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We hope that this book will not be what you expect. It is not a textbook, an 
 encyclopedia, or a manual. If you are looking for a comprehensive account of the 
history of mathematics, divided in the usual way into periods and cultures, you 
will not � nd it here. Even a book of this size is too small for that, and in any case it 
is not what we want to o  er. Instead, this book explores the history of  mathematics 
under a series of themes which raise new questions about what mathematics has 
been and what it has meant to practise it. " e book is not descriptive or didactic 
but investigative, comprising a variety of innovative and imaginative approaches 
to history.

" e image on the front cover captures, we hope, the ethos of the Handbook 
(Chapter 1.2, Fig. 1.2.5). At � rst glance it has nothing to do with the history of 
mathematics. We see a large man in a headdress and cloak, wielding a ceremonial 
sta   over a group of downcast kneeling women. Who are they, and what is going 
on? Who made this image, and why? Without giving away too much—Gary 
Urton’s chapter has the answers—we can say here that the clue is in the phrase 
written in Spanish above the women’s heads: Repartición de las mugeres donzellas 
q[ue] haze el ynga ‘categorization (into census-groups) of the maiden women that 
the Inka made’. As this and many other contributions to the book demonstrate, 
mathematics is not con� ned to classrooms and universities. It is used all over the 
world, in all languages and cultures, by all sorts of people. Further, it is not solely 
a literate activity but leaves physical traces in the material world: not just writings 
but also objects, images, and even buildings and landscapes. More o6 en, math-
ematical practices are ephemeral and transient, spoken words or bodily gestures 
recorded and preserved only exceptionally and haphazardly.

A book of this kind depends on detailed research in disparate disciplines 
by a large number of people. We gave authors a broad remit to select topics 
and approaches from their own area of expertise, as long as they went beyond 
straight ‘what-happened-when’ historical accounts. We asked for their writing 
to be exemplary rather than exhaustive, focusing on key issues, questions, and 
methodologies rather than on blanket coverage, and on placing mathematical 
content into context. We hoped for an engaging and accessible style, with strik-
ing images and examples, that would open up the subject to new readers and 
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challenge those already familiar with it. It was never going to be possible to cover 
every  conceivable approach to the material, or every aspect we would have liked 
to include. Nevertheless, authors responded to the broad brief with a stimulating 
variety of styles and topics.

We have grouped the thirty-six chapters into three main sections under the 
following headings: geographies and cultures, people and practices, interac-
tions and interpretations. Each is further divided into three subsections of four 
 chapters arranged chronologically. 9 e chapters do not need to be read in numer-
ical order: as each of the chapters is multifaceted, many other structures would 
be possible and interesting. However, within each subsection, as in the book as 
a whole, we have tried to represent a range of periods and cultures. 9 ere are 
many points of cross-reference between individual sections and chapters, some 
of which are indicated as they arise, but we hope that readers will make many 
more connections for themselves.

In working on the book, we have tried to break down boundaries in several 
important ways. 9 e most obvious, perhaps, is the use of themed sections rather 
than the more usual chronological divisions, in such a way as to encourage com-
parisons between one period and another. Between them, the chapters deal with 
the mathematics of [ ve thousand years, but without privileging the past three 
centuries. While some chapters range over several hundred years, others focus 
tightly on a short span of time. We have in the main used the conventional western
bc/ad dating system, while remaining alert to other world chronologies.

9 e Handbook is as wide-ranging geographically as it is chronologically, to the 
extent that we have made geographies and cultures the subject of the [ rst section. 
Every historian of mathematics acknowledges the global nature of the subject, yet 
it is hard to do it justice within standard narrative accounts. 9 e key mathemati-
cal cultures of North America, Europe, the Middle East, India, and China are 
all represented here, as one might expect. But we also made a point of commis-
sioning chapters on areas which are not oN en treated in the mainstream history 
of mathematics: Russia, the Balkans, Vietnam, and South America, for instance. 
9 e dissemination and cross-fertilization of mathematical ideas and practices 
between world cultures is a recurring theme throughout the book.

9 e second section is about people and practices. Who creates mathematics? 
Who uses it and how? 9 e mathematician is an invention of modern Europe. 
To limit the history of mathematics to the history of mathematicians is to lose 
much of the subject’s richness. Creators and users of mathematics have included 
cloth weavers, accountants, instrument makers, princes, astrologers, musicians, 
missionaries, schoolchildren, teachers, theologians, surveyors, builders, and 
artists. Even when we can discover very little about these people as individu-
als, group biographies and studies of mathematical subcultures can yield impor-
tant new insights into their lives. 9 is broader understanding of mathematical 
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practitioners naturally leads to a new appreciation of what counts as a histori-
cal source. We have already mentioned material and oral evidence; even within 
written media, diaries and school exercise books, novels and account books have 
much to o\ er the historian of mathematics. Further, the ways in which people 
have chosen to express themselves—whether with words, numerals, or symbols, 
whether in learned languages or vernaculars—are as historically meaningful as 
the mathematical content itself.

From this perspective the idea of mathematics itself comes under scrutiny. 
What has it been, and what has it meant to individuals and communities? How 
is it demarcated from other intellectual endeavours and practical activities? 9 e 
third section, on interactions and interpretations, highlights the radically dif-
ferent answers that have been given to these questions, not just by those actively 
involved but also by historians of the subject. Mathematics is not a [ xed and 
unchanging entity. New questions, contexts, and applications all ind uence what 
count as productive ways of thinking or important areas of investigation. Change 
can be rapid. But the backwaters of mathematics can be as interesting to historians 
as the fast-d owing currents of innovation. 9 e history of mathematics does not 
stand still either. New methodologies and sources bring new interpretations and 
perspectives, so that even the oldest mathematics can be freshly understood.

At its best, the history of mathematics interacts constructively with many 
other ways of studying the past. 9 e authors of this book come from a diverse 
range of backgrounds, in anthropology, archaeology, art history, philosophy, and 
literature, as well as the history of mathematics more traditionally understood. 
9 ey include old hands alongside others just beginning their careers, and a few 
who work outside academia. Some perhaps found themselves a little surprised to 
be in such mixed company, but we hope that all of them enjoyed the experience, 
as we most certainly did. 9 ey have each risen wonderfully and good-naturedly 
to the challenges we set, and we are immensely grateful to all of them.

It is not solely authors and editors who make a book. We would also like to 
thank our consultants Tom Archibald and June Barrow-Green, as well as the 
team at OUP: Alison Jones, John Carroll, Dewi Jackson, Tanya Dean, Louise 
Sprake, and Jenny Clarke.
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`CH A P T ER 1.1

What was mathematics in the ancient world? 
Greek and Chinese perspectives
G E R Lloyd

Two types of approach can be suggested to the question posed by the title of 
this chapter. On the one hand we might attempt to settle a priori on the cri-

teria for mathematics and then review how far what we [ nd in di\ erent ancient 
cultures measures up to those criteria. Or we could proceed more empirically or 
inductively by studying those diverse traditions and then deriving an answer to 
our question on the basis of our [ ndings.

Both approaches are faced with di7  culties. On what basis can we decide on 
the essential characteristics of mathematics? If we thought, commonsensically, 
to appeal to a dictionary de[ nition, which dictionary are we to follow? 9 ere is 
far from perfect unanimity in what is on o\ er, nor can it be said that there are 
obvious, crystal clear, considerations that would enable us to adjudicate uncon-
troversially between divergent philosophies of mathematics. What mathemat-
ics is will be answered quite di\ erently by the Platonist, the constructivist, the 
intuitionist, the logicist, or the formalist (to name but some of the views on the 
twin fundamental questions of what mathematics studies, and what knowledge 
it produces).

9 e converse di7  culty that faces the second approach is that we have to 
have some prior idea of what is to count as ‘mathematics’ to be able to start our 
cross-cultural study. Other cultures have other terms and concepts and their
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interpretation poses delicate problems. Faced with evident divergence and 
 heterogeneity, at what point do we have to say that we are not dealing with a 
di\ erent concept of mathematics, but rather with a concept that has nothing to 
do with mathematics at all? 9 e past provides ample examples of the dangers 
involved in legislating that certain practices and ideas fall beyond the boundar-
ies of acceptable disciplines.

My own discussion here, which will concentrate largely on just two ancient 
mathematical traditions, namely Greek and Chinese, will owe more to the second 
than to the [ rst approach. Of course to study the ancient Greek or Chinese con-
tributions in this area—their theories and their actual practices—we have to 
adopt a provisional idea of what can be construed as mathematical, principally 
how numbers and shapes or [ gures were conceived and manipulated. But as we 
explore further their ancient ideas of what the studies of such comprised, we can 
expect that our own understanding will be subject to modi[ cation as we proceed. 
We join up, as we shall see, with those problems in the philosophy of mathemat-
ics I mentioned: so in a sense a combination of both approaches is inevitable.

Both the Greeks and the Chinese had terms for studies that deal, at least in part, 
with what we can easily recognize as mathematical matters, and this can provide 
an entry into the problems, though the lack of any exact equivalent to our notion 
in both cases is obvious from the outset. I shall [ rst discuss the issues as they 
relate to Greece before turning to the less familiar data from ancient China.

Greek perspectives

Our term ‘mathematics’ is, of course, derived from the Greek mathēmatikē, 
but that word is derived from the verb manthanein which has the quite general 
meaning of ‘to learn’. A mathēma can be any branch of learning, anything we 
have learnt, as when in Herodotus, Histories 1.207, Croesus refers to what he has 
learnt, his mathēmata, from the bitter experiences in his life. So the mathēmatikos 
is, strictly speaking, the person who is fond of learning in general, and it is so 
used by Plato, for instance, in his dialogue Timaeus 88c, where the point at issue 
is the need to strike a balance between the cultivation of the intellect (in general) 
and that of the body—the principle that later became encapsulated in the dictum 
mens sana in corpore sano ‘a healthy mind in a healthy body’. But from the [ N h 
century bc certain branches of study came to occupy a privileged position as the 
mathēmata par excellence. 9 e terms mostly look familiar enough, arithmētikē, 
geomētrikē, harmonikē, astronomia, and so on, but that is deceptive. Let me spend 
a little time explaining [ rst the di\ erences between the ancient Greeks’ ideas and 
our own, and second some of the disagreements among Greek authors them-
selves about the proper subject-matter and methods of certain disciplines.
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Arithmētikē is the study of arithmos, but that is usually de[ ned in terms of 
 positive integers greater than one. Although Diophantus, who lived at some time 
in late antiquity, possibly in the third century ad, is a partial exception, the Greeks 
did not normally think of the number series as an in[ nitely divisible continuum, 
but rather as a set of discrete entities. 9 ey dealt with what we call fractions as 
ratios between integers. Negative numbers are not arithmoi. Nor is the number 
one, thought of as neither odd nor even. Plato draws a distinction, in the Gorgias 
451bc, between arithmētikē and logistikē, calculation, derived from the verb logiz-
esthai, which is oN en used of reasoning in general. Both studies focus on the odd 
and the even, but logistikē deals with the pluralities they form while arithmētikē 
considers them—so Socrates is made to claim—in themselves. 9 at, at least, is 
the view Socrates expresses in the course of probing what the sophist Gorgias 
was prepared to include in what he called ‘the art of rhetoric’, though in other 
contexts the two terms that Socrates thus distinguished were used more or less 
interchangeably. Meanwhile a di\ erent way of contrasting the more abstract and 
practical aspects of the study of arithmoi is to be found in Plato’s Philebus 56d, 
where Socrates distinguishes the way the many, hoi polloi, use them from the way 
philosophers do. Ordinary people use units that are unequal, speaking of two 
armies, for instance, or two oxen, while the philosophers deal with units that do 
not di\ er from one another in any respect; abstract ones in other words.1

At the same time, the study of arithmoi encompassed much more than we 
would include under the rubric of arithmetic. 9 e Greeks represented numbers 
by letters, where α represents the number 1, β the number 2, γ 3, ι 10, and so on. 
9 is means that any proper name could be associated with a number. While some 
held that such connections were purely fortuitous, others saw them as deeply sig-
ni[ cant. When in the third century ad the neo-Pythagorean Iamblichus claimed 
that ‘mathematics’ is the key to understanding the whole of nature and all its 
parts, he illustrated this with the symbolic associations of numbers, the patterns 
they form in magic squares and the like, as well as with more widely accepted 
examples such as the identi[ cation of the main musical concords, the octave, 
[ N h, and fourth, with the ratios 2:1, 3:2, and 4:3. 9 e beginnings of such associa-
tions, both symbolic and otherwise, go back to the pre-Platonic Pythagoreans 
of the [ N h and early fourth centuries bc, who are said by Aristotle to have held 
that in some sense ‘all things’ ‘are’ or ‘imitate’ numbers. Yet this is quite unclear, 
[ rst because we cannot be sure what ‘all things’ covers, and secondly because of 
the evident discrepancy between the claim that they are numbers and the much 
weaker one that they merely imitate them.

1. Cf. Asper, Chapter 2.1 in this volume, who highlights divergences between practical Greek 
 mathematics and the mathematics of the cultured elite. On the proof techniques in the latter, Netz (1999) 
is fundamental.
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What about ‘geometry’? 9 e literal meaning of the components of the Greek 
word geōmetria is the measurement of land. According to a well-known passage 
in Herodotus, 2 109, the study was supposed to have originated in Egypt in rela-
tion, precisely, to land measurement aN er the d ooding of the Nile. Measurement, 
metrētikē, still [ gures in the account Plato gives in the Laws 817e when his 
spokesman, the Athenian Stranger, speci[ es the branches of the mathēmata that 
are appropriate for free citizens, though now this is measurement of ‘lengths, 
breadths and depths’, not of land. Similarly, in the Philebus 56e we again [ nd a 
contrast between the exact geometria that is useful for philosophy and the branch 
of the art of measurement that is appropriate for carpentry or architecture.

9 ose remarks of Plato already open up a gap between practical utility—
mathematics as securing the needs of everyday life—and a very di\ erent mode 
of usefulness, namely in training the intellect. One classical text that articulates 
that contrast is a speech that Xenophon puts in the mouth of Socrates in the 
Memorabilia, 4 7 2–5. While Plato’s Socrates is adamant that mathematics is use-
ful primarily because it turns the mind away from perceptible things to the study 
of intelligible entities, in Xenophon Socrates is made to lay stress on the useful-
ness of geometry for land measurement and on the study of the heavens for the 
calendar and for navigation, and to dismiss as irrelevant the more theoretical 
aspects of those studies. Similarly, Isocrates too (11 22–3, 12 26–8, 15 261–5) dis-
tinguishes the practical and the theoretical sides of mathematical studies and in 
certain circumstances has critical remarks to make about the latter.

9 e clearest extant statements of the opposing view come not from the math-
ematicians but from philosophers commenting on mathematics from their own 
distinctive perspective. What mathematics can achieve that sets it apart from 
most other modes of reasoning is that it is exact and that it can demonstrate 
its conclusions. Plato repeatedly contrasts this with the merely persuasive argu-
ments used in the law-courts and assemblies, where what the audience can be 
brought to believe may or may not be true, and may or may not be in their best 
interests. Philosophy, the claim is, is not interested in persuasion but in the truth. 
Mathematics is repeatedly used as the prime example of a mode of reasoning 
that can produce certainty: and yet mathematics, in the view Plato develops in 
the Republic, is subordinate to dialectic, the pure study of the intelligible world 
that represents the highest form of philosophy. Mathematical studies are valued 
as a propaedeutic, or training, in abstract thought: but they rely on perceptible 
diagrams and they give no account of their hypotheses, rather taking them to be 
clear. Philosophy, by contrast, moves from its hypotheses up to a supreme prin-
ciple that is said to be ‘unhypothetical’.

9 e exact status of that principle, which is identi[ ed with the Form of the 
Good, is highly obscure and much disputed. Likening it to a mathematical axiom 
immediately runs into di7  culties, for what sense does it make to call an axiom 
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‘unaxiomatic’? But Plato was clear that both dialectic and the mathematical 
 sciences deal with independent intelligible entities.

Aristotle contradicted Plato on the philosophical point: mathematics does not 
study independently existing realities. Rather it studies the mathematical prop-
erties of physical objects. But he was more explicit than Plato in o\ ering a clear 
de[ nition of demonstration itself and in classifying the various  indemonstrable 
primary premises on which it depends. Demonstration, in the strict sense, 
 proceeds by valid deductive argument (Aristotle thought of this in terms of his 
 theory of the syllogism) from premises that must be true, primary, necessary, 
prior to, and explanatory of the conclusions. 9 ey must, too, be indemonstrable, 
to avoid the twin d aws of circular reasoning or an in[ nite regress. Any premise 
that can be demonstrated should be. But there have to be ultimate primary pre-
mises that are evident in themselves. One of Aristotle’s examples is the equality 
axiom, namely if you take equals from equals, equals remain. 9 at cannot be 
shown other than by circular argument, which yields no proof at all, but it is clear 
in itself.

It is obvious what this model of axiomatic-deductive demonstration owes to 
mathematics. I have just mentioned Aristotle’s citation of the equality axiom, 
which [ gures also among Euclid’s ‘common opinions’,2 and most of the examples 
of demonstrations that Aristotle gives, in the Posterior analytics, are mathemat-
ical. Yet in the absence of substantial extant texts before Euclid’s Elements itself 
(conventionally dated to around 300 bc) it is di7  cult, or rather impossible, to 
say how far mathematicians before Aristotle had progressed towards an explicit 
notion of an indemonstrable axiom. Proclus, in the [ N h century ad, claims to be 
drawing on the fourth century bc historian of mathematics, Eudemus, in report-
ing that Hippocrates of Chios was the [ rst to compose a book of ‘Elements’, and 
he further names a number of other [ gures, Eudoxus, 9 eodorus, 9 eaetetus, and 
Archytas among those who ‘increased the number of theorems and progressed 
towards a more epistemic or systematic arrangement of them’ (Commentary on 
Euclid’s Elements I 66.7–18).

9 at is obviously teleological history, as if they had a clear vision of the goal 
they should set themselves, namely the Euclidean Elements as we have it. 9 e two 
most substantial stretches of mathematical reasoning from the pre- Aristotelian 
period that we have are Hippocrates’ quadratures of lunes and Archytas’ deter-
mining two mean proportionals (for the sake of solving the problem of the 
duplication of the cube) by way of a complex kinematic diagram involving the 
intersection of three surfaces of revolution, namely a right cone, a cylinder, and 
a torus. Hippocrates’ quadratures are reported by Simplicius (Commentary on 
Aristotle’s Physics 53.28–69.34), Archytas’ work by Eutocius (Commentary on 

2. ON en translated as ‘common notions’.
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Archimedes’ On the sphere and cylinder II, vol. 3, 84.13–88.2), and both early 
mathematicians show impeccable mastery of the subject-matter in question. Yet 
neither text con[ rms, nor even suggests, that these mathematicians had de[ ned 
the starting-points they required in terms of di\ erent types of indemonstrable 
primary premises.

Of course the principles set out in Euclid’s Elements themselves do not tally 
exactly with the concepts that Aristotle had proposed in his discussion of strict 
demonstration. Euclid’s three types of starting-points include de[ nitions (as in 
Aristotle) and common opinions (which, as noted, include what Aristotle called 
the equality axiom) but also postulates (very di\ erent from Aristotle’s hypoth-
eses). 9 e last included especially the parallel postulate that sets out the fundamen-
tal assumption on which Euclidean geometry is based, namely that non-parallel 
straight lines meet at a point. However, where the philosophers had demanded 
arguments that could claim to be incontrovertible, Euclid’s Elements came to be 
recognized as providing the most impressive sustained exempli[ cation of such 
a project. It systematically demonstrates most of the known mathematics of the 
day using especially reductio arguments (arguments by contradiction) and the 
misnamed method of exhaustion. Used to determine a curvilinear area such as 
a circle by inscribing successively larger regular polygons, that method precisely 
did not assume that the circle was ‘exhausted’, only that the di\ erence between 
the inscribed rectilinear [ gure and the circumference of the circle could be made 
as small as you like. 9 ereaN er, the results that the Elements set out could be, and 
were, treated as secure by later mathematicians in their endeavours to expand the 
subject.

9 e impact of this development [ rst on mathematics itself, then further a[ eld, 
was immense. In statics and hydrostatics, in music theory, in astronomy, the hunt 
was on to produce axiomatic-deductive demonstrations that basically followed the 
Euclidean model. But we even [ nd the second century ad medical writer Galen 
attempting to set up mathematics as a model for reasoning in medicine—to yield 
conclusions in certain areas of pathology and physiology that could claim to be 
incontrovertible. Similarly, Proclus attempted an Elements of theology in the [ N h 
century ad, again with the idea of producing results that could be  represented as 
certain.

9 e rami[ cations of this development are considerable. Yet three points must 
be emphasized to put it into perspective. First, for ordinary purposes,  axiomatics 
was quite unnecessary. Not just in practical contexts, but in many more  theoretical 
ones, mathematicians and others got on with the business of calculation and 
measurement without wondering whether their reasoning needed to be given 
ultimate axiomatic foundations.3

3. Cuomo (2001) provides an excellent account of the variety of both theoretical and practical concerns 
among the Greek mathematicians at di\ erent periods.



What was mathematics in the ancient world? 13

Second, it was far from being the case that all Greek work in arithmetic and 
geometry, let alone in other [ elds such as harmonics or astronomy, adopted 
the Euclidean pattern. 9 e three ‘traditional’ problems, of squaring the circle, 
the duplication of the cube, and the trisection of an angle were tackled already 
in the [ N h century bc without any explicit concern for axiomatics (Knorr 1986). 
Much of the work of a mathematician such as Hero of Alexandria ([ rst century 
ad) focuses directly on problems of mensuration using methods similar to those 
in the traditions of Egyptian and Babylonian mathematics by which, indeed, 
he may have been ind uenced.4 While he certainly refers to Archimedes as if he 
provided a model for demonstration, his own procedures sharply diverge, on 
occasion, from Archimedes’.5 In the Metrica, for instance, he sometimes gives 
an arithmetized demonstration of geometrical propositions, that is, he includes 
concrete numbers in his exposition. Moreover in the Pneumatica he allows 
 exhibiting a result to count as a proof. Further a[ eld, I shall shortly discuss the 
disputes in harmonics and the study of the heavens, on the aims of the study, and 
the right methods to use.

9 ird, the recurrent problem for the model of axiomatic-deductive demonstra-
tion that the Elements supplied was always that of securing axioms that would be 
both self-evident and non-trivial. Moreover, it was not enough that an axiom set 
should be internally consistent: it was generally assumed that they should be true 
in the sense of a correct representation of reality. Clearly, outside mathematics 
they were indeed hard to come by. Galen, for example, proposed the principle 
that ‘opposites are cures for opposites’ as one of his indemonstrable principles, 
but the problem was to say what counted as an ‘opposite’. If not trivial, it was con-
testable, but if trivial, useless. Even in mathematics itself, as the example of the 
parallel postulate itself most clearly showed, what principles could be claimed as 
self-evident was intensely controversial. Several commentators on the Elements 
protested that the assumption concerning non-parallel straight lines meeting at a 
point should be a theorem to be proved and removed from among the postulates. 
Proclus outlines the controversy (Commentary on Euclid’s Elements I 191.21\ .) 
and o\ ers his own attempted demonstration as well as reporting one proposed by 
Ptolemy (365.5\ ., 371.10\ .): yet all such turned out to be circular, a result that has 
sometimes been taken to con[ rm Euclid’s astuteness in deciding to treat this as a 
postulate in the [ rst place. In time, however, it was precisely the attack on the par-
allel postulate that led to the eventual emergence of non-Euclidean geometries.

9 ese potential di7  culties evidently introduce elements of doubt about the 
ability of mathematics, or of the subjects based on it, to deliver exactly what 

4. Cf. Robson (Chapter 3.1), Rossi (Chapter 5.1), and Imhausen (Chapter 9.1) in this volume.
5. Moreover Archimedes himself departed from the Euclidean model in much of his work, especially, 

for example, in the area we would call combinatorics; cf. Saito (Chapter 9.2) in this volume and Netz 
(forthcoming).
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some writers claimed for it. Nevertheless, to revert to the fundamental point, 
 mathematics, in the view both of some mathematicians and of outsiders, was 
superior to most other disciplines, precisely in that it could outdo the merely per-
suasive arguments that were common in most other [ elds of inquiry.

It is particularly striking that Archimedes, the most original, ingenious, and 
multifaceted mathematician of Greek antiquity, insisted on such strict standards 
of demonstration that he was at one point led to consider as merely heuristic 
the method that he invented and set out in his treatise of that name. He there 
describes how he discovered the truth of the theorem that any segment of a par-
abola is four-thirds of the triangle that has the same base and equal height. 9 e 
method relies on two assumptions: [ rst that plane [ gures may be imagined as 
balanced against one another around a fulcrum and second that such [ gures may 
be thought of as composed of a set of line segments inde[ nitely close together. 
Both ideas breached common Greek presuppositions. It is true that there were 
precedents both for applying some quasi-mechanical notions to geometrical 
issues—as when [ gures are imagined as set in motion—and for objections to 
such procedures, as when in the Republic 527ab Plato says that the language of 
mathematicians is absurd when they speak of ‘squaring’ [ gures and the like, as if 
they were doing things with mathematical objects. But in Archimedes’ case, the 
[ rst objection to his reasoning would be that it involved a category confusion, 
in that geometrical objects are not the types of item that could be said to have 
centres of gravity. Moreover, Archimedes’ second assumption, that a plane [ gure 
is composed of its indivisible line segments, clearly breached the Greek geomet-
rical notion of the continuum. 9 e upshot was that he categorized his method as 
one of discovery only, and he explicitly claimed that its results had thereaN er to 
be demonstrated by the usual method of exhaustion. At this point, there appears 
to be some tension between the preoccupation with the strictest criteria of proof 
that dominated one tradition of Greek mathematics (though only one) and the 
other important aim of pushing ahead with the business of discovery.

