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PREFACE 

These notes originated from a series of lectures I delivered at the 

Centre for l'1ai:.hema·tical .Analysis at Can.berra a ~rhe purpose of the lectures 

V'Jas ·t:o int.roduce mat:hematicia.ns familiar with t.:.he basic not.ions and result.s 

of linear {~lliptic par·ti.al differential equations a.nd Riernannian qt~ometry 

I sel.ec·ted somE.: topics ~:o ·the 

of I 

a.ll tJJ.a t~ 

I bt?.:lieve a 

the subj a fair 

Aft.<: r presen-t: useful 

a_lrnost. 

rna.:nifo:.Ld.:::1 a.ncJ. some~ prope:c·ties of 

coord.inat.e::;,. 

oriqinat:e(l -E:rorn we present. hea.t: 

t.o cJbtain a.n.d u .. ni.queneE3S p.rope.ct.ies of 

b.armonic maps curve6 rnan.ifolds 

prese~ntc-;d by Hartman [Ht],. von ·vva.hl [VW] 1 and Jost: [JA] ~ 

In chap·ter 4? T~ve prove t.he exis·tence (due to Hildebrandt-.Kau1-Widman 

[HK11!3]) an.d uniqtleness (dv,e t:.o 

.im.ag-e coJ.Yta.ined J.n a strictly convex ba.l.lf which solve a Dirichle·t p:coblern, 

The a~priori estirnates based on the work of HildelJrandt.·-VJidman [HW2] wi11 

be simplif.ied by using the results of chapter 2. In chapter 5, we finally 

are concerned with harmonic maps between surfaces. We prove the existence 



result of Lemaire ([Ll], [L2]) and Sacks-Uhlenbeck [SkU], as well as a 

result of Jost [J7] and Brezis-Coron [BC2] yielding the existence 

of two homotopically distinct solutions for nonconstant Dirichlet boundary 

data in s2 We then turn to the question of the existence of harmonic 

diffeomorphisms, proving the results of Jost {J3] and Jost-Schoen [JS]. They 

are based on the deep estimates of E. Heinz [Hz5] for the Jacobian of 

univalent harmonic maps from below. These estimates, however, will not be 

proved in the present notes. We refer to [JKl] instead. Moreover, we show 

how a simple variational procedure can produce conformal diffeomorphisms. 

between spheres as well as a version of the Riemann mapping theorem. For 

more details on harmonic mappings between surfaces, we refer to the author's 

notes [J8] • 

I thank Stefan Hildebrandt for his continuous advice and support over 

many years and for making the financial support of the SFB 72 at the University 

of Bonn available to me, and Richard Schoen for a fruitful collaboration and 

interesting discussions about harmonic maps between surfaces. To Hermann 

Karcher I owe many insights into the geometric aspects of the theory, and 

what I learned from him or what evolved during our collaboration is not only 

represented in chapter 2, but also penetrates chapter 4, and I regret that we 

did not find the opportunity to work out these notes together. 

Moreover, I am grateful to Leon Simon for inviting me to Canberra and 

to the colleagues who attended my lectures for their interest and their 

stimulating queries and comments and to the Centre for Mathematical Analysis 

for its support of my work. Finally, I thank Dorothy Nash and Norma Chin 

for typing these notes with great care and patience. 



CHAPTER 1 

INTRODUCTION 

1.1 A SHORT HISTORY OF VARIATIONAL PRINCIPLES 

Among U1e first per,sons t.o realize the importance of variational problems 

and the physical significance of ·their solutions was G.~l. Leibniz (1646-1716). 

In his work, however, mathematical and physical reasoning was closely inter-

woven with philosophical and i:heological arguments. One of Lhe aims of his 

philosophy was t.o solve the problem of theodizee, i.e. to reconcile the evil 

in the world with God 1 s goodness and almigh-tiness ( cf. (Lz] ) . Leibniz' answer 

was -that God has chosen from the innumerable possible worlds the best possible .. 

but tha'c a perfeci: world is not possible. (This infinite multi-tude can only 

be conceived by an infinite understanding, which provided a proof of the 

exis-tence of God for Leibniz.) This best possible world is distinguished by 

a pre-established harmony be-tween itself, the realm of nature, on one hand and 

U1e heavenly realm of grace and freedom on the other hand. 'rhrough this the 

effective causes unite with the purposive causes. Thus bodies move due to 

their own internal la~m in accordance with the thoughts and desires of the 

soul. In this way, ·the con-tradiction between tlte prede-termination of the 

physical world following stric-t laws and the constantly experienced spontaneity 

and freedom of the individual is removed. The best possible world must here 

obey specific laws since an ordered world is better ·than a chao-tic one. This 

proves therefore the necessity of the existence of natural laws. The contents 

of the na-tural laws, however, are not completely determined a.s is the case 

for geome·tric laws but are only determined in a moral sense, since they must 

satisfy the c:citeria of beauty and simplicity in t:lte bes'c of all possible 

wo:r:lds" This leads Lt:;ibni:z even t:o va:ciat:ional principles., This is because 



if a physical process did not yield an extreme value, a maximum or minimum, 

for a particular energy or ac·tion integral, t.he world could be improved and 

would therefore not be the best possible one. Conversely, Leibniz also uses 

the bea.uty and simplicity of natural laws as evidence for his thesis of pre-

established harmony. ('rhe notion that we live in the best possible world 

was frequently rejected and even ridiculed by subsequent critics, in particular 

Vol·taire, on account of ·the apparen·t flaws of ·this world, but Leibniz' poin·t 

that a perfec·tly good wo:::ld is not possible was beyond reach of these 

argumen·ts e) 

J"eibniz, however, did not. elaborate his argumen·t concerning variational 

principles in his publications, but only in a private letter. Thus, it 

happened tha·t a principle o:f least. (and nol: only stai:i.onary) act.i.on was late.r 

rediscovered by Ha.upertu:i.s (1698-1759), without knowing of Leibniz' idea. When 

(1712-1757) then claimed priority for Leibniz on account of his letter 

that he ·was not able to show however t.o the Prussian Academy of Sciences 

(whose president was Maupertuis) this led to one of the most famous priori·i:y 

con·troversies in scientific history in which even Vol·taire, Euler, and 

Frederick the G:r:ea·t became involved. r·t was also pointed out that IY.laupertuis' 

principle of leaE·t action should be replaced by a principle of stationary 

action since physica.l equilibria need only be Etationary point.s but not 

necessarily minima of variational problem:3. 

1.2 THE CONCEPT OF GEODESICS 

One of the variational problems of most physical importance and mathe-

matical in·terest was the problem of geodesics, i.e. to find the shortest (or 

at least locally shortes·t) connections be·tween two points in a metric con·tinuum, 

e.g. a Riemannian manifold. Geodesics are critical points of the lengt-..h 
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integral 

Jl d 
0 I dt cldt 

where c : [0,1] + N is the parametrization, as well as, if they are para-

metrized proportionally to arclength, of the energy integral 

Jl d 2 
o I at c I dt • 

Here, unfortunately, we find some ambiguity of terminology, since the 

mathematical term "energy" corresponds to the physical concept of "action", 

while in physics "energy" has a different meaning. 

Because of the many applications of geodesics, it was rather natural 

·to generalize this concept. While minimal surfaces are critical points of 

a twodimensional analogue of the length integral, namely the area integral, 

the generalization of the energy integral for maps between Riemannian manifolds 

led to the concept of harmonic maps. They are critical points of the 

corresponding integral where the squared norm of the gradient or energy 

density has to be defined in terms intrinsic to the geometry of the domain 

and target manifold and the map between them. 

1.3 DEFINITION AND SOME ELEMENTARY PROPERTIES OF HARMONIC MAPS 

Suppose that X and Y are Riemannian manifolds of dimensions n and 

N, resp., with metric tensors resp., in some local co-

ordinate charts X = and on X and y ' resp. 

If f : X + Y is a c1-map, we can define the energy 

density 

e(f) 
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where we use the standard summation convention (greek minuscules occurring 

twice are summed from 1 to n , while latin ones are summed from 1 to N) and 

express everything in terms of local coordinates. Then the energy of f is 

simply 

E(f) = fx e(f)dX . 

If f is of class c2 and E (f) <co , and f is a critical point of E , then 

it is called harmonia and satisfies the corresponding Euler-I"agrange-equations. 

These are of the form 

(1.3 .1) 
1 () <IY y 

aS d fi) + Yas i () fj () fk 
3xi3 

rjk 
3xi3 

0 
/Y Clx 

a 3xa 

in local coordinates, where y det(yai3) and the 
jk 

are the Christoffel 

symbols of the second kind on y 

(1.3.1) is proved as follows. If f is critical, then for all admissible 

variations rp (e.g. cjJ E c:(x), and ¢l<lx = 0 if 3x 'f !» ) 

d 
- E(f+t¢) I' ' dt · t=O 

0 • 

and thus 

0 J ( aB (lfi .~ + _:J_ yaB9 . . "k ]f_~ 3fj l r:-:y dx y·(x)g .. (f(x)) 'P YY 
X l] ()xa (lxs 2 l] ,k ()xa axB, 

f. ( i) f i k _2_ l r:-: aS 3f 1 "j aS 3f 3f j ~-
- i3 vy y "xaJ g iJ. '~' dx - -::_ y (x) -- -·--s g. . , cp ,;y dx 

X (lx a .~ (lxa ()x lJ,K 

since cjJ is compactly supported 

and from this., putting rl and using the 



symmetry of aS y 
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in D~e second integral, 

0 -t () (r:Y YaS <Jf~}ni dx _ J _:!:2 yaS £j -s " v ~ g < g · · k +gl · · -g ·, · l 
()x ()x X lJ, ~J,l lK,J 

dx 

,.;hich implies ( 1. 3 .1) by the 1erruna of Du Bois-Raymond. 

We thus obtain a nonlinear elliptic system of partial differential 

equations, where ·the principal part is the Laplace-Beltrami operat~or on X 

and is therefore in divergence form, while the nonlinearity is quadratic in 

the gradient of the solution. 

We now want ·to look at the definition of harmonic maps from a more 

intrinsic point of view. The differential df of f , given in local 

coordinates by 

df 

can be conside:r·ed as a section of the bundle 
-1 

T*X ® f . TY . Then 

e(f) 1 yaS < Clf l!_" 
2 a ' S/ -1 

(Jx dX f TY 

1 <df, df '<::_ 
2 / T*X@f- 1 TY 

Le. e(f) is the trace of the pullback via f of the metric tensor of Y • 

In particular, e(f) and hence also E(f) are independent of the choice of 

local coordinates and thus intrinsically defined. f is harmonic, if 

(1.3.2) T(f) 0 , 

where T(f) tra.ce l7df , and 17 here denotes the covariant derivative in 



6 

the bundle T*X 0 f-l TY . 

Let us quickly show, why (1.3.1) and (1.3.2) are equivalent (cf. [EL 4 ]) . 

v s<dfl 
3/Clx 

and thus, since T (f) 

Tk(f) y aS 

f 'l'Y 
+ 1/ ( 

-1 

3/Clxs 

= t.race 

()2f'":. 
-a-S-
8x Clx 

1/df 

XrY fk 
+ Yas Yr~. Clfi Clfj 

----
aS Clxy l.J a ClxS ()x 

and we see that (1.3 .1) and ( 1. 3. 2) are equivalent, 

From the preceding calcula·tion, we see that the Laplace-Beltrami opera tor 

is the contribution of the connec·tion in T*X , while the connection in f -l TY 

gives rise to the nonlinear ·tenn involving the Christoffel symbols of ·the image. 

With the preceding notations, we can also calculate the Hessian of a 

hannonic map f for vector fields v , w along f (i.e. v and w are 

sections of f-l TY) For this purpose, we consider a two-parameter variation 

with 

v 

1) Here, we distinguish the Christoffel symbols of X and Y by the 
superscript X or Y , resp. 
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We then want ·to calculate 

We have, writing f ins·tead of f 8 t , and taking scalar products 

<· 1 ·> in T'*X ® f-l TY , if not otherwise indicated, 

-1 
(~) 

-1 
dxs" < r/ TY 

C( 
Vf TY (~) + dx 

3/'dxcc 'ds 313xs 3t / 

< v£-1 ~Y 
v~/Clt (~) dxC( 

' 
2!._ dxs > 

3/()x 
()s axS 

/ RN c:a C( ()£] ()f 2!._ dxs"' + dx , ., ()t ()s ' axS / 

-1 -1 
+ < Vf TY v dxC( 

' 
Vf TY w ctxs > 

()/'(Jxcc a/3xs 

Now 



f 
Clf a < '~a;at as dx 

by Stokes' Theorem 

0 , since 

Thus 

Hf (v,w) 

8 

v , 

V I 

For the preceding calculations cf. also [EL4). 

v df 0 , as f is hannonic. 

We now want to look at the definition of harmonic maps from a somewhat 

different point of view. By the famous embedding theorem of Nash ([Na]), Y 

can be isometrically embedded in some Euclidean space lR~ We define the 

Sobolev space 

1 1 .R. w2 (X,Y) = {fE w2 (X,lR) : f(x) E Y a.e.} 

Since w; (X,:R~) = H;(x,JR~-) by a well-known theorem of Meyers and Serrin 

(cf. [MS), p.52; we can assume X to be a compact manifold (possibly with 

boundary), since we always can localize the problem in the domain. Namely, if 
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f is a critical point of E on X , then it is also critical on any subdomain) 

every element in can be approximated with respect to the norm 

by smooth mappings, namely from 
00 !/_ 

C (X,:R ) , although the corresponding 

equality does not hold in general, cf. [SU2]. In particular, 

if we compose an element from 
1 W2 (X,Y) with a smooth mapping, we can apply a 

chain rule. 

In this Sobolev space, we can still define the energy functional by 

E(f) =% J jdf(x)j 2 dX(x) 

and look for critical points of 

Assume that 

E in 1 w2 (X,Y) 

is a critical point of E which maps X into 

a compact part Y0 of Y • Y0 has a uniform neighbourhood in :R£ on which 

the projection TI , mapping a point in :R£ to the closest point in Y , is 

smooth. 

'llhus, if cp: X+JRR, is smooth and cpjax= 0 and t is sufficiently small, 

(f+tcp) (x) lies in this neighbourhood for a. a. x E X . Since f is critical 

0 8
8t E (TI (f+tcpl > 1 t 0 

applying the chain rule, 

where D f 
a and e a 

is a moving orthonormal frame on X ' 1, .•. n 
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since TI is a projection 

since 'ITo f = f and consequently d'TT • D f a D f a 

f is a weak solution of 

0 6f - D2'IT(f) (df,df) , 

by the chain rule. Thus, 

where 6 is the Laplace-Beltrami opera·tor on X ( cf. [SUl] for somewhat 

differen·t calculations). (1.3 .1) and (1.3 .3) are equivalen·t, since they 

both are the Euler-Lagrange equations of the energy functional E . The point 

of view leading to (1.3.3) was different, however. Here, the energy was 

£ 
minimized among all maps u : X + ~ of class 

1 co 9. 
H2 n L (X,R j satisfying a 

nonlinear constraint u (xi E Y0 (for almost all x E X) Since the Dirichlet 

in·tegral is lower semicont:inuous w.r.t. weak H~-convergence we also get 

LEMMA 1.3.1 The energy integral is lower semicontinuous w.r.t. weak 

1 
H2-convergence. 

Finally, let 2: 1 and z2 be surfaces with conformal metrics 

o2dz dz (z=x+iy) 

and 

2 au (u=u1+iu2 ) p du resp. 

For a 
l 

C -map f the energy is then given by 

E(f) 

in ·those coordinates. Hence 
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LEr1~~A 1. 3. 2 If k z0 -+ Z1 is a conformal map bet1Jeen surfaces, then 

E(f 0 k) E(f) 

This means tha·t the energy is conformally invariant. 

Moreover, the Laplace-Beltrami operator of z1 in our coordinates is 

given by 

{Y\ihere u 
z 

1 () d 
and (1.3.1) hence takes the form 

1 ,au _ i 3ul 
'= 2 ()x (Jy 

11 

z 
1 (~ '= 2 ()x 

+ i _3u) ) 
3y • 

In the case ·the image is the surface Z 2 , this in turn reads as 

(1.3 .4) 
1 1 2pu 
2 11 - + 2 a zz a P 

u 
z 

11-
z 

0 . 

Thus, the ha.rmonici·ty of u does not depend on the special metric of 

z1 , but only on i·ts conformal structure, since we can simply multiply the 

equation by a2 Hence 

LEfvlMA 1. 3. 3 Suppose u : Z1 -+ Y is 

·conformal map between surfaces. Then uok is also harmonic. In particular, 

in two dimensions conformal are harmonic. 

•rhe harmonicity of u does depend, however, on ·the image metric, unless 

u - 0 or U- = 0 , i.e. u is confol-mal or anticonformal. 
z z 

(Note that this 

distinction is only meaningful for oriented surfaces.) 

We also note the following 

L EM~1A 1 . 3 • 4 If u : Z1 ->- Z2 is a harmonic map between surfaces, then 

(z= x+iy) 
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&s a ho~omorphic quadratic differential. 

Proof 

Thus, 

Hultiplying (1.3.4) by the conformal factor o 2 

20 
'U 

T(u) : = U - + U U-
ZZ p Z Z 

0 2 (u 1 (u) + u 1 (u)) o 
z z 

0 • 

we obtain 

u u -. z zz 

q.e.d. 

We also observe, that if cp is holomorphic then 'T(U) = 0 with the possible 

exception of points where Iii I z 
i.e. where the Jacobian 

vanishes. 'rhis was actually used by Gerstenhaber and Rauch [GR] as a 

def ini·tion of harmonic maps between surfaces. 

We note moreover, that cp is just the (2,0) part of the differential 

form 2 -u* (4p (u) dudu) i.e. the pull-back of the image metric under u . 

Finally, of course cp - 0 if and only if u is conformal or anti-

conformal. Therefore, I,emma 1.3 .4, together with the observation that by 

Liouville's Theorem cp - 0 is the only holomorphic quadratic differential 

2 
on S shows that any harmonic map from s 2 is conformal or anticonformal. 

1.4 MATHEMATICAL PROBLEf'IIS ARISING FROM THE CONCEPT OF HARMONIC MAPS 

From 1.3, one sees that new mathematical difficulties arise compared to 

the case of geodesics. Here, critical points lead to systems of non-linear 

partial differential equations, while geodesics lead only to systems of ordinary 

differential equations. The natural space to look for critical points of E 

is the Sobolev space 
.1 00 w2 (X, Y) n L (X, Y) , since the equations for weak 
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solutions of (1.3.1), namely 

(1.4.1) 

make sense only for test functions 
ol N 00 N ¢ E w2 (X,JR) n L (X,JR). 

From an analytical point of view, it is not surprising that the equations 

(1.3.1) turned out to be rather difficult to handle, since the nonlinearity is 

quadratic in the gradient of the solution. Such systems may have nonsmooth 

weak solutions. This phenomenon can even occur in the present situation. 

Namely, mapping the unit ball Dn of dimensions n ~ 3 onto its boundary 

via radial projection, can be interpreted as a weakly harmonic map (i.e. a 

solution of (1.4.1)) f : Dn + sn-l cf. [HKW3]. 

In order to verify this, we first show that 
X 

TXT has finite energy 

for n ~ 3 . 

For 
X 

f(x) =TXT ,and hence for X f. 0 

(1.4 .2) 
a 

X•X 
(here, e 

a 
is a unit vector, and 

and 

(1.4.3) 1dM1 
2 

a 
X X e 

a 

(1.4.3) clearly implies that 
X 

TXT 
has finite energy for n ::: 3 

that the energy is infinite for n= 2 ) • 

X 

TXT 
is smooth for X f. 0 and we shall verify now, that 

equation (1.3.3) for x ¥ 0 

We note 1T(f) 
f 

VI' and from (1.4.2) thus 

_a_ 1T(fl 
<Jfa 

X 

TXT 

(and also, 

satisfies 
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and moreover 

(1.4.4) 

Since implies (y= 1, .•• n) (1.4.4) yields 

(1.4.5) 
2 a2 

D n(f) (df,df) 
= 3fOI.()ff3 

Hence the equation for a harmonic map from Dn into 
n-1 s 

and (1.4.5) 

(1.4.6) 

now satisfies this equation, since by (1.4.4) 

x -(n-l)x 

~'~FT= lxl 3 

and by (1.4.3) 

~ 2 X (n-l)X 
ld TxT I TxT= lxf 

The following lemma then implies that 
X 

TXT 
solution of (1.4.1). 

n n-1 
D + S 

is by (1.3 .3) 

indeed is a weak 

LEMMA 1.4.1 If f : X+ Y is a map of finite energy whiah is smooth and 

harmonia outside a subset of x of aapaaity zero, then f is weakly harmonia 

on x . 

For simplicity, we shall show this only for dim X ~ 3 and the case 

where f is not smooth only at one isolated point. This suffices for our 

application. 

we have to show that 
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for all cp E H~ n L00 (X, Y) Le·t us choose the local coordinates in such a way 

that 0 is the singular point of f . We define 

l 
1 (-1-- 2m-l) if -m I I -m+l 

2m-l lxl 2 :sxC:2 · 

nm 0 if 2-m+l S lx I 

1 if lxl -m 
:: 2 

Clearly, nm is Lipschitz continuous. 

We write 

Since f is harmonic for x 1 0 , and 
1 00 

cp E H2 n L it suffices 

·to show 

(1.4. 7) 

However, 

o13nm l 
Hence 

)3 
21-m 

lx 13 

0 

as 

for 

otherwise . 

-m+l 
:S 2 

and (1.4.7) follows from Holder's inequality, since we assumed n > 3 . 

q.e.d. 

It might be worth pointing out that the regularity problem for weakly 

harmonic maps actually has two inherent nonlinearities, one being the 
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nonlinearity of the equations, i.e. arising from the local geometry of the 

image, and the other one coming from the fact that in general the target 

space itself does not have a linear structure, i.e. arising from the global 

topology of the image. 

In these notes, we shall first be concerned with the local regularity 

problem for solutions of the equations, i.e. the first nonlineari·ty, in 

chapters 3 and 4, and then deal with the global topological difficulties 

only in two dimensions, where the regularity theory is easier. 

1. 5 sm~E EXAMPLES OF HARMONIC MAPS 

The variational problem for harmonic maps seems to.be the most natural 

such problem one can pose for mappings between manifolds, and hence it is 

not surprising 'chat many ot.her canonical or natural maps turn out to be 

harmonic. In the sequel, we shall list some examples, 

isometries of Riemannian manifolds 

harmonic functions on Riemannian manifolds 

geodesics as maps s 1 ~ M 

minimal immersions and parametric minimal surfaces 

Hopf maps 8 3 ~ 8 2 8 7 + 8 4 , 3 15 + 38 

conformal maps on two-dimensional domains (cf. Lemma 1.3 .3) (in 

higher dimensions, ·they are in general no·t harmonic, however) 

holomorphic maps between K;,:hler manifolds (Holomorphic maps between 

arbitrary complex manifolds are in general not harmonic. 'rhis is not surprising, 

since the Kahler condition just means that the me·tric and the complex structure 

of the manifold agree. The definition of harmonic maps was given in terms of 

the metric structure, and when deriving tJ1e Euler-Lagrange equation for 

stationary points of the energy integral, we tacitly used the fact ·tha·t the 

manifold is endowed with the Levi-Civita connection. Otherwise, as is already 

the case for geodesics, those ·two concepts - minimizing the energy or leng·th 
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integral on one hand and being autoparallel on the other hand for geodesics -

would not agree. On the other hand, holomorphic maps are defined in terms of 

t.l!e complex structure, and as men·tioned above, the Kahler condition means 

that the complex connection, i.e. the unique torsionfree connection for which 

the complex structure is parallel, and the Levi-Civita connection, i.e. the 

unique torsionfree connection for which the metric is parallel, do agree.) 

Gauss maps of minimal submanifolds of Euclidean space, or more 

generally, of submanifolds with parallel mean curvature vector. This is a 

theorem of Ruh and Vilms [RV] . With the help of this theorem, one can prove 

Bernstein type theorems for minimal submanifolds of Euclidean space by 

proving Liouville type theorems for harmonic maps, since, if the Gauss map 

is constant, the submanifold has ·to be a linear subspace. We shall come back 

to this point in chapter 4. 

1. 6 SOt~E APPLICATIONS OF HAR~~ONIC MAPS 

We want to calculate for a harmonic map f 

Lie (f) 

i.e. 
1 ai3 i j 

Li2_Y (x)g, ,(f(x))f af i3 
lJ X X 

In order to do this, it will be convenient to introduce normal coordinates 

at the points X and f(x) ' i.e. Yai3(x) = oaS and gij(f(x)) = 6ij and 

all Christoffel symbols vanish at x and f(x) , so that we only have ·to 

take deriva·tives of the Christoffel symbols into account which will yield 

curvature terms eventually. 

First of all, we write the equation for harmonic maps in the form 

(1.6.1) 0 
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Differentiating this equation at x w.r.t. E 
X we obtain 

(1.6.2) 

1 m 
- -2 (gk · 0 +go · k - gk 0 ' ) f 

~,""m ""~' m ""'~m E 
X 

using of course that by our choice of coordinates all first derivatives 

of the metric tensors vanish, and the Christoffel symbols are given by, 

Furthermore, in our coordinates 

(1.6.3) aS 
Y 'aa 

and by the chain rule 

(1.6.4) l::,.g •• (f (x)) 
~J 

From (1.6.2) - (1.6.4) we obtain 

(1.6.5) 1 aS i !::,.2y (x)g .. (f(x))f 
~J xa 

+ (g .. M + gk2,,ij ~J, 

fi fi X fi 
a a a a + RaS a 

X X X X X 

where is the Ricci tensor of 

of Y 

- gik, jt - g.2, 'k) fi fj fk f2, 
) I~ a a a a 

X J!: ~ X 

fi y fi fj fk f2, 
xs 

- RikjJI. a a a a 
X X X X 

X and is the curvature tensor 
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In arbitrary coordinates, this formula is of course transformed into 

lie (f) 

and in invariant notation, if e 
(;( 

is an orthonormal frame at x , 

lle(f) 

(1.6.5) immediately yields the following 

COROLLARY 1.6.1 ([ES]) Suppose f : x + Y is a harmonic map, x is 

t . X compac , RJ..c =:: 0 , and the sectional curvature of Y is nonposi-tive. 

Then f is totally geodesic and has constant energy density. If the 

Ricci curvature of x is positive ·at one point of X at least, then f is 

constant. 

If the sectional curvature of Y is negative, then f is either constant 

or maps X onto a closed geodesic of Y • 

Proof Since xflle(f)dX = 0 , the integral over the right hand side of (1.6.5) 

has to vanish. Since the integrand is pointwise non-negative by assumption, it 

has to vanish identically. In particular, IVdfl = 0 , and thus f is 

·totally geodesic. Furthermore f:le(f) _ 0 , and since harmonic functions on 

compact manifolds are constant, e{f) _ const. 

If at x E X , R~S(x) is positive definite, then 

0 

implies that at x and hence everywhere e(f) 0 , and f is constant. 
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If Y has negative sectional curvature, then in ·the same way we see 

dim(df (T X)) < l 
X 

for any X E X . 

If the dimension is zero somewhere, then e(f) = 0 at this point and hence 

everywhere. Otherwise, f as a totally geodesic map has to map X onto a 

closed geodesic. 

We now want to apply Cor. l. 6.1 in conjunction with the following 

basic existence and uniqueness theorem of Eells-Sampson(existence) and 

Hartman (uniqueness) which will be proved in chapter 3 in order to reprove 

some well known theorems about nonpositively curved manifolds hy using harmonic 

maps. 

THEOREM 1.6.1 If X and Y are compac·t Riemannian manifolds and Y has 

nonpositive sectional curvature, then every homotopy class of maps from X 

to Y contains a harmonic map. If the curvature of Y is negative_, then 

this harmonic map is unique unless its 1:mage is a single point or contained 

in a closed geodesic in which case every other homotopic harmonic map can 

from the given one only by a rotation of this closed geodesic. 

We first deduce Preissmann 's Theorem: 

THEOREM 1.6.2 If Y is a compact Riemannian manifold of negative sectional 

curvature, then every Abelian Bubgroup of the fundamental group is cyclic. 

Proof Suppose a and b are commuting elements of n1 (Y) The homotopy 

between ab and ba allows us to construct a map g from the twodimensional 

torus '1' 2 into Y . By Thm. 1.6.1 g is homotopic ·to a harmonic map 

f : T 2 -+ Y , and the image of f is contained in a closed geodesic by 

Cor. 1.6.1. Hence both a and b are homotopic to some multiple of this 

geodesic. 
q.e.d. 
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Furthermore, we can prove the following consequence of the Hadamard-

Cartan theorem. 

THEOREM 1. 6. 3 If Y is a nonpositively curved compact Riemannian manifolds 

then all homotopy gl'oups 

manifold. 

TT (Y) 
m 

vanish for m > 2 i.e. Y -is a K(TT,l) 

Proof We have to show that every map g from a sphere Sm , m ~ 2 , into 

Y is homotopic to a constant. By Thm. 1. 6 .1, g is homotopic to a harmonic 

map f : Sm-+ Y , and f is constant by Cor. 1.6.1. 

q.e.d. 

Finally, we deduce 

THEOREM 1.6.4 If Y is a negatively curved R-iemannian manifolds then every 

isometry of Y homotopic to the identity coincides w-ith the and the 

isometT'Y group of Y 1.-s discre·te. 

Proof This follows from the uniqueness part of Thm. 1.6.1, since isometries 

are harmonic. 
q.e.d. 

The preceding argument can be generalized to show that the larger the 

isometry group of a compac-t manifold is, the more restrictions exist for 

mappings of this manifold into negatively curved ones, since composing a 

harmonic map with an isometry again yields a harmonic map. Cf. [SY3] for 

more details. 

While in the preceding part of this section, we have used harmonic maps 

to reprove some elementary theorems merely for the sake of illustration, we 

now want to briefly mention some more difficult applications most of which 

we shall not prove in these notes. 

One can prove rigidity G~eorems for certain classes of nonpositively 

curved K~hler manifolds, i.e. that the topological type already determines 
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"L'1e complex si:ructure, by showing "that a sui table harmonic map is actually a 

holomorphic diffeomorphism. Such results were obtained by Siu [Si], Jost-Yau 

[JY] , Jost-Mok-Yau. 

One can easily prove many results of 'reichmuller theory using 

harmonic maps, for example that Teichmuller space is contractible or· even a 

cell (de·tails can be found in [EE], [Tr], and [J8).) Also, one can recover 

the Weil-Petersson metric of Teichmiiller space from the second variation 

formula for harmonic maps. 

One can reduce boundary regularity for the minima of certain 

quadratic functionals to ·the nonexistence of nontrivial solutions for a 

certain Dirichlet problem for harmonic maps, cf. [JM] and [SU2]. 

As was pointed out by Eells-Wood [EW], harmonic maps can provide 

an analytic proof of the Theore.rn of Kneser, that a con·tinuous map <p be·tween 

closed orientable surfaces zl and z2 has to satisfy the inequality 

between its degree and the Euler characteris·tics of Z1 and Z2 , in case 

X u;-,l < o (cf. chapter 5). 
"" 

As we shall show in chapt.er 4, harmonic maps can be used "tO prove 

Bernstein ·type theorems. 

1.7 COMPOSITION PROPERTIES OF HARMONIC MAPS 

In this section, we shall display an elementary composition property 

which shall be useful in the sequeL First of all, if u E c2 (X, Y) is a map 

between Riemannian manifolds, and h E c2 (Y, lR) is a f1.mction 1 then the 

following Riemannian chain rule is valid. 

(L 7.1) ll(hou) 
') 

D-h(u a'u al +<(grad h)ou, T(u)> Y 1 

e e 
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where ea is an orthonormal frame on X In particular, if u is 

harmonic, i.e. 1: (u) = 0 , this reads as 

(1. 7.2) i'l(hou) 

or in local coordina·tes 

i'l(hou) 

Thus 

LEMMA 1.7.1 If h is a (strictty) convex function on Y and u is 

harmonic~ then hou is a .c;ubha:J'monic function on X • 

We note the follovling consequence (cL Gordon [Go]). 

COROLLARY 1. 7 .l Suppose x is a compact man·ifoZd, possibly 1.uith boundary, 

and u : x -+ Y is harmonic. If there exists a str{ct.Zy convex func·tion on 

u (X) , and u (ax) is constant in case ax 7' 0 , then u is a con.c;tant 

mapping. 

