-
dividual agents respond differently to expectations. An open question is how
E-stability can be adapted to such environments. Throughout the book we im-
plicitly make the assumption of structural homogeneity, so that models such
as equation (2.1) arise from a world in which the characteristics of individual
agents are identical.

There is one more important conceptual issue that arises in connection with
E-stability. In some papers, e.g., DeCanio (1979), Bray (1982), Evans (1983),
and Evans (1985), iterations of the T -map are considered and the stability of an
REE under these iterations is determined.8 Formally, this version of E-stability
replaces the differential equation (2.20) with the difference equation

φN+1 = T (φN), for N = 0,1,2, . . . . (2.22)

In order to have a clear terminology, we will refer to the notion of stability
determined by equation (2.22) as iterative E-stability, reserving the unmodified
phrase “E-stability” for stability under the differential equation. Thus an REE
φ̄ is iteratively E-stable if for all φ0 in a neighborhood of φ̄, we have φN → φ̄

under equation (2.22).
Formally, there is a simple connection between E-stability and iterative E-

stability. The condition for φ̄ to be iteratively E-stable is that all eigenvalues of
DT (φ̄) lie inside the unit circle. In contrast, the E-stability condition, based on

8Iterations of the T -map were also considered in Lucas (1978). The term “expectational stabil-
ity,” and the distinction between weak and strong (iterative) E-stability, were introduced in Evans
(1983) and Evans (1985).
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equation (2.20), is that all roots of DT (φ̄)− I have negative real parts; equiva-
lently, the real parts of all eigenvalues of DT (φ̄) must be less than 1. It follows
immediately that iterative E-stability is a stricter condition than E-stability. For
example, in the model (2.1) the E-stability condition, as we have shown, is that
α < 1, while the iterative E-stability condition is |α|< 1.

We have seen that E-stability provides the condition for stability under
adaptive learning rules such as least squares. What, therefore, do we learn from
iterative E-stability? One rationale given in the papers cited was that it gave the
condition for stability if agents kept fixed their perceived law of motion until a
large amount of data was collected, revising their estimates infrequently rather
than at each point in time. An alternative “eductive” rationale, also suggested in
these papers, was that it described a process of learning taking place in “men-
tal time,” as each agent considered the possible forecasts of other agents, it-
eratively eliminating those that correspond to dominated strategies. Using the
game-theoretic notions of rationalizability and common knowledge, this ap-
proach was developed in Guesnerie (1992). It is discussed in Section 15.4 of
Chapter 15. It has also been recently shown that iterative E-stability plays an
important role for learning dynamics based on finite-memory rules in stochastic
frameworks (see Honkapohja and Mitra, 1999).

Since this book focuses on adaptive learning, the appropriate stability con-
ditions required are in almost all cases the E-stability conditions provided by the
differential equation formulation.

2.10 Discussion of the Literature

In addition to the cobweb model, which we discussed throughout this chapter,
the overlapping generations model and various linear models were the most fre-
quently used frameworks in the early literature on learning.

Lucas (1986) is an early analysis of the stability of steady states under learn-
ing in an OG model. Grandmont (1985) considered the existence of determinis-
tic cycles for the basic OG model. He also examined learning using the general-
izations of adaptive expectations to nonlinear finite-memory forecast functions.
Guesnerie and Woodford (1991) proposed a generalization to adaptive expec-
tations by allowing possible convergence to deterministic cycles. Convergence
of learning to sunspot equilibria in the basic OG model was first discovered by
Woodford (1990).

Linear models more general than the cobweb model were considered under
learning in the early literature. As already noted, Marcet and Sargent (1989c)
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proposed a general stochastic framework and the use of stochastic approxima-
tion techniques for the analysis of adaptive learning. Their paper includes several
applications to well-known models. Margaritis (1987) applied Ljung’s method
to the model of Bray (1982). Grandmont and Laroque (1991) examined learning
in a deterministic linear model with a lagged endogenous variable for classes of
finite-memory rules. Evans and Honkapohja (1994b) considered extensions of
adaptive learning to stochastic linear models with multiple equilibria.

The more recent literature on adaptive learning will be referenced in the
appropriate parts of this book. See also the surveys Evans and Honkapohja
(1995a, 1999). The comments below provide references to approaches and liter-
ature that will not be covered in detail in later sections.

For Bayesian learning the first papers include Turnovsky (1969), Townsend
(1978), Townsend (1983), and McLennan (1984). Bray and Kreps (1987) dis-
cussed rational learning and compared it to adaptive approaches. Nyarko (1991)
showed in a monopoly model that Bayesian learning may fail to converge if the
true parameters are outside the set of possible prior beliefs. Papers studying the
implications of Bayesian learning include Feldman (1987b), Feldman (1987a),
Vives (1993), Jun and Vives (1996), Bertocchi and Yong (1996), and Nyarko
(1997). The collection Kurz (1997) contains central papers on a related notion
of rational beliefs.

The study of finite-memory learning rules in nonstochastic models was ini-
tiated in Fuchs (1977), Fuchs (1979), Fuchs and Laroque (1976), and Tillmann
(1983), and it was extended in Grandmont (1985) and Grandmont and Laroque
(1986). These models can be viewed as a generalization of adaptive expecta-
tions. We remark that the finite-memory learning rules cannot converge to an
REE in stochastic models, as noted by Evans and Honkapohja (1995c) and stud-
ied further by Honkapohja and Mitra (1999). Further references of expectations
formation and learning in nonstochastic models are given in Section 7.2 of Chap-
ter 7.

Learning in games has been subject to extensive work in recent years. Sur-
veys are given in Marimon (1997) and Fudenberg and Levine (1998). Carton
(1999) applied these techniques to the cobweb model. Kirman (1995) reviewed
the closely related literature on learning in oligopoly models. Another related
recent topic is social learning, see, e.g., Ellison and Fudenberg (1995) and Gale
(1996).



Chapter 3
Variations on a Theme

3.1 Introduction

In this chapter we discuss some extensions and variations of econometric learn-
ing. Several issues arise naturally. So far we have assumed representative agent
learning, although diversity of expectations should surely be treated. One can
also consider alternative adaptive learning schemes and the possibility that the
agents do not know the true model. In this chapter we show how such issues
can be readily addressed in the context of the basic cobweb and asset pricing
models.

We also take up learning in nonstochastic frameworks and obtain the key
conditions for local stability under adaptive learning of perfect-foresight steady
states. Since some standard textbook models are often presented in a nonstochas-
tic setting, we will occasionally draw on these results in later chapters. In this
chapter we show how the technique can be applied directly to assess local sta-
bility of equilibria in simple nonstochastic coordination games.

3.2 Heterogeneous Expectations

For expository purposes we simplify the cobweb model of the previous chapter.
Dropping the intercept and assuming a scalar stationary shock wt−1, the model

45
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becomes1

pt = αpet + δwt−1 + ηt . (3.1)

Recall that the RE solution is given by

pt = b̄wt−1 + ηt , where b̄= (1− α)−1δ.

We allow for i = 1, . . . ,N different groups of agents who may have different
expectations pei,t , but assume that the average expectations

pet =N−1
N∑
i=1

pei,t

influence the market price in equation (3.1). Each group of agents forecasts ac-
cording to the linear rule

pei,t = bi,t−1wt−1.

Thus the agents are forecasting in the same way, but they are allowed to have
different parameter estimates.

We continue to assume that agents learn from the data on past prices and the
exogenous variables and use a variation of least squares learning to update their
estimates. In fact, we allow for a slight generalization of recursive least squares
as follows:

bi,t = bi,t−1 + γtR
−1
i,t wt−1(pt − bi,t−1wt−1),

Ri,t = Ri,t−1 + γt
(
w2
t−1 −Ri,t−1

)
.

(3.2)

In the previous chapter the least squares formula set γt = t−1. We have now
introduced a more general gain parameter γt , as discussed in Section 2.7 of that
chapter.

Combining the earlier equations for the individual expectations with equa-
tion (3.1) leads to

pt =N−1α

( N∑
i=1

bi,t−1

)
wt−1 + δwt−1 + ηt .

1The argument can be readily generalized to allow for an intercept and a vector stationary shock
wt . In fact, one can also allow for pt to be a vector. Details are provided in Evans and Honkapohja
(1997).
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This equation and the updating rule (3.2) define a standard stochastic recursive
algorithm as introduced in Section 2.7. As pointed out there, the analysis of
convergence in these algorithms is carried out by deriving the associated ODE.
Following the same steps as in Section 2.8 of Chapter 2, we obtain

dbi

dτ
= R−1

i M

[
δ+N−1α

∑N
i=1 bi − bi

]
, i = 1, . . . ,N,

dRi

dτ
= M −Ri, i = 1, . . . ,N,

where M =E(w2
t ).

Since Ri →M globally for i = 1, . . . ,N , stability of this differential equa-
tion system is governed by stability of

dbi

dτ
= δ+N−1α

N∑
i=1

bi − bi, i = 1, . . . ,N.

This system can be written in the matrix form

db

dτ
=
 δ
...

δ

+
N−1α

 1 . . . 1
...
. . .

...

1 . . . 1

− IN

b.

The coefficient matrix of this linear system has one eigenvalue of α − 1 and
N − 1 eigenvalues of −1 and is therefore globally asymptotically stable with
each bi converging to b̄, provided α < 1.

Appealing to the results on convergence of stochastic recursive algorithms
as in the previous chapter, we have the striking result that the convergence con-
dition under heterogeneous expectations is the same as that for the case of a
representative agent. That is, provided α < 1, all agents learn asymptotically the
rational expectations equilibrium.

We remark that the preceding argument implicitly makes the “representative
agent” assumption of structural homogeneity. Thus equation (3.1) is assumed
to arise from an economy in which the cost functions of individual suppliers
are identical. In principle structural heterogeneity could be tackled by the same
techniques.
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3.3 Learning with Constant Gain

So far we have considered cases where there is asymptotic convergence to the ra-
tional expectations equilibrium. In models with stochastic shocks, this can only
happen if the learning algorithm is of the “decreasing-gain” type, i.e., γt → 0.
We now briefly analyze the case of a constant gain, i.e., γt = γ , a small positive
constant.

For our example we pick the model

pt = α+ βE∗t pt+1 + vt ,

where vt is iid with mean zero and E∗t pt+1 denotes the (rational or nonrational)
expectation of the next period price. We here use E∗t pt+1 in place of pet+1 to
emphasize that the expectations are formed at time t . This model was introduced
in Chapter 1 as the “Cagan Model” and it was noted there that it could also be
interpreted as the standard asset pricing model with risk neutrality.2 For both
cases we have 0< β < 1.

We focus on learning of the market fundamental rational expectations solu-
tion. This is a stochastic steady state pt = ā + vt , where ā = (1− β)−1α. We
first begin with the standard decreasing-gain learning rule which does converge
to the REE. We assume that forecasts take the form E∗t pt+1 = at , where at is
the estimated mean which is updated according to

at = at−1 + t−1(pt−1 − at−1).

Since pt−1 = α+ βat−1+ vt−1, we have

at = at−1 + t−1(α+ (β − 1)at−1+ vt−1).

The associated ODE takes the form

da

dτ
= α+ (β − 1)a.

Applying the stochastic approximation results, it follows that at → ā provided
β < 1. (Using the global convergence results of Chapter 6, it can in fact be shown
that convergence occurs with probability 1.) The condition β < 1 can easily be
seen to be the E-stability condition, so that we obtain the expected result that
when this condition is satisfied there is convergence to the REE.

2For further discussion of this model see Section 8.6 of Chapter 8.
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Now we consider the implications of replacing t−1 by a constant parame-
ter γ . The forecasts still take the form E∗t pt+1 = at , but now at is updated using
the constant-gain learning rule

at = at−1 + γ (pt−1 − at−1), where 0< γ ≤ 1. (3.3)

We remark that this learning rule is equivalent to the traditional adaptive expec-
tations formula. Note also that it can be expressed as an exponentially weighted
average of lagged prices since at = γ

∑∞
i=0(1− γ )ipt−1−i .

Since pt = α+ βat + vt , we have

at = αγ + (
1− γ (1− β)

)
at−1 + γ vt−1. (3.4)

This is an AR(1) process which is stationary if |1− γ (1− β)| < 1 or equiva-
lently, 2 > γ (1− β) > 0. A necessary condition for stationarity is that β < 1,
which is also the weak E-stability condition for this model. In the limit γ → 0,
the E-stability condition β < 1 is also sufficient for stationarity.

The price process takes the form

pt =
(
1− γ (1− β)

)
pt−1 + αγ + vt − (1− γ )vt−1.

This is an ARMA(1,1) process. Assuming |1−γ (1−β)|< 1 so that both at and
pt are (asymptotically) stationary, it is easily verified that the (asymptotic) mean
of both pt and at are equal to the RE value ā = (1− β)−1α. Thus the forecast
at is asymptotically unbiased. It is also possible to compute the (asymptotic)
variance of pt .3 This is given by

var(pt )=
(

1+ (1− γ )(1− 2β)

1+ (1− γ )(1− 2β)− γβ2

)
var(vt ).

For γ > 0 the variance is higher than the RE value of var(vt ), though it ap-
proaches this as γ → 0. This illustrates the phenomenon of excess volatility
induced by the fixed-gain learning rule.

3For a stationary ARMA(1,1) process

yt = φyt−1 + εt + θεt−1,

where |φ|< 1 and εt is white noise with variance σ2, it can be shown that

var(yt )= (1+ θ2 + 2φθ)

1− φ2
σ2.

See, for example, Harvey (1981).
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Although, as just demonstrated, fixed-gain learning rules do not generally
converge to rational expectations, they can do so if the model is nonstochastic.
Thus suppose that vt ≡ 0, so that

pt = α+ βE∗t pt+1.

With forecasts E∗t pt+1 = at and learning rule (3.3), we have convergence to the
perfect-foresight steady state pt = α/(1− β) if and only if |1− γ (1− β)|< 1,
i.e.,

1− 2/γ < β < 1.

Note that if |β|< 1, this holds for all 0 < γ ≤ 1, whereas for β <−1 we need
γ < 2(1−β)−1. Thus, if the expectational stability condition β < 1 holds, in the
nonstochastic model there is always convergence to the RE under the constant-
gain learning rule if the gain parameter γ is sufficiently small.

3.4 Learning in Nonstochastic Models

We now take up the issue of learning steady states in nonstochastic models in a
more general setting. Consider models of the form

pt = f (E∗t pt+1).

One natural adaptive learning rule is to forecast pt+1 as the average of past
observed values, i.e.,

E∗t pt+1 = at ,

where at = t−1 ∑t−1
i=0 pi, for t = 1,2,3, . . . . This can be written recursively as

at = at−1 + t−1(pt−1 − at−1).

As discussed for a linear model in the previous section, in nonstochastic models
the constant-gain version also has the potential to converge to a perfect-foresight
steady state. This remains true for local analysis of nonlinear models. Both of
these cases are covered by the following recursive formulation:

at = at−1 + γt (pt−1 − at−1), (3.5)
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where the gain sequence γt satisfies

0< γt ≤ 1 and
∞∑
t=1

γt =+∞.

The choice γt = t−1 is an example of a “decreasing-gain” algorithm (i.e., an
algorithm in which limt→∞ γt = 0).

The formulation (3.5) reflects the common practice of assuming that the
parameter estimate at depends only on data through t−1. This has the advantage
of avoiding simultaneity between pt and at . However, we also briefly consider
the implications of an alternative assumption in which

at = at−1 + γt (pt − at−1). (3.6)

We will see that the choice of assumptions can matter in the fixed-gain case, but
is not important if γt = t−1 or if γt = γ > 0 is sufficiently small.

Standard timing assumption: We consider first the case (3.5), which we will
refer to as the standard timing assumption. Combining equations, we have pt =
f (at ) so that

at = at−1 + γt (f (at−1)− at−1).

In a perfect-foresight steady state, pt = p̄ = a, where a = f (a). In the constant-
gain case, we have at = (1 − γ )at−1 + γf (at−1). To analyze stability we
apply standard results on nonlinear difference equations.4 Using these, it is
easily established that a steady state a = p̄ is locally stable if and only if
|1+γ (f ′(a)−1)|< 1, i.e., iff 1−2/γ < f ′(a) < 1. Note that 1−2/γ →−∞
as γ → 0.

Under the decreasing-gain assumption limt→∞ γt = 0, it can be shown that
a steady state a = p̄ is locally stable if and only if f ′(a) < 1.5 We here present
a proof of this for the case 0 < f ′(a) < 1. [For f ′(a) < 0, the argument is more
involved.] Without loss of generality we suppose the initial point a0 < a. We
assume that a0 is sufficiently close to a so that f is monotonically increasing

4See Chapter 5 for a review of the stability results. The key result is that a steady state ȳ of a
multivariate difference equation yt = F(yt−1) is locally stable if the derivative matrix DF(ȳ) has
all eigenvalues inside the unit circle. In the case at hand we have a univariate difference equation,
and so the condition is just that the derivative is less than 1 in absolute value.

5The results for the decreasing-gain case in this section can be shown formally by using the im-
plicit function theorem and applying Evans and Honkapohja (2000). Details are given in Chapter 7.
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between a0 and a. Then at each time t one has f (at ) > at , implying at+1 > at .
Since γt < 1, it follows that at+1 ≤ a. To show that at → a, suppose to the
contrary that limat = â < a.6 Let d = f (â) − â > 0. For t sufficiently large,
at+1 ≥ at +γt (d/2), so that at+s ≥ at + (d/2)

∑t+s
i=t γi , yielding a contradiction

since
∑∞

t=1 γt =∞.

Alternative timing assumption: Under equation (3.6) we instead have the im-
plicit equation

at = at−1 + γt (f (at)− at−1).

In general, there need not be a unique solution for at given at−1, though this will
be assured if γt is sufficiently small and if f ′(a) is bounded. Assuming unique-
ness and focusing on local stability near a, we can approximate this equation
by

at − a = (
1− γtf

′(a)
)−1

(1− γt )(at−1 − a).

Under the fixed-gain assumption this leads to the stability condition that ei-
ther f ′(a) < 1 or f ′(a) > 2/γ − 1 (these possibilities correspond to the cases
γf ′(a) < 1 and γf ′(a) > 1). Under decreasing gain the condition is again sim-
ply f ′(a) < 1.

The results of this section can be summarized as follows. Fixed-gain learn-
ing can converge to perfect-foresight steady states in nonstochastic models and
such rules have somewhat different stability conditions than the decreasing-gain
rules which are standard for stochastic models. The stability conditions also de-
pend on assumptions made concerning the timing of information. However, for
the small gain case, i.e., decreasing gain or a sufficiently small constant gain,
the condition for local stability under adaptive learning is not affected by the
timing assumption and is simply f ′(a) < 1, generalizing our earlier results for
linear models. This stability condition has a straightforward interpretation in
terms of E-stability: For a PLM yt = a, the corresponding ALM is yt = f (a).

The E-stability differential equation is then da/dτ = f (a) − a with stability
condition f ′(a) < 1.

The methods of this section can also be easily applied equally to mod-
els of the form pt = f (E∗t−1pt). For this setup, the expectation E∗t−1pt can-
not depend on pt and the timing assumption appears clear. Supposing that
E∗t−1pt = at−1 with at = at−1 + γt (pt − at−1) leads to the recursive algorithm

6Recall that a bounded monotonic sequence always has a limit.
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at = at−1 + γt (f (at−1) − at−1) as with the preceding model under the stan-
dard timing assumption. It follows that a perfect-foresight steady state pt = p̄,
where p̄ = f (p̄), is locally stable under decreasing gain if f ′(a) < 1 and under
constant gain γt = γ provided 1− 2/γ < f ′(a) < 1.

3.4.1 Application: Coordination Problems

The general methods of this section can be applied to study adaptive learning
in certain nonstochastic macroeconomic models formulated as games. In this
section we consider coordination games involving strategic complementarities
along the lines of Cooper and John (1988) and Cooper (1999). A large finite
number of agents i = 1, . . . , I, each choose an action xi ∈ [0,1]. We con-
sider a representative agent model in which the payoff for agent i is given by
U(xi, Y (x−i)), where x−i denotes the vector of actions by other agents and
Y(x−i) is an aggregate statistic. U(xi, Y (x−i)) is assumed to be twice continu-
ously differentiable and strictly concave in the first argument. We focus on sym-
metric outcomes in which each agent chooses action x and we adopt the notation
Y(x) for Y(x−i). We assume that Y(x) is twice continuously differentiable and
that Y ′(x) > 0 for all x ∈ [0,1].

A symmetric Nash equilibrium is an action x which maximizes U(x,Y )
with respect to x , given Y , and where Y = Y(x). In general, there may be multi-
ple equilibria. For this game, a necessary condition for this is strategic comple-
mentarity, defined by ∂2U/∂x∂Y > 0. Let φ(Y ) denote the best response of the
representative agent to Y . In the case of strategic complementarity we obtain an
increasing function φ(Y (x)) as in Figure 3.1.

Figure 3.1.
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We illustrate the common case of three steady states, given by the fixed
points x = φ(Y (x)). Obviously, the number of equilibria could be larger or
smaller than three in the case of strategic complementarity. Note that x̄ =
φ(Y (x̄)) is a fixed point of φ(Y (x)) if and only if ā = Y(x̄) is a fixed point
of Y(φ(a)).

The above description is presented as a static game, but is often used in the
context of repeated games. We continue to focus on the static Nash equilibria.
Agents now have available information on past outcomes which they can use
to forecast the behavior of other agents and in particular the value of the key
aggregate statistic Y .

Let xt be the action of the representative agent at time t and Yt be the value
of Y(xt ) at t . Stability under learning can be treated following the general tech-
niques developed in this section. At each time t , agents forecast the aggregate
statistic Y and choose the optimal action conditioned on this forecast. Letting at
denote the expectation of Yt , we assume

at = at−1 + γt (Yt−1 − at−1),

where γt is the gain sequence. Here we use the standard timing assumption.7

Given this expectation for Yt , the representative agent chooses action xt = φ(at )

so that

Yt = Y
(
φ(at )

)
.

From the general analysis of this section we immediately conclude that a fixed
point ā of Y(φ(a)) is locally stable under this learning rule for at if and only
if dY (φ(ā))/da < 1. It follows8 that an equilibrium x̄ is locally stable if and
only if dφ(Y (x̄))/dx < 1. In Figure 3.1, the lowest and highest steady states
are thus stable, while the middle one is unstable. Since dφ(Y (x̄))/dx > 0 in
the case of strategic complementarities, this stability condition holds both for
decreasing-gain sequences and also for all constant gains 0 < γ ≤ 1.

There are many economic settings that fit into the framework of strategic
complementarities. The underlying economic mechanisms rely on diverse phe-
nomena such as technological complementarities, imperfect competition, de-
mand spillovers, and search externalities.9 Cooper (1999) gives an up-to-date

7The alternative timing assumption of contemporaneous information seems particularly unnat-
ural in this model.

8Use dY(φ(ā))/da = Y ′(φ(ā))φ′(ā)= Y ′(x̄)φ′(Y (x̄)).
9Early papers in the extensive literature on coordination problems include Bryant (1983), Bryant

(1987), Diamond (1982), Hart (1982), Schleifer (1986), and Weitzman (1982).
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discussion of the different types of models in which complementarities arise. A
number of the models presented in this book incorporate complementarities into
a dynamic framework. A simple example is given in Section 4.6. Howitt and
McAfee (1992) study learning in a dynamic search model with complementari-
ties.

3.5 Stochastic Gradient Learning

We return to the cobweb model of Chapter 2 which we repeat for convenience:

pt =µ+ αpet + δ′wt−1 + ηt .

Various alternatives to least squares learning have been proposed in the litera-
ture. These include neural networks and genetic algorithms, which we will dis-
cuss in Chapter 15.10 Another learning scheme which has been proposed is the
stochastic gradient method, and using our techniques it is possible to give formal
results.11

Agents are assumed to use the linear forecast rule

pet = at−1 + b′t−1wt−1 = φ′t−1zt−1,

where φ′t−1 = (at−1, b
′
t−1) and z′t−1 = (1,w′t−1).

The stochastic gradient algorithm adjusts the parameter estimates in accor-
dance with the following scheme:

φt = φt−1 + γtzt−1(pt − φ′t−1zt−1). (3.7)

This algorithm differs from least squares by neglecting the R−1
t term. It is thus

a gradient algorithm rather than a Newton-type algorithm, since the latter also
uses information on second moments (as does least squares). Stochastic gradient
algorithms have been proposed as a simple alternative to least squares.

Substituting the forecast function into the original model yields

pt = (µ+ αat−1)+ (δ+ αbt−1)
′wt−1 + ηt

10Time-varying parameter methods have also been suggested. For the cobweb model this has
recently been examined by McGough (1999). See also Bullard (1992) and Margaritis (1990).

11See Sargent (1993), Kuan and White (1994), Heinemann (2000b), Barucci and Landi (1997),
and Evans and Honkapohja (1998c).
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or

pt = T (φt−1)
′zt−1 + ηt . (3.8)

The system (3.7), (3.8) can be combined to yield a stochastic recursive algorithm

φt = φt−1 + γtzt−1
[
(T (φt−1)

′ − φ′t−1)zt−1 + ηt
]
.

Following the methods of Chapter 2, the associated ODE can be computed as

dφ

dτ
=
(
µ

δ

)
+ (α− 1)Mφ,

where M = E(zt z
′
t ) is assumed to be positive definite. This is a linear system

of differential equations in φ with constant coefficients. Its coefficient matrix
(α− 1)M of the ODE is negative definite iff α < 1, and under this condition the
ODE is (globally) asymptotically stable.

It follows from the results on stochastic recursive algorithms that under the
E-stability condition α < 1, stochastic gradient learning converges to the RE
solution. Thus, for this model the convergence conditions for least squares and
stochastic gradient learning are identical. For models of the cobweb type this
holds more generally (see Evans and Honkapohja, 1998c), but there appear to
be examples in which least squares and stochastic gradient learning do not have
identical stability conditions (see Heinemann, 2000b).

3.6 Learning with Misspecification

So far it has been assumed that agents learn using a PLM (perceived law of mo-
tion) that is well specified, i.e., nests an REE of interest. However, economic
agents, like econometricians, may fail to correctly specify the actual law of mo-
tion, even asymptotically. It may still be possible to analyze the resulting learn-
ing dynamics.

As an illustration, consider the Muth model with the reduced form

pt =µ+ αE∗t−1pt + δ′wt−1 + ηt ,

where we use the alternative notation E∗t−1pt for pet . For simplicity we assume
that wt−1 is an iid vector of exogenous variables and ηt is an unobservable
white noise shock. In the treatment in Chapter 2, agents were assumed to have a



Variations on a Theme 57

PLM of the form pt = a+b′wt−1+ηt , corresponding to the REE. Suppose that
instead their PLM is pt = a+ηt , so that agents do not recognize the dependence
of price on wt−1, and that they estimate a by least squares. Then

at = at−1 + t−1(pt − at−1),

and the PLM at time t − 1 is pt = at−1 + ηt with corresponding forecasts
E∗t−1pt = at−1. Thus the ALM is

pt =µ+ αat−1 + δ′wt−1 + ηt

and the corresponding stochastic recursive algorithm is

at = at−1 + t−1(µ+ (α− 1)at−1+ δ′wt−1 + ηt ).

The associated ODE is da/dτ = µ + (α − 1)a, and it follows that at → ā =
(1− α)−1µ almost surely.12

In this case we have convergence, but it is not to the unique REE which
is pt = (1− α)−1µ+ (1− α)−1δ′wt−1 + ηt . Agents make systematic forecast
errors since their forecast errors are correlated with wt−1 and they would do
better to condition their forecasts on this variable. However, we have ruled this
out by assumption: we have restricted PLMs to those which do not depend on
wt−1. Within the restricted class of PLMs we consider, agents in fact converge
to one which is rational given this restriction. The resulting solution when the
forecasts are E∗t−1pt = ā is

pt = (1− α)−1µ+ δ′wt−1 + ηt .

We might describe this as a restricted perceptions equilibrium since it is gener-
ated by expectations which are optimal within a limited class of PLMs.13 The
basic idea of a restricted perceptions equilibrium is that we permit agents to fall
short of rationality specifically in failing to recognize certain patterns or corre-
lations in the data.

It is apparent that there are many forms of misspecification that may be
of interest. For example, the agents may include only a subset of wt−1 in their
forecast rule. Similarly, the model might be nonlinear, while agents forecast
using a linear model. We will explore some of these possibilities and others in
Part V.

12The ODE da/dτ can also be interpreted as the E-stability equation for the underparameterized
class of PLMs here considered.

13The term self-confirming equilibrium is also used in the literature, see Sargent (1999).
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Chapter 4
Applications

4.1 Introduction

In this last introductory chapter we consider adaptive learning in several well-
known macroeconomic models, including some standard models which appear
in graduate-level textbooks. Stability under learning is of interest even in mod-
els with a unique equilibrium, such as the Ramsey growth model and the Real
Business Cycle model. Here expectations play a central role in the structure of
the model, but they have no independent influence on the paths of the economy.
That is, given the current state of the economy, there is a single way to forecast
the future under RE: expectations are fully determinate. Still, rational expecta-
tions remains a strong assumption, and showing that the rational expectations
equilibrium is stable under learning lends support to this solution concept in
these models.

Recently, macroeconomists have increasingly developed models with mul-
tiple rational expectations equilibria (REEs). Coordination failures, bubbles,
sunspots, endogenous fluctuations, and indeterminacy of equilibria are all
phrases which reflect this phenomenon in various ways. In this context it is nat-
ural to look at the issue of how a particular REE might be arrived at and whether
all solutions should be taken equally seriously. In these situations the study of
adaptive learning acts as a selection criterion, i.e., it reduces the number of at-
tainable REEs. In some cases it may even single out a unique equilibrium as the
stable outcome of a learning process. In some other important cases there are
multiple learnable equilibria. Models with multiple equilibria have been used
in particular for explaining business cycles as endogenous macroeconomic fluc-
tuations. In these models expectations play an independent role in addition to
fundamentals such as preference and technology shocks.

59
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As discussed in the first chapter, our basic approach in this book is to model
economic agents as econometricians who estimate the stochastic process of rele-
vant variables and use these estimates to make forecasts. We adopt this approach
because it treats the agents as having a degree of rationality comparable to that
of the economic analyst: when making forecasts, economists use econometrics
and statistical inference. In this chapter we sometimes use simplified versions of
the forecast rules in order to avoid technical complications which we will later
treat carefully.

4.2 The Overlapping Generations Model

Various overlapping generations models have been popular frameworks for
macroeconomic analysis. The basic overlapping generations model, the so-
called Samuelson model, provides a simple dynamic model in which expecta-
tions play a crucial role and it provides a convenient example to illustrate some
basic ideas of adaptive learning in a nonlinear context. We here develop a simple
version of the model which we will later extend in various ways. In this version
there is production of a single perishable good, using labor alone, under constant
returns to scale.

The economy consists of overlapping generations of identical agents each
of whom lives for two periods. Population is constant, as the old agents who
die at the end of the second period of life are replaced by an equal number of
young agents at the start of the next period. Agents work when they are young
and consume when old. The utility function of an agent in generation t takes
the form U(ct+1)−V (nt ), where ct+1 is consumption at old age and nt is labor
supply. We assume thatU(·) is concave and V (·) is convex. Moreover, bothU(·)
and V (·) are taken to be twice continuously differentiable.

Trade is intertemporal, since in each period t , the output produced by the
young is sold to the old in a competitive market. In the basic model there is
a constant stock of money M which is the only means of saving the revenue
obtained from working. There are no capital goods. In the simplest model the
production function depends only on labor input and is linear, so that ct = nt

after a normalization by choice of units of measurement. With this production
function, the wage earned is equal to the price of the consumption good in the
same period.

The budget constraints faced by generation t are

ptnt = mt,

pt+1ct+1 = mt.



Applications 61

Here mt denotes the nominal saving by the representative agent, and pt denotes
the prevailing price in period t . At time t when the agent is deciding on its choice
of nt , the current price pt is known, but next period’s price pt+1 is unknown.
The agent’s optimization problem is thus

maxE∗t U(ct+1)− V (nt ) subject to pt+1ct+1 = ptnt ,

where E∗t denotes the (subjective) expectations of the agent at time t . Substitut-
ing in the constraint for ct+1, differentiating with respect to nt , and interchang-
ing the order of expectations and derivatives, leads to the first-order condition
for interior points

E∗t
(

pt

pt+1
U ′

(
ptnt

pt+1

))
= V ′(nt ).

Since this model can have equilibria in which money becomes worthless, it is
convenient to reformulate the analysis in terms of the price of money qt = 1/pt ,
so that we have

E∗t
(
qt+1

qt
U ′

(
qt+1nt

qt

))
= V ′(nt ).

The market-clearing condition is M =mt or equivalently qtM = nt at each pe-
riod t .

For simplicity we postulate parametric forms for the utility functions

U(c)= c1−σ

1− σ
, V (n)= n1+ε

1+ ε
,

where σ, ε > 0. We also assume point expectations of the price level, i.e., that
agents treat as certain their expectations of the price of moneyE∗t qt+1, which for
convenience we will denote qet+1. The assumption of point expectations allows
us to bring the expectation operatorE∗t inside the (possibly) nonlinear function,
so that the first-order condition can be written as

nt = q
(σ−1)/(σ+ε)
t

(
qet+1

)(1−σ)/(σ+ε)
.

Combining this with market clearing yields

qt =M−(σ+ε)/(1+ε)(qet+1

)(1−σ)/(1+ε) ≡F(
qet+1

)
. (4.1)

This relationship is graphed in Figure 4.1 for the case of σ < 1. With perfect
foresight, qet+1 = qt+1, and it can be seen that there are two steady states. There
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Figure 4.1.

is an interior steady state at qt =M−1 and an “autarkic” steady state at qt = 0.
It can also be seen that there exists a continuum of perfect-foresight paths con-
verging toward the autarky solution, indexed by the initial value of qt which can
be chosen arbitrarily provided 0< q0 <M−1.1

We now posit the forecast rule for qet+1. Suppose people form expectations
adaptively from past data in the following way:

qet+1 = qet + γt
(
qt−1 − qet

)
, (4.2)

where 0< γt < 1 is the gain sequence. Two main cases of interest are γt = t−1

and γt = γ , a constant.
The first case corresponds to agents taking the average of prices qi , i =

0, . . . , t − 1, i.e.,

qet+1 = t−1
t−1∑
i=0

qi,

as can be verified by substitution into equation (4.2) with γt = t−1. Thus this
forecast method corresponds to a learning rule in which agents estimate an un-
known constant by updating the sample mean. Note that in this kind of learning
rule, each new data point has a smaller weight with limt→∞ γt = 0. Such gain

1Note that for q0 > M−1, there appear to be dynamic perfect-foresight paths with qt →∞.

However, if an upper bound on labor supply is imposed, these paths are not feasible.
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sequences are known as “decreasing gain.” The second case γt = γ is a version
of the traditional adaptive expectations assumption, but can also be viewed as a
constant-gain learning rule.

Substituting equation (4.1) into equation (4.2) yields the difference equation

qet+1 = qet + γt
(F(qet )− qet

)
,

and qe0 is treated as an arbitrary initial expectation. This fits the framework of
Section 3.4 of Chapter 3. Since F ′(M−1) < 1, it follows that the steady state
qt =M−1 is stable under learning for decreasing gain or small constant gain.2

If σ < 1, the autarky solution qt = 0 also exists, but, since F ′(0) > 1, it is not
stable under learning. Thus we have shown that learning dynamics will converge
always to the monetary steady state, not to autarky. [This point was first noted
by Lucas (1986).] In the case σ > 1, only the monetary steady state exists, and
the above argument shows its stability under learning.

We remark that the model with learning could instead be formulated in
terms of employment nt . Using nt =Mqt and net+1 =Mqet+1, equation (4.1)
is equivalent to nt = (net+1)

(1−σ)/(1+ε). This formulation, which we will often
use below, leads to the same stability result. Overlapping generations models
are further discussed in Chapters 11 and 12. In Section 4.6 of this chapter we
develop and study a version of this model that has multiple interior steady states.

4.3 A Linear Stochastic Macroeconomic Model

Many macroeconomic models are linear or log-linear and allow for random
shocks to the structural equations. The analysis of learning in such models can
be studied using the stochastic approximation techniques introduced in Chap-
ter 2. As an example, we consider the well-known Sargent and Wallace (1975)
“ad hoc” model. This consists of three equations. The aggregate supply curve
is of standard form and postulates that output depends positively on unexpected
inflation (or price surprises)

qt = aI + ap
(
pt −E∗t−1pt

)+ u1t , where ap > 0,

and where qt denotes the logarithm of output and pt is the logarithm of the price
level. The “IS curve” postulates that aggregate demand depends negatively on

2For 0<F ′(M−1) < 1, stability holds for all 0 < γ ≤ 1.
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the ex ante real interest rate

qt = bI + br
(
rt − (E∗t−1pt+1 −E∗t−1pt )

)+ u2t , where br < 0,

and where rt denotes the nominal interest rate. Finally, the “LM curve” describes
the money market equilibrium, in which the demand for real balances is assumed
to depend positively on output and negatively on the nominal interest rate

m= cI +pt + cqqt + crrt + u3t , where cq > 0, cr < 0.

Here m is the logarithm of the money supply, assumed constant. u1t , u2t , u3t

are white noise shocks to output supply, output demand, and money demand,
respectively.

The model can be solved to yield the reduced form of the price level

pt = α+ β0E
∗
t−1pt + β1E

∗
t−1pt+1 + vt , (4.3)

where vt is a linear combination of the shocks and therefore satisfies

Et−1vt = 0.

The reduced form parameters are functions of the structural parameters and the
key ones are given by

β0 =
(
ap(1+ brcqc

−1
r )+ br

)
/
(
ap(1+ brcqc

−1
r )+ brc

−1
r

)
and

β1 = (1− β0)/
(
1− c−1

r

)
.

These satisfy the restrictions β1 > 0 and β0 + β1 < 1. Equation (4.3) has the
stochastic steady-state solution

pt = α

1− β0 − β1
+ vt . (4.4)

There are other solutions to the model, but these are stochastically explosive and
equation (4.4) is the solution usually chosen in applied work.

To model the learning we suppose that agents perceive the economy to be
in a stochastic steady state, i.e., that prices follow the process pt = a + vt , but
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that the mean a is unknown. In this case the natural statistical estimate of a is
the sample mean,

at = t−1
t−1∑
i=0

pt−i .

Agents form the expectations accordingly, i.e., E∗t−1pt = E∗t−1pt+1 = at−1. In-
serting these into the reduced form, we obtain

pt = α+ (β0 + β1)at−1 + vt . (4.5)

This is the law of motion for prices under the learning rule. Notice that if at
converges to α/(1− β0 − β1), then the price process converges to the stochastic
steady state (4.4). We want to study whether this will in fact happen.

As was seen in the preceding example, the sample mean can be written
in recursive form at = at−1 + t−1(pt − at−1). Inserting equation (4.5) into the
recursive form, we obtain the dynamic equation

at = at−1 + t−1(α+ (β0 + β1)at−1− at−1 + vt
)
. (4.6)

This is a stochastic recursive algorithm that can be analyzed using stochastic
approximation techniques. The basic technique was introduced in Chapter 2.
The formal tools presented in Chapter 6 are applied to models of this type in
Chapter 8.

We here outline the result that for this model, learning converges globally to
the solution (4.4).3 Applying the stochastic approximation technique, we obtain
the associated ODE

da

dτ
= T (a)− a,

where T (a)= α + (β0 + β1 − 1)a. It follows that at → α/(1− β0 − β1), i.e.,
we have convergence to the stationary REE, provided β0 + β1 < 1, a con-
dition which is satisfied by the model. Indeed, the global convergence theo-
rem of Chapter 6 applies and there is convergence to this REE with probabil-
ity 1.

To illustrate these results, we provide an example simulation of equa-
tions (4.5)–(4.6). We set a2 = 1, b2 = −0.4, c1 = 1, and c2 = −.5. This leads

3The same techniques can be used to study whether the explosive solutions mentioned earlier
can be attained as a result of a learning process. See Chapters 8 and 9.
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Figure 4.2.

to β0 = 0.6667 and β1 = 0.1111, and we also set α = 1. vt was assumed
iid normal with standard deviation of 0.5. The initial value of at was set at
a0 = 4. The top panel of Figure 4.2 illustrates convergence of the parameter es-
timate at to its RE value. The bottom panel shows the corresponding path for
the market price pt . Of course, because of the intrinsic random shocks vt , the
price path pt remains random in the limit, i.e., even after at has converged to
α/(1− β0 − β1).

Numerous extensions to this analysis are of interest. First, the assumption
of iid unobserved shocks is unnecessary. One could, for example, allow for ob-
servable shocks to any or all of the structural equations and the shocks could be
allowed to follow specified exogenous processes. Agents would then use recur-
sive least squares, as in Chapter 2, to estimate the dependence of pt on available
information, and they would use their estimates to make appropriate forecasts.
These issues are taken up in Chapter 8, where we show that there is convergence
to the REE under slightly strengthened stability conditions.

As another extension, suppose that the previous assumption of a constant
money supply m is replaced by a policy feedback rule in which money supply
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depends on the lagged price level

mt = dI + dppt−1 + u4t .

The reduced form now becomes

pt = α+ δpt−1 + β0E
∗
t−1pt + β1E

∗
t−1pt+1 + vt . (4.7)

There are now two rational expectations solutions of the form

pt = a+ bpt−1 + vt ,

where b is a solution to the quadratic equation β1b
2 + (β0 − 1)b+ δ = 0.4 Pro-

vided |dp| is not too large, only one of the solutions will satisfy the stationarity
condition |b|< 1.

Is this solution stable under learning? Again, it is now natural to assume that
agents will recognize the dependence of price on lagged price in their “perceived
law of motion.” In particular, suppose that agents have a perceived law of motion
(PLM) of the same form as this REE, but do not know the RE values of a and b.
Modeling the agents as econometricians, we can assume that they estimate the
unknown parameters by least squares, regressing prices on lagged prices and an
intercept, using the data that has been generated by the economy up to that point
in time. Thus supposing that at time t−1 their estimates are at−1, bt−1, they will
make their forecasts of E∗t−1pt and E∗t−1pt+1 accordingly. Will their parameter
estimates converge over time to the RE values? The results on the convergence of
SRAs introduced in Chapter 2 can again be applied, even though the regressors
are no longer exogenous, and the results are discussed in Chapters 8 and 9.

Finally, the inclusion of future expectations E∗t−1pt+1 in equation (4.3)
leads to a crucial difference from the cobweb model of Chapter 2, namely that
formally there are now multiple RE solutions. Although it can be shown that in
the Sargent–Wallace “ad hoc” model of this section there is a unique stationary
solution, there are other examples of the form (4.3) which have multiple station-
ary RE solutions. In such cases we will therefore want to examine systematically
the stability under learning of the various solutions. This issue will be studied at
length in Chapters 8 and 9.

4This is easily verified by computing Et−1pt = a+bpt−1 and Et−1pt+1 = a(1+b)+b2pt−1
and substituting into equation (4.7) and equating coefficients. We are assuming real solutions to the
quadratic.
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4.4 The Ramsey Model

The Ramsey growth model is widely used in macroeconomics. For simplicity
we give a version which ignores population growth, technological progress, and
depreciation.

An infinitely lived representative consumer maximizes intertemporal ex-
pected utility

Et

∞∑
i=0

βt+iu(Ct+i)

subject to the budget constraints

Ct+i +Kt+1+i =wt+i + (1+ rt+i)Kt+i

for i = 0, . . . ,∞. Here Ct+i ,Kt+i ,wt+i , and rt+i denote consumption, capi-
tal, real wages, and interest rate in period t + i , respectively. 0 < β < 1 is the
subjective discount factor. Labor supply is normalized at unity. We assume the
household maximizes expected utility (rather than realized utility) because our
households will not usually be assumed to have perfect foresight (also in later
models random shocks will often be present).

The firm maximizes its profit

F(Kt+i ,Nt+i )− rt+iKt+i −wt+iNt+i

in each period. Here F(·, ·) is the production function with constant returns to
scale and Nt+i denotes the labor input. Assuming perfect competition and mar-
ket clearing, the first-order conditions for the firm yield the usual conditions that
factors are paid their marginal products. These relations can be written

rt+i = f ′(Kt+i),
wt+i = f (Kt+i)−Kt+if ′(Kt+i),

where f (K/N)≡ F(K/N,1) and we have used the labor market clearing con-
dition Nt+i = 1.5

5F(K,N) = Nf (K/N) because of constant returns to scale. Differentiating with respect to
K yields ∂F/∂K = f ′(K/N) and differentiating with respect to N yields ∂F/∂N = f (K/N) −
(K/N)f ′(K/N). Note that constant returns to scale also implies that f (K/N) is equal to output
per worker.
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To maximize utility we substitute the household budget constraints into the
objective function. By differentiation with respect to Kt , one obtains

u′(Ct ) = βEt

[
(1+ f ′(Kt+1))u

′(Ct+1)
]
,

Ct = Kt + f (Kt )−Kt+1,

as the dynamical system. In the standard textbook analysis perfect foresight is
assumed and we obtain a pair of nonlinear difference equations in Kt ,Ct . For
example, under the parametric assumptions F(K,N) =KαN1−α and U(C)=
C1−σ /(1− σ), we obtain

Ct+1 = Ct

[
β
(
1+ α(Kt +Kα

t −Ct)
α−1)]1/σ

,

Kt+1 = Kt +Kα
t −Ct .

To illustrate the system we write it in the form

Ct+1 −Ct = Ct

[
β
(
1+ α(Kt +Kα

t −Ct )
α−1)]1/σ −Ct , (4.8)

Kt+1 −Kt = Kα
t −Ct ,

which is shown in Figure 4.3 and exhibits the familiar saddle point feature. It
is easily verified that there is a unique steady state (K̄, C̄). The saddle point
properties of the steady state can be verified formally by computing the Jacobian
of equation (4.8) at (K̄, C̄) and noting that the eigenvalues λ1 and λ2 satisfy
0< λ1 < 1< λ2. See, e.g., Azariadis (1993, pp. 72–75).

As seen in Figure 4.3, given K0, there is a unique choice of C0 such that
the path (Kt ,Ct ) converges to (K̄, C̄). Other paths explode, as illustrated in the
figure. These paths can be ruled out as perfect-foresight equilibria because they
eventually violate nonnegativity or transversality conditions.

But suppose we drop the perfect-foresight assumption? The saddle path
might then appear delicate, since agents would then be making forecasting er-
rors. Formally, if agents form one-step-ahead expectations at each time t , we
have the system

u′(Ct ) = βE∗t
[
(1+ f ′(Kt+1))u

′(Ct+1)
]
, (4.9)

Ct = Kt + f (Kt )−Kt+1,

whereE∗t (·) denotes the (in general nonrational) expectations of the households.
This system defines a temporary equilibrium in which Ct and Kt+1 are deter-
mined, given these expectations and Kt . A reasonable learning rule will, of
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Figure 4.3.

course, respond to forecast errors and attempt to eliminate them, but it is not
obvious whether such behavior will eventually lead the economy to the perfect-
foresight path or whether even small errors will drive the economy onto some
unstable trajectory.

To analyze this question we will endow the agents with a forecast rule which
determines E∗t (·) as a function of the observables. The forecast rule depends on
parameters which will be updated each period on the basis of new observations.
Such a system defines the economic dynamics under learning.

Perhaps surprisingly, it can be shown that the perfect-foresight saddle path
for this economy is indeed locally learnable, i.e., is attained under a natural
specification of the learning dynamics. We put off the demonstration of this
result because of the relative complexity of this model, giving the formal details
for the Ramsey model in the appendix at the end of this chapter. In Chapter 10
we show how to extend these results to the standard Real Business Cycle model,
which is a well-known and widely used generalization of the Ramsey model
incorporating variable labor supply and random productivity shocks.

More generally, realistic contemporary applied macroeconomic models are
usually formulated as multivariate models in which the variables depend on their
lags, on expectations of future variables, and on exogenous stochastic processes.
In a neighborhood of a steady state these can be approximated by linear multi-
variate models, the solutions to which can be written as vector autoregressions.
In Chapter 10 we show how to extend the techniques for studying least squares
learning to multivariate frameworks and we apply the tools developed there to
several models, including models with sunspot solutions as well as “regular”
models like the Real Business Cycle model.
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4.5 The Diamond Growth Model

This model introduces physical capital goods into the overlapping generations
structure. For an exposition of this model, known as the “Diamond model,” see,
for example, Blanchard and Fischer (1989) or Romer (1995). To simplify the
model we assume that the labor supply is held fixed and there is no monetary
asset so that all saving is in the form of capital. Households supply (one unit of)
labor when young and consume in both periods of their two-period lifetime. We
also simplify by assuming that there is neither technical progress nor population
growth.

Households born in period t maximize the utility function

Ut = C1−θ
1t

1− θ
+ β

C1−θ
2,t+1

1− θ

subject to the budget constraint

C2,t+1 = (1+ rt+1)(wt −C1t ),

where rt+1 is the interest rate in period t + 1 and wt is the real wage. Assuming
perfect foresight, one can show that saving depends on the interest rate and is
proportional to wt . Let s(rt+1) denote saving as a fraction of income wt (recall
that there is a labor supply of 1). Note that s(r) is increasing or decreasing in r
as θ is less than or greater than 1.

Since the old consume all of their income, the capital stock in period t + 1
is given by Kt+1 = s(rt+1)wt . Output is produced from capital and labor in the
same way as in the Ramsey model, i.e., Yt = F(Kt ,1)≡ f (Kt). Under perfect
competition, factors are paid their marginal products, so that rt = f ′(Kt) and
wt = f (Kt)−Ktf

′(Kt). We thus arrive at the key dynamic equation

Kt+1 = s(f ′(Kt+1))
[
f (Kt)−Ktf

′(Kt)
]
.

The system starts at time t = 0 with an initial capital stock K0 owned by an
initial old generation.

Under perfect foresight, there are various possible cases depending on the
utility and production functions. For example, if the utility is logarithmic and the
production function is Cobb–Douglas, there is a unique interior steady state to
which the system converges from any initial capital stock K0 > 0. However, as
is well known, for some choices of the utility and production functions, multiple
interior steady states can exist, as illustrated in Figure 4.4. In fact, this figure
shows a case where multiple Kt+1 can exist for a certain range of Kt . Under
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Figure 4.4.

perfect foresight, there would be no way to select between two alternative paths
for an initial K0 in that range.

In contrast, consider the situation under learning. If households have an
expected interest rate ret+1 and save according to s(ret+1), then the law of motion
is instead

Kt+1 = s(ret+1)
[
f (Kt )−Ktf

′(Kt )
]
. (4.10)

To complete the model under learning we postulate a simple adaptive learning
rule

ret+1 = ret + γt (rt − ret ). (4.11)

Substituting rt = f ′(Kt), this leads to a two-dimensional dynamical system
which will be analyzed in the appendix to this chapter. We state the result here:
K∗
L and K∗

H are both stable under learning, though stability is only local and the
eventual rest point will depend on the initial K0 and initial expectations re1 . The
middle steady state is not stable.

4.6 A Model with Increasing Social Returns

A model with multiple steady states that are stable under adaptive learning can
be developed using a simple extension of the OG production model introduced
in Section 4.2. We develop this model at some length since it can also be used
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to illustrate the possibility of sunspot equilibria and the role of policy in models
with multiple equilibria. This model will also be used to illustrate extensions
and further phenomena in Parts IV and V.

4.6.1 The Basic Framework

We return to the overlapping generations model discussed in Section 4.2. How-
ever, we replace the simple production function Qt = nt by the function

Qt = f (nt ,Nt),

where Nt denotes aggregate labor effort and represents a positive production
externality. We assume f1 > 0, f2 > 0, and f11 < 0. Here Nt = �nt , where �
is the total number of agents in the economy. � is assumed large enough so that
each agent has a negligible effect on Nt .

A specific formulation of f (nt ,Nt ), given in Evans and Honkapohja
(1995b) is as follows. The output Qt of an individual agent is assumed to de-
pend on the individual’s labor input, which is partly mental, and on available
complementary “ideas” for designs. There is a base level of standard design
ideas I∗ that always exist, but if aggregate output is sufficiently high, then the
number of complementary ideas It , assumed generated in proportion to total
labor effort and publicly available, exceeds I∗. If the dependence takes a Cobb–
Douglas form, we have Qt = Anαt I

β
t if It ≥ I∗ and Qt = Anαt I

∗β otherwise,
with 0< α < 1.

Suppose that agents have a unit endowment of time available to scan and
absorb ideas, that the number of suitable ideas generated is λNt , and that it takes
a units of time to receive and absorb a suitable idea. Then It = 1/(a+ (λNt )

−1)

and we have

f (n,N)=Anα
{
max

(
I∗, λN/(1+ aλN)

)}β
.

Convenient features of this technology are that the externality is not present at
low levels of N and that it is bounded as N→∞.

Returning to the general formulation f (nt ,Nt ), we can obtain the equilib-
rium equation as in the basic OG model. Agents are again assumed to maximize
expected utility and the budget constraint is now that ptQt = pt+1ct+1. Since
each agent treats aggregate Nt as given, the first-order condition becomes

V ′(nt )=E∗t
pt

pt+1
f1(nt , �nt )U

′(ct+1).

In the basic overlapping generations model we analyzed expectations and learn-
ing in terms of the price of money. It is more convenient here to choose average
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employment nt as the variable to be forecast. (Since nt is in 1–1 correspondence
with the price level, this is an innocuous assumption.) We therefore reformulate
the model entirely in terms of nt .

With a constant money supply M , we have ptQt = M and pt/pt+1 =
Qt+1/Qt . Using also ct+1 =Qt+1, we have

V ′(nt )f (nt , �nt )/f1(nt , �nt )=E∗t f (nt+1, �nt+1)U
′(f (nt+1, �nt+1)

)
,

or

W(nt )=E∗t G(nt+1). (4.12)

It can be verified that W(nt ) is a strictly increasing function of nt . Solving for
nt and assuming point expectations yields nt = F(net+1) for a suitable F . For
our examples we will assume utility functions of the form

U(c)= c1−σ /(1− σ), V (n)= n1+ε/(1+ ε).

For appropriate σ and ε and parameter values for the production function above,
one can obtain reduced form functions F which yield three interior steady
states, as in the graph labeled F in Figure 4.5. Examples are given in Evans
and Honkapohja (1995b) and below.

Employment levels nL < nU < nH correspond to low, medium, and high
output levels. The steady states nL and nU can be interpreted as coordination
failures since the steady states can be Pareto ranked and welfare is higher in
nH than in either nL or nU . [For a proof see Evans and Honkapohja (1995b,
Proposition 3).]

Figure 4.5.
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Learning of a steady state is formally identical to that in Section 4.2, equa-
tions (4.1) and (4.2) with qt replaced by nt . The argument given in Section 3.4
of Chapter 3 can again be applied here to show that a steady state n∗ = F(n∗)
is locally stable under learning if F ′(n∗) < 1. It follows that nL and nH are lo-
cally stable, while nU is unstable. In this model it is therefore possible for the
economy to become stuck in a low-activity, low-welfare steady state.

4.6.2 Adaptive Learning and Economic Policy

The possibility of the economy becoming trapped in a low-level steady state
raises the issue of whether economic policy can be effective in dislodging it from
such inefficient equilibria. In the context of a positive production externality, it
is natural to consider the effects of a proportional subsidy ρ to the price of
output financed by a lump-sum tax T = ρptf (nt , �nt+1). Here pt is now the
producer price, so that the price paid by the consumer is (1−ρ)pt . If ρ < 0, this
is interpreted as an ad valorem tax which is redistributed as lump-sum transfer
payments. Allowing for this subsidy changes the equilibrium equation to

(1− ρ)V ′(nt )f (nt , �nt )/f1(nt , �nt )

=E∗t f (nt+1, �nt+1)U
′(f (nt+1, �nt+1)).

(4.13)

For our earlier specification of production functions and utility functions, and
assuming point expectations, this can be written

nt =F(net+1, ρ),

where

F(n,ρ) = (α/(1− ρ))1/(1+ε)

×
(
Anα

{
max(I∗, λ�n/(1+ aλ�n))

}β)(1−σ)/(1+ε)
.

For the case 0< σ < 1, in which F(n,ρ) is an increasing function of n, an
increase in ρ rotates F(net+1, ρ) counterclockwise. For sufficiently large values
of ρ, the graph will be like Fa in Figure 4.5, with a single (high-activity) interior
steady state. For sufficiently low (possibly negative) values of ρ, the graph will
be like Fb , with a single (low-activity) interior steady state. A range of interme-
diate values of ρ will give three interior steady states, as with the graph F .

Changing the value of ρ can have dramatic effects under adaptive learning.
Consider slow, gradual changes in ρ such that the learning dynamics are fast
relative to changes in ρ. Starting from nL in Figure 4.5, as ρ is increased the
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level of economic activity approximately shifts slowly up along the 45-degree
line, tracking the increasing value of nL. However, at a sufficiently high value of
ρ, the low steady state disappears and adaptive learning drives economic activity
to naH . Thus, in addition to the usual effects, changes in policy can in certain
circumstances lead to large discrete changes by shifting the economy between
distinct equilibria.

Furthermore, changes in the subsidy rate ρ exhibit irreversibilities over cer-
tain ranges. Starting from the high level of ρ associated with the graph Fa and
steady state naH , if the level of ρ is slowly reduced to the original level asso-
ciated with graph F , the level of economic activity will continue to track the
high-activity equilibrium nH .

The approximate relationship between ρ and n is as shown in Figure 4.6.
There are two branches to the relationship, a high-activity branch AB and a low-
activity branch CD. Over intermediate ranges of ρ, the level of n depends via
the learning dynamics on the history of the variables. Values of ρ outside this
intermediate range can be used to shift the two equilibrium branches.

4.6.3 Sunspot Equilibria

The model of increasing returns can be used to illustrate the phenomenon of
“sunspot equilibria” which have been much used recently in macroeconomics
to model endogenous fluctuations.6 These rational expectations solutions can be
viewed as a modern formulation of a long tradition in economics which em-
phasizes the possibility of endogenous fluctuations in market economies. The

6The initial investigations were done in Shell (1977), Azariadis (1981), Azariadis and Gues-
nerie (1982), and Cass and Shell (1983). See Chiappori and Guesnerie (1991) and Guesnerie and
Woodford (1992) for recent surveys.
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central idea is that in some models it is possible for the expectations of firms or
households to depend on an extraneous random variable in a way which is en-
tirely rational. Shifts in the variable (often called a “sunspot”) would then trigger
self-fulfilling shifts in expectations, prices, and quantities, creating or amplify-
ing economic fluctuations.7 We introduce such equilibria in the context of the
current model and then take up then issue of whether such equilibria can emerge
under adaptive learning.

Assuming rational expectations, equation (4.12) or (4.13) can be written as

nt =W−1(EtG(nt+1)
)
, (4.14)

where W(nt ) denotes the left-hand-side function andG(nt+1) denotes the right-
hand-side function followingE∗t . In the case (4.13) in which the production sub-
sidy is present, ρ is implicit in W . Earlier, when studying steady-state learning,
we were able to use the notation F =W−1 ◦G, but we must now drop the as-
sumption of point expectations since in a sunspot equilibrium the economy will
be undergoing random shifts.

The definition of a sunspot equilibrium involves the idea that economic
agents condition their expectations on some (random) variable st which oth-
erwise does not have any influence on the economy. Though different types of
sunspot solutions have been considered in the literature, we will focus here on
REE that take the form of a finite Markov chain.

We simplify even further by assuming that the extraneous random variable
st ∈ {1,2} is a two-state Markov chain with a constant transition matrix � =
(πij ),0 < πij < 1, i, j = 1,2. Here πij denotes the probability that st+1 = j

given that st = i . A two-state Markov chain is specified by probabilities π11 and
π22 since π12 = 1− π11 and π21 = 1 − π22. A (two-state) stationary sunspot
equilibrium (SSE) (n∗1, n∗2) is a solution nt = n∗1 if st = 1 and nt = n∗2 if st = 2
which satisfies equation (4.14).

To show existence of SSEs it is convenient to transform the system, using
the monotonic function y =W(n), into the form

yt =EtF(yt+1), (4.15)

where F(y) = G(W−1(y)). Note that since the transformation y =W(n) is
1–1, the qualitative features of Figure 4.5 are preserved for the map F . In par-
ticular, there are three interior steady states yL,yU,yH .

7This is one way of modeling the dependence of expectations on “animal spirits,” as empha-
sized, for example, in the title of Howitt and McAfee (1992).
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Figure 4.7.

An SSE (n∗1, n∗2) can equivalently be represented as an SSE (y∗1 , y∗2 ), i.e., a
process yt = y∗1 if st = 1 and yt = y∗2 if st = 2 which satisfies equation (4.15).
This is equivalent to the equations

y∗1 = π11F(y
∗
1 )+ (1− π11)F (y

∗
2 ),

y∗2 = (1−π22)F (y
∗
1 )+ π22F(y

∗
2 ).

Note that geometrically an SSE exists if there exist y∗1 , y∗2 in the open interval
formed by F(y∗1 ) and F(y∗2 ). (The transition probabilities must be chosen to
correspond to y∗1 , y∗2 .) In particular, it is possible to construct sunspot solutions
near a pair of two interior steady states. This is illustrated in Figure 4.7 for an
arbitrary mapping F(y) which has two steady states. In a sunspot equilibrium
of this kind the economy alternates stochastically between yt = y∗1 and yt = y∗2
with transition probabilities πij .

4.6.4 Learning Sunspot Equilibria

Is it possible that agents in the economy can be led to such an equilibrium if
they use a simple learning rule to make their forecasts? We will systematically
examine this issue in Chapter 12.8 Here we briefly take up an example of sunspot
equilibria and learning based on the model of increasing social returns.

As shown above, this model can have multiple interior steady states and
sunspot equilibria which are near a pair of distinct steady states. For the analysis

8The seminal work of Woodford (1990) demonstrated that indeed learning can converge to
sunspot solutions in the basic OG model.
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of learning we return to the formulation in terms of labor supply, nt . A two-state
Markov chain SSE is a process nt = n∗1 if st = 1 and nt = n∗2 if st = 2 which
satisfies equation (4.14), i.e., the equations

n∗1 = W−1(π11G(n
∗
1)+ (1− π11)G(n

∗
2)
)
,

n∗2 = W−1((1− π22)G(n
∗
1)+π22G(n

∗
2)
)
.

If agents try to learn the two values G(n∗1) and G(n∗2), a natural estimator for
them is the following. Divide a sample of data G(n1),G(n2), . . . ,G(nt ) into
two groups in accordance with the realization of the sunspot process st . That is,
for periods t in which st = 1 one puts the data point G(nt ) into the first group,
and for periods in which st = 2 the data point is put in the second group. Then
form the averages of the data points separately for each group, taking into ac-
count the number of observations in the group. The average value in each group
is the estimate for G(n∗i ), i = 1,2, respectively. That is, G(n∗i ) is estimated, for
i = 1,2, by

φi,t =
(
#Ni(t − 1)

)−1 ∑
j∈Ni(t−1)

G(n∗j ),

where Ni(t − 1) denotes the set of data points in periods j ≤ t − 1 for which
sj = i and #Ni(t−1) denotes the number of these points in periods 1, . . . , t−1.
The estimates for a group are then updated using the new data point, provided
the realization of st corresponds to that group. If it does not, then the estimate is
not changed. Finally, given these estimates, the economy evolves according to

nt =W−1(πi1φ1,t + πi2φ2,t
)

if st = i.

Here E∗t G(nt+1)= πi1φ1,t+πi2φ2,t when st = i, because we are assuming that
the transition probabilities πij are known. If they are not known, they can also
be estimated.

We will study systematically the convergence of learning based on this type
of learning rule in Chapter 12. Here we note the basic result for the above ex-
ample: a sunspot equilibrium near a pair of distinct steady states is locally stable
under learning if it is near two distinct steady states both of which, as steady
states, are stable under learning. Applying this result to the model of increasing
social returns, we get the result that a sunspot equilibrium (sufficiently) near the
steady states (nL,nH ) is locally stable under learning. Such a pair (n∗1, n∗2) is
shown for the graph F in Figure 4.5. In contrast, a sunspot is not stable if it is
in the neighborhood of (nU ,nH ), because the “middle” steady state nU is not
stable under learning.
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Figure 4.8.

We illustrate learning of sunspot equilibria using a simulation. Assume the
production and utility functions given in the previous section. We set the follow-
ing parameter values: σ = 0.1, ε = 0.25, a = 0.025, α = 0.9, β = 1, � = 40,
λ = 0.5, I∗ = 14.1935, A = 0.0792, π11 = 0.98, π22 = 0.995. Initially, the
subsidy level is set at zero. For these parameter settings the economy has three
interior steady states and therefore there exist nearby SSEs. Agents use a re-
cursive version of the above learning rule which conditions expectations on the
observed sunspot state. The initial estimates of employment levels for the two
states were 1 and 2.5.9

Figure 4.8 up to period 2000 illustrates how the economy learns the sunspot
equilibrium at n1 = 1.020 and n2 = 2.263. At time t = 2000, an unanticipated
regime change was made to occur: the subsidy level was raised to ρ = 0.05. For

9We remark that in the simulation we actually used a constant-gain learning rule with gain
parameter value equal to 0.5. Constant gain can give convergence in this model since there is no
intrinsic noise, and it allows for faster convergence to a new equilibrium following a regime switch.
See Evans and Honkapohja (1993b) for further details on the simulations.
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this subsidy level only the high-employment steady state exists, and Figure 4.8
shows how, under learning, the economy moves to this steady state.

Although the parameter values in this simulation are extreme, the results
qualitatively illustrate an important new role for learning in models of multi-
ple equilibria. Learning is the adjustment mechanism whereby the economy is
steered to the new equilibrium after a structural change.

4.7 Other Models

There are numerous other examples of macroeconomic models in which adap-
tive learning plays an important role. One well-known macroeconomic example
of multiple steady states is the seignorage model of inflation in which there are
low and high perfect-foresight inflation rates. We will see in Chapter 12 that
stability of SSEs in this model is problematic. A model with multiple balanced
growth paths is provided in Evans, Honkapohja, and Romer (1998). This is an
endogenous growth model with SSEs which switch stochastically between low-
growth and high-growth states. It can be shown that these stochastic “growth
cycles” can be locally stable under adaptive learning rules.10

It is also possible to construct models with perfect-foresight cycles as well
as steady states. For the basic OG model this was discussed at length in Grand-
mont (1985). For such cases there are natural adaptive learning rules which
could be employed by agents to forecast the levels of key variables at the differ-
ent points of the cycle. Since, when equilibrium cycles exist, there are multiple
perfect-foresight solutions, this is another case in which stability under learn-
ing can provide a useful selection criterion. Chapter 12 develops the relevant
conditions for local stability under learning of such models.

Linear stochastic macroeconomic models have been studied extensively and
are of considerable importance to applied macroeconomists. Many standard sim-
ple examples can be written as univariate stochastic linear models, e.g., the Muth
cobweb model, the Cagan model of inflation, asset pricing with risk neutrality,
the overlapping contract model, and monetary exchange rate models. It is natural
to investigate least squares learning of the REE in such models and the univari-
ate framework is examined in Chapter 8. Although more complex to analyze,
there is in principle no barrier to the study of adaptive learning in multivariate
linear stochastic models such as the Real Business Cycle model or “irregular”
versions with “sunspot” solutions. These are considered in Chapter 10.

10A simplified steady-state version of this model is developed in Chapter 11.
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Finally, although nonlinear models are usually developed in a nonstochastic
framework, it is perfectly possible to develop nonlinear models with stochastic
productivity, taste, or policy shocks. Such models have REE solutions taking
the form of noisy steady states or cycles or noisy SSEs. These solutions can
also be investigated for stability under learning. Such models are discussed in
Chapters 11 and 12.

4.8 Appendix

We here give results on adaptive learning for the Ramsey and Diamond models.
Since the Ramsey and Diamond models are deterministic models, we give direct
arguments for stability conditions.

4.8.1 Learning in the Ramsey Model

We log-linearize the model (4.9) with the parametric form used in equation (4.8).
(For details of this technique see Chapter 10.) We obtain

ct = β
(
1+ αK̄α−1)E∗t ct+1 − σ−1α(α − 1)K̄α−1E∗t kt+1,

kt+1 = −(C̄/K̄)
ct +

(
1+ αK̄α−1)kt .

Here ct = log(Ct/C̄) and kt = log(Kt/K̄). For notational convenience we write
this as

ct = acE
∗
t ct+1 + akE

∗
t kt+1,

kt+1 = dcct + dkkt .

The REE for this model is given by the saddle path and locally takes the form
ct = φ̄kt , kt = λ̄kt−1. We therefore assume that agents have a PLM of the corre-
sponding form so that E∗t kt+1 = λtkt and E∗t ct+1 = φtE

∗
t kt+1 = φtλt kt , where

λt and φt are the time-t estimates of λ̄ and φ̄. The estimates are formed using
the learning rule

φt = φt−1 + γt
(
(ct−1/kt−1)− φt−1

)
,

λt = λt−1 + γt
(
(kt/kt−1)− λt−1

)
.

The gain parameter γt can be taken to be either a small fixed gain γ > 0 or a
decreasing-gain sequence of the form γt = t−1.
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Substituting expectations into the linearized model, we obtain the ALM

ct = (acφt + ak)λt kt ,

kt =
(
dk + dc(acφt−1 + ak)λt−1

)
kt−1.

Hence

ct−1/kt−1 = (acφt−1 + ak)λt−1

≡ Tφ(φt−1, λt−1),

kt/kt−1 = dk + dc(acφt−1 + ak)λt−1

≡ Tλ(φt−1, λt−1).

The REE (φ̄, λ̄) is a fixed point of (Tφ(φ,λ),Tλ(φ,λ)). The law of motion for
the parameter estimates is(

φt

λt

)
=
(
φt−1

λt−1

)
+ γt

(
Tφ(φt−1, λt−1)− φt−1

Tλ(φt−1, λt−1)− λt−1

)
.

Convergence can be verified numerically, e.g., using a fixed gain, and conver-
gence to the REE (φ̄, λ̄) values takes place rapidly for the parameter values
α = 0.3, β = 0.9 and σ = 0.5. Since |λ̄|< 1, this, of course, also implies con-
vergence of (Ct ,Kt) to (C̄, K̄) as t→∞.

4.8.2 Learning in the Diamond Model

We now consider learning in the Diamond model as specified in equations (4.10)
and (4.11). We first linearize the equation (4.10) and rt = f ′(Kt ) at a steady
state, which gives

Kt = akKt−1 + arr
e
t ,

rt = bkKt ,

where ak = sw′, ar =ws′, and bk = f ′′. Here w = f −Kf ′ and note that ak >
0 and bk < 0. (The functions and the derivatives are evaluated at the steady
state under consideration.) For convenience we take here the variables to be
deviations from the steady state.

We examine the case of a small constant gain in the learning rule (4.11), so
it is written in the form

ret+1 = ret + γ
(
rt − ret

)
.
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Using the linearized equations, we can write this in the form

Kt+1 = (1+ ak + γ (arbk − 1))Kt + (γ − 1)akKt−1

≡ αKt + βKt−1.

The system is of second order. It is straightforward to show that for small enough
values of the gain parameter γ , its eigenvalues are real and both have absolute
value less than 1 if and only if ak < 1 and ak+arbk < 1. These are, therefore, the
conditions that determine local convergence under learning to the steady state in
question.

In order to relate these stability conditions to the steady states shown by
the perfect-foresight map in Figure 4.3, we compute the slope of the perfect-
foresight map Kt+1 = s(f ′(Kt+1))w(Kt ). Differentiating, we get the slope

dKt+1

dKt

= sw′

1−ws′f ′′
= ak

1− arbk
.

It is easily verified that the steady state is stable under learning if and only if
0< (dKt+1)/(dKt )(K̄) < 1.
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Chapter 5
The Mathematical Background

5.1 Introduction

This chapter is devoted to a presentation of the mathematical concepts and tech-
niques that are needed for a thorough understanding of the material in this book.
Its purpose is to provide a convenient reference of the mathematical concepts
and results that appear in different parts of the book. This should make the book
essentially self-contained. However, we emphasize that the summary is no sub-
stitute for a proper study of these mathematical tools. The references cited in
Section 5.8 should be consulted for thorough presentations of the mathematical
techniques discussed here. At the same time we wish to point out that most of
the presentation in Parts III, IV, and V can be followed with only a quick read-
ing of the key material in Part II. The reader can then refer back to the Part II
technical concepts and results as required.

We first consider deterministic dynamics that take the form of a difference
or (ordinary) differential equation. Both linear and nonlinear equations will be
treated. Stability concepts and results are the most important concepts for the
purposes of this book.

The second main part of this chapter focuses on stochastic dynamics, i.e.,
stochastic processes. Basic notions of stochastic processes and stochastic con-
vergence are introduced, after which relevant results for linear processes, such
as ARMA and VAR processes, are presented. After this Markov processes are
defined and some of their basic properties are outlined. We will also need the
concept of stochastic differential equations and some results for them.

Finally, an appendix outlines some results on matrix algebra and matrix
differentials that are needed when reading the book.
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5.2 Difference Equations

5.2.1 Introduction

Consider a dynamical system of the form

yt = F(yt−1), (5.1)

for t = 1,2,3, . . . , with y0 = y0 given, where yt ∈ Rm and F : Rm → Rm.
This system is traditionally called a “difference equation” in yt . Let Fn denote
the nth iterate of F , i.e., F 2(y)= F(F(y)) and Fn(y)= F(Fn−1(y)). Then it
is immediate that equation (5.1) has a solution yt , t = 1,2,3, . . . , and that it is
unique and given by yt = F t (y0). In some cases we consider the system (5.1)
without imposing an initial condition. In that case the general solution is the set
of solutions, indexed by the possible initial condition.

The difference equation (5.1) is said to have an equilibrium ȳ if ȳ = F(ȳ).

ȳ is also referred to as a fixed point or stationary point of F . Clearly, if y0 =
ȳ , then the solution is yt = ȳ for all t . A question which is often of interest
is whether yt → ȳ, or at least remains near ȳ, as t →∞, for initial y0 �= ȳ .
This is the stability question. Let Bε(y) denote an ε-ball (or “ε-neighborhood”)
of y . We say that ȳ is stable if, given ε > 0, there is a δ > 0 such that yt ∈
Bε(ȳ) for all t whenever y0 ∈ Bδ(ȳ). An equilibrium ȳ that is not stable is
called unstable. If an equilibrium ȳ is stable and in addition there exists δ > 0
such that limt→∞ yt = ȳ for all y0 ∈ Bδ(ȳ), then ȳ is said to be asymptotically
stable. Because asymptotic stability is a local concept, this aspect is sometimes
emphasized by referring to it as local asymptotic stability. If ȳ is stable and in
addition, for all y0, solutions are bounded and satisfy limt→∞ yt = ȳ, then we
say that ȳ is globally asymptotically stable.

5.2.2 Linear Systems

We are interested in obtaining stability and instability conditions for equilibria
and begin with the linear homogeneous case

yt =Ayt−1. (5.2)

First note that ȳ = 0 is always an equilibrium of equation (5.2) and that if I −
A is nonsingular, then this equilibrium is unique. The condition that I − A is
nonsingular is equivalent to the condition that A has no roots (eigenvalues) of 1.
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The first-order setup (5.2) is more general than may be apparent. Suppose
xt is a scalar which satisfies the pth-order linear difference equation

xt = b1xt−1 + · · · + bpxt−p. (5.3)

Defining y ′t = (xt , xt−1, . . . , xt−p+1), we can rewrite equation (5.3) in the form
(5.2) with A the p× p matrix

A=


b1 b2 · · · bp

1 0 · · · 0
0 1 0 0

...

0 0 · · · 1 0

 . (5.4)

A is known as the “companion” matrix.
Even more generally, if xt is an n× 1 vector which follows the pth-order

difference equation

xt =B1xt−1 + · · · +Bpxt−p,

we can define y ′t = (x ′t , x ′t−1, . . . , x
′
t−p+1) and

A=


B1 B2 · · · Bp

I 0 · · · 0
0 I 0 0

...

0 0 · · · I 0

 . (5.5)

Then the pth-order equation can again be written as equation (5.2). Herem= np

and A is np× np.
The solution to equation (5.2) for initial condition y0 = y0 is given by yt =

Aty0.The key to stability is the eigenvalues of the m× m matrix A. We have
the following result, see LaSalle (1992, Theorems 3.11 and 5.1). See also Stokey
and Lucas Jr. (1989, Theorem 6.4).

Proposition 5.1. Suppose I − A is nonsingular. Then limt→∞ yt = 0 for all
initial y0 if and only if all eigenvalues of A are less than 1 in modulus. If A has
an eigenvalue with modulus greater than 1, then ȳ = 0 is unstable.
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In fact At → 0 if and only if all eigenvalues of A are less than 1 in modulus. We
then also say that A is a stable matrix.1 The proof of the proposition is particu-
larly simple if we restrict attention to matrices A which are diagonalizable,2 i.e.,
such that there exists a representation of the form

A=Q�Q−1,

where � is a diagonal matrix with the eigenvalues of A along the diagonal and
Q is a nonsingular matrix. (In this representation some elements of� andQwill
be complex if some roots of A are complex.) We then have At =Q�tQ−1 and
�t = diag(λt1, . . . , λ

t
m), where λ1, . . . , λm are the eigenvalues of A. It follows

that �t → 0 and At → 0 if and only if all eigenvalues of A are less than 1 in
modulus. If A has a root greater than 1 in modulus, then, writing equation (5.2)
as wt = �wt−1, where wt =Q−1yt , one can verify that for certain initial w0

(and hence for corresponding y0), the solution explodes. For the general case in
which A may not be diagonalizable, the proof works in the same way, but the
Jordan representation of the matrix is used; see, e.g., LaSalle (1992).

We remark that the condition that all roots have modulus less than 1 is
equivalently described as the condition that all roots lie inside the unit circle (in
the complex plane).

Next we consider nonhomogeneous linear systems of the form

yt =Ayt−1 + f (t). (5.6)

It is easily shown that the general solution to equation (5.6) is given by the
general solution to the corresponding homogeneous equation (5.2) plus any par-
ticular solution to equation (5.6). Particular closed-form solutions for specific
functions f (t) can be found in the references.

An important and simple special case is f (t)= a. A particular solution to

yt =Ayt−1+ a (5.7)

is ȳ = (I −A)−1a, provided I −A is nonsingular. The general solution to the
homogeneous equation yt = Ayt−1 is Atc, for arbitrary m× 1 vectors c. Thus

1In the mathematics literature the term “stable matrix” can also refer to the case where the linear
ODE dx/dt = Ax is stable (in a sense discussed later). This should not cause confusion, since it is
always apparent whether a discrete- or continuous-time formulation is considered.

2It can be shown that if the eigenvalues of A are distinct, then A is diagonalizable. The set of
diagonalizable matrices is “generic” in the sense that it contains an open dense subset of the set of
all m×m matrices.
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the general solution to equation (5.7) is

yt = ȳ +Atc, where ȳ = (I −A)−1a,

for arbitrary c. If an initial condition y0 = y0 must also be satisfied, then the
solution to equation (5.7) is yt = ȳ+At(y0− ȳ). Clearly, if A is a stable matrix,
then yt → ȳ as t→∞.

A special case of interest is the univariate pth-order equation

xt = b1xt−1 + · · · + bpxt−p + k.

This can be put in first-order form (5.7) with p× p companion matrix A given
by equation (5.4) and a′ = (k,0, . . . ,0). It can be shown that the eigenvalues of
A are identical to the solutions λ1, . . . , λp to the characteristic polynomial

λp − b1λ
p−1 − b2λ

p−2 − · · · − bp−1λ− bp = 0.

In the case in which the roots λ1, . . . , λp are distinct and b1 + · · · + bp �= 1, the
general solution is given by

xt = k1λ
t
1 + k2λ

t
2 + · · · + kpλ

t
p + x̄,

where x̄ = (1− b1 − · · · − bp)
−1a, and k1, . . . kp are arbitrary. If initial condi-

tions for x0, x−1, . . . , x−p+1 are given, then k1, . . . kp can be chosen uniquely to
meet these initial conditions. We remark that if some of the roots λi are complex,
then they come in conjugate pairs and real solutions are generated by choice of
the corresponding coefficients ki to be conjugate pairs: if λj ,λj+1 are a conju-
gate pair, written in polar form as |λj |(cosθj ± i sin θj ), then the corresponding
terms kjλtj + kj+1λ

t
j+1 can be written as mj |λj |t cos(θj t + nj ), with mj,nj

arbitrary real numbers.
Consider the general nonhomogeneous equation

yt =Ayt−1+wt , (5.8)

wherewt is some arbitrary specified sequence of m×1 vectors. wt is sometimes
called the forcing variable. If this equation holds for t = 1,2,3, . . . and there is
a given initial condition y0 = y0, then it follows by recursive substitution that
the unique solution is given by

yt =
t−1∑
i=0

Aiwt−i +Aty0.
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If equation (5.8) holds for t = 1,2,3, . . . but no initial condition is specified,
then the general solution is yt =∑t−1

i=0A
iwt−i +Atc for c arbitrary, where the

sum is interpreted as zero when t = 0.
It is sometimes useful to consider solutions which are doubly infinite se-

quences. That is, we assume that equation (5.8) or (5.1) holds for all t =
. . . ,−1,0,1, . . . and we look for solution sequences {yt}∞t=−∞. We focus here
on equation (5.8). A particular solution is given by yt =∑∞

i=0A
iw−i , provided

the sum converges. Convergence is guaranteed, for example, if either wt = 0 for
all t sufficiently small or if wt is uniformly bounded over t and all roots of A
have modulus less than 1. The general solution to equation (5.8) is given by

yt =
∞∑
i=0

Aiwt−i +Atc, (5.9)

provided the sum converges. If the side condition y0 = y0 is given, the solution
sets c= y0 −∑∞

i=0 A
iwt−i .

Sometimes we will be interested in sequences {yt }∞t=−∞ which solve equa-
tion (5.8) subject to a different type of side condition, namely that {yt }∞t=−∞ be
bounded (i.e., there exists M such that |yt | ≤M for all t). Suppose that we are
given that the sequence {wt }∞t=−∞ is bounded. If A is a stable matrix, then

yt =
∞∑
i=0

Aiwt−i (5.10)

is a well-defined solution since the sum converges. Furthermore, equation (5.10)
is bounded and is the unique bounded solution to equation (5.8). The general so-
lution is equation (5.9), but Atc becomes unbounded as t→−∞ unless c= 0.

5.2.3 Local Stability of Nonlinear Systems

Returning to the in general nonlinear system (5.1), suppose that ȳ is an equi-
librium. Under appropriate regularity assumptions the local stability of ȳ is de-
termined by the stability of the linear approximation to F at ȳ . We have the
following result; see LaSalle (1992, Theorem 7.1). See also Azariadis (1993,
Theorem 6.2), and Stokey and Lucas Jr. (1989, Theorems 6.5 and 6.6).

Proposition 5.2. Suppose that F is continuously differentiable in a neighbor-
hood of ȳ. Let A=DF(ȳ) denote the m×m Jacobian matrix of first derivatives
of F at ȳ. If all eigenvalues of A are less than 1 in modulus, then ȳ is locally
asymptotically stable. If A has an eigenvalue with modulus greater than 1, then
ȳ is unstable.
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If A has no eigenvalues with modulus greater than 1, but one or more eigen-
values with modulus equal to 1, then ȳ may be (locally) stable, asymptotically
stable, or unstable. Such equilibria are called nonhyperbolic. For a discussion of
this case see Azariadis (1993).

5.3 Differential Equations

5.3.1 Introduction

We consider first-order vector ordinary differential equations (ODEs)

dy

dt
= f (y, t), (5.11)

where y ∈ Rm, t ∈ R, and f (y, t) takes values in Rm. We will often deal with
the autonomous special case dy/dt = f (y). Higher-order differential equations
can be rewritten as first-order systems. An initial value problem adds the side
condition y(t0) = y0. We start with a result on local existence and uniqueness.
These require some conditions on f .

Suppose that f is defined for (y, t) in some set S. We say that y satisfies a
Lipschitz condition on S if there exists a constant K > 0 such that

|f (y, t)− f (x, t)| ≤K|y − x|

for all (y, t) and (x, t) in S. It can be shown that if S takes the form S = {(y, t) ∈
Rm+1 | |y− y0| ≤ b and |t − t0| ≤ a} and if f has continuous partial derivatives
on S which are bounded on S, i.e., |∂f/∂yk(y, t)| ≤K for some K > 0 and all
(y, t) in S, then f satisfies a Lipschitz condition on S with Lipschitz constant
K . (This result also holds if |y − y0| ≤ b is replaced by |y|<∞.)

We can now state the following result on local existence and uniqueness.

Proposition 5.3. Suppose that f is a continuous function defined on the set S =
{(y, t) ∈ Rm+1 | |y − y0| ≤ b and |t − t0| ≤ a}, and that f satisfies a Lipschitz
condition on S. Then for some interval containing t0, there exists a solution
to the initial value problem dy/dt = f (y, t), y(t0) = y0, and this solution is
unique.

We write y(t | t0, y0) to denote the unique solution to the initial value prob-
lem. Under these assumptions it can also be shown that the solutions exhibit
continuous dependence on initial conditions. We have the following.
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Proposition 5.4. Under the conditions of the previous proposition, suppose that
f satisfies a Lipschitz condition on S with Lipschitz constant K . Suppose that
y(t | t0, y0) and y(t | t0, y ′0) are the solutions to dy/dt = f (y, t), with initial
conditions y(t0)= y0 and y(t0)= y ′0, respectively, on some interval I contain-
ing t0, where |y0−y ′0| ≤ δ. Then |y(t | t0, y0)− y(t | t0, y ′0)| ≤ δ exp(K|t − t0|).

Results on nonlocal existence, i.e., for all t , are also available. For the proofs
of the above propositions, further details, and a further discussion of Lipschitz
conditions, see Coddington (1961, Sections 6.5 and 6.6 of Chapter 6).

Local stability and instability are defined analogously to their definitions in
the case of difference equations. Suppose f (y, t) : Rm×[0,∞)→Rm satisfies
conditions ensuring existence, uniqueness, and continuous dependence of solu-
tions on initial conditions. An equilibrium solution ȳ is a solution y(t)= ȳ for
all t ≥ 0. Thus the equilibrium ȳ, also called a rest point or stationary solution,
satisfies f (ȳ, t) = 0 for all t ≥ 0. We say that ȳ is (locally) stable if for every
ε > 0, there exists δ > 0 such that |y0 − ȳ|< δ implies∣∣y(t | t0, y0)− ȳ

∣∣< ε for all t ≥ t0.

The equilibrium is said to be (locally) asymptotically stable if it is stable and in
addition y(t | t0, y0)→ ȳ as t→∞ for all y0 in some neighborhood of ȳ . The
domain of attraction is defined as the set of all points (t0, y0) with the property
that the trajectory y(t | t0, y0) originating from the point converges to ȳ.

We are often interested in autonomous systems, i.e., in systems in which
f (y, t) does not depend explicitly on time. Definitions of an equilibrium and
of stability of the equilibrium for an autonomous differential equation dy/dt =
f (y) are obviously special cases. Finally, we will sometimes need a global sta-
bility concept. We say that an equilibrium ȳ is globally asymptotically stable if
it is stable and if the solution y(t | t0, y0)→ ȳ as t→∞ for all y0 ∈Rm.

The concept of ω-limit set of a trajectory y(t | 0, y0) is defined as the set
of points x such that there exists a sequence of times tn→∞ such that y(tn |
0, y0)→ x . A set A is an invariant set if for all x ∈A, the trajectory y(t | 0, x) ∈
A for all t . It can be shown that the ω-limit set is a closed invariant set.

5.3.2 Linear Systems

Consider the linear homogeneous time-invariant system

dy

dt
=Ay, (5.12)
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where A is a fixed m×m matrix. Clearly y = 0 is a stationary solution and this
is the unique stationary solution if A is nonsingular, i.e., if A has no zero roots.
The general solution to system (5.12) is given by

y(t)= etAc, (5.13)

where the vector c is arbitrary. The particular solution that satisfies the initial
condition y(0)= y0 is y(t)= etAy0.