9 e issues of the canon of proof, and of whether and how to provide an axio-
matic base for work in the various parts of ‘mathematics’, were not the only sub-
jects of dispute. Let me now illustrate the range of controversy [ rst in harmonics 
and then in the study of the heavens.

‘Music’, or rather mousikē, was a generic term, used of any art over which one 
or other of the nine Muses presided. 9 e person who was mousikos was one who 
was well-educated and cultured generally. To specify what we mean by ‘music’ 
the Greeks usually used the term harmonikē, the study of harmonies or musical 
scales. Once again the variety of ways that study was construed is remarkable 
and it is worth exploring this in some detail straight away as a classic illustration 
of the tension between mathematical analysis and perceptible phenomena. 9 ere 
were those whose interests were in music-making, practical musicians who were 
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interested in producing pleasing sounds. But there were also plenty of theorists 
who attempted analyses involving, however, quite di\ erent starting assumptions. 
One approach, exempli[ ed by Aristoxenus, insisted that the unit of measurement 
should be something identi[ able to perception. Here, a tone is de[ ned as the 
di\ erence between the [ N h and the fourth, and in principle the whole of music 
theory can be built up from these perceptible intervals, namely by ascending and 
descending [ N hs and fourths.

But if this approach accepted that musical intervals could be construed on 
the model of line segments and investigated quasi-geometrically, a rival mode of 
analysis adopted a more exclusively arithmetical view, where the tone is de[ ned 
as the di\ erence between sounds whose ‘speeds’ stand in a ratio of 9:8. In this, 
the so-called Pythagorean tradition, represented in the work called the Sectio 
canonis in the Euclidean corpus, musical relations are understood as essentially 
ratios between numbers, and the task of the harmonic theorist becomes that of 
deducing various propositions in the mathematics of ratios.

Moreover, these quite contrasting modes of analysis were associated with quite 
di\ erent answers to particular musical questions. Are the octave, [ N h, and fourth 
exactly six tones, three and a half, and two and a half tones respectively? If the 
tone is identi[ ed as the ratio of 9 to 8, then you do not get an octave by taking six 
such intervals. 9 e excess of a [ N h over three tones, and of a fourth over two, has 
to be expressed by the ratio 256 to 243, not by the square root of 9/8.

9 is dispute in turn spilled over into a fundamental epistemological disagree-
ment. Is perception to be the criterion, or reason, or some combination of the 
two? Some thought that numbers and reason ruled. If what we heard appeared 
to cond ict with what the mathematics yielded by way of an analysis, then too 
bad for our hearing. We [ nd some theorists who denied that the interval of an 
octave plus a fourth can be a harmony precisely because the ratio in question 
(8:3) does not conform to the mathematical patterns that constitute the main 
concords. 9 ose all have the form of either a multiplicate ratio as, for example, 2:1 
(expressing the octave) or a superparticular one as, for example, 3:2 and 4:3, both 
of which meet the criterion for a superparticular ratio, namely n+1 : n.

It was one of the most notable achievements of the Harmonics written by 
Ptolemy in the second century ad to show how the competing criteria could be 
combined and reconciled (cf. Barker 2000). First, the analysis had to derive what 
is perceived as tuneful from rational mathematical principles. Why should there 
be any connection between sounds and ratios, and with the particular ratios that 
the concords were held to express? What hypotheses should be adopted to give 
the mathematical underpinning to the analysis? But just to select some principles 
that would do so was, by itself, not enough. 9 e second task the music theorist 
must complete is to bring those principles to an empirical test, to con[ rm that the 
results arrived at on the basis of the mathematical theory did indeed tally with 
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what was perceived by the ear in practice to be concordant—or discordant—as 
the case might be.

9 e study of the heavens was equally contentious. Hesiod is supposed to have 
written a work entitled Astronomia, though to judge from his Works and days his 
interest in the stars related rather to how they tell the passing of the seasons and 
can help to regulate the farmer’s year. In the Epinomis 990a (whether or not this is 
an authentic work of Plato) Hesiod is associated with the study of the stars’ risings 
and settings—an investigation that is contrasted with the study of the planets, 
sun, and moon. Gorgias 451c is one typical text in which the task of the astron-
omer is said to be to determine the relative speeds of the stars, sun and moon.

Both astronomia and astrologia are attested in the [ N h century bc and are 
oN en used interchangeably, though the second element in the [ rst has nemo as 
its root and that relates to distribution, while logos, in the second term, is rather 
a matter of giving an account. Although genethlialogy, the casting of horoscopes 
based on geometrical calculations of the positions of the planets at birth, does not 
become prominent until the fourth century bc, the stars were already associated 
with auspicious and inauspicious phenomena in, for example, Plato’s Symposium 
188b. Certainly by Ptolemy’s time (second century ad) an explicit distinction 
was drawn between predicting the movements of the heavenly bodies themselves 
(astronomy, in our terms, the subject-matter of the Syntaxis), and predicting 
events on earth on their basis (astrology, as we should say, the topic he tackled in 
the Tetrabiblos, which he explicitly contrasts with the other branch of the study 
of the heavens). Yet both Greek terms themselves continued to be used for either. 
Indeed, in the Hellenistic period the term mathēmatikos was regularly used of 
the astrologer as well as of the astronomer.

Both studies remained controversial. 9 e arguments about the validity of 
astrological prediction are outlined in Cicero’s De divinatione for instance, but 
the Epicureans also dismissed astronomy as speculative. On the other hand, there 
were those who saw it rather as one of the most important and successful of the 
branches of mathematics—not that they agreed on how it was to be pursued. We 
may leave to one side Plato’s provocative remarks in the Republic 530ab that the 
astronomikos should pay no attention to the empirical phenomena—he should 
‘leave the things in the heavens alone’—and engage in a study of ‘quickness and 
slowness’ themselves (529d), since at that point Plato is concerned with what the 
study of the heavens can contribute to abstract thought. If we want to [ nd out 
how Plato himself (no practising astronomer, to be sure) viewed the study of the 
heavens, the Timaeus is a surer guide, where indeed the contemplation of the 
heavenly bodies is again given philosophical importance—such a vision encour-
ages the soul to philosophize—but where the di\ erent problems posed by the 
varying speeds and trajectories of the planets, sun, and moon are recognized 
each to need its own solution (Timaeus 40b–d).
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Quite how the chief problems for theoretical astronomy were de[ ned in the 
fourth century bc has become controversial in modern scholarship (Bowen 
2001). But it remains clear [ rst that the problem of the planets’ ‘wandering’, 
as their Greek name (‘wanderer’) implied, was one that exercised Plato. In his 
Timaeus, 39cd, their movements are said to be of wondrous complexity, although 
in his last work, the Laws 822a, he came to insist that each of the heavenly bod-
ies moves with a single circular motion. 9 e model of concentric spheres that 
Aristotle in Metaphysics lambda (Λ) ascribes to Eudoxus, and in a modi[ ed form 
to Callippus, was designed to explain some anomalies in the apparent movements 
of the sun, moon, and planets. Some geometrical model was thereaN er common 
ground to much Greek astronomical theorizing, though disputes continued 
over which model was to be preferred (concentric spheres came to be replaced 
by eccentrics and epicycles). Moreover, some studies were purely geometrical in 
character, o\ ering no comments on how (if at all) the models proposed were to 
be applied to the physical phenomena. 9 at applies to the books that Autolycus of 
Pitane wrote On the moving sphere, and On risings and settings. Even Aristarchus 
in the one treatise of his that is extant, On the sizes and distances of the sun and 
moon, engaged (in the view I favour) in a purely geometrical analysis of how 
those results could be obtained, without committing himself to concrete con-
clusions, although in the work in which he adumbrated his famous heliocentric 
hypothesis, there are no good grounds to believe he was not committed to that as 
a physical solution.

Yet if we ask why prominent Greek theorists adopted geometrical models to 
explain the apparent irregularities in the movements of the heavenly bodies, 
when most other astronomical traditions were content with purely numerical 
solutions to the patterns of their appearances, the answer takes us back to the 
ideal of a demonstration that can carry explanatory, deductive force, and to the 
demands of a teleological account of the universe, that can show that the move-
ments of the heavenly bodies are supremely orderly.

We may note once again that the history of Greek astronomy is not one of 
uniform or agreed goals, ideals, and methods. It is striking how ind uential the 
contrasts that the philosophers had insisted on, between proof and persuasion 
or between demonstration and conjecture, proved to be. In the second century 
ad, Ptolemy uses those contrasts twice over. He [ rst does so in the Syntaxis in 
order to contrast ‘mathematics’, which here clearly includes the mathematical 
astronomy that he is about to embark on in that work, with ‘physics’ and with 
‘theology’. Both of those studies are merely conjectural, the [ rst because of the 
instability of physical objects, the second because of the obscurity of the subject. 
‘Mathematics’, on the other hand, can secure certainty, thanks to the fact that it 
uses—so he says—the incontrovertible methods of arithmetic and geometry. In 
practice, of course, Ptolemy has to admit the di7  culties he faces when tackling 
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such subjects as the movements of the planets in latitude (that is, north and south 
of the ecliptic): and his actual workings are full of approximations. Yet that is not 
allowed to diminish the claim he wishes to make for his theoretical study.

9 en, the second context in which he redeploys the contrast is in the opening 
chapters of the Tetrabiblos, which I have already mentioned for the distinction it 
draws between two types of prediction. 9 ose that relate to the movements of the 
heavenly bodies themselves can be shown demonstratively, apodeiktikōs, he says, 
but those that relate to the fortunes of human beings are an eikastikē, conjectural, 
study. Yet, while some had used ‘conjecture’ to undermine an investigation’s cred-
ibility totally, Ptolemy insists that astrology is founded on assumptions that are 
tried and tested. Like medicine and navigation, it cannot deliver certainty, but it 
can yield probable conclusions.

Many more illustrations of Greek ideas and practices could be given, but 
enough has been said for one important and obvious point to emerge in relation 
to our principal question of what mathematics was in Greece, namely that gen-
eralization is especially di7  cult in the face of the widespread disagreements and 
divergences that we [ nd at all periods and in every department of inquiry. Some 
investigators, to be sure, got on with pursuing their own particular study aN er 
their own manner. But the questions of the status and goals of di\ erent parts of 
the study, and of the proper methods by which it should be conducted, were fre-
quently raised both within and outside the circles of those who styled themselves 
mathematicians. But if no single univocal answer can be given to our question, we 
can at least remark on the intensity with which the Greeks  themselves debated it.

Chinese perspectives

9 e situation in ancient China is, in some respects, very di\ erent. 9 e key point 
is that two common stereotypes about Chinese work are seriously d awed: the [ rst 
that their concern for practicalities blocked any interest in theoretical issues, and 
the second that while they were able calculators and arithmeticians, they were 
weak geometers.

It is true that while the Greek materials we have reviewed may su\ er from a 
deceptive air of familiarity, Chinese ideas and practices are liable to seem exotic. 
9 eir map or maps of the relevant intellectual disciplines, theoretical or practical 
and applied, are very di\ erent both from those of the Greeks and from our own. 
One of the two general terms for number or counting, shu , has meanings that 
include ‘scolding’, ‘fate’, or ‘destiny’, ‘art’ as in ‘the art of ’, and ‘deliberations’ (Ho 
1991). 9 e second general term, suan , is used of ‘planning’, ‘scheming’, and 
‘inferring’, as well as ‘reckoning’ or ‘counting’. 9 e two major treatises that deal with 
broadly mathematical subjects that date from between around 100 bc and 100 ad, 
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both have suan in their title: we shall have more to say on each in due course. 9 e 
Zhou bi suan jing     is conventionally translated ‘Arithmetic classic of 
the gnomon of Zhou’. 9 e second treatise is the Jiu zhang suan shu    , the 
‘Nine chapters on mathematical procedures’. 9 is draws on an earlier text recently 
excavated from a tomb sealed in 186 bc, which has both general terms in its title, 
namely Suan shu shu   , the ‘Book of mathematical procedures’, as Chemla 
and Guo (2004) render it, or more simply, ‘Writings on reckoning’ (Cullen 2004). 
But the ‘Nine chapters’ goes beyond that treatise, both in presenting the problems 
it deals with more systematically, and in extending the range of those it tackles, 
notably by including discussing gou gu , the properties of right-angled tri-
angles (a [ rst indication of those Chinese interests in geometrical questions that 
have so oN en been neglected or dismissed). Indeed, thanks to the existence of the 
Suan shu shu we are in a better position to trace early developments in Chinese 
mathematics than we are in reconstructing what Euclid’s Elements owed to its 
predecessors.

When, in the [ rst centuries bc and ad the Han bibliographers, Liu Xiang and 
Liu Xin, catalogued all the books in the imperial library under six generic head-
ings, shu shu   ‘calculations and methods’ appears as one of these. Its six sub-
species comprise two that deal with the study of the heavens, namely tian wen 

  ‘the patterns in the heavens’ and li pu  ‘calendars and tables’, as well as 
wu xing   ‘the [ ve phases’, and a variety of types of divinatory studies. 9 e 
[ ve phases provided the main framework within which change was discussed. 
9 ey are named [ re, earth, metal, water, and wood, but these are not elements 
in the sense of the basic physical constituents of things, so much as processes. 
‘Water’ picks out not so much the substance, as the process of ‘soaking down-
wards’, as one text (the Great plan) puts it, just as ‘[ re’ is not a substance but 
‘d aming upwards’.

9 is already indicates that the Chinese did not generally recognize a funda-
mental contrast between what we call the study of nature (or the Greeks called 
phusike) on the one hand and mathematics on the other. Rather, each discipline 
dealt with the quantitative aspects of the phenomena it covered as and when the 
need arose. We can illustrate this with harmonic theory, included along with 
calendar studies in the category li pu.

Music was certainly of profound cultural importance in China. We hear of 
di\ erent types of music in di\ erent states or kingdoms before China was uni[ ed 
under Qin Shi Huang Di in 221 bc, some the subject of uniform approval and 
appreciation, some the topic of critical comment as leading to licentiousness and 
immorality—very much in the way in which the Greeks saw di\ erent modes of 
their music as conducive to courage or to self-indulgence. Confucius is said to 
have not tasted meat for three months once he had heard the music of shao in the 
kingdom of Qi (Lun yu 7 14).
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But musical sounds were also the subject of theoretical analysis, indeed of sev-
eral di\ erent kinds. We have extensive extant texts dealing with this, starting 
with the Huai nan zi, a cosmological summa compiled under the auspices of Liu 
An, King of Huainan, in 136 bc, and continuing in the musical treatises contained 
in the [ rst great Chinese universal history, the Shi ji written by Sima Tan and his 
son Sima Qian around 90 bc. 9 us Huai nan zi, ch 3, sets out a schema correlat-
ing the twelve pitchpipes, that give what we would call the 12-tone scale, with the 
[ ve notes of the pentatonic scale. Starting from the [ rst pitchpipe, named Yellow 
Bell (identi[ ed with the [ rst pentatonic note, gong), the second and subsequent 
pitchpipes are generated by alternate ascents of a [ N h and descents of a fourth—
very much in the manner in which in Greece the Aristoxenians thought that all 
musical concords should be so generated. Moreover, Huai nan zi assigns a num-
ber to each pitchpipe. Yellow Bell starts at 81, the second pitchpipe, Forest Bell, is 
54 —that is 81 times 2/3, the next is 72, that is 54 times 4/3, and so on. 9 e system 
works perfectly for the [ rst [ ve notes, but then complications arise. 9 e number 
of the sixth note is rounded from 42 2/3 to 42, and at the next note the sequence 
of alternate ascents and descents is interrupted by two consecutive descents of a 
fourth—a necessary adjustment to stay within a single octave.

On the one hand it is clear that a numerical analysis is sought and achieved, 
but on the other a price has to be paid. Either approximations must be allowed, 
or alternatively very large numbers have to be tolerated. 9 e second option is the 
one taken in a passage in the Shi ji 25, where the convention of staying within a 
single octave is abandoned, but at the cost of having to cope with complex ratios 
such as 32,768 to 59,049. Indeed Huai nan zi itself in another passage, 3. 21a, gen-
erates the twelve pitchpipes by successive multiplications by 3 from unity, which 
yields the number 177,147 (that is 311) as the ‘Great Number of Yellow Bell’. 9 at 
section associates harmonics with the creation of the ‘myriad things’ from the 
primal unity. 9 e Dao  is one, and this subdivides into yin  and yang , which 
between them generate everything else. Since yin and yang themselves are corre-
lated with even and with odd numbers respectively, the greater and the lesser yin 
being identi[ ed as six and eight respectively, and the greater and lesser yang nine 
and seven, the common method of divination, based on the hexagrams set out in 
such texts as the Yi jing   ‘Book of changes’, is also given a numerical basis. 
But, interestingly enough, the ‘Book of changes’ was not classi[ ed by Liu Xiang 
and Liu Xin under shu shu. Rather it was placed in the group of disciplines that 
dealt with classic, or canonical, texts. Indeed the patterns of yin and yang lines 
generated by the hexagrams were regularly mined for insight into every aspect of 
human behaviour, as well as into the cosmos as a whole.

Similarly complicated numbers are also required in the Chinese studies of the 
heavens. One division dealt with ‘the patterns of the heavens’, tian wen, and was 
chied y concerned with the interpretation of omens. But the other li fa included 
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the quantitative analysis of periodic cycles, both to establish the calendar and 
to enable eclipses to be predicted. In one calendrical schema, called the Triple 
Concordance System, a lunation is 29 43/81 days, a solar year 365 385/1539 days, 
and in the concordance cycle 1539 years equals 19,035 lunations and 562,120 days 
(cf. Sivin 1995). On the one hand, considerable e\ orts were expended on carrying 
out the observations needed to establish the data on which eclipse cycles could 
be based. On the other, the [ gures for the concordances were also manipulated 
mathematically, giving in some cases a spurious air of precision—just as happens 
in Ptolemy’s tables of the movements of the planets in longitude and in anomaly 
in the Syntaxis.

Techniques for handling large-number ratios are common to both Chinese 
harmonics and to the mathematical aspects of the study of the heavens. But there 
is also a clear ambition to integrate these two investigations—which both form 
part of the Han category li pu. 9 us, each pitchpipe is correlated with one of the 
twelve positions of the handle of the constellation ‘Big Dipper’ as it circles the 
celestial pole during the course of the seasons. Indeed, it was claimed that each 
pitchpipe resonates spontaneously with the qi of the corresponding season and 
that that e\ ect could be observed empirically by blown ash at the top of a half-
buried pipe, a view that later came to be criticized as mere fantasy (Huang Yilong 
and Chang Chih-Ch’eng 1996).

While the calendar and eclipse cycles [ gure prominently in the work of 
Chinese astronomers, the study of the heavens was not limited to those subjects. 
In the Zhou bi suan jing, the Master Chenzi is asked by his pupil Rong Fang 
what his Dao achieves, and this provides us with one of the clearest early state-
ments acknowledging the power and scope of mathematics.6 9 e Dao, Chenzi 
replies, is able to determine the height and size of the sun, the area illuminated 
by its light, the [ gures for its greatest and least distances, and the length and 
breadth of heaven, solutions to each of which are then set out. 9 at the earth is 
d at is assumed throughout, but one key technique on which the results depend 
is the geometrical analysis of gnomon shadow di\ erences. Among the observa-
tional techniques is sighting the sun down a bamboo tube. Using the [ gure for 
the distance of the sun obtained in an earlier study, the dimension of the sun 
can be gained from those of the tube by similar triangles. Such a result was just 
one impressive proof of the power of mathematics (here suan shu) to arrive at 
an understanding of apparently obscure phenomena. But it should be noted that 
although Chenzi eventually explains his methods to his pupil on the whole quite 
clearly, he [ rst expects him to go away and work out how to get these results on 

6. 9 e term Dao, conventionally translated ‘the Way’, can be used of many di\ erent kinds of skills, and 
here the primary reference is to Chenzi’s ability in mathematics. But those skills are thought of as subordinate 
to the supreme principle at work in the universe, which it is the goal of the sage to cultivate, indeed to embody 
(Lloyd and Sivin 2002).
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his own. Instead of overwhelming the student with the incontrovertibility of the 
conclusion ‘quod erat demonstrandum’, the Chinese master does not rate know-
ledge unless it has been internalized by the pupil.

9 e major classical Chinese mathematical treatise, the ‘Nine chapters’, indicates 
both the range of topics covered and the ambitions of the coverage. Furthermore 
the [ rst of the many commentators on that text, Liu Hui in the third century ad, 
provides precious evidence of how he saw the strategic aims of that treatise and 
of Chinese mathematics as a whole. 9 e ‘Nine chapters’ deals with such subjects 
as [ eld measurement, the addition, subtraction, multiplication, and division of 
fractions, the extraction of square roots, the solutions to linear equations with 
multiple unknowns (by the rule of double false position), the calculation of the 
volumes of pyramids, cones, and the like.

9 e problems are invariably expressed in concrete terms. 9 e text deals with 
the construction of city-walls, trenches, moats, and canals, with the fair distri-
bution of taxes across di\ erent counties, the conversion of di\ erent quantities of 
grain of di\ erent types, and much else besides. But to represent the work as just 
focused on practicalities would be a travesty. A problem about the number of 
workmen needed to dig a trench of particular dimensions, for instance, gives the 
answer as 7 427/3064ths labourers. 9 e interest is quite clearly in the exact solu-
tion to the equation rather than in the practicalities of the situation. Moreover the 
discussion of the circle–circumference ratio (what we call π) provides a further 
illustration of the point. For practical purposes, a value of 3 or 3 1/7 is perfectly 
adequate, and such values were indeed oN en used. But the commentary tradition 
on the ‘Nine chapters’ engages in the calculation of the area of inscribed regular 
polygons with 192 sides, and even 3072-sided ones are contemplated (the larger 
the number of sides, the closer the approximation to the circle itself of course): by 
Zhao Youqin’s day, in the thirteenth century, we are up to 16384-sided polygons 
(Volkov 1997).

Liu Hui’s comments on the chapter discussing the volume of a pyramid illus-
trate the sophistication of his geometrical reasoning (cf. Wagner 1979). 9 e [ g-
ure he has to determine is a pyramid with rectangular base and one lateral edge 
perpendicular to the base, called a yang ma  . To arrive at the formula setting 
out its volume (namely one third length, times breadth, times height) he has to 
determine the proportions between it and two other [ gures, the qian du   
(right prism with right triangular base) and the bie nao   (a pyramid with right 
triangular base and one lateral edge perpendicular to the base). A yang ma and a
bie nao together go to make up a qian du, and its volume is simple: it is half its 
length, times breadth, times depth. 9 at leaves Liu Hui with the problem of [ nd-
ing the ratio between the yang ma and the bie nao. He proceeds by [ rst decompos-
ing a yang ma into a combination of smaller [ gures, a box, two smaller qian du, 
and two smaller yang ma. A bie nao similarly can be decomposed into two smaller 
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qian du and two smaller bie nao. But once so decomposed it can be seen that the 
box plus two smaller qian du in the original yang ma are twice the two smaller 
qian du in the original bie nao. 9 e parts thus determined stand in a relation of 
2:1. 9 e remaining problem is, of course, to determine the ratios of the smaller 
yang ma and the smaller bie nao: but an exactly similar procedure can be applied 
to them. At each stage more of the original [ gure has been determined, always 
yielding a 2:1 ratio for the yang ma to the bie nao. If the process is continued, the 
series converges on the formula one yang ma equals two bie nao, and so a yang ma 
is two-thirds of a qian du, which yields the requisite formula for the volume of the 
yang ma, namely one third length, times breadth, times height (Fig. 1.1.1).

Two points of particular interest in this stretch of argument are [ rst that Liu 
Hui explicitly remarks on the uselessness of one of the [ gures he uses in his 
decomposition. 9 e bie nao, he says, is an object that ‘has no practical use’. Yet 
without it the volume of the yang ma cannot be calculated. At this point we have 
yet another clear indication that the interest in the exact geometrical result takes 
precedence over questions of practical utility.

Second, we may observe both a similarity and a di\ erence between the pro-
cedure adopted by Liu Hui and some Greek methods. In such cases (as in Euclid’s 
determination of the pyramid at Elements 12 3) the Greeks used an indirect proof, 
showing that the volume to be determined cannot be either greater or less than 
the result, and so must equal it. Liu Hui by contrast uses a direct proof, the tech-
nique of decomposition which I have described, yielding increasingly accurate 
approximations to the volume, a procedure similar to that used in the Chinese 
determination of the circle by inscribing regular polygons, mentioned above. Such 
a technique bears an obvious resemblance to the Greek method of exhaustion, 
though I remarked that in that method the area or volume to be determined was 
precisely not exhausted. Liu Hui sees that his process of decomposition can be 

yang ma qian dubie nao

Figure 1.1.1 the yang ma, bie nao, and qian du
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continued inde[ nitely, and he remarks on the progressively smaller remainders 
that this yields. We are dealing evidently with what we would call a converging 
series, but although Liu Hui has no explicit concept for the limit of such, he ends 
his investigation with the rhetorical question ‘how can there be any remainder?’.

