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PREFACE

These notes originated from a series of lectures I delivered at the
Centre for Mathematical Analysis at Canberra. The purpose of the lectures
was to introduce mathematicians familiar with the basic notions and results
of linear elliptic partial differential equations and Riemannian geometry
to the subject of harmonic mappings. I selected some topics to the

presentation of which I felt I could contribute something, while on the

s possible to provide complete and detailed proofs of them

other hand it was
during these lecturss. Thus, these notes ars not meant to cover all that

is known about harmonic maps, but nevertheless I believe that they give a

good account of many of the interesting aspects of the subject and a fair

we present useful

geomeltric constructions in chapter 2. In particular, we introduce almost

linear functions on Riemannian manifolds and prove some properties of

approximate harmonic coordinates. Most of this

material oviginated fr

In chapter 3, we present the heat flow

method to obtain existence, regularity, and unigueness properties of

harmonic maps into nonpositively curved manifolds. This coverg the basic

results of Eells-Sampson [ES]. Our approach also uses some ideas as

as

presented by Hartman [Ht], von Wahl [vW], and Jost [J4].

In chapter 4, we prove the existence (due to Hildebrandt-Kaul-Widman
[HKW3]) and uniqueness (due to Jager-~¥aul [JaK2]) of harmonic maps with
image contained in a strictly convex ball, which solve a Dirichlet problem.
The a-priori estimates based on the work of Hildebrandt-Widman [HW2] will
be simplified by using the results of chapter 2. In chapter 5, we finally

are concerned with harmonic maps between surfaces. We prove the existence



result of Lemaire ([L1l], [L2]) and Sacks-Uhlenbeck [SkU], as well as a
result of Jost [J7] and Brézis-Coron [BC2] yielding the existence

of two homotopically distinct solutions for nonconstant Dirichlet boundary
data in 52 . We then turn to the question of the existence of harmonic
diffeomorphisms, proving the results of Jost [J3] and Jost-Schoen [JS]. They
are based on the deep estimates of E. Heinz [Hz5] for the Jacobian of
univalent harmonic maps from below. These estimates, however, will not be
proved in the present notes. We refer to [JK1] instead. Moreover, we show
how a simple variational procedure can produce conformal diffeomorphisms
between spheres as well as a version of the Riemann mapping thecrem. For
more details on harmonic mappings between surfaces, we refer to the author's

notes [J8].

I thank Stefan Hildebrandt for his continuocus advice and support over
many vears and for making the financial support of the SFB 72 at the University
bf Bonn available to me, and Richard Schoen for a fruitful collaboration and
interesting discussions about harmonic maps between surfaces. To Hermann
Karcher I owe many insights into the geometric aspects of the theory, and
what I learned from him or what evolved during our collaboration is not only
represented in chapter 2, but also penetrates chapter 4, and I regret that we

did not find the opportunity to work out these notes together.

Moreover, I am grateful to Leon Simon for inviting me to Canberra and
to the colleagues who attended my lectures for their interest and their
stimulating queries and comments and to the Centre for Mathematical Analysis
for its support of my work. Finally, I thank Dorothy Nash and Norma Chin

for typing these notes with great care and patience.



CHAPTER 1
INTRODUCTION

1.1 A SHORT HISTORY OF VARIATIONAL PRINCIPLES

Among the first persons to realize the importance of variational problems
and the physical significance of their solutions was G.W. Leibniz (1646-1716).
In his work, however, mathematical and physical reasoning was closely inter-
woven with philosophical and theological arguments. One of the aims of his
philosophy was to solve the problem of theodizee, i.e. to reconcile the evil
in the world with God's goodness and almightiness (c¢f. (Lz]l). Leibniz' answer
was that God has chosen from the innumerable possible worlds the best possible,
but that a perfect world is not possible. (This infinite multitude can only
be conceived by an infinite understanding, which provided a proof of the
existence of God for Leibniz.) This best possible world is distinguished by
a pre-established harmony between itself, the realm of nature, on one hand and
the heavenly realm of grace and freedom on the other hand. Through this the
effective causes unite with the purposive causes. Thus bodies move due to
their own internal laws in accordance with the thoughts and desires of the
soul. In this way, the contradiction between the predetermination of the
physical world following strict laws and the constantly experienced spontaneity
and freedom of the individual is removed. The best possible world must here
obey specific laws since an ordered world is better than a chaotic one. This
proves therefore the necessity of the existence of natural laws. The contents
of the natural laws, however, are not completely determined as is the case
for geometxric laws but are only determined in a moral sense, since they must
satisfy the criteria of beauty and simplicity in the best of all possible

worlds. This leads Leibniz even to variational principles. This is because



if a physical process did not yield an extreme value, a maximum or minimum,

for a particular energy or action integral, the world could be improved and
would therefore not be the best possible one. Conversely, Leibniz also uses
the beauty and simplicity of natural laws as evidence for his thesis of pre-
established harmony. (The notion that we live in the best possible world

was frequently rejected and even ridiculed by subsequent critics, in particular
Voltaire, on account of the apparent flaws of this world, but Leibniz' point
that a perfectly good world is not possible was beyond reach of these

arguments.)

Leibniz, however, did not elaborate his argument concerning variational
principles in his publications, but only in a private letter. Thus, it
happened that a principle of least (and not only stationary) action was later
rediscovered by Maupertuis (1698-1759), without knowing of Leibniz' idea. When
S. KSnig (1712-1757) then claimed priority for Leibniz on account of his letter
ﬁhat he was not able to show however to the Prussian Academy of Sciences
{whose president was Maupertuis) this led to one of the most famous priority
controversies in scientific history in which even Voltaire, Euler, and
Frederick the Great became involved. It was also pointed out that Maupertuis’
principle of least action should be replaced by a principle of stationary
action since physical equilibria need only be stationary points but not

necessarily minima of variational problems.

1.2 THE CONCEPT OF GEODESICS

One of the variational problems of most physical importance and mathe-
matical interest was the problem of geodesics, i.e. to find the shortest (or
at least locally shortest) connections between two points in a metric continuum,

e.g. a Riemannian manifold. Geodesics are critical points of the length



integral

1
3
|—-c]dt
INE:
where ¢ : [0,1] = N 1is the parametrization, as well as, if they are para-

metrized proportionally to arclength, of the energy integral

Here, unfortunately, we find some ambiguity of terminology, since the
mathematical term "energy" corresponds to the physical concept of "action",

while in physics "energy" has a different meaning.

Because of the many applications of geodesics, it was rather natural
to generalize this concept. While minimal surfaces are critical points of
a twodimensional analogue of the length integral, namely the area integral,
the generalization of the energy integral for maps between Riemannian manifolds
ied to the concept of harmonic maps. They are critical points of the
corresponding integral where the squared norm of the gradient or energy
density has to be defined in terms intrinsic to the geometry of the domain

and target manifold and the map between them.

1.3 DEFINITION AND SOME ELEMENTARY PROPERTIES OF HARMONIC MAPS

Suppose that X and Y are Riemannian manifolds of dimensions n and

N , resp., with metric tensors ( ) and (g,.) , resp., in some local co-
YuB ij

ordinate charts x = (xl,...,xn) and f = (fl,...,fN) on X and Y , resp.
By _ -1 . 1 . }
Let (y ) = (YQB) . If £ : X~>Y is a C -map, we can define the energy
density
incd
1 oB 9f~ 9f
e(f) : = 5 Y (x) gij(f) 3 8

9x 9%



where we use the standard summation convention (greek minuscules occurring
twice are summed from 1 to n , while latin ones are summed from 1 to N) and
express everything in terms of local coordinates. Then the energy of £ is
simply

E(f) = J e(f)dax .
X

If f is of class C2 and E(f) <, and f is a critical point of E , then
it is called harmonic and satisfies the corresponding Euler-Lagrange-equations.
These are of the form

iy, YuB rb 9 g3 3 gk

1 9 aB
(1.3.1) — —— (VY Y + . £ =0
¢ Ik ax” axB

39
—_B_f
/Y dx ox

in local coordinates, where Y = det(YuB) and the T;k are the Christoffel

symbols of the second kind on Y .
(1.3.1) is proved as follows. If £ is critical, then for all admissible

variations ¢ (e.g. ¢ € C:(X), and ¢]3X =0 if 03X # @)

d _
= E(f+t¢)[t=o =0 .

and thus

3 iagd
0=J (Yocs(x)gij(f(x)) B2, LBy IE B4
X 9

o axB ij, %% axP
fi . fi fk .
= - J “ﬁ”'[/y YOLB é—ajgi‘ ¢’ dX"J YQB(X) Q—a'§~§ 955 k¢J /Y ax
X 9x ox J X 9%~ 3% Jr
1 B x oed el
2, i
X 2 ij,k BXB axoc

since ¢ is compactly supported

and from this, putting nt = gjj¢3 , il.e. ¢j = gjl nl , and using the



B

symmetry of Yu in the second integral,

2y 40 .._afi] i J 1 08 3
o=- 4 ax - 5 Lo T . .9, .
JX BXB [ b 33 " % 279 (gl];k gk],l glk,j)

iaqk
£ £
9f~ 23 nl A

dx
Bxu BXB

which implies (1.3.1) by the lemma of Du Bois-Raymond.

We thus obtain a nonlinear elliptic system of partial differential
equations, where the principal part is the Laplace-Beltrami operator on X
and is therefore in divergence form, while the nonlinearity is quadratic in

the gradient of the solution.

We now want to look at the definition of harmonic maps from a more
intrinsic point of view. The differential df of £ , given in local

coordinates by

can be considered as a section of the bundle T*X ® f_l TY . Then

[

aB of of
Y < o 7 > -1
B):4

e(f)
BXB £ 7TY

i

N

|
o

af, at s _
< Cprgert Ty

i.e. e(f) 1is the trace of the pullback via f of the metric tensor of Y .
In particular, e(f) and hence also E(f) are independent of the choice of

local coordinates and thus intrinsically defined. £ is harmonic, if
(1.3.2) T(f) = 0 ,

where T(f) = trace Vdf , and V here denotes the covariant derivative in



the bundle T*X ® f‘1 TY .

Let us quickly show, why (1.3.1) and (1.3.2) are equivalent (cf. [EL 4 ]).

i
Vo glan =V BP—% ax™ —Z—)—l—}
9/9% 3/9x" \ox of
i i
o L R L R
9% 9% of /9% ox afl
-1 i
TS
9/0x" 3ft) 9x
2_ i i Joael 1)
- Baf 5 ax® _gz _ ngy ax’ afu _QI . YF?' _EE _§§ _ga ax®
9x 3x 3f 3% Bf T 55" 3x” ax
and thus, since T(f) = trace Vdf ,
2.k k iac]
*ey = %8 aaf 5 - 0B XFZLB ?_f? + B lezj .B._f.& §_f_é ,
0% 0% ox 9xX 9%

and we see that (1.3.1) and (1.3.2) are equivalent.

From the preceding calculation, we see that the Laplace-Beltrami operator

is the contribution of the connection in T*X , while the connection in f_l TY

gives rise to the nonlinear term involving the Christoffel symbols of the image.

With the preceding notations, we can also calculate the Hessian of a

harmonic map £ for vector fields v , w along f (i.e. v and w are

. ~1 . . A
sections of f TY¥) . For this purpose, we consider a two-parameter variation

fSt with

afst afst

VE TSs |sit=0 0 YT TE |s,t=0

1) Here, we distinguish the Christoffel symbols of X and Y by the
superscript X or Y , resp.



We then want to calculate

3%B (£ )
H_(v,w) =St
£ 389t  |s,t=0

We have, writing £ instead of £ and taking scalar products

st ’
<epe> in TH*X ® f-“1 TY , if not otherwise indicated,

£ Ty Jf a £ oy of
< v X& (Bb) ax .,

£ TY of

v =) ax,
a/ax“

[
<

/9t '9s

+

No(9f Lo 9f) 3F  3f . B
(R (ax@ = 3 s B >

Now

-1
j <yf TYva/at—g—gdxo‘, %dXB> ax
X 9/9x% :

d [ o 9f  of 1
= < Iy v L L _ N @ .ax
J L < B 2>



9f . o of B
v —ax , V —— dx
J <Vasst 3s 5 3 P >
of af of
- v — . Y V By -
J < Vot 3s 0/5x® 3eP > 1y
by Stokes' Theorem
_ . of of ) . .
= 0, since Y \ @« B" trace V df = 0, as f is harmonic.
3/9x ¥x
Thus
&1 o1
He (v, w) = j YQB < v Tz v , V EY w > -1
X 9/ 9% 9/9x £ 7 TY
af N{Jf of
-y R {——— , v] 5, W _
jx < BxOc BXB > £ t TY
-1, 1
_ j { yf Ty R w .
X £ TY
N
- f trace, < R (df,v) df , w > - .
X £ Y

For the preceding calculations cf. also [EL4].

We now want to look at the definition of harmonic maps from a somewhat
different point of view. By the famous embedding theorem of Nash ([Nal), Y
can be isometrically embedded in some Euclidean space IRQ . We define the

Scbolev space
VoY) = {£6WS (L RY) ¢ £() € ¥ ae.}

I
Since W;(X,R.) = H;(X,Igﬁ by a well-known theorem of Meyers and Serrin
{(cf. [MS], p.52; we can assume X to be a compact manifold (possibly with

boundary), since we always can localize the problem in the domain. Namely, if



f is a critical point of E on X , then it is also critical on any subdomain)
every element in w;(X,Y) can be approximated with respect to the Wé norm

by smooth mappings, namely from Cm(X,Rg) ; although the corresponding

equality Wé(X,Y) = Hg(X,Y) does not hold in general, cf. [SU2]. 1In particular,

if we compose an element from W;(X,Y) with a smooth mapping, we can apply a

chain rule.
In this Sobolev space, we can still define the energy functional by
E(£) =—$—J |ag () |2 ax (x)
and look for critical points of E in Wé(X,Y) .

Assume that £ € Wé(X,Y) is a critical point of E which maps X into
a compact part YO of Y . YO has a uniform neighbourhood in I& on which

. . . . . L . . .
the projection 1 , mapping a point in ®R  to the closest point in Y , 1is

smooth.

Fhus, if ¢: X->~3R2 is smooth and ¢|8X= 0 and t is sufficiently small,

(f+td) (x) 1lies in this neighbourhood for a. a. x € X . Since f is critical

o
il

] -
3g E(m(ErEe)) [t =0

J < DZTT(f) e D&f , dm(£) Duf > dx
X

+

JX g an() Do , am(£) DE S ax

applying the chain rule,

where Daf = ea(f) and ea is a moving orthonormal frame on X , o = 1,...n

2
= JX < DTT(E) * ¢ Daf , dnm(f) Duf > dx

+ J < Da¢ , am(f) Ebf > ax
X
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since T 1is a projection

= Jx < DzTr(f)'(bJDOLf , Daf > ax

+ D¢, DF ax
| <o e omge>

since mo £ = £ and consequently dm ~Duf = Duf by the chain rule. Thus,

f 1is a weak solution of
2
(1.3.3) 0= Af - DW(£) (af,df) ,

where A is the Laplace-Beltrami operator on X (cf. [SUl] for somewhat
different calculations). (1.3.1) and (1.3.3) are equivalent, since they
both are the Euler-Lagrange equations of the energy functional E . The point
of view leading to (1.3.3) was different, however. Here, the energy was

& 1, . .® ) e
minimized among all maps u : X +* R of class H2 NL (X,R) satisfying a

nonlinear constraint u(x) € Y (for almost all x€ X) . Since the Dirichlet

0

integral is lower semicontinuous w.r.t. weak Hé—convergence we also get

LEMMA 1.3.1  The energy integral is lower semicontinuous w.r.t. weak

1
Hz—convergence.
Finally, let Zl and 22 be surfaces with conformal metrics

Ozdz dz (z=x+1y)
and

pzdu au (u;u1+iu2) resp.

For a Cl—map £ 2 Zl + Y , the energy is then given by

1 i3,..1i7
E(f) 5 JZ gij(uxux+uyuy)dx dy

1

]

in those coordinates. Hence
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LEMMA 1.3.2 If Xk : Iy~ El 18 a conformal map between surfaces, then
E(f°k) = E(f)

This means that the energy is conformally invariant.

Moreover, the Laplace-Beltrami operator of Zl in our coordinates is

given by “é—-jL-é— ;, and (1.3.1) hence takes the form
a2 9z 3z
{1e)
L5 e 0
R
1 ,9u . oJu 1 2u . ou
B el M= == + 1)) .
(where uz 5 (Bx i 3y uE 5 (Sx i By))
In the case the image is the surface 22 ; this in turn reads as
2p
(1.3.4) i%-u S+ Q%___E u u. =0 .
o zZ g z Z

Thus, the harmonicity of u does not depend on the special metric of
Zl , but only on its conformal structure, since we can simply multiply the

equation by 02 . Hence

LEMMA 1.3.3  Suppose u : I, > Y is harmonic, and k : Ly > L, isa
‘conformal map between surfaces. Then uok s also harmonic. In particular,

in two dimensions conformal mappings are harmonic.

The harmonicity of u does depend, however, on the image metric, unless
u, =0 or u =0, i.e. u is conformal or anticonformal. (Note that this

distinction is only meaningful for oriented surfaces.)

We also note the following

LEMMA 1.3.4 If u : I, > L, 18 a harmonic map between surfaces, then
2
lu, |

©-
[

« - Iuy|2 - 21 < ux,uy > d22 (z= x+1iy)

u dzz

i
N
©
N}
o
o
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g a holomorphic quadratic differential.

Proof Multiplying (1.3.4) by the conformal factor 02 , we obtain

Zpu
T(u) :=u -+ —u_ u. = 0 .
zZ oz =z
Thus,
G- = 2 u- u_u_ + 2 4. u_u_ + 2 i+ 00 u
z PP, Uz vy Y, Pz Hz By B, TP Bz u, T 0 U, Ys
=02 (@i +ut@) =0
o z z

g.e.d.

We also observe, that if ¢ is holomorphic then T(u) = 0 with the possible

exception of points where [ﬁzl = lu I , 1l.e. where the Jacobian ]uZ|2-luE|2

z
vanishes. This was actually used by Gerstenhaber and Rauch [GR] as a

definition of harmonic maps between surfaces.

We note moreover, that ¢ is just the (2,0) part of the differential

form u*(4p2(u)dudﬁ) , i.e. the pull-back of the image metric under u .

Finally, of course ¢ = 0 if and only if wu 1is conformal or anti-
conformal. Therefore, Lemma 1.3.4, together with the observation that by
Liouville's Theorem ¢ = 0 is the only holomorphic guadratic differential

2 .
on S , shows that any harmonic map from 52 is conformal or anticonformal.

1.4 MATHEMATICAL PROBLEMS ARISING FROM THE CONCEPT OF HARMONIC MAPS

From 1.3, one sees that new mathematical difficulties arise compared to
the case of geodesics. Here, critical points lead to systems of non-linear
partial differential equations, while geodesics lead only to systems of ordinary
differential equations. The natural space to look for critical points of E

[ee]
is the Sobolev space W%(X,Y) N L (X,Y) , since the equations for weak
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solutions of (1.3.1), namely
of (£t a9t i a3 pEF 4
S Y - R
9% 09X I k™ ax

. 1 N ©
make sense only for test functions ¢ € W2(X,I{) nL (X,PN)

From an analytical point of view, it is not surprising that the equations
(1.3.1) turned out to be rather difficult to handle, since the nonlinearity is
quadratic in the gradient of the solution. Such systems may have nonsmooth
weak solutions. This phenomenon can even occur in the present situation.

Namely, mapping the unit ball p" of dimensions n 2 3 onto its boundary

via radial projection, can be interpreted as a weakly harmonic map (i.e. a

solution of (1.4.1)) £ : D" » g™, cf. [Hxw3].
In order to verify this, we first show that TET has finite energy
for n 2 3
n X
For x € D, f(x) = TQT ,and hence for x # 0
) X ea x-xa
(1.4.2) —_———— = =~ (here, e is a unit vector, and
EREI R EI R @
ax ]x|
o
X =X e )
Q
and
2
(1.4.3) la =] - {nb)
l ] |x|“
(1.4.3) clearly implies that TET has finite energy for n = 3 (and also,

that the energy is infinite for n=2 ).

TﬁT is smooth for x # 0 , and we shall verify now, that T?— satisfies

»

equation (1.3.3) for x # 0

£

We note m(f) = If] , and from (1.4.2) thus

e
_é__ﬂ(f)=_0L‘_LfOL

Yo E )
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and moreover

B o
dan 82 £ eaf er féaB . 3ffaf3
. . — e = - - - 5
ey R T  FI L L At
. 2 o o Y _ =1, 4.4) yield
Since |f| = 1 implies £ i 0 (y=1,...n) , (1.4.4) yields
X
2 O oeB
2 3 £) 3£% of 2
(1.4.5) D q(f) (af,df) = Y———}-———~—“— = -f |af|
e%eB U1 5 oY

n . n-1 .
Hence the equation for a harmonic map from D into S is by (1.3.3)

and (1.4.5)
2
(1.4.6) Af + Elag| =0 .

£ now satisfies this equation, since by (1.4.4)
=T

and by (1.4.3)

ld X 12 X (n-1)x .
=R k)?
X n n-1 . .
The following lemma then implies that 4 : D -+ S indeed is a weak

x|

solution of (1.4.1).

LEMMA 1.4.1 If £ : X+ Y <s a map of finite energy which is smooth and
harmonic outside a subset of X of capacity zero, then £ is weakly harmonic

on X .

For simplicity, we shall show this only for dim X > 3 and the case

where £ 1is not smooth only at one isolated point. This suffices for our

application.

We have to show that
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J (Yasnafins¢l-y“BF;kDufJDBfk¢l)VV ax = 0

[ee]
for all ¢ € H; N L (X,¥Y) . Let us choose the local coordinates in such a way

that 0 is the singular point of £ . We define

1 1 m-1 . -m o] < o+l
;Eii (TQT -2 if 2 "< x| =2
. ~m+1
n, =4 0 it 27 < x|
1 if |x| =27

Clearly, nm is Lipschitz continuous.

We write

¢ = (1-n s +n_ o

(o]
Since f is harmonic for x # 0, f € HY and ¢ € H; NL”, it suffices

2
to show
(1.4.7) j YuBDafl(DBn)¢l/7‘dx -+ 0 as m > ® .
However,
B
x3 21m for 2m:||<2m+l
x|
DBY]m-—
0 otherwise .
Hence
Ipan | = =2
Bm |x

and (1.4.7) follows from Holder's inequality, since we assumed n = 3 .

g.e.d.

It might be worth pointing out that the regularity problem for weakly

harmonic maps actually has two inherent nonlinearities, one being the
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nonlinearity of the equations, i.e. arising from the local geometry of the
image, and the other one coming from the fact that in general the target
space itself does not have a linear structure, i.e. arising from the global
topology of the image.

In these notes, we shall first be concerned with the local regularity
problem for solutions of the equations, i.e. the first nonlinearity, in
chapters 3 and 4, and then deal with the global topological difficulties
only in two dimensions, where the regularity theory is easier.

1.5 SOME EXAMPLES OF HARMONIC MAPS

The variational problem for harmonic maps seems to be the most natural
such problem one can pose for mappings between manifolds, and hence it is
not surprising that many other canonical or natural maps turn out to be

harmonic. In the sequel, we shall list some examples:

- isometries of Riemannian manifolds

- harmonic functions on Riemannian manifolds

- geodesics as maps Sl - M

- minimal immersions and parametric minimal surfaces

- Hopf maps 53 *‘SZ ’ S7 - 54 ’ 515 -+ 58

- conformal maps on two-dimensional domains (cf. Lemma 1.3.3) (in
higher dimensions, they are in general not harmonic, however)

- holomorphic maps between K;hler manifolds (Holomorphic maps between
arbitrary complex manifolds are in general not harmonic. This is not surprising,
since the K;hler condition just means that the metric and the complex structure
of the manifold agree. The definition of harmonic maps was given in terms of
the metric structure, and when deriving the Euler-Lagrange equation for
stationary points of the energy integral, we tacitly used the fact that the

manifold is endowed with the Levi~-Civita connection. Otherwise, as is already

the case for geodesics, those two concepts - minimizing the energy or length
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integral on one hand and being éutoparallel on the other hand for geodesics -
would not agree. On the other hand, holomorphic maps are defined in terms of
the complex structure, and as mentioned above, the Kahler condition means
that the complex connection, i.e. the unique torsionfree connection for which
the complex structure is parallel, and the Levi-Civita connection, i.e. the

unique torsionfree connection for which the metric is parallel, do agree.)

- Gauss maps of minimal submanifolds of Buclidean space, or more
generally, of submanifolds with parallel mean curvature vector. This is a
theorem of Ruh and Vilms [RV]. With the help of this theorem, one can prove
Bernstein type theorems for minimal submanifolds of Euclidean space by
proving Liouville type theorems for harmonic maps, since, if the Gauss map
is constant, the submanifold has to be a linear subspace. We shall come back

to this point in chapter 4.

1.6 SOME APPLICATIONS OF HARMONIC MAPS

We want to calculate for a harmonic map £

Ne(£f)

, 1 _aB i3
i.e. A 5 Y (A)gij(f(x))fxafXB .

In order to do this, it will be convenient to introduce normal coordinates
i i.e. =6 A =:(S
at the points x and £(x) , 1i.e YuB(X) aB and gij(f(x)) ij and
all Christoffel symbols vanish at x and £(x) , so that we only have to

take derivatives of the Christoffel symbols into account which will yield

curvature terms eventually.

First of all, we write the equation for harmonic maps in the form

, ) v s
(1.6.1) 0= Yfola B~ e Xrgg £t v ) ka fQB‘
X X x ©ox X
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Differentiating this equation at x w.r.t. x8 , we obtain

y yet

1
.6.2 £ = = -
(1.6.2) 2 oy Yan,ae ao,me’ N

+
o 0_€ on,0e

_ 1 ( + B y 0 kL
2 9%, m T 90i,kn T Kkl im IR

using of course that by our choice of coordinates all first derivatives

of the metric tensors vanish, and the Christoffel symbols are given by,
i _ 1 im

&9 N =39 Ome et Ing, k™ %e,n

Furthermore, in our coordinates

oB -
(1-6-3) Y orge T 7 Yog,o0

and by the chain rule

k .8
(1.6.4) Agij(f(x)) = 955 k0 AN
h:4 X
From (1.6.2) - (1.6.4) we obtain
1 . .
(1.6.5)  AZy*Bg. (geo)et £
2 ij a B
X X
=l fl
x%%0 3O
i i
+ - - £ £
(YuB,OG YOU,&B You,oB Yaa,os) <& XB
i 3 Kk L
+ . + L= g, A S £ £ £ £
(glj,kx gkz,lj glk,jl gjl,lk) xu x& XG XO
i i X i i b4 i j k
= - £ £ £ £
£ o, of 0o " RaB £ o £ 8 Rikjl o o g o'
X X X X X h:4 X p:4 X X

X .
where Ru is the curvature tensor

is the Ricci tensor of X and R¥ .
8 ikjL

of Y .
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In arbitrary coordinates, this formula is of course transformed into

. . k 2 . . m n
£ 3f
Ae(f) = gij<f(x))YO°B(x)yOn(x) fla st 3 E—] [fJB - ri 3f 3f
X

X xO kb Bxa on o BXB an
X i3 oB,,.,0n Y i3 ok 4
+ gij(f(x))RuB(x)fxdfxB Y U(x)Y (x)Rika(f(x))fxanBfXOfXn

and in invariant notation, if ea is an orthonormal frame at x ,

. X
Ae(f) = [Vdf]2 + <dfRic'(e ), dfre > ~< RY(df°ed,df-e ) df-e ,dfce >

8 B

(1.6.5) immediately yields the following

COROLLARY 1.6.1 ([ES]) Suppose £ : X ~ Y <is a harmonic map, X 1is

. X . . ..
compact, Ric® = 0 , and the sectional curvature of Y is nonpositive.

Then £ <s totally geodesic and has constant energy density. If the
Ricel curvature of X 1is positive at one point of X at least, then £ <is

constant.

If the sectional curvature of Y <1s negative, then £ 18 either constant
or maps X onto a closed geodesic of Y .
Proof Since JAe(f)dX = 0 , the integral over the right hand side of (1.6.5)
X
has to vanish. Since the integrand is pointwise non-negative by assumption, it

has to vanish identically. In particular, ]Vdf[ =0, and thus £ 1is

0 , and since harmonic functions on

il

totally geodesic. Furthermore Ae(f)

compact manifolds are constant, e(f) = const.

If at x € X, R§B(X) is positive definite, then

i i _
(x) £ o £ g~ 0

X
RaB
X X

implies that at x and hence everywhere e(f) = 0, and f is constant.
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If Y has negative sectional curvature, then in the same way we see

that

dim(df(TxX)) =1 for any X € X

If the dimension is zero somewhere, then e(f) = 0 at this point and hence
everywhere. Otherwise, f as a totally geodesic map has to map X onto a

closed geodesic.

We now want to apply Cor. 1.6.1 in conjunction with the following
basic existence and uniqueness theorem of Eells-Sampson (existence) and
Hartman (uniqueness) which will be proved in chapter 3 in order to reprove
some well known theorems about nonpositively curved manifolds by using harmonic

maps .

" THEOREM 1.6.1 If X and Y are compact Riemannian manifolds and Y has
nonpositive sectional curvature, then every homotopy class of maps from X
to Y contains a harmonic map. If the curvature of Y 18 negative, then
this harmonic map is unique unless its image is a single point or contained
in a closed geodesic in which case every other homotopic harmonic map can

differ from the given one only by a rotation of this closed geodesic.

We first deduce Preissmann's Theorem:
THEOREM 1.6.2 If Y <s a compact Riemannian manifold of negative sectional

curvature, then every Abelian subgroup of the fundamental group is cyclic.

Proof Suppose a and b are commuting elements of ﬂl(Y) . The homotopy
between ab and ba allows us to construct a map g from the twodimensional
torus T2 into Y . By Thm. 1.6.1 g is homotopic to a harmonic map

£ : T2 -+ Y , and the image of f is contained in a closed geodesic by

Cor. 1.6.1. Hence both a and b are homotopic to some multiple of this

geodesic.
g.e.d.
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Furthermore, we can prove the following consequence of the Hadamard-

Cartan theorem.

THEOREM 1.6.3 If Y s a nonpositively curved compact Riemarnnian mantfold,
then all homotopy groups ﬂm(Y) vanish for m= 2, Z.e. Y 18 a K(m, 1)

manifold.

Proof We have to show that every map g from a sphere s , m= 2, into
Y is homotopic to a constant. By Thm. 1.6.1, g is homotopic to a harmonic
map £ : Sm +Y , and f is constant by Cor. 1.6.1.

g.e.d.

Finally, we deduce

THEOREM 1.6.4 If Y <s a negatively curved Riemannian manifold, then every
isometry of Y homotopic to the identity coincides with the identity, and the

isometry group of Y <is discrete.

Proof  This follows from the uniqueness part of Thm. 1.6.1, since isometries

are harmonic.
g.e.d.