Proof From the maximum principle for subharmonic f1.mctions, it follows that 

hou is constant, and since h has definite second fundamental forra, (L 7. 2) 

implies that u itself is constant. 

In section 2.3, we shall see that the assumptions of Cor. 1.7.1 are in 

particular satisfied, if u(X) is contained in a ball B(p,M) which is 

disjoint to the cut locus of p and satisfies M < 1T where 
2K 1 

2 
K is an 

upper curvature bound on this ball, because in this case d 2 (•,p) is 

strictly convex. 

Another consequence is 

COROLLARY 1. 7. 2 Suppose X is a compact manifold with 1T1 (X) o and the 
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sect-ional curvature of Y is nonposit-ive. Then any harmon-ic map u X+ y 

is constant, provided u(3X) is constant in case ox f o . 

Proof By the homo·topy lif·ting theorem, we can lift u to a harmonic map 

u : X + Y into the universal covering of Y The required strictly convex 

function is then 2 d (• ,p) , where p is any point in y . 

If instead of a real-valued function, h is a map from Y into some 

other Riemannian manifold, then instead if ( 1. 7 .1) '"e get 

(1.7.3) 

In par·ticular 

ll(hou) 'Vdh(u a'u a) + (dh)ou • T(u) • 
e e 

LEf~i't1A 1. 7, 2 If h is totaUy geodes·&c and u is harmonia, then hou is 

aga·in harmonia. 



CHlWTER 2 

GEOMETRIC PRELIMINARIES 

Almost linear functions, approximate fundamental solutions, 

and representation formulae. Harmonic coordinates. 

2.1 OUTLINE OF THE CHAPTER 

This chapter begins with a collection of basic estimates for Jacobi 

fields and some convexity results. We mostly follow the elegant presentation 

in [BK]. 

We ·then introduce the notion of almost linear functions on a manifold, 

the main technical innovation of [JIG]. Whereas standard coordina-te f1mctions, 

e.g. Riemannian normal coordina-tes, have only rather poor regularity 

properties ( cf. the example in 2. 8) due to the fac·t that they involve not only 

the distance function but also angular terms, almost linear ftmctions will be 

constructed by only using the distance function, which admits a sufficient 

control through Jacobi field estimates. The basic idea is to use the 

Euclidean identity 2<x,p-q> = lx-ql 2 - lx-pl 2 (p = -q) as a definition. 

These functions satisfy almost, i.e. up to a small error term, the usual 

characterizations of linear functions in Euclidean space, e.g. tha-t the first 

derivatives are constant, the second ones vanish, or the Taylor expansion 

terminates after the second term. These error terms are inevitable due to the 

presence of curvature, conceptually considered as a measure of deviation from 

Euclidean space. Such error terms, however, generally are of lo•1er order than 

the other ·terms which appear already in the Euclidean versions of the formulae 

and hence can be easily absorbed. In particular, we discuss approximate 

fundamental solutions of the Laplace and heat equation on manifolds and derive 

representation formulae. Almost linear functions permit to gain one order of 

differentiation in such formulae by enabling us to also approximate the 
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derivatives of fundamental solutions. 

Another application of almost linear: func·tions is the construction of 

harmonic coordinates on manifolds with the help of a perturbation argumen·t. 

They possess even better regularity properties, since, for instance, we can 

derive Ca -bounds for the corresponding Christ.offel symbols in terms of 

curvature bounds only, not involving any curvature derivatives. 'I'hey there-

fore seem to be optimally adapted to ·the concept of manifolds of bounded 

geometxy. In the present notes, they will play an important role in the 

derivation of higher order a--priori estimates for harmonic maps. 

Starting with section 2.6, all the results of this chapter are either 

taken from or inspired by [JKl]. 

2.2 JACOBI FIELD ESTIMATES 

Let c(s,t) = ct(s) be a family of geodesics parametrized by t 

s usually will be taken as the arc length par?..meteJ:· on each geodesic. 

d 
Jt(s) = ()t c(s,t) is ·then a Jacobi field. It satisfies the equation 

(2 .. 2.1) D D ( + R [~cs ' Jt)l ~cs· = 0 ~ Cls Jt. s) o I o 

which easily follows from and the definition of the curvature 

tensor. 

From (2.2.1) we see tha·t the tangential component of a Jacobi field J, 

Jtan = <.J, ~~· >J satisfies 

and is hence independent of the metric. In pa:r·ticular, Jtan is l.ineaJ:·. In 

order to .incorporate the tangential component in the estimates, we have to 

assume that we have curvature bounds 
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(2. 2. 2) A s: 0 I ll 2: 0 

i.e. a nonposi·tive lmver and a nonnegative upper bound, or else to assume 

tan 
J 0. 

We need some definitions: 

always denotes a derivative with respect to s , while is the 

differentiation with respect to t . 

We put 

{ 
cos (/P s) 

cp(s) l 

cosh(H s) 

if p > 0 

if p () 

if p < 0 

and 

{ 
J:_ sin (/p s) 
IP 

sp(s) s 

if p > 0 

if p 0 

l sinh (1-p s) if p < 0 

Both functions solve the Jacobi equation for constant sec·tional curvature P 1 

namely 

(2. 2. 3) f" + Pf 0 

with initial values f(O) 1 1 f' (0) 0 , or f (0) 0 , f' (0) 1 1 

resp. 

c will always be a geodesic arc parametrized by s proportionally to 

arclength, and usually lc' I = 1 for simplicity. 

LEfv1MA 2.2. 1 Assume K S: ll and I c' I 

Let f]J := IJ(O) I ell + IJI' (0) 

with the same initial conditions as 

1 , and eithe.r Jl ::: 0 

s be the solution of 
]J 

IJI 

o.r Jtan _ 0 . 

f" + ]Jf 0 
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If f (sl > 0 for s E (O,crl , then 
1J 

(2. 2.4) <J,J'> f :<:<JJ>f' 
1J ' )l 

on (O,o) 

(2. 2. 5) 1 
\J(sl) J \J(s2) I 

if < s 1 ~ s 2 < a ~ ---- ~ 0 f (s1 ) f (s2J 

(2. 2. 6) jJ(O) \ c (s) + \Jj' (0) s (s) ~ jJ(s) I 
1J 1J 

for: s E (O,ol • 

Proof 

Hence 

Since \J I (0) f (0) , jJj' (0) = f' (0) , (2.2.4) follows. Then 
)l )l 

.since it vanishes at 0 and has nonnegative derivative. 

(2.2.5) again follows from the initial conditions, and (2.2.5) implies 

LEM~1A 2.2.2 Asswne K ::; 11 , and either ll 2 o or Jtan o , and \K\ ~ A2 " 

J(O) = 0 , 

Then 

(2.2.7) 

\c' \ = 1 , c 2 o on ( o , a) • 
ll 

1 2 2 
jJ(s) -· sJ' (s) I ::; jJ(t) \ "2 As 

Proof Let P be a parallel vector field along c , and s E (O,o) . 

\<J(s) - sJ' (s), P(s))' J = \s <R(c' ,J)c' ,P > (s) I 

s (s) 

::; A2 s jJ(O) I - 11-­
s)l ( cr) 

by (2.2.5) 



29 

since c]l 2: 0 on [O,cr] 

and (2.2.7) follows by integratio~ of this inequality. 

q.e.d. 

Instead of prescribing J(O) and J'(O) , one can also prescribe J(O) 

and J(P) for p < TI/~ • For example, since we showed in the proof of 

Lemma 2.2.1 that JJJ" + ]lJJJ <: 0 , we conclude, assuming Jc' J = 1 again, 

(2.2.8) sin(ljlp) JJ(s) J :$ sin(ljls) JJ(p) J + sin(ljl(p-s)) JJ(O) J . 

We shall also need the following estimate of Jager-Kaul [JaK2]. 

LEMMA 2.2.3 Suppose, K :$ Jl , lc' J = 1 , and 0 < p < TI/Iil in ease Jl > o • 

If X is a Jaeobi field along c with 

<x,c'> = o , 

then 

s' (p) 

(2.2.9) ;(x,x'> I~ 2: s~(P) <Jx<o>J 2 + Jx<p>J 2>- s)p> Jx<o>J·Jx<p>J. 

Proof Let 

s(t) := - 1- • ( Jx(O) Js (p-t) + Jx<pl Js (t)) • 
s]l(p) Jl Jl 

Then s solves 

(2.2.10) 

and 

and 

(2.2.11) 

s" + ]ls 0 , s(O) Jx<o> I , s(p) 

s ;:: 0 on [O,p] 

s' (0) = s)p> <Jx<pl I - s~(p) Jx(O) I> 

s' (p) = - 1 - (s' (p) Jx<p> I - Jx<Ol I> 
sJl(p) Jl 

Jx(p} I , 
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Then the function 

g := sjxj•- s•jxj 

is differentiable where jxj ~ 0 . (Note that the zeros of X are isolated, 

since X solves the Jacobi equation 

(2. 2 .12) X" + R(c' ,X) c' 0 ' 

which is a linear second order equation.) Moreover 

g' slxi"- s"lxl r<x x•>J' slTxr + vslxl 

= s 
1 2 2 2 1 

( Jxj jx• J - <x,x•> l - s • -jxj <x,R(c' ,lOc'> + 1.1s jxJ 
jxj3 

~ Q I 

since by assumption <x, R ( c' , X) c •> :> ]J I X J 2 • Thus g is not decreasing on 

those intervals where i·t is differentiable. As was noted above, points T 

where g' does not exist, Le. jX(T) j = 0 are discrete, and moreover 

g(T+O) - g(T-0) 2s(T) \X' (T) I <: 0 • 

Thus, g is not decreasing on [O,p] , and defining 

I X I' (p) lim jxj' (p-s) , 
s+O 

jxj' (OJ lim jxj• (t:) , 

t:+O 

1;1e conclude 

o :> g(p) - g(O) = s(pl jxj' (pl - s' (pJ jx(p) I - s(O) jxj• (0) + s• (O) jx(O) I 

by (2.2.11). 

s' (p) 

= <x,x'>(p) - <x,x'>(O) -~ ( jx(Ol j2 + jx<pl j2l 
]J 

+ s ~pl jx<ol 1·\X(pl I ' 
]J 

q.e.d. 
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We now turn to describe the effect of a lower curvature bound on Jacobi 

field estimates. 

LH1MA 2.2.4 Assume A ::;; K::;; 11 _, and ei-ther A ::;; o or Jtan::: 0 , IKI ::;; A2 _, 

I c' I ::: l _, and in addi-tion that J(O) and J' (O) are UnearZy dependent. 

For a parcone-te.r T , we define again f, If 

f~(A+lJ) > o on (O,p) _, then 

(2.2.13) 

and in any case_, if P denotes parallel t.ranslation along c 
s 

(2.2.14) IJ(s) - P (J(O) + sJ' (0)) I :S IJ(O) I (cosh(As) - 1) 
s 

+ IJI '(0) (f sinh(As) - s] 

Proof Let T be a parame·ter, and 11 == max(]l-T, T-A) • Let A be the 

vectorfield along c ·i:ha·t satisfies 

D D 
ds ds A + TA == 0 ' A(O) J(O) , A" (0) J' (0) • 

Let a be the solution of 

a" + (T-nla = niAI a(O) a' (0) 0 

and b the solution of 

b" + Tb = n I ,J I b(O) =b'(O) 0 0 

If P is a unit parallel field 

Hence 

d := {<J - A,P)- b}" s, - {<J - A,P)- b} s~ s 0 
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and 

r_l {<J- A,P>- b})' (s) = - 2-
1- r d ~ 0 

8 T s, (s) 0 

Thus _l {<J - A,P> - b} ~ 0 , since it vanishes at s = 0 • If s, > 0 on s, 
(O,P) , then this implies 

(2.2.15) 

and 

In a similar way 

(2.2.16) i.e. 

(2.2.15) and (2.2.16) give 

on (O,p) 

(b - a) ~ 0 , s, 

b ~ a 

(2.2.17) \J - A\ (s) ~ a(s) for s E (O,p) • 

(2.2.18) 0 

a.'ld thus 

since it vanishes at s = 0 , as A(O) and A' (0) are linearly dependent. 

This in turn implies 

i.e .. 

and hence 



and from (2.2.17) 

Choosing 
1 

T = i<v+l) , i.e. 

a= 
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f - f 
T-n T 

$ f 
T-n 

T-n = l, then proves (2.2.13). 

(2.2.18) also implies that (A/IAil' 0 , i.e. A/IAI is parallel, 

and choosing T = 0 then proves (2.2.14). 

2.3 APPLICATIONS TO GEODESIC CONSTRUCTIONS 

We let c(s,t) = exp (s·(v+tw)) be a family of geodesics radially 
p 

emanating from the point p • 

Then 

(2.3.1) 
a 

J(s) = at c(s,t) lt=O 

is a Jacobi field with 

J(O) 0 , 

(d exp ) •SW 
p sv 

J' (0) = w • 

If we put v = w , then J is tangential to c(s,O) and hence linear, i.e. 

J(s) = sv , which implies 

I < d exp > • v I = I v I p v 

or in other words, that expp : TPM + M is an isometry in the radial 

direction. 

If w and v are orthogonal, then (2.2.6) and (2.2.13) imply 

LEMMA 2.3.1 If w 1 v > l $ K $ v • then, if s <...:!!... in case v > 0 • -Iii 

(2. 3.2) lwl 
sv(s) 

I (d exp ) -wl lwl 
s 1 (s) . ---$ $ 

s p SV s 
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LEMMA 2.3.2 Let B(m,p) := {x E M : d(m,x) ~ p} be a baZZ in some manifoZd 

M whiah is disjoint to the aut Zoaus of its aentre m • We assume for the 

seationaZ aurvatures K in B (m, p) 

2 2 
-W ~ K ~ K and p < .2!... 

2K 

We define r(x) := d(x1m) and 1 2 
f(x) := 2 d(x1m) • Then 

and 

(2.3.3) 

(2.3.4) 

for x E B(m,p) 

Proof grad f (x) 

jgrad f(x) I = r(x) 

~ wr(x) coth(wr(x))• lvl 2 

and VETM 
X 

-1 
- expx m which implies (2.3.3). 

Let q(t) be a curve in M with q(O) = x and q(O) 

Then grad f(q(t)) 

-1 
c(s 1t) = expq(t) (s expq(t)m) 

a -a; c(s1tl ls=O 1 and hence 

Dv grad f(x) 
n a 

- at as c(s 1t) ls=0 1t=O 

n a - a; at c(slt) 

2 
f E C (B(m 1 p) 1 JR) 

v and 

a 
For fixed t 1 Jt(s) = at c(s,t) is the Jacobi field along the geodesic from 

m to q(t) with Jt(O) = q(t) and Jt(l) = 0 E TmM 

Dv grad f(x) = DJ (O) grad f(x) = -J~(O) • Since 
0 

Hence 

n2f(v 1v) = <n grad f, v> = - <J' (0) 1 J (O)) 1 
v 0 0 

(2.3.4) follows from (2.2.6) and (2.2.13) (since Jt(l) 0 1 Jt(l) and 
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J~(l) are linearly dependent). 

q.e.d. 

2.4 CONVEXITY OF GEODESIC BALLS 

The following convexity result was proved in [J2] and [BK], Prop. 6.4.6. 

PROP. 2.4.1 Suppose the baU B(m,p) is disjoint to the cut locus of m, 

and 
'IT 

p < 2K , where is an upper bound for the sectional curvatUloe of 

B(m,p) Then any two points in B(m,p) can he joined in B(m,p) by a 

unique geodesic arc. This arc is the shortest connect;ion between its end 

points a:ad thus in particular does not contain a pai7' of conjugate p01:nts. 

Proof Since the cut locus of a point m is closed, we can find some p• , 

p < p' < 27~, for which B(m,p') is still disjoint. to the cu·t locus of m 

For any two poin·ts p and q E B (m,. p) , we can find a shortest connec·tion 

y(t) in B(m,p') by the standard Arzela-Ascoli argument. Let y{O) p 

y(l) q ' and le·t C(• ,t) be the family of geodesics 1.vith c(O,t) = m 

c(l,t) y(t) The Jacobi fields Jt(s) 
d 

= dt c(s,t) are mono·tonically 

increasing in s E [0,1] by (2.2.5). Hence, in case y leaves B(m,p) 

somewhere between p and q , we can project it onto B(m,p) , i.e. take 

and obtain a shorter comparison curve in contradiction to Lhe choice of y 

Hence y is contained in B(m,p) and hence in particular in the interior of 

B(m,p') and is therefore geodesic. Furthermore, clearly length(y) ~ 2P 

The exponential map has maximal rank along any geodesic in B(m,p) of 

length ~ 2p by Lemma 2.3.1. In particular, they do not contain pairs of 

conjugate points and are locally unique. Hence, the set of pairs 

(p,q) E B(m,p) x B(m,p) with two geodesic connections is compact, since two 
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geodesics cannot collapse in the limit into a single one with conjugate 

points. Thus, if this set were non empty, we could find such a pair (p, q) 

of minimal distance with two minimal geodesic connections and 

and then have to form a closed geodesic. Namely, o-therwise, if they 

would form an angle < 'IT at p for example, then moving a little bit along 

the geodesic which bisects this angle, >ve could find a point p which is 

closer to q and still has two different connections to q , in contradiction 

to the choice of p and q (For more details on ·this argument, cf. [GKH]). 

On the other hand, by Lemma 2.3.2, d2 (.,m) is strictly convex on B(m,p) , 

and ·therefore the existence of a closed geodesic in B(:m,p) contradicts Cor. 

1.7.1. 

If now p,q E B(m,p) would have two geodesic connections, one of which, 

called Y , is longer than 2P , then y ceases somewhere between p and q 

to be the shortest connection of its endpoints, and hence we could again find 

two minimal geodesics, in cont.radiction ·to what we already proved. 

q.e.d. 

This result can be somewha·t. improved in ·two dimensions. Firs·t of all, 

we have 

LEMf"'A 2.4.1 Le·t s be a compact surface, possibl-y with boundary. If -the 

boundary y is not empty, 1:t is assumed to be conve.T., i.e. that through 

every point q of y there goes a geodes·i.c w"c -which i-s disjoint to s in 

a ne-ighbourhood of q Let p,q E s . Assume that there are two distinct 

homotopic geodesic arcs joining p and q • Then each of the points p 

and q has a conjugate point in s , and this point is conjugate to p or 

q , .resp., 1Jith respect to a geodesic arc which is the shortest conneetion ·in 

its homotopy class. 

Proof We denote the two geodesic arcs by Y 1 and Y 2 . We can assume 
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w.l.o.g. that and are shortest connections in their homotopy class 

between p and q , since otherwise, starting e.g. from p and moving on 

y1 , we would find a point q1 which would either be conjugate to p or 

would have a connection in S to p in the same homotopy class and of equal 

length as the segment of between p and (At this point, for the 

existence of such a connection, we have to use the convexity of y ). Since 

and are homotopic and distinct, because we could assume that they 

are shortest connections, they bound a set B of the topological type of the 

disc. 

We now look at a geodesic line emanating from p into B • As 

and are shortest, this line has to cease somewhere in B to be shortest 

connection to p • Repeating the argument, if we have not yet found the 

desired conjugate point, we get a nested sequence of geodesic two-angles, i.e. 

configurations consisting of two homotopic geodesic arcs of equal length 

which furthermore are shortest possible in their homotopy class. In the 

limit, this construction has to yield a geodesic arc covered twice. The 

endpoint q2 therefore is homotopic to p , and furthermore, the geodesic 

arc is the shortest connection in its homotopy class from p to q2 • 

q.e.d. 

LEMMA 2.4.2 Suppose B(p,R) := {q E l: : d(p,q) :;; R} , where l: is a surface, 

is topologically 

exp {v : lv I = r} p 

exponential map. 

Proof Clearly, 

(2.4.1) 

a disc for some r Tf 2 
< K (K:;; K) Then 

(3B(p,r) for all r :;; R, where expp : T l: p -+ l: is the 

Furthermore, dB(p,r) is convex, if 

<3B(p,r) :::: exp {v : lv I p 
r}:::: B(p,r) • 

exp {v : lv I = r} n El(p,r) 'I cp • 
p 

r < ..2!.. 
- 2K 

We assume now that 

expp is a local diffeomorphism on {v: lv I < .2!:} by Lemma 2. 3.1, and therefore 
K 
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r} is an immersed smooth curve for 
TI 

r < 
K 

Since 

r} is compact, we can find some q E expp{v: lv! = r} with 

minimal distance to p . Consequently, the shortest geodesic y from p to 

q is orthogonal to exp {v : lvl 
p 

r} at q and has length < r • On the 

other hand, q lwl = r 

t E [0,1] , is also orthogonal to 

and the geodesic 

exp { v : I vI = r} 
p 

y' = exp tw , 
p 

at q and different 

from y , since its length is precisely r • Thus, y and y' have an 

angle of rr a·t q and match toge·ther to a geodesic loop with corner at p • 

It is not difficult to see that every point inside this geodesic loop can be 

joined to p by a shortest geodesic, in spite of the fact that this loop 

might not be convex at p . Thus, we can carry over the argument of Lemma 

2.4.1 to assert the existence of a point p' inside this loop which is 

conjugate to p w.r.t. a shortest geodesic y" . Since p' E B(p,r) and 

r < .! this is in contradiction 'co Lemma 2. 3. 1. 'I'his proves the first 
K ' 

·claim. Furthermore, since expp has maximal rank on {v E Tpl: : Jvl < ~} , 

as noted above, we infer that every v E T L 
p 

with lvl = r has a neighbour-

hood V >fllhich is mapped 1mder expp injectively onto its image (cf. [Kl], 

p. 108f.). From this, we easily see that >ve may apply the estimate of Lemma 

2.3.2. Therefore, if then h is a convex func·tion on B (p, r) and 

consequently, 3B(p,r) 

convex function. 

exp {v : I vi 
p 

is convex as a' level set of a. 

PROP. 2.4.2 Suppose now~ that B(p,r) is a geodesic disc on a surface~ and 

r < ..2:_ ( 2) 
2 K K s I( • Then each pair of points q1 , q2 E B (p, r) can be j o·?ned 

by a unique geodesic arc in B(p,r) , and this are is free of conjugate 

points. 

Proof By virtue of Lemma 2.4.2, we could apply Lemma 2.4.1, if there would 

exis·t two geodesic arcs joining ql and q2 Consequently, we would find a 

pc.,int q3 conjugate to ql w.r.t. a shortest geodesic arc, i.e. an arc of 
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This would contradict Lemma 2.3.1. 

2.5 THE DISTANCE AS A FUNCTION OF TWO VARIABLES 

q.e.d. 

We suppose again that the ball B(p,H)cN is disjoint to the cut locus 

of p and that 

define 

and note that 

1T 
M < 2K , where 

l K~ (l - cos l<t) 

t2 

2 

It 

s ') 
0 I(" 

are curva,ture bounds. We 

if K > 0 

ifl< 0 

By assumption and 2.4, any two points y 1 ,y2 E: B(p,H) can be joined by 

a unique minimal geodesic in B(p,M) , and we can measure the distance 

between and by the length of the geodesic arc between them. We 

denote this (possibly modified) dis,tance function again by d (y 1 , y 2 ) . Then 

defines a c2 func,tion on B(p,M) >< B(p,M) , since q1~(0) 

we note that 

for y 

T (NXN) 
y 

{isometrically) 

0 • Moreover, 

In the following lemma, we shall estimate the Hessian of QK on 

B(p,H) x B(p,M) , using the Jacobi field estimate of Lemma 2.2.3. This 

result is again due to Jager-Kaul [JaK2]. 
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LEMMA 2.5.1 If y1 ~ y2 , then for aZZ 

v E T (NXN) , 
y 

(2. 5.1) 
2 2 

- K Q (y) lv I . 
K 

If v has the speciaZ form o E!J u or u E!J o , then 

(2.5.2) 

and this aZso hoZds for y1 = Y2 . 

Proof First some definitions 

c [O, P] -+ B (p,M) is the Lmique geodesic arc from y 1 

lc' I = 1 , 

e 1 (y) := -c' (0) 

e 2 (y) := c' (p) 

v~al1 := <v.' (y)) el. (y) 
J. l. 

tan 
:= v. - v. 

l. l 

Then, since p > 0 

grad d(y) e, (y) E!J 
.L 

(i 

(y) 

1.,2) • 

grad QK (y) = s 2 ( p) (e1 (y) E!J e 2 (y) l , and 
K 

2 
D Q (y) (v,v) = <D grad Q ,v) 

K v 1< 

(2.5.3) s' 2 (p)<e1 (y) E!J e 2 (y),v1 E!J v 2>2 + s ?(p)D2d(v,v) 
K C 

If ct(s) is the geodesic arc with 

to with 
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nor 
ct(p) = exp (tv ) 

y2 2 

(note that ct is unique, if t ~ 0 is small enough), then 

(2. 5. 4) 

is a ,Jacobi field along c with 

J(O) J (p) 

By Synge's formula (cf. [GI~~], §4.1), 

(2.5.5) 
? ?} 

D-d(v,v) = --?- length(c ) I =O 
3t- t t 

nor 
v 

2 

= J: ( \J' 12 -· <J,R(c' ,J)c'))ds 

(no·te that there is no boundary term, since 

<J,c'> = 0 ) 

We can apply Lemma 2. 2. 3 ·to obtain 

D2d(v,v) = rp ( IJ' 12 + <,J,J">)ds 
JO 

= <J,J'> 16 
s'2(p) 

1<: 
>---
- s 2 ( p) 

K 

and thus with (2.5.3) 

(2. 5.6) 2 D Q (v,v) 
K 

If v = 0 ~ u, (2.5.6) implies 

I norr2 
u I 
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2 2 
(1 - K Q (y)} I u I 

while in the general case, we only have 

and 

I tanl2 I norl2 vi + vi , 

and therefore from (2.5.6), 

1 2 2 I 12 I 12 = 2QK(y} <grad QK(y},v> - K Q (y} ( v1 + v2 ) • 

q.e.d. 

2.6 ALMOST LINEAR FUNCTIONS 

We are now ready to introduce almost linear functions, one of the main 

tools of [JKl]. 

Let B(m,p) be again a ball in some n-dimensional Riemannian manifold 

M which is disjoint to the cut locus of m , and assume curvature bounds 

and 

We put r(x} = d(m,x), f(x) 

P < __!.. 
2K • 

2 -!d (m,x} • 

DEFINITION 2.6.1 Let u E TmM be a unit vector, i.e. lui 

p(x) = expm(r(x}u} , q(x} = expm(-r(x)u} Then 

1, and put 
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1 2 2 
t(x) := 4r (x) (d(x,q(x)) - d(x,p(x)) ) 

is called an almost linear function. 

We observe that in the Euclidean case, this notion yields precisely the 

linear functions, because of Pythagoras' theorem. We furthermore note that 

(2. 6.1) -r(x) s 1(x) s r(x) . 

The estimates of [JKl] for almost linear functions are contained in 

THEOREM 2.6.1 Suppose B(m,p) is disjoint to the cut locus of m, 

IK\ s A2 on B(m,p) , a:nd p < .]!_ 
2K Let u E T M, lui m 

1(x) the associa·ted almost linear function, crad u(x) the radially 

parallel vector field on B (m, p) with u (m) = u • Then 

(2. 6. 2) 

(2. 6. 3) 

I grad t (x) ·- u (x) I s 2 ?l\_ sinh (2Ar) • r2 (x) 
k sin(2Kr) 

I 2 J I sinh(2Ar) 
D 1(x) s 9:<A sin(2Kr) wr ctgh(Wr)) r(x) 

1 ~ 

I -1 I [9 sinh(2Ar) ) 3 (2. 6. 4) 1 (x) - <grad 1 (x), -exp m) s ? KA · . 12 ) wr ctgh {Wr) r (x) • 
X - Sln Kr 

Proof Let y('t) be a geodesic with y(O) = x We then look at the 

following families of geodesics, joining y(t) wi·th p(y('t)) or q(y(t)) , 

resp., 

-1 
expy(t) (s • expy(t) p(y(t))) 

-1 
c 2 (s,t) = expy(t) (s. expy(t) q(y(t))) . 

(l 
Ji(•,t) = <lt ci (•,t) are Jacobi fields with 

y(t) 

i:u(t) 

J2(l,t) -i:u (t) 
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where we have abbreviated r(y(t)) = r(t) , u(y(t)) 

d 

u(t) , etc. We also 

write again = at c • We note that 

2 
d (p{y(t))' y(t)) 

2 d (q(y(t)), y(t)) i ( )2 c 2 s,t 

Now 

d 
c'2 - c'2 

2 1 1 D 
dt i(y(·t)) c {<c2, _£... c' >} ds r + '>- <' ' -----

(J·t c2. ,cl, 
4r 

2 2r 3t 1 

,2 - ,2 

I: c2 cl 
r + 

1 
{<c~' J2>' - <ci, J 1>"} ds 

4r 
2 2r L. 

(2.6.5) 

In order to control ci - c2 - 2ru which vanishes in the Euclidean case, 

we need the following result which follows from [BK]. 

LEMMA 2.6.1 Put t:(:r.) 

(2. 6. 6) \ci -

(2.6.7) lc' -
2 

(2. 6.8) \-c' -
1 

(2. 6. 9) I -1 -c2 

sinh (21\r) 
Siii(2Kr). 

-1 
(e){px m + ru) J 

-1 
(expx m ·- ru) \ 

-1 
ru) I (exp )t --m 

(x) s E(r) 

(x) s t:(r) 

(p(x)) s 

(exp ru) j {q(x)) - + s 
m 

E(r) 

E(r) 

Proof of Lemma 2.6.1 Le·t v E TxM, c(t) = exp tv, c(l) = q, where q is 

some point in M • Let w " TxM and w(t) be ·the parallel vector field 

along c (t) • 

We first. want to estimate d (F (w) , G (w)) , where 

F(w) 

G(w) 

expx(v + w) 

exp (w(l)) • 
q 
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We consider the family of geodesics 

c(s,t) = expc(t) (s. (w(t) + (1- t) c(t))) 

and the corresponding Jacobi fields 

Jt (x) c(s,t) • 

The initial conditions are 

(2.6.10} 

-C:<t> . 

We let J~0rm(s} be the component of Jt(s) which is orthogonal to 

c' (s,t} 

Since the curve c(l,t} joins F(w} and G(w) and has tangent vector 

J (1 } J norm (l} 
t = t , because Jtan(l) 

t 
0 (this follows from (2.6.10)} 

(2.6.11} :> flo d(F (w}, G(w}} IJ~0rm(l) ldt • 

We now want to apply (2.2.14). Since Jc•l isnotnecessari1yequaltol, we have to 

s rescale c (•,t) , i.e. to l.ook at the geodesics y(s,t) = c(~1 t) 

Fields J ( s, t) = J (I cs' I' t) . This amounts to replacing A by A I c' J 

and the Jacobi 

in (2.2.14). 

Since by (2.6.10) Jt(O} + Jt(O} = 0 , (2.2.14) yields, putting 

p = max( lwl, lv + wl) , and using cosh x sinh x ~ l x sinh x , 
X 3 

(2.6.12) 

Moreover, 

I ~~ 12 • I ~~ 12 < ~~ I ~~> 2 

2 2 2 
Jvl Jw + (1 - t) vi - <v,w + (1 - t) v> 

lvl 2 I 12 2 w - <v,w> • 
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Therefore, (2. 6.11) and (2. 6.12) imply 

(2.6.13) d(F(w), G(w)) 

In (2.6.13), we then put 
-1 

v = expx m, w = ±ru . 

Then 

F(w) 

G (>v) expm (±ru) p(x) or q(x) resp. 

Therefore, (2.6.6) and (2.6.7) follow from (2.6.13) and (2.3.2). (2.6.8) and 

(2.6.9) follow in a similar manner. 

q.e. d. 

We now continue the proof of Thm. 2.6.1: 

(2.6.6) and (2.6.7) yield 

(2. 6.14) I ' - c2 - 2ru \ {x) 5 2£: (r) 

and similarly from (2.6.8) and (2.6.9), if p denotes parallel transport 

along radial geodesics 

(2.6.15) \pci - pc2 - 2ru\ (m) s 2E:(r) • 

(2.6.15) ond lei+ c2\ 5 4r imply 

(2.6.16) I ,.2 
c -

2 

Since \r\ s I'YI , (2.6.5), (2.6.14), and (2.6.16) then yield 

<grad fL- u, y> I :S ~ E:(r) \Y] 

Le. (2.6.2). 