9 ere is no suggestion, however, in any of the texts we have been considering, 
of giving mathematics an axiomatic base. 9 e notion of axiom is absent from 
Chinese mathematics until the arrival of the Jesuits in the sixteenth century. 
Rather the chief aims of Chinese mathematicians were to explore the unity of 
mathematics and to extend its range. Liu Hui, especially, comments that it is the 
same procedures that provide the solutions to problems in di\ erent subject-areas. 
What he looks for, and [ nds, in such procedures as those he calls qi  ‘homog-
enizing’ and tong  ‘equalizing’, is what he calls the gang ji   ‘guiding princi-
ples’ of suan ‘mathematics’. In his account of how, from childhood, he studied the 
‘Nine chapters’, he speaks of the di\ erent branches of the study, but insists that 
they all have the same ben  ‘trunk’. 9 ey come from a single duan  ‘source’. 
9 e realizations and their lei  ‘categories’, are elaborated mutually. Over and 
over again the aim is to [ nd and show the connections between the di\ erent parts 
of suan shu, extending procedures across di\ erent categories, making the whole 
‘simple but precise, open to communication but not obscure’. Describing how he 
identi[ ed the technique of double di\ erence, he says (92.2) he looked for the zhi 
qu   ‘essential characteristics’ to be able to extend it to other problems.

While Liu Hui is more explicit in all of this than the ‘Nine chapters’, the other 
great Han classic, the Zhou bi, represents the goal in very similar terms. We are 
not dealing with some isolated, maybe idiosyncratic, point of view, but with one 
that represents an important, maybe even the dominant, tradition. ‘It is the ability 
to distinguish categories in order to unite categories’ which is the key according 
to the Zhou bi (25.5). Again, among the methods that comprise the Dao ‘Way’, it 
is ‘those which are concisely worded but of broad application which are the most 
illuminating of the categories of understanding. If one asks about one category 
and applies [this knowledge] to a myriad a\ airs, one is said to know the Way’ 
(24.12\ ., Cullen 1996, 177).

Conclusions

To sum up what our very rapid survey of two ancient mathematical traditions 
suggests, let me focus on just two fundamental points. We found many of the 
Greeks (not all) engaged in basic methodological and epistemological disagree-
ments, where what was at stake was the ability to deliver certainty—to be able 
to do better than the merely persuasive or conjectural arguments that many 
downgraded as inadequate. 9 e Chinese, by contrast, were far more concerned 
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to explore the connections and the unity between di\ erent studies, including 
between those we consider to be mathematics and others we class as physics or 
cosmology. 9 eir aim was not to establish the subject on a self-evident axiomatic 
basis, but to expand it by extrapolation and analogy.

Each of those two aims we have picked out has its strengths and its weaknesses. 
9 e advantages of axiomatization are that it makes explicit what assumptions 
are needed to get to which results. But the chief problem was that of identifying 
self-evident axioms that were not trivial. 9 e advantage of the Chinese focus on 
guiding principles and connections was to encourage extrapolation and analogy, 
but the corresponding weakness was that everything depended on perceiving 
the analogies, since no attempt is made to give them axiomatic foundations. It is 
apparent that there is no one route that the development of mathematics had to 
take, or should have taken. We [ nd good evidence in these two ancient civiliza-
tions for a variety of views of its unity and its diversity, its usefulness for practical 
purposes and for understanding. 9 e value of asking the question ‘what is math-
ematics?’ is that it reveals so clearly, already where just two ancient mathemat-
ical traditions are concerned, the fruitful heterogeneity in the answers that were 
given.
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The title of an article published by Alan Bishop, ‘Western mathematics: the 
secret weapon of cultural imperialism’ (1990), must surely be one of the 

most provocative in the recent literature concerning the history of mathematics 
and the nature and status of mathematical practice.1 9 ere are several surprises 
in this title, beginning with the adjective ‘western’. According to Platonism, the 
grounding philosophy that informs the thinking of most mathematicians, math-
ematical truths lie beyond human experience, in an abstract realm set apart from 
language, culture, and history. In what sense, then, could mathematics be con-
ceived of as preferentially linked to one or the other of the earthly hemispheres? 
And how could mathematics—the supposed dispassionate and logical investi-
gation of arrangement, quantity, and related concepts in algebra, analysis, and 
geometry—be implicated in any meaningful way with such socially and polit-
ically loaded objects and concepts as ‘weapons’, ‘culture’, and ‘imperialism’? 
Conveniently, Bishop’s title provides an answer to this puzzle in the assertion 
that the association of mathematics with this disturbing set of modi[ ers is (or 
was) a ‘secret’.

1. 9 anks to Carrie Brezine and Julia Meyerson for their critical readings of draN s of this work. I alone am 
responsible for any errors of fact or logic that remain.

CH A P T ER 1. 2

Mathematics and authority: a case study in Old 
and New World accounting
Gary Urton
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In the article in question, Bishop argues that western European colonizing 
societies of the [ N eenth to nineteenth centuries carried with them to various 
exotic locales the giN s of rationalism and ‘objectism’ (that is, a way of conceiving 
of the world as composed of discrete objects that could be abstracted from their 
contexts), as well as a number of clearly formulated ways of employing mathem-
atical ideas and procedures, all of which combined to promote western control 
over the physical and social environments in the colonies. Such regimes of power 
and control constituted what Bishop (1990, 59) terms a ‘mathematico-technolog-
ical cultural force’ embedded in the colonies in institutions related to accounting, 
trade, administration, and education:

Mathematics with its clear rationalism, and cold logic, its precision, its so-called ‘object-
ive’ facts (seemingly culture and value free), its lack of human frailty, its power to predict 
and to control, its encouragement to challenge and to question, and its thrust towards yet 
more secure knowledge, was a most powerful weapon indeed. (Bishop 1990, 59)

When we look more broadly at the uses to which mathematics has been put, 
especially in accounting systems and in other administrative projects in ancient 
and modern states, it becomes clear that what is ideally conceived of as the [ ne, 
elegant, and dispassionate art of mathematics has in many times and places been 
intimately linked to systems and relations of authority in a wide range of ideo-
logical, philosophical, and political programs and productions. 9 e central ques-
tions that we will address here in relation to this history are: how has the linkage 
between mathematics and authority come about? And how and why has this rela-
tionship evolved in the particular ways it has in di\ erent historical settings?

To speak of a relationship between mathematics and authority is by no means 
to limit the issues to imperialist administrative regimes. It also arises in other 
settings, from the authority that emerges among mathematicians as a result of 
the successful execution of mathematical proofs, to the attempt by those steeped 
in the measurement and quanti[ cation of social behaviors to adopt math-based 
paradigms for ordering society (see Mazzotti, Chapter 3.3 in this volume). In 
short, what we will be concerned with here are a number of problems connected 
with the manipulation of numbers by arithmetical procedures and mathematical 
operations and the ways these activities enhance authority and underlie di\ er-
ences in power between di\ erent individuals and/or groups or classes in soci-
ety—for example, between bureaucrats and commoners, or, as in the particular 
setting to be discussed below, between conquerors and conquered.

We will address the questions raised above in three di\ erent but historically 
related cultural and social historical contexts. 9 e [ rst concerns mathematical 
philosophies and concepts of authority in the West in the centuries leading up 
to the European invasion of the New World. 9 is section will include an over-
view of the rise of double entry bookkeeping in European mercantile capital-
ism. Next, we will examine the practice of khipu (knotted-string) record-keeping 
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in the Inka empire of the Pre-Columbian Andes. And, [ nally, we will examine 
the encounter between Spanish written (alphanumeric) record-keeping practices 
and Inka knotted-string record-keeping that occurred in the Andes following the 
European invasion and conquest of the Inka empire, in the sixteenth century.

Accounting, authority, power, and legitimacy

A wealth of literature produced by critical accounting historians over the past 
several decades has elucidated the role of accounting as a technology of, and a 
rationality for, governance in state societies. Accounting and its specialized nota-
tional techniques are some of the principal instruments employed by states in 
their attempts to control and manage subjects (Hoskin and Macve 1986; Miller 
and O’Leary 1987; Miller 1990). As Miller has argued:

Rather than two independent entities, accounting and the state can be viewed as inter-
dependent and mutually supportive sets of practices, whose linkages and boundaries 
were constructed at least in their early stages out of concerns to elaborate the art of 
 statecraN . (Miller 1990, 332)

A focus on accounting is one of the most relevant approaches to take in 
 examining Andean and European (Spanish) mathematical practices, as this 
was the context of the production of most of the documentation deriving from 
mathematical activities in these two societies that is preserved in archives and 
museums. 9 e khipu was, [ rst and foremost, a device used for recording infor-
mation pertaining to state activities, such as census-taking and the assessment 
of tribute; this was also true of the information recorded by Spanish bureaucrats 
in written documents in the administration of the crown’s overseas holdings. 
For instance, among the some 34,000 legajos (bundles of documents) deriving 
from Spanish colonial administration in the New World, preserved today in the 
Archivo de Indias in Seville, the largest collections—other than those labeled 
Indiferente ‘miscellaneous/unclassi[ ed’—are those categorized under the head-
ings Contaduría ‘accountancy’ (1953 legajos) and Contratación ‘trade contracts’ 
(5873 legajos; Gómez Cañedo 1961, 12–13). Focusing on accounting will, there-
fore, provide us with the best opportunity for investigating the relative complex-
ity of arithmetic and mathematical practices employed in the records of these two 
states, as well as similarities and di\ erences in their principles of quanti[ cation.

Although the focus of this essay is on the relationship between mathematics 
and authority in the context of accounting, we will not get far in our examination 
of these concepts and domains of human intellectual activity without [ rst devel-
oping a clear sense of the meaning of ‘authority’ and discussing how this concept 
relates to the wider [ eld of social and political relations that includes legitimacy, 
power, and social norms. 9 e principal [ gure whose work must be engaged on 
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these topics is, of course, Max Weber (1964). Insofar as the question of power 
is concerned, Weber famously de[ ned this concept as ‘ . . . the probability that 
one actor within a social relationship will be in a position to carry out his[/her] 
own will despite resistance, regardless of the basis on which this probability rests’ 
(cited in Upho\  1989, 299). It is clear from this de[ nition that power is inextric-
ably linked to authority and legitimacy. Upho\  makes a forceful argument to 
the e\ ect that authority should be understood as a claim for compliance, while 
legitimacy should be understood as an acceptance of such a claim. 9 us, di\ er-
ent persons are involved in such power relationships; on the one hand there are 
‘the authorities’ and on the other there are those who are subject to and accept 
the claims of the authorities (Upho\  1989, 303). 9 us, the three central concepts 
we are concerned with are linked causally in the sense that the power associated 
with authority depends on the legitimacy accorded to it.

Weber identi[ ed three principal types of authority, each having a particular 
relationship to norms. One type, referred to as ‘charismatic authority’, which may 
be embodied by the prophet or the revolutionary, Weber considered the purest 
form of authority in that, in coming into being, it breaks down all existing norma-
tive structures. In ‘traditional authority’, the leader comes into power by heredity 
or some other customary route, and the actions of the leader are in turn limited by 
custom. 9 us, in traditional systems of authority, norms generate the leader, and 
one who comes into such a position of authority—the king, chief, or other heredi-
tary leader—depends on traditional norms for his/her authority. Finally, in what 
Weber termed ‘legal-rational authority’, the leader occupies the highest position in 
a bureaucratic structure and derives authority from the legal norms that de[ ne the 
duties and the jurisdiction of the o7  ce he/she occupies (Spencer 1970, 124–5).

In terms of the relationship between types of authority and forms of political 
rule relevant to our study, both the Inka state under its (possibly dual) dynastic 
rulers, as well as the Spanish kings of the Hapsburg dynasty, experienced proc-
esses of increasing regularization of bureaucratic procedures from traditional 
to rational-legal authority structures during the century or so leading up to the 
European invasion of the Andes. Our study will examine ways in which math-
ematical activities linked to accounting practices in pre-modern states in the 
Old and New Worlds served to legitimize or empower particular individuals or 
classes in their claims for compliance of the exercise of their will. Our task will 
be particularly challenging because we will examine these matters in the context 
of the Spanish conquest of the Inka empire, a historical conjuncture that brought 
two formerly completely unrelated world traditions of mathematics and author-
ity into confrontation with each other.

Two almost simultaneous developments in European mathematics and 
 commercialism during the fourteenth and [ N eenth centuries are critical to the 
picture we are sketching here of accounting and record-keeping practices of 
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Spanish colonial administrators in the sixteenth century. 9 ese developments 
were the invention of double-entry bookkeeping and the replacement of Roman 
numerals by Hindu-Arabic numerals.

9 e earliest evidence for double-entry bookkeeping dates from the thirteenth 
century when the method was put to use by merchants in northern Italy (Yamey 
1956; Carruthers and Espeland 1991). 9 e [ rst extended explanation of double-
entry bookkeeping appeared in a treatise on arithmetic and mathematics written 
by the Franciscan monk Luca Pacioli in 1494 (Brown and Johnston 1984). In 
the double-entry method, all transactions are entered twice, once as a debit and 
again as a credit (Fig. 1.2.1). Daily entries are posted to a journal, which are later 

Hypothetical Medieval Ledger Postings
based on Luca Pacioli’s Directions

In the Name of God

+Jesus
On this day, Cash shall give to
Capital CLI lire in the form of
coin.

Giovanni Bessini shall give, on
This day, CC lire, which he
promised to pay to us at our
pleasure, for the debt which
Lorenzo Vincenti owes us.

MCDIII

+Jesus MCDLXXX
Giovanni Bessini shall have back
on Nov. II, the CC lire, which he
deposited with us in cash.

+Jesus MCDLXXX

On this day, Jewels with a value
DLXX lire, shall give to
Capital

+Jesus MCDLXXIV

On this day, Business Expense
for office material worth CCC lire
Shall give to Cash

+Jesus MCDXXX

DLXX lire

CLI lire

CC lire

CCC lire

Cr. ref. page

+Jesus
On this day, Capital shall have
from Cash in the form of coin
CLI lire.

MCDIII

CLI lire

CC lire

Dr. ref. page

Dr. ref. page

Dr. ref. page

Cr. ref. page

Cr. ref. page

On this day, Capital shall have of
from Jewels, a value of
DLXX lire.

+Jesus MCDLXXIV

DLXX lire

Cr. ref. page

On this day, Cash shall have
from Business Expense CCC
lire.

+Jesus MCDXXX

CCC lire
Dr. ref. page

Figure 1.2.1 Double entry book-keeping ledger postings based on Luca Pacioli’s 
(1494) directions (Aho 2005, 71, Table 7.2)
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transferred to a ledger. 9 e ledger books provide the material for the process of 
accounting, which relies on the equation: assets = liabilities + equity. For books 
to remain in balance, a change in one account (a debit or credit) must be matched 
by an equal change in the other. In the rhetorical form in which Pacioli presented 
the method, the balancing of accounts by double-entry was constructed as an 
undertaking that had deep religious and moral implications.

9 e invention and implementation of double-entry went hand-in-hand with 
the replacement of Roman numerals by Hindu-Arabic numerals, which had 
been introduced into western Europe almost [ ve hundred years before their 
eventual acceptance into accounting practice in the [ N eenth century. Ellerman 
(1985, 232) argues that what is distinctive about double-entry is not that it 
relates two or more accounts, as that is a characteristic of the transaction itself; 
rather, the distinction of double-entry is that this is a new system of recording 
transactions. Double-entry required complex mathematics based on an e7  cient 
 system of numbers—like Hindu-Arabic numerals, rather than the cumbersome 
Roman numerals. 9 ere are extensive literatures documenting (Swetz 1989, 
11–13; Durham 1992, 48–49) and demonstrating (Donoso Anes 1994, 106) that 
the coupling of Hindu-Arabic numerals and double-entry in accounting had 
a powerful a\ ect in promoting increasing rationality in business, society, and 
politics. 9 ere is controversy over whether capitalism was nurtured initially and 
primarily by Catholicism, with its emphasis on penance and confession con-
stituting a form of accounting (Sombert 1967; Aho 2005), or by Protestantism 
(Weber 1958). However, those arguing on both sides of this question agree that 
the spread of double-entry bookkeeping throughout western Europe was a 
 central component of the increasing rationalization and standardization associ-
ated with the rise of mercantile capitalism (Carruthers and Espeland 1991, 32; 
Aho 2005).

While the centers of development of double-entry bookkeeping were the bur-
geoning mercantile city-states of northern Italy, the method soon spread to other 
regions of western Europe, including the Iberian peninsula. From detailed study 
of accounts pertaining to the sale of gold and silver brought from the Americas 
kept in the Casa de Contratación ‘Treasury House’, in Seville, Donoso Anes 
(1994) has shown convincingly that the double-entry method was employed in 
the central accounts of the Royal Treasury of Castille from as early as 1555. In 
fact, Spain was the [ rst European country to issue laws (in 1549 and 1552) com-
pelling merchants to apply the double-entry method, as well as the [ rst coun-
try in which the method was implemented by a public institution—the Casa de 
Contratación (Donoso Anes 1994, 115). Furthermore, Spanish merchants appear 
to have taught the method to English traders (Reitzer 1960, 216), and they were 
instrumental in developing and passing on to French merchants the practice of 
drawing bills of exchange (Lapeyre 1955, 22; cited in Reitzer 1960, 216). While 
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double-entry was used in Spanish accounting for the sale and minting of gold 
and silver by the Royal Treasury, single-entry accounts were kept at the same 
time, primarily as the o7  cial accounting procedure controlling the activities of 
the treasurer of the Casa de Contratación (Donoso Anes 1994, 115; cf. Klein and 
Barbier 1988, 54; Ho\ man 1970, 733).

9 e cities of northern Italy that were the centers of commercial activities from 
the fourteenth to the sixteenth centuries also became centers of learning in arith-
metic and mathematics. It was in these cities—Venice, Bologna, Milan—that 
Hindu-Arabic numerals were [ rst linked with double-entry to form the basis of 
modern accounting science. It was here as well that abacus or ‘reckoning’ schools 
grew up that were patronized by the sons and apprentices of merchants through-
out Europe. 9 e masters of those schools, the maestri d’abbaco, taught the new 
arithmetic, or arte dela mercadanta, ‘the mercantile art’ (Swetz 1989, 10–16). It 
was in northern Italy as well where, a couple of decades prior to the publication 
of Pacioli’s exposition of double-entry bookkeeping, the [ rst arithmetic text-
book, the so-called Treviso arithmetic, was published in 1478 (Swetz 1989). While 
not discussing the double-entry method itself, the Treviso arithmetic proclaimed 
itself from the opening passage as intended for study by those with an interest in 
commercial pursuits (Swetz 1989, 40).

9 is, then, was a new kind of authority in mathematics, one that was grounded 
not in theoretical considerations, but rather with a mathematics that served the 
practical needs and interests of the merchant. 9 e e7  cacy of this new mathem-
atics was determined not by how closely it cleaved to some body of theoretical 
principles or philosophical values, but rather by how well it tracked the debits, 
credits, and pro[ t d uctuations of merchant capitalists, how well it served in 
arbitrating disputes, and its overall contribution to the well-being of those who 
put the methods into practice. 9 is new mathematics of the [ N eenth century 
both stimulated and red ected the development of mercantilism and economic 
accounting and administration throughout Europe, and it was this mathematical 
practice that was transplanted to the New World in the [ N eenth and sixteenth 
centuries as the basis of accounting for trade, tribute, and the growth of wealth 
in the American colonies.

From virtually the earliest years following the invasion of the Andes, European 
administrators—toting accounting ledgers [ lled with columns of Hindu-Arabic 
numerals and alphabetically-written words and organized in complex formats—
came into contact with Inka administrative o7  cials wielding bundles of colorful 
knotted cords. 9 ese local administrators—known as khipukamayuqs ‘knot-
keepers/makers/organizers’—were, oddly enough, speaking the language (in 
Quechua) of decimal numeration and practicing what may have looked for all 
the world, to any Spaniard trained by the reckoning masters of northern Italy, 
like double-entry bookkeeping.
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A new world of knotted-cord record keeping

Khipus are knotted-string devices made of spun and plied cotton or camelid
[ bers (Figure 1.2.2).2 9 e colors displayed in khipus are the result of the  natural 
colors of cotton or camelid [ bers or of the dyeing of these materials with nat-
ural dyes. 9 e ‘backbone’ of a khipu is the so-called primary cord—usually 
around 0.5 cm in diameter—to which are attached a variable number of thinner 
strings, called pendant cords. Khipus contain from as few as one up to as many 
as 1500 pendants (the average of some 450+/- samples studied by the Harvard 
Khipu Database project is 84 cords). Top cords are pendant-like strings that leave 
the primary cord opposite the pendants, oN en aN er being passed through the 
attachments of a group of pendant strings. Top cords oN en contain the sum of 
values knotted on the set of pendant cords to which they are attached. About 
one-quarter of all pendant cords have second-order cords attached to them; these 
are called subsidiaries. Subsidiaries may themselves bear subsidiaries, and there 
are  examples of khipus that contain up to thirteen levels of subsidiaries, making 

2. According to my own inventory, there are some 780+/- khipu samples in museums and private collec-
tions in Europe, North America, and South America. While many samples are too fragile to permit study, 
almost 450 samples have been closely studied to date. Observations on a few hundred khipus may be viewed at 
<http://khipukamayuq.fas.harvard.edu/> and <http://instruct1.cit.cornell.edu/resear4ch/quipu~ascher/>.

Figure 1.2.2 A khipu from Museum for World Culture, Göteborg, Sweden 
(#1931.37.0001 [UR113])

http://khipukamayuq.fas.harvard.edu/
http://instruct1.cit.cornell.edu/resear4ch/quipu~ascher/
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the khipu a highly e7  cient device for the display of hierarchically organized 
information.3

9 e majority of khipus have knots tied into their pendant, subsidiary, and top 
strings (Locke 1923; Pereyra 2001). 9 e most common knots are of three di\ erent 
types, which are usually tied in clusters at di\ erent levels in a decimal place sys-
tem of numerical registry (Fig. 1.2.3).4 9 e most thorough treatment to date of the 
numerical, arithmetic, and mathematical properties of the khipus is Ascher and 
Ascher’s Mathematics of the Incas: code of the quipus (1997; see also Urton 1997; 
2003). 9 e Aschers have shown that the arithmetic and mathematical operations 
used by Inka accountants included, at a minimum, addition, subtraction, multipli-
cation, and division; division into unequal fractional parts and into proportional 
parts; and multiplication of integers by fractions (Ascher and Ascher 1997, 151–2).

What kinds of information were registered on the khipus? In addressing this 
question, it is important to stress that, although we are able to interpret the 
quantitative data recorded in knots on the khipus, we are not yet able to read 
the accompanying nominative labels, which appear to have been encoded in the 
colors, twist, and other structural features of the cords. 9 e latter would, were 
we able to read them, presumably inform us as to the identities of the items that 
were being enumerated by the knots. 9 us, in discussing the identities of objects 
accounted for in the khipus, we are forced to rely on the Spanish documents from 
the early years following the European invasion.

According to the Spanish accounts, records were kept of censuses, tribute assessed 
and performed, goods stored in the Inka storehouses, astronomical periodicities 
and calendrical calculations, royal genealogies, historical events, and so on (see 
Murra 1975; Zuidema 1982; Julien 1988; Urton 2001; 2002; 2006). 9 e overriding 
interest in the recording, manipulation and eventual archiving of quantitative data 
in the khipus was the attempt to control subject peoples throughout the empire. 
9 is meant being able to enumerate, classify, and retain records on each subject 
group. 9 e most immediate use to which this information was put was the imple-
mentation of the labor-based system of tribute. Tribute in the Inka state took the 
form of a labor tax, which was levied on all married, able-bodied men (and some 
chroniclers say women as well) between the ages of 18 and 50. In its conception and 
application to society, Inka mathematics appears to have taken a form remarkably 
like the political arithmetic of seventeenth-century Europeans.5 In sum, the deci-
mal place system of recording values—including zero (Urton 1997, 48–50)—of the 

3. For general works on khipu structures and recording principles, see Urton (1994; 2003); Ascher and 
Ascher (1997); Arellano (1999); Conklin (2002); Radicati di Primeglio (2006).

4. Approximately one-third of khipu studied to date do not have knots tied in (decimal-based) tiered 
arrangements. I have referred to these as ‘anomalous khipu’ and have suggested that their contents may be 
more narrative than statistical in nature (Urton 2003).

5. See the discussions of Inka arithmetic and mathematics in Ascher (1992); Ascher and Ascher (1997); 
Pereyra (2001); and Urton (1997).
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Figure 1.2.3 A clustering of knots on a khipu in decimal hierarchy

Inka knotted-cords was as precise and complex a system of recording quantitative 
data as the written Hindu-Arabic numeral-based recording system of Europeans 
at the time of the conquest, although the records of the former were not as rapidly 
produced, nor as easily changeable, as those of the latter.

Richardson (1987, 341) has argued that accounting has long been one of the 
principal institutions and administrative practices involved in maintaining and 
legitimizing the status quo in western European nation-states. Can this be said 
of khipu accounting in the pre-Hispanic Andes as well? We gain a perspective on 
this question by looking at two accounts of how censuses were carried out in the 
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Inka state. As in other ancient societies, census-taking was a vital practice in the 
Inka strategy of population control, as well as serving as the basis for the assess-
ment and eventual assignment of laborers in the mit’a (taxation by labor) system 
(Murra 1982; Julien 1988). 9 e [ rst account of census-taking is from the famed 
mid-sixteenth century soldier and traveller, Cieza de León:

the nobles in Cuzco told me that in olden times, in the time of the Inka kings, it was 
ordained of all the towns and provinces of Peru that the head men [señores principales] 
and their delegates should [record] every year the men and women who had died and 
those who had been born; they agreed to make this count for the payment of tribute, as 
well as in order to know the quantity of people available to go to war and the number 
that could remain for the defense of the town; they could know this easily because each 
province, at the end of the year, was ordered to put down in their quipos, in the count of 
its knots, all the people who had died that year in the province, and all those that had 
been born.6 (Cieza de León 1967 [1551], 62; my translation)

Some forty years aN er Cieza wrote down the information cited above, Martín 
de Murúa gave an account of Inka census-taking that varies somewhat from 
Cieza’s understanding of this process and that contains interesting details con-
cerning the actual procedures involved in local population counts.