Here exp(T )= eT , the exponential of a matrix T , is defined by the matrix
generalization of the usual exponential series,

eT =
∞∑
k=0

T k

k! .

It can be shown that this series is absolutely convergent for every m×m matrix
T . The following properties can be shown to hold: (a) if Q = PT P−1, then
eQ = P(eT )P−1, (b) if ST = T S, then eS+T = eSeT , (c) e−S = (eS)−1, and
(d) d/dt (etA) = AetA = etAA. See Hirsch and Smale (1974, Chapter 5) for
details. The general solution (5.13) to equation (5.12) follows directly from (d).

If the matrix A is diagonalizable, then etA can be easily computed. In this
case A=Q�Q−1. Here �= diag(λ1, . . . , λm), where λi , for i = 1, . . . ,m, are
the eigenvalues of A and Q is a nonsingular matrix. Then etA =Qet�Q−1 and

et� =


eλ1t 0 · · · 0

0 eλ2t · · · 0
...

...
...

0 0 · · · eλmt

 .

The conditions for stability of the stationary solution ȳ = 0 are now readily ob-
tained. First note that if λ is real, then eλt → 0 as t→∞ if and only if λ < 0. If
λ= a+bi is complex, then we can write eλt = eatebti = eat(cos(bt)+ i sin(bt))
so that eλt → 0 as t →∞ if and only if a < 0. Thus, in general eλt → 0 as
t→∞ if and only if re(λ) < 0.

To see the implications of the preceding considerations for stability, we
transform variables to x =Q−1y. The solution y(t)= etAy0 can then be written
x(t)= et�x0. It follows that x(t)→ 0 for all x0, and hence y(t)→ 0 for all y0,

if all eigenvalues of A have negative real parts. If instead some eigenvalue of A
has a positive real part, then for some y0, including values arbitrarily close to
0, the path y(t) diverges. If A is not diagonalizable, the Jordan form of A can
be used and the argument is analogous. We thus have the following result; see
Hirsch and Smale (1974, Section 6.5, p. 136).
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Proposition 5.5. Consider the system dy/dt = Ay . The equilibrium ȳ = 0 is
globally asymptotically stable if all eigenvalues of A have negative real parts.
If A has one or more eigenvalues with a positive real part, then the equilibrium
ȳ = 0 is unstable.

For the special case of a 2× 2 matrix A, it can be shown that the condition
that both roots of A have negative real parts is equivalent to the condition that
the trace of A is negative and the determinant of A is positive.

Finally, consider the linear nonhomogeneous system

dy

dt
=Ay + h(t),

where h(t) is a continuous function for a ≤ t ≤ b, subject to the initial condition
y(t0)= y0 for a ≤ t0 ≤ b. The solution is given by

y(t)= eA(t−t0)y0 +
∫ t

t0

eA(t−s)h(s) ds.

This can be verified by differentiation.

5.3.3 Local Stability of Nonlinear Systems

Local stability of the autonomous differential equation

dy

dt
= f (y) (5.14)

can be determined by the linearization of f (y) at an equilibrium point. Here
f : W → Rm, where W ⊂ Rm, W open. ȳ ∈ W is an equilibrium of equa-
tion (5.14) if f (ȳ) = 0. We have the following result; see Hirsch and Smale
(1974, Sections 9.1–9.2, p. 181, and p. 187).

Proposition 5.6. Assume f is continuously differentiable onW . LetA=Df (ȳ)

denote the (Jacobian) derivative of f at ȳ. If all eigenvalues of A have nega-
tive real parts, then ȳ is locally asymptotically stable. If A has one or more
eigenvalues with positive real parts, then ȳ is unstable.

If A has no eigenvalues with real part greater than zero, but one or more
eigenvalues with real part equal to zero, then ȳ may be (locally) stable, asymp-
totically stable, or unstable. For a discussion of this case (“nonhyperbolic” equi-
libria) see Guckenheimer and Holmes (1983).
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5.3.4 Lyapunov’s Method for Stability Analysis

There exists a useful method for determining the local stability or instability
of an equilibrium ȳ, known as Lyapunov’s direct method. The idea behind this
method is to use certain functions to assess the local stability of ȳ. The basic
result is the following; see Brock and Malliaris (1989, Theorem 2.2, p. 94).

Proposition 5.7. Let ȳ ∈W be an equilibrium for equation (5.14). If there exists
a continuously differentiable function U : W1 →R, defined on a neighborhood
W1 ⊂W of ȳ such that

(i) U(ȳ)= 0 and U(y) > 0 if y �= ȳ ,
(ii) (d/dt)U < 0 on W1�{ȳ},

then ȳ is locally asymptotically stable.

The function U(y) in the proposition is called a Lyapunov function. In (ii) of
this proposition the derivative is calculated by the chain rule to be

d

dt
U =DU(y)dy

dt
=DU(y)(f (y)),

where DU(y) is the gradient of the real valued function U(y).
Lyapunov’s method is also available for global stability; see Brock and

Malliaris (1989, Theorem 4.2, p. 116).

Proposition 5.8. Suppose that the equilibrium ȳ for system (5.14) is unique,
f (y) is continuously differentiable on Rm, and let U : Rm→ R be a continu-
ously differentiable function such that

(i) U(ȳ)= 0 and U(y)≥ 0 for y �= ȳ,
(ii) (d/dt)U(ȳ)= 0, (d/dt)U(y) < 0 for y �= ȳ,

(iii) U(y)→∞ if |y|→∞.

Then all solutions of equation (5.14) exist on [0,∞), are bounded, and converge
to ȳ as t→∞.

We note that there exist alternative slightly different forms of these results
with somewhat different conditions on the ODE (5.14). Corresponding results
for unstable equilibrium points are also available. The references at the end of
this chapter can be consulted for the detailed statements.

Finding a function with the required properties is the main difficulty when
applying Lyapunov’s method. There is no general way for finding Lyapunov
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functions, although a number of specific results are available in the literature.
Nevertheless, it can be shown that this method is general in the sense that given
a locally asymptotically stable equilibrium point for the ODE (5.14), a Lyapunov
function can in principle be constructed. This is the general content of the so-
called converse Lyapunov theorems and we will make use of these results. We
will need the following.

Proposition 5.9. Suppose that ȳ ∈W is a locally asymptotically stable equilib-
rium for system (5.14) with a domain of attraction G. Suppose also that f is
continuous in every bounded region of G. Then there exists a function U(y) with
continuous partial derivatives of all orders on every bounded region of G such
that

(i) U(ȳ)= 0 and U(y) > 0 for all y ∈G, y �= ȳ,
(ii) (d/dt)U(y) < 0 for all y ∈G, y �= ȳ ,

(iii) U(y)→∞ if y→ ∂G or |y|→∞.

This result is part of Krasovskii (1963, Theorem 5.3, p. 31).
We will also need a more specialized result for the case of exponential sta-

bility. First, define an equilibrium point ȳ of the ODE (5.11) to be exponentially
stable if

|y| ≤me−δ(t−t0)|y0| (5.15)

for some constants m > 0, δ > 0 in some region G = {|y| < h, 0 < t <∞}.
(Here |y| denotes the Euclidean norm of vector y .) The required result is (this is
Krasovskii, 1963, Theorem 11.1, p. 60):

Proposition 5.10. Whenever the solution y(t | y0, t0) of equation (5.11) satis-
fies equation (5.15), there exists a function U(y, t) in region G satisfying

(i) c1|y|2 ≤ U(y, t)≤ c2|y|2,
(ii) (d/dt)U(y, t)=DyU(y, t)(f (y, t))+DtU(y, t)≤−c3|y|2,

(iii) |DyU(y, t)| ≤ c4|y|,

for some positive constants ci , i = 1,2,3,4.

The notes on the literature at the end of this chapter provide further refer-
ences for expositions of Lyapunov’s method.
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5.4 Linear Stochastic Processes

5.4.1 Introduction

A stochastic process is a collection of random variables indexed by time. We fo-
cus on infinite or doubly infinite collections of random variables indexed by dis-
crete time, {Yt }∞t=0 = {Y0, Y1, Y2, . . . } or {Yt }∞t=−∞ = {. . . , Y−1, Y0, Y1, . . . }. As
an example, if Yt ∼ IIN(0, σ 2), i.e., are identically and independently distributed
normal random variables, then {Yt }∞t=−∞ is a simple stochastic process known
as Gaussian white noise. A particular outcome for each of the random variables
{yt}∞t=−∞ = {. . . , y−1, y0, y1, . . . } is known as a realization of the stochastic
process.

A more formal definition of stochastic process relies on measure theory and
the concept of a probability space. A triple (�,F,P ) is called a probability
space if � is a given set, F is a σ -algebra on �, and P is a probability measure
on (�,F). Here� is interpreted as the sample space or set of possible outcomes.
A σ -algebra F on � is a collection of subsets of �, including� and the null set
∅, which is closed under complementation and countable unions. A probability
measure P is a function P : F → [0,1] such that P(∅) = 0, P(�) = 1, and
P(

⋃∞
i=1 Ai) =∑∞

i=1 Ai if Ai ∈ F and Ai ∩ Aj = ∅ for i �= j . For any set
F ∈F , P(F) is interpreted as the probability that the event F occurs.

The pair (�,F), where F is a σ -algebra of subsets of �, is also called a
measurable space. A real valued function f : �→R is said to be measurable,
or more specifically F -measurable, if {ω ∈� : f (ω)≤ a} ∈F for all real a. A
vector valued function f : �→ Rn is measurable if {ω ∈� : f (ω)≤ a} ∈ F
for all a ∈Rn. [Here b ≤ a if bi ≤ ai for i = 1, . . . , n, where b′ = (b1, . . . , bn)

and a′ = (a1, . . . , an).]
A random variable Y on (�,F,P ) is then defined as a measurable function

Y : �→ R. Every random variable Y induces a probability measure µY on
(R,B), where B is the σ -algebra of Borel sets on R (the collection formed by a
countable number of intersections, unions, or complements of open sets of R).
This is given by µY (B) = P(Y−1(B)). The distribution function F(y) of Y is
defined by F(y) = µY ((−∞, y]). All of the usual stochastic concepts can be
defined in terms of the probability spaces. In particular, the Lebesgue approach
can be used to define the integral

∫
� f (ω)P(dω), also written

∫
f dP , of a

function f with respect to a probability measure P . (The Lebesgue integral is
defined for a broader class of functions than the Riemann integral but coincides
with it when the latter exists.)

The expected value E(Y ) of a random variable Y is then defined as E(Y )=∫
�
Y(ω)P(dω)= ∫

yµY (dy). When the distribution function F(y) is differen-
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tiable, it can be represented by a density function f (y)= dF/dy and we have
E(Y )= ∫

yf (y) dy .
There are several inequalities for expected values that are often needed.

Jensen’s inequality states that f (E(X)) ≤ Ef (X) if f is convex. In particu-
lar, |E(X)| ≤ E|X|. The Schwarz inequality states that E|XY | ≤ (EX2)1/2×
(EY 2)1/2.

A random vector Y ′ = (Y1, . . . , Yn) on (�,F,P ) is a measurable vector
function Y : �→ Rn. Again, this induces a probability measure µY on Rn.

The distribution function F(y) of a random vector continues to be given by
F(y)= µY ((−∞, y]), where (−∞, y] is interpreted as {x ∈ Rn : x ≤ y}. The
expected value of a random vectorE(Y ) is the n-vector of expectationsE(Y )′ =
(EY1, . . . ,EYn).

If A ⊂ F is a σ -algebra and f : �→ R is measurable, the conditional
expectation of f relative to A is an A-measurable function E(f |A) such that∫
C E(f | A)(ω)P (dω) =

∫
C f (ω)P(dω) for all C ∈ A. One can also define

conditional probabilitiesP(A | B), P (A |X), and P(A |A) with respect to a set
B ⊂�, a random variable X, or a σ -algebra A, respectively. For presentations
of measure theory and probability, see the references at the end of this chapter.

A stochastic process can then be formally defined as a parameterized set of
random variables {Yt }t∈T defined on a probability space, where T ⊂R. If the Yt
are random vectors, then {Yt }t∈T is a multivariate stochastic process. Continuous
stochastic processes usually set T to be [0,∞) or [a,b]. Discrete stochastic
processes set T = {0,1,2, . . .} or T = {. . . ,−1,0,1, . . .}. Note that for each
t ∈ T , ω→ Yt (ω) is a random variable, whereas for fixed ω ∈�, t→ Yt(ω) is
a path or sequence called the realization or path of Yt .

Until Section 5.6 we now restrict attention to discrete-time stochastic pro-
cesses. Let µt = EYt denote the (unconditional) expected value of Yt , γ0t =
E(Yt − µt)

2 denote the variance of Yt , and γjt = E(Yt − µt )(Yt−j − µt−j ),
for j = 1,2,3, . . . , denote the autocovariances of Yt . If for all t we have
µt = µ <∞, γ0t = γ0 <∞, and γjt = γj <∞, for j = 1,2,3, . . . , then the
process is said to be covariance stationary. More generally, suppose that Yt is an
m× 1 multivariate stochastic process, i.e., sequence of random vectors indexed
by time. If the mean EYt = µ <∞ is independent of calendar time and if the
autocovariances�j =E(Yt −µ)(Yt−µ)′ <∞, j = 0,1,2,3, . . . , are indepen-
dent of calendar time, the vector stochastic process Yt is said to be covariance
stationary.

Other concepts of stationarity, however, are also useful. A stochastic pro-
cess Yt is said to be strictly stationary if the joint distribution functions of
(Yt1, . . . , Ytk )

′ and (Yt1+τ , . . . , Ytk+τ )′ are the same for all positive integers k, τ
and all t1, . . . , tk ∈ T . The term “stationary” can denote either covariance sta-
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tionary or strictly stationary, depending on the context, and it is common to use
the term “stationary” to mean “covariance stationary.”

A class of stochastic processes of particular interest is martingales.
A stochastic process Yt , t ≥ 1, is a martingale if (i) E|Yt |<∞, and (ii) the con-
ditional expectationE(Yt+1 | Y1, . . . , Yt )= Yt for all t ≥ 1. This conditional ex-
pectation should be interpreted asE(Yt+1 | σ(Y1, . . . , Yt )), where σ(Y1, . . . , Yt )

is the σ -algebra generated by the random variables Y1, . . . , Yt , i.e., the smallest
σ -algebra such that Y1, . . . , Yt are measurable with respect to it. A stochastic
process Dt is a martingale difference sequence if Dt = Yt − Yt−1, where Yt is a
martingale. Note that E(Dt |Dt−1, . . . ,D1)= 0.

5.4.2 Notions of Stochastic Convergence

Consider a sequence of jointly distributed random variables X1,X2,X3, . . . .

There are several concepts of stochastic convergence, i.e., several senses in
which the sequence X1,X2,X3, . . . might converge to a random variable X or
a constant a. The principal ones are:

1. A sequence of random variables X1,X2,X3, . . . is said to converge with
probability 1 to the random variable X if

P
(

lim
n→∞Xn =X

)
= 1.

Equivalently, in terms of the probability space (�,F,P ), we say that Xn

converges to X with probability 1 if there is a set A ∈ F with P(A) = 0
such that limn→∞Xn(ω)=X(ω) for all ω ∈Ac (where Ac denotes the com-
plement of A). We often write Xn→ X w.p.1. The notion is also called al-
most sure convergence and is equivalently written Xn → X almost surely,
Xn→X a.s., or Xn

a.s.→X. A special case is convergence w.p.1 to a constant
a, i.e., X is simply taken to be a constant and we write Xn→ a w.p.1.

2. A sequence of random variables X1,X2,X3, . . . is said to converge in prob-
ability to X if

lim
n→∞P

{|Xn−X|< ε
}= 1 for all ε > 0.

We usually write Xn
p→X or Xn

p→ a. Intuitively, convergence in probability
means that by choosing n large one can make Xn arbitrarily close to X with
arbitrarily high probability.
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3. The sequence Xn converges to X in quadratic mean, also called convergence
in mean square, if

lim
n→∞E|Xn−X|2 = 0.

We write Xn
m.s.→ X (or Xn

m.s.→ a). More generally Xn converges to X

in pth mean, for p ≥ 1, if limn→∞E|Xn − X|p = 0. These can also be
called L2- and Lp-convergence, respectively, provided one introduces the
spaces Lp = Lp(�,F,P ), for p ≥ 1, consisting of random variables X

which satisfy E|X|p <∞. The Lp norm of a random variable is defined
as ‖X‖p = (E|X|p)1/p.

4. Finally, supposeXn has distribution function Fn and X has distribution func-
tion F . Then we say that the sequence Xn converges in distribution to X (or
that Fn converges in distribution to F ) if

lim
n→∞Fn(x)= F(x)

for all points x at which F is continuous. This concept of convergence is also

called convergence in law or weak convergence. We typically write Xn
d→X

or Xn
L→X, or sometimes Xn

d→ F or Xn
L→ F .

All of these convergence concepts can be extended in a straightforward way
to sequences of random vectors. It can be shown that convergence a.s. implies
convergence in probability, that convergence in mean square implies conver-
gence in probability, and that convergence in probability implies convergence
in distribution. There are many other results on the relationships between these
concepts and on limits of functions of sequences of random vectors. See, for
example, Hamilton (1994, Chapter 7) or Neveu (1965, Chapter 2).

Classic results from the statistics literature concern the sample means of
sequences of iid random variables. Suppose X1,X2,X3, . . . is a sequence of
iid random variables with mean µ. Let X̄n = n−1 ∑n

i=1Xi denote the sample
mean using X1,X2, . . . ,Xn. Then the Weak Law of Large Numbers states that

X̄n
p→ µ. Under these assumptions we also have the stronger result, known as

the Strong Law of Large Numbers, that X̄n
a.s.→ µ. If, in addition, Xn has fi-

nite variance σ 2, then the Central Limit Theorem states that
√
n(X̄n − µ)

d→
N(0, σ 2). Here N denotes the normal distribution with mean 0 and variance σ 2.

Laws of large numbers and central limit theorems hold under much more gen-
eral conditions (e.g., for serially dependent sequences) and there are many ver-
sions of each. In addition to Hamilton (1994, Chapter 7), good references in the
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econometrics and economics literature are Davidson (1994), White (1984), and
Stokey and Lucas Jr. (1989).

The martingale convergence theorem is an important result behind con-
vergence results in stochastic approximation. We say that a sequence Yt , t =
1,2, . . . , is a submartingale relative to a sequence of σ -algebras Ft , where
Ft ⊂Ft+1 and Yt is measurable with respect to Ft , if E(|Yt |) <∞ andE(Yt+1 |
Ft ) ≥ Yt almost surely. The martingale convergence theorem states that for
any submartingale Yt , t = 1,2, . . . , such that supt E(|Yt |)= K <∞, we have
Yt → Y almost surely, where Y is a random variable satisfying E(|Y |)≤K .

5.4.3 ARMA Processes and VARs

For each t ∈ T , suppose that εt is a covariance stationary process with mean 0
and autocovariance function γ (0)= σ 2 and γ (h)= 0 for h= 1,2,3, . . . . Here
T = {0,1,2, . . .} or T = {. . . ,−1,0,1, . . .}. We say that εt is a white noise
process.

The autoregressive-moving average (ARMA) class is an important class of
discrete-time univariate stochastic processes. Yt is an ARMA(p, q) process if

Yt − φ1Yt−1 − · · · − φpYt−p = εt + θ1εt−1 + · · · + θqεt−q , (5.16)

for each t ∈ T , where εt is white noise and p,q are nonnegative integers. If
Yt − µ is an ARMA(p, q) process, then Yt is said to be an ARMA(p, q) pro-
cess with mean µ. Equation (5.16) is a stochastic difference equation, i.e., a
nonhomogeneous difference equation in which the exogenous forcing variable
εt + θ1εt−1+ · · ·+ θqεt−q is stochastic. As with nonstochastic difference equa-
tions, it will in general have multiple solutions. If T = {0,1,2, . . .} and initial
conditions Y−1, . . . , Y−p are specified, then this will determine a unique solu-
tion. If instead T = {. . . ,−1,0,1, . . .}, then we usually impose the side condi-
tion of stationarity.

We initially restrict attention to the case T = {. . . ,−1,0,1, . . .}. Equation
(5.16) is often written as

φ(L)Yt = θ(L)εt ,

where φ(z) = 1 − φ1z − · · · − φpz
p and θ(z) = 1 + θ1z + · · · + θqz

q and L

denotes the lag operator LjYt = Yt−j for j = . . . ,−1,0,1, . . . .
A pure moving average process of order q , Yt = θ(L)εt , known as an

MA(q) process, is easily seen always to be unique and stationary. This is
not necessarily true of pure autoregressive processes of order p, defined by
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φ(L)Yt = εt and known as AR(p) processes, or of ARMA(p, q) processes.
Consider the AR(1) process

Yt = φYt−1 + εt . (5.17)

Applying the results from Section 5.2.2, we see that a particular solution is

Yt =
∞∑
i=0

φiεt−i, (5.18)

provided this sum is well defined, and that the general solution is

Yt =
∞∑
i=0

φiεt−i + cφt , (5.19)

with c arbitrary.
We must therefore consider the convergence of infinite sums such as equa-

tion (5.18). This is most conveniently done using the framework of Hilbert
spaces, which we now briefly discuss. A good compact reference is Brockwell
and Davis (1991, Chapter 2), which we here follow. A vector space on which
an inner product is defined is called an inner-product space. Based on this inner
product, a vector norm ‖x‖ can be defined as the square root of the inner product
of the vector with itself. For example, the Euclidean space is the set of vectors
(x1, . . . , xk)

′ ∈ Rk in which the inner product is defined as 〈x,y〉 =∑k
i=1 xiyi

and the norm of x is its length. Many familiar properties of Euclidean space,
such as the Cauchy–Schwarz inequality |〈x,y〉| ≤ ‖x‖‖y‖ and the triangle in-
equality ‖x + y‖ ≤ ‖x‖ + ‖y‖, hold generally for inner-product spaces. A se-
quence of elements {xn} in the space converges in norm to an element x in the
space if ‖xn− x‖→ 0 as n→∞.

A sequence {xn} of elements in an inner-product space is a Cauchy sequence
if for all ε > 0, there exists N > 0 such that ‖xn − xm‖< ε for all m,n > N . A
Hilbert space is an inner-product space which is complete, i.e., in which every
Cauchy sequence {xn} converges in norm to some element of the space. Com-
pleteness of the Euclidean space follows from completeness of the real numbers.

We now define the spaceL2(�,F,P ).Given a probability space (�,F,P ),
consider the collection C of random variables X defined on � and satisfying the
condition EX2 <∞. It is easily shown that C is a vector space over the reals.
Defining

〈X,Y 〉 =E(XY),
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it can easily be verified that 〈X,Y 〉 satisfies all of the properties on an inner prod-
uct, provided that we treat two vectors X and Y as equivalent if P(X = Y)= 1.
The space L2, i.e., L2(�,F,P ), is therefore a normed vector space. Note that
norm convergence to X ∈ L2 of a sequence {Xn}, where Xn ∈ L2, means that
E|Xn −X|2 → 0. This is identical to mean square convergence defined earlier,
i.e.,Xn

m.s.→ X. Finally, it can be shown that L2 is complete and hence that L2 is a
Hilbert space. In consequence, a sequence {Xn} in L2 converges in mean square
to some random variable X ∈ L2 if and only if it satisfies the Cauchy criterion,
i.e., if and only if E|Xn −Xm|2 → 0 as m,n→∞.

Returning now to the infinite sum (5.18), the sequence Sn =∑n
i=0 φ

iεt−i
satisfies E(Sn− Sm)

2 = σ 2 ∑n
i=m+1 φ

2i , for n >m. Clearly, E(Sn− Sm)
2 → 0

provided |φ|< 1. Hence the Cauchy criterion is satisfied and the sum (5.18) con-
verges in mean square if |φ|< 1. It is then easily verified that Yt =∑∞

i=0 φ
iεt−i

is covariance stationary by direct computation of the first and second moments.
Finally, it is easily seen that any other solution (5.19) to equation (5.17), with
c �= 0, is nonstationary. Hence when |φ|< 1, there is a unique stationary solu-
tion to equation (5.17) given by equation (5.18).

If |φ| > 1, then there is a unique stationary solution of the form Yt =
−∑∞

i=1 φ
−iεt+i . This solution is not usually of interest since Yt is correlated

with future white noise shocks εt+i . Following the terminology of Brockwell
and Davis (1991), we say that an ARMA(p, q) process is causal relative to {εt }
if there exists an absolutely summable sequence ψi such that

Yt =
∞∑
i=0

ψiεt−i (5.20)

for t = . . . ,−1,0,1, . . . . Here a sequence {ψi}∞i=0 is said to be absolutely
summable if

∑∞
i=0 |ψi | < ∞. It can be shown that if {ψi}∞i=0 is absolutely

summable, then Yt is stationary. Thus if |φ| > 1, then there are no causal sta-
tionary solutions to equation (5.17). Note that the condition |φ| < 1 is equiva-
lent to the condition that the root (zero) φ−1 of φ(z)= 1−φz has absolute value
greater than 1.

We can now state the central result for ARMA processes (see Brockwell
and Davis, 1991, Theorem 3.1.1).

Proposition 5.11. Let {Yt } be an ARMA(p, q) process for which the polynomi-
als φ(·) and θ(·) have no common zeros. Then Yt is causal if and only if all roots
of φ(·) lie outside the unit circle. The coefficients {ψi} of the solution (5.20) are
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determined by the relation

ψ(z)=
∞∑
i=0

ψiz
i = θ(z)/φ(z), |z| ≤ 1.

The process (5.20) is thus the unique stationary solution to equation (5.16) if all
roots of φ(·) lie outside the unit circle.

The stationary solution given in the proposition is often written as Yt =
(θ(L)/φ(L))εt .

Consider now the ARMA(p, q) process (5.16) for t = 0,1,2, . . . , when
there are given initial conditionsY−1, . . . , Y−p . Again εt is a white noise process
for t =−q,−q + 1,−q + 2, . . . , and it is convenient to set εt = 0 for t <−q .
By recursive substitution, it can be verified that there is a unique solution given
the initial conditions.

As an illustration, consider the AR(1) case (5.17). By recursive substitution,
we have the solution Yt =∑t

i=0 φ
iεt−i +φtY−1. If |φ| ≥ 1, this is a nonstation-

ary and explosive process, e.g., in the sense that var(Yt )→∞ as t →∞. If
|φ|< 1, the process is not covariance stationary but it is asymptotically covari-
ance stationary, i.e., for each k = 0,1,2, . . . , we have EYt → 0 and γkt → γk

as t→∞. It can also be seen that Yt converges in mean square to the process∑∞
i=0 φ

iεt−i as t→∞.
Suppose, as in Proposition 5.11, that {Yt } is an ARMA(p, q) process for

which the polynomials φ(·) and θ(·) have no common zeros. Then a partic-
ular solution is given by Yt = (θ(L)/φ(L))εt . [The polynomial θ(z)/φ(z) is
always well defined for |z| sufficiently small and the sum (θ(L)/φ(L))εt al-
ways converges since we have set εt = 0 for t < −q .] The roots of φ(z) are
identical to the inverses of the roots λ1, . . . , λp of the complementary polyno-
mial λp − φ1λ

p−1 − φ2λ
p−2 − · · · − φp−1λ− φp = 0. Assuming for simplic-

ity that these roots are distinct, the general solution to equation (5.16) is given
by

Yt =
(
θ(L)/φ(L)

)
εt + k1λ

t
1 + · · · + kpλ

t
p,

where the coefficients k1, . . . , kp are arbitrary. The unique solution to equa-
tion (5.16) given the initial conditions is obtained by choosing k1, . . . , kp to
meet the given p initial conditions. If all roots of φ(·) lie outside the unit circle,
so that all roots λ1, . . . , λp have modulus less than 1, then Yt → (θ(L)/φ(L))εt

in mean square as t →∞ and the solution is asymptotically covariance sta-
tionary. Often in problems with initial conditions, the solution is simply said
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to be “stationary” when what is meant is “asymptotically covariance station-
ary.”

Consider now multivariate linear stochastic processes. An n × 1 vector
stochastic process εt is said to be a white noise process if Eεt = 0, Eεtεs = 0,
for t �= s, and Eεtε′t =�ε . A vector autoregression of order p, or VAR(p), is a
multivariate stochastic process of the form

Xt =�1Xt−1 + · · · +�pXt−p + εt , (5.21)

where εt is multivariate white noise. Here �i , for i = 1, . . . ,p, are n×n matri-
ces of constants. If Xt −µ is a VAR(p) process, then Yt is said to be a VAR(p)
process with mean µ. Using matrix lag polynomials, we can equivalently write
equation (5.21) as

�(L)Xt = εt , where �(z)= I −�1z− · · · −�pz
p,

for complex z. As with nonstochastic difference equations, Xt can be rewritten
in first-order form

Yt =AYt−1 + vt , (5.22)

for t ∈ T , where A is the companion matrix, i.e., the matrix (5.5) with Bi re-
placed by �i , and where Y ′t = (X′t , . . . ,X′t−p+1) and v′t = (ε′t ,0′, . . .0′). Here
Yt and vt are np× 1 and A is np× np.

Suppose T = {. . . ,−1,0,1, . . .}. Then from equation (5.22) there is a sta-
tionary solution Yt =∑∞

i=0A
iεt−i , provided all eigenvalues of A lie inside

the unit circle, i.e., have modulus less than 1. Under these conditions the co-
efficients Ai are absolutely summable and the infinite sum converges in mean
square. The stationary solution Xt to equation (5.21) is given by the first com-
ponent of Yt =∑∞

i=0 A
iεt−i . The stationary solution Xt can instead be writ-

ten as Yt = �−1(L)εt , where of course �−1(z) is defined by the equation
�−1(z)�(z) = I . It can be shown that the eigenvalues of A are the inverses
of the solutions to det�(z)= 0. We have the following result.

Proposition 5.12. If all solutions to det�(z)= 0 lie outside the unit circle, then
equation (5.21) has a unique stationary solution Xt =∑∞

i=0 �iεt−i , where the
matrices �i are determined uniquely by �(z)≡∑∞

i=0 �iz
i = �−1(z), |z| ≤ 1.

This proposition is a special case of the extension to multivariate
ARMA(p, q) processes. See Brockwell and Davis (1991, Chapter 11, Theo-
rem 11.3.1).
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If T = {0,1,2, . . .} and initial conditions Y−1, . . . , Y−p are specified, then
there is a unique solution to equation (5.21) and, provided all solutions to
det�(z)= 0 lie outside the unit circle, the solution is asymptotically covariance
stationary.

5.5 Markov Processes

Markov processes form an important class of stochastic processes for many ap-
plications. We need some basic concepts and results for Markov processes in
discrete time.

The characteristic feature of Markov processes is the notion that the influ-
ence of the past comes only through the current state. Thus the probabilities of
the possible states of the process next period are a function of only the current
state, and Markov processes are usually defined in terms of transition probabili-
ties for moving from one state to another next period.

A transition function for a measurable space (Z,Z) is a function � : Z ×
Z→[0,1] such that

(i) for each z ∈Z : �(z, ·) is a probability measure on (Z,Z), and
(ii) for each A ∈Z : �(·,A) is a Z-measurable function.

Transition functions are interpreted as the probabilities

�(z,A)= Pr{zt+1 ∈A | zt = z},

where zt denotes the random state in period t .
We limit ourselves to the case where the transition probabilities are taken to

be independent of time t , so that the transitions are stationary. It can be shown
that, given a transition function on a measurable space (Z,Z), there exists a
stochastic process on the countable space (Z∞,Z∞), where Z∞ =Z×Z×· · ·
and Z∞ is the σ -algebra generated by the finite unions of finite rectangles of
the form A=A1 ×A2 × · · · ×AT ×Z×Z× · · · .

Given a transition probability � and a Z-measurable function f , we define
the Markov operator Tf associated with � by the formula

(Tf )(z)=
∫
f (z′)�(z, dz′), for all z ∈Z.
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(Tf )(z) can be interpreted as the conditional expectation of f next period, given
z as the current state of the process. It can be shown that operator T maps the
space of bounded Z-measurable functions into itself.

For a probability measure on (Z,Z), we define the adjoint operator T ∗λ by

(T ∗λ)(A)=
∫
�(z,A)λ(dz), for all A ∈Z.

(T ∗λ)(A) is the probability that the state in the next period lies in set A if the
current state is drawn according to the probability measure λ. Operator T ∗ maps
the space of probability measures on (Z,Z) into itself. The connection between
T and T ∗ is that for any bounded Z-measurable function f , we have∫

(Tf )(z)λ(dz)=
∫
f (z′)(T ∗λ)(dz′)

for all probability measures λ.

Example 1: Finite-state Markov chains are a special case of Markov pro-
cesses. In this case the space � is a finite set, say {1, . . . , S}, and the process
moves between these states in accordance with probabilities πij = Pr{zt+1 =
j | zt = i}. These probabilities form the transition matrix P = (πij ).

Example 2: Stochastic difference equations of the form

zt+1 = g(zt ,wt+1),

where wt+1 is a sequence of iid random shocks on a probability space
(W,W,µ) and g : Z × W → Z is a given measurable function, define a
transition function on Z by the formula �(z,A) = µ([�(A)]z). Here �(A) =
{(z,w) ∈ Z ×W | g(z,w) ∈ A} and [C]z denotes the z-section of a set C, i.e.,
[C]z = {w | (z,w) ∈ C}.

If an initial probability measure λ0 for the initial state of the process is
given, the adjoint operator gives the probability measures for the subsequent
states, i.e., λt = T ∗λt−1. We need the concept of an invariant measure λ∗ which
has the property that the probabilities of the different states remain unchanged
over time. It is given by the fixed point of T ∗, that is, λ∗ = T ∗λ∗.

A variety of sufficient conditions for the existence of an invariant measure
and for its uniqueness are available in the literature. The sense of convergence
is important in the general case, and there exist results for both almost sure and
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weak convergence of Markov processes. The references at the end of the chapter
may be consulted for details.

It can be shown that a finite Markov chain always has at least one invariant
distribution. Here we develop the necessary concepts and conditions for the ex-
istence of a unique invariant measure only for the case of finite Markov chains
introduced in Example 1 above.

We introduce several definitions. The n-step transition matrix is Pn =
(πij (n)), where πij (n) = Pr(zt+n = j | zt = i). According to Chapman–
Kolmogorov equations, Pn = Pn, the nth power of P . A state i of a Markov
chain is transient if Pr(zn = i for some i ≥ 1 | z0 = i) < 1. Otherwise, it is re-
current. Let Ti =min{n≥ 1 | zn = i} and mi =E(Ti | z0 = i). A recurrent state
i is positive recurrent if mi <∞. The Markov chain is said to be recurrent if all
states are positive recurrent.

A set C of states is irreducible if all i, j ∈ C communicate, i.e., πij (m) > 0
for some m≥ 0. The Markov chain is said to be irreducible if the set of all states
is irreducible. We also say that a state i of the Markov chain is periodic if the
greatest common divisor of the set {n | πii(n) > 0} is bigger than 1.3 Otherwise,
it is said to be aperiodic. The Markov chain is aperiodic if all its states have that
property.

We will need the following result for the existence of a unique invariant
distribution (see Grimmett and Stirzaker, 1992, theorems on p. 208 and p. 214).

Proposition 5.13. A finite Markov chain has a unique invariant distribution if
it is aperiodic, irreducible, and recurrent. The limits of the n-step transition
probabilities are given limn→∞ πij (n)=m−1

j .

5.6 Ito Processes

Some concepts and results for stochastic differential equations are needed for
the analysis of constant-gain algorithms and speed of convergence results in
Chapter 7.

The basic building block for them is the Wiener process, which can heuris-
tically be thought of as the limit of a discrete-time random walk in intervals.4

Suppose that the random-walk process is observed at times t , t+dt , t+2dt, . . .

3Note that the set {n | πii (n) > 0} consists of periods n in which the return to state i is possible.
4There exist several ways to construct the Wiener process rigorously; see the references at the

end of the chapter.
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and that it has unit variance over the interval [t, t+1]: Consider dt is sufficiently
small, so that we can approximate (dt)2 = 0. We write

W(t + dt)=W(t)+ e(t + dt), e
iid∼N(0, dt), W(0)= 0.

Introducing the notation

dW(t)≡W(t + dt)−W(t), (5.23)

we have the limiting continuous-time process W(t) which is called the Wiener
process or the Brownian motion. Note that dW(t) is approximately Z(t)dt1/2,
where Z(t) is a standard normal variate. The rigorous representation of equa-
tion (5.23) is the integral form

W(t)=W(0)+
∫ t

0
dW(u). (5.24)

This form can be obtained through a limiting operation from discrete time. One
should view equation (5.23) as a convenient way of writing the precise expres-
sion (5.24).

The Wiener process is a Markov process in continuous time. It has indepen-
dent increments and the changes of the process over finite intervals are normally
distributed. In computations, the following properties are needed:

(i) E[dW(t)] = 0,
(ii) E[dW(t) dt] =E[dW(t)]dt = 0,

(iii) E[dW(t)2] = dt.

These follow since the increments dW are iid zero mean random variables with
instantaneous variance equal to dt . From these three properties one also has the
results Var[dW(t)2] = 0, E[(dW(t) dt)2] = 0, and Var[dW(t) dt] = 0, which
provide the important multiplication rules

(iv) dW2 = dt ,
(v) dW dt = 0,

(vi) dt2 = 0.

The Wiener process or Brownian motion is continuous in t , but it is nowhere
differentiable in t . It is of unbounded variation but bounded in quadratic vari-
ation. The distribution of W(u) given W(t), t < u, is normal with mean W(t)

and variance (u− t).
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Quite general continuous-time stochastic processes can be constructed from
the Brownian motion. If we allow for generalized drift and heteroscedasticity in
the discrete-time random walk, we have the model

X(t + 1) = X(t)+ α(X(t), t)+ σ(X(t), t)e(t + 1),

X(0) = X0, e
iid∼N(0,1).

This has a continuous-time limit of the form

dX= α(X, t) dt + σ(X, t) dW, X(0)=X0, (5.25)

which is called an Ito process. The mean and variance of the increments are
E(dX)= α(X, t) dt and var(dX)= (σ (X, t))2 dt .

Equation (5.25) is a convenient way of writing the integral expression

X(t)=X0 +
∫ t

0
α(X(s), s) ds +

∫ t

0
σ(X(s), s) dW(s). (5.26)

Under suitable regularity assumptions the first integral in equation (5.26) has a
standard interpretation, while the second one is a stochastic integral whose pre-
cise definition and existence requires a lengthy exposition in a rigorous treatment
and will be omitted (see the references at the end of the chapter).

The following examples illustrate equation (5.25).

Example 3: Let dX = α dt+σ dW,where α and σ are constant. The increment
dX has mean α dt and variance σ 2 dt . This case is known as the arithmetic
Brownian motion. α is called the drift and σ is called volatility of the process.
This process has the following properties: (i) X may be positive or negative,
(ii) the distribution of X(u) given X(t), t < u, is normal with mean X(t) +
α(u− t) and variance σ 2(u− t).

Example 4: Let dX= αX dt + σXdW, where α and σ are constant. This pro-
cess is known as the geometric Brownian motion. It has the following properties:
(i) if X(0) > 0, the process will remain positive; (ii) X has an absorbing barrier
at 0: if X(t) hits zero for some t (which is a zero-probability event), then X will
remain at 0, (iii) the conditional distribution of X(u), given X(t), t < u, is log-
normal. Thus lnX(u) has the conditional mean ln(X(t))+α(u− t)− 1

2σ
2(u− t)

and conditional variance σ 2(u− t).
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5.6.1 Ito’s Lemma

We consider a twice continuously differentiable function f = f (X, t) and ex-
pand it using Taylor series. If X is an Ito process, we need to take into con-
sideration the second-order term, since dX is a random variable with a positive
variance. Thus we have5

df = fX dX+ ft dt + 1

2

[
fXX dX

2 + 2fXt dXdt + ftt dt
2]

= fX dX+ ft dt + 1

2
fXX dt

by the above multiplication rules for differentials. Substituting in dX = α dt +
σ dW yields

df =
[
αfX + ft + 1

2
fXX

]
dt + σfX dW, (5.27)

which is (one-dimensional) Ito’s lemma.6 This result says that if X(t) is an Ito
process, then f (X, t) is also an Ito process with differential (5.27).

Suppose that we have two Ito processes

dX = α(X,y, t) dt + σ(X,Y, t) dW,

dY = β(X,Y, t) dt + v(X,Y, t) dZ,

where dW and dZ are standard Brownian motions with correlation dW dZ =
ρ dt . We consider the differential of the function f (X,Y, t):

df = fX dX+ fY dY + ft dt

+ 1

2

[
fXX dX

2 + 2fXY dXdY + fYY dY
2].

Since dX2 = σ 2 dt , dY 2 = v2 dt , dXdY = ρσv dt , we obtain the bivariate Ito’s
lemma

df =
[
αfX + βfY + ft + 1

2
σ 2fXX + ρσvfXY + 1

2
v2fYY

]
dt

+σfX dW + vfY dZ.

5The subscripts refer to partial derivatives, e.g., fX = ∂f/∂X.
6Note that α and σ are in general functions of X and t .
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In the general n-dimensional case we consider the system

dy = g(y, t) dt + dv

= g(y, t) dt + S(y, t) dz,

where dv has the covariance matrix �(y, t) dt and dz is a multidimensional
Brownian motion with cov(dz)=Rdt , so that SRS′ =�. We compute the dif-
ferential of f (y, t), so that

df =
[
ft + fyg + 1

2
tr(fyy�)

]
dt + fy dv,

where fy is the n-vector of partial derivatives of f with respect to y , fyy is the
n× n matrix of second partials, and trA denotes the trace of matrix A. This is
the n-dimensional Ito’s lemma. The term

E(df )=
[
ft + fyg + 1

2
tr(fyy�)

]
dt

is the generalized drift of the Ito process f (y(t), t), and the term

var(df )= (fy)
′�fy

is its volatility.

5.6.2 Stochastic Differential Equations

Equation (5.25) can be thought of as a stochastic differential equation when
the object is to find explicitly the process satisfying that equation. The initial
condition X0 may be random here.

By a solution to equation (5.25) we mean a stochastic process X(t) on
an interval [0, T ] such that (i) X(t) satisfies equation (5.26) a.s. on [0, T ],
(ii) X(0)=X0 a.s.; (iii)

∫ T
0 {|α(X(t), t)|+ (σ (X(t), t))2}dt <∞ a.s. on [0, T ];

and (iv) X(t) has certain measurability properties with respect to the sequence
of σ -algebras Ft , where Ft is the smallest σ -algebra such that the variables X0

and W(s), s ≤ t , are measurable.
The conditions for the existence and uniqueness of the solution are available

in the literature; see, e.g., Karatzas and Shreve (1988, Chapter 5). In this book
we need to consider linear equations with time-varying coefficients of the form7

dX(t)=A(t)X(t) dt +B(t) dW(t), X(0)= ξ.

7The discussion is based on Karatzas and Shreve (1988, Chapter 5, Section 6).
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Definingm(t)=EX(t), ρ(s, t)=E[(X(s)−m(s))(X(t)−m(t))′], and V (t)=
ρ(t, t), we have

m(t) = �(t)m(0),

ρ(s, t) = �(s)

[
V (0)+

∫ min(s,t)

0
�−1(u)B(u)

(
�−1(u)B(u)

)′
du

]
�(t)′,

dV (t)

dt
= A(t)V (t)+ V (t)A(t)′ +B(t)B(t)′,

where �(t) is a nonsingular matrix solution of the ordinary differential equation
dζ/dt =A(t)ζ(t). �(t) is called a fundamental matrix solution (see Brock and
Malliaris, 1989, Chapter 2.3 for discussion).

In the case of constant matrices A and B , and provided all the eigenvalues
of A have negative real parts, there exists a stationary Gaussian solution with
mean zero and covariance function

ρ(s, t)= e(s−t )AV for s ≥ t ,

where

V =
∫ ∞

0
esABB ′esA′ ds.

One can also obtain V from the equation

AV + VA′ = −BB ′.

5.7 Appendix on Matrix Algebra

Here we provide some basic matrix algebra definitions, together with several
specialized results which will be useful for analyzing matrix differential equa-
tions.

Suppose A is an m×m matrix A. If Ax = λx for an m× 1 (possibly com-
plex) vector x �= 0 and a (possibly complex) number λ, then λ is said to be an
eigenvalue or root of A and x is a corresponding eigenvector. The following
results should be noted: (i) A is singular if and only if it has a zero eigenvalue.
(ii) If A is nonsingular and has eigenvalue λ, then A−1 has eigenvalue λ−1.
This follows since Ax = λx implies A−1x = λ−1x . (iii) A real symmetric ma-
trix has only real eigenvalues. (iv) A symmetric matrix A is said to be positive
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definite (positive semidefinite) if x ′Ax > 0 (≥ 0) for all x �= 0. A is positive def-
inite (positive semidefinite) if and only if all its eigenvalues are positive (non-
negative). Similarly, A is said to be negative definite (negative semidefinite) if
x ′Ax < 0 (≤ 0) for all x �= 0. A is negative definite (negative semidefinite) if and
only if all its eigenvalues are negative (nonpositive).A is positive (semi)definite
if and only if −A is negative (semi)definite. (v) A matrix of the form A= BB ′
or A=B ′B is positive semidefinite and it is positive definite if it is nonsingular.

A has m eigenvalues, though these may include repeated roots. If A

has m distinct eigenvalues λ1, . . . , λm, then the corresponding eigenvectors
x1 . . . , xm are linearly independent. It follows that AQ = Q�, where � =
diag(λ1, . . . , λm), i.e., the m×m diagonal matrix with elements λ1, . . . , λm on
the diagonal, and Q is the m×m matrix Q= (x1, . . . , xm) formed from the cor-
responding eigenvectors. Since Q is nonsingular, we obtain the diagonalization
A=Q�Q−1.

If the eigenvalues of A are not distinct, then it may or may not be possible
to diagonalize A. If not, however, there always exists a similar decomposition
known as the Jordan decomposition. This takes the formA=MJM−1, where J
is an m×m block diagonal matrix J = diag(J1, . . . , Js) and the Jordan blocks
Ji , i = 1, . . . , s, take the form

Ji =


λi 1 0 · · · 0
0 λi 1 · · · 0
0 0 λi · · · 0
...

...
...

...

0 0 0 · · · λi

 .

If A is m× n and B is p× q , then the Kronecker product of A= (aij ) and
B is the mp× nq matrix

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB

 .

(Here aij denotes the entry of A in row i and column j .) Suppose that A is
m×m and B is p× p. It is straightforward to show that the mn eigenvalues of
A⊗B are given by the products of the λiµj of the eigenvalues λi of A with the
eigenvalues µj of B , i = 1, . . . ,m, j = 1, . . . ,p.

A square matrix A = (aij ) is said to be upper triangular if aij = 0 when-
ever j < i and lower triangular if aij = 0 whenever i < j . We say that A is
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triangular if it is either upper or lower triangular. Using the fact that λ is an
eigenvalue of A if and only if det(A− λI) = 0, it follows that the eigenvalues
of a triangular matrix are its diagonal elements. If A is a block triangular matrix

A=
(
A11 A12

0 A22

)
, then the eigenvalues of A are the eigenvalues of A11 together

with the eigenvalues of A22.
Another important result that we will need is that the eigenvalues of a

(square) matrix A = (aij ) depend continuously on its entries aij . This follows
from the fact that the zeros of a polynomial depend continuously on its coeffi-
cients. See Horn and Johnson (1985, Appendix D).

If f (x) : Rn→ R is a real valued function, then its derivative is the 1 ×
n vector ∂f /∂x ′ = (∂f /∂x1, . . . , ∂f /∂xn). The derivative will also be denoted
Dxf or Df . Other notations also appear in the literature, and the term gradient
is frequently used to denote the corresponding column vector. It is easily verified
that

∂(a′x)
∂x ′

= a′ and
∂(x ′Ax)
∂x ′

= x ′(A+A′),

where a is n× 1 and A is n× n.

If A is the m × n matrix A = (a1, . . . , an), where ai , i = 1, . . . , n, is an
m× 1 vector giving column i of A, then vec(A) is the mn× 1 vector

vec(A)=


a1

a2
...

am

 .

It can be shown that if A,B,C are matrices such that the product ABC is con-
formable, then

vec(ABC)= (C′ ⊗A) · vec(B).

For this and related results, see Magnus and Neudecker (1988, Chapter 2).
If f (x) : Rn→ Rm is a vector valued function, then its derivative, or Ja-

cobian matrix, ∂f/∂x ′ is the m× n matrix of partial derivatives, with (i, j) ele-
ment ∂fi/∂xj . We also use the notation Df or Df (x) for the Jacobian matrix.
If f (x)=Ax , then Df =A.

We will encounter matrix differential equations of the form

dX

dt
= f (X),



118 Mathematical Background and Tools

where X is an m × n matrix and f is a mapping from the set of m × n ma-
trices into itself. An equilibrium is a value X̄ such that f (X̄) = 0. Since X

can be regarded as an mn × 1 vector and f (X) can be regarded as a matrix
of functions, the matrix differential equation can be vectorized and put into
standard form (5.14), d(vecX)/dt = vecf (X). Local stability at X̄ is then
determined using Proposition 5.6, i.e., by checking the roots of the Jacobian
Df = ∂ vecf (X̄)/∂ vecX′ of this vectorized differential equation.

To assess local stability of equilibria of matrix differential equations, one
can make use of rules for computing matrix differentials which preserve the
information embedded in the matrix structure. The following rules are particu-
larly useful. Let dX stand for the differential of matrix X and dy stand for the
differential of the vector y . Then for fixed matrices A and B,

d(AYB) = A(dY )B,

d vecy = vec dy and d(vecX)= vecdX,

d(AX+B) = A(dX),

d(AX2) = A((dX)X+XdX),

provided the products are conformable. The Jacobian can be computed us-
ing such rules for differentials and the identification rule that if d(vecf ) =
Jd(vecX), then the Jacobian Df = J. For additional results and discussion,
see Magnus and Neudecker (1988, Chapters 8 and 9).

As an example, suppose f (X) = AX2. Then df = A(dX)X +AX(dX)I

so that, using the rule for vec(ABC), we obtain d vecf = ((X′ ⊗ A) + (I ⊗
AX))d vecX. Hence the Jacobian of the map vecf (X) is Df = (X′ ⊗ A) +
(I ⊗AX).

A further useful result on matrix differentials is the differential of the matrix
inverse function. Suppose F is a continuously differentiable map from an open
subset of real p × q matrices into the set of nonsingular n× n matrices. Then
F−1(X) ≡ (F (X))−1 is continuously differentiable and its differential is given
by

dF−1 =−F−1(dF)F−1.

5.8 References for Mathematical Background

A very basic introduction to difference and differential equations is provided in
Chiang (1984). A more advanced treatment of difference equations, with numer-
ous economic examples, is provided in Azariadis (1993). A compact statement
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of the stability results for difference equations is given in Stokey and Lucas Jr.
(1989, Section 6.3). An authoritative mathematical reference on difference equa-
tions is LaSalle (1992). There are a number of excellent references for ordi-
nary differential equations, e.g., Coddington (1961), Hirsch and Smale (1974),
Brock and Malliaris (1989), and Guckenheimer and Holmes (1983). Lyapunov’s
method for stability analysis, including the converse theorems, is discussed in
Hahn (1963) and Hahn (1967), in addition to Krasovskii (1963).

Treatments of measure and probability are provided in Billingsley (1986),
Kingman and Taylor (1973), Neveu (1965), or Stokey and Lucas Jr. (1989,
Chapters 7 and 8). For linear stochastic processes, a good introduction is given
in Hamilton (1994) and a more advanced treatment is provided in Brockwell
and Davis (1991). Stochastic convergence theory is treated in Davidson (1994)
and White (1984). Markov processes are extensively treated in many books on
stochastic processes; see, e.g., Doob (1953, Chapter 5), or Neveu (1965, Chap-
ter 5), for good rigorous treatments. The presentations in Stokey and Lucas Jr.
(1989, Chapters 8, 11, and 12) and in Futia (1982) are geared towards eco-
nomics. Grimmett and Stirzaker (1992, Chapter 6) contains a readable discus-
sion of the basic concepts and results for finite Markov chains. A good presen-
tation of Ito processes and stochastic differential equations is given in Øksendal
(1998). An advanced treatment is given in Karatzas and Shreve (1988).

Good references for matrix algebra are Horn and Johnson (1985), Horn
and Johnson (1991), and Hirsch and Smale (1974). For the results on matrix
differential calculus see Magnus and Neudecker (1988).
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Chapter 6
Tools: Stochastic Approximation

6.1 Introduction

In Chapter 2 we analyzed in detail the cobweb model and showed how the anal-
ysis of least squares learning in that model formally leads to a stochastic recur-
sive algorithm (SRA). Mathematically, such algorithms are dynamical systems
consisting of two parts: (i) dynamics for estimating a vector of parameters, and
(ii) dynamics for a vector of state variables. These are nonlinear stochastic sys-
tems operating in discrete time, but it turns out that their convergence can be
studied by using the so-called ordinary differential equation (ODE) approach.
The study of the convergence of adaptive learning behavior in macroeconomic
models can generally be conducted by means of these systems.

In this chapter our aim is to provide the basic technical tools from the the-
ory of recursive stochastic algorithms, also known as stochastic approximation,
in applied mathematics. We provide here rigorous statements of the relevant
results, so this chapter can be used as a systematic reference in further eco-
nomic models. We also give some illustrations of how the application can be
accomplished. It should be noted that we will not provide detailed proofs in
our treatment. However, the main steps of the arguments will be presented, so
that the reader can see the basis for the ordinary differential equation approach
to the analysis of stochastic recursive algorithms. We wish to warn the reader
that this chapter and the next one are more technical than the rest of the book.
Their detailed reading requires some familiarity with advanced probability the-
ory and differential equations. Chapter 5 provides a summary of the necessary
background.

Before going to the general analysis, here is an example which studies pre-
diction by means of an instrument variable.

121
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Example 1: Prediction Using an Instrument Variable. Consider a simple lin-
ear model

yt = αyet + ut ,

where yt is a scalar variable, yet is its (in general nonrational) expectation, and ut
is a disturbance term with Eut = 0. Suppose that agents cannot directly observe
yt or ut but instead try to predict yt using an instrument xt , assumed to be a
scalar for simplicity. We assume that the bivariate process xt , ut is identically
and independently distributed over time, but that xt and ut are correlated with
covariance Extut = σxu. For convenience we also assume that Ext = 0 and we
write Ex2

t = σ 2
x . The prediction rule agents use is

yet = xtat ,

where at is formulated using ordinary least squares:

at =
[
t−1∑
i=1

x2
i

]−1 [ t−1∑
i=1

xiyi

]
.

Adopting the notation

Rt−1 = 1

t − 1

t−1∑
i=1

x2
i ,

we have the recursion

Rt =Rt−1 + 1

t
(x2
t −Rt−1). (6.1)

Note that, if agents use the prediction rule above, the actual value of yt is given
by

yt = αatxt + ut .

For at one can compute

at = at−1 +
[
(t − 1)Rt−1

]−1{
xt−1yt−1 +

[
(t − 2)Rt−2

]
at−1

}− at−1

= at−1 +
[
(t − 1)Rt−1

]−1{
xt−1yt−1 +

[
(t − 2)Rt−2 − (t − 1)Rt−1

]
at−1

}
= at−1 +

[
(t − 1)Rt−1

]−1[
xt−1(αat−1xt−1 + ut−1)− x2

t−1at−1
]
,
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so that

at = at−1 +
[
(t − 1)Rt−1

]−1[
(αat−1 − at−1)x

2
t−1 + xt−1ut−1

]
. (6.2)

To analyze the properties of learning models one studies the system describing
the estimation of the parameters, consisting here of equations (6.1) and (6.2) for
Rt and at . The system for state variables here is simple in this example: It is
given by the exogenous processes xt and ut .

6.2 Stochastic Recursive Algorithms

6.2.1 General Setup and Assumptions

We now start to discuss in general terms the stochastic recursive algorithms
which are the basic tool in the study of models of adaptive learning. The general
form of these algorithms is laid out as follows.

Let θt ∈ Rd be a vector of parameters. The evolution of its values is de-
scribed in general form by the difference equation

θt = θt−1 + γtH(θt−1,Xt )+ γ 2
t ρt (θt−1,Xt ). (6.3)

Here γt is a sequence of “gains,” often something like γt = t−1. Xt ∈ Rk is the
vector of observable state variables. H(·) and ρt (·) are two functions describing
how the vector θ is updated (the second-order term ρt (·) is often not present).
We remark that in the notation of Chapter 2, equation (2.13), Q(t, θt−1,Xt ) =
H(θt−1,Xt )+ γtρt (θt−1,Xt ). Both forms appear in the literature and at times it
will be convenient for us to revert to the Q(t, θt−1,Xt ) notation.

In economic models this system is usually the learning rule. In the preceding
example, equations (6.1) and (6.2) are the two components of the parameter
adjustment equation (6.3).

Next, we come to the dynamics for the vector of state variables. In most
(though not all) economic models we can take the state dynamics to be condi-
tionally linear, and we postulate here:

Xt =A(θt−1)Xt−1 +B(θt−1)Wt , (6.4)

where Wt is a random disturbance term (with the properties specified later).1

Without going into details, we note here that it is possible to consider situations

1Some expositions use an alternative but equivalent timing in which Wt is replaced by Wt−1.
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where Xt follows a Markov process dependent on θt−1. This is needed in some
applications and the modifications to the analysis will be described in Chapter 7.
In the preceding example, equation (6.4) is just the law of the stochastic process
for the state variable X′t = (xt , xt−1, ut−1).

For the precise mathematical analysis it is necessary to formulate the as-
sumptions on the learning rule (6.3) and the state dynamics (6.4). We start with
the former.

In local convergence analysis one fixes an open set D ⊂ Rd around the
equilibrium point of interest. Then postulate the following:

(A.1) γt is a positive, nonstochastic, nonincreasing sequence satisfying

∞∑
t=1

γt =∞ and
∞∑
t=1

γ 2
t <∞.

(A.2) For any compact Q⊂D, there exist C1,C2, q1, and q2 such that ∀θ ∈Q
and ∀t :

(i) |H(θ, x)| ≤C1(1+ |x|q1),

(ii) |ρt (θ, x)| ≤C2(1+ |x|q2).

(A.3) For any compact Q ⊂D, the function H(θ, x) satisfies, ∀θ, θ ′ ∈Q and
x1, x2 ∈Rk:

(i) |∂H(θ, x1)/∂x − ∂H(θ, x2)/∂x| ≤L1|x1 − x2|,
(ii) |H(θ,0)−H(θ ′,0)| ≤L2|θ − θ ′|,

(iii) |∂H(θ, x)/∂x− ∂H(θ ′, x)/∂x| ≤L2|θ − θ ′|,
for some constants L1,L2.

Note that Assumption (A.1) is clearly satisfied for γt = K/t , K constant.
The assumption

∑∞
t=1 γt = ∞ is required to avoid convergence of θt to a

nonequilibrium point, and the assumption
∑∞

t=1 γ
2
t <∞ ensures asymptotic

elimination of residual fluctuations in θt . This last assumption can be weakened
to

∑∞
t=1 γ

α
t <∞ for some α ≥ 2 by strengthening other assumptions. For ex-

ample, see Ljung (1977) and Benveniste, Metivier, and Priouret (1990, Part II,
Chapter 3). We present some results under this assumption in Section 7.3 of
Chapter 7.

Assumption (A.2) imposes polynomial bounds on H(·) and ρt (·). Assump-
tion (A.3) holds provided H(θ, x) is twice continuously differentiable with
bounded second derivatives on every Q. This follows from Coddington (1961,
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Chapter 6, Theorem 1):if a function is continuously differentiable with bounded
partial derivatives, then the function satisfies a Lipschitz condition with the con-
stant given by the bound on the partial derivatives. Assumption (A.3) can be
weakened as indicated by the following remark.

Remark. Assumption (A.3) (i) can be replaced by∣∣∂H(θ, x1)/∂x − ∂H(θ, x2)/∂x
∣∣

≤L1
∣∣x1 − x2

∣∣(1+ |x1|p1 + |x2|p1
)

for some p1 ≥ 0,

and Assumption (A.3) (iii) can be replaced by∣∣∂H(θ, x)/∂x− ∂H(θ ′, x)/∂x∣∣
≤L2|θ − θ ′|(1+ |x|p2

)
for some p2 ≥ 0,

as shown in Benveniste, Metivier, and Priouret (1990, Theorem 6, p. 262).

For the state dynamics we make the assumptions:

(B.1) Wt is iid with finite absolute moments.
(B.2) For any compact subset Q⊂D:

sup
θ∈Q

|B(θ)| ≤M and sup
θ∈Q

|A(θ)| ≤ ρ < 1,

for some matrix norm | · |, and A(θ) and B(θ) satisfy Lipschitz conditions
on Q.

We remark here that in Assumption (B.2) the condition on A(θ) is a little bit
stronger than (asymptotic) stationarity. However, if at some point θ∗ the spectral
radius (the maximum modulus of eigenvalues) satisfies r(A(θ∗)) < 1, then the
condition on A(θ) in Assumption (B.2) holds in a neighborhood of θ∗.

These are quite general assumptions. In specific models the situation may
be a great deal simpler. In some cases, for example, the state dynamics Xt do
not depend on the parameter vector θt−1. An illustration of the independent case
is provided by our introductory example above. Another classical special case,
first discussed by Robbins and Monro (1951), arises when the distribution of the
state variable Xt+1 can depend on θt but is otherwise independent of the history
Xt,Xt−1, . . . , θt , θt−1, . . . .

As already pointed out, the recursive algorithm consisting of the equa-
tions (6.3) and (6.4) for θt and Xt , respectively, is a nonlinear, time-varying
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stochastic difference scheme. At first sight one might think that the proper-
ties of such systems are hard to analyze. It turns out that, due to the special
structure of the equation for the parameter vector, the system can be studied in
terms of an associated ordinary differential equation which is derived as fol-
lows:

(i) fix θ and define the corresponding state dynamics

X̄t (θ)=A(θ)X̄t−1(θ)+B(θ)Wt ,

(ii) consider the asymptotic behavior of the mean of H(θ, X̄t (θ)), i.e.,

h(θ)= lim
t→∞EH(

θ, X̄t (θ)
)
.

The associated ordinary differential equation (ODE) is then defined as

dθ

dτ
= h(θ). (6.5)

Given Assumptions (A.1)–(A.3) and (B.1)–(B.2), it can be shown that the
function h(θ) is well defined and locally Lipschitz (see below).

As noted in the introductory discussion of Chapter 2, the essence of the
ODE approach is the result that the locally stable equilibrium points of the asso-
ciated differential equation are the possible convergence points of the recursive
algorithm.

Example 1 (Continued): Continuing with the introductory example of Sec-
tion 6.1, we first show how to put equations (6.1) and (6.2) into the standard form
(6.3). Here θt = (at ,Rt )

′, γt = t−1, and the state vector is Xt = (xt , xt−1, ut−1)
′

with Wt = (xt , ut−1)
′. From equation (6.1), the R component of H(θt−1,Xt ) is

simply x2
t −Rt−1. The a component of H and ρt can be obtained by rewriting

equation (6.2) as

at = at−1+ t−1R−1
t−1

[
(α− 1)at−1x

2
t−1 + xt−1ut−1

]
+ t−2 t

t − 1
R−1
t−1

[
(α− 1)at−1x

2
t−1 + xt−1ut−1

]
.

We will restrict Rt to positive values, so that the domain for (at ,Rt ) is D =
R × (RL,∞), where RL is an arbitrarily small positive value. This is natural
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since Rt is the second sample moment of xt . The equation for the state vector
Xt is

Xt =
 0 0 0

1 0 0
0 0 0

Xt−1 +
 1 0

0 0
0 1

Wt .

The associated differential equation is as follows. Writing θ = (a,R), the dif-
ferential equation is simply given by

da

dτ
= R−1[(α− 1)aσ 2

x + σxu
]
, (6.6)

dR

dτ
= σ 2

x −R.

We will conclude discussion of this example after presentation of the main con-
vergence theorems.

6.2.2 Convergence: A Heuristic Discussion

Above, we formulated the general recursive algorithm and derived its associated
differential equation. The general idea in the study of (local) convergence of the
algorithm will be that, at specific points of time, the trajectories of the differen-
tial equation approximate better and better the (discrete-time) trajectories of the
algorithm as time gets large. Let us see in heuristic terms why this phenomenon
holds.

For the sake of exposition suppose that the gain sequence γt is a small
constant γ . We can then derive the approximation

θn+N = θn+ γ

N−1∑
i=0

[H(θn+i ,Xn+1+i )+ γρn+1+i(θn+i ,Xn+1+i )
]

≈ θn+ γ

N−1∑
i=0

H(θn+i ,Xn+1+i )

(since γ is small)

≈ θn+ γ

N−1∑
i=0

H(θn,Xn+1+i)

(N is not large and/or γ is very small, so that θn does not move much)
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= θn+ (Nγ )
1

N

N−1∑
i=0

H(θn,Xn+1+i)

≈ θn+Nγh(θn)

(by the law of large numbers).
This reasoning shows that we are basically close to a standard discretization

of an ODE of the form

θn+1 = θn+ γh(θn)+ perturbation.

This means that θn ≈ θ(tn), where θ(t) denotes a trajectory of the ODE and
tn = nγ . If a small decreasing step size (gain) is used, one has θn ≈ θ(tn) with
tn =∑n

i=1 γi .
The body of the rigorous proof consists of finding and verifying the con-

ditions of validity for the approximately equal signs in the heuristic discussion
above.

6.3 Convergence: The Basic Results

6.3.1 Properties of h(θ)

We now return to the general treatment which was interrupted by the last sub-
sections. Consider the state variable process with fixed parameter estimates, i.e.,
the process

X̄t (θ)=A(θ)X̄t−1(θ)+B(θ)Wt .

Iterating it, one obtains

X̄n(θ)=A(θ)nX0 +
n∑

k=1

A(θ)n−kB(θ)Wk.

Given Assumption (B.2), we have limn→∞A(θ)nX0 = 0, while the second term
has the same distribution as the random variable

Vn =
n∑

k=1

A(θ)kB(θ)Wk,
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which is a martingale (since EWk = 0). Moreover, for the Lp norm,

‖Vn‖p ≤
n∑

k=1

|A(θ)k||B(θ)|‖Wk‖p ≤
n∑

k=1

ρkM‖Wk‖p.

Since the moments of Wk were assumed finite, one has ‖Wk‖p ≤ µp <

∞, and ρ < 1 by Assumption (B.2). This shows that ∀n : ‖Vn‖p < Cp for
some constant Cp . Thus ∀n,p : ‖X̄n(θ)‖p ≤ C̃p <∞ and one can apply the
martingale convergence theorem and conclude:

Lemma 6.1. X̄n(θ) tends in the limit to an Lp-integrable random variable
X̄∞(θ).

Consider next the differential equation (6.5) for which we have:

Lemma 6.2. h(θ) is well defined and locally Lipschitz.

To prove the lemma we considerEH(θ, X̄t (θ)).Using Assumption (A.2)(i),

E
∣∣H(θ, X̄t (θ))

∣∣≤C1
(
1+E

(|X̄t (θ)|q1
))≤ Ĉ

for some constant Ĉ <∞. Lebesgue’s dominated convergence theorem then
implies that

h(θ)= lim
t→∞EH(

θ, X̄t (θ)
)

exists. This shows that h(θ) is well defined.
To prove that h(θ) is locally Lipschitz we do the following. First, note that

Assumption (A.3)(i) implies that∣∣H(θ, x1)−H(θ, x2)
∣∣≤C1|x1 − x2|

(
1+ |x1| + |x2|

)
.

This can be shown using a variation of Coddington (1961, Chapter 6, proof of
Theorem 1).2 Similarly, Assumption (A.3) (iii) and (A.3) (ii) imply3

∣∣H(θ, x)−H(θ ′, x)∣∣≤L2|θ − θ ′|(1+ |x|).

2If f ′(x) is Lipschitz then it is easy to see that |f ′(x)| ≤K1(1+ |x|) for some K1 > 0 and the
Coddington argument can be used to establish that |f (x)− f (y)| ≤ K2|x − y|(1 + |x| + |y|) for
some K2 > 0. Here | · | denotes a vector norm.

3Apply the Coddington argument to f (x)=H(θ, x)−H(θ ′, x).
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Hence∣∣H(θ, x)−H(θ ′, x ′)∣∣ ≤ ∣∣H(θ, x)−H(θ ′, x)∣∣+ ∣∣H(θ ′, x)−H(θ ′, x ′)∣∣
≤ C1|θ − θ ′|(1+ |x|)+C2|x − x ′|(1+ |x| + |x ′|).

Therefore,∣∣EH(θ, X̄t (θ))−EH(
θ ′, X̄t (θ

′)
)∣∣

≤E
∣∣H(

θ, X̄t (θ)
)−H(

θ ′, X̄t (θ
′)
)∣∣

≤E
[
C1|θ − θ ′|(1+ |X̄t (θ)|

)
+ C2

∣∣X̄t (θ)− X̄t (θ
′)
∣∣(1+ |X̄t (θ)| + |X̄t (θ

′)|)]
≤C1|θ − θ ′|E(1+ |X̄t (θ)|

)
+C2E

∣∣X̄t (θ)− X̄t (θ
′)
∣∣(1+E|X̄t (θ)| +E|X̄t (θ

′)|).
In the last expression, limE(|X̄t (θ)|) for θ ∈Q is bounded by a constant. Since
A(θ) and B(θ) are assumed Lipschitz [see Assumption (B.2)], we also have that

lim
t→∞E|X̄t (θ)− X̄t (θ

′)| ≤K|θ − θ ′|

for some constant K . These observations show that h(θ) is Lipschitz.
The importance of Lemma 6.2 is that standard results for differential equa-

tions are applicable to the associated ODE. This observation will be used later.

6.3.2 ODE Approximation

The basic idea in this step is to write the algorithm in the form

θn+1 = θn+ γn+1h(θn)+ εn, where

εn = γn+1
[H(θn,Xn+1)− h(θn)+ γn+1ρn+1(θn,Xn+1)

]
.

Thus, εn is essentially the approximation error between the algorithm and the
associated ODE. We then want bounds on the sums

∑
εn. The precise analysis

here is very lengthy indeed and we simply note here the main result that is
needed for the next step. [The discussion in Evans and Honkapohja (1998a)
fills in many of the details.]

For later use one considers more generally expressions of the form

εn(ϕ)= ϕ(θn+1)− ϕ(θn)− γn+1ϕ
′(θn) · h(θn)



Tools: Stochastic Approximation 131

for certain functions ϕ. Below, this expression is needed for functions ϕ : Rd →
R which are twice continuously differentiable with bounded second derivatives.
Let now Q⊂D be compact and define the first exit time from Q

τ(Q)= inf(n; θn /∈Q)

and recall the definition of the indicator function I (A)= 1 if ω ∈ A and 0 oth-
erwise. Elementary but very lengthy arguments lead to the following result.4

Lemma 6.3. For all x ∈Rk , a ∈Rd : there exists constants B1 and s such that

Ex,a

{
sup I

(
n≤ τ(Q)

)∣∣∣∣n−1∑
k=0

εk(ϕ)

∣∣∣∣}2

≤ B1(1+ |x|s)
(

1+
∞∑
k=1

γ 2
k

) ∞∑
k=1

γ 2
k

and on the set {τ(Q)=∞} the series
∑
εn(ϕ) converges almost surely.

Here Ex,a is the expectation over the joint distribution of {Xn, θn}n≥1 given
starting values (x, a). The interpretation of this interim result is as follows. If ϕ
were the identity map,

∑
εn(ϕ) would be a measure of the deviation between

the standard discretization of the ODE and the time path of the algorithm. The
result would then say that the sum of the random deviations remains bounded
in mean square as long as the sequence θn stays in the set Q. Loosely speaking,
conditional on remaining in Q, the individual εn(ϕ) have thus a tendency to
convergence to zero. In other words, the ODE approximation must get better
and better over time.

6.3.3 Asymptotic Analysis

We start the final step by making the assumption that we have an equilibrium
point of the ODE θ∗ which is locally asymptotically stable for the ODE. It will
be shown that, in a particular sense, the time path of θt generated by the algo-
rithm will converge to θ∗, provided that at its starting point (x, a), the compo-
nent a is sufficiently close to θ∗. In doing this the Lyapunov stability theory for
ODEs, in particular the so-called converse theorem, is utilized. Section 5.3.4 of
Chapter 5 provides a short discussion of this theory and the relevant results.

4Doob’s inequality and the martingale convergence theorem are the central theorems required.
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Thus suppose that θ∗ is locally asymptotically stable for the associated ODE
dθ/dτ = h(θ(τ)). Proposition 5.9 states that on the domain of attractionD of θ∗
for the ODE, there exists a twice continuously differentiable Lyapunov function
U(θ) having the properties:

(a) U(θ∗)= 0, U(θ) > 0 for all θ ∈D, θ �= θ∗,
(b) U ′(θ)h(θ) < 0 for all θ ∈D, θ �= θ∗,
(c) U(θ)→∞ if θ→ ∂D or |θ |→∞.

Here ∂D denotes the boundary of D. Next introduce the notation K(c)=
{θ; U(θ) ≤ c}, c > 0 for the contour sets of the Lyapunov function. Also
let τ(c) = inf(n; θn /∈ K(c)) and let Pn,x,a be the probability distribution of
(Xk, θk)k≥n with Xn = x , θn = a.

The role of the local asymptotic stability of θ∗ is made clear by the follow-
ing argument. Suppose that 0< c1 < c2 and K(c2)⊂D. We utilize the result in
the preceding subsection with ϕ chosen to coincide with U on K(c2) and such
that infθ /∈K(c2) ϕ(θ)= c2. If τ(c2) <∞, then by the definition of εn(ϕ),

ϕ(θτ(c2))− ϕ(θ0)=
τ(c2)−1∑
k=0

γk+1ϕ
′(θk) · h(θk)+

τ(c2)−1∑
k=0

εk(ϕ).

When a ∈K(c1), we have c2 − c1 ≤ ϕ(θτ(c2))− ϕ(θ0). Also since ϕ coincides
with U on K(c2), we have ϕ′(θk) · h(θk)≤ 0. Thus

(c2 − c1)I (τ (c2) <∞) ≤ I (τ (c2) <∞)

∣∣∣∣∣∣
τ(c2)−1∑
k=0

εk(ϕ)

∣∣∣∣∣∣
≤ sup

n
I
(
n≤ τ(c2)

) ∣∣∣∣∣
n−1∑
k=0

εk(ϕ)

∣∣∣∣∣ .
Hence we get

(c2 − c1)
2I (τ (c2) <∞) ≤

{
sup
n
I
(
n≤ τ(c2)

) ∣∣∣∣∣
n−1∑
k=0

εk(ϕ)

∣∣∣∣∣
}2

and

(c2 − c1)
2E

(
I (τ (c2) <∞)

) ≤ E

{
sup
n
I
(
n≤ τ(c2)

) ∣∣∣∣∣
n−1∑
k=0

εk(ϕ)

∣∣∣∣∣
}2

.
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These inequalities imply

P [I (τ (c2) <∞)] ≤ (c2 − c1)
−2E

{
sup
n
I
(
n≤ τ(c2)

) ∣∣∣∣∣
n−1∑
k=0

εk(ϕ)

∣∣∣∣∣
}2

since P [I (τ (c2) <∞)] =E(I (τ(c2) <∞)).
Since the conditional distribution of (Xn+k, θn+k) given Xn = x , θn = a is

equal to the conditional distribution of (Xn, θn) with X0 = x , θ0 = a and with
γk and ρk replaced by γn+k and ρn+k , respectively, the interim Lemma 6.3 in
Section 6.3.2 yields the following basic theorem.

Theorem 6.4. Let θ∗ be an asymptotically stable equilibrium point of the ODE
dθ/dτ = h(θ(τ)). Suppose Assumptions (A) and (B) are satisfied on D =
int(K(c)) for some c > 0. Suppose that for 0 < c1 < c2, we have K(c2) ⊂D.
Then there exist constants B1 and s such that for all a ∈K(c1), n≥ 0, x:

Pn,x,a
{
θt leaves K(c2) in finite time

}≤ B1(1+ |x|s)J (n),

where J (n) is a positive decreasing sequence with limn→∞ J (n) = 0. In fact,
J (n)= (1+∑∞

k=n+1 γ
2
k )

∑∞
k=n+1 γ

2
k .

The content of this theorem is as follows. Fixing the contour sets K(c1)⊂
K(c2), we have that if at any time n the parameter vector θn remains inside
K(c1), then the probability that θt leavesK(c2) for some t > n is bounded above
by an expression which tends to zero as n→∞. In other words, the probability
of divergence outside K(c2) gets smaller and smaller as the number of steps
taken by the algorithm increases.

While this is an important result, there remains the question of convergence
to θ∗. To this effect one has the following theorem.

Theorem 6.5. Under the setup of Theorem 6.4, (i) For all a ∈K(c1), n≥ 0, x ,
one has

Pn,x,a
{
θt leaves K(c2) in finite time or θt → θ∗

}= 1,

and (ii) for any compact Q⊂D, there exist constants B2 and s such that for all
a ∈K(c1), n≥ 0, x ,

Pn,x,a{θt → θ∗} ≥ 1−B2
(
1+ |x|s)J (n),

where J (n) is as in Theorem 6.4.
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This result states two things. First, the algorithm either converges to θ∗ or
diverges outside K(c2). Second, the probability of converging to θ∗ is bounded
from below by a sequence of numbers tending to 1 as n→∞. We omit the
proof of Theorem 6.5, which follows fairly easily from Theorem 6.4, see Evans
and Honkapohja (1998a) for details.

When applying the results, one proceeds as follows. First, it must be verified
that the economic model and the learning algorithm satisfy the basic assump-
tions (A.1)–(A.3) and (B.1)–(B.2) on a nontrivial open domain containing the
equilibrium of interest. Second, a condition guaranteeing local stability of the
associated ODE is established. This is usually based on E-stability of the equi-
librium, and checking that the linearization of the differential equation yields
a stable coefficient matrix (i.e., its eigenvalues have negative real parts). These
steps provide a nontrivial domain in which (local) convergence obtains in the
sense of Theorem 6.5 or the corollaries below.

6.4 Convergence: Further Discussion

The following two results are special cases yielding convergence when starting
at time 0. The first result is an immediate consequence of the second part of
Theorem 6.5.

Corollary 6.6. Suppose γt = ξγ ′t , where γ ′t satisfies Assumption (A.1). Let the
initial value of θ belong to some compact Q⊂D. For all δ > 0: there exists ξ∗
such that, ∀0< ξ < ξ∗ and a ∈Q,

P0,x,a{θt → θ∗} ≥ 1− δ.

Remark 1. Clearly, this result holds more generally for γt = ξγ ′t+N , for fixed
0< ξ < 1 and nonnegativeN . That is, given δ > 0, P0,x,a{θt → θ∗} ≥ 1− δ for
any fixed N for all ξ > 0 sufficiently small. Similarly, the result holds for every
fixed ξ for all N sufficiently large.

The corollary and remark cover various cases of slow adaption. For low
enough adaption speeds the probability of convergence can be made “very close”
to 1. For general adaption speeds and with additional assumptions one can in
some cases obtain convergence with positive probability:

Corollary 6.7. Assume that θ∗ is locally asymptotically stable for the ODE and
that each component of Wt either is a random variable with positive continuous
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density or else is a constant. Fix a compact set Q⊂D, such that θ∗ ∈ int(Q),
and a compact set J ⊂Rk . Suppose that for every θ0 ∈Q0 and X0 ∈ J0 in some
sets Q0 and J0, and for every n > 0, there exists a sequence W0, . . . ,WT , with
T ≥ n, such that θT ∈ int(Q) and XT ∈ int(J ). Then

P0,x,a{θt → θ∗}> 0

for all a ∈Q0 and x ∈ J0.

Proof. Fix a compact set Q ⊂ D. Using Theorem 6.5, there is n̄ such that
Pn,x,a{θt → θ∗} > 0 for all n > n̄, x ∈ J , and a ∈ Q. Substituting re-
cursively in the algorithm, it follows that, for each t , the function θt =
Zt(θ0,W1, . . . ,Wt ,X0) is continuous, because H and ρk are continuous. By the
assumptions of the corollary, for some T ≥ n̄ there exist W1, . . . ,WT such that
θT ∈ int(Q) and XT ∈ int(J ). Since ZT (·) is continuous, and by the assumption
of positive density, P0,x,a{θT ∈ int(Q) and XT ∈ int(J )} > 0, from which the
result follows.

The example in Evans and Honkapohja (1998b) provides an application of
this corollary.

It must be emphasized that it is not in general possible to obtain bounds
close to 1 even for the most favorable initial conditions at this level of generality.
The reason is that for small values of t , the ODE does not well approximate the
algorithm. In particular, for early time periods, sufficiently large shocks may
displace θt outside the domain of attraction of the ODE.

In the earlier literature, see, e.g., the initial papers Marcet and Sargent
(1989c) and Marcet and Sargent (1989b) as well as Evans and Honkapohja
(1994b), Evans and Honkapohja (1994c), and Evans and Honkapohja (1995c),
this problem was avoided by making an additional assumption on the algorithm,
known as the projection facility (PF). It is defined as follows: For some 0 <
c1 < c2, with K(c2) ⊂D, the algorithm is followed provided θt ∈ int(K(c2)).
Otherwise, it is projected to some point in K(c1).

An alternative to PF, see, e.g., Ljung (1977), is to introduce the direct
boundedness assumption that the algorithm visits a small neighborhood of the
equilibrium point infinitely often. Clearly, such a condition can be very hard to
verify (and may not hold).

The hypothesis of a PF has been criticized by some as being inappropri-
ate for decentralized markets; see Grandmont and Laroque (1991), Grandmont
(1998) and Moreno and Walker (1994). The results above do not invoke the pro-
jection facility. However, the above results do have a strong implication when
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a PF is employed. For algorithms which incorporate a PF, the probability for
convergence to a stable equilibrium point can be made equal to 1. This result
requires the additional assumption that the state dynamics are bounded in the
sense stated below:

Corollary 6.8. Assume that there exists a random variable Z such that for all
t: |Xt |<Z almost surely. Consider the general algorithm augmented by a pro-
jection facility. Under the hypotheses of Theorem 6.4, we have for all x,a,

P0,x,a{θt → θ∗} = 1.

Proof. Suppose on the contrary that P {θt → θ∗} ≤ 1− ε for some ε > 0. Here
P denotes P0,x,a for brevity. We first argue that P {PF used infinitely often} ≥ ε.
Let N = {ω | θt (ω) � θ∗}, Ft = {ω | t = supT [PF used at T ], t <∞}, F0 =
{ω |PF never used}, and G= {ω |PF used infinitely often}. Then G, {Ft }∞t=0 is a
partition of � and

P(N)= P(G ∩N)+
∞∑
t=0

P(N ∩Ft ).

Consider Ft , t = 0,1,2, . . . . For ω ∈ Ft and n ≥ t , the algorithm with PF is
identical to the algorithm without PF. Applying Theorem 6.5(i), we have, since
θt ∈K(c1),

Pt,θt ,x
{
θn leaves K(c2) in finite time or θn→ θ∗

}= 1

in the algorithm without PF. Hence P(N ∩Ft )= 0, so that P(N)= P(G∩N)=
P(G) as G⊂ N . By assumption, P(N) ≥ ε, and thus P(G) ≥ ε, as was to be
shown.

We now obtain a contradiction by showing that P(G) < 2ε/3. Let �z =
{ω | ∀t : |Xt | < Z}. Fix a constant z sufficiently large so that P(�c

z) ≤ ε/3,
where �c

z is the set-theoretic complement. Now

P(G)= P(G ∩�z)+ P(G ∩�c
z)≤ P(G ∩�z)+ ε/3.

Thus, from now on we can restrict attention to �z. By Theorem 6.4 we have,
in an algorithm without a PF, ∃T0 s.t. ∀T ≥ T0, PT,a,x{θt /∈ K(c2) for some
t ≥ T }< ε/3 for all a ∈K(c1) and |x|< z. Clearly, G= {ω |PF used infinitely
often after T0}, and define Bt = {ω | t = infT≥T0 θT (ω) ∈ K(c1)}. Now {G ∩
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�z ∩Bt }∞t=0 is a partition of G∩�z, so that

P(G ∩�z) =
∞∑

T=T0

P(G ∩�z ∩BT )

≤
∞∑

T=T0

P
({PF used after T } ∩�z ∩BT

)
.

However, P({PF used after T } ∩�z ∩BT )=
∫
BT

P ({PF used after T } ∩�z |
θT ) dP ≤

∫
BT
(ε/3) dP = (ε/3)P (BT ), since for any θT ∈ K(c1) and x ∈ �z,

the probability of ({PF used after T }) for the algorithm with PF is equal to
PT,θT ,x{θt /∈K(c2) for some t ≥ T }< ε/3 for the algorithm without PF. Thus,

P(G ∩�z)≤ (ε/3)
∞∑

T=T0

P(BT )= ε/3,

so that P(G)≤ 2ε/3.

We remark that if, for example, Xt is a stationary VAR driven by a shock
with bounded support, then the boundedness condition in the corollary is satis-
fied.

Finally, we note here [details are in the paper Evans and Honkapohja
(1995c)] that in some special models almost sure local convergence can be ob-
tained without a PF, provided that the support of the random shock is sufficiently
small. Also, for certain nonstochastic models there is no need to have a PF when
one is interested in local stability; see Evans and Honkapohja (2000) and Sec-
tion 7.2 of Chapter 7 for such results.

Example 1 (Concluded): Returning to the introductory example of Section 6.1,
equation (6.6) gives the associated ODE in (a,R). Note that from the equation
for R we have limτ→∞R(τ)= σ 2

x , so that the first equation behaves asymptot-
ically like the “small” differential equation

da

dτ
= (α− 1)a+ σ−2

x σxu.

This has the unique fixed point a∗ = (1 − α)−1σ−2
x σxu which is stable if

α < 1. The theorems of this section thus apply, i.e., at → a∗ locally. In par-
ticular, from Corollary 6.8 it follows that with a nontrivial projection facility,
(at ,Rt )→ (a∗, σ 2

x ) with probability 1. It is not hard to show that the projection
facility in this example can be made arbitrarily large within the domain D. In
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fact, for this example with α < 1 one can show global convergence without a
projection facility using Theorem 6.10 below. (For the detailed method see the
treatment of the multivariate cobweb example following that example.)

Finally, if α > 1 one can show that at converges with probability 0 using
results in the following section.

6.5 Instability Results

We will now consider the instability results which will, broadly speaking, state
the following: (i) The algorithm cannot converge to a point which is not an equi-
librium point of the associated ODE, and (ii) the algorithm will not converge to
an unstable equilibrium point of the ODE. The precise meaning and the condi-
tions for validity of these results will be somewhat involved to state, since we
will have to adopt a new set of conditions for the results.5

Let again θt ∈ Rd be a vector of parameters and write the algorithm in the
form

θt = θt−1 + γtH(θt−1,Xt )+ γ 2
t ρt (θt−1,Xt )

≡ θt−1 + γtQ(t, θt−1,Xt ).

Below, we will impose assumptions directly on Q(·). Again, Xt ∈ Rk is the
vector of observable state variables with the conditionally linear dynamics

Xt =A(θt−1)Xt−1 +B(θt−1)Wt ,

where Wt is a random disturbance term.
Select now a domain D∗ ⊂ Rd such that all the eigenvalues of A(θ) are

strictly inside the unit circle. The final domain of interest will be an open and
connected set D ⊂D∗ and the conditions below will be postulated for D. We
introduce the following assumptions:

(C.1) Wt is a sequence of independent random variables with |Wt | < C with
probability 1 for all t .

(C.2) Q(t, θ, x) is continuously differentiable in (θ, x) for θ ∈ D. For fixed
(θ, x) the derivatives are bounded in t .