The preceding argument can be generalized to show that the larger the
isometry group of a compact manifold is, the more restrictions exist for
mappings of this manifold into negatively curved ones, since composing a
harmonic map with an isometry again yields a harmonic map. Cf. [SY3] for

more details.

While in the preceding part of this section, we have used harmonic maps
to reprove some elementary theorems merely for the sake of illustration, we
now want to briefly mention some more difficult applications most of which
we shall not prove in these notes.

- One can prove rigidity theorems for certain classes of nonpositively

curved Kahler manifolds, i.e. that the topological type already determines
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the complex structure, by showing that a suitable harmonic map is actually a
holomorphic diffeomorphism. Such results were obtained by Siu [Si], Jost-Yau
[JY], Jost-Mok-Yau.

- One can easily prove many results of Teichmiiller theory using
harmonic maps, for example that Teichmiiller space is contractible or even a
cell (details can be found in [EE], [Tr], and [J8].) Also, one can recover
the Weil-Petersson metric of Teichmiller space from the second variation
formula for harmonic maps.

- One can reduce boundary regularity for the minima of certain
quadratic functionals to the nonexistence of nontrivial solutions for a
certain Dirichlet problem for harmonic maps, cf. [JM] and [SU2].

- As was pointed out by Eells-Wood [EW], harmonic maps can provide
an analytic proof of the Theorem of Kneser, that a.continuous map ¢ between

closed orientable surfaces Zl and 22 has to satisfy the inequality
>
lad) | x(x) = x(z)

between its degree and the Euler characteristics of Zl and 22 , in case
X(Zz) < 0 (cf. chapter 5).
- As we shall show in chapter 4, harmonic maps can be used to prove

Bernstein type theorems.
1.7 COMPOSITION PROPERTIES OF HARMONIC MAPS

In this section, we shall display{an elementary composition property
which shall be useful in the sequel. First of all, if u € CZ(X,Y) is a map
between Riemannian manifolds, and h ¢ CZ(Y,IR) is a function, then the
following Riemannian chain rule is valid.

(1.7.1) ‘ A(hou) = Dzh(ueu,uea) + <(grad h)ou, T(u)> v’
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where eu is an orthonormal frame on X . In particular, if u 1is
harmonic, i.e. T(u) = 0 , this reads as
(1.7.2) A(how) = D°h(u _,u )

ea, eu

or in local coordinates

B

A(hou) = Y& Dzh(u ot

X

3) .
X

Thus

LEMMA 1.7.1 If n <s a (strictly) convex function on ¥ and u 18

harmonic, then hou <s a subharmonic function on X .
We note the following consequence (cf. Goxdon [Gol).

COROLLARY 1.7.1 Suppose x <s a compact manifold, possibly with boundary,
and u : X > Y 18 harmonic. If there exists a strictly convex function on
u(R) , and u(dX) <s constant in case O3X # @ , then u <is a comstant

mapping.

Proof From the maximum principle for subharmonic functions, it follows that
hou is constant, and since h has definite second fundamental form, (1.7.2)

implies that u itself is constant.

In section 2.3, we shall see that the assumptions of Cor. 1.7.1 are in
particular satisfied, if u(X) 1is contained in a ball B(p,M) which is
disjoint to the cut locus of p and satisfies M < 5%4, where Kz is an
upper curvature bound on this ball, because in this case d2(°,p)c is

strictly convex.
Another consequence is

COROLLARY 1.7.2 Suppose X 1is a compact manifold with T (X) =0 and the
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sectional curvature of Y is nonpositive. Then any harmonic map u : X * Y

is constant, provided u(dX) <s constant inm case 0K # O .

Proof By the homotopy lifting theorem, we can lift u to a harmonic map

9 : X > ¥ into the universal covering of Y . The required strictly convex

function is then dz(',p) , where p is any point in ¥ .

If instead of a real-valued function, h is a map from Y into some
other Riemannian manifold, then instead if (1.7.1) we get
(1.7.3) A(hou) = Vdh(u 0L,u u) + (dh)ou ° T(u) .
e’ e

In particular

LEMMA 1.7.2 If h s totally geodesic and wu +is harmonic, then hou is

again harmonic.



CHAPTER 2
GEOMETRIC PRELIMINARIES
Almost linear functions, approximate fundamental solutions,

and representation formulae. Harmonic coordinates.

2.1 OUTLINE OF THE CHAPTER

This chapter begins with a collection of basic estimates for Jacobi
fields and some convexity results. We mostly follow the elegant presentation

in [BK].

We then introduce the notion of almost linear functions on a manifold,
the main technical innovation of [JKl]. Whereas standard coordinate functions,
e.g. Riemannian normal coordinates, have only rather poor regularity
properties (cf. the example in 2.8) due to the fact that they involve not only
the distance function but also angular terms, almost linear functions will be
constructed by only using the distance function, which admits a sufficient
control through Jacobi field estimates. The basic idea is to use the
Euclidean identity 2<x,p-¢> = |x-—q|2 - Ix-p|2 (p = =q) as a definition.
These functions satisfy almost, i.e. up to a small error term, the usual
characterizations of linear functions in Euclidean space, e.g. that the first
derivatives are constant, the second ones vanish, or the Taylor expansion
terminates after the second term. These error terms are inevitable due to the
presence of curvature, conceptually considered as a measure of deviation from
Euclidean space. Such error terms, however, generally are of lower order than
the other terms which appear already in the Euclidean versions of the formulae
and hence can be easily absorbed. In particular, we discuss approximate
fundamental solutions of the Laplace and heat equation on manifolds and dexrive
representation formulae. Almost linear functions permit to gain one order of

differentiation in such formulae by enabling us to also approximate the
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derivatives of fundamental solutions.

Another application of almost linear functions is the construction of
harmonic coordinates on manifolds with the help of a perturbation argument.
They possess even better regularity properties, since, for instance, we can
—— derive Ca-bounds for the corresponding Christoffel symbols in terms of

curvature bounds only, not involving any curvature derivatives. They there-
fore seem to bg optimally adapted to the concept of manifolds of bounded
geometry. In the present notes, they will play an important role in the

derivation of higher order a-priori estimates for harmonic maps.

Starting with section 2.6, all the results of this chapter are either

taken from or inspired by [JK1].
2.2 JACOBI FIELD ESTIMATES

Let c(s,t) = ct(s) be a family of geodesics parametrized by t .

s wusually will be taken as the arc length parameter on each geodesic.

Jt(s) = g% c(s,t) is then a Jacobi field. It satisfies the equation
D D dc dc _
(2.2.1) 35 5o Jt(s) + R[Bs B Jt] 3 = 0

which easily follows from g% é% ¢ = 0 and the definition of the curvature

tensor.,

From {(2.2.1) we see that the tangential component of a Jacobi field J ,

t .
a= = <7, %§>J satisfies

D D _tan
95 98 U =0

and is hence independent of the metric. In particular, Jtan is linear. In

order to incorporate the tangential component in the estimates, we have to

assume that we have curvature bounds
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(2.2.2) A

I
~
IA
=
~
>
A
o
=
v
o

v

i.e. a nonpositive lower and a nonnegative upper bound, or else to assume

Jtan = o.

We need some definitions:

' always denotes a derivative with respect to s , while ° 1is the

differentiation with respect to t .

We put
cos (Vp 8) if p >0
cp(s) = 1 if p=20
cosh (V=D s) if p<o
and
L sint/p s) if p>o0
7
sp(s) = s if p=20
7%; sinh (/=p s) if p<o
i

Both functions solve the Jacobi equation for constant sectional curvature 0 ,

namely
(2.2.3) f" + pf =0

with initial values £(0) =1, £'(0) =0, or €£(0) =0, £'(0) =1,

resp.

¢ will always be a geodesic arc parametrized by s proportionally to

arclength, and usually |c'| = 1 for simplicity.
LEMMA 2.2.1 Assume X < u and |c'| =1, and etther W =0 or J =0.

Let £ = |a(0)] c, + [3]" (0 s, be the solution of f£" + Uf =0

with the same initial conditions as |J| .
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If fu(s) >0 for s € (0,0) , then

(2.2.4) <J,J'> fu 2 <J,I> fﬁ on (0,0)
CICH N EICHY )
(2.2.5) < 5 < o) if 0 < s, £s, <0
1 2

(2.2.6) |30 ] e (s) + |3]" (o) s,(s) < |3(s) | for s € (0,0)
Proof l3]" + ula] = |37 = <R ,9) ¢, >+ u<T,I)

w1313 a2 912 - <a,9% 20 .
Hence

1] - LER Y " - o> .
(|7 £ lalgp |7 £ ]Jlfu 0
Since |J|(0) = fu(O) , |3y = fl'l(O) , (2.2.4) follows. Then

u

since it vanishes at 0 and has nonnegative derivative.

(2.2.5) again follows from the initial conditions, and (2.2.5) implies

(2.2.6) .
LEMMA 2.2.2 Assume K <y , and either p =0 or J° =0, and
JO) =0, el =1, c, 20 on (0,0
Then
(2.2.7) 3(s) = s3'(s)| s |3(e)] -3 A%s%

Proof 1Let P be a parallel vector field along c , and S ¢ (0,0)

I<3(s) - s3'(s), P(s)>'] = |s<R(c',Tc' 2> (s)] -

22 slas) |

In

s (s)

2 u
A s|a(o) | 5,0 by (2.2.5)

N

|| = A

2

3
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2
< A" 5|3 ] , since c, >0 on [0,0]

and (2.2.7) follows by integratioﬁ of this inequality.

g.e.d.
Instead of prescribing J(0) and J'(0) , one can also prescribe J(0)
and J(p) for p < W/Vr.. For example, since we showed in the proof of

Lemma 2.2.1 that |J|" + p]JI 2 0 , we conclude, assuming |c'| = 1 again,
(2.2.8) sin(/ip) |3(s)| < sin(/s) |J(p) | + sin(ulp-s)) [I(0) | .
We shall also need the following estimate of Jidger-Kaul [J&K2].

LEMMA 2.2.3 Suppose K < U, le'] =1, and 0 <p <m/VU incase 1 >0 .

If X 18 a Jacobi field along c with

<X,c'> =0,

then
s' (P)
o |P u 2 2 2
(2.2.9) £x,x"> | 2 5, () (x| + %) |7 - N |x(0) |« |X(p) ]|
Proof ret
1
s(t) := W (lx(O)]su(p—m + lX(p)[su(t)) .
Then s solves
(2.2.10) s" + us =0 , s(0) = |x(@} , sp) = |x(m] ,
and
s >0 on [0,p]
and
1
(2.2.11) s'(0) = (x| - st (p)|x0) D
su(p) M
s (p) = ———1@— (s(0 [x(@ | - [x0) )

s
Iy
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Then the function
g :=s|x|" - s'|x]|

is differentiable where !xl # 0 . (Note that the zeros of X are isolated,

since X solves the Jacobi equation
(2.2.12) X" + R{c',X)c' =0 ,

which is a linear second order equation.) Moreover

g' + us|X|

slx|» - s"|x] = sr£§ﬁ§fzq'
¥

s ——1—3-(|X|2]x'|2 -<x,x%%) - s

|%|

<%,R(c',X)c"™> + ps|X|

v
o
~

since by assumption <X,R(c’,X)c'> < u]Xlz . Thus g is not decreasing on
those intervals where it is differentiable. As was noted above, points T

where g' does not exist, i.e. |X(1)| = 0 are discrete, and moreover
g(T+0) =~ g(t=0) = 2s(7) X' ()| 2 O .
Thus, g 1is not decreasing on [0,p] , and defining
[x]" () = 1im |X]|*'(p-€) , [x]"(0) = 1im |®]|'(e) ,

e¥0 €40

we conclude

0 < g(p) - g(0) = s(p)|x

"(p) = s'(p)|X(p)| ~ s(0)|X]|"(0) + s'(0) [X(0)]

s' (p) 5 2
<X, X">(p) - <X,X">(0) - EETET'(]X(O)] + [x(p) |9
u

+

|x(0)

2
P X(p)|
su(p)

by (2.2.11).
g.e.d.
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We now turn to describe the effect of a lower curvature bound on Jacobi

field estimates.

LEMMA 2.2.4 Assume A < K<U , and either X <0 or gt = . x| = 22
|e'] = 1, and in addition that J(0) and J'(0) ave linearly dependent.
For a parameter T , we define again £ = lJ(O)[cT + |J!'(0)sT . If
f%(h+u) >0 on (0,p) , then

(2.2.13) latsy] <[5 ] e (s) + [3[1(0) s (8) ,
- and in any case, Lf P denotes parallel translation along c
(2.2.14) |J<§) ~ P_(3(0) + s3'(0))| < |3(0)] (cosh(hs) - 1)

+ IJl'(O)[%-sinh(As) - s]

Proof Let T be a parameter, and N = max(U-T, T-A) . Let A be the

vectorfield along ¢ that satisfies

%BP;A-&- TA=0, A0 =J(0) , A'(0) = J'(0)
Let a Dbe the solution of
a" + (1-nya = nlal , a(0) = a'(0) =0
and b the solution of
b" + 1 = nlJ| , b(0) =b'(0) =0
If P is a unit parallel field
[<g = A,B>" + 1<7 - A,B>| = |<g" - 13,P>| < n|g| .

Hence

da:=1{<g - a,p> ~ b}" s, - {<g - a,B> - b} 81 <0
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and

1 ' 1 S
—{<g - a,> - b} (s)=--—2-——f d<o0.
St St (s) ‘0

Thus gL-{<J - A,P> - b} <0, since it vanishes at s =0 . If s_>0 on
T

(0,0) , then this implies

(2.2.15) lg -a] <b on (0,p)

and

b" + Tb < b + n|a| .

In a similar way

L w-a)so,

St
(2.2.186) i.e. b<a
(2.2.15) and (2.2.16) give
(2.2.17) |3 - al(s) < als) for s € (0,0) .
Now
(2.2.18) (<a',a"><a,n> - <a,A'><p,A>) =0
and thus

i
o

<a',Aa'><a,n> - <A,A'><A,A'> =

’

since it vanishes at s = 0 , as A(0) and A'(0) are linearly dependent.

This in turn implies

and hence
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and from (2.2.17)

N

Choosing T = %{u+k) , i.e. T-n = A , then proves (2.2.13).
(2.2.18) also implies that (A/[AI)' =0 , i.e. A/]Al is parallel,
and choosing T = 0 then proves (2.2.14).

2.3 APPLICATIONS TO GEODESIC CONSTRUCTIONS

We let c(s,t) = expp(s-(v+tw)) be a family of geodesics radially

emanating from the point p .
Then
(2.3.1) J(s) = 2 c(s,t) = (d exp ) sw
e ot "= | e=0 Po’ sv
is a Jacobi field with
J(0) =0 , J'(0) = w .

If we put v = w , then J is tangential to <¢(s,0) and hence linear, i.e.

J{s) = sv , which implies
l(a exp ) ov] = |v]

or in other words, that expp : TPM + M is an isometry in the radial

direction.

If w and v are orthogenal, then (2.2.6) and (2.2.13) imply

LEMMA 2.3.7 If wlv, A<K<y, then, if sSyﬂ_- in case W >0,
u
SU(S) SA(S)
(2.3.2) |w! - 2 < |(d expp)sv-w] < le S .
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LEMMA 2.3.2 Let B(m,p) := {x ¢ M : d(m,x) < p} be a ball in some manifold
M which is disjoint to the cut locus of its centre m . We assume for the

sectional curvatures X in B(m,p)

We define r(x) := dlx,m) and £(x) = Sdxm’. Then £ e c’(Blm,p),T)

and

(2.3.3) |grad £(x)| = r(x)
2 2

(2.3.4) Kr(x) ctg(kr(x))s|v|® < D E(v,v)
2

< wr(x) coth(wr(x))-|v|
for x € B(m,p) and v ¢ TxM .
Proof grad f(x) = - exp;l m which implies (2.3.3).

Let q(t) be a curve in M with g(0) = x and (0) = v and

c(s,t) = equ(t)(s ex‘q(t)m) .
Then grad f(g(t)) = - g% c(s,t)lS=O , and hence
2

D grad £(x)

—aps— = c(s,t) .

For fixed t , Jt(s) = é% c(s,t) is the Jacobi field along the geodesic from
m to g(t) with Jt(O) = g(t) and Jt(l) =0 € TmM . Hence

DV grad f£(x) = D grad f(x) = —Jé(O) . Since

J_(0)
o

2 : f
D f(v,v) = iDV grad £, v = - <JO(O), Jo(0)> ,

(2.3.4) follows from (2.2.6) and (2.2.13) (since Jt(l) =0 , Jt(l) and
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Jé(l) are linearly dependent).

g.e.d.
2.4 CONVEXITY OF GEODESIC BALLS
The following convexity result was proved in [J2] and [BK], Prop. 6.4.6.

PROP. 2.4.1 Suppose the ball B(m,p) is disjoint to the cut locus of m ,

and p < g%‘, wheve k2 is an upper bound for the sectional curvature of
B(m,p) . Then any two points in B(m,p) can be joined im B(m,p) by a

unique geodesic arc. This arc is the shortest comnection between its end

points and thus in particular does not contain a pair of conjugate points.

Proof since the cut locus of a point m is closed, we can find some ' ,
p < p'< g&-, for which B(m,p') is still disjoint to the cut locus of m .
For any two points p and g € B{(m,p) , we can find a shortest connection
y{t) in B(m,p') Dby the standard Arzela-Ascoli argument. Let 7Y(0) =p ,
Y(1) = g , and let c(.,t) be the family of geodesics with <(0,t) = m ,
c(l,t) = y(t) . The Jacobi fields Jt(s) = g% c(s,t) are monotonically

increasing in s € [0,1] by (2.2.5). Hence, in case Y leaves B{m,p)

somewhere between p and g , we can project it onto B(m,p) , i.e. take

Y(£) = exp_ exp;n1 Y(t) 'min(l 'd(y(g),m)}}

and obtain a shorter comparison curve in contradiction to the choice of ¥y .
Hence Y is contained in B(m,p) and hence in particular in the interior of

B{m,p') and is therefore geodesic. Furthermore, clearly length(Y) < 20 .

The exponential map has maximal rank along any geodesic in B(m,p) of
length < 2p by Lemma 2.3.1. In particular, they do not contain pairs of
conjugate points and are locally unigue. Hence, the set of pairs

(p,q) € B(m,p) X B{(m,p) with two geodesic connections is compact, since two
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geodesics cannot collapse in the limit into a single one with conjugate
points. Thus, if this set were non empty, we could find such a pair (p,q)
of minimal distance with two minimal geodesic connections Yl and Y2 .

Yl and Y2 then have to form a closed geodesic. Namely, otherwise, if they
would form an angle < 7 at p for example, then moving a little bit along
the geodesic which bisects this angle, we could find a point p which is
closer to g and still has two different connections to g , in contradiction
to the choice of p and g . (For more details on this argument, cf. [GKM]).
On the other hand, by Lemma 2.3.2, dz(o,m) is strictly convex on B(m,b) A
and therefore the existence of a closed geodesic in B(m,p) contradicts Cor.

1.7.1.

If now p,q ¢ B(m,p) would have two geodesic connections, one of which,
called Y , is longer than 2p , then 7Y ceases somewhere between p and g
to be the shortest connection of its endpoints, and hence we could again find
fwo minimal geodesics, in contradiction to what we already proved.

g.e.d.

This result can be somewhat improved in two dimensions. First of all,

we have

LEMMA 2.4.17 Let s be a compact surface, possibly with boundary. If the
boundary Y 18 not empty, 1t 18 assumed to be convex, i.e. that through
every point § of Y there goes a geodesic arc which is disjoint to S 1in
a neighbourhood of 4 . Let p,q € S . Assume that there are two distinct
homotopic geodesic arcs Joining p and d . Then each of the points p
and 9 has a conjugate point in S , and this point is conjugate to p or
q s resp., with respect to a geodesic arc which is the shortest comnection in
its homotopy class.

Proof we denote the two geodesic arcs by Y, and Y, . We can assume
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w.l.0.g. that Yl and YZ are shortest connections in their homotopy class
between p and q , since otherwise, starting e.g. from p and moving on

Yy r we would find a point ql which would either be conjugate to p or
would have a connection in S to p in the same homotopy class and of equal
length as the segment of Yl between p and qy - (At this point, for the
existence of such a connection, we have to use the convexity of 7Y ). Since
Yy and Y, are homotopic and distinct, because we could assume that they
are shortest connections, they bound a set B of the topological type of the

disc.

We now look at a geodesic line emanating from p into B . As Yl
and Yy, are shortest, this line has to cease somewhere in B to be shortest
connection to p . Repeating the argument, if we have not yet found the
desired conjugate point, we get a nested sequence of geodesic two-angles, i.e.
configurations consisting of two homotopic geodesic arcs of equal length
which furthermore are shortest possible in their homotopy class. In the
limit, this construction has to yield a geodesic arc covered twice. The
endpoint q, therefore is homotopic to p , and furthermore, the geodesic
arc is the shortest connection in its homotopy class from p to q, -

g.e.d.

LEMMA 2.4.2 Suppose B(p,R) := {ge I : d(p,q) < R} , where I 1is a surface,
is topologically a disec for some r < —E’(K < ;<2) . Then

expp{v :IVl =r} = 8B(p,xr) for all r < R , where expP : TPZ > % 18 the

I
2K °

exponential map. Furthermore, B(p,r) <is comvex, 1f ¥ <
Proof clearly, dB(p,xr) S expp{v : |v] = r} € B(p,r) . We assume now that

(2.4.1) expé{v: |v| =z} n Blp,x) # ¢ .

exp is a local diffeomorphism on {v: |v| < E} by Lemma 2.3.1, and therefore
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: ; l .
expp{v : |v| r} is an immersed smooth curve for r < rik Since

expp{v : ]v| r} is compact, we can find some g € expp{v: !vl = r} with
minimal distance to p . Consequently, the shortest geodesic Yy from p to
g is orthogonal to expp{v : |vl =r} at g and has length < r . On the
other hand, g = exppw B lw| =r , and the geodesic Y' = expptw '

t e [0,11 , is also orthogonal to expp{v : lvl = r} at g and different
from 7Y , since its length is precisely r . Thus, Y and 7Y' have an
angle of ™ at g and match together to a geodesic loop with corner at p .
It is not difficult to see that every point inside this geodesic loop caﬁ be
joined to p by a shortest geodesic, in spite of the fact that this loop
might not be convex at p . Thus, we can carry over the argument of Lemma
2.4.1 to assert the existence of a point p' inside this loop which is
conjugate to p w.r.t. a shortest geodesic Y" . Since p' € B(p,r) and

i < % , this is in contradiction to Lemma 2.3.1. This proves the first
claim. Furthermore, since expp has maximal rank on {v € TPZ : lv[ <'E} ’
as noted above, we infer that every v ¢ TPE with lv] = r has a neighbour-
hood V which is mapped under expP injectively onto its image {(cf. [Kl],
p.108£.). From this, we easily see that we may apply the estimate of Lemma
2.3.2. Therefore, if r < g% , then h is a convex function on B(p,r) , and
consequently, OB(p,r) = expé{v B ]vl = r} is convex as a level set of a

convex function.

PROP. 2.4.2 Suppose now, that B(p,r) s a geodesic dise on a surface, and
m 2 . . . .

r < ET3 (K < %) . Then each pair of points dyr 9, € B(p,r) can be joined

by a unique geodesic arc in B(p,r) , and this arc is free of conjugate

points.

Proof By virtue of Lemma 2.4.2, we could apply Lemma 2.4.1, if there would
exist two geodesic arcs joining a and q, - Consequently, we would find a

point a5 conjugate to qQy w.r.t. a shortest geodesic arc, i.e. an arc of
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length < 2r <~£ . This would contradict Lemma 2.3.1.

g.e.d.
2.5 THE DISTANCE AS A FUNCTION OF TWC VARIABLES

We suppose again that the ball B(p,M)cN is disjoint to the cut locus

il 2
of p and that M < — , where -0 < K < K2 are curvature bounds. We

2K
define
1 .
*~5-(1 - o8 Kt) if k>0
() =1 °
% 2
- if K =0
and note that
t
g (t) = J s .
K 0 K2

By assumption and 2.4, any two points V1Y, € B{p,M) can be joined by
a unique minimal geodesic in B(p,M) , and we can measure the distance
between vy and Y, by the length of the gecdesic arc between them. We

denote this (possibly modified) distance function again by d(yl,y2) . Then
QK(yl.y2) i= qK(d(yl,yz))

defines a C2 function on B(p,M) X B(p,M) , since qk(O) = 0 . Moreover,

we note that

T (NXN) =T ® T N (isometrically)
Y Yy Y,

for y = (yl,y2) € NXN .

In the following lemma, we shall estimate the Hessian of QK on
B(p,M) X B(p,M) , using the Jacobi field estimate of Lemma 2.2.3. This

result is again due to Jager-Kaul [Jak2].
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LEMMA 2.5.1 IfF Yy # Yy s then for all

v € Ty(NxN) 7 Yy = (Yllyz) I3 Y1.y2 e B(p,M)
5 <grad QK(y),v>2 5 2
(2.5.1) pQ (v,v) 2 25 @) - K QK(y)|v} .

If v has the special form 0@ u or u® 0, then
(2.5.2) DZQK(V,V) z (1 - Kng(y>)lul2 .

and this also holds for Y, =Y, -

Proof rirst some definitions

P t= dly;.y,)

= ® D ]
v vl v2 € Tle TyzN y

c s [0,p] - B(p,M) is the unique geodesic arc from yl to v, with

le'| =1,
el(y) = ~c' (0)

ez(y) = c' ()

tan

4 := <vi,ei(y)> ei(y)
v = v, - v?an {(i=1,2)
i i i

Then, since p > 0 ,
grad d(y) = e, (y) ® e, (¥)
grad Q (v) =s ,(p) (e (y) ® e, (y)) , and

K
2
D QK(y)(V.V) = <Dv grad QK,V>

2 2
(2.5.3) Co= s;z(p)<e1(y) @ ez(y),vl ® v2> + SK2(p)D a{v,v) .

I1f ct(s) is the geodesic arc with
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nor nor

ct(O) = expy (tvl ) . ct(p) = expy (tvb )
1 2
(note that S is unique, if t = 0 1is small enough), then
(2.5.4) J(s) == ¢ (s)
3t Tt |s=0
is a Jacobi field along ¢ with
nor nor

J(0) = vl y J(p) = v2 .

By Synge's formula (cf. [GKM], §4.1),
2 32
(2.5.5) D d(v,v) = ——= length(c, )
52 t’|t=0

]

P

f (]3' 1% - <3,R(c* ;D c'>)ds
0

(note that there is no boundary term, since

<J,c'> =0)

We can apply Lemma 2.2.3 to obtain

o
p%d(v,v) = J (Jar |? + <3,0">)as
0
= <3,3> |8
5'2(0)
s K <ivnorl2 + lvnorl2) _ 2 lvnor N Vnorl
s 2(O) 1 2 s 2(O) 1 2 !
K K
and thus with (2.5.3)
2 . L2 nor|2 nor |2
(2.5.6) DO (v,v) > 8" (P) (<ey @ ey, v, © v, + [V 4 [V)OF|%)

K

- 2l norHvrzlor‘ .

V1
Ifv=0®u, (2.5.6) implies

D0, (v,¥) 2 s, (P) <ey(v) P + 57, (o) |WOF|?

K K2
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. 2
s',(p) |u]
K

(1 - % ) |ul?,

while in the general case, we only have

<el ® e, v, ® v2;>2 < 2(|v§an{2 + lvgan|2) ,
and
2 tan,; 2 nor,2
Ivi] = Ivi t | i I~

and therefore from (2.5.6),

2 2 . nor |2 noxr 2
D QK(V,V) = snz(p) <e1 ] ey vy <] vé> - (1~ us(p))(|vl | o+ |v20 l )

K

[\

¥ 2 - - ' 2 2
HA 47, () <y @ ey vy @ VT - (L SK2<O”<!V1| A

_ 1 2.2 2 2
= 30, ) <grad QK(y),v> K°Q (y)('vl| + !vzl ) .
g.e.d.

2.6 ALMOST LINEAR FUNCTIONS

We are now ready to introduce almost linear functions, one of the main
tools of [JK1].
Let B(m,P) be again a ball in some n~dimensional Riemannian manifold

M which is disjoint to the cut locus of m , and assume curvature bounds
2

-w® <R <K, || < A

and

We put r(x) = d(m,x), f(x) = %dz(m,X) .

DEFINITION 2.6.1 Let u ¢ T M be a unit vector, i.e. |ul = 1, and put

p(x) = expm(r(x)u) , alx) = expm(—r(x)u) . Then
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(x) = (d(x,a(x))? - dx,px)?)

1
4r (x)

is called an almost Llinear function.

We observe that in the Euclidean case, this notion yields precisely the

linear functions, because of Pythagoras' theorem. We furthermore note that
(2.6.1) —-r(x) £ 2(x) £ r(x)
The estimates of [JK1] for almost linear functions are contained in

THEOREM 2.6.1 Suppose B(m,p) <s disjoint to the cut locus of m ,

—wzsxs»<2, lK]SAz on B(m,p) , and p<-21K. Let ue TM, [a] =1,

R(x) the associated almost linear function, and ul(x) the radially

parallel vector field on B(m,p) with u(m) = u . Then

inh (2Ar) 2
(2.6.2) |grad 2(x) - u(x)| < 2cA %ig;aiag—' r” (%)
(2.6.3) Ip%8(x) | < ]9M%wx ctgh(ur)) r(x)

9 sinh (2Ar)
= kN =S

(2.6.4) |L(x) - <grad L(x), —exp;lm>| <13 <in (oK5)

wr ctgh(wr)] r3(x) .

Proof ©wLet vY(t) be a geodesic with 7Y(0) = x . We then loock at the

following families of geodesics, joining Y(t) with p(Yy(t)) or q(Y(t)) ,

resp. ,
o (s,8) = exp_ . (s-exp s . p(Y(t)))
177 Y(t) Y(t)
c.(s,t) = ex (s « ex -1 (y(e)))
2t Py (t) Pye) @
Ji(°,t) = g% ci(-,t) are Jacobi fields with
Ji(O't) = Y(t)
Jl(l,t) = ru(t)
Jz(l,t) = -ru(t)
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where we have abbreviated r(y(t)) = r(t) , u(y(t)) = u(t) , etc. We also

. . 3 . 9
o= =
write again c s c , C Yy ¢ . We note that
2 . 2
d (P(Y(t))r Y(t)) = cl(slt)
2 . 2
d7 (gly(t)), y&)) = cz(S.t) .
Now
2 2
c!® - ¢! 1
_g.. = - 2 1 - _1_ ' [ .2_ [ - ' _P_ 1
at yen T Jo {eyr g ep> - <eqr g o>
céz - c'2 1 1
= e e ¥ — : [] v ] T
(2.6.5) 2 r+ o= fo {<c2, I> - Lely 3> } as
2 2
c!” - ¢! .
P .__2______]:_ LA _r_ ] [] - __l_ [ - v A
R <oy opr 2rud ) T 57 <C T G Mg
In order to control ci - cé - 2ru which vanishes in the Euclidean case,

we need the following result which follows from [BK].