Differentiating (2. 6. 5) , we get 
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d2 
(2.6.17) -2 9-(y(t)) 

dt 
c' -

2 
( " .2) -r r 

4r2 + 2r3 

r r 
+ -- <c' c' y' > · < ' + ' " • "' 

2r2 2 - 1' s=O - 4r2 c2 cl, ~r4?s=l 

In the course of (2.6.5), we obtained 

Hence 

(2.6.18) r .. . 2 J r r 
<c2• + c 1• , c 2• - c 1• + 2ru> --- + ---

-4r2 2r3 

Since f with (2. 3. 4) 

( •• • 2 J -r r 
--,) + --3 s 
l4r- 2r 

lr1 2 
(3 + wr ctgh(Wr)) • 

4r3 

(2. 6.14) then gives 

( .. • 2 J -r -
(2.6.19) <c2• + c1•, c' - c' + 2ru> --- + -L-- s 

2 1 4r2 2r3 

?;E(r) 
1

.
1

2 
2 (3 + wr ctgh (Wr)} y 

Furthermore, since 

Using 

r 

(J(s) ~ p·J(O) - sJ' (s))' = sR(c' ,J) c' , 

I J ( s) - p J ( 0) - sJ' ( s) I s A 2 I c ' I 2 r a I J (a) I 
0 

IJ(s)l IJ(l) 1 si:-(Kic'ls) + IJ(Oll sin(l<.lc'l(l- s)) 
S I SJ.n(Kic'l) sw(Kic'll 

2 mav(IJ(O)I, IJ(llll sin(Kr) s ~ • sin(2Kr) ' 
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which follows from (2.2.8), we get 

(2.6.20) I,J(s) - p J(O) - s J' (s) I 

and similarly 

IJ(1-s) - p J(l) + (1-s) J' (1-s) I 

is estimated by the same quantity. 

We are now ready to control the second "terril of (2. 6.18) • First 

(2.6.21) 

Next: 

since J. (0) 
l 

Sinc-e -lr.l" < 11Y"I 

(2.6.23) 

+ 

12:i:< .> <. ·1 Lllr1 1 • 1 ~ c; - cl, Y + 4ru, Y> s-=-;- y s(r) . 

- 4 <:i:u, y> = 0 , 

(1) = :i:u, J 2 (1) = -:i:u 

(2.6.20), (2.6.21), and (2.6.22) then give 

(1)' Jl (ll> 

(1) ' 

s [4Sr(r) + 4A2 r 2 . sin(Kr)_) 1.:: \2 
sln (2Kr) J ( 

(2.6.18), (2.6.19), and (2.6.23) finally yield 

(8E(r) 2E(r) 
--2- + --2- wr 

r r 

[9 A sinh (2Arl 
s I< sin(2Kr) wr 

Thus, (2.6.3) is proved. 

For any geodesic c 

2 sin(Kr) 'j 2 ctgh (Wr) + 2A r-. ---- \ Y \ 
sln(2Kr) 

ctgh(wr))·r ·ly\ 2 • 
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d 
dt (Z(c(t)) - t <grad£, c(tl>l 

Taking the radial geodesic from m to x , we then see that (2.6.4) follows 

from (2.6.3). 

q.e.d. 

For later purposes, we also need to investigate how almos·t linear 

functions depend on the base point m To emphasize this dependence, we now 

use a subscript m , i.e. write Z (x) 
m 

for the corresponding almost linear 

ftmction. Let now y(t) be a geodesic arc, u(t) a parallel unit vector 

field along y(t) and the corresponding almos·t linear functions. 

LEMMA 2.6.2 For z "'B(y(t), p) , p < min(i(y(t)), TI/21<) 

(2.6.24) I d I 2 2 dt Zy(tl (zl s (5 + c A p ) . 

Proof Let p(t) d(y('t), z) 

p(t) expy(t) (p(t) u(t)) 

q(t) expy(t) (-p(t) u(t)) . 

Then 

(2.6.25) \(t)(z) = 4 p~t) (d2 (z,q(t))- d2 (z,p(t))). 

liVe look at the family of geodesics 

c(s,t) = expy(t) (sp(t) u(t)) . 

The corresponding Jacobi field Jt(s) 
d 

::lt c(s,t) then satisfies 

Jt (0) y(t) 

p(t) u(t) , since u(t) is parallel along y 

p(t) • 
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In particular, is tangential to the geodesic c(•,t) • Thus, 

J norm(O) and Jnorm'(o) 1· 1 d d d (2 2 13) · 1" t t are ~near y epen ent, an . • ~mp ~es 

(2.6.26) !PI $ !PI + cosh(Apl lrl , 

and the same inequality holds for jqj • 

(2.6.24) then follows from (2.6.26), !PI $ lrl , and d(z,q(t)) , 

d(z,p(t)) $ 2p(t) • 

Actually, one can even show the stronger estimate 

(2.6.27) 

q.e.d. 

The proof is rather tedious, however, and hence left out, since we do not 

need (2.6.27) in the sequel. 

2.7 APPROXIMATE FUNDAMENTAL SOLUTIONS AND REPRESENTATION FORMULAE 

We first apply Lemma 2.3.2 to construct approximate fundamental 

solutions of the Laplace and the heat equation on manifolds. 

LEMMA 2.7.1 Let B(m,p) be as in Lemma 2.3.2. 2 2 2 
A := max(K , w ) , and let 

~ be the Laplace-Beltrami operator on M , and n = dim M , h(x) 

(2. 7.1) for x 'I m if n = 2 

~~ r(x)2-nl $ n;2 A2 r2-n(x) for x 'I m if n ~ 3 

2 
:= d(x,m) 

(2. 7.2) 

and 
(2. 7. 3) I [ ~ _ a~) ( t-n/2 exp [ _ h ~~))] I $ 2A 2 h ~~) t -n/2 exp [ _ h ~~)) 

for (x,t) 'I (m,O) • 

The proof follows through a straightforward·computation from Lemma 2.3.2. 

q.e.d. 
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We now derive approximate versions of Green's representation formula, 

first in the elliptic case. 

LEMMA 2.7.2 Let B(m,p) be as above, h(x) = d(x,m) 2 Let w denote the 
n 

volume of the unit sphere in ~. If cjJ E c2 (B(m,P), JR) , then 

(2. 7. 4) if n = 2 + I M • log r (x) 
B(m,P) p 

- l I cpl s 2A2 I lcpl 
p ClB(m,p) B(m,P} 

(2.7.5) if n <: 3 I (n-2 )Wn QJ(m) + f ~cp ( 1n-2 - n~2) 
B(m,p) r(x) p 

We note that the error term is of lower order than the other two terms 

which are the same as in the Euclidean version of the Green representation 

formula. 

Proof We shall prove only (2.7.5) for simplicity. We put 

2-n 2-n 
g(x) = r(x) - P • 

Then for E > 0 

I (g~cjl - cjl~g) 
B(m,p)\B(m,E) 

I <g grad cjJ - cjJ grad g, dO) 
Cl(B(m,P)\B(m,E)) 

Now 

if Mgl s n;2 A2 I lcpl 
B(m,p)\B(m,E) B(m,p) rn-2 (x) 

by (2. 7. 2) 

giClB(m,p) = 0 

I cjJ <grad g, dO). = n-2 I cjJ 
3B(m,p) pn-l ClB(m,P) 

lim f g <grad cjl, dO> = 0 
e:+o 3B (m,e:) 



lim 
£+0 

and (2.7.5) follows. 
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J ¢ <grad g, dO> 
B(m,E) 

(n-2)wn ¢(m) 

In the parabolic case, the corresponding version is 

LEMMA 2.7.3 Let B(m,p) be as above, 

B(m,p,t0 ,t) := {(x,T) E B(m,p) x [t0 ,t]}, 

¢(•,T) cC2 (B(m,p), IR), ¢(x,•) cC1 ([t0 ,ti, IR). 

Then 

(2. 7. 6) 

HeY'e, 

Proof 

jC(4n)n ¢(m,t) + J [ll- a:) ¢(x,T){t-T)-n/2 
B(m,p,t0 ,t) 

r (x) -p [ r 2 ) ( 2 )) 
exp .- 4 (t-T) J- exp 4 (t-Tl dx dTj 

c is a constant depending only on n . 
n 

We put 

g(x,o) 

j¢(x,T) I 

, -n/2 r- (x) 
[ 

? ) 
(t-T; exp - 4 (t-T) • 

Let E: > 0 . Then 

I~ {g(x,t-T) [ll- a~) ¢(x,t)- ¢(x,T) (ll +a~) g(x,t-T)} dx dT 
n(m,p,to,t-E:) 

r . + 
J <g(x,t-T) grad ¢(x,T) - ¢(x,T) grad g(x,t-T), dO> dT 
r(x)=p 
t 0 sT:>t-t: 



+ f g(x,E) 
T=t-E 

¢(x,t-E) dx -

r(x)sp 

Now 
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JT=t 
0 

r(x)sp 

r (x) P 2 ) [ 2 )] 
4(t-t0 ) - exp- 4(t-t0 ) dx · 

I ¢(x,T) (ll + a~] g(x,t-T) dx dT 
B (m, p,t0 ,-t-E) 

s ?i\2 f. I"' lx T) I r2 (x) (t-T) -n/2 [ r2 (x) l d dT 
- 'Y •• ' (t-·r) exp - 4 (t-T); x 

B(m,p,t0 ,t) 

by (2.7.3) 

g(x,t-T) = 0 if r(x) = p 

J ¢(x,T) (t-T)-n/2 

r(x)=p 

( / (x) ) 2r (x) -+ 
exp- 4 (t-T) 4 (t-T) <grad r(x), dO> 

t0~Ts:-t 

since 

(2. 7. 7) 
-a 

exp(-y) s cay for y > 0 , a 2 0 . 

J "'(•{ ~) _1_ ( (t-T) -n/2 exn r- _LJ) dx dT 
~' • ' ' dT ~ . 4 { t-T) 

B(m,p,-t0 ,t) 

=I cjl(x,T)((-t-T)-n/2 -l exp[ _L))lr -!l+___t{_] dx dT - 4(t-T) 2 4(t-T) 
B(m,p,t0 ,t) 

s :~2 J l¢(x,T) I dx dT 
p B(m,p,t0 ,t) 

by (2.7.7) again 

s (t-t0 ) -n/2 J I¢ (x, t 0 ) I dx 
T=t0 

r(x)sp 

f </J(x,t-E) E-n/2 (ex/l- r
2
4<:>)(- exp[- ~:JJ dx 

r(x)sp 

as E -+ 0 
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and (2.7.6) follows. 

For a later purpose, we also note the following formula 

(2.7.8) 

+ c 
n 

en I 
r>+l p- r(x)=p 

I<PI + j¢(x,T) I 
t 0 s:,::;t 

I j¢(x,t0) I dx 
B (m, p) 

I I ,~, ( ~) I r 2 (x) (-t.-'l) -n/2 
'I' x, l (t-T) 

B(m,p,t0 ,t) 

[ r2(x)1J 
exp .- 4 (t-T) dx dT • 

q.e.d. 

(2. 7. 8) also follm<Ts from the preceding proof by handling t.he bmmdary terra at 

t t 0 in a different way. 

We now use almost linear functions in order to also obtain an approximate 

version of the derivative of Green's fU..'lC·tion. This is important for 

obtaining derivative estimates for functions on ma~ifolds. 

LEr~11A 2.7.4 Let B(m,p) be as before. For x E B(m,p), x 'f m, we define 

a(x) -n -n Q.(x) (r(x) - p -) , 

where Q, (x) is an almost Z.inear function. 

Then 



(2. 7.9) \6a\ :S 

Proof 

(2.7.10) grad a 

and 

6a 

and hence 
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9n 2KA sinh (21\r)_ wr ctgh (tur) 
sin (2Kr) -

-n+l 
r 

-n -n -n-2 
grad ~(r - p ) - n·~ r grad f 

for 

(f 

-n-? -n -n 
-2nr - <grad f, grad ~> + 6~· (r - p · ) 

x;im. 

I I I I ~n -n~-? I 
6a :S 6i r + 2n r - i - <grad f, grad ~>I + n\9,\ -n-2 

r \M- n\ 

since grad f 
-1 

-expx m and \grad fl r, cf. (2.3.3). 

(2.7.9) t.hen follov1s from (2.6.3), (2.6.4), and (2.3.4}. 

q.e.d. 

We now can p:r.·ove 'chat t;he gradient bound ·that is obtained in the 

Euclidean case by differentiating Green's representation formula, again holds 

on Riemannian manifolds up to a small error ·ten11o 

LE~lfvJA 2. 7. 5 Suppose 2 ' 
h E c (B (m, p), IR) , whel"e B (m, p) saUsfies the same 

assumptions as before. 

Then 

(2.7.11) w 
n 

[grad h(m) \ h (m) \ + J 
B(m,p) 

+ c i\2 J 
B (m,p) 

Flex~e c is a constant which depends only on n and Ap " 

Pr·oof For simplicity, v:;e assume h(m) 0. 

Ji',hl 
n-1 

r 
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Let ~ be an almost linear function with 

(2.7.12) <grad l(m), grad h(ml> = jgrad h(m) I 

and let a(x) ~(x) (r(x)-n- p-n) • Then for E: > 0 

I (a•l'>h - h•l'>a) = f <a grad h - h grad a, dO> 
B(m,p)\B(m,E:) d(B(m,P)\B(m,E)) 

Now 

r 
J jaol'>hl 

B (m, p) 

,;; f IL'>hl 
B(m,p) r(x)n-l 

since ll(x) I ,;; r(x) 

I I I 
B(m,p) r(x) 

by (2.7.9) 

ajClB(m,p) = 0 

J l<h grad a. do> I :::-E.. J I hi 
()B(m,p) pn ClB(m,p) 

by (2: 7.10) • 

Furthermore by (2.6.4) and since do=~ grad f•ldol 

1
1 _,_ 1 . 1 1 do, 1 
-;-<~·grad h, dO> - ; <grad ~. grad :E> •; <grad h, grad :E> • n:_l 
r r 

n lgrad hi • Idol 
r 

and hence, using (2.7.12), 

lim f · <a grad h, dO>= jgrad h(m) I • 1[ 
E-+0 dB(m,E:) 

=: a jgrad h(m) I 
n 

Finally, since h(x) =<grad h, grad f> + O(r(x) 2 ) , using (2.7.10) 

lim J <h grad a, dO> = lim J <grad h, grad f> 
s+o 8B(m,E:) s+o ClB(m,E) 

-n -n-2 + 
<grad ~ • r - n'~ • r grad f, dO> 

=a (1-n) jgrad h(m) I, using (2.6.4) as before. 
n 
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The preceding estimates easily imply (2.7.11), noting w 
n 

2.8 REGULARITY PROPERTIES OF COORDINATES. HARMONIC COORDINATES 

na. 
n 

In this section, we are concerned with regularity properties of 

coordinates on manifolds. Eventually, we shall show that harmonic 

coordinates, i.e. ones for which the coordinate functions are harmonic, 

possess best possible regularity properties. 

q.e.d. 

We start by noting that Riemannian normal coordinates have rather poor 

regularity properties. Namely, in [JKl] there was displayed the following 

example of a two-dimensional metric with Holder continuous curvature which 

itself is only Holder continuous in normal coordinates, but not better: 

2 2 2 2 
ds dr + G (r,~) d~ 

with 

for (0 < a < 1) 

for 1T :S ~ :S 21T 

For this metric 

for 
K 

for 1T :S ~ :S 21T • 

The reason for this phenomenon is that the formula for K in normal 

coordinates does not involve any derivatives of G with respect to~ 

Our aim is to construct coordinates for which we can control - in 

contrast to normal coordinates - the Christoffel symbols in terms of 

curvature bounds. 

Let us first derive some general identities for any coordinate map 

H 1 n < > n (h , ••• ,h ) : (B, • ,• ) -+ IR , where B is the coordinate domain and 



<·, ·> the Riemannian metric. If 

i cL'1i (p)v Thus <v,w> v = gij 

is an orthonormal basis of 

J\lloreove:r 

(2.8.2) 

jk 
g 
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v E T B ' then its 
p 

i wj and choosing v 
' 

v(dH•w) - dH d w- dH•f(v,w) 
v 

= - dH•f(v,w) 

since dH = id is linear. 

coordinates are 

v = w = ek ' where 

Hence we see that the Chris·toffel symbols r are given by the second 

derivatives of the coordina·te ftmctions. Thus, we have to control those 

second derivatives for suitable coordinates. 

We firs·t construct coordinates by almost linear functions. Let 

be an orthonormal basis of 'I'mM , and t , ... , ,'L the 
1 n 

corresponding almost linear functions. 

We define L 

(2. 8. 3) L (x) t. (x) u. (x) 
]_ ]_ 

Then, if P denotes parallel transport along radial geodesics, from Thm. 

2.6.1 

(2.8 .. 4) ldL - P(u) I ~ 2/-;- Kll sinh(2Ar) 
r 2 (x) 

sin (2Kr) 

(2. 8. 5) ln2L(x) I ~ 9/; i(l\. 
sinh (2fl.r) 

wr ctgh(Wr)•r(x) 
sin (2Kr) 

Note that the injectivity radius of p also enters, namely by restricting the 

size of the domain of definition of L (2.8.4) implies that L is 

invertible on some ball B (m, o) , •J'Ihere o depends on fl. , n, and the 
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injectivity radius. Hence L defines coordinates on this ball, and the 

corresponding Christoffel symbols are bounded because of (2.8.2) and (2.8.5). 

If we average this construction over all orthonormal bases U of T M , 
•Ill 

then the coordinates become canonical, since independent of a particular 

choice of U, while keeping the estimates (2.8.4) and (2.8.5). 

We call these coordinates aLmost linear coordinates. 

Let now L : B(p,R) -+ 

take the harmonic map 

with 

T M 
p 

m.n be almost linear coordinates. 

H B (p,R) -+ m.n 

HI<!B(p,R) Ll <!B(p,R) . 

We then 

we want to show that for some suitably chosen R , H is injective, i.e. a 

coordinate map. 

THEOREM 2.8.1 For each p E M there exists some R > 0 • depending only on 

A2 = max( IKI) ( K .is the sectional curvature of M J. i(p) (the 

injectivity radius of p ) • and n = dim M • with the property that on 

B(p,R) there exist harmonic coordinates. 

Proof Let ~ be almost linear on some ball B(p,R) . We solve 

~h = 0 in B(p,R) 

hi<!B(p,R) = ~~dB(p,R) 

Assuming 7f 
R < 2A and putting k h-~ , (2. 6. 3) implies 

(2.8.6) l ~kl < 9nA2 •Ad(x,p) ctgh(Ad(x,p)) • sinh(Ad(x,p)) • d(x,p) • 
- sin(Ad(x,p)) 

On the other hand, for 

<P (x) 
2 3 3 

- c 0A (d (x,p) - R l 
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by Lemma 2.3.2 

ll<jJ(x) 
2 2 

:: c0 A (3d (x, p) (n-ll A ctg (1\.d (x,p)) + 6dl • 

Tf For given R :S R0 < 21\., we can calculate c0 = c0 (J\.oR0 ,n) for which k ± ¢ 

is sub- or superharmonic, resp. Since k ± ¢I ClB (p, R) = 0 , the maximum 

principle implies 

(2.8. 7) ik<x> 1 s I<P<x> 1 

and for x1 E 8B(p,R) , x2 E B(p,R) 

(2. 8.8) 

or 

(2.8.9) 

Let x E B(p,R) , p := d(x,ClB(p,R)). Lemma 2.7.5, applied to B(x,p) yields 

w !grad k(x) I s ___£_ J lk(y) <• k(x) I dy + J lllk(y) I dy 
n n ~1 

p ClB(x,p) B(x,p) d(x,y) 

+ c1 (1\.p,n) J 
B (x, p) 

lk(y) - k(&]_ d 
n-1 Y 

d(x,y) 

and hence with (2.8.6) and (2.8.9) 

I grad k(x) J 

Here c = 
2 

remains bolli,ded for fixed n 

(2.6.2) then implies 

(2. 8.10) I grad h(x) - u(x) I 

Let {ei} be an orthonormal basis of T J'v! , 
p 

~i corresponding almost 

linear functions and hi harmonic functions with hii3B(p,R) = ~ijaB(p,R) • 



Putting H(x) 

(2.8.11) 

i 
h (x)e. 

~ 
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(2. 8.10) implies 

on B(p,R) • 

We then average again over orthonormal bases of T M 
p 

As for almost linear coordinates, we see that harmonic coordinates exist 

on fixed balls, the radius of which depends only on i(p) (since R < i(p) is 

necessary for the above constructions), n 

q.e.d. 

If (gik) is the metric tensor for the harmonic coordinates constructed 

above, then from (2.8.1) and (2.8.10) 

i 
- U I 

(2.8.12) implies 

and hence 

(2.8.13) 

k i k ~ grad h >- <u , grad h - u-/1 

We now want to estimate the Christoffel symbols for harmonic coordinates. 

LEMMA 2.8. 1 Let H = (h1 , ... ,hn) be harmonia coordinates. Then~ if (ei) 

is an orthonormal frame~ satisfying V i(ej) = 0 at x 
e 

(2.8.14) 

where R is t~e Rieei tensor. 
mn 

The proof uses the calculations presented in 1.6. 
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LEMMA 2.8.2 There exists some R0 > o • depending only on n • A2 • i(p) • 

with the property that for all R ~ R0 on B(p,R} there exist harmonia 

coordinates the metria tensor g of which satisfies 

(2.8.15) ldg(x) I 

Proof Since 

(2.8.16) 

c5A2 R2 
~ --..,.....=:.,;:--,.-----,-: 

d (x, ClB (p ,R)} 
for x E B(p,R} , 

in normal coordinates, (2.8.10) and (2.8.14} imply 

(2.8.17) 

We now use a method of Heinz [Hzl] to obtain (2.8.15). 

Let J.l := max d(x,ClB(p,R0 )) ldg(x) I . 
XEB(p,R0) 

Then there is some Xi E B(p,R0 ) with 

(2.8.18) 

and 

(2.8.19} ldg(p) I ~ L. 
Ro 

Let d := d(x1 ,ClB(p,R0)) , i.e. J = ldg(x1 l I . 

By Lemma 2.7.5, applied to B(xl,d8) I 0 < e < 1 

=: I + II + III . 
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By (2.8.12) 

by (2.8.17) 

if we choose 8 ~ t , since then for x E B(x1 ,d8) d(x,3B(p,R0 )) ~ d(l-8) ~ ~ 

and by (2.8.12) again 

Hence 

(2.8.21) \l ~% (cii.2R2 + c 9 11Ricll d 282 + c 10A4 R2 d282 ) + 2c9 e\l2 

2 
=: ...!.. aA2R2 + b6 L 

28 2 

a and b depend only on n and AR0 (for R ~ R0 l . 

We now choose R0 so small that 

(2.8.22) abA2 2 < 1 Ro • 

Then (2.8.21) implies that for each 8 ~ t either 

or 

On the other hand, for each \ll > llo there is some e 1 < t with 

Hence the second possibility cannot hold for any 8 ~ t , and the first one 

therefore is valid for each 8 ~ t , in particular for 8 = t , and 



64 

(2.8.15) then follows from the definition of v . 

q. e. d. 

Lemmata 2.8.1 and 2.8.2 now imply in conjunction with linear elliptic 

theory, that dgij is Holder con·tinuous on balls B (p,R) , R < R0 with any 

exponent a E (0,1) We only have to observe that the Laplace-Beltrami 

operator, written in harmonic (or almost linear) coordinates, now is a 

1 
divergence type elliptic operator with C~-coefficients while the right-hand 

side of {2.8.14) is bounded since the Christoffel symbols can be expressed in 

terms of dgik The corresponding estimates for the Green's functions of 6 

can be found in [GW]. •rhe importan·t point is that even the Holder norm of 

d ik 
.g for harmonic coordinates depends only on the dimension, the injectivity 

radius, and curva·ture bounds, but does not involve any curvature 

derivatives. 

We wan·t to present a simple proof of this result for a 2 
3 , using 

almost linear functions. 

Let us first define the notion of Holder continuity in a way which is 

invariant under renormalizations. A map f : B (p,R) . .,.. Y is called Holder 

continuous with exponent a , if for all x,y E B(p,R) 

d(f(x), f(y) 
1-CL a 

~ const. R d(x,y) . 

Similarly, the k-th derivative of f is Holder continuous, if 

I k k I 1- (k+a) a D f(x) - n· f(y) ~ const. R d(x,y) . 

THEOREM 2.8.2 Let p E x. ThePe exists R0 > o , depending solely on the 

injectivity radius of p , the dimension n of the considered manifold x and 

bounds for the sectional curvature on B(p,R0 ) with the property that for 
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R ~ R0 there exist harmonic coordinates on B(p,R} the metric tensor 

g = (gij} of which satisfies on each baLL B(p,(l-o}R} 

c(A:Ro,n} 2 
I dg I 2/3 ~ 2 . A R2 . 

c 0 
(2.8.23} 

In particuLar, the HoLder norms of the corresponding ChristoffeL symboLs are 

bounded in terms of AR0 and n . 

Proof Let x be a basepoint, U = (u1 , ••• ,un} be an orthonormal base of 

TxX , and denote by L (z} = (~1 (z}, ••• ,~n(z)) the corresponding vector 
X X X 

valued almost linear function. Finally, put 

We now want to estimate !grad v(x) - grad v(y) I for v(z) The 

claim then follows from (2.8.12) and Lemma 2.8.2. 

Let x,y E B(p,R) , m be the average of x,y , i.e. that point on the 

geodesic arc joining x and y with equal distance to both of them, and 

1/3 2/3 
p = c•d(x,y) •R , where C will be chosen later. 

As in the proof of Lemma 2.7.5, we obtain 

(2.8.24) w I grad v(x) -grad v(y) I ~ lim if {(v(z) - v(x)) 6bx(z) 
n E+Q B(m,P)\B(m,E) 

- (v(z) - v(y)) 6b (z)} dzl + if (bx(z) - b (z)} ~v(z) dzl 
y B(m,p} y 

+ if (b (z}- b (z)} <grad v(z), do>l 
oB(m,p} X y 

+ if {(v(z} - v(x)) <grad bx(z}, do>- (v(z) - v(y}) 
oB(m,p) 

·<grad b <z>, d0>} I 
y 

=: I + II + III + IV • 

First of all, by Lemmata 2.7.4 and 2.8.2 
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(2. 8. 25) 

2 2 
clll\ R A2 2 

I $ OR p • 

6b - /l,b 
X y 

(Note that we do not exploit the difference in I, since we 

control only the absolute value of 6b , as we do not want to admit 

dependence of the estimates on curvature derivatives.) 

Choosing w.l.o.g. x and y close together and C suitably, 'V<Je can 

assume 

(2.8.26) Sd(x,y) :S p d( ) 1/3 2/3 c· x,y R s oR • 

We then split II into 

(2.8.27) 
JB(m,Sd(x,y)) + JB(m,p)\B(m,Sd(x,y)) 

(2.8.15), (2,8.17) and ·the definition of b give 

(2.8.28) 

For IIb, we write 

(2.8.29) 

II 
a 

+ 9., (z) [ 1 
Y d(x,z)n 

and use Lemma 2.6.2 and (2.8.15), (2.8.17) to get 

(2.8.30) 
cl2 1\2 2 1 

IIb :S --- ____B_ d(x,y) a p -a 
1-a (oR) 2 

taking d(x,z), d(y,z) 2: d(x,y) on B(m,P)\B(m,Sd(x,y)) into account. 

Similarly, we get 

(2. 8. 31) 

2 2 
cl31\ R -1 

III :S --0~ d(x,y) •p 

Finally, we write the integrand of IV as 

(v(z) - v(x)) (grad b z- grad b z) - (v(x) - v(y)) grad b (z) • 
X y y 



67 

If we use the splitting of (2.8.29), then the only nontrivial expression to 

estimate is 

I grad !1- (z) - grad !1- (z) I • 
X y 

For this purpose, let y(t) be the geodesic arc from x to y and let Pt 

be the parallel transport along geodesics emanating from y(t) • Then from 

(2.6.2) 

Moreover 

Thus 

ld\(t) (z) - Pt •u(t) (z) I 
2 

~ c14 d(Y(t),z) • 

IPt•u(t)(z)- P,•u('!)(z) Is c15 d(y(t),z)•d(y(t),y(T)). 

I grad !1- (z) - grad !1- (z) I 
X y 

for z E dB(m,p) • 

Altogether, we get 

(2.8. 32) 

2 2 
cl7~ R 2 2 1 

IV s oR (~ p + d(x,y) ·p- ) 

Putting everything together, and using p = Cd(x,y) 113 R213 

c A2R2 

I + II + III + IV s 1802 (A2R2C2 + %] R-5/3 d(x,y) 2/3 

This is just the right power of R , since grad v contains the second 

derivatives of the coordinate functions hi This finishes the proof. 

q.e.d. 

Moreover, we note that once having proved Thm. 2.8.2 or Lemma 2.8.2, 

(2.8.14) in conjunction with linear elliptic theory implies 

THEOREM 2.8.2 Let R s R0 ~ whe~e R0 is chosen as in Thm. 2.8.2, and let 

g = (gij) be the met~c tenso~ of the co~~esponding ha~onic coo~dinates on 

B(p,R) , If the Riemann curvatu~e tenso~ on B(p,R) is of class 0~ 

ck+S (k E IN, S E (0,1) , then g E ck+l+a (fo~ every a E (0,1)) 0~ 

k+2+S . h . . f g E c , ~esp.~ -z-n t e -z-nte~1-o~ o B(p,R) • The co~~esponding estimates 
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depend in addition to the quantities mentioned in Thm. 2.8.2 on the 

ck+S_norm, resp., of the curvature tensor. 

or 

That harmonic coordinates possess best possible regularity properties 

was first pointed out by de Turck-Kazdan [dTK]. The explicit construction 

implying the existence of harmonic coordinates on fixed (curvature controlled) 

balls and the explicit estimates of this section are due to Jost-Karcher [JKl]. 

Finally, for later purposes, we need still another construction of 

coordinates. We want to introduce coordinates with curvature controlled 

Christoffel symbols in a neighbourhood of a point q E B(p,M) , without using 

any information of the geometry outside B(p,M) • We suppose again that 

M < 2: , M < i (p) . In case d(p,q) :::; tM , we taken an arbitrary orthonormal 

base 

.p. 

ofT Y 
q 

(B(p,M)CY, dim Y = n) • If d(p,q) > tM , we choose 

in such a way that i: e. l. 
is tangent to the geodesic from q to 

We now want to show that the geodesics exp (t•e.) 
p l. stay inside B(p,M) 

for t :::; t 0 , where t 0 > 0 can be estimated from below in terms of w M , 

and n Indeed, by the Rauch-Toponogow Comparison Theorem (cf. [GKM], 

p.l94f), 

d(p, exp t•e.) :::; dw(p, exp-t•e.) , 
q l. q l. 

where the right hand side is the distance in the comparison triangle in the 

plane of constant curvature 2 with dw(p,ci) = d(p,q) e. having the -w , , 
l. 

same angle with the geodesic form q to p as e. has with the geodesic 
l. 

from q to p • Consequently 

cosh(Wd(p, expqtei}) :::; cosh wt • cosh(Wd(p,q}} - ~sinh Wt • sinh(Wd(p,q)) 

< h t . h WM l . h t . h - COS W • Sl.n - n Sl.n W • Sl.n WM 1 

if t :::; !-M 

:::; cosh WM , 

if t :::; t , say. 
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0 
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d (p ,exp te.) :s: M , and consequently the 
q l. 

geodesics expqtei stay inside B(p,M) for t :s: t 0 

LEMMA 2.8.4 In a neighbourhood B{q,T) n B(p,M) of q E B(p,M) ·, we can 

define local coordinates for which the Christoffel symbols are bounded in 

absolute value and T > o is bounded from below, both in terms of w , K , 

k () 1 (d2 (s. t ) d 2 ( )) i s := 2to . expq 0 ei - s,q . 

Proof By Lemma 2.3.2 

(2. 8. 33) 
WM ulM 

coth 
t 0 2 

if d(s,q) :<; tM , and 

(2. 8. 34) is an isometry , 

n 
where k = (k1 , .•• ,kn) : B(p,M) -+ JR • 

This easily implies a lower bound T for the radius of the set on which k 

is injective. Furthermore, the Christoffel symbols are given by D2k (cf. 

(2.8.2)), and hence the bound on the Christoffel symbols follows from 

(2.8.33). 

q.e.d. 