9 ey sent every [ ve years quipucamayos [khipu-keepers], who are accountants and over-
seers, whom they call tucuyricuc. 9 ese came to the provinces as governors and visitors, 
each one to the province for which he was responsible and, upon arriving at the town he 
had all the people brought together, from the decrepit old people to the newborn nurs-
ing babies, in a [ eld outside town, or within the town, if there was a plaza large enough 
to accommodate all of them; the tucuyricuc organized them into ten rows [‘streets’] for 
the men and another ten for the women. 9 ey were seated by ages, and in this way they 
proceeded [with the count] . . . 7 (Murúa 2004 [1590], 204; my translation)

Late sixteenth-century drawings—what we could term ‘re-imaginings’—of 
these male and female accounting events from the chronicle of Martín de Murúa, 
are shown in Figs. 1.2.4 and 1.2.5.

One would be hard put to [ nd better examples than the two quotations cited 
above, and the images of census events in Figs. 1.2.4 and 1.2.5, of what Michel 

6.  . . . concuerdan los orejones que en el Cuzco me dieron la relación, que antiguamente, en tiempo de los 
reyes Incas, se mandaba por todos los pueblos y provincias del Perú que los señores principales y sus delega-
dos supiesen cada año los hombres y mugeres que habían sido muertos y todos los que habían nacido; porque, 
así para la paga de los tributes como para saber la gente que había para la Guerra y la que podia quedar por 
defensa del pueblo, convenía que se tuviese ésta [cuenta]; la cual fácilmente podían saber porque cada provin-
cia, en [ n del año, mandaba asentar en los quipos por la cuenta de sus nudos todos los hombres que habían 
muerto en ella en aquel año, y por el [con]siguiente los que habían nacido.

7. Enviaba de cinco a cinco años quipucamayos, que son contadores y veedores, que ellos llaman Tucuyricuc. 
Estos venían por sus provincias como gobernadores y visitadores, cada uno en las que le cabía, y llegado al 
pueblo hacía juntar toda la gente, desde los viejos decrépitos hasta los indios niños de teta y en una pampa o 
plaza, si la había, hacían estos gobernadores, llamados Tucuyricuc, señalar diez calles para los indios y otras 
diez para las indias, con mucho orden y concierto, en que por las edades ponían los dichos indios con mucha 
curiosidad y concierto . . . 
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Figure 1.2.4 Conducting a census count of men, by age-grade (Murúa 2004, 114v)
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Figure 1.2.5 Conducting a census count of women, by age-grade (Murúa 2004, 
116v)
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Foucault characterized as the disciplinary power of state institutions—what he 
termed power/knowledge structures—as they attend to the work of social sur-
veillance and the control of the bodies of subjects. 9 e result of such procedures 
was, as Foucault noted, the production of subjects that cooperate and connive 
in their own subjection (Foucault 1977, 184–187; Hoskin and Macve 1986, 106; 
Stewart 1992). In Inka census-taking, people were ordered into public spaces to 
be counted and classi[ ed. Although resistance and evasion may have been com-
mon in such proceedings, from what the Spanish chroniclers and administrative 
o7  cials tell us, Inka censuses were accomplished using non-coercive measures—
that is, local people apparently were compliant with the claims of authority com-
ing from local o7  cials and state administrators. Such surveillance, reporting, 
and social control procedures are examples of what Foucault termed a discipli-
nary, as opposed to sovereign, form of power.

Sovereign power is identi[ ed as a diminished form of power. Its ultimate recourse is 
seizure—of things, of bodies and ultimately of life. Disciplinary power is much richer 
and entails penetrating into the very web of social life through a vast series of regulations 
and tools for the administration of entire populations and of the minutiae of people’s 
lives. (cited in Miller and O’Leary 1987, 238)

9 us, as much as an accounting tool, the census khipu was an instrument for 
the performance and display of state authority and power within local communi-
ties.8 9 e census data collected by local record-keepers were knotted into khipus, 
copies were made of each record, and the data were subsequently reported to 
higher-level accountants in regional and provincial administrative centers (see 
Urton and Brezine 2005). Two issues arise with respect to these procedures: one 
concerns the practice of making one or more copies of khipu records, the other 
concerns the training and education of state record-keepers.

While there are a number of references in the Spanish chronicles to khipu 
copies, the study of such copies in the corpus of extant khipus has proceeded 
slowly. Recent advances have come about, however, following the development of 
a searchable database—the Khipu Database (KDB).9 From searches of the 450 or 
so samples included in the KDB, some 12–15 examples of copies of accounts have 
been identi[ ed (Urton 2005). While referred to as duplicate, or ‘matching’  khipus, 
we could also consider ‘pairs’ of khipus to represent an original and a copy.

Copies (or matching) khipus occur in three di\ erent forms. First, there are 
examples in which the numerical values on a sequence of strings on one sample 

8. Guevara-Gil and Salomon (1994) have discussed what were similar procedures, and results, in the cen-
suses undertaken by Spanish visitadores (administrative ‘visitors’) who were responsible for counting, classi-
fying, and (re-)organizing local populations in the early colonial Andes.

9. 9 e Khipu Database project (KDB), located in the Department of Anthropology, Harvard University, is 
described fully on the project website <http://khipukamayuq.fas.harvard.edu/>. I gratefully acknowledge the 
following research grants from the National Science Foundation, which made the creation of the KDB pos-
sible: #SBR-9221737, BCS-0228038, and BCS-0408324. 9 anks also to Carrie J Brezine, who served as Khipu 
Database Manager from 2002 to 2005.

http://khipukamayuq.fas.harvard.edu/
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are repeated exactly on another khipu. In some samples of this type, we [ nd that 
while the pair of khipus bears the same knot values, the colors of the strings may 
vary (see Urton 2005, 150–151). 9 e second type of matching khipus, which I 
have termed ‘close matches’, involves instances in which two di\ erent samples 
contain not exactly matching sequences of numbers, but rather ones in which the 
values are similar (for example, those of one sample varying a small amount from 
those on another sample). And, [ nally, we have examples in which a numerical 
sequence recorded on one cord section of a khipu are repeated exactly, or closely, 
on another section of cords of that same khipu.

I argued elsewhere (Urton 2005) that duplicate khipus may have been produced 
as a part of a system of ‘checks and balances’. However, duplicates seem also to 
possess most of the requisite elements of double-entry bookkeeping in which ‘all 
transactions were entered twice, once as a debit and once as a credit . . . 9 e debit 
side pertained to debtors, while the credit side pertained to creditors’ (Carruthers 
and Espeland 1991, 37). Close matches would be accounts in which the debits and 
credits sides of the ledger were not in balance. On pairs of khipus having iden-
tical numerical values on sequences of strings, but in which string colors vary 
(Urton 2005, 150–151), color could have been used to signal the statuses of credits 
and debits in the matching accounts.10 In the Inka state, debit/credit accounting 
would have been employed primarily in relation to the levying of labor tribute on 
subject populations.

9 e principal information that we lack in order to be able to con[ rm whether 
or not duplicate khipus might have been produced and used as double-entry-like 
accounts are the identities of the objects recorded on the khipus. Since we still 
cannot read the code of the khipus, we are unable to determine whether paired 
accounts were simply copies made for the purposes of checks-and-balances or if 
they might represent a relationship between a debit for an item on one account 
and the credit for that same item on another account. Research into this matter 
is on-going.11

What can we say about the individuals who became khipu-keepers for the 
state? How were these individuals recruited and trained? What role did they 
play in exercising authority and maintaining social and political control in the 
Inka state? 9 e late sixteenth-century chronicler Martín de Murúa provided the 

10. It is interesting to note that in early Chinese bookkeeping, red rods signi[ ed positive numbers while 
black rods were used for negative numbers. As Boyer noted, ‘[f]or commercial purposes, red rods were used 
to record what others owed to you and black rods recorded what you owed to others’ (cited in Peters and 
Emery 1978, 425).

11. 9 ree articles published in the 1960s and 1970s by economists and accounting historians contain a 
lively debate not only about whether or not the khipus contained double-entry bookkeeping, but about the 
claim made by one of the disputants (Jacobsen) to the e\ ect that the Inkas may in fact have invented the 
technique (Jacobsen 1964; Forrester 1968; Buckmaster 1974). 9 ere is not space here to review the arguments 
made in these three articles. Su7  ce it to say that, while interesting for historical purposes, these articles are 
all poorly informed about the nature of the khipus, about what the Spanish documents say about their use, as 
well as about Inka political and economic organizations.
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 following account of a school that was set up in the Inka capital of Cusco for the 
training of khipu-keepers.

9 e Inca . . . he set up in his house [palace] a school, in which there presided a wise old 
man, who was among the most discreet among the nobility, over four teachers who were 
put in charge of the students for di\ erent subjects and at di\ erent times. 9 e [ rst teacher 
taught the language of the Inca . . . and upon gaining facility and the ability to speak and 
understand it, they entered under the instruction of the next [second] teacher who taught 
them to worship the idols and the sacred objects [huacas] . . . In the third year the next 
teacher entered and taught them, by use of quipus, the business of good government and 
authority, and the laws and the obedience they had to have for the Inca and his gover-
nors . . . 9 e fourth and last year, they learned from the other [fourth] teacher on the cords 
and quipus many histories and deeds of the past.12 (Murúa 2001, 364; my translation).

9 e curriculum of the young administrators aimed at engendering loyalty 
to the Inka and adherence to state values, policies, and institutions. 9 e khipu 
studies component of the administrative curriculum ful[ lled what Miller and 
O’Leary (1987) have referred to as accounting education’s objective of produ-
cing ‘governable persons’ who themselves went on to administer for the state in 
the provinces. 9 e curriculum also incorporated what has been described as a 
process whereby examination, discipline, and accounting are bound together 
to empower texts, rationalize institutional arrangements for state interests and, 
ultimately, to transform the bodies of the persons subjected to training (Hoskin 
and Macve 1986, 107).

9 e situation outlined above was not to last for long, as less than half a century 
aN er the school of administration was set up, a cataclysmic event brought the 
school, not to mention the entire imperial infrastructure, crashing down; this 
event was the Spanish conquest.

Conquest, colonization, and the confrontation between knot- and
script-based texts

9 e story of the conquest of the Inka empire by the Spaniards, which was under-
taken by Francisco Pizarro and his small force of around 164 battle-hardened con-
quistadores, beginning in 1532, has been told too many times—in all its astonishing 

12. Dijo el Ynga . . . puso en su casa una escuela, en la cual presidía un Viejo anciano, de los más discretos 
orejones, sobre cuatro maestros que había para diferentes cosas y diferentes tiempos de los discípulos. El 
primer maestro enseñaba al principio la lengua del Ynga . . . Acabado el tiempo, que salían en ella fáciles, y 
la hablaban y entendían, entraban a la sujeción y doctrina de otro maestro, el cual les enseñaba a adorar los 
ídolos y sus huacas . . . Al tercer año entraban a otro maestro, que les declaraba en sus quipus los negocios 
pertenecientes al buen gobierno y autoridad suya, y a las leyes y la obediencia que se había de tener al Ynga y 
a sus gobernadores . . . El cuarto y postrero año, con otro maestro aprendían en los mismos cordeles y quipus 
muchas historias y sucesos antiguos . . . 
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and entrancing/appalling details—for me to add much to the telling in the space 
available here (see Hemming 1970). 9 e events of the conquest and the processes 
of colonization that are relevant for our discussion here are the following. 9 e ini-
tial battle of conquest, which occurred in November 1532 in the Inka provincial 
center of Cajamarca, in the northern highlands of what is today Peru, resulted in 
the defeat of the Inka army and the capture and execution of Atahualpa, one of 
two contenders for succession to the Inka throne. Pizarro then led his small force 
southward, arriving in the Inka capital city of Cuzco in 1534. 9 e Spaniards and 
their native allies were soon forced to defend Cuzco against a rebellion led by the 
Spanish-installed puppet-king, Manco Inca. 9 is gave rise to a decades-long war 
of paci[ cation of the rebels, which [ nally came to an end in 1572 with the execu-
tion of the then rebel leader, Tupac Amaru (Hemming 1970).

9 ree years prior to the capture and execution of Tupac Amaru, a new Viceroy 
of Peru (the fourth), Francisco de Toledo, had arrived in Peru with a mandate 
to put down the rebellion and to transform the war- and disease-ravaged land 
of the former Inka empire into an orderly and productive colony for the bene-
[ t of the king of Spain, Philip II. Viceroy Toledo instituted a set of reforms that 
were in some respects a continuation of certain of the processes of paci[ cation, 
reorganization, and transformation that had been on-going since the earliest days 
following the initial conquest. In other ways, Toledo’s reforms represented some-
thing completely new, di\ erent, and profoundly transformative in their e\ ects on 
Andean ways of life (Stern 1993, 51–79).

9 e end result of the Toledan reforms, the clear shape of which became mani-
fest by the mid-to-late 1570s, included, most centrally, the following institutions: 
encomiendas—grants of groups of Indians to Spanish encomenderos ‘overseers’ 
who were charged with the care and religious indoctrination of the natives and 
who, in exchange, had the right to direct native labor for their personal bene[ t 
but without  the right (aN er the Toledan reforms) to levy  tribute demands on them; 
corregimientos—territorial divisions for the management and control of civil 
a\ airs, including (theoretically) oversight of the encomenderos; reducciones—
newly-formed towns that were laid out in grid-like ground plans to which the 
formerly dispersed natives were transferred for their surveillance, control, and 
indoctrination; doctrinas—parish districts sta\ ed by clergy who attended to the 
religious indoctrination of the natives within the reducciones and who received a 
portion of the tribute for their own maintenance; and mita—a form of labor tax 
based on the Inka-era mit’a, which supplemented what was, for Andeans, a new 
kind of tribute imposed on them by Toledo: speci[ ed quantities of agricultural 
produce, manufactured goods (textiles, sandals, blankets), and coinage (Rowe 
1957; Ramírez 1996, 87–102).

9 e census was a critical institution for reorganizing Andean communities. 
Spanish censuses were carried out by administrative visitadores ‘visitors’ who 
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produced documents, known as a visitas, which were detailed enumerations of 
the population in the reducciones broken down (usually) into household group-
ings. Each household member was identi[ ed by name, age and—in the case of 
adult males—ayllu ‘social group’ a7  liation (Guevara-Gil and Salomon 1994; 
Urton 2006). 9 e visitadores were usually joined in their rounds by the kurakas 
‘local lords’ and oN en by the local khipukamayuqs. 9 e khipu-keepers could sup-
ply historical, corroborating information on population [ gures and household 
composition (Loza 1998). It is important to stress that participation by the native 
record-keepers was not primarily for the bene[ t of the Spaniards, rather, it was 
to ensure that the natives would have their own, khipu-based accounts of the 
enumeration in the event—which seems always and everywhere to have come 
to pass—that a dispute arose over the population count, the amount of tribute 
 levied, or other administrative questions.

9 ere are two contexts in which I will explore native Andean encounters with 
Old World mathematical principles and practices, each of which was linked to 
a wholly new relation of authority and power: the manner of collecting infor-
mation pertaining to the censuses, and the striking and circulation of coinage. 
9 ese practices were closely linked to new forms of tribute, as well as to what was, 
for Andean peoples, a completely new form of communication: writing—that is, 
the inscribing of marks in ordered, linear arrangements on paper, parchment, or 
some other two-dimensional surface. Such a medium and associated recording 
technology were unprecedented in the Andean world.

9 ere have been numerous important works published in recent years on 
the confrontation between khipu records and alphabetic texts in the early colo-
nial Andes (Rappaport and Cummins 1994, 1998; Mignolo 1995; Brokaw 1999; 
Quilter and Urton 2002; Fossa 2006; Quispe-Agnoli 2006). 9 at this body of 
works responds to what was, in fact, an area of intense interest and concern on 
both sides of an initially starkly drawn dual—native/Spaniard—world of social 
interactions and power relations is con[ rmed by the documentation detailing 
initial e\ orts by the Spaniards to establish an orderly colony in the former Inka 
territories. Central to this process from the 1540s through the 1570s was a pro-
gram of enumerating the native population, investigating its form(s) of organiza-
tion, and beginning to sketch out its history. One form that this process took was 
to call the khipu-keepers before colonial o7  cials and have them read the contents 
of their cords (Loza 1998; Urton 1998). 9 ese recitations were made before a len-
gua ‘translator’; the Spanish words spoken by the translator were written down 
by a scribe. 9 is activity resulted in the production of written transcriptions in 
Spanish alphanumeric script of the census data and other information previously 
jealously guarded by the khipu-keepers in their cords.

Many of the khipu transcriptions discovered to date have been assembled in 
an important collection, entitled Textos Andinos (Pärssinen and Kiviharju 2004). 
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While these documents have been studied in terms of the displacement, and 
eventual replacement, of khipu ‘literacy’ by alphabetic literacy, what has received 
virtually no attention to date is the equally striking information they contain 
with respect to the confrontation between Inka knot-based numeration and 
Spanish grapheme-based written numerals and mathematics. How and what did 
individuals on either side of this confrontation think about the translation of 
quantitative values from knotted-cords to written texts?

Fig. 1.2.6a shows an image of a khipu juxtaposed to an unrelated khipu tran-
scription, in Fig. 1.2.6b.13 It is important to stress that we do not have an actual 
match—such as that suggested in Figs. 1.2.6a and b—between an extant khipu 
and a transcription of that same sample. As for the khipu in Fig. 1.2.6a, we are 
able to read the knot values of this sample and thereby interpret the numerical 
information encoded on this sample. We assume that the identities of the objects 
accounted for in this khipu were represented in a constellation of elements, includ-
ing color, structure, and perhaps numbers interpreted as labels (Urton 2003). In 
the (unrelated) khipu transcription in Fig. 1.2.6b, the text is organized line by 

13. 9 e khipu sample shown in Fig.1.2.6a is from the site of Laguna de los Cóndores, in the area of 
Chachapoyas, northern Peru (#CMA 850/LC1–479; in the ‘Data table’ page of the KDB website, this is sample 
UR9). 9 e khipu transcription shown in Fig. 1.2.6b is from a tribute khipu from Xauxa, in the central Peruvian 
highlands, dating to 1558 (AGI, Lima 205, no. 16 folio 10r; see Pärssinen and Kiviharju 2004, 172–173).

Figure 1.2.6 a) A khipu from Centro Mallqui, Leymebamba, Amazonas, Peru (#CMA 
850/LC1–479 [UR9]) 
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Figure 1.2.6 b) A khipu transcription (AGI, Lima 205, no. 16, folio 10r)



 Mathematics and authority 47

line, as the khipu itself is organized string by string; each line in the transcription 
contains a number followed by the name/identity of the object enumerated on 
that string in the khipu from which the transcription was derived.

9 e numerical values recorded in the khipu shown in Fig. 1.2.6a are similar in 
their range of magnitudes and distribution to those found in early Spanish cen-
sus accounts in the Andes (Urton 2006). 9 e khipu transcription illustrated in 
Fig. 1.2.6b is a tribute account recorded in the valley of Xauxa, in 1558 (Pärssinen 
and Kiviharju 2004, 172–173). If Fig. 1.2.6a were the khipu from which the tran-
scription in Fig. 1.2.6b was drawn up (which it is not), we assume (but do not 
know for certain) that there would be a parallelism between number signs and 
object identity signs that would form a bridge across the semiotic—nominative 
and quantitative—divide separating these two species of texts.

Not surprisingly, almost all of the information we have in order to address the 
question of how Andean people thought about khipus and their translation and 
transcription into written texts comes to us from the Spanish side of the equa-
tion. 9 e Spaniards were at least initially respectful of the khipus and their keep-
ers, as the khipus were the primary sources of information on the basis of which 
Spanish o7  cials began to erect the colonial administration. 9 e most important 
point that should be made for our interest here concerning the juxtaposition of 
documents in Figs. 1.2.6a and b is that not only information, but authority as well, 
was located initially in the khipu member of the khipu/transcription pair juxta-
posed in Fig. 1.2.6. However, once the information was transferred from khipus 
to written texts, the locus of textual authority, legitimacy, and power began to 
shiN  toward the written documents.

While many native Andeans learnt how to read and write alphabetic script 
and how to manipulate Hindu-Arabic number signs, only a handful of Spaniards 
appear to have achieved any degree of familiarity with the khipus (Pärssinen 
1992, 36–50); it appears that no Spaniard became truly pro[ cient at manipulat-
ing and interpreting the cords (Urton 2003, 18–19). What this meant was that, 
rather than contests over interpretations of information contained in the two sets 
of documents coming down to reciprocal readings of the two sets of texts, what 
emerged between the 1540s and the 1570s were separate, contested readings by 
the keepers of the two di\ erent text types before a Spanish judge. As disputes 
intensi[ ed, and as more and more original data were recorded uniquely in the 
written documents, the khipu texts became both redundant and increasingly 
troublesome for the Spaniards (Platt 2002). By the end of the tumultuous six-
teenth century, khipus had been declared to be idolatrous objects—instruments 
of the devil—and were all but banned from o7  cial use.14

14. 9 e khipus were declared idolatrous objects and their use was severely proscribed by the 9 ird Council 
of Lima, in 1583 (Vargas Ugarte 1959). However, the khipus continued to be used for local record-keeping 
purposes—in some cases down to the present day (see Mackey 1970; Salomon 2004).
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9 e circulation of coins is another area in which Andeans were confronted 
with a completely new and unfamiliar terrain of political relations, economic 
activity, and shiN ing relations of authority over the course of the early colonial 
period. 9 e [ rst mint in South America was formally established in Lima in 
1568, just 36 years aN er the events of Cajamarca. 9 e royal decree that controlled 
the weights, [ neness, and the fractional components of the coins to be struck in 
Lima—the real and the escudo—were issued by Ferdinand and Isabella in 1479 
and amended by Charles V in 1537 (Craig 1989, 2). 9 e [ rst coins struck in Lima 
bore a rendering of the Hapsburg coat of arms on the obverse and a cross with 
castles and lions on the quartered face on the reverse (Craig 1989, 6).

As noted, the two coin types were the real, a silver coin, and the gold escudo. 
Each of these coin types was broken down into subunits, each of which was val-
ued in relation to a general, uni[ ed standard of valuation known as the maravedí. 
9 e latter was not a coin but rather it was what Moreyra Paz Soldán (1980, 66) 
terms moneda imaginaria y de cuenta ‘imaginary money of account’. 9 e mar-
avedí was used to coordinate values between di\ erent types of coins as deter-
mined by material di\ erences and subdivisions of standard units (for example, 
the silver real = 34 maravedís; the gold escudo = 350 [from 1537–1566] or 400 
[aN er 1566] maravedís). From this primary coordinating function, the maravedí 
served as a common denominator that permitted the interrelating of heteroge-
neous monetary values pertaining to gold and silver. For example, until 1566, the 
maravedí coordinated the value of silver to gold at 11.5 to 1; aN er 1566 the ratio 
was 12.12 to 1 (Moreyra Paz Soldán 1980, 66–67; Craig 1989, 2).

What did any of the above have to do with Andean peoples? How were they to 
understand the meaning of these words and concepts? To understand the force 
of these questions, we can begin by imagining how one might go about trans-
lating the previous two paragraphs into a language like those spoken by large 
numbers of people throughout the Andes in the [ rst few decades following the 
conquest, such as Quechua, Aymara, Puquina, or Yunga. 9 ey did not have terms 
for money or coinage, much less a term like maravedí, and had formed such con-
cepts as ‘value’, ‘heterogeneity’, and ‘account’ in the absence of markets and a 
monetary economy (Murra 1995). It is clear in this case where authority would 
quickly come to reside in any dispute that might arise over the exchange value 
of any one of the several coin types in this system that would have begun to cir-
culate through Andean communities by the 1570s. But we are getting ahead of 
ourselves.

From almost the earliest years following the conquest, Spanish o7  cials in the 
countryside (the encomenderos) had been levying tribute in kind, which in some 
places included a demand for plates of silver and bars of gold, and translating 
the value of these items into Spanish currency values (Ramírez 1996, 92–112). 
Spanish o7  cials regularly produced documents translating the quantities of 
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items of tribute in kind into values in pesos ensayados (a unit of value in  silver 
currency). 9 is was the main context within which the kurakas ‘local lords’ in 
communities would have begun to encounter translations of the use-value of 
objects, which they were familiar with in their local non-monetized economies, 
into exchange-values stated in terms of currency equivalents (Spalding 1973). 
Furthermore, the Viceroy Francisco de Toledo introduced in the mid-1570s a 
new tribute system, which included not only produce and manufactured goods 
but also coins; the sum to be given yearly by each tributary was four-to-[ ve pesos 
ensayados (that is, coinage in plata ensayada ‘assayed silver’). Tribute payers were 
designated as male heads of households between the ages of 18–50. 9 e native 
chronicler, Guaman Poma de Ayala, drew several images of native people paying 
their tribute using what appears to be coinage bearing the quartered reverse face 
of the cuatro reales (Fig. 1.2.7).15

People in communities—the newly-built reducciones—were able to acquire 
coins to pay their tribute from forced work in the mines (another component 
of the Toledan tributary system), as well as from marketing and wage labor. 9 e 
engagements with currency that resulted from these activities required people to 
begin to think about the di\ erent units of coinage, shiN ing equivalencies between 
coinage units, as well as to accommodate themselves to d uctuations in currency 
values in the periodic currency devaluations and the debasement of coinage that 
took place during the colonial period. 9 e act of ‘devaluing’ currency is a claim 
of authority on the part of some entity (such as the state) over the exchange-value 
of the coinage one holds in one’s own purse. One’s subsequent use of that same 
coinage according to the newly announced rate of exchange represents compli-
ance with the claim by the entity in question to control the value of one’s cur-
rency. Although we have almost no data on the basis of which to consider how 
Andean peoples responded to such changes (see Salomon 1991), these were some 
of the processes that were transpiring on the front lines of the confrontation 
between Old and New World mathematics and notions and relations of authority 
in the early colonial Andes.