5The main source for the instability results is Ljung (1977). We will adopt his Assumptions (A).
The appendix of Woodford (1990) gives a slightly different version of Ljung’s results.
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(C.3) The matrices A(θ) and B(θ) are Lipschitz on D.
(C.4) The limit limt→∞EQ(t, θ, X̄t (θ)) = h(θ) exists for θ ∈ D, where

X̄t (θ)=A(θ)X̄t−1(θ)+B(θ)Wt .

(C.5) γt is a decreasing sequence with the properties
∑∞

1 γt =∞,
∑∞

1 γ αt <

∞ for some α, and limt→∞ sup[1/γt − 1/γt−1]<∞.

Ljung (1977) provides an alternative set of assumptions which relaxes As-
sumption (C.1) at the expense of strengthening other assumptions. We remark
that γt =K/t again satisfies Assumption (C.5).

With these assumptions, the following theorem holds [the long proof will
be omitted; see Ljung (1977) for it].

Theorem 6.9. Consider the algorithm with Assumptions (C). Suppose at some
point θ∗ ∈ D, we also have the validity of the conditions (i) Q(t, θ∗, X̄t (θ

∗))
has a covariance matrix that is bounded below by a positive definite matrix,
and (ii) EQ(t, θ∗, X̄t (θ

∗)) is continuously differentiable in θ in a neighborhood
of θ∗ and the derivatives converge uniformly in this neighborhood as t →∞.
Then (a) if h(θ∗) �= 0 (i.e., θ∗ is not an equilibrium point of the ODE), or (b) if
∂h(θ∗)/∂θ has an eigenvalue with a positive real part (so that θ∗ is not a stable
equilibrium point of the ODE), then

Pr(θt → θ∗)= 0.

In other words, the possible rest points of the recursive algorithm consist of the
locally stable equilibrium points of the associated ODE.6 It is worth stressing
the role of condition (i) in the theorem. It ensures that at even large values of
t some random fluctuations remain, and the system cannot stop at an unstable
point or nonequilibrium point. For example, if there were no randomness at
all, then with an initial value precisely equal to an unstable equilibrium, the
algorithm would not move off that point.7 A similar idea, known as simulated
annealing in numerical mathematics, is used in algorithms for searching for a
global minimum of a function. The idea is to “shake” the system appropriately,
so that it does not get stuck at a local minimum.

These instability and the earlier stability results are the main theorems from
the theory of recursive algorithms that are used in the analysis of adaptive learn-
ing in economics. A global convergence result under rather strong conditions

6This assumes that the equilibrium points are isolated (and hyperbolic). There are more general
statements of the result.

7Note that the usual definition of instability for a deterministic dynamical system takes care of
this possibility through its definition.
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will be discussed later. We turn next to a convenient way of obtaining the con-
vergence condition for adaptive learning and a further example.

6.6 Expectational Stability

The concept of expectational stability was introduced in Section 2.9 of Chap-
ter 2. Recall that in its general formulation, a map φ→ T (φ) is constructed
from a perceived law of motion to an actual law of motion. If the agents’ per-
ceived law of motion nests the rational expectations equilibrium (REE) of inter-
est, then φ and T (φ) are in the same space and the REE is a fixed point of T , i.e.,
T (φ∗)= φ∗. The examples in the introductory chapters illustrate this mapping.8

A given REE φ∗ is said to be E-stable (expectationally stable) if the differential
equation

dφ

dτ
= T (φ)− φ

is locally asymptotically stable at φ∗. Here τ denotes “notional” or “virtual”
time. For a wide range of models, E-stability of an REE provides the condition
for (local) convergence of adaptive learning rules.9

The method for establishing the connection between E-stability and conver-
gence of real-time learning rules is naturally dependent on the type of the PLM
that agents are presumed to use. For nonlinear models one usually has to be con-
tent with specific types of REE, and the connection between E-stability and local
convergence of real-time learning is examined for each type of equilibrium. For
linear models, the entire set of REE can be given an explicit characterization
and the connection between E-stability and real-time learning has been stud-
ied more systematically. Immediately below, we provide another example of the
connection between E-stability and stability under learning and we explore the
connection for different models in later chapters.

The way of parameterizing the REE and the specification of who is learn-
ing what (i.e., the perceived law of motion) can in principle affect the stability

8E-stability can also be used to understand Example 1 of this chapter. Instead of a perceived law
of motion, we start directly with a forecast rule yet = axt which yields the corresponding actual law
of motion yt = αaxt + ut . For this law of motion the optimal forecast rule is yt = T (a)xt , where
T (a)= αa + σ

−2
x σxu, yielding the E-stability condition α < 1.

9Marcet and Sargent (1989c) were the first to note the link between real-time learning and
E-stability for a class of models. Their results were generalized in a number of papers.
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conditions. In this respect, the situation is not different from other economic
models of adjustment outside an equilibrium.10 However, it is evident that the
local stability condition that the eigenvalues of T (·) have real parts less than 1
is invariant to 1–1 transformations φ→ β = f (φ), where f and f−1 are both
continuously differentiable.

Another aspect in parameterizations is the question of overparameteriza-
tion: Agents may use perceived laws of motion that have more parameters than
the REE of interest. This leads to a distinction between weak and strong E-
stability. An REE is said to be weakly E-stable if it is E-stable as above and the
perceived law of motion takes the same form as the REE. Correspondingly, we
say that an REE is strongly E-stable if it is locally E-stable even for a specified
class of overparameterized perceived laws of motion. (The additional parameters
then converge to zero.) It may be remarked that this distinction is not entirely
straightforward, since it may be possible to overparameterize solutions in differ-
ent ways. One should in principle use the concept of E-stability with respect to
a given class of perceived laws of motion. However, it turns out that in specific
models the distinction can be made precise in natural ways.

Finally, we note the possibility that the perceived law of motion is underpa-
rameterized relative to the REE of interest. In such a situation, learning cannot
converge to the RE equilibrium, but it may instead converge to some other rest
point or not converge at all. Underparameterization was introduced in Chapter 3
and will be discussed further in Chapter 13. The E-stability concept can be ex-
tended to cover such cases.

The Multivariate Muth Model

The market model of Muth (1961), known as the cobweb model under naive
expectations, assumes that demand is a downward sloping linear function of the
market price, while supply depends in an increasing linear fashion on expected
price. As noted in Chapter 2, this model was analyzed for learning by Bray and
Savin (1986) and Fourgeaud, Gourieroux, and Pradel (1986).

We consider its generalization to simultaneous equations (e.g., to multiple
markets):

yt = µ+AE∗t−1yt +Cwt, (6.7)

wt = Bwt−1 + vt .

10A “textbook example” is the standard demand–supply model and the Walrasian adjustment of
prices vs. the Marshallian adjustment of quantities.
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Here yt is an n× 1 vector of endogenous variables, wt is an observed p × 1
vector of exogenous variables, and vt is a p × 1 vector of white noise shocks
with finite moments. The eigenvalues of Bp×p are assumed to lie inside the unit
circle. For simplicity, the matrix B is assumed to be known. E∗t−1yt denotes the
expectations of agents held at time t −1 based on their perceived law of motion.
Assume also that I −A is invertible.

This model has a unique REE

yt = ā+ b̄wt−1 + ηt ,

where ā = (I −A)−1µ, b̄= (I −A)−1CB , and ηt =Cvt . Is this REE expecta-
tionally stable? Consider perceived laws of motion of the form

yt = a+ bwt−1+ ηt

for arbitrary n× 1 vectors a and n× p matrices b. The corresponding expecta-
tion function is E∗t−1yt = a+ bwt−1 and one obtains the actual law of motion

yt = (µ+Aa)+ (Ab+CB)wt−1 + ηt ,

where ηt =Cvt . The T mapping is thus

T (a, b)= (µ+Aa,Ab+CB).

E-stability is determined by the differential equation

da

dτ
= µ+ (A− I)a,

db

dτ
= CB + (A− I)b.

It can be verified that this system is locally asymptotically stable if and only if all
eigenvalues ofA−I have negative real parts, i.e., if and only if all eigenvalues of
A have real parts less than 1. This is also going to be the convergence condition
for real-time learning rules which we now introduce.

In real-time learning the perceived law of motion has the same form but
with coefficients (at , bt ) which are revised at each time t. Thus expectations are
given by

E∗t−1yt = at−1 + bt−1wt−1.
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We assume that the parameters at and bt are updated running recursive least
squares (RLS). Letting φ = (a, b) and z′t = (1,w′t ), RLS can be written as

φ′t = φ′t−1 + t−1R−1
t zt−1(yt − φt−1zt−1)

′,
Rt = Rt−1 + t−1(zt−1z

′
t−1 −Rt−1).

This learning rule is complemented by the short-run determination of the value
for yt which takes the form

yt = T (φt−1)zt−1 +Cvt ,

where T (φ)= T (a, b) as given above.
In order to convert the system into standard form (6.3), it is necessary to

make a timing change in the equation governing Rt . Thus set St−1 =Rt , so that

St = St−1 + t−1(ztz
′
t − St−1)+ t−2

(
− t

t + 1

)
(ztz

′
t − St−1).

The last term is then of the usual form with ρt (St−1, zt )=−[t/(t + 1)](ztz′t −
St−1). It is also convenient to substitute in for yt in the φt equation to obtain

φ′t = φ′t−1 + t−1S−1
t−1zt−1

[
(T (φt−1)− φt−1)zt−1 +Cvt

]′
.

The model is now in the form (6.3) with θt = vec(φt , St ) andX′t = (1,w′t ,w′t−1).
The dynamics for the state variable are given by equation (6.4) with W ′

t =
(1, v′t ) and

A=
 0 0 0

0 B 0
0 I 0

 , B =
 1 0

0 I

0 0

 .

Since wt is a stationary vector autoregression (VAR), Xt is also a stationary
VAR. Since Eztz′t =Mz for some positive definite matrix Mz, one can verify
that the basic assumptions for the convergence analysis are met. In fact, this
model satisfies even stronger assumptions that guarantee global convergence of
the learning algorithm to the unique REE. This is discussed in the next section.

The associated ODE is obtained by taking expectations of S−1zt−1[(T (φ)−
φ)zt−1 +Cvt ]′ and (zt z′t − S). Using Eztz′t =Mz and Ezt−1v

′
t = 0, this yields
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the ODE

dφ′

dτ
= S−1Mz(T (φ)− φ)′,

dS

dτ
= Mz − S.

The second equation is independent of φ and it is clearly globally asymptotically
stable. Moreover, since S→Mz, the stability of the first equation is governed
by the E-stability equation

dφ

dτ
= T (φ)− φ.

Its local stability condition is that the eigenvalues ofA have real parts less than 1;
see above. Thus the E-stability condition is the convergence condition for the
RLS learning algorithm in this model. In the next section we establish a global
result for frameworks with unique equilibria. This general result is also applica-
ble to this particular model.

6.7 Global Convergence

In this section we provide a stronger set of conditions than Assumptions (A) and
(B) of Section 6.2.1 that guarantee global convergence of the recursive algorithm

θt = θt−1+ γtH(θt−1,Xt )+ γ 2
t ρt (θt−1,Xt ).

The new assumptions are:

(D.1) The functions H(θ, x) and ρt (θ, x) satisfy, for all θ, θ ′ ∈ Rd and all
x,x ′ ∈Rk ,

(i) |H(θ, x1)−H(θ, x2)| ≤L1(1+ |θ |)|x1 − x2|(1+ |x1|p1 + |x2|p1),

(ii) |H(θ,0)−H(θ ′,0)| ≤L2|θ − θ ′|,
(iii) |∂H(θ, x)/∂x− ∂H(θ ′, x)/∂x| ≤L2|θ − θ ′|(1+ |x|p2),

(iv) |ρt (θ, x)| ≤C2(1+ |θ |)(1+ |x|q)
for some constants L1,L2,C2,p1,p2, and q .

(D.2) The dynamics for the state variable Xt ∈ Rk is independent of θ and sat-
isfies Assumptions (B.1) and (B.2) of Section 2.1.
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With these conditions one has the following global result.11

Theorem 6.10. Under Assumptions (A.1), (D.1), and (D.2), assume that there
exists a unique equilibrium point θ∗ ∈ Rd of the associated ODE. Suppose that
there exists a positive twice continuously differentiable function U(θ) on Rd

with bounded second derivatives satisfying (i) U ′(θ)h(θ) < 0 for all θ �= θ∗, (ii)
U(θ)= 0 iff θ = θ∗, (iii) U(θ)≥ α|θ |2 for all θ with |θ | ≥ ρ0 for some α,ρ0 > 0.
Then the sequence θt converges P0,x,a almost surely to θ∗.

We now apply this theorem to establish global convergence to the linear
simultaneous equation of model (6.7) above.

Multivariate Muth Model (Continued)

Recall that the learning dynamics for model (6.7) are described by the system

φ′t = φ′t−1 + t−1S−1
t−1zt−1

(
T (φt−1)zt−1 +Cvt − φt−1zt−1

)′
,

St = St−1 + t−1(ztz
′
t − St−1)+ t−2

(
− t

t + 1

)(
zt z

′
t − St−1

)
.

A possible problem is that for some t , the matrix St may not be invertible. This
happens only a finite number of times with probability 1, and one can then give
an arbitrary value for St in the equation for φt . The method of proof is to modify
the algorithm, so that it coincides with the original algorithm after a finite time.

Consider first the equation for St . It satisfies the conditions for the global
convergence theorem with the ODE

h2(S)=Mz − S.

The corresponding Lyapunov function is U(S) = ‖S −Mz‖2 and St converges
almost surely to Mz from any starting point. Now introduce a neighborhood N
of Mz such that S−1 exists whenever S ∈N. It is possible to construct a bounded
regular function u(S) from the space of (p + 1)× (p + 1) matrices to the sub-
space of positive definite matrices such that u(S) = S−1 on N. The modified
algorithm is

φ′t = φ′t−1 + t−1u(St−1)zt−1(T (φt−1)zt−1 +Cvt − φt−1zt−1)
′.

11The proof follows directly the one in Benveniste, Metivier, and Priouret (1990) as indicated in
the remarks in Evans and Honkapohja (1998b).
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Assumptions (D.1) and (D.2) are easy to verify, and the associated ODE takes
the form

dθ

dτ
= (

h1(φ,S),h2(S)
)
,

where h1(φ,S)= u(S)Mz((A− I)(φ − φ̄)), where φ̄ = (ā, b̄) is the REE. This
differential equation is globally asymptotically stable when the eigenvalues of
A− I have negative real parts. Moreover, the stability is then exponential. By
a converse theorem of Lyapunov there exists a twice continuously differentiable
Lyapunov function W(θ) satisfying W(θ) ≥ δ1|θ |2, δ1 > 0.12 To ensure a Lya-
punov function with bounded second derivatives one sets U(θ) = ψ(W(θ)),
where ψ is regular with ψ(0) = 0, ψ ′(t) > 0, limt→∞ψ(t) = +∞, and with
derivatives of ψ tending to zero sufficiently rapidly. This U(θ) will satisfy all
the requirements of Theorem 6.10.

It follows that, provided all eigenvalues of matrix A have real parts less
than 1, Theorem 6.10 applies and φt = (at , bt )→ φ̄ = (ā, b̄) globally almost
surely. If instead one of the eigenvalues of A has a real part greater than 1,
then Theorem 6.9 applies so that (φt , St ) −→ (φ̄, S̄) with probability 0. Since
by the law of large numbers, St → S̄ with probability 1, in this case we have
(at , bt )→ (ā, b̄) with probability 0.

12See Section 5.3.4 for the definition of exponential stability and the relevant converse result,
Proposition 5.10.



Chapter 7
Further Topics in Stochastic

Approximation

7.1 Introduction

In the preceding chapter we provided the central convergence theorems under
the assumption that the dynamics of the state variables follows a stationary vec-
tor autoregressive process (that is possibly dependent on the vector of parame-
ters θt−1). In this chapter we continue with the techniques for analyzing these
algorithms and thereby provide some further results that can be useful in the
study of econometric learning behavior in different models. We are interested in
obtaining several extensions of the basic local convergence results.

First, we present some convergence results of adaptive algorithms that arise
from modeling learning in nonstochastic frameworks. Such setups appear in
some of the literature, and we also discuss some specific issues that arise in
this context. Second, we extend the analysis to situations in which the state vari-
able dynamics follows a Markov process (with, again, possible dependence on
θt−1). Third, we analyze algorithms with a constant gain. In this case we ob-
tain results on the approximate distribution of the parameter estimates. Fourth,
for the case of decreasing gain we provide asymptotic distribution results which
yield the speed of convergence. Finally, we develop a global convergence result
for domains with multiple equilibria. Here we obtain a result stating that there
will be convergence to the set of those equilibria satisfying the familiar local
stability condition.

147
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7.2 Algorithms for Nonstochastic Frameworks

Convergence conditions for learning of a steady state were already discussed in
Chapter 3 for a general framework of type pt = F(pet+1). Other nonstochastic
setups encountered so far are the Ramsey and Diamond growth models which
were discussed in Chapter 4. Many other examples could be given; the litera-
ture studying learning in nonstochastic frameworks is extensively referenced in
Grandmont (1998).

Learning in nonstochastic frameworks has been formulated in several
ways. One approach is to use fixed finite-memory forecast rules, pet+1 =
ψ(pt−1, . . . ,pt−L) or its extension to error learning rules in which the forecast
rule is revised depending on the most recent forecast error. The study of finite-
memory learning rules in nonstochastic models was initiated in Fuchs (1977),
Fuchs (1979), Fuchs and Laroque (1976), and Tillmann (1983). The case of fixed
finite-memory rules was examined extensively by Grandmont (1985) and Grand-
mont and Laroque (1986). They introduce axioms for the forecast function ψ(·)
and obtain both stability and instability results. A second approach, used, e.g., in
Guesnerie and Woodford (1991), is to postulate a learning algorithm with a con-
stant gain. They obtain stability conditions for steady states and cycles. These
models can be viewed as a generalization of adaptive expectations.1

Formally, the preceding types of algorithms can be treated using standard
techniques for difference equations. Algorithms with decreasing gain have also
been used in nonstochastic models. Here we develop local stability and instabil-
ity results for a general class of algorithms with decreasing gain in the context
of nonstochastic setups using the formulation in Evans and Honkapohja (2000).
We also develop some applications of these results. Last, we take up some con-
ceptual issues that arise specifically in nonstochastic frameworks.

7.2.1 A General Framework

Consider the algorithm

θt = θt−1 + γt
[M(θt−1, γt )− θt−1

]
(7.1)

1Further references of expectation formation and learning in nonstochastic models are Grand-
mont and Laroque (1990), Grandmont and Laroque (1991), Moore (1993), Böhm and Wenzelburger
(1999), and Chatterji and Chattopadhyay (2000).
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for t = 1,2,3, . . . . Here θ0 is a given initial condition and γt > 0 is a sequence
of gains with the properties

0< γt < 1, lim
t−→∞γt = 0,

∞∑
i=1

γi =∞.

The function M : Rk×R−→Rk is assumed to have a fixed point at the origin,
i.e., M(0,0)= 0.

In this section we assume that

(i) M(·) is continuously differentiable in a neighborhood of (0,0).
(ii) M(0, γt )= 0 for all t = 1,2, . . . .

(iii) M(·) is continuous in a neighborhood of points (0, γt ).

It follows that D2M(0,0)= 0, where we write (D1M,D2M) for the derivative
of M. Thus D1M is k × k and D2M is k × 1. We also impose the regularity
assumption:

(iv) No eigenvalue of D1M(0,0) has real part equal to 1.

The following local stability result for the algorithm (7.1) is proved in Evans
and Honkapohja (2000).

Theorem 7.1. Assume that conditions (i)–(iv) hold. If in the algorithm (7.1) the
real parts of all eigenvalues of D1M(0,0) are less than 1, then the fixed point is
locally asymptotically stable, i.e., there exists a neighborhood U of 0 such that,
for all θ0 ∈U , the sequence generated by the algorithm (7.1) converges to 0.

For the instability result it is necessary to introduce a further assumption:

(v) For all t , M(·) is continuously differentiable in a neighborhood of (0, γt )
and D1M(0, γt) has no eigenvalue equal to −(1− γt )/γt .

The result for local instability is the following.

Theorem 7.2. Assume that conditions (i)–(v) hold. If in the algorithm (7.1) the
matrix D1M(0,0) has an eigenvalue with real part bigger than 1, then the
algorithm (7.1) is locally unstable at θ = 0, i.e., there is a neighborhood U

such that, for every neighborhoodU1 of 0 in U , there exist θ0 ∈U1 such that the
sequence generated by the algorithm (7.1) leaves U .
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For a proof see again Evans and Honkapohja (2000). That paper also presents
two applications of these propositions, namely the nonlinear multivariate cob-
web model and a model of two-cycles for the (univariate) setup pt = F(pet+1).

7.2.2 Applications

Example 1: Instability of Interest Rate Pegging. The argument that tight in-
terest rate control is not a feasible monetary policy has recently been reexamined
by Howitt (1992) for some alternative economies with learning behavior.

One of the models has both short- and far-sighted agents. The former live
for two periods, selling their endowment e when young and consuming only
at old age the proceeds ePt−1. The latter have a constant endowment y and an
objective function E∗t

∑∞
j=0 β

ju(ct+j ). (Here E∗t denotes expectations.) They
face a finance constraint implying that Mt = Pty , since current consumption
and investment in bonds is paid for by initial money, a transfer, and initial bonds
(with interest). Mt is end-of-period money holding.

Denoting the nominal interest factor on bonds by Rt , the first-order condi-
tion for the far-sighted agent is

u′(ct )=Rt+1E
∗
t

[
βu′(ct+1)

πt+1

]
, πt+1 = Pt+1/Pt .

Market clearing for goods yields ct = y + e(1− 1/πt). The finance constraint
implies that inflation equals money growth. With a pegged interest factorR, the
model has a unique perfect-foresight steady state with inflation factor π∗ =Rβ.

The analysis of this model proceeds by defining the variable

xt = βu′{y + e[1− (1/πt )]}
πt

,

so that the first-order condition gives

u′[y + e(1− 1/πt )] =Rx̂t+1, x̂t+1 ≡E∗t xt+1.

This equation defines a function πt = π(x̂t+1). Introducing the notation h(x)=
βR/π(x), the model yields the dynamic equation

xt = x̂t+1h(x̂t+1), where h,h′ > 0, h(x∗)= 1, (7.2)

and where x∗ = π−1(π∗).
Given this reduced form (7.2), the formulation of learning of the steady

state proceeds along the usual lines. Computing the derivative of F(x̂t+1) ≡
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x̂t+1h(x̂t+1), we get that F ′(x∗) = h(x∗)+ x∗h′(x∗) > 1 since h(x∗) = 1 and
h′ > 0. Thus, the steady state under interest rate pegging is unstable under adap-
tive learning.2

Example 2: Learning with Contemporaneous Information. We consider the
case of learning a steady state when contemporaneous information is assumed
to be available. Let the algorithm be

at = at−1 + γt
[
f (at )− at−1

]
(7.3)

as discussed in Section 3.4 in Chapter 3. As a normalization we set the fixed
point at a = 0, so that f (0)= 0. We also assume that

(a) at = γtf (at )�⇒ at = 0, f (at )= 0,
(b) γtf

′(at) �= 1.

By (b) it is possible to apply the implicit function theorem to equation (7.3) and
obtain the system

at =H(at−1, γt ).

Defining a function M(at−1, γt ) by the formula

H(at−1, γt )= (1− γt )at−1 + γtM(at−1, γt ),

this system is in standard form (7.1). Before the theorems above can be applied,
it is necessary to verify that M(·) satisfies the assumptions required in them.

Using the implicit function theorem, we obtain the derivatives

D1H = 1− γt

1− γtf ′(at )
,

D2H = f (at )− at−1

1− γtf ′(at )
.

We also note that H(0, γt)= 0 for all γt using condition (a). The derivatives of
M(·) are

D1M = γ−1
t

[
D1H − (1− γt )

]
,

D2M = γ−2
t

[
γtD2H −H(at−1, γt )+ at−1

]
.

2We note here that Howitt (1992) also considers other more general learning rules. This is
possible, since the system is one-dimensional and relatively simple.
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Clearly, M(0, γt)= 0 and D2M(0, γt)= 0 for all γt . Moreover,D1M(0, γt )=
(1− γt )[f ′(0)/(1− γtf

′(0))], so that

lim
γt→0

D1M(0, γt)= f ′(0).

This last result shows that the properties of f ′(0) determine the stability of the
fixed point 0 under the algorithm (7.3). Thus we have the following.

Proposition 7.3. If f ′(0) < 1 (respectively > 1), then 0 is locally stable (re-
spectively unstable) for the algorithm (7.3).

7.2.3 Discussion

In nonstochastic models the study of learning dynamics is straightforward for
the case of learning a steady state using natural classes of learning rules with
constant or decreasing gain.3 Similar techniques can be applied if agents are
only trying to learn the slope λ of a first-order process yt = λyt−1. An example
is the Ramsey model presented in Chapter 4.

Matters become much more complicated if the perceived law of motion has
both an intercept and a slope parameter. Consider, for example, the model

yt = α+ δyt−1+ βyet+1 (7.4)

with perfect-foresight solutions of the form

yt =µ+ λyt−1,

so that normally there are two such solutions. Typically, one is interested in
solutions with |λ|< 1. Under perfect foresight the forecast, withµ and λ known,
is given by yt+1 =µ+ λ(µ+ λyt−1), i.e.,

yet+1 =µ(1+ λ)+ λ2yt−1,

if yt−1 is the last available data point. (The case of contemporaneous information
can be treated similarly.)

3The extension to learning rational cycles can be done using essentially the same techniques;
see Guesnerie and Woodford (1991) for the case of constant gain. The case of decreasing gain can
be treated by our general method; see Evans and Honkapohja (2000).
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In such nonstochastic models there is no fully natural way to estimate both
µ and λ simultaneously. One might consider using the least squares estima-
tor, which would be natural in the corresponding stochastic framework. We will
discuss this approach extensively in the context of stochastic models in Chap-
ter 8.

To see the problems, suppose that forecasts are given by yet+1 = at (1+bt)+
b2
t yt−1, where (at , bt ) are the recursive least squares estimates of (µ,λ) at time
t . The recursive least squares algorithm can be expressed as

φt = φt−1 + t−1R−1
t zt−1

(
yt−1− φ′t−1zt−1

)
,

Rt = Rt−1 + t−1(zt−1z
′
t−1 −Rt−1

)
,

where φ′t = (at , bt ), z′t = (1, yt−1). From the reduced form (7.4) we get yt =
T (a, b)′zt , with T (at , bt )

′ = (α + βat (1 + bt ), δ + βb2
t ). If one attempted to

use the stochastic approximation results, the φ component of the ODE would be
given by

hφ(φ,R)=R−1

(
1 ȳ(φ)

ȳ(φ) ȳ(φ)2

)
(T (φ)− φ)

and the R component of the ODE would be given by

hR(φ,R) = lim
t→∞Ezt (φ)zt (φ)

′ −R

=
(

1 ȳ(φ)

ȳ(φ) ȳ(φ)2

)
−R,

where ȳ(φ)= [α+βa(1+b)]/[1−(δ+βb2)]. At the equilibrium,R is singular,
so that the ODE is undefined at that point. Thus the stochastic approximation
tools cannot be applied.

The econometric intuition for the difficulty is straightforward. Asymptot-
ically, along a rational expectations equilibrium (REE), yt is converging to a
constant. Therefore, the regressors zt exhibit perfect multicollinearity asymp-
totically. From an econometric viewpoint, this violates standard assumptions
required for consistency, making the procedure questionable. Can such es-
timates converge even though the standard assumptions fail? This turns out
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to be an extremely delicate issue and is taken up at length by Grandmont
(1998).4

It should be noted that these problems disappear in stochastic models. If the
model is changed to yt = α + δyt−1 + βyet+1 + ut , where ut is an iid random
shock, the RE solution is of the form yt = µ+ λyt−1 + ηut , so that in the REE
the expected value Eztz′t is nonsingular. This point holds even if the shock has
a positive but arbitrarily small support. Thus the above problems do not arise in
stochastic models and, as emphasized by Evans and Honkapohja (1998b), the
stochastic approximation approach can be applied to obtain local stability and
instability results under least squares learning. These types of results will be
discussed in detail in Part III of this book.

7.3 The Case of Markovian State Dynamics

7.3.1 The Setup and the Assumptions

For the system describing the evolution of the vector of parameters θt ∈Rd , we
continue with the general form

θt = θt−1+ γtH(θt−1,Xt )+ γ 2
t ρt (θt−1,Xt ). (7.5)

Again γt is a sequence of “gains” while Xt ∈Rk is the vector of state variables.
As before, H(·) and ρt (·) are two functions describing the learning rule. The as-
sumption that is different from Chapter 6 is that the vector of state variablesXt is
assumed to follow a Markov process with a transition probability law �θ(x,A)

which may depend on θt−1. That is, Pr[Xt ∈ A | θt−1,Xt−1] =�θt−1(Xt−1,A)

for Borel sets A ⊂ Rk . Conditionally linear dynamics is a special case of our
formulation, as will be proved below.

For the analysis one again fixes an open set D ⊂ Rd which contains the
equilibrium point of interest. The assumptions on the algorithm are close to
those of Chapter 6. We postulate the following:

(A.1′) γt is a nonstochastic nonincreasing sequence satisfying

∞∑
t=1

γt =∞ and
∞∑
t=1

γ αt <∞ for some α ≥ 2.

4Grandmont and Laroque (1991) consider the problem for least squares with finite memory.
Moore (1993) avoids these problems by having agents estimate the slope and the intercepts sepa-
rately, taking the REE value of the other parameter as given.
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(A.2) For any compact Q⊂D, there exist C1,C2, q1, and q2 such that ∀θ ∈Q
and ∀t ,

(i) |H(θ, x)| ≤C1(1+ |x|q1),

(ii) |ρt (θ, x)| ≤C2(1+ |x|q2).

(A.3′) For any compact Q⊂D, the function H(θ, x) satisfies, ∀θ, θ ′ ∈Q and
x1, x2 ∈Rk ,

(i) |∂H(θ, x1)/∂x− ∂H(θ, x2)/∂x| ≤L1|x1− x2|(1+|x1|p1 +|x2|p1)

for some p1 ≥ 0,
(ii) |H(θ,0)−H(θ ′,0)| ≤L2|θ − θ ′|,

(iii) |∂H(θ, x)/∂x − ∂H(θ ′, x)/∂x| ≤ L2|θ − θ ′|(1 + |x|p2) for some
p2 ≥ 0, for some constants L1,L2.

Assumption (A.1′) is more general than Assumption (A.1) of Chapter 6
which sets α = 2. Note that Assumption (A.1′) is satisfied for γt = K/tβ for
0< β ≤ 1, K > 0 constant.5 Assumption (A.2) imposes polynomial bounds on
H(·) and ρt (·). Assumption (A.3′) generalizes Assumption (A.3) of Chapter 6
in the way pointed out there. We remark that Assumption (A.3′) holds provided
H(θ, x) is twice continuously differentiable with bounded second derivatives on
every Q.

Before stating the assumptions concerned with state dynamics, it is worth
introducing the following notation and definitions. For any function, f (θ, x),
we denote by fθ the mapping x→ f (θ, x). If f (θ, x) is differentiable in x , we
denote by f ′(θ, x) its derivative with respect to x . Moreover, for any function
g : Rk→Rk , one defines the expression

[g]p = sup
x1 �=x2

|g(x1)− g(x2)|
|x1 − x2|(1+ |x1|p + |x2|p)

and the function space Li(p)= {g | [g]p <∞}.
For the state dynamics one makes the first assumption:

(M.1) For any compact Q ⊂D and any q > 0, there exists µq(Q) <∞ such
that ∀n,x ∈Rk , a ∈Rd ,

Ex,a

{
I
(
θk ∈Q,k ≤ n

)(
1+ |Xn+1|q

)}≤ µq(Q)
(
1+ |x|q).

5Choose α > max(2,β−1).
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Here I (A) and Ex,a(·) denote, respectively, the indicator function of any set A
and the conditional expected value given initial conditions X0 = x , θ0 = a. This
assumption states that the conditional moments ofXn, provided θk has remained
in Q, are uniformly bounded in θ and the bounds are polynomial in the initial
state x .

Before stating the next assumption, we introduce the following notation.
Let

�n
θ (x,A)= Pr

[
Xt+n ∈A | θt = θ,Xt = x

]
denote the transition probability measure n steps ahead for the Markov process
Xt with fixed one-step-ahead transition probability �θ(x,A). In addition, de-
note by �n

θfθ (x) or simply by �n
θfθ the mapping x → ∫

f (θ, y)�n
θ (x, dy),

for n≥ 1. Thus �n
θfθ (x) is the n-step-ahead conditional expectation of f (θ, y)

given the current state x .
We now postulate for any compact Q⊂D:

(M.2) For all n, θ, and m ≥ 0: there exist K such that �n
θ(1 + |y|m) ≤

K(1+ |x|m).
(M.3) For all p > 0, there exist K1,K2, q1, and ρ1 < 1 such that for all func-

tions g ∈ Li(p), n≥ 0, x1, x2 ∈Rk , θ, θ ′ ∈Q,

(i) |�n
θg(x1)−�n

θg(x2)| ≤K1ρ
n
1 |x1 − x2|(1+ |x1|p + |x2|p),

(ii) |�n
θg(x)−�n

θ ′g(x)| ≤K2[g]p|θ − θ ′|(1+ |x|q1).

(M.4) For all p > 0 and for all differentiable functions g with g′ ∈ Li(p), there
exists K3(g

′) such that ∀n≥ 0, x1, x2 ∈Rk , θ, θ ′ ∈Q,

∣∣�n
θg(x1)−�n

θg(x2)−�n
θ ′g(x1)+�n

θ ′g(x2)
∣∣

≤K3(g
′)ρn2 |θ − θ ′|(1+ |x1|q2 + |x2|q2

)
for constants ρ2 < 1 and q2 independent of g.

We remark that Assumptions (M.1)–(M.4) are identical to the conditions
(C.1)–(C.4) in Evans and Honkapohja (1998a), except that Assumptions (M.3)
and (M.4) strengthen slightly (C.3) and (C.4), respectively, by the assumption
that they hold for all p > 0. [This is needed because of the form (A.3′).] In
addition we postulate a further assumption:
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(M.5) For all q ≥ 1, there exists an integer r and constants ᾱ < 1, β such that

sup
θ∈Q

∫
|y|q�r

θ (x, dy)≤ ᾱ|x|q + β.

Assumption (M.5) is necessary to analyze the more general gain sequence
permitted in Assumption (A.1′), as well as the constant-gain algorithms that will
be discussed later.

These assumptions are sometimes tedious to verify in specific applications.
However, in special cases the situation may be simplified. An important case is
when the Markov process Xt is independent of θt−1. Then one only needs to
verify Assumptions (M.2), (M.3)(i), and (M.5) in addition to Assumptions (A).
Below, we also show that Assumptions (M.1)–(M.5) hold under conditional lin-
ear dynamics for the state variable.

Our method of analysis follows that of Chapter 6. One derives an associated
ODE whose trajectories, at specific times, approximate the time paths of the al-
gorithm with the approximation becoming sharper for large t . In order to derive
the differential equation one needs to show that, for each θ , the state variable Xt

has a unique invariant distribution and that the function H(θ, y) in the dynam-
ics for the parameter vector is integrable with respect to this distribution. These
facts are the content of the following lemma.

Lemma 7.4. Under Assumptions (M.2) and (M.3)(i) the Markov process Xt ,
with transition probability �θ(x,A) for any fixed θ , has a unique invariant
probability distribution �θ , and the function

h(θ)=
∫

H(θ, y)�θ (dy) (7.6)

is well defined and locally Lipschitz for any function H(θ, y) satisfying Assump-
tions (A.2) (i) and (A.3′).

Proof. Hθ (y) can be shown to be Li(p) using a modification of the correspond-
ing argument described in the proof of Lemma 6.2, of Chapter 6, to obtain a
bound on |H(θ, x1) − H(θ, x2)|. The existence of �θ and h(θ) then follows
from Benveniste, Metivier, and Priouret (1990, Proposition 3, p. 255). They also
establish that |�n

θHθ (x) − h(θ)| ≤ K1ρ
n
2 [Hθ ]p(1 + |x|p+1) for some K1 and

0 < ρ2 < 1. To prove the Lipschitz property of h(θ) one can modify the argu-
ment of the corresponding lemma in Chapter 6 to show that Assumption (A.3′)
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implies that ∣∣H(θ, x)−H(θ ′, x)∣∣≤K|θ − θ ′|(1+ |x|p3
)

for some constants K and p3 ≥ 0.
Next, one notes that∣∣�n

θ1
Hθ1(x)−�n

θ2
Hθ2(x)

∣∣
≤ ∣∣�n

θ1
Hθ1(x)−�n

θ2
Hθ1(x)

∣∣+ ∣∣�n
θ2
Hθ1(x)−�n

θ2
Hθ2(x)

∣∣.
Using this, and Assumptions (M.2) and (M.3)(i), we get∣∣�n

θ2
Hθ1(x)−�n

θ2
Hθ2(x)

∣∣ ≤ ∣∣�n
θ2
(Hθ1(x)−Hθ2)(x)

∣∣
≤ K|θ1 − θ2|�n

θ2

(
1+ |x|p)

≤ K ′|θ1 − θ2|
(
1+ |x|p)

for some K ′ and p, and∣∣�n
θ1
Hθ1(x)−�n

θ2
Hθ2(x)

∣∣≤K∗|θ1 − θ2|
(
1+ |x|q)

for some K∗ and q . Selecting x = 0 and letting n→∞ yields the Lipschitz
condition |h(θ1)− h(θ2)| ≤M|θ1 − θ2|.

The function h(θ) obtained in the lemma defines the associated differential
equation

dθ

dτ
= h(θ)

needed for the asymptotic analysis of the time paths of the algorithm. Note that
for the conditionally linear state dynamics, this mapping and differential equa-
tion were derived through a different but equivalent route. For this important
case we establish here that Assumptions (B) of Chapter 6 are a special case of
Assumptions (M) above.

Proposition 7.5. If Assumptions (B) of Chapter 6 hold, then Xt satisfies Condi-
tions (M.1)–(M.5) for any p > 0.

Proof (The main steps). First, define the nth stage

Un(θ)=
n∑

k=1

An−k(θ)B(θ)Wk.



Further Topics in Stochastic Approximation 159

It can be shown that for all p ≥ 1, there are constants K,K∗ such that, for all
θ, θ ′ ∈Q, Un(θ) satisfies ‖Un(θ)‖p ≤K and ‖Un(θ)−Un(θ

′)‖p ≤K∗|θ − θ ′|;
see Benveniste, Metivier, and Priouret (1990, pp. 266–267). (Here ‖ · ‖p denotes
the Lp norm.) Next, note that by Assumption (B.3) one has |An(θ)| ≤ ρn. Then
Condition (M.1) is immediate from Assumptions (B.2) and (B.3).

To prove Condition (M.2) we note that the equation

E
(
g(An(θ)x +Un)

)=E
(
g(An(θ)x + Vn)

)
(7.7)

holds for any bounded and continuous function g satisfying |g(x)| ≤ C(1 +
|x|q), where the random variable

Vn(θ)=
n∑

k=1

Ak(θ)B(θ)Wk

has the same distribution as Un and has a limit V∞(θ)= limn→∞ Vn(θ) almost
surely and in Lp for any given θ .6 Using g(x)= 1+|x|m yields Condition (M.2)
at once.

To prove Condition (M.3)(i) we use equation (7.7) and the definition of [g]p
in the inequality∣∣E[g(An(θ)x1 +Un(θ)

)− g
(
An(θ)x2 +Un(θ)

)]∣∣
≤ [g]p|An(θ)||x1− x2|E

[
1+ ∣∣An(θ)x1 +Un(θ)

∣∣p
+ ∣∣An(θ)x2 +Un(θ)

∣∣p].
To prove Condition (M.3)(ii) one notes that∣∣E[g(An(θ)x +Un(θ)

)− g
(
An(θ ′)x +Un(θ

′)
)]∣∣

≤ [g]pE
{[∣∣An(θ)−An(θ ′)

∣∣|x| + ∣∣Un(θ)−Un(θ
′)
∣∣]

× [
1+ ∣∣An(θ)x1 +Un(θ)

∣∣p + ∣∣An(θ)x2 +Un(θ)
∣∣p]},

to which one applies the Schwarz inequality. Using Assumptions (B.2) and
(B.3), the resulting second term is polynomially bounded in |x|. The resulting
first term is simply the L2-norm of |An(θ) − An(θ ′)||x| + |Un(θ) − Un(θ

′)|.
Since Un, A(θ) satisfy Lipschitz conditions and |An(θ)| ≤ ρn, the whole ex-
pression is bounded by an expression of the form C|θ − θ ′|(1 + |x|q) which
proves Condition (M.3)(ii).

6This limit follows from the martingale convergence theorem using the properties of A(θ)
and B(θ).
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We omit the proof of Condition (M.4) for brevity. The lengthy details are
given in Benveniste, Metivier, and Priouret (1990, p. 269). Finally, the proof
of Condition (M.5) is a straightforward modification of the proof of Condi-
tion (M.2).

7.3.2 The Convergence Result in the Markovian Case

From this point onwards the analysis proceeds as in the derivation of Theo-
rems 6.4 and 6.5 in Chapter 6. One simply utilizes the new definition of the
associated differential equation. Thus assume that θ∗ is a locally asymptotically
stable equilibrium point for the associated ODE

dθ

dτ
= h

(
θ(τ )

)
,

where h(θ) is given by equation (7.6). By the converse Lyapunov theorem (see
Proposition 5.9 of Section 5.3.4 in Chapter 5), there exists a C2 Lyapunov func-
tion U(θ) on the domain of attraction D of θ∗ having the properties:

(a) U(θ∗)= 0, U(θ) > 0 for all θ ∈D, θ �= θ∗,
(b) U ′(θ)h(θ) < 0 for all θ ∈D, θ �= θ∗,
(c) U(θ)→∞ if θ→ ∂D or |θ |→∞.7

Again use the notation K(c)= {θ | U(θ)≤ c}, c > 0 for contour sets of the Lya-
punov function. Also let τ(c)= inf(n; θn /∈K(c)) and let Pn,x,a be the proba-
bility distribution of (Xk, θk)k≥n with Xn = x , θn = a. Following the steps given
in Section 6.3.3 of Chapter 6 yields the same results as before. We restate them
for completeness and later reference.

Theorem 7.6. Let θ∗ be an asymptotically stable equilibrium point of the ODE
dθ/dτ = h(θ(τ)). Suppose Assumptions (A.1′), (A.2), (A.3′), and (M.1)–(M.5)
are satisfied on D = int(K(c)) for some c > 0. Suppose that for 0< c1 < c2, we
have K(c2)⊂D. Then

(i) There exist constants B1 and s such that, for all a ∈K(c1), n≥ 0, x ,

Pn,x,a
{
θk leaves K(c2) in finite time

}≤ B1(1+ |x|s)J (n),

7∂D denotes the boundary of D.
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where

J (n)=
∞∑

k=n+1

γ αk .

(ii) For all a ∈K(c1), n≥ 0, x , one has

Pn,x,a
{
θk leaves K(c2) in finite time or θk→ θ∗

}= 1.

(iii) For any compact Q⊂D, there exist constants B2 and s such that, for all
a ∈K(c1), n≥ 0, x ,

Pn,x,a
{
θk→ θ∗

}≥ 1−B2
(
1+ |x|s)J (n),

where J (n) is as in (i).

We note that limn→∞ J (n)= 0.

Proof (Outline). The key results are Theorem 17 and Corollary 18 of Chap-
ter 3, Part II, of Benveniste, Metivier, and Priouret (1990). The proof for the
case α = 2 in Assumption (A.1′) is developed in some detail in Evans and
Honkapohja (1998a). The strengthened form of Assumptions (M.3) and (M.5)
imply that Assumption (A′.5) of Benveniste, Metivier, and Priouret (1990) is
satisfied. Assumption (A′.6) of Benveniste, Metivier, and Priouret (1990) is
our Assumption (A.1′). Finally, Assumption (A.7) of Benveniste, Metivier, and
Priouret (1990) is the existence of the Lyapunov function assumed above. The
conditions (M.1) to (M.5) are shown in Evans and Honkapohja (1998a) to im-
ply that Assumptions (A.1)–(A.4) of Benveniste, Metivier, and Priouret (1990)
hold.

We remark that Corollaries 6.6 and 6.8 of Chapter 6 continue to hold in
the Markovian setup. Moreover, the global convergence result, Theorem 6.10 of
Chapter 6, can be generalized to the Markovian case for the case α = 2. The
required assumptions are:

(D.1) The functions H(θ, x) and ρt (θ, x) satisfy, for all θ, θ ′ ∈ Rd and all
x,x ′ ∈Rk ,

(i) |H(θ, x1)−H(θ, x2)| ≤L1(1+ |θ |)|x1 − x2|(1+ |x1|p1 + |x2|p1),

(ii) |H(θ,0)−H(θ ′,0)| ≤L2|θ − θ ′|,
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(iii) |∂H(θ, x)/∂x− ∂H(θ ′, x)/∂x| ≤L2|θ − θ ′|(1+ |x|p2),

(iv) |ρt (θ, x)| ≤C2(1+ |θ |)(1+ |x|q),

for some constants L1,L2,C2,p1,p2, and q .
(D.2′) The transition probability law �(x,dy) of the Markov process Xt ∈ Rk

is independent of θ and satisfies

(i) for all n,m ≥ 0, there exists K such that
∫
(1 + |y|m)�n(x, dy) ≤

K(1+ |x|m),
(ii) for all p ≥ 0, there exist K1 and ρ < 1 such that for all functions

g ∈ Li(p), n≥ 0, x1, x2 ∈Rk ,∣∣∣∣∫ g(y)�n(x1, dy)−
∫
g(y)�n(x2, dy)

∣∣∣∣
≤Kρn[g]p|x1 − x2|

(
1+ |x1|p + |x2|p

)
.

Here Assumption (D.1) is exactly the same as in Chapter 6, while Assump-
tion (D.2′) is the analogue of Assumption (D.2) for the more general Markovian
setup. The global convergence result can then be stated as follows.

Theorem 7.7. Under Assumptions (A.1), (D.1), and (D.2′), assume that there
exists a unique equilibrium point θ∗ ∈ Rd of the associated ODE. Suppose that
there exists a positive C2 function U(θ) on Rd with bounded second derivatives
satisfying (i) U ′(θ)h(θ) < 0 for all θ �= θ∗; (ii) U(θ)= 0 iff θ = θ∗; (iii) U(θ)≥
α|θ |2 for all θ with |θ | ≥ ρ0 for some α,ρ0 > 0. Then the sequence θn converges
P0,x,a almost surely to θ∗.

7.4 Convergence Results for Constant-Gain
Algorithms

We now consider algorithms of the form (7.5) where the assumption on the
gain sequence (A.1′) is replaced by a constant-gain assumption γt = γ, where
0 < γ < 1. We also restrict attention to the case without the complementary
term. We thus have

θn = θn−1 + γH(θn−1,Xn), (7.8)

θn ∈Rd , Xn ∈Rk , with a starting point θ0 = a. Here we use n to denote discrete
time so that we can use t below for continuous time. The other assumptions of
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the preceding section will be retained. We continue to assume that these hold on
some open set D ⊂Rd .

θn cannot now be expected to converge to a nonstochastic point, since the
constant gain implies that θn is nonnegligibly sensitive to random shocks even
asymptotically. However, θn may converge to a limiting probability distribution.
It turns out that it is possible to obtain the limiting distribution for cases in
which γ is small. We begin with some preliminary definitions and additional
assumptions.

By the lemma in the preceding section, the Markov process Xn for fixed θ
has a unique invariant probability distribution �θ . Let Xθ

n denote this stationary
Markov chain with transition probability �θ(x,A). Let

Rij (θ)=
∞∑

k=−∞
cov

[Hi(θ,Xθ
k ),Hj (θ,Xθ

0)
]
, (7.9)

and let R(θ) denote the d × d matrix with elements Rij (θ). We remark that
under our assumptions it can be shown that Rij (θ) is locally Lipschitz on D.8

We need to impose an additional assumption on the function h(θ) used to define
the associated ODE of the algorithm.

(H.1) h(θ) has continuous first and second derivatives on D.

To precisely state the approximation theorem we need further definitions. Let

θ
γ
n = θ

γ

n−1 + γH(
θ
γ

n−1,Xn

)
be the θn process, where we make explicit the dependence on the value of the
constant-gain parameter γ . We need to construct a corresponding continuous-
time process θγ (t). Let tγn = nγ and define θγ (t)= θ

γ
n if tγn ≤ t < t

γ

n+1. Finally,

let θ̃ (t, a) denote the solution to the ODE dθ/dt = h(θ) with initial condition
θ(0)= a ∈D.

The first result concerns approximations at finite horizons over which the
trajectory θ̃ (t, a) remains in D. In fact, we shall consider a fixed compact set
Q⊂D and a fixed time T > 0 such that θ̃ (t, a) ∈Q for all 0≤ t ≤ T .

Proposition 7.8. Assume (A.2), (A.3′), (M.1)–(M.5), and (H.1). Consider the
normalized random variables Uγ (t) = γ−1/2[θγ (t) − θ̃ (t, a)]. As γ → 0, the

8This follows from Benveniste, Metivier, and Priouret (1990, Theorem 5, Chap. 2, Part II) and
their formulation of the Poisson equation in (A.8)(ii), p. 321.
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process Uγ (t), 0≤ t ≤ T , converges weakly to the solution U(t) of the stochas-
tic differential equation

dU(t)=Dθh
(
θ̃(t, a)

)
U(t) dt +R1/2(θ̃ (t, a))dW(t),

with initial condition U(0) = 0, where W(t) is a standard vector Wiener pro-
cess.

Proof (Outline). The result is essentially that of Theorem 7, Chapter 4, Part II
of Benveniste, Metivier, and Priouret (1990). The outline of proof for Theorem
7.6 above indicates how our assumptions imply all the assumptions of Theo-
rem 7 of Benveniste, Metivier, and Priouret (1990), with the exception of their
Assumption (A.8). To verify their Assumption (A.8), first note that our Assump-
tion (H.1) postulates the derivative properties of h(θ). Define the series

νθ (y)=
∞∑
k=0

(
�k
θHθ − h(θ)

)
(y).

In Evans and Honkapohja (1998a), we show that νθ (y) is well defined and
satisfies certain properties. It can be shown that Theorem 5, Chapter 2, Part
II of Benveniste, Metivier, and Priouret (1990) can be applied to the function
�θν

i
θν

j
θ (y)−�θν

i
θ (y)�θν

j
θ (y) to prove that the rest of their Assumption (A.8)

is satisfied. The statement of their Theorem 7 is expressed in terms of conver-
gence to a Gaussian diffusion, which can alternatively be described as the solu-
tion to the stochastic differential equation above.

The definition of weak convergence for stochastic processes in continuous
time is given in Billingsley (1968). An implication is weak convergence (con-
vergence of the probability distributions) of the process at any given t as γ → 0.

The stochastic differential equation in Proposition 7.8 is linear, though in
general it has time-varying coefficients. It can still be analyzed using the meth-
ods outlined in Section 5.6.2 of Chapter 5. The results there imply the following.
Let VU(t)= var(U(t)). Then we have

EU(t) = 0,
dVU(t)

dt
= Dθh

(
θ̃ (t, a)

)
VU(t)+ VU(t)Dθh

(
θ̃(t, a)

)′ +R(
θ̃ (t, a)

)
,

since U(0)= 0.
The general results on linear stochastic differential equations suggest that,

with additional assumptions, the stochastic differential equation in Proposition
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7.8 can have a stationary distribution asymptotically. This can provide an ap-
proximation result for large t that can be straightforward to apply. The additional
required assumptions on h(θ) are:

(H.2) θ∗ is a globally asymptotically stable equilibrium point of the ODE
dθ/dt = h(θ).

(H.3) Dθh(θ) is Lipschitz and all of the eigenvalues of B = Dθh(θ
∗) have

strictly negative real parts.

We also make the following assumptions that various moments are polyno-
mially bounded in the state variable.

(N.1) There exist q1, q2, q3 ≥ 0 such that, for all q > 0 and all compact sets Q,
there is a constant µ(q,Q) such that for all x ∈Rd , a ∈Q,

(i) supn Ex,a(1+ |Xn|q)≤ µ(1+ |x|q),
(ii) supn Ex,a(|H(θγn ,Xn+1)|2)≤ µ(1+ |x|q1),

(iii) supn Ex,a(|νθγn (Xn+1)|2)≤ µ(1+ |x|q2),

where νθ (y)=∑∞
k=0(�

k
θHθ − h(θ))(y),

(iv) supn Ex,a(|θγn |2)≤µ(1+ |x|q3).

Though clearly strong, in Chapter 14 we will give an example in which these
assumptions can be verified. Note that Assumption (N.1)(i) is a strengthening of
Assumption (M.1) and that if in Assumption (A.2) the bound on |H(θ, x)| is
uniform over compact sets Q, then Assumption (N.1)(ii) follows from Assump-
tion (N.1)(i).

Theorem 7.9. Assume (A.2), (A.3′), (M.1)–(M.5), (H.1)–(H.3), and (N.1). Con-
sider the normalized random variables Uγk (t) = γ

−1/2
k [θγk (t) − θ∗]. For any

sequences τk →∞, γk → 0, the sequence of random variables (Uγk (τk))k≥0

converges in distribution to a normal random variable with zero mean and co-
variance matrix

C =
∫ ∞

0
esBR(θ∗)esB′ds,

where B is defined in Assumption (H.3).

Proof (Outline). The result is that of Theorem 15, Chapter 4, Part II of Ben-
veniste, Metivier, and Priouret (1990). Our assumptions (H.2)–(H.3) and (N.1)
are the same as their Conditions (A) and (B), pages 334–335. Our conditions
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(A.2), (A.3′), (M.1)–(M.5), (H.1) imply that their other assumptions hold as
noted in the preceding proposition.

This theorem gives a simple approximation result for θn in the algorithm
(7.8) with constant gain γ. For small γ and large n, the distribution is approxi-
mately given by

θn ∼N(θ∗, γC).

7.5 Gaussian Approximation for Cases of
Decreasing Gain

We return to algorithms with decreasing gain, in particular of the form

θn = θn−1 + γnH(θn−1,Xn), (7.10)

for n= 1,2,3, . . . . In this section the complementary term is omitted. In addi-
tion to the standard assumptions of Theorem 7.6, we make the following addi-
tional assumptions:

(P.1) γn =K(n+N)−β, where 0< β ≤ 1, K,N > 0, and 0< γ1 ≤ 1.
(P.2) Prx,a(|θn|>R in finite time) is arbitrarily small for R sufficiently large.

Theorem 7.10. Assume (A.2), (A.3′), (M.1)–(M.5) and (P.1)–(P.2). Consider the
two cases:

(i) β = 1. Suppose (a) all eigenvalues of Dθh(θ
∗) have real parts less than

−(2K)−1 and (b) (θ − θ∗) · h(θ)≤−δ|θ − θ∗|2 for some δ > 0,
or

(ii) 0 < β < 1. Suppose all eigenvalues of Dθh(θ
∗) have real parts less than

zero.

Then the sequence

(θn− θ∗)/√γn
converges in distribution to a normal random variable with zero mean and co-
variance matrix

C =
∫ ∞

0
esBR(θ∗)esB′ ds.
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Here B =Dθh(θ
∗)+ (2K)−1I, where I is the identity matrix, in the case β = 1

and B =Dθh(θ
∗) if 0< β < 1.

This is Theorem 13, Chapter 4, Part II of Benveniste, Metivier, and Priouret
(1990) applied to the special case γn =K(n+N)−β . As with previous results,
our assumptions are adequate to assure that their conditions are satisfied.

This result indicates that the algorithm (7.10) converges at rate nβ/2 under
Assumption (P.1). However, note that when β = 1, an additional condition on
the eigenvalues of Dθh(θ

∗) is required. In particular for K = 1, the requirement
is that all eigenvalues of Dθh(θ

∗) have real parts less than −1/2.

7.6 Global Convergence on Compact Domains

In many economic models the basic assumptions and setup imply that the under-
lying space for the parameter vector θ can be taken to be compact. With some
additional assumptions on the boundary behavior of the learning algorithm, it
is possible to prove a global convergence result stating that the time paths of
the parameter vector converge to the invariant set of the associated ODE. For
such situations it may also be possible to show that the invariant set has a spe-
cial structure; for example, it may consist only of the equilibrium points of the
differential equation. Invoking the local stability and instability results, it is then
possible to obtain the result that for some models the learning algorithm con-
verges globally to the set of locally asymptotically stable equilibrium points of
the associated ODE.9

We adopt the conditionally linear framework of Chapter 6. In particular, let
the algorithm take the form

θt = θt−1+ γtQ(t, θt−1,Xt ),

where θt ∈Rd . Xt ∈Rk is the vector of observable state variables with the con-
ditionally linear dynamics

Xt =A(θt−1)Xt−1 +B(θt−1)Wt ,

where Wt is a random disturbance term. As in Chapter 6, select a set D∗ ⊂Rd

such that all the eigenvalues of A(θ), for all θ ∈D∗, are strictly inside the unit

9The two papers Woodford (1990) and Evans, Honkapohja, and Marimon (2000) give economic
models in which this line of argument can be applied.
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circle. The domain of interest will be an open and connected set D ⊂D∗. We
postulate Assumptions (C.1)–(C.5) of Chapter 6 on D. We now state a basic
convergence theorem of Ljung (1977).

Theorem 7.11. Let D̄ be a compact subset of D such that the trajectories of
dθ/dτ = h(θ) which start in D̄ remain in a closed subset of D for all τ > 0.
Assume that (a) there is a random variable ϒ such that θt ∈ D̄ and |Xt | < ϒ

infinitely often with probability 1, and (b) the differential equation has an invari-
ant set Dc with domain of attraction DA ⊃ D̄. Then θt →Dc with probability 1
as t→∞.

This theorem states results that generalize (under somewhat different as-
sumptions) the basic convergence results of Chapter 6. The key assumption
which makes possible the probability 1 convergence result is the “visiting” con-
dition (a). Note that if by construction the algorithm is defined and remains on
a compact set and the state variable is bounded, then this condition is satisfied.
(However, otherwise this condition may be difficult to verify.)

In many applications, the invariant set Dc of dθ/dτ = h(θ) consists of iso-
lated equilibrium points. Suppose that this is the case and also that at each equi-
librium point θ∗ the real parts of the eigenvalues of Dθh(θ

∗) are nonzero. In
addition we postulate the conditions used in the instability result, Theorem 6.9
of Chapter 6. That is, at each θ∗, (i) Q(t, θ∗, X̄t (θ

∗)) has a covariance matrix
that is bounded below by a positive definite matrix, and (ii) EQ(t, θ∗, X̄t (θ

∗))
is continuously differentiable in θ in a neighborhood of θ∗ and the derivatives
converge uniformly in t . With these assumptions we can combine the stability
and instability results to obtain a strong global convergence result.

Corollary 7.12. Suppose that the invariant set Dc of the differential equation
dθ/dτ = h(θ) consists of a finite number of isolated equilibrium points and that
all of the assumptions made in this section are satisfied. Then θt converges with
probability 1 to the set of locally asymptotically stable points of the differential
equation.

Finally, we remark that if Q(t, θt−1,Xt ) is uniformly bounded, then, due to
the decreasing-gain assumption, convergence must be to a single point of the set
of locally asymptotically stable points.
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7.7 Guide to the Technical Literature

The classical theory of stochastic approximation, see Robbins and Monro (1951)
and Kiefer and Wolfowitz (1952), was developed for models without full state
variable dynamics and feedback from parameter estimates. Recent expositions
of stochastic approximation are given, e.g., in Benveniste, Metivier, and Priouret
(1990), Ljung, Pflug, and Walk (1992), and Kushner and Yin (1997). A widely
cited basic paper is Ljung (1977), which extended stochastic approximation to
setups with dynamics and feedback. Ljung’s results are extensively discussed
in the book Ljung and Söderström (1983). A further generalization of Ljung’s
techniques is presented in Benveniste, Metivier, and Priouret (1990).

A somewhat different approach, based on Kushner and Clark (1978), is de-
veloped in Kuan and White (1994). An extension of the algorithms to infinite-
dimensional spaces is given in Chen and White (1998). Stochastic approxi-
mation techniques were used by Arthur, Ermoliev, and Kaniovski (1983) and
Arthur, Ermoliev, and Kaniovski (1994) to study generalized urn schemes.

The exposition here has followed Evans and Honkapohja (1998b), Evans
and Honkapohja (1998a) for the stability results and Ljung (1977) for the insta-
bility result. The positive stability results synthesize the results in Benveniste,
Metivier, and Priouret (1990). Other useful general formulations are Ljung
(1977), Marcet and Sargent (1989c), the appendix of Woodford (1990), and
Kuan and White (1994).

Our approach to constant gain algorithms has been based on Chapter 4, Part
II of Benveniste, Metivier, and Priouret (1990). Kushner and Yin (1997) also
treats extensively these algorithms.
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Part III
Learning in Linear Models
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Chapter 8
Univariate Linear Models

8.1 Introduction

Many economic applications of rational expectations (RE) use linear models.
These may be either exact formulations, for appropriate specifications of tech-
nology and preferences, linear approximations around a nonlinear RE solution,
or ad hoc specifications which are taken to be linear for convenience. Frequently,
the reduced form makes the endogenous variables of interest depend on expected
future values of the endogenous variables (as well as on exogenous variables).
This is crucial since the dependence on future expectations leads to the possi-
bility of multiple rational expectations equilibria (REEs). This in turn leads to
the issue of which solution should be selected by the economic theorist. A vari-
ety of “selection criteria” have been proposed. The perspective we will adopt is
that the focus should be on those solutions which are stable under an adaptive
learning scheme. In other words, the solution should be robust to agents making
small forecast errors initially. Of course, stability may be affected by the par-
ticular learning scheme adopted. It is therefore also important to determine how
sensitive is the stability of any particular REE to the specification of the learning
rule. We use the concepts of weak and strong E-stability to analyze this issue.
The distinction is introduced in this chapter, but a full discussion is postponed
until Chapter 9.

A quite general specification of a linear expectations model is

yt = α+
d∑
i=1

δiyt−i +
m∑
i=1

n∑
j=i

βijE
∗
t−iyt−i+j + κwt + ζvt , (8.1)

wt = ρwt−1 + et ,

173
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where yt is a vector of endogenous variables, E∗t−iyt−i+j denotes the expec-
tation of yt−i+j formed at time t − i , wt is a vector of exogenous observable
variables following a vector autoregression, vt and et are white noise shocks,
and α, δi, βij , κ , and ζ are conformable matrices. Unfortunately, this model is
too general for us in the sense that providing a full characterization of the set of
all REEs to this model is itself a formidable task.1

Our procedure in this and the following two chapters will therefore be as
follows. We start in this chapter with a simple univariate special case, which is
nonetheless general enough to illustrate the method of analysis in the presence
of multiple equilibria. A number of standard examples in the literature fit this
special case. We then go on to consider variations and higher-order univariate
models both to illustrate the generality of the techniques and to provide a back-
drop for a general discussion of the relationship of learning to other selection
criteria. In the next chapter we take up the issues of how to provide a full char-
acterization of the full set of solutions for these simple models and how stability
under learning depends on the specification of the learning rule. Chapter 9 also
examines some additional topics concerning learning in univariate linear mod-
els. Then in Chapter 10 we show how to extend our methods to multivariate
linear models. We also apply the techniques to some well-known recent multi-
variate models.

8.2 A Special Case

Consider the univariate model

yt = α+ β0E
∗
t−1yt + β1E

∗
t−1yt+1 + vt , (8.2)

where vt is assumed to be an exogenous process satisfying

Et−1vt = 0.

Example 1: The Sargent and Wallace (1975) “ad hoc” model introduced in
Chapter 4 is of this form, where yt = pt , the logarithm of the price level, and

1There is an extensive literature on solution techniques to linear RE models and different possi-
ble representations of the solutions. Some central references are Gourieroux, Laffont, and Monfort
(1982), Evans and Honkapohja (1986), Broze, Gourieroux, and Szafarz (1990), Whiteman (1983),
McCallum (1983), Pesaran (1981), d’Autume (1990), and Taylor (1986).
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where vt is a linear combination of the white noise aggregate supply, IS, and
LM curve shocks. Recall that it can be shown that β1 > 0 and β0 + β1 < 1.

Example 2: The real balance model of Taylor (1977) is a variation of the ratio-
nal expectations IS-LM model in which a real balance effect enters each equa-
tion. His formulation was

qt = aI + am(m−pt )+ u1t , where am > 0,

qt = bI + br(rt − (E∗t−1pt+1 −E∗t−1pt))

+bm(m− pt )+ u2t , where br < 0, bm > 0,

m = cI + pt + qt + crrt + cm(m− pt)+ u3t ,

where cr < 0, and 0< cm < 1.

Again, this model can be rewritten as the univariate reduced form (8.2). The
reduced form parameters satisfy β1 =−β0, where β0 is given by

β0 = br(bm + br(1− am − cm)c
−1
r − am)

−1.

Any nonzero value of β0 is possible for appropriate values of the structural pa-
rameters.

8.2.1 The MSV Solution

We start by obtaining the RE solution which is normally recommended in prac-
tice. The simplest method of proceeding is to guess the appropriate form of the
solution and then to use the method of undetermined coefficients. Here we guess
a solution of the form

yt = a+ vt ,

where a is to be determined. Assuming this guess is correct, we compute

Et−1yt =Et−1yt+1 = a,

where we have now replaced E∗t−1yt and E∗t−1yt+1 by Et−1yt and Et−1yt+1

to indicate that these expectations are now assumed to be formed rationally.
Substituting into equation (8.2), we obtain

yt = α+ (β0 + β1)a + vt .
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This is consistent with our guess if and only if a = α + (β0 + β1)a, i.e., a =
(1− β0 − β1)

−1α, which yields the REE

yt = (1− β0 − β1)
−1α+ vt . (8.3)

The solution (8.3) is often referred to as the minimal state variable (MSV) solu-
tion, following McCallum (1983), who introduced the concept for linear rational
expectations models. This is a solution which depends linearly on a set of vari-
ables (here vt and the intercept) and which is such that there does not exist a
solution which depends linearly on a smaller set of variables.

8.2.2 A Characterization of the Full Set of Solutions

We now list the full set of RE solutions to equation (8.2). Let εt denote an ar-
bitrary martingale difference sequence (MDS), i.e., a sequence of random vari-
ables satisfying

Et−1εt = 0.

Here εt could be some function of vt with conditional mean of 0, or it could
be an exogenous variable independent of vt . When εt is independent of vt , it is
often referred to as a sunspot variable. Then the stochastic process

yt =−β−1
1 α+ β−1

1 (1− β0)yt−1+ vt + c1vt−1 + d1εt−1 (8.4)

is an REE for any choice of c1 and d1.2 This can easily be verified by calculating

Et−1yt = −β−1
1 α+ β−1

1 (1− β0)yt−1 + c1vt−1 + d1εt−1,

Et−1yt+1 = −β−1
1 α+ β−1

1 (1− β0)Et−1yt ,

and substituting into equation (8.2). It may be helpful to note that the autore-
gressive coefficient of equation (8.4) can be obtained from equation (8.2) by
replacing Et−1yt with yt , Et−1yt+1 with yt+1, and solving for yt+1 in terms
of yt .

Since, for εt white noise, yt is an ARMA(1,1) process, it is convenient
to refer to these as the ARMA(1,1) set of solutions. (When d1 �= 0 and εt is
independent of vt , we refer to these as ARMA(1,1) sunspot solutions, while if

2If we assume that the model begins at time t = 0, then equation (8.4) also contains an arbitrary
initial condition y−1.
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d1 = 0, they are ARMA(1,1) solutions driven by the fundamental exogenous
process.)

In fact, equation (8.4) fully characterizes the set of solutions. That is, every
solution can be expressed in the form (8.4) for suitable choices of εt and c1 and
d1. This can be seen as follows. First, taking conditional expectations Et−1 of
both sides of equation (8.2), it follows that vt = yt − Et−1yt . Next, let ξt =
Etyt+1 − Et−1yt+1 and note that ξt is an MDS. Note also that Et−1yt+1 =
yt+1− (yt+1 −Etyt+1)− (Etyt+1 −Et−1yt+1). Substituting Et−1yt = yt − vt

andEt−1yt+1 = yt+1−vt+1−ξt into yt = α+β0Et−1yt+β1Et−1yt+1+vt , we
obtain an expression of the form (8.4), where c1 = d1 = 1 and εt ≡ β−1

1 (β0 −
1− β1)vt + ξt .

If every solution is of the form (8.4), then the MSV solution (8.3) must
have a representation of the form (8.4). To see how this arises, choose d1 = 0
and c1 =−β−1

1 (1− β0). Then the solution can be written

(1− β−1
1 (1− β0)L)yt =−β−1

1 α+ (
1− β−1

1 (1− β0)L
)
vt , (8.5)

where L is the lag operator Lxt = xt−1. We have chosen the solution so that
there is no dependence on a sunspot variable εt and so that the lag polynomials
on yt and vt are identical. For appropriate choice of the arbitrary initial condi-
tion y−1, one can cancel the common lag polynomial to yield equation (8.3).3

Here, to obtain the constant when multiplying by (1 − β−1
1 (1 − β0)L)

−1, we
have used the fact that f (L)c = f (1)c for any lag polynomial f (L) and con-
stant c.

Because it can be obtained by deleting a common lag polynomial, the solu-
tion (8.3) is often referred to as a common factor solution. As we have seen, it is
also the minimal state variable solution in McCallum’s sense since there is no so-
lution which depends linearly only on the intercept or on vt but not both. For the
model (8.2), it is the MSV solution which practicing macroeconomists typically
adopt. Often this choice is argued on the basis of stationarity. For the case at
hand the MSV solution is clearly stationary, and in many economic examples it
is uniquely so. This is true in Example 1. To see this, note that the ARMA(1,1)
solutions can be stationary only if the autoregressive coefficient β−1

1 (1 − β0)

3For other choices of y−1, it is not legitimate to cancel the common lag polynomial since there
is an additional “transient” term associated with the initial condition. This transient term dies out
over time if the root | β−1

1 (1− β0) |< 1. In that case the solutions (8.5) converge to equation (8.3)
asymptotically. If this condition is not met, then the term remains nonnegligible for all time. We
remark that if attention is restricted to stationary solutions, then the cancellation of common lag
polynomials is straightforward since the initial condition is automatically satisfied. However, we do
not want to restrict ourselves to the stationary case.
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satisfies |β−1
1 (1− β0)|< 1. But the conditions β1 > 0 and β0 + β1 < 1 imply

instead that β−1
1 (1− β0) > 1. Any solution other than the MSV solution is ex-

plosive in the sense that |Et−1yt+i |→∞ as i→∞. Applied macroeconomists
are often prepared to rule out such explosive solutions a priori. (We will later
see whether or not they can be attained through a learning process.)

The unique stationarity of the MSV solution in Example 1 is not a general
phenomenon. In Example 2 the only restriction is that β1 =−β0. In this example
it follows that if β0 >

1
2 , then all ARMA(1,1) solutions, and thus the entire

set of solutions, are (asymptotically) stationary. It is thus clear that insisting
on nonexplosive solutions will not in general be sufficient to guarantee a unique
REE.4

McCallum (1983) has recommended use of the term “bubble solution” to
refer to the other ARMA(1,1) solutions (whether or not they depend on sunspot
variables), and the term “fundamental solution” is also frequently used for the
MSV solution. The argument for this terminology is that bubble solutions con-
stitute solutions only because agents believe that certain variables matter, even-
though rational agents could also believe that these variables do not affect the
solution. Thus the “self-fulfilling prophecy” aspect of the solution is salient for
the bubble solutions (whether or not they are explosive bubbles). McCallum ar-
gues that in practice one should pick the MSV solution unless one is specifically
interested in the bubble issue. However, this begs the question of whether bub-
bles are likely to arise in practice. Our approach will be to see whether this
choice can be justified on the basis of stability under adaptive learning.

8.2.3 The Special Case with an Exogenous Observable

It will be useful to consider a somewhat more general version of equation (8.2)
which allows for a dependence on an exogenous observable following a station-
ary AR(1) process:

yt = α+ β0E
∗
t−1yt + β1E

∗
t−1yt+1 + κwt + vt , (8.6)

wt = ρwt−1 + et ,

where we assume |ρ|< 1. wt is assumed to be observable at time t.
Again the MSV solution can be obtained by guessing the form of solution

yt = a + bwt−1+ cet + vt ,

4Admittedly, we make this point in the context of an ad hoc economic model. However, as is
now well recognized, and as will be seen elsewhere in the book, the same point can be made in
models with impeccable microfoundations.
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and using the method of undetermined coefficients. Calculating Et−1yt = a +
bwt−1 and Et−1yt+1 = a + bρwt−1 and substituting into equation (8.6), we
obtain

yt = (1− β0 − β1)
−1α+ (1− β0 − ρβ1)

−1κρwt−1 + κet + vt . (8.7)

The full set of solutions can be shown to take the form

yt = −β−1
1 α+ β−1

1 (1− β0)yt−1− β−1
1 κwt−1

+κet + vt + c1vt−1 + d1εt−1 + f1et−1,

for arbitrary c1, d1, f1. As in the simple case with no exogenous shock wt, the
MSV solution can be viewed as a common factor solution obtained from the full
set of solutions with appropriate choice of c1, d1, and f1.

8.3 E-Stability and Least Squares Learning:
MSV Solutions

For the basic model without exogenous variables, we have already considered
the stability of the MSV solution under learning in Chapter 4. We briefly review
the results and then take up the extension to the case with an exogenous observ-
able. In each case we start with E-stability and then show that this condition
governs stability under adaptive learning.

8.3.1 No Exogenous Observables

When no exogenous observable is included, we posit the perceived law of mo-
tion (PLM):

yt = a + vt . (8.8)

Under this PLM we calculate Et−1yt = a and Et−1yt+1 = a. Inserting into the
model (8.2), we obtain

yt = α+ (β0 + β1)a + vt .

This is the actual law of motion (ALM) implied by the PLM (8.8). E-stability is
determined by the differential equation

da

dτ
= α+ (β0 + β1)a− a. (8.9)
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The unique equilibrium of da/dτ = 0 is ā = α(1− β0 − β1)
−1, which, when

inserted into equation (8.8), yields equation (8.3). This solution is E-stable if ā
is stable under the dynamics of the differential equation. The condition for this
is simply

β0 + β1 < 1. (8.10)

For real-time learning we note that since the MSV solution is an iid process,
it is most naturally estimated by the sample mean, i.e.,

at = t−1
t∑

i=1

yt−i .

An equivalent recursive form is

at = at−1 + t−1(yt − at−1).

With expectations E∗t−1yt = E∗t−1yt+1 = at−1, the actual law of motion under
learning is given by yt = α + (β0 + β1)at−1 + vt . Inserting into the recursive
equation, we have

at = at−1 + t−1(α+ (β0 + β1)at−1− at−1 + vt
)
. (8.11)

Equation (8.11) is a very simple recursive stochastic algorithm of the form (6.3)
of Chapter 6. The vector θt of equation (8.11) is simply θt = at and the state
vector Xt is simply Xt = vt . The function H(a, v) = α + (β0+ β1 − 1)a + v.

The complementary term ρt is absent. Since the state vector is white noise, it
follows the conditional linear dynamics (6.4) with A= 0 and B = 1. It is easy
to verify the technical assumptions (A) and (B) for the local stability results of
Section 6.2.1 as well as the stronger conditions (D) for the global stability results
of Section 6.7. We only need to compute the associated ODE.

Since Evt = 0, the associated ODE (6.5) of Chapter 6 is

da

dτ
= α+ (β0 + β1 − 1)a.

But this is identical to the E-stability differential equation given above, equa-
tion (8.9). If condition (8.10) holds, i.e., β0 + β1 < 1, then U(a)= (a − ā)2 is
a Lyapunov function which meets the conditions given in Theorem 6.10. It fol-
lows that if β0+β1 < 1, then equation (8.11) will converge to the MSV solution
globally with probability 1.
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One can also verify that the technical conditions (C) for the instability result
of Section 6.5 of Chapter 6 are met provided vt has bounded support. [This as-
sumption can be relaxed using alternative versions of the instability result given
in Ljung (1977)).] It follows that if β0 + β1 > 1, then the MSV solution is un-
stable under equation (8.11), i.e., convergence in that case would occur with
probability 0.

Looking at our two examples, we see immediately that the stability condi-
tion (8.10) is necessarily satisfied in both examples above.

8.3.2 Learning with an Exogenous Observable

Consider now the case with the exogenous observableswt . The setup is close to
the analysis of the Muth cobweb model in Chapters 2 and 6. Agents now have a
PLM of the form

yt = a+ bwt−1+ ηt

and they estimate (a, b)′ by recursive least squares (RLS). Here ηt is an unob-
served iid shock.5 Let (at , bt)′ denote the agents’ estimates of (a, b) at time t .
Writing

φt =
(
at

bt

)
and zt =

(
1
wt

)
,

the RLS formulas are

φt = φt−1 + t−1R−1
t zt−1(yt − φ′t−1zt−1), (8.12)

Rt = Rt−1 + t−1(zt−1z
′
t−1 −Rt−1).

Expectations are assumed to be formed using the PLM with their most recent
parameter estimates. That is,

E∗t−1yt = at−1 + bt−1wt−1,

E∗t−1yt+1 = at−1 + bt−1ρwt−1.

Note that here we have assumed that ρ is known. If not, it too can be estimated
by a separate regression of wt on wt−1. Finally, we continue to assume that yt

5In the MSV solution a and b have the values given earlier and ηt = κet + vt .
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is determined by equation (8.6) using these expectations. It follows that

yt = T (φt−1)
′zt−1 + κet + vt , (8.13)

where

T (φ)= T

(
a

b

)
=
(

α+ (β0 + β1)a

(β0 + ρβ1)b+ κρ

)
.

Defining St−1 =Rt, equations (8.12) become

φt = φt−1 + t−1S−1
t−1zt−1(yt − φ′t−1zt−1), (8.14)

St = St−1 + t−1(zt z
′
t − St−1)+ t−2

(
− t

t + 1

)
(zt z

′
t − St−1).

Using equation (8.13) to substitute for yt , we obtain the stochastic recursive
algorithm

φt = φt−1 + t−1S−1
t−1zt−1

(
z′t−1(T (φt−1)− φt−1)+ κet + vt

)
, (8.15)

St = St−1 + t−1(ztz′t − St−1
)+ t−2

(
− t

t + 1

)(
ztz

′
t − St−1

)
.

This is now written as a recursive stochastic algorithm in the standard form
(6.3) of Chapter 6 with θt = vec(φt , St ). Since (−[t/(t + 1)])(ztz′t − St−1) is a
second-order complementary term, the associated ODE is easily computed to be

dφ

dτ
= S−1Mz(T (φ)− φ),

dS

dτ
= Mz − S,

where

Mz =Eztz
′
t =

(
1 0
0 σ 2

e /(1− ρ2)

)
and σ 2

e =Ee2
t .

Stability of the ODE is determined by the E-stability differential equation

dφ

dτ
= T (φ)− φ.

Noting that

DT =
(
β0 + β1 0

0 β0 + ρβ1

)
,
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we see that stability is determined by the conditions (i) β0+β1 < 1, and (ii) β0+
ρβ1 < 1.

Provided both these conditions are met, the global stability results of Chap-
ter 6 can be applied. Verification of the technical assumptions (D) of Section 6.7,
and existence of a Lyapunov function of the required form, follow closely the
example of the Muth model given in Sections 6.6 and 6.7. It follows that least
squares learning converges to the MSV solution with probability 1 from any
initial starting point, provided that the E-stability conditions are satisfied. The
corresponding instability result is also obtainable using the results of Chapter 6.

We collect the results into the following proposition.

Proposition 8.1. For the model (8.6):

(i) The MSV solution (8.7) is E-stable if β0 + β1 < 1 and β0 + ρβ1 < 1. The
MSV solution is also stable under adaptive learning if it is E-stable.

(ii) If instead β0 + β1 > 1 or β0 + ρβ1 > 1, then there is convergence to the
MSV solution or any other point φ with probability zero.

Looking again at our examples, it can be verified that both stability condi-
tions are satisfied for both examples. Thus if agents use the PLM of the same
form as the MSV solution, then least squares learning will converge to the MSV
solution.

8.4 E-Stability and Learning: The Full Class
of Solutions

We now turn to the ARMA(1,1) class of non-MSV solutions. For simplicity we
restrict attention to the model (8.2) in which there are no exogenous observables
and we are therefore considering the class of solutions (8.4). The central issue is
whether it is possible for least squares learning to converge to one of these solu-
tions. Because this class consists of a continuum of solutions, there are technical
difficulties with the application of the convergence results from Chapter 6. We
therefore develop the analysis in two stages, first considering a setup where a
complete answer can be given and then moving to a discussion of the general
problem.

8.4.1 Learning a Non-MSV AR(1) Solution

To avoid the technical complications which arise from the continuum of solu-
tions, we here restrict attention to the particular solution from the set (8.4) in
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which we set c1 = d1 = 0 in order to obtain

yt =−β−1
1 α+ β−1

1 (1− β0)yt−1 + vt . (8.16)

Note that this solution is of the AR(1), i.e., first-order autoregressive, form. In
order to keep our analysis straightforward, we also restrict attention to cases in
which |β−1

1 (1− β0)| < 1, so that the solution is (asymptotically) stationary. It
should be noted that if the model (8.2) is regarded as defined for t ≥ 1, then
there is also an arbitrary initial condition y0, the influence of which dies out
asymptotically.

We suppose that agents have a PLM of the AR(1) form

yt = a + byt−1+ vt

and that they estimate the parameters (a, b) by recursive least squares. We first
work out the T -mapping from the PLM, to the ALM. Under the PLM, we com-
pute

E∗t−1yt = a+ byt and E∗t−1yt+1 = a(1+ b)+ b2yt−1.

Inserting into equation (8.2), we obtain the ALM

yt = Ta(a, b)+ Tb(a, b)yt−1+ vt ,

where

Ta(a, b) = α+ β0a + β1a(1+ b), (8.17)

Tb(a, b) = β0b+ β1b
2.

Note that the solution (8.16) corresponds to a fixed point of T = (Ta,Tb).
Under least squares learning, agents estimate (a, b) by a regression of yt on

an intercept and yt−1. Letting (at , bt ) denote the time-t estimates and writing

φt =
(
at

bt

)
, zt−1 =

(
1

yt−1

)
, (8.18)

the RLS estimates are again given by equations (8.12) or equivalently equa-
tions (8.14). Under least squares learning, the agents forecast at t − 1 based
on their estimated parameters φt−1 = (at−1, bt−1)

′ and the observable z′t−1 =
(1, yt−1). Thus E∗t−1yt = at−1 + bt−1yt and E∗t−1yt+1 = at−1(1 + bt−1) +
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b2
t−1yt−1, and inserting into equation (8.2), we obtain the ALM under least

squares learning,

yt = T (φt−1)
′zt−1 + vt , (8.19)

where

T (φ)= T

(
a

b

)
=
(
Ta(a, b)

Tb(a, b)

)
.

The dynamical system under learning is thus defined by equations (8.14), (8.17),
(8.18), and (8.19). Combining equations, we again have a recursive stochastic
algorithm of the form (6.3) of Chapter 6, with as usual, θt = vec(φt , St ) and
γt = t−1. This yields a system of the form

φt = φt−1 + t−1S−1
t−1zt−1

(
z′t−1(T (φt−1)− φt−1)+ vt

)
, (8.20)

St = St−1 + t−1(ztz′t − St−1
)+ t−2

(
− t

t + 1

)(
ztz

′
t − St−1

)
.

The corresponding ODE is

dφ

dτ
= S−1Mz(φ)(T (φ)− φ), (8.21)

dS

dτ
= Mz(φ)− S.

Here there are two new features, compared to previous examples. First, Mz is
replaced by Mz(φ) which is defined as follows. Let zt (φ)′ = (1, yt (φ)), where

yt (φ) = T (φ)′zt−1(φ)+ vt for φ′ = (a, b),

= Ta(a, b)+ Tb(a, b)yt−1(φ)+ vt .

That is, yt (φ) is the stochastic process for yt that would be followed if agents
held a fixed PLM φ′ = (a, b) and followed the corresponding forecast rule. We
now define

Mz(φ)= lim
t→∞Ezt (φ)zt (φ)

′.

Since yt (φ) is (asymptotically) stationary for values of φ near the AR(1) solution
φ̄′ = (−β−1

1 α,β−1
1 (1− β0)), we know that this limit exists and is finite.
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The second new feature is that the state vector Xt includes yt−1. In fact
we set X′t = (1, yt , yt−1, vt ). Verification of conditions (A) and (B) of Sec-
tion 6.2.1 of Chapter 6 therefore requires additional care. We discuss this point
below.

The local stability of the ODE near the fixed point φ̄, S̄ =Mz(φ̄) is again
determined by the local stability of dφ/dτ = T (φ) − φ at φ = φ̄,i.e., by the
E-stability of the AR(1) solutions.6 Since

DT =
[
β0 + β1(1+ b) β1a

0 β0 + 2β1b

]
, (8.22)

the eigenvalues of DT (φ̄) are β0 + β1(1 + β−1
1 (1 − β0)) = β1 + 1 and β0 +

2β1(β
−1
1 (1− β0))= 2− β0. The E-stability conditions are that the eigenvalues

of DT (φ̄)− I have negative real parts or, equivalently, that the eigenvalues of
DT (φ̄) have real parts less than 1. Thus the conditions for E-stability of the
AR(1) solution are that

β1 < 0 and β0 > 1. (8.23)

We restrict attention to cases in which |β−1
1 (1 − β0)| < 1, so that the AR(1)

solution is asymptotically stationary, and return to the verification of the tech-
nical conditions (A) and (B) of Section 6.2.1 of Chapter 6. The regularity con-
ditions (A.2) and (A.3) on H(θ, x) and ρt (θ, x) are easily verified. The remain-
ing conditions are on the state dynamics equation (6.4): Xt = A(θt−1)Xt−1 +
B(θt−1)Wt . Setting W ′

t = (1, vt ), it can be seen that

A(θ) =


0 0 0 0

Ta(φ) Tb(φ) 0 0
0 1 0 0
0 0 0 0

 ,

B(θ) =


1 0
0 1
0 0
0 1

 .

A(θ) and B(θ) clearly satisfy the Lipschitz conditions and B is bounded. Since
vt is assumed to have bounded moments, condition (B.1) is satisfied. The only

6It may be checked that the eigenvalues of the linearization of the large ODE (8.21) consist of
the eigenvalues of equation (8.22), minus one and (repeatedly) −1.
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nonzero root of A(θ) is Tb(φ), and at the AR(1) solution, Tb(φ̄)= b̄ is less than
1 in absolute value since we are restricting attention to the stationary solutions.
It follows that there is a compact neighborhoodQ including the AR(1) solution
θ̄ on which the condition that |A(θ)| is bounded strictly below 1 is satisfied.

Thus the technical conditions for application of the local stability results of
Section 6.3.3 of Chapter 6 are satisfied and we conclude that if |β−1

1 (1−β0)|<
1, β1 < 0, and β0 > 1, then the AR(1) solution is locally stable under least
squares learning. These conditions are equivalent to the conditions β0+β1 < 1,
β0 > 1. It can also be verified that the conditions (C) of Section 6.5 are satisfied
and that conditions (i) and (ii) of Theorem 6.9 hold. It follows that if either
β0 + β1 > 1 or β0 < 1, then there is convergence to the AR(1) solution with
probability zero.

Note that the convergence results here are local and have the various in-
terpretations given in Sections 6.3.3 and 6.4 of Chapter 6. In particular, Corol-
laries 6.6 and 6.8 apply. Thus, for nearby initial φ0 and sufficiently low adap-
tion rates, there will be convergence with probability close to 1. If the learning
algorithm is augmented with an appropriate nontrivial projection facility, then
there is convergence with probability 1. In contrast, if |β−1

1 (1 − β0)| < 1 but
β1 > 0 or β0 < 1, then there is convergence to the AR(1) solution with proba-
bility 0.

If |β−1
1 (1− β0)|> 1, so that the AR(1) solution is explosive, one can still

consider whether the solution is stable under least squares learning. Convergence
to explosive AR(1) solutions is one of the topics considered in Chapter 9.