CHAPTER 3 

THE HEAT FLOW METHOD 

Existence, regularity, and uniqueness results 

for a nonpositively curved image 

3. I APPRO/\CHES TO THE EXISTENCE AND REGULARITY QUESTION 

There are four different approaches to the existence and regularity 

theory of harmonic maps available. The first one is the so-called heat flow 

method. In order to find a. harmonic map homotopic to a given map g :X + Y , 

one investigates the parabolic system 

8f{x,t) 
T(f(x,t)) for X a."ld t 2: 0 

at 
X E 

(3. L 1) 
f(x,O) g (:c) for X E X 

and one tries to prove that a solution of (3.1.1) exists for all t 2: 0 and 

that f (" , t) converges to a harmonic map f as . t -+ 00 , That mea..tls one tries 

to deform g into a homotopic harmonic map by an analogue of heat dispersion 

on manifolds. One should compare this method with the gradient flow descent 

method common in Morse theory. Whereas this me·thod in our case would lead to 

an ordinary differential equation for a mapping from X into the Sobolev 

space W~(X,Y) , i.e. an infinite dimensional targe·t space, and follow the 

gradient lines of the energy functional., ·the heat flow method instead leads to 

a partial differential equation for a mapping from X into the finite 

dimensional manifold Y . 

The second approach tries to establish regularity (and a-priori 

es·timates) for weak solutions f of the elliptic system 

(3.1.2) 

for all 
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In case this approach works, it implies in particular the regularity of an 

energy minimizing map and hence establishes the existence by a variational 

method. Alternatively, it can be used in conjunction with Leray-Schauder 

degree theory to assert the existence of a solution. 

The third approach uses perturbed energy functionals which satisfy the 

compactness condition (C) of Palais-Smale. It can reprove the results 

obtained by the first approach, requiring much deeper estimates, however. 

The fourth approach is the so-called method of partial regularity. It 

tries to characterize the possible singularities of energy minimizing maps 

and then to show that under appropriate conditions those singularities cannot 

exist and that an energy minimizing map is hence regular. In contrast to the 

other approaches, here the techniques so far are restricted to energy 

minimizing maps. Nevertheless, a posteriori this method comprises the 

results obtained by the other ones, since in all cases, where those methods 

work, one can prove a uniqueness result with the implication that in those 

cases any harmonic map is energy minimizing. 

The first method was initiated by Eells-Sampson [ES], the second one by 

Hildebrandt-Kaul-Widman [HKW3), the third one by Uhlenbeck [U] and the fourth 

one by Schoen-Uhlenbeck [SUl) and Giaquinta-Giusti [GGl], [GG2]. 

In the present notes, we shall only develop the first two methods. We 

believe that our presentations have some advantages compared to the ones 

existing in the literature, as either the estimates are more precise, the 

proofs are shorter, or the arguments are more elementary. In particular, all 

proofs are self-contained. 

We start with the heat-flow method in the present chapter, and shall 

develop the second one in chapter 4. 
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During all of chapter 3, the manifold X will be assumed to be aompaat. 

The results of this chapter are due to Eells-Sampson [ES] and Hartman 

[Ht]. We shall also use some ideas as presented by von Wahl [VW] and Jost 

[J4]. Similar arguments were also known toR. Schoen. 

3.2 SHORT TIME EXISTENCE 

The parameter t will be referred to as time parameter, while x E X is 

the space variable, according to the thermodynamic interpretation of the 

present method. 

We shall start by proving the existence of a solution of (3.1.1) for 

small time. 

LEMMA 3.2. 1 Suppose 2+Ct 
g E C (X,Y) Then there is some e: > 0 depending 

only on the geometry of X and Y and on g with the property that (3.1.1) 

has a solution f(x,t) for 0 ~ t < e: • 

Proof The linearization of the operator (a~- T] at f is computed in 

local coordinates as 

By the theory of linear parabolic equations, the system 

h(x,t) 

cp{x,O) = g{x) 

for given h of class ca. in X and t and g of class c2+a. in X , has 

a unique solution cp{x,t) of class c2+a. in X and cl+a. in t • 
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Moreover, the corresponding a-priori estimates1 ) imply that Lf is a 

continuous bijective linear operator between the corresponding mapping spaces. 

The implicit function theorem ·then implies Lemma 3. 2 .1. 

q.e.d. 

COROLLARY 3.2.1 The set of T E (0, 00 ) Jor which the solution of (3.1.1) 

exists for t E [O,T] is open. 

This follows by taking f(•,T) as initial values in Lemma 3.2.1. 

q.e.d. 

Note that in contrast to the results in the following sec·tions, for the 

small ·time existence of the solution of (3. L 1) we do not have to require any 

curvature assU!.-nptions for Y • 

3. 3 ESTIMATES FOR THE ENERGY DENSITY OF THE HEAT FLOW 

We firs·t show that the energy E (f ( •, t)) is a decreasing function of 

t .. Fori! 

d 
(3.3.1) dt E(f(•,t)) d~ ~ J <df,df> = J (8: df,dE) 

=- J (;t f,T(El) =- J Ia: El
2 

since f satisfies ·the equation (3.1.1), Le. ____§_f 
dt T (f) • 

It is also interesting to compute the second time derivative of 

E(f(·,t)), al·though this formula is not needed in the sequel. As in (1.6.5), 

we compute 

d I a !2 
dt Clt f 

and hence, since X is compact 

l) Note that since X is compact, g (X) is bounded in Y 
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(3.3.2) 
d2 

- 2 E (f(• ,t)) 

dt 

We note tha·t, in case Y is nonposi·tively curved, 

From now on, we shall assume for the rest of this chapter, that Y has 

nonpositive sectional curvature. 

As in 1.6, we look at the energy density of f(x,t) 

If f(x,t) is a solution of (3.1.1), ·the calculations of L6 imply 

d 
i'>e(f) - Clt e(f) 

Since X is a compact manifold of class , its Ricci tensor is bounded. 

Since we assume that; Y has nonpositive sec·tional curvature, (3. 3. 3) implies 

(3. 3.4) A d . 
ue(f) - -()t e(f) 2 -c e(f) . 

The constant r· may still depend on t , since as t + 00 , ·the image of 

f(x,t) may become unbounded since we did not assume so far that Y is 

compact. This does not matter, however, since we shall see in 3.5 that for 

any •r < 00 and t E [O,T] , f(x.-t) remains in a bounded subse·t of Y , 

possibly depending on T . 

We now want to use (3.3.4) to derive estimates for e(f) . 

For a given point m E X , we choose a ball B (m, p) sa·tisfying the 

assumptions of Lemma 2.3.2. We note that P > 0 can be chosen unifoxnly for 

m E X , since X is compac·t. 
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Plugging (3.3.4) into (2.7.6) and using (2.7.7), we obtain 

(3. 3. 5) e(f) (m,t) :S c 
1 

e(f) (x,T) (t-T)-! r(x)-n+l dx dT 

c J n +-­
n+2 

p B(m,p,t0 ,t) 
e(f) + 

-n/2 f + (t-t0 J e(f) (x,t0 ) dx . 
B(m,p) 

e(f) 

Here, c 1 depends on n and i\2 , a bound for the sectional curvature of X • 

First of all, we observe that if i(X) > 0 is the injectivity radius of 

X , p0 = min[i(X), 2X] we can choose p E [p0;2, p0 ] with 

(3. 3.6) 

We define 

g 1 (m,p,t) 

gk(m,p,t) Jt <T<t o- -
d(x,p)o;p 

gk-l (m,x,t-T) g 1 (x,p,T) dx dT 

and choose p = p(p) in the definition of gk in such a way that (3.3.6) is 

satisfied for p instead of m . We observe that 

and hence is bounded for k > n . 

Thus, if we iterate (3.3.5), using (3.3.5) again for e(f) (x,T) in the 

first in·tegral in (3. 3. 5), we obtain after a finite number of steps 

(3.3.7) 

e(f) (x,t-n(t-t0 )) dx 
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In order to locate the last integral at t-n(t-t0 ) , we have used the fact 

that the energy decreases in time by (3.3.1). 

Choosing t 0 ::: 0 in such a way that t:::: n (t-t0 ) ::: € and using (3. 3 0 1) again 

(3.3.8) e(f) (m,t) s c 5 (tp-n-2 + E-n/2 ) J e(f) (x,O) dx. 
X 

If we wa.t1t to avoid the term with E-n/2 , we can use (2. 7.8) instead of 

(2.7.6) and obtain in a similar way 

(3. 3. 9) e(f) (m,t) 
-2 s c 6 P sup e (f) (x,O) . 

XEX 

Namely, we then have the term 

J -n/2 e(f) (x,O) (t-t0 ) 

B(m,P) 

which is an approximate solution of the heat equation with ini-tial values 

e(f) (x,O) , and we use that by -the maximum principle the supremum over ·the 

space variables of a solution of the heat equation is nonincreasing in time. 

We collect these es·tima'ces in 

LD11MA 3. 3.1 Suppose f is a solution of (3.1.1) on [0 ,t] . If t 2: E: and 

0 < R < min r i (x) ' 2~ I \. J 
-n-2 -n/2 J e(f) (m,t) s c5 (tR + E ) e(f) (x,O) dx 

X 

Furthemore, for any t 0 < t , in particular t 0 = 0 ~ 

e (f) (m,t) s -2 c6 R sup e(f) (x,t0 ) o 

xEX 

3.4 THE STABILITY LEMMA OF HART~\N 

We now let f(x,t,s) be a smooth family of solutions of (3.1.1) 
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depending on a parameter s and having initial values f(x,O,s) g(x,s) , 

LEMMA 3.4. 1 (Hartman [Ht]) Suppose again, that Y has nonpositive sectional 

curvature. 

For every S E [0 ,s 0 l 

sup( g .. (f(x,t,s)) 
XEX l.) 

• afi afj) 
as as 

is non increasing in t • Hence also 

sup (gij 
afi afj] 

XEXr SE (0, s 0 l as as 

is a nonincreasing function of t • 

Proof As in 1.6, one calculates in normal coordinates 

( a)(· afi afjl = a2fi a2 fj _ R afi a~ afj af~ 
(3.4.1) /:;. - "t _gl.·J· ~s --;;-s·JI 'k'" " a. " a. ' 

o o o axctas ax(las l. J.>e oS ax oS ax 

and since Y has nonpositive sectional curvature, hence 

( a J ( afi afjl ~ 
I:J. - at g ij as as J 0 • 

The lemma then follows from the maximum principle for parabolic equations. 

q.e.d. 

We now assume that f 1 and f 2 are smooth homotopic maps from X to 

Y 1 and h: X x [0,1] + Y is a smooth homotopy with h(x,O) = f 1 (x) 

h(x,l) = f 2 (x) 

Since h(x,s) is smooth in x and s 1 the curve h(x,•) connecting 

f 1 (x) and f 2 (x) depends smoothly en x We let g(x,•) be the geodesic 

from f 1 (x) to f 2 (x) which is homotopic to h(x,•) and parametrized 

proportionally to arc length. Since Y is nonpositively curved, this 
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geodesic arc is unique and hence depends smoothly on x We define 

d ( f 1 (x) , f 2 ( x)) to be the leng·th of ·this geodesic arc. 

ive then put f (x, 0, s) g(x,s) . 

COROLLARY 3.4.1 Suppose, as before, that Y is nonpositively curved. 

Assume that the soZ.ution f(x,t,s) of (3.1.1) exists for aZ.Z. s E [0,1] and 

t E [O,T] . Then 

sup d(f(x,t,O), f(x,t,l)) 
XEX 

·is nonincx•easing in t for t E [O ,T] • 

Proof By construc·tion, at t = 0 

On the other hand, for any ·t E [0 ,T] 

d.2 (f(x,t,O), f{x,t,l)):::; 

sup d. 2 (g(x,O), g(x,l)) • 
xEX 

()fi dfj 
sup g .. (f(x,t,s)) -"--"-

lJ os as 
SE [0,1] 

since f(x,t,•) is a curve joining f(x,t,O) and f(x,t,l) in the homotopy 

class chosen for t.he definition of d . The claim then follows from Lemma 

q.e.d. 

3.5 A BOUND FOR THE TIME DERIVATIVE 

Our first application of Lemma 3.4.1 will be a bound for the time 

derivative of a solution of (3.1.1). 

LEMMA 3.5. 1 Suppose f(x,t) solves (3.1.1) for t E [O,T) and Y has non-

positive sectional. curvature. Then for all t E [O,T) and x E x 

(3.5.1) ldf(x,t)l I d r( I Clt :::; sup Clt r x, 0) • 
XEX 
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Proof This follows by putting 

f(x,t,s) f(x,t+s) 

and applying Lemma 3.4.1 at s = 0 • 

q.e.d. 

~EMMA 3.5.2 Suppose f(x,t) solves (3.1.1) for t E [O,T) and Y has 

nonpositive sectional curvature. Then for every a E (0,1) 

(3. 5. 2) !f(•,t>l2+ +l~!<•,t)la Sc7 
C a(X,Y) C (X,Y) 

c 7 depends on a , T (only in case f ( • , t) becomes unbounded, but anyway 

it will be finite for any finite T ) , the initial values g(x) = f(x,O) , 

and the geometry of X and Y , or more precisely on curvature bounds, 

injectivity radii and dimensions of X and Y . 

Proof We write (3.1.1) in the following way 

(3. 5. 3) 

If we centre our coordinate charts on X and Y at m and f (m, t 0 ) , then 

for a fixed neighbourhood B(m,p) x [t0 ,t1 ] of (m,t0),f(x,t) will stay 

inside this coordinate chart in Y by Lemmata 3.3.1 and 3.5.1. Furthermore, 

those lemmata also imply that the right hand side of (3.5.3) is bounded. This 

first implies a bound for !f(•,t) I l+ by elliptic regularity theory. 
C a(X,Y) 

But then the right hand side of (3.1.1) is bounded in Ca(X,Y) , and (3.5.2) 

now follows from parabolic regularity theory. 

The statements concerning the dependence of the estimates on the geometry 

follow from the results of section 2.8, where we constructed local coordinates 

for which the Holder constants of the Christoffel symbols are bounded in terms 

of the quantities appearing in the statement of the lemma (cf. Thm. 2.8.2). 

q.e.d. 
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LEMMA 3.5.3 The soLution of (3.1.1) exists for aLL t E [O,oo) , if Y has 

nonpositive seationaL aurvature. 

Proof Lemma 3.2.1 shows that the set of T E [0 1 00 ) with the property that 

the solution exists for all t E [O,T] is open and nonempty, while Lemma 

3.5.2 implies that it is also closed. 

3.6 GLOBAL EXISTENCE AND CONVERGENCE TO A 
HARMONIC MAP (THEOREM OF EELLS-SAMPSON) 

q.e.d. 

We assume now, that f(x,t) remains in a compact subset of Y for all 

t • This is trivially the case, if Y itself is compact. 

If we use the energy decay formula (3.3.1), namely 

d at E <f<· ,t» 

observe that E(f(•,t)) is by definition always nonnegative, and use the time 

independent ca-bound for ~~!I , we obtain 

LEMMA 3.6.1 If f(x,t) remains in a bounded subset of Y , then there exists 

a sequenae n + oo , for whiah aonverges to zero 

uniformLy in x E x as n + oo 

Now using the c2+a_bounds for f(•,t) of Lemma 3.5.2i -we can assume, by 

possibly passing to a subsequence, that f(x'tn) converges uniformly to a 

harmonic map f (x) as t + 00 
n 

Lemma 3.5.3, we then put 

g(x,O) 

In Cor. 3.4.1 which we may apply because of 

f(x,O,O) = f(x,tn) 

f(x,O~s0 ) =: f{x) 

By uniform convergence, some f(•,tn) (and hence all,_ since f(x,t) is 

continuous in t ) are homotopic to f . 



81 

Since f(x) as a harmonic map is a time independent solution of (3.1.1), 

f(x) for all t . Cor. 3.4.1 then implies 

d(f(x,tn+t), f(x)) :': d(f(x,tn)' f(x)) for all t 2': 0 . 

Hence i;t follows that the selection of the subsequence is not necessary and 

that f(:;,c,t) uniformly converges to f(x) as t + oo • 

We thus have proved the existence theorem of Eells-Sampson [ES] with the 

improvemen·ts by Hartman [Ht]. 

THEOREM 3. 6.1 Suppose Y is nonpositively curved. Then the solution of 

( 3. 1. 1) exists for aU t E [0 , 00 ) If the solution 1oemains in a bcnmded 

subset of Y , in parUcuTar if Y is conrpact, then U converges uniformly 

to a hw'monic map as t+co In particular, any map 2+a 
g E C (X, Y) is 

homotopic to a harmonic map. 

Remarks 1) The result also holds, if we merely assume g E c0 . A suitable 

modifica·tion of Lemma 3. 2. 1 pertains to this case, and we choose some 

·t0 E (O,s) , where s is the time-range of Lemma 3.2.1. 'rhen f(x,·t 0 ) is 

of class X and can be chosen as nevi initial values for the heat 

flow, and vve apply ·the arguments of the preceding sections to these initial 

values. 

2) If we take one branch of ·the curve y 
1 

and rotate it around the 
X 

x-axis, we obtain a negatively curved surface of revolution. The image of a 

point on 
1 

under this rot.ation yields a closed homotopically non·trivial y 
X 

curve "1hich is not homotopic to any closed geodesic. It is not difficult to 

see that as t + co the solution of the heat equation with those initial 

values will disappear at infinity, no·t converging to anything. From this 

we see that ·the hypothesis in Thm. 3. 6.1 that the solution remains in a 

bounded set is necessary for the existence of a harmonic map. 
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On the other hand, noncompactness of the target space does not inevitably 

prevent the solution of the heat flow from converging to a harmonic map as is 

seen by rotating ·the curve 2 
y = X + 1 instead of y = l arom1d the x-axis. 

X 

3.7 ESTIMATES IN THE ELLIPTIC CASE 

We now ,,;ant to derive estima·tes for a harmonic map f X + Y • Since Y 

is nonpositively curved, (L6.5) implies 

(3. 7 .1) 6e[f) ~ -c e(f) . 

For simplicity, we assume n =dim X~ 3. We put p0 = min(i(X), 2~] . By a 

suit:able choice of p E (~p0 ,p 0 ) , (3. 7.1) in conjunction with the 

representation formula (2.7.5) yields 

0 8 f e(f)(x) e (f) (m) ~ - dx . 
P2 B(m,p) r(x)n- 2 

Iteration of (3.7.2) yields as in 3.3 

(3. 7. 3) e (f) (m) 
J n 
B(m,~) 

e(f) (:<) dx . 

THEOREM 3. 7.1 If f X + Y is harmonic, x compaci and Y nonpositively 

curved, 

I fl - c 2+()( ::::: 9 ' 
C (X' Y) 

where c 9 depends on the energy E (f) and on cUJ."1Jature hounds, ·in,jectivi·ty 

radii and dimensions of x and Y , 

Proof we again look at the equation 

(3.7.3) implies that the right hand side is bounded and that for every m E 
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a uniform neighbourhood B(m,p) is mapped into the same coordinate chart on 

the image. Elliptic regularity theory implies f E Cl+a , which in turn 

implies that the right hand side is of class ca and hence f E c 2+a • 

The assertions about the dependence of c9 on the geometry of X and Y 

follow, if we choose harmonic coordinates at m and f(m) • For those 

coordinates, the Christoffel symbols have the required regularity properties, 

as is shown in 2.8 (cf. Thm. 2.8.2). 

q.e.d. 

3.8 THE UNIQUENESS RESULTS OF HARTMAN 

In this section, we shall be concerned with uniqueness properties of 

harmonic maps into nonpositively curved manifolds. 

THEOREM 3.8.1 (Hartman [Ht]) Let f 1 (x) 3 f 2 (x) be two homotopic harmonic 

maps from x into the nonpositively curved manifold Y • For fixed x , let 

f(x,s) be the unique geodesic from f 1 (x) to f 2 (x) in the homotopy class 

determined by the homotopy between f 1 and f 2 , and let the parameter 

s E [O,ll be proportional to arc length. 

Then, for every s E [O,ll , f(•,s) is a harmonic map with 

E(f(•,S) = E(fl) = E(f2) 

is independent of x • 

Furthermore, the length of the geodesic f(x,•) 

Hence any two harmonic maps can be joined by a parallel family of 

harmonic maps with equal energy. 

Proof We let f(x,t,s) be the solution of (3.1.1) with initial values 

f(x,O,s) = f(x,s) • f(x,t,s) exists for all time by Lemma 3.5.3. 

By Cor. 3.4.1, for any s E [0,1] and t E (0, 00 ) 
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sup d(f(x,t,s), f 1 (x)) ~ 
XEX 

sup d(f(x,s), f 1 (x)) 
XEX 

~sup d(f2 (x), f 1 (x)) 
XEX 

Hence, f(x,t,s) stays in a bounded subset of Y as t + 00 • 

Thm. 3.6.1 implies that f(x,t,s) converges to a harmonic map f 0 (x,s) 

as t + 00 

we choose x0 E X with 

d(f2 (x0 l, fl (xo>> 

and by construction therefore 

From (3. 8.1) 

(3.8.2) 

and similarly 

(3.8.3) 

sup 
XEX 

d(f2 (x), f 1 (x)) 

sup d(f(x,s), f 1 (x)) 
XEX 

for all s ,· 

Note that all distances are measured by the length of that geodesic which is 

mentioned in the statement of the theorem. 

Then (3.8.2) and (3.8.3) imply 

(3.8.4) f (x0 , s) for all s • 

We now look at 

es (f) (x,t,s) 

By Lemma 3.4.1 

(3.8.5) sup' e (f) (x,t,s) ~ sup e (f) (x,O,s) 
XEX S XEX S 

for every s E [0,1], t E (O,oo) 

On the other hand, from (3.8.4) 
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es {f) {x0 ,o,s) = sup es {f) {x,O,s) 
XEX 

Hence for all t , the supremum in {3.8.5) is attained at x = x 0 and is 

independent of t . Since by {3.4.1) 

{3.8. 7) 

the strong maximum principle implies that es{f) {x,t,s) is independent of x 

and t , i.e. 

es {f) (x,t,s) = es (f) {x0 ,0,s) for all s • 

Since s is the arc length parameter on the geodesic f(x0 ,•) 

es(f) (x0 ,o,s) and hence es(f) (x,t,s) is also independent of s • Thus for 

every x and t, f(x,t,•) is a curve of equal length from f 1 (x) to 

f 2 (x) parametrized proportionally to arc length. Since f(x,O,•) was a 

minimal geodesic, all f(x,t,•) are minimal geodesics and independent of t . 

In particular f(x,t,s) is time independent for every s , and hence 

f(x,O,s) = f(x,s) is harmonic, since f(x,t,s) solves (3.1.1). 

Returning to (3.4.1), since is constant and y is 

nonpositively curved , 

(3.8.8) 

in normal coordinates, or in invariant notation 

where V now is the covariant derivative in the bundle 
-1' 

f {x,•)TY This 

implies that the energy density 

e(f) (x,s) 
aS 3fi 3fj 

y (x) g .. (f,x,s)) ----0 
~J axa ax~ 

is independent of s • 
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In particular, all the harmonic maps f(•,s) have the same energy, 

q.e.d. 

THEOREt~ 3.8.2 (Hartman [Ht]) If Y has nega-tive sectional curvature, then a 

harmonic map f ' x __,_ Y is unique in its homotopy class, unless it is 

constant or maps x onto a closed geodesic. In the latter case, nonunique-

ness can only occur by rotations of this geodesic. 

Proof In this case, we see from (3.4.1), that since 

(3.8.9) 

by the previous proof, either 
(}f 

- 0 which means tha·t the family f ( • ,x) 

constant in s and hence consists of a single member, i.e. the harmonic map 

is unique, or the image of 'r s 
X 

under df is a one-dimensional subspace of 

is 

Furthermore, if the harmonic map is not unique, then f(x,s) for any 

x E X is a geodesic arc by the construction of the preceding proof. 

implies again tha·t df maps T X onto the ·tangent direction of this 
X 

geodesic. 'I'his easily implies that X is mapped onto this geodesic. 

(3.8.9) 

We now have to show that this geodesic arc extends to a closed geodesic 

which is covered by f (X) • 

Since X is compact, f (X) is closed and hence covers some geodesic 

arc y Suppose this arc has an endpoint p = f(x) for some x E X . We 

choose q E Y within the injectivity radius of p • Then i(q,f(y)) is a 

stiliharmonic function on a suitable neighbourhood of x EX (by Lemnata 2.3.2 

and 1.7.1) and has a local maximum at x which is a contradiction, unless 

f(y) ~ p for y E X Thus, if f is not constant, it has to cover a closed 

geodesic. 

q.e.d. 

Different proofs of Thms. 3.8.1 and 3.8.2 were obtained by Schoen-Yau 
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[SY3]. They show that under the hypotheses of those theorems, after lifting 

to suitable covers, the squared distance between two homotopic harmonic maps 

is a well defined smooth subharmonic function, in case Y is nonpositively 

curved, from which the argument proceeds in a similar way as above. 

3.9 THE DIRICHLET PROBLEM 

One can also solve the Dirichlet problem for harmonic mappings into 

nonpositively curved manifolds. 

THEOREM 3.9. 1 (Hamilton [Hm]) Suppose x is a compact manifold with nonempty 

boundary ax • Y is complete (without boundary) and has nonpositive sectional 

curvature. If g : X + Y is a continuous map, then the parabolic system 

(3.9.1) 
af 
at (x,t) T(f) (x,t) for (x,t) E X X (O,oo) 

f(x,O) g(x) for X E X 

f(y,t) = g(y) for y E ax 

has a smooth solution f(x,t) for all t + (0, 00 ) As t e oo , f(x,t) 

converges to the unique harmonic map homotopic to g with the same boundary 

values as g on ax . 

Instead of extending the Holder estimates of the previous section to the 

boundary, Hamilton developsanLP-regularity theory for harmonic maps for the 

proof of Thm. 3.9.1. Since the boundary values are fixed, f(x,t) remains 

always in a bounded subset of Y as t + 00 , even if Y is noncompact. 

In case Y is simply connected, a simpler proof of Thm. 3.9.1 was 

obtained by Hildebrandt-Kaul-Widman [HKWl]. 

As an application of the maximum principle, Hamilton also showed that 

convex sets provide barriers for solutions of the heat equation. 
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THEOREM 3.9.2 Suppose c c Y is a aonvex set and f soZves (3.9.1). If 

g(X) c C, then f(x,t) c C foP aZZ t E [0, 00 ) • 

3.10 AN OPEN QUESTION 

A difficult open problem is to determine whether a solution of the heat 

equation (3.1.1) or (3.9.1) exists for all t > 0 without any curvature 

assumptions on Y • 

Since there are manifolds X and Y and homotopy classes in [X,Y] 

which do not contain harmonic representatives, as we shall see in chapter 5, 

even if the solution of the heat equation exists for all t > 0 , in general 

it cannot converge uniformly to a harmonic map as t + oo 

There seems to be some indication that if one maps the unit ball Dn 

homotopically nontrivial onto the sphere sn with constant boundary values, 

then the solution of (3.9.1) may cease to exist after a finite time, at least 

for large n • 

Besides the resul·ts of this chapter and the case of "warped products" 

(cf. Lemaire [L3]) I the existence of a solution of (3.9.1) for all time is only 

known in case g(X) is contained in a ball B(p,M) c y which is disjoint to 

the cut locus of its centre p with M < _]!_ 
2K 

, where K2 is an upper bound for 

the sectional curvature on B(p,M) This was carried out in [J4] t combining 

some arguments of the present chapter with a result from elliptic regularity 

theory as shown in the next chapter and a stability inequality of (JaK2] 

analogous (but more difficult) to 3.4. A more general approach to long-time 

existence of solutions of nonlinear parabolic systems without divergence or 

variational structure by using stability inequalities was developed by von Wahl 

[vW]. For arbitrary Y , however, such stability inequalities do not hold, 
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and von Wahl's approach is mainly aiming at applications different from harmonic 

maps. 

Simon [Sm] showed that if f is a locally energy minimizing map between 

real analytic manifolds, then a solution of (3.1.1) exists for all time and 

converges to a harmonic map with the same energy as f , provided the initial 

values are already close to f in some higll Ck -nonn. r·t is not known whether 

the assumption ·that ·the manifolds involved are .real analytic is necessary for 

Simon ' s theorem. 



CHAPTER 4 

REGULARITY OF WEAKLY HARMONIC MAPS 

Regularity, existence, and uniqueness of solutions of the 

Dirichlet problem, if the image is contained in a convex ball 

4.1 THE CONCEPT OF WEAK SOLUTIONS 

We first want to discuss the concept of stationary points of the energy 

integral or of weak solutions of the corresponding Euler-Lagrange equations. 

In ·the present chapter, the image Y will always be covered by a single 

coordinate chart so that we can define the Sobolev space 

unambiguously with the help of this chart, without having to use t.he Nash 

embedding theorem as in L 3. 

:J will be an open bounded set in some Riemannian manifold with boundary 

():J . 

In the sequel, we shall use some of the no·tations of [EL4] . 

If u E: W~ (:J, Y) , then du is an almos·t everywhere on :J defined 1-form 

with values in u-l TY . The energy of u is 

where ·the scalar product is taken in T*fJ ® u -l TY . 

We let ¢ E C0 (i1,u 
-1 

TY) be a section along u which vanishes on (l:J 

This means cp (x) E T y 
u(x) 

1\Je want ·to construct a variation of u with 

tangent field ¢ 

Since we assume that Y is covered by a single coordinate chart, we can 

simply represent everything in those coordinates and denote the 

representations in ·these coordinates by and define 
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lit (x) u (x) + t'¢ {x) 

These coordinates also identify each tangent space T Y with 
u 

(n = dim Y) Hence ¢ is a map from D into nf. This allows us to 

define d¢ and hence via this identification also d¢ (Note that it is 

not obvious how to define d¢ intrinsically, since ¢(x) E Tu(x)Y , and as 

u is not necessarily continuous, the base poin·t of ¢ may vary in a 

noncontinuous way.) We then suppose that 

(4.1.1) J <ct¢,d¢> < co 
:;-;: 

a.11d show that the Euler-Lagrange equations, if u is a critical point of E , 

0 Wl oo ,--, n 
for 1/J E 2 n L (.,, JR l 

(1/J I <Hl=O) 
are equivalent to 

(4.1. 3) I <du,d¢> 0 for all bounded ¢ satisfying (4.1.1) and ¢!3D= 0 . 

Proof Let 

Then d¢ \! ( ¢i d:i} dx 
C( Cl¢i d ¢i r~. 

Cluj d 
d 

=----.+ ----
Clxa Clu~ ~J Clx 

a 
au 

k 

Clx 
a 

Hence 

(4.1.4) 

On the other hand, we choose 1/Ji gij ¢j as a test vector in (4.1.2). Then 

the integrand of ( 4 .1. 2) becomes 

\vhich after changing some indices, is the same as ( 4. 1. 4) . 

q.e.d. 
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Remark If one wants to define d¢ also if the image is not necessarily 

contained in a single coordinate chart, one can use the Nash embedding 

theorem as in section 1. 3. 

In the following sections, we want to provide conditions which ensure 

that a weak solution 
1 00 

u E H2 n L of (4.1.2) or (4.1.3) is continuous (which 

then in turn will also imply higher regularity of u ). 

We have already seen in l. 4 that for n ?. 3 is a 

discontinuous weak solution. One might think that the discontinuity in this 

case is caused by the global topology of the image. We can however take the 

totally geodesic embedding i 
n-1 s onto the equator 

of 
n s . By Lemma L 7. 2 , i 

X 

I xi 
-then is harmonic for X "} 0 and hence 

weakly harmonic by the argcunent of 1. 4. The image of i & ~ , howe·ver, is 
I xi 

con-tained in a closed hemisphere, so ·that there is no longer a topological 

obstruction to regulari-ty, and t:he discontinuity has to be caused by the 

geometry of the image. 

As pointed out, in this case the image is con-tained in a geodesic ball of 

radius 1T 

2 
in In the following sections, we shall see that the radius 

1T 
is precisely the limiting case for regularity, i.e. that any weakly 

2 

harmonic map with image contained in a geodesic ball of radius < .'1:: 
2 

actually 

is regular. (We shall of course consider more general image manifolds than 

only spheres.) 

Finally, we remark that in many cases i e ~ even minimizes energy 
I xi 

w.r.t. its boundary values, as was demonstrated by Jager-Kaul [JaK3] and 

Baldes [Ba] . 