Conclusions

We began this exploration by asking about the relevance and salience of a charac-
terization of mathematics as ‘the secret weapon of cultural imperialism’ (Bishop 

15. See the study by Salomon (1991) of one of the few references in the colonial literature to the engagement 
with coinage (la moneda de cuatro reales) by a native Andean during the colonial period. Salomon argues 
that the story, which appears in a well-known manuscript from Huarochirí (Salomon and Urioste 1991), is 
concerned with the internal cond icts of a man due to the competing religious sentiments he experiences 
over loyalty to a local deity (huaca) and the Christian deity. 9 e narrative plays on the precise symbolism of 
images, as well as the lettering, on a quartered Spanish coin.
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Figure 1.2.7 Paying tribute with coin bearing a quartered design (Guaman Poma de 
Ayala 1980, 521[525])
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1990). Having now looked at several aspects of arithmetic, mathematics, and 
accounting in western Europe and the Andes during the period leading up to, 
and a century or so beyond, the fateful encounter between Pizarro and Atahualpa 
in Cajamarca in 1532, we return to ask: in what sense was mathematics linked to 
authority, power, and legitimacy in this historical conjuncture?

I argue that the answer to the question posed above is found in the same ration-
ale and set of explanations that explain who writes history and who determines 
truth in history. 9 e answer to both of these questions is: the conqueror. 9 is is 
not because the conqueror knows what is, in fact, true; rather, it is because the 
conqueror possesses the power to speak, and to represent and establish the rules 
of the game as it is to be played from that moment forward. 9 is is the case not 
only in terms of narrating and writing the events of history and explaining their 
causes (Urton 1990), but also in taking the measure of the world and accounting 
for those measurements—geographic, demographic, economic, and so on—for 
as long as the dominant group holds power.

Power, which is intimately linked to the exercise of authority, takes many forms. 
In its most extreme and, paradoxically, weakest form, power is maintained by 
force. As Foucault has shown more clearly than any recent political theorist, the 
most e\ ective species of power is that which takes shape as individuals and groups 
become complicit with and participate in institutions of the state, such as in cen-
suses, regulatory and corrective institutions, and accounting (Foucault 1979, 140–
141; Stewart 1992; Smart 2002, 102–103). What is the place of mathematics in this 
Foucauldian, ‘genealogical’ conception of power and authority? I think that here 
we must return to the question of the certainty of mathematics, and of how that 
certainty relates to truth and, ultimately, to power. I suggest that the critical obser-
vation on these matters for our purposes here is that mathematics may be made 
to serve, although it itself is not responsible for giving rise to, regimes of power. 
A ‘regime of power’ may be manifested in the trappings of a king’s court, in the 
ministrations of a priestly hierarchy, or in complex ‘book-keeping’ procedures—
such as bundles of knotted cords in the hands of individuals authorized to record 
information (numerical and otherwise) in the interests of the state.
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CH A P T ER 1. 3

Heavenly learning, statecraN , and scholarship: 
the Jesuits and their mathematics in China
Catherine Jami

The story of the transmission of mathematics from Europe to China in the early 
modern age is closely linked to that of the Jesuit mission from 1582 to 1773, 

which spanned the last decades of the Ming dynasty (1368–1644) and the Qing 
dynasty (1644–1911) from its advent to its apogee in the mid-eighteenth century.1 
For almost two centuries, the Jesuits put the sciences in the service of evangeli-
zation: their knowledge enhanced the prestige of their religion and opened the 
way [ rst to the patronage of individual o7  cials, and then to that of the state. 9 is 
emphasis on the sciences as a tool for proselytization seems to have been unique 
at the time, both among the missionary orders present in China, and among 
Jesuit missions around the world (Standaert 2001, 309–354; Romano 2002). Even 
within the China mission, most Jesuits devoted their time and e\ ort solely to 
evangelization, while only a few ‘specialists’ among them taught and practiced 
the sciences (Brockey 2007). However, it could be argued that Jesuits’ science had 
a much more pervasive ind uence than their religion. Christianity remained a 
minority religion, even a marginal one.2 On the other hand all scholars interested 

1. For names and dates of people and dynasties, see Table 2 on page 80.
2. For the period under discussion, there were no more than about 200,000 Chinese Christians, with this 

maximum reached around 1700, when the Chinese population is estimated to have been about 150 million 
(Standaert 2001, 380–386).
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in the mathematical sciences knew about xi xue  ‘western learning’ whatever 
their attitude towards it might have been.

Two factors contributed to shaping Jesuit science in China: on the one hand, 
the importance that the Society of Jesus gave to mathematics (in the usual sense 
of this term in early modern Europe)—what we might call the o\ er; on the other 
hand, the renewal of interest in shi xue  ‘solid learning’ among late Ming 
scholars—what we might call the demand. Accordingly, I shall [ rst outline the 
place of mathematics in Jesuit education and bried y describe the state of math-
ematics in China around 1600. I will then go on to discuss translations of works 
on the mathematical sciences during the [ rst decades of the mission, and recount 
how participation in the Calendar Reform of 1629 and integration in the Chinese 
civil service in 1644 shaped the Jesuits’ practice and teaching of mathematics. 
Chinese responses to western learning entailed competing propositions for struc-
turing the discipline. Mei Wending’s  integration of Chinese and western 
mathematics was the most elaborate recon[ guration of the [ eld. His synthesis 
and the Kangxi emperor’s appropriation of western science were instrumental in 
reshaping the landscape of mathematics in China.

Mathematics in the Jesuit curriculum

Founded in 1540, the Society of Jesus soon started setting up colleges across 
Europe. 9 e sons of the elites of Catholic countries were educated in them, as 
were most members of the Society. 9 e latter oN en trained to be teachers, and for 
some of them this remained their main occupation. 9 e content and structure 
of the education provided by the Society were crucial in shaping Jesuit culture, 
in Europe as well as in China. Having previously studied the trivium (grammar, 
logic, and rhetoric), students entering a Jesuit college would typically begin with 
further training in rhetoric. 9 is was followed by three years devoted to logic, 
philosophy, and metaphysics. Early in the Order’s history, natural philosophy (or 
physics) and mathematics were both grouped under philosophy. According to the 
Aristotelian classi[ cation, physics and mathematics addressed two of the ten cat-
egories, respectively quality and quantity. Physics provided a qualitative explan-
ation of natural phenomena; it was based on the four-elements theory, according 
to which all matter was composed of earth, air, [ re, and wind, and the earth lay 
motionless at the centre of concentric crystalline spheres. In the scholastic trad-
ition, mathematics consisted of the four disciplines of the quadrivium, namely 
arithmetic, music, geometry, and astronomy.

However, it was somewhat rede[ ned in the Jesuit curriculum. 9 e Roman 
College, founded in 1551, set the standards for the Society’s educational 
 network. 9 e Ratio studiorum ([ nal version 1599), which de[ ned the Jesuit 
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system of teaching, gave a new importance to mathematics (Ratio studiorum 
1997). Christoph Clavius, architect of the Gregorian Calendar Reform of 1582, 
had taught mathematics at the Roman College since 1565, and was the [ rst to 
hold the chair of mathematics there. He was instrumental in establishing it as 
a subject independent from philosophy and in asserting its status as a science 
(Baldini 1992; Romano 1999, 133–178). 9 is was the outcome of a debate within 
the Society that was mainly epistemological. However the new importance of the 
mathematical arts in sixteenth-century Italy must also have played a role in the 
inclusion of mathematics in the subjects in which the Jesuits strove to be eminent 
(Gorman 1999, 172).

While establishing mathematics as an independent discipline in the Jesuit cur-
riculum, Clavius rede[ ned its structure and produced textbooks for its teaching. 
Following Proclus, he divided mathematics into ‘pure’ and ‘mixed’, the former 
consisting of arithmetic and geometry, the latter comprising six major branches 
(which were further divided into subordinate disciplines): natural astrology 
(astronomy), perspective, geodesy, music, practical arithmetic, and mechanics. 
9 is structure broadened the scope of mathematics and extended its [ elds of 
application (Engelfriet 1998, 30–32; Feldhay 1999, 110). 9 e works authored by 
Clavius, [ rst and foremost his editions of and commentaries on Euclid’s Elements 
and Sacrobosco’s Sphaera ‘Sphere’ (a thirteenth-century treatise on astronomy), 
as well as his textbooks on arithmetic and algebra, formed the basis of mathem-
atical education as he de[ ned it for the Society (Feldhay 1999, 109).

Jesuit education was not uniform: there were local variants in the mathemat-
ics taught,3 and, as with any school curriculum, a number of updates occurred. 
9 us, aN er the 1620s, the Ptolemaic system defended and taught by Clavius was 
gradually replaced by the Tychonic system, in which the sun, while revolving 
around the earth, was the centre of the orbit of the planets (Baldini 2000, 77). By 
and large, the tradition Clavius had established was continued in the sense that 
many teachers produced their own textbooks that were conceived as continua-
tions of his, though departing from them in their approach (Feldhay 1999, 114). 
Two examples are relevant to the mathematics transmitted to China. First, the 
number of textbooks entitled Elements of geometry produced in the seventeenth 
century, within and without the Society, was such that the phrase, and even the 
name of Euclid, came to refer to a genre—that of geometry textbooks—rather 
than merely to editions of the Greek classic. Second, whereas Clavius’ Algebra 
was one of the last representatives of the medieval tradition of cossic algebra, in 
which the unknown and its powers are denoted by abbreviations of their names 
(Reich 1994), Viète’s new notation, with vowels denoting the unknowns and con-
sonants the given quantities, was introduced into Jesuit teaching in the 1620s 

3. On Portugal see Leitão (2002); on France see Romano (1999, 183–354; 2006).
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(Feldhay 1999, 116–126). Matteo Ricci, the [ rst Jesuit to enter China at the end 
of the sixteenth century, had studied with Clavius at the Roman College and 
brought with him Clavius’ mathematics, but some of his successors in the China 
mission would present mathematics as it evolved in Jesuit colleges later in the 
century.

Mathematics in Late Ming China: the ‘Uni? ed lineage of mathematical 
methods’

It is widely admitted that by 1600, the most signi[ cant achievements of the Chinese 
mathematical tradition had fallen into oblivion. 9 e Jiu zhang suan shu  
‘Nine chapters on mathematical procedures’ ([ rst century ad), regarded as the 
founding work of the Chinese mathematical tradition (Chemla and Guo 2004) 
and included in the Suan jing shi shu  ‘Ten mathematical classics’ (656), 
had e\ ectively been lost. Furthermore the sophisticated tian yuan  ‘celestial 
element’ algebra developed in the thirteenth century had been forgotten.4 9 e 
calculating device on which both were based, the counting rods, had fallen into 
disuse; the abacus had become the universally used calculating device.5

By contrast with this picture of decline in mathematics, some historians 
describe the sixteenth century as a ‘second Chinese Renaissance’. In reaction 
against Wang Yangming’s  philosophy of the mind, which, around 1500, 
gave priority to introspection over concern with the outside world, as well as in 
response to a more and more perceptible political crisis, the last decades of the 
sixteenth century witnessed a strong renewal of interest in technical learning 
and statecraN  (Cheng 1997, 496–530). 9 e advocates of ‘solid learning’ empha-
sized the social role of literati, underlining that scholarship was of value only 
if it contributed to welfare and social harmony, while being grounded in veri[ -
able evidence. At the same time, the lowering of the cost of printing resulted in 
a signi[ cant broadening of the book market, which facilitated the circulation 
of knowledge. 9 e renewal in many [ elds of scholarship is exempli[ ed by such 
major works as Ben cao gang mu , ‘Compendium of medical material’ 
(1593) by Li Shizhen , Lü lü jing yi  ‘Essential meaning of pitchpipes’ 
(1596) by Zhu Zaiyu , and Tian gong kai wu  ‘Exploitation of the 
works of nature’ (1637) by Song Yingxing . 9 e mathematical treatise Suan 
fa tong zong  ‘Uni[ ed lineage of mathematical methods’ (1592) by Cheng 
Dawei  can be regarded as belonging to this trend and is representative of 

4. General accounts of the history of Chinese mathematics in western languages include Li and Du (1987), 
Martzlo\  (1997), Yabuuti (2000).

5. On counting rods see Volkov (1998); Lam and Ang (2004, 43–112). On the abacus see Jami (1998a).
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the state of mathematics in China by 1600. It was to remain a bestseller to the end 
of the imperial age (1911).

In mathematics as in many other [ elds, late Ming scholars blamed the  perceived 
loss of ancient traditions on their more recent predecessors’ indulgence in self-
centred and esoteric pursuits. Far from claiming to innovate radically, Cheng 
Dawei aimed at providing a compilation of earlier treatises that he had spent dec-
ades collecting. 9 is is red ected in the book’s title:6 it is not unlikely that Cheng 
saw himself as the heir of a lineage of scholars versed in mathematics. In his 
work he gave a bibliography of all earlier works on the subject that he knew of. 
Suan  was the usual term to refer to mathematics, fa  referred to the methods 
by which each problem was solved; suan fa occurred in the title of many of the 
works known to Cheng Dawei. 9 e ‘Uni[ ed lineage of mathematical methods’ 
represents a synthesis of a tradition of popular mathematics based on the abacus 
that can be traced back to Yang Hui  (d . 1261), in the Southern Song dynasty 
(Lam 1977; Yabuuti 2000, 103–121). 9 is tradition is usually contrasted with the 
learned tradition of the Song and Yuan dynasty that culminated with celestial 
element algebra.

Like most of the predecessors known to him, Cheng Dawei referred to a
canonical nine-fold classi[ cation of mathematics that can be traced back to the 
‘Nine chapters on mathematical procedures’, although the book itself was evi-
dently unavailable to him. In fact, during the late Ming and early Qing period, 
the phrase jiu zhang  ‘nine chapters’ mostly referred to that classi[ cation 
rather than to the classic work itself. But like most if not all authors before and 
aN er him, Cheng Dawei failed to [ t all the mathematical knowledge at his com-
mand into the headings of the nine chapters: his work is divided into seventeen 
chapters. It opens with a general discussion of some ancient diagrams then 
thought to represent the origins of mathematics. Chapter 1 contains some gen-
eral prescriptions for the study of mathematics, a list of the nine chapters, concise 
glosses of more than seventy terms used thereaN er (yong zi fan li , ‘guide 
to characters used’), lists of powers of tens and units, tables of addition, subtrac-
tion, multiplication, and division for the abacus, and brief explanations of some 
terms referring to common operations such as the simpli[ cation of fractions or 
the extraction of cube roots. Chapter 2 focuses on abacus calculation; it opens 
with an illustrated description of the instrument. 9 e following [ N een chapters 
contain 595  problems presented in the traditional form: question, answer, and 
method of solution. Chapters 3 to 6 and 8 to 12 take up the headings of the nine 
chapters in the traditional order, whereas Chapter 7 introduces a particular type 
of problem, which involves Fen tian jie ji fa  ‘Methods for dividing 

6. 9 is is the reason why I prefer to translate tong zong  literally as ‘uni[ ed lineage’ rather than to use 
the most common translation: ‘systematic treatise’.
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[ elds by cutting o\  their areas’: they deal with the dimensions and areas of [ g-
ures obtained by cutting o\  a part of a known [ gure. Chapters 13 to 16 contain 
Nan ti  ‘Di7  cult problems’, oN en stated as rhymes; these problems are again 
classi[ ed according to the headings of the nine chapters. 9 e last chapter gives 
Za fa  ‘Miscellaneous methods’; it includes various diagrams such as magic 
squares and depictions of hand calculation mnemonics. 9 e chapter closes with 
a bibliography of 52 titles, from the Song edition (1084) of the ‘Ten mathemati-
cal classics’ to works published in Cheng’s lifetime, spanning [ ve centuries (Guo 
1993, II 1217–1453). As this brief description of the work suggests, while the ‘Nine 
chapters on mathematical procedures’ was not accessible to Cheng, and while 
abacus calculation underlies the whole of his mathematics, his work belongs to a 
lineage that can be traced back to the [ rst-century ad classic. In this as well as in 
other respects, the ‘Uni[ ed lineage of mathematical methods’ can be regarded as 
representative of mathematics as practised in China at the time of the [ rst Jesuits’ 
arrival.

Teaching and translating: Jesuit mathematics in Ming China

9 e China mission was part of the Portuguese assistancy of the Society of Jesus: 
since the end of the [ N eenth century, all Asian missions were under the patron-
age of the Portuguese crown. 9 e port of Macao, founded by the Portuguese in 
1557, served as their Eastern base. While their Japanese mission d ourished, the 
Jesuits’ attempts to settle in China were unsuccessful until 1582. 9 e [ rst Jesuit 
residence in China was set up in Zhaoqing  (Guangdong province). In estab-
lishing contact with local elites, Matteo Ricci used both knowledge and artifacts 
that he had brought with him from Europe. At the same time, he assessed their 
knowledge in terms familiar to him:

9 ey have acquired quite a good mastery not only of moral philosophy, but also of astrol-
ogy [that is, astronomy] and of several mathematical disciplines. However, in the past 
they have been better versed in arithmetic and in geometry; but they have acquired all 
this and dealt with it in a confused way.7 (Ricci and Trigault 1978, 95)

In line with this emphasis on the shortcomings of the Chinese as regards math-
ematics, Ricci turned himself into a teacher. His relations with the [ rst literati 
interested in Christianity were modelled on a master–disciple relationship, which 
can be interpreted both in the context of Jesuit education and of Chinese lineages 

7. Ils ont non seulement acquis assez bonne connaissance de la philosophie morale, mais encore de 
l’astrologie et de plusieurs disciplines mathématiques. Toutefois il ont autrefois été plus entendus en 
l’arithmétique et géométrie; mais aussi ils ont acquis ou traité tout ceci confusément.
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of scholarship (Jami 2002a). He described the progress of Qu Rukui , one 
of his [ rst sympathizers and advisors, who eventually converted (Standaert 2001, 
419–420):

He started with arithmetic, which in method and ease by far surpasses the Chinese one: 
for the latter all in all consists in a certain wooden instrument in which round beads, 
strung on copper wire, are changed here and there, to mark numbers. Although in fact 
it is sure, it is easily subject to misuse, and reduces a broad science to very little. He then 
heard Christoph Clavius’ sphere and Euclid’s elements, only what is contained in Book I; 
towards the end he learnt to paint almost any kind of [ gures of dials to mark the hours. 
He also acquired knowledge of the heights of things through the rules and measures of 
geometry. And being, as I said, a man of wit and well versed in writing, he reduced all 
this into commentaries in a very neat and elegant language, which he later showed to 
mandarins. One would hardly believe what reputation this earned to him and to our 
fathers, from whom he acknowledged having learned it all. For all that he had been taught 
delighted the Chinese, so that it seemed that he himself could never learn to his heart’s 
content. For he repeated day and night what he had heard, or adorned the beginnings 
with [ gures so beautiful that they were by no means inferior to those of our Europe. He 
also made several instruments, spheres, astrolabes, dials, magnet boxes, mathematical, 
and other similar instruments very elegantly and artistically set up.8 (Ricci and Trigault 
1978, 308–309)

Ricci’s success is evidenced by his student’s capacity to produce both instruments 
and texts that were [ t for circulation among literati. 9 e former points to the 
inclusion of instrument making in mathematics as the Jesuits taught it in China. 
9 e latter brings out the fact that the Jesuits needed Chinese scholars’ help in 
order to write in Chinese. During the [ rst decades of the mission, the translation 
of mathematical texts was the outcome of teaching. AN er Ricci settled in Beijing 
in 1601, he taught mathematics to Xu Guangqi  and Li Zhizao , two 
high o7  cials who converted and took on the role of protectors of the Jesuit mis-
sion. 9 ey collaborated with Ricci in producing works based on some of Clavius’ 
textbooks (Martzlo\  1995).

8. Il commença par l’arithmétique qui en méthode et en facilité surpasse de beaucoup la chinoise: car icelle 
consiste toute en certain instrument de bois auquel des grains ronds en[ lés de [ l d’archal sont changés çà et 
là, pour marquer les nombres. Ce qu’encore que véritablement il soit assuré est sujet à recevoir facilement de 
l’abus et réduit à peu d’espèces d’une science très ample. Il ouït en après la sphère de Christopher Clavius et 
les éléments d’Euclide, ce que seulement est contenu au premier livre; sur la [ n il apprit à peindre quasi toutes 
sortes de [ gures de cadrans pour marquer les heures. Il acquit aussi la connaissance des hauteurs des choses 
par les règles et mesures de la géométrie. Et, pour autant, comme je l’ai dit, qu’il était homme d’esprit et fort 
expert en l’écriture, il réduisit tout ceci en commentaires d’un langage fort net et élégant, lesquels venant par 
après à montrer aux mandarins ses amis, à peine pourrait-on croire quelle réputation cela acquit tant à lui 
qu’à nos Pères, desquels il confessait avoir tout appris. Car tout ce qui lui avait été enseigné ravissait par sa 
nouveauté tous les Chinois en admiration, de façon qu’il semblait que lui même ne pouvait en aucune sorte 
se saouler et contenter d’apprendre. Car il répétait jour et nuit ce qu’il avait ouï ou ornait ses commence-
ments de [ gures si belles qu’ils ne cédaient en rien à ceux de notre Europe. Il [ t aussi plusieurs instruments, 
des sphères, astrolabes, cadrans, boîtes d’aimants, instruments de mathématiques et autres semblables fort 
élégamment et artistement dressés.
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Table 1 Chinese translations and adaptations of Clavius’ works

Clavius’ work Date of 
Chinese work

Title of Chinese 
work

Authors/
translators

Euclidis elementorum, 
1574

1607 Elements of geometry
(Ji he yuan ben )

Matteo Ricci
Xu Guangqi

Astrolabium,
1593

1607 Illustrated explanation of 
cosmographical patterns 
(Hun gai tong xian tu shuo

)

Matteo Ricci
Li Zhizao

Geometria practica,
1604

1608 Meaning of measurement 
methods
(Ce liang fa yi )

Matteo Ricci
Xu Guangqi

In sphaeram Ioannis 
de Sacro Bosco 
 commentarius,
1570

1608 On the structure of heaven 
and earth
(Qian kun ti yi )

Matteo Ricci
Li Zhizao

Epitome  arithmeticae 
 practicae,
1583

1614 Instructions for calculation 
in common script
(Tong wen suan zhi )

Matteo Ricci
Li Zhizao

In sphaeram Ioannis de 
Sacro Bosco commen-
tarius,
1570

1614 Meaning of compared 
[[ gures] inscribed in circles 
(Yuan rong jiao yi )

Matteo Ricci
Li Zhizao

Geometria practica,
1604

1631 Complete meaning of 
measurement
(Ce liang quan yi )

Giacomo Rho

9 e relationship between the Chinese works and their Latin sources varies. 9 e 
‘Meaning of measurement methods’, a brief treatise on surveying, completed by 
Ricci and Xu Guangqi at the same time as their translation of the [ rst six books 
of Euclid’s Elements in ‘Elements of geometry’, is not a direct translation from the 
Geometrica practica; it is probably based on Ricci’s lecture notes (Engelfriet 1998, 
297). 9 e ‘Instructions for calculation in common script’ takes up a number of 
problems found in earlier Chinese works such as Cheng Dawei’s ‘Uni[ ed lineage 
of mathematical methods’ and applies to them written arithmetic and the meth-
ods given by Clavius in his Epitome arithmeticæ practicæ (Jami 1992; Pan 2006).

Collaboration seems to have followed a pattern common to all translations, 
religious or secular: the Jesuit gave an oral explanation of the meaning of some 
original text, which the Chinese scholar then wrote down in classical Chinese. 
New terms were coined when there was no obvious equivalent for a Latin term in 
Chinese. For example, terms like de[ nition, axiom, postulate, proposition, proof, 
had to be created during the translation of Euclid’s Elements. 9 ese new Chinese 
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terms were not explicitly de[ ned before being used: whereas their Latin originals 
were part of the cultural background of those who studied geometry in Europe, 
such notions would have been entirely alien to a Chinese reader, and would prob-
ably remain somewhat of a mystery unless this reader was taught by someone 
familiar with them. But the vast majority of Chinese scholars who read the 1607 
translation did so without the help of such teaching. It is little surprise, therefore, 
that while there was much interest in the content of the Elements, the Euclidean 
style on the whole aroused more perplexity than enthusiasm (Martzlo\  1980; 
Engelfriet 1998, 147–154; Jami 1996).