As an illustration, we look at a simulation of equations (8.12), (8.17), (8.18),
and (8.19). We set β0 = 1.5, β1 = −1.5, and α = 2, and vt is iid normal with
standard deviation of 0.02. The REE values are ā = 4/3 and b̄ = 1/3. The dy-
namic paths are sensitive to initial conditions and to the initial random shocks.
(Some dynamic paths are explosive unless a projection facility is imposed, while
others converge even without imposing one.) Also, in contrast to the simulation
examples of Chapters 2 and 4, the convergence is rather slow. Figure 8.1 shows
the first 1000 periods of one simulation run. The values of bt for this run are
0.5791,0.3919, and 0.3247 at t = 100, 1000, and 10,000.

8.4.2 Strong E-Stability of the MSV Solution

In the case of an AR(1) PLM, consider again the map (8.17) from the PLM to the
ALM. There are in fact two fixed points of the map. One is the AR(1) solution
(a, b)= (−β−1

1 α,β−1
1 (1−β0)). The other is the MSV solution (a, b)= (α(1−

β0−β1)
−1,0). This raises the issue of whether the dynamical system under RLS

learning defined by equations (8.12), (8.17), (8.18), and (8.19) could instead
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Figure 8.1.

converge to the MSV solution. We are now considering the issue of whether
the MSV solution can emerge from an overparameterized learning process. It is
overparameterized in the sense that the MSV solution is a constant plus white
noise, while the learning rule allows for an additional effect of yt−1 on yt . If this
system converges to the MSV solution, agents eventually learn that the value of
the parameter on yt−1 is 0.

The analysis of this question in fact closely follows the previous section.
The only change required is that we evaluate local stability of the ODE, and
thus compute E-stability, at the MSV solution instead of the AR(1) solution.
Evaluating equation (8.22) at (a, b)= (α(1− β0 − β1)

−1,0) it can be seen that
DT has eigenvalues β0+β1 and β0. It follows that for PLMs of the AR(1) form,
the E-stability conditions of the MSV solution are

β0 + β1 < 1 and β0 < 1. (8.24)

Clearly, these conditions are stronger than the condition (8.10) which determines
stability under learning when the PLM is of the MSV form.
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The stability conditions are thus affected by the precise form of the PLM.
We distinguish the two sets of conditions by referring to inequality (8.10) as the
weak E-stability condition for the MSV solution and to inequalities (8.24) as the
strong E-stability conditions for the MSV solution. Weak E-stability of the MSV
solution governs convergence when the PLM is of the MSV form, while these
strong E-stability conditions govern convergence to the MSV solution when the
PLM overparameterizes the solution as an AR(1) model. We remark first that,
of course, one could consider overparameterizations of the MSV solution that,
for example, allowed for additional lags yt−i, and second, that one could also
consider overparameterizations of the AR(1) solution. These issues are taken up
in Chapter 9.

8.4.3 Discussion of Examples

With these results in hand, we now return to our examples. The Sargent–
Wallace example satisfies the restrictions β1 > 0 and β0 + β1 < 1. This implies
|β−1

1 (1− β0)|> 1 so that the AR(1) solution is nonstationary. The MSV solu-
tion always satisfies the weak E-stability condition (8.10) and is globally stable
for least squares learning if the perceived law of motion is of the MSV form.
It also satisfies the strong E-stability conditions (8.24) and thus is locally sta-
ble even when the perceived law of motion is overparameterized as an AR(1)
process.

In the Taylor real balance model, the only restrictions are β1 = −β0 and
β0 �= 0. We can list the cases in terms of the possible values for β0. Since the
MSV solution satisfies the weak E-stability condition (8.10), it is always glob-
ally stable for least squares learning if the perceived law of motion is of the MSV
form. If β0 < 1, it also satisfies the strong E-stability conditions (8.24), and the
MSV solution is also locally stable under least squares learning even when it is
overparameterized as an AR(1) process. However, if β0 > 1, the MSV solution
is no longer locally stable under least squares learning when overparameterized
as an AR(1) process. That is, when β0 > 1, the stability of the MSV solution
depends on how the learning is parameterized.

Finally, consider the AR(1) solution in the Taylor real balance model. This
is explosive if β0 <

1
2 and stationary if β0 >

1
2 . Restricting attention to the sta-

tionary AR(1) case, we see that the condition for the E-stability condition (8.23)
to be satisfied is that β0 > 1. If 1

2 < β0 < 1, the AR(1) solution is not locally sta-
ble under least squares learning. If β0 > 1, then the AR(1) solution is stationary
and locally stable under least squares learning.
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8.4.4 Learning Sunspot Solutions

Finally, suppose that agents have PLMs which allow for the full class of solu-
tions (8.4). Thus we next consider PLMs of the ARMA(1,1) form

yt = a + byt−1+ cvt−1 + dεt−1 + vt , (8.25)

where εt is some random variable, observable at t , which satisfies Et−1εt = 0.
We obtain E-stability conditions and then discuss stability under least

squares learning. Calculating

Et−1yt = a + byt−1+ cvt−1 + dεt−1,

Et−1yt+1 = a(1+ b)+ b2yt−1 + bcvt−1+ bdεt−1,

and inserting into equation (8.2), we obtain the implied ALM

yt = α+ β0a+ β1a(1+ b)+ (β0b+ β1b
2)yt−1 + (β0c+ β1bc)vt−1

+ (β0d + β1bd)εt−1+ vt .

The mapping from PLM to ALM thus takes the form

T (a, b, c, d)= (
α+ β0a+ β1a(1+ b),β0b+ β1b

2, β0c+ β1bc,β0d + β1bd
)
.

E-stability of the ARMA(1,1) solutions is determined by the stability of the
differential equation

d

dτ
(a, b, c, d)= T (a, b, c, d)− (a, b, c, d) (8.26)

evaluated at the solutions.
First, note that the differential equations in (a, b) do not depend on c or d .

To evaluate stability, we linearize the first two components. Letting Tab(a, b)

stand for the first two components of T , one sees that DTab is equal to the value
of DT given in equation (8.22). Evaluating the derivative at a = −β−1

1 α and
b= β−1

1 (1− β0), we obtain the roots β1+ 1 and 2− β0 as in the case of AR(1)
PLMs. The (a, b) subsystem thus leads again to the stability conditions (8.23).

What about the two differential equations involving c and d? The lineariza-
tion of the last component of (8.26) yields

DTd − 1= β0 + β1b− 1. (8.27)
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Figure 8.2.

At the ARMA(1,1) solutions, this derivative is zero and thus one must directly
examine the nonlinear equation. The equation for d in (8.26) is a linear dif-
ferential equation with time-varying coefficients via the independently evolv-
ing (a, b) and can be directly integrated. Carrying out this integration as in
Evans and Honkapohja (1992, p. 6) it can be established that d will converge
to some value, provided (a, b) do so. The argument in the case of c is identi-
cal. In fact, this result is intuitively clear. The ARMA(1,1) solutions are a con-
tinuum with the coefficients c and d arbitrary. This is reflected in the fact that
T (a, b, c, d)= (a, b, c, d) for a =−β−1

1 α, b= β−1
1 (1−β0), and any c, d . Thus

no additional stability condition is required from the equations for c and d .
It follows that, provided equation (8.23) holds, the ARMA(1,1) solutions

are E-stable as a set. For nearby values of (a, b), convergence will occur to
the ARMA(1,1) REE values of (a, b), and c and d will also converge to some
value (determined by the starting point). Because we have not yet considered the
possibility of overparameterizing the ARMA(1,1) solutions, we refer to these as
the weak E-stability conditions for the ARMA(1,1) solutions. Strong E-stability
of the ARMA(1,1) solutions will be considered in the next chapter. The situation
for the various solutions to the model (8.2) is illustrated in Figure 8.2.

Returning to the examples, it can be seen that the ARMA(1,1) solutions can
never be E-stable in the Sargent–Wallace model. However, if β0 > 1, the set of
ARMA(1,1) solutions will be weakly E-stable in Taylor’s model.
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Finally, consider least squares learning of the ARMA(1,1) class of solu-
tions. Suppose that agents have a PLM of the form (8.25) which they use to
make forecasts. It is most convenient to assume that vt as well as εt is observ-
able at time t.7 Agents can then estimate (a, b, c, d) by a least squares regression
of yt on an intercept, yt−1, vt−1, and εt−1. Letting φ′t = (at , bt , ct , dt ) denote
the estimates using data through time t and z′t−1 = (1, yt−1, vt−1, εt−1), the re-
cursive least squares formulas are again given by equation (8.12). Agents are
then assumed to forecast according to

E∗t−1yt = at−1 + bt−1yt−1 + cvt−1 + dεt−1,

E∗t−1yt+1 = at−1 + bt−1E
∗
t−1yt .

yt is of course determined by equation (8.2) so that

yt = T (at−1, bt−1, ct−1dt−1)
′zt−1 + vt ,

where T (a, b, c, d) is given above. This fully defines the dynamical system and
the question is: can (at , bt , ct , dt) converge to a member of the ARMA(1,1) class
of solutions?

Unfortunately, for technical reasons, the formal results of Chapter 6 do not
apply and there are no known analytical results. The central technical problem
is that we are considering an unbounded continuum of solutions (indexed by c
and d) and that such cases are not covered by our convergence theorems. One
can still, of course, investigate the stability of real-time learning in such cases us-
ing simulations. The limited evidence available suggests that the E-stability con-
ditions do govern the stability of least squares learning, see Evans and Honkapo-
hja (1994b).8

In Figure 8.3 we provide a simulation which appears to show convergence
to an ARMA(1,1) sunspot solution. In this example the parameters are the same
as in Figure 8.1. To reduce the initial volatility of estimates for small t , we use
a small constant gain for an initial period of time: γt = N−1 for t = 1, . . . ,N
and γt = t−1 for t > N, with N set at N = 20.9 Initial settings of parameters
were a = ā, b = b̄ + 0.10, c = 0.5, d = 0.5, R = R̄, and lagged y equal to ȳ .
The sunspot εt was generated as an iid standard normal independent of vt .

7If vt is not observable, then vt−1 would also need to be estimated at t. See Evans and Honkapo-
hja (1994b) for a discussion and analysis.

8However, the results of Heinemann (2000b) suggest that when stochastic gradient learning is
used, there may be discrepancies from the E-stability conditions.

9Using γt = 1/t for all t also provided an example with convergence to an ARMA(1,1) sunspot
solution.
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Figure 8.3.

The trajectories of φt shown in Figure 8.3 do appear clearly to converge to a
member of the ARMA(1,1) class. Values of bt are 0.4333, 0.3867, 0.3436, and
0.3371 at t = 1, 100, 1000, and 10,000. The values of the other parameters at
t = 10,000 are a = 1.3260, c=−0.4085, and d = 0.3130.

Further discussion of sunspot solutions in this model can be found in Chap-
ter 9.

8.5 Extension 1: Lagged Endogenous Variables

We now return to the general class of univariate linear models (8.1) and consider
several other cases which arise frequently in macroeconomics. For the remainder
of this chapter we will restrict attention to MSV solutions. (The more general
class of solutions will for some cases be considered in the following chapter.) We
remark that in many cases there are multiple MSV solutions, and that in these
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cases learning has an important role as a selection criterion.10 Our objective in
this section is to show the wide range of economic examples which fit into the
univariate linear framework in which the adaptive learning framework can be
readily studied.

We first extend the special case (8.2) to allow direct feedback from yt−1.
Thus we consider models of the form

yt = α+ δyt−1 + β0E
∗
t−1yt + β1E

∗
t−1yt+1 + vt . (8.28)

We will often refer to equation (8.28) as the “extended special case.” Models
which fit this framework are as follows.

Example 3: Taylor’s Overlapping Contract Model. In the model of Taylor
(1980), with a contract length of n= 2, we have the following system:

xt = 1
2xt−1+ 1

2E
∗
t−1xt+1+ 1

2γ
(
E∗t−1qt +E∗t−1qt+1

)+ ut ,

wt = 1
2 (xt + xt−1),

qt = k+mt −wt + vt ,

mt = m̄+ (1− ϕ)wt ,

where xt is the (log of the) contract wage negotiated at time t , wt is the (log of
the) average wage level (equal to the average of the price level plus a constant),
qt is the log of aggregate output, and mt is the log of the money supply. ut is an
iid supply shock and vt is an iid supply shock. It is assumed that 0 < ϕ < 1, and
1−ϕ is a measure of the extent to which the monetary policy rule accommodates
price shocks. The reduced form of this equation is

xt = α+ 1

2

(
1− ϕγ

2

)
xt−1− ϕγ

2
E∗t−1xt

+ 1

2

(
1− ϕγ

2

)
E∗t−1xt+1 + ut .

Example 4: Real Balance Model with Policy Feedback. Augment Example 2
with a policy feedback mt = dI + dppt−1 + u4t . Then the model is of the form
(8.28) with β0 and β1 determined as in Example 2 and with δ = dp.

10Our use of the term “MSV solution” here varies from McCallum (1983), who introduced the
term. McCallum provides two principles to define MSV solutions. We adopt his primary but not
his subsidiary principle. For a discussion of his subsidiary principle in the context of learning, see
Chapter 9.
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8.5.1 A Characterization of the Solutions

The MSV solutions are of the AR(1) form and we apply the method of undeter-
mined coefficients. Write the solution as

yt = ā + b̄1yt−1 + vt . (8.29)

Computing Et−1yt = ā + b̄1yt−1 and Et−1yt+1 = ā(1+ b̄1)+ b̄2
1yt−1 and sub-

stituting these and equation (8.29) into equation (8.28) and collecting terms, we
see that a solution of this form must satisfy

β1b̄
2
1 + (β0 − 1)b̄1 + δ = 0, (8.30)

α(1− β0 − β1(1+ b̄1))
−1 = ā.

Provided (β0−1)2−4β1δ > 0, there are two solutions of the form (8.29). There
are thus two MSV solutions if this condition is satisfied. If the discriminant is
negative, then there exist no solutions of the AR(1) form.

In addition to these solutions, there also exists an ARMA(2,1) class of so-
lutions (the method of constructing this complete class of solutions follows the
previous lines). We discuss these in Chapter 9.

8.5.2 Stability under Learning of the AR(1) Solutions

We start with E-stability of the two AR(1) solutions. We assume throughout this
section that the roots are real and begin with a discussion of weak E-stability.
Assume that agents have a PLM of the AR(1) form

yt = a + b1yt−1 + vt .

Computing Et−1yt and Et−1yt+1 and substituting into equation (8.28), we get
the following mapping from PLM to ALM:

Ta(a, b1) = α+ (β0 + β1)a + β1ab1, (8.31)

Tb1(a, b1) = δ+ β0b1 + β1b
2
1.

(Weak) E-stability is determined by the usual equation

dφ

dτ
= T (φ)− φ, (8.32)
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Figure 8.4. E-stability of the two AR(1) solutions.

with φ′ = (a, b1). Linearizing and computing the eigenvalues at an equilibrium
(ā, b̄1), we obtain the stability conditions

β0 + β1 − 1+ β1b̄1 < 0, (8.33)

β0 − 1+ 2β1b̄1 < 0,

which are to be evaluated at the AR(1) solution in question.
It is easily verified that only one of the two AR(1) solutions can be E-stable.

This follows immediately from the mapping Tb1(b1) ≡ Tb1(a, b1). Figure 8.4
plots Tb1(b1)− b1 for the case β1 > 0. A necessary condition for stability (cor-
responding to the second condition above) is that

d

db1

(
Tb1(b̄1)− b1

)
< 0.

Since Tb1 is a quadratic in b1, this condition can be satisfied at only one of the
two roots.

We now take up real-time learning when the PLM is of the AR(1) form. At
time t − 1, the ALM is assumed to be yt = at−1+ b1,t−1yt−1+ vt . Substituting
the corresponding expectations into equation (8.28), it can be seen that yt is
determined by the ALM

yt = Ta(at−1, b1,t−1)+ Tb1(at−1, b1,t−1)yt−1+ vt ,
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or

yt = z′t−1T (φt−1)+ vt , (8.34)

where

φ′t = (at , b1,t ), z′t−1 = (1, yt−1),

T (φ) = T
(
(a, b1)

′)= (
Ta(a, b1), Tb1(a, b1)

)′
.

Recursive least squares estimation of φt as usual takes the form (8.12).
The equations (8.12), (8.31), and (8.34) define the evolution of the sys-

tem over time under least squares learning. After making the transformation
St−1 = Rt , we rewrite the system as equation (8.14) and it can be verified that
the technical conditions for application of the results in Chapter 6 are satisfied,
provided the AR(1) solution being considered is stationary. The argument is vir-
tually identical to that given for the AR(1) solution in Section 8.4.1. Looking at
the associated ODE (8.21) and the E-stability equation (8.32), we get the fol-
lowing.

Proposition 8.2. For model (8.28), assume the characteristic equation (8.30)
has a stationary root. Then the stability conditions for the correspondingAR(1)
solution (8.29) under least squares learning are given by the E-stability condi-
tions (8.33). If both MSV solutions are stationary, only one can be stable under
least squares learning. The other solution will be reached by the learning dy-
namics with probability zero.

We will apply these (and other) results to Examples 3 and 4 later in Section
9.4.3 of Chapter 9.

To illustrate numerically the findings of this section, we consider the model
(8.28) with α = 2, β0 = 1.5, β1 = −1.5, and δ = 0.1. The two AR(1) solu-
tions have values b̄1 = −0.1407 and b̄1 = 0.4740, respectively. Clearly, both
AR(1) solutions are stationary, but the b̄1 = −0.1407 solution is not E-stable,
while the other solution is. Figure 8.5 illustrates convergence to the AR(1) so-
lution with b̄1 = 0.4740 for a typical sample path. Figure 8.6 shows a typical
simulation which diverges from the unstable AR(1) solution.11 For this unstable
solution, divergence is rapid even though the initial conditions are at the equi-
librium.

11In these simulations we use γt = 1/t .
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Figure 8.5.

8.6 Extension 2: Models with Time-t Dating

8.6.1 Basic Case

In many economic models the variable of interest yt depends on expectations of
future variables which are formed at time t , so that the information set includes
yt itself as well as any exogenous observables dated t or earlier. The simplest
setup is

yt = βE∗t yt+1 + κwt + vt , (8.35)

where wt is an exogenous stochastic process which is observed at time t and
vt is an unobserved white noise shock. For concreteness we continue to assume
that wt follows a stationary AR(1) process

wt = α+ ρwt−1 + ut , (8.36)
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Figure 8.6.

where ut is white noise and |ρ|< 1. The next two examples were already briefly
described in Chapter 1.

Example 5: Cagan Model of Inflation. The demand for money depends lin-
early on expected inflation

mt − pt =−γ
(
E∗t pt+1 −pt

)+ ηt , γ > 0,

where mt is the log of the money supply at time t , and pt is the log of the price
level at time t . This can be solved for the above form with yt ≡ pt , wt ≡ mt ,
β = γ /(1+ γ ), and κ = 1/(1+ γ ).

Example 6: Asset Pricing with Risk Neutrality. Under risk neutrality and ap-
propriate assumptions, all assets earn expected rate of return 1+ r, where r > 0
is the real net interest rate, assumed constant. If an asset pays dividend dt at the
end of period t , then its price pt at t is given by

pt = (1+ r)−1(E∗t pt+1 + dt
)
.
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We again have the form (8.35), with yt ≡ pt , wt ≡ dt , β = κ = (1+ r)−1, and
vt ≡ 0.

We focus here on the MSV solution to the model, which is unique and given
by

yt = ā+ b̄wt + vt ,

where
ā = (1− β)−1αβb̄ and b̄= (1− βρ)−1λκ.

In the context of the model (8.35) and particularly in the case of the asset pricing
application, the MSV solution is often referred to as the fundamental solution.
Is the MSV solution stable under least squares learning? For PLMs of the form
yt = a+ bwt , the map from PLM to ALM is

Ta(a, b) = βa+ αβb,

Tb(a, b) = βρb+ κ,

and it is easily verified that the fundamental solution is (weakly) E-stable if
β < 1 and βρ < 1. We have assumed |ρ|< 1 and in the two economic examples
above, 0< β < 1. Thus the E-stability conditions are met.

Under least squares learning, agents at time t estimate the model yt = a +
bwt + vt by running a least squares regression of yt on an intercept and wt

using the data available. Let (at , bt ) denote the least squares estimates using data
on (wi, yi), i = 1, . . . , t − 1.12 Expectations are then given by E∗t yt+1 = at +
btEtwt+1 = (at+btα)+btρwt , where for simplicity we treat ρ and α as known,
and under learning yt is given by yt = Ta(at , bt )+ Tb(at , bt )wt + vt . Applying
the standard stochastic approximation results, it follows that the fundamental
solution is locally stable under least squares learning provided the E-stability
condition above is met. This holds for both of the above economic examples.

12For technical simplicity we assume that the data point (wt , yt ) is not available for the least
squares estimates at t of the coefficients (at , bt ), though we do allow the time-t forecasts to de-
pend on wt . This avoids simultaneity between yt and bt . With additional technical complexity, this
simultaneity can be permitted, see, e.g., Marcet and Sargent (1989c).
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8.6.2 Models with Lags

Models with one expectational lead and one lag also arise in frameworks, where
the expectations are formed at time t. We thus consider models of the form

yt = α+ βE∗t yt+1+ δyt−1 + κwt + vt , (8.37)

wt = µ+ ρwt−1 + et ,

where |ρ|< 1.

Example 7: Investment under Uncertainty. The Lucas–Prescott model of in-
vestment under uncertainty is presented in a linear quadratic framework in Sar-
gent (1987, Chapter XIV). This version also allows for externalities and taxes.

Consider a competitive industry with N identical firms. Output of the rep-
resentative firm at t is given by

xt = x0 + f0kt + f1Kt + f2Kt−1,

where Kt = Nkt denotes the aggregate capital stock. The presence of the two
terms in Kt reflect contemporaneous and lagged external effects. These may be
positive or negative, so we do not restrict the signs of f1 or f2, but f0 > 0 and
x0 > 0.

Taxes are levied on firms on capital in place. The rate itself is assumed to
depend on current and lagged aggregate capital stock, so that τt = g0 + g1Kt +
g2Kt−1. Finally, total output is given by Xt =Nxt , and demand for the market
is pt =D−AXt + ut , where ut is white noise. We require pt ≥ 0.

The firm chooses kt to maximize

E0

∞∑
t=0

Bt

{
pt(x0 + f0kt + f1Kt + f2Kt−1)−wtkt − τt kt

− C

2
(kt − kt−1)

2
}
,

where k−1 is given and wt , the one-period-ahead rental on capital goods, is
assumed exogenous. We assume that wt =µ+ρwt−1+ et , with |ρ|< 1. C > 0
reflects quadratic adjustment costs. The Euler equation for this problem can be
written

ptf0 − (wt + τt )+BCE∗t kt+1 −C(1+B)kt +Ckt−1 = 0

for t ≥ 0. For an optimum solution for the firm, we also require that kt ≥ 0,
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xt ≥ 0, and that the transversality condition is met. These conditions and the
nonnegativity of prices rule out explosive paths for kt .

Substituting the demand curve into the Euler equation, we obtain the form
(8.37) with yt =Kt , β =BC�−1, δ =−(f0Af2N

2+g2N−C)c, κ =−N�−1,
and vt = f0N�

−1ut , where �= f0AN(f0 + f1N)+ g1N + C(1+ B). With
no externalities or taxes, there is a unique stationary solution of the form (8.37).
However, generally the parameters β and δ are unrestricted.13

Example 8: The Cagan model of Example 5 with a monetary policy feedback
rule mt =m+ dpt−1+ et .

Returning to the general model (8.37), the MSV solutions are of the form

yt = a+ byt−1 + cwt + dvt , (8.38)

where b is a (real) root of the characteristic equation

b2 − β−1b+ β−1δ = 0. (8.39)

The roots therefore satisfy b̄= [1±√(1− 4βδ)]/2β. Let b̄+ and b̄− denote the
two solutions b̄. The values for the other parameters satisfy c̄ = κ[1− β(b̄ +
ρ)]−1, ā = α/(1− β − βb̄), and d̄ = (1− βb̄)−1.

Under least squares learning, agents estimate the parameters (a, b, c) of
the appropriate PLM and use estimates (at , bt , ct ) to make forecasts E∗t yt+1 =
at + btyt + ct (µ + ρwt ). The stability of the MSV solution under learning is
again based on the map from the PLM to the implied ALM and is given by

T (a, b, c)= [
(α+ βa)/(1− βb), δ/(1− βb), (κ + βρc)/(1− βb)

]
provided b �= β−1. This leads to the result:

Proposition 8.3. For model (8.37), the E-stability conditions for the MSV solu-
tions are δβ(1− βb̄)−2 < 1, β(1−βb̄)−1 < 1, and ρβ(1−βb̄)−1 < 1, where b̄
is a solution to the characteristic equation (8.39). If an MSV solution is station-
ary and E-stable, then it is locally stable under RLS learning.

Provided 0≤ ρ < 1, the third condition is redundant and for simplicity we make
this assumption in the following discussion.

13Note that the nonnegativity conditions mentioned above will be met in stationary solutions for
suitable values of intercepts and with bounded supports for vt and et .
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Figure 8.7.

Figure 8.7 shows the possibilities in (β, δ) space. In region I, |β + δ|< 1,
the solution b̄− is uniquely stationary, and it is also E-stable and thus locally
stable under least squares learning. In regions II, III, and IV, both solutions are
stationary (regions II and IV are in part bounded by βδ = 1/4). In region II,
the b̄− solution is stable under learning while the b̄+ solution is unstable under
learning. In region III, the b̄+ solution is stable under learning while the b̄−
solution is unstable under learning. In region IV, neither solution is stable under
learning. (Outside the marked regions, both solutions are explosive or nonreal.)
Thus, although multiple stationary solutions to the model can exist, no more
than one MSV solution will be locally stable under least squares learning.

It is also possible to introduce somewhat different assumptions about the
information available to agents. More specifically, it is sometimes assumed that
the current value of the endogenous variable yt is not available at the time of
expectations formation but that the values of the exogenous variables for period
t are observable.14

To see the implications of this assumption consider the model (8.37) and
the PLM of the form (8.38). Iterating forward and using the alternative informa-
tional assumption, we have

Etyt+1 = a(1+ b)+ cµ+ b2yt−1 + c(b+ ρ)wt + bdvt,

which after substitution into equation (8.37) yields the T -map

T (a, b, c, d)= [
α+ β(a(1+ b)+ cµ), δ+ βb2, βc(b+ ρ)+ κ,1+ βbd

]′
.

14The assumption that current yt is not observable is made to avoid the simultaneity problem. In
the literature on indeterminacy, this assumption is often used.
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The E-stability conditions are now different from above. It turns out that
b̄+ is always unstable, while the E-stability condition for b̄− takes the form
−√1− 4βδ < min[1− 2β,1− 2βρ]. In particular, if β < 1/2 and βρ < 1/2,
this solution is E-stable.

Most of the literature on learning and with t dating of expectations uses the
assumption that the current value of the endogenous variable is included in the
information set. Nevertheless, it is sometimes convenient to adopt the alternative
formulation that the current value of the endogenous variable is not included in
the set of available information. We will do so from time to time, and when done
this will be clearly indicated.

8.7 Conclusions

This chapter has illustrated a large range of univariate linear examples. Many
of the standard workhorses of macroeconomics can be written in this frame-
work as our examples illustrate. We have shown that there are readily applicable
tools for studying the stability of the RE solutions to these models under least
squares learning. Often these models will have a single nonexplosive solution
and usually this solution will be stable under learning. However, linear models
with multiple stationary solutions do arise and in these situations assessing their
local stability under learning is particularly useful.

The solutions to the models of this chapter take various forms. For the MSV
solution, the connection between E-stability and real-time learning has been for-
mally established. The argument extends to a non-MSV solution which is locally
unique relative to the form of solutions allowed. For cases of solutions continua,
the connection has not been proven theoretically, though numerical simulations
suggest that it holds more generally.

For the economic examples in this chapter, at most one MSV solution is
locally stable under learning. This emphasizes the power of adaptive learning as
a selection principle. However, in higher-order linear models (and in nonlinear
models), there exist cases in which there are multiple stationary MSV solutions
that are locally stable under adaptive learning. This will be discussed in the next
chapter.

Most of the results and techniques in this chapter are straightforward to use,
but we have postponed some issues. For example, models with mixed dates in
information sets appear in the literature. We also need to systematically discuss
the notion of strong E-stability. In the following chapter we explore these and
other issues for univariate linear models. Then in Chapter 10 we take up multi-
variate linear models.



Chapter 9
Further Topics in Linear Models

9.1 Introduction

In this chapter we take up a number of further topics in the analysis of learning
in univariate linear models. First, we provide an example of learning in a model
with a mixture of dates at which expectations are formed. Second, we look at
weak and strong stability for the basic “special case” of the previous chapter,
as well as for the “extended special case,” also considered last chapter, which
incorporates a lagged endogenous variable. These cases cover many models in
the literature and thus provide a convenient class of models for discussing the
literature on alternative selection criteria for choosing among equilibria. Third,
we investigate a model with two forward leads present and demonstrate the pos-
sibility of a linear model with two distinct AR(1) solutions, each of which is
locally stable under learning. Fourth, we show how we examine least squares
learning of explosive AR(1) solutions. Fifth, we consider stability of explosive
bubbles in the standard asset pricing model. Finally, we allow for certain types
of heterogeneity in learning rules.

9.2 Muth’s Inventory Model

Models with mixed datings of expectations and with conditional variances arise
in various contexts. As an example we consider Muth’s inventory model. In
addition to the well-known cobweb model, Muth (1961) considered a version in
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which the good was durable and firms could accumulate inventories. Consider
the model

Ct = −δpt ,
Qt = γEt−1pt + ut ,

It = α(Etpt+1 − pt ),

Ct + It = Qt + It−1,

where Qt is production at t, Ct is consumption at t , It is stock of inventories at
t , and pt is the market price at t . All variables are in deviation from the mean
form, so we ignore intercepts.

Muth showed that for small changes in the price, the coefficient in the in-
ventory speculation equation is given by

α =K/Vart pt+1.

Muth took α as fixed but as McCafferty and Driskill (1980) argue, Vart pt+1

is endogenous and should be solved in terms of the model parameters. Allow-
ing for this and combining equations, we arrive at the following reduced form
equation:(

δ+K/Vart pt+1
)
pt =

(
K/Vart−1pt

)
pt−1 −

(
γ +K/Vart−1pt

)
Et−1pt

+ (
K/Vart pt+1

)
Etpt+1 − ut .

There are two minimal state variable (MSV) solutions of the form

pt = bpt−1 + φut .

For some choices of parameter values both are stationary, but adaptive learning
can be used as a selection criterion. For example, suppose that δ = 0.1, γ = 0.4,
and ψ = 2.5. Here ψ denotes ψ = K/σ 2

u , where σ 2
u = Var(ut ). Then the two

solutions are b = 0.10 and b = 0.66. The root b = 0.10 is strongly E-stable
while the root b = 0.66 is E-unstable. See Evans (1989) for further discussion
of this model.

9.3 Overparameterization in the Special Case

We return to the simple univariate linear model (8.2) introduced in Chapter 8,

yt = α+ β0E
∗
t−1yt + β1E

∗
t−1yt+1 + vt , (9.1)
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where vt is white noise. Recall that there are two types of solution to this model,
the MSV solution (8.3)

yt = (1− β0 − β1)
−1α+ vt ,

and the ARMA(1,1) class (8.4)

yt =−β−1
1 α+ β−1

1 (1− β0)yt−1 + vt + c1vt−1 + d1εt−1,

where εt is an arbitrary “sunspot” variable satisfying Et−1εt .
In Chapter 8 we investigated whether the MSV solution was stable under

least squares learning when the perceived law of motion (PLM) was of the same
form, and we also investigated whether it was locally stable under least squares
learning when overparameterized as an AR(1) process. We saw that the answers
were governed, respectively, by the weak E-stability condition (8.10) and the
strong E-stability conditions (8.24). For the ARMA(1,1) solution set, we con-
sidered whether it was locally stable under learning when correctly specified
as an ARMA(1,1) process. There we obtained the weak E-stability conditions
(8.23) for the ARMA(1,1) class of solutions.

A question left open was whether the stability conditions [both for the MSV
and for the ARMA(1,1) solution set] might be modified if we considered an even
larger class of PLMs. This is the question we now take up. We begin with a cal-
culation of the relevant E-stability conditions and then discuss local stability un-
der least squares learning. In Section 9.4 we extend these results to the extended
special case with a lagged dependent variable.

9.3.1 Strong E-Stability in the Special Case

To investigate E-stability we postulate a PLM of the general form

yt = a+
s∑

i=1

biyt−i + vt +
r∑
i=1

civt−i +
q∑
i=1

diεt−i . (9.2)

As before, we can compute

Et−1yt = a+
s∑

i=1

biyt−i +
r∑
i=1

civt−i +
q∑
i=1

diεt−i, (9.3)

Et−1yt+1 = a+ b1Et−1yt +
s∑

i=2

biyt+1−i +
r∑
i=2

civt+1−i +
q∑
i=2

diεt+1−i .
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Inserting into equation (9.1), we obtain an ALM of the same form as
equation (9.2). Letting φ′ = (a, b′, c′, d ′), where b′ = (b1, . . . , bs), c′ =
(c1, . . . , cr), and d ′ = (d1, . . . , dq), we denote the mapping from the PLM φ

to the ALM φ∗ by φ∗ = T (φ). The explicit T -mapping is stated in the next sec-
tion for a more general model with a lagged endogenous variable. For the case
at hand, set δ = 0 in equation (9.6) below. E-stability of the MSV solution or
of the ARMA(1,1) solutions with respect to this general class of PLMs is then
determined by local stability of the differential equation

dφ

dτ
= T (φ)− φ (9.4)

at that solution.
It is possible to demonstrate the following results, see Evans and Honkapo-

hja (1992) for various details. First, the MSV solution is E-stable with re-
spect to PLMs (9.2) provided condition (8.24) holds. Thus our previous “strong
E-stability” conditions for the MSV solutions remain sufficient for E-stability
with respect to an even larger class of overparameterizations. This result is
straightforward to show.

Second, the ARMA(1,1) solutions are never strongly E-stable. This result is
more difficult to show and somewhat subtle: the roots of the linearization of the
differential equation subsystem in (b1, . . . , bs) include 0, so that stability cannot
be determined from the linearization. Formally, the center manifold technique
must be applied and we find one-sided stability–instability. This result can be
shown diagrammatically for the case of s = 2. We then have

db1

dτ
= (β0 + β1b1 − 1)b1 + β1b2,

db2

dτ
= (β0 + β1b1 − 1)b2.

Figure 9.1 gives the (b1, b2) phase diagram [drawn on the assumption of
parameter values consistent with weak E-stability of the ARMA(1,1) class] and
shows the failure of the ARMA(1,1) class to be strongly E-stable. For the quad-
rant northwest of the values b1 = β−1

1 (1 − β0), b2 = 0, corresponding to the
ARMA(1,1) solutions, there are divergent paths. Of course, there are also con-
vergent paths from other initial points, but the existence of locally divergent
paths demonstrates local instability.

Although the ARMA(1,1) solutions are not strongly E-stable, we emphasize
that this is a case in which the (non-MSV) equilibrium b1 = β−1

1 (1−β0), b1 = 0
in the differential equation subsystem for b is nonhyperbolic. This is relevant for
our discussion of least squares learning.
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Figure 9.1. The weakly E-stable ARMA(1,1) solution class is not strongly E-stable.

9.3.2 Least Squares Learning

Here we examine two questions. First, consider the MSV solution yt = ā + vt ,
where ā = α(1−β0−β1)

−1. In Sections 8.3.1 and 8.4.2 of Chapter 8 we showed
that this solution is stable under learning, when estimated as a constant, if it sat-
isfies the weak stability condition (8.10), and that it is locally stable under least
squares learning, when estimated as an AR(1) process, if the strong E-stability
conditions (8.24) are satisfied. We can now make an even stronger claim.

Consider now the question of the stability under least squares learning of
the MSV solution when agents are assumed to have PLMs of the form (9.2) and
to estimate the parameters by recursive least squares, updating their estimates
at each point in time. We will assume that the shock vt and the sunspot εt are
observable at time t, so that estimation of the parameters (a, b, c, d) can be
carried out using the RLS algorithm (8.12) with φt and zt augmented to include
additional terms. Thus φt and zt−1 are given by

φ′t = (at , b1t , . . . , bst , c1t , . . . , crt , . . . , d1t , . . . , dqt ),

z′t−1 = (1, yt−1, . . . , yt−s, vt−1, . . . , vt−r , εt−1, . . . , εt−q),

where we will be considering different choices of s, q , and r .
There is a new technical complication which requires discussion. The MSV

solution yt = ā + vt is equivalent to a higher-order stationary ARMA process
with common factors, i.e., to g(L)yt = g(1)ā + g(L)vt for any finite lag poly-
nomial g(L). The simplest way to avoid this identification problem in the case
of the MSV solution is to restrict specifications to r = 0, i.e., to specifications in
which there are no lagged terms in vt and εt is assumed independent of vt .

The previous results can now be extended and a strong local stability result
stated.
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Proposition 9.1. Under recursive least squares learning in which the regressors
include the intercept and s lags of yt and q lags of εt , the MSV solution for model
(9.1) is locally stable (in the senses discussed in Section 6.3.3 of Chapter 6)
provided the strong E-stability conditions (8.24) are satisfied. If either of the
strong E-stability conditions is violated with a strict inequality, then there is
convergence with probability 0 to the MSV solution.

The other question we consider is convergence under least squares learning
to the ARMA(1,1) sunspot solutions. Here we are unable to state formal con-
vergence results, for two technical reasons. First, the ARMA(1,1) solutions in
general include an unbounded continuum in the form of arbitrary parameters
c1 and d1. Such cases are not covered by the general stability results stated in
Chapter 6. However, even if we set r = q = 0 and only include lagged yt as
regressors, there is a difficulty. This can again be seen if we set s = 2 and con-
sider the non-MSV AR(1) solution overparameterized as an AR(2) solution. We
have shown that the non-MSV AR(1) can be weakly but not strongly E-stable.
However, with s = 2 the differential equation subsystem in b′ = (b1, b2) is non-
hyperbolic. This carries over into a zero root for the linearized ODE associated
with the recursive stochastic algorithm. Inspection of Theorem 6.9 of Chapter 6,
however, shows that the case of zero roots is not covered by the instability theo-
rem.

We can, however, consider simulations and we return to the numerical ex-
ample considered in Section 8.4.4 of Chapter 8. There we considered parameter
settings in which the ARMA(1,1) sunspot solutions were weakly E-stable and
in Figure 8.3 provided a simulation showing apparent convergence to a sunspot
solution. Figure 9.2 shows a simulation for the same parameter values in which
z′t−1 = (1, yt−1, yt−2, vt−1, εt−1), i.e., in which we overparameterize by includ-
ing yt−2 as a regressor.

Initial settings of parameters φ′ = (a, b1, b2, c1, d1) were a = ā, b1 =
b̄1 + 0.10, c = 0.25, d = 0.25, b2 = 0.05 ,R = R̄, and lagged y equal to ȳ.1

It is apparent from Figure 9.2 that there is no longer convergence to the RE
ARMA(1,1) sunspot solutions. Over the period shown the parameters diverge,
and several periods later explode beyond computational limits.

These simulations suggest that while formal convergence results are not
available for such cases, convergence of least squares learning does reflect
weak and strong E-stability conditions. However, we remark that relatively lit-
tle research has been done on these topics and the nonhyperbolic nature of the

1Again, to reduce the initial volatility of estimates for small t , we use a small constant gain for
an initial period of time: γt =N−1 for t = 1, . . . ,N and γt = t−1 for t > N, with N set at N = 20.
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Figure 9.2.

solutions cautions that the situation may be exceedingly complex. The paper
by Heinemann (2000b) contains some supporting simulations for this class of
models, but also indicates that stochastic gradient learning may have somewhat
different stability conditions in nonhyperbolic cases.

9.4 Extended Special Case

9.4.1 E-Stability

We return to the extended special case (8.28) considered in Chapter 8,2 repro-
duced here for convenience,

yt = α+ δyt−1 + β0E
∗
t−1yt + β1E

∗
t−1yt+1 + vt , (9.5)

2For a more detailed discussion of this model, see Evans and Honkapohja (1992).
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in which the lagged dependent variable enters the reduced form. Here vt is as-
sumed to be a white noise process. There are two classes of solution (assuming
real roots). The first class contains two distinct AR(1) solutions, taking the form
(8.29) of Chapter 8. These are the MSV solutions. The second class is a contin-
uum of ARMA(2,1) sunspot solutions.3 These take the form

yt =−β−1
1 α+ β−1

1 (1− β0)yt−1 − β−1
1 δyt−2 + vt + c1vt−1 + d1εt−1,

where εt is an arbitrary process satisfying Et−1εt = 0. In the case of complex
roots, in which no real AR(1) solution exists, these ARMA(2,1) “sunspot” solu-
tions remain well defined.

Consider general PLMs of the form (9.2). Inserting equation (9.3) into equa-
tion (9.5), we obtain the following mapping to the implied ALM:

a∗ = α+ (β0 + β1)a + β1ab1,

b∗1 = δ+ β0b1 + β1
(
b2

1 + b2
)
,

b∗i = β0bi + β1(b1bi + bi+1), i = 2, . . . , s − 1,

b∗s = β0bs + β1b1bs, (9.6)

c∗i = β0ci + β1(b1ci + ci+1), i = 1, . . . , r − 1,

c∗r = β0cr + β1b1cr,

d∗i = β0di + β1(b1di + di+1), i = 1, . . . , q − 1,

d∗q = β0dq + β1b1dq.

Setting again φ′ = (a, b′, c′, d ′), where b′ = (b1, . . . , bs), c
′ = (c1, . . . , cr ), and

d ′ = (d1, . . . , dq), we denote the mapping from the PLM φ to the ALM φ∗ by
φ∗ = T (φ). Strong and weak E-stability of the different solutions can then be
analyzed according to equation (9.4).

Strong E-stability conditions for the AR(1) solutions can be derived from
the linearization of equation (9.4). We obtain the following.

Proposition 9.2. For model (9.5) an MSV solution with AR(1) coefficient b1

is strongly E-stable if the weak E-stability conditions (8.33) together with the
additional condition β0 − 1+ β1b1 < 0 are satisfied.

3Using the classification sceme of McCallum (1983), these would be called “bubble” solutions,
though they need not be explosive. Using his subsidiary principle, McCallum (1983) would also
classify one of the AR(1) solutions as a bubble solution.



Further Topics in Linear Models 213

Weak E-stability of the ARMA(2,1) solutions is obtained by setting s = 2
and r = q = 1 and computing the roots of the linearized system at the
ARMA(2,1) solution. This yields the weak E-stability conditions

δβ1 > 0, 1− β0 < 0, β1 < 0.

Strong E-stability of the ARMA(2,1) solutions requires their stability under
equation (9.4) for general s, r, q . As with the special case, it turns out that there
are zero eigenvalues, so that stability cannot be determined from the lineariza-
tion. To determine E-stability requires the center manifold technique. This ap-
plication of the technique to our problem is described in Evans and Honkapohja
(1992) and we simply state the result here: The ARMA(2,1) class of solutions is
never strongly E-stable.

9.4.2 Least Squares Learning

Under least squares learning with PLMs of the form (9.2), the situation is es-
sentially the same as that discussed for the special case. The analysis of local
stability and instability given in Chapter 6 applies to the convergence of least
squares learning to stationary MSV solutions which now take the AR(1) form.
These MSV solutions are locally stable, provided they are stationary and weakly
E-stable, when estimated as an AR(1) process using recursive least squares. For
overparameterized learning, there is again potentially a common factor problem
when the AR(1) solution is overparameterized as an ARMA process. Again, this
can be avoided by setting r = 0. An AR(1) solution is locally stable under least
squares learning which includes additional lags of yt and/or lags of the sunspot
variable εt , provided it is stationary and satisfies the strong E-stability condi-
tions.

For least squares learning of the ARMA(2,1) solutions, the technical diffi-
culties previously mentioned prevent us from obtaining formal results and we
are therefore left with the conjecture that E-stability conditions give local stabil-
ity conditions under least squares learning.

9.4.3 Discussion of Examples

We can now consider our examples from Chapter 8 and consider the possible
types of solution that are likely to arise, from the viewpoint of weak and strong
E-stability and results on local convergence under least squares learning.

The Taylor overlapping contracts model (Example 3 of Chapter 8) is
straightforward. It can be shown that it is saddlepoint stable and therefore one
of the MSV solutions is the unique stationary solution. It can also be shown that
only this stationary MSV solution can be weakly or strongly E-stable.
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The real balance model augmented with a monetary policy feedback (Ex-
ample 4) is more complicated. As noted earlier, this example has the reduced
form

pt = α+ dpt−1+ hE∗t−1pt − hE∗t−1pt+1 + vt , (9.7)

where h can take any nonzero value depending on the structural parameters and
where d denotes the response parameter of the money supply to the lagged price
level. In this example a range of unusual phenomena can occur. In particular, the
reader can verify the following.

Proposition 9.3. (i) If d < 0 and h> 1, the ARMA(2,1) class of model (9.7) will
be (weakly) E-stable and there does not exist a strongly E-stable solution.

(ii) For an open set of parameter values, an explosive AR(1) solution can
be strongly E-stable. An example is h = 1.5, d = 1.1. All other solutions are
E-unstable.

(iii) For an open set of parameter values, all solutions are stationary, with
a unique strongly E-stable AR(1) solution and all other solutions E-unstable. An
example is h= 1.5, d = 0.1.

Note that in these examples of exotic solutions the dependence on E∗t−1pt

is large, and it can be shown that they arise only if |d| or |h| is large. This last
point can be made more generally within the context of the extended special
case (8.28).

Proposition 9.4. Consider the model (8.28). If |δ|, |β0|, |β1|< 1
3 , then there is

a unique stationary solution which is strongly E-stable and which is uniquely
weakly E-stable.

For proofs of these propositions see Evans and Honkapohja (1992). Thus,
for this class of models the solutions are well behaved when the degree of direct
and expectational feedback is not too large: there is a unique stationary solution
which is strongly E-stable and thus stable under least squares learning. Only
when feedback is large do we find multiple stationary solutions, E-stable explo-
sive solutions, or an E-stable ARMA(2,1) class. Since E-stability governs the
local stability under least squares or adaptive learning, we see that in the “well-
behaved” case of limited feedback, adaptive learning singles out the standard
solution. However, when expectational feedback is large, various exotic possi-
bilities can arise. In these other cases, adaptive learning continues to operate
as a selection criterion in the sense that it restricts attention to a smaller set of
solutions which are “attainable.”
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9.5 Linear Model with Two Forward Leads

9.5.1 AR(1) Solutions

We now extend the model further to include a dependence on Et−1yt+2. It turns
out that this leads to a new phenomenon: multiple MSV solutions which are
stable under least squares learning. The reduced form we consider is

yt = α+ δyt−1 + β0E
∗
t−1yt + β1E

∗
t−1yt+1 + β2E

∗
t−1yt+2 + vt , (9.8)

where vt is white noise. We give an economic example below.
The MSV solutions again take the AR(1) form:

yt = a + b1yt−1 + vt . (9.9)

It is straightforward to show that (a, b1) satisfy

β2b
3
1 + β1b

2
1 + (β0 − 1)b1 + δ = 0,

a
(
β0 − 1+ β1(1+ b1)+ β2

(
1+ b1 + b2

1

)) = −α.

Generically there are either three or one such solutions. For appropriate param-
eter values it is possible for there to exist three real stationary solutions.

For this model one can show the following result.

Proposition 9.5. For model (9.8), we have

(i) For an open set of parameter values, two of the AR(1) solutions are station-
ary and locally stable under least squares learning.

(ii) Let −1< δ < 1 be given. Then for all β0, β1, β2 sufficiently small in magni-
tude, there is a unique stationary AR(1) solution and it is stable under least
squares learning.

Details of the argument are in Evans and Honkapohja (1994b). The basic
idea can be seen from the E-stability conditions. For PLMs of the form (9.9), the
map from the PLM to the ALM is given by

Ta(a, b1) = α+ β0a + β1(ab1 + a)+ β2
(
b1(b1a + a)+ a

)
,

Tb1(a, b1) = δ+ β0b1 + β1b
2
1 + β2b

3
1.

Stability of the b1 parameter in the equation db1/dτ = Tb1(b1), where we
have written Tb1(b1)≡ Tb1(a, b1), is determined by a cubic which may have two



216 Learning in Linear Models

Figure 9.3. Model with two forward leads. Example of two E-stable AR(1) solutions.

stable roots, depending on the parameters. This case is illustrated in Figure 9.3.
For appropriate choices of the parameters this will make the (a, b) system lo-
cally stable. From Proposition 9.5(ii) we see that this possibility can only arise
if the dependence of yt on expectations is large.

We illustrate the possibility of multiple AR(1) solutions which are locally
stable with a simple numerical example. We set α = 0, β0 = −3.53968254,
β1 = 6.66666667, β2 =−3.17460318, and δ = 1. This leads to three AR(1) so-
lutions with b1 = 0.5, 0.7, 0.9. The solutions b1 = 0.5 and b1 = 0.9 are strongly
E-stable and the solution b1 = 0.7 is weakly E-unstable.

Figure 9.4 shows the results of two simulations of recursive least squares
learning of an AR(1) process. Both simulations set the initial value of b1 = 0.7.
The first simulation suggests convergence to b1 = 0.5. After 20,000 periods the
value is 0.4857. The second simulation suggests convergence to b1 = 0.9. After
20,000 periods the value is 0.8728. Although convergence is somewhat slow,
the local stability of the two AR(1) solutions appears clear in the simulations.
For the AR(1) solutions the local stability and instability results of Chapter 6 do
apply, so that formal results on convergence can be demonstrated in the usual
way.

An economic example which fits the framework of this section is an open
economy model of Dornbusch type with policy feedback. The equations are

pt − pt−1 = πEt−1dt ,

dt = −γ (rt −Etpt+1 + pt )+ η(et − pt ),

rt = λ−1(pt − ϑpt−1),

rt = Etet+1 − et .

Here dt is (log) aggregate demand, et is the (log) exchange rate, pt is (log)
price level, and rt is the interest rate. The first equation is a Phillips curve, the
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Figure 9.4. Results for b1(t) from two simulations.

second is the IS curve for an open economy, the third is the LM curve in which
monetary policy reacts to pt−1, and the last equation is the open parity condi-
tion.

It can be shown that the reduced form for pt is of the required form (9.8);
see Evans and Honkapohja (1994b) for details. As an example, suppose π = 1.5,
γ = 1.5, λ= 10, ϑ = 0.5, and η= 0.2. Then there is a unique stationary solution
with b1 = 0.384. However, if π = 1.5, γ = 1.5, λ= 10, ϑ = 1.1, and η =−0.1,
there are three locally stationary roots b1 = 0.716,0.772, and 0.989, and the so-
lutions b1 = 0.716 and b1 = 0.989 are both locally stable under least squares
learning.

9.5.2 ARMA Solutions

In this section we briefly discuss the full set of solutions in the model with
expectationsEt−1yt+2 included. (The MSV solutions to this model were already
discussed in the preceding section.) The reduced form we are considering is
equation (9.8).
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We can give a complete classification of the solutions, grouped into cate-
gories:

(1) The ARMA(3,2) class

yt = −αβ−1
2 − β1β

−1
2 yt−1+ (1− β0)β

−1
2 yt−2 − δβ−1

2 yt−3

+vt + c1vt−1 + c2vt−2 + d1εt−1 + d2εt−2,

where c1, c2, d1, and d2 are arbitrary. Assuming real roots ρ1, ρ2, and ρ3 of
the complementary polynomial, this can be written

(1− ρ1L)(1− ρ2L)(1− ρ3L)yt

=−αβ−1
2 + (1−µ1L)(1−µ2L)vt +L(d1 + d2L)εt ,

where µ1,µ2, d1, and d2 are arbitrary.
(2) ARMA(2,1) classes. These are obtained by choosing the arbitrary coeffi-

cients to allow cancellation of a common factor, e.g., (1− ρ3L), yielding

(1− ρ1L)(1− ρ2L)yt =−αβ−1
2 (1− ρ3)

−1 + (1−µ1L)vt + d1Lεt .

If all three roots are real, there are three ARMA(2,1) classes of REE. If only
one root is real, then there is only one such class.

(3) AR(1) solutions. For appropriate choices of the remaining free parameters,
we can cancel another common factor, yielding, e.g.,

(1− ρ1L)yt =−αβ−1
2 (1− ρ2)

−1(1− ρ3)
−1 + vt .

Again, there are either three or one such solutions. These are the MSV so-
lutions.

The E-stability results for the AR(1) solutions were discussed above and
given fully in Evans and Honkapohja (1994b). For the ARMA classes of solu-
tion, Evans and Honkapohja (1994b) show the following result.

Proposition 9.6. For an open set of parameter values, the ARMA(2,1) and
ARMA(3,2) solution classes to model (9.8) can be weakly E-stable. However,
they can never be strongly E-stable.

Again, lack of strong E-stability for the ARMA solution classes is a conse-
quence of the fact that this solution is a nonhyperbolic equilibrium for the ODE
defining strong E-stability. Finally, we remark that weakly E-stable ARMA so-
lutions can arise in the Dornbusch-type model with policy feedback.
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9.6 Learning Explosive Solutions

So far throughout the book, when considering convergence of adaptive learn-
ing to a rational expectations equilibrium, we have made the assumption that the
REE was asymptotically stationary. However, as we have seen in the last chapter
and this one, there will often also exist (at least as formal solutions) nonstation-
ary processes such as explosive AR(1) processes. We show in this section that it
is also possible to analyze the stability under adaptive learning of such explosive
solutions.

For concreteness we consider the “extended special case” as discussed in
Chapter 8 and earlier in this chapter:

yt = α+ δyt−1 + β0E
∗
t−1yt + β1E

∗
t−1yt+1 + vt ,

and consider the MSV solutions

yt = a + ρyt−1 + vt ,

where ρ satisfies β1ρ
2 + (β0 − 1)ρ + δ = 0.

We are interested in the stability of least squares learning in the case |ρ|> 1.
There are two complications which now arise when we assume that agents run
regressions of yt on an intercept and on yt−1. First, as t becomes large the inter-
cept will become negligible relative to ρyt−1 along an explosive AR(1) path. The
simplest way to deal with this point is to assume that agents do not include an in-
tercept in their regression. Second, the error term vt will also become negligible
relative to ρyt−1 if its variance is finite and constant over time. This leads to diffi-
culties which can be overcome if we make the assumption that var(vt ) increases
over time at an appropriate rate. In particular, we assume that var(vt ) = λtσ 2,
where λ > ρ2 > 1.

The procedure is to transform variables to make them asymptotically sta-
tionary. Defining

y∗t = ytλ
−t/2, v∗t = vtλ

−t/2, ρ∗ = ρλ−1/2,

it is easily verified that along an explosive AR(1) REE path, the process tends to
the path

y∗t = ρ∗y∗t−1+ v∗t .
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We consider recursive least squares based on these transformed variables, i.e.,
agents estimate ρ∗ from a simple regression of y∗t on y∗t−1. The equations are

b∗t = b∗t−1 + t−1R−1
t y∗t−1

(
y∗t − b∗t−1y

∗
t−1

)
,

Rt = Rt−1 + t−1(y∗2
t−1 −Rt−1

)
.

These equations can be rewritten in terms of untransformed variables and inter-
preted as recursive weighted least squares. For details concerning the arguments
of this section, see Evans and Honkapohja (1994a).4

Agents make time-(t − 1) forecasts based on y∗t = b∗t−1y
∗
t−1 + v∗t ,

i.e., E∗t−1y
∗
t = b∗t−1y

∗
t−1 and E∗t−1y

∗
t+1 = b∗2

t−1y
∗
t−1. Equivalently, E∗t−1yt =

bt−1yt−1, where bt−1 = λ1/2b∗t−1. Transforming variables in the structural
model and inserting these forecasts, we obtain the actual law of motion

y∗t = αλ−t/2 + (
δλ−1/2 + β0b

∗
t−1 + β1λ

1/2b∗2
t−1

)
y∗t−1 + v∗t .

Together with the equations for b∗t and Rt , this now constitutes a stochastic
recursive algorithm which can be analyzed in the usual way. It can be shown
that, provided the E-stability condition β0 + 2β1ρ < 1 is met, we have locally
b∗t → ρ∗ and hence bt → ρ. The standard instability result also applies if the
E-stability condition fails.

An analogous argument applies to explosive AR(1) solutions to the model
yt = α+ δyt−1 + β1E

∗
t yt+1 + vt .

9.7 Bubbles in Asset Prices

The present-value model of asset pricing, according to which the price of a share
is equal to the sum of the conditional expectations of the price and dividend next
period, leads to the univariate RE model

yt = αE∗t yt+1 +wt,

where yt is the price of the asset and wt is the dividend, here assumed to be paid
at the beginning of the period. We will assume thatwt is an exogenous stationary
(or integrated stationary) AR process. In the risk-neutral asset pricing model,
α = (1+ r)−1, where r > 0 is the interest rate which we assume is constant. The

4For further results on learning of nonstationary solutions, see Zenner (1996).
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fundamental or forward solution is given by ȳt = δ
∑∞

j=0 α
jEtwt+j . If wt is a

stationary AR process, ȳt coincides with the MSV solution. All other solutions
are called bubbles. These are nonstationary if |α|< 1.5 (At the end of the section
we briefly comment on the case |α|> 1.)

To analyze E-stability, consider for simplicity the special case wt = k+ ut ,
where ut is white noise. The fundamentals solution in this case is

ȳt = (1− α)−1k+ ut . (9.10)

The bubble solutions take the form

yt =−α−1k+ α−1yt−1 − α−1ut−1 + ζut + εt , (9.11)

where ζ is arbitrary and εt is an arbitrary (sunspot) process satisfying
Et−1εt = 0.

The next step is to formulate a perceived law of motion which is general
enough to include the MSV and the bubbles as special cases. Consider the PLMs
of the form

yt = a+ byt−1 + c0ut + c1ut−1 + dεt .

The corresponding one-step-ahead forecast is E∗t yt+1 = a+ byt + c1ut , or

E∗t yt+1 = a(1+ b)+ b2yt−1 + (c1 + bc0)ut + bc1ut−1 + bdεt .

Substituting into the structural equation, solving for yt , and using wt = k + ut

gives the corresponding actual law of motion6

yt = k+ αa(1+ b)+ αb2yt−1 + (1+ α(c1 + bc0))ut + αbc1ut−1 + αbdεt .

Thus the T -mapping from PLM to ALM in this example is

T (a, b, c0, c1, d)=
(
k+ αa(1+ b),αb2, (1+ α(c1 + bc0)),αbc1, αbd

)
.

Note that the fixed points of the T -mapping are

ā = k(1− α)−1, b̄= c̄1 = d̄ = 0, c̄0 = 1 and

ā = −α−1k, b̄= α−1, c̄1 =−α−1, and c̄0, d̄ arbitrary.

5See Salge (1997) for a general discussion of asset bubbles.
6In this section we are making the assumption that the time-t information set includes ut (and

yt−1) but not yt . See the earlier discussion in Section 8.6.2 of Chapter 8.
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The first fixed point corresponds to the fundamental solution and the second
corresponds to the bubble solutions.

E-stability is, of course, governed by dθ/dτ = T (θ) − θ , where θ =
(a, b, c0, c1, d). To determine E-stability of the two types of solutions, we look
at the differential equation governing b, which is autonomous:

db

dτ
= αb2 − b.

Writing Tb(b) = αb2 we see that T ′b(b̄) = 2αb̄ so that T ′b(0) = 0 and
T ′b(α−1) = 2. It follows that the bubble solutions are never E-stable, while the
fundamentals value b̄= 0 satisfies this E-stability condition. (The ODE dynam-
ics of b closely resembles that shown for b1 in Figure 8.4 of Chapter 8.) Looking
at the remaining equations of the ODE, we see that the fundamentals solution is
E-stable provided α < 1.

The local stability and instability results of Chapter 6 can be applied in
the usual way to show that the fundamentals solution is locally stable under
least squares learning. Using also the techniques of the previous section on
the local stability under learning of explosive solutions, it can be shown that
the bubble solutions are not locally stable under least squares learning.7 We
close with two cautionary remarks on our result that explosive bubbles ap-
pear not to be stable under adaptive learning. First, for some initial values of
parameter estimates, the paths under learning will not converge to the funda-
mentals solution but instead follow a nonrational divergent trajectory. Second,
more elaborate asset price models may generate explosive bubbles which are
stable under learning. Earlier results in this chapter strongly suggest this possi-
bility.

Other economic models of the same form can have |α|> 1. We briefly dis-
cuss this case. The existence of the forward solution ȳt = δ

∑∞
j=0 α

jEtwt+j
hinges on the properties of wt process. For example, if wt = k + ρwt−1 + ut ,
this exists iff |αρ| < 1. However, for this wt the MSV solution exists even if
this condition fails. Returning to the special case wt = k + ut , the fundamen-
tals and bubble solutions still take the form (9.10) and (9.11), respectively. The
analysis of learning is unchanged, so that the fundamentals solution is E-stable
if α <−1, while the bubble solutions are E-unstable.

7As previously discussed, we cannot give formal convergence results when the agents allow for
a continuum of solutions. However, the results will apply, for example, if the agents impose c0 = 0
and d = 1.
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9.8 Heterogeneous Learning Rules

The analysis has so far mostly been based on the assumption that the economic
agents in the model have identical learning rules, though we briefly considered
the possibility of heterogeneous expectations in Section 3.2 of Chapter 3. We
now allow for heterogeneity and random adjustments in expectations in a model
with a continuum [0,1] of agents. The formulation of heterogeneity in the learn-
ing rules is based on the ideas in Evans, Honkapohja, and Marimon (2000), who
consider the effects of heterogeneity in a more complex model.

Consider the linear model

yt = α+ βyet+1 + εt ,

where yet+1 =
∫ 1

0 y
ke
t+1 dk, with yket+1 denoting the expectations of agent k ∈

[0,1], and εt is an iid random shock. Thus the aggregate endogenous variable
depends on the average expectations in the economy. We focus on the steady-
state REE yt = y∗ + εt of the model which satisfies y∗ = α(1− β)−1.

We assume for each agent k the learning rule

yket+1 =
{
yket with probability ρt+1,

yket + γk,t+1(yt−1− yket ) with probability 1− ρt+1.

The probability 0 ≤ ρt+1 < 1 captures the degree of inertia. The random gains
γk,t+1 are taken to be positive and independent of past information and, for
each t, γk,t+1 are identically and independently distributed across k. Moreover,
γt+1 ≡Eγk,t+1 is assumed to converge to zero as t→∞.

We assume that γt (1− ρt ) is a positive decreasing sequence satisfying

(i)
∑∞

t=1 γt (1− ρt )=+∞,

(ii) for some p > 0,
∑∞

t=1(γt (1− ρt ))
p <+∞,

(iii) limt→∞ sup[1/γt(1− ρt )− 1/γt−1(1− ρt−1)]<∞,

and that
(iv) for all k, γkt ≤ γ̄t , where γ̄t → 0 as t→∞.

A simple special case that satisfies the above assumptions is averaging with
inertia: γkt = t−1 and ρt+1 = ρ for some constant 0≤ ρ < 1.

This class of learning rules is, of course, still restrictive though it generalizes
the standard learning rules in a way which admits considerable heterogeneity in
learning. Note also that even if initially agents have homogeneous expectations,
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heterogeneous adjustments to forecast errors and/or heterogeneous inertia across
agents ensure that heterogeneity of expectations will emerge over time.

We can rewrite the learning rule

yket+1 = yket + ξkt+1γk,t+1(yt−1− yket ), (9.12)

where for each agent k the variable ξkt+1 is a Bernoulli random variable, inde-
pendent of past information, and independent across k, which takes the value 0
with probability ρt+1 and 1 with probability 1− ρt+1. In addition, for all j, k,
ξ
j

t+1 are assumed independent of current πket and γk,t+1.
Integrating equation (9.12) over k, we get

yet+1 = yet +
∫
ξkt+1γk,t+1

(
yt−1 − yket

)
µ(dk).

We have ∫
ξkt+1γk,t+1y

ke
t µ(dk)

=
(∫

ξkt+1µ(dk)

)(∫
γk,t+1y

ke
t µ(dk)

)
+ Covµ(dk)

(
ξkt+1, γk,t+1y

ke
t

)
.

Using the law of large numbers for continua of random variables,8 we have∫
ξkt+1µ(dk)= 1− ρt+1,

and from the independence assumption,

Covµ(dk)(ξ
k
t+1, γk,t+1y

ke
t )= 0.

Moreover, we get∫
γk,t+1y

ke
t µ(dk)=

(∫
γk,t+1µ(dk)

)(∫
yket µ(dk)

)
= γt+1y

e
t .

Analogously, using independence and the law of large numbers, we have∫
ξkt+1γk,t+1yt−1µ(dk)= (1− ρt+1)γt+1yt−1.

8See Judd (1985).
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These arguments yield that average expectations follow

yet+1 = yet + γt+1(1− ρt+1)(yt−1 − yet ). (9.13)

With the above assumptions and after substituting in for yt−1, we have a standard
setup, so that even with heterogeneous learning rules the average expectations
converge to the REE, provided it is E-stable (β < 1). Coupling the two dynam-
ics (9.12) and (9.13), it is also possible to show that individual expectations yket+1
also converge to the REE solution, so that heterogeneity disappears asymptoti-
cally in this model. We omit the detailed argument, see Evans, Honkapohja, and
Marimon (2000) for the formal steps in a somewhat more difficult setup.

This analysis illustrates how it is possible to introduce considerable hetero-
geneity to the learning behavior of the agents. The aggregation of the individual
learning rules was formally the key to the analysis and the result. This is one
case where convergence results are obtainable for cases of heterogeneous ex-
pectations and learning rules. The stability conditions for the cases of homoge-
neous and heterogeneous learning rules need not always be identical, as shown
by Evans, Honkapohja, and Marimon (2000). The other case that can be ana-
lyzed in a similar fashion is the case of n different expectations. This case was
illustrated in Section 3.2 of Chapter 3.
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Chapter 10
Multivariate Linear Models

10.1 Introduction

The techniques described in the previous chapter can be generalized to multivari-
ate models, allowing us to analyze most of the models frequently encountered in
macroeconomics, including the standard Real Business Cycle model and irreg-
ular versions with sunspot solutions, as well as more traditional IS-LM-Phillips
curve models. We will present the general formal techniques after first giving an
example.

As an introductory example we consider a fairly standard aggregate de-
mand/aggregate supply model with rational expectations and gradual price ad-
justment.

Example 1: An IS–LM–Phillips curve model.

pt − pt−1 = a0 + a1qt +
(
E∗t−1pt+1 −E∗t−1pt

)+ v1t ,

qt = b0 − b1
(
rt −E∗t−1pt+1 +E∗t−1pt

)+ v2t ,

mt − pt = c0 + c1qt − c2rt + v3t ,

mt = d0 + d1pt−1 + d2qt−1 + d3rt−1 + d4mt−1 + v4t .

The first equation is a Phillips curve in which inflation, pt − pt−1, depends on
expected inflation, E∗t−1pt+1−E∗t−1pt , and on aggregate real output, qt . Under
rational expectations, subjective expectations are equal to the true conditional
expectation, i.e., E∗t−1pt+1 = Et−1pt+1 and E∗t−1pt = Et−1pt . This forward-
looking version of the Phillips curve is similar to those found in the new Phillips
curve models discussed, for example, in Clarida, Gali, and Gertler (1999). The
t − 1 dating for expectation formation is often used in the Phillips curve liter-
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ature. (We discuss below models with expectations dated E∗t pt+1.) The second
equation is the IS curve. rt is the nominal interest rate, and this equation states
that qt depends negatively on the ex ante real interest rate rt − E∗t−1pt+1 +
E∗t−1pt . The third equation is the LM curve, equating the supply and demand for
money balances mt −pt . The last equation is a given monetary policy feedback
rule, relating the nominal supply of money to lagged prices pt−1 and lagged
values of the other variables. All variables except rt are in logarithmic form.

Each equation is also subject to an unobservable iid random shock, vit . We
assume a1, b1, c1, c2 > 0.

The previous chapter considered the “ad hoc model” of Sargent and Wallace
(1975), which is formally simpler. The Phillips curve equation here introduces
a lagged price level into the structure, and the monetary feedback rule also con-
tains a dependence on lagged variables. Although it is possible to solve out for
a reduced form in the price level pt , the resulting equation would incorporate
different dates at which expectations are formed as well as moving average dis-
turbances. It is simpler to look at a general multivariate technique which avoids
these complications. Also, the standard practice in macroeconomics is to exam-
ine solutions represented as a vector autoregression (VAR). Our techniques will
allow us to calculate the REE solution, expressed as a VAR, and to examine its
stability under adaptive learning.

The first step is to put the model into the form of a multivariate linear ex-
pectational difference equation:

1 −a1 0 0
0 1 b1 0
−1 −c1 c2 1
0 0 0 1



pt

qt

rt

mt



=


a0

b0

c0

d0

+


1 0 0 0
b1 0 0 0
0 0 0 0
0 0 0 0



E∗t−1pt+1

E∗t−1qt+1

E∗t−1rt+1

E∗t−1mt+1


(10.1)

+


−1 0 0 0
−b1 0 0 0

0 0 0 0
0 0 0 0



E∗t−1pt

E∗t−1qt

E∗t−1rt

E∗t−1mt



+


1 0 0 0
0 0 0 0
0 0 0 0
d1 d2 d3 d4



pt−1

qt−1

rt−1

mt−1

+

v1t

v2t

v3t

v4t

 .
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Multiplying by the inverse of the matrix on the left-hand side, this example can
be put into the following general form which we will analyze in this chapter:

yt = α+ β0E
∗
t−1yt + β1E

∗
t−1yt+1 + δyt−1+ κwt + ζvt , (10.2)

wt = ϕwt−1 + et .

Here yt is an n× 1 vector of endogenous variables and wt is a vector of exoge-
nous variables which we assume to follow a stationary VAR, so that et is white
noise and all eigenvalues of ϕ lie inside the unit circle. Since at some points we
will need ϕ to be invertible, we also allow for a direct dependence of yt on a
white noise disturbance vt . In the example there is no exogenous variable wt .

In the discussion of this chapter we will often need to make a distinction
between “regular” and “irregular” linear expectations models.1 A regular linear
model is one in which there is a unique stationary REE, whereas in the irregular
case there are multiple stationary solutions, in particular solutions that depend on
sunspots. There is a straightforward algebraic condition for determining whether
models of the form (10.2), or (10.15) below, are regular or irregular, based on
the Blanchard–Kahn technique. We discuss this in detail in Appendix 2 of this
chapter.

10.2 MSV Solutions and Learning

The general structural model (10.2) is very close to the framework used in the
appendix of McCallum (1983) to analyze rational expectations equilibria. The
main difference is the dating of expectations. We have chosen here to assume
that expectations are conditional on information at time t − 1. This avoids a si-
multaneity between expectations and current values of the endogenous variables
which may seem more natural in the context of the analysis of learning. How-
ever, we do treat the case in which expectations are based on information at time
t in Section 10.3 below.2

We follow McCallum and focus on the so-called MSV (minimal state vari-
able) solutions which are of the following form:

yt = a+ byt−1 + cwt−1 + κet + ζvt , (10.3)

1This terminology follows Farmer (1999) and Pesaran (1987).
2Evans and Honkapohja (1998b) also treats the case of time-t information sets.
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where a,b, and c are to be determined by the method of undetermined coeffi-
cients. One computes

Et−1yt = a + byt−1+ cwt−1

and

Et−1yt+1 = a+ bEt−1yt + cEt−1wt

= (I + b)a+ b2yt−1 + (bc+ cϕ)wt−1.

Inserting these into equation (10.2), one obtains

yt = α+ (β0 + β1 + β1b)a+ (β1b
2 + β0b+ δ)yt−1

+ (β0c+ β1bc+ β1cϕ + κϕ)wt−1+ κet + ζvt .
(10.4)

It follows that the REE must satisfy the matrix equations

(I − β0 − β1b− β1)a = α, (10.5)

β1b
2 + (β0 − I)b+ δ = 0, (10.6)

(I − β0 − β1b)c− β1cϕ = κϕ. (10.7)

Once b is known, equations (10.5) and (10.7) generically uniquely deter-
mine a and c. However, equation (10.6) is a matrix quadratic which will usu-
ally have multiple solutions. To our knowledge, there is no straightforward and
general method for obtaining the full set of solutions to this equation. Under
the assumption that β1 is invertible, one can adapt the technique of McCallum
(1983) to find the solutions. In general, there are up to 2n choose n, i.e.,

(2n
n

)
,

solutions to equation (10.6)3 and hence up to
(2n
n

)
distinct MSV solutions to

equation (10.2). McCallum (1983) introduced a subsidiary selection criterion to
choose among these. We instead examine their stability under learning. If β1 is
not invertible, as in the case of our example 1, there are other procedures for
solving equation (10.6). McCallum has extended his technique in McCallum
(1998) and McCallum (1999). A related approach together with a toolkit for
solving such models using MATLAB programs is provided in Uhlig (1999).4

3In special cases there can be even continua of solutions to the matrix quadratic. Try, e.g., the
square roots of the identity matrix.

4However, these general techniques usually assume expectations dated as Etyt+1 and so would
need to be modified to handle models of the form (10.2).
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There are various methods available to obtain solutions of the form (10.3).
One well-known method, based on the Blanchard–Kahn technique, we discuss at
length in Appendix 2. Another is to use the E-stability equations, which govern
the stability of adaptive learning, as an algorithm to obtain the solution.

10.2.1 E-Stability

We consider the stability of the MSV solutions under learning. To derive the
conditions for local stability of REE under adaptive learning, one can again use
the concept of E-stability.

We now regard equation (10.3) as a perceived law of motion (PLM) for the
agents. Computing expectations as before, we obtain the corresponding actual
law of motion (ALM) (10.4). Thus the mapping from the PLM to the ALM takes
the form

T (a, b, c) = (
α+ (β0 + β1 + β1b)a, β1b

2 + β0b+ δ,

β0c+ β1bc+ β1cϕ + κϕ
)
.

(10.8)

Expectational stability is determined by the matrix differential equation

d

dτ
(a, b, c)= T (a, b, c)− (a, b, c). (10.9)

To analyze the local stability of system (10.9) at an RE solution ā, b̄, c̄, one
linearizes the system at that RE solution. Since the equation for b is independent
from a and c, we begin with the stability of the differential equation

db

dt
= β1b

2 + β0b+ δ− b

≡ Tb(b)− b.

To compute the stability conditions, this equation has to be vectorized. For any
matrix X, let vecX denote the vector obtained by stacking the columns of X.
Using the rule d(AX2)=A[(dX)X+XdX] for matrix differentials [see Mag-
nus and Neudecker (1988, Chapter 9) and the appendix on matrix algebra in
Chapter 5 for this and other related matrix formulas used here], we get

dTb = β1(db)b+ β1b(db)I + β0(db)I.

The Jacobian of vecTb is DTb = ∂ vecTb/∂(vecb)′. Using the rules d vecb =
vecdb and vecABC = (C′ ⊗A)vecB , we obtain

DTb(b)= b′ ⊗ β1 + I ⊗ (β0 + β1b).
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Thus the differential equation for b is locally stable at b̄ when all the eigenvalues
of DTb(b̄) have real parts less than 1.

Next consider the equation for c in (10.9). Computing the differential of
Tc(b, c) = (β0 + β1b)c + β1cϕ + κϕ and the corresponding Jacobian DTc =
∂ vecTc/∂(vecc)′, we have

DTc(b, c)= ϕ′ ⊗ β1 + I ⊗ (β0 + β1b).

Provided that the motion for b converges to b̄, the equation for c is locally stable
at (b̄, c̄) when the eigenvalues of the matrixDTc(b̄, c̄) have real parts less than 1.
Finally, consider the differential equation for a. Provided again that the motion
for b converges to b̄, the equation for a is locally stable when the eigenvalues of
the matrix β0 + β1 + β1b̄ have real parts less than 1.

The results of these derivations are summarized in the following proposi-
tion.

Proposition 10.1. An MSV solution ā, b̄, c̄ to equation (10.2) is E-stable if

(i) all the eigenvalues of DTb(b̄) have real parts less than 1,
(ii) all the eigenvalues of DTc(b̄, c̄) have real parts less than 1, and

(iii) all the eigenvalues of the matrix β0 +β1 +β1b̄ have real parts less than 1.

Assuming none of the eigenvalues has real part equal to 1, the solution is
not E-stable if any of conditions (i), (ii), or (iii) do not hold.

In the next subsection we show that these E-stability conditions govern sta-
bility under adaptive learning. Furthermore, implementing the differential equa-
tion (10.9) numerically provides a method for computing E-stable MSV solu-
tions. The procedure is simply to iterate the equation

(an+1, bn+1, cn+1)= (an, bn, cn)+ γ
(
T (an, bn, cn)− (an, bn, cn)

)
, (10.10)

for n= 1,2,3, . . . , where γ > 0 is a damping factor. For γ sufficiently small,
the dynamics (10.10) will converge to an E-stable solution from nearby start-
ing points. We will in fact use this solution method below to obtain the stable
solution to Example 1.

10.2.2 Adaptive Learning

In real-time learning, the perceived law of motion is time dependent:

yt = at−1 + bt−1yt−1+ ct−1wt−1 + κet + ζvt ,
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where the parameters at , bt , and ct are updated running recursive least squares
(RLS). Letting

ξ ′ = (a, b, c) and z′t = (1, y ′t ,w′t ),

RLS can be written as

ξt = ξt−1 + t−1R−1
t zt−1ε

′
t , (10.11)

Rt = Rt−1 + t−1(zt−1z
′
t−1 −Rt−1), (10.12)

where

εt = yt − ξ ′t−1zt−1.

Agents use ξ ′t−1 = (at−1, bt−1, ct−1) and zt−1 to form their forecasts E∗t−1yt

and E∗t−1yt+1. The realized value for yt under least squares learning is therefore

yt = T (ξt−1)
′zt−1 + κet + ζvt ,

where T (ξ)′ = T (a, b, c), given in the preceding subsection. Below we use the
notation Ta(ξ), Tb(ξ), and Tc(ξ) to denote the a, b, and c components of the
T -map given in equation (10.8).

In order to convert the system into the standard form of Chapter 6 it is
necessary to make a timing change in the system governingRt . Thus set St−1 =
Rt , so that

St = St−1 + t−1(ztz
′
t − St−1)+ t−2

(
− t

t + 1

)
(ztz

′
t − St−1). (10.13)

The last term is then of the usual form with ρt (St−1, zt )=−[t/(t + 1)](ztz′t −
St−1). Substituting in for εt and yt , one obtains for ξt

ξt = ξt−1 + t−1S−1
t−1zt−1z

′
t−1

[
T (ξt−1)− ξt−1

]
+ t−1S−1

t−1zt−1(κet + ζvt )
′.

(10.14)

The model (10.13), (10.14) is in standard form with θt = vec(ξt , St ), X′t =
(1, y ′t ,w′t , y ′t−1,w

′
t−1, e

′
t , v

′
t ), and W ′

t = (1, e′t , v′t ). The equation for the state
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vector Xt takes the form Xt =A(ξt−1)Xt−1 +BWt , with

A(ξt−1)=



0 0 0 0 0 0 0
Ta(ξt−1) Tb(ξt−1) Tc(ξt−1) 0 0 0 0

0 0 ϕ 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

B =



1 0 0
0 κ ζ

0 I 0
0 0 0
0 0 0
0 I 0
0 0 I


.

Consider now an REE corresponding to a fixed point ξ̄ of T (ξ). We as-
sume that the eigenvalues of b̄ are strictly inside the unit circle, so that the
REE is asymptotically stationary. Define zt (ξ)′ = (1, y ′t (ξ),w′t ), where yt(ξ)=
T (ξ)′zt−1(ξ) + κet + ζvt . Then zt (ξ) is a stationary process for all ξ suffi-
ciently near ξ̄ . Let Mz(ξ)=E[zt (ξ)zt (ξ)′] and assume that S̄ =E[zt (ξ̄ )zt (ξ̄ )′]
is positive definite. Next, choose an open set D̂ around (ξ̄ , S̄) such that, for all
(ξ, S) ∈ D̂,

(i) ξ̄ is the unique fixed point of T in D̂,
(ii) for some ε > 0, det(S)≥ ε,

(iii) the roots of b are bounded strictly inside the unit circle.

It can now be verified that conditions (A.1)–(A.3) of Chapter 6 hold. Moreover,
condition (B.1) holds if the moments of Wt are bounded. Condition (B.2) is
satisfied, provided that D̂ is sufficiently small.

The associated ODE can be obtained as follows. Taking expectations and
limits based on equations (10.13) and (10.14), one obtains the ODE as

dξ

dτ
= S−1Mz(ξ)[T (ξ)− ξ ],

dS

dτ
= Mz(ξ)− S.
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Linearizing this system at (ξ̄ , S̄), it follows that the system is locally stable,
provided the eigenvalues of DT (ξ̄ ) have real parts less than 1. Heuristically, this
is evident since, when S→Mz(ξ), the stability of the first equation is essentially
governed by the E-stability equation

dξ

dτ
= T (ξ)− ξ,

which is equivalent to equation (10.9) since ξ ′ = (a, b, c).
The local stability condition is the same as the E-stability condition derived

in the preceding subsection. Since the basic convergence results of Chapter 6
apply, recursive least squares learning is locally convergent to the RE solution ξ̄
when the solution ξ̄ is E-stable. We have thus shown the following result.

Proposition 10.2. Consider the model (10.2) under RLS learning and an MSV

solution ā, b̄, c̄ in which all roots of b̄ lie inside the unit circle. Then if the solu-
tion is E-stable, the learning algorithm converges locally to ā, b̄, c̄.

Local convergence is here interpreted in the sense of Theorem 6.5 of Section
6.3.3 and its corollaries in Section 6.4 of Chapter 6. In particular, for the case of
slow adaption, there is convergence from nearby points with probability close
to 1 when the E-stability conditions hold. If the RLS algorithm is augmented
with a projection facility, convergence is with probability 1.

Moreover, assuming additionally that et and vt both have bounded supports,
conditions (C.1)–(C.5) of Chapter 6 are verified. Thus, provided the additional
conditions stated in Theorem 6.9 of Section 6.5, Chapter 6, are met, the recur-
sive least squares algorithm will converge to an E-unstable MSV solution with
probability zero.

10.2.3 IS-LM-Phillips Curve Model Continued

We now return to our introductory example. We look at a numerical example
with parameter values specified below. Using the method of Blanchard and
Kahn, it can be shown that there is a unique stationary solution and that it is
of the MSV form. (This solution is sometimes called the “saddle point stable
solution.”) Details for this example are given in Appendix 2. Since there are no
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exogenous observables wt in this example, the MSV solution takes the form

yt = a + byt−1+ ζvt , where

yt =


pt

qt

rt

mt

 and vt =


v1t

v2t

v3t

v4t

 .

To illustrate the technique we select the parameter values a1 = 0.5, b1 =
0.1, c1 = 1, c2 = 0.2, d1 =−d2 = d3 = 0.1, d4 = 0.2. The stationary MSV solu-
tion can be computed using the Blanchard–Kahn technique given in Appendix 2.
The E-stability conditions given in Proposition 10.1 can be verified numerically
for this solution. Because the solution is E-stable, one can also obtain the solu-
tion by directly implementing the numerical procedure (10.10). For this example
this turns out to be a quick and convenient way of obtaining the solution. The
numerical results are

a =


3.4606
−0.3124
15.7408
1.000

 and

b =


0.7117 −0.0104 0.0104 0.0209
−0.2159 −0.0296 0.0296 0.0591

1.978 0.300 −0.300 −0.6001
0.100 −0.100 0.100 0.200

 .

Based on the arguments of Section 10.2.2, it follows that this solution is locally
stable under least squares learning.

10.3 Models with Contemporaneous Expectations

Many macroeconomic models are formulated with a different dating of expecta-
tions than used in equation (10.2). Most frequently, expectations are assumed to
be formed at time t, i.e., are assumed to include in the information set all vari-
ables in the model dated at time t . Then in the structural model (10.2) expecta-
tions Etyt+1 appear in place of Et−1yt and Et−1yt+1. This means that the equi-
librium values of the endogenous variables yt and the expectations Etyt+1 are
simultaneously determined. A well-known example, the standard RBC model,
will be given in the next section.
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In this section we redo our analysis using the alternative model

yt = α+ βE∗t yt+1 + δyt−1+ κwt , (10.15)

wt = ϕwt−1 + et .

We remark that any white noise shocks are incorporated into components of wt .

Following the usual convention, we assume that wt is observable at time t . In
this section we also assume that yt is in the time-t information set. We begin
with the MSV solutions and their E-stability conditions. The Blanchard–Kahn
technique for calculating solutions is given in the appendix.

Before proceeding, we remark that the E-stability results are sensitive to
the precise assumptions made concerning the information set. For the univariate
case this point was discussed in Section 8.6.2 of Chapter 8. In this section we
make the assumption that in making their forecasts, agents have access to yt

and hence can form E∗t yt+1 as a linear function of (1, y ′t ,w′t )′. This results in
a simultaneity between yt and E∗t yt+1. In Section 10.5 we will instead assume
that yt is not available at t and that E∗t yt+1 is a linear function of (1, y ′t−1,w

′
t )
′,

avoiding simultaneity between yt and E∗t yt+1. Under rational expectations the
information sets are equivalent, but this is not the case outside of the REE, i.e.,
during the learning process. As already observed in the univariate case, this can
affect the conditions for stability under learning. Since the detailed information
assumptions are part of the specification of the model, we obtain the stability
conditions both ways, starting here with the case in which yt is included in the
information set.

The MSV solutions now have the form

yt = a + byt−1+ cwt , (10.16)

with corresponding expectations

Etyt+1 = a + byt + cϕwt .

Inserting into equation (10.15), it follows that the MSV solutions satisfy

(I − βb− β)a = α, (10.17)

βb2 − b+ δ = 0, (10.18)

(I − βb)c− βcϕ = κ. (10.19)
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To determine E-stability we regard equation (10.16) as a PLM and obtain
the mapping from the PLM to the ALM

T (a, b, c)= (
(I − βb)−1(α+ βa), (I − βb)−1δ, (I − βb)−1(κ + βcϕ)

)
.

As in Section 10.2.1, we obtain the E-stability conditions based on the lin-
earization of the E-stability differential equation. For example, from Tb(b) =
(I − βb)−1δ we use the formula for the differential of the inverse of a matrix
function [see Chapter 5 or Magnus and Neudecker (1988, p. 183)] to obtain
dTb(b̄) = (I − βb̄)−1β(db)(I − βb̄)−1δ. Using the rules for vectorization of
matrix products, we compute

DTa(ā, b̄) = (I − βb̄)−1β,

DTb(b̄) =
[
(I − βb̄)−1δ

]′ ⊗ [
(I − βb̄)−1β

]
, (10.20)

DTc(b̄, c̄) = ϕ′ ⊗ [
(I − βb̄)−1β

]
.

We arrive at the following result.

Proposition 10.3. Suppose the time-t information set is (1, y ′t ,w′t )′. An MSV
solution ā, b̄, c̄ to equation (10.15) is E-stable if all eigenvalues of the matrices
DTa(ā, b̄),DTb(b̄),DTc(b̄, c̄), given by equations (10.20), have real parts less
than 1. The solution is not E-stable if any of the eigenvalues has real part larger
than 1.

Under least squares learning we have E∗t yt+1 = at + btyt + ctϕwt . The re-
cursive least squares equations are given by equations (10.11)–(10.12), where
ξ ′t = (at , bt , ct ), z

′
t = (1, y ′t−1,wt ), and εt = yt−1 − ξ ′t−1zt−1. Since yt =

T (ξt )
′zt , we obtain

ξt = ξt−1 + t−1R−1
t zt−1z

′
t−1

(
T (ξt−1)− ξt−1

)
.