LEMMA 2.6.1 Put e(r) := %—KAr3 sinh (2Ar)

sin (2Kx)
(2.6.6) ey - (exp;lm + ru) | (x) £ €(x)
(2.6.7) log = (o tn = rw | (o) <€)
(2.6.8) l—ci - (exp;lx - ra) | (p(x)) < €(x)
-1 -1
(2.6.9) l—c2 - (exp “x + ru) | (q(x)) £ €(x)

Proof of Lemma 2.6.1 1et v ¢ TxM , c(t) = exp tv , c¢(l) = g , where ¢ is
some point in M . Let w e TXM and w{t) be the parallel vector field
along c(t) .

We first want to estimate d(F(w), G(w)) , where

F(w)

expx(v + w)

G(w) equ(W(l))
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We consider the family of geodesics
c(s,t) = ech(t)(S o (w(t) + (1 - t) c(t)))
and the coxrresponding Jacobi fields
J () = &(s,t) .

The initial conditions are

Jt(o) = &(t)
(2.6.10)
D 9 .
as J (0) = T Bs c(0,t) = -c(t) .
noxrm

We let Jt (s) Dbe the component of Jt(s) which is orthogonal to

c'(s,t) .

Since the curve c¢(l,t) Jjoins F(w) and G(w) and has tangent vector

3.1 = J::lom(l) , because Jzan(l) = 0 (this follows from (2.6.10))
L ghorm
(2.6.11) a(F(w), G(w)) < J o, (D fat .
0
We now want to apply (2.2.14). Since Ic'l is notnecessarily equal to 1, we have to

rescale c(»,t) , i.e. to look at the geodesics 7Y (s,t)= ckpfrT,t) and the Jacobi

Fields S(S,t)= J(Tg%Tyt). This amounts to replacing A by Alc‘l in (2.2.14).

Since by (2.6.10) Jt(O) + Jé(O) =0 , {(2.2.14) yields, putting

sinh x 1 .
—————— — % sinh x ,
b4 3

IN

o= max(lw[, |v + w|) , and using cosh x -

I norm l norm

(2.6.12) | < ] <]e] - % A sinh(Ap) .

Moreover,

norm 9c|2 _ j3¢;2  ,9¢;2 ac Eg 2
A e R - - R R )

it

[v|2 lw+ (1 - 1) v[2 - <v,w + (1 - t) ﬁ>2

= |v]? |w)? - <ve? .
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Therefore, (2.6.11) and (2.6.12) imply

(2.6.13) d(F(w), G(w)) <

|v]s|w] « A sinh(A(|v] + |w]|)* sin X(v,w) .

W=

In (2.6.13), we then put v = exp;lm, w = tru .
Then

F(w) = exp, (exp;lm + ru)

G (w)

expm(iru) p{x) or qg(x) resp.

1 cl "
exp ¢y Or exp C) xesp

Therefore, (2.6.6) and (2.6.7) follow from (2.6.13) and (2.3.2). (2.6.8) and
{(2.6.9) follow in a similar manner.
g.e.d.

We now continue the proof of Thm. 2.6.1:
(2.6.6) and (2.6.7) yield
(2.6.14) }ci - - 2ru| (x) < 26(x) ,

and similarly from (2.6.8) and (2.6.9), if p denotes parallel transport

along radial geodesics

(2.6.15) lpci - pch - 2rul (m) < 2e(r) .

(2.6.15) and Ici'+ cél < 4r  imply

(2.6.16) 1052 - c!

12 + <pcé + pe!, 2ru>| < 8re(x) .

ll
since |#| < |¥] , (2.6.5), (2.6.14), and (2.6.16) then yield
. 3 .
<grad £ - u, > | == e(x)|y]

i.e. (2.6.2).

Differentiating (2.6.5), we get
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2 ” .2
(2.6.17) Jia-l(y(t)) = <ey + cj, e = o} + 2> [53% + "E?ﬂ
dt dr 2
+ —g—-<c' -cl, > - —3~'<c' + !, 21>
02 2 1’ s=0 2 72 1’ s=1
r 4y
-t I - 3, V> - LJD o+ J!, 2rw>
2r T2 1’ 5=0 2 2 1’ s=1
4r
o4 .2 2
5 & (c2 ci ) .
4y

In the course of (2.6.5), we cbtained

_d_ 12_ !2 J—— ] 1 5 — [ I ¥ g
gt (63 mep) = oo<ey bops AW ) - ey o 2, -
Hence
42 i ;2
(2.6.18) Sy ()) = <e! 4+ e, o - !+ 2ruy |—= 4 e
2 2 17 %2 1 2 3
dt 4y 2r
1 (2% .
+________ L I A
2r €3 7 C1r YPemo

+ <ﬁi,Jl>(O)--<3é,J2>(O) - <Ui,Jl>(l) + <Ué,J2>(l)}
Since £ = riP + iz , with (2.3.4)

. .2 o] 2
(—r +A—£§} < ll—— (3 + wr ctgh(wr)) .

k4r2 2r 4r3
(2.6.14) then gives
(2.6.19) <c! + ¢!, ol - o + 2ru> |—% + | < 22E) (3 4 cegnwr)) |¥]3
2 1 2 1 2 3 2
4r 2y r
Furthermore, since
(J(s) = peJ(0) = sJ"'(s}))' = sR(c',J) c' ,

s
|3(s) = p 3(0) - s3'(s)| < A% | |? J olay| .
0

Using
sin(klc'ls) sin(Kle' | (1 - 8))
IJ(S)I = IJ(l)] sin(klc']) * [J(O)l sin(kle' )
<2 max(|3@ ], la@]) -SBE&D

sin {2Kr)
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which follows from (2.2.8), we get

, A2r252 sin(Kr)
(2.6.20) |J(s) = p J(0) - s J'(s)]| < s rex(lg@ ], Ja@]

and similarly

|3(1-5) - p J(1) + (I-s) J'(1-8)|
is estimated by the same quantity.

We are now ready to control the second term of (2.6.18). First

41zl 5

27 . . .
(2.6.21) —£r-<cé - ol P o+ <abu, | < 5

e(xr)

Next

(2.6.22) <p Jl(l) - Jl(O), Jl(0)> - <p Jz(l) - J2(0), J2(0)>
- <Jl(l) - P Jl(O), Jl(l)> + <J2(l) - P J2(0). J2(l)>

-4 <y, > =0,

since Ji(O) =Y , ql(l) = ru , Jz(l) = -¥u .
Since |%| < |¥| ., (2.6.20), (2.6.21), and (2.6.22) then give
(2.6.23) |<Ji(0), Jl(0)> - <J§(O), J2(0)> - <Ji(l), J1(1)>
+ LI, T 1)>+3—ii< el
PAREIEPY r <oy = ey P
< 4€(r) . 2 r2 sin(Kx) |.l2

r 4 sin(2Kr) )

(2.6.18), (2.6.19), and (2.6.23) finally yield

8e (r) 2e(x) 2 sin(Kr) .12
{—;;;— + —-;5—— wr ctgh{wr) + 2A rEIHTEEETJ |71

In

2
—g—z—k(‘{(t))l
dt

IN

l2

[9KA sinh (2Ax)

sin(2kr) OF Ctgh(wr)]-r P

Thus, (2.6.3) is proved.

For any geodesic ¢
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2 (Ale(®)) - t <grad &, E()>) = -t DR(&,E) .

Taking the radial geodesic from m to x , we then see that (2.6.4) follows
from (2.6.3).

g.e.d.

For later purposes, we also need to investigate how almost linear
functions depend on the base point m . To emphasize this dependence, we now
use a subscript m , i.e. write Qm(x) for the corresponding almost linear
function. Let now Y(t) be a geodesic arc, u(t) a parallel unit vector

field along <Yy(t) and QY(t)(x) the corresponding almost linear functions.

LEMMA 2.6.2 For =z e B(Y(t), P) , P < min(i(y(t)), m/2K)

(2.6.24) ‘a% by @] s 5+e 220%y .
Proof 1Let pt) = d(y(t), z)
p(t) = eXPy () (p(t) u(t))
qlt) = expy(t)(—p(t) u(t)) .
Then
(2.6.25) by @ = ZE%ET (@ (z,q(t)) - a2(z,p(t))) .

We lcok at the family of geodesics

c(s,t) = exp (sp(t) u(v)) .

Y(t)

The corresponding Jacobi field Jt(s) = g% c(s,t) then satisfies

I (0) = ¥(t)
-é% Jt(O) = p(t) ult) , since u(t) is parallel along Y
Jt(l) = p(t) .
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R D . . .
In particular, gg-Jt(O) is tangential to the geodesic c¢{(-,t) . Thus,

1]
J:orm(o) and J:orm(o) are linearly dependent, and (2.2.13) implies

(2.6.26) |pl < |p] + coshthp) |¥] .

and the same inequality holds for |§| .

(2.6.24) then follows from (2.6.26), |p| < |¥] , and d(z,a(t)) ,
d{z,p(t)) < 2p(t) .
q.e.da‘
Actually, one can even show the stronger estimate
d A2 2

(2.6.27) EE-QY(t)(z) -<u(t)y, | < ¢ o .

The proof is rather tedious, however, and hence left out, since we do not

need (2.6.27) in the sequel.

2.7 APPROXIMATE FUNDAMENTAL SOLUTIONS AND REPRESENTATION FORMULAE

We first apply Lemma 2.3.2 to construct approximate fundamental

solutions of the Laplace and the heat equation on manifolds.

LEMMA 2.7.1 Tet B(m,p) be as in Lemma 2.3.2. N° := max(k®, w?) , and let

A be the Laplace-Beltrami operator on M , and n = dim M , h(x) := d(x,m)2 .
(2.7.1) [A log r(x)]| < 212 for x¥m ifn=2
{(2.7.2) |A r(x)znnl < E%E 22 rz—n(x) for x#m 2fn=3
and ’
9}l ,-n/2 _hix) 2 hi{x) ,~-n/2 _hx)
(2.7.3) HA— %}h em{ jﬁ%]lszA ﬁﬁ_t a@[ TE%

for (x,t) ¥ (m,0) .

The proof follows through a straightforward computation from Lemma 2.3.2.

q.e.d.
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We now derive approximate versions of Green's representation formula,

first in the elliptic case.

LEMMA 2.7.2 ILet B(m,p) be as above, h(x) = d(x,m)2 . Let wn denote the

volume of the unit sphere in ®. If ¢ e C2(B(m,p), mR) , then

(2.7.4) Zf n=2 Iwz ¢ (m) + J Ad * log E%?l
B(m,P)
- %J ol < 20 J o]
9B (m,p) B(m,P)
(2.7.5) Zf n 23 l(n~2)wn ¢ (m) + J Ad [——in—_?~ nl—z}
B (m, P) ¥ (x) o
_ (n-2) J o] < B2 )2 J lol
o™t I 3B (m, 0) 2 B(m,0) r(x)" 2

We note that the error term is of lower order than the other two terms

which are the same as in the Euclidean version of the Green representation

formula.

Proof we shall prove only (2.7.5) for simplicity. We put

g(x) = r(x?™® - 2,

Then for € > 0

J (ghd - PAg) = J <g grad ¢ - ¢ grad g, da> .
B(m, ) \B(m,€) 9(B(m,P)\B(m,E))
Now
lf dAg| < ‘—‘;—21\2 J —nl—i)—L— by (2.7.2)
B(m, ) \B(m,€) B(m,pP) r (x)

gloB(m,p) = 0

n-2

f ¢ <grad g, 40> = == f b
9B (m, p) p 9B (m, P)

lim

f g <grad ¢, d0> = 0
€+0 ‘0B (m,€)
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lim

I 6 <grad g, do> = (n-2)w_ ¢ (m)
>0 B(m,€)

and (2.7.5) follows.
g.e.d.

In the parabolic case, the corresponding version is
LEMMA 2.7.3 Let B(m,p) be as above,

Blm,p,ty,t) == {(x,7) € B(m,p) X [to.tl},

3=, € B0, B, $lx,0) € C(It,t], T

Then

(2.7.6) | ¢/FD® ¢m,t) + J [A - 'a?t"] o (x,T) (£-1) /2
B(mlpltolt)

2 2
S C.3 1 il R
[exp[ 4(t—T)] exp[4(t_T)]] dx dT

Cn J ] Cn J
< o] + lo(x,1) |
™2 I, 0t 1) o Jrxy=p
t £T<t
-n/2 0
+ (t—to) J l¢(x,t0)l dx
B(m, D)
2 2
2 ro(x) -n/2 r (%)
+ 2A [ o(x,T) | T (E=T) exp{* - )-
B(m,p,to,t) ‘ l (t=T) 4 (t~-T)

Here, c, 18 a constant depending only on n .

Proof we put

2

2
g(x,0) = O-n/z[exp[-éféfl} - exp[— %54] .

Let € > 0 . Then

f {g(xlt_T) [A = 8—?[] ¢(X1T) - C‘)(X,T) [A + -é%} g(X,t-T)} dx dt
B(m:pltort_s) :

J Lg(x,t-T) grad ¢(x,T) - ¢(x,T) grad g(x,t-1), d3> at
r(x)=p '

<T<t~
tO_T_t €
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+I M&m¢m¢%)w~f Bty (emt ) 2
T=t=

T=
tO

r(x)<p

rZ(X) p2
[exp{' 4(t—-to)] - exP[' 4(t-t0)” dx .

r{x)<p

Now

o (x,T) (A + -é%] g(x,t-T) dx 4T
B(m,p,to,t~€) .

2 2
2 r(x) -n/2 r (%)
< 20 f |6 (x,T) | (£=T) exp{— ] dx dr
B(m, 0ty t) (=) 4=
by (2.7.3)

g{x,t-T) = 0 if ri{x) =p

2
. /2 r (%) 2r (x) e
[ ~ & (x,T) (t~T) exp[ ZTE:?T} ZYE:¥7-<grad r(x), do>
r(x)=p
tOSTSt
o[ el
< d(x,T)
o ey =p
tOSTSt
since
(2.7.7) exp (~-y) < Sy yfa fory >0, o2
] -n/2
Pz, T) == [(t-T) exp[ - }} dx dt
JB(m,p,to,t) ot : T
2
= -y /2 -1 e .n._ 0
B(m,p,t t)¢(X'T)[(t R EXP[ 4(’5””]}[ 2+4(t—T)] e dr
1 v OI

C
3
o2 B(m, 0,y t)

' 2 2
-n/2 r (x) | _ - P
d(x,tg) (E=t ) [exp[- 4(t_to)] exp{ 4(t—t0))] dx

IA

[$(x,T)] ax art by (2.7.7) again

Jfr(x)sp

-n/2
< (t-t.) J lo(x,t )| ax
0 0
T=t

0
r(x)<p

2 2
[t ol 200 ol ) o
r(x)<p

> /am” ¢m,t) as €+ 0
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and (2.7.6) follows.

g.e.d.

For a later purpose, we also note the following formula

(2.7.8) /AM™ ¢(m,t) + —31 o (x,T) (t-1) /2
3'1')

o -
B(mrprtolt)

v’ (x) 02
[exp[- m] - exp [— m]) dx dt

2
-n/2 r(x) -
- O(x,t.) (t=-t ) n exp[— ——»:———] dx
JB(m,p) o 0 T oale-ty)
— ol + =2 o0,
< ¢ + f O (x,T)
o2 B(m,p,t,,t) o™ r =0

STt

+ c J [d(x,t )| ax
" B (m,p) 0

2
+ 242 J | (x,7) | %Eé%% (£-1) /2
B(m,p,t . ,t)
(0]
2
r (x)
exp{— ZTE:;T} dxz dt .

(2.7.8) also follows from the preceding proof by handling the boundary term at

t = tO in a different way.

We now use almost linear functions in order to also obtain an approximate
version of the derivative of Green's function. This is important for

obtaining derivative estimates for functions on manifolds.
LEMMA 2.7.4 Let B(m,p) be as before. For x e B(m,p) , x # m , we define
a(x) = Lx) () " - p ),

where (x) 18 an almost linear function.

Then
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2 " sinh (2Ar)

n+l
on K sin{(2Kr)

IA

{2.7.9) |Aal wr ctgh(wr) r for x #m .

Proof

(2.7.10) grad a = grad 2(r ™ = p ™) = nef ¥ 72 graa £ (£ = ta(s,m?)
and

Aa = ~2nr_n‘2 <grad £, grad £ + A%*’(r“n - p'n)

- n%r—n—z Af + n{n+2) L :r“n”4 Igrad f12
and hence
|Aa] < [Aﬂlrmn + 2n r*n~21£ - <grad £, grad %] + n|2] r"n—z |Af - n]

since grad £ = -exp;l m and ]grad fl =vr , cf, (2.3.3).

(2.7.9) then follows from (2.6.3), (2.6.4), and (2.3.4).

Qqee.d,

We now can prove that the gradient bound that is obtained in the
Euclidean case by differentiating Green's representation formula, again holds

on Riemannian manifolds up to a small error term.

LEMMA 2.7.5 Suppose h « CZ(B(m,p), ®) , where B(m,p) satisfies the same

assumptions as before.

Then
(2.7.11)  w_ |grad him| < —n;j [hie) - hm| +J *ﬁ}_ll'
o 49B(m,p) B(m,p)
v o2 j !h(-;_; him) |
B{m,0) r (=)

Here c 1is a constant which depends only on n and Mp .

Proof Por simplicity, we assume h{m) = O.
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Let £ be an almost linear function with

(2.7.12) <grad 2(m), grad h(m)> = lgrad h (m) |

-n

and let a(x) = 2(x) (r(x)“n - 0P ") . Then for € > 0

J (a*Ah ~ heda) = I <a grad h - h grad a, d8>
B(m,P)\B(m, €) 3(B(m,P)\B(m,€))
Now

f |a'Ah| < f m—l-égj_—i since |9,(x)1 < r(x)

B(m, P) B(m,p) r(x)

J [neda| < c*A? J ———I—llrl;_—l— by (2.7.9)

B(m,p) B(m,p) r(x)

al3B(m,p) =0

|<n grad a, ad>|=-

J n[ ] by (2:7.10) .
3B (m, P) P /9B (m,P)

> >
Furthexrmore by (2.6.4) and since dO0 = % grad f- ldol

>
>
-—]-'x;<£°grad h, 40> - %<grad 2, grad £> '—i- <grad h, grad £> '-l—%%
r r
3. 1 e
< . . .
sc°r o |grad h dO[
and hence, using (2.7.12),
- -
1lim J <a grad h, 40> = [grad h(m)| °j n-1 cosze aw™ 1
€+0 ‘9B (m,€) IS

N Igrad h(m)| .
Finally, since h(x) = <grad h, grad £> + O(x(x)%) , using (2.7.10)

>
lim f <h grad a, d0> = lim J <grad h, grad £>
€*0 ‘9B(m,€) €+0 Y 9B (m,€)

n~-2

- - >
<grad L °r ® - nel ey grad £, dO>

=0 _(1-n) |grad h(m)|, using (2.6.4) as before.
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The preceding estimates easily imply (2.7.11), noting wn = nan .

g.e.d.
2.8 REGULARITY PROPERTIES OF COORDINATES. HARMONIC COORDINATES

In this section, we are concerned with regularity properties of
coordinates on manifolds. Eventually, we shall show that harmonic
coordinates, i.e. ones for which the coordinate functions are harmonic,

possess best possible regularity properties.

We start by noting that Riemannian normal coordinates have rather poor
regularity properties. Namely, in [JK1] there was displayed the following
example of a two-dimensional metric with HOlder continuous curvature which

itself is only HOSlder continuous in normal coordinates, but not better:

d52 = dr2 + Gz(r,¢) d¢2

with
) 21+ 2 sin®)?  for 0sbsT  (0<a<1)
G (r,9) = 5
x for W< < 2T .
For this metric
. O
Grr __.L.SZHI_SE.&_; for OSd)STl'
K=——G—= 1+ sin ¢
0 for m< ¢ < 2m.

The reason for this phenomenon is that the formula for K in normal

coordinates does not involve any derivatives of G with respect to ¢ .

Our aim is to construct coordinates for which we can control - in
contrast to normal coordinates - the Christoffel symbols in terms of

curvature bounds.

Let us first derive some general identities for any coordinate map

H = (hl,...,hn) : (B,<e,e>) > Bf], where B 1is the coordinate domain and
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<¢,*> the Riemannian metric. If Vv ¢ TPB , then its coordinates are

vl = dhl(p)v . Thus <v,w> = gij v:L wJ ;, and choosing v = w = ek ;, where
(ek) is an orthonormal basis of TPB , we get
(2.8.1) ng = <grad h7, grad n> = an? grad hk .
Moreover
(2.8.2) D2 H = <D grad H,w> = v(dH°w) - dH°D w
V,W v v

v(dHew) - dH de - dHfF(v,w)

- dH° I (v,w)

1]

since dH = id is linear.
Hence we see that the Christoffel symbols [ are given by the second
derivatives of the coordinate functions. Thus, we have to contxol those

second derivatives for suitable coordinates.

We first construct coordinates by almost linear functions. Let
u={u sese s } be an orthonormal basis of T M , and % ,...,% the
1 n m 1 n

corresponding almost linear functions.
We define L : B(m,p) > TmM = EP via

(2.8.3) Lix) = li(x)'ui(x) .

Then, if P denotes parallel transport along radial geodesics, from Thm.

2.6.1
— sinh (2Ar) 2
(2.8.4) lan - p(w)| < 2/n xA ey L
2 — inh (2
(2.8.5) Ip“L(x)| < 9v/a kA %f;(—(z—l&‘i))— wr ctgh (wr) *x (%)

Note that the injectivity radius of p also enters, namely by restricting the
size of the domain of definition of & . (2.8.4) implies that L is

invertible on some ball B(m,8) , where & depends on A , n, and the
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injectivity radius. Hence L defines coordinates on this ball, and the .

corresponding Christoffel symbols are bounded because of (258.2) and (2.8.5).

If we average this construction over all orthonormal bases U of TmM .
then the coordinates become canonical, since independent of a particular

choice of U , while keeping the estimates (2.8.4) and (2.8.5).
We call these coordinates almost linear coordinates.

Let now L : B(p,R) ~ TPM = ®" be almost linear coordinates. We then
take the harmonic map
H : B(p,R) ~ R

with
H|9B(p,R) = L|3B(p,R) .

We want to show that for some suitably chosen R , H is injective, i.e. a

coordinate map.

THEOREM 2.8.1 For each p e M there emists some R > 0 , depending only on
A% = max(|K|) ( K is the sectional curvature of M ), i(p) (the
injectivity radius of pl, and n = dim M , with the property that on
B(p,R) there exist harmonic coordinates.

Proof ILet & be almost linear on some ball B(p,R) . We solve

Ah =0 in B(p,R)

h|8B(p,R) = &|3B(p,R) .

Assuming R < g% and putting k = h-2 , (2.6.3) implies

sinh(Ad(x,p))

(2.8.6)  |Ak| = 9nA% « Ad(x,p) ctgh(Ad(x,p)) * k.

e d(x,p) .

On the other hand, for

90 = ch’ (@ (xp) - B))
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by Lemma 2.3.2

M) = el (38° (x,p) (a-1) A ctg(Ad(x,p)) + 64) .

For given R < R < é% , we can calculate ¢

9 = cO(A-RO,n) for which k % ¢

0
is sub- or superharmonic, resp. Since kit ¢|3B(p,R) = 0 , the maximum

principle implies

(2.8.7) ko] < o] s o p? &

and for %, € 9B (p,R) , %, € B(p,R)

. |k(x,) = k(x,) | o |otx) |

(2.8.8) L - 29 — < 3cOA2 &
[%y = %] |%1 = 5]

or

(2.8.9) lk(x) | < 3¢ 4% B® d(x,,3B(p,R))

B ® 2 - O 2' 7 .

Let x ¢ B(p,R) , p := d(x,0B(p,R)) .. Lemma 2.7.5, applied to B(x,p) yields

lk(y) - k(x| ay + J el
B(x,p) d(x,vy)

+ cl(Ap,n) J ky) = k(x) dy

B(x,p) d(x,y)n-l

w |grad k(=) | < 2 J
n o™ JoB(x, p)

and hence with (2.8.6) and (2.8.9)

2R2.

|grad k(=) | < 02A

Here c, = CZ(ARO,n) remains bounded for fixed n and RO + 0 .

(2.6.2) then implies

(2.8.10) lgrad n(x) - u(x)| < c3A2 R,

ey = c3(A'RO,n) .

Let {ei} be an orthonormal basis of TPM . ot corresponding almost

linear functions and h' harmonic functions with hllaB(p,R) = 21|BB(9,R) .
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Putting H(x) = hl(x)ei , (2.8.10) implies
. — a2 2
{(2.8.11) ldH - 1dl < 03 Vn A° R on B{p,R) .
We then average again over orthonormal bases of TpM .

As for almost linear coordinates, we see that harmonic coordinates exist
on fixed balls, the radius of which depends only on i(p) (since R < i(p) is
necessary for the above constructions), A2 ;, and n .

g.e.d.

If (gik) is the metric tensor for the harmonic coordinates constructed

above, then from (2.8.1) and (2.8.10)

(2.8.12) lglk - lel [<grad ht - ut, grad > - <a', grad hk - uk>|

A

2 2 2 2 2 2
(2+c31\. R)c3A R —c4A R .

(2.8.12) implies

<
ngik“w - c4nA2 R2
and hence
9 2 C4A2R2
(2.8.13) Iy ~ Gikl < c4A R "gikum < .

1 - c4nA2 R2
We now want to estimate the Christoffel symbols for harmonic coordinates.

LEMMA 2.8.1 Iet H = (h',...,n™ be harmonic coordinates. Then, if (e,)

is an orthonormal frame, satisfying V i(ej) =0 at x

e
(2.8.14) AgtF = A<grad nt, graa n'>
=2r_ nt v owa2nt 65,
mn T m n 32754
[ [=] e e e’ e

where Rmn is the Ricci tensor.

The proof uses the calculations presented in 1.6.
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LEMMA 2.8.2 There exists some Ry > 0 , depending only on n , 22 s ilp) s

with the property that for all R < R, on B(p,R) there exist harmonic

0
coordinates the metric tensor g of which satisfies

2 2
CSA R

(2.8.15) lae@) | < s mem

for x € B{p,R) ,

where cg = cS(n,ARO) .

Proof since

(2.8.16) e, <grad h', grad B> = n'. . b,
Sz’ ejegl eJ eJ J Q’
e e

in normal coordinates, (2.8.10) and (2.8.14) imply

(2.8.17) |Ag] < 2lricl (1 + c3A3R2)2 + %—(1 + c3A2R2) lag|? .
We now use a method of Heinz [Hzl] to cobtain (2.8.15).
Let W= max  d(x,0B(p,R)) |dg(x)] .

xeB(p,RO)

Then there is some % € B(p,RO) with

(2.8.18) B o= d(x,,0B(p,R))) iag(xl)l ,
and

u
(2.8.19) lag@) | = = .

0

Let 4 := d(xl,BB(p,ROH ; l.e. §'= |dg(xl)| .

By Lemma 2.7.5, applied to B(xl,de) , 0<0<1

C
(2.8.20) &« —= J lgta - gtz | + o J lageal il
ae d(x,x,)=d46 B{x.,d0) d(x,x.)
1 1 1
2 lgG) = glx)) |
+ c7A ——
B(xl,de) d(x,x,)

it

: I + II + III .
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By (2.8.12)
c8A2R2
b=—a
by (2.8.17)
2 p
IT < c_ a8 (IRicll + |ag|®) < c_lricl a8 + 2¢c_ 46 =~ ,
9 ) 97 g2

if we choose © < % , since then for x e B(xl,de) d(x,BB(p,RO)) > d(1-0) =
and by (2.8.12) again
4 2
<
III < clOA R® a6 .
Hence

1 2.2 . 2,2 4.2 2.2 2
< =
(2.8.21) u < 5 (c8A R® + 09||R1c" a®e” + clOA R® 4°0%) + 2c99u

2
1 22 u
=: 53 al“R® + b T -

a and b depend only on n and ARO (for R < RO ) .

We now choose RO so small that

(2.8.22) abAzRé <1.

Then (2.8.21) implies that for each 0 < % either

1-7/1 - abA2R2

W<

bb
oxr
L 1+V1 - ab’R? ., 1+Y1 - ab/g?
> 2 2
b b
=: Yy -

On the other hand, for each ul > U there is some 0. < 3 with

0 1
1—|/1—ab/\2R2<Ll <l+/l-abA2R2
bel 1 bel .

Hence the second possibility cannot hold for any 8 < % , and the first one

therefore is valid for each 6 < % , in particular for 6 = % , and

[SYTeY
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U< 2aA2R2 .
(2.8.15) then follows from the definition of u .

g.e.d.

Lemmata 2.8.1 and 2.8.2 now imply in conjunction with linear elliptic
theory, that dgij is Holder continuous on balls B(p,R) , R < RO with any
exponent O € (0,1) . We only have to observe that the Laplace-Beltrami
operator, written in harmonic (or almost linear) coordinates, now is a
divergence type elliptic operator with Cl-coefficients while the right-hand
side of (2.8.14) is bounded since the Christoffel symbols can be expressed in
terms of dgik . The corresponding estimates for the Green's functions of A
can be found in [GW]. The important point is that even the Holder norm of
dgik for harmonic coordinates depends only on the dimension, the injectivity

radius, and curvature bounds, but does not involve any curvature

derivatives.

. . 2 .
We want to present a simple proof of this result for o = 3 using

almost linear functions.

Let us first define the notion of Holder continuity in a way which is
invariant under renormalizations. A map £ : B{p,R) » Y is called Holder

continuous with exponent o , if for all x,v ¢ B{(p,R)
- o
A(£(x), £(y) < const. - a(x,m? .

Similarly, the k-th derivative of £ is Holder continuous, if

1~ (k+0ai)

IDk £f(x) - Dk f(y)i < const. R d(x,y)m .

THEOREM 2.8.2 Let p e X. There exists Ry >0, depending solely on the
ingectivity fadius of p ,. the dimension n of the considered mariifold % and

bounds for the sectional curvature on B(p,RO) with the property that for
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R < RO there exist harmonic coordinates on B(p,R) the metric tensor

g = (gij) of which satisfies on each ball B{p,(1-8)R)
c(AR_,n)
0 2.2
(2.8.23) |ag| < ———— NR" .
C2/3 62

In particular, the Holder norms of the corresponding Christoffel symbols are

bounded in terms of ARO and n .

Proof Let x be a basepoint, U = (ul,...,un) be an orthonormal base of
TXX , and denote by Lx(z) = (Qi(z),...,li(z)) the corresponding vector

valued almost linear function. Finally, put
b_(z) = L_(z) =d(x z)mn
x X ! :

We now want to estimate Igrad v(x) - grad v(y)l for vwv(z) = glj(z) . The

claim then follows from (2.8.12) and Lemma 2.8.2.

Let x,¥Y € B(p,R) , m be the average of x,y , i.e. that point on the

geodesic arc joining x and y with equal distance to both of them, and

/3 2/3

p = C'd(x,y)l °R , where C will be chosen later.