In the following sections, we assume w.l.o.g. tha-t the dimension n of 

the domain S1 is at least 3, because otherwise we can simply look at the map 
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U. S] x s1 + y , u(x,t) = u(x) which satisfies the same assumptions as u • 

4.2 A LEMMA OF GIAQUINTA-GIUSTI-HILDEBRANDT 

The following lemma is due to Giaquinta-Hildebrandt [GH]. 

LEMMA 4.2.1 Suppose u' S] + Y is weakZy harmonic, f Y +IRis strictZy 

(4.2.1) 

Fur.>thermore, for any E > 0 and R > 0 we can caZcuZate 
0 

independent of x0 and u with the property that for some R , R1 :,; R:,; R0 

2-n I j 12 (4.2.2) R du :,; E • 

B(x0 ,R) 

c 1 and R1 depend on the supremum of f and on a Zower bound .\ > 0 for 

the eigenvaZues of its Hessian and on the geometry of S] (cur.>vatur.>e bounds, 

injectivity radius, dimension). 

Proof One idea is taken from [JKl], p.ll, the other from [GGl], p. 

We put h = fou. By (1.7.2) 

(4.2. 3) 

Let r(x) = d(x,x0 ) and gp(x) = min{r(x) 2-n- p2-n (%) 2-n- p2-n} on 

B(x0 ,p) Then 

:,; I gp(x) 6h(x) 
B(x0 ,p) 

by (4. 2. 3) 

-I <grad gp' grad h> 
B(x0 ,p)\B(x0 ,p/2) 

f h 6gp - f h <grad 
. B(x0 ,p)\B(x0 ,p/2) · 3(B(x0 ,p)\B(x0 ,p;2)) 

:,; c2p2 + n-2 f h - n-2 f h 
Pn-l 3B(x0 ,p) (P/2)n-l 3B(x0 ,P/2) 
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by Lemma 2.7.1, if p satisfies the assumptions of this lemma. 

Now on 

Since 22-n ( (~) 2-n _ l) 2-n 
r 

2-n 2-n 
r - (2r) , from (4.2.5), defining 

9 i = g -i+l 
R0 ·2 

JB(x0 ,R0 l 

2-n 2 
r(x) lduJ 

where en depends only on n . 

(4.2.4) then implies 

2 2c2 2 c 
I du I ::: -,- en RO + -T- ~ 

A A i=O 

{ (Ro·2-i+l)l-n f h (R. ·2-i)l-n J . h~ 
()B(x0 ,R0 ·2-i+ll- 0 (lB(x0 ,R0 ·2-J.) J 

=: c 3 R~ + c 4 ~ 
i=O 

Hence 

(4.2.7) 
2 

Ro + c 4 ]Jo • 

This implies (4.2.1), noting that 

We first choose so large that 

]J ::; 
0 

can find j , i 0 s j s m + i 0 , with 

sup 
u(m 

f • vol ()B 

1 1 2 
fl.- ll '+1 :::- J.l. :::- (J..lo+c6RO) 

J J m lo m 

For every m E JN , we 

(for the last inequality, note that h is subharmonic and see the proof of 

(2.7.5)). 
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Hence choosing 

(4. 2. 2) follows. 

q.e.d. 

4.3 CHOICE OF A TEST FUNCTION 

Suppose B(x0 ,2R) c ~ for some R > 0 . Let n E Lip(B(x0 ,2R)) be the 

s·tandard localizer, i.e. n = 1 on [vn I c 
:<; R ' supp n cc B(xo,2R) 

Suppose there e~'is·ts a strictly convex func·tion on u(B(x0 ,2R)) , i.e. the 

assumptions of Lemma 4. 2.1 are satisfied. 

Suppose f is a c2 -function on u(B(x0 ,2R)) , and g is a Lipschitz 

function on B (x0 ,2R) , so we can choose llf•n•g as a test vector ¢ in 

(4.1.3). 

If e is an orthonormal frame on ~ , wa the dual co frame, ·then 
a 
a 

du U UJ 
e 

ex 

(4. 3.1) 

Now 

<d ('ilfl, u 

0 

e 
a 

and (4.1.3) yields 

wa> -
T*~@u- 1TY 

u 
e a 

<d (V f) e , u > -l'l'Y a e u 
a 

-1 

<v~ TY Vf' ue > u -lTY 
a a 

where D2 f is the Hessiru' of f 

Hence from (4.3.1) 

f(u) 
e a 

by definition of d 
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B(x0 ,2R) 
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-I ng D2f(du,du) -I 
B(x0 ,2R) B(x0 ,2R) 

+ f f(u) g n 
B(x0 ,2R) ea ea 

Remark If one is not familiar with the notation employed in the derivation of 

(4.3.2), one can alternatively insert the test vector 1jJ given by 

i of 
1jJ = n•g ---. in (4.1.2) and carry out the calculations in local coordinates. 

au~ 

For y E B(x0 ,R/2) , x E B(x01 2R) 1 we now put 

g(x) 
\) 

g (xly) 
2-n min(d(x,y) 1 V) for v E lN • 

2-n 
d(x,y) < v} , (4.3.2) yields 

(4.3.3) f g\)(•,y)e <n f(u))e =-I ng\)(•ly) o2f(du,du) 
D(x01 V 1R) a a B(x01 2R) 

-I g\)(·~y>ne f(u) +I f(u) g\)(·,y)e ne 
. B(x0 ,2R) a ea D(x01V 1 R) a a 

We write (4.3.3) as 

Then with D' (x01 V,R) 2-n {x E B(x0 12R) : d(x1y) ~ v} 

(4.3.4) I = I t.(d(• ly) 2-nlnf(u)- f nf(u) <grad g(• ,y), dO> I 

v D(x0 ,v,R) CJD' (x0 ,V,R) 

since n has compact support in B(x0 12R) 

By (2.1.4) 1 for sufficiently small R (depending on the injectivity 

radius and an upper curvature bound on n ) 

(4.3.5) f Ll(d(• 1 y) 2-n) nf(u) $ c7R2 < E , 
D(x0 ,V,R) 

if R $ R1 (E) , 

where c 7 depends on n dim n , a curvature bound on n , and on :sup f • 

If we choose for fou its Lebes~~e representative, then we can find a 
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slilisequence of the v' s for which 

(4.3.6) lim f nf{u) 

v->= ()D' (x0 , v, R) 

+ 
<grad g(•,y), dO> -(n-2)wn f(u(y)) 

(note tha'c n (y) 1 , since y E B(x0 ,R/2)) • 

Furthermore 

{4. 3. 7) 

where 

Since y E B(x0 ,R/2) , we infer from Lemma 4.2.1 

( , I \) 2. 4.3.8 ng (•,y) D f(du,du) < E(n-2)Wn 
T(x0 ,R) 

for prescribed E > 0 and some R , R2 (E) ~ R ~ Rl (E) , vvhere 

R., = R2 (E) > 0 can be calculated explicitly in terms of E It depends on 
.!. 

the Hessian of f r but is independent of \) aDd y and u 

[du[ ~ c: <f g\J(•,y))~ 
T(x0 ,R) 

(4. 3.9) 

cf g\) (• ,y) [du[ 2 l ~ ~ (n-2)WnE I 

T(x0 ,R) 

again for some suitable R which we can choose to be the same one as in 

(4.3.8). Here, the quantities depend on [vf[ . 

In order to estimate IV\!, let be the mean value of u on 

uR can be defined •rith the help of our coordinates. We write 

u . 

We now write f (u) 

Lcx0 ,R) 

f(uR) + (f(u) - f(uR)) Similar as in (4.3.5) and 
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(4.3.6), we obtain 

(4. 3.10) 

+ J 
T(x0 ,R) 

Furthermore 

by ·the Poincare inequality, where and are independent of R . 

Combined with (4. 3.10), 1:he preceding inequality yields 

~ (n-2)W f(u ) + S(n-2)W 
n R n 

(w.l.o.g. we can assume that (4.3.11) again is satisfied fo:r the same R as 

in (4.3.8) and (4.3.9)). 

From (4.3.3)·-(4.3.11), we obtain for y E B(x0 ,R/2) , using Lebesgue's 

'I'heorem on dominated convergence 

(4.3.12) f(u(y)) 2-n ? d(',y) D~f(du,du) 

for some R :?: R3 (S) where R3 (€) > 0 is independen·t of u and x 0 . 

4.4 AN ITERATION ARGUMENT. CONTINUITY OF WEAK SOLUTIONS 

In this section, we want to use an iteration argument based on (4.3.12) 
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to prove continuity of a weakly harmonic map with image in a convex ball. 

'I'his resul·t appeared explicitly for the first time in [HJW], but the method of 

proof in a somewhat differen·t setting was already developed in [HW2]. The 

present proof (4.2-4.4) uses ideas of Wiegner, Hildebrandt, Widman, Kaul, 

,Jost, Giaquinta, and Karcher, cf. [Wi], [HW2], [HKW3], [HJW], [GH], and [JK]. 

THEOREfvl 4.4. ·1 Suppose u : :J + B (p,IYI) is weakly harmonic, that 

2 2 r 'IT J -w s K s I< are curvature bounds on B (p,M) c Y M < min 21<, i (p) , where 

i (p) is the injectiv·ity radius of p , and x 0 E :J 

Then for each T > 0 one can calculate p > 0 with 

osc U < T . 
B (x0 ,p) 

p depends only on T ,d(x0 , ():J) , curvature bounds cmd the injectiv·i'ty radius 

of :J , dim :J , dim Y , M , w , K • 

In pa:t:>ticular, u is continuous in :J • 

Proof Let 

• ( 'IT mln --
2MK 

Then ·there exists E' , 0 < E' < 1 , with 

Let 

and 

h' 'IT 

2K 

Let E in (4.3.12) be taken as 

h . (2h' K h ] mln -'IT-, 0 

l r _s"l Sh(2-h) min.E', sj 

> 0 • 
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and s be the smallest positive integer with 

The assumptions of Lemma 4. 2.1 are satisfied, because 2 r (q) 
2 

d (q,p) is 

strictly convex on B(p,M) by Lemma 2.3.2. 

We start with R0 = td(x0 , C!rl), p0 = p. On B(p,M) , we initially take 

normal coordinates centred at P = Po . They cover 

by assumption is disjoint to ·the cut locus of p . 

UR 
0 

be the mean value of u on 

taken wi·th respect ·to these coordinates: 

Let c 0 be the unique geodesic arc from p0 

point on with 

Now for q E B(p,M) 

to 

B(p,M) , since 

1T 
5 2K 

by choice of h0 . 

Hence, by Lemma 2.3.2, is convex on B {p,M) . Thus, for 

B(p,M) 

be the 

, where 2R1 

2 

is the radius of (4.3.12), (4.3.12) 

implies for f d (. 'pl) 

(4. 4.1) 2 -
5 d (uR ,p1 ) + 4S 

0 

5 (l-h0) 2 sup ct2 (u(x),p0 ) + 4s 
XEB(x0 ,2R0 ) 

by choice of p1 • 
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Let j E JN • 

Suppose now that we have found points pi E B(p,M) 

i ~j-1 with the property that for y E B(x0 ,Ri) 

(4.4.2) 2 
d (u(y) ,pi) ~ (l-hol2 M2 + €' 

and 

and radii R. for 
~ 

(4.4. 3) 2 
(l-h) 2 2 d (u(y) ,pi) ~ sup d (u(x) ,pi-l) + 4€ 

B (x0 ,2Ri_1) 

We then want to prove (4.4.2) and (4.4.3) for i j and suitably chosen p. 
J 

and R. 
J 

First of all, by (4.4.2) 

h' 

If we choose normal coordinates on B(p,M) 

possible by Prop. 2.4.1, and take UR 
j-1 

for 

centred at which is 

as being the mean value of u 

T(x0 ,Rj-l) with respect to these coordinates, then again by Prop. 2.4.1, 

there is a unique geodesic arc in B(p,M) from to 

We choose as that point on with 

d(u(y),pJ.) ~ d(u(y), p. 1 > + d(p.,p. 1 > 
J- J J-

~ 'IT h' + hM 
2K 

'IT 
~ 2K 

by (4.4.2) 

Hence, d2 (•,pj) is convex on u(B(x0 ,Rj_1 )) , and from (4.3.12) for 

y E B(xO,Rj) , taking 2Rj = R ~ Rj-l in (4.3.12) 

over 
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2 d (u(y),p.) ~ 
J 

2 -d (p.,uR ) + 4E 
J j-1 

2 2 -
~ (1-h) d (u ,p. 1) + 4E 

Rj-1 J-

~ (1-h) 2 

Thus (4.4.3) is also satisfied for i = j . 

Iterating (4.4.3), we obtain 

For j > 0 , 1 + (l-h)2j < __ 2_ 
2 - h(2-h) , 

1 - (1-h) 

and thus from (4.4.4) and (4.4.1) 1 since 2 d (u(x) ,p0 ) ~ 

{4.4.5) 2 (l-h) 2j (l-hol2 M2 + sup d (u(y) ,pj) ~ 

yEB(x0 ,Rj) 

M2 , 

min(s•, E~') 

In particular, (4.4.2) holds for i j Moreover, (4.4.5) implies 

u) 2 ~ 4 

and hence 

2 d (u(y),p.) 
J 

osc U < /2' < T • 

B (x0 ,Rs) 

Rs can be computed explicitly, since the radius R3 (s) in (4.3.12) can be 

computed from the geometric quantities of the statement of the theorem by 

Lemma 4.2.1. Note in particular, that the strictly convex function required 

in Lemma 4.2.1 is 2 
d (•,p) and that all choices of f in (4.3.12) are 

likewise given by squared distance functions. Hence their gradients and 

Hessians are controlled by the geometry of the image through Lemma 2.3.2. 

q.e.d. 
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4.5 HOLDER CONTINUITY OF WEAK SOLUTIONS 

~ve now wan·t to prove Holder con·tinui·ty of u . 

THEOREM 4.5. l Suppose that the ass&mptions of Thm" 4.4.1 hold. Let 

B(x1 ,2d) c rl be a baU which is disjoh1t fr-om the cut locus of its centre. 

Furthermore, suppose that -0 2 o; K o; T 2 for ·the curvature on B(x1 ,2d) and 

'l'hen fol" aU x,y E B(x1 ,dl 

d(u(x) ,u(y)) :<; c d(x,y)f3 

where f3 E (0,1) and c depend only on dim iJ, dim Y, 0, T , uJ, K, d, 

and M 

Proof By Tl::uu. 4.4.1, we can find p , 0 < p < d , wit.h 

(4 .5.1) osc u < M 

B(x,p) 

We choose an arbitrary x 0 E B (x1 , d) and R with £ . 0 < R :<; 2 , and deflne 

again T(x0 ,2r) = B(x0 ,2r) \ B(x0 ,r) and moreover 

We let. q be the point, where 

J 2 
H(q) = d (u(x),q) dx 

T(x0 ,2R) 

achieves its minimum. (That vJe can find a unique such q , follows from 

(4.5.1) and (2.3.4)). Then 

I 2 11 d (u(x),p) 
T(x0 ,2R) q 

0 

f -l 
expq u(x) 

T(x0 ,2R) 
0 • 

That means that if we choose normal coordinates centred at q and denote the 

corresponding coordinate representation by v , then 

J v(x) = 0 
T(x0 ,2R) 
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and hence by the Poincare inequality 

(4.5. 3) J 2 < 2 J 1Vvj2 
v - cl5 R T(x0,2R) T (x0 ,2R) 

where c 15 like the following constants c16 , •.• is independent of R. 

n from 4.3 will now be required to satisfy n = 1 on B(x0 , 5:) and 

n = o on rl\B(x0 , 7:) • 

In (4.3.3) we now take f(u) = d2 (u,q) and y = x 0 • Then from 

(4. 3. 4)- (4. 3. 6) 

(4.5.4) 2 2 lim I ~ (n-2)wn d (u(x0),p) - c16 R • 
v-700 \) 

Furthermore 

by Lemma 2.3.2 and (4.5.1) and hence 

By choice of n , the integral III\/ extends only over T(x0,2R) , and 

taking V > R2-n , noting f(u) = 2vv (f(u(x)) = v 2 (x)) , 
ea. ea. 

(4.5.6) I I 2-n 
JT(x0 ,2R) 

1Vvl2 + R-n J lvl 2 l III\/ s; c18 (R 
T(x0 ,2R) 

2-n 
J jVvl2 by (4.5.3) • s; cl9 R 
T(x0 ,2Rl 

Now 

for each o > 0 
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Using Lemma 2.7.1 and Holder's inequality, this implies 

(4. 5. 8) 

Choosing o n-2 
R in (4.5.7) and using (4.5.8) and (4.5.3), 

(4. 5. 9) 

From (4.5.3), (4.5.4), (4.5.5), (4.5.6), and (4.5.9) and letting V ->-co 

(4.5.10) J 2-n fduf2 ,; 
2-n I fdvf 2 R2 d(• ,x0 ) c24 R + c26 

B (x0 ,R) T(x0 ,2R) 

J 2-n ldul 2 R2 ,; 
c25 d(•,x0 ) + c26 

T(x0 ,2R) 

(Note that , since ·the energy is invariant under 

coordinate transformations.) 

f 2-n 1 12 Ifwenowadd c25 d(•,x0 ) 1du tobothsidesof(4.5.10), 
B(x0 ,RJ 

Le. we fill the hole (that eJcplains why this device introduced by Widman is 

called the hole filling technique), we obtain with 8 
c25 

< l 

or, using the notation <i?(R) := f· d(•,x0 ) 2-n fduf 2 + c 27 R2 

B(x0 ,R) 

with eo = max( 8,-!:) • 

LEMMA 4.5. 1 (de Giorgi) For and all r < R 

(4.5.13) 
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Proof of the lemma If 2-k-l R ~ r ~ 2-k R , 

~(r) ~ ~(2-k R) ~ 9~ ~(R) by (4. 5.12) • 

-k r 
and using 2 ~ 2 R 

which proves the lemma. 

Since 0 < eo < 1 I a > 0 , and hence Thm. 4.5.1 will follow from (4.5.13) 

in conjunction with the following well-known Dirichlet growth theorem of 

Morrey, noting that the right hand side of (4.5.13) is finite by (4.2.1) or 

by (4.5.11) 

THEOREM 4.5.2 (Morrey) satisfies 

I !Vfl2 ~ M2 pn-2+2S 
B(x1 ,d)nB(x01p) 

for all x0 E B(x1 ,d) and all p > 0 for some positive aonstants S and 

M 3 then f E c0 'S(B{x1 1d)) 3 and 

lf<x> - f(y) I ~ c M lx- YIS n 

for aU x,y E ·B (x1 ,d) 3 where c depends only on n • 
n 

For a proof, cf. e.g. [M3] • 

The preceding proof of Thm. 4.5.1 was taken from [HJW]. It uses the 

method of [HWl]. Different proofs of Thm. 4.5.1 were obtained by Eliassen 

[Es] 1 Sperner [Sp], and To.lksdorf [To]. 

4.6 APPLICATIONS TO THE BERNSTEIN PROBLEM 

Actually, the dependence on the geometry of the domain in Thm. 4.5.1 can 
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be considerably weakened. In [HJW], the following result is shmvn. 

THEOREM 4.6.1 Let again B(p,M) c Y be a geodesic ball, disjoint to the cut 

locus of p , with 

B(p,M) . 

M < J:l:._ where 
2K ' 

are curvature bounds on 

Let D ( 0, 2d) = { x E 1Rn : I xI < 2d} be a coordinate chart on the domain 

with metric tensor yaS(x) satisfying 

(4. 6.1) 

for all x E D(0,2d) and all ~ E IRn 

If u D(0,2d) + B(p,M) is harmonic, then for all x,y E D(O,d) 

d(u(x), u(y)) s c d(x,y) 8 
ds 

for some 8 E (0,1) m~d c > 0 , depending only on n , dim Y , w , K , M, 

:\ , and )1 , but not on d • 

In the proof of 'rhm. 4. 6.1, one has to use the Green flmction of the 

Laplace-Beltrami operator of the domain instead of the approximate 

fundamental sol u·tions vle use in the proof of Thms. 4. 4.1 and 4. 5. L The 

truncated functions g\!(x,y) of section 4.3 have to be replaced by 

mollifications of the Green function. The proof then yields the desired 

result because one can control the Green function only in terms of the 

ellipticity constants of the differential operator, i.e. by (4.6.1). The 

required estimates for the Green function depend on Moser's Harnack inequality 

and are carried out in [GW]. Also, Lemma 4.2.1 has to be proved in a 

different way to get the stronger estimat.e, again using Moser's Harnack 

inequality, cf. e.g. [GH]. 

Thm. 4. 6.1 has ·the following 
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COROLLARY 4.6. 1 Let the manifold X be diffeomorphic to IRn , with a metric 

tensor Yaf$ (x) (x E IRn) satisfying 

Suppose u : X+ Y -l.s harmonic a:ad u(X) c B(p,JV!) where B(p,M) again 

satisfie.s ·the asswnptions of Thln. 4. 6.1. 

Then u is constant. 

Cor. 4.6.1 in turn can be used to prove Bernstein type theorems for 

minimal submanifolds of Euclidean space, when combined with the following 

result of Ru.b and Vilms [RV]. 

THEOREM 4. 6. 2 Suppose F : M + IRn+p is of cla.ss c3 and immerses the 

n-d·imensional manifold M into Euclidean (n+p)-space. Then its Gauss map 

G : F(M) + G(n,p) into the Grassmannian manifold of n-pla:nes in (n+p)-space 

endowed tvith its s·tandard Riema:anian metric is harmonic if and only if 1><1 is 

imme1"sed with parallel mean curvature field. This in parti.cular is the case~ 

if F (M) is a min-l.mal submanifold of IRn+p 

Cor. 4.6.1 and Th.'ll. 4.6.2 yield the following Bernstein type theorem of 

[HJW]. 

THEOREM 4. 6. 3 Suppose F : IRn -+ IRn+p is a c3-immersion and x = F (IRn) 

is minimal or ha.s parallel mean curvature field. Suppose there exists a 

fixed oriented n-plane P0 , and a number a0 

(4.6.2) 

and 

(4.6. 3) 

a > 
0 

m = min(n,p) , 
if m = 1 

if m ~ 2 
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holds for all oriented tangent planes P of x . 

Suppose also that the metria 

of X is uniformly equivalent to the Euclidean metria in the sense of (4.6.1). 

Then, X is an affine linear subspace of n+p 
lR • 

The conditions (4.6.2) and (4.6.3) guarantee that the image of the Gauss 

map of X is contained in a ball in G(n,p) which satisfies the assumptions 

of Thm. 4.6.1, cf. [HJW]. 

If p = 1, then m = K = 1 in (4.6.2), and hence Thm. 4.6.3 implies 

Moser's weak Bernstein theorem: 

An entire solu·tion of the minimal surface equation 

with sup I 'lf I < "" is linear. 

Note that in the strong Bernstein theorem the assumption sup IVfl < 00 

is not necessary. On the other hand, this stronger version is only true for 

n $ 7 , whereas Thm. 4.6.3 requires no restriction on the dimension. 

The results of Thm. 4.6.3 seem to be also interesting, although probably 

not optimal, in codimension p ~ 2 • 

4.7 ESTIMATES AT THE BOUNDARY 

In this section, we want to prove a-priori estimates at the boundary for 

weak solutions whose image is contained in a convex ball. 
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The following result can be found, e.g., in [GH]. 

THEOREM 4.7.1 Suppose u: n + B(p,M) is harmonia, where B(p,M) again is a 

ball with M < 2: and disjoint to the aut loaus of p • Suppose an is of 

class c2 • and IKI ~ A2 for the sectional curvature of n. If g =ulan 

is continuous, then for every £ > 0 we aan find some 8 > 0 • depending on 

w • K • M. A. i(n) • dim n • an. the modulus of continuity of g. and on 

£ • for which 

(4.7.1) d(u(y), u(x0)) ~ £ 

If g is Holder continuous with some exponent !3 , then 

(4.7.2) 

where a and ca depend on w • K • M • !3 • A • i (n) • an • dim n I and 

Proof W.l.o.g. n ~ 3 • We need some definitions: 

If xo € an I let c : [0,1] + B(p,M) be the geodesic with c(O) = p I 

c(l) = g(x0) , parametrized proportionally to arc length, and 

pt := c(t) , 

2 
vt := d {u(x),pt) 

Furthermore, let wt,R be the solution of 

/::,w = 0 
t,R 

R 
As in the proof of Lemma 2.1.3 we derive for y € D{x0 ,2) , 
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(4. 7. 3) - vt (y) 

lwt,R - vi 
dz 

d(y,z)n-2 

using the fact ·that the boundary term on vanishes by definition of wt,R. 

From the definition of and w , we have 
t,R 

(4. 7.4) 
2 2 2 

d (u(y),pt) s (l+t) M 

and 

We now want to exploit that the boundary values of wt, R on cl!"l n D (x0 ,R) 

i.e. con·trolled by assumption. Namely, given 

s' > 0 and R > o, R s Ro , there exis·ts some number r = r(s' ,R) (depending 

()Q 
2 

on s' ' R ' M 
' 

, and the modulus of continuity of d (g(x) ,pt) and 

()Q n D(x0 ,R0 ) with the property that 

(4.7.6) 

for all y E D (x0 ,rl . This is a result from potential ·theory (and can be 

found, e.g., in [GT], Thm. 8.27). 

If 
2 

d (g(x) ,pk) is Holder continuous, we even have 
'-

(4. 7. 7) 

where a , c depend w , K , M , S , ()Q , and lgl B 
c 

We now want tc apply an iteration procedure, and put 

t := 
'IT 

2MK 
1 

s' := min(M2 (1- (1-t) 2 ),E:) 
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t. := it 
1. 

for l :,; i :,; ]J-1 

and t]J := l , where ]J is the smallest integer with ]Jt ;:: l . Furthermore, 

we s·tart with some radius R0 < 1 and define 

R. 
1. 

. [Ri-1 1 m1.n --2--, r(E',R. 1 l I 
1- ) 

where r is the same r as in (4.7.6). 

Then, with 

m. := 
1. 

max 
XED (x0 ,Ri-l) 

(i 

(4. 7.8) 2Km1. ctg ( :<:m~) J i du j 2 l( --1-- -
~ ( ) r(•)n-2 

D y,pi-1 

1' ... ']J) ' 

choosing R small tha·t 2 E' 
Furthermore, so c Ro :,; 

0 26 2 

TI 
m1 $ -

2K 

and if mi $ ·rrj2K, then by (4.7.8) 

i.e. mi+1 $ TI/2K . 

Therefore, by induc'cion, 

and again from (4.7.8) and (4.7.6) 

vl (y) 

for all 

by (4. 7.4) 

'IT 
+ tM $ 

2K 

' 
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This gives the desired estimate of the modulus of continuity at the 

boundary, putting o = R~ 

In case the boundary data are Holder continuous, we use (4.7.7) to get 

q.e.d. 

4.8 c1-ESTIMATES 

Having established Holder continuity of weakly harmonic maps in Thms. 

4.5.1 and 4.7.1, it is well known that these maps are actually of class c1 

(and hence of class c2 'a). Proofs of this assertion can be found in [LU] and 

[G], and more specifically for harmonic maps in [GH] and [Sp]. Instead of 

repeating those proofs, we contend ourselves to derive a-priori estimates for 

the gradient of harmonic maps (i.e. already assuming that the map is regular) 

which can be obtained in a very easy way following [JKl]. 

THEOREM 4.8. 1 Let X and Y be Riemannian manifolds, B(x0 ,R0 ) c X 

R0 < min ( i (x0 ), 

B(x0 ,R0 ) • and 

2;J • 
B(p,M) 

where -wx2 :5 K :5 K2 are curvature bounds on 
. X X 

c Y, M < min(i(p), 2:), where -w2 :5 K :5/ are 
. y y y y 

curvature bounds on B(p,M) • If u : X + B(p,M) is harmonia, then for all 

(4.8.1) I Vu (x0 l I :5 c0 • max 
XEB(x0 ,R) 

d(u(x), u(x0 )) 

R 

Proof The proof is based on an idea of E. Heinz [Hzl] and similar to the one 

of Lemma 2.8.3. Let dim X= n, dim Y = N We define 

~ max (R0 - d(x,x0 )) lau(x) I . 
XEB(x0 ,R0 ) 
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and 

(4.8.2) 

We put 

We shall prove 

(4.8.3) for all e :;;; eo 

where e0 can be chosen so small (with the help of Thm. 4.5.1) that 

Then (4.S.l) follows as in th'e proof of Lenuna 2.8.·3. 

We I}qW use . the. functions . ki of .Lemma 2. 8. 4 . for q = u (~1) . Then 

(4.8.4) 

Moreover 

(4.8.5) where c1 = c1 (<ily,M,N) (cf. ' (4. 8. 33) 

and hence 

(4.8.6) (cf. (1. 7.2) • 

Furthennore, dk is ap.•isometry at u(x1) , and hence from (4.8.5) 

(4.8.7) jdk(y)j :;;; c 2 , (cf. Lenuna 2.8.4) • 

We put 

'o = o(e) :=· max d(u(x), u(xin . 
XEB(x1 ,de) 

By Thm. 4.5.1, o can be made arbitrarily small by choosing 6 sufficiently 

small. At the moment, we need: only. 
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8 ~ M 

By (4.8.7), jk(u(x))- k(u(x1 ll\ ~c2 o , and by (4.8.6), 

Estima-cing the in·tegrals, we also get volume factors 

[
sinh(J\xde) ]n-1 

A de ' 
X 

which will be included in the constants 3,4,5) . Hence 

for all e ~ eo ' 

i.e. (4.8.3). By definition of o(e) and Thm. 4.5.1, o(e0 ) can be made 

arbitrarily small by choosing e0 sufficien·tly small, and the resul·t follmvs 

as in the proof of Lemma 2.8.3. 

q.e.d. 

At the boundary, we have 

THEOREM 4.8.2 Let r2 be a bounded domain in some Riemannian manifold, an 

of class c2 , and let u : n + B(p,M) be harmonic~ where B(p,m) satisfies 

the same asswnptions as in Thm. 4. 8.1. Suppose ulan = ¢ E c2 Then 

\ul can be bounded in terms of the geometric qwratities of 1~m. 4.8.1, 
Cl(Q) 
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bounds for the principal curvatures of ()Q , I¢ I 2 , and a l07.;Jer bound for a 
c 

number T satisfying S , B (p,H+T) disjoint to the cut locus 

of P • 

Proof The proof is again taken from [JKl] and refines an argument of [HKWl]. 

Let d(x0 ,Clrl) = R0 . By Thm. 4.8.1, it suffices to show 

max d (u (x), u (x0 )) :O cR0 • 
XEB(x0 ,R0 ) 

This in turn follows, if 

(4 .. 8.9) 

We choose some number T > 0 as described in the statement of the 

theorem; w.l.o.g. 

(4.8.10) T :0 
'IT 

By Lemma 2.4.1, a.YJ.y two points in B(p,.M+T) can be joined by a unique 

geodesic arc inside B(p,M+T) . 

By Thm. 4. 7.1, we can calculate R1 > 0 with the property that~ for all 

R0 :0 R1 and ~ E ~ n B(x0 ,2R0 ) , x1 as above 

(4.8.11) T 
:0 

2 

If u(x) 'I u(x1) , we connect u(x) to u(x1) by a geodesic arc and continue 

·this arc beyond u (x1 ) until a distance T . We thus reach some point 

q(x) E B(p,M+T) 

By Thm. 4.7.1 again, we can find some subdomain S10 c ~ satisfying 

(4.8.12) 
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(4. 8.13) for some o > 0 

for all x E B(x0 ,R0) (cf. (4.8.10)) 

(4.8.15) 

By (4.8.14) 

v(x) 2 
:= d (u(x) ,q) 

is subharmonic in ~0 . 

Let h be the harmonic function on ~O with the same boundary values, 

i.e. 

(4.8.16) 

h(x) 2 d (u(x),q) for xE <l~0 • 

By the maximum principle 

(4.8.17) v,; h in ~0 • 

Now 

by choice of q 

1 2 
,; 2T (d (u(x2),q) 

by (4.8.16) and (4.8.17) • 

Thus, (4.8.9) follows from a Lipschitz bound for the harmonic function h at 

the boundary, which in turn follows from standard barrier arguments, taking 

(4.8.12), (4.8.13), and (4.8.15) into account, cf. [GT], chapter 13. 

q.e.d. 

Different gradient estimates were provided by Giaquinta-Hildebrandt [GH], 
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Sperner [Sp], and Choi [Ci] (only interior estima·tes). The latter two papers 

employ an auxiliary function introduced by ,Jager-Kaul [JaK2], cf. 4.11. 