The analysis of least squares learning, and the link to E-stability, follow es-
sentially the same lines as in Section 10.2.2; see Evans and Honkapohja (1998b)
for further details. We thus have the following.

Proposition 10.4. Consider the model (10.15) under RLS learning and an MSV
solution ā, b̄, c̄ in which all roots of b̄ lie inside the unit circle. Then if the solu-
tion is E-stable, the learning algorithm converges locally to ā, b̄, c̄.

Again, instability results can also be obtained.
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10.4 Real Business Cycle Model

In our next example we apply our methods to a standard Real Business Cy-
cle (RBC) Model.5 It is convenient to use the formulation presented in Farmer
(1999, Chapter 5). This is an infinite-horizon stochastic growth model with a
representative agent. The competitive equilibrium is equivalent to the solution
to a social planning problem which is more straightforward to formulate. The
social planner maximizes

∞∑
t=0

EBt
(
log(Ct )−Lt

)
subject to the constraints

Ct +Kt+1 ≤ Qt + (1− d)Kt ,

Qt = StK
α
t (γ

tLt )
1−α,

K0 = K̄0, S0 = S̄0.

Here St is a productivity shock that is assumed to follow the process

St = S
ρ
t−1Vt .

The parameter ρ captures the persistence of the shocks to technology and Vt is
an iid innovation with mean 1.

The equilibrium to the economy can be described by the equations

Kt+1 = Qt + (1− d)Kt −Ct ,

Qt = StK
α
t (γ

tLt )
1−α,

(1− α)
Qt

Lt
= Ct,

1

Ct
= BEt

[
1

Ct+1

(
1− d + α

Qt+1

Kt+1

)]
,

St = S
ρ
t−1Vt .

In Appendix 1 to this chapter we show how to linearize this model around
a steady state. The main steps are the following. Using the definitions K̃t =

5The RBC model is based on the stochastic formulation of neoclassical growth models by Brock
and Mirman (1972). The seminal papers on neoclassical growth theory are Solow (1956) and Solow
(1957).
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Kt/γ
t , C̃t = Ct/γ

t , etc., these equations are first transformed to equations in
terms of asymptotically stationary variables K̃t , C̃t , Q̃t ,Lt . The resulting model
has a unique steady state K̄, C̄, Q̄, L̄. Next, we log-linearize around the steady
state. Defining the variables kt = log(K̃t /K̄), ct = log(C̃t/C̄), qt = log(Q̃t /Q̄),
�t = log(Lt/L̄), ϑt = logVt , and eliminating �t and qt , we obtain the linear
equations

ct =
(

1+ (1− α)Bγ−1
(
Q̄

K̄

))
Etct+1 −Bγ−1

(
Q̄

K̄

)
Etst+1,

kt+1 = −γ−1
((

C̄

K̄

)
+
(
Q̄

K̄

)(
1− α

α

))
ct (10.21)

+γ−1
(

1− d +
(
Q̄

K̄

))
kt + γ−1

(
Q̄

K̄

)
α−1st ,

st = ρst−1 + ϑt .

Defining y ′t = (ct , kt , st ), this system can be put in the standard form (10.15): ct

kt

st

 =
 β11 0 β13

0 0 0
0 0 0

Etct+1

Etkt+1

Etst+1


+
 0 0 0
δ21 δ22 δ23

0 0 ρ

 ct−1

kt−1

st−1

+
 0

0
1

ϑt ,

where the coefficients are given implicitly by equations (10.21), i.e., β11 =
1+ (1− α)Bγ−1(Q̄/K̄), etc. Given an MSV solution, this form can be used
to analyze its stability under learning using the E-stability result in the preced-
ing section. It is well known that this model is regular. For particular parameter
values, the Blanchard–Kahn technique provides one way to compute the unique
stationary equilibrium, as discussed in Appendix 2. For example, for the param-
eter values used in Farmer (1999), the solution in VAR form is ct

kt

st

=
−0.1307 0.5701 0.5907
−0.2458 1.0725 0.2708

0 0 0.95

 ct−1

kt−1

st−1

+
 0.4703

0
1

ϑt .

The coefficient matrix b has roots 0, 0.9418, and 0.9500, so this solution is
stationary.

To check E-stability of this solution one can apply Proposition 10.3 of the
preceding section and compute numerically the eigenvalues of DTa(ā, b̄) and
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DTb(b̄). [As we have set up equation (10.15), all variables are included in yt ,
and thus there is no block DTc(b̄, c̄) that needs to be computed.] The roots of
DTb(b̄) are 0.8858,0.8781, and seven roots equal to zero. DTa(ā, b̄) has root
0.9324 and two roots equal to zero. This confirms E-stability of the solution.
It is also easy to implement the algorithm (10.10) to compute the solution and
verify E-stability.

Finally, we consider the stability of REE under least squares learning. Es-
sentially, we follow the framework of Section 10.2.2. However, there is a tech-
nical difficulty. To apply the stochastic approximation results, the moment ma-
trix of the regressors ct−1, kt−1, st−1 must be positive definite. This assumption
is violated because in the RBC model, ct is an exact linear combination of kt
and st .

There are two ways to overcome this problem. The first and simpler is to
introduce an exogenous iid disturbance to consumption. This can be thought of
as a deviation from optimizing behavior by the household, and can be assumed
to have arbitrarily small variance. With this small modification, the framework of
Section 10.3 applies directly and stability of least squares learning is determined
by the E-stability conditions verified above. Least squares learning therefore
converges to a stochastic process (arbitrarily) close to the REE.

The second approach is to reformulate the perceived law of motion so that
ct depends on the contemporaneous kt and st . Under least squares learning the
agents will estimate this equation, together with a VAR of kt and st . The analysis
of E-stability must be modified accordingly. Since this complication may arise
in other applied models, we now show how to implement this approach. Under
this alternative learning scheme, the PLM is

ct = a1kt + a2st ,

kt = b1kt−1+ b2st−1.

For simplicity, we assume here that the agents know the stochastic process of
the technology shock.

The structural model is still given by

ct = β11E
∗
t ct+1 + β13E

∗
t st+1,

kt = δ21ct−1 + δ22kt−1 + δ23st−1,

st = ρst−1 + ϑt .
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It is easily verified that the T -mapping is given by

Ta1(a1, a2, b1, b2) = β11a1b1,

Ta2(a1, a2, b1, b2) = β11a1b2 + (β11a2 + β13)ρ,

Tb1(a1, a2, b1, b2) = δ21β11a1b1 + δ22,

Tb2(a1, a2, b1, b2) = δ21
[
β11a1b2 + (β11a2 + β13)ρ

]+ δ23.

In the differential equation

d

dτ


a1

a2

b1

b2

= T


a1

a2

b1

b2

−

a1

a2

b1

b2

 ,

the first and third equations form an independent bivariate subsystem. This
means that the linearized system is block-triangular, and the stability condi-
tions can be verified numerically by checking two trace-determinant stability
conditions. For the numerical parameters of the RBC model, these conditions
are satisfied.

For least squares learning, let

ξ ′t =
(
a1,t a2,t

b1,t b2,t

)
.

Forecasts are given by E∗t kt+1 = b1,t kt + b2,t st , E
∗
t st+1 = ρst , and E∗t ct+1 =

a1,tE
∗
t kt+1 + a2,tE

∗
t st+1. RLS learning is as usual given by equations (10.11)–

(10.12), where εt = xt − ξ ′t−1zt−1, with x ′t = (ct−1, kt ) and z′t−1 = (kt−1, st−1).
Since xt = T (ξt−1)

′zt−1, we have

ξt = ξt−1 + t−1R−1
t zt−1z

′
t−1

(
T (ξt−1)− ξt−1

)
.

Finally, when applying the stochastic approximation we set θt = vec(ξt , St ),
where St−1 = Rt , and the state vector is X′t = (kt , st , kt−1, st−1) with Wt = ϑt .
The positive definiteness condition of the relevant moment matrix can be veri-
fied and the analysis now is analogous to that of Section 10.2.2.

To summarize, under either of these real-time learning schemes, for the nu-
merical specification given, the stationary MSV solution is locally stable under
adaptive learning.6

6Packalén (2000) has analytically shown that the RBC model is stable under learning.
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10.5 Irregular REE

10.5.1 A General Framework

In the regular case there is a unique stationary solution generated by the fun-
damental shocks. As in the univariate case, the full set of solutions to equa-
tion (10.2) and to equation (10.15) generally includes solutions which depend
on extraneous noise or “sunspots.” In regular cases these non-saddle point solu-
tions are explosive, but in “irregular” cases there are stationary solutions which
depend on sunspots. Irregular versions of the RBC model based on increasing
returns have been developed, e.g., in Benhabib and Farmer (1994).

In Appendix 2 we develop an extension of the Blanchard–Kahn technique
which provides the full set of stationary solutions in the irregular case. In this
section we will restrict attention to sunspot solutions of a particularly simple
form that arise in particular cases, including the Farmer and Guo (1994) model.
We describe these solutions, which are simple extensions of the MSV solutions,
and analyze their stability under learning.

Consider first the model (10.15), with t dating of expectations, reproduced
here for convenience

yt = α+ βE∗t yt+1 + δyt−1+ κwt ,

wt = ϕwt−1 + et .

Consider solutions of the form

yt = a+ byt−1 + cwt + f εt , (10.22)

where εt is an arbitrary martingale difference sequence, i.e., a random variable
which satisfies Et−1εt = 0. Computing Etyt+1 = a+ byt + cϕwt and inserting
into the model, we obtain the following equation which must be satisfied by the
ALM:

(I − βb)yt = α+ βa+ (κ + βcϕ)wt + δyt−1. (10.23)

Multiplying the PLM (10.22) by (I −βb) and equating to (10.23), we obtain the
equations which must be satisfied by any RE solution of the form (10.22). These
are given by equations (10.17)–(10.19), together with the additional equation

(I − βb)f = 0. (10.24)

Even restricting attention to stationary solutions, the matrix quadratic (10.18)
can in general have multiple solutions b̄ in which the roots of b̄ lie inside the
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unit circle. Given b̄, if I − βb̄ is nonsingular, then f = 0 and we again arrive at
the MSV solution: for this b̄, there are no solutions of the form (10.22) which
depend on εt . However, if I −βb̄ is singular, then sunspot solutions of the form
(10.22) can exist with f �= 0. In this case there is in fact a continuum of solutions
in f with the dimension of the solution set for f given by the dimension of the
null space of I − βb̄.

When we look at the stability of these solutions under learning, however,
we immediately see that the detailed assumptions about the information set are
important. Suppose yt is in the time-t information set, and consider a sunspot
solution (ā, b̄, c̄, f̄ ), with f̄ �= 0 and I − βb̄ singular. Treating equation (10.22)
as a PLM, consider values of b near b̄. For all values of b for which I − βb

is nonsingular, equation (10.23) can be uniquely solved for the ALM in which
Tf (a, b, c, f )= 0.7 Thus under the differential equation defining E-stability, the
equation for f is independent of the other variables and has f → 0. Therefore
these sunspot solutions fail to be E-stable. The E-instability of these solutions to
equation (10.15) appears to be due to the contemporaneous dating of the expec-
tations, since εt does not appear in E∗t yt+1.

A natural alternative assumption is that yt is not available when the forecast
E∗t yt+1 is formed, so that expectations are a linear function of (1, yt−1,wt , εt ).
We now adopt this assumption and obtain the E-stability conditions for the cor-
responding solutions of the form (10.22).

For PLMs (10.22), expectations are given by

E∗t yt+1 = a+ b(a+ byt−1 + cwt + f εt)+ cϕwt

= (I + b)a+ b2yt−1 + (bc+ cϕ)wt + bf εt .

Inserting into equation (10.15), we obtain the ALM

yt = α+ β(I + b)a+ (βb2 + δ)yt−1 + (βbc+ βcϕ+ κ)wt + βbf εt .

Hence the mapping from the PLM to the ALM takes the form

T (a, b, c, f )= (
α+ β(I + b)a,βb2+ δ,βbc+ βcϕ+ κ,βbf

)
.

The fixed points of T give the equations for an REE (10.17), (10.18), (10.19),
(10.24) above. Consider a b̄ that satisfies b̄ = βb̄2 + δ and such that I − βb̄ is
singular, so that there are sunspot solutions of the form (10.22). For convenience

7Even if I − βb is singular, so that there are multiple ALM solutions to equation (10.23), at
each of these solutions we have Tf (a,b, c,f ) = 0. Here Tf denotes the f component of the map
from PLM to ALM.
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we make the additional assumptions that a = α + β(I + b̄)a and c = βb̄c +
βcϕ+ κ have unique solutions for ā and c̄, but I −βb̄ singular implies multiple
solutions for f . Because there is a continuum of solutions, we need to take care
in defining E-stability. As always, we consider the matrix differential equation
dξ/dτ = T (ξ) − ξ , where ξ = (a, b, c, f ). Suppose b̄ satisfies the preceding
conditions and let S(b̄) be the set of values of ξ that are fixed points of T with
b = b̄. We say that the solution set S(b̄) is E-stable if, for some neighborhood
N of S(b̄), the solution ξ(τ ) to the differential equation dξ/dτ = T (ξ)− ξ with
initial condition ξ0 ∈N satisfies ξ(τ )→ ξ∞, where ξ∞ ∈ S(b̄). Recall that for
univariate linear models, we established E-stability for continua of equilibria,
according to this definition, in Section 8.4.4 of Chapter 8.

To compute E-stability conditions, we require the following derivatives:

DTa(ā, b̄) = β(I + b̄), (10.25)

DTb(b̄) = b̄′ ⊗ β + I ⊗ βb̄,

DTc(b̄, c̄) = ϕ′ ⊗ β + I ⊗ βb̄,

DTf (b̄) = βb̄.

The differential equation dξ/dτ = T (ξ)− ξ has an independent subsystem in
a,b, and c. If any root ofDTa(ā, b̄),DTb(b̄), orDTc(b̄, c̄) has a real part greater
than 1, then this subsystem is locally unstable at (ā, b̄, c̄) and hence the solution
set S(b̄) is locally unstable. We make the regularity assumption that none of
these eigenvalues has real part equal to 1. We can then state the following partial
result.

Proposition 10.5. Suppose the time-t information set is (1, y ′t−1,w
′
t )
′. A neces-

sary condition that a solution set S(b̄) to the model (10.15) is E-stable is that
all eigenvalues of the matrices DTa(ā, b̄),DTb(b̄),DTc(b̄, c̄), given by equa-
tion (10.25), have real parts less than 1. A sufficient condition for E-instability
of S(b̄) is that at least one eigenvalue of these matrices has a real part greater
than 1.

The preceding proposition gives necessary conditions for stability. We con-
jecture that additional necessary conditions for E-stability are that all roots of
βb̄ − I have negative real parts, apart from dim(N(f )) roots of zero, where
N(f ) is the set of solutions f to (I − βb̄)f = 0. We additionally conjecture
that, taken together, these conditions are sufficient for E-stability.
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10.5.2 Model with t − 1 Dating

Irregular solutions also arise in the model in which expectations are dated at
time t − 1. Recall the model (10.2)

yt = α+ β0Et−1yt + β1Et−1yt+1 + δyt−1+ κwt + ζvt ,

wt = ϕwt−1 + et .

Again, an extension of the Blanchard–Kahn technique can be used to obtain the
full set of stationary solutions. These are developed in Appendix 2. We again
consider a restricted class of solutions taking the form

yt = a + byt−1 + cwt−1 + κet + ζvt + f εt−1, (10.26)

where εt is an arbitrary martingale difference sequence. Computing expectations
and inserting into equation (10.2), we obtain the ALM

yt = α+ (β0 + β1 + β1b)a+
(
β1b

2 + β0b+ δ
)
yt−1 (10.27)

+ (
β0c+ β1bc+ β1cϕ+ κϕ

)
wt−1 + κet + ζvt + (β0 + β1b)f εt−1.

The mapping from the PLM to the ALM is identical to equation (10.8) plus an
additional component for the vector f given by Tf (a, b, c, f ) = (β0 + β1b)f.

Solutions of the form (10.26) are given by equations (10.5), (10.6), (10.7), and
the additional equation

(β0 + β1b− I)f = 0. (10.28)

If I − β0 − β1b̄ is nonsingular, then f = 0 and the solution does not depend on
sunspots. For I − β0 − β1b̄ singular, solutions with f �= 0 can exist. Note that
f must lie in the null space of I − β0 − β1b̄ and that if solutions with f �= 0
exist, then a continuum N(f ) of such solutions exists, corresponding to this null
space and indexed by the possible values f.

Turning to E-stability of sunspot solutions of the form (10.26), note that the
differential equation defining E-stability is again (10.9), together with the addi-
tional equation df/dτ = (β0 + β1b− I)f. It follows that necessary conditions
for E-stability of a solution of the form (10.26) are that the three conditions
stated in Proposition 10.1 hold at the solution. In addition, we have a condi-
tion from the f differential equation. For f in N(f ) we have df/dτ = 0, and
the E-stability condition is that this set is locally stable. The relevant additional
condition is that all roots of β0 + β1b − I have negative real parts, apart from
dim(N(f )) roots of zero. We conjecture that these conditions jointly are neces-
sary and sufficient for E-stability.
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10.5.3 Real-Time Learning

For the setup of Section 10.5.1, agents can attempt to learn a,b, c, and f by
a recursive least squares regression of yt on (1, yt−1,wt , εt ), where εt is an
observable sunspot. For the setup of Section 10.5.2, the regressors are instead
(1, yt−1,wt−1, εt−1). In either case the learning algorithm and the law of mo-
tion for yt can be formulated along the lines used for the regular case in Section
10.2.2. Application of the stochastic approximation techniques suggests that a
set of sunspot solutions of the form (10.22) or (10.26) will be stable under least
squares learning if and only if they are E-stable. Unfortunately, there are tech-
nical complications in justifying the stochastic approximation tools because the
set of solutions (a, b, c, f ) forms an unbounded continuum. This prevents a for-
mal demonstration of the convergence conditions under least squares learning.
Simulations in the univariate case appear to support the claim that convergence
in these cases is indeed governed by the E-stability conditions, but further work
is clearly required to establish the validity of this conjecture.

10.5.4 Learning in the Farmer–Guo Model of Increasing Returns

As an application we consider the Farmer and Guo (1994) model, described also
in Farmer (1999, Chapter 7). This is an extension of the RBC model, which can
be interpreted either as allowing for externalities or for monopolistic competi-
tion. In either interpretation one arrives at structural equations of the form

Kt+1 = Qt + (1− d)Kt −Ct ,

Qt = StK
µ
t (γ

tLt )
ν,

n
Qt

Lt
= Ct, (10.29)

1

Ct
= BEt

[
1

Ct+1

(
1− d +m

Qt+1

Kt+1

)]
,

St = S
ρ
t−1Vt .

Appendix 1 gives the linearization of this model. Farmer and Guo show that
for particular parameter values, this model is irregular, possessing stationary
sunspot solutions of the form (10.22).

Farmer and Guo restrict attention to the case St = Vt ≡ 1 for all t , so that
the stochastic shocks in their solution are entirely due to sunspots. In this case
we have (

ct

kt

)
=
(
β11 β12

0 0

)(
Etct+1

Etkt+1

)
+
(

0 0
δ21 δ22

)(
ct−1

kt−1

)
.
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This is a special case of the model (10.15) with wt ≡ 0. We look for “sunspot
solutions” of the form (10.22), i.e., of the form(

ct

kt

)
=
(
b11 b12

b21 b22

)(
ct−1

kt−1

)
+
(
f11 f12

0 0

)(
ε1t

ε2t

)
. (10.30)

The coefficients f21 = f22 = 0 since kt = Et−1kt . Solutions must satisfy both
equations (10.18) and (10.24), i.e.,

(I − βb)b = δ and (I − βb)f = 0.

Using

(I − βb)=
(

1− β11b11 − β12b21 −β11b12 − β12b22

0 1

)
,

one can easily verify that f11 = f12 = 0 unless b= b̄, where

b̄=
(
β−1

11 (1− β12δ21) −β−1
11 β12δ22

δ21 δ22

)
. (10.31)

This leads to stationary solutions depending on sunspots provided b̄ has both
roots inside the unit circle. Finally, we note that the solutions can be rewritten(

ct

kt

)
= b̄

(
ct−1

kt−1

)
+
(
ε̃t

0

)
,

where ε̃t = f11ε1t + f12ε2t for arbitrary martingale difference sequences ε̃t .
We now turn to the stability of these solutions under learning. Farmer

and Guo choose the parameter values m = 0.23, n = 0.7, ν = 1.21,µ = 0.4,
B= 0.99, d = 0.025, and φ = 1. This leads to the sunspot solution with

b̄=
(

1.1555 −0.0864
0.7517 0.6843

)
.

b̄ has roots 0.9199± 0.0971i which lie inside the unit circle, so this constitutes
a stationary sunspot solution. To check the stability under learning we check the
E-stability conditions given in Proposition 10.5. The eigenvalues of DTb(b̄) are
two roots of zero and the roots 1.7357± 0.0776i. Since the latter roots have real
parts greater than 1, this sunspot solution is not stable under adaptive learning.
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An open question is whether, for other choices of parameter values, the
Farmer–Guo model has stationary sunspot solutions which are stable under
learning.8

10.6 Conclusions

As this chapter shows, it is generally possible to apply stochastic approximation
methods to study learning for multivariate linear models. We have treated some
of the most common multivariate frameworks, but it is easy to think of exten-
sions, e.g., to models with mixed datings of expectations. For regular models,
the local convergence results are essentially complete, but some gaps in the the-
oretical results remain for irregular models, as was seen in Section 10.5. In these
cases it appears that numerical work is needed for the study of stability of the
REE under learning.

The extensions in this chapter have allowed us to consider important eco-
nomic issues. Our result that the sunspot equilibria in the Farmer–Guo model
(with their parameter values) are not E-stable leaves open the question whether
some variant of the irregular models has sunspot equilibria that are stable
under learning for realistic parameter values. Another important line of re-
search would be to consider the stability of REE in other standard macroe-
conomic models. An example of the latter is the work by Bullard and Mitra
(1999) on determinacy and stability of equilibria under different monetary pol-
icy rules.

10.7 Appendix 1: Linearizations

Here we describe how to obtain the linearization of the RBC and Farmer–Guo
models. (Note that the RBC model is a special case of the Farmer–Guo model
with µ=m= α,ν = n= 1− α.)

We begin by describing a general method for obtaining log-linearizations
of nonlinear models. Consider a general framework of the form

f (Yt )+Etg(Yt+1)= 0, (10.32)

8Packalén (2000) has investigated this issue numerically. There are regions of the parameter
space in which stability holds, but the required parameter values are far from the usual calibrations.
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where Yt = (Y1,t , . . . , Yn,t )
′ is an n-vector. Let Ȳ be a steady state of the non-

stochastic equation, i.e., f (Ȳ )+ g(Ȳ )= 0. Linearizing equation (10.32) around

Ȳ yields the system

constant+
n∑
i=1

fi(Ȳ )Yi,t +
n∑
i=1

gi(Ȳ )EtYi,t+1 = 0, (10.33)

where the expectation has been brought inside using the linearization and where
the notation fi(Ȳ )= (∂f /∂Yi)(Ȳ ), gi(Ȳ )= (∂g/∂Yi)(Ȳ ) has been used.

It is often convenient to write the linearization in terms of logarithmic devi-

ations from the steady state. One first writes equation (10.33) as

0 = constant+
n∑
i=1

Ȳifi(Ȳ ) exp
(

ln
(
Yi,t

Ȳi

))

+
n∑
i=1

Ȳigi(Ȳ )Et exp

(
ln

(
Yi,t+1

Ȳi

))
.

Next we define yit = ln(Yi,t /Ȳi ) and utilize the approximation exp(yi)≈ yi+1.
This gives

constant+
n∑
i=1

Ȳifi(Ȳ )(yit + 1)+
n∑
i=1

Ȳigi(Ȳ )Et (yi,t+1 + 1)= 0.

Finally, since this also holds in the steady state yi,t = yi,t+1 = 0, the constants
can be eliminated and we arrive at the final equation

n∑
i=1

Ȳifi(Ȳ )yi,t +
n∑
i=1

Ȳigi(Ȳ )Etyi,t+1 = 0. (10.34)

We now apply this technique to log-linearize the Farmer–Guo model. Let
φ = γ ν/(1−µ), K̃t = Kt/φ

t , C̃t = Ct/φ
t , and Q̃t =Qt/φ

t . This transforms the
model into one with asymptotically stationary variables. The equations (10.29)
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become

φK̃t+1 = Qt + (1− d)K̃t − C̃t ,

Q̃t = St K̃
µ
t L

ν
t ,

C̃t = n
Q̃t

Lt
,

1

C̃t
= B

φ
Et

(
1

C̃t+1

(
1− d +m

Q̃t+1

K̃t+1

))
,

St = S
ρ
t−1Vt .

Applying the general method outlined above gives the equations

kt+1 = φ−1
(
Q̄

K̄

)
qt + φ−1(1− d)kt − φ−1

(
C̄

K̄

)
ct ,

qt = st +µkt + ν�t ,

qt = ct + �t ,

−ct = −Etct+1 + B

φ

mQ̄

K̄
Etqt+1 − B

φ

mQ̄

K̄
Etkt+1,

st = ρst−1 + ϑt .

Note that we have followed the notation that lowercase letters denote log-
deviations from the steady state, i.e., kt = ln(K̃t /K̄), etc.

Finally, eliminating qt and �t yields the final equations

ct =
(

1+ ν

1− ν

B

φ

mQ̄

K̄

)
Etct+1 + B

φ

mQ̄

K̄

(
1− µ

1− ν

)
Etkt+1,

−B

φ

mQ̄

K̄

1

1− ν
Etst+1, (10.35)

kt+1 = −φ−1
(
C̄

K̄
+ Q̄

K̄

ν

1− ν

)
ct + φ−1

(
1− d + Q̄

K̄

µ

1− ν

)
kt

+φ−1 Q̄

K̄

1

1− ν
st ,

st = ρst−1 + ϑt .

Setting µ = m = α, ν = n = 1− α, and φ = γ yields the RBC model (10.21)
of Section 10.4. The linearized Farmer–Guo model (10.35) fits the general form
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(10.15) and can be written

 ct

kt

st

 =
 β11 β12 β13

0 0 0
0 0 0

Etct+1

Etkt+1

Etst+1



+
 0 0 0
δ21 δ22 δ23

0 0 ρ

 ct−1

kt−1

st−1

+
 0

0
1

ϑt ,

where the coefficients are given in equations (10.35). For the irregular case,
Farmer and Guo restrict attention to the case st = ϑt = 0 so that the system
reduces to

(
ct

kt

)
=
(
β11 β12

0 0

)(
Etct+1

Etkt+1

)
+
(

0 0
δ21 δ22

)(
ct−1

kt−1

)
.

10.8 Appendix 2: Solution Techniques

The reduced forms of macroeconomic models are usually expectational differ-
ence schemes. The form (10.2) is a general framework in which the available
information, used to form the expectations that determine the period-t endoge-
nous variables, includes the values of the different variables up to period t − 1.
Equation (10.15) differs by the inclusion of the values for variables in period t
in the information set.

Different solution techniques have been used to eliminate the expectational
variables from the reduced form. The method of undetermined coefficients for
obtaining the MSV solution and other solution classes was adopted in this chap-
ter, because it is the most convenient approach for the analysis of learning. How-
ever, if one is only interested in obtaining the RE solutions, a widely used ap-
proach, known as the Blanchard and Kahn (1980) technique, can be used. In
this appendix we show how this technique can be applied in the different frame-
works considered in this chapter, and we discuss its relationship to the method
of undetermined coefficients. The paper by Blanchard and Kahn (1980) in fact
restricted attention to the regular case in a framework in which expectations are
formed using information available at time t .
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10.8.1 Representing Regular Equilibria

Many macroeconomic models are known to be “saddle point stable” under ra-
tional expectations. This refers to a model in which there is a unique stationary
(or nonexplosive) solution.

Models with t − 1 Dating of Expectations

We start by considering the framework (10.2) with t − 1 dating of the avail-
able information. In terms of the MSV solutions, the “saddle point stable” or
“regular” case arises when equation (10.6) has a unique solution for b in which
the eigenvalues of b all lie inside the unit circle. We now present the alternative
solution method in the regular case.

We first rewrite the system (10.2) using a classification of variables into
predetermined and nonpredetermined or “free” variables. The former include
both exogenous variables and lagged endogenous variables. More generally,
we classify as predetermined any variable which does not depend directly on
expectations of current or future variables. We thus rewrite equation (10.2),
partitioning y ′t = (ỹ ′t , ŷ ′t ) into free components ỹt and predetermined compo-
nents ŷt :(

ỹt

ŷt

)
=

(
α̃

α̂

)
+
(
β11

0 β12
0

0 0

)
Et−1yt +

(
β11

1 β12
1

0 0

)
Et−1yt+1

+
(
δ11 δ12

δ21 δ22

)(
ỹt−1

ŷt−1

)
+
(
κ̃

κ̂

)
wt +

(
ζ̃

ζ̂

)
vt .

We also center the variables by subtracting their means, so that we can now
assume that all variables have zero expected values.

The technique, modified for t − 1 dating of expectations, starts from the
more general form:

x1
t = B0Et−1x

1
t +B1Et−1x

1
t+1 +Cx2

t + u1t ,

x2
t = Rx1

t−1 + Sx2
t−1 + u2t .

(10.36)

Here x1
t is an n1 × 1 vector of free variables, x2

t is a vector of predetermined
variables, and (u′1t , u′2t )′ is a white noise process. Note that lags of endogenous
variables are incorporated into x2

t and will have corresponding zero elements
of ut2. x2

t can incorporate exogenous variables following a VAR process.9 x2
t

9The seminal paper by Blanchard and Kahn (1980) allows for a more general class of exogenous
variables.
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can also include variables such as mt in Example 1 which depend on lags of
nonpredetermined variables, but not on their expectations.

Equation (10.2) can always be put in the form10 (10.36) by defining

x1
t = ỹt and x2

t =


ŷt

ỹt−1

ŷt−1

wt

 .

The matrices in equation (10.36) are given by

B0 = β11
0 + β12

0 δ21, B1 = β11
1 ,

C = (
β12

0 + β12
1 δ22 δ11 δ12 β12

1 κ̂ + κ̃
)
,

R =


δ21

I

0
0

 , S =


δ22 0 0 κ̂ϕ

0 0 0 0
I 0 0 0
0 0 0 ϕ

 ,

and the white noise processes are given by

u1t = −(β12
0 + β12

1 (δ22 + I)
)
κ̂et +

(
I − β12

0 − β12
1 δ22)ζ̃ vt ,

u2t =


ζ̂ vt + κ̂et

0
0
et

 .

Returning to the general formulation (10.36), we show how to obtain the unique
stationary RE solution when it exists. To do this we define the innovation

ηt =Etx
1
t+1 −Et−1x

1
t+1.

Note that x1
t − Et−1x

1
t = Cu2t + u1t . Thus x1

t+1 − Et−1x
1
t+1 = Cu2,t+1 +

10Before centering the equation, there would also be constants α̃+ β12
1 α̂ in the x1

t equation and

( α̂′ 0 0 0 )′ in the x2
t equation.
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u1,t+1+ ηt . It follows that equation (10.36) can be written(
I −B0 −C
R S

)(
x1
t

x2
t

)

=
(
B1 0
0 I

)(
x1
t+1
x2
t+1

)
+
(
I −B0 −B0C −B1

0 0 0

) u1t

u2t

ηt


+

(−B1 −B1C 0
0 −I 0

) u1,t+1

u2,t+1

ηt+1

 .

Assuming that the matrix on the left-hand side is invertible, the equation can be
put in the form (

x1
t

x2
t

)
= J

(
x1
t+1
x2
t+1

)
+ Ǩut + Ľut+1 + M̌ηt , (10.37)

where u′t = (u′1t , u′2t ).
The form (10.37) has been used in Farmer (1999, Chapter 3). Recall that

the x2
t variables are predetermined. The well-known condition for saddle point

stability is that n1 roots of J lie inside the unit circle. This is known as the
“regular” case. The condition for a model to be regular is thus that the number
of free variables be equal to the number of “forward stable” roots, i.e., roots of
J with modulus less than 1. Making that assumption, and assuming also that J
is diagonalizable,11 we can write Q−1JQ=� as(

Q11 Q12

Q21 Q22

)
J =

(
�1 0
0 �2

)(
Q11 Q12

Q21 Q22

)
, (10.38)

where we have partitioned Q−1 = (Qij ) and � so that �1 contains the roots
inside the unit circle. Multiplying equation (10.37) on the left by Q−1 and using
equation (10.38), we have(

Q11 Q12

Q21 Q22

)(
x1
t

x2
t

)
=

(
�1 0
0 �2

)(
Q11 Q12

Q21 Q22

)(
x1
t+1
x2
t+1

)
+Kut +Lut+1 +Mηt .

11If J is not diagonalizable, the Jordan form can be used instead. See Blanchard and Kahn (1980)
for details in the case of t dating of expectations.
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Letting pt =Q11x1
t +Q12x2

t , the first set of equations can be written

pt =�1pt+1 +K1ut +L1ut+1 +M1ηt .

Taking the ith element of pt yields pit+1 = λ−1
i pit − λ−1

i K1iut − λ−1
i L1iut+1−

λ−1
i M1iηt provided λi �= 0. This implies Etp

i
t+1 = λ−1

i pit − λ−1
i K1iut −

λ−1
i M1iηt and alsoEtp

i
t+s = λ1−s

i Etp
i
t+1 for s > 1. Since |λi |< 1, |Etp

i
t+s |→

∞ as s→∞ unless Etp
i
t+1 = λ−1

i pit − λ−1
i K1iut − λ−1

i M1iηt = 0. Hence the
unique stationary solution satisfies pit =K1iut +M1iηt for i = 1, · · · , n1 so that
pt =K1ut +M1ηt .12

Using the definition of pt and assuming Q11 is invertible, we obtain

x1
t =−(Q11)−1Q12x2

t + (Q11)−1(K1ut +M1ηt ). (10.39)

Since from equation (10.36) x2
t = Rx1

t−1 + Sx2
t−1 + u2t , this equation can be

written x1
t =−(Q11)−1Q12(Rx1

t−1 + Sx2
t−1 + u2t )+ (Q11)−1(K1ut +M1ηt ).

Since x1
t −Et−1x

1
t = Cu2t + u1t , we arrive at the unique stationary solution in

VAR form

x1
t = −(Q11)−1Q12Rx1

t−1 − (Q11)−1Q12Sx2
t−1 +Cu2t + u1t , (10.40)

x2
t = Rx1

t−1 + Sx2
t−1 + u2t . (10.41)

Finally, x1
t and x2

t can be substituted out to obtain a VAR in (yt ,wt ), i.e., in
MSV form:

ỹt = −(Q11)−1Q12Rỹt−1 − (Q11)−1Q12


δ22ŷt−1 + κ̂ϕwt−1

0
ŷt−1

ϕwt−1


+Cu2t + u1t ,

ŷt = δ21ỹt−1 + δ22ŷt−1 + κ̂ϕwt−1 + ζ̂ vt + κ̂et ,

wt = ϕwt−1 + et .

Sticky Price Model Continued

We illustrate how the previous techniques for determining the unique stationary
solution work in a concrete model using our introductory example (Example 1).

12If λi = 0, the same conclusion follows since then pit =K1it ut +L1i ut+1+M1i ηt . Operating
with Et on both sides yields pit =K1it ut +M1iηt .
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It is convenient to begin by rewriting equation (10.1) directly in the form (10.37).
Introduce the notation plt = pt−1 and add to the system an equation of the form
pt = plt+1. Next, move the equation for mt forward for one time period, replace
the expectations in equation (10.1) by their actual values, and add innovations
to the equations accordingly.

After these operations, the model can be written as the following matrix
system:


2 −a1 0 0 −1
b1 1 b1 0 0
−1 −c1 c2 1 0
d1 d2 d3 d4 0
1 0 0 0 0




pt

qt

rt

mt

plt

 (10.42)

=


1 0 0 0 0
b1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1




pt+1

qt+1

rt+1

mt+1

plt+1



+


v1t

v2t

v3t

0
0

+


0
0
0

−v4,t+1

0

+ inn(t, t + 1).

For convenience we drop the intercepts, and inn(t, t + 1) denotes the innova-
tions arising from replacing the expectations in the structural model by their
actual values. (We omit their precise form since it is not needed in what fol-
lows.) Multiplying through by the inverse of the 5× 5 matrix on the left-hand
side of equation (10.42), the model is now in standard form (10.37) with

x1
t =

 pt

qt

rt

 and x2
t =

(
mt

plt

)
.

The methods of the previous section can thus be applied to obtain a VAR in
(x1′
t , x

2′
t )
′.

It is more convenient to write the solution as a VAR in y ′t = ( pt qt rt mt )
′.

This can be done most readily as follows. Equation (10.1) implies that x1
t −
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Et−1x
1
t =G−1( v1t v2t v3t )

′, where

G=
 1 −a1 0

0 1 b1

−1 −c1 c2

 ,

and that x2
t −Et−1x

2
t = (v4t ,0)′. Thus from equation (10.39), we have

x1
t =�x2

t +G−1( v1t v2t v3t )
′ −�(v4t ,0)′,

where � = −(Q11)−1Q12 in the general notation developed in the preceding
section. In order to obtain a convenient final form, we next note that

x2
t =

(
d1 d2 d3 d4

1 0 0 0

)
pt−1

qt−1

rt−1

mt−1

+(
v4t

0

)
,

or in matrix form,

x2
t =Dyt−1 + ṽt ,

where yt = ( pt qt rt mt )
′ and ṽt = ( v4t 0 )′. Thus the unique stationary solu-

tion can be written as a VAR(1) in yt with

yt =
(
�D

d

)
yt−1+Hvt =Ayt−1+Hvt, (10.43)

where vt = ( v1t v2t v3t v4t )
′, d = (d1, d2, d3, d4)

′, and H depends on G

and �.

Numerical Example: Select the following parameter values: a1 = 0.5, b1 =
0.1, c1 = 1, c2 = 0.2, d1 =−d2 = d3 = 0.1, d4 = 0.2. Using the technique for
finding the saddle point stable solution, it can be computed that the coefficient
matrix A in equation (10.43) is

A=


0.7117 −0.0104 0.0104 0.0209
−0.2159 −0.0296 0.0296 0.0591

1.978 0.300 −0.300 −0.6001
0.100 −0.100 0.100 0.200

 .
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Models with Contemporaneous Expectations

Here we redo our analysis using the alternative model (10.15) reproduced here
for convenience with E∗t yt+1 =Etyt+1 under RE:13

yt = α+ βEtyt+1 + δyt−1+ κwt ,

wt = ϕwt−1 + et .
(10.44)

The MSV solutions now have the form

yt = a + byt−1 + cwt ,

where the coefficient matrices satisfy equations (10.17)–(10.19). We here con-
sider the saddle point stable case.

The technique introduced in the previous subsection is developed as fol-
lows. The relevant general formulation of the reduced form is

x1
t = B1Etx

1
t+1 +Cx2

t ,

x2
t = Rx1

t−1 + Sx2
t−1 + ut ,

(10.45)

where again x1
t are the nonpredetermined or free variables and x2

t are the prede-
termined variables.

We next put the reduced form (10.44) into the form (10.45). Divide yt into
free and predetermined variables, so that we have(

ỹt

ŷt

)
=

(
α̃

α̂

)
+
(
β11 β12

0 0

)(
Et ỹt+1

Et ŷt+1

)
+

(
δ11 δ12

δ21 δ22

)(
ỹt−1

ŷt−1

)
+
(
κ̃

κ̂

)
wt .

First, we center the variables (i.e., set α = 0) and, without changing notation for
convenience, then define

x1
t = ỹt and x2

t =


ŷt

ỹt−1

ŷt−1

wt

 .

13Note that any iid shocks to the first equation can be included as components of wt .
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Thus we arrive at equation (10.45) with

x1
t =

(
I − β12δ21)−1[

β11Etx
1
t+1 +

(
β12δ22, δ11, δ12, κ̃ + κ̂ϕ

)
x2
t

]
,

x2
t =


δ21

I

0
0

x1
t−1 +


δ22 0 0 κ̂ϕ

0 0 0 0
I 0 0 0
0 0 0 ϕ

x2
t−1+


κ̂et

0
0
et

 .

Returning to the general formulation and letting ηt+1 = x1
t+1 − Etx

1
t+1, we

rewrite equation (10.45) as(
I −C
R S

)(
x1
t

x2
t

)
=
(
B1 0
0 I

)(
x1
t+1
x2
t+1

)
+
(

0 −B1

−I 0

)(
ut+1

ηt+1

)
,

or (
x1
t

x2
t

)
= J

(
x1
t+1
x2
t+1

)
+Lϑt+1. (10.46)

Factoring J as before,(
Q11 Q12

Q21 Q22

)
J =

(
�1 0
0 �2

)(
Q11 Q12

Q21 Q22

)
,

and assuming that the number of roots of J inside the unit circle is equal to
the dimension of x1

t , the same arguments as before lead to the restriction x1
t =

−(Q11)−1Q12x2
t . Thus the solution is

x1
t = −(Q11)−1Q12Rx1

t−1 − (Q11)−1Q12Sx2
t−1 − (Q11)−1Q12ut

x2
t = Rx1

t−1 + Sx2
t−1 + ut .

10.8.2 Representing Irregular REE

The method of Section 10.8.1 can also be used to calculate the full set of sta-
tionary solutions in the irregular case, in which there are multiple stationary so-
lutions. The irregular case corresponds to the condition that the number of free
variables be larger than the number of forward stable roots (roots of J inside the
unit circle).

Models with t − 1 Dating of Expectations

We begin again with the representation of the reduced form (10.36) in terms
of predetermined and free variables. After defining innovations as before, we
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arrive at equation (10.37). We first note that, if J is invertible, then the full set
of solutions, including any explosive solutions, can be written in the form(

x1
t

x2
t

)
= J−1

(
x1
t−1
x2
t−1

)
− J−1Ľut − J−1Ǩut−1 − J−1M̌ηt−1.

Usually, however, we want to restrict attention to stationary solutions, and in
particular to MSV solutions augmented by a sunspot variable.

Assuming that J is diagonalizable, we have Q−1JQ = �, and we con-
formably partition Q−1 and (x1′

t , x
2′
t )
′ as

Q−1 =
Q11(1,1) Q11(1,2) Q12(1)
Q11(2,1) Q11(2,2) Q12(2)
Q21(1) Q21(2) Q22


and

(
x1
t

x2
t

)
=
 x1∗

t

x1#
t

x2
t

 .

The system becomes

Q−1

 x1∗
t

x1#
t

x2
t

 =
�∗1 0 0

0 �#
1 0

0 0 �2

Q−1

 x1∗
t+1
x1#
t+1
x2
t+1

 (10.47)

+
K∗

1
K#

1
K2

ut +
L∗1
L#

1
L2

ut+1 +
M∗

1
M#

1
M2

ηt .

Here �∗1 is a diagonal matrix containing the roots of J that lie inside the unit
circle and �#

1 and �2 are diagonal matrices that contain the roots outside the
unit circle (we excluded from consideration cases with roots on the unit circle).
In the irregular case, n1 (the dimension of free variables x1

t ) is larger than s, the
number of roots of J inside the unit circle. (The allocation of roots between �#

1
and �2 is not unique. A standard procedure is to arrange the eigenvalues in the
order of nondecreasing modulus.)

Consideration of the first block of equations from (10.47) leads to the side
conditions which rule out explosive solutions. Defining pt = Q11(1,1)x1∗

t +
Q11(1,2)x1#

t +Q12(1)x2
t , we have pt = �∗1pt+1 + K∗

1ut + L∗1ut+1 +M∗
1ηt .
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Following the procedure in Section 10.8.1, we obtain the conditions pt =
K∗

1ut +M∗
1ηt , i.e.,

Q11(1,1)x1∗
t +Q11(1,2)x1#

t +Q12(1)x2
t =K∗

1ut +M∗
1ηt . (10.48)

Turning to the second block of equations from (10.47) leads to the equations

Q11(2,1)x1∗
t +Q11(2,2)x1#

t +Q12(2)x2
t (10.49)

= (�#
1)
−1Q11(2,1)x1∗

t−1+ (�#
1)
−1Q11(2,2)x1#

t−1

+(�#
1)
−1Q12(2)x2

t−1 − (�#
1)
−1L#

1ut + ζt ,

where ζt = −(�#
1)
−1K#

1ut−1 − (�#
1)
−1M#

1ηt−1. Recall that ηt is an arbi-
trary process satisfying Et−1ηt = 0. If M#

1 has full rank, it follows that ζt
may be taken to be an arbitrary process satisfying Et−1ζt = 0. Note that
dim(ζt )= n1 − s.

Assuming that

Q11 =
(
Q11(1,1) Q11(1,2)
Q11(2,1) Q11(2,2)

)
is invertible, equations (10.48) and (10.49) can be solved simultaneously for x1∗

t

and x1#
t in terms of x2

t , x
1∗
t−1, x

2
t−1, ut , and ζt . From equation (10.36), recall that

x2
t = Rx1

t−1 + Sx2
t−1 + u2t . Partitioning R′ = ( (R∗)′ (R#)′ ) and substituting

for x2
t , and also recalling that(

x1∗
t

x1#
t

)
−Et−1

(
x1∗
t

x1#
t

)
= Cu2t + u1t ,

we obtain(
x1∗
t

x1#
t

)
= (Q11)−1

( −Q12(1)S
−Q12(2)S + (�#

1)
−1Q12(2)

)
x2
t−1

+ (Q11)−1

(
−Q12(1)R∗ −Q12(1)R̂

−Q12(2)R∗ + (�#
1)
−1Q11(2,1) −Q12(2)R# + (�#

1)
−1Q11(2,2)

)

×
(
x1∗
t−1
x1#
t−1

)
+ (Q11)−1

(
0

ζt−1

)
+Cu2t + u1t ,

x2
t = R∗x1∗

t−1 +R#x1#
t−1 + Sx2

t−1 + u2t .

This expression is not in a VAR(1) form in terms of (yt ,wt ) since the right-
hand side of the first equation involves x2

t−1 which in turn depends on ỹt−2 and
ŷt−2. This reflects the fact that, as in univariate models, sunspot solutions are in
general higher than first order in the endogenous variables.
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Irregular Equilibria, t Dating of Expectations

Finally, we apply the same technique to the reduced form (10.44) which has t
dating of expectations. We start from the form (10.46) and, as in the irregular
case with t − 1 dating, factor J as Q−1JQ=�, where

Q−1 =
Q11(1,1) Q11(1,2) Q12(1)
Q11(2,1) Q11(2,2) Q12(2)
Q21(1) Q21(2) Q22

 .

We also divide the free variables into two sets

x1
t =

(
x1∗
t

x1#
t

)
so that equation (10.46) can be written as

Q−1

 x1∗
t

x1#
t

x2
t

=
�∗1 0 0

0 �#
1 0

0 0 �2

Q−1

 x1∗
t+1
x1#
t+1
x2
t+1

+
L∗1
L#

1
L2

ϑt+1,

where ϑ ′t+1 = (u′t+1, η
′
t+1). Here the diagonal matrix �∗1 contains the eigenval-

ues with modulus less than 1.
If the matrix Q11 = (Q11(i, j)) in the top-left corner of Q−1 is invertible,

we get the solutions (
x1∗
t

x1#
t

)
= (Q11)−1

(−Q12(1)x2
t

zt

)
,

where

zt = −Q12(2)x2
t + (�#

1)
−1Q11(2,1)x1∗

t−1+ (�#
1)
−1Q11(2,2)x1#

t−1

+ (�#
1)
−1Q12(2)x2

t−1− (�#
1)
−1L∗1ϑt ,

and

x2
t =Rx1

t−1 + Sx2
t−1 + ut .

These expressions are a VAR(1) in (x1′
t , x

2′
t )
′, but in terms of yt,wt they are of

higher order. As already noted in the preceding subsection, this is the general
case with sunspot solutions. For special models it may be possible to obtain
sunspot solutions which are VAR(1) in yt ,wt . This happens in the application
to the Farmer–Guo model.
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Chapter 11
Nonlinear Models: Steady States

11.1 Introduction

In Chapter 4 several nonlinear economic models were introduced for the study
of learning dynamics. Some of these models have unique equilibria, while in
others multiple equilibria may prevail, as was illustrated in that chapter. The
equilibria in nonlinear models can take different forms, such as steady states,
cycles, and sunspot equilibria, and the models in Chapter 4 provided examples
of these types of equilibria. We now start to analyze systematically adaptive
learning in nonlinear models. Our emphasis will be on stochastic models, i.e.,
models which include intrinsic random shocks such as preference or produc-
tivity shocks, though we will briefly consider nonstochastic cases as well. We
will develop the stability conditions under learning for these different kinds of
REE for certain classes of nonlinear models. A key feature of the analysis is
that we do not approximate the model by a linearization around a steady state.
Instead, the exact equilibrium solutions are considered for stability. Many of the
results concern local stability, but for some specific models global results are
also presented.

We consider nonlinear models, e.g., univariate models of the form

yt = F(yt+1)
e or (11.1)

yt = F(yt+1)
e + vt , (11.2)

where F is a nonlinear function and vt is an exogenous shock. Throughout this
chapter we will assume that vt is iid with E(vt ) = 0. Here F(yt+1)

e denotes
the expectation of F(yt+1) formed at time t . Note that we are distinguishing
between deterministic models and models which have intrinsic random shocks.

267
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Recall that the basic overlapping generations (OG) model with production
and a constant money stock, described in Chapter 4, yields a nonlinear non-
stochastic difference equation of the form (11.1), where the form of F depends
on the underlying utility (and production) functions. Below, we see how to in-
corporate intrinsic noise. In fact, adding productivity shocks into even simple
versions of the basic OG model turns out to require the more general reduced
form

yt =H
(
G(yt+1, vt+1)

e, vt
)
. (11.3)

We develop the main results using the general framework (11.3), though the
special cases (11.1) and (11.2) are sometimes used for illustrations.

Before developing the results in general, we summarize some central find-
ings. Recall from Section 3.4 of Chapter 3 that for a nonstochastic model of the
form yt = F(yet+1), a perfect-foresight steady state ŷ = F(ŷ) is locally stable
under adaptive learning if F ′(ŷ) < 1 and locally unstable if F ′(ŷ) > 1. This re-
sult holds for decreasing gain or sufficiently small constant gain, and it can be
easily verified that this result also holds for models of the form yt = F(yt+1)

e.
Stochastic models of the form (11.2)–(11.3) do not have perfect-foresight steady
states, but they may have rational “noisy steady states,” i.e., iid solutions for yt .
In particular, for the model (11.2) there may be solutions of the form yt = ȳ+vt .

The stability results under learning are particularly simple for the model
(11.2) if the random shock vt has sufficiently small support, i.e., if the possible
range of values for vt lies in a sufficiently small interval. It can be shown that in
this case there does exist a noisy steady state of the form yt = ȳ + vt , where ȳ
is close to the perfect-foresight steady state ŷ = F(ŷ) corresponding to vt ≡ 0.
Furthermore, we will demonstrate that this noisy steady state is locally stable
under adaptive learning when F ′(ŷ) < 1 and locally unstable under adaptive
learning when F ′(ŷ) > 1. This result extends to models of the form (11.3) by
defining F(y)= H(G(y,0),0). For the case in which the support of the noise
need not be “small,” we develop an extension of this result and interpret it in
terms of E-stability. In general, as we shall see, the local stability under adaptive
learning of a noisy steady state does depend on the distribution of the stochastic
shock.

Throughout this chapter we make the assumption that the mappings F,G,
and H are twice continuously differentiable on some open rectangles (possibly
infinite). Before taking up the issue of adaptive learning, we first consider some
aspects of equilibrium solutions to models of the above forms.
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11.2 Equilibria under Perfect Foresight

In models of the form (11.1) the existence of steady states, cycles, and sunspots
depends on the shape of F . Recall from Chapter 4 that in the basic OG model
with production, the first-order condition for expected utility maximization is

E∗t
[
U ′

(
ntpt

pt+1

)(
pt

pt+1

)
− V ′(nt )

]
= 0,

where nt is employment and pt is the money price of goods. With a con-
stant money supply M , the equilibrium condition is ptnt =M, which implies
pt/pt+1 = nt+1/nt , so that E∗t [U ′(nt+1)(nt+1/nt )] = V ′(nt ) or

ntV
′(nt )=

(
nt+1U

′(nt+1)
)e
,

where for convenience we here write (•)e for E∗t [•].
Under perfect foresight the equilibrium equation becomes ntV

′(nt ) =
nt+1U

′(nt+1). Since (d/dn)nV ′(n) > 0, the model can be solved as

nt =F(nt+1). (11.4)

Depending on U and V , the function F can be either monotonically increasing
or hump-shaped; see, e.g., Grandmont (1985) for illustrations. A steady state is
a solution nt = n̂, where n̂ satisfies n̂=F(n̂). A k-cycle is defined by a k-tuple
(n̂1, . . . , n̂k) and satisfies

nt = n̂i if t (modk)= i, i = 1, . . . , k− 1,
nt = n̂k if t (modk)= 0, where
n̂i = F(

n̂i+1
)

for i = 1, . . . , k− 1, and
n̂k = F(

n̂1
)
.

Figure 11.1 illustrates steady state, 2-cycle, and 3-cycle solutions. In this chapter
we analyze steady-state solutions. k-cycles will be discussed in the next chapter.

11.3 Noisy Steady States

Consider now models with intrinsic noise. These arise, for example, when a
stochastic taste or productivity shock is introduced into the basic OG model. We
first present some economic examples of nonlinear models with noise and then
describe the generalization of the models of perfect-foresight steady states to
incorporate this noise (noisy cycles will be treated in the next chapter).
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Figure 11.1.

11.3.1 Economic Examples

Example 1: In the basic OG model with production, agents supply labor nt and
produce (perishable) output when young and consume ct+1 when old. Output is
equal to labor supply and there is a fixed quantity of moneyM . Holding money
is the only mechanism for saving. (See Section 4.2 of Chapter 4 for further
details on the model.) We introduce a random taste shock by assuming that the
utility function is

U(ct+1)− V (nt )+ εt ln(nt ).

Here εt is an iid positive random shock to the disutility of labor and we as-
sume that εt is known to the agents who are young at time t .1 The first-
order condition for maximizing expected utility thus is V ′(nt ) − εt/nt =
E∗t (pt /pt+1)U

′(ct+1). Combining with the market-clearing condition ct+1 =
nt+1 and using pt/pt+1 = nt+1/nt , we get

ntV
′(nt )− εt =

(
nt+1U

′(nt+1)
)e
.

Finally, if we change variables from n to y = ϑ(n), where ϑ(n)≡ nV ′(n) [note
that ϑ(n) is increasing for all n ≥ 0], we obtain equation (11.2), where vt ≡
εt −E(εt ).

1Letting Ṽ (n)= V (n)− ε ln(n), we have Ṽ ′(n) = V ′(n)− ε/n and Ṽ ′′(n) = V ′′(n)+ ε/n2.
Under the standard assumptions V ′,V ′′ > 0, we see that with ε > 0 we have Ṽ ′(n) > 0 for n
sufficiently large and Ṽ ′′(n) > 0 for all n ≥ 0. Thus, the marginal disutility of labor Ṽ ′(n) may be
negative at small n but we have the required assumptions needed for a well-defined interior solution
to the household maximization problem.
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Example 2: The technique used in Example 1 to transform the model to the
form (11.2) cannot always be used when there are intrinsic shocks. (It should be
apparent that the technique requires very special assumptions on utility.) As a
result, the more general form (11.3) is usually required when there are intrinsic
shocks. As an illustration, consider the case of additive productivity shocks. We
return to the assumption that utility is given by

U(ct+1)− V (nt ),

but now assume that output Qt is given by

Qt = nt + λt ,

where λt is an iid positive productivity shock. The budget constraints are now
pt+1ct+1 =M and ptQt =M , and the first-order condition plus the market-
clearing condition Qt+1 = ct+1 and pt/pt+1 =Qt+1/Qt yields

(nt + λt)V
′(nt )=

(
(nt+1 + λt+1)U

′(nt+1 + λt+1)
)e
.

Since (n+ λ)V ′(n) is strictly increasing in n, and letting vt ≡ λt −E(λt), this
equation can be solved for nt and put in the form (11.3) where yt ≡ nt .

11.3.2 Definition of Noisy Steady States

For the models with intrinsic noise, we now consider the REE (rational expec-
tations equilibria) which are analogs to perfect-foresight steady states. We start
with the simplest case: a noisy steady state for the model (11.2). Under rational
expectations we have

yt =EtF(yt+1)+ vt ,

and we look for a solution of the form

yt = ȳ + vt . (11.5)

It follows that ȳ must satisfy

ȳ =EF(ȳ + vt ).

In general, because F is nonlinear, we cannot be sure that a solution of the
form (11.5) exists even if we know that F has a fixed point ŷ, i.e., if ŷ = F(ŷ).
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However, we can state an existence result for the case of “small noise,” when
there is a perfect-foresight steady state ŷ in the nonstochastic model. Informally
(we will state the result more precisely in a moment), provided the intrinsic
shock is “small” in the sense that it has small bounded support, there exists a
noisy steady-state REE of the form (11.5) with ȳ near ŷ.

More generally, consider a noisy steady-state REE for the model (11.3).
This is defined by a function y(vt ) such that

y(vt )=H
(
EG(y(vt+1), vt+1), vt

)
.

Here the expectation is taken over the distribution of the shocks vt+1. Letting
θ̄ =EG(y(vt+1), vt+1), note that y(vt )=H(θ̄, vt ), so that a noisy steady state
is equivalently defined by a value θ̄ satisfying

θ̄ =EG
(
H(θ̄, vt ), vt

)
.

As mentioned above, it can be shown that noisy steady states exist near steady
states of the corresponding nonstochastic model, provided the noise is suffi-
ciently small. More precisely, defining

F(y)≡H
(
G(y,0),0

)
,

so that in the nonstochastic case vt ≡ 0 for all t, then under perfect foresight we
have

yt = F(yt+1).

Suppose ŷ constitutes a perfect-foresight steady state for this nonstochastic case.
Corresponding to this solution are perfect-foresight expectations

θ̂ =G(ŷ,0).

Now consider a family of distribution functions for vt ,Wα(v), parameterized
continuously by α with Wα(−α) = 0 and Wα(α) = 1, so that the family con-
verges as α→ 0 to the nonstochastic case W0(v) = 0 for v < 0, W0(v) = 1
for v ≥ 0 (i.e., v = 0 with probability 1). Then it can be shown that by choos-
ing distributions Wα with α sufficiently small, there exist noisy steady states
θ̄ (α) arbitrarily close to θ̂ . The proof, which is given in Evans and Honkapo-
hja (1995c), is based on a version of the implicit function theorem (and it also
requires appropriate regularity conditions to hold at θ̂ ).
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11.4 Adaptive Learning for Steady States

We now introduce adaptive learning. Suppose agents believe they are in a noisy
steady state and at time t have estimates θt for the expected values ofG(yt , vt ) in
the steady state. In the REE yt = y(vt ) is iid and hence G(yt , vt )=G(y(vt ), vt )

is iid with mean θ =EG(y(vt ), vt ). A natural estimator of θ is then simply the
sample mean

θt = t−1
t∑

j=1

G(yj , vj ).

Somewhat more generally, we consider the recursive version of this algorithm

θt = θt−1 + γt
(
G(yt , vt )− θt−1

)
, (11.6)

where γt is a sequence of decreasing-gain parameters satisfying the usual as-
sumptions. (If θt is simply the sample mean, then γt = t−1.)

The rest of the dynamic system is then given by equation (11.3) with
G(yt+1, vt+1)

e = θt−1, i.e.,

yt =H(θt−1, vt ). (11.7)

[Here we are making the convenient assumption that only the values ofG(yi, vi)
through time t − 1 are used to forecast G(yt+1, vt+1)

e. This avoids simultaneity
between the forecast and yt which would result in additional technical complica-
tions.] Combining equations (11.6) and (11.7), we obtain the following equation
which fully describes the system under learning dynamics:

θt = θt−1 + γt
(
G(H(θt−1, vt ), vt )− θt−1

)
. (11.8)

It is apparent that this equation fits directly into the framework of stochastic
recursive algorithms and if, for example, G and H have bounded second deriva-
tives, then equation (11.8) satisfies the basic conditions (A) and (B) of Chapter 6.
It is therefore straightforward to analyze convergence of θt to an REE steady-
state value using the results for recursive stochastic algorithms.

11.5 E-Stability and Learning

Before stating the formal convergence results under adaptive learning, we derive
what will turn out to be the appropriate stability condition using the E-stability
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principle. Recall that under this principle we focus on the mapping from a vector
of parameters characterizing the perceived law of motion (PLM) to the implied
parameter vector characterizing the actual law of motion (ALM). Although the
noisy steady state is formally defined by a function y(vt ), the agents in the model
are only concerned with the expected value of G(yt+1, vt+1) in their forecast-
ing and decision making and so learning concerns the equilibrium value of a
parameter (and not the whole function).

For learning of a steady state the estimate is θt =G(yt+1, vt+1)
e . This PLM

leads to the ALM T (θ)≡E(G(H(θ, vt), vt ), and the definition of E-stability is
based on the differential equation

dθ/dτ = T
(
θ(τ )

)− θ(τ ), (11.9)

where τ denotes notional time. It is easily seen that the fixed points of this
T -mapping define a noisy state for this model, and we immediately have the
result:

Proposition 11.1. A noisy steady state θ̄ is E-stable if T ′(θ̄) < 1 and it is un-
stable if T ′(θ̄) > 1.

Clearly, barring exceptional cases, steady states can be divided into stable
and unstable fixed points. The stability property alternates as θ is increased in
the set of steady states.

We remark that in Chapter 12 we will refer to the condition T ′(θ̄) < 1 as the
weak E-stability condition for a noisy steady state. This is because, as we will
there show, a stronger condition must be satisfied to guarantee local stability if
the PLM is overparameterized as a regular cycle.

This E-stability condition is also the condition guaranteeing local conver-
gence of θt under the learning rule (11.8) since, as noted, the learning rule satis-
fies the conditions (A) and (B) of Chapter 6. The associated differential equation
for the algorithm takes the form

dθ/dτ = lim
t→∞EG

(
H(θ, vt), vt

)− θ

= T (θ)− θ.

But this is simply the differential equation defining E-stability of a noisy steady
state θ̄ , and we have proved the following.

Proposition 11.2. A noisy steady state θ̄ is locally stable under adaptive learn-
ing if it is E-stable, i.e., if T ′(θ̄) < 1. If T ′(θ̄) > 1, then θt converges to θ̄ with
probability zero.
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By “locally stable” under adaptive learning we mean various more specific state-
ments made explicit in Chapter 6:2

(1) Convergence with positive probability for nearby initial points.
(2) Convergence with probability close to 1 for nearby initial points and suffi-

ciently low adaption rates.
(3) Convergence with probability 1 if a sufficiently small projection facility is

used.

Finally, consider the nonstochastic case yt = H(G(yt+1)
e). Under perfect

foresight, yt = F(yt+1), where F =H ◦G. In the nonstochastic case, T (θ) =
G(H(θ)), so that T ′(θ̄)=G′(H(θ̄))H ′(θ̄) and F ′(ȳ)=H ′(G(ȳ))G′(ȳ). Using
ȳ = H(θ̄) and θ̄ = G(ȳ), we have T ′(θ̄) = F ′(ȳ). Thus in the nonstochastic
case, the stability condition in Proposition 11.2 is simply F ′(ȳ) < 1. In fact, in
the nonstochastic case, a stronger version of Proposition 11.2 holds since one
can use the results of Section 7.2 of Chapter 7: For all nearby initial values,
θt → θ̄ if T ′(θ̄)= F ′(ȳ) < 1 and θt diverges if the reverse inequality is true. No
projection facility is required in the nonstochastic case. In the stochastic case
with small noise, it follows from continuity of derivatives that T ′(θ̄) is close to
F ′(ȳ). Thus in Proposition 11.2 the condition F ′(ȳ) < 1 governs local stability
of noisy steady states for sufficiently small noise.3

Example 3: A Model with Small or Large Shocks. We consider the basic
setup (11.3) when the support of the shock vt may be small or large. Con-
sider Example 2 with the functional forms U(c) = c1−σ /(1 − σ), V (n) =
n1+ε/(1 + ε), and a uniform distribution for vt over [−α,α]. Choosing pa-
rameter values σ = 4.0, ε = 1, and E(λ) = 0.6 for α = 0, then a numerical
computation yields the (nonstochastic) steady-state value of θ̄ = 0.645 and this
steady state is E-stable for learning [T ′(θ̄) = −0.975]. Thus for α > 0 suffi-
ciently small, the stochastic steady states will also be stable. If in their PLM,
agents allow for the possibility that the economy is in a 2-cycle, then the stabil-
ity of the steady state can be delicate. This issue turns on the distinction between
weak and strong E-stability which we take up in the next chapter. We will there
return to this example and show that in this case the stability properties of the
steady state depend on the size of the support of the random shock. At that point
we will also provide numerical results for this example.

2Statements (2) and (3) are immediate from Corollaries 6.6 and 6.8. We also have result (1)
since for this example it is easy to see that the conditions of Corollary 6.7 hold.

3In fact, for sufficiently small noise it is possible to obtain local convergence almost surely even
if the learning rule has no projection facility; see Evans and Honkapohja (1995c).
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11.6 Applications

11.6.1 Increasing Social Returns with Random Shocks

We consider a version of the increasing social returns model of Section 4.6.
We make two changes to the earlier model.4 First, we allow for government
consumption financed by seignorage, so that Mt+1 =Mt + pt+1gt+1. In this
section we assume that government purchases are a fraction ζt of output, i.e.,
gt = ζt Qt . Thus from the market-clearing condition ptQt =Mt , we obtain

pt/pt+1 = (1− ζt+1)Qt+1/Qt .

The second modification is that we introduce a random productivity shock, so
that

Qt = f (nt ,Nt)vt ,

where vt is a positive iid random productivity shock with mean equal to 1. Here,
of course, Nt = �nt , where � is the number of agents, captures the positive
production externality. As in Section 4.6, we assume the production function
takes the form f (nt ,Nt )= nαt ψ(Nt ) so that Qt = nαt ψ(Nt )vt .

The household’s first-order condition is

V ′(nt )=E∗t
(

pt

pt+1
f1(nt ,Nt )vtU

′(ct+1)

)
.

Using also ct+1 = ptQt/pt+1, this can be written as

V ′(nt )=E∗t
(

pt

pt+1
αQtn

−1
t U ′

(
ptQt/pt+1

))
.

Finally, imposing the parametric forms U(c) = c1−σ /(1 − σ) and V (n) =
n1+ε/(1+ ε), we obtain

αE∗t
(
ptQt/pt+1

)1−σ = n1+ε
t .

It is convenient to write this in the form

nt =
(
αXe

t+1

)1/(1+ε)
,

4This formulation was first presented in Evans and Honkapohja (1993a).
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where Xt+1 = (ptQt/pt+1)
1−σ is the variable on which the agents are learning,

and where the notationXe
t+1 =E∗t Xt+1 is employed. In a temporary equilibrium

we have Xt+1 = ((1− ζt+1)f (nt+1, �nt+1)vt+1)
1−σ .

The size of the fraction of government purchases ζ is important for the num-
ber of steady-state equilibria. As with the version of the model discussed in Sec-
tion 4.6 of Chapter 4, in the nonstochastic case with constant ζ , this model can
have up to three steady states. In the nonstochastic case with perfect foresight,
we can write nt =F(nt+1), where F(n)= α1/(1+ε)((1−ζ )f (n, �n))(1−σ)/(1+ε)
and we are restricting attention to the case 0< σ < 1. A higher value of ζ shifts
the graph of F(nt+1) downward in a proportional way. Thus for high enough
values of ζ , only the “low-activity” (interior) steady state continues to exist.

The possibility of multiple steady states carries over to the stochastic model.
The analysis of the stability under learning of a stochastic steady state is based
on the familiar learning rule

Xe
t+1 =Xe

t + γt−1
(
Xt−1 −Xe

t

)
,

where γt is a sequence of decreasing gains with standard properties. Defin-
ing G(n,v) = ((1 − ζ )f (n, �n)v)1−σ , so that Xt = G(nt , vt ), and H(Xe) =
(αXe)1/(1+ε), we have nt = H(G(nt+1, vt+1)

e). By setting θt−1 = Xe
t+1, the

model under learning fits the framework developed earlier in this chapter.5

Based on Proposition 11.2 and the remarks following, only the high and low
steady states are locally stable under this learning rule (assuming that the sup-
port of the vt shocks is not too large). Moreover, using the global convergence
theorem in Section 7.6 of Chapter 7, it is evident that there will be convergence
with probability 1 to either the low- or the high-activity stochastic steady state.6

11.6.2 The Hyperinflation Model

Here we consider the extension of the basic OG production model allowing
for government consumption financed by money creation. The government’s
budget constraint is gt = τ+(Mt−Mt−1)/pt ,where gt is per capita government
consumption and τ is per capita lump-sum taxes, assumed fixed. It is convenient
(but inessential) to assume that τ = 0, so that

gt = Mt

pt
− pt−1

pt

Mt−1

pt−1
. (11.10)

5To put the model in the exact form described earlier in the chapter, it is also necessary to
rewrite the random shock vt as vt = 1+ ṽt , so that the random term ṽt has mean zero.

6This follows from the fact that the graph of the mapping n − [α(1 − ζ )f (n, �n)]1/(1+ε)×
E(v1/(1+ε)) is negative for high enough values of n and low enough positive values of n.
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The household’s budget constraints are ntpt = Mt, Mt = pt+1ct+1, and the
market-clearing condition is now nt = ct + gt . In the literature this model has
been solved in terms of either the inflation rate or the level of employment. We
carry out the analysis in terms of inflation and then comment on the alternative
way.

The household’s first-order condition

V ′(nt )=
(

pt

pt+1
U ′(ct+1)

)e
is unchanged from the basic OG model. Substituting in the budget constraints
yields V ′(nt )= (π−1

t+1U
′(ntπ−1

t+1))
e, where πt+1 ≡ pt+1/pt denotes the (gross)

rate of inflation. We consider the case of point expectation for simplicity. Then
it is often possible to solve this equation for nt to obtain

nt = S
(
πet+1

)
.

This is the case, e.g., when the offer curve in the basic OG model is upward
sloping. S(πet+1) gives real saving in the economy as a function of expected
inflation, as we have nt =Mt/pt and money is the only means of saving.

Substituting into equation (11.10) yields the equilibrium equation

πt = S(πet )

S(πet+1)− gt
≡ F

(
πet+1,π

e
t , gt

)
(11.11)

for the rate of inflation. For the time being assume for simplicity that real gov-
ernment spending is constant, i.e., gt = g, and that the savings function is linear,
i.e., S(πt+1) = a − bπt+1.7 Under perfect foresight we obtain the difference
equation

πt+1 = 1+ a − g

b
− a

b
π−1
t .

Figure 11.2 describes the dynamical system in the (πt ,πt+1) space. The two
curves are drawn for two different values of g (see below). This model has nor-
mally two interior steady states πA and πB (>πA), and a continuum of dynamic

7It is formally possible to incorporate first- and second-period endowments to the model by
setting nt = ω1− c1

t and ct+1 = ω2+Mt/pt+1, where ω1 is endowment for the young, c1
t denotes

leisure, and ω2 is endowment for the old. If the utility functions are logarithmic, i.e., V (nt ) =
− ln(ω1 − nt ) and U(ct+1) = ln ct+1, one obtains the linear labor supply (or savings) function
nt =max[0,2−1(ω1 −ω2πe

t+1)]. See Evans, Honkapohja, and Marimon (2000) for further details.
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Figure 11.2.

paths which start from any initial point π0 in the interval (πA,πB) or above
πB and converge to πB under perfect-foresight dynamics. The high-inflation
steady state πB is thus indeterminate under perfect foresight. In contrast, the
low-inflation steady state πA is locally determinate in the sense that any equilib-
rium path initiating from its neighborhood must eventually leave that neighbor-
hood.

To analyze learning, we begin with the derivation of E-stability conditions
for the two steady states. Thus postulate that agents have the PLM (perceived
law of motion) of the form πet = πet+1 = π . From equation (11.11), the ALM
(actual law of motion) is

T (π)= S(π)

S(π)− g
.

As usual, the differential equation defining E-stability is

dπ

dτ
= T (π)− π,

and the E-stability condition for a steady state πi , i =A,B , is

T ′(πi)=−gS′(πi)
[
S(πi)− g

]−2
< 1,

and normally the low-inflation steady state πA is E-stable while πB is not. For
example, in the linear case it can be checked that T ′(πA) < 1 and T ′(πB) > 1,
so that the low-inflation steady state πA is E-stable while πB is not.

For the analysis of adaptive learning, there are complications that arise be-
cause expectations formed at different periods appear in equation (11.11). This
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feature must be incorporated in the analysis of learning. We adopt the formu-
lation of Evans, Honkapohja, and Marimon (2000), who consider an extended
version of this model in detail.

Agents are assumed to use a standard learning rule

πet+1 = πet + γt+1
(
πt−1 − πet

)
,

where again γt is a sequence of gains satisfying standard assumptions. (Recall
that the sample mean from past data can be written in this form.) Shifting time
back one period and substituting for inflation from equation (11.11), we have

πet = πet−1 + γt
(
F
(
πet−1,π

e
t−2, gt−2

)− πet−1

)
, (11.12)

which is a second-order system in the expectations. In order to have a stochastic
model, we assume here that gt = g + vt , where vt is iid with Evt = 0 and has a
small compact support. (The support may be taken to be arbitrarily small.)

The higher dimensionality can formally be treated by introducing an explicit
state variable to the analysis. Thus we write

Xt =A
(
πet−1

)
Xt−1 +B

(
πet−1

)
Wt,

where X′t = (X1,t ,X2,t ,X3,t ), Wt = (1, gt−2)
′, and

A
(
πet−1

)=
 0 1 0

0 0 0
0 0 0

 , B(πet−1)=
 0 0
πet−1 0

0 1

 .

Then equation (11.12) can be written as

πet = πet−1 + γt
(
F
(
πet−1,X1,t ,X3,t

)− πet−1

)
,

and the system is in standard form for recursive stochastic algorithms treated
in Chapter 6, where the parameter vector is now θt = πet . It is easily verified
that assumptions (A) and (B) of Chapter 6 are satisfied, so that the convergence
theorems can be applied. The associated differential equation is

dπ

dτ
=EF(π,π, g̃)− π, (11.13)

where the expectation is taken with respect to the random variable g̃ which has
the same distribution as gt . In general, this differential equation differs from
the equation which above defined E-stability, since the latter was presented for
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the case of constant gt = g. In the stochastic case, equation (11.13) should be
used to define E-stability. However, if the support of the distribution is small,
the two E-stability conditions are approximately identical. We can thus state the
following result which holds for supports of gt which are sufficiently small.

Proposition 11.3. The low-inflation steady state πA is locally stable under
learning, while the high-inflation steady state πB is unstable under learning
in the standard hyperinflation model.

This proposition suggests that the low-inflation steady state is the plausible
equilibrium for the hyperinflation model. A distinct but supportive justification
is obtained by looking at comparative static properties. Consider an increase
in g. This change shifts the curve downwards in Figure 11.2. One would expect
this higher g to be associated with higher inflation. This is true for the stable
steady state πA, whereas the other steady state πB has the implausible property
that higher values of g lower steady-state inflation. From this viewpoint, too, the
low-inflation steady state is more natural than the high-inflation steady state.8

An alternative analysis of learning can be developed by solving the inflation
model in terms of the level of employment. This approach requires the assump-
tion that the market-clearing condition is combined with the agents’ optimality
conditions. In other words, in this sense agents are assumed to have more infor-
mation than in the preceding approach.

Using pt/pt+1 = nt+1/nt and the market-clearing condition, we obtain

ntV
′(nt )=

(
(nt+1 − gt+1)U

′(nt+1 − gt+1)
)e
. (11.14)

Assume again that gt = g+vt . Then substituting into equation (11.14) and solv-
ing for nt , we have obtained a model of the form (11.3):

nt =H
(
G(nt+1, vt+1)

e
)
,

where the parameter g has been absorbed into the function G. Note that in this
formulation the complication of mixed datings of expectations does not arise,
and the general analysis of this chapter can be directly applied.

The nonstochastic case with an upward-sloping offer curve is illustrated in
Figure 11.3. It is easy to verify that the high-employment steady state n̄2 has a

8The stability properties under learning can sometimes be reversed. This occurs if agents have
access to contemporaneous data in learning and the (constant) gain parameter is sufficiently large.
See Lettau and Van Zandt (1999) for a detailed analysis and Section 3.4 of Chapter 3 or Evans and
Honkapohja (1999) for summary discussions. Another related paper is Adam (2000a).
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Figure 11.3.

low-inflation rate while the low-employment steady state n̄1 has a high inflation
rate. When random expenditure shocks vt are present, then there will be noisy
steady states near n̄1 and near n̄2, provided the shocks are sufficiently “small.”
The E-stability condition will be determined by the value of the derivativeF ′(n).
Since F ′(n̄1) > 1 while F ′(n̄2) < 1, the high-employment noisy steady state
will be stable under adaptive learning while the low-employment steady state is
not stable. Thus, using this alternative formulation of learning does not alter the
stability properties of the steady states.

11.6.3 Multiple Equilibria in Growth

In this section we consider a model of innovations and endogenous growth
with multiple equilibria, originally developed in Evans, Honkapohja, and Romer
(1998). The multiplicity of steady states arises from two central features of the
model. First, all (differentiated) capital goods are assumed to be complements,
so that the marginal productivity of each capital good depends positively on the
amounts of other capital goods. Second, the production technologies for con-
sumption and new capital goods are different and there is a standard convex
production possibility set for additions to the stock of capital and consumption.
Inventions are modeled as arising from profit-seeking activities of monopolisti-
cally competitive entrepreneurs, and there are no externalities in the model. The
main features of the model are as follows.

The preference structure in the model is standard; there is a representative
consumer who maximizes the discounted expression for utility

∞∑
i=0

βt+iU(Ct+i), where U(C)= C1−σ

1− σ
.
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A consumer who is faced with a constant interest rate r will choose to have
consumption grow at the constant rate gC given by

gC = Ct+1

Ct
= [

β(1+ rt )
]1/σ

. (11.15)

We will characterize our equilibria in terms of two equations in two endogenous
variables, the rate of growth and the interest rate. Equation (11.15) gives us one
of the two relationships. In the (g, r) space we refer to it as the CC curve.

The second relationship between g and r comes from an arbitrage condition
from the production side of the model which involves several technological and
market relationships.

The production of final goods from a fixed quantity of laborL and different
capital goods xt(i) takes the form

Yt =L1−α
(∫ At

0
xt (i)

γ di

)φ
.

Here φγ = α and α ∈ (0,1), so that constant returns prevail. We assume φ > 1,
implying that different capital goods are complements to each other. At is the
number of differentiated capital goods in existence. In a growth equilibrium, At

increases over time, as innovations in the form of new capital goods take place.
These capital goods are supplied by monopolistically competitive produc-

ers, so that they face the inverse demand functions

Rt (j) = ∂Y

∂xt(j)

= L1−α
(∫ At

0
xt(i)

γ di

)φ−1

φγ xt (j)
γ−1,

giving the rental rate Rt (j) as a function of xt (j) and other variables. The total
cost to the capital goods supplier in period t is rt xt (j)p

z
t .9 The consumption

good is used as the numeraire and pzt denotes the price of capital in terms of it.
Profit maximization leads to the mark-up rule

Rt(j)= rtp
z
t /γ ≡R

(
rt ,p

z
t

)
.

9We simplify the original Evans, Honkapohja, and Romer (1998) model by assuming away
depreciation of physical capital.
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It follows that symmetry xt (j)= xt holds, so that

Yt =L1−α(xγt At

)φ
,

where

xt =LAt
(φ−1)/(1−α)

[
Rt

φγ

]−1/(1−α)
,

with Rt given by the mark-up rule.
Profits (at the end of period t) for each type of intermediate good are

πt =�At
(φ−1)/(1−α)(rtpzt )α/(α−1)

,

where � = φ1/(1−α)(1 − γ )γ (1+α)/(1−α)L. It is assumed that it takes iξ units
of foregone output to produce a design for good i , and the parameter restric-
tion ξ = (φ − 1)/(1− α) is imposed. (This is needed to ensure the possibility
for balanced growth paths.) In equilibrium with balanced growth, the required
zero-profit condition for the marginal good invented at time t (which will have
an index j = At) is given by pzt A

ξ
t =

∑∞
s=0 πt+s(1 + r)−(s+1), yielding the

relationship

g
ξ
A = 1+ r −�(pz)−1/(1−α)r−α/(1−α) ,

where gA =At+1/At is the constant growth rate of At .
The production possibility frontier between consumption and investment is

formulated as

Ct = Yt −Ztχ

(
Zt+1−Zt

Zt

)
. (11.16)

χ(·) is a convex cost function with χ(0)= 0. Total capital is given by

Zt =
∫ At

0
xt (i) di+

∫ At

0
iξ di = xtAt + A

1+ξ
t

1+ ξ
.

It can then be shown that on a balanced growth path, gZ = g
1+ξ
A , where gZ =

Zt+1/Zt , so that

gZ =
[
1+ r −�(pz)−1/(1−α)r−α/(1−α)

](φ−α)/(φ−1)
. (11.17)
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Figure 11.4.

The price of capital is obtained as the marginal trade-off in the production possi-
bility frontier (11.16), so that the price of capital goods in terms of consumption
is

pz = χ ′(gZ − 1), where gZ =Zt+1/Zt . (11.18)

Relation (11.18), together with equation (11.17), provide the technology arbi-
trage relation. It is denoted as the TT curve in (g, r) space. This curve can have
both upward and downward sloping segments, depending on the relative strength
of the complementarity and price of capital effects; see the detailed discussion
in Evans, Honkapohja, and Romer (1998).

On a balanced growth path, gC = gZ = g. Drawing the TT and CC relations
yields the geometric representation of the possible multiple equilibria. Evans,
Honkapohja, and Romer (1998) assume a piecewise linear relation for χ(·) with
three linear segments (and corners rounded off to maintain differentiability).
Then the TT curve can have two downward sloping portions, and there may be
multiple intersections of the CC and TT curves, as illustrated in Figure 11.4.

This model has the property that, under perfect foresight, the economy will
immediately be in a steady state from any initial position. Under rational ex-
pectations, there is no way to select among the different equilibria. In contrast,
modeling dynamics via adaptive learning will narrow down the set of steady
states which are locally stable under learning. We now consider the formulation
of learning.

In modeling learning, attention is restricted to a simple scheme in which
households base their actions on an expected interest rate. Given their beliefs,
consumers decide how much to save. Firms observe the current savings behavior
of the consumers and project the growth rate of consumption and the implied
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equal growth rate of total capital Z into the indefinite future. Firms will compete
for resources in financial markets. This determines a realized interest rate that is
consistent with no-arbitrage on the production side of the market.

After consumers observe the realized rates, they adjust their expectations
about future interest rates. For example, if the interest rate that consumers ex-
pected was lower than the interest rate that is realized, they will revise their
forecasts of interest rates upward.

Formally, given an expected interest rate re, we have a temporary equilib-
rium mapping that takes expected interest rates into realized interest rates:

r = T (re).

To generate an explicit dynamics for the interest rate, we use a standard adaptive
learning scheme,

ret+1 = ret + δt
(
rt − ret

)
,

where δt = δ/t . Together, these equations define a dynamic system which can
be analyzed in the vicinity of a fixed point. Such a point is locally stable if
T ′(r) < 1. In Figure 11.4, the stability condition for steady states is character-
ized by the property that the TT curve cuts the CC curve from above. Thus, in
the figure there are two locally stable steady states which are separated by an
unstable one.10

The number of stable-steady state equilibria depends on the parameter val-
ues for the model. In these kinds of models, economic policy can have large
effects if it can alter the set of stable equilibria. Honkapohja and Turunen-Red
(1999) extend the model to open economies and show how the degree of open-
ness of two identical economies can lead to a favorable growth bifurcation for
the two countries. In addition to a standard favorable local effect on a given
steady state, the number of steady states can change as a result of the policy
change in such a way that only a fast growth state continues to exist. Then the
economies can have a large upward change in their growth rates and the learning
dynamics will take them towards the high-growth steady state.

10Evans, Honkapohja, and Romer (1998) show that the existence of multiple steady states which
are stable under learning makes it possible to construct stochastic equilibria which shift between
two points near the stable steady states. These “growth cycles” are also shown to be locally stable
under learning. The argument is similar to that used in Chapter 12 to show stability under learning
of Markov sunspot equilibria near a pair of distinct steady states.



Chapter 12
Cycles and Sunspot Equilibria

12.1 Introduction

In this chapter we will continue the analysis of stochastic nonlinear models of
the form

yt =H
(
G(yt+1, vt+1)

e, vt
)
. (12.1)

yt is a scalar variable and vt denotes a possible iid random shock to, say, prefer-
ences or technology, which might be present in the model. Here G(yt+1, vt+1)

e

denotes the value of G(yt+1, vt+1) expected by agents at time t , and under ra-
tional expectations, G(yt+1, vt+1)

e = EtG(yt+1, vt+1). In the previous chapter
this framework was introduced and we studied the stability of rational stochas-
tic steady states under learning. As was there noted, models leading to equation
(12.1) can have other types of REE besides steady states. These include both
periodic cycles and equilibria which are influenced by extraneous random phe-
nomena, often referred to as “sunspots,” in addition to any intrinsic shocks vt .

In this chapter we first take up the case of periodic cycles. If the random
shock vt is not present, then these solutions take the form of regular perfect-
foresight cycles. If intrinsic shocks vt are present, then the corresponding solu-
tions become “noisy” cycles.

The other type of equilibria we study in this chapter are solutions which
depend on a sunspot, i.e., an extraneous random variable which influences the
equilibrium only through expectations. These rational expectations equilibria

287
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have received a great deal of attention in the literature after the initial investiga-
tions by Shell (1977), Azariadis (1981), and Cass and Shell (1983).1

These two types of rational solutions can be viewed as a modern formula-
tion of a long tradition in economics, emanating from the work of Kalecki (1935)
and Kaldor (1940), which emphasizes the possibility of endogenous fluctuations
in market economies. The nonlinearity of the economic model is a key element
in generating the possibility of these equilibria, though sunspots can also appear
as part of a rational expectations solution in linear models as well (as discussed
in Part III).

In fact, for much of the chapter we can simplify the presentation and assume
that the preference or technology shocks vt do not appear in the model. Then we
can focus on the class of models

yt = F
(
yt+1

)e
, (12.2)

which is a special case of the general class (12.1) above.2 This class was in-
troduced in Chapter 11. Cyclical equilibria for equation (12.2) exhibit perfect
foresight, so that they satisfy yt = F(yt+1), where yt is a periodic sequence. In
contrast, sunspot equilibria for equation (12.2) are stochastic processes which
satisfy yt = Et [F(yt+1)], where Et denotes the conditional expectation, given
information at time t .

Throughout this chapter we assume that F,G, andH are twice continuously
differentiable.

12.2 Overview of Results

It may be helpful to summarize here some of the most salient results from this
chapter. Consider the nonstochastic model (12.2). Although this model may
have solutions which include perfect-foresight cycles of high order and rational
Markov sunspot solutions with many states, in this section we restrict attention
to perfect-foresight steady states and 2-cycles and to 2-state Markov sunspot
solutions. Recall first from the previous chapter that a steady state ŷ = F(ŷ)

is locally stable under adaptive steady-state learning if F ′(ŷ) < 1 and locally
unstable if F ′(ŷ) > 1. The phrase “steady-state learning” means that the agents

1For recent surveys see Chiappori and Guesnerie (1991) and Guesnerie and Woodford (1992).
2Clearly, if there are no shocks vt and H() is one-to-one, the general model reduces to this

model after a change of variables.
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have a PLM in which they model the solution as simply a constant (or as a con-
stant plus unpredictable noise), and therefore follow the adaptive learning rules
discussed in the last chapter. The condition F ′(ŷ) < 1 can be interpreted as the
E-stability condition for this form of PLM.