As in the proof of Lemma 2.7.5, we obtain

(2.8.24) wn[grad v(x) - grad v(y)| < 1lim [J {(v(z) - v(x) Mb_(2)
€+0 ‘B(m,p)\B(m,E)

- (v(z) - v(¥)) Aby(z>} az| + IJ (b, (2) = b (2)) Av(z) dz|

B(m,p)
+ If (b_(z) - b_(z)) <grad v(z), ao>|
9B(m,p) * Y
+ [J {(v(z) - v(x)) <grad b_(z), a> - (viz) - viy))
aB(mrp)

N
» <grad by(z), ac>}|
=: I + II + III + IV .

First of all, by Lemmata 2.7.4 and 2.8.2



(2.8.25) Ic<

(Note that we do not exploit the difference Abx - Aby in I, since we
control only the absolute value of Ab , as we do not want to admit

dependence of the estimates on curvature derivatives.)

Choosing w.l.0.g. x and y close together and C suitably, we can

assume

1/3 R2/3 < S8R .

(2.8.26) 5d(x,y) < p = C°d(x,y)
We then split II into

(2.8.27)

| -]
B(m, 0) JB(m,5<il<x,y)> B(m,0)\B(m,5d (x,7))

-+
IIa IIb

(2.8.15), (2,8.17) and the definition of b give

AR
SR

. 5 2.2y2
(2.8.28) IIa < CllA d(x,y)(l + } .

For IIb, we write
2 (z) - & (2)
(2.8.29) b _(2) - b_(z) = =T s L (z)[ e n}
Y d(x,z) d(x,z) d(y,z)

and use Lemma 2.6.2 and (2.8.15), (2.8.17) to get

c 2 2
o 12 AR -0

o 1
< d(x,y) P
b 1-0 (§R)2

(2.8.30) IT
taking d(x,z), d(y,z) 2 d(x,y) on B(m,p)\B(m,5d(x,y)) into account.

Similarly, we get

013A2R2 -1
(2.8.31) IIT < g d(x,y)°p .
R
Finally, we write the integrand of IV as

(v(z) = v(x)) (grad bxz - grad byz) - (v(x) = v(y)) grad by(z) .
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If we use the splitting of (2.8.29), then the only nontrivial expression to
estimate is

|grad L. (2) - grad zy(z)] .

For this purpose, let Y(t) be the geodesic arc from x to y and let Pt

be the parallel transport along geodesics emanating from <Y(t) . Then from

(2.6.2)
2
lat o) (@ - Bou® @] < ey a2 .
Moreover
IPt-u(t) (z) = P_cu() (z)] < ¢y Aly(t),z)-dly(t),v(D) .
Thus
2
]grad Qx(z) - grad Qy(z)] < 6 o} for =z € oB(m,p) .
Altogether, we get
017A?R2 22 -1
(2.8.32) Iv < ——~gﬁ~—'(A o+ d(x,y)°0 ) .
Putting everything together, and using p = Cd(x,y)l/3 R2/3
2 2
c, AR
I+ II + III + IV < —1—5-3—5—-— (/\2ch2 + %] g /3 d(x,y)z/3 .
§

This is just the right power of R , since grad v contains the second
derivatives of the coordinate functions hi . This finishes the proof.
qg.e.d.
Moreover, we note that once having proved Thm. 2.8.2 or Lemma 2.8.2,

(2.8.14) in conjunction with linear elliptic theory implies

THEOREM 2.8.2 Let R < R, , where R

5 18 chosen as in Thm. 2.8.2, and let

g = (gij) be the metric temsor of the corresponding harmonic coordinates on

B(p,R) . If the Riemann curvature tensor on B(p,R) is of class & on

k+ k+1+
c+R (k e N, Be (0,1) , then g e C L+

+2+
J+2+B

(for every o e (0,1)) or

g e€ . resp., in the interior of B(p,R) . The corresponding estimates



68

depend in addition to the quantities mentioned in Thm. 2.8.2 on the & or

k-t
C B-norm, resp., of the curvature tensor.

That harmonic coordinates possess best possible regularity properties
was first pointed out by de Turck-Kazdan [dTK]. The explicit construction
implying the existence of harmonic coordinates on fixed (curvature controlled)

balls and the explicit estimates of this section are due to Jost-Karcher [JK1].

Finally, for later purposes, we need still another construction of
coordinates. We want to introduce coordinates with curvature controlled

Christoffel symbols in a neighbourhood of a point ¢ ¢ B(p,M) , without using

any information of the geometry outside B(p,M) . We suppose again that
M < g% , M < i(p) . In case dip,q) < #M , we taken an arbitrary orthonormal

base erreeeey of TqY (B(p,M)CY, dim ¥ = n) . If d(p,q) > M , we choose
S RARERLN in such a way that I e, is tangent to the geodesic from g to

p . We now want to show that the geodesics expp(t'ei) stay inside B(p,M)
for t < to , where to > 0 can be estimated from below in terms of w , M,
and n . Indeed, by the Rauch-Toponogow Comparison Theorem (cf. [GKM],

p.lo4f),
W~ ~
s < ~tee.
d(p, equt ei) < d (p, equt el) y

where the right hand side is the distance in the comparison triangle in the
plane of constant curvature -wz , with dw(ﬁ,ﬁ) = d{p,q) ., éi having the

same angle with the geodesic form ¢ to P as e, has with the geodesic

from ¢ to p . Consequently

cosh (wd (p, exgqtei)) < cosh wt ° cosh(wd(p,q)) - %~sinh wt ° sinh(wd(p,q))

in

cosh wt ° sinh WM - %~sinh wt ° sinh WM ,

if t £ iM

IA

cosh WM ,

if t <t , say.
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Then, for t < tO = min(E,%M) B d(p,equtei) < M , and consequently the

geodesics exp stay inside B(p,M) for t < t_ .

q-e 0
LEMMA 2.8.4 In a neighbourhood B(q,T) N B(p,M) of q € B(p,M) , we can
define local coordinates for which the Christoffel symbols are bounded in

absolute value and T > 0 <s bounded from below, both in terms of W , K ,_

n, M only, via

1 2 2
ki(s) 1= EES (a (s, equ tO ei) a“(s,q)) -

Proof By Lemma 2.3.2

2 wM WM

e ——

(2.8.33) |p ki(s)| < T coth =
if d(s,q) £ iM , and
(2.8.34) dqu is an isometry ,

n
where k = (kl""’kn) : B(p,M) > R .

This easily implies a lower bound T for the radius of the set on which k
is injective. Furthermore, the Christoffel symbols are given by D2k (cf.
(2.8.2)), and hence the bound on the Christoffel symbols follows from
(2.8.33).

g.e.d.



CHAPTER 3
THE HEAT FLOW METHOD
Existence, regularity, and uniqueness results

for a nonpositively curved image

3.1 APPROACHES TO THE EXISTENCE AND REGULARITY QUESTION

There are four different approaches to the existence and regularity
theory of harmonic maps available. The first one is the so-called heat flow
method. In order to find a harmonic map homotopic to a given map g :X > Y ,

one investigates the parabolic system

if—(g%__'}—)—=’r(f(x,t)) for x e X and £ 320
(3.1.1)
f(x,0) = g(x) for x € X

and one tries to prove that a solution of (3.1.1) exists for all t z 0 and
that £(°,t) converges to a harmonic map £ as .t > © . That means one tries
to deform g into a homotopic harmonic map by an analogue of heat dispersion
on manifolds. One should compare this method with the gradient flow descent
method common in Morse theory. Whereas this method in our case would lead to
an ordinary differential equation for a mapping from X into the Sobolev
space W;(X,Y) ;, i.e. an infinite dimensional target space, and follow the
gradient lines of the energy functional, the heat flow method instead leads to
a partial differential equation for a mapping from X into the finite

dimensional manifold Y .

The second approach tries to establish regularity (and a-priori

estimates) for weak solutions £ of the elliptic system

i . joak
gf__gg_s_ - v I‘;k(f(x)) —zif—uZ—f—g o1} ax
®

(3.1.2) J B g, (£060)
X J o%~ Ox 9%

1 (e}
for all ¢ € w2 nL .
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In case this approach works, it implies in particular the regularity of an
energy minimizing map and hence establishes the existence by a variational
method. Alternatively, it can be used in conjunction with Leray-Schauder

degree theory to assert the existence of a solution.

The third approach uses perturbed energy functionals which satisfy the
compactness condition (C) of Palais-Smale. It can reprove the results

obtained by the first approach, requiring much deeper estimates, however.

The fourth approach is the so-called method of partial regularity. It
tries to characterize the possible singularities of energy minimizing maps
and then to show that under appropriate conditions those singularities cannot
exist and that an energy minimizing map is hence regular. In contrast to the
other approaches, here the techniques so far are restricted to energy
minimizing maps. Nevertheless, a posteriori this method comprises the
results obtained by the other ones, since in all cases, where those methods
work, one can prove a uniqueness result with the implication that in those

cases any harmonic map is energy minimizing.

The first method was initiated by Eells~Sampson [ES], the second ocne by
Hildebrandt-Kaul-Widman [HKW3], the third one by Uhlenbeck [U] and the fourth

one by Schoen-Uhlenbeck [SUl] and Giaquinta-Giusti [GGl], [GG2].

In the present notes, we shall only develop the first two methods. We
believe that our presentations have some advantages compared to the ones
existing in the literature, as either the estimates are more precise, the
proofs are shorter, or the arguments are more elementary. In particular, all

proofs are self-contained.

We start with the heat-flow method in the present chapter, and shall

develop the second one in chapter 4.
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During all of chapter 3, the manifold X will be assumed to be compact.
The results of this chapter are due to Eells—Sampson [ES] and Hartman
[Ht]l. We shall also use some ideas as presented by von Wahl [vW] and Jost

[J4). Similar arguments were also known to R. Schoen.

3.2 SHORT TIME EXISTENCE

The parameter t will be referred to as time parameter, while x ¢ X is
the space variable, according to the thermodynamic interpretation of the

present method.

We shall start by proving the existence of a solution of (3.1.1) for

small time.

LEMMA 3.2.1 Suppose g ¢ C2+a(X,Y) . Then there is some € > 0 depending
only on the geometry of X and Y and on g with the property that (3.1.1)

has a solution f(x,t) for 0= t< e .

Proof The linearization of the operator {g%-- T] at f 1is computed in

local coordinates as

. i i . 3 k
3 2 93 of
Li®) = Hr - = =5 ["'V v Ms} - g o
VY ox ox 3% 0x~ 9x
ag i (307 ag%  agd a¢¥
R i) B
9% ox 9%~ 9x
By the theory of linear parabolic equations, the system
Lf(CP) = h{x,t)
P ({x,0) = g(x)
. o, 2+a
for given h of class C in x and t and g of class C in x , has

. . + . +o
a unique solution ¢(x,t) of class C2 o in % and C in t .
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. S . 1) . .
Moreover, the corresponding a-priori estimates ) imply that Lf is a
continuous bijective linear operator between the corresponding mapping spaces.

The implicit function theorem then implies Lemma 3.2.1.

g.e.d.

COROLLARY 3.2.1 The set of T e (0,9 for which the solution of (3.1.1)

exists for t e [0,T] <s open.

This follows by taking £(¢,T) as initial values in Lemma 3.2.1.

g.e.d,

Note that in contrast to the results in the following sections, for the
small time existence of the solution of (3.1.1) we do not have to require any

curvature assumptions for Y .

3.3 ESTIMATES FOR THE ENERGY DENSITY OF THE HEAT FLOW

We first show that the energy E(f(s,t)) 1is a decreasing function of

t . For,

J (a -;—C- £,d£)

a ... .4 vk
(3.3.1) S- B(£(+,8)) = 3 % J <af,ae> = f = at ,af)

/3 R A
- j (52 f,’l.‘(f)> = J ]at £

since £ satisfies the equation (3.1.1), i.e. g% £

:

T(f) .

It is also interesting to compute the second time derivative of
E(f(°,t)) , although this formula is not needed in the sequel. As in (1.6.5),

we compute

2 2 5
A | f (& lagee  2E| gpee  BF
= A |3t f’ - ‘ v 5t + \R [df eyr Bt] af ey 3t> R

and hence, since X is compact

1)

Note that since X 1is compact, g¢g(X) is bounded in Y .
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2 2
d f v f 3f

(3.3.2) —5 E(£(-,t)) =J * v J (® [df-e , —~—] dfee , ——> .
dt2 x ot % o’ ot o’ 3t

We note that, in case Y 1is nonpositively curved,
2

a
—5 E(£(-,t)) 2 0 .
at

From now on, we shall assume for the rest of this chapter, that Y has

nonpositive sectional curvature.

As in 1.6, we look at the enexrgy density of £(x,t)

aB Bfi afj
Y (%) gij(f(x,t)) axB .

e(f) =3
Bxa

If f£(x,t) is a solution of (3.1.1), the calculations of 1.6 imply

? 2 x ort ag?
(3.3.3) Ne(f) - 5= e(f) = |VAE]” + "R ,(x) — —% g..
ot aB 3~ BXB H
e n v aet ad agd gt
ikjh ax” Bx5 3x" 3x)

Since X 1is a compact manifold of class C3 , its Ricci tensor is bounded.

Since we assume that Y has nonpositive sectional curvature, (3.3.3) implies
P
(3.3.4) Ae(f) - Fre e(f) 2 -c e(f) .

The constant ¢ may still depend on t , since as t -+ ® , the image of
£(x,t) may become unbounded since we did not assume so far that Y is
compact. This does not matter, however, since we shall see in 3.5 that for
any T <®® and t e [0,T] , £(x,t) remains in a bounded subset of Y ,

possibly depending on T .
We now want to use (3.3.4) to derive estimates for e(f) .

For a given point m € X , we choose a ball B(m,p) satisfying the
assumptions of Lemma 2.3.2. We note that P > 0 can be chosen uniformly for

m € X , since X is compact.
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Plugging (3.3.4) into (2.7.6) and using (2.7.7), we obtain

-1 -
(3.3.5) e(f) (m,t) < o J e(£) (0, T) (t-7) "2 £ () L ax ar
B(m,p,t_,t)
0
“n J n
+ e(f) + J e(f)

P2 B(m, 0ty t) o™ (xy=0
tOSTSt

+ (t-to)"n/z J e(f) (x,t,) dx .

B{m,pP)

Here, cl depends on n and A2 , a bound for the sectional curvature of X

First of all, we observe that if i(X) > 0 is the injectivity radius of

{ m
X, Py= mlntl(x), Eﬁj , we can choose p e [00/2, DO] with
2
(3.3.6) J e(f) < 6‘ e(f) .
r(x)=p B(m,0,t,,t)
t <T<t
We define
-% -n+1
g, (m,p,t) =t *ed(m,p) "
g, (m,p,t) = j 9y (m,x,t=-T) g, (x%,p,T) dx 4t
k t, STt k=1 1
0
d(x,p)<p

and choose P = p(p) in the definition of gk in such a way that (3.3.6) is

satisfied for p instead of m . We observe that

1
z -n+k
g, (m,pyt) < ¢, (t-t )" d(m,p)

and hence is bounded for k > n .

Ik
Thus, if we iterate (3.3.5), using (3.3.5) again for e{(f){(x,T) in the

first integral in (3.3.5), we obtain after a finite number of steps

(3.3.7) e(f) (m,t) < o, o2 { e (£)
B(m,np,t—n(t~to),t)

-n/2
+ c4(t—t0) JX e(f)(x,t~n(t—to)) dx .
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In order to locate the last integral at t-n(t—to) , we have used the fact

that the energy decreases in time by (3.3.1).

Choosing tO > 0 in such a way that ta:n(t—to) > ¢ andusing (3.3.1) again

(3.3.8) e (£) (m,t) < cs(tp-n—z + e /2 J e(£) (x,0) dx .
X

n/2

If we want to avoid the term with € , we can use (2.7.8) instead of

(2.7.6) and obtain in a similar way
(3.3.9) e(f) (m,t) < o 0 ° sup e(f) (x,0) .
xeX

Namely, we then have the term

n/2 2 )

dx
4(t-ty))

e(£) (x,0) (t—to)‘ exp[-

JB(m,p)
which is an approximate solution of the heat equation with initial values
‘e(f) (x,0) , and we use that by the maximum principle the supremum over the

space variables of a solution of the heat equation is nonincreasing in time.
We collect these estimates in

LEMMA 3.3.1 Suppose £ <s a solution of (3.1.1) on [0,t] . If t 2¢€ and
0 <RrRX min[i(x), é%}

e(£) (m,t) < cs(tR'n'2 + /2 J e(f) (x,0) dx
X

< t , in particular t_ =0,

Furthermore, for any t 0

0

e(f) (m,t) < c. R 2 sup e(f) (x,t.) .
6 0
xeX

3.4 THE STABILITY LEMMA OF HARTMAN

We now let f£f(x,t,s) be a smooth family of solutions of (3.1.1)
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depending on a parameter s and having initial values £(x,0,s) = g{(x,s) ,

0 < < .
s Sy

LEMMA 3.4.1 (Hartman [Ht]) Suppose again, that Y has nonpositive sectional

curvature.

For every s € [0,s,]

art of)
sup[gij(f(x,t.S)) 35 9s
xeX
1is nonincreasing in t . Hence also
cu aft g7
P 9i3 Bs s

xeX,se[O,sO]

18 a nonincreasing function of t .

Proof As in 1.6, one calculates in normal coordinates

_ 25 aet aeF aed aet

a][g art ae) _ 3%t o at
i ax“as axuas ikj% 9s 3% ds 35

3 ot ot

(3.4.1) [A - 3s 05

and since Y has nonpositive sectional curvature, hence

3 ar agd
- 1 I
[A at][gij 55 9s) 2 0
The lemma then follows from the maximum principle for parabolic equations.

g.e.d.

We now assume that f1 and f2 are smooth homotopic maps from X to
Y , and h : X X [0,1] - Y is a smooth homotopy with h(x,0) = fl(x) B

h(x,1) = fz(x) .

Since h(x,s) is smooth in x and s , the curve h(x,.) connecting
fl(x) and f2(x) depends smoothly on x . We let g(x,») be the geodesic
from fl(x) to fz(x) which is homotopic to h(x,¢) and parametrized

proportionally to arc length. Since Y is nonpositively curved, this
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geodesic arc is unique and hence depends smoothly on x . We define

a(fl(x),fz(x)) to be the length of this geodesic arc.
We then put f£(x,0,s) = g(x,s) .

COROLLARY 3.4.1 Suppose, as before, that Y <is nonpositively curved.
Assume that the solution f£(x,t,s) of (3.1.1) exists for all s e [0,1] and

t e [0,T] . Then

sup d(f(x,t,0), £(x,t,1))
xeX

ig nonincreasing in t for t e [0,T] .

Proof By construction, at t =0

et ogd .
sup {gi. ji; §§;J = sup d2(g(x,0), g(x,1)) .
xeX,sel[0,1] J xeX

On the other hand, for any t € [0,T]

32 art g3
a (£(x,t,0), £(x,t,1) = sup g. (£(x,t,8)) 5 55
ij s s
s€[0,1]
since £(x,t,*) 1is a curve joining £(x,t,0) and £(x,t,1) in the homotopy
class chosen for the definition of d . The claim then follows from Lemma

3.4.1.

g.e.d.
3.5 A BOUND FOR THE TIME DERIVATIVE

our first application of Lemma 3.4.1 will be a bound for the time

derivative of a solution of (3.1.1).

LEMMA 3.5.1 Suppose £(x,t) solves (3.1.1) for +t e [0,T) and Y has non-

positive -sectional curvature. . Then for all +« € [0,T) and x € X

(3.5.1)

.

9f (x,t)
ot

< sup l%% £(x,0)
xeX
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Proof This follows by putting

f(x,t,s) = £(x,t+s)

and applying Lemma 3.4.1 at s = 0 .

g.e.d.

LEMMA 3.5.2 Suppose £(x,t) solves (3.1.1) for t e [0,T) and Y has

nonpositive sectional curvature. Then for every o ¢ (0,1)

of
(3.5.2) [£(e,t) | l—_.(.,t)i <ol .
oz, v) ot c®x, ) /
c, depends on o , T (only in case £(e,t) becomes unbounded, but anyway

7
it will be finite for any finite T ) , the initial values g(x) = £(x,0) ,

and the geometry of X and Y , or more precisely on curvature bounds,

injectivity radii and dimensions of X and Y .

Proof we write (3.1.1) in the following way

19 of af* op i o) af® | art
(3.5.3) ———~O—L[,/§y -~§}=_Y r.k__&_8+._a_£_.

Vy 9x ox T 9x® ax
If we centre our coordinate chartson X and Y at m and f(m,to) , then
for a fixed neighbourhood B(m,p) X [to,tl] of (m,to),f(x,t) will stay
inside this coordinate chart in Y by Lemmata 3.3.1 and 3.5.1. Furthermore,
those lemmata also imply that the right hand side of (3.5.3) is bounded. This

first implies a bound for [f(-,t)l by elliptic regularity theory.

%%, v)

But then the right hand side of (3.1.1) is bounded in Ca(X,Y) , and (3.5.2)

now follows from parabolic regularity theory.

The statements concerning the dependence of the estimates on the geometry
fecllow from the results of section 2.8, where we constructed local coordinates
for which the Holder constants of the Christoffel symbols are bounded in terms
of the quantities appearing in the statement of the lemma (cf. Thm. 2.8.2).

g.e.d.
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LEMMA 3.5.3 The solution of (3.1.1) exists for all t e [0, , if Y has

nonpositive sectional curvature.

Proof Lemma 3.2.1 shows that the set of T e [0,©) with the property that
the solution exists for all t ¢ [0,T] is open and nonempty, while Lemma
3.5.2 implies that it is also closed.

g.e.d.

3.6 GLOBAL EXISTENCE AND CONVERGENCE TO A
HARMONIC MAP (THEOREM OF EELLS~SAMPSON)
We assume now, that £(x,t) remains in a compact subset of Y for all

t . This is trivially the case, if Y itself is compact.
If we use the energy decay formula (3.3.1), namely

dx

2
3 Loy L 3 (x,t)
at E(f( IL)) - JX ‘ at

observe that E(f(°,t)) is by definition always nonnegative, and use the time

independent Cu—bound for ]%%N , we obtain

LEMMA 3.6.1 TIf f£(x,t) remains in a bounded subset of Y , then there exists
a sequence (tn) sty > o gg n >, for which —g{« (x,tn) converges to zero

uniformly in x € X as n » ® .,

. +0 .
Now using the C2 ~-bounds for £(°¢,t) of Lemma 3.5.2, we can assume, by
possibly passing to a subsequence, that f(x,tn) converges uniformly to a
harmonic map £(x) as tn >+ ®© , In Cor. 3.4.1 which we may apply because of

Lemma 3.5.3, we then put

[l

g(x,0) f(x,0,0) = f(x,tn)

i

g(xrso) f(x’O{SO) = f(x)

By uniform convergence, some f(-,tn) (and hence all, since £{x,t) is

continuous in t ) are homotopic to £ .
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Since £(x) as a harmonic map is a time independent solution of (3.1.1),

f(x,t,so) = f(x) for all t . Cor. 3.4.1 then implies
d(f(x,tn+t), f(x)) < d(f(x,tn), £(x)) for all £ = 0

Hence it follows that the selection of the subsequence is not necessary and

that £(x,t) uniformly converges to £(x) as t =+ o ,

We thus have proved the existence theorem of Eells-Sampson [ES] with the

improvements by Hartman [Ht].

THEOREM 3.6.1 Suppose Y <is nompositively curved. Then the solution of
(3.1.1) exists for all t e [0,%) . If the solution remains in a bounded
subset of Y , in particular 1f Y <18 compact, then it converges uniformly
to a harmonic map as t + » . In particular, any map g € c2+a(x,Y) 18

homotopic to a harmonic map.

Remarks 1) The result also holds, if we merely assume g € CO . A suitable

modification of Lemma 3.2.1 pertains to this case, and we choose some

tO e (0,€) , where € is the time-range of Lemma 3.2.1. Then f(x,to) is

+ . > .
of class C2 o in x and can be chosen as new initial values for the heat

flow, and we apply the arguments of the preceding sections to these initial

values.

2) If we take one branch of the curve y = i and rotate it around the
x—-axis, we obtain a negatively curved surface of revolution. The  image of a
point on y = % under this rotation yields a closed homotopically nontrivial
curve which is not homotopic to any closed geodesic. It is not difficult to
see that as t - o the solution of the heat equation with those initial
values will disappear at infinity, not converging to anything. From this
we see that the hypothesis in Thm. 3.6.1 that the solution remains in a

bounded set is necessary for the existence of a harmonic map.
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On the other hand, noncompactness of the target space does not inevitably
prevent the solution of the heat flow from converging to a harmonic map as is

seen by rotating the cuxve y = x2 + 1 instead of y = % around the x-axis.

3.7 ESTIMATES IN THE ELLIPTIC CASE

We now want to derive estimates for a harmonic map £ : X+ ¥ . Since Y

is nonpositively curved, (1.6.5) implies
(3.7.1) Ae(f) =2 ~¢ e(£) .

il
For simplicity, we assume n = dim X 2 3 . We put po = min{i(x), EK] . By a
suitable choice of 0 ¢ (%DO,DO) , (3.7.1) in conjunction with the
representation formula (2.7.5) yields

o}

(3.7.2) e(f) (m) < —-§— f 9—(—9-% ax .
p” ‘B(m,P) r(x)
Iteration of (3.7.2) yields as in 3.3
‘g
(3.7.3) e(f) (m) < - J e(f) (x) dx .
P

B(m,gp)

THEOREM 3.7.1 If £ : X > Y <s harmonic, X compact and ¥ mnonpositively
aurved,
12 5o < oy
Y
where S, depends on the energy E(£) and on curvature bounds, injectivity

radii and dimensions of X and Y .

Proof wWe again look at the equation

, i~k

1 3 (,=oaB 9 i) _aB i 0f Bf
(X[YY Bf = =Y ij o B'

vy 9x 9% ox~ 0x

(3.7.3) implies that the right hand side is bounded and that for every m e X,



83

a uniform neighbourhood B(m,p) is mapped into the same coordinate chart on

. N . . . 1+ . .
the image. Elliptic regularity theory implies £ € C o , which in turn

implies that the right hand side is of class Ca and hence f ¢ C2+a .

The assertions about the dependence of ¢y oOn the geometry of X and Y
follow, if we choose harmonic coordinates at m and £(m) . For those
coordinates, the Christoffel symbols have the required regularity properties,

as is shown in 2.8 (cf. Thm. 2.8.2).

g.e.d.

3.8 THE UNIQUENESS RESULTS OF HARTMAN

In this section, we shall be concerned with uniqueness properties of

harmonic maps into nonpositively curved manifolds.

THEOREM 3.8.1 (Hartman [Ht]) Let £, £,(x) be two homotopic harmonic
maps from X into the nonpositively curved manifold Y . For fized x , let
f(x,8) be the unique geodesic from £,(x) to £,(x) in the homotopy class

determined by the homotopy between £. and £, , and let the parameter

1

s € [0,1]1 be proportional to arc length.

Then, for every s e [0,1] , £(e,s) <s a harmonic map with
E(f(e,8) = E(f;) = E(f)) . Furthermore, the length of the geodesic £(x,¢)

18 independent of x .

Hence any two harmonic maps can be joined by a parallel family of

harmonic maps with equal energy.

Proof we let f(x,t,s) be the solution of (3.1.1) with initial values

£f(x,0,s) = f£(x,s) . £f(x,t,s) exists for all time by Lemma 3.5.3.

By Cor. 3.4.1, for any s € [0,1] and t e (0,%)
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(3.8.1) sup d(f(x,t,s), £,(x) < sup d(£(x,s), £,(x)
xeX xeX

IA

sup d(fz(x), fl(x)) .
xeX

Hence, f£(x,t,s) stays in a bounded subset of Y as t » ® .

Thm. 3.6.1 implies that £(x,t,s) converges to a harmonic map fo(x,s)
as t > o,
We choose X € X with

d(fz(xo). fl(xo)) = sup d(fz(X), fl(x))
xeX

and by construction therefore

d(E(xys), £ (x)) = sup d(£(x,8), £ (x)) for all s .

0 xeX
From (3.8.1)
(3.8.2) d(f(xo,t,S), fl(xo)) < d(f(xo,s), fl(xo))
énd similarly
(3.8.3) d(f(xo,t,s),fz(xo)) < d(f(xO,S), fz(XO)) .

Note that all distances are measured by the length of that geodesic which is

mentioned in the statement of the theorem.
Then (3.8.2) and (3.8.3) imply

(3.8.4) 'f(xo,t,s) = fo(xo,s) = f(xo,s) for all s .

We now look at

fAoaed
- of of”
eS(f) (Xltls) - glj (f(xltls)) as as .
By Lemma 3.4.1
(3.8.5) sup'es(f)(x,t,s) < sup es(f)(x,o,s) for every s e [0,1], t € (0,)

xeX xeX

On the other hand, from (3.8.4)
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(3.8.6) es(f) (xo,t,s) = es(f) (xo,o,s) = izi es(f) (x,0,8) .

Hence for all t , the supremum in (3.8.5) is attained at x = X, and is

independent of t . Since by (3.4.1)

9
(3.8.7) [ - 5;j es(f) 20,

the strong maximum principle implies that es(f)(x,t,s) is independent of x
and t , i.e.

es(f)(x,t,s) = es(f)(xo,o,s) for all s .

Since s 1is the arc length parameter on the geodesic f(xo,°) ’
es(f)(xO,O,s) and hence es(f)(x,t,s) is also independent of s . Thus for
every x ‘and t , £(x,t,*) 1is a curxve of equal length from fl(x) to
f2(x) parametrized proportionally to arc length. Since £(x,0,°) was a
minimal geodesic, all f(x,t,*) are minimal geodesics and independent of t

In particular f£f(x,t,s) 1is time independent for every s , and hence

£(x,0,8) = £(x,s) 1is harmonic, since £f(x,t,s) solves (3.1.1).
Returning to (3.4.1), since éﬁi-§£3~ is constant and Y is
9 T gij ds O0Os
nonpositively curved ,
2 i
(3.8.8) 3; =0
9x 0s

in normal coordinates, or in invariant notation

7, [ag__a_] -0
s 9% 3

) ) -1, )
where V now is the covariant derivative in the bundle f “(x,°)TY . This

implies that the energy density
ia.d
[0 £
e(f) (x,8) =Y B(x) 9. (£rx,8)) ?.i&_ﬁ__g
J 9x~ 0x

is independent of s .
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In particular, all the harmonic maps f(¢,s) have the same energy.

g.e.d.
THEOREM 3.8.2 (Hartman [Ht]) If Y has negative sectional curvature, then a

harmonic map £ : X > Y <s unique in its homotopy class, unless it is
constant or maps X onto a closed geodesic. In the latter case, nonunique-

ness can only occur by rotations of this geodesic.

Proof 1In this case, we see from (3.4.1), that since

iak aed o2
(3.8.9) R QE B3 ¥f Bf _

by the previous proof, either gﬁ-s 0 which means that the family £(°,x) is
constant in s and hence consists of a single member, i.e. the harmonic map

is unique, or the image of sz under df 1is a one~dimensional subspace of
Tf(x)Y .  Furthermore, if the harmonic map is not unique,'then f(x,s) for any
% € X 1s a geodesic arc by the construction of the preceding proof. (3.8.9)

implies again that df maps TXX onto the tangent direction of this

geodesic. This easily implies that X is mapped onto this geodesic.