De? ning and situating mathematics

Whereas Euclidean geometry was presented as a radical innovation, in arithmetic 
western learning was introduced as an improvement on the Chinese mathemat-
ical tradition. 9 e dichotomy between number and magnitude was made explicit 
in the structure of mathematics described in Ricci’s preface to the ‘Elements of 
geometry’:

9 e school of quantity (ji he jia ) consists of those who concentrate on examining 
the parts (fen ) and boundaries (xian ) of things. As for the parts, if [things] are cut 
so that there are a number (shu ) [of them], then they clarify how many (ji he zhong 

) the things are; if [things] are whole so as to have a measure (du ), then they point 
out how large (ji he da ) the things are. 9 ese number and measure may be dis-
cussed (lun ) in the abstract, casting o\  material objects. 9 en those who [deal with] 
number form the school of calculators (suan fa jia ); those who [deal with] measure 
form the school of mensurators (liang fa jia ). Both [number and measure] may 
also be opined on with reference to objects. 9 en those who opine on number, as in the 
case of harmony produced by sounds properly matched, form the school of specialists of 
pitchpipes and music (lü lü yue jia ); those who opine on measure, in the case of 
celestial motions and alternate rotations producing time, form the school of astronomers 
(tian wen li jia ).9

9 is is a description of the quadrivium, which, in Chinese terms, proposes to 
subsume four well-known technical [ elds under a broader, hitherto unknown 
discipline: the ‘study of quantity’. Ji he  renders the Latin quantitas. 9 e title 
chosen by Ricci and Xu for their translation was apparently intended to encom-
pass not just geometry, but rather the whole quadrivium. 9 e claim here is also 
that the ‘Elements of geometry’ provides foundations for a discipline that includes 

9. 

 Guo (1993, V 1151–1152, cf. Engelfriet (1998, 139); Hashimoto and Jami (2001, 
269–270).
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the Chinese tradition of suan fa as one of its parts. Ji he means ‘how much’ in 
classical Chinese: it occurred in every problem of the ‘Nine chapters on math-
ematical procedures’. In the ‘Uni[ ed lineage of mathematical methods’, however, 
ruo gan  (a synonym) is used in the question stated in problems; ji he appears 
in the ‘Guide to characters used’: it is glossed by ‘same as ruo gan’ (Guo 1993, II 
1230). Later in the seventeenth century, ji he came to refer to the content of the 
‘Elements of geometry’, that is, to Euclidean geometry.10

9 e dichotomy between the two instances of quantity rendered as shu  
‘number’ and du  ‘magnitude’ respectively would have been new to a Chinese 
reader at the time: shu was more evocative of numerology and the study of the Yi 
jing  ‘Classic of change’, than of procedures of suan fa. By using this last term 
to refer to procedures, Ricci and Xu again implied that mathematics as hitherto 
practised in China was to be embedded into a broader discipline.

No matter how unfamiliar Ricci’s distinction between shu and du might have 
appeared, the translations based on Clavius’ works, made in response to the 
curiosity of a few Chinese scholars, aroused enduring interest among a wider 
audience. Moreover, bringing together mathematics, surveying, astronomy, and 
musical harmony was not foreign to their tradition (Lloyd, Chapter 1.1; Cullen, 
Chapter 7.1 in this volume): surveying was one of the main themes of mathem-
atical problems; mathematical astronomy and musical harmony were discussed 
in the same section of quite a few dynastic histories. Also, one [ nds many exam-
ples of scholars known both as mathematicians and astronomers: Zhu Zaiyu, 
mentioned above as the author of the ‘Essential meaning of pitchpipes’ (1596, the 
earliest known discussion of equal temperament), strove to unify musical har-
mony and astronomy (Needham 1962, 220–228).

9 e translations mentioned above were part of the Jesuits’ larger enterprise 
of ‘apostolate through books’: their publications merged into the thriving book 
market of the late Ming (Standaert 2001, 600–631). 9 eir teachings were [ rst pre-
sented as a whole in a compendium edited by Li Zhizao, the Tian xue chu han

 ‘First collection of heavenly learning’ (1626). It was divided into two 
parts: li ‘Principles’ (nine works) and qi  ‘Tools’ (ten works). 9 e [ rst part 
opens with a description of the European educational system, entitled Xi xue fan 

 ‘Outline of Western learning’ (1621). Like Ricci, its author, Giulio Aleni, 
had been a student of Clavius at the Roman College. It presents the structure of 
disciplines that was then most common, mathematics consisting of the quadriv-
ium and being one subdivision of philosophy (Standaert 2001, 606). 9 e next six 
works of the collection discuss mainly ethics and religion. 9 e [ rst part closes 
with an introduction to world geography, also written by Aleni. Illustrated by 
several maps, including an elliptical world map, the Zhi fang wai ji , ‘Areas 

10. 9 e modern Chinese term for geometry is ji he xue , literally ‘the study of ji he’.
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outside the concern of the imperial geographer’ (1623) describes the earth as part 
of the universe created by God, and Europe as the ideal realm where Christianity 
has brought long-lasting peace.

9 e second part of the ‘First collection’ contains [ ve of Ricci’s six works based 
on Clavius. It also includes three works by another former student of Clavius, 
Sabatino de Ursis, dealing respectively with hydraulics, the altazimuth quadrant, 
and the gnomon. A short treatise entitled Gou gu yi  ‘9 e meaning of base-
and-altitude’, written by Xu Guangqi aN er he had completed the translation of 
the Elements with Ricci, is also included. 9 is was the [ rst attempt to interpret 
the traditional approach to right triangles (gou , base, refers to the shorter side 
of the right angle, and gu , altitude, to the longer one) in terms of Euclidean 
geometry (Engelfriet 1998, 301–313; Engelfriet and Siu 2001, 294–303).

In this compilation, Ricci’s treatise on the sphere based on Clavius was substi-
tuted by another one, the Tian wen lüe  ‘Epitome of questions on the heav-
ens’. 9 is is the only work pertaining to ‘tools’ that does not stem from the student 
lineage of Clavius: its author, Manuel Dias Jr, never leN  the Portuguese Assistancy 
of the Society of Jesus. Due to the importance of navigation in Portugal, the study 
of the sphere was emphasized in Jesuit colleges there (Leitão 2002). Clavius’ trea-
tise was one of a genre; it seems that the ‘Epitome of questions on the heavens’ 
was an original composition within that genre rather than a translation of a 
Latin text. It gave a description of Ptolemy’s system; in an appendix, it reported 
Galileo’s invention of the telescope and the observations he had made with it 
(Leitão 2008). 9 is was in keeping with the Society’s policy in Europe, where 
innovations were usually incorporated into teaching. As a whole, the works on 
instruments in the ‘First collection’ were part of the mathematical sciences con-
strued and constructed by Clavius for Jesuit colleges.

For converted o7  cials like Xu Guangqi and Li Zhizao, Jesuit teaching met 
essential concerns of their own agenda. 9 e ‘Principles’ and the ‘Tools’ of the 
‘First collection’ formed a coherent whole: whereas the latter could better the 
material life of the people, the former could contribute to their moral improve-
ment and therefore to social harmony. Heavenly learning was a [ tting response 
to the concerns of ‘solid learning’, to which jing shi  ‘statecraN ’ was central. 
Xu Guangqi’s list of the applications of mathematics is revealing in this respect: 
astrological prediction (for the state), surveying and water control, music (har-
mony and instruments), military technology, book-keeping and management 
for the civil service, civil engineering, mechanical devices, cartography, medi-
cine, and clockwork (Wang 1984, 339–342). All these were [ elds in which any 
progress would be socially useful. 9 is list includes not only the topics in which
western learning proposed innovations but also, more importantly, some of 
the main [ elds that ‘solid learning’ scholars strove to study. 9 e latter’s agenda 
thus oriented the choice of topics for translation; only the subjects that met their 
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concerns had a signi[ cant ind uence. Mathematics in its broader sense was among 
those subjects.

Mathematics and calendar reform

9 e [ eld in which converted o7  cials were most successful in promoting the 
Jesuits and their learning was astronomy. 9 e calendar had always been of utmost 
symbolical and political importance in China; issued in the emperor’s name, it 
ensured that human activity followed the cycles of the cosmos. 9 e need for cal-
endar reform had been felt before the Jesuits’ arrival (Peterson 1968), and Ricci 
had recommended the Society to send missionaries versed in this matter. In 1613, 
Li Zhizao proposed that three Jesuits be commissioned to reform the calendar 
(Hashimoto 1988, 16–17). 9 is may well have fostered opposition to Christianity 
(Dudink 2001). In 1629 a new proposal put forward by Xu Guangqi was [ nally 
approved. Under his supervision, a special Li ju  ‘Calendar O7  ce’ was created 
(Hashimoto 1988, 34–39). 9 is meant that o7  cials rather than private literati 
became the main recipients of European science.

9 e [ rst output of this newly created o7  ce was a series of twenty-two works 
(a few of which had actually been written before 1629). 9 ey were presented to 
the emperor between 1631 and 1634, and formed the Chong zhen li shu  
‘Books on calendrical astronomy of the Chongzhen reign’. 9 e knowledge they 
contained was very di\ erent in content and structure from that of the ‘First col-
lection’: reference was no longer made to an overarching system of knowledge, 
nor to the Catholic religion. 9 e Ptolemaic system was discarded in favor of the 
Tychonic system. 9 us institutionalized, western learning had become a techni-
cal subject organized according to o7  cial astronomers’ needs.

9 ree Jesuits, Johann Schreck, Johann Adam Schall von Bell, and Giacomo 
Rho, were in charge of the work; in 1633 Li Tianjing  succeeded Xu 
Guangqi as supervisor. More than twenty Chinese collaborated in this task. 
Some of these were converts, as were many Chinese who worked at the Qin tian 
jian  ‘Astronomical Bureau’ thereaN er. In late Ming o7  cials’ eyes, calen-
dar reform was to contribute to the restoration of social order and the dynasty’s 
strength, at a time when the military situation in particular was getting worse. 
However the result of the work done at the Calendar O7  ce ultimately bene[ ted 
the newly established Qing dynasty, to which Schall o\ ered his service on the 
fall of the Ming; the calendar he had calculated was promulgated in 1644. 9 e 
compendium’s title was changed to Xi yang xin fa li shu  ‘Books 
on calendrical astronomy according to the new Western method’ and a few 
works were added to it. 9 is marked the Jesuits’ entry into o7  cialdom at the 
Astronomical Bureau.
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According to Xu Guangqi’s classi[ cation, which he proposed while the ‘Books 
on calendrical astronomy’ were being composed, those books should fall into 
[ ve categories: fa yuan  ‘fundamentals’, fa shu  ‘numbers’, fa suan  
‘calculations’, fa qi  ‘instruments’, and hui tong  ‘intercommunication’, 
or correspondence between Chinese and western units. None of these categor-
ies correspond to speci[ cally mathematical subjects as opposed to astronom-
ical ones. Once the works were completed, it was not always speci[ ed which of 
these categories they belonged to; the ‘Calculation’ category remained empty. 
‘Fundamentals’ include practical geometry and trigonometry; Bi li gui jie 
‘Explanation of the proportional compass’ is among the ‘instruments’; trigono-
metric tables and Napier’s rods are included in ‘numbers’; this suggests that the 
latter aid to calculation was understood as a kind of moveable table (Jami 1998b). 
Neither Euclidean geometry nor the basics of written calculation were deemed 
necessary for the purposes of calendar reform. On the other hand Ricci’s math-
ematics had to be supplemented, mainly by trigonometry. On the whole, the 
‘Books on calendrical astronomy’ do not bring out astronomy and mathematics 
as two separate disciplines.

In the 1644 version of the ‘Books on calendrical astronomy’, a geometry trea-
tise was added, which was not allotted into any of these categories: the Ji he yao 
fa  ‘Essential methods of geometry’ (1631). It was composed of extracts 
from the ‘Elements of geometry’, focusing on constructions and leaving out 
proofs. 9 e work was the result of collaboration between Aleni and Qu Shigu 

, Qu Rukui’s son, and a Christian like his father (Jami 1997). To paraphrase 
Xu Guangqi, a recasting of western knowledge into the ‘Chinese mould’11 had 
occurred between the translation of Euclid’s Elements and the calendar reform. 
At the time of the former, astronomy was a branch of ‘the study of quantity’. 
During the latter, mathematics was conversely subsumed under calendrical 
astronomy for which it provided a series of tools and methods.

Integrating Chinese and Western mathematics: the work
of Mei Wending

Whereas conversion to Catholicism remained a marginal phenomenon in o7  -
cialdom and literati circles, a number of scholars during the late Ming and early 
Qing period were interested in the Jesuits’ mathematics. While the calendar 
reform took place in Beijing, it was mostly in the Lower Yangzi region, which 
had been of foremost economic and cultural importance since the tenth century 
ad, that some scholars read the Jesuits’ works. 9 e most thorough and systematic 

11. For a discussion of this phrase and its posterity, see Han Qi (2001, 367–373).
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of them was Mei Wending , who is the best known mathematician and 
astronomer of the period.

Mei’s syncretistic approach is suggested by the title of a collection of nine 
of his works that he put together in 1680: Zhong xi suan xue tong  
‘Integration of Chinese and western mathematics’. Only six of these nine works 
were eventually printed: this red ects the limits of Chinese literati’s interest in 
the mathematical sciences at the time. Mei, however, argued that they were a key 
to understanding the world: in his view, li  ‘principles’, a key concept of Neo-
Confucian philosophy, could only be fathomed through shu  ‘numbers’, and the 
principles thus uncovered were universally valid. For him numbers encompassed 
the whole of mathematics, which he divided into suan shu  ‘calculation pro-
cedures’ and liang fa  ‘measurement methods’ (SKQS 794, 64); accordingly, 
he proposed to reorganize the traditional nine chapters into two groups. Unlike 
the Jesuits and Chinese scholars before him, however, he also argued that calcula-
tion had primacy over measurement, as only the former could deal with invisible 
objects; however, the fashion of Euclidean geometry resulted in the neglect of this 
primordial [ eld. In his view the great contribution of Western learning to both 
mathematics and astronomy was that it explained suo yi ran  ‘why it is so’, 
whereas the Chinese tradition stated only suo dang ran  ‘what must be so’ 
(Engelfriet 1998, 430–431; Jami 2004, 708 and 719). Acknowledging the excel-
lence of Westerners in measurement methods, Mei proposed alternative proofs 
for some propositions of the ‘Elements of geometry’, and went on to explore sol-
ids (Martzlo\  1981, 260–290). In calculation, however, he emphasized the short-
comings of the Westerners. 9 is did not prevent him from adopting and adapting 
written calculation: in his lengthy Bi suan  ‘Brush calculation’ he transposed 
the four basic operations by writing all numbers in place-value notation verti-
cally, with the aim of making the orientation of the layout of calculations consist-
ent with writing in China, as it was in the West.

On the other hand, Mei set out to restore what had been lost of the Chinese 
mathematical tradition. 9 us he proposed a reconstruction of the method of fang 
cheng  ‘rectangular arrays’, equivalent to systems of linear equations in sev-
eral unknowns. 9 e method had been handed down from the eighth of the ‘Nine 
chapters on mathematical procedures’ through works like the ‘Uni[ ed lineage 
of mathematical methods’, in which problems were classi[ ed according to the 
number of unknowns; he regarded it as the acme of calculation. In his Fang cheng 
lun  ‘Discussion of the comparison of arrays’ (1672),12 Mei criticized this 
classi[ cation, and also chastised the authors of the ‘Instructions for calculation 
in common script’ for failing to recognize the speci[ city and powerfulness of 
the fang cheng method. Against both works, from which he took up a number 

12. Unlike today’s historians of mathematics, Mei interpreted fang cheng as ‘comparison of arrays’ (SKQS 
795, 67; cf. Martzlo\  1981, 166–168).
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of problems, and corrected several mistakes, he proposed an entirely new clas-
si[ cation of problems according to the operations involved in their resolution 
rather than to the number of unknowns (Martzlo\  1981, 161–231; Jami 2004, 
706–714). Further, he clari[ ed how the arrays were to be laid out according to the 
way the problem was stated, as regarded both the place where each number was 
to be and its ming  ‘denomination’, that is to say, the sign assigned to it for the 
purpose of solving the problem. ‘Denominations’ had been transmitted from the 
‘Nine chapters on mathematical procedures’, so in this respect Mei was indeed 
restoring an ancient method rather than innovating.13 AN er explaining the ‘com-
parison of arrays’ in all its technicalities, he went on to use it in order to solve a 
number of problems that pertained to other ‘chapters’ of the traditional nine-fold 
classi[ cation, and to astronomy. By showing that his reconstructed method was 
a generic tool that could solve problems traditionally associated with more spe-
ci[ c methods, he substantiated the claim that it was the acme of calculation. By 
applying it to astronomical problems, he also exempli[ ed why he gave primacy to 
calculation over measurement.

In several respects the style of the ‘Discussion of the comparison of arrays’ is 
in rupture with that dominant in mathematical works by Chinese authors of the 
time. Indeed, the work contained a series of problems, followed by their solution 
and the fa  ‘method’ used to solve them, which included the array associated to 
each problem. However, the author warns us, these problems only occupy 30% 
of the work, and play the role of li  ‘examples’, to illustrate lun  ‘discussion’, 
which occupies 70% of the work. Indeed the examples always follow a general 
discussion and in turn each of them is followed by further lengthy discussion, for 
the purpose of ming suan li  ‘clarifying the principles of calculation’ (SKQS 
795, 68). 9 us aN er a general discussion of positive and negative denominations, 
one particular problem, borrowed from the ‘Uni[ ed lineage of mathematical 
methods’, is rephrased four times; four corresponding arrays are given, in order 
to illustrate the rule that the [ rst number given in the problem should be laid out 
in the top right place of the array, and should always be assigned a zheng ming 

 ‘positive denomination’ (SKQS 795, 76–78).
Mei’s choice of the term lun ‘discussion’ to designate the discursive parts of 

his text is signi[ cant: whereas it was not a term traditionally used in mathemati-
cal texts, he knew at least two precedents. In the ‘Uni[ ed lineage of mathemat-
ics’, the method for solving a problem was sometimes followed by a discussion 
in the form of a poem, most likely with a mnemonic function. Lun also rendered 
‘proof’ in the 1607 translation of the ‘Elements of geometry’ but it is di7  cult to 
tell whether this was independent of its use for ‘discussion’. As mentioned before, 

13. Following the earlier Chinese tradition, Mei considered signs associated to numbers only in the con-
text of fang cheng problems. No concept of negative numbers occurs in his works.
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no explanation of the deductive structure of Euclidean proofs was given by the 
Jesuits; on the other hand, the latter themselves frequently used lun in the broader 
sense of ‘discussion’ or ‘discuss’, as Ricci did in the passage of his preface of the 
‘Elements’ quoted above. It is not unlikely, therefore, that Mei Wending saw the 
portions of the ‘Elements’ entitled lun as discussions that clari[ ed the ‘why it is 
so’ of each proposition. 9 e presence of lengthy ‘discussions’ in his own work 
can be understood as his appropriation of what he felt was a strong point of the 
Westerners’ mathematical style for writing on a subject anchored in the Chinese 
tradition. 9 us the integration of Western learning was not simply a matter of 
adding a new [ eld, like Euclidean geometry, or choosing, among the methods 
proposed by the Jesuits and those found in earlier works, the most relevant one. 
9 e craN  of writing mathematics itself shows signs of hybridization. In discourse 
on mathematics Chinese and western were oN en opposed, but in practice they 
were combined at every possible level.

B e Kangxi emperor’s appropriation of mathematics

AN er he was put in charge of the Astronomical Bureau, Schall successfully cul-
tivated the favour of the young Shunzhi emperor. AN er the death of the latter 
in 1661, however, the cond icts around Schall culminated in the Calendar Case 
(1664–1669). Choosing dates and locations for rituals was part of his tasks as the 
head of the Astronomical Bureau. 9 erefore, when it was found out that the time 
of an imperial prince’s funeral had been miscalculated, this mistake was added to 
the charge of promoting heterodox ideas that had previously been brought against 
him. 9 is brought about his downfall: he was sentenced to death—a sentence 
soon commuted to house arrest—and all the missionaries who worked in the 
provinces were expelled to Macao. In 1669, in the process of assuming personal 
rule at the end of the regency that had followed the death of his father, the young 
Kangxi emperor had the case reexamined. Ferdinand Verbiest, who succeeded 
Schall as the main specialist in the sciences aN er the latter’s death, turned out 
to be more accurate than his Chinese adversaries in predicting the length of the 
shadow of a gnomon at noon, and the verdict was reversed (Chu 1997). Following 
this, Kangxi undertook the study of western science, which he was to continue 
throughout his reign. Verbiest, who was his [ rst tutor, listed the mathematical 
sciences which thus ‘entered the imperial Court’ in the wake of astronomy, each 
presenting to the Emperor some achievement in the form of one or several tech-
nical objects: gnomonics, ballistics, hydragogics, mechanics, optics, catoptrics, 
perspective, statics, hydrostatics, hydraulics, pneumatics, music, horologic tech-
nology, and meteorology (Golvers 1993, 101–129). 9 us from the early years of 
the reign, the two-fold pattern of the Jesuits’ role at court was settled. On the one 
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hand they were court savants, who built and maintained various machines and 
instruments and took part in imperial projects. In line with the late Ming trend 
of ‘solid learning’, the emperor regarded most of their skills as tools for statecraN . 
On the other hand the Jesuits were imperial tutors, who wrote textbooks in both 
Chinese and Manchu. Kangxi’s motivations for studying western science were 
two fold: genuine curiosity was combined with eagerness to be in a position to 
control all issues and arbitrate all controversies, and to display his abilities to 
higher o7  cials. 9 e mathematical sciences within western learning were thus 
integrated into the body of Confucian learning mastered by the emperor—who 
emulated the Sages of antiquity (Jami 2002b; 2007).

9 e Jesuits’ tutoring of Kangxi in mathematics is best documented for the 
1690s, when it seems to have been at its most intensive. 9 ere were two di\ erent 
teams of tutors. Geometry was mostly taught by two French Jesuits, Jean-François 
Gerbillon and Joachim Bouvet, in Manchu; meanwhile, Antoine 9 omas was in 
charge of calculation and he used the Chinese language, with Tomé Pereira as his 
interpreter. Both teams of tutors produced textbooks that have been preserved as 
manuscripts (Jami and Han 2003). Kangxi also had his sons trained in the math-
ematical sciences; 9 omas was their tutor. His most talented pupil was prince 
Yinzhi , Kangxi’s third son. In 1702 tutor and student were sent on an expe-
dition to measure the length of a degree of a meridian (Bosmans 1926). 9 is was 
a preliminary to the general survey of the empire that Kangxi commissioned in 
1708. A number of Jesuits took part in it, applying the methods used by the Paris 
Academicians in their survey of France a few years earlier. 9 e outcome of this 
was the famous Huang yu quan lan tu  ‘Complete maps of the Empire’ 
(1718) known in Europe as the ‘Kangxi Atlas’ (Standaert 2001, 760–763).

9 e tutoring red ected Jesuit mathematical education at the time in Europe. 
9 us the geometry treatise that the two Frenchmen composed for the emperor was 
based on one of the many handbooks produced in Europe under the title ‘Elements 
of geometry’ in the seventeenth century. 9 eir choice of Elemens de geometrie 
(1671) by Ignace Gaston Pardies for tutoring the emperor—a choice that Kangxi 
approved—echoed the success of the work in Europe, where it underwent sev-
eral editions and reprints up to 1724, and was translated into Latin, Dutch, and 
English (Ziggelaar 1971, 64–68). 9 is work [ tted in with Gerbillon and Bouvet’s 
speci[ c agenda in teaching Kangxi. As they were among the [ ve Jesuits sent to 
China in 1685 by Louis XIV, they saw themselves as representatives of French sci-
ence as practised under the auspices of the Paris Académie Royale des Sciences. 
9 ey were in China not only to contribute to its evangelization but also to fur-
ther French interests in Asia. 9 e latter entailed gathering data for the Académie 
(Landry-Deron 2001). In their tutoring, which also included medicine and other 
aspects of philosophy, they claimed that they wrote ‘in the briefest and clearest way 
that [they] could, removing all there is of complicated terms and of pure chicanery, 
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following the style of the moderns’.14 Pardies, who had dedicated his geometry text-
book to the Paris Academicians, discarded the axiomatic and deductive style that 
characterized Euclid as edited by Clavius, in favour of shortness and ease. 9 is was 
an adjustment to the widening audience of Jesuit colleges in Europe; it also red ects 
the idea, common among seventeenth-century mathematicians, that clarity is an 
intrinsic quality of mathematics (Jami 1996; 2005, 217–221). Both the Manchu and 
the Chinese versions of the treatise, which are abridged translations, were written 
under the emperor’s personal supervision: some corrections and comments in his 
hand are found on two copies of the treatise. Like its European counterpart, this 
new treatise took up the title of the translation of Euclid’s Elements: in Chinese it 
was called Ji he yuan ben , like the 1607 translation.