4.9 HIGHER ESTIMATES 

If we write the equations 

1 a ( - aS a i 1 + yaS ri <luj <luk -- -- vy Y -- 1l I -- -- - 0 
r " a. " B J jk "~_a "xS -vy ox o·"· o~ o 

in terms of harmonic coordinates on domain and image, then the regularity 

properties of harmonic coordinates ( cf. section 2. 8) imm.ecliately imply c2 ,a-

estimates for harmonic maps, again depending only on curvature bounds, 

injectivity radii, and dimensions, using standard results from potential 

theory. We have ·the following result of [JIG]. 

THEOREM 4. 9. "I Suppose that ·the assumptions of Thm. 4. 8.1 hold ar&d T ·is 

chosen as in Thm. 4. 8. 2. on 
r Ro) 

Blxo, 2 is bounded 

in ·terms only of the quantiti.es appear1:ng -in Thm. 4. 8.1 and -r A 

correspond-ing :t'esult ho Z.ds at the bouYtdary, p1oov-ided 3~2 and u I Clrl are of 

(for an c' E (0,1) ). Sim-il.ax'ly if ulan -is only cZ.ass 

, then w-ith appropr-iate est-imates. 

Finally, Thm. 2.8.3 implies 

THEOREM 4.9.2 If under the assumptions of Thm. 4.9.1 the R'i.emann curvatur•e 

tenSOX'B doma-in and -image are of eZ.ass OX' ( k E :lN, p E (0 1 1) ) 3 

then u is of aZ.ass ck+2 k+3+6 or c , resp., and the corre.sponding 

esUmates depend in addi Uon on the or k+6 c -norm, re.sp., of' the 

m<r'1Jature tensors. A. simi Z.ar statement ho Z.ds at the bounda:ry, prov-ided 8rl 

and u I 3~l are suffic-iently r•egular. 
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4.10 THE EXISTENCE THEOREM OF HILDEBRANDT-KAUL-WIDMAN 

In this section, we shall establish the existence of a weakly harmonic map 

with given boundary data contained in a convex ball which admit an extension 

with finite energy. This map will be ob·tained as the minimum of energy among 

maps with image in this ball. The results of the preceding sections then 

imply regularity of this map, and hence we can solve the Dirichlet problem. 

A useful tool will be the following maximum principle for energy 

minimizing maps which is taken from [J6] and based on the same idea as the one 

in [Hl], Lemma 6. 

Ln~~4A 4.10.1 Suppose that B 
0 

and B1 , B0 c B1 , are closed subsets of a 

Riemannian manifold N . Suppose that there exists a projection map 

which is the identity on B0 and which -is of class c1 and distance 

decreasing outside B0 , i.e. 

[d'Tr(vl[ < [v[ v t 0 ' 

is an energy minimizing mapping with respect to fixed 

bounda:r•y values which are contained in B0 , i.e. 

(4.10.1) 

then we also have 

if we choose a suitable representation of the Sobolev mapping h • 

Proof Since [dn(v) [ < [v[ for every nonzero v E TxN, x E B1 \B0 , and 

since TI 0 h E W~(Q,N) , we would have 
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E (Tioh) < E (h) 1 

contradicting the minimality of h , unless dh = 0 
··1 a.e. on h (B1\B0 ) 

Thus dh = dTioh a.e. on Q , and since h and 'Tfoh agree on an by 

(4.10.1), we conclude from the Poincare inequality that TI 0 h = h a.e. on Q , 

which easily implies the claim. 

LEMMA 4.10.2 Suppose that B0 and B1 , B0 c B1 , are corrrpact subsets of a 

Riemannian manifo[d N, and that every point in B1 \B 0 can be joined to 8B0 

by a unique geodesic norma[ to ClB0 , and that 'the distance bei:uJeen every pair 

of such geodesics normal to 8B0 is in B1\B0 a[ways bigger than on 8B0 • 

Then the same conclusion as in Lemff~ 4.10.1 holds. 

Proof We project B1\B0 along normal geodesics onto 3B0 and apply Lemma 

4.10.1. 

q.e.d. 

We shall see another useful consequence of Lemma 4.10.1 in chapter 5. 

\'Je are nmv ready to prove the existence of a weakly harmonic map. 

LH1MA 4.10.3 Suppose B(p,M) is disjoint to the cut tocus of p, and 

'IT " M < 2 K • where, as usual.~ K~ is an upper curvature bound. 

If g : £1 + B (p,M) , &I being a bounded domain in some R·iemannian manifold, 

has finite energy, then there exists a weakly harmonic map u : n + B(p,M) 

with u minimizes the energy among all such maps. 

Proof Since the cut locus of a point p is a closed set, we can find M1 

M <Ml 'IT • < 2 K , for wh~ch 
l 

B(p,M ) is still disjoint to the cut locus o:E 

We ·take a minimizing sequence for the energy in 

ol} v-g E H2 Note that g E V and hence V 'I jll 

l 1 
V := {v E H2 (Q,B(p,M )) 

Such:a sequence-has a 

stilisequence converging weakly in H~ , and the limit, denoted by u , 

p 
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minimizes energy in V because of the lower semicontinuity of the energy 

integral (cf. Lemma 1.3.1). 

We then put BO = B(p,M) and 
1 

Bl = B(p,M ) • If c(• ,t) is a smooth 

family of geodesics with c(O,t) = p , c(l,t) E aB(p,M1 ) , then (2.2.5) 

a 
implies that the Jacobi fields Jt(s) = at c(s,t) are monotonically 

increasing for s E [0,1] • Hence the assumptions of Len~a 4.10.2 are 

satisfied. Therefore, u(n) c B(p,M) • 

We identify 1 B(p,M ) with its image in :rn.N under normal coordinates 

centred at p If 
ol oo N 

n E H2 n L cn,IR ) , we infer that for sufficiently small 

ltl > o , u + tn still maps into 
1 B(p,M) . Hence u + tn is a valid 

comparison map, and since u was minimizing, differentiating E(u + tnl 

w.r.t. t at t = 0 implies (4.1.2), i.e. that u is weakly harmonic. 
q.e.d. 

Remark As easy examples show the map u constructed in Lemma 4.10.3 need not 

be minimizing among all maps v n + y with ( y is a target 

manifold containing B(p,M) ) , not even among maps which are homotopic to u. 

Hence, u in general is only a local minimum of energy. 

Lemma 4.10.3 together with the regularity results of the previous 

sections imply the existence theorem of Hildebrandt-Kaul-Widman [HKW3]. 

THEOREM 4.10.1 Suppose again that B(p,M) is disjoint to the cut Zocus of p 

and M < _:!!__ where 
2K • 

is an upper bound for the sectionaZ curvature of 

B(p,M) If n is a bounded domain in some Riemannian manifoZd and 

g n + B(p,M) has finite energy., then there exists a harmonic map 

(0 < a < ll with At an .. u is as 

reguZar as g and an permit. 

Actually, one can solve the Dirichlet problem for any continuous map 
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w : Cl$1 + B (p,M) , i.e. find a harmonic map u E c2 'a,(S1,B (p,M)) n c0 d'i,B (p,]\11)) 

with uj Cl$1 = w , without assuming that w · admits an extension of finite 

energy. In order to achieve this, one has to combine the a-priori estimates 

of the preceding sections with Leray-Schauder degree theory instead of using 

varia·tional methods. For this, one first deforms w into constan·t boundary 

values, mapping ClQ onto p and then multiplies the nonlinearity in (1.3.1) 

by a parameter A , A E [0,1]. Such a twofold deformation process was 

applied in [HKW2], for instance. 

4.11 THE UNIQUENESS THEOREM OF JAGER-KAUL 

In this section, we wan·t to prove the uniqueness and stability theorem of 

Ja.ger-Kaul [JaK2] for solutions of ·the Dirichlet problem wi·th image contained 

in a convex balL 

THEOREM <l. 11.1 Suppose that u. 
l 

Q + Y , i = 1,2 , a~e harmonic maps of 

class c0 (Q, Y) n c2 (11, Y) , S1 is a bounded domain in some Riemannian manifold., 

and u. (ft) c B (p ,M) , where B (p,H) is a geodesic baU in Y , disjoint to 
l 

the cut 'locus of p and with radius 

sectional curvatu:t'e of B (p ,M) ) • 

Then the function 6 , 

satisfies the maximum principle 

(4.11.1) sup e 
Q 

'IT 
M < 2K 

;;; sup 8 . 
()Q 

is an upper bound for the 
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In particular, if u1 \ 3S"l u2 \ an , then 

The proof of Thm. 4.11.1 will actually show that we have strict 

inequality in (4.11.1) unless 8 = const. Furthermore, Thm. 4.11.1 also holds 

for weakly harmonic maps (cf. [JaKl]). 

Proof V>le assume that 8 has a positive maximum at some interior point 

xo E n . Then, 8 is positive in a neighbourhood of '{o ' and log 8 > -GO 

in this neighbourhood. 

We define 

r ~ (1 - cos Kd(u1 (x) ,u? (x) )) 

~ K -

if IC > 0 

l ~ d2 (u1 (x),u2 (x)) if K 0 

¢i (x) = cos (Kd(p,u1 (x))) , i 1,2 . 

Then 8 , and consequently 

(4.11. 2) grad log 8 
;g:_ad lY _ grad ¢1 grad ¢2 

\jJ ¢1 ¢2 

and 

\grad¢, \ 2 2 
!'Ill! lgrad 1/!1 2 L'l¢1 l\¢2 \grad r)l 2 \ 

(4.11. 3) 6. log 8 
j_ 

1!- --- + ~+ 1jJ2 ¢1 dJ2 ¢2 
'1 2 

Since x + u{x) (u1 (x), u2 (x)) E B(p,M) X B(p,M) is also harmonic, we can 

make use of the chain rule (1. 7. 2) in order to apply Lemma 2. 5 .1. This yields 

(4.11. 4) 

since 

where 

\grad 1/J\ 2 =~<(grad QK)ou, du(ea)>2 , 
a 

is an orthonormal frame on n . 
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Similarly, from (2.5.2), since 

<P . (x) 
l. 

2 
1- K QK(p,ui (x)) 

we obtain 

(4.11.5) 

Finally, by (4.11.2), 

(4.11. 6) -!- \grad ~;\ 2 \grad ¢1 \ 2 

+ + 
1~2 ¢2 

1 

2 - (grad log 8, 

Putt:in.g 

k(x) 

and plugging (4.11.4), (4.11.5), and (4.11.6) into (4.11.3), we obtain 

~ log 8 +<grad log 8, k(x)) 2 0 • 

Therefore, 'che assumption that 8 has a positive maximum in the interior 

contradicts E. Hopf' s maximum principle, and Thm. 4.11. 1 is proved. 



CHAPTER 5 

HARMONIC MAPS BETWEEN SURFACES 

5.1 NONEXISTENCE RESULTS 

In this chapter, we want to present the existence theory for harmonic 

maps between closed surfaces, possibly with boundary. In the two-dimensional 

case, the regularity ·theory for minimizing maps is very easy, and the local 

geometry of the image does not lead ·to any difficulties in contrast to the 

situation we encountered in chapter 4 (cf. ·the example in section 4.1). This 

allows us to investigate in more detail what obstructions for the existence of 

harmonic maps are caused by the global topology of the image. 

We first want ·to show some instructive nonexistence results which 

illustra·te the difficulties we shall encounter later on when we try to prove 

existence results by variational methods. 

Lemaire [Ll] showed 

PROPOSITION 5. 1.1 There -is no noncons-tant harmonic map from the unit disc D 

onto s2 mapping ClD onto a single point. 

Proof Suppose 
2 

u : D -+ S is harmonic with u(ClD) = p E s2 Since the 

boundary values of u are cons·tant, u is also a critical point with respec·t 

to variations uot/J , where 1/J : D + D is a diffeomorphism, mapping ClD onto 

itself, but not necessarily being the identity on dD . 

Thus, one can use a standard argument to show that u is a conformal 

map (cf. [Ll] or [M3], pp. 369-372). Since u is constant on dD one can 

extend it by reflection as a conformal map on the whole of 
2 

IR • But then 

this conformal map is cons·tant on a curve in·terior to its domain of 
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definition, namely ao , and thus has to be constant itself. 

q.e.d. 

The same argument was used independently and in a different context by 

H. Wente [Wt]. 

One can obtain examples of homotopy classes which do not contain energy 

minimizing maps by making use of the following special case of a result of 

~orrey [M2]. 

LEMMA 5.1. 1 For every £ > o· there exists a map k 

mapping onto some point 2 
p E 8 and satisfying 

(5.1.1) E(k) ~ Area(82 ) + E • 

Suah a map k is aaZZed s-aonformaZ. 

Proof of Lemma 5.1.1 We divide into B(p,o) and 
2 

8 \B (p,ol • 

All the maps to follow will be understood to be equivariant w.r.t. the 

rotations of D and to those of 82 leaving p fixed. 

First of all, for sufficiently small cS , we can map {z E ~ : t ~ z ~ 1} 

onto B(p,o) , {\zl = H going onto aB(p,o) and {\zl 1} going onto p 

with energy smaller than £ • On the other hand, · {z E ~ \z\ ~ H can be 

mapped conforrnally onto 82\B(p,o) , {\z\ = !} going again onto aB(p,o) 

and the energy of this map, since conformal, equals the area of its image and 

is hence smaller than the area of 82 • This proves the claim. 

It is quite instructive to look at the second map of the proof more 

closely. If we stereographically project 82 onto ~ , choosing the 

antipodal point p of p as the origin, 2 8 \B(p,ol is mapped onto 

q.e.d. 
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{lzl ~ N} with N + 00 as 8 + 0. The conformal map used above is then just 

given by z * 2Nz • Thus, the preimage of {lzl ~ 1} , which corresponds to 

the hemisphere centred a·t p , under this map is {I z I s; 2~} , i.e. shrinks to 

a single point as N + In this way, we see how a singularity is created 

in the limit of an energy minimizing sequence of degree 1 from D onto s2 

mapping ClD onto p . 

This heuristic reasoning will be made precise in Prop. 5.1.2 below, with 

the help of the following easily checked 

LEMf'IIA 5.1.2 If f zl + z2 is a map between surfaces, then 

(5.1.2) Area(f(Z1 )) ~ E(f) , 

~,;here the area is counted with appropriate multiplicity. FurtheY'171o:C'e, 

equality holds in (5.1. 2) if and only if f is confoY'171al. 

As a consequence, we have for example the following result, again due to 

Lemaire [Ll]. 

PROPOSITION 5. 1.2 Let a be a homotopy class of maps of degree ±1 from a 

closed surface Z of positive genus onto 2 s Then the minimum of energy is 

not attained in a 

Proof Let B be any disc in z and let E > 0 Since B is conformally 

equivalent to the unit disc D ' Lemmata 5.1.1 and 1. 3.2 imply that we can 

find a map k : B + 82 of degree ±1 ' mapping ClD onto some point p ' and 

satisfying (5.1.1). If we extend k to all of z by mapping Z\B onto p ' 
then k : z + 82 still satisfies (5.1.1) and is of degree ±1 

If there would be an energy minimizing h in a , then h would have to 

satisfy consequently 
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by Lemma 5.1.2, and would hence have to be conformal, by Lemma 5.1.2 again. 

On the other hand, a conformal map of degree ±1 has to be a diffeomorphism 

which is not possible since E is by assumption not homeomorphic to 52 • 

q.e.d. 

The following example where some homotopy classes contain harmonic 

representatives, while others do not, is again based on the idea of Lemaire 

[Ll]. 

Let D be the unit disc in the complex plane, and k : D + 5 2 be a 

conformal map mapping D onto the upper hemisphere and dD onto the equator. 

Furthermore, suppose that k is equivariant with respect to the rotations of 

D and 5 2 {the latter ones leaving the north and south pole of s2 fixed). 

We choose the orientation on 5 2 in such a way that the Jacobian of k 

is positive. 

Let D{O,r) be the plane disc with centre 0 and radius r (i.e. 

D D{O,l)) • 

Let hr be a map from D(O,r) onto 5 2 which maps dD{O,r) onto the 

north pole, is injective in the interior of D(O,r) and has a positive 

Jacobian there, and is E-conformal. We introduce polar coordinates (p,¢) 

on D and define for 0 < r < 1 the mapping 

{"[-1 p 
r 

<P] + r-1' 1-r 
kr (p,cjl) 

hr(p,¢) 

k 
r 

by 

if 

if 

Using Lemma 5.1.1 it is easy to see that the energy of 

r :s; 

0 :s; 

k 
r 

p 

p 

:s; 1 

:s; r • 

can be made 

arbitrarily close to 6TI if we choose r > 0 sufficiently small. 

On the other hand, 6TI is just the area of the image of kr , counted 

with multiplicity. Hence, if there is an energy minimizing map homotopic to 
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kr , its energy has to be s·rr , and it therefore has to be conformal. Since 

the boundary values are equivariant, this conformal map itself has to be 

equivariant (otherwise there would exist infinitely many homotopic conformal 

maps with the same boundary values which is not possible). This, however, 

implies that it would have to collapse a circle in D to a point which is 

not possible for a conformal map. Hence there is no energy minimizing map 

homotopic to k 
r 

By letting h cover 
r 

without energy minimizing 

52 more 

maps by a 

than once, we obtain other classes 

similar argument. If h ' however, has 
r 

deg-ree -1 , then k r is homotopic to a map of D onto the lower hemisphere 

and hence homotopic to an energy minimizing map. Hence, in t.his example, 

there are precisely two homotopy classes which contain energy minimizing maps, 

while all ·the others do not. 

The preceding example is discussed in [BC2] by means of explicit 

calculations. 

While Prop. 5.1.2 only excluded the existence of an energy minimizing 

map, one can even show 

PROPOSITION 5. 1. 3 If L: 1 is diffeomorph1:c to the two-dimensi.onaZ torus, and 

z: 2 to s2 , then there is no harmonia map h 

d (h) ~ ±1 , for any me trias on l: 1 and l: 2 

This result was obtained by Eells-Wood [EvJ] as a consequence of their 

THEOREM 5.1. 1 Suppose that L:1 ~ad L: 2 are closed orientabZe surfaces, 

X(l:) denotes the Euler characteristic of a surface l: , and d(<jl) is the 

degree of a map ¢ . 

Suppose h 1:1 -+ L: 2 is harmonia w-Lth respect to metrics y and g on 
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then h is hoZomorphio or antihoZomorphio relative to the oompZex structures 

determined by y and g • 

Thm. 5.1.1, together with the existence theorem of Lemaire and Sacks-

Uhlenbeck, to be proved below, also enabled Eeels and Wood to give an 

analytic proof of the following topological result of H. Kneser [Kn2] 

THEOREM 5.1.2 Suppose again that L1 and L2 are oZosed orientabZe 

surfaoes3 and furthermore X(L 2 ) < 0 • Then for any continuous map 

¢ : Ll + L2 

(5.1.3) 

Proof of Theorem 5.1.2 we introduce some metrics y and g on L1 and 

E2 , resp., and find a harmonic map h homotopic to <P by Thm. 5.3.1. By 

Thm. 5.1.1, h is (anti) holomorphic in case ld(tjJ) I X(L2) < xo:l) • This, 

however, is in contradiction to the Riemann-Hurwitz formula, which says 

ld(h) I X(L2) = X(L1) + r , r :?: 0 for an (anti) holomorphic map h • There­

fore, (5.1.3) must hold. 

q.e.d. 

Before proving Thm. 5.1.1, we note another consequence 

COROLLARY 5. 1.1 If L1 is diffeomorphic to s2 ~ then any harmonia map 

h : L1 + L2 is (anti) hoZomorphic (and therefore constant~ if X(L2l ~ 0 ) . 

This is due to Wood [Wl] and Lemaire [Ll]. 

Cor. 5.1.1 also follows from Lemma 1.3.4, since there are no nonzero 

holomorphic quadratic differentials on s2 which easily follows from 
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Liouville's theorem. 

We need some preparations for the proof of Thm. 5.1.1. 

We shall make use of some computa·tions of Schoen and Yau [SY]] in the 

sequel. It is convenient to use the complex notation. If 
2 

p (z) dzdz and 

a2 (h) dhd.'f; are the metrics w. r. ·t. to conformal coordinate charts on l: 1 and 

l: 2 , resp. , then h as a harmonic map sa·tisfies 

(5.1.4) 
20h 

h- + -- h h-
zz CJ z z 0 ' cf. (1. 3.4) . 

LEfviMA 5. 1. 3 At points, where Clh or '§h , resp., is nonzero 

(5.1.5) 

(5. L 6) 

where Ki denotes the Gauss curvature of l:i , a:nd 

2 

I 1ih 1 2 0 --- h h-
2 z z 

p 

Proof For any positive smooth function f on l:l ' 

(5.1. 7) 

Furthermore, 

(5.1. 8) 

fj log f 1 1 1 f M - -;; • - f f­
C P2 z z 

In order to abbreviate the following calculations, we define D as the 

covariant derivative in the bundle h-l Tl:2 , e.g. 

(5.1.4) then is expressed as 

(5.1.9) 

h 
zz 

20h 
+ -- h h 

(J z z 

0 . 



132 

Since 

(5.1.10) t.o2h h- 1 () ( - ) 
z z = P2 a-z Da;azhz' h-z ' using (5.1. 9) 

= ~ (Da;a:Z0 a;azhz, E:z) + P~ (Da;azhz' 0a;a:Ziiz) 

= P~ R(h*(a~)' h*(a:]' hz' hz) + P~ (oa;azhz, 0a;a:zE-z) ' 

where R denotes the curvature tensor of E2 

where J(h) 

= -K2 j<lhj 2·J(h) + ~ (~;azhz' ~;a:zh-z), 
p 

j<lh\ 2 - jah\ 2 is the Jacobian of h Moreover, 

using again (5.1.9), and the fact that the complex dimension of E2 is 1. 

(5.1.5) now follows from (5.1.7), (5.1.8), (5.1.10), and (5.1.11), and 

(5.1.6) can either be calculated in the same way or directly deduced from 

(5.1.5), since jah\ 2 = jahj 2 and complex conjugation on the image can be 

considered as a change of orientation. 

(5.1.12) \<lhj2 near 

where ~ is a nonvanishing c2 funation, and k is holomo~hia. A 

corresponding result holds for h-z 

Proof By (5.1.4), f := h satisfies 
z 

I f-j s cl fj • z 

q.e.d. 
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.Therefore, we can apply the similarity principle of Bers and Vekua (cf. [B] 

or [Hzl]), to obtain the representation (5.1.12) with Holder continuous ~ 

An inspection of the proof of the similarity principle shows that in our case 

~ E c2 (cf. [Hzl], p.210). (We note that a similarity principle can be 

derived from Cor. 5.5.2 below which also contains the existence of solutions 

of Beltrami equations, cf. [BJS].) 

q.e.d. 

Proof of Theorem 5.1.1 Lemma 5.1.4 shows that the zeros z. of lahl 2 are 
~ 

isolated, unless 3h- o., and that near each z. 
~ 

n. n. 
a .1 z - z. I ~ + o <I z - z .1 ~> 
~ ~ ~ 

for some a. > 0 and some n . E lN • 
~ ~ 

By Lemma 5.1.3 and the residue formula, unless 3h - 0 

I Kl- I Kz<lahlz- 13hlz> 
El E2 

(5.1.13) 

Similarly, if 3h ~ 0 , 

(5.1.14) 

-En. 
~ 

-Em. 
~ 

where m. E lN are now the orders of the zeros of 13hj 2 • Thus, since 
~ 

lahj 2 - 13hj 2 is the Jacobian of h 1 

x<E 1 > - d(h) x<E 2> ::; 0 ' unless 3h - 0 

and 

x<E 1 l + d(h) x<E 2> ::; 0 , unless 3h - 0 I 

and Thm. 5. 1.1 follows. 
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5.2 SOME LEMMATA 

In this section, we want to derive some tools for our existence proofs. 

First of all, we note 

LH1MA 5.2.1 Suppose B0 is a geodesic ball with centJ:>e p and :r>adi.us s , 

1 2 
s ~ 3 min(i(p), n/2K) , where K is an upper bo&md for the sectional 

curvature of N and i(pl is the injectivity radius of p If h 

is energy minimizing among maps which are homotopic to some map g 

and if h(3Q) c B0 , then also 

(for a suitable representative of h , again). 

Proof By assumption, we can introduce geodesic polar coordinates (r,cp) on 

B(p,3s) (0 s r ~ 3s) 

We define a map 7f in ·the following way: 

n(r,¢) (r,¢) if r ~ s 

1T(r,¢l (ct (3s-r) ,cp) if s ~ r s 3s 

TI ( q) p .if q E N\B(p,3s) 

(Here, we have identified a point in B (p, 3 s) with i·ts representation in 

geodesic polar coordinates.) 

Using Lemma 2. 2. 1, it is easily seen tha'c TI can be a.pprmdmated by a 

map satisfying the assumptions of Lemma 4.10. L 

q.e.d. 

Moreover, we have the following result, based on an idea of Lebesgue and 

extensively used by Courant in his study of minimal surfaces (cf. e.g. [Co]). 
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Suppose Q is an open subset of some two-dimensional Riemannian manifold 

I of class c 3 while S is any Riemannian manifold. 

LEMMA 5.2.2 l Let U E H2 (Q,S) , E(u) ~ D ~ xo E I , -:\2 a lower bound for 

the curvatu1•e K of z > 0 <min(l, i (I) 2 , l/:\2 ) Then there 

r E (o,/6) for wh·ich ul ClB(x0 ,r) n i'j is absolutely continuous 

Proof We in·troduce polar coordina·tes on B (x0 , r) , L e. 

ds 2 = dr2 + G2 (r,8) d82 

exists 

and 

Since K =-
G 
rr 
G 

(cf. [Bl], p.l53) and G(0,8) 0 , we infer 

(5. 2.1) G(r,8) ~ 1/A sinh :\r • 

some 

Now for and almost all r , since u is a Sobolev 

function u I ClB (x0 , r) is absolutely con·tinuous and 

(5.2.2) 

where we assumed w.l.o.g. B(x0 ,r) c Q • 

The Dirichlet integral of u on B(x0 ,r) is 

E (u;B (x0 ,r)) =% f 
B(x0 ,r) 

Thus, we can find some r E (o,/6) with 

(5.2. 3) f2 '1T 2 2 D 2 D 
0 I ue (r' e) I d8 ~ -fl6_8 _____ o; -lo....;;;g:....;· -1--:/-P 

--1- d8 
0 G(p,8) 
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since for r::.:; /6::.:; 1/A. , G(r,8)::.:; 2r by (5.2.1). 

The lemma follows from (5.2.2) and (5.2.3). 

q.e.d. 

Finally, we shall need the two-dimensional version of Theorem 4.10.1. 

This also follows from Morrey's work on the minima of two-dimensional 

variational problems. We shall present a proof which already illustrates 

some of the ideas of the arguments in later sections and is based on Lemmata 

4. 10. 2 and 5. 2. 2. 

LEMMA 5.2.3 Suppose ()Q 'f 9) , B(p,M) is a disc in some surfaee :Z with 

radius M < 2: , whe.re K2 2: o is an upper bound of the Gauss curvature of 

B (p,M) , and g : ()Q + B (p,M) is cont-inuous and adJnits an extension 

1 t 
g E H2 (Q,B(p,M)) 

Then there exists a harmonic map h : Q + B(p,M) with boundary values 

g ~ and h minimizes the energy with respect to these boundary values. Vice 

versa, each such energy minimizing map is harmonic. The modulus of continuity 

of h can be estimated in terms of A. , i (2: 1 ) , M , K , and E (g) and the 

modulus of cont·inuity of g • 

Proof (The idea is taken from the proof of Thm. 4.1 in [HWl].) As in Lemma 

4.10. 3, we find a 1-1eakly harmonic map which minimizes energy among all maps 

into B(p,M) with boundary values g • 

By Prop. 2.4.2, every two poin·ts in B(p,M) can be joined by a unique 

geodesic arc in B(p,M) , and this arc is free of conjugate points. Suppose 

q E B (p,M) , v 1 and v 
2 

are unit vectors in T Z , and 
q 

are the 

geodesic parametrized by arc length and starting at q with tangent vectm:·s 

t Here, we can again define H;(rl,B(p,JYi)) unambiguously with the help of the 

global coordinates on B(p,M) given by expp . 
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as long as c 1 (t), c 2 (t) E B(p,M) • 

Therefore, on B(p,M)\B(q,s) , with the help of (2.2.4) 

. ( I I sin(2MK)1 d(c1 (t), c 2 (t)) ~ m~n d(c1 (€), c 2 (€)), v 1 - v2 • 2MK j 

Consequently, there exists s 0 > 0 with the property that B0 := B~q,s) 

n B(p,M) and B1 := B(p,M) satisfy the assumptions of Lemma 4.10.2 for 

every q E B(p,M) and every € ~ s 0 Lemma 5.2.2 then implies that for 

each x E n there exists a sufficiently small p > 0 with the property that 

h(B(x,p) n Q) c B(q,€) 

for some q E B(p,M) • p depends on € , A , i(Q) , the energy of .h (which 

is bounded by the energy of g), and the modulus of continuity of g. 

Therefore, Lemma 4.10.2 implies the continuity of h • Higher 

regularity then follows as in chapter 4. 

q.e.d. 

5.3 THE EXISTENCE THEOREM OF LEMAIRE AND SACKS-UHLENBECK 

We are now in a position to attack the general existence problem for 

harmonic maps between surfaces. 

For this purpose, let ~1 and ~2 denote compact surfaces, a~2 0 I 

but ~l possibly having nonempty boundary. Let ¢ : ~l + ~2 be a 

continuous map with finite energy. We denote by [¢] the class of all 

continuous maps which are homotopic to ¢ and coincide with ¢ on a~ 1 , in 
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We choose s = %min(i(E2 >~ TI/2K) I where K2 ~ 0 is an upper 

curvature bound on E2 1 and i(E2 ) is the .injectivity radius of 2: 2 

Let o0 < min(lli(E1 J 2 ~ 1/)_2) ( -)._2 being a lower bound for the 

curvature of 2: 1 ) satisfy 

(5.3.1) 

where E(~) is the energy of ~ , and 

(5. 3. 2) 

Let 0 < o $ o0 . There exists a finite number of points xi E 2: 1 1 

i = l 1 ••• 1 m = m(o) 1 for which the discs B(xilo/2) cover 2:1 

We let un be a continuous energy minimizing sequence in [~]~ 

E(un) ~ E(~) w.l.o.g. for all n . 

Applying Lemma 5.2.2 and using (5.3.1) and (5.3.2), for every n, we 

can find rn
1 1 , o < rn, 1 < 18 , and pn

1 1 € 2: 2 with the property that 

(5. 3. 3) u (aBcx1,r 1JJ c B(p 1,s) n n, n, 

where we defined 3B(x 1 r) Cl(B(x,r) n 2:) • 

We now have two possibilities: 

either 

1) There exists some o 1 0 < o $ o0 1 with the property that for any 

x E 2:1 1 some r (depending on x and n ) with o < r $ 18 and with 

un(3B(x 1 r)) c B(p,s) for some p E 2: 2 , and every sufficiently large n, 

u jB(x 1 r) is homotopic to the solution of the Dirichlet problem 
n 

g: B(x,r) + B(pls) 

gJaB(xlrl = u jaB(x,rl n 

harmonic and energy minimizing (5. 3.4) 
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(The existence of g is ensured by Lemma 5.2.3; g is actually unique by 

Thm. 4.11.1, but this is not needed in the following constructions.) 

or 

2) Possibly choosing a stilisequence of the un , we can find a sequence of 

points and radii r 
n 

> 0 X , n with 

Lemma 5.2.2), but for which u I B (x ,r ) 
n n n 

is no·t homotopic to the solution 

of the Dirichlet problem (5.3.4). 