We now have to show that this geodesic arc extends to a closed geodesic

which is covered by £(X) .

Since X is compact, £(X) is closed and hence covers some geodesic
arc Y . Suppose this arc has an endpoint p = f(x) for some x € X . We
choose g € Y within the injectivity radius of p . Then dz(q,f(y)) is a
subharmonic function on a suitable neighbourhood of x € X (by Lemmata 2.3.2
and 1.7.1) and has a local maximum at x which is a contradiction, unless
f(y) = p for yv e€ X . Thus, if f is not constant, it has to cover a closed
gecdesic.

g.e.d.

Different proofs of Thms. 3.8.1 and 3.8.2 were obtained by Schoen-Yau
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[SY3]. They show that under the hypotheses of those theorems, after lifting
to suitable covers, the squared distance between two homotopic harmonic maps
is a well defined smooth subharmonic function, in case Y 1is nonpositively

curved, from which the argument proceeds in a similar way as above.
3.9 THE DIRICHLET PROBLEM

One can also solve the Dirichlet problem for harmonic mappings into

nonpositively curved manifolds.

THEOREM 3.9.1 (Hamilton [Hm]) Suppose x is a compact manifold with nonempty
boundary 93X , Y 18 complete (without boundary) and has nonpositive sectional

curvature. If g : X > Y 18 a continuous map, then the parabolic system

(3.9.1) X w0 = TH Y for (k8 € XX (0,9)
£(x,0) = g(x) for x e X
£y, 8) = gly) for y e 93X
has a smooth solution f(x,t5 for all t + (0,°) . As t e » , f(x,t)

converges to the unique harmonic map homotopic to g with the same boundary

values as g on 09X .

Instead of extending the HOlder estimates of the previous section to the
boundary, Hamilton developsan Lp—regularity theory for harmonic maps for the

proof of Thm. 3.9.1. Since the boundary values are fixed, £(x,t) remains

always in a bounded subset of Y as t *> ® , even if Y is noncompact.

In case Y 1is simply connected, a simpler proof of Thm. 3.9.1 was

obtained by Hildebrandt-Kaul-Widman [HKW1l].

As an application of the maximum principle, Hamilton also showed that

convex sets provide barriers for solutions of the heat equation.
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THEOREM 3.9.2 Suppose C < Y <s a convex set and £ solves (3.9.1). If

g(X) ¢ ¢, then f£(x,t) c C for all t e [0,%) .

3.10 AN OPEN QUESTION

A difficult open problem is to determine whether a solution of the heat
equation (3.1.1) or (3.9.1) exists for all +t > 0 without any curvature

assumptions on Y .

Since there are manifolds X and Y and homotopy classes in [X,Y]
which do not contain harmonic representatives, as we shall see in chapter 5,
even if the solution of the heat equation exists for all t > 0 , in general

it cannot converge uniformly to a harmonic map as t - ©

There seems to be some indication that if one maps the unit ball "
homotopically nontrivial onto the sphere s™ with constant boundary values,
then the solution of (3.9.1) may cease to exist after a finite time, at least

for large n .

Besides the results of this chapter and the case of "warped products”
(cf. Lemaire [L3]), the existence of a solution of (3.9.1) for all time is only

known in case g(X) is contained in a ball B(p,M) € Y which is disjoint to

the cut locus of its centre p with M < §%~, where K2 is an upper bound for
the sectional curvature on B(p,M) . This was carried out in [J4], combining

some arguments of the present chapter with a result from elliptic regularity
theory as shown in the next chapter and a stability inequality of (Jak2]
analogous (but more difficult) to 3.4. A more general approach to long-time
existence of solutions of nonlinear parabolic systems without divergence or
variational structure by using stability inequalities was developed by von Wahl

[vW] . For arbitrary Y , however, such stability inequalities do not hold,
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and von Wahl's approach is mainly aiming at applications different from harmonic

maps.

Simon [Sm] showed that if £ 1is a locally energy minimizing map between
real analytic manifolds, then a solution of (3.1.1) exists for all time and
converges to a harmonic map with the same energy as £ , provided the initial
values are already close to £ in some high Ckwnorm. It is not known whether
the assumption that the manifolds involved are real analytic is necessary for

Simon's theorem.



CHAPTER 4
REGULARITY OF WEAKLY HARMONIC MAPS
Regularity, existence, and uniqueness of solutions of the

Dirichlet problem, if the image is contained in a convex ball

4.1 THE CONCEPT OF WEAK SOLUTIONS

We first want to discuss the concept of stationary points of the energy
integral or of weak solutions of the corresponding Euler-Lagrange equations.
In the present chapter, the image Y will always be covered by a single
coordinate chart so that we can define the Sobolev space W;(Q,Y)
unambiguously with the help of this chart, without having to use the Nash

embedding theorem as in 1.3.

2 will be an open bounded set in some Riemannian manifold with boundary

.

In the sequel, we shall use some of the notations of [EL4].

If u e Wé(Q,Y) , then du is an almost everywhere on § defined l-form
with values in u—l TY . The energy of u is

E(u) = % J <du,dv> a ,
Q

where the scalar product is taken in T*Q(:)u_l TY .

We let ¢ € Co(f-l,u"l TY) be a section along u which vanishes on 9% .
This means ©¢(x) € Tu(x)Y . We want to construct a variation of u with
tangent field ¢ .

Since we assume that Y is covered by a single coordinate chart, we can
simply represent everything in those coordinates and denote the

representations in these coordinates by ~  and define
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500 = G + £ (x) .

These coordinates also identify each tangent space TuY with R
(n = dim Y) . Hence $ is a map from { into Dfl. This allows us to
define d$ and hence via this identification also d¢ . (Note that it is

not obvious how to define d¢ intrinsically, since ¢(x) ¢ T Y , and as

u(x)

u is not necessarily continuous, the base point of ¢ may vary in a

noncontinuocus way.) We then suppose that
(4.1.1) J <d$,ap> < =
Q

and show that the Euler-Lagrange equations, if u is a critical point of E ,

i Coad oAk -
(4.1.2) HYC*B anyg e i é%é—‘igwl} /Y dx =0  for ¥ e w;‘ 0 L@, =
: 9% Ox I 9x™ 9x
(]90=0)
are equivalent to
(4.1.3) f <du,dd> = 0 for all bounded ¢ satisfying (4.1.1) and ¢IBQ= 0.
i ]
Proof ret ¢ = (k) — .
dut
. i . 3
Then a¢ =V 3 {¢l ~EL} ax® = EQ“'”éT‘+ ¢l Fk. gE*-"é—.
i (o4 i ij a5 k
—5 ou dx~ du ox  ou
dx
Hence
dut 99 % ud dut
(4.1.4) <awap> = g, PRy (8 ghpk Du f
J ox 0x I x” ox
On the other hand, we choose wi = gij ¢j as a test vector in (4.1.2). Then
the integrand of (4.1.2) becomes
of  2ubaed | NI e’ 3 R B du” .
i3 x> Bxs k3. BXB ax” gij k& ax™ BXB
i j L .k
_oB du” @Qi af | du_ du 3
TGy G, BT PO s T %) E e

which after changing some indices, is the same as (4.1.4).

g.e.d.
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Remark  If one wants to define d¢ also if the image is not necessarily
contained in a single coordinate chart, one can use the Nash embedding

theorem as in section 1.3.

In the following sections, we want to provide conditions which ensure

that a weak solution u € H; n Loo of {(4.1.2) or (4.1.3) is continuous (which

then in turn will also imply higher regularity of u ).

We have already seen in 1.4 that . Snnl for nz 3 is a

x|

discontinuous weak solution. One might think that the discontinuity in this

case is caused by the global topology of the image. We can however take the

n-1 n n-1

totally geodesic embedding i : S + 8 which maps S onto the equator
of Sn. By Lemma 1.7.2, i -TET‘ then is harmonic for x # 0 and hence
weakly harmonic by the argument of 1.4. The image of 1 ’T§T ., however, is

contained in a closed hemisphere, so that there is no longer a topological
obstruction to regularity, and the discontinuity has to be caused by the

geometry of the image.

As pointed out, in this case the image is contained in a geodesic ball of
radius g in s . 1In the following sections, we shall see that the radius
g~ is precisely the limiting case for regularity, i.e. that any weakly
harmonic map witﬁ image contained in a geodesic ball of radius < g actually

is regular. (We shall of course consider more general image manifolds than

only spheres.)

. : . b4 s s
Finally, we remark that in many cases i ’TET' even minimizes energy

w.r.t. its boundary values, as was demonstrated by Jager-~Kaul [JaK3] and

Baldes [Bal.

In the following sections, we assume w.l.o.g. that the dimension n of

the domain 2 1is at least 3, because otherwise we can simply look at the map



93

a:Q xsl > Y , U(x,t) = u(x) which satisfies the same assumptions as u .

4.2 A LEMMA OF GIAQUINTA-GIUSTI-HILDEBRANDT

The following lemma is due to Giaquinta-Hildebrandt [GH].

LEMMA 4.2.1 Suppose u : Q + Y <is weakly harmonic, £ : Y > IR is strictly

convex on u() . Then for every ball B(xO,ZRO) cQ

(4.2.1) d(x,xo)z"n lau|? < o <.
B(xO,RO)

Furthermovre, for any € > 0 and R, >0 we can calculate R >0,

independent of x_ and u with the property that for some R , R, < R< R

0

(4.2.2) g¥0 f lau]? < € .
B(xO,R)

c; and R depend on the supremum of £ and on a lower bound X > 0 for

the eigenvalues of its Hesstan and om the geometry of Q (curvature bounds,

injectivity radius, dimension).

Proof One idea is taken from [JK1], p.11, the other from [GGl], p.
We put h = fou. By (1.7.2)

(4.2.3) A > Aldul? .

2-n
Let x(x) = dlxx) and g,(x) = mi“{r(x)z—n - oo, Fﬂ - Dz_n} on

2

B(xo,p) . Then
(4.2.4) A [ g, (%) |du12 < I 9, (%) b (x) by (4.2.3)

B(xo,p) B(xo,p)

= _J <grad EIY grad h>
B(XO,Q)\B(XO,O/Z)
= [ h Agp —I h <grad EPY d8§
YB(XO,D)\B(XOID/Z) : a(B(XO,D)\B(XO,D/Z))
< c2p2 + ?;f; [ h - ___E:%;If J h
o 9B (x,P) (p/2) 9B (x4, P/2)
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by Lemma 2.7.1, if p satisfies the assumptions of this lemma.

-i —i=-1 2-n =i=1 2=-n
® ° < °
Now on B(xO,RO 2 )\B(xO,RO 2 ), r(x) < (RO 2 ) and thus
2 2 _ 2 P2 2
(4.2.5) { £ Jau]® s T 27 TR 27 n[ oy laul®
B(xO,RO) i=0 B(xO,RO-Z )
. - - 2- - - .
Since 22 n((%)2 nol 1) r no rz . (2r)2 o , from (4.2.5), defining
g. =g .
i =i+l
RO-2
2-n 2 - 2
f r(x) | du] < % z f —ie1 9y | du|
B(XO’RO) i=0 B(xO,RO-Z )
where c, depends only on n .
(4.2.4) then implies
2c c L
(4.2.6) J r? ™ Jau|® s —2e B+ L T
B(xo,RO) i=0
{(R002—1+l)1—n [ _i+1}1_ (RO.2~1)l—n J N h}
9B (x R 2 ) aB(xO,RO-z )
2 o
=t ey Ry+c, 2 gy = W) -
i=0
Hence
(4.2.7) v ™ jau)? < o, B2 4o, p -
B(x_,R.) 3°0 4 "0
0o'"o
This implies (4.2.1), noting that o < sup £ e vol BB(XO,ZRO)Ré—n. From (4.2.4)
u(Q)
(R_.27 12" o faul® < ectmoe2HZ e, - u .
0 B(x_,R 21 570 i-1 i
0’7o
“ig)? e
We first choose iO so large that cs[Ro'z ] f&z. For every m e N , we

can find j , i0 <j <m+ i0 , with

1
uj~uj+lsau

(for the last inequality, note that h is subharmonic and see the proof of

(2.7.5)).
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26, (1, + ©R)
Hence choosing m 2 e and Rl==RO'2
(4.2.2) follows.
4.3 CHOICE OF A TEST FUNCTION
Suppose B(x0,2R) c ) for some R >0 . Let

IA

standard localizer, i.e. 1 =1 on B(xO,R) . |Vn|
Suppose there exists a strictly convex function on

assumptions of Lemma 4.2.1 are satisfied.

N e Lip(B(x,,2R))

=i ~-m

, R RO°2_J ,

g.e.d.

be the

% , Supp N << B(xO,ZR).

u(B(x,,2R)) , i.e. the

Suppose £ is a Cz—function on u(B(xo,2R)) , and g is a Lipschitz
function on B(xO,ZR) , 80 we can choose Vfe°neg as a test vector ¢ in
(4.1.3).

If ea is an orthonormal frame on Q , wa the dual coframe, then
du = ue wa , and (4.1.3) yields

o
(4.3.1) 0 = J ng<amve), u w> + f gn, £,
B(x,,2R) o B(x_,2R) o o
0 0
+ [ ng_  £(u) .
B (xs2R) o o
Now
QawWe), u o> =<d@¥fle , u > -1
- Y
o T%QMu lTY o ey wor
-1
u  TY s
= <Ve VE, u >u—1TY by definition of d
Cl Ch
=<7 VE, u, (e )>
u (e ) R R
* (¢4
2
= D f(du,du)
where sz is the Hessian of f .

Hence from (4.3.1)
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ng sz(du,du)-J gn f(u)e

(4.3.2) J g (M) =
€ € B(x,,2R) O )

B(xO,ZR) o o JB(XO,ZR)

+ I £(u) 9 ﬂe .
B(xo'2R) ) o

Remark If one is not familiar with the notation employed in the derivation of
(4.3.2), one can alternatively insert the test vector ¥ given by

d
wl =T°g ——%— in (4.1.2) and carry out the calculations in local coordinates.
du

For vy € B(xO,R/Z) , X € B(xO,ZR) , we now put

i

v . -
g(x) g (x,y) = mln(d(x,y)2 n' V) for VvV € N .

Writing D(x,V,R) = {x ¢ Blx ,R) : a2 <V}, (4.3.2) yields

v -
(4.3.3) g ( ,y)e 4l f(U))e =

J -f ng’(*,y) D2£(du,du)
D(xo,v,R) o o B(XO,ZR)

U \Y
g (hydn, £lw  + flw g ), N, -

J13(xo,2R) o o j‘D(xo,\),R) a o
We write (4.3.3) as

= + + .
I, = II, + III + IV,

Then with D'(x,,V,R) = {x € B(x;,2R) : ax, 92 2 v}

(4.3.4) I, = A(d(’,y)z—n)nf(u) -{ nf(u) <grad g(°,y), d3>u

D(.}iol\)lR) oD* (XO,\),R)

since 1 has compact support in B(xo,zR) .

By (2.1.4), for sufficiently small R (depending on the injectivity

radius and an upper curvature bound on § )

(4.3.5) J Aa(e, )%™ ne() < c732 <e, if RER(),
D(x,,V,R)

where <, depends on n = dim § , a curvature bound on § , and on 'sup f .

If we choose for fou its Lebesgue representative, then we can find a
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subsequence of the Vv's for which

(4.3.6) 1lim J nf(u) <grad g{-,y), d3> = —(n—2)mn fluly))
VY-
aD' (xo,\),R)

(note that n(y) =1 , since vy ¢ B(xO,R/Z)) .

Furthermore

(4.3.7) IIv =

4

B(xO,R) T(xO,R)

where T(xO,R) i= B(xO,ZR) \ B(xO,R) .
Since vy € B(xO,R/Z) , we infer from Lemma 4.2.1

(4.3.8) ng” (,y) D £(du,du) < e(n-2)u_

T(xO,R)

for prescribed € > 0 and some R , R2(€) < R K Rl(a) , where
R2 = RZ(E) > 0 can be calculated explicitly in terms of & . It depends on

the Hessian of f , but is independent of v and y and u .

Since
ne
o

0 outside T(xO,R)

(4.3.9) 1III_ <

C (o} 1
N _jo ¢"(+,y) |au| < = <f gV(e,9)) 2
T(xO,R)

T(xO,R)

1
(J gV (+,y) |du|2)2 < (n-2)w e,
T(xO,R)

again for some suitable R which we can choose to be the same one as in

(4.3.8). Here, the quantities depend on [Vf| .

In order to estimate IVV' let uR be the mean value of u on T(xo,R) .

u, can be defined with the help of our coordinates. We write

u =

u .
R

fT(xo,R)

We now write f£(u) = f(uR) + (£(u) - f(uR)) . Similar as in (4.3.5) and
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(4.3.6), we obtain

2

(4.3.10) lim IV, £ (n-2)w  f£f(u.) + c R
Yoo \Y n R 10
2=-n
+ J (£(u) - f(uR))(d(‘rY) ) ”e .
T (%, R) o o
Furthermore
2-n ‘11
J ((u) - £(u)) dC,»)T N ——n—J le@ - £yl
T(xO,R) (¢ o~ R T(x, ,R)
0
c 1
< -%% Rn/2 sup[VfI (J d(u,uR)z)2
R T(x_ ,R)
0
S e, an/2 (c14 R2 f !dulz)%
T(x_ ,R)
o}
by the Poincaré inequality, where i3 and Gy, Bare independent of R .

Combined with (4.3.10), the preceding inequality vields

[

(4.3.11) Lim Iv, € (@-2)w_ £(u) + o, B + o (R " laul? )
n R 15 7

10
Vo (XOIR)

< (n—2)wn f(uR) + €(n—2)wn

(w.l.0.g. we can assume that (4.3.11) again is satisfied for the same R as

in (4.3.8) and (4.3.9)).

From (4.3.3)-(4.3.11), we obtain for vy ¢ B(xO,R/Z) , using Lebesgue's

Theorem on dominated convergence

n

(4.3.12) £(uly)) < f(uy) + 4¢ - {(n—z)wn}"l J a(-,y)2° D2f(du,du)

B(xO,R)

for some R 2 R3(€) where R3(€) > 0 is independent of u and x

0

4.4 AN ITERATION ARGUMENT. CONTINUITY OF WEAK SOLUTIONS

In this section, we want to use an iteration argument based on (4.3.12)
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to prove continuity of a weakly harmonic map with image in a convex ball.

This result appeared explicitly for the first time in [HIJW], but the method of
proof in a somewhat different setting was already developed in [HW2]. The
present proof (4.2-4.4) uses ideas of Wiegner, Hildebrandt, Widman, Kaul,

Jost, Giaquinta,and Karcher, cf. [wWil, [HW2], [HKW3], [HJW], [GH], and [JK].

THEOREM 4.4.1 Suppose u : Q - B(p,M) <s weakly harmonic, that

2 . .
—w2 < K £ K°  are curvature bounds on B(p,M) ¢ ¥ , M < mln['zlrE’ 1(p)] , where

i(p) <8 the injectivity radius of p , and x € Q.
Then for each T > 0 one can calculate p > 0 with
osc u<-T.
B(xo,p)

p depends only on Tod(xys ) , curvature bounds and the injectivity radius

of §, dinQ , dimy, M, W, K.
In particular, u <is continuous in ) .

Proof rLet

Then there exists €' , 0 < g' < 1 , with

1
h' = g%—— {(l—ho)2 M2+ €'} >0 .

Let

and

Let € in (4.3.12) be taken as

£ =

Wi
=
IS

1
=3
8
[y
=]

N
m
|
_—
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and s be the smallest positive integer with
2 ! gn

(1-h)“F < = .
8M

The assumptionsof Lemma 4.2.1 are satisfied, because rz(q) = dz(q,p) is

strictly convex on B(p,M) by Lemma 2.3.2.

We start with RO = %d(xo, o) , Py =P - On B(p,M) , we initially take

normal coordinates centred at p = p They cover B(p,M) , since B(p,M)

o *

by assumption is disjoint to the cut locus of p .

- _ _ R
Let uRO be the mean value of u on T(xO,RO) B(xO,ZRO) B(xo, 0)
taken with respect to these coordinates:

u = { u(x) dx .
0 T(XO,RO)

Let ¢ be the unique geodesic arc from Py to u

o , and let Pl be the

Fo

point on CO with
d(p,/py) = hy d(uRO,pO) .

Now for q € B(p,M)

d(q.pl) < d(q,po) + d(pl,po)

IA

M
M + hO

m

ET3 by choice of h

IA

0
Hence, by Lemma 2.3.2, dz(',pl) is convex on B(p,M) . Thus, for

v € B(xO,Rl) , where 2Rl is the radius R < RO of (4.3.12), (4.3.12)

implies for £ = d2(-,pl)

2 2 -
(4.4.1) 4 (u(y),pl) < d7(ug ,pl) + 4e

0

IA

(1-h )2 sup dz(u(X),p ) + 4de
0 0
xeB(xo,ZRO)

by choice of Py -
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Let j e W .

Suppose now that we have found points p, ¢ B(p,M) and radii Ri for

i <j-1 with the property that for vy «¢ B(xO,Ri)

(4.4.2) dz(u(y),pi) < (1—h0)2 M2 4 e
and
2 2 2
(4.4.3) da (uly),p;) = (1~h) sup d (ulx),p; ;) +4e .
B(x,.2R; ) *

We then want to prove (4.4.2) and (4.4.3) for i = j and suitably chosen pj

and R, .
J

First of all, by (4.4.2)

m
< e~}
d{u(y), pj_l) TS h for vy € B(XO'Rj~l) .

If we choose normal coordinates on B(p,M) centred at pj—l which is

possible by Prop. 2.4.1, and take GR as being the mean value of u over
F=1
T(XO'Rj~l) with respect to these coordinates, then again by Prop. 2.4.1,
there is a unique geodesic arc c, in B(p,M) from p, to u .
j-1 -1 Rj—l

We choose pj as that point on cj__l with

d(Pj:Pj__l) = h d(uRj_l'pj—l) .

Then for vy € B(xO,Rj_l)

d(u(y>,pj) < d(uly), pj_l) + d(pj,pj_l)

1

< ((1—ho)2 M2 + )% + hy by (4.4.2)
LI

SZK h' + hM
m™

< - .
2K

Hence, d2(',pj) is convex on u(B(xo,Rj_l)) , and from (4.3.12) for

i = i .3.12
y € B(XO'Rj) , taking 2Rj R < Rj—l in (4.3.12)
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1A

y + 4€

2
a” (uly),p.)
3 Rj_l

2 -
a (pj,u

IA

2 2 -
(1=m% a"(ap ey )+ 4e

j=1
2 2
< (1-h) sup d (u(x),pj_l) + 4e .
xeB(xO,ZRj_l)
Thus (4.4.3) is also satisfied for i = 3 .
Iterating (4.4.3), we obtain
5 , .
(“.4.4)  swp  &uw),py) < 1m0 sup a¥(uiy),py) + 4 e
yEB(xO,R.) 1 - (1-h)
J
For 3 > 0, ‘“‘_'_‘1'““’—2+(l“h)23£m‘é%°ﬂ‘)‘,
1 = {i~h)
. 2 2
and thus from {4.4.4) and (4.4.1), since d (u(x),po) < M,
s ki
(4.4.5) sup  d°(uly) By < -m? a-n? u? min[e’, %—} .

R
VeEB (XOI ])
In particular, (4.4.2) holds for i = j . Moreover, (4.4.5) implies

- 9
( osc w?s<4  sup dz(u(y),pj) < a(-n)23 u® 4 =

B(x R, YGB X R,
OI J) ( CI ])
and hence

osc u < ye" <71 .
B(x_,R
( o s)

RS can be computed explicitly, since the radius R3(€) in (4.3.12) can be
computed from the geometric quantities of the statement of the theorem by
Lemma 4.2.1. Note in particular, that the strictly convex function required
in Lemma 4.2.1 is d2(°,p) and that all choices of f in (4.3.12) are
likewise given by squared distance functions. Hence their gradients and
Hessians are controlled by the geometry of the image through Lemma 2.3.2.

g.e.d.
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4.5 HOLDER CONTINUITY OF WEAK SOLUTIONS

We now want to prove Holder continuity of u .

THEOREM 4.5.1 Suppose that the assumptions of Thm. 4.4.1 hold. Let
B(x,,2d) < Q be a ball which is disjoint from the cut locus of its centre.

Furthermore, suppose that 0% < k<12 for the curvature on B (x, ,24d) and

T
da < e Then for all x,y € B(xl,d)

d{u(x),u(y)) < c d(x,y)B

where B e (0,1) and ¢ depend only on dimQ , dimY , 0, T, w, K, d,
and M .
Proof By Thm. 4.4.1, we can find p , 0 < p < d , with
(4.5.1) osc u<M for all x ¢ B(xl,d) .
B(x,p)
We choose an arbitrary =x. e B(xl,d) and R with 0 < R < g-, and define

0

again T(xo,2r) = B(xO,Zr) \ B(xo,r) and moreover

. TR 5R
* = = 22
T (xO,Zr) B[xo, 4} \ B[xo, 4} .
We let g be the point, where

H(g) = a®(u(x),q) dx

JT(XO,ZR)
achieves its minimum. (That we can find a unique such g , follows from

(4.5.1) and (2.3.4)). Then

f v a%(u(x),p) = 0
T (x,,2R) B

= J exp--l u(x) = 0 .
T(XO,ZR)

That means that if we choose normal coordinates centred at g and denote the

corresponding coordinate representation by v , then

(4.5.2) v(x) =0

T(XO,2R)



104

and hence by the Poincaré inequality

(4.5.3) v < o\ R? J |vv]?

fT (xO,ZR)

where ¢ like the following constants c¢

15 is independent of R .

2

n from 4.3 will now be required to satisfy N =1 on B[xo,

4)
- 7R
N0 on Q\B[xo, 4] .
In (4.3.3) we now take <£(u) = dz(u,q) and y = XO . Then from
(4.3.4)-(4.3.6)
} 2 2
(4.5.4) lim Iv = (n—2)wn <} (u(xo),p) - c16 R” .
oo
Furthermore

D2 (du,du) 2 2KM ctg KM |du|?

by Lemma 2.3.2 and (4.5.1) and hence

v 2
(4.5.5) C17 J ng ( ,xo) D f(du,du) =

f ng (%) lau]? .
B(XO,ZR) B(xO,ZR)

By choice of n , the integral IIIV extends only over T(xo,2R) , and

2—1’1‘2

taking V > RZ® , moting f(uw)_ = 2vv_  (F(u(x)) = vi(x)) ,
e(x e(l
@56 Jar| s o @ J 99]? + &P j Iv]2)
) T(x.,2R) T(x_ ,2R)
0 0
S ey BT j vv|? by (4.5.3) .
T(x_ ,2R)
0
Now
4.5.7) [1v | < czo(R_2 st [ lv|?+6 [ lv|? \Vd(°,x0)
T(xO,ZR) T*(XO,ZR)

for each § > 0

I d)zvz d(',XO)z_n Ad(.'xo)z-n - J ¢2v2 |Vd(':XO)2_n|2
T{x . ,2R)
0

+ J 20V 2 d(-,xo)z‘“ Vd(-,xo)z’n + J 20l a(e,x) " Vd(-,xo)z‘“



105

if supp ¢ ¢ T(xo,ZR) , $ =1 on T*(xO,ZR) R ld¢l < %

Using Lemma 2.7.1 and Holder's inequality, this implies

2~ni2 <

2
(4.5.8) J v Va( %) ¢y

g2 (2-n) J 2
T*(xO,ZR)

T(xo,2R)

!Vlz ld("XO)Z-n[Z +[ a (.'X0)2(2—n) IV'V|2) .

* czz(R_2 f
T(xO,ZR)

T(xO,ZR)

Choosing & = R% 2 in (4.5.7) and using (4.5.8) and (4.5.3),

(4.5.9) . |v,| < Cyq rZ0 [ lav]? .

From (4.5.3), (4.5.4), (4.5.5), (4.5.6), and (4.5.9) and letting V >

2

IA

2-n 2 2-n 2
(4.5.10) SICEN |au| ¢,y B J lav]® + ¢, R

J 2
B(XO,R) T(xO,ZR)

g J d(',xo)2—n Idu|2 + e R2 .
T(xo,2R)

(Note that f Idv]z = f Idu|2 , since the energy is invariant under

coordinate transformations.)

If we now add d(-,xo)z'n |au|? to both sides of (4.5.10),

c
-
B(XO'R)
i.e. we fill the hole (that explains why this device introduced by Widman is
c
called the hole filling technique), we obtain with 0 = —32 < 1

+
1 025

2

(4.5.11) d(-,xo)z"n lau|? < o [ d(',xo)z_n laul? + ¢ ®

J -
B(XO,R) B(xO,ZR)

or, using the notation @&(R) := J' d(',xo)z-—n |du]2 + Cym R2
B (Xo,R)

(4.5.12) ®(R) < eo ®(2R) with eo = max(6,%) .

LEMMA 4.5.1 (de Giorgi) For a-= 1og2(6;l) and all r <R

o
(4.5.13) o(r) < 2“%} o(R) .
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Proof of the lemma 1¢ 2 " 'RrR<r<2 ¥R,

o(r) < 02 % r) < eﬁ 6 (R) by (4.5.12) .

P k -k -1 . -k r
= < =
Writing 90 (2 ™) 1og2(60 ) and using 2 <2 R

(o7
d(r) < 2“%% ®(R)
R
which proves the lemma.

Since 0 < 60 <1, a >0, and hence Thm. 4.5.1 will follow from (4.5.13)
in conjunction with the following well-known Dirichlet growth theorem of
Morrey, noting that the right hand side of (4.5.13) is finite by (4.2.1) or

by (4.5.11)

THEOREM 4.5.2 (Morrey) If £ < le(B(xl,d) satisfies

lVflz < w2 pn—2+2B

B(xl,d)nB(xo,p)

for all =x_ € B(xl,d) and all p > 0 for some positive constants B and

0
M, then f ¢ CO'B(B(xl,d)) , and

lf(x) - f(y)l < e M Ix - yls
for all =,y E'B(xl,d) , where c, depends only on n .
For a proof, cf. e.g. [M3] .

The preceding proof of Thm. 4.5.1 was taken from [HJW]. It uses the
method of [HWl1l]. Different proofs of Thm. 4.5.1 were obtained by Eliasson

[Es], Sperner [Sp]l, and Tolksdorf [To].

4.6 APPLICATIONS TO THE BERNSTEIN PROBLEM

Actually, the dependence on the geometry of the domain in Thm. 4.5.1 can
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be considerably weakened. In [HIW], the following result is shown.

THEOREM 4.6.1 Let again B(p.M) ©¢ Y be a geodesic ball, disjoint to the cut

. 2 2
locus of p , with M < , where -w" < K £ k% are curvature bounds on

.
2K
B(p,M) .