A perfect-foresight 2-cycle is defined by yt = ŷ1 if t is odd and by yt = ŷ2

if t is even, where

ŷ1 = F(ŷ2) and ŷ2 = F(ŷ1).

We will consider adaptive learning rules appropriate for the case in which the
agents have a PLM that allows for a 2-cycle. One simple and natural rule is to
estimate separately the values taken by yt in even and odd periods.3 Whether
this learning rule converges to a perfect-foresight 2-cycle is determined by the
E-stability condition for the corresponding PLM. If the PLM is yt = y1 for t
odd and yt = y2 for t even, then it is easily seen that the corresponding ALM
is yt = F(y2) for t odd and yt = F(y1) for t even. This yields the T -map from
PLM to ALM4

T (y1, y2)=
(
F(y2),F (y1)

)
,

with derivative at (ŷ1, ŷ2) given by

DT =
(

0 F ′(ŷ2)

F ′(ŷ1) 0

)
.

It is easily verified that the roots of DT have real parts less than 1 if and only if
F ′(ŷ1)F

′(ŷ2) < 1. This provides the E-stability condition for perfect-foresight
2-cycles.

Next consider 2-state Markov sunspot solutions. These were introduced in
Section 4.6.3 of Chapter 4, and we first recall the equations defining them. Let
st ∈ {1,2} denote an exogenous 2-state Markov process with transition probabil-
ities 0 <πij < 1, i, j = 1,2. Here πij is the probability that st+1 = j given that
st = i, and of course π12 = 1− π11 and π21 = 1− π22. A (2-state) stationary
sunspot equilibrium (SSE) is a process yt = y∗1 if st = 1 and yt = y∗2 if st = 2

3A natural alternative would be to estimate separately the values of F(yt ) in odd and even
periods. This rule has the same local stability properties.

4For convenience in this chapter we often use row vectors instead of column vectors.
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that satisfies equation (12.2), i.e., such that

y∗1 = π11F
(
y∗1
)+ (1− π11)F

(
y∗2
)
,

y∗2 = (1− π22)F
(
y∗1
)+ π22F

(
y∗2
)
.

(12.3)

Using the implicit function theorem, we will show that SSEs exist near certain
deterministic solutions. We here emphasize two results, which hold under suit-
able regularity conditions:

(i) Let (ŷ1, ŷ2) denote a nontrivial 2-cycle, i.e., with ŷ1 �= ŷ2. Then there exist
SSEs (y∗1 , y∗2 ) near (ŷ1, ŷ2) with transition probabilities π11,π22 close to
zero.

(ii) Let ŷ1 and ŷ2 be distinct steady states, i.e., with ŷ1 �= ŷ2. Then there exist
SSEs (y∗1 , y∗2 ) near (ŷ1, ŷ2) with transition probabilities π11,π22 close to 1.

As we later discuss, there may also exist SSEs near a single steady state.
We now consider adaptive learning rules in which the agents have a PLM

which allows for the possibility of an SSE. One natural procedure would be
for agents to compute separate averages for the values that yt has taken when
st = 1 and when st = 2. Again, we will show that whether this learning rule
converges to an SSE is determined by the corresponding E-stability conditions.
We therefore consider the PLM yt = y1 if st = 1 and yt = y2 if st = 2. The
T -map from the PLM to the ALM is then given by

T (y1, y2)=
(
π11F(y1)+ (1− π11)F (y2), (1−π22)F (y1)+ π22F(y2)

)
,

and an SSE is E-stable if both roots of DT (y∗1 , y∗2 ) have real parts less than 1.
From this one can show the following:

(i) an SSE near a 2-cycle is E-stable if F ′(ŷ1)F
′(ŷ2) < 1, and

(ii) an SSE near a pair of distinct steady states is E-stable if both F ′(ŷ1) < 1
and F ′(ŷ2) < 1.

Thus SSEs near 2-cycles or a pair of distinct steady states inherit the local sta-
bility properties under learning of the corresponding perfect-foresight solutions.

We now turn to a systematic analysis. We first analyze learning for cyclical
solutions and then turn to the analysis of learning sunspot equilibria.
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12.3 Deterministic Cycles

In the preceding chapter we noted that, besides steady states, simple OG models
can exhibit perfect-foresight cycles, and Figure 11.1 of Chapter 11 illustrated the
possibility of cycles in the basic Samuelson model.5 In this model the economic
intuition for the possibility of k-cycles rests on income and substitution effects.
If the income effect is sufficiently large, the function F will be downward slop-
ing over part of the range, and this makes cycles possible. Heuristically, the real
wage is pt/pt+1, since labor is sold at price pt in year t and goods are bought at
price pt+1 in year t + 1. The budget constraint yields the quantity theory equa-
tion pt+1 =M/nt+1, so that high levels of aggregate employment correspond to
years of low prices. In a 2-cycle, employment is, say, a high value n̂2 in even pe-
riods and a low value n̂1 in odd periods. Then the real wage is pt/pt+1 = n̂1/ n̂2

if t is even (and the real wage is pt/pt+1 = n̂2/ n̂1 if t is odd). Thus in even
(odd) periods, employment is high (low) because the real wage is low (high),
inducing more (less) work, given the strong income effect.

The issue of conditions for the existence of k-cycles is one we shall omit;
see Grandmont (1985) and Guesnerie and Woodford (1991) for a discussion.

From Figure 11.1, it is apparent that k-cycles can coexist with steady states,
so that there are multiple perfect-foresight solutions. This is a general phe-
nomenon, reflecting a well-known mathematical result which we do state.6

Sarkovski’s Theorem. Let f be a continuous map of the unit interval into it-
self. Consider the following ordering of the positive integers:

3 � 5� 7� · · ·
� 2 · 3� 2 · 5� 2 · 7� · · ·
· · ·

� 2n · 3� 2n · 5� 2n · 7� · · ·
� · · · � 2m � · · · � 8� 4� 2� 1.

If f has a cycle of period p and p � q in the above ordering, then f has a cycle
of period q .

In particular, if f has a cycle of period 3, then it has cycles of all orders. It
can be shown, see Grandmont (1985), that for appropriate utility functions we

5Example 1 of Section 12.5.1 repeats some of the details of the model.
6For a discussion see Azariadis (1993, p. 107) or Guesnerie and Woodford (1991, p. 357).
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can get 3-cycles in the basic OG model, and Figure 11.1 has been drawn for this
case. Note that in general, whenever there are cycles in the OG model, there are
multiple equilibria, so that the role of learning as a selection criterion becomes
important.

To introduce a recursive formulation of learning for cycles, we again con-
sider 2-cycles in the basic nonstochastic model (12.2) of the preceding section.
In that section we alluded to learning based on separate averaging of the values
of yt in odd and even periods. However, in order to anticipate learning rules in
the more general stochastic model (12.1), we will now instead consider learn-
ing based directly on the values of F(yt ), the quantity agents are attempting to
forecast. Thus let these forecasts be given by F(yt+1)

e = θ1,t if t + 1 is odd and
F(yt+1)

e = θ2,t if t + 1 is even. We assume that agents average the past data
F(yt−i) for even and odd periods separately. To set up the system recursively,
we take the data in successive pairs, indexed by s, so that t = 2s+ i for i = 1,2.
Letting θs = (θ1,s, θ2,s) for s = 1,2,3, . . . , the separate averaging can then be
represented as

(
θ1,s

θ2,s

)
=
(
θ1,s−1

θ2,s−1

)
+ γs

(
F(y2(s−1)+1)− θ1,s−1

F(y2(s−1)+2)− θ2,s−1

)
.

This algorithm can be analyzed using the techniques in Section 7.2 of Chap-
ter 7. We will show that a 2-cycle (ŷ1, ŷ2) is stable under this learning rule
if and only if the previously obtained E-stability condition F ′(ŷ1)F

′(ŷ2) < 1
is satisfied (ruling out the special case where the product is exactly equal
to 1).

This analysis can be readily generalized for k-cycles (ŷ1, . . . , ŷk). If agents
have a PLM which allows for k-cycles, they are assumed to form separate
averages of F(yt−i) for the k different phases of the cycle. We will see
that for k > 2, a necessary condition for stability under this learning rule is
that

F ′(ŷ1) . . .F
′(ŷk) < 1.

The formal discussion of this case will be treated as a special case of noisy
cycles, to which we now turn. We begin with the definition of stochastic
(or noisy) cycles, after which the analysis of stability of such cycles under
learning is developed. We then present necessary and sufficient conditions for
local stability under learning and interpret these conditions in terms of E-
stability.
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12.4 Noisy Cycles

We now consider the general class of models (12.1). For this model a rational
noisy k-cycle is a stochastic process of the form

yt = yi(vt ) for t modk = i, i = 1, . . . , k− 1, (12.4)

yt = yk(vt ) for t modk = 0,

where the k functions yi(vt ) satisfy

yi(vt ) = H
(
EG(yi+1(vt+1), vt+1), vt

)
for t modk = i,

i = 1, . . . , k− 1,

yk(vt ) = H
(
EG(y1(vt+1), vt+1), vt

)
for t modk = 0. (12.5)

Since a rational noisy k-cycle is a stochastic process, it will have alterna-
tive sample paths. Nevertheless, in a noisy rational k-cycle the expectations
G(yt+1, vt+1)

e follow a deterministic cycle. We will use the notation

θ̄i =EG
(
yi(vt ), vt

)
, i = 1, . . . , k.

Thus, in a rational noisy k-cycle,

EtG
(
yt+1(vt+1), vt+1

)={
θ̄i+1 if t modk = i for i = 1, . . . , k− 1,

θ̄1 if t modk = 0.

Using the fact that vt is iid, note that yi(vt )=H(θ̄i+1, vt ) for i = 1, . . . , k− 1,
and yk(vt ) = H(θ̄1, vt ). It follows that a rational noisy k-cycle is equivalently
defined by (θ̄1, . . . , θ̄k) such that

θ̄i = EG
(
H(θ̄i+1, vt ), vt

)
for i = 1, . . . , k− 1, (12.6)

θ̄k = EG
(
H(θ̄1, vt ), vt

)
.

By setting the noise to zero, we formally obtain the deterministic case:

θ̂i = G
(
H(θ̂i+1,0),0

)
for i = 1, . . . , k− 1,

θ̂k = G
(
H(θ̂1,0),0

)
.

To conclude the definitions, we note here that for the case of small noise,
it is possible to prove the existence of these noisy cycles in the same sense
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as was done in Chapter 11 for stochastic steady states. Evans and Honkapohja
(1995c) provide the precise formulation of the result and the required regularity
conditions.

To formulate learning for noisy k-cycles, we consider the notion that agents
believe they are in a noisy k-cycle and attempt to estimate the mean value of
G(yt , vt ) at the different points in the cycle. Since vt is iid, in an RE noisy
k-cycle, the values of G(yt , vt ) are independently distributed across time and
are identically distributed for the same values of t modk. A natural estimator of
(θ1, . . . , θk) is then given by separate sample means for each stage of the cycle:

θi,t =
(
#Ni(t)

)−1 ∑
j∈Ni(t)

G(yj , vj ), (12.7)

where
Ni(t) =

{
j = 1, . . . , t | t modk = i

}
for i = 1, . . .k− 1,

Nk(t) =
{
j = 1, . . . , t | t modk = 0

}
.

Here, #Ni(t) denotes the cardinality of the setNi(t), i.e., the number of elements
in the set. Equation (12.7) can also be put into recursive form, though this is less
straightforward than for steady states for which k = 1. The key is to take the
data in k-tuples. Thus let

t = sk+ i, i = 1, . . . , k,

where s is a nonnegative integer, and for positive s define

yi,s = yk(s−1)+i and vi,s = vk(s−1)+i ,

for i = 1, . . . , k. The recursive form of the learning rule can then be written as θ1,s
...

θk,s

 =
 θ1,s−1

...

θk,s−1

+ γs

G(y1,s, v1,s)− θ1,s−1
...

G(yk,s, vk,s)− θk,s−1

 , (12.8)

θi,s = G
(
yks+i, vks+i

)e
, (12.9)

where γs is a positive decreasing-gain sequence with the usual assumptions.7

7Guesnerie and Woodford (1991) consider essentially the same rule for γs = γ , a fixed
0< γ ≤ 1. (They consider a nonstochastic system.)
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The system under learning dynamics8 is given by equations (12.8), (12.1),
and (12.9). It is apparent that these equations define a stochastic recursive al-
gorithm, and it is not hard to show that they can be put into the standard form.
Letting θs = (θ1,s, . . . , θk,s) and vs = (v1,s , . . . , vk,s), this can be written as

θs = θs−1 + γs
(
M(θs−1, γs, vs)− θs−1

)
, (12.10)

where

M(θs−1, γs, vs)=
(
M1(θs−1, γs, vs), . . . ,Mk(θs−1, γs, vs)

)
,

with the components Mi = G(yk(s−1)+i, vk(s−1)+i) expressed as functions of
(θs−1, γs, vs). The components are explicitly given as

Mi(θs−1, γs, vs) = G
(
H(θi+1,s−1, vi,s ), vi,s

)
for i = 1, . . . , k− 1,

Mk(θs−1, γs, vs) = G
(
H
(
θ1,s−1

+γs
(
G
(
H(θ2,s−1, v1,s), v1,s

)− θ1,s−1
)
, vk,s

)
, vk,s

)
.

Here the last component was obtained by substitution for θ1,s into G(H(θ1,s,

vk,s), vk,s) and using yk(s−1)+1 = H(θ2,s−1, v1,s). Thus the possible conver-
gence of (θ1,s, . . . , θk,s) to an REE noisy k-cycle can be analyzed using the
associated differential equation. We will come back to this issue after defining
the concept of E-stability for k-cycles.

The notion of E-stability for cycles is formulated as follows. Although in
a noisy k-cycle the solution is given by k functions, yi(vt ), i = 1, . . . , k, what
matters to the agents are only the expected values of G(yt+1, vt+1). If agents
believe they are in a noisy k-cycle, then their PLM is adequately summarized by
a vector θ = (θ1, . . . , θk), where

θi = G(yt , vt )
e if t modk = i, for i = 1, . . . , k− 1,

θk = G(yt , vt )
e if t modk = 0.

If agents held these (in general nonrational) perceptions fixed, then the economy
would follow an actual (generally nonrational) k-cycle

yt = H
(
θi+1, vt

)
if t modk = i, for i = 1, . . . , k− 1,

yt = H
(
θ1, vt

)
if t modk = 0.

8Note that for k > 1, the issue of simultaneity between G(yt+1, vt+1)
e and yt does not arise.
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The corresponding parameters θ∗ = (θ∗1, . . . , θ∗k ) of the ALM induced by the
PLM are given by the expected values of G(yt , vt ) under this law of motion:

θ∗i = EG
(
H(θi+1, vt ), vt

)
if t modk = i, for i = 1, . . . , k− 1,

θ∗k = EG
(
H(θ1, vt ), vt

)
if t modk = 0.

In other words, the mapping θ∗ = T (θ) from the PLM to the ALM is given by

T (θ)= (
R(θ2), . . . ,R(θk),R(θ1)

)
,

where

R(θi)=E
(
G(H(θi, vt ), vt )

)
,

assuming k > 1. The differential equation defining E-stability is

dθ/dτ = T
(
θ(τ )

)− θ(τ ). (12.11)

It is easily verified using equation (12.6) that fixed points of T (θ), i.e., zeros
of equation (12.11), correspond to REE noisy k-cycles. An REE noisy k-cycle
θ̄ is said to be E-stable if equation (12.11) is locally asymptotically stable at
θ̄ . As in other contexts, E-stability is a disequilibrium stability concept which
determines whether an REE is stable under a stylized learning rule in which θ

is adjusted “slowly” toward the actual θ∗ generated by θ. As we show below, E-
stability turns out to govern convergence under the real-time adaptive learning
rules described in the previous section.

Proposition 12.1. Consider an REE noisy k-cycle of the model (12.1) with ex-
pectation parameters θ̄ = (θ̄1, . . . , θ̄k). Let

ξ =
k∏
i=1

R′(θ̄i).

Then θ̄ is E-stable if and only if

ξ < 1 if k = 2,

−(cos(π/k)
)−k

< ξ < 1 if k > 2.
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Proof. For E-stability we need that the eigenvalues of DT (θ̄) have real parts
less than 1. The eigenvalues of

DT (θ̄)=


0 R′(θ̄2) 0 0 · · · 0
0 0 R′(θ̄3) 0 · · · 0

...

0 · · · 0 R′(θ̄k)
R′(θ̄1) 0 · · · 0


are the kth roots of ξ. If ξ > 0, the largest real part is the positive real root
ξ1/k yielding the condition ξ < 1. If ξ < 0, a root with greatest real part is
|ξ |1/k exp(iπ/k), from which the result follows. [See Evans and Honkapohja
(1995c) for some further details of the proof. ]

Recall from Proposition 11.1, Chapter 11, that a noisy steady state θ̄ is E-
stable if T ′(θ̄) < 1, where T (θ) = R(θ) = E(G(H(θ), vt ), vt ). Then clearly,
ξ =R′(θ) < 1 is also the E-stability condition for the case k = 1.

In fact, we will refer to the conditions described in Propositions 11.1
and 12.1 more specifically as weak E-stability conditions for reasons which we
now present.

12.4.1 Weak and Strong E-Stability

E-stability (and stability under adaptive learning) is always defined relative to
some specified class of perceived laws of motion. Thus, in general, the stability
of an REE can depend on the class of learning rules considered. This often leads
to a useful distinction between weak and strong stability, where the latter concept
allows for a wider class of perceived laws of motion which overparameterize the
REE being considered. In the context of k-cycles, this distinction arises naturally
as follows.

A k-cycle can always be regarded as a degenerate nk-cycle for any integer
n > 1. Thus the 2-cycle (θ̄1, θ̄2) is also a 4-cycle taking values (θ̄1, θ̄2, θ̄1, θ̄2), a
6-cycle taking values (θ̄1, θ̄2, θ̄1, θ̄2, θ̄1, θ̄2), etc. Define k as the primitive period
of the cycle if it is not an m-cycle for any order m < k (e.g., the primitive
period is 2 in the example just given if θ̄1 �= θ̄2). Consider now a noisy k-cycle
REE of the model (12.1) with primitive period k and expectation parameters
θ̄ = (θ̄1, . . . , θ̄k). Then we say that θ̄ is strongly E-stable if it is E-stable when
regarded as an nk-cycle for every positive integer n. θ̄i is said to be weakly
E-stable but not strongly E-stable if it is E-stable when regarded as a k-cycle but
not when regarded as an nk-cycle for some integer n > 1. Conditions for strong
E-stability are given by the following result.
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Proposition 12.2. Consider an REE noisy k-cycle of the model (12.1), with
primitive period k ≥ 1, and with expectation parameters θ̄ = (θ̄1, . . . , θ̄k). θ̄

is strongly E-stable if and only if |ξ |< 1.

Proof. Use the results of Proposition 12.1, but now treat the REE as an nk-
cycle. The upper inequality of the E-stability condition becomes ξn < 1, which
holds for all positive integer n if and only if |ξ |< 1, and the lower inequality in
the condition is then automatically satisfied.

This condition can be compared to the Guesnerie and Woodford (1991)
conditions for nonstochastic models and fixed adaption parameter. The strong
E-stability condition is identical to their sufficient condition for stability for all
constant gains 0< γ ≤ 1.

Returning to Example 3 of Section 11.5, Chapter 11, let the support of the
shock be α = 0.3. Then numerical computations easily verify that the steady
state is now θ̄ = 0.661 with T ′(θ̄) = −1.028. This means that the steady state
is no longer strongly stable under learning, though it continues to be weakly
stable. Thus it is stable under learning when regarded as a steady state but not
stable under learning when agents use a PLM which allows for a possible 2-
cycle. The example shows that for nonlinear models, the probability distribution
of the shock term can have an influence on the stability conditions. (Note that
this is not the case in linear models of Chapter 8.)

12.4.2 Convergence Results

We can now use the E-stability conditions to state the convergence results for
the dynamic system under adaptive learning as specified by equations (12.8),
(12.1), and (12.9) if k > 1 or simply equation (11.6) if k = 1. Because we have
set up the system as a stochastic recursive algorithm, we need only verify that
the required conditions described in Chapter 6 are met and derive the associated
differential equation.

In the case of noisy k-cycles, we consider equation (12.10). Again the tech-
nical conditions are fairly straightforward and we need to compute the associated
differential equation

dθ/dτ = lim
s→∞EM(θ,γs, vs)− θ.

Taking the individual components in turn (and for the kth component interchang-



Cycles and Sunspot Equilibria 299

ing expectations and limits), one obtains

dθ/dτ = T (θ)− θ,

where
T (θ) = (

R(θ2), . . . ,R(θk),R(θ1)
)

and

R(θi) = E
(
G
(
H(θi, vt ), vt

))
.

That is, we obtain the differential equation defining E-stability for noisy k-
cycles.

Using the results on the convergence of recursive stochastic algorithms from
Chapter 6, it is now possible to state various convergence results. For example,
we have the following.

Proposition 12.3. Consider an REE noisy k-cycle of the model (12.1), with
primitive period k, and with expectation parameters θ̄ = (θ̄1, . . . , θ̄k). Suppose
that θ̄ is weakly E-stable. Then θ̄ is locally stable under adaptive learning. If
instead θ̄ is not weakly E-stable, then θs converges to θ̄ with probability 0.

As already noted, the deterministic case is formally included by setting vt ≡
0, and then under perfect-foresight we can define

yt = F(yt+1), where

F(y) ≡ H
(
G(y,0),0

)
.

It follows that the E-stability condition for this case is determined in terms of
the quantity

ξ = F ′
(
ŷ1
)
F ′
(
ŷ2
) · · ·F ′(ŷk)

for a perfect-foresight k-cycle (ŷ1, . . . , ŷk).

It was pointed out earlier that noisy k-cycles exist nearby a perfect-foresight
k-cycle if the noise is sufficiently “small” in the sense of a sufficiently small sup-
port. By continuity, it can be shown that in this case the E-stability conditions are
“inherited” from the perfect-foresight case. In other words, if the deterministic
k-cycle is E-stable, then noisy k-cycles which are sufficiently near to it are also
E-stable. Finally, for small enough noise, it is also possible to show convergence
from nearby initial points with probability 1 without a projection facility. The
formal details of these results are discussed in Evans and Honkapohja (1995c).

In summary, the results of this section are immediately applicable to both
the standard deterministic OG model and to noisy versions allowing for intrinsic
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shocks. Local stability of steady states or cycles (and of noisy steady states or
noisy cycles) is determined by the weak and strong E-stability conditions given
by Propositions 11.1, 12.1, and 12.2.

12.5 Existence of Sunspot Equilibria

We now start to analyze the stability of sunspot equilibria under adaptive learn-
ing. We first look at the existence of sunspot equilibria by focusing on a few
central results in simplified forms. Here our discussion will on purpose be brief,
given that extensive treatments are available in the literature.9 Our main objec-
tive is to consider the circumstances in which economic agents might learn to
believe in such equilibria. This possibility was first shown by Woodford (1990).
In specific models a multitude of these solutions can exist, and we therefore
study the selection of equilibria, i.e., derive conditions for the local stability of
sunspot solutions under adaptive learning rules.

For simplicity we will use the framework (12.2) without intrinsic noise.
This is the most common framework adopted in practice for nonlinear models.
We will, however, also provide the stability conditions for the general framework
(12.1), which is analyzed formally in Evans and Honkapohja (1998a).

The definition of a sunspot equilibrium involves the basic idea that eco-
nomic agents in the model condition their expectations on some (random) vari-
able st which otherwise does not have any influence on the model economy.
Though different types of sunspot solutions have been considered in the litera-
ture, we will focus here on REEs that take the form of a finite Markov chain.
Clearly, since rational expectations involve conditional expectations, a Marko-
vian setup is in general the most obvious one to consider. Postulating a finite
state space is then a further simplification in the analysis.

For most of the analysis, we go even further in this direction by assuming,
as in Section 12.2, that the extraneous random variable is a two-state Markov
chain with a constant transition matrix �= (πij ), 0< πij < 1, for i, j = 1,2.10

A (two-state) stationary sunspot equilibrium (SSE) with transition probabilities
πij is then defined by a pair (y∗1 , y∗2 ) which satisfies equations (12.3). These
equations have the geometric interpretation that the two values (y∗1 , y∗2 ) must be
convex combinations of F(y∗1 ) and F(y∗2 ). This observation immediately gives
the result:

9See Chiappori and Guesnerie (1991) and Guesnerie and Woodford (1992) for recent surveys.
10Guesnerie and Woodford (1992) discuss possible interpretations of st .
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Proposition 12.4. For two points y∗1 and y∗2 , assume F(y∗1 ) < F(y∗2 ). There
exist 0<πij < 1 such that (y∗1 , y∗2 ) is an SSE with transition probabilities πij if
and only if the points y∗1 and y∗2 both lie in the open interval (F (y∗1 ),F (y∗2 )).

This result can be used to construct examples of SSEs in economic models.
It is important to emphasize that two points y∗1 and y∗2 need not in general be
near any deterministic equilibria.

A large part of the literature has focused on the existence of SSEs in small
neighborhoods around deterministic cycles or steady states for model (12.2). To
make this notion precise, we say that an SSE y = (y1, y2) is an ε-SSE relative to
ŷ = (ŷ1, ŷ2) if y lies in an ε-neighborhood of ŷ. For a local analysis, it is conve-
nient to use the implicit function technique. For this purpose, define the vectors
y = (y1, y2), π = (π11,π22), and the function g(y,π) = (g1(y,π), g2(y,π)),
where

g1(y,π) = π11F(y1)+ (1− π11)F (y2)− y1,

g2(y,π) = (1− π22)F (y1)+ π22F(y2)− y2.

The equations (12.3) can then be written compactly as the vector equation

g(y,π)= 0.

To be able to use the implicit function theorem, we need det(gy) �= 0, where

gy =
(

π11F
′(y1)− 1 (1− π11)F

′(y2)

(1− π22)F
′(y1) π22F

′(y2)− 1

)
,

for the existence of ε-SSEs near deterministic equilibria.
A deterministic equilibrium 2-cycle is a limiting case of an SSE when

π11,π22 → 0. Consider thus the case of an equilibrium 2-cycle (ŷ1, ŷ2) such
that ŷ1 = F(ŷ2) and ŷ2 = F(ŷ1). Evaluating det(gy) at (ŷ1, ŷ2),π = (0,0),
it is easy to check that SSEs exist in a neighborhood of the 2-cycle, provided
F ′(ŷ1)F

′(ŷ2) �= 1. Similarly, a pair of distinct steady states, i.e., a pair (ŷ1, ŷ2)

satisfying ŷ1 �= ŷ2, ŷ1 = F(ŷ1) and ŷ2 = F(ŷ2) is a limiting case of SSEs with
π11,π22 → 1. One evaluates det(gy) at (ŷ1, ŷ2),π = (1,1). A quick computa-
tion yields the existence of ε-SSEs in a neighborhood of a pair of distinct steady
states if F ′(ŷ1) �= 1 and F ′(ŷ2) �= 1 at (ŷ1, ŷ2). We collect these results into the
following.

Proposition 12.5. (i) If F ′(ŷ1)F
′(ŷ2) �= 1 holds for a 2-cycle (ŷ1, ŷ2), there is

an ε > 0 such that, for all 0< ε′ < ε, there exists an ε′-SSE relative to (ŷ1, ŷ2).
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(ii) If F ′(ŷ1) �= 1 and F ′(ŷ2) �= 1 at a pair of distinct steady states (ŷ1, ŷ2),
there is an ε such that, for all 0 < ε′ < ε, there exists an ε′-SSE relative to
(ŷ1, ŷ2).

For an illustration of an SSE near a pair of distinct steady states, see Figure
4.7 of Chapter 4. SSEs can also exist near a single steady state ŷ = F(ŷ) under
some conditions. The implicit function technique is unhelpful in this case as
gπ = 0. One can nevertheless use a direct argument based on Proposition 12.4;
see Evans and Honkapohja (1994c) for details of the proof. This yields the result:

Proposition 12.6. There is an ε > 0 such that, for all 0< ε′ < ε, there exists an
ε′-SSE relative to a single steady state ŷ if and only if |F ′(ŷ)|> 1.

To conclude the general discussion on the existence of SSEs, we remark
here that for fully specified models it is sometimes possible to utilize arguments
based on global analysis (such as the index theorem of Poincare and Hopf) to
prove the existence of SSEs. This argument was developed in Azariadis and
Guesnerie (1982), Azariadis and Guesnerie (1986), and Spear (1984). We do
not go into details here.

We next provide several examples of SSEs in various versions of the over-
lapping generations (OG) model.

12.5.1 Examples: OG Models

Example 1. The Basic OG Model. The basic building blocks for this model
were developed in Section 4.2 of Chapter 4. As before, the economy consists of
identical generations of identical agents who live each for two periods. Agents
work when they are young and consume when old. The utility function of an
agent in generation t takes the form U(ct+1)− V (nt ), where ct+1 is consump-
tion at old age and nt is labor supply. There is a constant stock of money M

and money is the only means of saving the revenue obtained from working. The
budget constraints are ptnt = mt = pt+1ct+1, where mt is nominal saving by
the representative agent of generation t .

Letting pt denote the price of the good and assuming an interior solution,
the first-order condition for utility maximization takes the form

E∗t
[
U ′

(
ptnt

pt+1

)(
pt

pt+1

)
− V ′(nt )

]
= 0,

where E∗t denotes the subjective expectation over (the random variable) pt+1 by
the agent.
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An REE is achieved by requiring that (i) desired savings are equal to the
existing amount of money, ∀t : mt =M , and (ii) the subjective expectations of
the agents are true conditional expectations of future prices given information at
time t , i.e., ∀t : E∗t (·)=Et(·). The information set is assumed to include current
values of the endogenous variables. For simplicity we formulate the analysis
in terms of employment nt . Noting that the equilibrium condition ptnt = M

implies pt/pt+1 = nt+1/nt , an REE can be defined as a (possibly random) se-
quence of labor inputs {nt } satisfying

Et

(
U ′(nt+1)nt+1

)− V ′(nt )nt = 0.

If agents do not necessarily have rational expectations but it is known that prices
will clear markets each period, we obtain a corresponding equation character-
izing the temporary equilibrium in any period t, given subjective expectations,
namely,

V ′(nt )nt =E∗t
(
U ′(nt+1)nt+1

)
.

This equation states that current labor supply depends on the expectations of the
(marginal utility) value of labor supply/output next period. Given the properties
of V (·), this equation can be solved for nt to yield

nt =W−1[E∗t (G(nt+1)
)]
, (12.12)

where W(n)= V ′(n)n and G(n)=U ′(n)n. Alternatively, defining y = V ′(n)n,
we can write the equation for a temporary equilibrium in the form yt =
E∗t (F (yt+1)), where F =G ◦W−1.

Depending on the specification of the utility of consumption U(·) and disu-
tility of labor V (·), the mapping F(·) can take various forms, and different types
of REE are possible, including stationary sunspot equilibria. Using the existence
results above, it is easy to construct examples of SSEs near a steady state and a
deterministic cycle. The situation is best described with the aid of the offer curve

nt =W−1(G(nt+1)
)≡F(nt+1), (12.13)

which characterizes the possible perfect-foresight (nonstochastic) time paths in
the (nt+1, nt )-space. Suppose now that in the Samuelson model the offer curve
is downward sloping at the interior steady state n̄ with F ′(n̄) <−1. (In this case
the steady state is called locally indeterminate, since there exists a continuum
of dynamic paths converging to it.) Then by Proposition 12.6 above, there exist
ε-SSEs in the vicinity of n̂.
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After the work of Grandmont (1985), the existence of deterministic cycles
has been much studied in the case of utility functions U(c) = (c + c̃)α1 and
V (n) = −(ñ− n)α2 , where ñ is the initial endowment of labor and c̃ is a con-
sumption good endowment of the old. With suitable values for the parameters
α1 and α2, this case can lead to the existence of cycles of different order. Propo-
sition 12.5(i) above then yields the existence of ε-SSEs near such deterministic
cycles.

Example 2. Money-Financed Government Deficits. In Section 11.6.2 of
Chapter 11, we developed the extension of the basic OG model, where it is
assumed that the government buys a positive constant amount g of output from
the young and finances its purchases by printing money.11 The equation for the
offer curve can be written in the form (11.14), which with constant government
purchases is

ntV
′(nt )=U ′(nt+1 − g)(nt+1 − g). (12.14)

This offer curve was graphed in Figure 11.3 in Chapter 11. If we suppose that
with g = 0 the offer curve is upward sloping, a steady state with autarky (no
trade) exists in addition to an interior steady state. Then the effect of g > 0 is
to shift the offer curve (12.14) downward. This shift creates two interior steady
states as was illustrated in Figure 11.3. Using Proposition 12.5(ii), it is evident
that with two interior steady states, sunspot equilibria near them, i.e., ε-SSEs,
are possible near the distinct steady states.

Example 3. The Model with Increasing Social Returns. A different general-
ization of the basic OG model incorporating increasing social returns to pro-
duction was developed in Section 4.6 of Chapter 4. This model often has three
interior steady states, so that by Proposition 12.5(ii), there exist sunspot solu-
tions, i.e., ε-SSEs, near any pair of distinct steady states, verifying the earlier
discussion of such equilibria in Chapter 4.

12.6 Learning SSEs

12.6.1 Formulation of the Learning Rule

We now start to model learning rules that can in principle enable agents’ expec-
tations to converge to an SSE. If agents believe that the economy is in an SSE,

11This is a special case of the models studied by Grandmont (1986).
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a natural estimator for the value of yt in the two different sunspot states is the
computation, for each state of the sunspot process in the past, of the average of
the observations of yt that have arisen in that state of the sunspot st . Through-
out our discussion we are assuming that the state is observed at t . We remark
that alternatively learning could be formulated in terms of estimating the values
of F(yt ) in the two different states, as was done in Section 4.6.4 of Chapter 4.
Although these procedures are not identical, they have the same local stability
properties.

Thus let φt = (φ1t , φ2t ) be the estimates of the values that yt takes in states
1 and 2 of the sunspot. Let alsoψjt = 1 if st = j and 0 otherwise be the indicator
function for state j of the sunspot. Clearly, ψ2t = 1− ψ1t . Then we can write
the learning rules based on state-contingent averaging in the following form:

φjt = φj,t−1 + t−1ψj,t−1q
−1
j,t−1(yt−1− φj,t−1 + εt−1), (12.15)

qjt = qj,t−1 + t−1(ψj,t−1 − qj,t−1),

yt = ψ1t
[
π11F(φ1t )+ (1− π11)F (φ2t )

]
+ψ2t

[
(1− π22)F (φ1t )+ π22F(φ2t )

]
,

for j = 1,2. We note here that in the learning rules, agents are assumed to use
observations only through period t − 1. This is to avoid a simultaneity between
yt and expectations F(yt+1)

e.
Equations (12.15) are interpreted as follows. tqj,t−1 is the number of times

state j has occurred up to time t − 1. The recursion for the fraction of obser-
vations of state j is the second equation in (12.15). The first equation is then
a recursive form for the state averages, with one modification to be discussed
shortly. Finally, the third equation in (12.15) gives the temporary equilibrium for
the model, since the right-hand side is the expectation of the value of F(yt+1)

given the forecasts φjt . In this formulation we implicitly assume that the agents
know the transition probabilities πij .

The modification in the learning rule mentioned above is that we have in-
cluded a random disturbance εt to the algorithm. It can be interpreted as a mea-
surement or observation error, and it is assumed to be iid with mean zero and
bounded support (|εt |<C,C > 0, with probability 1).12

12.6.2 Analysis of Convergence

We now show that, under a stability condition developed below, the learning
rule (12.15) above converges locally to an SSE. We utilize the local conver-

12The observation error is needed only for the instability result. C > 0 can be arbitrarily small.
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gence results in Chapters 6 and 7. The key stability condition will, as usual, be
interpreted as E-stability conditions. First introduce the variables

θ ′t = (φ1t , φ2t , q1t , q2t ),

X′t = (ψ1,t−1,ψ2,t−1, εt−1),

and the functions

Hj(θt−1,Xt ) = ψj,t−1q
−1
j,t−1(yt−1 − φj,t−1 + εt−1), j = 1,2,

H2+i(θt−1,Xt ) = ψi,t−1 − qi,t−1, i = 1,2.

For state dynamics, we note simply that Xt is a Markov process independent
of θt . The system is then in the standard form (6.3) for recursive algorithms.
[Note that the complementary term ρt (θt−1,Xt )≡ 0.] For the formal analysis,
this requires an extension of the basic conditionally linear framework of Chap-
ter 6 to non-iid shocks or alternatively to Markovian state dynamics treated in
Chapter 7. The formal details are given in Evans and Honkapohja (1994c) for
the former approach and Evans and Honkapohja (1998a) for the latter.

The associated ODE governing local convergence is dθ/dτ = h(θ), where

h1(θ) = π̄1q1
[
π11F(φ1)+ (1− π11)F (φ2)− φ1

]
,

h2(θ) = π̄2q2
[
(1− π22)F (φ1)+ π22F(φ2)− φ2

]
,

h3(θ) = π̄1 − q1,

h4(θ) = π̄2 − q2.

Here (π̄1, π̄2) is the limiting distribution of the states of the Markov chain.
Clearly, at the equilibrium point q1 = π̄1, q2 = π̄2, and (φ1, φ2) is an SSE. In
the ODE θ̇ = h(θ), the subsystem consisting of the last two components of h(θ)
is independent of (φ1, φ2) and it is globally stable in the domain qi ∈ (0,1),
i = 1,2. It follows that the entire ODE is locally stable provided DT (φ1, φ2)

has all eigenvalues with real parts less than 1, where

T (φ1, φ2) =
(
π11F(φ1)+ (1− π11)F (φ2),

(1− π22)F (φ1)+ π22F(φ2)
)
.

(12.16)

Note that the function T (φ1, φ2)= [T1(φ1, φ2), T2(φ1, φ2)] defines the mapping
from the perceived law of motion [yt+1 = φ1 if st+1 = 1, yt+1 = φ2 if st+1 = 2]
to the actual law of motion [yt+1 = φ∗1 if st+1 = 1, yt+1 = φ∗2 if st+1 = 2],
where (φ∗1 , φ

∗
2 )= T (φ1, φ2). The condition on the eigenvalues can thus be used

to define the concept of E-stability for sunspot equilibria.
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We have completed the proof of the result:

Proposition 12.7. The learning rule (12.15) converges locally to an SSE
(y∗1 , y∗2 ) provided it is weakly E-stable, i.e., the eigenvalues of DT (y∗1 , y∗2 ) have
real parts less than 1.

Remark. The notion of convergence is that of Chapter 6, Theorem 6.5. If the
algorithm is augmented with a projection facility, almost sure convergence ob-
tains.

It is also possible to derive an instability result along the lines of Evans and
Honkapohja (1994c) for SSEs which are not weakly E-stable:

Proposition 12.8. Suppose that an SSE (y∗1 , y∗2 ) is weakly E-unstable, i.e.,
DT (y∗1 , y∗2 ) has an eigenvalue with real part greater than 1. Then the learn-
ing dynamics (12.15) converges to (y∗1 , y∗2 ) with probability zero.

The stability result can also be developed for the general model (12.1) men-
tioned in the beginning of this chapter. We can at the same time extend our
analysis to the case of a K-state Markov chain specified by an st with transi-
tion probabilities πij and states j = 1, . . . ,K. A noisy sunspot equilibrium is
an RE solution to equation (12.1) which is of the form yt = yi(vt ) if st = i , for
i = 1, . . . ,K , where yi(·) are functions defined as follows:

yi(v)=H

( K∑
j=1

πij λj , v

)
, λj =EG

(
yj(w),w

)
.

Here w is a random variable having the same distribution as the shock vt and E
denotes the expectation over w.

To analyze stability under learning, the corresponding T -mapping is con-
structed as follows. Let λjt denote the expectations of agents at time t of
the mean value of G(y,v) when the sunspot is in state j . Define T (λ) =
(T1(λ), . . . , TK(λ)), where

Ti(λ)=EG

H( K∑
j=1

πij λj ,w

)
,w

 .

The E-stability condition is then that all the eigenvalues of the matrix

DT (λ)= [
∂Ti(λ)/∂λj

]
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have real parts less than 1. As before, the E-stability condition governs the local
convergence under adaptive learning.13

12.6.3 Stability of SSEs near Deterministic Solutions

We return to the case of two-state Markov SSEs in the model (12.2). The results
from the preceding section show that local convergence to SSEs can be studied
using E-stability based on equation (12.16). Computing DT , we have

DT (y)=
(

π11F
′(y1) (1−π11)F

′(y2)

(1− π22)F
′(y1) π22F

′(y2)

)
.

The analysis of E-stability of SSEs near deterministic solutions (ε-SSEs) is
based on two observations. First, DT (y) can be computed for the deterministic
solutions, which are limiting cases for ε−SSEs. Second, under a regularity con-
dition, the continuity of eigenvalues provides corresponding E-stability condi-
tions for ε-SSEs in a neighborhood of the deterministic solution. This approach
yields the following result.

Proposition 12.9. (i) Given a 2-cycle ŷ = (ŷ1, ŷ2) with F ′(ŷ1)F
′(ŷ2) �= 0, there

is an ε > 0 such that, for all 0 < ε′ < ε, all ε′-SSEs relative to ŷ are weakly
E-stable if and only if ŷ is weakly E-stable, i.e., it satisfies F ′(ŷ1)F

′(ŷ2) < 1.
(ii) Given two distinct steady states ŷ1 �= ŷ2, there is an ε > 0 such that, for

all 0 < ε′ < ε, all ε′-SSEs relative to ŷ = (ŷ1, ŷ2) are weakly E-stable if and
only if both steady states are weakly E-stable, i.e., F ′(ŷ1) < 1 and F ′(ŷ2) < 1.

Proof. (i) Computing DT at the 2-cycle (ŷ1, ŷ2), one obtains

DT (ŷ1, ŷ2)=
(

0 F ′(ŷ1)

F ′(ŷ2) 0

)
,

since the 2-cycle is the limiting case π11 = π22 = 0. The eigenvalues are given
by the equation λ2 − F ′(ŷ1)F

′(ŷ2) = 0. The 2-cycle is weakly E-stable if and
only if Re{[F ′(ŷ1)F

′(ŷ2)]0.5} < 1, which is equivalent to F ′(ŷ1)F
′(ŷ2) < 1.

The rest of the proof is based on the continuity of eigenvalues and on Proposi-
tion 12.5(i); see Evans and Honkapohja (1994c) for details.

13This result is due to Evans and Honkapohja (1998a), which may be consulted for details on
both the existence of such equilibria and the proof of the convergence result.
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(ii) The pair of distinct steady states is a limiting case π11 = π22 = 1 for
SSEs. DT becomes

DT =
(
F ′(ŷ1) 0

0 F ′(ŷ2)

)
.

The rest of the proof again follows from a continuity of eigenvalues argument.

We remark that analogous results are available when the 2-cycle or the dis-
tinct steady states are strongly E-stable; see Evans and Honkapohja (1994c) for
the definition of strong E-stability and other details.

For the case of a single steady state the situation is more complex, but the
following partial result can be established.

Proposition 12.10. Let ŷ be a weakly E-unstable steady state, i.e., F ′(ŷ) > 1.
Then there exists an ε > 0 such that, for all 0< ε′ < ε, all ε′-SSEs relative to ŷ
are weakly E-unstable.

Proof. By continuity, the eigenvalues ofDT are in a small neighborhood of the
eigenvalues of the matrix

F ′(ŷ)
(

π11 1− π11
1− π22 π22

)
= F ′(ŷ)�.

The eigenvalues of � are 1 and π11+π22−1. Thus the roots of F ′(ŷ)� include
F ′(ŷ) > 1 and we have instability.

One may recall from Proposition 12.6 that SSEs near a single steady state
ŷ also exist when F ′(ŷ) < −1. For this case, it appears that both E-stable and
E-unstable ε-SSEs relative to ŷ may exist. However, it can be shown that there
is a neighborhood of ŷ such that SSEs in the neighborhood are E-unstable in a
strong sense; see Evans and Honkapohja (1994c), Proposition 4.3 for details.

12.6.4 Stability in Overlapping Generations Models

In Section 12.5.1 we sketched three OG models which had steady-state and pe-
riodic REEs. We now consider each of these models for stability of SSEs.

Example 1 (Continued): The Basic OG Model. The perfect-foresight equilib-
ria in the basic model satisfy equation (12.13) and this model has both steady-
state and periodic REEs. It was also noted that if the steady-state solution is
locally indeterminate, i.e., it satisfies F ′(n̂) <−1, there exist SSEs near n̂. We
can now apply Proposition 12.7 and the remarks after Proposition 12.10 and note
that there is a neighborhood, i.e., ε > 0, such that, for all 0< ε′ < ε, all ε′-SSEs
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relative to n̂ are strongly unstable under adaptive learning. These equilibria may,
however, sometimes be weakly stable.

Consider next the equilibrium 2-cycle (n̂1, n̂2) for the same model. If the 2-
cycle satisfies F ′(n̂1)F

′(n̂2) < 1, all SSEs sufficiently near (n̂1, n̂2) are weakly
stable under adaptive learning by Propositions 12.7 and Proposition 12.9(i).

Example 2 (Continued): Model with Money-Financed Deficits. We recall
that in the (nt+1, nt ) space there are two interior steady-state equilibria n̂1 and
n̂2 given by the intersection of the offer curve (12.14) and the 45◦ line (assum-
ing an upward-sloping curve). Of these, the low steady state is locally indetermi-
nate under perfect-foresight dynamics, but it is unstable under adaptive learning,
since the offer curve cuts the 45◦ line from below (i.e., the derivative of the offer
curve at n̂1 is greater than 1). For SSEs sufficiently near n̂1, we also have that
these SSEs are weakly unstable under adaptive learning.

The high steady state n̂2 is stable under learning under the assumption that
agents perceive the economy to be in a steady-state law in their learning. We can
note that there are no SSEs in the neighborhood of n̂2. However, since the model
has two interior steady states, there also exist SSEs that alternate between points
near n̂1 and n̂2. Nevertheless, these SSEs are not stable under learning, since the
low steady state n̂1 is not E-stable.

Example 3 (Continued): OG Model with Increasing Social Returns. As a
third application of the stability results, consider the extension of the basic OG
model to include increasing social returns. The formulation of learning for this
model was developed in Section 4.6.4 of Chapter 4. As was noted above, with
an upward-sloping offer curve, there can be three intersections with the 45◦ line
in the (nt+1, nt ) space and so three interior steady-state solutions can exist. The
low and high steady states are both E-stable, since the derivative of the offer
curve at these points is between 0 and 1. By Propositions 12.7 and 12.9(ii), all
SSEs in a neighborhood of this pair are stable under learning. In addition, SSEs
near the middle steady state also exist, but all SSEs sufficiently near it are un-
stable since the slope of the offer curve at that steady state is greater than 1.
Similarly, SSEs near a pair of steady states, which includes the middle steady
state, are unstable under learning.

12.7 Global Analysis of Learning Dynamics

The previous section focused exclusively on the local convergence of learning
dynamics to SSEs. For some fully specified models, such as the overlapping
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generations model, it is also possible to derive results about the global conver-
gence of the learning algorithms. This was done in Woodford (1990). Formally,
such results require a careful specification of the model at the boundaries of the
state space, so that the technique in Section 7.6 of Chapter 7 can be employed.
This is usually best done in the context of a specific economic model, but it
is possible to develop the following somewhat more general approach which is
suitable for models of the form (12.2). We consider only two-state SSEs.

Assume now for concreteness that the mapping F(y) in equation (12.2)
is nonnegative and it is defined in some interval [0,∞).14 For the boundary
behavior, F(y), it is assumed that

(A.1) There exists a point ỹ such that for all y ≥ ỹ, F(y)≤ F̃ , a constant.
(A.2) There exists a y̌ such that F(y) is increasing for all y ≤ y̌ and

limy→0F(y)/y > 1.

Let us now adopt the vector notation y = (y1, y2) when convenient. A basic
implication of these two assumptions is the following.

Lemma 12.11. Assume (A.1) and (A.2) hold. Then for each k, the functions
mk(y)=∑2

j=1 πkjF (yj )− yk have the following boundary behavior:

(i) There exists a y1 such that yk ≤ y1, y1 ≥ yj ≥ yk , j �= k implies mk(y) > 0.
(ii) There exists a y2 such that yk ≥ y2, y2 ≤ yj ≤ yk , j �= k implies mk(y) < 0.

Proof. To prove part (i), one notes that when yj ≤ y̌ , one has mk(y)≥ F(yk)−
yk , since

∑
πkj = 1. Then Assumption (A.2) implies the result. To prove (ii),

note that Assumption (A.2) implies that mk(y)≤ F̃ − yk for all y large enough.
Then making yk sufficiently large yields the result.

This lemma has the important consequences that in some compact domain
[yL,yH ]2, the vector field ẏ =m(y)≡ (m1(y),m2(y)) is inward pointing in the
boundaries of that domain, and that it has no critical points outside that domain
[except possibly at (0,0)]. These zeroes, of course, constitute the SSEs of the
system, together with the possible steady state ŷ = F(ŷ). At this stage we also
introduce the following regularity assumption:

(A.3) At the critical points y̆ of m(y), no eigenvalue of Dm(y̆) has a zero real
part.

14If F(y) is defined on a finite domain, Assumption (A.1) below needs to be strengthened some-
what.
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We reconsider the learning rule (12.15). Using the functions mk(·) intro-
duced in the lemma, it is seen that, provided ψj,t−1 = 1, the evolution of φjt is
determined by

φjt = φj,t−1 + t−1q−1
j,t−1

(
mj(φ1,t−1, φj,t−1)+ εt−1

)
.

In view of the lemma above, it then appears natural to limit the parameter esti-
mates φjt to a compact set [yL,yH ] implied by the lemma. If the learning agents
are endowed with this knowledge, it is also evident that the learning rule (12.15)
itself must be modified in order to ensure that φjt remain inside [yL,yH ]. Thus
we postulate that

φjt = φj,t−1 + t−1ψj,t−1q
−1
j,t−1

(
yt−1− φj,t−1 + εt−1

)
if RHS ∈ [yL,yH ],

φjt = yL if RHS < yL,

φjt = yH if RHS > yH,

while we retain the other parts of the system

qjt = qj,t−1 + t−1(ψj,t−1 − qj,t−1)

yt = ψ1t
[
π11F(φ1t )+ (1−π11)F (φ2t )

]
+ψ2t

[
(1− π22)F (φ1t )+ π22F(φ2t )

]
.

The analysis of the modified algorithm proceeds along the same lines as before.
One derives the associated differential equation dθ/dτ = h(θ), which is the
same as before in Section 12.6.2. Using the notation in the lemma, it can be
written in the form

h1(θ) = π̄1q1m1(φ1, φ2), (12.17)

h2(θ) = π̄2q2m2(φ1, φ2),

h3(θ) = π̄1 − q1,

h4(θ) = π̄2 − q2.

We note here that for some q∗ > 0 small enough, the independent subsystem
consisting of the last two components of equation (12.17) is inward pointing in
the cube [q∗,1]2. Moreover, by Assumption (A.3), no eigenvalue of Dh(θ) has
a zero real part at the zeroes of dθ/dτ = h(θ). Using a “nonlocal” version of the
convergence theorem for recursive algorithms [e.g., Ljung (1977, Theorem 1) or
Theorem 7.11 in Section 7.6 of Chapter 7], one obtains the following result.
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Proposition 12.12. (i) Assume that the associated differential equation
dθ/dτ = h(θ), where h(θ) is given by equation (12.17), has an invariant set I
whose domain of attraction includes the compact set D = [yL,yH ]2 × [q∗,1]2.
Then all the trajectories of the modified learning algorithm converge to I .

(ii) Any point (φ1, φ2, q1, q2) is either a fixed point of the differential equa-
tion such that the eigenvalues of Dh(θ) have negative real parts, or the point
has a neighborhood N such that, under the learning dynamics, the probability
of θt →N is zero.

This proposition is important, since it shows that, under the assumptions
made in this section, the learning algorithm will converge globally to the invari-
ant set of the associated differential equation. Moreover, the possible conver-
gence points consist of those that are locally stable for the differential equation.
Taking into account the fact that the last two components of h(θ) form an inde-
pendent subsystem with a unique zero at (π̄1, π̄2), it is evident that the invariant
set takes the form I = J × (π̄1, π̄2), where J is the union of ω-limit sets in
[yL,yH ] of the “small” differential equation

dφ

dτ
= T (φ1, φ2)− (φ1, φ2),

which just defines E-stability. Under some additional assumptions, it is possible
to rule out ω-limit sets that are not fixed points of T (·).15 When this is possible,
then the result says that the learning dynamics converges globally to the set of E-
stable REEs. If more than one REE is E-stable, the eventual point of convergence
depends on the learning rule, the starting points, and the values of shocks during
the adjustment.

12.8 Conclusions

The analysis in this chapter shows that the theory of local stability under learn-
ing is essentially complete for rational cycles and finite-state Markov sunspot
equilibria. The E-stability conditions are straightforward to compute and they
provide the local convergence condition under the real-time learning rule con-
sidered. One gap in the theory concerns the weak stability of sunspot solutions
near a single steady state.

15See Woodford (1990) for a detailed example of how this can be done in the context of the
standard OG model. Note that Woodford specifies the learning somewhat differently from our for-
mulation in Section 3.
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The reason for these tight results is that the REEs are locally unique in the
space of functional forms permitted. For example, when considering two-state
sunspot equilibria, we treat the exogenous sunspot as given with fixed transition
probabilities. This assumption typically ensures local uniqueness. However, in
many cases, if we were to allow a small perturbation in the transition proba-
bilities (together with the corresponding change in the value of the endogenous
variable), another “nearby” sunspot equilibrium can often be found. Obtaining
a functional form with a finite number of parameters for the full set of Markov
sunspot solutions is not straightforward. The corresponding analysis of learning
would be evidently more difficult.

Throughout this chapter we have maintained the nonlinear form of the
model. Another approach is to linearize the model in a neighborhood of the
steady state. One can then analyze the various solutions for stability under learn-
ing using the techniques in Part III. When linearized, the models (12.1) and
(12.2) are of the univariate form with expectations conditional on information
dated at t . Applying the analysis of Section 9.7 of Chapter 9, it can be seen
that the sunspot solutions are E-unstable. However, for multivariate frameworks,
there is the possibility of E-stable sunspot solutions as discussed in Chapter 10.
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Chapter 13
Misspecification and Learning

13.1 Learning in Misspecified Models

In Section 3.6 of Chapter 3 we briefly considered the possibility of agents us-
ing a misspecified model. We take up this issue here at greater length. We will
focus on two examples using models that have been previously analyzed un-
der the assumption that their perceived laws of motion (PLMs) are correctly
specified asymptotically. We will show that the same convergence tools used for
correctly specified models can be used to show convergence to a restricted per-
ceptions equilibrium in a misspecified model. Depending on the model and the
nature of the misspecification, the relevant E-stability conditions which govern
convergence may need to be altered, but the required analytical techniques are
unchanged.

Before proceeding, we remark that when we say “misspecified model,” we
use the term to mean that the estimated PLMs cannot possibly converge to an
REE, because the class of PLMs considered does not nest an REE. We remind
the reader that even when this kind of misspecification is absent, there will still
be econometric misspecification during the learning process. This is because, as
econometricians, the agents act as if they are estimating a fixed process which
is in fact time varying due to the self-referential feature of learning. This point
was made in Chapter 2, Section 2.5. However, when the class of PLMs nest
the REE of interest and estimates converge, the econometric misspecification
vanishes asymptotically. The new feature in this chapter is that agents converge
to a misspecified model over time.

317
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13.1.1 Cobweb Model

Consider, again, the Muth cobweb model with reduced form

pt =µ+ αE∗t−1pt + γ ′wt−1 + ηt , (13.1)

where wt−1 is a vector of observable exogenous variables and ηt is an unob-
servable white noise shock independent of the wt process. We assume that wt

follows a stationary VAR. For convenience and without loss of generality, we
assume that wt has zero mean. Instead of assuming that agents have a PLM of
the form pt = a+b′wt−1+ηt , corresponding to the REE, we assume their PLM
is (even asymptotically) misspecified. Clearly, there are many ways in which the
model can be misspecified. Here we assume that the PLM takes the form of
omitting a subset of the variables wt . More specifically, write w′t = (w′1,t ,w′2,t )
and assume that the PLM takes the form

pt = a+ c′w1,t−1 + εt ,

where εt is believed to be white noise. The agents’ estimates φ′t = (at , c
′
t ) of φ

are updated by recursive least squares (RLS) as usual. Let x ′t = (1,w′1,t ). The
system can now be described as follows. Under RLS, parameter estimates are
updated according to

φt = φt−1 + t−1R−1
t xt−1

(
pt − φ′t−1xt−1

)
, (13.2)

Rt = Rt−1 + t−1(xt−1x
′
t−1 −Rt−1

)
. (13.3)

Expectations are given by E∗t−1pt = φt−1xt−1 = at−1 + c′t−1w1,t−1, so that the
realized price pt is given by

pt = (µ+ αat−1)+ (γ1 + αct−1)
′w1,t−1 + γ ′2w2,t−1 + ηt ,

where γ ′ = (γ ′1, γ ′2). The updating equation for φt can thus be written as

φt = φt−1 + t−1R−1
t xt−1

(
x ′t−1 w′2,t−1

) µ+ (α− 1)at−1

γ1 + (α− 1)ct−1

γ2


+ t−1R−1

t xt−1ηt .
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To compute the associated differential equation for this stochastic recursive al-
gorithm (SRA), note that

ER−1xt−1
(
x ′t−1 w′2,t−1

) µ+ (α− 1)a
γ1 + (α− 1)c

γ2


=R−1

((
Ext−1x

′
t−1

)( µ+ (α− 1)a
γ1 + (α− 1)c

)
+

(
0

(Ew1,t−1w
′
2,t−1)γ2

))
=R−1(Ext−1x

′
t−1

)(( µ+ (α− 1)a
γ1 + (α− 1)c

)
+

(
0

(Ew1,t−1w
′
1,t−1)

−1(Ew1,t−1w
′
2,t−1)γ2

))
.

Letting Exx ′ = limt Extx
′
t , we thus obtain the ODE

dφ/dτ = R−1(Exx ′)
(
T (φ)− φ

)
,

dR/dτ = Exx ′ −R,

where

T (φ)=
(
Ta(a, c)

Tc(a, c)

)
=
(

µ+ αa

γ1 +�−1
11 �12γ2 + αc

)
and

E

(
w1t

w2t

)(
w1t w2t

)′ = (
�11 �12

�21 �22

)
.

Since R converges globally to Exx ′ under the ODE, it follows as usual that sta-
bility of the ODE is determined by stability of the smaller differential equation
dφ/dτ = T (φ)−φ. It is easily seen that this differential equation has the unique
equilibrium

φ̄ =
(
ā

c̄

)
=
(

(1− α)−1µ

(1− α)−1(γ1 +�−1
11 �12γ2)

)
, (13.4)

and that it is globally stable if and only if α < 1. Applying the stochastic approx-
imation results of Chapter 6, it follows that φt converges to φ̄ with probability 1.
We have the following.
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Proposition 13.1. Consider the cobweb model (13.1) under the misspecified re-
cursive least squares learning rule (13.2)–(13.3). Provided α < 1, the estimates
φt converge with probability 1 to the restricted perceptions equilibrium (13.4).

The T -map above has a natural interpretation. For a given PLM with
fixed parameters φ = (a, c′)′, the parameters T (φ) give the coefficients of the
best linear forecast of pt (in the mean square error sense) using the informa-
tion set xt−1 = (1,w′1,t−1)

′. That is, a PLM pt = φ′xt−1 + εt , where εt is
white noise uncorrelated with xt−1, generates the actual law of motion (ALM)
pt = (µ + αa) + (γ1 + αc)′w1,t−1 + γ ′2w2,t−1 + ηt . For this ALM, the best
model in the permitted class of PLMs is the “projected ALM” obtained by com-
puting E(pt | xt−1) = T (φ)′xt−1. The fixed point φ̄ of T (φ) does not provide
the coefficients of an REE, because a larger information set is available, namely
(x ′t−1,w

′
2,t−1).However, the forecasts are optimal relative to the restricted infor-

mation set actually used by agents, and we therefore call this solution a restricted
perceptions equilibrium.

We have shown that, provided the differential equation dφ/dτ = T (φ)− φ

is stable, a condition which we will call the “modified E-stability condition” for
the misspecified model, there will be convergence of least squares learning to
the restricted perceptions equilibrium φ̄. For the cobweb model, this condition
is in fact identical to the familiar E-stability condition for the correctly specified
model, α < 1.1

13.1.2 Underparameterized Dynamics

In some cases misspecification can alter the stability condition for the resulting
equilibrium. An interesting example is from Section 8.6.2 of Chapter 8, equation
(8.37), which we reproduce here in simplified form:

yt = α+ βE∗t yt+1 + δyt−1 + vt . (13.5)

Here vt is an unobserved white noise shock (we consider the case in which
there are no observable exogenous shocks). Recall that under RE, there are two
minimal state variable (MSV) solutions of the form yt = a+byt−1+dvt , where
b is a root of the associated quadratic (this assumes two real roots). Section 8.6.2,
Chapter 8, considered the local stability of these solutions under least squares
learning.

1The related concepts of “limited information REE” and “reduced order limited information
REE” were developed in Marcet and Sargent (1989b) and Sargent (1991), respectively.
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We consider the case where agents estimate a simple underparameterized
model, yt = a+ εt , where εt is white noise. A recursive estimate at of the mean
is given by

at = at−1 + t−1(yt−1 − at−1), (13.6)

so that the PLM at time t is yt = at + εt with corresponding forecasts

E∗t yt+1 = at. (13.7)

From the reduced form (13.5), it follows that yt will actually follow the process

yt = α+ βat + δyt−1 + vt . (13.8)

Equations (13.6) and (13.8) form an SRA in standard form. To obtain the asso-
ciated ODE da/dτ = h(a), we need to calculate

h(a) = lim
t→∞E

(
yt (a)− a

)
,

where
yt (a) = α+ βa+ δyt−1(a)+ vt ,

for fixed a. It is easily seen that

h(a)= α+ βa

1− δ
− a,

provided |δ|< 1, which ensures that the process yt (a) is asymptotically station-
ary. The ODE has a unique fixed point at ā = (1 − β − δ)−1α. Furthermore,
the ODE is globally stable if and only if β(1− δ)−1 − 1 < 0, which is equiv-
alent (given |δ|< 1) to the condition β + δ < 1. The global stability results of
Chapter 6 can be applied, yielding the following result.

Proposition 13.2. Consider the model (13.5) with adaptive learning rule
(13.6)–(13.7). Then at converges almost surely to the restricted perceptions
equilibrium ā = (1− β − δ)−1α provided |δ|< 1 and β + δ < 1.

Again, there is a straightforward interpretation in terms of E-stability. For the
PLM yt = a + εt with fixed a, the actual law of motion (ALM) is yt (a)= α +
βa + δyt−1(a)+ vt . This does not belong to the same parametric class as the
PLM, so we project the ALM onto the space of permitted PLMs to find the best
forecaster from this class (in the sense of mean square forecast error). This gives
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yt = T (a)+ εt , where T (a)= Eyt(a)= (α + βa)/(1− δ), provided |δ| < 1.
Because of the misspecified class of PLMs, agents ignore the serial correlation
present in the yt process, which is evident from writing the ALM as yt (a) =
T (a)+ (1− δL)−1vt (here L is the lag operator). The “projected ALM” yt =
T (a)+ εt is the best description of the yt process (for fixed a) within the class
of PLMs considered, because it has the correct mean T (a).2 E-stability is then
defined in terms of the equation da/dτ = T (a)− a, which of course gives the
stability conditions provided in Proposition 13.2.

Two important features of the results of this section should be noted. First,
the assumed misspecification has radically altered the nature of the equilibria.
Under rational expectations, there are two distinct solutions of the AR(1) form
(assuming real roots). Under our simple misspecified model, there is a unique
equilibrium. Second, the E-stability conditions are not the same for the cor-
rectly specified and the misspecified model. For the correctly specified model,
the E-stability conditions for local convergence are shown in Figure 8.6 of Chap-
ter 8. As we showed in that chapter, the conditions differed for the two distinct
AR(1) solutions and it is clear that they in general differ from the modified
E-stability conditions |δ|< 1 and β + δ < 1 for the misspecified model. How-
ever, we note that if |δ|< 1 and |β + δ|< 1, then both the b̄− AR(1) REE and
the underparameterized equilibrium are locally stable under learning.

13.1.3 Consistent Expectations Equilibria

In the above examples we have seen that, provided the modified E-stability con-
ditions are met, adaptive learning can converge to a restricted perceptions equi-
librium in which expectations are optimal within a limited class of PLMs. The
basic idea of a restricted perceptions equilibrium is that we permit agents to
fall short of rationality specifically in failing to recognize certain patterns or
correlations in the data. Clearly, for this concept to be “reasonable” in a partic-
ular application, the unrecognized pattern or correlation should not be obvious.
Hommes and Sorger (1997) have proposed the related, but distinct, concept of
consistent expectations equilibria. This requires that agents correctly perceive
all autocorrelations of the process.

It is worth reconsidering the above examples from this perspective. In the
example of the preceding section, the dynamics are underparameterized. Conse-
quently, in the restricted perceptions equilibrium, agents fail to notice the first-
order serial correlation in the data and the equilibrium is not a consistent expec-
tations equilibrium. If agents did notice this pattern and attempted to deal with

2In the case |δ| ≥ 1, the process is nonstationary and the mean is undefined.
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it by including yt−1 as a regressor in their forecast rule, this would lead them to
a class of PLMs that includes the AR(1) REE.

However, consider the Muth cobweb model. Here the specification error is
the omission of variables w2,t−1 which can help to forecast prices. Whether or
not the restricted perceptions equilibrium fails to capture the serial correlation
properties of the data depends on the stochastic process followed by the ex-
ogenous observable process w′t = (w′1,t ,w′2,t ). It is straightforward to calculate
that at the restricted perceptions equilibrium (ā, c̄) given by equation (13.4), the
forecast errors are given by

εt ≡ pt −E∗t−1pt =−
(
�−1

11 �12γ2
)′
w1,t−1+ γ ′2w2,t−1+ ηt .

In general, this will not be a consistent expectations equilibrium since εt may be
serially correlated. It remains a restricted perceptions equilibrium becauseE(εt |
w1,t−1) = 0. However, in special cases the restricted perceptions equilibrium
will also be a consistent expectations equilibrium. The most obvious case arises
when wt is an iid process. In this case there is no time-series structure in εt to
exploit. The deviation from REE arises solely from the failure of agents to take
direct account of the correlation with the observables w2,t−1.

3

13.1.4 Deterministic Cycles Misperceived as Random Fluctuations

Although they did not take up the issue of learning, Evans, Honkapohja, and
Sargent (1993) present another interesting example of a restricted perceptions
equilibrium. The basic idea is as follows. As is well known, and was discussed in
Chapter 12, the standard overlapping generations (OG) model can have perfect-
foresight equilibria that follow regular k-cycles or even exhibit chaotic trajecto-
ries. This raises the question of whether actual business cycle fluctuations could
be the result of complex nonlinear dynamics rather than, as commonly assumed,
due to random shocks. This viewpoint would require a dichotomy in which the
agents in the model have perfect foresight, while the outside observers, i.e.,
econometricians, misperceive the fluctuations as random. This dichotomy ap-
pears too drastic, and Evans, Honkapohja, and Sargent (1993) raise the question
of whether complex nonlinear dynamics could still be obtained in an economy
in which the agents themselves, or at least a nonnegligible fraction of them,
misperceive those dynamics as random fluctuations.

3If εt is serially correlated due to the serial correlation of wt , agents may attempt to allow
for this by including pt−1 as an additional regressor. In certain cases this may lead to a consistent
expectations equilibrium.
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Consider the standard OG model with production in which the utility of
an agent from generation j is given by U(cj+1) − V (nj ), where nj is labor
supply when young and cj+1 is consumption when old. The budget constraints
are pjnj = mj and mj = pj+1cj+1, where mj is the quantity of money held
when young. We will be looking for periodic equilibria, i.e., k-cycles with price
sequences (p1, . . . ,pk). It is assumed that there are two types of agents. In each
generation a fraction 1 − µ has perfect foresight and a fraction µ has limited
knowledge. The perfect-foresight agents solve the problem

max
nj

U(pjnj /pj+1)− V
(
nj
)
. (13.9)

The agents with limited knowledge (who are called “econometricians”) are as-
sumed to know the unconditional distribution of prices, but to be ignorant of the
serial correlation pattern. (Clearly, this assumption is plausible only if k is large
and the pattern is complex.) They therefore use the unconditional distribution
and assume that in each period each price p1, . . . ,pk occurs with probability
1/k, so that they solve the problem

max
nj

(1/k)
k∑
i=1

U
(
pjnj/pi

)− V (nj ). (13.10)

There is a fixed nominal stock of money M . We therefore define an equilibrium
k-cycle to be a 3k-tuple {(p1, . . . ,pk), (n

d
1 , . . . , n

d
k ), (n

w
1 , . . . , n

w
k )} such that,

for all j = 1, . . . , k,

(i) M/pj =µndj + (1−µ)nwj ,

(ii) ndj solves equation (13.10), and
(iii) nwj solves equation (13.9).

Such an equilibrium is clearly a restricted perceptions equilibrium as long as
µ> 0 and the k-cycle is nontrivial, i.e., k ≥ 2.

It is easily seen that, for µ= 1, there are in fact no equilibrium k-cycles for
any k ≥ 2. This follows since then (i) implies pj/pi = ni/nj . Substituting this
into the first-order condition for equations (13.10) implies that nj is indepen-
dent of j . Evans, Honkapohja, and Sargent (1993) show that, under some addi-
tional mild assumptions about preferences, we can obtain the following result:
for every k ≥ 2, there exists µk < 1 such that there are no nontrivial k-cycles if
µ>µk .

These results show that, for this specific model, equilibrium complex non-
linear dynamics which exist under perfect foresight are no longer possible when
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all or almost all agents misperceive them as an independently, identically dis-
tributed random process with the correct unconditional distribution.4 This anal-
ysis can be criticized, since the agent-econometricians as modeled here are per-
haps not sufficiently smart.5 However, the example is a special case of a more
general approach in which the agent-econometricians model the equilibrium as a
stochastic process and where in equilibrium we impose that the “actual dynamic
process be consistent with the forecasting rule.” Evans, Honkapohja, and Sar-
gent (1993) suggest in particular that it would be worth investigating whether,
if the agent-econometricians perceive the data as following an AR(k) process,
there exists an equilibrium p-cycle, with p > k + 1. As part of our restricted
perceptions equilibrium concept, we would impose that the perceived AR(k)
process be the one that best fit the p-cycle.

13.2 Misspecified Policy Learning

Although we have focused on models in which private agents are learning adap-
tively, similar considerations can be applied to optimizing policy makers. This
point is developed extensively by Sargent (1999) and Cho and Sargent (1999),
based on an earlier model by Sims (1988) and Chung (1990). In this work, the
government is assumed to be estimating a popular but misspecified model of
the inflation process. Here we present the simplest (static) version of Sargent’s
model. We focus on the case of decreasing gain, leaving the constant-gain case
for the next chapter.

The government (falsely) believes that there is a Phillips curve trade-off
between the time-t unemployment rate ut and the time-t inflation rate, given by

ut = β0 + β1yt + εt , (13.11)

where εt is a white noise disturbance assumed uncorrelated with yt .
Through monetary policy, the government sets a target inflation xt , which

determines inflation subject to a white noise shock v2t :

yt = xt + v2t . (13.12)

4Evans, Honkapohja, and Sargent (1993) do show, however, that even with µ= 1, equilibrium
2-cycles can arise in the classical version of the OG model.

5In Chapter 12 we allow the agents to estimate a k-cycle of appropriate order and we find that
they can locally “learn” the k-cycle if the equilibrium cycle is E-stable.
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The objective function of the government is to minimize the expected squared
loss functionE(u2

t +x2
t ). For given β this would be minimized, given the above

constraints, by

xt = g(β), (13.13)

where

g(β)=−(1+ β2
1 )
−1β0β1.

The true relationship between ut and yt is assumed to be given by an expecta-
tional Phillips curve

ut = u∗ − ϕ(yt − x̂t )+ v1t ,

where x̂t denotes expected inflation. v1t is a white noise shock uncorrelated with
v2t and the parameters satisfy u∗, ϕ > 0. Let Ev2

1t = σ 2
1 and Ev2

2t = σ 2
2 . Various

assumptions are possible for x̂t [and are explored in Sargent (1999)], but to focus
on learning by the policy makers we assume rational expectations on the part of
private agents: x̂t = xt . This would be appropriate if a fully credible monetary
authority simply announced its policy. We therefore have

ut = u∗ − ϕ(yt − xt )+ v1t . (13.14)

The government thus has a PLM for the relationship between ut and yt given
by equation (13.11) and parameterized by β . The ALM for (ut , yt , xt ) is instead
given by equations (13.14), (13.12), and (13.13). Is the resulting ALM consistent
with the government’s PLM? Under the PLM β , the values for ut and yt are
given by

ut =
(
u∗ + g(β)ϕ

)− ϕyt + v1t , (13.15)

yt = g(β)+ v2t . (13.16)

Hence the ALM for the relationship between ut and yt takes the same form as
equation (13.11) but with parameters (β∗0 , β∗1 )= T (β0, β1), where

T (β)=
(
u∗ + g(β)ϕ

−ϕ
)
. (13.17)

The ALM is consistent with the PLM if and only if β = T (β). This is easily
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shown to imply that

β0 = u∗(1+ ϕ2), β1 =−ϕ,

and hence xt = ϕu∗.
The value β̄ such that β̄ = T (β̄) is called by Sargent a “self-confirming

equilibrium.” Clearly, it is an example of what we have termed a “restricted per-
ceptions equilibrium”: given the restricted class of models envisioned by the
government, parameter values β̄ generate a stochastic process which is con-
sistent with their PLM. We note that Sargent shows that this equilibrium cor-
responds to the time-consistent high-inflation Nash equilibrium identified by
Kydland and Prescott (1977).

We next consider whether the equilibrium is stable under adaptive learn-
ing. We now assume that β is unknown by the government and estimated by a
recursive least squares type regression of ui on an intercept and yi . The time-t
estimate of β , obtained using data through time t, is given by

βt = βt−1 + γtR
−1
t−1zt

(
ut − β ′t−1zt

)
,

Rt = Rt−1 + γt
(
zt z

′
t −Rt−1

)
,

where z′t = ( 1, yt ). In the standard recursive least squares formulation we
have γt = t−1, and more generally we might consider γt = ξ(t + N)−1 for
ξ > 0,N ≥ 0.6 At time t , the government’s perceptions are described by the
parameters βt−1, since data are not yet available on yt and ut , so policy sets the
inflation target to xt = g(βt−1) and yt = g(βt−1)+ v2t . From equations (13.15)
and (13.17) we have

ut = T (βt−1)
′zt + v1t .

Since from equations (13.14) and (13.12) we have ut = u∗ − ϕv2t + v1t , and
from equation (13.16) we have yt = g(β)+ v2t , we arrive at the system

βt = βt−1 + γtR
−1
t−1zt

(
(T (βt−1)− βt−1)

′zt + v1t
)
,

Rt = Rt−1 + γt
(
zt z

′
t −Rt−1

)
, (13.18)

z′t =
(

1, g(βt−1)+ v2t
)
.

6For simplicity, following Cho and Sargent (1999), in the βt equation we use R−1
t−1 in place of

the usual R−1
t . This facilitates putting the algorithm in standard form.
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The system (13.18) is in the form of a standard stochastic recursive algorithm.
Convergence will therefore be governed by the associated differential equation.
Using standard methods, we compute the ODE

dβ/dτ = R−1Mz(β)
(
T (β)− β

)
,

dR/dτ = Mz(β)−R,

where

Mz(β)=
(

1 g(β)

g(β) (g(β))2 + σ 2
2

)
.

Clearly, there is a unique equilibrium of the ODE, i.e., β = β̄ and

R̄ =Mz(β̄)=
(

1 u∗ϕ
u∗ϕ (u∗ϕ)2 + σ 2

2

)
.

Local stability is easily examined since it is governed by the E-stability equation

dβ/dτ = T (β)− β,

where

T (β)′ = (
u∗ − (1+ β2

1 )
−1β0β1ϕ,−ϕ

)
, (13.19)

so that

DT (β)=
(−(1+ β2

1 )
−1β1ϕ −(1+ β2

1 )
−2(1− β2

1 )β0ϕ

0 0

)
and

DT (β̄)− I =
(−(1+ ϕ2)−1 −u∗(1+ ϕ2)−1(1− ϕ2)ϕ

0 −1

)
.

Clearly, both roots of DT (β̄)− I are real and negative, so that the ODE is lo-
cally stable. It follows that under the decreasing-gain sequence γt = 1/t , the
stochastic approximation convergence results of Chapter 6 apply, so that there is
local convergence to the self-confirming equilibrium β̄ in the various senses dis-
cussed in that chapter. For example, under the gain sequence γt = ξ(t +N)−1,

for ξ sufficiently small or N sufficiently large (slow adaption), there will be
convergence from initial nearby points with probability arbitrarily close to 1.
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Figure 13.1.

The dynamics for E-stability (13.19) can be easily illustrated using a phase
diagram. This is given in Figure 13.1 for the parameter values u∗ = 5 and ϕ = 1
used by Sargent. The vertical line is the set of points for which dβ1/dτ = 0, and
the curve is the locus dβ0/dτ = 0. It is evident from the figure that the system is
in fact globally stable. This suggests that the real-time learning under decreasing
gain is globally stable (though this would need to be investigated in detail).

Sargent considers the behavior of learning when the algorithm has constant
gain γt = γ. This turns out to alter the dynamics substantially, because occa-
sional large shocks can push the system far away from β̄ for a substantial period
of time. We take up this possibility in the next chapter.

13.3 Conclusions

When agents have a misspecified PLM and estimate the parameters by recur-
sive least squares, the techniques of stochastic approximation can often still be
applied. Convergence, when it occurs, is now to a restricted perceptions equilib-
rium instead of an REE. The number of such equilibrium points may depend on
the form of misspecification. In the examples presented, the stability conditions
are given by the E-stability principle modified to take account of the misspecifi-
cation.
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Chapter 14
Persistent Learning Dynamics

14.1 Introduction

Throughout most of the book we have focused on the conditions under which
adaptive learning rules converge in the limit to an REE. We have seen that this
is usually governed, at least locally, by E-stability conditions and that, when
there are multiple equilibria, these impose a substantive selection criterion. The
previous chapter altered the framework to permit asymptotic misspecification
of the law of motion followed by the economy. We saw that under appropriate
stability conditions, the parameter estimates of the learning rule still converge
asymptotically, but now to a forecast rule which is not fully rational, and which
we called a “restricted perceptions equilibrium.” Although the forecast rules in
these equilibria are not fully rational, they are still rational in a weaker sense.
It is well known that conditional expectations give the minimum MSE (mean
square error) forecasts. In an REE the forecast rule is thus fully optimal in the
sense of giving the minimum MSE over all forecast rules which are functions
of the full information set.1 In a restricted perceptions equilibrium, the forecast
rule is optimal in the more limited sense of having the minimum MSE over
forecast rules chosen within some class, e.g., linear rules which are a function
of a specified subset of the full information set.

In this chapter we continue to depart from fully rational expectations, but
do so in a different way. When agents estimate a misspecified model with a

1Since our models are typically self-referential, some care must be taken in interpreting the
statement. In an REE the forecast rule is optimal given that the variables follow the stochastic process
of that RE solution. Thus if there are multiple REE, a different forecast rule would be optimal in
another REE and the MSE in that REE may be higher or lower.

331
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decreasing-gain sequence, they are attempting to find the parameter value within
some set which gives the optimal forecast rule. Suppose, however, that agents
recognize that the class of forecast rules they are considering is misspecified.
It is then no longer necessarily the case that a single forecast rule, with fixed
parameters, is optimal at all times. In particular, if there is structural change
in the sense that the economy follows a stochastic process within the set of
models considered by agents, but with parameter values that evolve over time,
then a more appropriate learning rule will attempt to track the evolution of the
parameters.

Thus, structural change provides a motivation for using gain sequences
which do not decrease to zero but instead remain bounded above zero. The sim-
plest examples of this are constant-gain estimators in which γt = γ for some
0 < γ ≤ 1. The use of constant-gain estimators to deal with structural change
is well known from the statistics and engineering literature, as discussed, for
example, in Benveniste, Metivier, and Priouret (1990, Part I, Chapters 1 and 4).
In choosing the size of the gain parameter, there is a trade-off which is familiar
from the statistics literature: a larger gain is better at tracking changes but at the
cost of a larger variance. We discuss this issue below in connection with self-
referential models in our analysis of the increasing social returns model with
constant-gain learning.

Within self-referential models there is actually a second rationale for using
constant- (or nondecreasing) gain estimators, namely the possibility of noncon-
vergence to RE. If, for whatever reason, the model under learning is not con-
verging to an REE, then the actual stochastic process followed by the economy
may best be modeled, given the PLMs employed by agents, as undergoing struc-
tural change over time. The use of a constant-gain estimator thus has aspects of
a self-fulfilling prophecy, as we note in Section 14.3.4.

Because constant-gain estimators do not in general converge even to fore-
cast rules that are rational in a restricted sense, they can give rise to additional
learning dynamics not found in an REE, i.e., to “persistent learning dynamics.”
Such models thus have the potential to explain phenomena that cannot arise
under REE, a point emphasized in Sargent (1993) and Sargent (1999). Formal
analysis of learning with constant-gain algorithms is still possible using versions
of the technical results given in Chapter 7, as we demonstrate below.

Before turning to the analysis, we remark that the division between the
“misspecified learning” of the preceding chapter and the “persistent learning
dynamics” of the current chapter is not necessarily clear-cut, since it depends on
the class of PLMs used by the agent. As a simple example, suppose that yt fol-
lows some stationary exogenous process, while agents incorrectly believe that
yt follows an IMA(1,1) process "yt = εt − (1− γ )εt−1. If agents also believe
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they know the value of γ , then they will form forecasts of yt at time t − 1 ac-
cording to yet = γ

∑∞
i=0(1− γ )iyt−1−i . This is the minimum mean square error

forecast given their mistaken beliefs, and it is an example of a (fixed) misspec-
ified forecast rule.2 On the other hand, suppose that agents model the process
as a mean plus white noise, where the mean is subject to structural shifts. In
this case they might use the simple constant-gain learning rule yet = at , with
at = at−1 + γ (yt−1 − at−1), and we would say that the system exhibits persis-
tent learning dynamics. Yet of course these two forecast rules are identical.

The same point holds if yt is generated by a self-referential model such as
the cobweb model. From the point of view of the evolution of the economy, it is
arbitrary in this case whether to regard the deviation from REE dynamics as due
to a misspecified model with a fixed forecast rule or as the result of persistent
learning dynamics arising from changing parameter estimates. The distinction
rests in the class of PLMs considered by the agents and the learning rule they
adopt. Nonetheless, the distinction will prove useful, and the technical analysis
of this chapter uses somewhat different tools.

14.2 Constant-Gain Learning
in the Cobweb Model

The techniques of Section 7.4 of Chapter 7 can be applied to analyze the cobweb
model when recursive least squares is modified to have constant gain. We focus
on a special case of the model is which there is a single iid observed exogenous
variable and in which there is no intercept, so that only the slope coefficient is
estimated. The model is thus

pt = αpet + δzt−1 + ηt ,

where zt−1 is an iid exogenous variable observed at time t − 1 and ηt is unob-
served white noise independent of the zt process. Agents are assumed to forecast
prices according to

pet = φt−1zt−1,

2If agents treat γ as unknown, they might update estimates of it over time using a decreasing-
gain estimator, such as recursive nonlinear least squares, and asymptotically obtain the optimal value
within the IMA(1,1) class.
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where φt−1 is their time-(t − 1) estimate of the slope coefficient of a regression
of pt on zt−1. The algorithm for updating φt−1 is

φt = φt−1 + γR−1
t zt−1

(
pt − φt−1zt−1

)
,

Rt = Rt−1 + γ
(
z2
t−1 −Rt−1

)
.

Using pt = (δ + αφt−1)zt−1 + ηt and writing St−1 = Rt , we can rewrite the
algorithm in the form

φt = φt−1 + γ
(
S−1
t−1z

2
t−1

(
δ+ (α− 1)φt−1

)+ S−1
t−1zt−1ηt

)
,

St = St−1 + γ
(
z2
t − St−1

)
.

This is thus in the standard form

θt = θt−1+ γH(θt−1,Xt ),

where

θt =
(
φt

St

)
, H(θt−1,X)=

(Hφ(θt−1,Xt )

HS(θt−1,Xt )

)
, Xt =

 zt

zt−1

ηt

 ,

and

Hφ(θt−1,Xt ) = S−1
t−1z

2
t−1

(
δ+ (α− 1)φt−1

)+ S−1
t−1zt−1ηt ,

HS(θt−1,Xt ) = z2
t − St−1.

We focus on the infinite-horizon asymptotic results. The basic result is that,
under the additional assumptions stated in Theorem 7.9 of Chapter 7, the distri-
bution of θt can be approximated, for small γ and large t , by

θt ∼N(θ∗, γC),

where

θ∗ = (
δ(1− α)−1,Ez2

t

)′
,

C =
∫ ∞

0
esBR∗esB′ ds.

We need to establish that the required assumptions are met and then to calculate
C. Let D = {(φ,S) | φ ∈R, S ∈ (ζ,∞)} for some fixed arbitrarily small ζ > 0.
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Assume that zt has support on some closed interval [zL, zH ] and letmz
2 =Ez2

t >

0. Assume also that ηt has compact support.
We show that Assumptions (A.2), (A.3), (M.1)–(M.5), (H.1)–(H.3), and

(N.1) hold on the set D. From the form of H, it is easily verified that the poly-
nomial bound and Lipschitz conditions (A.2)–(A.3) on H and ∂H/dx are met
for compact sets Q⊂D. Conditions (M.1)–(M.5) follow immediately from the
assumptions that zt and ηt are iid exogenous processes with bounded support.
The function h(θ) which defines the ODE dθ/dτ = h(θ) is easily calculated to
be

hφ(φ,S) = S−1mz
2

(
δ+ (α− 1)φ

)
,

hS(φ,S) = mz
2 − S.

Here θ = (φ,S)′. Clearly, h(θ) has continuous first and second derivatives onD.
From the theorem of Coddington (1961, p. 248), it follows that Dθh(θ) is Lips-
chitz on D. It is easily verified that θ∗ = (δ(1− α)−1,mz

2)
′ is the unique equi-

librium point of dθ/dτ = h(θ), that the eigenvalues of B =Dθh(θ
∗) are α − 1

and −1, and that θ∗ is a globally asymptotically stable equilibrium point of the
ODE if α < 1. Hence Assumptions (H.1)–(H.3) are met.

There remains to check Assumption (N.1). Assumption (N.1)(i) again is
immediate from the assumptions on zt and ηt . Assumption (N.1)(iv) requires
that supt Ex,a(|θt |2)≤ µ(Q)(1+ |x|q3) for a = θ0 ∈Q compact. Consider first
the component St = (1− γ )St−1 + γ z2

t . Clearly,

min
(
z2
L,S0

)≤ St ≤max
(
z2
H ,S0

)
.

It follows that S2
t is uniformly bounded.

Next consider the component φt . We can write

φt = At−1φt−1 +Bt−1,

where
At−1 =

(
1+ γ S−1

t−1z
2
t−1(α− 1)

)
,

Bt−1 = γ
(
S−1
t−1z

2
t−1δ + S−1

t−1zt−1ηt
)
.

Since S−1
t−1z

2
t−1 > 0 has a uniform upper bound, for α < 1 there exists γ > 0

sufficiently small so that 0 < At−1 < ρ for all t for some ρ < 1. Clearly also
|Bt−1| has an upper bound, i.e., |Bt−1| ≤ B̄ for all t for some B̄ > 0. Since

φt =
(
t−1∏
i=0

Ai

)
φ0 +

t−2∑
k=0

 t−1∏
i=k+1

Ai

Bk +Bt−1,
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we have

|φt | ≤ ρtφ0 + B̄

t−1∑
i=0

ρi ≤ φ0 + B̄(1− ρ)−1.