In case 1) , we replace u 
n 

on 

Dirichlet problem (5.3.4) for x = x1 

by ·the solution of the 

and We can assume 

rn, 1 -+ r 1 and,. using ·the interior modulus of cont.inuity estirnates 

for the solution of (5.3.4) (cf. Lemma 5.2.3) that the replaced 

maps, denoted by 
1 

u 
n 

converge uniformly on 

0 < n < 6 . By Lemma 5.2.1 

(5. 3.5) 
1 

E (u ) os: E (u ) 
n n 

for any 

By the same argumen·t as above, we ·then find radii rn, 2 ' cS< rn, 2 < 18, with 

u1 (dB(x2 ,r 2 )) c B(p 2 ,s) 
n n, n, 

for points I) E L: · n, 2 - 2 • 

Again, we replace u1 on B(x ,r ) 
n 2 n,2 

by the solution of the Dirichlet 

problem (5.3.4) for x = x 2 

Again, w.l.o.g., rn, 2 -+ r 2 . 

and r = r 
n,2 

We denote the new maps by 

If Y.Te take into considera·tion that, by the first replacement step, 

2 
u 

n 

1 
u 

n 

in particular converges uniformly on B(x2 ,r2 ) n B(x1 ,o-n/2) , if 0 < n < cS 

we see that the boundary values for our second replacement step converge 
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Using the estimates for the modulus of continuity for the solution of 

(5.3.4) at these boundary points (cf. Lemma 5.2.3) we can assume that the maps 

2 un converge uniformly on B(x1 ,o-n) U B(x2 ,o-n) , if o < n < 6 • 

Furthermore, by Lemma 5.2.1 again and (5 • .3.5) 

2 
E(u ) 

n 

In ·this way, w.e repeat the replacement argument, until we get a sequence 

m 
u =: 

n 

(5. 3.6) 

' \¥ith 

E {v ) $ E (u ) 
n n 

which converges uniformly on all balls B(xi,o/2) i 

on all of zl ' since these balls cover zl . 

We denote the limit of the vn by u . 

homotopic ·to ,P • 

Since by (5.3.6), the v 
n 

By uniform convergence, 

converge also werucly in 

u is 
n 

to 

u, and by lower semicontinuity of the ener<JY w.r.t. weak convergence and 

since the vn are a minimizing sequence by (5.3.6), u minimizes energy in 

its homotopy class. 

In particular, u minimizes energy when restricted to small balls, and 

hence it is harmonic and regular by Lemma 5.2.1 and Lemma 5.2.3. Observing 

·that if 1f2 o::2) = 0 ' any b7o maps from a disc into 2::2 are homotopic, we 

obtain 

THEOREM 5. 3. 1 Suppose 2::1 and z2 are compact surfaces, 8Z2 = 0 • and 

n2 (Z2 l = 0 • If ¢ : 2.: 1 -+ z2 is a continuous map with finite energy, then 

there eX1:sts a harmonia map u : z.:l .... z2 which is homotopic to ¢ • 

co-incides with ¢ on 8Z1 in case 8Z1 =f J1) and is energy min-imiz1:ng among 

aU such maps. 
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Theorem 5.3.1 is the fundamental existence theorem due to Lemaire ([Ll], 

[L2] ) and Sacks-Uhlenbeck ( [SkU] , in case (ll: 1 = !il ) • 

A different proof was given by Schoen-Yau [SY2]. The present proof was 

taken from [J6]. 

In the case of the Dirichlet problem, i"t is actually not necessary that 

L: 2 is compact, but only that it it homogeneously regular in the sense of 

Morrey [M2], cf. [L2], since the boundary values prevent a minimizing 

sequence from disappearing at infinity. 

Furthermore, the image can be of arbi"trary dimension, not necessarily 2, 

for •rhm. 5. 3.1 to hold. This is also easily seen from the present proof. 

Finally, if one does not prescribe the homotopy class of u , the existence 

of a harmonic map ;,1as already proved by Morrey [11!2]. 

5.4 THE DIRICHLET PROBLE~1 IF THE H1f!.GE IS HOMEOMORPHIC TO 
TWO SOLUTIONS FOR NONCONSTANT BOUNDARY VALUES 

In this section, we want to show the following result of Jost [J7] and 

Brezis ill1d Coron [BC2] (in the latter paper, only simply connected domains 

are treated). 

THEOREt~ 5, LL l Suppose L: 1 is a compact two-dimensional Riemannian manifold 

w·ith nonempty boundary l: 
2 

is a Riemannian manifold homeomorphic 

to 82 (the standard 2--sphere), and 1/J : <lL: 1 -+ 2.: 2 is a continuous map, not 

mapping :n:l onto a single point and adJnitting a continuous extension to a 

map from 2.:1 to L: 2 with finite energy. Then there are at least two 

homotopicaUy different h=onic ma-ps u : l: 1 -+ L: 2 with u[ al: 1 = ~J , and 

both mappings minirrrize enm~gy in their respective homotopy classes. 

Proof We first investigate more closely case 2) of section 5.3. W.l.o.g. 
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B(pn,En) c B(p,2En) and En ~ s/2 for all n , and thus the solution g of 

(5.3.4) for x = xn , r = rn is contained in B(p,2En) by Lemma 5.2.1. 

Since u jB(x ,r ) is not homotopic to g , it has to cover 
n n n 

If we define 

then we see that 

u n 

on 1:1\B(xn,rn) 

on B(xn,rn) 

(5.4.1) ~ lim E(u ji:1\B(x ,r )} + lim E(u IB(x ,r }} 
.n nn n nn 

since E(g) + 0 as n + oo , because 

as n+oo (cf. (5.2.3}}. 

(Furthermore, by Lemma 5.1.2 

E(v;B) ~ Area(v(B)) , 

and equality holds if and only if v is conformal.) 

We now define 

Ea := inf{E(v) : v E a} 

for a homotopy class a of maps with vJ 31:1 1/J , and 

E := min Ea 
a 

We first show the existence of a minimizing harmonic map in any homotopy 

class a with 



We choose a minimizing sequence u 
11 

143 

in a with 

Assuming that 2) holds, we define t1 
n 

as above. Since clearly 

E (u ) :2: E , 
n 

this would contradict (5.4.1), however. Therefore, as shown above, we obtain 

an energy minimizing harmonic map in a (cf. [BCl] for a similar argument). 

Now let a be a homotopy class with 

E..... E II 
(;1, 

and let u an energy minimizing map in a i.e. E(ul E . We want to 

construct a map v in some homotopy class a 'f a with 

(5.4.3) E(v) < E(u) + Area(E 2 ) . 

Then the arguments above show that we can find a hanuonic map of minimal 

energy in Ci In order to complete the proof, i·t thus only remains to 

construct v 

By 'l'hm. 5.5.1 below, the metric on I:2 is conformally equivalent to the 

stffi<dard metric on s2 , m1d thus, we can use 
2 s as a parameter domain for 

·the image. Since ~J is not a constant map, also u is not a constant map, 

and hence we can find a point x0 in the interior of 2: 1 for which 

du (x0 ) 'I 0 . Rotating s2 , we can assume that u (x0 ) is the south pole p0 • 

l'le introduce local coordina-tes on the image by stereographic projection 

rr : s 2 ~, a: from the south pole p 0 . drr (p0 J then is the identity map up to a 

conformal factor. By Taylor's ·theorem, rrouj ClB (x0 ,t:) is a linear map up to 

an error of order O(t:2 ) , i.e. 

(5.4.4) 
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We now look at conformal maps of the form 

w az + b/z , a,b E a: , 

The restrictions of such a map to a circle p(cos 8 + i sin 6). in a; is 

given by 

( 
bpl) (b~ - a2p l u lalp + cos e + sin e 

v (a2p + b~J cos e + (alp -b:) sin 8 ' 

where w u + iv 

Therefore, we can choose a and b in such a way that w restricted 

to this circle coincides with any prescribed nontrivial linear map. This map 

is nonsingular if 

(5. 4. 5) 

(otherwise we perform an inversion at ·the unit circle). 

Hence w can be extended as a conformal map from the interior of the 

circle p (cos 8 + i sin 8) onto the exterior of its image .. (If equality 

holds in (5.4.5), then ·this image is a straight line covered twice, and the 

exterior is the complement of this line in the complex plane.) 

We are now in a position to define v . 
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2 On B(x0 ,£-£) we choose a conformalmap w as above which coincides on 

1 ~ ( the boundary with the linear map l-£ • d(1fou) x 0 ) , and put 
-1 

v = 1f ow • 

On we interpolate in the following way. We 

introduce polar coordinates r,¢ and define 

f(cp) := (1foU) (£,¢) 

g (cp) 

and 

t(r,cp) r 1 
:= (f(cp) - g(cp)) ·- +- (g(cp) - (1-£) f(cp)) • 

£2 £ 

Thus t(r,cp) coincides with f(cp) and g(cp) , resp. for r = £ and 

2 r = £-£ , resp. 

The energy of t(r,cp) on the annulus is given by 

E(t) 

Using (5.4.4) and jf• (cp) J O(E) , I g' (cp) I = 0(£) , we calculate 

and hence also 

-1 
E (1f ot) 

Therefore 

~ 1 -1 I 2 -1 I 2 E(v) = E(u L: 1 \B(x0 ,E)) + E(1f. ow B(x0 ,E-£)) + E(1f ot B(x0 ,£)\B(x0 ,£-E)) 

:<;; E (u) - O(E2 ) + Area(L:2 ) + O(E3) , 

~I 2 since E(u B(x0 ,E)) = O(E ) because du(x0 ) 'I 0 , and the energy of -1 1f ow 

is the area of its image, as 1f and w and hence also -1 1f ow are conformal. 

Thus, for sufficiently small E > 0 , (5.4.3) is satisfied, and the proof is 

complete. 
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5.5 CONFORMAL DIFFEOMORPHISMS OF SPHERES. THE RIEMANN MAPPING THEOREM 

THEOREM 5.5.1 Suppose E is a aompaat two-dimensionaL Riemannian manifoLd 

diffeomorphia to s2 • Then there is a aonformaL (and henae harmonia) 

diffeomorphism h 

This is of course well-known. We want to provide a variational proof of 

Theorem 5.5.1, in order to illustrate on one hand how one can overcome the 

difficulties arising from the noncompactness of the action of the conformal 

group on s2 , and on the other hand the idea to minimize energy in an a 

priori suitably restricted subclass of mappings. 

Proof of Thm. 5.5.1 we choose three different points z1 , z2 , z 3 in s2 

and three different points p1 , p 2 , p 3 in E • Let V be the class of all 

diffeomorphisms v : s2 + E satisfying 

(5.5.1) (i 1,2,3) , 

and let V be the weak 1 H2-closure of V • 

We now claim that a sequence (vn)nElli in V converging weakly in H~ 

is equicontinuous. For each z E s2 and E > 0 , by Lemma 5.2.2 we can find 

o > 0 and for each n E. lli then some r E (o,/8) 
n 

for which 

Here, o is independent of z and n , since the energy of a weakly 

convergent sequence is uniformly bounded. We can choose o so small that 

B(z,/8) contains at most one of the points z 1 , z2 , z 3 

divides E into two parts, one of them being vn(B(z,rn)) , since v 
n 

is a 

diffeomorphism. If E is chosen small enough, then the, smaller part, i.e. 

the one having diameter at most E , contains at most one of the points p 1 , 
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and hence has to coincide wi·th v (B(z,r )) . 
n n 

In particular, 

diam(vn(B(z,o)) ,; E, 

and the v n are equicontinuous as claimed. 

We now choose an energy minimizing sequence in V A subsequence then 

converges weakly in H; towards some v E i5 • Since the energy is lower 

semicontinuous with respec·t to weak convergence, v minimizes energy in 

V We also can find a sequence of diffeomorphisms (vn)nEJN in V 

converging weakly to v Since the vn are equicontinuous as shown above, 

·they converge uniformly to v • In particular, v is continuous and 

homotopic to the 

homotopic. ) 

v 
n 

(We can of course assume that. all the v 
n 

are 

Moreover, if we have a sequence of diffeomorphisms (w ) from s 2 
n nEJN 

onto L: , not necessarily satisfying (5. 5 .1), and converging unifonnly and 

weakly in t.owards some w , then we still have 

(5.5.2) E(v) s E(w) 

since the normalization (5.5.1) can always be achieved by composing w 
n 

a Mobius transformation, i.e. a conformal automorphism of 

changing E:(w ) (cf. r.emma 1.3.3). 
n 

, without 

Hence, if is a family of diffeomorphisms, depending 

smoothly on t , with o0 id , then 

_<!.E(voCJ )I = 0, 
dt t t=O 

since is the uniform and weak H;-limit of vnoot 

We introduce local coordinates z x+iy on s 2 by stereographic 

projection and put 

with 
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G 

(E, F, G are defined almost everywhere, since v E H; ) , 

ot = t;, + in 

(5. 5. 4) dOt! 
3t t=O 

v + iw 

Using Lemma 1.3.2, the energy is given by 

and 

E (v) = _:!: f (E + G) dx dy 
2 a: 

Since o0 (z) = z and hence for t 

then implies 

n 
X 

J { (E - G) (\J - W ) + 2F (\J + W ) } dx dy 0 , 
!! X Y y X 

Put·ting ¢ := E - G - 2iF , this becomes 

r 
Re j ¢(\J + iiJJ)- dx dy 

(!; z 
0 . 

0 ' (5.5. 3) 

Replacing v + iw by w - i \J , we see that the imaginary part likewise 

vanishes, and thus 

Given v and w , we can always find a family of diffeomorphisms (for small 

t) satisfying (5.5.4), for example 

x + tv(x,y) + i(y + tw(x,y)) • 

Hence (5.5.5) implies 

(5. 5. 6) 
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i.e. that ~ is holomorphic. 

Since ~ represents a quadratic differential on s2 , in stereographic 

projection we have ~(oo) = 0 . Hence 

<P = 0 

by Liouville's Theorem, i.e. v satisfies the conformality relations 

(5.5. 7) 

almost everywhere. 

For notational convenience, we introduce local coordinates 
1 2 (v ,v ) on 

~ • We want to exploit that v is weakly (anti) conformal and the uniform 

limit of diffeomorphisms in order to show that the Jacobian 1 2 v v 
X y 

1 2 
- v v 

y X 

v has the same sign almost everywhere in s2 (cf. 9.3.7 [M3]). Here, 

of 

additional difficulties arise from the fact that v so far is only known to 

0 1 be of class C n H2 , but these problems can be overcome with the arguments 

of Lemmata 9.2.4, 9.2.5 of [M3]. 

DEIFINITION 5. 5.1 Suppose G is a plane domain of class 1 1 2 
C 3 <jJ E C (G,!R ) 3 

z f. <jl(:3G) • 

Then m(z,<jl(:3G)) is defined to be the winding number of the curve <jl(oG) 

w.r.t.z. 

for any sequence 

m(z,<jl(oG)) :=lim m(z,<jln(oG)) 
n-?OO 

<P E c1 (<3~,IR2 ) which converges uniformly to 
n <P on oG • 

That m(z,cjl(oG)) is well defined, follows from elementary properties of 
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winding numbers ( cf. e.g. [Fe) ) . 

LEMMA 5. 5. l 

the~e exists a set hrl Hl with • (C(x0 )) = o , where is 1-dimensional 

Hausdorff measure, such that for aU R ¢ c (x0 ) 

f J(¢) dx = J . m{z,¢(ClB(x0 ,R)) dz 
B(x0 ,R) <jl(B(x0 ,RII 

(J (¢) 

Proof We can find a sequence ¢n E c 1 (D) , D cc G , converging uniformly and 

strongly in to ¢ , so that ¢n ~ ¢ strongly in on 

if 
1 

R ¢ C(x0 ) H (C(x0 Jl 0 

Since H~ (dB (x0 ,R)) functions are absolutely continuous, and the leng·ths 

of cpn (dB (x0 ,R)) and ¢(dB (x0 ,R)) are uniformly bounded, the two-dimensional 

measure of ¢ ( 3B (x0 , R)) vanishes R ~ C{x0 J ). consequently, 

R) ) for almost all z , and ·thus 

(5. 5. 8) for these z . 

NO'lfl 

Since 

J (me as I l ~ 
m{z,¢ (dB (x0 ,R).) dz 5 ---1 length 

I n . TI ) 

for any measurable set I , we can integrate (5.5.8), and the result follows. 

q.e.d. 

LEMMA 5.5.2 We suppose that cb 
'n 

s2 ~ ~ a~e diffeomorphisms, converging. 

unifo~mly and weakly in to 
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Then J(cp) has the same sign almost everywhere, 

Proof We introduce coordinates on s2 by stereographic projection. Let 

B(x0 ,R) , R ¢ C(x0 ) satisfy the assumptions of Lemma 5.5.1 

E 
n 

:= max let> (x) - ¢ (x) I 
n 

XE3B(x0 ,H) 

Lemma 5.5.1 therefore implies 

t 

(5.5.9) lim j "I J (cpn) 
n->ro q)--(V )IIB(x0 ,R) 

n n 

Since we ce.n assume w.l.o.g., J'(cpn)?: 0 in B(x0 ,H) for all n, and 

(5.5.9) holds for almost all discs B(x0 ,R) , the result follows. 

Thus, v is a weak solution of ·the corresponding Cauchy-Riemann 

equations, i .. e .. 

(5. 5.10) 

2 
v y 

L 
- g v) 

12 y 

is constant by Lemma 5.5.2. 

(5. 5 .10) is a. linear first-order elliptic sys'cem, v is regular. 

LEMMA 5. 5. 3 v is a homeomoYphism. 

Since 

q.e.d. 

Pl"OOf We assume that v is not a homeomorphism. The v is no·t injective, 

choose a shortes·t segment y n 

-1 
homeomorphism, yn := v11 (yn) 

If is a point on 

is a curve joining· z 1 and z 2 • 

v 
n 

is a 

n + co we can find a 
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subsequence of (pn,o) converging to some point p0 on dB(z1 ,o) • Since 

the vn converge uniformly to v , we see that v(p0) = v(z1 ) 

Thus, a whole continuum is mapped onto the single point v(z1) 

At interior points, we can choose again local coordinates 

From (5.5.10) we conclude that 1 
v 

From (5.5.10) and (5.5.lli we obtain 

(5.5.12) 

since v E c2 (B) 

and 
2 

v are harmonic, e.g. 

l 2 
v , v 

We now use the following result of Hartman-Wintner [HtW] (a proof of the 

version presented here can also be found in [J8]). 

LEMMA 5.5.4 Suppose u E c1 ' 1 (G,lR), G a plane domain, z0 E G, and 

(5.5.13) lu-I $K(\u I+ \u\J, zz z 

where K is a fixed constant. 

If 

(5.5.14) u(z) 

for some n E JN in a neighbourhood of zo J then 

lim (z -
-n 

u . zo) z z+z0 

exists. If (5.5.14) holds for aU U E JN, then 

u - 0 . 

We continue the proof of Lemma 5.5.3. 
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representation 

(5. 5.15) 

for some 

1 
v 

z 
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z 0 E 52 , Lemma 5.5.4 gives the ~symptotic 

for some a E ~ , z ~ 0 , and some positive integer n , unless in a 

neighbourhood of z 0 . 

that the set where v1 v2 

therefore 
1 2 

v v 
X y 

X y 
1 2 

- v v -
X y 

The 

0 

latter 

1 2 = 0 v v 
y X 

in 52 

is not possible, however, since it implies 

is nonvoid and open in 52 , and 

in contradiction to the fact that v is a 

surjective c2,a. map onto L: • We can choose the local coordinates in such a 

way that 

(5.5.16) 

Using (5.5.16), (5.5.11) and integrating (5.5.15), we infer 

)n+l - - n+l I ln+l p(z- z0 + a(z- z 0) + o( z- z0 ) + w0 , 

where p , a E IR, IPI + ial ~ 0 , w0 in a neighbourhood 

of 

Without loss of generality, by performing homeomorphic linear 

transformations, we can assume p = 1, a > 0, z0 = w0 = 0 , i.e. 

(5.5.17) 

This, however, is in contradiction to the consequence we have obtained from 

the assumption that v is not injective, namely that a whole continuum of 

points is mapped to a single point. This proves the lemma. (The application 

of the Hartman-Wintner formula in the above argument is due to E. Heinz [Hz2]). 

LEMMA 5.5.5 v is a diffeomorphism. 

Proof We want to show that since v is a homeomorphism by Lemma 5.5.3, 

(5.5.17) cannot hold with n ~ 1 . 
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Assume on the contrary, (5.5.17) holds for n ~ 1 • Then 

(1 + O) rn+l cos ( (n+l) 8) + o (rn+l) , 

and in particular 

(5.5.18) 

for k 0, 1, ... , 2n+ 1 . 

For sufficiently small s > 0 and r s; s , the sign of the left hand 

side of (5.5.18) is therefore (-l)k . 

If z traverses a Jordan curve in {z : z yi! 0, [z[ s; s} , then (z) 

hence has to change sign at least 2n+2 times. On the other hand, for 

sufficiently small 8 > 0 ' since v is a homoemorphism, the pre image of 

{ I "11 = o} is such a curve, but here 
1 

changes v sign exactly twice. Hence 

n - 0 ' and the Jacobian of v does not. vanish, and the lemma is proved. 

This also finishes the proof of ThrrL 5. 5.1. 

COROLLARY 5. 5. l Let L: be a surface homeomorph-ic to uri th metric tensol' 

given in local coordinates bounded measurable functions gij ~ satisfying 

(5.5.19) A > o almost everywhere • 

T.hen there is a homeomorphism h s2 -+ L: satisfying the conformality 

relations 

(5.5.20) 
()hi Clhj ()hi 

gij ax "Tx- = gij Ty"Ty 

Clhi Clhj 
gij Clx Cly = 0 

almost everywhere. 

If (gij) E ca , -then h is a diffeomorphism of class c1 ' a , 
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satisfying (5.5.20) every~here. 

Proof We let n be a sequence of c 2 'a metrics converging to (gij) 

pointwise almost everywhere. we denote the corresponding surfaces by En and 

let h 
n 

s2 + En be a conformal diffeomorphism constructed in Thm. 5.5.1. 

Since the hn satisfy a system of the type of (5.5.10), elliptic 

regularity theory implies uniform Ca as well as estimates. Hence a 

subsequence converges uniformly and weakly in Hl 
2 

towards a weak soiution h 

of (5.5.10). 

Furthermore, since the h 
n 

are diffeomorphisms, their inverses satisfy 

a system of the same type, namely 

(5.5.21) 

where n 
g 

n 
y 1 

v 

n 
y 2 

v 

n 
gl2 n --x 
- 1 

/gn v 

n 
g22 n --x 
- 1 

.; gn v 

n 
gll n 

---X 
- 2 

.; gn v 

n 
gl2 n 

- --x 
- 2 

lg n v 

Therefore, also satisfies a uniform Holder estimate by elliptic 

regularity theory, and thus we see that the iimit map h has to be 

invertible, i.e. a homeomorphism. 

In case E E c1 'a , the metrics ( n ) gij can be chosen to converge with 

respect to the (g .. ). 
~J . 

From (5.5.14) we infer that the then 

satisfy uniform c1 'a estimates, and consequently the limit map h is a 

diffeomorphism. 

Thus we have found the desired conformal representation of E , and the 

proof of Cor. 5.5.1 is complete. 

q.e.d. 
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We can also derive the following version of the Riemann mapping theorem 

{cf. e.g. [AB]): 

COROLLARY 5.5.2 Let s be a aorrrpaat surofaae with boundary, homeomorphic to 

the unit disa D , and a metria tensor {gij) satisfying the asswrrptions of 

Cor. 5.5.1. 

Then there is a aonforma~ representation h 

same aona~usions as in Cor. 5.5.1. 

D ~ s , satisfying the 

Proof Let S' be an isometr1c copy of S with opposite orientation; let 

i : S ~ S' be the isometry. Identifying s with i{s) for s E as gives 

a surface ~ to which we can apply Cor. 5.5.1 and f~nd a conformal 

homeomorphism h : s2 ~ r Then ioh is another conformal homeomorphism, 

and we can find a conformal automorphism k of s2 satisfying hok = ioh • 

{This is clear for smooth metrics on r , since then h-1oioh is a conformal 

diffeomorphism of s2 • The general case follows again by approximation.) 

The fixed point set of k then is a circle and hence bounds a disc which is 

conformally equivalent to S • 

q.e.d. 

Note that our proof immediately yields the one-to-one-correspondence of 

the boundaries, first proved by Osgood and Caratheodory. 

We can again normalize the conformal map by e.g. prescribing the images 

on as of three distinct f>oints on ao • 

The preceding result is due to Lichtenstein [Li] (for Ca-metrics), 

Lavrent'ev [Lv] (for continuous metrics), and Morrey [Ml]. 

In a future publication, I shall demonstrate that the preceding methods 

can also yield conformal representations of surfaces of higher genus. This 
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approach can considerably simplify a large portion of the uniformization 

theory. 

5.6 EXISTENCE OF HAR.II10NIC DIFFEOMORPHISI~S, IF 
THE IMAGE IS CONTAINED IN A CONVEX BALL 

THEOREM 5.6. 1 Assume u : D ·+ B(p,M) is an injective harmonic map, where D 

is the unit disc and B(p,M) 
n· 

is a disc on .some surface u:rlth M < 2K , where 

K2 again is an upper CUI'Vature bound, Assume that g : = u I ClD is a c2-

diffeomorphism onto g(ClD) satisfying 

0 < b for all rjl E dD • 

Assume furtherraore that g(ClD) is strictly convex w.r.t. u(D) , the 

geodesic curvatu:re K satiBfying 
g 

(5.6.2) for all ¢ E 3D • 

Then the fzuwtionaZ determ·inant J (u (x)) satisfies for aU x E D 

(5. 6. 3) IJ(u(x)) I 

where 

Without assuming (5.6.1) and (5.6.2), on each disc B(O,rl 0 < r < 1 , 

IJ(u(x) I for X E B(O,r) 

OY' 

for X E B(O,r) 

whel"e o3 depends on IJJ , K , M , r , meas u(D) , E (u) , and on some kind of 

normalization like fixing the images of three boundary points or of one 

interior point. 
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We omit the proof which can be found in [JKl]. Whereas the boundary 

es·timate basically follows by applying the· maximum principle to 

2 
d (u(x), g(()D)) , the interior estimate depends on deep estimates of E. Heinz 

([Hz5]). 

We can now prove the main result of [J3]. 

THEOREM 5. 6. 2 Suppose Q is a eorrrp.act domain wUh c2 boundary 8rl on some 

surfaee, and that I is another surfaee. We assume that 1/J : Q + I maps fl 

homeomorphicaUy onto its 1:mage, that 1/J (Clf]} is aontained in some disc 

B(p,H) with radius H < _:1I_ 
2K is an upper curvature hound on 

B(p,Ml ) and that the curves tj;(()Q) are of class c2 and convex w.r.t. 

d (Q) • 

Then there exists a harmonic mapping u : ::6 + B (p,l'l) 1.Jith the boundary 

values prescribed by tJ; which is a homeomol"{Jhism between i1 and its image, 

and a diffeomorphism in the interior. 

Moreover" if tJ; I ()Q is e·ven a c2 -diffeomol"{Jhism then u is a 

d1:ffeomorphism up to the how1dary. 

Theorems 5.6.2 and 4.11.1 imply 

COROLLARY 5. 6. 1 Under the assumptions of Thm. 5. 6. 2, each harmonic map which 

solves the Dirichlet problem defined by tJ; and which maps ::6 into a 

geodesic disc B (p ,M) with radius M < 2: , is a diffeomoY'phism in ::6 

Proof of Theorem 5. 6. 2 First of all, Clrl is connected. OtheJ."Wise, 1/J(IlQ) 

would consist of a·t least two curves, both of them convex vl.r.L \jJ(Q) • 

Therefore, we could find a nontrivial closed geodesic y in tj;(Q} c B(p,H) 

with an easy Arzela-Ascoli argument. Since a geodesic can be considered as 

special of a harmonic and M 
TI 

1. 7 .l and 2.3.2 imply case map <- , Lemmata 
2K 

a 
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that y has to be a point, which is a contradiction. Therefore, an is 

connected, and since n is homeomorphic to ~(Q) , we conclude that n is a 

disc, topologically. 

Therefore, we have to prove the theorem only for the case where n is 

the plane unit disc D , taking the existence (cf. Cor. 5.5.2) of a conformal 

map k : D + n and the composition property Lemma 1.3.3 into account. 

For the rest of this section, we assume that ~ : ClD + ~ (<lD) is a c2-

diffeomorphism between curves of class c2 'a , that ~(()Q) is not only 

convex, but strictly convex, and that we have the following quantitative 

bounds 

(5.6.4) ld:22 ~(¢)I s bl 

and for ¢ E ao 

{5.6. 5) ld~ ~(¢}I <: 
-1 

b2 

and 

(5.6.6) 

These assumptions can be. removed later on by approximation. arguments which we 

shall indicate below. 

By virtue of Cor. 5.5.2 again, there is a conformal map k : D +~(D) • 

By a variation of boundary values, we now want to deform this conformal map 

into a harmonic diffeomorphism u • 

Without loss of generality, we may assume that the boundary value map 

preserves the orientation of ao Now let y be the parametrization of the 

boundary curve of ~(D) by arc length. We set 

¢ E an , A. E [o, 11 • 
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w deforms the boundary values of k into the boundary values prescribed by 

Since we assumed that (5.6.4) and (5.6.5) hold and that 

well-known regularity properties of conformal maps imply that 

(5. 6.8) w(¢,Al , 
() 

8¢w(¢,A) 

a,·c continuous functions of )., , 

and 

2 a 
~~(()D) E C 1 , 

does not vanish for any ¢ E 3D and A E [0,1] . 

Let now uA denote the harmonic map from D to B(p,M) with botmdary 

values w(·,A) , (the existence of uA follows from Lemma 5.2.3) and let 

An E [0,1] be a sequence converging to some A E [0,1}. 

By 'rhm. 4. 9.1, ·the Arzela-Ascoli 'rheorem and the uniqueness theorem 

4.1Ll, converges to the harmonic map uA 

0 < S < a . In particular, 

p(A) := inf 
XED 

in the 
1 s c ' -topology, 

depends continuously on A ( J(uA) denotes the Jacobian of uA ). We 

define L := {A E [0,1] : p(A) > O} By Cor. 5.5.2, 0 E L ( u 0 is the 

conformal map k ), and therefore L is not empty. Since we assumed (5.6.5) 

and (5.6.6), which implied (5.6.8) and (5.6.9) we can apply Thm. 5.6.1 to the 

extent that 

(5.6.10) p(A) ::?. p 0 > 0 for A E L • 

Since p(A) depends continuously on A , (5.6.10) implies L = [0,1] . Thus, 

is a local diffeomorphism and a diffeomorphism between the bocmdaries of 

D and u1 (D) , and consequently a global diffeomorphism by the homotopy 

lifting theorem. 
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Thus, the proof of Tma. 5.6.2 is complete, except for the approximation 

arguments .. 

So far, we have assumed that the bou..ndary of the image is strictly 

convex, and, in addition, that the boundary values are a diffeomorphism of 

class c2 We now have to prove the theorem also for the case that the 

boundary is only supposed to be convex and that the boundary values are only 

supposed to induce a homeomorphism of the boundaries. 

VIle shall present only the first approximation argument. It is a 

modification of the corresponding one given by E. Heinz in [Hz4], pp.l78-183. 

The reasoning for the second case can be taken over from [Hz3), pp.351-352, 

in case Clt/J(D) E C 
2,a 

Therefore, let us suppose that the boundary of the image t/J(D) is only 

convex, while the boundary values t/J are still assumed to be a diffeomorphism 

of class c2 . Then we argue in the following way: 

Given a metric on the image with respect ·to which the boundary of 

A := t/J(D) is convex , there is a sequence {g~j} of metrics on A such 

that ClA is even stric·tly convex with respect to 
n 

gij , according to [Hz4], 

§4. Moreover, {g~j} can be chosen to converge uniformly to gij on A 

toge·ther with their first and second derivatives, as n -+ 00 • Keeping ·the 

boundary values ~! fixed, we consider the map u (x) 
n 

which is harmonic in 

the metric 
n 

gij and which solves the Dirichlet problem with boundary values 

t/J . The existence of un is guaranteed by the arguments given above at 

least for large values of n , when is so close to that the 

geometric conditions are satisfied. 

By virtue of Thm. 5.6.1, on each disc B(O,r) , r < 1 , there is an 

a-priori bound of the functional determinant of u (x) 
n 

from below. Moreover, 
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by virtue of Thm. 4.9.1, we can choose a subsequence of the functions un(x) 

which converges uniformly on D together with the first derivatives to a map 

u(x) . In particular, the u 
n 

converge to u strongly in Therefore, 

u is a weakly harmonic map w.r.t. the metric gij , i.e. a weru< solution of 

the corresponding Euler equations. Since u is also of class c1 linear 

elliptic regularity theory implies that u is a classical solution, Le. 

harmonic. Moreover, u is a local diffeomorphism in the interior, and since 

it is the uniform limit of diffeomorphisms, it is a diffeomorphism in the interior. 

q.e.d. 