Let D(0,2d) = {x ¢ R": |x| < 2a} be a coordinate chart on the domain

with metric tensor YQB(X) satisfying
(4.6.1) Ml 5 v g00 2P < g2, o<asu
for all x e D(0,2d) and all £ ¢ R .
If u : D(0,2d) > B(p,M) <8 harmonic, then for all x,y € D(0,d)
c B
d(u(x), uly)) < B d(x,y)
s}

for some B e (0,1 and ¢ > 0, depending only on n , dim¥ , w , K , M,

A, and W, but not on 4.

In the proof of Thm. 4.6.1, one has to use the Green function of the
Laplace~Beltrami operator of the domain instead of the approximate
fundamental solutions we use in the proof of Thms. 4.4.1 and 4.5.1. The
truncated functions gv(x,y) of section 4.3 have to be replaced by
mollifications of the Green function. The proof then yields the desired
result because one can control the Green function only in terms of the
ellipticity constants of the differential operator, i.e. by (4.6.1). The
required estimates for the Green function depend on Moser's Harnack inequality
and are carried out in [GW]. Also, Lemma 4.2.1 has to be proved in a
different way to get the stronger estimate, again using Moser's Harnack

inequality, cf. e.g. [GH].

Thm. 4.6.1 has the following
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COROLLARY 4.6.1 Let the manifold X be diffeomorphic to IR° , with a metric

tensor Yyg(x) (x ¢ RY) satisfying
Atglz < YG.B(X) EO{.EB < UIEIZ ; 0< A<y
for all £ e ® and x ¢ R,

Suppose u : X > Y 18 harmonic and u(X) < B(p,M) where B(p,M) again

satisfies the assumptions of Thm. 4.6.1.
Then u 18 constant.

Cor. 4.6.1 in turn can be used to prove Bernstein type theorems for
minimal submanifolds of Euclidean space, when combined with the following

result of Ruh and Vilms [RV].

THEOREM 4.6.2 Suppose F : M+ P is of class C° and immerses the
n~dimenstional manifold M into EBuclidean (n+p)-space. Then its Gauss map

G : F(M) ~ G(n,p) into the Grassmannian manifold of n-planes in (n+p)-space
endowed with its standard Riemannian metric is harmonic 1f and only if M is
immersed with parallel mean curvature field. This in particular is the case,

if FM) is a minimal submanifold of ®P

Cor. 4.6.1 and Thm. 4.6.2 yield the following Bernstein type theorem of

[HIW].

THEOREM 4.6.3 Suppose F : R >®’YP is g Ceimmersion and x = F(RY)
s minimal or has parallel mean curvature field. Suppose there exists a

fized oriented n-plane Py s and a number oy

i
[

1 if m
} m = min(n,p) , K™ =

(4.6.2) o > cosm[ ’
2K/m 2 if m =z 2

0
and

(4.6.3) <P,PO> p= Oto
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holds for all oriented tangent planes P of X .

Suppose also that the metric

(x) =F () F 5(x) (x e ®Y)

X X

Ya8 B

of ® is uniformly equivalent to the Euclidean metric in the sense of (4.6.1).

. . , +
Then, X is an affine linear subspace of wrP

The conditions (4.6.2) and (4.6.3) guarantee that the image of the Gauss
map of X 1is contained in a ball in G(n,p) which satisfies the assumptions

of Thm. 4.6.1, cf. [HIW].

If p=1, then m=kg =1 in (4.6.2), and hence Thm. 4.6.3 implies

Moser's weak Bernstein theorem:

An entire solution of the minimal surface eguation

div{—~——z£————- =0

/1 o+ |ve|?

with sup|VE| < o is linear.

- Note that in the strong Bernstein theorem the assumption sup |Vf| < @
is not necessary. On the other hand, this stronger version is only true for

n £ 7 , whereas Thm. 4.6.3 requires no restriction on the dimension.

The results of Thm. 4.6.3 seem to be also interesting, although probably

not optimal, in codimension p = 2 .

4.7 ESTIMATES AT THE BOUNDARY

In this section, we want to prove a-priori estimates at the boundary for

weak solutions whose image is contained in a convex ball.
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The following result can be found, e.g., in [GH].

THEOREM 4.7.1 Suppose wu : Q > B(p,M) <s harmonic, where B(p,M) again is a
ball with M < g% and disjoint to the cut locus of p . Suppose 9 is of
class c2 ., and k| = 2 for the sectional curvature of . If g = u|dn
18 continuous, then for every € > 0 we can find some & > 0 , depending on

W, K, M, A, i), dim Q , 3Q , the modulus of continuity of g , and on

€ , for which
(4.7.1) d(uly), u(xo)) <€ for v e 2 n B(xo,3) .
If g 4s Holder continuous with some exponent B , then

(4.7.2) ataly), ulxy)) < cdly - x for y e @ n B(x,,98)

o
ol
where o and Cy depend on w , K , M, B, A, i(Q) , 9Q , dim Q, and

lal 4 -
CB
Proof wW.l.o.g. n 2 3 . We need some definitions:
D(XO,R) = 000 B(x/R) .

If X, € of) , let ¢ : [0,1] * B(p,M) be the geodesic with ¢c(0) =p ,

c(l) = g(xo) , parametrized proportionally to arc length, and

pt := c(t) ,
v, = & (u(x),p,)
£ P -
Furthermore, let wt R be the solution of
7
A =
wt,R 0 on D(xO,R)

wt,RiaD(xO,R) = vt|3D(xO,R) .

As in the proof of Lemma 2.1.3 we derive for vy € D(xo,§3 ’
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. |R ki .
p < mln[;, BV :L(Q)]
(4.7.3) 7’"%7—— f Avt[ 1 5 - 12}dz < W, R(y) - vt(y)
-2)W n- n-
o n ‘D(y,p) d(y,z) o) !
A2 lwt,R - vi
* 2w n-2 dz
n ‘D(y,p) dl(y.,z)
using the fact that the boundary term on 3 vanishes by definition of LA
1
From the definition of vt and wt R’ we have
2 2 2
(4.7.4) vt(y) = d (u(y),pt) < (1+t) M
and
(4.7.5) (x) = v _(x) = d°(g(x),p,) < (1-t)2u?
-l Ye,R %0 e %o’ T @ 9B = :
We now want to exploit that the boundary values of W, p On R N D(XO,R)
’
are given by dz(g(x)ypt) , i.e. controlled by assumption. Namely, given

€' >0 and R > 0, R < Ro , there exists some number ¥ = r(e',R) (depending
. . 2
oneg' , R, M, 3 , and the modulus of continuity of d (g(x),pt) and

N D(xO,RO) with the property that

(4.7.6) wt,R(y) < wt'R(xO) + 5

for all vy e D(xo,r) . This is a result from potential theory (and can be
found, e.g., in [GT], Thm. 8.27).
If dz(g(x),pt) is Holder continuous, we even have

- 20
(4.7.7) wt,R(y) < wt,R(XO) + c|y - xol for y € D(Ao,r) B

where o , ¢ depend w , K , M, B, 30, and |g| g -
c

We now want to apply an iteration procedure, and put

- T
® S T Lo

e = min(M(1- (1-D)%),¢e)
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and tU := 1 , where U 1is the smallest integer with uE > 1 . Furthermore,

we start with some radius Ro < 1 and define

. -1 .
R, = min|—2=, r(e',Ri_l)} (i=1,...,0 ,
where ¥ 1is the same r as in (4.7.6).
Then, with
1
m, := max (vt CI
xeD(xO,Ri_l) i
by Lemma 2.1.1, (1.7.2), (4.7.3), (4.7.6) for vy e D(xO,Ri) ’ pi—l = %Ri—l
2 1 1
(4.7.8)  2Kkm, ctg(xm,) JD( ) | dul [ o7 n_z] + Vti(y)
eri_l -
2 2 2 2
< + < - ' <
wt.’R'(y) c26 RO (1 ti) M~ + € M
1 1
2

choosing RO so small that 026 RO

IA

L] .
55-. Furthermore,
kil
m, < = by (4.7.4) ,

and if mi < /2K , then by (4.7.8)

3 E .
(v )S(vt)+tM52K,
i+l i
. < .
ie. m . = /2K
Therefore, by induction,
n <L
w2k’

and again from (4.7.8) and (4.7.6)

2
<
vily) = wl,RU(Y) * e Rg =W

for all vy € D(XO'RU) .
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This gives the desired estimate of the modulus of continuity at the

boundary, putting § = R]J .

In case the boundary data are Holder continuous, we use (4.7.7) to get

dluly) yulxy)) < (Vl(y))%icly - x0|°‘ .

qg.e.d.

1

4.8 C -ESTIMATES

Having established H3lder continuity of weakly harmonic maps in Thms.
4.5.1 and 4.7.1, it is well known that these maps are actually of class Cl
(and hence of class Cz'u). Proofs of this assertion can be found in [LU] and
[G], and more specifically for harmonic maps in [GH] and [Sp]. Instead of
repeating those proofs, we contend ourselves to derive a-priori estimates for
the éradient of harmonic maps (i.e. already assuming that the map is regular)

which can be obtained in a very easy way following [JK1].

THECREM 4.8.1 Let % and Y be Riemannian manifolds, B(xO,RO) c X,

< minls ™ 2 2
R, mln(l(xo), 2Kx , where w, = KX S K, are curvature bounds on

A il 2 2
B(xO,RO) , and B(p/M) ¢ ¥ , M < min (1(p), %;] , where —wY < KY < KY are
curvature bounds on B(p,M) . If u : X > B(p,M) <s harmonie, then for all

<
R = RO
d(u(x), u(xo))
(4.8.1) |[Vu(z )| € ¢ o+ max ~————2—
0 6] R
2eB{x_,R}
6]

where c = cO(RO,wx,KX,dim X, M, W sy dim Y). .

Proof The proof is based on an idea of E. Heinz [Hzl] and similar to the one

of Lemma 2.8.3. Let dim X =n, dim ¥ = N . We define

U= max (RO - d(x,xo)) Idu(x)| .
xeB(xO,RO)
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Then there exists xl € (xo, O)

M (R

8]
and
(4.8.2)
Werput

da
We shall prove

6(60)

(4.8.3) u < ——2"—6'-'
where 60
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Swith

- Alx, %)) [dulx)) |

il
Idu(x )] < =
= RO - d(xl,xo) .
+ b 2 for all ©6 < ©

0

can be chosen sgo small (with the help of Thm. 4.5.1) that

§(8,)*b < 1 .

Then (4.8.1) follows as in the proof of Lemma 2.8. 3.

_We now use the functions Xk of Lemma 2.8.4 for g = u(xl) . Then
(4.8.4) BoJaue) | = Jakow (x)] .
d 1 ) 1
Moreover
(4.8.5) )Dzk],? c, ot where ¢, = c (W_,M,N) (cf. (2.8.33)
.8. < ey to‘r 1 1 (@gaM, . (2.8.3

and hence
(4.8.6) [A(koun) | < — | au| (cf. (1.7.2) .

0
Furthermore, dk is an 'isometry at u(xl) , and hence from (4.8.5)
(4.8.7) |ax(y)| = c, c, = Cy (W MIN, K ) (cf. Lemma 2.8.4) .
We put

§i= 8(0) := vt max - d(u(x), ulxy) ).
1
xeB(xl,dG)

By Thm. 4.5.1, &

small.

can be made arbitrarily small by choosing ©

sufficiently

At the moment, we need only
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8

IN

M.
By Lemma 2.7.5, putting AX = max(mX,Kx)
C3 f

ae” d(x,x,)=ao

,‘.04[ .___.I_A_]_{_O.E_L_..‘_ A2

c
d(x,xl)sdﬂ d(x,xl)n o 5 X

(4.8.8) g~= lakeu(x)) | < [k(u(x)) = k(ux)) ]|

[k(uG) = k(ulx)) ]

Id(x,xl).<_d9 d(x,xl)n-'1

By (4.8.7), [k(u(x)) - k(u(x))| £c 6 , and by (4.8.6),

2 % 2
dul SE.___L_._

0 0 a%(1-0)2

o]
1
[AGkon) | = =+

Estimating the integrals, we also get volume factors

sinh(AXdG) n-1
Axde

which will be included in the constants (ci > ci, i= 3,4,5) . Hence

2
clc.§ crcoeu
2 4 -
%~s :26 + L 3 0 + céAiczﬁ'de vol (s" l) ’
: t d(1-0)
0
or, assuming 0 <% w.l.o.g.,
§(6.)
Q b 2
< = <
u 75 + 5 M for all 6 90 .

i.e. (4.8.3). By definition of §(0) and Thm. 4.5.1, 6(60) can be made
arbitrarily small by choocsing OO sufficiently small, and the result follows
as in the proof of Lemma 2.8.3.

g.e.d.
At the boundary, we have

THEOREM 4.8.2 Let Q be a bounded domain in some Riemannian manifold, 39
of class c2 > and let u : Q > B(p,M) be harmonic, where B(p,m) satisfies
the same assumptions as in Thm. 4.8.1. Suppose u|dQ = ¢ e . Then

Ju] 1 = can be bounded in terms of the geometric quantities of Thm. 4.8.1,
CT (50
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bounds for the principal curvatures of o0 , || 5 and a lower bound for a
C
number T satisfying 0 < T < Eg—“ S , B(p,M+T) disjoint to the cut locus
Y
of p.

Proof The proof is again taken from [JK1] and refines an argument of [HKW1].

Let d(xo,aﬂ) =R . By Thm. 4.8.1, it suffices to show

0

max d(u(x), u(xo)) < cR. .

0
xeB(xO,RO)
This in turn follows, if
<
(4.8.9) d(u(xz), u(xl)) < cRO
i = <
in case ® € o, d(xo,xl) RO , d(xo,xz) < RO .

We choose some number T > 0 as described in the statement of the

theorem; w.l.0.9g.
(4.8.10) T < — .

By Lemma 2.4.1, any two points in B(p,M+T) can be joined by a unique

geodesic arc inside B(p,M+T) .

By Thm. 4.7.1, we can calculate Rl > 0 with the property that for all

< R % e
RO 1 and x € n B(xO,ZRO) , x1 as above

(4.8.11) dlu(x), ulx))) < % )

If u(x) # u(xl) , we connect u(x) to u(xl) by a geodesic arc and continue
this arc beyond u(xl) until a distance T . We thus reach some point

q(x) e B(p,M+T) .
By Thm. 4.7.1 again, we can find some subdomain QO c Q satisfying

(4.8.12) B(xO,RO) c QO
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(4.8.13) Qn B(xl,5) c QO for some § > 0

(4.8.14) u(@) < B[q(x), EZ—J for all x € B(x,,R)) (cf. (4.8.10))
2

(4.8.15) M et .

We then fix =x. € B(xo,RO) , assume u(xl)# u(xz) w.l.0.9., and put

2
q = q(xz) .

By (4.8.14)

2
vix) = d (u{x),q)
is subharmonic in QO .

Let h be the harmonic function on QO with the same boundary values,

i.e.
Ah = 0 in QO
(4.8.16)
hix) = dz(u(x),q) for x € BQO .

By the maximum principle
(4.8.17) v < h in QO .
Now

dluley), ulx,)) = dlulx,),@ - dlalx),q) by choice of q

1 2 2
5T (d (u(xz),q) - d (U(xl},q))

A

N

1
o7 (h(xz) - h(xl)) by (4.8.16) and (4.8.17) .

Thus, (4.8.9) follows from a Lipschitz bound for the harmonic function h at

the boundary, which in turn follows from standard barrier arguments, taking

(4.8.12), (4.8.13), and (4.8.15) into account, cf. [GT], chapter 13.

g.e.d.

Different gradient estimates were provided by Giaquinta-Hildebrandt [GH],
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Sperner [Spl, and Choi [Ci] (only interior estimates). The latter two papers

employ an auxiliary function introduced by Jiger-Kaul [JEK2], cf. 4.11.

4.9 HIGHER ESTIMATES

If we write the eguations

_E_NYOCB__B__UJ'.]_'_OLBF 3u 9_1}___“_0
9% 67 TK 5 5y

L

VY
in terms of harmonic coordinates on domain and image, then the regularity
properties of harmonic coordinates (cf. section 2.8) immediately imply Cz'a—
estimates for harmonic maps, again depending only on curvature bounds,

injectivity radii, and dimensions, using standard results from potential

theory. We have the following result of [JK1].

THEOREM 4.9.1 Suppose that the assumptions of Thm. 4.8.1 hold and T is
R
0 .
o0’ —EJ is bounded

in terms only of the quantities appearing in Thm. 4.8.1 and T . A

chosen as in Thm. 4.8.2. Then the c* -nowm of u on B[x

corresponding result holds at the boundary, provided 90 and u|d3Q are of

class o2 (for all a e (0,1) ). Similarly if u|dQ is only of class

140 1+0Q,

¢, then wec () with appropriate estimates.

Finally, Thm. 2.8.3 implies

THEOREM 4.9.2  If under the assumptions of Thm. 4.9.1 the Riemann curvature

. R +
tensors of domain and image are of class & op Ck 8 (ke w, Be (0,1) ),

, + + R
then u 1is of class Ck 2 or Ck+3 B . resp., and the corresponding

estimates depend in addition on the & or Ck+8-norm, resp., of the
eurvature tensors., A similar statement holds at the boundary, provided 3%

and u|d are sufficiently regular.
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4.10 THE EXISTENCE THEOREM OF HILDEBRANDT-KAUL-WIDMAN

In this section, we shall establish the existence of a weakly harmonic map
with given boundary data contained in a convex ball which admit an extension
with finite energy. This map will be obtained as the minimum of energy among
maps with image in this ball. The results of the preceding sections then

imply regularity of this map, and hence we can solve the Dirichlet problem.

A useful tool will be the following maximum principle for energy
minimizing maps which is taken from [J6] and based on the same idea as the one

in [H1], Lemma 6.

LEMMA 4.10.1 Suppose that B, and B, » By < B , are closed subsets of a

Riemannian manifold N . Suppose that there exists a projection map

mTs: B, *B
OI

which is the identity on B, and which is of class el and distance

decreasing outside B, > T.e.

|dﬂ(v)[ < ‘vl if vetTN, v#O0, X € Bl\BO .

If h: Q- By 18 an energy minimizing W; mapping with respect to fixed

boundary values which are contained in B, » Z.e.

(4.10.1) h(oQ) < BO '

then we also have
n(f) < BO ’
1f we choose a suitable representation of the Sobolev mapping h .
Proof since !dﬂ(v)| < ]v] for every nonzero Vv € TXN ;) X € Bl\BO , and

since Teh € W;(Q,N) ;, we would have
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E(m°h) < E(h) ,

contradicting the minimality of h , unless dh = 0 a.e. on h"l(Bl\BO) .
Thus dh = dneh a.e. on § , and since h and Toh agree on R by
(4.10.1), we conclude from the Poincaré inequality that meh = h a.e. on Q ,

which easily implies the claim.

LEMMA 4.10.2 Suppose that B, and B, , By < By , are compact subsets of a
Riemannian manifold N , and that every point in Bl\Bo can be joined to BBO
by a unique geodesic normal to SBO s and that the distance between every pair
of such geodesics normal to BBO 18 in Bl\BO always bigger than on SBO .

Then the same conclusion as in Lemma 4.10.1 holds.

Proof we project Bl\BO along normal geodesics onto BBO and apply Lemma
4.10.1.

g.e.d.
We shall see another useful consequence of Lemma 4.10.1 in chapter 5.
We are now ready to prove the existence of a weakly harmonic map.

LEMMA 4.10.3 Suppose B(p,M) <s disjoint to the cut locus of p , and

i ,
M < o= where, as usual, K2 is an upper curvature bound.

If g:9 > B(p,M) , Q being a bounded domain in some Riemannian manifold,

has finite energy, then there exists a weakly harmonic map u : § - B(p,M)

with u-g € ﬁ;(Q,B(p.M)) . u minimizes the energy among all such maps.
Proof since the cut locus of a point p is a closed set, we can find Ml .
il
M < Ml < P for which B(p,Ml) is still disjoint to the cut locus of p .
1 1
We take a minimizing sequence for the energy in V := {v e HZ(Q,B(p,M ))

v-g € %;} . Note that g ¢ V and hence V # 0 . Such:a Sequence has a

subsequence converging weakly in Hl , and the limit, denoted by u ,

2



121

minimizes energy in V because of the lower semicontinuity of the energy

integral (cf. Lemma 1.3.1).

o= B(®M and B = B(p,MY) . If c(,t) is a smooth

family of geodesics with <¢(0,t) = p , c(l,t) € BB(p,Ml) , then (2.2.5)

We then put B

. . ) .
implies that the Jacobi fields Jt(s) = gz-c(s,t) are monotonically
increasing for s € [0,1] . Hence the assumptions of Lemma 4.10.2 are

satisfied. Therefore, u() < B(p,M) .

. . . . . . N .
We identify B(p,Ml) with its image in IR under normal coordinates

1

5 n Lm(ﬂ,ﬂgﬁ , we infer that for sufficiently small

centred at p . If N e ﬁ
|t| >0 , u+ tn still maps §! into B(p,Ml) . Hence u + tn is a valid
comparison map, and since u was minimizing, differentiating E(u + tn)
w.r.t. t at t =0 implies (4.1.2), i.e. that u is weakly harmonic.
d.e.d.

Remark As easy examples show the map u constructed in Lemma 4.10.3 need not

R . 1 .
be minimizing among all maps v : £ > Y with v-g € f (Y is a target

2
manifold containing B(p,M) ) , not even among maps which are homotopic to u.

Hence, u in general is only a local minimum of energy.

. Lemma 4.10.3 together with the regularity results of the previous

sections imply the existence theorem of Hildebrandt-Kaul-Widman [HKW3].

THEQREM 4.10.1 Suppose again that B(p,M) <is disjoint to the cut locus of p

and M < » where 2 is an upper bound for the sectional curvature of

I
2K
B(p,M) . If Q <s a bounded domain in some Riemannian manifold and
g : 2~ B(p,M) has finite energy, then there exists a harmonic map

e QBMEM) (0<a<1l) with ug e I?I;'(Q,B(p'M)) . At M, u is as

regular as g and 00 permit.

Actually, one can solve the Dirichlet problem for any continuous map
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w: 32 > B(p,M) , i.e. find a harmonic map u ¢ c2'%(2,B(p,M)) n cO (@B (p,M))
with u|dQ = w , without assuming that w admits an extension of finite
energy. In orxder to achieve this, one has to combine the a-priori estimates
of the preceding sections with Leray-Schauder degree theory instead of using
variational methods. For this, one first deforms w into constant boundary
values, mapping of) onto p and then multiplies the nonlinearity in (1.3.1)
by a parameter A , A ¢ [0,1]. Such a twofold deformation process was

applied in [HKW2], for instance.

4,17 THE UNIQUENESS THEOREM OF JAGER-KAUL

In this section, we want to prove the uniqueness and stability theorem of
Jager-Kaul [J&K2] for solutions of the Dirichlet problem with image contained

in a convex ball.

THEOREM 4.11.7 Suppose that wu, : Q+v, i=1,2, are harmonic maps of
class cO(Q,Y) n CZ(Q,Y) , Q 1s a bounded dqmain in some Riemannian manifold,
and ui(ﬁ) c B(p,M) , where B(p,M) s a geodesic ball in Y , disjoint to
the cut locus of p and with radius M < L (? s upper bound for the

2K
sectional curvature of B(p,M) ).

Then the function 6 ,

qK(d(ul(X),uz(x))

0G) 2= cos(Kd(p,ul(x)))'cos(Kd(p,uz(x)))
1 .
) (1 - cos kt) , if kK>0
(g (8) =1,
t ) _
-5- y if kK=0) ,
satisfies the maximum principle
(4.11.1) sup O < sup 6 .

Q2 o0
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In particular, if ul]BQ = u2|BQ , then

ul:uz.

The proof of Thm. 4.11.1 will actually show that we have strict
inequality in (4.11.1) unless 0 = const. Furthermore, Thm. 4.11.1 also holds

for weakly harmonic maps (cf. [J&K1]).

Proof we assume that 6 has a positive maximum at some interior point

x € . Then, 0 is positive in a neighbourhood of x_. , and log 8 > -®

0 0

in this neighbourhood.

We define

iz (1 - cos kd(u, (x) ,u, (x))) if k>0
Y(x) := QK(ul(x).uz(x)) ={"
1 .2 . -
[5 d (ul(X),u2 (%)) if K=0
d)i(X) = cos(kd(p,u; (x))) i=1,2.

Then 0 = 6—%%;—, and consequently
1 "2
grad ¢l grad ¢2

(4.11.2) grad log O = grad § _ - B
v 3 X

and

2 2
1 2 iy 5 3 5 .
v 1 ¢ 5 o

(4.11.3) Alog®

it

Since x * u(x) (ul(x),uz(x)) € B(p,M) X B(p,M) 1is also harmonic, we can

make use of the chain rule (1.7.2) in order to apply Lemma 2.5.1. This yields

2
(4.11.4) N J—g%%ﬂ—- »<21p(|dull2 + lduzlz) ,
since

lgrad 9] = = <(grad g ou, aule)>’
[¢3

where ey is an orthonormal frame on £ .
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Similarly, from (2.5.2), since

9, () = 1 - K°Q (B, ()

we obtain
2 2
(4.11.5) A9, (x) < -k ¢i|duil .

Finally, by (4.11.2),

2 2
| grad wiz 1grad ¢l| lgrad ¢2l
+ +

2 2 2

> - <grad log 0, ¥ grad log © +

(4.11.6) =%

grad ¢ grad ¢
1 . 3 2> .
¢1 2

Putting
grad ¢l grad ¢2

+
¢1 ¢2

k(x) := % grad log O +
and plugging (4.11.4), (4.11.5), and (4.11.6) into (4.11.3), we obtain
A log 0 + <grad log 9, k(x)> = 0 .

Therefore, the assumption that © has a positive maximum in the interior

contradicts E. Hopf's maximum principle, and Thm. 4.11.1 is proved.



CHAPTER 5
HARMONIC MAPS BETWEEN SURFACES

5.1 NONEXISTENCE RESULTS

In this chapter, we want to present the existence theory for harmonic
maps between closed surfaces, possibly with boundary. In the two-dimensional
case, the regularity theory for minimizing maps is very easy, and the local
geometry of the image does not lead to any difficulties in contrast to the
situation we encountered in chapter 4 (cf. the example in section 4.1). This
allows us to investigate in more detail what obstructions for the existence of

harmonic maps are caused by the global topology of the image.

We first want to show some instructive nonexistence results which
illustrate the difficulties we shall encounter later on when we try to prove

existence results by variational methods.
Lemaire [L1] showed

PROPOSITION 5.1.1 There is no nonconstant harmonic map from the wnit disc D

onto  s° mapping 9D onto a single point.

Proof Suppose u : D~ 82 is harmonic with w(3D) = p € 52 . Since the
boundary values of u are constant, u 1s also a critical point with respect
to variations wuey , where Y : D > D is a diffecmorphism, mapping 0D onto

itself, but not necessarily being the identity on 9D .

Thus, one can use a standard argument to show that u 1is a conformal
map (cf. [L1] or [M3], pp.369-372). Since u is constant on 0D one can
extend it by reflection as a conformal map on the whole of IR2. But then

this conformal map is constant on a curve interior to its domain of
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definition, namely 9D , and thus has to be constant itself.

g.e.d.

The same argument was used independently and in a different context by

H. Wente [Wt]l.

One can obtain examples of homotopy classes which do not contain energy
minimizing maps by making use of the following special case of a result of

Morrey [M2].

LEMMA 5.1.1 For every € > O there exists amap %k : D =+ g2 of degree 1,

mapping oD onto somevpoint p € s? and satisfying
(5.1.1) E(k) < Area(s?) + e .
Such a map k 1s called e-conformal.
Proof of Lemma 5.1.1 wWe divide S° into B(p,8) and 32\3(9,6) .

All the maps to follow will be understood to be equivariant w.r.t. the

rotations of D and to those of S2 leaving p fixed.

First of all, for sufficiently small ¢ , we can map {zeaq: $ <z <1}
onto B(p,8) , {|z] = %} going onto 9B{(p,8) and {|z| = 1} going onto p
with energy smaller than € . On the other hand, {zet: |z| < 4} can be

mapped conformally onto SZ\B(p,ﬁ) , {]z] = #} going again onto 9B(p,S) ,
and the energy of this map, since conformal, equals the area of its image and
is hence smaller than the area of 82 . This proves the claim.

g.e.d.

It is guite instructive to look at the second map of the proof mere
closely. If we stereographically project 52 onto & , choosing the

. - . 2 .
antipodal point p of p as the origin, S \B(p,§) is mapped onto
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{]z] £ N} with N+ as § > 0. The conformal map used above is then just
given by =z + 2Nz . Thus; the preimage of {|z| < 1} , which corresponds to
the hemisphere centred at p , under this map is {lz[ < 5%& , i.e. shrinks to
a single point as N + « . In this way, we see how a singularity is created
in the limit of an energy minimizing sequence of degree 1 from D onto 52 '

mapping 0D onto p .

This heuristic reasoning will be made precise in Prop. 5.1.2 below, with

the help of the following easily checked

LEMMA 5.1.2 If £ : Zl > Z2 18 a map between surfaces, then

(5.1.2) Area(f(zl)) < E(£) ,

where the area is counted with appropriate multiplicity. Furthermore,

equality holds in (5.1.2) if and only if £ <s conformal.

As a consequence, we have for example the following result, again due to

Lemaire [L1l].

PROPOSITION 5.1.2 Let o be a homotopy class of maps of degree 1 from a
closed surface L of positive genus onto s? . Then the minimum of energy is

not attained in o .

Proof Let B be any disc in I and let € > 0 . Since B is conformally
equivalent to the unit disc D , Lemmata 5.1.1 and 1.3.2 imply that we can
find amap k : B *> S2 of degree *1 , mapping 0D onto some point p , and
satisfying (5.1.1). If we extend k to all of X by mapping IL\B onto p ,

then k : I > S2 still satisfies (5.1.1) and is of degree *1 .

If there would be an energy minimizing h in o , then h would have to
satisfy consequently

E(h) = Area(Sz)
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by Lemma 5.1.2, and would hence have to be conformal, by Lemma 5.1.2 again.
On the other hand, a conformal map of degree *1 has to be a diffeomorphism
which is not possible since I is by assumption not homeomorphic to 52 .
g.e.d.
The following example where some homotopy classes contain harmonic
representatives, while others do not, is again based on the ide; of Lemaire

{L1].

Let D be the unit disc in the complex plane, and k : D = 52 be a

conformal map mapping D onto the upper hemisphere and 09D onto the equator.
Furthermore, suppose that k is equivariant with respect to the rotations of

D and 82 (the latter onesleaving the north and south pole of S2 fixed).

We choose the orientation on 52 in such a way that the Jacobian of k

is positive.

Let D{0,r) be the plane disc with centre 0 and radius r (i.e.

D =D(0,1)) .