Meanwhile, Antoine 9 omas composed two lengthy treatises. Before setting 
sail for Asia, he had taught mathematics in Coimbra, Portugal. For this purpose 
he had written a kind of vademecum, the Synopsis mathematica, a work expli-
citly designed for candidates to the China mission as well as for novices. 9 e 
[ rst of his Chinese treatises was called Suan fa zuan yao zong gang 
‘Outline of the essentials of calculation’, possibly a translation of the title of his 
Latin treatise. 9 e structure of the former work followed that of the chapters 
devoted to arithmetic in the latter (Han and Jami 2003, 150–152). However, while 
the Latin work only gave one example to illustrate each rule of calculation, the 
Chinese treatise contained a wealth of problems for each of these rules. Some 
problems were drawn from the ‘Instructions for calculation in common script’ 
by Ricci and Li Zhizao. Others evoked subjects that Kangxi discussed with the 
Jesuits during the tutoring sessions, such as astronomy or the speed of sound 
(Jami 2007). Another treatise written by 9 omas presented a branch of mathem-
atics never before taught by the Jesuits in China, namely algebra. 9 e term was 
transcribed as aerrebala  in the foreword of the treatise; however, it was 
the title of the treatise, Jie gen fang suan fa  ‘Calculation by borrowed 
root and powers’, that gave its name to the mathematical method described in it. 
Seventy years aN er some of the Jesuit colleges started to teach Viète’s notation, 
the Kangxi emperor was still being taught cossic algebra. In Chinese, full names 
in characters were used rather than abbreviations as in European treatises. 9 us, 
for instance, the equation x3 + 44 x2 + 363 x = 1950048 appears in the Jie gen fang 
suan fa  ‘Calculation by borrowed root and powers’ as:

 —ǀ—   —ǀ—  �� ��� 

1 cube   +    44 square +    363 root      =   1950048
(Bibliothèque Municipale de Lyon, Manuscript 39–43, V 135)

14. [ . . . ] de la maniere la plus brieve et la plus claire qu’il nous a esté possible, en retranchant tout ce qu’il 
y a de termes embrouillés et de pure chicane, conformément au style des modernes (Archivum Romanum 
Societatis Iesu, Jap Sin 165, f. 101r).
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9 omas’s textbook may well be an original composition, but the algebra in it 
is similar to that found in, among other works, Clavius’ Algebra (1608). Like 
Clavius, 9 omas included some [ rst degree problems in several unknowns, in 
which he represented the unknowns by the cyclical characters (jia , yi , bing 

, ding  . . .), in a manner equivalent to that in which one would use letters. 
Coe7  cients, on the other hand, were always numerical. 9 us, more than three 
decades aN er Mei Wending’s ‘Discussion on the comparison of arrays’, a Jesuit 
produced two treatises that appear as refutations of Mei’s criticism of Westerners 
as incompetent in calculation; moreover one of these treatises contained a pos-
sible alternative to the fang cheng method as reconstructed by Mei. At the time, 
algebra was not part of elementary mathematical education in Europe. 9 omas 
had not included it in his Latin mathematical treatise, but he was familiar with 
symbolic algebra. 9 at he nonetheless taught the emperor cossic algebra may 
red ect his wish to perpetuate the mathematics taught by Clavius and the Jesuits 
working in China during the late Ming period. It may also simply be due to the 
fact that symbolic algebra was regarded as more di7  cult. In 1713, that is, less 
than [ N een years aN er 9 omas completed his treatise on cossic algebra, another 
Jesuit, Jean-François Foucquet, attempted to present symbolic algebra to Kangxi; 
for this purpose, he set out to write a treatise that he entitled Aerrebala xin fa 

 ‘New method of algebra’. A section on [ rst-degree problems in several 
unknowns was completed and explained to the emperor; however the tutoring 
happened to stop just as Foucquet was starting on second-degree equations, so 
that the emperor did not have the chance to grasp the meaning of the juxtapos-
ition of two unknowns as a representation of their product. 9 e ‘New method of 
algebra’ was rejected, and, given the fact that Kangxi actually arbitrated matters 
to do with mathematics personally, symbolic algebra did not [ nd its way into 
Chinese mathematical textbooks until the second half of the nineteenth century 
(Jami 1986).

9 e emperor strove to integrate the mathematical sciences into imperial schol-
arship. In 1713 he created a Suan xue guan  ‘O7  ce of Mathematics’ sta\ ed 
by Chinese, Manchus, and some Mongols. It was modelled on various o7  ces of 
the same kind for literary or historical projects and headed by his son Yinzhi. 9 e 
sta\  of this o7  ce compiled a three-part compendium, the Yu zhi lü li yuan yuan

 ‘Origins of musical harmony and calendrical astronomy, imperi-
ally composed’, which was printed at the beginning of the Yongzheng reign 
(1723–1735). Western learning was dominant in the astronomical part, the Li 
xiang kao cheng  ‘9 orough investigation of calendrical astronomy’ (42 
chapters). It was expounded in a separate appendix in the Lü lü zheng yi 

 ‘Exact meaning of pitchpipes’ (5 chapters). It was interspersed with Chinese 
learning in the mathematical part, entitled Shu li jing yun  ‘Essence 
of numbers and their principles’ (53 chapters), which set the standard for
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the study of the subject. 9 e association of the three [ elds of astronomy, math-
ematics, and music points to the ind uence of the quadrivium, all the more so as 
mathematics was constructed on the dual foundations of geometry and calcula-
tion. However, the link between calendrical astronomy and the pitchpipes was a 
traditional one: both were about measuring and setting norms for the cosmos. 
Since number, that is mathematics, was used in both, putting the three disciplines 
together would not seem strange to Chinese readers. 9 e rationale put forward to 
justify it was borrowed from the Classics, the origin of all this learning being said 
to be the same as that of the Yi jing  ‘Classic of change’ (Kawahara 1995).

Most of the content of the ‘Essence of numbers and their principles’ can be 
traced back to the Jesuits’ tutoring of the 1690s. Some chapters, however, resulted 
from Chinese scholars’ work inspired by the nine chapters tradition. 9 e ‘Essence 
of numbers and their principles’ is divided into two parts of very unequal length, 
followed by some tables. 9 e [ rst [ ve chapters are devoted to li gang ming ti 

 ‘Establishing the structure to clarify the substance’. AN er a discussion of the 
foundations of mathematics, which roots it into Chinese antiquity, three chap-
ters are devoted to the ‘Elements of geometry’, a revised version of Gerbillon and 
Bouvet’s textbook. 9 is part closes on a chapter on the Suan fa yuan ben 

 ‘Elements of calculation’, a revised version of one of the textbooks produced in 
the 1690s, probably authored by 9 omas and mostly based on books VII and VIII 
of Euclid’s Elements. 9 us, while imperial mathematics was asserted to have its 
origins in ancient China, its foundations stemmed from Western learning, and 
more precisely from the early modern European appropriation of the Euclidean 
tradition. 9 e second part, comprising forty chapters, is on fen tiao zhi yong 

 ‘dividing items to convey their use’. It is divided into [ ve sections: shou 
 ‘initial’, xian  ‘line’, mian  ‘area’, ti  ‘solid’, and mo  ‘[ nal’. 9 e con-

tent is presented in the traditional form, that is, as a sequence of problems and 
solutions. AN er basic instruction on the four operations and fractions has been 
given in the ‘beginning section’, the three middle sections organize problems 
according to their dimension. A great part of the material in these [ rst four 
sections can be traced back to 9 omas’s ‘Outlines of the essentials of calcula-
tion’, while some material was drawn from Chinese authors as well. Six of the 
ten chapters in the end section, devoted to cossic algebra, are derived from his 
‘Calculation by root and powers’, with slightly modi[ ed vocabulary and nota-
tions; three chapters are devoted to a general presentation of the notation and 
of the techniques for solving equations; the three next chapters give problems 
that fall respectively in the ‘line’, ‘area’, and ‘volume’ categories. AN er cossic 
algebra, there follows a chapter of Nan ti  ‘Di7  cult problems’; this chap-
ter is one among several clues that suggest that Cheng Dawei’s ‘Uni[ ed lineage 
of mathematical methods’, among other Chinese works, were used to compile 
the ‘Essence of the principles of numbers’. 9 e last three chapters are devoted 
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to the principles of logarithms and to the proportional compass (Guo 1993, III 
1143–1235). Logarithms and trigonometric tables were appended. Imperial 
mathematics, which encompassed most of the knowledge available at the time, 
integrated an updated version of western learning devised for Kangxi and some 
revived branches of Chinese learning.

9 e compilers of ‘Essence of numbers and their principles’ had at their dis-
posal at least two methods for dealing with problems equivalent to systems of 
linear equations in several unknowns: Mei Wending’s ‘comparison of arrays’, and 
9 omas’s notation using cyclical characters. Unlike in the case of right triangles, 
for which they included both the traditional gou gu  ‘base-and-altitude’ meth-
ods and the techniques of western geometry, they retained only Mei Wending’s 
method, which they presented as an independent chapter of the ‘line section’. In 
the chapter on ‘line’ problems solved by ‘calculation by root and powers’, on the 
other hand, only one root, denoted as usual by gen , is used. 9 us, in the eyes 
of the compilers, none of the methods proposed by the Jesuits for solving linear 
problems in several unknowns measured up to the ancient Chinese method as 
reconstructed by Mei. 9 is can hardly have been the result of a bias in favour of 
traditional Chinese mathematics on their part: altogether only three chapters of 
the imperial compendium are titled aN er the names of the ‘Nine chapters’.

In bibliographies compiled during the two centuries that followed its compo-
sition, the ‘Essence of numbers and their principles’ was attributed to Kangxi. 
9 e list of editors of the ‘Origins of musical harmony and calendrical astronomy, 
imperially composed’, published in 1724, comprises forty-seven names, includ-
ing Yinzhi and one of his brothers. 9 ere is ample evidence that the emperor kept 
a close eye on the compilation’s progress, discussing details such as the layout of 
numerical tables with Yinzhi (Jami 2002b, 40–41). 9 e compendium was later 
used for the study of mathematics in imperial institutions (SKQS 600, 445). 9 us, 
o7  cials, if not all scholars, were to model their study of mathematics on that of 
the emperor.

Western learning without the Jesuits

9 e Rites Controversy, in which the Jesuit policy of accommodation to Chinese 
customs such as the ritual honouring of ancestors was over-ruled by Rome, 
brought about a change of imperial policy towards Catholic missionaries. 9 e 
court Jesuits seem to have lost imperial trust aN er the visit of a papal legate 
to Beijing in 1706, bringing the news that Chinese converts must abandon all 
‘idolatrous’ practices. In 1732, all missionaries working in the provinces were 
expelled to Macao; however, the Beijing Jesuits were allowed to remain and to 
practise their religion. 9 ey continued to be employed as o7  cial astronomers 
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and as cartographers, engineers, architects, and artists. Western learning at court 
remained in the service of imperial magni[ cence and of control of the expanding 
Qing territory (Standaert 2001, 358–363, 823–835). During the Qianlong reign 
(1736–1795), lengthy sequels to the ‘9 orough investigation of calendrical astron-
omy’ and to the ‘Exact meaning of pitchpipes’ were published. By contrast, the 
‘Essence of numbers and their principles’ does not seem to have been regarded 
as in need of supplementing. Although it never competed with the ‘Uni[ ed line-
age of mathematical methods’ for popular readership, the imperial compendium 
represented the basis of scholarly culture in mathematics.

Eighteenth-century scholars indeed appropriated mathematics and astronomy, 
but not quite in the way that Kangxi had tried to foster. Instead of becoming 
an end in itself or a tool for other technical [ elds, the discipline was integrated 
into the main intellectual trend of China at the time, kao zheng xue  ‘evi-
dential scholarship’ (Elman 1984, 79–89; Tian 2005, 134–145). 9 e aim was the 
restoration of the original text of ancient classics, the meaning of which, it was 
argued, had been distorted, especially by Song dynasty (960–1279) commenta-
tors. Scholars who followed this trend developed sophisticated methods in phil-
ological disciplines. Mathematics and astronomy were a tool for that purpose: 
ancient records of astronomical events were used to date documents and events. 
But they were also an object of study; thus Dai Zhen , who is regarded as the 
greatest philologist of the time, reconstructed the text of the ‘Nine chapters on 
mathematical procedures’.

9 e turn towards ancient texts in the mathematical sciences went together with 
the development of the idea xi xue zhong yuan  ‘western learning origi-
nated in China’. While at [ rst he argued for the unity of mathematics East and 
West, Mei Wending eventually turned to investigating this idea in detail, encour-
aged by Kangxi (Chu 1994, 184–217; Han 1997). 9 e advantage for the emperor 
was obvious: if the calendar was based on foreign knowledge, then he could be 
challenged for applying Barbarian knowledge to regulate the rites that lay at the 
heart of Chinese civilization. If on the other hand that knowledge had originated 
in China, he became the personi[ cation of the Confucian monarch who retrieved 
ancient learning for the empire’s bene[ t, which was quite an achievement for a 
Manchu ruler. For Chinese scholars on the other hand, the Chinese origin of
western knowledge neutralized any claim of superiority of the latter. 9 e idea 
could have some heuristic value as was the case in the [ eld of algebra: identi[ -
cation with calculation by borrowed roots and powers as introduced by 9 omas 
eventually proved instrumental in the rediscovery of thirteenth-century celestial 
element algebra (Han 2003, 80–81). At the turn of the nineteenth century there 
were debates over the respective merits of the two methods (Tian 2005, 250–271).

9 us western learning, represented both by late Ming Jesuits’ translations and 
by the ‘Essence of numbers and their principles’, became an entity opposed to 
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Chinese learning. Even as eighteenth-century scholars distinguished between 
these two types of learning, and could side with one against the other, none of 
them simply ignored western learning; the latter, while keeping its identity, had 
been appropriated.

Conclusion

Studies of the Jesuits’ transmission of mathematics from Europe to China have 
long focused on Euclid’s Elements of geometry, arguably to the detriment of 
other branches of mathematics; this is no doubt a consequence of the role of this 
work as a supposed embodiment of the essence of either ‘western mathemat-
ics’ or mathematics tout court. 9 e story of ‘Euclid in China’ has been told in 
terms of European categories, as one of a radical innovation that had universal 
validity; ‘the Chinese understanding’ (or misunderstanding) of this innovation 
supposedly revealed general features of ‘Chinese thought’. Writings on geometry 
by Chinese authors of the seventeenth century have been assessed according to 
their conformity to the Euclidean model (Martzlo\  1980). 9 is [ tted in a his-
toriography that modelled Sino-European contacts as (European) ‘action’ and 
(Chinese) ‘reaction’ (Gernet 1982).

Further contextualization of the introduction of Euclidean geometry
(Engelfriet 1998; Jami 1996), as well as inclusion of other branches of mathemat-
ics into the narrative, have yielded a di\ erent picture, one of complex interaction 
rather than of action and reaction. In introducing European written arithmetic, 
for example, a synthesis was proposed from the onset between what the Jesuits 
brought in and what was found in Chinese mathematical works of the time. 
Looking at the Chinese category suan , which by 1600 by and large denoted 
the whole of mathematics, one can trace the restructuring of the [ eld during 
the hundred and twenty years that followed. 9 e Jesuits [ rst used suan as refer-
ring to arithmetic, and proposed to embed the Chinese tradition into a broader 
[ eld, for which their geometry provided a foundation. However, as some Chinese 
scholars’ subsequent interpretations of suan, eventually taken up by the Jesuits 
of the Kangxi court themselves, were broader: a more general category, best ren-
dered by the term ‘calculation’, was thus constructed, within which a number of 
competing methods were proposed. In parallel, the term shu  ‘number’, used 
by the Jesuits to denote only one of the two instances of quantity, came to name 
the broader [ eld that encompassed geometry and calculation. Mathematics thus 
gained a status within scholarship as de[ ned in neo-Confucian philosophy: it 
was a tool to access li  ‘principles’ which was the ultimate goal of all learning. 
9 us the cross-cultural transmission and reception of mathematics entailed its 
reconstruction at several levels: its methods, branches, the structure of texts, but 
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also the discipline as a whole vis-à-vis other scholarly pursuits, were reshaped by 
the process of their integration into a di\ erent landscape. 9 is conclusion brings 
out mathematics as a d exible and dynamic system of knowledge and practice, 
rather than as an immutable body of truths.

Table 2: Names and dates

Song dynasty (960–1279)
Yuan dynasty (1279–1368)
Ming dynasty (1368–1644)
Qing dynasty (1644–1911)
Chongzhen reign (1628–1644)
Shunzhi reign (1644–1661)
Kangxi reign (1662–1722)
Yongzheng reign (1723–1735)
Qianlong reign (1736–1795)
Jesuit mission (1582–1773)

Cheng Dawei  (1533–1606)
Dai Zhen  (1724–1777)
Li Shizhen  (1518–1593)
Li Tianjing  (1579–1659)
Li Zhizao  (1565–1630)
Mei Wending  (1633–1721)
Qu Rukui  (1549–1611)
Qu Shigu  (b. 1593)
Song Yingxing  (1582– aN er 1665)
Wang Yangming  (1472–1529)
Xu Guangqi  (1562–1633)
Yang Hui  (d  1261)
Yinzhi  (1677–1732)
Zhu Zaiyu  (1536–1611)

Giulio Aleni (1582–1649)
Joachim Bouvet (1656–1730)
Christoph Clavius (1538–1612)
Manuel Dias Jr (1574–1659)
Jean-François Foucquet (1665–1741)
Jean-François Gerbillon (1654–1707)
Ignace Gaston Pardies (1636–1673)
Giacomo Rho (1592–1638)
Matteo Ricci (1552–1610)
Johann Adam Schall von Bell (1592–1666)
Johann Schreck (1576–1630)
Antoine 9 omas (1644–1709)
Sabatino de Ursis (1575–1620)
Ferdinand Verbiest (1623–1688)

For biographies of the Jesuits who went to 
China see: http://ricci.rt.usfca.edu/biog-
raphy/index.aspx
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CH A P T ER 1.4

9 e internationalization of mathematics in a 
world of nations, 1800–1960
Karen Hunger Parshall

Mathematics has a history with elements of both the contingent and the 
 transcendent. Over the course of the nineteenth century, as the emer-

gence of nation states increasingly de[ ned a new geopolitical reality in Europe, 
competition among states manifested itself in the self-conscious adoption of the 
contingent, cultural standards of those states viewed as the ‘strongest’. In the 
case of mathematics, these self-consciously shared cultural standards centred on 
educational ideals, the desire to build viable and productive professional com-
munities with e\ ective means of communication, and the growing conviction 
that personal and national reputation was best established on an international 
stage (Parshall 1995).

In this context, mathematics also increasingly became a ‘language spoken’ and 
an endeavor developed internationally, that is, between and among the math-
ematicians of di\ erent nations.1 For example, in the late nineteenth and early 

1. 9 e terminology is important. 9 e word ‘international’ connotes, as indicated here, something shared 
between or among mathematicians. ‘Internationalization’, the topic of this chapter, is the process by which 
a globalized community of mathematicians, which shares a set of values or goals, has developed. 9 at pro-
cess, however, has sometimes involved merely ‘transnational’ communication, that is, communication across 
national borders, whether or not that communication is understood or appreciated. Transnational commu-
nication may ultimately lead to mutually appreciated, shared values and goals, but this is not a necessary 
consequence. 9 e words ‘international’ and ‘transnational’ will be used in these respective senses in what 
follows. For more on the terminology that has developed in the historical literature on the process of the 
internationalization of science, see Parshall and Rice (2002, 2–4).
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twentieth centuries, an Italian style of algebraic geometry with its own very 
idiosyncratic method of theorem formation and proof—a language of alge-
braic geometry that essentially only Italians spoke—developed in the context 
of a newly united Italian nation state seeking to demonstrate its competitive-
ness in the international mathematical arena and in parallel to the very di\ erent 
German tradition (Brigaglia and Ciliberto 1995). By the mid-twentieth century, 
however, following the advent of modern algebra with its structural approach 
to, and organization of, mathematics, algebraic geometers whether in the British 
Isles, Germany, or Italy, or in the United States, China, or Japan all spoke largely 
the same, nationally transcendent, mathematical language and tackled import-
ant, open problems recognized as such by all (Schappacher 2007).

9 at mutual recognition had stemmed, among other things, from the inter-
nationalization of journals and from the institutionalization of the International 
Congresses of Mathematicians (ICMs) beginning in 1897 for the direct commu-
nication of mathematical results and research agendas. It also manifested itself, 
at least symbolically, in the awarding of the [ rst Fields Medals in 1936 in recog-
nition of that mathematical work judged ‘the best’ worldwide. 9 is chapter traces 
the evolution of mathematics as an international endeavor in the context both of 
the formation of professional communities in a historically contingent, geopolit-
ical world and of the development of a common sense of research agenda via the 
evolution of a nationally transcendent mathematical language.

B e establishment of national mathematical  communities in the
nineteenth century

Although scienti[ c communities began to coalesce in the seventeenth century 
around societies like the Accademia dei Lincei in Rome, the Royal Society in 
London, and the Académie des Sciences in Paris, the evolution of national math-
ematical communities, indeed the evolution of national communities regardless 
of the specialty, was largely a nineteenth-century phenomenon. In mathemat-
ics as well as in other academic disciplines, Prussia was in the vanguard in the 
last half of the nineteenth century, serving as a model for other emergent nation 
states and ultimately supplanting France as the dominant mathematical nation 
in western Europe (Grattan-Guinness 2002).

Defeated during the Napoleonic Wars at the beginning of the nineteenth cen-
tury, Prussia had responded with a major political, socioeconomic, and educa-
tional reorganization aimed at safeguarding against a similar humiliation in the 
future. One of the masterminds behind the educational reforms, Wilhelm von 
Humboldt, used the new University of Berlin (founded in 1810) as a platform 
from which to launch a neohumanist educational agenda aimed at ‘provid[ing] 
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a model for scholarship as well as an idealistic framework for galvanizing the 
German people into action’ (Pyenson 1983, 6). In particular, the classical lan-
guages and mathematics, but also the physical sciences, were emphasized in 
an institutional context that was unfettered by political or religious concerns, 
and that fostered teaching and pure research over what were perceived as the 
more utilitarian concerns of the French. 9 is evolved into the twin ideals of 
Lehr- und Lernfreiheit, the freedom to teach and to learn in a politically and 
religiously disinterested university environment characterized by the tri-
partite mission of teaching and the production of both original research and 
future researchers. Universities in Berlin, Königsberg, and ultimately Leipzig, 
Erlangen, Göttingen, and elsewhere produced a generation of mathematicians 
who matured as researchers not only in professorial lecture halls but also in tar-
geted mathematical seminars. 9 e research they generated, moreover, appeared 
on the pages of specialized journals like Crelle’s Journal für die reine und ange-
wandte Mathematik (founded in 1826) and later the Mathematische Annalen 
(founded in 1869).

In the last half of the nineteenth century and up to the outbreak of World 
War I, educational reformers in general and mathematical aspirants in particu-
lar from China (Dauben 2002, 270), Italy (Bottazzini 1981), Japan (Sasaki 2002, 
236–238), Spain (Ausejo and Hormigón 2002, 51), the United States (Parshall 
and Rowe 1994), and other countries took their lead from Prussia in craN ing 
broad reforms as well as more speci[ c mathematics curricula that aimed at trans-
planting to, and naturalizing in, their respective soils the perceived fruits of the 
Prussian system. One result of this transplantation and naturalization was the 
consolidation and growth of mathematical research communities in a number of 
national settings between the closing decades of the nineteenth century and the 
opening decades of the twentieth.

AN er its defeat in the Franco–Prussian War of 1870–1871, France, too, moved 
toward reforms of its educational system. French scientists, in fact, had long been 
warning that they were falling behind the Germans (Grattan-Guinness 2002, 
24–25; Gispert 2002). In the United States, the Civil War that had divided the 
nation in the years from 1861 to 1865 was followed by a so called Gilded Age that 
witnessed not only the development of federally funded institutions of higher 
education—the land-grant universities—for the promotion especially of the prac-
tical sciences of agriculture, mining, and engineering, but also the establishment 
of new, privately endowed universities. 9 e presidents of both of these new kinds 
of institutions consciously looked across the Atlantic for exemplars on which to 
model their new educational experiments. In importing the research ethos of 
the Prussian universities, two of the privately endowed universities, the Johns 
Hopkins University (founded in 1876) and the University of Chicago (founded 
in 1892), set the tone for higher educational reform in the United States. In 
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mathematics, this translated into the formation of at least two programmes that 
enabled research-level mathematical training competitive with—although not 
yet equal to—that attainable, for example, at Berlin or Göttingen (Parshall 1988; 
Parshall and Rowe 1994, 367, note 9). At the University of Chicago, in particu-
lar, two of the three original members of the mathematics faculty—Oskar Bolza 
and Heinrich Maschke—were Göttingen-trained, German mathematicians, and 
they, together with their American colleague E H Moore, directly imported the 
ideas of mathematicians like Felix Klein on elliptic and hyperelliptic function 
theory and David Hilbert on the foundations of mathematics to their American 
students (Parshall and Rowe 1994, 372–401). 9 ose students—independently 
and in concert with their mentors—embraced and extended the mathematical 
ideas to which they were exposed.2 In so doing, they participated in what was an 
increasingly transatlantic mathematical dialogue on research questions of com-
mon interest,3 although this kind of direct importation of mathematical ideas did 
not dissuade American mathematical aspirants, especially in the 1880s, 1890s, 
and in the [ rst decade of the twentieth century, from travelling abroad for post-
graduate training (Parshall and Rowe 1994, 189–259 and 439–445).

By the outbreak of World War I, America’s older colleges, notably Harvard, Yale, 
and Princeton, had made the transition from undergraduate colleges to research- 
oriented universities. Together, these and other institutions of higher education 
contributed to the formation of an American mathematical research commu-
nity that coalesced around the New York Mathematical Society at its founding in 
1888 and then around its reincarnation in 1894 as the American Mathematical 
Society.4 9 is national community also sustained specialized journals like the 
American Journal of Mathematics (founded in 1878), the Annals of Mathematics 
(founded in 1884), and the Transactions of the American Mathematical Society 
([ rst published in 1900) that actively fostered the communication of mathemat-
ical results (Parshall and Rowe 1994, 427–453).

If the United States provides an illustration of a national mathematical com-
munity that formed in the nineteenth century in fairly direct emulation of the 

2. Students from Italy—notably, Luigi Bianchi, Gregorio Ricci-Curbastro, and Gino Fano—also went to 
Germany expressly to work with Felix Klein [ rst at the Technische Hochschule in Munich from 1875 to 1880 
and then at Göttingen aN er 1886.

3. See, for example, Fenster (2007) for an account of the transnational development between A Adrian 
Albert in the United States and Richard Brauer, Emmy Noether, and Helmut Hasse in Germany of the theory 
of [ nite-dimensional algebras over the rationals.