Remarks l) Actually, using a further approximation argument, we do not even 

have to assume that the boundary values are homeomoxphic. We need only that. 

they are continuous and monotonic, i.e. a uniform limit of homeomorphisms. 

The corresponding harmonic solution of the Dirichlet problem still remains a 

diffeomorphism in the in·terior. 

2) In the case where both rl and 1jJ (S]J are bounded simply connected 

domains in the plane, ·the assertion of Thm. 5. 6. 2 was already obtained by 

Rado and Kneser [Rd], [K."ll], and Choquet [Cq]. Choquet also shmved that the 

convexity of the boundary of the image is necessa:ry for Thm. 5.6.2 to hold. 

The reason is the following. Suppose ·the image has the depicted shape. If 

VJ 
·the boundary values 1j!(8rl) are 

concentrated near p and q ' then by 
p 

the mean value property of harmonic 

functions, some points of S] will be 

mapped onto points between p and q 

not belonging to 1v (rll 

This is in essential contrast to the case of conformal maps where convexity of 

the image is not necessary to guarantee that the solution is a diffeomorphism 

(cf. Cor. 5. 5. 2) . No·te ·that a conformal map is a solution of a free boundary 
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value problem instead of a Dirichlet problem. 

5.7 EXISTENCE OF HARMONIC DIFFEOMORPHISMS BETWEEN CLOSED SURFACES 

The main result of this section is 

THEOREM 5. 7. 1 Suppose that Z:: 1 cmd L: 2 are corrrpact surfaces without 

botmdcwy, cmd that ¢ : z:: 1 + z2 is a diffeomorphism. 'l'hen there exists a 

harmonic d·iffeomorphism u : z1 + L: 2 homotopic to ¢ . Furthermox·e~ u is 

of Zeast energy cwong aZZ diffeomorphisms homotopic to ¢ . 

Thra. 5. 7.1 was proved by Jost·-Schoen [JS], but i·t was first claimed by 

Shibata [Sh] in 1963. His proof contained several mistakes, however, and was 

therefore rejected. 

H. Sealey then carefully examined Shibata's paper in his ·thesis [Se] and 

was able to correct some (but not all) of the mistakes. The proof of [JS], 

however, proceeds along completely different lines ·than the Shibata-Sealey 

approach and depends in an essential way on Thm. 5.6.2. 

Thms. 5.7.1 and 4.11.1 immediately imply the following corollary,. proved 

by Schoen-Yau [SYl] and Sampson [Sa] . 

COROLLARY 5. 7. l If tmder the asswrrptions of Thm. 5. 7.1, Z2 has nonpositive 

curvature, then every harmonic map homotopic to a diffeomorphism is itself 

di ffeomol•phic. 

Furthermore, we have 

COROLLARY 5. 7. 2 Suppose that L: 1 cmd Z2 a:r•e compact surfaces without 

boundary, and that ~ : z1 + Z2 is a covering map, i.e. a ZocaZ diffeo­

morphism. Then there exists a harrnonic covering map u : L: 1 + Z2 3 homotopic 

to ~ . 
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Proof of Corollary 5.7.2 we can pull back the metric ds2 of ~ 2 via ~ to 

obtain a surface ~2 , diffeomorphic to l:' 
1 

and \vi th metric 2 
~*ds Then 

~ : l.:Z + L: 2 is a local isometry. By Thm. 5.7.1, there is a harmonic 

diffeomorphism u' : l.: 1 + 2:2 , homotopic to the identity. u := tf!ou then is 

the desired harmonic covering map. 

Proof of Theorem 5.7.1 (following [JS]) If z1 and r: 2 are homeomorphic to 

, then we can find a conformal (and hence harmonic) diffeomorphism 

homotopic to tjJ by Thm. 5.5.1. The case where r: 1 and z 2 are homeomorphic 

to t:he real projective space is similarly handled by passing to two-sheeted 

coverings. Thus we can assume w.l.o.g. that n2 (l:i) = 0 (i = 1,2) • 

We let V be the class of diffeomorphisms from L: 
l 

onto z 
2 

homotopic 

to ¢ . Since ·rr2 (l: 2 ) "' 0 a homo·topically trivial Jordan curve separates l.: 2 

into two topologically differen·t parts, one being a disc and the other one 

having higher connectivity. 'l'herefore, the argument in ·the proof of Thm. 

5. 5.1 gives equicontinuity of a weakly convergent sequence in V even without 

a normalization. 

We again let f)' be the weak 
1 

H2 -closure of V , and choose an energy 

minimizing sequence in iJ . A subsequence then converges weakly in 

towards some u0 E V , and u0 minimizes energy in V by lower semi­

continuity again. We also can find a sequence (unl nEJN in V converging 

weakly in to Since the u 
n 

are equicontinuous, they converge 

also uniformly to u0 , and hence u0 is continuous and homotopic to ¢ . 

The un , since converging weakly, have uniformly bounded energy, 

say • 

We want to show that is a harmonic diffeomorphism. We consider an 

arbitrary point XQ E Z1 and define 
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i.e. the open disc in z: 2 centred at u0 (x0 ) with radius o • 

We restrict ourselves in the sequel to values of o which are smaller 

th&~ the injectivity radius of z:2 and smaller than 1T/2K , where 
2 

K 

is an upper bound for the curvature of z: 2 • We define 

S"lo 
-1 

:= uo (B0l 

n :~ u- 1 (B ) (n E: N) 
n n 0 

W. 1. o. g. , we can assmne x0 E Qn for all n , since the u 
n 

converge 

uniformly to u0 Le·t D be the unit disc in the complex plane and 

F D + Q 
n n 

be a conformal mapping which maps 0 to 

again 

The proof of the existence of F 
n 

is the same as that of Cor. 5.5.2 

since instead of fixing three boundary points, we can fix an interior point 

(a11d a tangent direction at this point, but that is not necessary for ·the 

proof) in order to guarantee the equicontinuity of a minimizing sequence as 

in 5.5. 

Since r := aQ is a Jordan curve of class c1 (because u 
n 

is a 
n n 

F 
n 

is a homeomorphism of D onto i'i , and therefore 
n 

3D horneomorphically onto 

there exists a unique harmonic mapping 

ClB 
0 

v 
n 

By Thm. 5.6.2 and Cor. 5.6.1, 

D + B which assumes the 
0 

boundary values prescribed by unoF11 , and v11 minimizes energy in its 

homotopy class and is a diffeomorphism. 

In particular 
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E0 (vn) ~ E0 (unoFn) =En (un) ~ K 
n 

by Lemma 1.3.2 ( ES(f) is the energy of the mapping f over the set S ). 

Since the un converge uniformly to u0 , we can assume that unoFn(O) stays 

in an arbitrarily small neighbourhood of u0 (x0) . Therefore, we can again 

apply the argument of section 5.5 to show that the maps U oF 
n· n are 

equicontinuous on D . In particular, the boundary values of vn , namely 

u oF j3n , are equicontinuous. By Thms. 4.9.1 and 4.7.1, we can therefore 
n n 

assume that the v 
n 

converge uniformly on D to a map which is 

harmonic in the interior of b Using Thm. 5.6.1, we see furthermore that 

v0 is a diffeomorphism in the interior of D • 

We define now 

Clearly, u 
n 

u 
n 

is a Lipschitz map and lies in 

in n 
n 

and E (u ) ~ K • 
n 

also assume w.l.o.g. (by approximation) that the u 
n 

are of class 

We can 

Then, for each n , the functional determinant of u 
n 

is defined and bounded 

from below on E1\nn by Thm. 5.6.1. It is easily seen by an approximation 

argument that u € i5 
n 

Using Lemma 5.2.2 as before, we can assume again w.l.o.g. that the u n 

converge on E1 weakly in H~ and uniformly to a map u0 E V and that the 

Fn converge uniformly on compact subsets to a conformal map F Since 

Area(Qn) ~ Area(E1 ) , F maps D diffeomorphically onto some open set 

n c E1 , and 0 is mapped to x0 • F is not necessarily smooth on 3D , but 

that does not affect the following arguments. 

u0oF is the uniform limit of unoFn and thus extends continuously to 

D • Since unoFn and vn coincide on 3D , it follows that also u0oF and 
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v0 coincide there, and since v0 is harmonic and therefore energy minimizing 

(by Theorem 4.11.1) in its homo·topy class, 

Since conformal maps preserve energy by Lemma 1.3.2, this irrrplies 

(5. 7. 2) 

We now wa~t to show that 

(5. 7. 3) 

For this, it is sufficient to show that u 0 and u0 coincide almost every-

where outside s-l • We claim ·tha·t 

(5. 7.4) 

We define 

for 

then 

}{ E L 
J. 

Let If 

Po (x) lim pn(x) 2 G, 
n->co 

Since the pnounoFn are equicontinuous and equal to 0 on 8D , p0 (x) < cr 

implies that 

-1 
d(F0 (x), aD) 2 6 > 0 

for sufficiently large n • 

Since on the other hand, the F 
n 

converge uniformly to F on compact 
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subsets of D , this would imply x E F(D) = Q which contradicts the 

assumption x E 1:1 ~ Q. This proves (5.7.4). 

We also have 

and since the sets cover a neighbourhood of x 0 and are disjoint, 

¥7e can assume w.l.o.g. that the ·two-dimensional measure of vanishes 

for our chosen 0 • If 

then 

and because of t.l1e equicontinuity of the functions pn , ·there exists an open 

neighbourhood U of x such that 

This implies 

lim u 
n 

p I U > a for sufficiently large n . 
n 

lim un = u0 
n-+co 

on u . 

Therefore almost everywhere on 

follows from (5.7.4). By the choice of u 0 , we have on the other hand 

Thus, we conclude from (5.7.2) and (5.7.3) that 

and consequently 

Since and coincide on dD , we conclude from the uniqueness of 

energy minimizing maps (Thms. 4.11.1 and Lemma 5.2.3) that v0 and u 0 oF 

coincide on D • Therefore U oF 
0 

and consequently also u0 is a harmonic 
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diffeomorphism, the latter in n , which is a neighbourhood of an arbitrarily 

chosen point x0 E E1 • This finishes the proof of Theorem 5.7.1. 

q.e.d. 

With the same method, we can also improve Thm. 5.6.2. 

THEOREM 5.7.2 Let n c E1 be a two-dimensional domain with nonempty 

boundary an aonsisting of c2 aurves. and Zet ~ : n + E2 be a homeo­

morphism of n onto its image ~(~) J and suppose that the aurves ~tan) are of 

aZass c2 and aonvex with respeat to ~(n) . 

Then there exists a harmonia diffeomorphism u : n + ~(n) whiah is 

homotopia to ~ and satisfies u = ~ on an Moreover.. u is of Zeast 

energy among aZZ diffeomorphisms homotopia to ~ and assuming .the same 

boundary values. 

This result is again taken from [JS]. The case of non-positive image 

curvature was solved in [SYl]. 

Proof We assume first that an and ~(an) are of class c2+a and that ~ 

gives rise to a diffeomorphism between an and ~(an) and that ~(an) is 

strictly convex with respect to ~(n) . 

In this case, the proof proceeds along the lines of the proof of Theorem 

5.7.1 with an obvious change of the replacement argument at boundary points 

involving the first estimate of Thm. 5.6.1. The general case now follows by 

approximation arguments as in 5.6. 

q.e.d. 

5.8 SOME REMARKS 

We want to indicate briefly which of the results of this chapter can be 
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generalized to higher dimensions. 

Prop. 5.1.1 was extended to arbitrary dimensions by Wood [W2], Karcher­

Wood [KW], and Schoen-Uhlenbeck [SU2]. This result can be used to prove 

complete boundary regularity of energy minimizing maps, cf. [SU2] and [JM]. 

As was observed by Morrey (cf. [ES]), the minimum of energy is attained 

in no nontrovial homotopy class for maps from sn onto itself, if n ~ 3 • 

It is not known whether Prop. 5.1.3 can be generalized, i.e. whether for 

example there is a harmonic map of degree 1 from the three-dimensional torus 

onto s 3 or not. 

As already pointed out the existence question becomes quite different in 

higher dimensions, and thus it is not likely that Thm. 5.3.1 can be fully 

generalized. For known existence results beyond those of chapters 3 and 4, 

see [SUl], [SU2], [E], [J6]. An interesting non-existence result was derived 

by Baldes [Ba]. 

Thm. 5.7.1 fails in higher dimensions; even Cor. 5.7.1 does not extend, 

as was pointed out by Eells-Lemaire in [EL2], based on a result of Calabi [Cal. 

There are, however, some interesting results about harmonic diffeo­

morphisms between certain classes of Kahler manifolds, cf. [Si] and [JY]. 

For a more complete guide to the literature on harmonic maps, we refer to 

the excellent survey articles by Eells and Lemaire [ELl-4]). 



171 

REFERENCES 

[Ad] Adams, R., Sobolev Spaces, Academic Press, 1975. 

[AB] Ahlfors, L., and L. Bers, Riemann's Mapping Theorem for Variable 
Metrics, Ann. Nat.h, 72 (1960), 385-404. 

[Ba] Baldes, A., Stability and Uniqueness Properties of the Equator JY!ap 
from a Ball int.o an Ellipsoid, MZ, to appear. 

[Bg] Berg, P., On Univalent f.lappings by Solu·tions of Linear Par'cial 
Differential Equationsv Trans .... 'l.illler .. Math .. Soc .. ( 1957), 310-318" 

[B] Bers, L. , An Ou·tline of the Theory of Pseudoanalytic Functions, Bull. 

[Bl] 

[BC1] 

[BC2] 

Amer. Math. Soc. 62 (1956), 291-331. 

Bers, L., F. John, and M. Schechter, Partial Differential Equa·tions, 
Interscience, New York, 1964~ 

Bla.schke 1 W.,., Vot:lesungen Uber Differentialgeometrie 11 Part I :1 

Springer, Berlin, 1945~ 

Brezis, H., and .J.M. Coron, !1ult.iple Solui:ions of H-systerns and 
Rellich ~ Conjectur-e"' Coram .. Pure F ... ppl, Matho, to appear .. 

Brezis; H., ff and ~J ~M .. Coronv Large Solu·ti.ons for Harmonic ~laps in ~r~vo 

D:Lme~t1sions r Com.rrt.. Lllla·th 1 Phys., g to appear" 

[BK] Buser, P .. v and H., KarchE~.r 11 Gromov 1 s A.lmost Flat Manifolds l' 
f3 'i ( 1981). 

[Ca.] 

[Ci] 

[Cq] 

[Co] 

[d'l'K] 

[EE] 

Caiabi.~, E,. v An Intrinsic Cl1.Eiracteriz:a·tion of ~-:tarmonic One~Forms{/ in~ 

Global Analy13is{/ ed,. by D-.C~ Spencer and s~ Iyanaga 1 Princet.on Vn.iv~ 
Press, Tokyo, Princeton, 1969~ 

Choif/ H .. ~J .. ? On the r~iouville Theorem for Harmonic iYlapsy Prepr.in·t,., 

Choquet r G.,, s·ur un type de transformation analytique g8neral1sant la 
conforme et definie au moyen de fonc·::ions hannoniques, 

Bull. Sci. Math. (2) 69 (1945), 156-165. 

Courant, R., Dirichlet's Principle, Conformal Mapping, and Minimal 
Surfaces: New York, 1 Interscience 1 1950~ 

De Turck, D., and J. Kazdan, Some Regularity Theorems in Riemannian 
Geometry, Ann. Sc. Ec. N. Sup. Paris. 

Earle, c.J., and ,J. Eells, A Fibre Bundle Description of Teichmiiller 
Theory, J. Diff. Geom. 3 (1969), 19-43. 

[E] Eells, J., Regularity of Certain Harmonic Maps, Proc. Durham Conf. 
1982 .. 

[EL1] Eells, J., and L. Lemaire, A Report on Harmonic Maps, Bull. London 
Math. Soc. 10 ( 1978), 1-68. 



[EL2] 

[EL3] 

[EL4] 

[ES] 

[EW] 

[Es] 

[F) 

[Fe] 

[GR] 

[G] 

[GG1] 

[GG2] 

[GH] 

[GT] 

[Go] 

[GKM] 

[GW] 

[Hm] 

172 

Eells, J,, and L. Lemaire, Deformations of Metrics and Associated 
Harmonic Maps, Patodi Mem. Vol. G~ometry and Analysis, Tata Inst., 
1980, 33-45. 

Eells, J., and L. Lemaire, On the Construction of Harmonic and 
Holomorphic Maps Between Surfaces, Math. Ann. 252 (1980), 27-52. 

Eells, J., and L. Lemaire, Selected Topics in Harmonic Maps, CBMS 
Regional Conf., 1981. 

Eells, J., and J.H. Sampson, Harmonic Mappings of Riemannian 
Manifolds, Am. J. Math. 86 (1964), 109-160. 

Eells, J., and J.c. Wood, Restrictions on Harmonic Maps of Surfaces, 
Top. 15 ( 1976), 263-266. 

Eliasson, H.I., A Priori Growth and Holder Estimates for Harmonic 
Mappings, Univ. Iceland, Preprint, 1981. 

Federer, H., Geometric Measure Theory, Springer, Grundlehren 163, New 
York, 1969. 

Fenchel, w., Elementare Beweise und Anwendungen einigerFixpunktsatze, 
Mat. Tidsskr. (B) {1932), 66-87. 

Gerstenhaber, M., and H.E. Rauch, On Extremal Quasiconformal Mappings 
I, II, Proc. Nat. Ac. Sc. 40 (1954), 808-812 and 991-994.· 

Giaquinta, M., Multiple Integrals in the Calculus of Variations and 
Non Linear Elliptic Systems, SFB 72, Vorlesungsreihe No. 6, Bonn, 
1981. 

Giaquinta, M., and Giusti, E., On the Regularity of the Minima of 
Variational Integrals, Acta Math. 148 (1982), 31-46. 

Giaquinta, M., and Giusti, E., The Singular Set of the Minima of 
Certain Quadratic Functionals, to appear in Analysis. 

Giaquinta, M., and s. Hildebrandt, A Priori Estimates for Harmonic 
Mappings, J, Reine Angew. Math. 

Gilbarg, D., and N.s. Trudinger, Elliptic Partial Differential 
Equations of Second Order, Springer, Grundlehren 224, Berlin, 
Heidelberg, New York, 1977. 

Gordon, w., Convex Functions and Harmonic Mappings, Proc. Amer. Math. 
Soc. 33 (1933), 433-437. 

Gromoll, D., w. Klingenberg, and w. Meyer, Riemannsche Geometrie im 
Grossen, L.N.M. 55, Springer, Berlin, Heidelberg, New York, 1975. 

Gruter, M., and K.-o. Widman, The Green Function for Uniformly 
Elliptic Equations, Man. Math. 37 (1982), 303-342. 

Hamilton, R., Harmonic Maps of Manifolds with Boundary, L.N.M. 471, 
Springer, Berlin, Heidelberg, New York, 1975. 



173 

[Ht] Hartman, P., On Homotopic Harmonic Maps, Can. ,J. Math. 19 ( 1967), 
673-687. 

[HtW] 

[Hz 1] 

[Hz2] 

[Hz3] 

[Hz4] 

[Hz5] 

[Hi 1] 

[Hi2] 

[HJW] 

[HJW1] 

[HW1] 

[HW2] 

Hartman, P., and A. Wintner, On the Local Behavior of Solu-tions of 
Nonparabolic Partial Differential Equations, k~er. J, Math. 75 (1953), 
<149-4 76. 

Heinz, E., On Certain Nonlinear Ellip-tic Differential Equations and 
Univalent Mappings, Journ. d'AnaL 5 (1956/57), 197-272. 

Heinz, E., Neue a-priori Abschatzungen fur den Ortsvektor einer Flache 
positiver Gaussscher Krlimrnung durch ihr Linienelement, Hath. z. 74 
(1960), 129--157. 

Heinz, E., Existence Theorems for One-to-One l'!appings Associated with 
Elliptic Systems of Second Order, part I, Journ. d'Anal. 15 (1965), 
325-353 .. 

Heinz, E., Existence Theorems for One-·to-One J.1appings Associated with 
Elliptic Systems of Second Order, part II, Journ. d' Anal. 17 ( '1965) , 
145-184. 

Heinz, E., Zur Abschatzung der Funktionaldeterminante be:L e:Lner Klasse 
topologischer Abbildungen, Nachr. Aka d. Wiss. Gott. ( "1968), 183-197. 

Hildebrandt, s., On the Plateau Problem for Surfaces of Constant Mean 
Curvature, Comm. Pure Appi. l<iat.h. 23, ( 1970), 97-n4. 

Hildebrandt, S. , Nonlinear Elliptic Systems and Harmonic ji!Japping-s, 
Proc. Beijing Syrnp. Diff, Geom. & Diff. Eq. "!980,, Science Press, 
Beijing, 1982, also in SFB 72, Vorlesungsreihe No. 4, Bonn, 1980. 

Hildebrandt, S. , J. Jost, and K, -0. Widman, Harmonic !J!appings and 
b<linimal Submanifolds, Inv. Hath. 62 ( "1980), 269-298. 

Hildebrandt, s., H. Kaul, and K.-o. Widman, Harmonic ~1appings into 
Riemannian ~1anifolds w·ith Non-posii:ive Section2.l Curvature, M.ath. 
Scand. 37 (1975), 257-263. 

Hildebrandt, s., H. Kaul, and K.-o. Widman, Dirichlet:'s Boundary Value 
Problem for Harmonic Mappings of Riemannian M.anifolds, M.ath. z. 147 
( 1976)' 225-236. 

Hildebrandt, s., H. Kaul, and K.-o. l~idman, An Existence Theorem for 
Harmonic Nappings of Riemannian Manifolds, Acta Hath. 138 (1977), 
1-16. 

Hildebrandt, s., and K.-o. Widman, Some Regularity Results for 
Quasi linear Elliptic Systems of Second Order, iviath. Z. 142 ( 1975), 
67-86. 

Hildebrandt, s., and K.-o. Widntan, On the Holder Continuity of Weak 
Solutions of Quasi linear Elli.ptic Systems of Second Order, Ann. Sc. N. 
Sup. Pisa IV (1977), 145-178. 



[HOS] 

[JaK1J 

174 

Hoffman, D.A., R. Osserman, and R. Schoen, On the Gauss Map of 
Complete Surfaces of Constant Mean Curvature in JR 3 and IR4 , Comm. 

Math. Helv. 57 (1982), 519-531. 

Jager, W., and H. Kaul, Uniqueness of Harmonic Mappings and of 
Solutions of Elliptic Equat.ions on 'Riemannian Manifolds, Math. Ann. 
240 ( 1979)' 231-250. 

;ra9er, w., and H. Kaul., Uniqueness and Stability of Harmonic Maps and 
·thei:r Jacobi Fields, Man. Math. 28 ( 1979), 269··291. 

(JisiK31 t \4 .. ff and H~ Kau1;; Rot.at.ionally Symmet.ric Ha::':·moni.c Maps fl:()m 

[J4] 

[37] 

[,JK'l] 

[JK2] 

[,JM] 

[JS] 

Ball into a Sphere and ·the P.egularity Probl:dm fo:c Wee-d<;: Solutions of 

tJos)cv \J" 3 Ein~,:d.nde·ui:iqJ<ei-'c harmonischer 1'~.bbi1dun3;;yen 1 D.iploraarbeit.ii' 
Bonn., 1979 11 a.lso Bvnne.r Math .. Schr" 198 

t10s""t:, ~.:J., ~ Eir1e !Jeome·tr.ische Bemerkung zu S'Ei.t.zen iibe:r. 
AbbiJ..dungen/l' die e.:Ln D.irichlectprob1em lOsen., f-ic.\.n .. rv.ta.t:h., 32 ( 1980 ,. 

Dni \liilency of Harmonic Ivlo.ppin-gs J"' R~8in.~~ 

324 {198 14 53& 

~· J"' 1 A. Mt.D~o:imum :PJ:::-inc.ipl.e for H.a:n:nonic 
M.an'" :Math~ 38 

e' J 1 ':J.lhe Dirichlet: Problem for Ha:r:·mo.tLic M.ap~-3 fronl a Surface 
Botlnda:cy -ont.o 
Geom ! ·to appear~ 

t J." r H.armonic I"laps Bet.vJee:n Su:e.f,::!.ces., Springe1: Lect.lJ.J::'~:.~ No·tes 1 to 
appear, 

Jost Q J ... 11 Con£ormc11 i<~1apping·s and the Plateau-Douglas Frobl(:::!1!1 5 

Preprint. 

J'ost ff 1J ~ v and H.. Ka:r:cher v Geom~::trische .!Ylet.hoden zur Geit'd .. nnung von 

a-priori-Schranken fiir harmonische Abbildungen, Man. Math. 40 (1982 , 
27-77' 

Jost, J., and H. Karcher, Almost Linear Ftmctions and 1\-Priori 
Estimates fm: Harmonic Maps, Proc, Durham Conf. 1982. 

Jost, ,J., and M. Meier, Boundary Regularity for Hinima of Certain 
Quadratic Functionals, Mat.h. Ann. 262 ( 1983) , 549-561. 

Jost, J., and R. Schoen, On the Existence of Harmonic Diffeomorphisms 
Between Surfaces, Inv. lll!ath. 66 ( 1982), 353-359. 



175 

[JY] ,Tost, J., and s.T. Yau, Harmonic Mappings and Kahler Manifolds, Math. 
Ann. 262 (1983), 145-166. 

[K1] Karcher, H., Schnit·tort und konvexe Mengen in vollstandigen 
Riemannschen Mannigfaltigkeiten, Math. Ann. 177 (1968), 105-121. 

[K2] Karcher, H., Riemannian Center of Mass and Mollifier Smoothing, CPAM 
30 (1977), 509-541. 

[KW] Karcher, H., and J .c. Wood, Non-Existence Results and Grow·th 
Properties for Harmonic l'laps and Forms, Preprint, SFB 40, Bonn, 1983. 

[Kn 1] 

[I.U] 

[Lv] 

Kneser, H., Losung der Aufgabe 41, Jber. Dtsch. Math. Ver. 35 (1926), 
123-124. 

Kneser, H., Die kleinste Bedeckungszahl innerhalb einer Klasse von 
FUichenabbildungen, Hath. Arm. 103 ('1930), 347-358. 

Ladyzehskaja, o.A., and N.N. Ural'ceva, Equations aux derivees 
partielles de ·type elli.ptique, Dunod, Paris, 1968. 

Lavrent'ev, M.A., Sur une classe des representations continues, Mat. 
Sb. (1935), 407-434. 

[Lz] Leibniz, G. W., Die Theodizee, Phil. Bibl. 71, Felix 1"leiner, Harnburg, 
2 1968. 

[L1] Lemaire, L., Applications harmoniques de surfaces Riemanniennes, 
J, Diff. Geom. 13 (1978), 51-78. 

[L2] Lemaire, L., Boundary Value Problems for Harmonic and Minimal Maps of 
Surfaces into Manifolds, Ann. Sc. Norm. Sup. Pisa (4) 8 (1982), 
g·l-103. 

[L3] Lemaire, L., Applications harmoniques de varietes produits, Comm. 
Math. Helv. 52 11977), 11-24. 

[Li] Lichtens·te.in, L., Zur Theorie der konformen Abbildung. Konforme 
AbbiJ.dung nichtanalytischer singulari ta1:enfreier Flachenstiicke auf 
ebene Gebiete, BulL Acad. Sci. Cracovie, CL Sci. Ma·t. Nat. A (1916), 
192-217. 

[MS] Meyers, N., and J. Serrin, H 
1055-1056. 

w, Proc. Nat. Ac. so. 51 (1964), 

[£11] l'lorrey, C.B._ On the Solutions of Quasi-Linear Elliptic Partial 
Differential Equa'tions, Trans. Amer. Math. Soc. 43 ( 1938), 126-166. 

[M2] Morrey, C.B., The Problem of Plateau on a Riemannian Manifold, Ann. 
Math. 49 (1948), 807-851. 

[M3] Morrey, c.B., Multiple Integrals in the Calculus of Variations, 
Springer, Berlin, Heidelberg, New York, 1966. 

[Mol Moser, J,, On Harnack's Theorem for Elliptic Differential Equations, 
CP~~l 14 (1961), 577-591. 



[Na] 

[Rd] 

[RV] 

[SkU] 

[Sa] 

[SU1] 

[SU2] 

[SY1] 

[SY2] 

[SY3] 

[Se1] 

[Se2] 

[Sh] 

[Sm] 

[Si] 

[Sp] 

[Td] 

[Tr] 

[U] 

176 

Nash, J., The Embedding Problem for Riemannian Manifolds, Ann. Math. 
63 (1956), 20-63. 

Rado, T., Aufgabe 41, Jber. Dtsch. Math. Ver. 35 (1926), 49. 

Ruh, E.A., and J. Vilms, The Tension Field of the Gauss Map, Trans. 
Amer. Math. Soc. 49 (1970), 569-573. 

Sacks, J., and K. Uhlenbeck, The Existence of Minimal Immersions of 
2-Spheres, Ann. Math. 113 (1981), 1-24. 

Sampson, J.H., Some Properties and Applications of Harmonic Mappings, 
Ann. Sc. Ec. Sup. 11 ( 1978), 211-228. 

Schoen, R., and K. Uhlenbeck, A Regularity Theory for Harmonic Maps, 
J. Diff. Geom. 17 (1982), 307-335. 

Schoen, R., and K. Uhlenbeck, Boundary Regularity and Miscellaneous 
Results on Harmonic Maps, to appear in J. Diff, Geom. 

Schoen, R., and s.T. Yau, On Univalent Harmonic Maps between Surfaces, 
Inv. Math. 44 (1978), 265-278. 

Schoen, R., and s.T. Yau, Existence of Incompressible Minimal Surfaces 
and the Topology of Three Dimensional Manifolds with Non-Negative 
Scalar Curvature, Ann. Math. 10 (1979), 127-142. 

Schoen, R., and s.T. Yau, Compact Group Actions and the Topology of 
Manifolds with Non-Positive Curvature, Top. 18 (1979), 361-380. 

Sealey, H., Some Properties of Harmonic Mappings, Thesis, Univ. 
Warwick, 1980. 

Sealey, H., The Stress-Energy Tensor and the Vanishing of L2 -Harmonic 
Forms, Preprint. 

Shibata, K., On the Existence of a Harmonic Mapping, Osaka J. Math. 15 
(1963), 173-211. 

·Simon, L., Asymptotics for a Class of Non-Linear Evolution Equations, 
with Applications to Geometric Problems, Research Report CMA-805-83, 
Canberra, 1983. 

Siu, Y.T., The Complex Analyticity of Harmonic Maps and the Strong 
Rigidity of Compact Kahler Manifolds, Ann. Math. 112 (1980), 73-111. 

Sperner, E., A Priori Gradient Estimates for Harmonic Mappings, SFB 
72, Preprint 513, Bonn, 1982. 

Tolksdorf, P., A Strong Maximum Principle and Regularity for Harmonic 
Mappings, Preprint. 

Tromba, A., A New Proof that Teichmuller Space is a Cell, Preprint. 

Uhlenbeck, K., Harmonic Maps: A Direct Method in the Calculus of 
Variations, Bull. Amer. Math. Soc. 76 (1970), 1082-1087. 



177 

[vW] von Wahl, w., Klassische Losbarkeit im Grossen flir nichtlineare 
parabolische Systeme und das Verhalten der Losungen fur t+oo, Nachr. 
Akad. Wiss. Gottingen. 

[Wt] Wente, H., The Differential equations ~x = 2HXu A xv with Vanishing 
Boundary Values, Proc. Amer. Math. Soc. 50 (1975), 131-137. 

[Wi] Wiegner, M., A priori Schranken flir Losungen gewisser elliptischer 
Systeme, Man. Math. 18 (1976), 279-297. 

[W1) Wood, J.c., Singularities of Harmonic Maps and Applications of the 
Gauss-Bonnet Formula, Amer. J. Math. 99 (1977), 1329-1344. 

[W2] Wood, J.C., Non-existence of Solutions to Certain Dirichlet Problems, 
Preprint, Leeds, 1981. 








	TABLE OF CONTENTS
	PREFACE
	CHAPTER 1 INTRODUCT ION
	CHAPTER 2 GEOMETRIC PRELIMINARIES
	CHAPTER 3 THE HEAT FLOW METHOD
	CHAPTER 4 REGULARITY OF WEAKLY HARMONIC MAPS
	CHAPTER 5 HARMONIC MAPS BETWEEN SURFACES