Let hr be a map from D(0,r) onto 52 which maps 0OD(0,r) onto the
north pole, is injective in the interior of D{(0,r) and has a positive
Jacobian therg, and is ¢e-conformal. We introduce polar coordinates (P,¢)
on D and define for 0 < r < 1 the mapping kr by

1 .
k(i-:;p-%—f——,cb] if r £

N
©
IA
=

r=1
kr(pld)) =
h (0, ) if 0

A
o
in
Lt

Using Lemma 5.1.1 it is easy to see that the energy of kr can be made

arbitrarily close to 67 if we choose r > 0 sufficiently small.

On the other hand, 67 is just the area of the image of kr , counted

with multiplicity. Hence, if there is an energy minimizing map homotopic to
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kr , its energy has to be 67 , and it therefore has to be conformal. Since
the boundary values are equivariant, this conformal map itself has to be
equivariant (otherwise there would exist infinitely many homotopic conformal
maps with the same boundary values which is not possible). This, however,
implies that it would have to collapse a circle in D to a point which is
not possible for a conformal map. Hence there is no energy minimizing map

homotopic to kr .

By letting hr cover 82 more than once, we obtain other classes
without energy minimizing maps by a similar argument. If hr , however, has
degree -1 , then kr is homotopic to a map of D onto the lower hemisphere
and hence homotopic to an energy minimizing map. Hence, in this example,
there are precisely two homotopy classes which contain energy minimizing maps,

while all the others do not.

The preceding example is discussed in [BC2] by means of explicit

calculations.

While Prop. 5.1.2 only excluded the existence of an energy minimizing

map, one can even show

PROPOSITION 5.1.3 I1f Zl is diffeomorphic to the two-dimensional torus, and
22 to g2 » then there is no harmonic map h : Zl > 22 of degree

d(h) = %1 , for any metrics on Zl and 22 .
This result was obtained by Eells-Wood [EW] as a consequence of their

THEOREM 5.1.1 Suppose that Zl and 22 are closed orientable surfaces,
X(Z) denotes the Euler characteristic of a surface T , and d($) is the

degree of a map ¢ .

Suppose h : Zl > 22 18 harmonic with respect to metrics <Y and g on
)
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L., and 22, resp. If
X(Z) + lam | [x@y| > o,

then h <1s holomorphic or antiholomorphic relative to the complex structures

determined by vy and g .

Thm. 5.1.1, together with the existence theorem of Lemaire and Sacks-
Uhlenbeck, to be proved below, also enabled Eeels and Wood to give an

analytic proof of the following topological result of H. Kneser [Kn2]

THEOREM 5.1.2 Suppose again that Zl and L, are closed orientable
surfaces, and furthermore X(Zz) < 0. Then for any continuous map

¢ Zl - 22

(5.1.3) la() | X(Z,) = x(T) .

Proof of Theorem 5.1.2 We introduce some metrics Y and g on Zl and

22 ; resp., and find a harmonic map h homotopic to ¢ by Thm. 5.3.1. By
Thm., 5.1.1, h is (anti) holomorphic in case ld(¢)| X(Z2) < X(Zl) . This,
however, is in contradiction to the Riemann-Hurwitz formula, which says
Id(h)l X(ZZ) = X(Zl) + r , r 2 0 for an (anti) holomorphic map h . There-
fore, (5.1.3) must hold.

q.e.d.
Before proving Thm. 5.1.1, we note another consequence

COROLLARY 5.1.1 If I, is diffeomorphic to S° , then any hammonic map

h s 21 - 22 18 (anti) holomorphic (and therefore constant, if X(Zz) <0) .

This is due to Wood [Wl] and Lemaire [L1].

Cor. 5.1.1 also follows from Lemma 1.3.4, since there are no nonzero

holomorphic quadratic differentials on 32 which easily follows from
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Liouville's theorem.
We need some preparations for the proof of Thm. 5.1.1.

We shall make use of some computations of Schoen and Yau {SY}] in the
sequel. It is convenient to use the complex notation. If pz(z) dzdz and
02(h) dhdh are the metrics w.r.t. to conformal coordinate charts on Zl and
22 , resp., then h as a harmonic map satisfies

20h
(5.1.4) h - + ——h _h-
zZz o zz

=0, cf. (1.3.4) .
LEMMA 5.1.3 At points, where Bdh or 3h , resp., 18 nonsero

(5.1.5) A log|on|?

2 w12
K, - Kz(lahl - |39

(5.1.6) A 1og|3n|?

2 = 12
Kl+K2(lahl - 8|5 ,

where K, denotes the Gauss curvature of Zi s and

2 o2 -
|3n]" = = n_-h-, | 3h

o P

Proof For any positive smooth function £ on Zl B

1 1
(5.1.7) A log £ = F: Af f2 P fzf§ .
Furthermore,
(5.1.8) A lo L = K
1. g p2 o

In order to abbreviate the following calculations, we define D as the

covariant derivative in the bundle h-l Tz

5 ¢ -9
D h =h + ESE hh
3/9z Tz zZ o zz°

(5.1.4) then is expressed as

(5.1.9) DB/BZ hE =0 .
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Since

-1 4
nTE,
2, = _ 1 39 = .
(5.1.10)  Ao“p - = % <Eb/az L h§> , using (5.1.9)
1

5 (Dy/23P0 /00,0 B3) + piz G D3/35§5>

3 3 - _
= R[h*['ai]' h*{ﬁz"}' by hE] * ;lE (Dy/52P57 Dy/a30z)

©

where R denotes the curvature tensor of 22

2. 1 -
= -Kzlahl J(h) + —p3 <Da/az L D8/3§h§> .

where J(h) = lBhIZ - |Shlz is the Jacobian of h . Moreover,
(5.1.11) ‘L‘—§"<h h-> ° i <h , h=> = —£'<h h-> <D h , D h—>
T 20z “z' 'z 9% Tz TZ 2 V2" 2 N9/dz 2’ 9/0z 2/ ]

P p

using again (5.1.9), and the fact that the complex dimension of 22 is 1.

(5.1.5) now follows from {(5.1.7), (5.1.8), (5.1.10), and (5.1.11), and
(5.1.6) can either be calculated in the same way or directly deduced from
(5.1.5), since ]5h12 = |35[2 and complex conjugation on the image can be

considered as a change of orientation.

g.e.d.

LEWMA 5.1.4 If n_(z,) = 0 , then

(5.1.12) lon|? = - |x|? near z = z_ ,

where T 1is a nonvanishing C2 function, and k is holomorphie. A

corresponding result holds for he .
Proof By (5.1.4), £ := hZ satisfies

le-| < o] .
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Therefore, we can apply the similarity principle of Bers and Vekua (cf. [B]
or [Hzl]), to obtain the representation (5.1.12) with HOlder continuous (¢ .
An inspection of the proof of the similarity principle shows that in our case
[ C2 (cf. [Hzl], p.210). (We note that a similarity principle can be
derived from Cor. 5.5.2 below which also contains the existence of solutions

of Beltrami equations, cf. [BJS].)

qg.e.d.

Proof of Theorem 5.1.1 Lemma 5.1.4 shows that the zeros z, of |8h|2 are

isolated, unless oh = 0., and that near each zi .

By
)

n,
|3h|2 =alz-z,]| "+ ollz - z,|
i i i

for some ai > 0 and some ni e N .

By Lemma 5.1.3 and the residue formula, unless dh = O

(5.1.13) f K - f . (|an|? = |3n|%) = -In, .
1 2 i
z X
1
Similarly, if oh # O ,
2 -2
(5.1.14) f K, + f K, (|3n]“ - |3n]%) = -Im,
5 1 T 2 i
1 2
where m, € IN are now the orders of the zeros of |§h]2 . Thus, since
|3hl2 - Ighlz is the Jacobian of h ,
X(Zl) - d(h) X(Zz) <0, unless Jh = 0
and
X(Z;) +dm) x(E,) <0, unless 8h = O ,

and Thm. 5.1.1 follows.
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5.2 SOME LEMMATA

In this section, we want to derive some tools for our existence proofs.

First of all, we note

LEMMA 5.2.1 Suppose B, i8 a geodesic ball with centre p and radius s ,
s < %‘min(i(p), m/2k) , where > is an upper bound for the sécﬁional

curvature of N and 1i(p) <s the injectivity radius of p. If h: Q-+ N
18 energy minimizing among maps which are homotopic to some map g : § -~ By s

and 1f h(3Q) c B then also

0 ?
h(Q) < BO .

(for a suitable representative of h , again).

Proof By assumption, we can introduce geodesic polar coordinates (r,¢) on

B(p,38) (0 = r £ 3s) .

We define a map 7 in the following way:

m(x,$) = (r,$) if r < s
m{r,$) = (3(3s~x),9) if s<r< 3s
m(q) = p if g e N\B(p,3s) .

(Here, we have identified a point in B{p,3s) with its representation in

geodesic polar coordinates.)

Using Lemma 2.2.1, it is easily seen that 7 can be approximated by a
map satisfying the assumptions of Lemma 4.10.1.

g.e.d.

Moreover, we have the following result, based on an idea of Lebesgue and

extensively used by Courant in his study of minimal surfaces {cf. e.g. [Col).
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Suppose §! is an open subset of some two-dimensional Riemannian manifold

~ of class C3 , while S is any Riemannian manifold.

2

LEMMA 5.2.2 Let e Hy(%S) , Ew <D, x, ¢ %, -A* a lower bound for

0

the curvature X of L , § <min(l, 1(2)2, l/kz) . Then there exists some

r e (8,/8) for which u|8B(xO,r) n § is.absolutely continuous and
1 1
d(uxy) s ulx,)) <4mD?*(log 1/6) *

for all X 5 X, € BB(xo,r) n .

2
Proof we introduce polar coordinates on B(xo,r) , i.e.
as? = ar? + c%(z,0) a0® .

Since K = - —éﬁ (cf. [Bl], p.153) and G(0,0) = 0 , we infer

(5.2.1) G(xr,0) < 1/\ sinh Ar .

Now for xl ’ xz € BB(xo,r) and almost all r , since u 1is a Sobolev

function ulBB(xO,r) is absolutely continuous and

A

2T
(5.2.2) dulx)), ulx,)) < IO lug (x) ] a8

am [Jzﬂ luelz d@]%

A

where we assumed w.l.0.g. B(xo,r) <.

The Dirichlet integral of u on B(xo,r) is

1

E(u;B(xo,r))=2

2 1 2
[ (a1 + L lugl?) o s as .
B(xo,r) G

Thus, we can find some r € (5,/3) with

2
2 2D 2D
(5.2.3) [o lug (x,6) [ a0 < . = Tog 1/p
J L a8
s 6.8
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since for r< /8§ < 1/\ , G{(r,0) < 2r by (5.2.1).

The lemma follows from (5.2.2) and (5.2.3).

g.e.d.

Finally, we shall need the two-dimensional version of Theorem 4.10.1.
This also follows from Morrey's work on the minima of two-dimensional
variational problems. We shall present a proof which already illustrates
some of the ideas of the arguments in later sections and is based on Lemmata

4.10.2 and 5.2.2.

LEMMA 5.2.3 Suppose 30 # 9 , B(p,M) <s a disc in some surface T with
radius M < g&-, where K2 > 0 1s an upper bound of the Gauss curvature of
Bip,M) , and g : 00 » B(p,M) <s continuous and admits an extension

56 Hé(Q:B(PrM)) .+

Then there exists a harmonic map h : Q > B(p,M) with boundary values
g, and h minimizes the energy with respect to these boundary values. Vice
versa, each such energy minimizing map is harmonic. The modulus of continuity
of h can be estimated in terms of X , i(Z;) , M, K , and E(g) and the

modulus of continuity of g .

Proof (The idea is taken from the proof of Thm. 4.1 in [HW1l].) As in Lemma
4.10.3, we find a weakly harmonic map which minimizes energy among all maps

into B(p,M) with boundary values g .

By Prop. 2.4.2, every two points in B(p,M) can be joined by a unique
geodesic arc in B(p,M) , and this avxc is free of conjugate points. Suppose

q e Blp,M) , vy and v are unit vectors in TqZ , and ¢ are the

2 1'%

geodesic parametrized by arc length and starting at g with tangent vectors
T . ; 1 . .
Here, we can again define H2(Q,B(p,M)) unambiguously with the help of the

global coordinates on B(p,M) given by expP .
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v,,v, . By Lemma 2.3.1

1’72

sin (tl
!V - v _1n(|<)

1 2| o S dle (8), o, (k)

as long as cl(t), cz(t) € B(p,M) .

Therefore, on B(p,M)\B(g,c) , with the help of (2.2.4)

.sin(ZMK)] »

d(c (t), c, (1)) = min[d(cl(e), e, (€)), ]vl - v2| e

Consequently, there exists €. > 0 with the property that B_ := B(q,e)

0 0

n B(p,M) and Bl := B(p,M) satisfy the assumptions of Lemma 4.10.2 for

every g € B(p,M) and every € < 80 . Lemma 5.2.2 then implies that for

each x e {0 there exists a sufficiently small p > 0 with the property that
h(B(x,p) n Q) < B(g,€)

for some q € B{(p,M) . p depends on € , A, i(R) , the energy of h (which

is bounded by the energy of g ), and the modulus of continuity of g .

Therefore, Lemma 4.10.2 implies the continuity of h . Higher
regularity then follows as in chapter 4.

g.e.d.
5.3 THE EXISTENCE THEOREM OF LEMAIRE AND SACKS-UHLENBECK

We are now in a position to attack the general existence problem for

harmonic maps between surfaces.

For this purpose, let Zl and 22 denote compact surfaces, 322 =0,

but Zl possibly having nonempty boundary. Let ¢ : Zl - 22 be a
continuous map with finite energy. We denote by [¢] the class of all

continuous maps which are homotopic to ¢ and coincide with ¢ on 821 , in

case 821 # 0.
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We choose s = %~min(i(22), T/2K) , where K2 > 0 is an upper

curvature bound on 22 , and i(Zz) is the injectivity radius of 22 .

Let 60 < min(l,i(Zl)z, 1/A2) { —XZ being a lower bound for the

curvature of Zl ) satisfy
3 -1
(5.3.1) 2m * E{()° (log 1/60) 2 <sg/2,

where E(¢) is the energy of ¢ , and

=
(5.3.2) d(xl,xz) < Vdo d(¢(x1), ¢(x2)) < s/2 for Hyo¥, € 821 R
Let 0< 6 < 50 - There exists a finite number of points x, ¢ Zl ,

i=1,...,m=m(8) , for which the discs B(xi,6/2) cover Zl .

We let u, be a continuous energy minimizing sequence in [¢],

E(un) = E($) w.l.0.g. for all n .

Applying Lemma 5.2.2 and using (5.3.1) and (5.3.2), for every n , we

can find ¢ §<x < Y8 , and P, g€ L. with the property that
7

n,1l’ n,1 1 2

(5.3.3) _ un(BB(xl,rn,l)) c B(pn'l,S)
where we defined O0B(x,r) = d(B(x,x) n L) .

We now have two possibilities:
either
1) There exists some ¢ , 0 < § < 60 , with the property that for any
X € Zl , some r (depending on % and n ) with § < r < V8 and with
un(§B(x,r)) c B(p,s) for some p € 22 , and every sufficiently large n ,
unlB(x,r) is homotopic to the solution of the Dirichlet problem
g :B(x,r) +~ B{p,s)

(5.3.4) _ _ harmonic and energy minimizing
g|dB(x,7) = un‘BB(x,r)
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(The existence of g is ensured by Lemma 5.2.3; g is actually unique by
Thm. 4.11.1, but this is not needed in the following constructions.)

or

2) Possibly choosing a subsequence of the u, s we can find a sequence of

points x € Y. , and radii rn >0, xn > X €L

1 o 10 rn + 0 , with

un(aB(xn,rn)) c B(pn,en) for some p e 22 N 22 v €l -+ 0 (using
Lemma 5.2.2), but for which un[B(xn,rn) is not homotopic to the solution

of the Dirichlet problem (5.3.4).
In case 1), we replace un on B(xl,rn ) by the solution of the

/1

Dirichlet problem (5.3.4) for =x = x and r = . We can assume

1 rn,l
o > rl and, using the interior modulus of continuity estimates
7
for the solution of (5.3.4) (cf. Lemma .5.2.3) that the replaced

maps, denoted by ui B converge uniformly on B(xl,é—n) , for any

0<n<d&8 . By Lemma 5.2.1
(5.3.5) E(ul) < E(u)
e Je un = ' -

By the same argument as above, we then find radii = §< r, 2‘< VS , with
7

n,2’

1
un(BB(xz,rn'z)) c B(pn’z,s)
for points P,5 € 22 .
14

Again, we replace ui on B(xz,rn 2) by the solution of the Dirichlet
14

problem (5.3.4) for x = x and r = oo We denote the new maps by ui .
‘ £

i ° - - a > .
Again, w.l.0.9., rn,z r,

If we take into consideration that, by the first replacement step, ui
in particular converges uniformly on B(xz,rz) n B(xl,ﬁ-n/Z) , if 0<n<§,
we see that the boundary values for our second replacement step converge

uniformly on SB(xz,rn,z) n B(X1,5~ﬂ/2) .
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Using the estimates for the modulus of continuity for the solution of
(5.3.4) at these boundary points (cf. Lemma 5.2.3) we can assume that the maps

ui converge uniformly on B(xl,d—n) U B(xz,é—n) , if 0<n< 2§ .

Furthermore, by Lemma 5.2.1 again and (5.3.5)
2 1
< < .
E(un) < E(un) E(un)

In this way, we repeat the replacement argument, until we get a sequence

m .
u_ =: v_ , with
n n

(5.3.6) E(Vn) s E(un)

which converges uniformly on all balls B(xi,6/2) , i=1,...,m , and hence

on all of Zl ;, since these balls cover Zl .

We denote the limit of the v by u . By uniform convergence, u is

homotopic to ¢ .

Since E(vn) < E(p) by (5.3.86), the v, ~converge also weakly in Hé to
u , and by lower semicontinuity of the enexgy w.r.t. weak Hi convergence and

since the v, area minimizing sequence by (5.3.6), u minimizes energy in

its homotopy class.

In particular, u minimizes energy when restricted to small balls, and
hence it is harmonic and regular by Lemma 5.2.1 and Lemma 5.2.3. Observing
that if ﬂ2(22) = 0 , any two maps from a disc into 22 are homotopic, we

obtain

THEOREM 5.3.1 Suppose Dl and L, -are compact surfaces, A, =P, and

my(Z,) =0 . If ¢ : oI, is a continuous map with. finite energy, then
there exists a harmonic map u : I, > L, which s homotopic to ¢ ,
cotneides with ¢ on oL, in case L A P and is energy minimizing among

all such maps.
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Theorem 5.3.1 is the fundamental existence theorem due to Lemaire ([L1l],

[L2]1) and Sacks-Uhlenbeck ([SkU]l, in case 821 =0) .

A different proof was given by Schoen-Yau [SY2]. The present proof was

taken from [J6].

In the case of the Dirichlet problem, it is actually not necessary that
22 is compact, but only that it it homogeneously regular in the sense of

Morrey [M2], cf. [L2], since the boundary values prevent a minimizing

sequence from disappearing at infinity.

Furthermore, the image can be of arbitrary dimension, not necessarily 2,
for Thm. 5.3.1 to hold. This is also easily seen from the present proof.
Finally, if one does not prescribe the homotopy class of u , the existence

of a harmonic map was already proved by Morrey [M2].

5.4 THE DIRICHLET PROBLEM IF THE IMAGE IS HOMEOMORPHIC TO S2 .
TWO SOLUTIONS FOR NONCONSTANT BOUNDARY VALUES

In this section, we want to show the following result of Jost [J7] and

Brezis and Corxcn [BC2] (in the latter paper, only simply connected domains

are treated).

THEOREM 5.4.1 Suppose Zl 18 a compact two-dimensional Riemannian manifold

with nonempty boundary 821 , and 22 is a Riemannian manifold homeomorphic

to s (the standard 2-sphere), and VY : 321 - 22 is.a continuous mop, not

mapping 821 onto a single point and admitting a continuous extension to a

map from Zl to I

5 with finite energy. Then there are ot least two

homotopically different harmonic maps u : Zl > I, with u]BEl =y, and

both mappings minimize energy in their respective homotopy classes.

Proof we first investigate more closely case 2) of section 5.3. W.l.o0.g.
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E(pn,en) I B(p,2€n) and En < s/2 for all n , and thus the solution g of

(5.3.4) for =x = X oor=r is contained in B(p,ZEn) by Lemma 5.2.1.

Since unIB(xn,rn) is not homotopic to g , it has to cover -
Zz\B(P’ZEn) . If we define
u  on X \B(x_,r )
n 1 n n
g on B(xn,rn)

then we see that

{5.4.1) lim E(un) z lim E(unizl\B(xn,rn)) + lim E(unlB(xn,rn))

v

i a ) o+
lim E(un) Area(Zz) ’
since E{g) +* 0 as n - © , because

21 5
J ]ge(rn,ﬁ)l dae » o
0

as n r o (cf. (5.2.3)).
{Furthermore, by Lemma 5.1.2
E(v;B) = Area(v{(B)) ,
and equality holds if and only if v is conformal.)

We now define

B, = inf{E(v) : v ¢ a}

for a homotopy class o of maps with v]BZl P, and

E := min Eu -
a

We first show the existence of a minimizing harmonic map in any homotopy

class o with

<
{5.4.2) Eu E + Area(Zz) .
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We choose a minimizing sequence u, in o with
< + A .
E(un) E rea(Zz)
Assuming that 2) holds, we define ﬁn as above. Since clearly
v >
E(un) > E ,

this would contradict (5.4.1), however. Therefore, as shown above, we obtain
an energy minimizing harmonic map in o (cf. [BCl] for a similaxr argument).

Now let O be a homotopy class with

and let U an energy minimizing map in & , i.e. E(Q) = E . We want to

construct a map v in some homotopy class o # O with
(5.4.3) E(v) < E(W) + Area(EZ) .

Then the arguments above show that we can find a harmonic map of minimal
energy in @ . In order to complete the proof, it thus only remains to

construct v .

By Thm. 5.5.1 below, the metric on 22 is conformally equivalent to the
standard metric on S2 , and thus, we can use 52 as a parameter domain for
the image. Since P is not a constant map, also u is not a constant map,
and hence we can find a point X, in the interior of Zl for which
dﬁ(xo) # 0 . Rotating 52 , Wwe can assume that ﬁ(xo) is the south pole Py -
We introduce local coordinates on the image by stereographic projection
T 52 -+ € from the south pole py - dﬂ(po) then is the identity map up to a

conformal factor. By Taylor's theorem, WOGIBB(XO,E) is a linear map up to

an error of order 0(82) ; i.e.

(5.4.4) o) - a(molt) (xy) (x = x,)| = 0(e?)
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for x € 8B(x0,e) .
We now look at conformal maps of the form
w = -az + b/z , a,betC, a=a, + ia, , b =Db, + ib, .

The restrictions of such a map to a circle p(cos O + 1 sin 0). in € is
given by
( by b, .
u = [alp + } cos 6 + 7;-- a2p} sin 6
) by
v = [azp +,——} cos O + (alp - 75} sin O ,
where w = u + iv .

Therefore, we can choose a and b in such a way that w restricted

to this circle coincides with any prescribed nontrivial linear map. This map

is nonsingular if

2 .2
4 P17ty
p#
a2 + a2
173
W.l.0.9.
4 bi * bi
(5.4.5) Y 5
al + a2

(otherwise we perform an inversion at the unit circle).

Hence w can be extended as a conformal map from the interior of the
circle p(cos O + i sin 0) onto the exterior of its image. (If egquality
holds in (5.4.5), then this image is a straight line covered twice, and the

exterior is the complement of this line in the complex plane.)
We are now in a position to define v .

On Zl\B(xO,e) we put v =4 .
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On B(xo,e—ez) we choose a conformalmap w as above which coincides on

~ 1
the boundary with the linear map 'd(ﬂou)(xo), and put v =T “ow .

1-g

On B(xo,e)\B(xo,E-Ez) we interpolate in the following way. We

introduce polar coordinates r,¢ and define

£(¢) = (mol) (g, ¢)

~ 1 ~
(9 = d(med) (xo) (€,9) = 7oz A(Tod) (x) (e-e%,9)

and

EE9) = (£(0) - g(@) + S+ T (g(d) - (1-0) £(d) .
€
Thus t(r,¢) coincides with £(¢) and g(¢) , resp. for r = € and
2
r = g-g , resp.

The energy of t(r,¢) on the annulus B(xo,e)\B(xo,€—€2) is given by

€ 2T ~
B(t) = f ) f (-l;; HOEETOI |[i2- —l—f] £ (4)
r=eg-g” J¢=0 ‘e r €

r

1 2
+ {E - —3) g' (¢ ] ] rdrd .
. €
Using (5.4.4) and |£' ()] = 0(e) , |g'(®)| = O(e) , we calculate

3
E(t) = o(e™) ,
and hence also

-1 3
E(T “ot) = 0(e7) ,
-1 2
We put v = T "ot on the annulus B(xo,a)\B(xo,s-e ) . Therefore

E(v)

B (3] 2,\B (g ) + B Low|Blxg,eme)) + B(T ot |B(x,,€) \B (xy,e-e))

IA

E() - o(e?) + Area(n,) + o) ,

since E(ﬁlB(xO,E)) = 0(62) ; because dﬁ(xo) # 0 , and the energy of ﬂ_low
is the area of its image, as T and w and hence also ﬂ-low are conformal.
Thus, for sufficiently small € > 0 , (5.4.3) is satisfied, and the proof is

complete.
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5.5 CONFORMAL DIFFEOMORPHISMS OF SPHERES. THE RIEMANN MAPPING THEOREM

THEOREM 5.5.1 Suppose I s a compact two-dimensional Riemannian manifold
diffeomorphic to s2 . Then there is avconfbrmal (and hence harmonic)

diffeomorphism h : 253,

This is of course well-known. We want to provide a variétional proof of
Theorem 5.5.1, in order to illustrate on one hand how one can overcome the
difficulties arising from the noncompactness of the action of the conformal
group on 82 , and on the other hand the idea to minimize energy in an a

priori suitably restricted subclass of mappings.

Proof of Thm. 5.5.1 We choose three different points Zy v 2y 0 Zg in S2

and three different points pl ‘ p2 ’ p3 in L . Let D be the class of all

diffeomorphisms v : 52 + L satisfying

(5.5.1) v(zi) =p; (i=1,2,3) ,

and let 5 be the weak H;-closure of D .

1

We now claim that a sequence (v_) in D converging weakly in H2

n'nelN
is equicontinuous.  For each =z € 52 and € > 0 , by Lemma 5.2.2 we can find

§ >0 and for each n e N then some rn € (5,/3) for which
i <
dlam(vn(BB(x,xn)) <€ .

Here, & 1is independent of 2z and n , since the energy of a weakly
convergent sequence is uniformly bounded. We can choose ¢ so small that

B(z,/8) contains at most one of the points =z z, . Now vn(BB(z,rn))

17 %20 %3
divides I into two parts, one of them being vn(B(z,rn)) , since va is a

diffeomorphism. If € is chosen small enough, then the smaller part, i.e.

the one having diameter at most € , contains at most one of the points Py v
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b

P and hence has to coincide with vn(B(z,rn)) . In particular,

27 "3

diam(vn(B(z,S)) <€
and the v, ~are equicontinuocus as claimed.

We now choose an energy minimizing sequence in 7 . A subsequence then

converges weakly in H; towards some v € D . Since the energy is lower

semicontinuous with respect to weak Hl

5 convergence, v minimizes energy in

D . We also can find a sequence of diffeomorphisms (vn)nsni in D
converging weakly to v . Since the v, ~are equicontinuous as shown above,
they converge uniformly to v . In particular, v is continuous and
homotopic to the v (We can of course assume that all the v =~ are
homotopic.)

Moreover, if we have a sequence of diffeomorphisms (wn)nEJN from S2

onte I , not necessarily satisfying (5.5.1), and converging uniformly and

weakly in Hl towards some w , then we still have

2

(5.5.2) E(v) < E(w)

since the normalization (5.5.1) can always be achieved by composing W with
a Mobius transformation, i.e. a conformal automorphism of S2 , without

changing E(wn) (cf. Lemma 1.3.3).

Hence, if Gt : 82 hd 82 is a family of diffeomorphisms, depending

smoothly on t , with 00 = id , then

(5.5.3) Ji-E(voot) 0,

at t=0 _

since Voct is the uniform and weak Hl-limit of vnoo

2 t

We introduce local coordinates z = x+iy on 52 by stereographic

projection and put
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2 2
E = IVXl v F= <erV§> v G = ‘Vy|
(E, P, G are defined almost everywhere, since Vv ¢ H; )
Ot = £ + in
aot
a9 —— = + i -
(5.5.4) Btlt=0 v+ iw

Using Lemma 1.3.2, the energy is given by

E(v)=%[ (B + G) dx dy
a

and
1 2 . 2 2 2. -1 . -
E(veg )=3 JE {E(gY + ny) - 2F(gx€y + nxny) +GE + nx)}(axny - zynx) dax dy

Since go(z) =gz and hence for t =0 & =n =1, & =n. =0, (5.5.3)
then implies

! {e - e (v, - wy) + 2}?(\)y + wx)} dx dy = 0 ,
c
Putting ¢ := E = G - 2iF , this becomes
f
Re J OV + iw)i dx dy = 0 .
c

Replacing v + iw by W= iV , we see that the imaginary part likewise

vanishes, and thus
(5.5.5) J d{v + iw)E dx dy = 0 .
T

Given v and @ , we can always find a family of diffeomoxphisms (for small
t ) satisfying (5.5.4), for example

Ot(z) = x + tv(x,y) + i(y + tw(x,y)) .
Hence (5.5.5) implies

(5.5.6) 9= =0,
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i.e. that ¢ is holomorphic.

Since ¢ represents a quadratic differential on S2 , in stereographic

projection we have ¢(»®) = 0 . Hence
b =0

by Liouville's Theorem, i.e. v satisfies the conformality relations
2 _ 2
(5.5.7) v, [” = v,

<vx,v?> =0

almost everywhere.

. . s . 1 .2
For notational convenience, we introduce local coordinates (v ,v') on

L . We want to exploit that v is weakly (anti)conformal and the uniform
limit of diffeomorphisms in order to show that the Jacobian vivi - vivi

v has the same sign almost everywhere in 52 (cf. 9.3.7 [M3]). Here,

of

additional difficulties arise from the fact that v so far is only known to

be of class CO n Hé ;, but these problems can be overcome with the arguments

of Lemmata 9.2.4, 9.2.5 of [M3].

DEFINITION 5.5.1 Suppose G s a plane domain of class cl s O € cl(G,IRz) .

z ¢ $(36) .

Then m(z,0(3G)) s defined to be the winding number of the curve ¢{3G)

We Lo To B

If only ¢ ¢ CO(G,IRZ) » thenl

m(z,0(9G)) := lim m(z,¢n(8G))

nre

for any sequence q;n € cl(BG,JRZ) which converges uniformly to ¢ on 3G .

That m(z,0(3G}) is well defined, follows from elementary properties of
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winding numbers (cf. e.g. [Fe]).