Hence |φt |2 is bounded. By Cauchy–Schwartz, |φtSt | is also bounded, so that
|θt |2 is uniformly bounded over t . Condition (N.1)(iv) is therefore satisfied.
Since H(θ, x) is continuous on D, and since |θt | and |Xt | are bounded, con-
dition (N.1)(ii) also follows. Finally, from Evans and Honkapohja (1998a, prop-
erty (i), p. 77), we have that |νθ (y)| ≤ C(1+ |y|q3) for some C,q3 which may
depend on θ. Since |θt | is bounded, there is some uniform constant C̄ such that
|νθt (y)| ≤ C̄(1+|y|q3). Since also |Xt | is bounded, we have that |νθt (Xt+1)| and
hence |νθt (Xt+1)|2 is bounded by some constant. Condition (N.1)(iii) follows.

In summary, provided α < 1, the conditions required for Theorem 7.9 are
met. Assuming α < 1, we now turn to the calculation of B =Dθh(θ

∗), R∗, and
C. Computing Dθh and evaluating it at θ∗ = (δ(1− α)−1,mz

2)
′, we obtain

B =
(
α− 1 0

0 −1

)
.

From equation (7.9) of Chapter 7 we have the formula

Rij (θ)=
∞∑

k=−∞
cov

[Hi(θ,Xθ
k ),Hj (θ,Xθ

0)
]
.

Since zt and ηt are iid, it is straightforward to calculate R from the above equa-
tions for H(φ,S). Evaluating at θ∗, we obtain

R(θ∗)=
( (

mz
2

)−1
σ 2
η 0

0 mz
4 −

(
mz

2

)2

)
,

where mz
4 =Ez4

t . Thus,

esBR∗esB′ =
( (

mz
2

)−1
σ 2
η e

2(α−1)s 0

0
(
mz

4 −
(
mz

2

)2)
e−2s

)
,

and

C =
(
σ 2
η

(
2mz

2(1− α)
)−1 0

0
(
mz

4 −
(
mz

2

)2)
/2

)
.
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It follows that for large t and small γ , we have that φt is approximately dis-
tributed as

φt ∼ N(φ̄, γC11),

where
φ̄ = δ(1− α)−1, C11 = σ 2

η

(
2mz

2(1− α)
)−1

.

We remark that the condition α < 1 required for this result is the familiar E-
stability condition. Results presented in the early chapters showed that, for ap-
propriate decreasing-gain sequences γt , we had φt → φ̄ with probability 1 pro-
vided the E-stability condition is met. With constant-gain algorithms, we instead
obtain the results that, provided the E-stability condition holds, (i) the estimates
are unbiased asymptotically, i.e., E(φt )≈ φ̄ for t large, and (ii) φt approaches a
limiting distribution which is tight around φ̄, for small γ, in the sense that the
mean square deviation from φ̄ is small.

14.3 Increasing Social Returns and
Endogenous Fluctuations

In Section 11.6.1 of Chapter 11, we introduced random production shocks
and government consumption into the increasing social returns (ISR) model of
Chapter 4. We reproduce here the basic structure for convenience. Employment
is given by

nt =H
(
G(nt+1, vt+1)

e
)
,

where

Xt =G(nt , vt )=
(
(1− ζ )f (nt , �nt )vt

)1−σ

and

H(X)= (αX)1/(1+ε)

are appropriate functions, depending on preference and production parameters,
which arise from the first-order condition. f (nt , �nt )vt is the production func-
tion, with the dependence on Nt = �nt representing a positive production ex-
ternality associated with aggregate output, and vt is a white noise positive pro-
ductivity shock with mean 1. ζ gives government purchases as a proportion of
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output, assumed financed by seignorage. σ and ε are preference parameters, α
is a production parameter, and we assume 0 < α, σ < 1 and ε > 0 through-
out. For a range of parameters there are multiple stochastic steady-state REE, as
illustrated for the nonstochastic case in Figure 4.5.

Under adaptive learning we write

θt−1 =G
(
nt+1, vt+1

)e
,

and assume that expectations are updated according to the rule

θt = θt−1 + γt (Xt − θt−1).

In Chapter 11 we showed that, under standard decreasing-gain assumptions such
as γt = t−1, the low and high activity states are locally stable and that there is
global convergence to one of these stochastic steady states, depending on the
initial position and the sequence of shocks.

14.3.1 Constant-Gain Learning

We now turn to the question of how the dynamics of the model are affected by
replacing the decreasing-gain assumption by the assumption of constant gain
γt = γ for some 0< γ < 1. Our discussion here follows and extends Evans and
Honkapohja (1993a), where this question was taken up. The key difference from
the decreasing-gain case is that, under constant-gain algorithms, there is the pos-
sibility of endogenous fluctuations, as the economy occasionally escapes from
the basin of attraction of one stochastic steady state to the basin of attraction of
another stochastic steady state.

We have previously noted that rational Markov sunspot equilibria can arise
in this model and that they can be locally stable under an appropriate learning
rule which allows for the possibility that agents condition their estimates on an
observable sunspot. However, here we see that even if agents do not condition
their estimates on an extraneous exogenous variable, but estimate a steady state
using a constant-gain algorithm, then endogenous fluctuations can arise in which
the economy shifts between high and low activity levels in a random way.

Recall from Chapter 11 that, for the specification of the production function
f (nt , �nt ) given in Chapter 4, Section 4.6.1, there will generically be one or
three steady states. Nonstochastic perfect-foresight steady states, when vt = 1
with probability 1, are given by

n=F(n)≡ α1/(1+ε)((1− ζ )f (n, �n)
)(1−σ)/(1+ε)=H

(
G(n,1)

)
.
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When there are three steady states we label them as nL < nU < nH . Increases
in the proportion of government purchases ζ rotate F downward, lowering both
nL and nH . Sufficiently large increases in ζ can bifurcate the system, eliminat-
ing nH . Similarly, sufficiently low values of ζ may also bifurcate the system,
eliminating nL. The following properties follow from 0 < α,σ < 1, ε > 0, and
the form of f (n, �n) given in Chapter 4, and will be used below:

(i) F(n) is continuous and strictly increasing with F(0)= 0.
(ii) If there is a single interior steady state n̄, then F(n)− n > 0 for 0 < n <

n̄ and F(n) − n < 0 for n > n̄. If there are three distinct steady states
nL < nU < nH , then F(n)− n > 0 for 0 < n < nL or nU < n < nH , and
F(n)−n < 0 for nL < n< nU or n > nH . Furthermore, F(n)−n→−∞
as n→∞.

(iii) F(n) is differentiable almost everywhere and F ′(0) = +∞, 0 < F ′(nL),
F ′(nH ) < 1<F ′(nU ).

These properties are illustrated in Figure 4.5.
The “size” of the productivity shock vt plays a key role under constant-gain

learning. This is seen most acutely by restricting attention to distributions with
compact support. In particular, we assume that the support of vt is the interval
Iv = [v̄1,v̄2], where v̄1 < 1 < v̄2, and that vt has continuous positive density
over [v̄1,v̄2]. Our first result is that if the support of vt is sufficiently small, then
nt will become trapped in a small region of either nL or nH . Throughout this
section we hold the gain parameter γ fixed at some value 0< γ < 1. (The choice
of γ is considered later in the chapter.) We focus on the case in which three
steady states exist. Let θL =G(nL,1), θU =G(nU,1), and θH =G(nH ,1) be
the values of X =G(n,1) corresponding to nL,nU , and nH , respectively.

Proposition 14.1. Suppose there are three steady states. There exist v̂1 < 1< v̂2

so that, for all v̄1, v̄2 satisfying v̂1 < v̄1 < 1< v̄2 < v̂2, there are neighborhoods
N(θL) = (a1, a2) and N(θH ) = (b1, b2), with 0 < a1 < θL < a2 < θU < b1 <

θH < b2, such that θt−1 ∈N(θL) implies θt ∈N(θL) and θt−1 ∈N(θH ) implies
θt ∈N(θH ).

Proof. Combining equations, we have

θt = θt−1 + γH(θt−1, vt ), (14.1)

where

H(θ, v) = G
(
H(θ), v

)− θ.
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From the forms for G and H , it can be seen that G(H(θ), v) is increasing and
continuous in θ and v and that for any given θ > 0, we have H(θ, v) > 0 for
v sufficiently large and H(θ, v) < 0 for v > 0 sufficiently small. The above
assumptions also guarantee that H(θL,1) = H(θU,1) = H(θH ,1) = 0, that
H(θ,1) > 0 for 0< θ < θL or θU < θ < θH , that H(θ,1) < 0 for θL < θ < θU

or θ > θH , and that ∂H(θL,1)/∂θ, ∂H(θH,1)/∂θ < 0 and ∂H(θU,1)/∂θ > 0.
There is a critical value v̂2 > 1 of v such that H(θ̃ , v̂2) = 0 for some θ̃

satisfying θL < θ̃ < θU and H(θ, v) > 0 for all 0< θ ≤ θH with θ �= θ̃ . Choose
1 < v̄2 < v̂2. Then there exist θL < θ̂1 < θ̂2 < θU such that H(θ, v̄2) < 0 for
θ̂1 < θ < θ̂2. Choose θ̂1 < a2 < θ̂2. For any 0 < v̄1 < 1, choose 0 < a1 < θL

such that H(a1, v̄1) > 0. The function θ+γH(θ, v)= (1−γ )θ+γG(H(θ), v)

is continuous and increasing in θ and v. Since H(a1, v̄1) > 0 and H(a2, v̄2) <

0, the function θ + γH(θ, v) maps the interval (a1, a2) into itself for every v

satisfying v̄1 ≤ v ≤ v̄2. Thus from equation (14.1), θt ∈N(θL) if θt−1 ∈N(θL).
The argument is analogous for N(θH ). There is a critical value 0< v̂1 < 1

such that H(θ̃ , v̂1)= 0 for some θ̃ satisfying θU < θ̃ < θH and H(θ, v) < 0 for
all θ > θL with θ �= θ̃ . One can then pick v̂1 < v̄1 < 1 < v̄2, and the rest of the
argument is analogous. Clearly, by choosing (v̄1, v̄2) so that v̂1 < v̄1 < 1< v̄2 <

v̂2, the arguments used to construct N(θL) and N(θH ) can be simultaneously
satisfied.

Thus, for a sufficiently small support for the productivity shock vt , expec-
tations will remain trapped in a neighborhood of θL or θH if they start in (or
enter) that neighborhood. Note that since nt =H(θt−1), this also implies that nt
will be confined to a neighborhood of nL or nH . For initial expectations within
the appropriate neighborhood, the arguments from Chapter 7, Theorem 7.9, can
also be applied to obtain the limiting distribution of θt for small γ .3 We note
that the E-stability of θL and θH plays a critical role in this proposition.

Next we consider what happens if the support of vt is increased.

Proposition 14.2. Suppose there are three steady states. Suppose v̄1 < v̂1 and
v̄2 > v̂2.4 Then for every interval J = (θ̄1, θ̄2), 0 < θ̄1 < θ̄2, and for all neigh-
borhoods N(θH ) of θH and N(θL) of θL, there is a positive integer T such
that if θt ∈ J , then, for all s > t + T , θs ∈N(θH ) with positive probability and
θs ∈N(θL) with positive probability.

3Even if γ is not small, an adaptation of the arguments of Honkapohja and Mitra (1999) can be
used to show that θt converges to some limiting distribution.

4v̂1 and v̂2 are formally defined in the proof of the preceding proposition.
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Proof. Pick any 0 < θ̄1 < θL. From the proof of the preceding proposition, it
follows that H(θ, v) > 0 for all v > v̂2 and θ̄1 ≤ θ ≤ θH . Pick v̂2 < v∗2 < v̄2.

Since H(θ, v∗2 ) is continuous in θ , it has a minimum on θ̄1 ≤ θ ≤ θH and "=
minθ̄1≤θ≤θH H(θ, v∗2 ) > 0.

Given θt , consider paths θ̃t+i , i = 1,2,3, . . . , generated by equation (14.1)
with vt+i = v∗2 , i.e., θ̃t+i = γH(θ̃t+i−1, v

∗
2 ) and θ̃t = θt . For every θ̄1 ≤ θt ≤ θH ,

there is such a path θ̃t+i with θH < θ̃t+K < θH + γ" for some finite integer
K ≤ 1 + (θH − θ̄1)/γ". There is a continuation path θ̃t+i, i = K + 1, . . . ,
starting from θ̃t+K and generated by vt+i = 1, i.e., θ̃t+i = γH(θ̃t+i−1,1), which
converges to θH . Hence the path θ̃t+i enters N(θH ) in a finite number of steps
L depending on N(θH ). Let T = K + L. Thus there is a path θt+i = θ̃t+i,
starting from θt , which obeys (14.1) and with θt+T ∈N(θH ) which is generated
by a sequence vt , vt+1, . . . , vt+T which lies within the support of the shocks.
Because vt is iid with positive density on the support, continuity of H(θ, v)
implies that the set of paths with θt+T ∈N(θH ) has positive probability. Because
continuation paths θ̃t+i, for i ≥ T + 1 with vt+i = 1, remain in N(θH ), it also
follows that for all s > t + T , θs ∈N(θH ) with positive probability.

The argument presented assumes θ̄1 ≤ θt ≤ θH , but clearly it also holds for
θH < θt ≤ θ̄2, where T depends also on θ̄2. The argument that for all s > t + T ,

θs ∈N(θL) with positive probability, is analogous.

This proposition shows that for a given constant gain γ , there is a critical
size of the support of the exogenous shock vt which prevents θt (and hence nt )
from remaining trapped forever in a neighborhood of the low-level state or in
a neighborhood of the high-level steady state. Occasional sequences of large
shocks can lead to paths which “escape” the ODE basin of attraction of θL to
a neighborhood of θH for a period of time. Similarly, an occasional sequence
of shocks can lead θt to escape the ODE basin of attraction of θH and return
toward θL. Simulations illustrating this phenomenon are presented in Evans and
Honkapohja (1993a) and below.

These “endogenous fluctuations” are induced by the learning rule in con-
junction with the random shocks and depend on the constant-gain assumption.
Under decreasing gain, such escape paths occur only with probability zero be-
cause the weight placed on current data shrinks to zero at an appropriate rate. By
bounding the gain parameter γt away from zero, we obtain persistent learning
dynamics dramatically different from either REE stochastic steady state.

14.3.2 Endogenous Fluctuations

To illustrate the possibility of endogenous fluctuations under constant-gain
learning, we provide some results of a simulation in which the parameter values
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Figure 14.1. Histogram for n(t).

are set so that there are three interior steady states, as illustrated in Figure 4.5,
and in which there is constant-gain learning and a support for the productivity
shock that is not “too small.” For the simulation we use the production function
developed in Evans and Honkapohja (1995b):

f (n,N)=Anα
{
max

(
I∗, λN(1+ αλN)−1)}β,

with parameters A = 0.0805, α = 0.025, λ = 0.5, � = 40, β = 1.007, and
I∗ = 19.5. The other model parameters are set at ε = 0.25, σ = 0.1, and
ζ = 0.04. The random productivity shock is distributed as an iid lognormal ran-
dom variable, i.e., lnνt is normal with mean 1 and standard deviation 0.0577.5

We choose the gain parameter γ = 0.15.
Figure 14.1 provides a histogram of the employment values nt over a sim-

ulation of 100,000 periods. With the fixed-gain learning rule, the values of em-
ployment are concentrated around the two E-stable steady states, leading to a
bimodal distribution. For these parameter values, nL ≈ 1.9, nU ≈ 1.95, and
nH ≈ 2.3. There is nonetheless a wide range of nt values as a result of the
stochastic shocks in connection with the fixed-gain estimator.

Figure 14.2 exhibits the same data using a line graph of nt plotted against
nt−1 for a representative sequence of 2500 periods. This shows a very simple

5In Evans and Honkapohja (1993a), a uniformly distributed shock was used instead. Very sim-
ilar results to those shown in Figures 14.1 and 14.2 are obtained for uniform shocks with an appro-
priate variance.



Persistent Learning Dynamics 343

Figure 14.2.

example of the “escape route” phenomenon discussed in Sargent (1999) and in
Cho and Sargent (1999). The path from a neighborhood of one steady state to
a neighborhood of the other steady state takes a very specific form of a series
of positive or negative productivity shocks by which estimates move from one
regime to the other. We conjecture that further details about these paths for small
gains could be obtained using the “large deviation theory” techniques described,
for example, in Dupuis and Ellis (1997). Sargent (1999) and Cho and Sargent
(1999) provide a general discussion and apply such techniques to analyze the
Phillips curve policy model discussed in Chapter 13. We take this up in Sec-
tion 14.4

14.3.3 Hysteresis with Time-Varying Policy

One motivation for use of fixed-gain learning rules is to deal with structural
change. In nonlinear models such as the ISR model, changes in structural param-
eters can in some cases lead to a system bifurcation which changes the number
of perfect-foresight steady states. For example, for appropriate parameter val-
ues, changes in the fiscal policy parameter ζ can alter the F(n) map as shown in
Figure 14.3, so that for high values of ζ only the low-level (interior) steady state
nL exists, for low-levels of ζ only the high-level (interior) steady state nH ex-
ists, and for intermediate levels there are the three interior steady states nL,nU ,
and nH .
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Figure 14.3. nt =F(nt+1).

We have seen above that nL and nH are locally stable under adaptive steady-
state learning (for decreasing or small gain). A change in the policy parameter
leads to a shift in the system dynamics which is tracked better by a constant-gain
estimator than by a decreasing-gain estimator, though at the cost of increased
asymptotic variability when the structure is stable. If a change in ζ bifurcates
the system, then this provides an additional advantage to the use of a fixed-gain
learning rule when there is a large shift to a new steady state.

We illustrate this with the following example, which is based on Evans and
Honkapohja (1993a). Suppose that fiscal policy changes slowly relative to the
“learning speed,” indexed by the fixed-gain parameter γ . Specifically, we choose
a time-varying policy rule which follows a cosine function of time with a low
frequency and an amplitude large enough to include each of the three regimes
shown in Figure 14.3. Agents are assumed not to know the law of motion of this
“structural change” resulting from the policy shifts, but to be aware that there
are shifts and to use a fixed-gain rule to track the continually shifting mean value
of the variable they are forecasting.

Figure 14.4 shows the path over time of a stochastic simulation with the
ISR model for this setup. The amplitude of ζ is chosen so that it varies from
ζ = 0 to ζ = 0.12 with a frequency of ω= 0.0005. The fixed-gain parameter is
set at γ = 0.20.6 For this simulation, the productivity shock is distributed as an
iid uniform random variable with support 1 ± τ with τ = 0.20. The stochastic
simulation is taken over 314,159 periods, giving 25 complete cycles of ζ .

6Other parameters are ε = 0.25, σ = 0.1, A = 0.085, a = 0.025, α = 0.9, λ = 0.5, K = 40,
I∗ = 14.1935, β = 1, τ = 0.25.
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Figure 14.4.

The most dramatic aspect of Figure 14.4 is the strong hysteresis effects
over intermediate ranges of ζ . Starting from high values of ζ , employment lev-
els track fairly closely the low-level steady state as ζ moves through the high
and intermediate ranges. For values of ζ somewhere in the 0.02 to 0.03 inter-
val, the system bifurcation leads to a rapid revision upward of expectations and
corresponding increases in employment. As ζ moves through the low range and
back through the intermediate range, employment levels stay high until another
system bifurcation occurs as ζ nears and goes beyond 0.09.

The parameters ω and γ are set so that there is relatively “fast learning” of
the ever-shifting equilibrium. However, because of the stochastic productivity
shocks vt , there is significant random variation in the path for nt . On the one
hand, the conditional distribution in nt for each value of ζ above 0.09 is quite
tight around the mean, and for values in between 0.035 and 0.08 the distribution
is bimodal but tight around each mode. On the other hand, for values of ζ be-
tween 0.02 and 0.03 or near 0.085, there is a large range of the distribution of
nt reflecting the uncertainty at which the “regime shift” will occur.
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Policy effects in this type of model can therefore be highly nonlinear. In
addition to the usual comparative statics type effects, in certain circumstances
a change in ζ can exhibit threshold effects at critical levels, in which small
changes induce large changes in nt by shifting the economy between equilibria.
Note that these effects are a joint result of the model and the form of adaptive
learning behavior posited.

14.3.4 Equilibria in Learning Rules

With constant-gain learning rules there is a further issue which requires consid-
eration: what determines the choice of the gain parameter γ ? So far we have
examined the effects on economic dynamics of a particular choice of γ by the
agents. This naturally leads to the question: which gain parameter γ would be
optimal from the point of view of an individual agent? This issue does not arise
with the same force when agents use decreasing gains, provided parameters con-
verge to their rational expectations values. If there is convergence to rational
expectations, then asymptotically agents are using a fully optimal method of
forming expectations. However, with constant-gain learning there typically is
convergence to a stationary stochastic process in which agents are not forming
expectations optimally even in the limit. It may then be possible for an indi-
vidual agent to improve their forecast accuracy by altering their choice of gain
parameter.

This line of thought suggests the concept of an equilibrium in learning rules,
following Evans and Honkapohja (1993a). We continue to develop this within
the context of the ISR model. Recall that under constant-gain learning with fixed
gain γ0, we have nt = H(G(nt+1, vt+1)

e), where G(nt+1, vt+1)
e = θt−1 and

θt = θt−1 + γ0(G(nt , vt ) − θt−1). This defines a Markov process in n
(γ0)
t and

θ
(γ0)
t , where we use the superscript (γ0) to denote the stochastic process in-

duced by a particular choice γ0. Consider now the optimal choice of γ given
the economic equilibrium just defined. Let θ(γ0)

t (γ ) be defined by the recursive
algorithm

θ
(γ0)
t (γ )= θ

(γ0)

t−1 (γ )+ γ
(
G(n

(γ0)
t , vt )− θt−1

)
.

That is, θ(γ0)

t−1 (γ ) is the sequence of forecasts G(nt+1, vt+1)
e that would be ob-

tained from using the fixed-gain parameter γ when the other agents in the econ-
omy are actually using gain γ0. Let

MSE(γ0)(γ )= lim
t→∞E

(
G(nt+1, vt+1)− θ

(γ0)

t−1 (γ )
)2
,
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Table 14.1.

γ M̂SE
(γ0=0.15)

(γ )

0.05 0.0276
0.10 0.0256
0.15 0.0253
0.20 0.0255
0.25 0.0259
0.30 0.0265
0.40 0.0278
0.50 0.0295
0.60 0.0314
0.70 0.0336
0.90 0.0395

provided this limit exists, be the asymptotic mean square error from using the
fixed-gain rule γ when the other agents are in fact using γ0. If

γ0 = argmin
γ

MSE(γ0)(γ ),

then we say that we have an equilibrium in learning rules. Clearly, this is a Nash
equilibrium in the sense that in such an equilibrium, no agent has an incentive
to change to an alternative value of γ . (We assume that there is a large number
of agents and each agent treats its actions as having negligible effects.)

For the ISR model, this equilibrium was investigated numerically in Evans

and Honkapohja (1993a). Table 14.1 gives M̂SE
(γ0)

(γ ), the estimated values of
MSE(γ0)(γ ) obtained as7

M̂SE
(γ0)(γ )= T −1

T∑
t=1

(
G(nt+1, vt+1)− θ

(γ0)

t−1 (γ )
)2
,

using a stochastic simulation with T = 100,000.
From Table 14.1 it can be seen that γ = 0.15 is an approximate equilibrium

in learning rules. These parameter values give rise to endogenous fluctuations in

7For this table the model parameters are those used in generating Figures 14.1 and 14.2, with
the lognormal shock and ζ = 0.04. In Evans and Honkapohja (1993a), a similar analysis was done
using a uniformly distributed shock.
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the sense defined above: the path of nt periodically shifts between regions near
the high- and low-level steady states. Note that there is a self-fulfilling prophecy
operating here, but it is at the metalevel of learning rules. If all agents used a
decreasing-gain sequence, this would also be individually optimal in the limit,
but would converge to one of the two stable rational stochastic steady states.

For a treatment of equilibrium in learning rules within the context of the as-
set pricing model, see the discussion of “Optimal Misspecified Beliefs” in Sar-
gent (1999, Chapter 6). A treatment within the context of an underparameterized
model is given in Evans and Ramey (1998a).

14.4 Sargent’s Inflation Model

We return to the model of inflation introduced by Sims (1988), Chung (1990),
and Sargent (1999), discussed earlier in Section 13.2 of Chapter 13. In that sec-
tion we showed that under decreasing-gain learning, there is convergence to
the “high-inflation equilibrium” in which the Phillips curve parameters are per-
ceived by the government to be

β̄0 = u∗
(
1+ ϕ2), β̄1 =−ϕ.

We now consider the effects of altering the adaptive learning rule employed by
the policy makers to employ a small constant gain in place of decreasing gain.
This turns out to have a dramatic effect, as discussed at length in Sargent (1999)
using an extended version of the model. Cho and Sargent (1999) consider the
simplified version discussed in Chapter 13.

Using stochastic simulations, they show that while the paths still tend to
converge toward β̄ ′ = (β̄0, β̄1), with constant gain the parameter estimates fol-
low a stochastic process that remains noisy in the limit. The paths tend to stay
for a long period of time in a neighborhood of β̄ . However, the time paths oc-
casionally deviate far from the equilibrium β̄. These deviations, called “escape
routes,” appear almost always to go specifically in the direction of the “Ram-
sey” point (β0, β1) = (u∗,0).8 This point corresponds to the fully optimal but
time-inconsistent “low-inflation” policy since the inflation target xt is zero at
this value of β . Intriguingly, the escape routes to the Ramsey point always fol-
low a narrowly circumscribed band in the parameter space. The Ramsey point,

8See Barro and Gordon (1983a) and Barro and Gordon (1983b) for further discussion of the
significance of the Ramsey point.
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however, is not an equilibrium: eventually the mean dynamics drive β back to a
neighborhood of β̄ , the unique equilibrium.

Cho and Sargent (1999) provide a theoretical analysis of these escape route
dynamics for the special case of discrete multinomial shocks. Our intention here
is to provide an intuition for the appearance of escape routes in the model, based
on the results from Chapter 7 on constant-gain algorithms and simulations of the
mean ODE. As commented below, our treatment here is heuristic and we do not
attempt to present a full analysis.

Under constant-gain learning, we now have

βn = βn−1 + γR−1
n−1zn

(
un − β ′n−1zn

)
,

Rn = Rn−1 + γ
(
znz

′
n −Rn−1

)
,

where β ′n = (β0,n, β1,n) are the time-n estimates of β and z′n = ( 1, yn ). Note
that here we use n to denote real (discrete) time, so that we can later use t for
corresponding fictitious (continuous) time. At time n, the government’s percep-
tions of the Phillips curve parameters are described by the parameters βn−1,

since data are not yet available on inflation, yn, and unemployment, un. Pol-
icy sets the inflation target to xn = g(βn−1) and yn = g(βn−1) + v2n, with
g(β)=−(1+ β2

1 )
−1β0β1. From equations (13.15) and (13.17), we have

un = T (βn−1)
′zn + v1n,

where

T (β)=
(
u∗ + g(β)ϕ

−ϕ
)
.

Following the steps in Section 13.2 of Chapter 13, we arrive at the system

βn = βn−1 + γR−1
n−1zn

(
(T (βn−1)− βn−1)

′zn+ v1n
)
,

Rn = Rn−1 + γ
(
znz

′
n−Rn−1

)
, (14.2)

z′n =
(

1, g(βn−1)+ v2n
)
.

We will analyze this system using Proposition 7.8 of Chapter 7. Let θn be the 6×
1 vector θ ′n = (β ′n,vec(Rn)′). The components of the associated ODE dθ/dt =
h(θ) are given by

hβ(β,R) = R−1Mz(β)
(
T (β)− β

)
, (14.3)

hR(β,R) = Mz(β)−R,
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where

Mz(β)=
(

1 g(β)

g(β) (g(β))2 + σ 2
2

)
.

Using Proposition 7.8 of Chapter 7, we can approximate the time paths of the
constant-gain learning dynamics using stochastic differential equations as fol-
lows. For clarity in this paragraph, we make the dependence of the algorithm on
γ explicit by writing θγn for θn. Define the continuous-time interpolation θγ (t)
of the real-time process θγn by

θγ (t)= θ
γ
n if nγ ≤ t < (n+ 1)γ .

We assume the initial condition θγ0 = a. Let

Uγ (t)= γ−1/2[θγ (t)− θ̃ (t, a)
]
,

where θ̃ (t, a) is the solution to the ODE dθ/dt = h(θ) with initial condition
θ(0) = a. Then for γ small, the probability distribution of Uγ (t) converges
to the probability distribution of the solution U(t) to the stochastic differential
equation

dU(t)=Dθh
(
θ̃ (t, a)

)
U(t) dt +R1/2(θ̃ (t, a))dW(t), (14.4)

where U(0) = 0 and W(t) is a standard Wiener process. Note that since
EU(t) = 0 for all t , it follows that in the (small γ ), limit Eθγ (t) = θ̃ (t, a)

for starting points θ(0)= a. This implies that the estimates are asymptotically
unbiased when limt→∞ θ̃ (t, a)= θ̄ .9 (This result is an approximation since it is
based on Proposition 7.8.)

This is a high-dimensional system which in principle could be used to ob-
tain an approximation for the algorithm from any starting point. A detailed study
is beyond the scope of this book, but the key aspects of the dynamics can in
fact be illustrated by (i) considering the stationary distribution of β(t) for ini-
tial points at the equilibrium, and (ii) by considering the mean dynamics of β
generated by the associated ODE for arbitrary starting points.

9Since θ̄ is E-stable, there will necessarily be convergence from nearby starting points. Simula-
tions suggest that global convergence also obtains.
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We start by calculating the 6× 6 Jacobian Dθh(θ). Taking matrix differen-
tials of hβ with respect to β , we have

dhβ = R−1(dM(T − β)+M(dT − dβ)
)

= vecR−1 dM(T − β)+R−1M dT −R−1M dβ.

Hence,

d vechβ = (T − β)′ ⊗R−1d vecM +R−1M(d vecT − d vecβ),

so that

Dβhβ =
(
(T − β)′ ⊗R−1)∂ vecM

∂ vecβ
+R−1M(DT − I2),

where DT = ∂ vecT/∂ vecβ.
Similarly, taking matrix differentials of hβ with respect to R, we have

dhβ = −R−1(dR)R−1Mz(β)
(
T (β)− β

)
= −(T (β)− β

)′
Mz(β)

′R′−1 ⊗R−1d vecR,

so that

DRh(β)=−
(
T (β)− β

)′
Mz(β)

′R′−1 ⊗R−1.

Finally, since dhR(β,R)= dMz(β)− dR, we have

DβhR = ∂ vecM

∂ vecβ
and DβhR =−I4.

∂ vecM/∂ vecβ can be calculated explicitly fromMz(β) and g(β), but this will
not be needed.

Evaluating the derivatives at the self-confirming equilibrium θ = θ̄ , i.e., at
β = β̄ and R = R̄, we obtain

Dθh(θ̄)=
DT (β̄)− I2 0

∂ vecM

∂ vecβ
(β̄) −I4

 . (14.5)

Note that this matrix is block-triangular at θ̄ (though this does not hold else-
where).

Next we need to calculate R(θ̄ ) from equation (7.9) of Chapter 7, i.e.,
Rij (θ) =∑∞

k=−∞ cov[Hi,Hj ]. For this model, the components Hβ and HR



352 Further Topics

of H(θ, v1n, v2n) are given by

Hβ = R−1
(

1
g(β)+ v2n

)(
(T (β)− β)′

(
1

g(β)+ v2n

)
+ v1n

)
,

HR =
(

1 g(β)+ v2n

g(β)+ v2n (g(β)+ v2n)
2

)
−R.

Evaluating these expressions at β = β̄ and R = R̄ =Mz(β̄), we obtain

H(θ̄ , v1n, v2n) =
( Hβ

vecHR

)

=



v1n−
(
ϕu∗/σ 2

2

)
v1nv2n

v1nv2n/σ
2
2

0
v2n

v2n

2ϕu∗v2n + v2
2n − σ 2

2


.

Because v1n and v2n are white noise, it follows that

R(θ̄)=EH(
θ̄ , v1n, v2n

)H(
θ̄ , v1n, v2n

)′
.

Using the assumption that Ev1nv2n = 0, we obtain that R(θ̄) takes the form

R(θ̄)=
(Rβ(θ̄) 0

0 RR(θ̄)

)
, (14.6)

where

Rβ(θ̄)=
(
σ 2

1 + σ 2
1 (ϕu

∗)2/σ 2
2 −ϕu∗σ 2

1 /σ
2
2

−ϕu∗σ 2
1 /σ

2
2 σ 2

1 /σ
2
2

)
.

For the initial condition θ(0)= θ̄ , we see from equations (14.5) and (14.6) that
the process U(t) in equation (14.4) is block-triangular and that the first two
components Uβ(t) form an exogenous block. Attention can thus be focused on
the small two-dimensional subsystem

dUβ(t)=Dβh(θ̄)Uβ(t) dt +R1/2
β (θ̄) dŴ(t), (14.7)

where Uβ(t) = γ−1/2βγ (t), Ŵ (t) is a two-dimensional standard Wiener pro-
cess, and βγ (t) are the first two components of θγ (t). In equation (14.7) we
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have

Dβh(θ̄) = DT (β̄)− I2

=
(−(1+ ϕ2)−1 −u∗(1+ ϕ2)−1(1− ϕ2)ϕ

0 −1

)
.

Using the results in Section 7.4 of Chapter 7 and Section 5.6.2 of Chapter 5, it
follows that the stationary Gaussian solution to equation (14.7) has mean zero
and a covariance function

ρ(k)= ekDβh(θ̄)V , where k = s − t,

where the 2× 2 matrix V = (Vij ) satisfies the matrix equation

Dβh(θ̄)V + V
(
Dβh(θ̄)

)′ = −Rβ(θ̄). (14.8)

The solution to equation (14.8) is given by

V22 = σ 2
1

2σ 2
2

,

V12 = V21 =−u∗(2+ ϕ2)−1σ
2
1

σ 2
2

[
(1− ϕ2)ϕ

2
+ ϕ(1+ ϕ2)

]
,

V11 = −u∗(1− ϕ2)ϕv12 +
(

1+ ϕ2

2

)[
σ 2

1 +
(u∗ϕ)2σ 2

1

σ 2
2

]
.

Adopting the numerical values ϕ = 1, u∗ = 5, σ1 = σ2 = 0.3 utilized in Cho and
Sargent (1999), one has

V =
(

29.09 −10/3
−10/3 1/2

)
.

Our first task is to illustrate the approximate stationary distribution β∞ for
βn, given the initial condition β0 = β̄. Note that (β∞ − β̄) ∼ √γU∞, so that
varβn ≈ γV for large n. Moreover, the limiting distribution is Gaussian so that
βn ∼N(β̄, γ V ) holds approximately for small γ and large n. For our numerical
work we choose γ = 0.05 and compute the concentration ellipses for β∞. Fig-
ure 14.5 gives the 50- and 95-percent concentration ellipses for the numerical
example. Note that the first principal axis has a negative slope and the distribu-
tion is heavily concentrated near the principal axis. Under constant-gain learn-
ing, starting from the self-confirming equilibrium, one would expect to see many
realizations in the directions indicated by the ellipses.
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Figure 14.5.

Our other task is to study numerically the mean dynamics Eθγ (t)= θ̃ (t, a)

given by the associated ODE dθ/dt = h(θ), where h(·) is given by equa-
tion (14.3). We consider a number of starting points using various initial values
for β chosen from various regions in the 50-percent confidence ellipse. For R
we choose the initial value equal to the equilibrium value R̄.

Figure 14.6 illustrates the time paths for mean dynamics β̃ for β from the
ODE for starting points chosen as follows: β0 = 10.75, β1 =−1.1 for panel a,
β0 = 9.25, β1 = −0.9 for panel b, β0 = 9.85, β1 = −1.025 for panel c and
β0 = 10.15, β1 =−0.975 for panel d. These points are (approximately) on the
50-percent concentration ellipse in the directions of the two principal axes. Note
that for three of the four starting points, the time paths of β show a rapid transi-
tory movement towards the Ramsey outcome β0 = 5, β1 = 0 before ultimately
converging to the self-confirming equilibrium. These paths behave like the es-
cape routes discovered by Sargent (1999) and analyzed further by Cho and Sar-
gent (1999).10

Since the self-confirming equilibrium β̄ is E-stable, starting points suffi-
ciently close to β̄ should not exhibit escape routes in the mean dynamics. In
Figure 14.7 we provide a second set of numerical solutions to the ODE giving
the mean dynamics for starting points which are placed as in the preceding fig-
ure but at half the distance from β̄. Thus β0 = 10.375, β1 =−1.05 for panel a,

10The phenomenon of escape routes appears to be sensitive to the choice of the learning rule.
Preliminary simulations with the mean dynamics corresponding to stochastic gradient learning under
constant gain have not turned up escape paths.



Persistent Learning Dynamics 355

(a) (b)

(c) (d)

Figure 14.6.

(a) (b)

(c) (d)

Figure 14.7.
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β0 = 9.625, β1 =−0.95 for panel b, β0 = 9.925, β1 =−1.0125 for panel c, and
β0 = 10.075, β1 =−0.9825 for panel d. The initial value of R is still set at R̄.
Now the paths do not exhibit escape routes except for panel b. In simulations
(not presented here) in which the initial conditions are chosen even closer to β̄ ,
the phenomenon of escape routes for the ODE does not arise.

This shows the importance of the constant-gain assumption for obtaining
recurring escape routes. Under decreasing gain, the parameter estimates will
track the mean dynamics increasingly over time. Thus although for some initial
conditions an escape route can arise en route, there is ultimately convergence
to β̄. In contrast, under constant-gain learning there will be occasional random
displacements far from the mean dynamics. One can think of these as occasion-
ally resetting the initial conditions sufficiently far from β̄ to generate recurrent
escape routes in the stochastic dynamics.

It should be emphasized that this analysis is illustrative in that we have
not rigorously derived the existence and properties of the random escape routes
discovered by Sargent (1999). Since the escape routes of the constant-gain al-
gorithm (14.2) are a “rare event,” i.e., arise with draws from the tails of the
distribution of the shocks, the γ → 0 limit of the constant-gain algorithm in the
sense of weak convergence, given by the stochastic differential equation (14.4),
may not provide a sufficiently good approximation to the paths of the original
algorithm (14.2). As a further analysis, Cho and Sargent (1999) introduce the
concept of a “dominant escape path” and study its properties for the special
case of multinomially distributed shocks. Williams (2000) provides additional
theoretical results.

In his book, Sargent (1999) shows that similar phenomena arise if policy
makers are assumed to estimate an augmented Phillips curve including a dis-
tributed lag of past inflation terms. Occasionally the parameters escape along a
path in which the sum of the distributed lag coefficients supports the natural rate
hypothesis and leads policy makers to follow low-inflation Ramsey policies for
a period of time. However, the mean dynamics eventually push the system back
toward the self-confirming high-inflation Nash equilibrium where the system
stays until the next escape episode arises.

14.5 Other Models with Persistent Dynamics

In the preceding sections we have analyzed and discussed a number of models
with persistent learning dynamics arising from agents adopting a learning pro-
cedure which can account for possible structural changes but which cannot fully
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converge to an REE. All these models have the feature that full convergence of
parameter estimates fails for all possible structural parameter configurations of
the model. Learning is incomplete in the terminology of Honkapohja and Mitra
(1999).

Persistent learning dynamics can also arise in situations in which the learn-
ing is (potentially) complete, but where the REE outcome is unstable for learning
for particular configurations of the parameters of the economic model. Indeed,
the chapters in this book contain a number of instability results. If a given REE
is unstable under learning, it is important to consider the resulting dynamics fur-
ther. One possibility is that there may exist stable solutions, besides the unstable
one, and the dynamics may then converge to such outcomes asymptotically. We
have seen examples of this phenomenon in earlier parts of the book. Another
possibility is that the model has only a unique unstable REE, so that the dynam-
ics do not settle down but nevertheless exhibit a great deal of regularity asymp-
totically.11 A prominent example of this possibility is the “learning equilibria”
suggested by Bullard (1994).

The model of Bullard (1994) is a modification of the hyperinflation model,
discussed in Section 11.6.2 in Chapter 11. Bullard replaced the assumption of
constant (real) government spending by constant nominal money growth θ =
Mt/Mt−1. Government spending is then made endogenous, so that the budget
constraint is satisfied.

Bullard’s model can be described in terms of the savings (or money de-
mand) function Mt/Pt = S(Pt/E

∗
t Pt+1) and forecasting of the inflation rate

βt =E∗t Pt+1/Pt . Given forecasts, the temporary equilibrium is

Pt = θ
S(β−1

t−2)

S(β−1
t−1)

Pt−1.

It is easy to see that the mapping from the PLM with fixed β to the ALM is
T (β)= θ , so that the steady state β = θ is always E-stable.

For real-time learning, Bullard postulates that agents estimate β by run-
ning a first-order autoregression of prices on lagged prices using data through
t − 1. This system can be written as a system of three nonlinear difference

11The asymptotic outcome need not show any regular behavior; see, e.g., Brock and Hommes
(1997a) and (1997b) .
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equations:

βt = βt−1 + gt−1

[
θ
S(β−1

t−2)

S(β−1
t−1)

− βt−1

]
,

βt−1 = βt−1,

gt =
[
g−1
t−1

(
S(β−1

t−2)

S(β−1
t−1)

)−2

+ 1

]−1

.

Bullard shows that if the money growth rate θ is not too large, this system is sta-
ble with inflation given by β∗ = θ. However, if θ is increased beyond a critical
value, the steady state becomes unstable and the learning dynamics converge to
a limit cycle.12 There is a multiplicity of these learning equilibria depending on
the starting point.

This result might appear to contradict the E-stability principle. However,
the reconciliation is straightforward. The key point is that the regressor, the past
price level, is a nonstationary variable, in the steady state, when θ > 1. Thus
the standard recursive least squares algorithm would include an explosive state
variable. In such cases the stochastic approximation technique is not applicable.
(The above formulation of least squares as a difference equation is not in stan-
dard SRA form.) A natural alternative assumption is that agents estimate β by
computing the mean of past inflation rates. It can be verified that the steady state
is always stable under this learning rule.

A possible objection to the notion of learning equilibria is that when pa-
rameter estimates converge to a (nonrational) limit cycle, forecasting errors may
become large and exhibit some regularities. If such a regularity is found, then
agents would try to exploit it and hence would stop using the previous learning
rule. However, Bullard shows that for carefully chosen savings functions, the
forecast errors can exhibit a complex pattern, so that agents do not necessarily
find regularities that they could exploit.13

There are several other examples of persistent learning dynamics in the
literature. Franke (2000) shows that complex cyclical dynamics can arise in a
complementarities model if agents use a mixture of adaptive and extrapolative
forecast rules. Adam (2000b) shows that convergence to a nonrational equilib-
rium is possible when agents have a choice between two classes of model, even
when one of the models is rational. Another way to generate persistent learning

12In fact, the system undergoes a Hopf bifurcation.
13Schönhofer (1999) examines this issue further and shows that the forecast errors can even be

chaotic.
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dynamics is to replace the decreasing-gain or constant-gain assumption with an
endogenous gain sequence or some alternative assumption. Models with alter-
native gain sequences are discussed in Section 15.2 of Chapter 15.

14.6 Conclusions

In this chapter we have looked at learning rules for which the estimators do not
converge to REE solutions and in fact continue to evolve over time. The estima-
tors nevertheless appear to be “reasonable” in the sense that they tend to track
the parameters of interest using fairly standard statistical methods. Furthermore,
in many cases the estimators are unbiased asymptotically. In some cases, such
as the cobweb model, the distribution of the estimators is tightly concentrated
around the REE value. In other cases, there may be periods where estimates are
relatively far from any REE as they attempt to track the evolving dynamics.

A possible drawback of these approaches is that, since the estimates do not
converge to REE values, there are potential regularities in the forecast errors
which could be exploited. Whether this criticism is telling depends upon how
large and obvious are such patterns in the forecast errors. In some ways this is
like the issue of whether an econometrician can be expected to eventually learn
the true model or whether some misspecification will always be present. The
gain from these approaches is that they can provide frameworks generating new
forms of dynamics that can be taken to the data.
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Chapter 15
Extensions and Other

Approaches

The main body of this book has been devoted to statistical or econometric learn-
ing, since the greatest concentration of research has probably been in this ap-
proach. In recent years other approaches have also been introduced to model
learning behavior in macroeconomic models, and the literature has also consid-
ered some topics that we have not covered in the earlier chapters. We rectify
these omissions here by providing an overview of other approaches and some
further topics.

15.1 Models from Computational Intelligence

Several strands of alternative learning models have their origins in computa-
tional intelligence. The basic idea is that certain artificial devices have capa-
bilities to memorize and reproduce patterns of behavior. Other structures can
be used as approximate representations of nonlinear behavior rules, and their
parameters can be updated adaptively. The different setups include genetic algo-
rithms, classifier systems, and neural networks. These have recently found some
applications in economics.

15.1.1 Genetic Algorithms

Basic Description

Genetic algorithms (GAs) were initially designed for finding optima in non-
smooth optimization problems. GAs are essentially a specific way for finding

361
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increasing values of some objective functions. The system is subjected to ran-
dom perturbations by the GA and this helps in avoiding getting stuck at local
extrema.

We describe the main features of GAs using the Muth market model, which
is one of the very first applications of GAs to economics. The exposition follows
Arifovic (1994).

Consider a market with n firms with quadratic cost functions Cit = xqit +
1
2ynq

2
it , where qit is the production by firm i and x and y are parameters. Given

price expectations pet , the expected profit of firm i is �e
it = pet qit − xqit −

1
2ynq

2
it , and one obtains the supply function for firm i as qit = (yn)−1(pet − x).

The demand function is taken to be pt =A−B
∑n

i=1 qit , and the RE solution
pt = pet yields qit = qt = (A− x)/[n(B + y)].

Arifovic (1994) considers some alternative GAs. We outline here her
“single-population” algorithm. Formally, there is a population At of “chromo-
somes” Ait which are strings of length � of binary characters 0,1:

Ait =
(
a1
it , . . . , a

�
it

)
, where akit = 0 or 1.

To each chromosome Ait one associates a production decision by firm i by the
formula

qit = xit/K̄, where xit =
�∑

k=1

akit2
k−1.

Here K̄ is a norming factor. Note that for large �, the expressions xit can ap-
proximate any real number over the range of interest. Short-run profits µit =
�it = ptqit −Cit provide a measure of a “fitness” for alternative chromosomes
(production decisions). Here pt is the short-run equilibrium price, given a con-
figuration of n chromosomes.

The basic idea in a genetic algorithm is to apply certain genetic operators
to different chromosomes in order to produce new chromosomes. In these oper-
ators, the fitness measure provides a criterion of success, so that chromosomes
with higher fitness have a better chance of producing offspring to the population.
The following operators are used by Arifovic (1994):

(1) Reproduction: Each chromosome Ait produces copies with a probability
which depends on its fitness. The probability of a copy cit is given by
P(cit )=µit /(

∑n
i=1µit ). The resulting n copies constitute a “mating pool.”

(2) Crossover: Two strings are selected randomly from the pool. Next, one se-
lects a random cutoff point, and the tails of the selected chromosomes are
interchanged to obtain new chromosome strings.
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Example: If there are two strings [110101111] and [001010010], and tails
of length 4 are interchanged, then the new strings are [110100010] and
[001011111]. Altogether n/2 pairs are selected (assume that n is even, for
simplicity).

(3) Mutation: For each string created in step (2), in each position 0 and 1 are
changed to the alternative value with a small probability.

These are standard genetic operations. In her analysis, Arifovic (1994) adds an-
other operator which is not present in standard GAs.

(4) Election: The new “offspring” strings created by the preceding three oper-
ators are tested against their “parent” strings using profit measured at the
previous price as the fitness criterion. The two offspring and two parents are
ranked based on the actual fitness value of the parents and the potential fit-
ness values of the offspring. The two strings with highest fitness values are
chosen to be placed into the population of the next generation.

It turns out that the election operator is crucial for the results: the market
model does not converge when it is absent. Since mutation is always occurring,
unless it is made to die off asymptotically, something like the election operator
must be utilized to get convergence.

These four operations determine a new population of size n and, given this
configuration, a new short-run equilibrium price is determined by the equality
of demand and output. After this, the genetic operators are applied again using
the new market price and profits as the fitness measure. Arifovic (1994) shows
by simulations that this algorithm converges to the RE solution irrespective of
the model parameter values.1 This result is remarkable, since it happens in spite
of the myopia in the fitness criterion. (The system, however, has no stochastic
shocks.) For some specifications, it also turns out that the time paths of the
GA correspond reasonably well with certain experimental results for the market
model.

These genetic operations can be given broad interpretations in terms of eco-
nomic behavior. First, reproduction corresponds to imitation of those who have
done well. Second, crossover and mutation are like testing new ideas and mak-
ing experiments. Finally, election means that only promising ideas are in fact
utilized.

1This finding is consistent with the E-stability condition and corresponds to the least squares
learning results: downward-sloping demand and upward-sloping supply is sufficient for global con-
vergence.
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To conclude this discussion, we remark that as a model of learning, the
genetic algorithm is probably best interpreted as a framework of social rather
than individual learning; cf. Sargent (1993). Indeed, individual firms are like
individual chromosomes that are replaced by new ones according to the rules of
the algorithm.

Recent Applications of Genetic Algorithms

The seminal paper by Arifovic (1994) demonstrated the potential of GAs to
converge to the REE. A natural question is whether such convergence occurs in
other models, and whether, when there are multiple equilibria, there is a one-
to-one correspondence between solutions which are stable under statistical or
econometric learning rules and solutions which are stable under GAs. The ex-
pectational stability principle, which states that there is a close connection be-
tween stability under adaptive learning rules and expectational stability, would
argue for a tight correspondence between stability under econometric learning
and under GAs.

One setup in which this question can be investigated is the OG model with
seignorage, in which a fixed real deficit is financed by printing money. Recall
that, provided the level of the deficit is not too large, there are two REE mon-
etary steady states. Under small-gain adaptive learning of the inflation rate, the
low-inflation steady state is locally stable while the high-inflation steady state is
locally unstable, and these results are consistent with the E-stability conditions
of the two steady states. Learning in this model was actually first investigated
under least squares learning by Marcet and Sargent (1989a). They assumed that
agents forecast inflation according to the perceived law of motion pt+1 = βtpt ,
where βt is given by the least squares regression (without intercept) of prices
on lagged prices. They showed that there could be convergence only to the low-
inflation steady state, never to the high-inflation steady state. In addition, in sim-
ulations they found some cases with unstable paths leading to expected inflation
rates at which there did not exist a temporary equilibrium (i.e., at which it was
impossible to finance the deficit through money creation).

Arifovic (1995) sets up the GA so that the chromosome level represents the
first-period consumption of the young. Using GA simulations (with an election
operator), she also finds convergence to the low-inflation steady state and never
to the high-inflation steady state. There are some differences in detail from least
squares learning. From some starting points which lead to unstable paths un-
der (Marcet–Sargent) least squares learning, there was convergence under GA
learning. It is possible that some of these apparent discrepancies arise from the
particular least squares learning scheme followed. Since the price level in ei-
ther steady state is a trended series, whereas the inflation rate is not, it would
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be more natural to an econometrician to estimate the inflation rate by its sample
mean rather than by a regression of prices on past prices.2 In any case, there
does appear to be a close connection in this model between the local stability
properties of statistical and GA learning, and key features of learning dynamics
are revealed by E-stability.

In Bullard and Duffy (1998a), GAs are used to look at the issue of con-
vergence to cycles in the standard deterministic OG endowment model with
money. One may recall that Grandmont (1985) showed that, for appropriate util-
ity functions, it is straightforward to construct models in which there are regular
perfect-foresight cycles. Recall also that Guesnerie and Woodford (1991) and
Evans and Honkapohja (1995c) provide local stability conditions for the con-
vergence of adaptive and statistical learning rules to particular RE k-cycles. For
“decreasing gain” rules, these are the E-stability conditions which are given in
Chapter 12. It is therefore of interest to know whether GAs exhibit the same
stability conditions.

In Bullard and Duffy (1998a), agent, i uses the following simple rule for
forecasting next period’s price: F i

t [P(t + 1)] = P(t − ki − 1). Different values
of ki are consistent with different perfect-foresight cycles. (Note that every value
of ki is consistent with learning steady states.) The value of ki used by agent i is
coded as a bit string of length 8, so that the learning rule is in principle capable of
learning cycles up to order 39. Given their price forecast, each agent chooses its
optimal level of saving when young, and total saving determines the price level.
A GA is used to determine the values of ki used in each generation. Note that in
this setup [in contrast to the approach in Arifovic (1994) and Arifovic (1995)],
the GA operates on a forecast rule used by the agent, rather than directly on its
decision variable.3

The question they ask is: starting from a random assignment of bit strings,
will the GA converge to cycles? To answer this question, they conduct GA simu-
lations for a grid of values of the parameter specifying the relative risk-aversion
parameter of the old. Their central finding is that, with only a handful of excep-
tions, there is convergence either to steady states or 2-cycles, but not to higher-
order cycles. This finding raises the possibility that GAs may have somewhat
different stability properties than other learning rules. However, the results are

2Section 11.6.2 of Chapter 11 gives the local stability results in this model when expected
inflation is equal to the mean of.past inflation rates.

3This makes GA learning closer in spirit to least squares and other adaptive learning of forecast
rules. Using GAs to determine forecast rules was introduced in Bullard and Duffy (2000). Bullard
and Duffy (1998b) show how to use GAs to directly determine consumption plans in n-period OG
endowment economies.
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based on simulations using a GA with a particular specification of the initial
conditions and the forecast rule. Thus many issues concerning stability under
GAs remain to be resolved.4

We close this section with a brief description of two other papers which
use GAs in macroeconomic learning models. Arifovic (1996) considers an OG
model with two currencies. This model possesses a continuum of stationary
perfect-foresight solutions indexed by the exchange rate. In the GA setup, each
agent has a bit string which determines the consumption level and the portfolio
fractions devoted to the two currencies. Fitness of string i used by a member
of generation t − 1 is measured by its ex post utility and is used to determine
the proportion of bit strings in use in t + 1 according to genetic operator up-
dating rules. The central finding is that the GA does not settle down to a non-
stochastic stationary perfect-foresight equilibrium, but instead exhibits persis-
tent fluctuations in the exchange rate driven by fluctuations in portfolio frac-
tions. Arifovic, Bullard, and Duffy (1997) incorporate GA learning in a model
of economic development based on Azariadis and Drazen (1990). This model,
which emphasizes the roles of human capital and threshold externalities, has
two perfect-foresight steady states: a low-income zero-growth steady state and a
high-income positive-growth steady state. In the GA setup, the bit strings encode
the fraction of their time young agents spend in training and the proportion of
their income they save.5 The central finding, based on simulations, is that, start-
ing from the low-income steady state, economies eventually make a transition
to the high-income steady state after a long, but unpredictable length of time.

These examples illustrate that GAs can be readily adapted to investigate
a wide range of macroeconomic models. An advantage of GAs in economics
is that they automatically allow for heterogeneity. A disadvantage is that there
are no formal convergence results. Although in some cases there are supporting
theoretical arguments, the findings in economics to date rely primarily on sim-
ulations. This literature is growing fast. Dawid (1996) provides an overview of
GAs and discusses their applications to both economic models and evolutionary
games. Lettau (1997) considers the effects of learning via genetic algorithms in
a model of portfolio choice.

15.1.2 Classifier Systems

Classifier systems provide a different variety of learning algorithms which can
be made more akin to thought processes of individuals than a GA. This allows a

4GA learning of 2-cycles has also recently been investigated in Arifovic (1998).
5In this model all of the standard genetic operators are used except the election operator.
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direct behavioral interpretation with individual economic agents doing the learn-
ing.

A classifier system consists of an evolving collection of “condition–action
statements” (i.e., decision rules) which compete with each other in certain spec-
ified ways. The winners become the active decisions in the different stages. The
strengths (or utility and costs) of the possible classifiers are a central part of the
system and accounts are kept of these strengths. When a “message” indicating
current conditions arrives, one or more classifiers are activated as the possible
decisions given the signal. Next, the competition stage starts to select the active
classifier. The strengths are updated according to the performance of the active
classifier. (As will be illustrated below, the updating rules mimic the updating of
parameter estimates in stochastic approximation.) Typically, there are also ways
for introducing new classifiers.6

Lettau and Uhlig (1999) have proposed that rules-of-thumb behavior, which
is modeled as a classifier system, can account for some observed anomalies in
dynamic decision problems. We use their analysis as an illustration of classifier
systems.

Consider the following standard dynamic programming problem:

v(s)=max
a∈A

[
u(s, a)+ βE�s,a v(s

′)
]
,

where A= {a1, . . . , am} is the set of alternative actions, S = {s1, . . . , sn} is the
set of states, and �s,a is a probability distribution on the set of states (which is
dependent on the actions). A standard argument can be used to show that there
is a unique value v∗ solving the problem, though the optimal decision function
h∗ : S→A may not be unique.

The alternative model as a classifier system is formulated as follows. First,
let A0 = A ∪ a0, where a0 is the decision of no action. Rules of thumb are
functions r : S→A0 with r(S) �= {a0}. Let also z ∈R denote the strength of a
rule, so that the pair c = (r, z) is a classifier. It is said to be applicable for state
s if r(s) �= a0. A classifier system is a list of classifiers C = {c1, . . . , cK } so that
for each state there is at least one applicable classifier.

We also choose an initial classifier system C0, an initial state s0, and a de-
creasing sequence {γt } of gains such that

∑∞
t=1 γt = ∞ and

∑∞
t=1 γ

p
t <∞

for some p ≥ 2. Classifier system learning is described by sequences of states
(st )

∞
t=0, indices of classifiers (kt )∞t=0, and classifier systems (Ct )∞t=0 with the fol-

lowing steps:

6Sargent (1993, pp. 77–81) and Dawid (1996, pp. 13–17) provide more detailed general de-
scriptions. Holland (1992) is a treatise on classifier systems.
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(i) In each date t , the classifier ct ∈ Ct with the highest strength among all
classifiers applicable in state st is selected (with random choice in case of
a tie). kt denotes the index of the winning classifier.

(ii) The action at = r(st ) according to the winning classifier is executed and
this generates instantaneous utility u(st , at ).

(iii) In date t + 1, the state changes in accordance with the probability distribu-
tion �st ,at . In this date, the index k′ = k(st+1,Ct ) of the strongest classifier
in Ct which is applicable in st+1 is determined, and let the strength be z′.
Update the strength of the classifier with index kt to

z̃= z− γt+1
(
z− ut − βz′

)
. (15.1)

The classifier system Ct+1 for t + 1 is given by Ct with ct replaced by
c̃= (r, z̃).7

Suppose that there has been convergence in the dynamics (15.1), so that
z = ut + βz′. This equation is formally similar to the dynamic programming
equation with expectations dropped. One can think of equation (15.1) as a
stochastic approximation scheme. It is also called a bucket brigade. The acti-
vated classifier gives up some of its current strength but it also receives the in-
stantaneous reward and the discount payment of the classifier in Ct that would
have been strongest given st+1.

Lettau and Uhlig (1999) study the asymptotic behavior of this classifier
system and show that it can lead to decision making which is different from that
coming from dynamic programming. In particular, they suggest that this kind
of behavior can account for the “good state” bias, i.e., bad decisions in good
states of nature, which are said to describe the inability to distinguish between
good luck and smart decisions. In the model of consumption and saving, this
phenomenon is a possible explanation for the puzzle of excess sensitivity of
consumption to current income.

A well-known economic application of classifier systems is Marimon, Mc-
Grattan, and Sargent (1989). They introduce classifier system learning into the
model of money and matching due to Kiyotaki and Wright (1989). Using sim-
ulations, Marimon, McGrattan, and Sargent show that learning converges to a
stationary Nash equilibrium in the Kiyotaki–Wright model, and that, when there
are multiple equilibria, learning selects the fundamental low-cost solution.

7We note here that new classifiers are sometimes generated by other means, for example, by
using a genetic algorithm.
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15.1.3 Neural Networks

Another recent approach to learning models based on computational intelligence
has been the use of neural networks.8 The basic idea in neural networks is to rep-
resent an unknown functional relationship between inputs and outputs in terms
of a network structure. In general, the networks can consist of several layers of
nodes, called neurons, and connections between these neurons. The simplest ex-
ample of a network is the perceptron, which is a single neuron receiving several
input signals and sending out a scalar output. In feedforward networks, informa-
tion flows only forward from one layer of neurons to a subsequent one. Such a
network usually has several layers of neurons, organized so that neurons at the
same layer are not connected to each other, and neurons in later layers do not
feed information back to earlier layers in the structure.

In network structures, signals are passed along specified connections be-
tween the different neurons. In each neuron, a weighted sum of input signals is
processed through an activation function for that neuron. The processed signal
is outputted from the neuron, and either is sent to further neurons connected to it
or, if it is at the terminal layer, becomes a component of the output of the whole
network.

An important property of these networks is that they can provide good ap-
proximations of the unknown functional relation between the inputs and the out-
puts. To achieve this the networks must be “trained”: the weights for inputs at
each neuron must be determined so that, given the training data, the network ap-
proximates well the functional relation present in the input and output data. This
training is often based on numerical techniques such as the gradient method,
and in fact many training schemes can be represented as stochastic approxima-
tion algorithms. The training can be done with a fixed data set, so that it is then
an “off-line” algorithm, or it may be done “on-line” as a recursive scheme. In
the latter case the basic setup corresponds closely to adaptive learning.

In economic theory, neural networks have very recently been utilized as rep-
resentations of approximate functional forms, as computational devices, and as
an approach to bounded rationality and learning. One use of neural networks has
been the computation of (approximate) solutions to economic models; see, e.g.,
Beltratti, Margarita, and Terna (1996) for various illustrations from economics
and finance.

Another use of neural networks has been in modeling bounded rationality
and learning. Cho (1995) uses perceptrons in the repeated prisoner’s dilemma

8The use of neural networks in economics is discussed, e.g., in Beltratti, Margarita, and Terna
(1996), Cho and Sargent (1996b), and Sargent (1993). White (1992) is an advanced treatise dis-
cussing the relationship of neural networks to statistics and econometrics.
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game, so that the perceptrons classify the past data and, through a threshold, this
leads to a decision in accordance with the output of the perceptron. Such strate-
gies are quite simple, and thus the modeled behavior is very much boundedly
rational. Nevertheless, the efficient outcomes of the game can be recovered by
use of these simple strategies. Cho and Sargent (1996a) apply this approach to
study reputation issues in monetary policy.

Some other papers using neural networks as a learning device in macroe-
conomic models are Barucci and Landi (1995) and Salmon (1995). Heinemann
(2000a) and Packalén (1998) have shown that convergence of neural network
learning is connected to E-stability conditions in the Muth model. Packalén
(1998) also simulates such learning rules for some versions of the Cagan in-
flation model and shows the connection between convergence and E-stability of
the RE equilibria.

15.2 Alternative Gain Sequences

The speed of convergence for learning algorithms is evidently an important is-
sue for the study of learning behavior. An analytic result on asymptotic speed
of convergence for stochastic approximation algorithms, based on Theorem 13,
Chapter 3, Part II of Benveniste, Metivier, and Priouret (1990), was presented in
Section 7.5 of Chapter 7. For gain sequences of the form γt = t−1, and under
appropriate assumptions, the asymptotic speed of convergence is the usual rate
of
√
t provided the real parts of all eigenvalues of the derivative of the associ-

ated ODE are less than −0.5. No analytic results are available if the eigenvalue
condition fails. Marcet and Sargent (1995) have applied this result to adaptive
learning in a version of the Cagan inflation model. They also carried out Monte
Carlo simulations. The numerical results appear to accord with the analytics if
the model satisfies the eigenvalue condition. However, the speed of convergence
can be very slow when the eigenvalue condition fails.9 For gain sequences of the
form γt = t−β for 0< β < 1, the speed of convergence is asymptotically tβ/2.

We have emphasized two main choices for the gain sequence in adaptive
learning algorithms. (i) Decreasing-gain sequences such as γt = t−β or, more
generally, γt = K(t + N)−β , where 0 < β ≤ 1 and K,N > 0, which decrease
toward zero at a rate which can give convergence in the limit to an REE if the
PLM is correctly specified. We have frequently chosen γt = t−1 in line with

9Vives (1993) has established a similar asymptotic speed of convergence result for Bayesian
learning.
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standard recursive least squares algorithms. (ii) Constant-gain algorithms with
γt = γ , with 0< γ ≤ 1, which will not converge to REE in stochastic models for
correctly specified PLMs, though they may do so in nonstochastic models. How-
ever, in stochastic models, a gain which is bounded above zero has the advantage
of being able more effectively to track the quantity being forecasted when the
structure is subject to structural change or, more generally, when the economy
does not converge to an REE. We have seen in the previous chapter that constant-
gain learning can give rise to persistent learning dynamics not found in an REE.

These two classes for gain sequences do not exhaust the set of natural
choices. There are several natural ways to combine constant and decreasing gain.
One could use constant gain for a fixed period of time T0 and then switch to gains
which decrease toward zero at one of the usual rates. This has the advantage of
being more responsive to the data at the initial stages, but asymptotically behaves
like a decreasing-gain estimator. Alternatively, one could use a decreasing-gain
estimator up to time T1, at which point the gain is fixed at a small positive value.
This ensures that the estimates remain sensitive to new data in the limit and
might be appropriate if the economic structure is assumed to undergo recur-
rent small structural changes. Clearly, asymptotically this choice behaves like
constant-gain estimators. Barucci (1999, 2000) proposes “exponentially fading
memory learning,” in which the gain is time varying but asymptotically similar
to a constant gain.

Another possibility is to make the gain sequence endogenous. The restar-
ting-gain method was discussed in Timmermann (1995) in connection with an
asset pricing model. Suppose that the economic structure undergoes occasional
large shifts, which alters the equilibrium values of the parameter estimates. If
the times at which these shifts occur are known, then it would be natural to
“restart” the gain sequence whenever a structural shift occurs. This corresponds
to the econometric practice of discarding data before events such as world wars,
presumed to mark major changes in structure.

If such shifts are believed to occur, but are unobservable, there are several
natural possibilities. One is to make the gain contingent on recent forecast er-
rors. A number of such endogenous-gain sequences are possible, e.g., one might
increase the size of the gain when recent forecast errors have been large, on the
assumption that this indicates a shift in structure. In Marcet and Nicolini (1998),
the gain sequence is switched to constant gain if the forecast errors exceed some
threshold. Another possibility is to use econometric misspecification tests (such
as a breakpoint test or forecast error test) to determine whether gains should be
restarted or switched to constant gain.

Another alternative is to use finite-memory rules. This is most easily set
up in a nonrecursive way. Recursive algorithms with constant-gain estimators
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effectively use exponentially declining weights on observed data. Recursive al-
gorithms with gains γt = t−1 effectively weight each data point equally. An
alternative would be to use rolling least squares, which runs least squares using
the last T data points for some fixed horizon T . Honkapohja and Mitra (1999)
consider this bounded-memory estimator for the special case of sample means.

15.3 Nonparametric Learning

In the discussion of statistical learning procedures, it is a standard assumption
that the PLM can be specified parametrically. However, just as an econome-
trician may not know the appropriate functional form, it may be reasonable to
assume that agents face the same difficulty. In this case a natural procedure is to
use nonparametric techniques. This is discussed in Chen and White (1998).

As an illustration, consider learning a noisy steady state in a nonlinear
model yt = H(E∗t G(yt+1, vt+1), vt ). This model was analyzed in detail in
Chapter 11 under the assumption that the shock is iid. In this case a noisy steady
state y(vt ) could be described in terms of a scalar parameter θ∗ =EG(y(v), v).
(Here the expectation is taken with respect to the distribution of v.) Chen and
White (1998) instead consider the case where vt is an exogenous, stationary,
and possibly nonlinear AR(1)-process. A natural PLM is now of the form
E∗t G(yt+1, vt+1) = θ(vt ), and under appropriate assumptions there exists an
REE θ̄(vt ) in this class. Agents are assumed to update their PLM using recursive
kernel methods of the form

θt (v)= θt−1(v)+ t−1[G(yt , vt )− θt−1(v)
] ((v− vt−1)/ht

)
/ht ,

where  (·) is a kernel function (i.e., a density which is symmetric around zero)
and {ht } is a sequence of band widths (i.e., a sequence of positive numbers de-
creasing to zero). Chen and White establish that under a number of technical as-
sumptions and an E-stability–like condition, the learning mechanism converges
to θ̄ (vt ) almost surely, provided a version of the projection facility is employed.

15.4 Eductive Learning

Some discussions of learning are “eductive” in spirit, i.e., they investigate
whether the coordination of expectations on an REE can be attained by a mental
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process of reasoning.10 Some of the early discussions of expectational stability,
based on iterations of expectation functions, had an eductive flavor, in accor-
dance with the following argument.

Consider the reduced form of the univariate cobweb model discussed in
Chapter 2:

pt =µ+ αpet + ηt , (15.2)

where for convenience we include only a white noise exogenous shock ηt . Recall
that for the market model, we have α < 0, and that this is also the reduced form
of the Lucas aggregate supply model, in which case 0 < α < 1. Suppose that
initially all agents contemplate using some (nonrational) forecast rule

pet (0)= a0. (15.3)

Inserting these expectations into equation (15.2), we obtain the actual law of
motion which would be followed under this forecast rule:

pt =
(
µ+ αa0)+ ηt ,

and the true conditional expectation under this law of motion:

pet (1)=
(
µ+ αa0).

Thus if agents conjecture that other agents form expectations according to equa-
tion (15.3), then it would instead be rational to form expectations according to
pet (1)= a1, where a1 =µ+ αa0.

Continuing in this way, if agents conjecture that all other agents form ex-
pectations according to the rule pet (N)= aN , then it would be rational to instead
form expectations according to pet (N + 1) = µ+ αaN . We therefore consider
the recursion

aN+1 =µ+ αaN,

and we then say that the REE is iteratively expectationally stable (or iteratively
E-stable) if limN→∞ aN = ā = (1− α)−1µ. [Using the notation of Section 2.9
of Chapter 2, we are iterating on the map aN+1 = T (aN), where T (aN)= µ+
αaN .]

10The term “eductive” is due to Binmore (1987).
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The interpretation is that if this stability condition is satisfied, then agents
can be expected to coordinate, through a process of reasoning, on the REE.11

Clearly, for the problem at hand, the stability condition is |α|< 1. For the Lucas
supply model, this condition is always satisfied, and for the cobweb model, with
α < 0, satisfaction of the stability condition depends on the relative slopes of the
supply and demand curves and is satisfied when α >−1. Note that the condition
|α|< 1 is stricter than the condition for stability under adaptive learning, α < 1,
obtained in Chapter 2.

An apparent weakness of the argument just given is that it implicitly as-
sumes homogeneous expectations of the agents. A more elaborate eductive ar-
gument, which at the same time is based on a rigorous common-knowledge argu-
ment, allows for heterogeneity of expectations. The idea is closely related to the
concepts of rationalizability and iterated elimination of dominated strategies fa-
miliar from game theory, and a careful eductive argument for the cobweb model
was given by Guesnerie (1992). The cobweb model can be readily reformulated
as a producers’ game in which the strategy of each firm is its output and the op-
timal choice of output depends on expected price. The equilibrium market price
is given by pt = µ+ α

∫
pet (ω) dω + ηt , where we now assume a continuum

of agents indexed by ω and that pet (ω) is the market price held by agent ω. Let
S(ā) denote a neighborhood of ā. Suppose it is common knowledge (CK) that
pet (ω) ∈ S(ā) for all ω. Then it follows that it is CK that Ept ∈ |α|S(ā). Hence,
assuming individual rationality, it follows that it is CK that pet (ω) ∈ |α|S(ā) for
all ω. If |α| < 1, then this reinforces and tightens the CK assumption. Iterat-
ing this argument, it follows that pet (ω) ∈ |α|NS(ā) for all N = 0,1,2, . . . , and
hence the REE Ept = ā is itself CK. Guesnerie calls such an REE “strongly
rational.”

This argument can be extended in various ways. One can allow for het-
erogeneity in the structure, e.g., a different supply curve for each agent,
due to different cost functions, so that the reduced form is pt = µ +∫
α(ω)pet (ω) dω + ηt . Evans and Guesnerie (1993) extend the argument to

cover the multivariate cobweb model with a possibly heterogeneous struc-

11Interpreting convergence of iterations of the T -map as a process of learning the REE was
introduced in DeCanio (1979) and was one of the learning rules considered in Bray (1982). [Lucas
(1978, Section 6) also considered convergence of such iterations.] DeCanio (1979) and Bray (1982)
give an interpretation based on real-time adaptive learning. The eductive argument presented here
was given in Evans (1983), where the term “expectational stability” was introduced, and in Evans
(1985), where the iterative form of E-stability was used as a selection criterion. Related papers
include Champsaur (1983) and Gottfries (1985).
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ture,

yt = k+
∫
A(ω)yet (ω) dω+ ηt ,

where now yt is n × 1 and A(ω) is n × n, and investigate the connections
between iterative E-stability and strong rationality. If the model is homoge-
neous in structure, so that A(ω) = A for all ω, then (even allowing for het-
erogeneity in beliefs) an REE is strongly rational if and only if it meets
the iterative E-stability condition that all roots of A lie inside the unit cir-
cle. However, if heterogeneity in the structure is permitted, then iterative E-
stability is a necessary but not sufficient condition for strong rationality of the
REE.

The argument can also be extended to cases with multiple REE by making
the argument local—one posits a (nontrivial) initial set of CK in a neighborhood
of an REE. In Evans and Guesnerie (1999), eductive arguments are considered
in dynamic models with multiple rational expectations equilibria. They again
find that iterative E-stability is a necessary condition for local strong rationality
of an REE. For a general presentation of the eductive point of view, additional
analysis, and references to further work, see Guesnerie (1999).

We conclude this section by discussing the relationship between the educ-
tive arguments and the conditions for convergence to REE of adaptive learning
schemes. Iterative E-stability appears to be a necessary condition for strong ra-
tionality, and E-stability, based on the corresponding differential equation, is
clearly a necessary condition for iterative E-stability (see Section 2.9 of Chap-
ter 2). Since we have argued that E-stability governs local convergence of adap-
tive learning schemes, it follows that local strong rationality appears in general
to be a stricter requirement than local stability under adaptive learning. (This
claim should be treated as a hypothesis whose general validity remains to be
established.)

A plausible conjecture for empirical and experimental work is that when
an REE is strongly rational, then convergence of the economy to that REE in
real time will occur more quickly than under econometric or adaptive learn-
ing, because the latter can be supplemented with direct reasoning of an educ-
tive nature. However, when strong rationality does not obtain, so that eductive
reasoning fails, adaptive learning results should provide guidance on the paths
which can arise in the economy. Agents must make forecasts in order to for-
mulate their decisions. As emphasized in Chapter 1, a major advantage of the
adaptive learning approach is that it models agents as forming expectations and
making forecasts in the same way that econometricians do, by estimating sta-
tistical time-series models and using them to forecast key variables. Thus local
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stability under adaptive learning provides a natural criterion in many economic
frameworks for assessing the likelihood of observing a particular REE.

15.5 Calculation Equilibria

The “expectation calculation” approach of Evans and Ramey (1992) goes be-
yond the adaptive learning approach in two ways. First, it introduces the costs
and benefits of alternative forecasts. Second, it introduces the possibility of
agents using an explicit model to calculate expectations. The model considers a
continuum of firms ω, with total mass 1, who must make forecasts of the (loga-
rithm of the) price level pet (ω). The logarithm of aggregate output yt (measured
as a deviation from the natural rate) is given by an aggregate supply function
yt = γ (pt−

∫
pet (ω) dω),where γ > 0. Aggregate demand is given by the quan-

tity theory equation, mt −pt = yt + vt , where mt is the logarithm of the money
stock, and money supply rules are assumed to take the formmt = pt−1+g+µt .
Combining equations and writing βt(ω)= pet (ω)−pt−1, we have the temporary
equilibrium mapping

"pt = T
(
βt (•)

)
≡ γ (1+ γ )−1

∫
βt(ω) dω+ (1+ γ )−1(g + ut),

where ut = µt − vt is assumed white noise. The unique REE is given by
βt (ω)= g, "pt = g+ (1+ γ )−1ut , and yt = γ (1+ γ )−1ut .

The structure T (β(•)) is assumed known and can be used to calculate ex-
pectation revisions. In making their inflation forecasts βt(ω), each firm is per-
mitted two choices. It can form expectations statically, not calculating and con-
tinuing to use the forecast βt(ω) = βt−1(ω). This is assumed to cost nothing.
Alternatively, it can update by performing one calculation, at real cost c ≥ 0, us-
ing the T -map and information on last period’s average expectation, revising its
expectation to βt(ω) = T (βt−1(•)). Although simple and stylized, this model
captures both the resource and time costs of expectation revision. Finally, the
real cost of expectational errors is assumed to be quadratic, i.e., k("pt−βt(ω))2
for k > 0, and firms are assumed to be expected to form expectations optimally,
i.e., to choose via optimization whether or not to calculate an expectation revi-
sion.

The main results of the basic model are the following. Suppose for conve-
nience that all firms initially have homogeneous expectations, βt(ω) = βt−1.
Evans and Ramey (1992) study “calculation equilibria” for this model, i.e.,
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Nash equilibria in which each firm optimally chooses whether or not to cal-
culate, at each point in time, given the decisions of other firms. They show
that, with a fixed policy and economic structure, for each initial β0 there ex-
ist two-stage equilibrium paths (TEP) in which firms calculate at t if and only
if βt−1 ≥ g +√κ or βt−1 ≤ g −√κ . The value of κ is not unique but must lie
between bounds which depend positively on c and γ and negatively on k. Along
a TEP, if β0 is sufficiently far from the REE value, all agents calculate each pe-
riod until some later time τ which depends on κ . For t ≥ τ , no firms calculate
because, with expectations close enough to rational expectations, the costs of
further calculation outweigh the benefits.

These results imply that there is a long-run Phillips curve trade-off despite
the natural rate structure of the supply side. Suppose the economy is initially
in the REE and then policy makers change the monetary policy parameter g
by "g. If, say, |"g| is large, agents will calculate for a period of time, but will
cease calculation before convergence to the new REE is reached, with a long-run
effect on output. Furthermore, there can be hysteresis effects: if (once terminal
expectations are reached) the policy parameter is returned to its original value,
optimal calculation will move the system back toward the original REE but will
stop short of the old REE. Thus monetary policy is not fully reversible.

Clearly, this line of thought can be developed in various ways. Evans and
Ramey (1995) allow agents multiple calculations per period, with an associated
cost function. Evans and Ramey (1992) also consider two natural extensions.
First, suppose the environment is more complex, e.g., because monetary policy
periodically shifts in a known stochastic way, with a current policy depending
also on a variable zt which is observable with a lag. The forecast rules and
the corresponding calculation algorithm T are more complex, but calculation
equilibria still exhibit a business cycle bias induced by incomplete calculation.
Second, one can allow for heterogeneous calculation capabilities of the agents,
e.g., by allowing a subset of (“fast”) firms to make a second calculation each
period at additional cost. The presence of fast firms turns out to affect the optimal
calculation behavior of the slow firms through a calculation externality.

Evans and Ramey (1998b) consider two substantial extensions to the ex-
pectation calculation approach. First, the default (no calculation) forecast can be
more sophisticated and might be given, for example, by least squares learning.
Second, the (Nash equilibrium) assumption that agents optimally choose the in-
tensity of their calculation each period is replaced by a calculation decision rule
in which agents estimate the benefits of improved forecasts relative to calcula-
tion costs. This framework is used in an asset pricing model to show how more
rapid adjustment and forward-looking behavior arise when there are large antic-
ipated structural or policy shifts. Illustrative applications show how the severity
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of asset price bubbles and the intensity of hyperinflationary episodes depend on
the cognitive ability of the agents.

15.6 Adaptively Rational Expectations Equilibria

The paper by Brock and Hommes (1997b) applies, in the context of the cob-
web model, the discrete-choice models of Manski and McFadden (1981) and
Anderson, De Palma, and Thisse (1993) to the prediction problem. Agents are
assumed to have a finite set of predictors or expectation functions for predict-
ing price. Each predictor has a fitness measure associated with it, based on past
performance, as well as a cost of using that predictor. The discrete-choice mod-
els dictate that the proportion of agents who select a predictor depends on its
performance or fitness, which is an estimate of the profits net of costs for that
predictor. The implied forecasts determine prices which, in turn, alter the per-
formance measures and hence the predictor proportions in the following period.
Brock and Hommes (1997b) study the resulting “adaptively rational expecta-
tions dynamics.”

In related work, Sethi and Franke (1995) look at the implications, within the
Haltiwanger and Waldman (1989) complementarities model, of the coexistence
of two forecast rules: costly perfect foresight and costless adaptive expectations.
The proportions of agents using the alternative forecast rules evolve according
to their relative payoffs, and in the long run are shown to depend on the degree of
exogenous variability as well as the cost of using the perfect-foresight predictor.

The presentation here follows Brock and Hommes (1997b), and we develop
the details in the context of their main example, the cobweb model with two pre-
dictors: rational and naive forecasts. The model is nonstochastic, so that rational
expectations is equivalent to perfect foresight. Markets are perfectly competitive
and demand is assumed to take the linear form D(pt ) = A− Bpt . Firms have
a quadratic cost function c(q)= q2/2b and thus a supply curve which depends
linearly on expected price, S(pet )= bpet . There are two predictors available, the
perfect-foresight predictor pet = pt , which costs C ≥ 0, and the naive predictor
pet = pt−1, which is free. Letting n1t and n2t denote the proportion of agents us-
ing the perfect-foresight and naive predictors, respectively, market equilibrium
at t is given by

D(pt )= n1,t−1S(pt )+ n2,t−1S(pt−1).

To provide a simple dynamic system, the performance measure for the predictors
is taken to be the net realized profit in the last period. Since profits in period t are
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πt = ptS(p
e
t )− c(S(pet )), we have realized time-t profits, net of forecast costs,

given by

π1t = b

2
p2
t −C and π2t = b

2
pt−1

(
2pt − pt−1

)
.

In the discrete-choice literature, if there are j = 1, . . . ,K choices, with perfor-
mance measuresUj , the proportion of agents using the j th predictor is given by
nj,t = (exp(βUj,t ))/

∑K
j=1 exp(βUj,t ). For the case at hand, we have

n1,t = exp(βπ1,t )/
(
exp(βπ1,t )+ exp(βπ2,t )

)
and n2,t = 1− n1,t .

The parameter β governs the intensity of choice and measures the intensity with
which agents choose higher performance predictors. For β = +∞, all agents
choose the highest performance predictor.

These equations fully define the adaptively rational equilibrium dynamics.
Combining equations, setting A= 0 to normalize the system so that the steady-
state price is at the origin, and defining mt = n1,t −n2,t , it can be shown that the
system reduces to

pt = −b(1−mt−1)pt−1

2B + b(1+mt−1)
,

mt = tanh

(
β

2

(
b

2

(
b(1−mt−1)

2B + b(1+mt−1)
+ 1

)2

p2
t−1 −C

))
.

This is a two-dimensional system of nonlinear difference equations (pt ,mt )=
Fβ(pt−1,mt−1), parameterized by β . It is easily seen to have a unique steady
state E = (0, m̄(β)). Brock and Hommes (1997b) focus on the case b/B > 1, in
which the model is locally unstable under naive expectations because of explo-
sive overshooting, and investigate how the dynamics depend on β .

Assume, therefore, that b/B > 1. If C = 0, the steady state E = (0,0) is
globally stable. However, if C > 0, the dynamics depend crucially on the inten-
sity of choice parameter β . There exist critical values 0 < β1 < β2 such that the
following hold:

(i) for 0≤ β < β1, the steady state is globally stable,
(ii) for β > β1, the steady state E is an unstable saddlepoint, and

(iii) for β1 < β < β2, there is a locally unique stable two-period orbit.

Stable higher-order cycles, the coexistence of low periodic attractors, and
chaotic attractors appear as β increases. Brock and Hommes call the resulting
complicated dynamical phenomena a “rational route to randomness.”
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The economic mechanisms generating the complex dynamics are straight-
forward. When agents use the cheapest predictor (here static expectations), the
steady state is unstable (when b/B > 1), whereas the costly sophisticated pre-
dictor is stabilizing. Near the steady state, it pays to use the cheap predictor, but
this pushes the economy away from the steady state. For a high enough intensity
of choice, this tension leads to local instability and complex global dynamics.
This line of research has been extended to asset pricing models in Brock and
Hommes (1997a).12

15.7 Experimental Work

Since adaptive learning can have strong implications for economic dynamics,
experimental evidence in dynamic expectations models is of considerable inter-
est. However, to date only a relatively small number of experiments have been
undertaken. The limited evidence available seems to show that, when conver-
gent, time paths from experimental data converge towards steady states which
are stable under small-gain adaptive learning.

Perhaps the clearest results are from experiments based on the hyperinfla-
tion (seignorage) OG model. Recall that in this model the high real balance/low-
inflation steady state is E-stable, and thus stable under adaptive learning,
whereas the low real balance/high-inflation steady state is unstable (provided
the gain is sufficiently small). This theoretical result is strongly supported by
the experiments described in Marimon and Sunder (1993): convergence is al-
ways to the high real balance steady state and never to the low real balance
steady state.13

Marimon, Spear, and Sunder (1993) consider endogenous fluctuations
(2-cycles and sunspot equilibria) in the basic OG model. Their results are mixed:
persistent, belief-driven cycles can emerge, but only after the pattern has been
induced by corresponding fundamental shocks. These papers also consider some
aspects of transitional learning dynamics. One aspect that clearly emerges is that
heterogeneity of expectations is important: individual data show considerable
variability.

Arifovic (1996) conducts experiments in the two-currency OG model in
which there is a continuum of equilibrium exchange rates. These experiments

12Branch (1999) examines the implications of introducing adaptive expectations into this frame-
work as a third predictor.

13Related experiments are reported in Arifovic (1995).
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exhibit persistent exchange rate fluctuations, which are consistent with GA
learning. For the same model, using a Newton method for learning decision
rules, simulations by Sargent (1993, pp. 107–112) suggest path-dependent con-
vergence to a nonstochastic REE. These results raise several issues. First, it
would be useful to simulate learning rules such as the Newton method with het-
erogeneous agents and alternative gain sequences. Second, given the existence
of sunspot equilibria in models of this type, one should also investigate whether
such solutions are stable under adaptive learning.

Experimental results for policy changes in OG economies with seignorage
are analyzed in Marimon and Sunder (1994) and Evans, Honkapohja, and Ma-
rimon (2000). The former paper considers the effects of preannounced policy
changes. The results are difficult to reconcile with rational expectations, but the
data are more consistent with an adaptive learning process. The latter paper in-
troduces a constitutional constraint on seignorage which can lead to three steady
states, two of which are stable under learning. The experiments appear to con-
firm that these are the attractors. The learning rules in this paper incorporate
heterogeneity with random gain sequences and inertia. This generates consider-
able diversity and variability during the learning transition, with the potential to
match many aspects of experimental data.

Coordination games are another area in which there has been a considerable
amount of experimental work. Van Huyck, Cook, and Battalio (1994) consider a
version of the coordination game outlined in Section 3.4.1 of Chapter 3 in which
the utilities of agents depend on their own and the median action:

U(xi,M(x))= c1 − c2
∣∣xi −ωM(x)

(
1−M(x)

)∣∣.
Here M(x) is the median of all the actions x = (x1, . . . , xI ), and c1, c2 > 0 and
ω ∈ (1,4] are constants. The best response to the median is b(M) = ωM(1−
M). They analyze both the myopic best response dynamics

Mt+1 = b(Mt) (15.4)

and the (by now familiar) adaptive dynamics

Mt = b
(
Me

t

)
, (15.5)

Me
t = Me

t−1 + γt−1
(
Mt−1 −Me

t−1

)
.