LEMMA 5.5.1 G a. plane domain, ¢ € & a Hé(G,ﬂRz). Then for every =x. € G,

0
there exists a set Cxy) with Hl(c(xo)) = 0 , where HY is 1-dimensional

Hausdorff measure, such that for all R ¢ Clx,)

J J(P) dx = J m(z,¢(3B(xO,R))'dz
B(x/R) ¢(B(xO,R))
if B(xO,R) cc G
_ .12 1.2
(§(¢) 1= ¢x¢y ¢y<1>x)

Proof we can find a sequence ¢n € Cl(D) ;, D cc G, converging uniformly and

strongly in H;

. 1 B
BB(xo,R) , if R ¢ C(xo) , H (C(xo)) =0 .

to ¢ , so that ¢n + ¢ strongly in H;(BB(XO,R)) on

Since H;(BB(XO,R)) functions are absolutely continuous, and the lengths
of ¢n(3B(x0,R)) and ¢(8B(xO,R)) are uniformly bounded, the two-dimensional
measure of ¢(8B(XO,R)) vanishes ( R ¢ C(xo) ). Consequently,

z & ¢(BB(XO,R)) for almost all =z , and thus

(5.5.8) m(z,¢n(3B(xO,R)) -+ m(z,¢(8B(xO,R)) for these =z .
Now
( .
1im m(z,¢ (BB(xO,R)) dz = lim J J(d ) dx = J J(p) dx
e 1o (B(x ,R)) n v B (x,R) n B(xqR)
Since

N

3
meas I
{——————J length (¢n(3B(xO,R)) ,

JI m(z,¢n(85(x0,a)) dz =

for any measurable set I , we can integrate (5.5.8), and the result follows.

g.e.d.

LEMMA 5.5.2 We suppose that ¢n : 82> 1 are diffeomorphisms, converging

uniformly and weakly in H

> to ¢ .
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Then J(9) has the same sign almost everywhere.

Proof we introduce coordinates on 52 by stereographic projection. Let

B(XO,R) , R & C(xo) satisfy the assumptions of Lemma 5.5.1
g = max |¢n(x) - (x)]

xeaB(xO,R)

Vh T {z - a(z,¢ (9B(x,,R)) > €n} ’

For z € Vn ¥ m(z,¢n(8B(x0,R)) = m(z,¢(8B(xO,R))‘
Lemma 5.5.1 therefore implies

(5.5.9) Llim

f_l J( ) =
e ¢n (Vn)ﬂB(xO,R)

n

J' J(o) .
B(xO,R)

Since we can assume w.l.0.9g., J(¢n) 2 0 in B(xO,R) for all n , and

(5.5.9) holds for almost all discs B(xO,R) ;, the result follows.
g.e.d.

Thus, v 1is a weak solution of the corresponding Cauchy-Riemann

equations, i.e.

‘ 2_ -1, 1 1
0 0 e -+
(5.5.10) Vi = "95p(9p,V, RV V)
2 _ -1 1 1
Vg T 9y, kg v 915Yy)

= - . 3 = + i s
(g gllg22 glz) ;, where k 1 is constant by Lemma 5.5.2. Since

(5.5.10) is a linear first~order elliptic system, v is regular.
LEMMA 5.5.3 v <Zs a homeomorphism.

Proof wWe assume that v is not a homeomorphism. The v is not injective,

i.e. there must exist two points zl B 22 B zl # z2 with v(zl) = v(zz) . We

choose a shortest segment Yn joining vn(zl) and vn(22) .  S8ince v is a
-1

homeomorphism, ?n = v, (Yn) is a curve joining 2z, and Zoys

If P s is a point on BB(zl,d) n ?n , then for n + ® we can find a
’
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subsequence of (pn 6) converging to some point pg on BB(zl,B) . Since
7

the vn converge uniformly to v , we see that v(pé) = v(zl) = v(zz) .

Thus, a whole continuum is mapped onto the single point v(zl) v(zz) by v .

At interior points, we can choose again local coordinates vl ’ v2 .
. 1 2 .
From (5.5.10) we conclude that v and v are harmonic, e.g.

1
b4

(5.5.11) Avl-+F1 (vlv -+vlvl) +2T1 (vlvz-x‘-vlvz)-i-l"1 (v2v2 +v2v2) =0 .
11" "% Yy 127w 'x vy 22 x % Yy

From (5.5.10) and (5.5.11) we obtain

(5.5.12) lvi-] < clv
since v € CZ(B) B

We now use the following result of Hartman-Wintner [HtW] (a proof of the

version presented here can also be found in [J81).

LEMMA 5.5.4 Suppose u ¢ Cl'l(G,IR)J G a plane domain, =z e G , and

0

IA

(5.5.13) lu =] < x(u | + |u]) .
22 z
where K 18 a fixed constant.

If

1

(5.5.14) u(z) = oflz - zoln)

for some n ¢ W in a neighbourhood of Zg then

. -n
lim u, (z ZO)

z>z
0

exists. If (5.5.14) holds for all u ¢ W, then

We continue the proof of Lemma 5.5.3.
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If now vi(zo) = 0 for some zy € 82 , Lemma 5.5.4 gives the asymptotic

representation
(5.5.15) vVea@-z)"+ o|z -z |™
T z 0 0
for some a € €, z # 0 , and some positive integer n , unless vi =0 in a
neighbourhood of zg - The latter is not possible, however, since it implies
1.2 1.2 . . . 2
that the set where vxvy - vyvx = 0 1is nonvoid and open in S~ , and
12 1.2 _ . 2, © .
therefore vxv - vay =0 in S in contradiction to the fact that v is a
surjective C oo map onto L . We can choose the local coordinates in such a
way that
(5.5.16) gij(v(zo)) = 6ij .

Using (5.5.16), (5.5.11) and integrating (5.5.15), we infer

) +w_ o,

ln+l
0

w(z) := vl + iv2 = p(z - zo)n+l +0(z - Eo)n+l + o(]z -z,

where 0 , 0 € R, {p[ + [O| # 0, wO = (vl + iv2)(zo) , in a neighbourhood

of zO

Without loss of generality, by performing homeomorphic linear

transformations, we can assume p =1, 0 > O, zo = wO =0, i.e.

n+l -n+1

(5.5.17) wiz) = 2" 4 2™ w0 (2™

This, however, is in contradiction to the consequence we have obtained from
the assumption that v is not injective, namely that a whole continuum of
points is mapped to a single point. This proves the lemma. (The application

of the Hartman-Wintner formula in the above argument is due to E. Heinz [Hz2]).
LEMMA 5.5.5 v <s a diffeomorphism.

Proof we want to show that since v is a homeomorphism by Lemma 5.5.3,

(5.5.17) cannot hold with n 2 1 .
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Assume on the contrary, (5.5.17) holds for n =2 1 . Then

i0 n+l

) = (1L+0) r 1

+
vl(re cos ((n+l)0) + O(rn )
and in particular

1 e1‘rrk/n+l

(5.5.18) v (e ntl k +1

)= (1 +0) 7 1S o™

for k = 0,1,...,2n+l .

For sufficiently small € > 0 and r < € , the sign of the left hand

side of (5.5.18) is therefore (—l)k .

If 2z traverses a Jordan curve in {z : z # 0, iz] < €} , then vl(z)
hence has to change sign at least 2n+2 times. On the other hand, for
sufficiently small § > 0 , since v is a homoemorphism, the preimage of
{|w| = 8§} is such a curve, but here v1 changes sign exactly twice. Hence
n =0 , and the Jacobian of v does not vanish, and the lemma is proved.

g.e.d.

This also finishes the proof of Thm. 5.5.1.

COROLLARY 5.5.1 Let I be a surface homeomorphic to s with metric tensor

given in local coordinates by bounded measurable functions 94 2 satisfying

' 2
(5.5.19) 91192 = 912 Z A >0 almost everywhere .
Then there is a homeomorphism h : 2 -3 satisfying the conformality
relations
i 3 i 3

oh™ 3dh oh™ dh
(5-5.20 93 % ox | %43 By By

on® an) _

915 Tox oy

almost everywhere.

If (gij) ec¥, then n is a diffeomorphism of class cl’a s
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satisfying (5.6.20) everywhere.

Proof we let (gzj) be a sequence of CZ,a metrics converging to (g,.)

i
pointwise almost everywhere. We denote the corresponding surfaces by Zn and

let hn : 82 + 3" be a conformal diffeomorphism constructed in Thm. 5.5.1.

Since the hn satisfy a system of the type of (5.5.10), elliptic

regularity theory implies uniform Ca as well as H; estimates. Hence a

subsequence converges uniformly and weakly in H; towards a weak solution h

of (5.5.10).

Furthermore, since the hn are diffeomorphisms, their inverses satisfy

a system of the same type, namely

gr g7
(5.5.21) v = L2 <" - Al m
v /gn v / gn v
n n
n 922 n 912 n
Y 5 = x - —— X y

where n_ n _n _ ( n )2
9 % 9129 7 Y91 -
Therefore, also h;l satisfies a uniform HOlder estimate by elliptic
regularity theory, and thus we see that the limit map h has to be

invertible, i.e. a homeomorphism.

[¢7 . .
In case I € Cl’ ;, the metrics (ggj) can be chosen to converge with

respect to the Cu—norm to (gij). From (5.5.14) we infer that the h;l then
1,0

satisfy wniform C°7 estimates, and consequently the limit map h is a

diffeomorphism.

Thus we have found the desired conformal representation of X , and the
proof of Corxr. 5.5.1 is complete.

g.e.d.
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We can also derive the following version of the Riemann mapping theorem

(cf. e.g. [AB]):

COROLLARY 5.5.2 Let s be a compact surface with boundary, homeomorphic to
the unit dise D , and a metric tensor (gij) satisfying the assumptions of

Cor, 5.5.1.

Then there is a conformal vepresentation h : D~ S , satisfying the

same conelusions as in Cor. §.5.1.

Proof Let &' be an isometric copy of S with opposite orientation; let
i: 8-+ 8' be the isometry. Identifying s with i(s) for s € 9s gives
a surface I to which we can apply Cor. 5.5.1 and find a conformal
homeomorphism h : S2 -+ L . Then ioh is another conformal homeomorphism,
and we can find a conformal automorphism k of S2 satisfying hok = ioh .
{This is clear for smooth metrics on I , since then h-loiOh is a conformal

2 . The general case follows again by‘approximation.)

diffeomorphism of S
The fixed point set of k then is a circle and hence bounds a disc which is
conformally equivalent to S .

g.e.d.

Note that our proof immediately yields the one-to-one-correspondence of

the boundaries, first proved by Osgood and Caratheodory.

We can again normalize the conformal map by e.g. prescribing the images

on 38 of three distinct points on 09D .

The preceding result is due to Lichtenstein [Li] (for Cu—metrics),

Lavrent'ev [Lv] (for continuous metrics), and Morrey [M1l].

In a future publication, I shall demonstrate that the preceding methods

can also yield conformal representations of surfaces of higher genus. This
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approach can considerably simplify a large portion of the uniformization

theory.

5.6 EXISTENCE OF HARMONIC DIFFEOMORPHISMS, IF
THE IMAGE IS CONTAINED IN A CONVEX BALL

THEOREM 5.6.1 Adssume u : D + B(p,M) <8 an injective harmonic map, where D

i8 the unit dise and B(p,M) <8 a disc on seme surface with M < é% s where
«? again is an upper curvature bound. Assume that g := u|3D is a -

diffeomorphism onto g(3p) satisfying

dg (¢)

(5.6.1) 0<b < a

for all ¢ ¢ 9D .

Assume furthermore that g(dD) 1is strictly convex w.r.t. u(D) , the

geodesic curvature Kg satisfying

(5.6.2) 0<a, s Kg(g(BD))(g(¢)) <a, for all ¢ € 3D .
Then the functional determinant J(ulx)) satisfies for all =x € D

(5.6.3) loue) | =2 511 ,

where S, = 61(w,»<.M,a1,a2,bfIglcl,a)

Without assuming (5.6.1) and (5.6.2), on each disec B(0,r) , 0 <r <1,

]J(u(x)l > 6;1 for x e B(0,r)

62 = Gz(w,k,M,r, meas u(D), |g] a) .
or: c

IJ(u(x)[ > 6;1 for x € B(O,r)

where 53 depends on W, K, M, r, meas u(D) , E(u) , and on some kind of
normalization like fizing the images of three boundary points or of one

interior point.
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We omit the proof which can be found in [JK1]. Whereas the boundary
estimate basically follows by applying the maximum principle to
dz(u(x), g(oD)) , the interior estimate depends on deep estimates of E. Heinz

([Hz51).
We can now prove the main result of [J3].

THEOREM 5.6.2 Suppose Q <is a compact domain with c? boundary 90 on some
surface, and that I 1is another surface. We assume that U : § ~ L maps §
homeomorphically onto its image, that Y(3Q) <s contained in some disc

B(p,M) with radius M < g&- (where k%2 0 4is an upper curvature bound on

B(p,M) ) and that the curves Y(N) are of class 02 and convex w.r.t.

() .

" Then there exists a harmonic mapping u : § > B(p,M) with the boundary
values prescribed by U which is a homeomorphism between § and its image,

and a diffeomorphism in the interior.

Moreover, if V|32 is even a cz—difféomorphism then u s a

diffeomorphism up to the boundary.
Theorems 5.6.2 and 4.11.1 imply

COROLLARY 5.6.1 Under the assumptions of Thm. 5.6.2, each harmonic map which
solves the Dirichlet problem defined by Y and which maps Q 1into a

geodesic disec B(p,M) with radius M < g% s 18 a diffeomorphism in S .

Proof of Theorem 5.6.2 First of all, 0302 is connected. Otherwise, Y(3Q)
would consist of at least two curves, both of them convex w.r.t. Y(Q) .
Therefore, we could find a nontrivial closed geodesic Y in Y () < B(p,M)
with an easy Arzela-Ascoli argument. Since a geodesic can be considered as a

m .
special case of a harmonic map and M < e’ Lemmata 1.7.1 and 2.3.2 imply
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that Yy has to be a point, which is a contradiction. Therefore, 030 is
connected, and since ) is homeomorphic to Y(Q) , we conclude that  is a

disc, topologically.

Therefore, we have to prove the theorem only for the case where § is
the plane unit disc D , taking the existence (¢f. Cor. 5.5.2) of a conformal

map k : D> @ and the composition property Lemma 1.3.3 into account.

. . . 2
For the rest of this section, we assume that | : oD + Y(3D) is a C -

diffeomorphism between curves of class c2,u , that Y(0Q) is not only

convex, but strictly convex, and that we have the following quantitative

bounds
d2
(5.6.4) -—E-w(¢)l < bl
d¢
and for ¢ € 9D
d -1
(5.6.5) ’575 w<¢)~ 2 b,
and
(5.6.6) 0<a; s Kg(W(BD)) <a, .

These assumptions can be removed later on by approximation arguments which we

shall indicate below.

By virtue of Cor. 5.5.2 again, there is a conformal map k : D = (D) .
By a variation of boundary values, we now want to deform this conformal map

into a harmonic diffeomorphism u .

Without loss of generality, we may assume that the boundary value map
preserves the orientation of 9D . Now let Y be the parametrization of the

boundary curve of Y{(D) by arc length. We set

(5.6.7) w(d,\) = YO () + (1 - VY SW@)) , éedd, Ae [0,1] .
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w deforms the boundary values of k into the boundary values prescribed by

(U
2,0

Since we assumed that (5.6.4) and (5.6.5) hold and that Y({9D) € C ’

well-known regularity properties of conformal maps imply that

2
(5.6.8) WOA) @M and 2w
) 302
)
are continuous functions of A ,
(5.6.9) é%—w(¢,k) does not vanish for any ¢ ¢ 9D and X e [0,1] .

Let now uA denote the harmonic map from D to B{(p,M) with boundary
values w{*,\) , (the existence of uk follows from Lemma 5.2.3) and let

An ¢ [0,11 be a sequence converging to some A ¢ [0,17.

By Thm. 4.9.1, the Arzela-Ascoli Theorem and the uniqueness theorem
4,11.1, uy converges to the harmonic map uy in the Cl'B—topology,

n
0< B <ao . In particular,

PO := inf [J(u)) (x|
xeD
depends continuously on A ( J(uA) denotes the Jacobian of uA ). We
define L := {X ¢ [0,1] : p(A) > 0} . By Cor. 5.5.2, 0 e L ( u, is the
conformal map k ), and therefore I 1is not empty. Since we assumed (5.6.5)
and (5.6.6), which implied (5.6.8) and (5.6.9) we can apply Thm. 5.6.1 to the

extent that

(5.6.10) plA) 2 1= >0 for A e L .

Since p(A) depends continuously on A , (5.6.10) implies L = [0,1] . Thus,
uy is a local diffeomorphism and a diffeomorphism between the boundaries of
D and ul(D) , and consequently a global diffeomorphism by the homotopy

lifting theorem.
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Thus, the proof of Thm. 5.6.2 is complete, except for the approximation

arguments.

So far, we have assumed that the boundary of the image is strictly
convex, and, in addition, that the boundary values are a diffeomorphism of
class C2 . We now have to prove the theorem also for the case that the
boundary is only supposed to be convex and that the boundary values are only

supposed to induce a homeomorphism of the boundaries.

We shall present only the first approximation argument. It is a
modification of the corresponding one given by E. Heinz in [Hz4], pp.178-183.
The reasoning for the second case can be taken over from [Hz3], pp.351-352,

in case QJY(D) € C2,a .

Therefore, let us suppose that the boundary of the image (D) is only
convex, while the boundary values Y are still assumed to be a diffeomorphism

of class C2 . Then we argue in the following way:

Given a metric gij on the image with respect to which the boundary of
A := Y(D) 1is convex , there is a sequence {ggj} of metrics on A such
that 0A is even strictly convex with respect to gzj , according to [Hz4],
§4. Moreover, {gzj} can be chosen to converge uniformly to 955 on A
together with their first and second derivatives, as n +~ © . Keeping the
boundary values | fixed, we consider the map un(x) which is harmonic in
the metric gzj and which solves the Dirichlet problem with boundary values
Y . The existence of u, is guaranteed by the arguments given above — at

least for large values of n , when g?j is so close to gij that the

geometric conditions are satisfied.

By virtue of Thm. 5.6.1, on each disc B(0,r) , r < 1 , there is an

a-priori bound of the functional determinant of un(x) from below. Moreover,
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by virtue of Thm. 4.9.1, we can choose a subsequence of the functions un(x)
which converges uniformly on D together With the first derivatives to a map

u(x) . In particular, the u  converge to u strongly in H; .

Therefore,
u is a weakly harmonic map w.r.t. the metric gij , i.e. a weak solution of
the corresponding Euler equations. Since u is also of class Cl , linear
elliptic regularity theory implies that u is a classical sélution, i.e.

harmonic. Moreover, u 1is a local diffeomorphism in the interior, and since

it is the uniform limit of diffeomorphisms, it is a diffeomorphism in the interior.

g.e.d.

Remarks 1) Actually, using a further approximation argument, we do not even
have to assume that the boundary values are homeomorphic. ~We need only that
they are continuous and monotonic, i.e. a uniform limit of homeomorphisms.

The corresponding harmonic solution of the Dirichlet problem still remains a

diffeomorphism in the interior.

2) In the case where both  and U(Q) are bounded simply connected
domains in the plane, the assertion of Thm. 5.6.2 was already obtained by
Radd and Kneser [RdA], [Knl], and Choguet [Cgl. Choquet also showed that the
convexity of the boundary of the image is necessary for Thm. 5.6.2 to hold.
The reason is the following. Suppose the image has the depicted shape. If
the boundary values Y(9Q) are ‘
concentrated near p and ¢ , then by
the mean value property of harmonic
functions, some points of Q will be
mapped onto points between p and g
not belonging to Y(R) .

This is in essential contrast to the case of conformal maps where convexity of

the image is not necessary to guarantee that the solution is a diffeomorphism

(cE. Cor. 5.5.2). ©Note that a conformal map is a solution of a free boundary
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value problem instead of a Dirichlet problem.

5.7 EXISTENCE OF HARMONIC DIFFEOMORPHISMS BETWEEN CLOSED SURFACES

The main result of this section is

THEOREM 5.%.1 Suppose that Zl and L , are compact surfaces without
boundary, and that ¢ :Zl - 22 i8 a diffeomorphism. Then there exists a
harmontie diffeomorphism  u : Zl > Zz homotopic to ¢ . Furthermore, u is

of least energy among all diffeomorphisms homotopic to ¢ .

Thm. 5.7.1 was proved by Jost-Schoen [JS], but it was first claimed by
Shibata [Sh] in 1963. His proof contained several mistakes, however, and was

therefore rejected.

H. Sealey then carefully examined Shibata's paper in his thesis [Sel and
was able to correct some (but not all) of the mistakes. The proof of [JS],
however, proceeds along completely different lines than the Shibata-Sealey

approach and depends in an essential way on Thm. 5.6.2.

Thms. 5.7.1 and 4.11.1 immediately imply the following corollary, proved

by Schoen-Yau [SY1l] and Sampson [Sal.

COROLLARY 5.7.1 If under the assumptions of Thm. 5.7.1, 22 has nonpositive
curvature, then every harmonic map homotopie to a diffeomorphism is itself

diffeomorphic.
Furthermore, we have

COROLLARY 5.7.2 Suppose that z and L, are compact surfaces without
boundary, and that Y : Zl - 22 is a covering map, i.e. a local diffeo-
morphism. Then there exists a harmonic covering map u : Zl + I 5 homotopic
to Y.
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Proof of Corollary 5.7.2 wWe can pull back the metric as? of 22 via Y to
obtain a surface Zé , diffeomorphic to Ei and with metric \j)*ds2 . Then
Yo Zé - 22 is a local isometry. By Thm. 5.7.1, there is a haxmonic
diffeomorphism u' : Zl - Zé , homotopic to the identity. u := Pou then is

the desired harmonic covering map.

Proof of Theorem 5.7.1 (following [JS]) 1If Zl and 22 are homeomorphic to

82 ;, then we can find a conformal (and hence harmonic) diffeomorphism

homotopic to Y by Thm. 5.5.1. The case where Zl and 22 are homeomorphic

to the real projective space is similarly handled by passing to two-sheeted

coverings. Thus we can assume w.l.o0.g. that ﬂz(Zi) =0 (i=1,2) .

We let U Dbe the class of diffecmorphisms from Zl onto 22 homotopic

to ¢ . Since ﬂZ(ZZ) = 0 a homotopically trivial Jordan curve separates 22

into two topologically different parts, one being a disc and the other one
having higher connectivity. Therefore, the argument in the proof of Thm.
5.5.1 gives equicontinuity of a weakly convergent sequence in U even without

a normalization.

We again let 7 be the weak Hl-closure of D , and choose an energy

2

minimizing sequence in D . a subsequence then converges weakly in H;

towards some uo el , and uO minimizes energy in [ by lower semi-
continuity again. We also can find a sequence (un)neni in P converging

weakly in H; to uo . Since the u are equicontinuous, they converge
also uniformly to Uy v and hence uo is continuous and homotopic to ¢ .

The un , since converging weakly, have uniformly bounded energy,
<
E(un) <K, say .

We want to show that Uy is a harmonic diffeomorphism. We consider an

arbitrary point Xy € Zl and define
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o
B := B(uo(xo),o)
i.e. the open disc in 22 centred at uo(xo) with radius o .

We restrict ourselves in the sequel to values of ¢ which are smaller

2 .
than the injectivity radius of 22 and smaller than m/2k , where K again

is an upper bound for the curvature of 22 . We define
-1
QO =, (B )
Q =u i) (n e N
n n g

W.l.0.g., we can assume x0 € Qn for all n , since the un converge

uniformly to uy - Let D be the unit disc in the complex plane and

be a conformal mapping which maps 0 to =x_ .

The proof of the existence of Fn is the same as that of Cor. 5.5.2
since instead of fixing three boundary points, we can fix an interior point
(and ‘a tangent direction at this point, but that is not necessary for the
proof) in order to guarantee the equicontinuity of a minimizing sequence as

in 5.5.

Since Fn = BQn is a Jordan curve of class Cl (because u, is a
diffeomorphism) , Fn is a homeomorphism of D onto ﬁn , and therefore
unaFn maps oD homeomgrphically onto BB0 . By Thm. 5.6.2 and Cor. 5.6.1,
there exists a unique harmonic mapping v, D+ B0 which assumes the
boundary values prescribed by unan , and vn minimizeé energy in its

homotopy class and is a diffeomorphism.

In particular
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(5.7.1) ED(Vn) < ED(unOFn) = Eﬂn(un) < K

by Lemma 1.3.2 ( Es(f) is the energy of the mapping f over the set S ).

Since the u converge uniformly to u. , we can assume that unan(O) stays

0
in an arbitrarily small neighbourhood of uO(XO) . Therefore, we can again
apply the argument of section 5.5 to show that the maps unan are
egquicontinuous on D . In particular, the boundary values of vn , namely
uhanIBD ;, are equicontinuous. By Thms. 4.9.1 and 4.7.1, we can therefore
assume that the v, ~converge uniformly on D to a map Vo which is

harmonic in the interior of D . Using Thm. 5.6.1, we see furthermore that

Y is a diffeomorphism in the interior of D .

We define now

v oF—l in 0
- n n n
u =
ouy in Zl\Qn .

Clearly, ﬁn is a Lipschitz map and lies in ut

T <
5 and E(un) < K. We can

also assume w.l.o.g. (by approximation) that the u ~are of class Cl’a

Then, for each n , the functional determinant of ﬁn is defined and bounded
from below on Zl\Rn by Thm. 5.6.1. It is easily seen by an approximation

argument that ﬁn e?D .

Using Lemma 5.2.2 as before, we can assume again w.l.o.g. that the Gn

converge on Zl weakly in Hl e P and that the

5 and uniformly to a map d

0

Fn converge uniformly on compact subsets to a conformal map F . Since
ED(Fn) = Area(Qn) < Area(Zl) , F maps B diffeomorphically onto some open set

ek, , and 0 is mapped to x

1 . F is not necessarily smooth on 09D , but

0

that does not affect the following arguments.

uOoF is the uniform limit of unOFn and thus extends continuously to

D . Since unOFn and v coincide on 9D , it follows that also uooF and
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Vo coincide there, and since Vo is harmonic and therefore energy minimizing

(by Theorem 4.11.1) in its homotopy class,

<
ED(VO) < ED(uOoF) .
Since conformal maps preserve energy by Lemma 1.3.2, this implies
a <
(5.7.2) EQ(uO) < EQ(uO) .
We now want to show that

(5.7.3) Ezl\n(uo) = Ezl\Q(uo) .

For this, it is sufficient to show that uo and ﬁo coincide almost every-

where outside Q . We claim that

~1
(5.7.4) Zl\Q <y (ZZ\BU) .
We define
pn(x) 1= d(un(x), uo(xo))
o {(x) := d(uo(x), uo(xo))

for x € Zl . Let x e Zl\Q . If

p.{x) = 1lim p_(x) 2 0 ,
0 o n
then

) =1
x € ug (Zz\BG) .

Since the pn°un°Fn are equicontinuous and equal to ¢ on 0D , po(x) <
implies that

a M), D) 2 6 > 0
for sufficiently large n .

Since on the other hand, the F, converge uniformly to F on compact
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subsets of D , this would imply x ¢ F(D) = Q which contradicts the

assumption x € Zl ~ Q . This proves (S.?.4).

We also have

-1

A -1, .=
ug (22\30) =, (BBG) U u, (Zz\Bc) ’

and since the sets u;l(BBo) cover a neighbourhood of x and are disjoint,

¢]
we- can assume w.l.0.g. that the two-dimensional measure of ugl(BBG) vanishes
for our chosen ¢ . If
-1 -
® € ug (ZZ\BG) ,
then

lim p (%) = p.(x) > 0O
o0 n 0

and because of the eguicontinuity of the functions o, v there exists an open
neighbourhood U of = such that pnlU > ¢ for sufficiently large n .

This implies

4. = 1limu_ = limu = u on U .
0 n n 0
n—-co T-reo
Therefore uo = EO almost everywhere on u;l(Zz\Bg) , and (5.7.3) now

follows from (5.7.4). By the choice of Uy We have on the other hand
E. (u,)) € E. () .
Zl 0 Zl o]
Thus, we conclude from (5.7.2) and (5.7.3) that

EQ(uO) = EQ(uO)
and consequently
ED(VO) = ED(uocF) .
Since Vo and uOoF coincide on oD , we conclude from the uniqueness of

energy minimizing maps (Thms. 4.11.1 and Lemma 5.2.3) that vO and uOoF

coincide on D . Therefore uOoF and consequently also u, is a harmonic
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diffeomorphism, the latter in § , which is a neighbourhood of an arbitrarily
chosen point Xy € Zl . This finishes the proof of Theorem 5.7.1.

g.e.d.
With the same method, we can also improve Thm. 5.6.2.

THEOREM 5.7.2 Let Q c I, be a two-dimensional domain with nonempty
boundary 30 consisting of c? curves, and let Y : § > I, be a homeo-
morphism of  onto its image Y& , and suppose that the curves Y(3Q) are of

class c® and comver with respect to YQ) .

Then there exists a harmonic diffeomorphism u : Q + Y(Q) which is
homotopic to Y and satisfies u =19 on 3N . Moreover,, u s of least
energy among all diffeomorphisms homotopic to Y and assuming the same

boundary values.

This result is again taken from [JS]. The case of non-positive image

curvature was solved in [SY1].

Proof wWe assume first that 90 and Y(3R) are of class C2+a and that

gives rise to a diffeomorphism between 902 and UY(3R) and that YP(3N) is

strictly convex with respect to Y(§) .

In this case, the proof proceeds along the lines of the proof of Theorem
5.7.1 with an obvious change of the replacement argument at boundary points
involving the first estimate of Thm. 5.6.1. The general case now follows by
approximation arguments as in 5.6.

g.e.d.

5.8 SOME REMARKS

We want to indicate briefly which of the results of this chapter can be
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generalized to higher dimensions.

Prop. 5.1.1 was extended to arbitrary dimensions by Wood [W2], Karcher-
Wood [KW], and Schoen-Uhlenbeck [SU2]. This result can be used to prove

complete boundary regularity of energy minimizing maps, cf. [SU2] and [JIM].

As was observed by Morrey (cf. [ES]), the minimum of ehergy is attained

. . n . .
in no nontrovial homotopy class for maps from S onto itself, if n = 3 .

It is not known whether Prop. 5.1.3 can be generalized, i.e. whether for
example there is a harmonic map of degree 1 from the three-dimensional torus

onto S3 or not.

As already pointed out the existence question becomes guite different in
higher dimensions, and thus it is not likely that Thm. 5.3.1 can be fully
generalized. For known existence results beyond those of chapters 3 and 4,
see [SUL], [su2l, [El, [J6]. BAn interesting non-existence result was derived

by Baldes [Balj.

Thm., 5.7.1 fails in higher dimensions; even Cor. 5.7.1 does not extend,

as was pointed out by Eells-Lemaire in [EL2], based on a result of Calabi [Ca]l.

There are, however, some interesting results about harmonic diffeo-

morphisms between certain classes of Kahler manifolds, cf. [Si] and [JY].

For a more complete guide to the literature on harmonic maps, we refer to

the excellent survey articles by Eells and Lemaire [EL1-41).
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