Given that b(M) is quadratic, it is evident that the properties of the best
response dynamics (15.4) depend critically on the value of ω. For values ω >

3.86957, the dynamics exhibit chaotic behavior. In contrast, the interior equi-
librium is always stable under adaptive dynamics with decreasing gain (15.5)



382 Further Topics

using the results from Section 7.2 of Chapter 7.14 Van Huyck, Cook, and Bat-
talio (1994) present experimental evidence for this game for different values of
ω. The stability of the interior equilibrium is consistent with the adaptive dy-
namics (15.5), whereas the experimental results are inconsistent with the best
response dynamics (15.4).

Crawford (1995) analyzes adaptive learning dynamics of the form

xit = xi,t−1 + γit (yt−1 − xi,t−1)+ ait (15.6)

in a coordination game, where xit is the action of agent i and yt =
f (x1t , . . . , xI t ) is an aggregate statistic of the actions. Here ait and γit are ex-
ogenous coefficients representing trends and responses to new information. Note
that this framework in fact fits the stochastic approximation setup in which γit
are agent-specific gain parameters. If certain assumptions are made, it turns out
that xit and yt converge to a common limit under the adaptive dynamics (15.6).
Using the data of Van Huyck, Battalio, and Beil (1990) and Van Huyck, Battalio,
and Beil (1991), Crawford estimates the means and covariances of ait and γit .
He finds that this kind of learning scheme is able to provide a “simple, unified
explanation for the complex patterns of history-dependence and discrimination
among equilibria” in the experimental data.

15.8 Some Empirical Applications

So far there has been only a handful of studies that use adaptive learning frame-
works to explain empirical findings in macroeconomics and finance. We briefly
describe four major projects in this line of work.

Currie, Garratt, and Hall (1993), Garratt and Hall (1997), and Hall and
Garratt (1995) model the formation of exchange rate expectations as a learning
process using the London Business School large-scale macroeconomic model.
A key feature of these studies is that the model parameters become time depen-
dent as a result of the learning dynamics. Several different learning rules are
considered, and the notion of model-consistent learning is formulated. The fo-
cus of these studies is directed at the implications of learning for dynamics after
various structural changes, such as oil shocks or shifts in exchange rate policy.

Learning dynamics can be used to explain anomalies in the asset price litera-
ture. Timmermann (1993) and Timmermann (1996) argue that adaptive learning

14The derivative b′(M̄)= 2−ω < 1 at the interior equilibrium M̄ , while b′(0)=ω > 1.
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can explain the apparent predictability of stock returns and the excess volatility
found in the data. The framework is in line with present-value models, but, in
contrast to the rational expectations setup, it is postulated that the agents know
the form but not the true parameter values of the dividend process and estimate
the parameters by least squares. During the learning transition there will be ef-
fects on asset prices. In the kinds of sample sizes which are empirically relevant,
the learning effects can be important in explaining asset price volatility and the
predictability of excess returns, in particular the ability of the dividend yield to
forecast stock market returns.

Marcet and Nicolini (1998) set forth an open-economy version of the mon-
etary inflation model to analyze the inflation and exchange rate experiences of
Latin-American economies. In their model, learning has two regimes with differ-
ent gain sequences. Agents use a decreasing-gain rule, provided it does not lead
to forecast errors above some threshold level. When the threshold is exceeded,
agents switch to a constant-gain rule, since it has the ability to track changing
circumstances better. This kind of learning dynamics can account for the peri-
odic bouts of inflation and subsequent stabilizations by means of exchange rate
pegs. In contrast, these features of the data would be difficult to explain using a
framework based on continuous rational expectations.

Sargent (1999) uses the constant-gain version of his inflation model, dis-
cussed in Section 13.2 of Chapter 13 and Section 14.4 of Chapter 14, to pro-
vide a possible explanation of the dramatic reduction in inflation in the United
States from the 1980s to the present. As we have already seen, the constant-gain
version exhibits occasional “escape routes” from the high-inflation Nash equi-
librium to a neighborhood of zero inflation. Sargent shows the potential of this
account to explain the recent U.S. historical experience using an estimated ver-
sion of the model for the post-war period. This analysis provides an intriguing
interpretation of the policy makers’ behavior: as a result of misspecified learn-
ing, their perceived unemployment–inflation trade-off shifted so as to induce a
more aggressive stand against inflation.
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Chapter 16
Conclusions

This book has focused on macroeconomic models in which expectations of cur-
rent or future variables play a central role. We have treated a large range of mod-
els which are in current use in macroeconomics. These include standard linear
setups, such as the cobweb, Cagan, overlapping contracts, and IS-LM-Phillips-
curve models, and linearized multivariate structures, such as the Real Business
Cycle and Farmer–Guo models. Several nonlinear frameworks, including var-
ious versions of overlapping generations models and economies with comple-
mentarities and coordination failure, have also been analyzed at some length.

Our approach has been to treat the forecasting agents as statisticians or
econometricians who have a model of the data-generating process, i.e., a per-
ceived law of motion (PLM), and who estimate its unknown parameters by stan-
dard techniques and then use the estimated model to make the forecasts needed
in economic decision making. This is a form of bounded rationality, since the
agents treat the data generation as exogenous, while the evolution of data in fact
depends on the forecast rules actually employed by the agents. From an econo-
metric point of view, agents are using a temporarily misspecified model, but we
have seen that, nonetheless, the economy often converges to a rational expec-
tations equilibrium (REE). This convergence implies that the misspecification
vanishes asymptotically.

In the bulk of the book we have followed the literature and postulated that
agents use least squares or closely related econometric learning schemes. The
key question has been the formulation of the conditions under which this kind
of learning behavior converges to an REE. As we have seen, for these learn-
ing rules the convergence results, which can be precisely stated using stochastic
approximation techniques, are quite generally given by the corresponding ex-
pectational stability (E-stability) conditions.

385
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Many aspects of the theory are essentially complete. In linear economic
models the stability results can be fully described for RE solutions if they are
locally unique fixed points in the agent’s class of PLMs. In particular, this is the
case for minimal state variable (MSV) solutions, which are the most commonly
used REE in applied work. If there are multiple MSV solutions, only a subset
of them are E-stable, so that learning operates as a selection criterion. For non-
linear economic models the theory is also complete for certain specific classes
of solutions, in particular for steady states, cycles, and finite Markov sunspot
solutions. The E-stability conditions for these particular types of REE are eas-
ily obtained, the connection between E-stability and convergence of statistical
learning rules can be demonstrated, and equilibria can be classified into locally
stable and unstable REE.

There remain some gaps in the theory. For univariate linear models the
complete class of solutions can be listed, and these include ARMA-type con-
tinua of solutions as well as the MSV solutions. We have shown how to obtain
E-stability conditions for the ARMA-type solution classes. However, the as-
sumptions needed to apply established stochastic approximation results do not
hold in these cases. The link with least squares learning for the ARMA-type
solutions has thus not been formally established, although simulations appear
to support the connection with E-stability in these cases as well. In multivariate
linear models, while the theory is complete for MSV solutions, we have only par-
tial E-stability results for the continua of “sunspot solutions” (when these exist),
and no formal convergence results for econometric learning rules are available
in these cases.

For nonlinear models our treatment has covered only univariate models with
iid shocks and without lags. While the extension to the corresponding multivari-
ate framework would seem to be straightforward, nonlinear models with non-iid
shocks, or with lags, present problems in obtaining closed-form RE solutions.
Even for the nonlinear models that we have examined, there can exist other types
of REE which have not been studied under adaptive learning. These include, in
particular, Markov sunspot equilibria with an infinite number of states for the
sunspot. Of course, if one is prepared to linearly approximate a multivariate
nonlinear model in a neighborhood of a steady state, then the methods in Chap-
ter 10 for multivariate models can be applied even when non-iid shocks and lags
are present. For many applied models, this approach may be satisfactory.

E-stability is an important unifying theme in the basic theory presented in
Parts I–IV. E-stability determines whether an RE equilibrium is locally learnable
under least squares and closely related learning schemes, provided the variables
remain bounded and the gain sequence of the algorithm tends to zero in the
usual way. Stability does depend on the precise PLMs entertained by the agents.
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The distinction between weak and strong E-stability has been used to allow for
possible overparameterization of the PLM relative to the REE.

The theory in Parts I–IV focused on the benchmark case, where the form of
the PLM used by the agents includes the RE solution of interest. Chapters 13 and
14 in Part V analyze some central cases where this does not hold. If agents are
acting like econometricians, they will be subject to the same challenges as are
economists when formulating applied forecasting models. It would thus not be
surprising if agents sometimes use PLMs which fail to nest any REE. We present
examples in which agents omit relevant variables, and clearly other forms of
misspecification might arise. In the cases examined, a form of the E-stability
principle continues to hold, despite underparameterization of the PLM. Because
the misspecification prevails even asymptotically, convergence is to a restricted
perceptions equilibrium rather than an REE.

Another possibility is that agents themselves recognize the possibility of
misspecification and believe that this takes the form of frequent or occasional
structural shifts. This suggests using algorithms in which the gain sequence re-
mains bounded above zero, and indeed, constant-gain algorithms have been used
to deal with potential structural change. Such algorithms have the advantage of
tracking shifting parameters, though at the cost of higher variance of the esti-
mated parameters. We have shown how to analyze several models under learn-
ing with constant gain. Again E-stability underlies the analysis of the dynamics.
These models exhibit persistent learning dynamics which can be quite different
from any REE dynamics. The advantage of this approach is that it can potentially
explain a greater range of empirical phenomena. The plausibility of such equi-
libria depends on whether there are apparent regularities in the forecast errors
which agents can readily exploit.

The statistical approach we have adopted is an appealing form of induc-
tive behavior in which, at each moment of time, agents have a view or model
of the relevant aspects of the economy, make decisions on that basis, and then,
for the next period, adjust their view or model in the light of experience. Pro-
cedures from computational intelligence discussed in Chapter 15 provide some
alternative adaptive approaches. A common principle is that agents attempt to
optimize some criterion function. In the case of statistical learning, least squares,
for example, aims to minimize the mean square forecast error, and agents choose
optimal decisions given the forecasts. In many of the computational models, the
trial-and-error process assesses alternative actions or forecasts directly in terms
of the utility or profit of the agents. We have also discussed how adaptive ap-
proaches can be extended to incorporate costs of making forecasts or decisions.

Adaptive approaches to learning can be contrasted with the eductive ap-
proaches in which agents take explicit account of the reasoning abilities of other
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agents. Eductive learning requires strong assumptions about common knowl-
edge available to all the agents. In circumstances where these assumptions hold,
it might be possible and desirable to combine the two approaches.

Least squares learning is a particular form of bounded rationality, which
can, however, converge to full rationality over time. As is always the case when
bounded rationality is employed, one can instead assume more or less rationality
on the part of agents. The use of least squares learning implicitly assumes that
agents know how to act optimally, given forecasts, and that these econometric
forecasting procedures have minimal cost.

In some cases one might want to treat agents as having a different level
of econometric sophistication. Indeed, the technical skills postulated should de-
pend in part on the existing state of the art in econometrics. The assumption that
agents use multiple regressions would have been ridiculous before the 1950s.
Even now, the assumption that all agents use least squares forecasting may be
too strong, and one may want to replace this with a simpler forecast rule for
some agents. On the other hand, as econometric practice progresses, e.g., in the
availability of specification tests or the development of time-varying parame-
ter models, the standard of econometrics employed by some agents might be
assumed to rise. We think that least squares learning provides a natural bench-
mark.

The techniques presented here should prove valuable in the study of least-
squares learning in a large variety of economic models, particularly when these
models have multiple REE. The approach of this book should also be of use
in the analysis of alternative econometric learning methods. We anticipate that
some version of E-stability will continue to play a central role in the general
study of learning dynamics.



Bibliography

Adam, K. (2000a): “Adaptive Expectations and Equilibrium Selection,” mimeo,
European University Institute.

(2000b): “Learning and Business Cycles,” mimeo, European University
Institute.

Amman, H. M., D. A. Kendrick, and J. Rust, eds. (1996): Handbook of Compu-
tational Economics, Vol. 1. Elsevier, Amsterdam.

Anderson, S. A., A. De Palma, and J. Thisse (1993): Discrete Choice Theory of
Product Differentiation. MIT Press, Cambridge, MA.

Arifovic, J. (1994): “Genetic Algorithm Learning and the Cobweb Model,” Jour-
nal of Economic Dynamics and Control, 18, 3–28.

(1995): “Genetic Algorithms and Inflationary Economies,” Journal of
Monetary Economics, 36, 219–243.

(1996): “The Behavior of the Exchange Rate in the Genetic Algorithm
and Experimental Economies,” Journal of Political Economy, 104, 510–541.

(1998): “Stability of Equilibria under Genetic Algorithm Adaption: An
Analysis,” Macroeconomic Dynamics, 2, 1–21.

Arifovic, J., J. Bullard, and J. Duffy (1997): “The Transition from Stagnation to
Growth: An Adaptive Learning Approach,” Journal of Economic Growth, 2,
185–209.

Arrow, K. J. (1986): “Rationality of Self and Others in an Economic System,”
Journal of Business, Supplement, 59, S385–S449.

Arthur, W. B. (1994): Increasing Returns and Path Dependence in the Economy.
The University of Michigan Press, Ann Arbor.

Arthur, W. B., Y. M. Ermoliev, and Y. M. Kaniovski (1983): “On Generalized
Urn Schemes of the Polya Kind,” Kibernetika, 19, 49–56.

(1994): “Strong Laws for a Class of Path-Dependent Stochastic Pro-
cesses with Applications.” In Increasing Returns and Path Dependence in the
Economy, ed. W. B. Arthur, The University of Michigan Press, Ann Arbor,
185–201.

389



390 Bibliography

Azariadis, C. (1981): “Self-Fulfilling Prophecies,” Journal of Economic Theory,
25, 380–396.

(1993): Intertemporal Macroeconomics. Blackwell, Oxford.
Azariadis, C., and A. Drazen (1990): “Threshold Externalities in Economic De-

velopment,” Quarterly Journal of Economics, 104, 501–526.
Azariadis, C., and R. Guesnerie (1982): “Propheties Creatrices et Persistence

des Theories,” Revue Economique, 33, 787–806.
(1986): “Sunspots and Cycles,” Review of Economic Studies, 53, 725–

737.
Barnett, W., B. Cornet, C. D’Aspremont, J. Gabszewicz, and A. Mas-Colell,

eds. (1991): Equilibrium Theory and Applications, Proceedings of the Sixth
International Symposium in Economic Theory and Econometrics. Cambridge
University Press, Cambridge.

Barnett, W., J. Geweke, and K. Shell, eds. (1989): Economic Complexity: Chaos,
Sunspots, Bubbles, and Nonlinearity. Cambridge University Press, Cam-
bridge.

Barro, R. J., and D. B. Gordon (1983a): “A Positive Theory of Monetary Policy
in a Natural Rate Model,” Journal of Political Economy, 91, 589–610.

(1983b): “Rules, Discretion and Reputation in a Model of Monetary
Policy,” Journal of Monetary Economics, 12, 101–121.

Barucci, E. (1999): “Heterogeneous Beliefs and Learning in Forward-Looking
Models,” Journal of Evolutionary Economics, 9, 453–464.

(2000): “Exponentially Fading Memory Learning in Forward-Looking
Models,” Journal of Economic Dynamics and Control, 24, 1027–1046.

Barucci, E., and L. Landi (1995): “Non-Parametric versus Linear Learning De-
vices: A Procedural Perspective,” Working paper.

(1997): “Least Mean Squares Learning in Self-Referential Stochastic
Models,” Economics Letters, 57, 313–317.

Beltratti, A., S. Margarita, and P. Terna (1996): Neural Networks for Economic
and Financial Modelling. International Thompson Computer Press, London.

Benhabib, J., and R. A. Farmer (1994): “Indeterminacy and Increasing Returns,”
Journal of Economic Theory, 63, 19–41.

Benveniste, A., M. Metivier, and P. Priouret (1990): Adaptive Algorithms and
Stochastic Approximations. Springer-Verlag, Berlin.

Bertocchi, G., and W. Yong (1996): “Imperfect Information, Bayesian Learning
and Capital Accumulation,” Journal of Economic Growth, 1, 487–503.

Billingsley, P. (1968): Convergence of Probability Measures. John Wiley and
Sons, New York.

(1986): Probability and Measure, second edition. John Wiley and Sons,
New York.



Bibliography 391

Binmore, K. (1987): “Modeling Rational Players,” Economics and Philosophy,
3, 179–214.

Blanchard, O., and C. Kahn (1980): “The Solution of Linear Difference Models
under Rational Expectations,” Econometrica, 48, 1305–1311.

Blanchard, O. J., and S. Fischer (1989): Lectures on Macroeconomics. MIT
Press, Cambridge, MA.

Blume, L., M. Bray, and D. Easley (1982): “Introduction to Stability of Rational
Expectations Equilibrium,” Journal of Economic Theory, 26, 313–317.

Böhm, V., and J. Wenzelburger (1999): “Expectations, Forecasting, and Perfect
Foresight—A Dynamical Systems Approach,” Macroeconomic Dynamics, 3,
167–186.

Branch, W. (1999): “Local Convergence Properties of a Cobweb Model with Ra-
tional Heterogeneous Expectations,” Working paper, University of Oregon.

Bray, M. (1982): “Learning, Estimation, and the Stability of Rational Expecta-
tions Equilibria,” Journal of Economic Theory, 26, 318–339.

Bray, M., and D. M. Kreps (1987): “Rational Learning and Rational Expecta-
tions.” In Arrow and the Ascent of Modern Economic Theory, ed. G. R. Fei-
wel, New York University Press, New York, 597–625.

Bray, M., and N. Savin (1986): “Rational Expectations Equilibria, Learning, and
Model Specification,” Econometrica, 54, 1129–1160.

Brock, W. A., and C. H. Hommes (1997a): “Models of Complexity in Eco-
nomics and Finance.” In System Dynamics in Economic and Financial Mod-
els, eds. B. Hanzon, C. Heij, C. Praagman, and J. Schumacher, John Wiley
and Sons, New York, 3–41.

(1997b): “A Rational Route to Randomness,” Econometrica, 65, 1059–
1095.

Brock, W. A., and A. Malliaris (1989): Differential Equations, Stability and
Chaos in Dynamic Economics. North-Holland, Amsterdam.

Brock, W. A., and L. J. Mirman (1972): “Optimal Growth under Uncertainty:
The Discounted Case,” Journal of Economic Theory, 4, 497–513.

Brockwell, P. J., and R. A. Davis (1991): Time Series: Theory and Methods,
second edition. Springer-Verlag, New York.

Broze, L., C. Gourieroux, and A. Szafarz (1990): Reduced Forms of Rational,
Expectations Models, Fundamentals of Pure and Applied Economics. Har-
wood Academic Publishers, Chur, Switzerland.

Bryant, J. (1983): “A Simple Rational Expectations Keynes-Type Model,” Quar-
terly Journal of Economics, 98, 525–528.

(1987): “The Paradox of Thrift, Liquidity Preference and Animal Spir-
its,” Econometrica, 55, 1231–1236.



392 Bibliography

Bullard, J. (1992): “Time-Varying Parameters and Nonconvergence to Rational
Expectations under Least Squares Learning,” Economics Letters, 40, 159–
166.

(1994): “Learning Equilibria,” Journal of Economic Theory, 64, 468–
485.

Bullard, J., and J. Duffy (1998a): “Learning and the Stability of Cycles,”
Macroeconomic Dynamics, 2, 22–48.

(1998b): “A Model of Learning and Emulation with Artificial Adaptive
Agents,” Journal of Economic Dynamics and Control, 22, 179–207.

(2000): “Using Genetic Algorithms to Model the Evolution of Hetero-
geneous Beliefs,” Computational Economics, forthcoming.

Bullard, J., and K. Mitra (1999): “Learning About Monetary Policy Rules,”
mimeo.

Cagan, P. (1956): “The Monetary Dynamics of Hyper-Inflation.” In Studies in
the Quantity Theory of Money, ed. M. Friedman, University of Chicago Press,
Chicago.

Carton, J. (1999): “Replicator Dynamics Learning in Muth’s Model of Price
Movements,” Working paper, University of Oregon.

Cass, D., and K. Shell (1983): “Do Sunspots Matter?,” Journal of Political Econ-
omy, 91, 193–227.

Champsaur, P. (1983): “On the Stability of Rational Expectations Equilibria,”
Working paper 8324, Centre for Operations Research in Economics (CORE).

Champsaur, P., et al., eds. (1990): Essays in Honor of Edmond Malinvaud, Vol. 1.
Microeconomics. MIT Press, Cambridge, MA.

Chatterji, S., and S. K. Chattopadhyay (2000): “Global Stability in Spite of ‘Lo-
cal Instability’ with Learning in General Equilibrium Models,” Journal of
Mathematical Economics, 33, 155–165.

Chen, X., and H. White (1998): “Nonparametric Adaptive Learning with Feed-
back,” Journal of Economic Theory, 82, 190–222.

Cheysson, E. (1887): “La Statistique Geometrique: Ses Applications Indus-
trielles et Commeriales,” Le Genie Civil, Jan. 29 and Feb. 5, 10, 206–210
and 224–228.

Chiang, A. C. (1984): Fundamental Methods of Mathematical Economics, third
edition. McGraw-Hill, New York.

Chiappori, P., and R. Guesnerie (1991): “Sunspot Equilibria in Sequential Mar-
ket Models.” In Handbook of Mathematical Economics, ed. W. Hildenbrand
and H. Sonnenschein, North-Holland, Amsterdam, 1683–1762.

Cho, I.-K. (1995): “Perceptrons Play the Repeated Prisoner’s Dilemma,” Journal
of Economic Theory, 67, 266–284.

Cho, I.-K., and T. J. Sargent (1996a): “Learning to be Credible,” Working paper.



Bibliography 393

(1996b): “Neural Networks for Encoding and Adapting in Dynamic
Economies.” In Handbook of Computational Economics, ed. H. M. Amman,
D. A. Kendrick, and J. Rust, 441–470.

(1999): “Escaping Nash Inflation,” Working paper.
Chung, H. (1990): “Did Policy Makers Really Believe in the Phillips Curve? An

Econometrics Test,” Ph.D. dissertation, University of Minnesota.
Clarida, R., J. Gali, and M. Gertler (1999): “The Science of Monetary Policy:

A New Keynesian Perspective,” Journal of Economic Literature, 37, 1661–
1707.

Coddington, E. A. (1961): An Introduction to Ordinary Differential Equations.
Prentice-Hall, Englewood Cliffs, NJ.

Cooper, R. (1999): Cooperation Games: Complementarities and Macroeco-
nomics. Cambridge University Press, Cambridge.

Cooper, R., and A. John (1988): “Coordinating Coordination Failures in Keyne-
sian Models,” Quarterly Journal of Economics, 113, 441–464.

Crawford, V. P. (1995): “Adaptive Dynamics in Coordination Games,” Econo-
metrica, 63, 103–143.

Currie, D., A. Garratt, and S. Hall (1993): “Consistent Expectations and Learn-
ing in Large Scale Macroeconometric Models.” In Macroeconomic Modeling
and Policy Implications, eds. S. Honkapohja and M. Ingberg, North-Holland,
Amsterdam, 21–42.

d’Autume, A. (1990): “On The Solution of Linear Difference Equations with
Rational Expectations,” Review of Economic Studies, 57, 677–688.

Davidson, J. (1994): Stochastic Limit Theory. Oxford University Press, Oxford.
Dawid, H. (1996): Adaptive Learning by Genetic Algorithms: Analytical Results

and Applications to Economic Models. Springer-Verlag, Berlin.
DeCanio, S. (1979): “Rational Expectations and Learning from Experience,”

Quarterly Journal of Economics, 94, 47–57.
Diamond, P. A. (1982): “Aggregate Demand Management in Search Equilib-

rium,” Journal of Political Economy, 90, 881–894.
Dixon, H., and N. Rankin, eds. (1995): The New Macroeconomics: Imperfect

Markets and Policy Effectiveness. Cambridge University Press, Cambridge.
Doob, J. L. (1953): Stochastic Processes. Wiley, New York.
Dupuis, P., and R. S. Ellis (1997): A Weak Convergence Approach to the Theory

of Large Deviations. Wiley, New York.
Ellison, G., and D. Fudenberg (1995): “Word-of-Mouth Communication and

Social Learning,” Quarterly Journal of Economics, 110, 93–125.
Evans, G. W. (1983): “The Stability of Rational Expectations in Macroeconomic

Models.” In Individual Forecasting and Aggregate Outcomes, “Rational Ex-



394 Bibliography

pectations” Reexamined, eds. R. Frydman and E. E. Phelps, Cambridge Uni-
versity Press, Cambridge, 67–94.

(1985): “Expectational Stability and the Multiple Equilibria Problem
in Linear Rational Expectations Models,” Quarterly Journal of Economics,
100, 1217–1233.

(1989): “The Fragility of Sunspots and Bubbles,” Journal of Monetary
Economics, 23, 297–317.

Evans, G. W., and R. Guesnerie (1993): “Rationalizability, Strong Rationality,
and Expectational Stability,” Games and Economic Behaviour, 5, 632–646.

(1999): “Coordination on Saddle Path Solutions: The Eductive View-
point. 1—Linear Univariate Models,” Working paper.

Evans, G. W., and S. Honkapohja (1986): “A Complete Characterization of
ARMA Solutions to Linear Rational Expectations Models,” Review of Eco-
nomic Studies, 53, 227–239.

(1992): “On the Robustness of Bubbles in Linear RE Models,” Interna-
tional Economic Review, 33, 1–14.

(1993a): “Adaptive Forecasts, Hysteresis and Endogenous Fluctua-
tions,” Federal Reserve Bank of San Francisco Economic Review, 1993(1),
3–13.

(1993b): “Learning and Economic Fluctuations: Using Fiscal Policy to
Steer Expectations,” European Economic Review, 37, 595–602.

(1994a): “Convergence of Least Squares Learning to a Nonstationary
Equilibrium,” Economic Letters, 46, 131–136.

(1994b): “Learning, Convergence, and Stability with Multiple Rational
Expectations Equilibria,” European Economic Review, 38, 1071–1098.

(1994c): “On the Local Stability of Sunspot Equilibria under Adaptive
Learning Rules,” Journal of Economic Theory, 64, 142–161.

(1995a): “Adaptive Learning and Expectational Stability: An Intro-
duction.” In Learning and Rationality in Economics, eds. A. Kirman and
M. Salmon, Basil Blackwood, Oxford, 102–126.

(1995b): “Increasing Social Returns, Learning and Bifurcation Phe-
nomena.” In Learning and Rationality in Economics, eds. A. Kirman and
M. Salmon, Basil Blackwood, Oxford, 216–235.

(1995c): “Local Convergence of Recursive Learning to Steady States
and Cycles in Stochastic Nonlinear Models,” Econometrica, 63, 195–206.

(1997): “Least Squares Learning with Heterogeneous Expectations,”
Economic Letters, 52, 197–201.

(1998a): “Convergence of Learning Algorithms without a Projection
Facility,” Journal of Mathematical Economics, 30, 59–86.



Bibliography 395

(1998b): “Economic Dynamics with Learning: New Stability Results,”
Review of Economic Studies, 65, 23–44.

(1998c): “Stochastic Gradient Learning in the Cobweb Model,” Eco-
nomic Letters, 61, 333–337.

(1999): “Learning Dynamics.” In Handbook of Macroeconomics, eds.
J. Taylor and M. Woodford, Elsevier, Amsterdam, Vol. 1, 449–542.

(2000): “Convergence for Difference Equations with Vanishing Time
Dependence, with Applications to Adaptive Learning,” Economic Theory, 15,
717–725.

Evans, G. W., S. Honkapohja, and R. Marimon (2000): “Convergence in Mone-
tary Inflation Models with Heterogeneous Learning Rules,” Macroeconomic
Dynamics, forthcoming.

Evans, G. W., S. Honkapohja, and P. Romer (1998): “Growth Cycles,” American
Economic Review, 88, 495–515.

Evans, G. W., S. Honkapohja, and T. J. Sargent (1993): “On the Preservation
of Deterministic Cycles When Some Agents Perceive Them to be Random
Fluctuations,” Journal of Economic Dynamics and Control, 17, 705–721.

Evans, G. W., and G. Ramey (1992): “Expectations Calculation and Currency
Collapse,” American Economic Review, 82, 207–224.

(1995): “Expectation Calculation, Hyperinflation and Currency Col-
lapse.” In The New Macroeconomics: Imperfect Markets and Policy Effective-
ness, eds. H. Dixon and N. Rankin, Cambridge University Press, Cambridge,
307–336.

Evans, G. W., and G. Ramey (1998a): “Adaptive Expectations, Underparameter-
ization and the Lucas Critique,” mimeo.

(1998b): “Calculation, Adaptation and Rational Expectations,” Macroe-
conomic Dynamics, 2, 156–182.

Ezekiel, M. (1938): “The Cobweb Theorem,” Quarterly Journal of Economics,
52, 255–280.

Farmer, R. E. (1999): The Economics of Self-Fulfilling Prophecies, second edi-
tion. MIT Press, Cambridge, MA.

Farmer, R. E., and J.-T. Guo (1994): “Real Business Cycles and the Animal
Spirits Hypothesis,” Journal of Economic Theory, 63, 42–72.

Feiwel, G. R., ed. (1987): Arrow and the Ascent of Modern Economic Theory.
New York University Press, New York.

Feldman, M. (1987a): “Bayesian Learning and Convergence to Rational Expec-
tations,” Journal of Mathematical Economics, 16, 297–313.

(1987b): “An Example of Convergence to Rational Expectations with
Heterogeneous Beliefs,” International Economic Review, 28, 635–650.

Fisher, I. (1930): Theory of Interest. Macmillan, New York.



396 Bibliography

Fourgeaud, C., C. Gourieroux, and J. Pradel (1986): “Learning Procedures and
Convergence to Rationality,” Econometrica, 54, 845–868.

Franke, R. (2000): “Equilibrium Selection Under Cyclical Disequilibrium Dy-
namics,” Oxford Economic Papers, forthcoming.

Friedman, B. M. (1979): “Optimal Expectations and the Extreme Information
Assumptions of ‘Rational Expectations’ Macromodels,” Journal of Monetary
Economics, 5, 63–41.

Friedman, M., ed. (1956): Studies in the Quantity Theory of Money. University
of Chicago Press, Chicago.

(1957): Theory of the Consumption Function. Princeton University
Press, Princeton.

Frydman, R., and E. S. Phelps (1983): Individual Forecasting and Aggre-
gate Outcomes, “Rational Expectations” Reexamined. Cambridge University
Press, Cambridge.

Fuchs, G. (1977): “Formation of Expectations: A Model in Temporary General
Equilibrium Theory,” Journal of Mathematical Economics, 4, 167–187.

(1979): “Is Error Learning Behavior Stabilizing?,” Journal of Economic
Theory, 20, 300–317.

Fuchs, G., and G. Laroque (1976): “Dynamics of Temporary Equilibria and Ex-
pectations,” Econometrica, 44, 1157–1178.

Fudenberg, D., and D. K. Levine (1998): Theory of Learning in Games. MIT
Press, Cambridge, MA.

Futia, C. (1982): “Invariant Distributions and the Limiting Behavior of Marko-
vian Economic Models,” Econometrica, 50, 377–408.

Gale, D. (1996): “What Have We Learned from Social Learning?,” European
Economic Review, 40, 617–628.

Garratt, A., and S. Hall (1997): “E-Equilibria and Adaptive Expectations: Out-
put and Inflation in the LBS Model,” Journal of Economic Dynamics and
Control, 21, 1149–1171.

Gottfries, N. (1985): “Multiple Perfect Foresight Equilibriums and Convergence
of Learning Processes,” Journal of Money, Credit, and Banking, 17, 111–117.

Gourieroux, C., J. Laffont, and A. Monfort (1982): “Rational Expectations in
Dynamic Linear Models: Analysis of the Solutions,” Econometrica, 50, 409–
425.

Grandmont, J.-M. (1985): “On Endogenous Competitive Business Cycles,”
Econometrica, 53, 995–1045.

(1986): “Stabilizing Competitive Business Cycles,” Journal of Eco-
nomic Theory, 40, 57–76.

Grandmont, J.-M., ed. (1988): Temporary Equilibrium: Selected Readings. Aca-
demic Press, New York.



Bibliography 397

Grandmont, J.-M. (1998): “Expectations Formation and Stability of Large So-
cioeconomic Systems,” Econometrica, 66, 741–781.

Grandmont, J.-M., and G. Laroque (1986): “Stability of Cycles and Expecta-
tions,” Journal of Economic Theory, 40, 138–151.

(1990): “Stability, Expectations, and Predetermined Variables.” In Es-
says in Honor of Edmond Malinvaud, eds. P. Champsaur et al., MIT Press,
Cambridge, MA, 71–92.

(1991): “Economic Dynamics with Learning: Some Instability Exam-
ples.” In Equilibrium Theory and Applications, Proceedings of the Sixth In-
ternational Symposium in Economic Theory and Econometrics, eds. W. Bar-
nett et al., Cambridge University Press, Cambridge, 247–273.

Griliches, Z., and M. Intriligator (1986): Handbook of Econometrics, Vol. 3.
North-Holland, Amsterdam.

Grimmett, G., and D. Stirzaker (1992): Probability and Random Processes. Ox-
ford University Press, Oxford.

Guckenheimer, J., and P. Holmes (1983): Nonlinear Oscillations, Dynamical
Systems and Bifurcations of Vector Fields. Springer-Verlag, New York.

Guesnerie, R. (1992): “An Exploration of the Eductive Justifications of the
Rational-Expectations Hypothesis,” American Economic Review, 82, 1254–
1278.

(1999): “Anchoring Economic Predictions in Common Knowledge,”
Working paper, DELTA, Paris.

Guesnerie, R., and M. Woodford (1991): “Stability of Cycles with Adaptive
Learning Rules.” In Equilibrium Theory and Applications, Proceedings of
the Sixth International Symposium in Economic Theory and Econometrics,
eds. W. Barnett et al., Cambridge University Press, Cambridge, 111–134.

(1992): “Endogenous Fluctuations.” In Advances in Economic Theory:
Sixth World Congress, ed. J.-J. Laffont, Cambridge University Press, Cam-
bridge, 289–412.

Hahn, W. (1963): Theory and Application of Liapunov’s Direct Method.
Prentice-Hall, Englewood Cliffs, NJ.

(1967): Stability of Motion. Springler-Verlag, Berlin.
Hall, S., and A. Garratt (1995): “Model Consistent Learning and Regime

Switching in the London Business School Model,” Economic Modelling, 12,
87–96.

Haltiwanger, J., and M. Waldman (1989): “Limited Rationality and Strategic
Complements: The Implications for Macroeconomics,” Quarterly Journal of
Economics, 104, 463–483.

Hamilton, J. D. (1994): Time Series Analysis. Princeton University Press, Prince-
ton, NJ.



398 Bibliography

Hanzon, B., C. Heij, C. Praagman, and J. Schumacher, eds. (1997): System Dy-
namics in Economic and Financial Models. John Wiley and Sons, New York.

Hart, O. D. (1982): “A Model of Imperfect Competition with Keynesian Fea-
tures,” Quarterly Journal of Economics, 97, 109–138.

Harvey, A. C. (1981): Time Series Models. Philip Allan Publishers Ltd., Oxford.
Hebert, R. F. (1973): “Wage Cobwebs and Cobweb-Type Phenomena: An Early

French Formulation,” Western Economic Journal, 11, 394–403.
Heinemann, M. (2000a): “Adaptive Learning of Rational Expectations Using

Neural Networks,” Journal of Economic Dynamics and Control, 24, 1007–
1026.

(2000b): “Convergence of Adaptive Learning and Expectational Stabil-
ity: The Case of Multiple Rational Expectations Equilibria,” Macroeconomic
Dynamics, forthcoming.

Hicks, J. R. (1939): Value and Capital. Oxford University Press, Oxford.
(1965): Capital and Growth. Oxford University Press, Oxford.

Hildenbrand, W., and H. Sonnenschein, eds. (1991): Handbook of Mathematical
Economics, Vol. IV. North-Holland, Amsterdam.

Hirsch, M. W., and S. Smale (1974): Differential Equations, Dynamic Systems
and Linear Algebra. Academic Press, Orlando, FL.

Holland, J. H. (1992): Adaptation in Natural and Artificial Systems. MIT Press,
Cambridge, MA.

Hommes, C. H., and G. Sorger (1997): “Consistent Expectations Equilibria,”
Macroeconomic Dynamics, 2, 287–321.

Honkapohja, S., and M. Ingberg, eds. (1993): Macroeconomic Modeling and
Policy Implications. North-Holland, Amsterdam.

Honkapohja, S., and K. Mitra (1999): “Learning with Bounded Memory in
Stochastic Models,” Working paper, University of Helsinki.

Honkapohja, S., and A. Turunen-Red (1999): “Complementarity, Growth and
Trade,” Working paper, University of Helsinki.

Horn, R., and C. Johnson (1985): Matrix Analysis. Cambridge University Press,
Cambridge.

(1991): Topics in Matrix Analysis. Cambridge University Press, Cam-
bridge.

Howitt, P. (1992): “Interest Rate Control and Nonconvergence to Rational Ex-
pectations,” Journal of Political Economy, 100, 776–800.

Howitt, P., and R. P. McAfee (1992): “Animal Spirits,” American Economic Re-
view, 82, 493–507.

Hurwicz, L. (1946): “Theory of the Firm and of Investment,” Econometrica, 14,
109–136.



Bibliography 399

Judd, K. (1985): “The Law of Large Numbers with a Continuum of IID Random
Variables,” Journal of Economic Theory, 35, 19–25.

Jun, B., and X. Vives (1996): “Learning and Convergence to a Full-Information
Expectations are not Equivalent,” Review of Economic Studies, 63, 653–674.

Kaldor, N. (1940): “A Model of the Trade Cycle,” Economic Journal, 50, 78–92.
Kalecki, M. (1935): “A Macrodynamic Theory of Business Cycles,” Economet-

rica, 3, 327–344.
Karatzas, I., and S. E. Shreve (1988): Brownian Motion and Stochastic Calculus.

Springer-Verlag, Berlin.
Keynes, J. M. (1936): The General Theory of Employment, Interest and Money.

Macmillan, London.
(1937): “The General Theory of Employment,” Quarterly Journal of

Economics, 51, 209–223.
Kiefer, J., and J. Wolfowitz (1952): “Stochastic Estimation of the Modulus of a

Regression Function,” Annals of Mathematical Statistics, 23, 462–466.
Kingman, J. F. C., and S. J. Taylor (1973): Introduction to Measure and Proba-

bility. Cambridge University Press, Cambridge.
Kirman, A., and M. Salmon, eds. (1995): Learning and Rationality in Eco-

nomics. Basil Blackwell, Oxford.
Kirman, A. P. (1995): “Learning in Oligopoly: Theory, Simulation, and Experi-

mental Evidence.” In Learning and Rationality in Economics, eds. A. Kirman
and M. Salmon, Basil Blackwell, Oxford, 127–178.

Kiyotaki, N., and R. Wright (1989): “On Money as a Medium of Exhange,”
Journal of Political Economy, 97, 927–954.

Krasovskii, N. (1963): Stability of Motion. Stanford University Press, Stanford,
CA.

Kreps, D., and K. Wallis, eds. (1997): Advances in Economics and Economet-
rics: Theory and Applications, Vol. I. Cambridge University Press, Cam-
bridge.

Kuan, C.-M., and H. White (1994): “Adaptive Learning with Nonlinear Dynam-
ics Driven by Dependent Processes,” Econometrica, 62, 1087–1114.

Kurz, M., ed. (1997): Endogenous Economic Fluctuations. Studies in the Theory
of Rational Beliefs. Springer-Verlag, Berlin.

Kushner, H., and D. Clark (1978): Stochastic Approximation Methods for Con-
strained and Unconstrained Systems. Springer-Verlag, Berlin.

Kushner, H. J., and G. G. Yin (1997): Stochastic Approximation Algorithms and
Applications. Springer-Verlag, Berlin.

Kydland, F. E., and E. C. Prescott (1977): “Rules Rather Than Discretion: The
Inconsistency of Optimal Plans,” Journal of Political Economy, 85, 473–491.



400 Bibliography

Laffont, J.-J., ed. (1992): Advances in Economic Theory: Sixth World Congress,
Vol. 2. Cambridge University Press, Cambridge.

LaSalle, J. P. (1992): The Stability and Control of Discrete Processes. Springer-
Verlag, New York.

Lettau, M. (1997): “Explaining the Facts with Adaptive Agents: The Case
of Mutual Funds Flows,” Journal of Economic Dynamics and Control, 21,
1117–1147.

Lettau, M., and H. Uhlig (1999): “Rules of Thumb and Dynamic Programming,”
American Economic Review, 89, 148–174.

Lettau, M., and T. Van Zandt (1999): “Robustness of Adaptive Expectations as
an Equilibrium Selection Device,” Working paper.

Lindahl, E. (1939): Studies in the Theory of Money and Capital. Allen and Un-
win, London.

Ljung, L. (1977): “Analysis of Recursive Stochastic Algorithms,” IEEE Trans-
actions on Automatic Control, 22, 551–575.

Ljung, L., G. Pflug, and H. Walk (1992): Stochastic Approximation and Opti-
mization of Random Systems. Birkhauser, Basel.

Ljung, L., and T. Söderström (1983): Theory and Practice of Recursive Identifi-
cation. MIT Press, Cambridge, MA.

Loasby, B. (1976): Choice, Complexity and Ignorance. Cambridge University
Press, Cambridge.

Lucas, Jr., R. E. (1972): “Expectations and the Neutrality of Money,” Journal of
Economic Theory, 4, 103–124.

(1973): “Some International Evidence on Output–Inflation Trade-offs,”
American Economic Review, 63, 326–334.

(1978): “Asset Prices in an Exchange Economy,” Econometrica, 46,
1429–1445.

(1981): Studies in Business Cycle Theory. MIT Press, Cambridge, MA.
(1986): “Adaptive Behavior and Economic Theory,” Journal of Busi-

ness, Supplement, 59, S401–S426.
Lucas, Jr., R. E., and T. J. Sargent, eds. (1981): Rational Expectations and

Econometric Practice. University of Minnesota Press, Minneapolis.
Magnus, J., and H. Neudecker (1988): Matrix Differential Calculus. Wiley, New

York.
Manski, C., and D. McFadden, eds. (1981): Structural Analysis of Discrete Data

with Econometric Applications. MIT Press, Cambridge, MA.
Marcet, A., and J. P. Nicolini (1998): “Recurrent Hyperinflations and Learning,”

Working paper 1875, CEPR.
Marcet, A., and T. J. Sargent (1989a): “Convergence of Least Squares Learn-

ing and the Dynamic of Hyperinflation.” In Economic Complexity: Chaos,



Bibliography 401

Sunspots, Bubbles, and Nonlinearity, eds. W. Barnett, J. Geweke, and
K. Shell, Cambridge University Press, Cambridge, 119–137.

(1989b): “Convergence of Least-Squares Learning in Environments
with Hidden State Variables and Private Information,” Journal of Political
Economy, 97, 1306–1322.

(1989c): “Convergence of Least-Squares Learning Mechanisms in Self-
Referential Linear Stochastic Models,” Journal of Economic Theory, 48,
337–368.

(1995): “Speed of Convergence of Recursive Least Squares: Learning
with Autoregressive Moving-Average Perceptions.” In Learning and Ratio-
nality in Economics, eds. A. Kirman and M. Salmon, Basil Blackwell, Ox-
ford, 179–215.

Margaritis, D. (1987): “Strong Convergence of Least Squares Learning to Ra-
tional Expectations,” Economics Letters, 23, 157–161.

(1990): “A Time Varying Model of Rational Learning,” Economics Let-
ters, 33, 309–314.

Marimon, R. (1997): “Learning from Learning in Economics.” In Advances in
Economics and Econometrics: Theory and Applications, eds. D. Kreps and
K. Wallis, Cambridge University Press, Cambridge, 278–315.

Marimon, R., E. McGrattan, and T. Sargent (1989): “Money as Medium of Ex-
change with Artificially Intelligent Agents,” Journal of Economic Dynamics
and Control, 14, 329–373.

Marimon, R., and A. Scott, eds. (1999): Computational Methods for the Study
of Dynamic Economies. Oxford University Press, Oxford.

Marimon, R., S. E. Spear, and S. Sunder (1993): “Expectationally Driven Market
Volatility: An Experimental Study,” Journal of Economic Theory, 61, 74–
103.

Marimon, R., and S. Sunder (1993): “Indeterminacy of Equilibria in a Hyperin-
flationary World: Experimental Evidence,” Econometrica, 61, 1073–1107.

(1994): “Expectations and Learning under Alternative Monetary
Regimes: An Experimental Approach,” Economic Theory, 4, 131–162.

McCafferty, S., and R. Driskill (1980): “Problems of Existence and Uniqueness
in Nonlinear Rational Expectations Models,” Econometrica, 48, 1313–1317.

McCallum, B. T. (1983): “On Nonuniqueness in Linear Rational Expectations
Models: An Attempt at Perspective,” Journal of Monetary Economics, 11,
134–168.

(1998): “Solutions to Linear Rational Expectations Models: A Compact
Exposition,” Economics Letters, 61, 143–147.

(1999): “Role of Minimal State Variable Criterion in Rational Expecta-
tions Models,” International Tax and Public Finance, 6, 621–639.



402 Bibliography

McGough, B. (1999): “Statistical Learning and Time Varying Parameters,”
Working paper, University of Oregon.

McLennan, A. (1984): “Price Dispersion and Incomplete Learning in the Long
Run,” Journal of Economic Dynamics and Control, 7, 331–347.

Moore, B. J. (1993): “Least-Squares Learning and the Stability of Equilibria
with Externalities,” Review of Economic Studies, 60, 197–208.

Moreno, D., and M. Walker (1994): “Two Problems in Applying Ljung’s ‘Pro-
jection Algorithms’ to the Analysis of Decentralized Learning,” Journal of
Economic Theory, 62, 420–427.

Muth, J. F. (1961): “Rational Expectations and the Theory of Price Movements,”
Econometrica, 29, 315–335.

Nerlove, M. (1958): The Dynamics of Supply: Estimation of the Farmers’ Re-
sponse to Price. Johns Hopkins University Press, Baltimore.

Neveu, J. (1965): Mathematical Foundations of the Calculus of Probability.
Holden-Day, San Francisco.

Nyarko, Y. (1991): “Learning in Mis-Specified Models and the Possibility of
Cycles,” Journal of Economic Theory, 55, 416–427.

(1997): “Convergence in Economic Models with Bayesian Hierarchies
of Beliefs,” Journal of Economic Theory, 74, 266–296.

Øksendal, B. (1998): Stochastic Differential Equations: An Introduction with
Applications. Springer-Verlag, Berlin.

Packalén, M. (1998): “Adaptive Learning of Rational Expectations: A Neural
Network Approach,” mimeo, University of Helsinki.

(2000): “On the Learnability of Rational Expectations Equilibria
in Three Business Cycle Models,” Research report no. 87, University of
Helsinki.

Pesaran, M. H. (1981): “Identification of Rational Expectations Models,” Jour-
nal of Econometrics, 16, 375–398.

(1987): The Limits to Rational Expectations. Blackwell, Oxford.

Robbins, H., and S. Monro (1951): “A Stochastic Approximation Method,” An-
nals of Mathematical Statistics, 22, 400–407.

Romer, D. (1995): Advanced Macroeconomics. McGraw-Hill, New York.

Salge, M. (1997): Rational Bubbles. Theoretical Basis, Economic Relevance
and Empirical Evidence with Special Emphasis on the German Stock Market.
Springer-Verlag, Berlin.

Salmon, M. (1995): “Bounded Rationality and Learning; Procedural Learning.”
In Learning and Rationality in Economics, eds. A. Kirman and M. Salmon,
Basil Blackwell, Oxford, 236–275.



Bibliography 403

Sargent, T. J. (1973): “Rational Expectations, the Real Rate of Interest and the
Natural Rate of Unemployment,” Brookings Papers on Economic Activity, 2,
429–472.

(1987): Macroeconomic Theory, second edition. Academic Press, New
York.

(1991): “Equilibrium with Signal Extraction from Endogenous Vari-
ables,” Journal of Economic Dynamics and Control, 15, 245–273.

(1993): Bounded Rationality in Macroeconomics. Oxford University
Press, Oxford.

(1999): The Conquest of American Inflation. Princeton University
Press, Princeton, NJ.

Sargent, T. J., and N. Wallace (1975): “‘Rational Expectations,’ the Optimal
Monetary Instrument and the Optimal Money Supply Rule,” Journal of Po-
litical Economy, 83, 241–254.

Schleifer, A. (1986): “Implementation Cycles,” Journal of Political Economy,
94, 1163–1190.

Schönhofer, M. (1999): “Chaotic Learning Equilibria,” Journal of Economic
Theory, 89, 1–20.

Schumpeter, J. A. (1954): History of Economic Analysis. Allen and Unwin, Lon-
don.

Sethi, R., and R. Franke (1995): “Behavioral Heterogeneity under Evolutionary
Pressure: Macroeconomic Implications of Costly Optimization,” Economic
Journal, 105, 583–600.

Shell, K. (1977): “Monnaie et Allocation Intertemporelle,” Working paper,
CNRS Seminaire de E. Malinvaud, Paris.

Sims, C. A. (1988): “Projecting Policy Effects with Statistical Models,” Revista
de Analisis Economico, 3, 9–20.

Solow, R. (1956): “A Contribution to the Theory of Economic Growth,” Quar-
terly Journal of Economics, 70, 65–94.

(1957): “Technical Change and the Aggregate Production Function,”
Review of Economics and Statistics, 39, 312–320.

Spear, S. E. (1984): “Sufficient Conditions for the Existence of Sunspot Equi-
libria,” Journal of Economic Theory, 34, 360–370.

Stokey, N., and R. E. Lucas Jr. (1989): Recursive Methods in Economic Dynam-
ics. Harvard University Press, Cambridge, MA.

Taylor, J. (1975): “Monetary Policy during a Transition to Rational Expecta-
tions,” Journal of Political Economy, 83, 1009–1021.

(1977): “Conditions for Unique Solutions in Stochastic Macroeconomic
Models with Rational Expectations,” Econometrica, 45, 1377–1386.



404 Bibliography

(1980): “Aggregate Dynamics and Staggered Contracts,” Journal of
Political Economy, 88, 1–23.

(1986): “New Approaches to Stabilization Policy in Stochastic Mod-
els of Macroeconomic Fluctuations.” In Handbook of Econometrics, eds.
Z. Griliches and M. Intriligator, North-Holland, Amsterdam, 1997–2055.

Taylor, J., and M. Woodford, eds. (1999): Handbook of Macroeconomics, Vol. 1.
Elsevier, Amsterdam.

Thornton, H. (1939): An Enquiry into the Nature and Effects of the Paper Credit
of Great Britain. Allen and Unwin, London.

Tillmann, G. (1983): “Stability in a Simple Pure Consumption Loan Model,”
Journal of Economic Theory, 30, 315–329.

Timmermann, A. G. (1993): “How Learning in Financial Markets Generates
Excess Volatility and Predictability in Stock Prices,” Quarterly Journal of
Economics, 108, 1135–1145.

(1995): “Volatility Clustering and Mean Reversion of Stock Returns in
an Asset Pricing Model with Incomplete Learning,” Working paper.

(1996): “Excessive Volatility and Predictability of Stock Prices in Au-
toregressive Dividend Models with Learning,” Review of Economic Studies,
63, 523–557.

Townsend, R. M. (1978): “Market Anticipations, Rational Expectations, and
Bayesian Analysis,” International Economic Review, 19, 481–494.

(1983): “Forecasting the Forecasts of Others,” Journal of Political
Economy, 91, 546–588.

Turnovsky, S. (1969): “A Bayesian Approach to the Theory of Expectations,”
Journal of Economic Theory, 1, 220–227.

Uhlig, H. (1999): “A Toolkit for Analyzing Nonlinear Dynamic Rational Expec-
tations Models Easily.” In Computational Methods for the Study of Dynamic
Economies, eds. R. Marimon and A. Scott, Oxford University Press, Oxford,
150–200.

Van Huyck, J. B., R. C. Battalio, and R. Beil (1990): “Tacit Coordination Games,
Strategic Uncertainty, and Coordination Failure,” American Economic Re-
view, 80, 234–248.

(1991): “Strategic Uncertainty, Equilibrium Selection Principles, and
Coordination Failure in Average Opinion Games,” Quarterly Journal of Eco-
nomics, 106, 885–910.

Van Huyck, J. B., J. P. Cook, and R. C. Battalio (1994): “Selection Dynamics,
Asymptotic Stability, and Adaptive Behaviour,” Journal of Political Econ-
omy, 102, 975–1005.

Vives, X. (1993): “How Fast do Rational Agents Learn?,” Review of Economic
Studies, 60, 329–347.



Bibliography 405

Weitzman, M. (1982): “Increasing Returns and the Foundations of Unemploy-
ment Theory,” Economic Journal, 92, 787–804.

White, H. (1984): Asymptotic Theory for Econometricians. Academic Press, Or-
lando, FL.

White, H. (1992): Artificial Neural Networks: Approximation and Learning The-
ory. Basil Blackwell, Oxford.

Whiteman, C. (1983): Linear Rational Expectations Models. University of Min-
nesota Press, Minneapolis.

Williams, N. (2000): “Convergence and Escape: Learning Dynamics and the
Time Paths of Inflation in a Model of Monetary Policy,” mimeo, University
of Chicago.

Woodford, M. (1990): “Learning to Believe in Sunspots,” Econometrica, 58,
277–307.

Zenner, M. (1996): Learning to Become Rational. The Case of Self-Referential
Autoregressive and Non-Stationary Models. Springer-Verlag, Berlin.



This page intentionally left blank



Author Index

Adam, K., 281, 358
Anderson, S. A., 378
Arifovic, J., 362–366, 380
Aristotle, 6
Arrow, K. J., 12
Arthur, W. B., 169
Azariadis, C., 21, 69, 76, 92–93,

118, 288, 291, 302, 366

Barro, R. J., 348
Barucci, E., 55, 370–371
Battalio, R. C., 381–382
Beil, R., 382
Beltratti, A., 369
Benhabib, J., 243
Benveniste, A., 124–125, 145, 157,

159–161, 163–165, 167, 169,
332, 370

Bertocchi, G., 44
Billingsley, P., 119, 164
Binmore, K., 373
Blanchard, O. J., 9, 71, 252–253,

255
Blume, L., 12
Böhm, V., 148
Branch, W., 380

Bray, M., 12–13, 16, 26, 27, 30–32,
34, 42, 44, 141, 374

Brock, W. A., 97, 115, 119, 239,
357, 378–380

Brockwell, P. J., 104–105, 107, 119
Broze, L., 174
Bryant, J., 54
Bullard, J., 55, 249, 357–358, 365–

366

Cagan, P., 7, 10
Carton, J., 44
Cass, D., 21, 76, 288
Champsaur, P., 374
Chatterji, S., 148
Chattopadhyay, S. K., 148
Chen, X., 169, 372
Cheysson, E., 6
Chiang, A. C., 118
Chiappori, P., 76, 288, 300
Cho, I.-K., 325, 327, 343, 348–349,

353–354, 356, 369–370
Chung, H., 325, 348
Clarida, G. J., 227
Clark, D., 169
Coddington, E. A., 94, 119, 124,

129, 335

407



408 Author Index

Cook, J. P., 381–382
Cooper, R., 53–54
Crawford, V. P., 382
Currie, D., 382

Davidson, J., 103, 119
Davis, R. A., 104–105, 107, 119
Dawid, H., 366–367
d’ Autume, A., 174
De Palma, A., 378
DeCanio, S., 42, 374
Diamond, P. A., 54
Doob, J. L., 119
Drazen, A., 366
Driskill, R., 206
Duffy, J., 365–366
Dupuis, P., 343

Easley, D., 12
Ellis, R. S., 343
Ellison, G., 44
Ermoliev, Y. M., 169
Evans, G. W., 31, 42, 44, 46, 51, 55–

56, 73–74, 80–81, 130, 134–
135, 137, 145, 148–150, 152,
154, 156, 161, 164, 167, 169,
174, 191–192, 206, 208, 211,
213–215, 217–218, 220, 223,
225, 229, 238, 272, 275–276,
278, 280–283, 285–286, 294,
297, 299–300, 302, 306, 308–
309, 323–325, 336, 338, 341–
342, 344, 346–348, 365, 374–
377, 381

Ezekiel, M., 6

Farmer, R. E., 229, 239–240, 243,
247, 255

Feldman, M., 44
Fisher, I., 10

Fischer, S., 9, 71
Fourgeaud, C., 16, 26, 141
Franke, R., 358, 378
Friedman, B. M., 13
Friedman, M., 10
Frydman, R., 12
Fuchs, G., 44, 148
Fudenberg, D., 44
Futia, C., 119

Gale, D., 44
Gali, J., 227
Garratt, A., 382
Gertler, M., 227
Gordon, D. B., 348
Gottfries, N., 374
Gourieroux, C., 16, 26, 141, 174
Grandmont, J.-M., 12, 21, 43–44,

81, 135, 148, 154, 291, 304,
365

Grimmett, G., 110, 119
Guckenheimer, J., 96, 119
Guesnerie, R., 17, 21, 43, 76, 148,

152, 288, 291, 294, 298, 300,
302, 365, 374–375

Guo, J.-T., 243, 247

Hahn, W., 119
Hall, S., 382
Hamilton, J. D., 102, 119
Hart, O. D., 54
Harvey, A. C., 49
Hebert, R. F., 6
Heinemann, M., 55–56, 192, 211,

370
Hicks, J. R., 6, 7, 10
Hirsch, M. W., 95–96, 119
Holland, J. H., 367
Holmes, P., 96, 119
Hommes, C. H., 322, 357, 378–380



Author Index 409

Honkapohja, S., 31, 43–44, 46,
51, 55–56, 73–74, 80–81, 130,
134–135, 137, 145, 148–150,
152, 154, 156, 161, 164, 167,
169, 174, 191–192, 208, 211,
213–215, 217–218, 220, 223,
225, 229, 238, 272, 275–
276, 278, 280–283, 285–286,
294, 297, 299–300, 302, 306,
308–309, 323–325, 336, 338,
340–342, 344, 346–347, 357,
365, 372, 381

Horn, R., 117, 119
Howitt, P., 55, 77, 150–151
Hurwicz, L., 7

John, A., 53
Johnson, C., 117, 119
Judd, K., 224
Jun, B., 44

Kahn, C., 252–253, 255
Kaldor, N., 288
Kalecki, M., 288
Kaniovski, Y. M., 169
Karatzas, I., 114, 119
Keynes, J. M., 7, 10
Kiefer, J., 169
Kingman, J. F. C., 119
Kirman, A. P., 44
Kiyotaki, N., 368
Krasovskii, N., 98, 119
Kreps, D., 44
Kuan, C.-M., 55, 169
Kurz, M., 44
Kushner, H. J., 169
Kydland, F. E., 327

Laffont, J.-J., 174
Landi, L., 55, 370
Laroque, G., 44, 135, 148, 154

LaSalle, J. P., 89–90, 92, 119
Lettau, M., 281, 366–368
Levine, D., 44
Lindahl, E., 7
Ljung, L., 30, 34, 124, 135, 138–

139, 168–169, 181, 312
Loasby, B. J., 7
Lucas, R. E., Jr., 7–8, 10, 29, 42–43,

63, 89, 92, 103, 119, 374

Magnus, J., 117–119, 231, 238
Malliaris, A., 97, 115, 119
Manski, C., 378
Marcet, A., 18, 30, 34, 44, 135, 140,

169, 200, 320, 364, 370–371,
383

Margarita, S., 369
Margaritis, D., 44, 55
Marimon, R., 44, 167, 223, 225,

278, 280, 368, 380–381
Marshall, A., 6
McAfee, P., 55, 77
McCafferty, S., 206
McCallum, B., 174, 176, 178, 194,

212, 229–230
McFadden, D., 378
McGough, B., 55
McGrattan, E., 368
McLennan, A., 44
Metivier, M., 124–125, 145, 157,

159–161, 163–165, 167, 169,
332, 370

Mirman, L. J., 239
Mitra, K., 43–44, 249, 340, 357, 372
Monfort, A., 174
Monro, S., 125, 169
Moore, B. J., 148, 154
Moreno, D., 135
Muth, J. F., 7, 26, 141, 205–206,

318, 323, 362, 370



410 Author Index

Nerlove, M., 10
Neudecker, H., 117–119, 231, 238
Neveu, J., 102, 119
Nicolini, J. P., 371, 383
Nyarko, Y., 44

Øksendal, B., 119

Packalén, M., 242, 249, 370
Pesaran, H., 174, 229
Pflug, G., 169
Phelps, E. S., 12
Pradel, J., 16, 26, 141
Prescott, E. C., 327
Priouret, P., 124–125, 145, 157,

159–161, 163–165, 167, 169,
332, 370

Ramey, G., 348, 376–377
Robbins, H., 125, 169
Romer, D., 71
Romer, P., 81, 282–283, 285–286

Salge, M., 221
Salmon, M., 370
Samuelson, P. A., 60
Sargent, T. J., 7, 13, 18, 22, 30, 34,

44, 55, 57, 63, 67, 135, 140,
169, 174, 189, 200–201, 228,
320, 323–327, 329, 332, 343,
348–349, 353–354, 356, 364,
367–370, 381, 383

Savin, N., 16, 26–27, 30–32, 34, 141
Schönhofer, M., 358
Schleifer, A., 54
Schumpeter, J. A., 6
Sethi, R., 378
Shell, K., 21, 76, 288
Shreve, S. E., 114, 119
Sims, C. A., 325, 348
Smale, S., 95–96, 119
Söderström, T., 169
Solow, R. M., 239

Sorger, G., 322
Spear, S. E., 302, 380
Stirzaker, D., 110, 119
Stokey, N., 89, 92, 103, 119
Sunder, S., 380–381
Szafarz, A., 174

Taylor, J., 13, 174–175, 189, 191,
194

Taylor, S. J., 119
Terna, P., 369
Thales, 6
Thisse, J., 378
Thornton, H., 6
Tillmann, G., 44, 148
Timmermann, A. G., 371, 382
Townsend, R. M., 17, 44
Turnovsky, S., 44
Turunen-Red, A., 286

Uhlig, H., 230, 367–368

Van Huyck, J. B., 381–382
Van Zandt, T., 281
Vives, X., 44, 370

Walk, H., 169
Walker, M., 135
Wallace, N., 63, 67, 174, 189, 228
Weitzman, M., 54
Wenzelburger, J., 148
White, H., 55, 103, 119, 169, 369,

372
Whiteman, C., 174
Williams, N., 356
Wolfowitz, J., 169
Woodford, M., 21, 43, 76, 78, 138,

148, 152, 167, 169, 288, 291,
294, 298, 300, 311, 313, 365

Wright, R., 368

Yin, G. G., 169

Zenner, M., 220



Subject Index

actual law of motion, 30, 140, 179,
231, 274

adaptive expectations, 10–12, 17,
49, 63, see also expectations

adaptive learning, 13–17, 26, 30, 34,
39, 42, 44, 59, 72, 81, 204, 232,
242, 248, 273, 279, 285–286,
296–297, 308, 310

for steady states, 273
adaptively rational expectations

equilibrium, 378
adjoint operator, 109
ALM, 30, see also actual law of mo-

tion
alternative timing assumption, 52
AR process, 104
AR(1) solution, 195, 212, 215, 218

convergence to, 197
explosive, 220
local stability of two AR(1) solu-

tions, 216
arbitrage, 283, 285
ARMA process, 103, 105
ARMA(1,1) class of solutions, 207
ARMA(1,1) solutions, 176, 191,

208
not strongly E-stable, 208
strongly E-stable, 191

ARMA(1,1) sunspot solution, 192,
210

convergence to, 192
ARMA(2,1) class of solutions, 218

E-stable, 214
ARMA(2,1) solutions, 213
ARMA(2,1) sunspot solution, 212
ARMA(3,2) class of solutions, 218
asset pricing model, 9, 45, 220, 222
asset pricing with risk neutrality,

199
associated ordinary differential

equation, 126, 134, 138–139,
146, 162, 180, 234, 306

asymptotic analysis, 131
asymptotically covariance station-

ary process, 106
autocovariance, 100
autonomous system, 94
autoregressive process, 103
autoregressive-moving average pro-

cess, 103
average expectations, 223

Bayesian learning, 44, 370
bifurcation, 345

411



412 Subject Index

Blanchard-Kahn technique, 229,
236, 237, 240, 243, 246, 252

Borel set, 99
bounded memory estimator, 372
bounded rationality, 13, 17
Brownian motion, 111

arithmetic, 112
geometric, 112

bubble, 59, 221
in asset prices, 220

bubble solution, 178
E-unstable, 222

bucket brigade, 368

Cagan model, 9, 11, 13–16, 199,
202, 370, 385

calculation equilibrium, 376
capital good, 282–283, 285
Cauchy criterion, 105
Cauchy sequence, 104
Cauchy-Schwarz inequality, 104
causal process, 105
center manifold technique, 208, 213
Central Limit Theorem, 102
characteristic polynomial, 91
characterization of the solution, 195
classical version of the OG model,

325, see also overlapping gen-
erations model

classifier system, 361, 366
classifier system learning, 368

cobweb model, 7–11, 15, 16, 18–19,
26, 28, 45, 55, 141, 145, 205,
318, 320, 323, 333, 373–374,
378, 385

common factor, 209, 213
common factor solution, 177
common knowledge, 374
comparative static properties, 281

complementarities, 358, 378
complementarity, 385
complementary capital goods, 282–

283
complementary term, 182
complex nonlinear dynamics, 323–

324
computational intelligence, 361,

369, 387
conditional expectation, 100
conditionally linear dynamics, 138
conditionally linear framework, 306
consistent expectations equilibrium,

322–323
constant gain, 166, see also fixed

gain
constant-gain algorithm, 162,

332, 349, 387
constant-gain estimator, 332, 344
constant-gain learning, 48, 333,

338, 356
continuum of solutions, 183, 191–

192, 244, 245
convergence, 128, 134

almost sure, 101
convergence results, 187
in distribution, 102
in law, 102
in mean square, 102, 105
in norm, 104
in probability, 101–102
local, 235
of real time learning, 140
stochastic, 101
weak, 102
with positive probability, 134,

275
with probability close to one, 134,

275



Subject Index 413

with probability one, 101, 136,
275

convergence result for k-cycles, 298
convergence result, Markovian case,

160
converse Lyapunov theorem, 98,

160
coordination

failure, 15, 59, 74, 385
game, 53, 381
problem, 53

covariance stationary process, 100
crossover, 362
cycle, 267, 269, 287, 304, 386

periodic, 291
stability of cycles under learning,

292

decreasing gain, 51, 166
algorithms with decreasing gain,

166
decreasing-gain estimator, 344

demand spillover, 54
density function, 100
determinate steady state, 279
deterministic cycles, 291, 323
Diamond model, 71, 83
difference equation, 88, 118
differential equation, 93, 118
distribution function, 99–100
domain of attraction, 94, 98
dominant escape path, 356
Doob’s inequality, 131
Dornbush type model, 216, 218
drift, 112

generalized drift, 114
dynamical system, 88

E-stability, 30–31, 39–40, 42–
43, 140, 179, 182, 186, 188,
192, 195, 200, 211, 220, 222,
231, 237–238, 240, 244–246,
273–274, 279, 281, 289,
297, 299, 308, 373, see also
expectational stability

condition, 232, 235–236, 238,
241, 248, 313, 317, 322
modified, 320, 322

equation, 40, 235, 328
full class of solutions, 183
iterative, 42–43, 373
principle, 30, 39, 41, 329
strong, 42, 187, 189, 207–208,

212, 275, 297, 309
weak, 42, 189, 274–275, 297

E-stable solution, 31, 140, 310, see
also expectationally stable so-
lution

explosive, 214
iteratively, 373
strongly, 42, 141, 213, 216, 297
weakly, 42, 141, 216, 297, 307–

308
E-unstable steady state, 309
econometric learning, 27, 385
economy policy, 286
eductive learning, 16–17, 372, 388
eigenvalue, 115

of Kronecker product, 116
eigenvalues

continuous dependence, 117
eigenvector, 115
election operator, 363, 366
empirical applications, 382
endogenous fluctuations, 59, 76,

288, 337, 341
endogenous gain sequence, 371
endogenous growth model, 81



414 Subject Index

equilibrium, 88
asymptotically stable, 88
competitive, 239
exponentially stable, 98
globally asymptotically stable,

88, 94
irregular, 263
locally asymptotically stable, 88,

94
nonhyperbolic, 93, 96, 208, 210
regular, 253
self-confirming, 327
stable, 88
temporary, 8, 10, 12, 16, 305
underparameterized, 322
unstable, 88

equilibrium in learning rules, 346–
347

equilibrium point, 131
asymptotically stable, 133, 160

equilibrium solution, 94
error learning rule, 148
escape route, 343, 354, 356, 383
Euclidean space, 104
Euler equation, 201
excess volatility, 49
exogenous observable variable, 174,

178, 181, 198
expectational difference scheme,

252
expectational feedback, 214
expectational stability, 19, 25,

30–31, 140, 231, see also
E-stability

expectationally stable solution, 31,
see also E-stable solution

expectations, 5–9, 12–13, 15–16,
18, 59, 293

adaptive, 10–12, 17, 49, 63
average, 223

dating of, 236
heterogeneous, 8, 45, 47, 223
naive, 10
rational, 5–7, 11–14, 17, 25
static, 6, 10, 12, 17

expected inflation, 199, 278
expected interest rate, 285–286
expected value, 99–100
expenditure shock, 282
experimental work, 380
explosive AR(1) processes, 219
explosive solutions, 222, 261

learning explosive solutions, 219
exponential stability, 98
exponentially fading memory learn-

ing, 371
extended special case, 194, 211
externality, 73, 247
extraneous random variable, 287
extrapolative forecast rules, 358

Farmer–Guo model, 247, 249–251,
263, 385

feedforward network, 369
finite-memory rule

finite-memory forecast rule, 148
finite-memory learning rule, 43–

44
fixed gain, 342, see also constant

gain
fixed gain learning, 52

fixed point, 88, 234
forward solution, 221
forward stable roots, 255, 260
free variable, 253, 255, 260, 261,

263
full set of solutions, 179, 217
fundamental solution, 200, 221–222

E-stable, 222



Subject Index 415

gain, 123, 149, 154, see also con-
stant gain, see also decreasing
gain

gain sequence, 18, 22, 127, 157,
370–371

Gaussian approximation, 166
Gaussian white noise, 99
general nonhomogeneous equation,

91
Genesis, 6
genetic algorithm, 361–362, 364
global convergence, 144–145, 167,

277
of learning algorithms, 311
on compact domains, 167

global stability, 180, 183
government consumption, 277
government purchases, 276–277
gradient, 117
growth, 282–283

balanced, 284
endogenous, 282
rate of, 285–286

growth cycle, 81

heterogeneity, 225
heterogeneous expectations, 8, 45,

47, 223, see also expectations
heterogeneous learning rules, 223,

225
high inflation steady state, 281
Hilbert space, 104
Hopf bifurcation, 358
hyperinflation model, 277, 281
hysteresis, 343, 345

imperfect competition, 54
implicit function technique, 301
income effect, 291

increasing social returns model, 72,
78–79, 304, 310, 337

increasing social returns with ran-
dom shocks, 276

indeterminacy of equilibria, 59
indeterminate steady state, 279
index theorem of Poincare anf Hopf,

302
inertia, 223
inflation, 278
information set, 237–238, 245
informational assumption

alternative, 203
inner-product space, 104
innovation, 282–283
instability results, 138, 307
instrument variable, 122, 126, 137
interest rate, 283, 286
interest rate pegging, 150
intermediate good, 284
intrinsic noise, 269, 300
intrinsic shock, 267, 271–272, 287
invariant distribution, 110
invariant measure, 109
invariant set, 94, 313
invention, 282
investment under uncertainty, 201
irregular case, 260–261
irregular model, 229, 249
irregular REE, 243, 260
IS curve, 217
IS-LM-Phillips curve model, 227,

235, 385
Ito process, 110, 112–113
Ito’s lemma, 113

bivariate, 113
n-dimensional, 114

Jensen’s inequality, 100



416 Subject Index

Jordan
blocks, 116
decomposition, 116
form, 95, 255
representation, 90

k-cycle, 291, 297
kernel method

kernel function, 372
recursive, 372

Kronecker product, 116

lag operator, 103
lag polynomial, 177
lagged endogenous variable, 193
large deviation theory, 343
learnable, 27
learning, 12, 15–17, 183, see also

adaptive learning
complete, 357
incomplete, 357
statistical approach to, 15–17
with contemporaneous informa-

tion, 151
learning dynamics, 295, 313

global analysis of, 310
learning equilibrium, 357
learning rule, 123, 124, 143
learning steady states in nonstochas-

tic models, 50
least squares, 46, 385

least squares estimation, 18
recursive version of, 18

least squares learning, 29, 31–32,
46, 184, 187, 190, 192, 200,
202, 209–210, 213, 222, 236,
238, 241, 247, 388
of MSV solution, 179
recursive, 320

least squares regression, 28, 32

recursive, 32–33, 46, 143, 153,
181, 184, 192, 197, 220, 233,
235, 238, 247, 318, 327

Lebesgue integral, 99
limited information REE, 320

reduced order limited information
REE, 320

linear expectations model, 173
linear homogeneous system, 88, 96
linear models, 205

linear model with two forward
leads, 215

multivariate linear model, 227
univariate linear model, 173

linear system, 88, 94
linearization, 249, 250
Lipschitz condition, 93, 94, 186, 335
LM curve, 217
local stability, 92, 96, 186–187

asymptotic, 132
low-inflation steady state, 279, 281
Lucas aggregate supply model, 8,

29, 373
Lucas-Prescott model, 201
Lyapunov function, 97–98, 132,

145, 146, 180, 183
Lyapunov’s direct method, 97–98

MA process, 103
mapping from PLM to ALM, 31
Markov chain, 77, 109, 300

aperiodic, 110
irreducible, 110
periodic, 110
recurrent, 110
transient, 110

Markov chain SSE, 79
Markov operator, 108
Markov process, 108, 154, 156–157,

289, 306



Subject Index 417

Markov sunspot solution, 286, 314,
338, 386

adaptive learning of, 305
finite-state, 313

Markovian case, 154, 161
Markovian state dynamics, 154,

160, 306
martingale, 101
martingale convergence theorem,

30, 103, 131
martingale difference sequence,

176, 243, 246, 248
matrix

companion, 89, 91
diagonalizable, 95
exponential of, 95
Jacobian, 92, 117–118
lower triangular, 116
negative definite, 116
negative semidefinite, 116
nonsingular, 116
positive definite, 116
positive semidefinite, 116
real symmetric, 115
stable, 90–92
transition, 109
triangular, 117
upper triangular, 116

matrix differential equation, 231,
245

matrix differentials, 118, 231
measurable function, 99–100
measurable space, 99
measurement error, 305
method of undetermined coeffi-

cients, 175, 179
Minimal State Variable solution,

176–177, 229, 320, see also
MSV solution

misspecification, 32, 41, 317

econometric, 317

learning with misspecification,
56, 317, 332

temporary, 32

misspecified models, 317

misspecified PLM, 329

model with multiple balanced
growth paths, 81

model with t-1 dating, 246, 253

models with t-dating, 198

models with contemporaneous ex-
pectations, 236, 259

models with lags, 201

monetary exchange rate model, 81

money creation, 277

money-financed government deficit,
304, 310

monopolistic competition, 247

monopolistically competitive pro-
ducers, 282, 283

moving average process, 103

MSV solution, 175, 178, 181, 189,
194, 195, 200, 202, 207, 209,
213, 229–230, 232, 235–237,
240, 242, 252–253, see also
Minimal State Variable solu-
tion

multiple, 193

stable under least squares
learning, 215

multiple equilibrium, 59, 292

multiple steady state, 277

multivariate linear model, 227

multivariate Muth model, 141, 145

mutation, 363

Muth’s inventory model, 205

Muth’s model, 183, 205



418 Subject Index

naive expectations, 10
Nash equilibrium, 53–54

time-consistent, 327
neural network, 361, 369
neuron, 369
noisy cycles, 287, 292–294, 298

adaptive learning of, 298–299
E-stability of, 296
existence of, 293
with small noise, 299

noisy steady state, 269, 271–272,
274, 282

noisy sunspot equilibrium, 307
non-MSV AR(1) solution, 183
nonhomogeneous linear system, 90
nonlinear models, 298, 300

steady states, 267, 269
locally indeterminate, 303
multiplicity of steady states,
282
two distinct steady states, 308–
309

stochastic nonlinear models, 287
nonlinear system, 92, 96
nonparametric learning, 372
nonpredetermined variable, 253–

254
nonstochastic framework, 148

instability result, 149
local stability result, 149

nonstochastic models, 153
normed vector space, 105

observation error, 305
ODE, see also stochastic recursive

algorithm, ordinary differential
equation approach to

OG model, see also overlapping
generations model

one-sided stability–instability, 208
open economy, 286
overfitting, 41
overlapping contract model, 81, 385
overlapping generations model, 43,

60, 73, 277, 292, 302, 309, 311,
385

basic, 302, 309
with production, 268
with productivity shocks, 270
with seignorance, 364

overparameterization, 41, 189, 206,
208, 213

perceived law of motion, 28, 30, 67,
140, 142, 152, 179, 231, 274,
297

overparameterized, 141
perceptron, 369
perfect foresight, 269

cycle, 81, 291
dynamics, 279
solutions, 152

perfect multicollinearity, 153
periodic cycles, 287
persistent learning dynamics, 15,

331–332
Phillips curve, 216

expectational, 326
Phillips curve trade off, 325

PLM, 30, see also perceived law of
motion

point expectation, 278
policy feedback, 194, 202, 214, 216,

218
policy learning, 325
polynomial bounds, 124, 155
polynomially bounded, 165
positive recurrent state, 110
predetermined variable, 253, 255



Subject Index 419

prediction, 122
preference shock, 288
price of capital, 285
primitive period, 297, 299
probability measure, 99–100
probability space, 99
production possibility frontier, 284–

285
productivity shock, 239, 268–269,

271, 276
projected ALM, 320, 322
projection facility, 36, 135–136,

187, 235, 275

quadratic adjustment costs, 201

Ramsey model, 59, 68, 70, 82
Ramsey outcome, 348, 354
random gain, 223
random taste shock, 270
random vector, 100
rational expectations, 5–7, 11–14,

17, 25, see also expectations
rational expectations equilibrium

multiple, 173
rational expectations solution, 12
rational learning, 16, 17, 32
rational route to randomness, 379
rationalizability, 43
real balance model, 214
Real Business Cycle model, 59, 70,

81, 227, 239, 247, 249, 385
alternative learning scheme for,

241
irregular version of, 243

real time learning, 140, 180, 196,
232, 242, 247, 313, see also
adaptive learning

reasonable learning, 32

regular model, 229, 249
reproduction, 362
rest point, 94
restarting gain method, 371
restricted perceptions equilibrium,

57, 317, 320–324, 327, 329,
331

RLS learning, 235, see also least
squares learning

saddle path, 69–70
saddle point, 69
saddlepoint stability, 255, 259
saddlepoint stable solution, 235
Samuelson model, 60, 291, 303
Sargent’s inflation model, 325, 348
Sargent-Wallace ad hoc model, 63,

67, 174, 189, 191, 228
Sarkovski’s theorem, 291
Schwarz inequality, 100
search externatility, 54
search model with complementarity,

55
seignorage, 81, 276, 304
selection criterion, 14, 81, 173, 292
selection principle, 204
self-confirming equilibrium, 57
self-refential, 16, 18
simulated annealing, 139
simulation, 187, 210, 216
slow adaption, 134
small noise case, 272
social planning problem, 239
solution techniques, 252

irregular equilibria, 260
regular equilibria, 253

special case, univariate linear mod-
els, 174, 178, 194, 205–207

extended, 194, 205, 211, 219
spectral radius, 125



420 Subject Index

SRA, see also stochastic recursive
algorithm

SSE, 77, 78, 289, see also stationary
sunspot equilibrium

see also sunspot
stability condition, 286
stability under learning, 43, 54, 195
standard overlapping generations

model, 323, 324, see also over-
lapping generations model

standard timing assumption, 51
state dynamics, 124–125, 155

conditionally linear, 123
state variable, 123, 128
state-contingent averaging, 305
static expectations, 6, 10, 12, 17
stationary Gaussian solution, 115
stationary point, 88
stationary solution, 94
stationary sunspot equilibrium, 77–

78, 289
statistical learning, 41, 387, see also

adaptive learning
sticky price model, 256
stochastic approximation, 34–36,

65, 121, 147, 241
stochastic convergence, 101
stochastic cycles, 292
stochastic difference equation, 109
stochastic differential equation, 110,

114, 164, 350
stochastic gradient algorithm, 55
stochastic gradient learning, 55, 192

under constant gain, 354
stochastic integral, 112
stochastic process, 100

continuous, 100
discrete, 100
linear, 99
multivariate, 100

stochastic recursive algorithm, 34,
121, 123, 127, 133, 139, 144,
180, 182, 220, 273, 280, see
also stochastic approximation

assumptions for, 123
convergence of: the basic results,

128
general setup for, 123
ordinary differential equation ap-

proach to, 126, 131, 135
ordinary differential equation ap-

proximation of, 130–131
stochastic steady state, 275, 277,

287
Stockholm school, 6, 10
strategic complementarity, 53–54
strictly stationary process, 100
Strong Law of Large Numbers, 39,

102
strongly rational, 374
structural change, 332, 344
structural heterogeneity, 42, 47
structural homogeneity, 42, 47
submartingale, 103
subsidiary principle, 194
substitution effect, 291
sunspot, 59, 79, 243, 288

E-stability for sunspot equilib-
rium, 306

E-stability of SSEs, 308
E-stability of sunspot solution,

246
existence of sunspot equilibria,

300
learning SSEs, 78, 304
SSE, 77–78, 289
stability of sunspot equilibrium

under adaptive learning, 300
stationary sunspot equilibrium,

77–78, 81, 289



Subject Index 421

near 2-cycles, 301
near a single steady state, 302
near deterministic cycles or
steady states, 301
near pair of distinct steady
states, 301
stability near deterministic so-
lutions, 308

sunspot equilibrium, 76–78, 80,
249, 267, 287–288

sunspot equilibrium near steady
state, 78–79

sunspot solution, 81, 190, 244,
247–249, 263

sunspot variable, 176
weak stability of sunspot solution,

313

Taylor’s overlapping contract
model, 194, 213

Taylor’s real balance model, 175,
189, 194

technological complementarity, 54
technology shock, 288

transition function, 108
transition probability, 108
transversality conditions, 69
triangle inequality, 104
two-cycle, 275

underparameterization, 41, 141
underparameterized learning, 22
underparameterized model, 321
univariate linear model, 173, 193,

206

VAR, 103, 107
variance, 100
Vector Autoregression, 107, 174,

228
volatility, 112, 114

weak convergence for stochastic
processes, 164

Weak Law of Large Numbers, 102
white noise process, 103
Wiener process, 110, 111, 350


	Contents
	Preface
	Part I. View of the Landscape
	1 Expectations and the Learning Approach
	1.1 Expectations in Macroeconomics
	1.2 Two Examples
	1.3 Classical Models of Expectation Formation
	1.4 Learning: The New View of Expectations
	1.5 Statistical Approach to Learning
	1.6 A General Framework
	1.7 Overview of the Book

	2 Introduction to the Techniques
	2.1 Introduction
	2.2 The Cobweb Model
	2.3 Econometric Learning
	2.4 Expectational Stability
	2.5 Rational vs. Reasonable Learning
	2.6 Recursive Least Squares
	2.7 Convergence of Stochastic Recursive Algorithms
	2.8 Application to the Cobweb Model
	2.9 The E-Stability Principle
	2.10 Discussion of the Literature

	3 Variations on a Theme
	3.1 Introduction
	3.2 Heterogeneous Expectations
	3.3 Learning with Constant Gain
	3.4 Learning in Nonstochastic Models
	3.5 Stochastic Gradient Learning
	3.6 Learning with Misspecification

	4 Applications
	4.1 Introduction
	4.2 The Overlapping Generations Model
	4.3 A Linear Stochastic Macroeconomic Model
	4.4 The Ramsey Model
	4.5 The Diamond Growth Model
	4.6 A Model with Increasing Social Returns
	4.7 Other Models
	4.8 Appendix


	Part II. Mathematical Background and Tools
	5 The Mathematical Background
	5.1 Introduction
	5.2 Difference Equations
	5.3 Differential Equations
	5.4 Linear Stochastic Processes
	5.5 Markov Processes
	5.6 Ito Processes
	5.7 Appendix on Matrix Algebra
	5.8 References for Mathematical Background

	6 Tools: Stochastic Approximation
	6.1 Introduction
	6.2 Stochastic Recursive Algorithms
	6.3 Convergence: The Basic Results
	6.4 Convergence: Further Discussion
	6.5 Instability Results
	6.6 Expectational Stability
	6.7 Global Convergence

	7 Further Topics in Stochastic Approximation
	7.1 Introduction
	7.2 Algorithms for Nonstochastic Frameworks
	7.3 The Case of Markovian State Dynamics
	7.4 Convergence Results for Constant-Gain Algorithms
	7.5 Gaussian Approximation for Cases of Decreasing Gain
	7.6 Global Convergence on Compact Domains
	7.7 Guide to the Technical Literature


	Part III. Learning in Linear Models
	8 Univariate Linear Models
	8.1 Introduction
	8.2 A Special Case
	8.3 E-Stability and Least Squares Learning: MSV Solutions
	8.4 E-Stability and Learning: The Full Class of Solutions
	8.5 Extension 1: Lagged Endogenous Variables
	8.6 Extension 2: Models with Time-t Dating
	8.7 Conclusions

	9 Further Topics in Linear Models
	9.1 Introduction
	9.2 Muth’s Inventory Model
	9.3 Overparameterization in the Special Case
	9.4 Extended Special Case
	9.5 Linear Model with Two Forward Leads
	9.6 Learning Explosive Solutions
	9.7 Bubbles in Asset Prices
	9.8 Heterogeneous Learning Rules

	10 Multivariate Linear Models
	10.1 Introduction
	10.2 MSV Solutions and Learning
	10.3 Models with Contemporaneous Expectations
	10.4 Real Business Cycle Model
	10.5 Irregular REE
	10.6 Conclusions
	10.7 Appendix 1: Linearizations
	10.8 Appendix 2: Solution Techniques


	Part IV. Learning in Nonlinear Models
	11 Nonlinear Models: Steady States
	11.1 Introduction
	11.2 Equilibria under Perfect Foresight
	11.3 Noisy Steady States
	11.4 Adaptive Learning for Steady States
	11.5 E-Stability and Learning
	11.6 Applications

	12 Cycles and Sunspot Equilibria
	12.1 Introduction
	12.2 Overview of Results
	12.3 Deterministic Cycles
	12.4 Noisy Cycles
	12.5 Existence of Sunspot Equilibria
	12.6 Learning SSEs
	12.7 Global Analysis of Learning Dynamics
	12.8 Conclusions


	Part V. Further Topics
	13 Misspecification and Learning
	13.1 Learning in Misspecified Models
	13.2 Misspecified Policy Learning
	13.3 Conclusions

	14 Persistent Learning Dynamics
	14.1 Introduction
	14.2 Constant-Gain Learning in the Cobweb Model
	14.3 Increasing Social Returns and Endogenous Fluctuations
	14.4 Sargent’s Inflation Model
	14.5 Other Models with Persistent Dynamics
	14.6 Conclusions

	15 Extensions and Other Approaches
	15.1 Models from Computational Intelligence
	15.2 Alternative Gain Sequences
	15.3 Nonparametric Learning
	15.4 Eductive Learning
	15.5 Calculation Equilibria
	15.6 Adaptively Rational Expectations Equilibria
	15.7 ExperimentalWork
	15.8 Some Empirical Applications

	16 Conclusions

	Bibliography
	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Subject Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W