4. 9 e American Mathematical Society (AMS) modeled itself on the London Mathematical Society (LMS), 
which had formed in 1865 (and which, despite its name, was a national society). 9 e LMS was the [ rst such 
society but other national societies soon followed; for example, the Société mathématique de France began in 
1872 and the Tokyo Mathematical (later Mathematico-Physical) Society started in 1877. 9 e more localized 
Moscow Mathematical Society actually predated them all; it was founded in 1864. By the early decades of the 
twentieth century even more countries—like Spain (Ausejo and Hormigón 2002, 53–57), Italy, Japan, and 
China (see below)—had followed suit. 9 e specialized national mathematical society—like the specialized 
mathematical journal—came to de[ ne national mathematical communities internationally.
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Prussian model, England represents a country in which a national  mathematical 
community developed with only occasional glances across the Channel, and 
those perhaps more at France than at Germany. In 1830, Charles Babbage fam-
ously caricatured English science in his ReI ections on the decline of science in 
England. For Babbage, that decline had resulted from many factors, not the least 
of which were the ine\ ectiveness of the Royal Society and the absence of true cul-
tural and professional inducements for science in England.

As with all caricatures, Babbage’s contains elements of truth. His rhetorical 
salvos—as well as those of others like John F W Herschel and Augustus Bozzi 
Granville—came just as the new British Association for the Advancement of 
Science was being founded and the Royal Society of London was entering into 
a period of reorganization and renewal. If English science had been in decline 
before 1830, its trajectory had a strongly positive slope by the middle of the nine-
teenth century as exempli[ ed by John Couch Adams’s mathematical predic-
tion—independent of that of the French astronomer, Urbain Leverrier—of the 
existence of the planet Neptune in 1845–6. As the case of Adams also suggests, if, 
as Herschel famously averred in 1830, ‘in mathematics we have long since drawn 
the rein, and given over a hopeless race’, things were improving on that score as 
well (Babbage 1830, ix).

Although mathematics had long been published in the British Isles in the 
context of the journals of general science societies, the decades immediately fol-
lowing mid-century witnessed there as in Germany, France, Italy, Russia, and 
elsewhere the development of specialized, research oriented journals that helped 
to distinguish a community of mathematical researchers (Despeaux 2002).5 Of 
particular importance in the British context was the Quarterly Journal of Pure 
and Applied Mathematics which began under that title in 1855 but which had 
resulted from an evolutionary process that had transformed the highly localized, 
undergraduate-oriented Cambridge Mathematical Journal (founded in 1837) into 
the more self-consciously research-oriented and trans-Britannic Cambridge and 
Dublin Mathematical Journal (in 1845) (Crilly 2004).

In 1855 and under the editorial leadership of James Joseph Sylvester and Norman 
Ferrers, the Quarterly Journal not only followed France’s Journal de mathéma-
tiques pures et appliquées in emulating in name Crelle’s Journal für die reine und 
angewandte Mathematik but also speci[ cally articulated an internationalist view 
(albeit with nationalistic overtones) of the mathematical endeavor. As the editors 
put it in their ‘address to the reader’ in the journal’s [ rst number, their aim was 

5. Crelle’s Journal für die reine und angewandte Mathematik and the Mathematische Annalen have already 
been mentioned. In France, among others, were Liouville’s Journal de mathématiques pures et appliquées 
(begun in 1836) and later the Bulletin de la Société mathématique de France (started in 1873), while Italy sup-
ported the publication of, for example, the Annali di matematica pura ed applicata ([ rst published in 1858), 
and mathematicians in Moscow launched Matematicheskii Sbornik in 1866.
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to ‘communicate a general idea of all that is passing in mathematical circles, both 
at home and abroad, that can be of interest to Mathematicians as such’ (Parshall 
2007, 139; my emphasis). To that end, they actively fostered contributions from 
other countries, and especially from France, thanks both to the presence of 
Charles Hermite on the editorial board and to the ongoing e\ orts particularly of 
Sylvester (Despeaux 2002, 243–271).6 In this way, they brought some of the latest 
foreign mathematical research directly to their fellow countrymen in an e\ ort to 
keep them abreast of what was being done abroad. It was not, however, just a mat-
ter of keeping current; it also involved becoming actively competitive on what 
was recognized as an increasingly international mathematical stage. 9 e editors 
held ‘that it would be little creditable to English Mathematicians that they should 
stand aloof from the general movement, or else remain indebted to the courtesy 
of the editors of foreign Journals, for the means of taking part in a rapid circula-
tion and interchange of ideas by which the present era is characterised’ (Parshall 
2007, 139; my emphasis). No longer would the British Isles be mathematically 
insular.7 It was a national participant in what was increasingly viewed as a trans-
European, if not yet fully international, mathematical endeavor.8

Transnational and international impulses in the  closing decades
of the nineteenth century

Mathematics, as the views expressed by Sylvester and his editorial team illus-
trate, came to be seen during the last half of the nineteenth century as a body of 
knowledge that develops e\ ectively through the communication of ideas across 
national political borders. Sometimes that communication produces—as in the 
case of Liouville and various of his contributions to, for example, mechanics, 
potential theory, and di\ erential geometry—new results inspired by and built 
on the work of mathematicians in other countries (Lützen 2002, 95–100). Or it 
serves, as in the case of Cesare Arzelà during the 1886–7 academic year, to pro-
vide a rich literature—the works of Eugen Netto, Peter Lejeune Dirichlet, Joseph 
Serret, Camille Jordan—from which to craN  the [ rst course of lectures on Galois 
theory ever to be given in Italy (Martini 1999). As these examples illustrate, trans-
national communication could lead to an internationally shared set of research 

6. Other ‘national’ journals also accepted and encouraged contributions from abroad in an e\ ort at inter-
national communication, for example, Liouville’s Journal (Lützen 2002, 91–93).

7. Although some Russian mathematicians like Pafnuti Chebyshev traveled to western Europe to make 
scienti[ c contacts, and some mathematicians like J J Sylvester journeyed to Russia, the Russian mathematical 
community experienced [ rst a kind of linguistic isolation and then also a political isolation relative to the rest 
of Europe in the nineteenth and well into the twentieth century. 9 is did not, however, prevent the formation 
there of strong mathematical traditions in number theory at St Petersburg University and in function theory 
at Moscow University.

8. On the development of mathematical Europe, see Goldstein et al. (1996).
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goals. Communication could, however, be complicated by the growing spirit of 
active competition not only between individual, emerging national communities 
but also between individuals within those nations to establish their reputations. 
A striking example of this phenomenon was the development in the British Isles 
and in Germany of two distinct approaches to, and languages for, the theory of 
invariants.

Although examples of what would come to be known as invariants may 
be found, like the germs of so much other modern mathematics, in Gauss’s 
Disquisitiones arithmeticæ of 1801, invariant theory developed in a largely alge-
braic context in the British Isles and in a primarily number-theoretic and geomet-
ric context in Germany beginning in the 1840s and continuing strongly through 
the 1880s (Parshall 1989). In both settings, the basic question was the same: given 
a homogeneous polynomial in n (although in practice usually just two or three) 
variables with real coe7  cients, [ nd all expressions in the coe7  cients (invariants) 
or in the coe7  cients and the variables (covariants) that remain unchanged under 
the action of a linear transformation.

As the simplest example, and this example appeared in the Disquisitiones, con-
sider Q = ax2 + 2bxy + cy2 and a nonsingular linear transformation of the vari-
ables x and y which takes x to mx + ny and y to mʹx + nʹy, for m, n, mʹ, and nʹ real 
numbers and for mnʹ – mʹn ≠ 0. Applying this transformation to Q gives Ax2 + 
2Bxy + Cy2, where A, B, and C are obviously expressions in a, b, c, m, n, mʹ, and n .ʹ 
It is easy to see that the following equation holds: B2 – AC = (mnʹ – mʹn)2 (b2 – ac), 
that is, the expression b2 – ac in the coe7  cients of Q, the discriminant, remains 
invariant up to a power of the determinant of the linear transformation.

Developing a theory of how to [ nd all such expressions occupied Arthur 
Cayley, J J Sylvester, George Salmon, and others in the British Isles as well as 
Otto Hesse, Siegfried Aronhold, Alfred Clebsch, Paul Gordan, and others in 
Germany. 9 e British employed very concrete calculational techniques to seek 
explicit Cartesian expressions of the invariants, as in the form b2 – ac above; the 
Germans developed a more abstract notation and approach, although they, too, 
aimed at [ nding complete systems of covariants for homogeneous polynomials 
of successive degrees. Each group also worked largely in isolation from the other, 
with the British publishing primarily in their own journals and the Germans in 
theirs, until 1868 when Gordan proved the [ nite basis theorem—namely, for any 
homogeneous form in two variables, a [ nite (minimum generating) set of cov-
ariants generates them all—and explicitly called attention to a major d aw in the 
British invariant-theoretic superstructure. 9 e British, and especially Sylvester, 
then went to work to correct the error and to vindicate their techniques. Nothing 
less than national mathematical pride was at stake, yet neither side could really 
understand the work of the other. 9 ey had literally been speaking di\ erent math-
ematical languages that had been created in their respective national contexts, yet 
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their confrontation over the [ nite basis theorem also evidenced the increasingly 
transnational—if perhaps not yet fully international—nature of mathematics by 
the last quarter of the nineteenth century (Parshall 1989).

Coincidentally, but symptomatic of the kind of situation that had presented 
itself in invariant theory, a new type of mathematical publication, the review-
ing journal, was launched in Germany in 1868 expressly ‘to provide for those, 
who are not in a position to follow independently every new publication in the 
extensive [ eld of mathematics’, to give them moreover ‘a means to gain at least 
a general overview of the development of the science’, and ‘to ease the e\ orts 
of the scholar in his search for established knowledge’.9 9 e Jahrbuch über die 
Fortschritte der Mathematik represented a collaborative e\ ort among math-
ematicians to survey the international mathematical landscape and to report, 
in German, on the research [ ndings of mathematicians throughout Europe 
and eventually in the United States and elsewhere. By the end of the century, 
the Jahrbuch had been joined by two additional reviewing journals—the French 
Bulletin des sciences mathématiques et astronomiques (begun in 1895) and the 
Dutch Revue semestrielle des publications mathématiques (started in 1897)—in 
the ongoing quest e\ ectively to disseminate mathematical results transnationally 
(Siegmund-Schultze 1993, 14–20).10

9 ese reviewing e\ orts, moreover, were supplemented by great synthetic 
undertakings like the Enzyclopädie der mathematishen Wissenscha_ en, begun in 
1894 under the direction of Felix Klein, and the French translation and update, 
the Encyclopédie des sciences mathématiques, started in 1904 with Jules Molk as 
editor. Both of these works aimed, in some sense, to go beyond the reviewing 
journals by surveying contemporary mathematics and indicating promising lines 
for future research. In so doing, they had the potential to create shared research 
agendas across national boundaries.11

Transnational impulses also manifested themselves at this time in the form 
of new, expressly international research journals, although these ventures also 
had nationalistic or regionalistic overtones. As one case in point, the Norwegian 
mathematician Sophus Lie encouraged his Swedish friend and fellow mathe-
matician Gösta Mittag-Le¡  er to found a new journal, Acta mathematica ([ rst 

9. For the quote, see the ‘Vorrede’ of the Jahrbuch as translated in Despeaux (2002, 297–298).
10. In the twentieth century, the Zentralblatt für Mathematik und ihre Grenzgebiete (begun in 1931 by the 

German publishing house of Julius Springer) and the Mathematical Reviews (started in 1940 by the American 
Mathematical Society) represented two rival, national, international reviewing journals. 9 e Mathematical 
Reviews was founded largely in response to the dismissal of the Italian Jewish mathematician, Tullio Levi-
Civita, as editor of the Zentralblatt and to the Zentralblatt’s National Socialist policy of debarring Jewish 
mathematicians from reviewing the work of German mathematicians (Siegmund-Schultze 2002, 340–341). 
As the case of these two journals makes clear, even the ostensibly international—or at least transnational—
reviewing journal was not immune to broader geopolitical currents.

11. Translations were yet another manifestation of e\ orts at transnational communication. On, for 
example, a sustained nineteenth-century French translation e\ ort, see Grattan-Guinness (2002, 39–44).
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published in 1882), that was to be international in outlook while highlighting 
the best of Scandinavian mathematical research (Barrow-Green 2002, 140–148). 
Similarly, the Italian mathematician Giovan Battista Guccia was instrumental 
not only in founding the Circolo Matematico di Palermo in 1884, a society that 
despite its local name soon became Italy’s de facto national mathematical organ-
ization, but also the Circolo’s Rendiconti ([ rst published in 1887). By the out-
break of World War I, both the Circolo and its Rendiconti had succeeded in the 
agenda Guccia had explicitly articulated, namely, ‘to internationalize, to di\ use, 
and to expand mathematical production of the whole world, making full use of 
the progress made by modern civilization in international relations’ (Brigaglia 
2002, 187–188).

� e International Congresses of Mathematicians and the
impact of World War I

Guccia’s e\ orts in Italy, especially in the 1890s and up to the outbreak of World 
War I, red ected a widely spreading sense among mathematicians that the time 
was ripe for fostering greater international contact and cooperation. 9 e German 
mathematician Georg Cantor was one of the [ rst actively to advocate the idea of 
mounting an actual international congress of mathematicians. Frustrated by the 
hostile reception that his work on trans[ nite set theory had received within the 
hierarchical and paternalistic German university system, Cantor sought as early 
as 1890 to create a venue for the presentation of new mathematical ideas that 
would be free of internal mathematical politics and prejudices. In Cantor’s view, 
an international arena would provide the openness and diversity of perspective 
that he found so lacking in his parochial national context (Dauben 1979, 162–
165). By 1895, he had succeeded through what was e\ ectively an international 
letter-writing campaign in enlisting the support for his e\ orts of mathemati-
cians like Charles Hermite, Camille Jordan, Charles Laisant, Émile Lemoine, and 
Henri Poincaré in France, Felix Klein and Walther von Dyck in Germany, and 
Alexander Vassiliev in Russia, among others (Lehto 1998, 3).

AN er much discussion and negotiation, the [ rst International Congress of 
Mathematicians was held in 1897 in Zürich, in politically neutral Switzerland. 
In all just over two hundred mathematicians from sixteen countries—among 
them, Austria-Hungary, Finland, France, Germany, Great Britain, Italy, Russia, 
Switzerland, and the United States—took part in the congress. In addition to 
hearing a full and rich program of mathematical lectures, the participants suc-
ceeded in formulating a set of objectives for future congresses. 9 ese events 
would aim ‘to promote personal relations among mathematicians of di\ erent 
countries’, to survey ‘the present state of the various parts of mathematics and its 
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applications and to provide an occasion to treat questions of particular impor-
tance’, ‘to advise the organizers of future Congresses’, and ‘to deal with questions 
related to bibliography, terminology, etc. requiring international cooperation’ 
(Lehto 1998, 7–11, quotes on 9–10). In light of the emphasis on treating ‘ques-
tions of particular importance’ and on issues like terminology that might require 
‘international cooperation’, those present at the Zürich ICM clearly foresaw a 
mathematical world in which researchers, regardless of their nationalities, com-
municated in ever more common mathematical terms in their pursuit of answers 
to questions commonly viewed as ‘important’. At the second ICM, held in Paris 
in 1900, David Hilbert did much to shape this new, international, mathematical 
world order.

In the address he gave on ‘Mathematical problems’, Hilbert famously charted 
the courses of a number of mathematical [ elds by isolating in them what he viewed 
as key unsolved problems. As he explained in his introductory remarks, he aimed 
‘tentatively as it were, to mention particular de[ nite problems, drawn from the 
various branches of mathematics, from the discussion of which an advancement 
of science may be expected’ (Hilbert 1900, 7). Among these, the [ rst six problems 
highlighted what became, owing in no small part both to Hilbert’s Paris lecture 
and to the publication in 1899 of his Grundlagen der Geometrie, an emphasis in 
twentieth-century mathematics on an axiomatic, foundational, and ultimately 
structural approach (Mehrtens 1990, 108–165; Corry 1996, 137–183). In some 
sense, this not only provided a vernacular in which mathematicians, regardless 
of their nationality, could communicate, but also delineated speci[ c structures—
groups, rings, [ elds, algebras, topological spaces, vector spaces, probability 
spaces, Hilbert spaces, and so on—for further mathematical development.

9 e import of Hilbert’s address at the Paris ICM was sensed immediately. In 
addition to its publication in French translation in the Congress proceedings, 
the address was published in German in the Nachrichten von der königlichen 
Gesellscha_  der Wissenscha_ en zu Göttingen and in the Archiv der Mathematik 
und Physik as well as in English translation in the Bulletin of the American 
Mathematical Society. German, French, and English speakers could all partici-
pate in the agenda that Hilbert had laid out.12

9 e next three ICMs took place in Heidelberg, Rome, and Cambridge, at four-
year intervals from 1904 to 1912. 9 e number of attendees steadily increased as 
did non-European participation. At the Cambridge ICM, in particular, of the [ ve 
hundred and seventy-four participants, eighty-two were non-European with two 
from Africa, six from Asia, sixty-seven from North America, and seven from 
South America (Lehto 1998, 14). It was decided on that occasion that, following 

12. To date, at least sixteen of Hilbert’s twenty-three problems can be considered to have been solved in 
whole or in part by mathematicians from the Baltic States, France, Germany, Japan, the former Soviet Union, 
and the United States (Yandell 2002).
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Mittag-Le¡  er’s invitation, the next congress would be held in Stockholm in 
1916. 9 ose plans, however, were scuttled owing to the outbreak of World War I 
in 1914.

B e politics of internationalization in the West during
the interwar period

At the war’s close in 1918, Mittag-Le¡  er immediately renewed the invitation 
to Stockholm; he sensed an urgency to resume the ICMs and to get mathemat-
ics back on its international track. 9 e new political realities that prevailed in 
postwar Europe worked counter to his e\ orts, however. 9 e French, and espe-
cially the noted complex analyst and algebraic geometer Émile Picard, actively 
opposed any relations with the former Central Powers. Picard’s answer to the 
question ‘veut-on, oui ou non, reprendre des relations personnelles avec nos enne-
mis?’, ‘do we want, yes or no, to resume personal relations with our enemies?’ 
was a resounding ‘no’ (Lehto 1998, 16). While some in the British mathematical 
community agreed, others like G H Hardy strongly supported the resumption of 
normal scienti[ c relations. Hardy, a well known paci[ st, had done his best even 
during the war to maintain working relations with his mathematical colleagues 
despite the political agendas of nations. In 1915, for example, the book General 
theory of Dirichlet series that he co-authored with the Hungarian Marcel Riesz 
appeared as volume twenty-six in the series of Cambridge Mathematical Tracts 
and bore the avowal ‘auctores hostes idemque amici’, ‘the authors, enemies, and all 
the same friends’ (Segal 2002, 363).

As these di\ ering opinions make clear, there was little agreement in the imme-
diate aN ermath of the war on how best—or even whether—to proceed with the 
international initiatives that had begun with such promise some two decades 
earlier. Still, two initiatives did go forward: plans for an ICM to be held not in 
Stockholm but in Strasbourg in 1920 and plans for an International Mathematical 
Union (IMU) to be founded o7  cially at the Strasbourg ICM and to oversee, among 
other things, the planning of future ICMs. Both of these e\ orts—international 
only in name in 1920—were fraught with political di7  culties from the start.

First, the former Central Powers were barred from attending the Strasbourg 
ICM and were ineligible both for membership in the IMU and for participation 
in future ICMs. In the view of the majority, the Central Powers had ‘broken the 
ordinances of civilization, disregarding all conventions and unbridling the worst 
passions that the ferocity of war engenders’; in order for them to be readmitted 
into the international confraternity of mathematicians, moreover, they ‘would 
have to renounce the political methods that had led to the atrocities that had 
shocked the civilized world’ (Lehto 1998, 18). As a result, Germany, in particular, 
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the mathematical trendsetter since the mid-nineteenth century, would not be 
able to participate.

Second, the selection of Strasbourg as the locale for the ICM had blatantly 
political overtones, given that Alsace-Lorraine in general and Strasbourg in par-
ticular had been returned to French control as a result of the Germans’ defeat 
in the war. As Mittag-Le¡  er bitterly put it, ‘ce congrès est une a5 aire française 
qui ne peut nullement annuler le congrès international à Stockholm’, ‘this con-
gress is a French a\ air which can in no way annul the international congress in 
Stockholm’ that he had originally proposed (Lehto 1998, 24).

When mathematicians [ nally convened in Strasbourg in September 1920, 
it was indeed, as Mittag-Le¡  er had predicted, ‘a French a\ air’. 9 e unwaver-
ingly anti-German Picard was elected one of the [ rst Honorary Presidents of 
the Executive Committee of the IMU as well as the President of the Strasbourg 
ICM, and he took the occasion of his opening ICM address publicly to uphold the 
decision to debar mathematicians from the former Central Powers. In his words, 
‘pardonner à certains crimes, c’est s’en faire le complice’, ‘to pardon certain crimes 
is to become an accomplice in them’ (Lehto 1998, 29).

9 ese overtly political sentiments clouded not only the Strasbourg ICM but 
also e\ orts to mount the next ICM scheduled for 1924. Mathematicians from 
the United States and British Isles had begun to push for an end to the exclusion-
ary rules imposed by the IMU, and only e\ orts by the Canadian mathematician 
John C Fields to host the 1924 ICM in Toronto ultimately rescued it from com-
plete political entanglement. In some sense, matters were no better in 1928 when 
the Congress met in Bologna. While some in the IMU continued to insist on 
exclusion, Salvatore Pincherle (IMU President from 1924 to 1928 and President 
of the 1928 Congress) and his Italian co-organizers, implemented an open door 
policy at the Bologna ICM. Although some German mathematicians like Ludwig 
Bieberbach vociferously opposed German participation on political grounds, 
David Hilbert rallied his countrymen, who ultimately formed the largest non-
Italian national contingent at the ICM (Lehto 1998, 33–46).

9 is ongoing politicization soon took its toll. By the time the next ICM con-
cluded in Zürich in 1932, the IMU had essentially ceased to exist. 9 e prevailing 
sentiment among the almost seven hundred mathematicians in attendance in 
Zürich was that the unabashedly political agenda of the IMU had been detrimen-
tal to the international health of the community, and that national politics should 
thenceforth remain separate from mathematics.

One corrective that followed was the establishment in 1932 of the Fields Medal, 
the equivalent in mathematics to the Nobel Prize, to be awarded on the occasion 
of the ICMs to acknowledge outstanding achievements made by mathematicians 
regardless of nationality. 9 e [ rst of these were given at the Oslo Congress in 1936 
to the Finnish mathematician Lars Ahlfors for his work on the theory of Riemann 
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surfaces and to the American Jesse Douglas for his solution of Plateau’s  problem 
on minimal surfaces (Monastyrsky 1997, 11). Another corrective that had, in 
fact, already been at work during the troubled postwar years of the ICMs was 
the Rockefeller Foundation and its International Education Board (IEB), which 
expressly sought to encourage international scienti[ c and mathematical develop-
ment in the interwar period. 9 e Foundation, through the IEB, had, for example, 
funded the building of both the new Mathematics Institute in Göttingen and the 
Institut Henri Poincaré in Paris in the late 1920s for the international encourage-
ment and exchange of mathematical research. Unfortunately, the activities of the 
Göttingen Institute were curtailed from 1933 with the rise of National Socialism 
in Germany and the subsequent ousting of Jews, not least the Institute’s director 
Richard Courant (see Siegmund-Schulze, Chapter 9.4 in this volume); a little later 
the Institut Henri Poincaré was fundamentally a\ ected by the outbreak of World 
War II (Siegmund-Schultze 2001).

Internationalization: West and East

9 e confused political situation in the interwar period in the West did not prevent 
international mathematical relations more globally, and especially between West 
and East.13 Prior to the nineteenth century, Japan and China were largely closed 
to Western scienti[ c ind uences, the most notable exception being the introduc-
tion of some Western science by Jesuit missionaries in China in the seventeenth 
century (Jami, Chapter 1.3 in this volume). Following the Meiji Restoration in 
1868, however, Japan looked increasingly to the West for educational, scienti[ c, 
and cultural models that would help them to compete more e\ ectively in the 
modern world. 9 e same became true of China aN er its defeat in the [ rst and 
second Opium Wars (1839–42 and 1856–60) and in the [ rst Sino-Japanese War 
in 1895.

In the case of Japan, Westernization was o7  cially mandated, and it was swiN . 
Although the in[ ltration of Western science—notably mathematics and aspects 
of naval and military science—had begun aN er Japan opened some of its ports to 

13. 9 e interwar period also witnessed international mathematical relations between the northern 
and southern hemispheres. In particular, soon aN er he took o7  ce in 1933, US President Franklin Delano 
Roosevelt announced what came to be known as the ‘Good Neighbor Policy’ between the United States and 
the countries of Central and South America. In the sciences and mathematics, this translated into support 
from private foundations like the Rockefeller Foundation and the John Simon Guggenheim Foundation 
for intellectual exchanges beginning in the 1930s, carrying on through the war and aN erward. In 1942, for 
example, Harvard mathematician George David Birkho\  went on a mathematical ‘good neighbor’ lecture 
tour of Latin America (Ortiz 2003) to be followed in 1943 by his former student and then Harvard colleague 
Marshall Stone (Parshall 2007). 9 ese trips resulted in North American study tours for a number of tal-
ented Latin American students and in the establishment of ties between mathematical communities in the 
Americas.
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Western concerns in the mid-1850s, it started in earnest aN er 1868 with the Meiji 
Emperor’s pronouncement that ‘intellect and learning shall be sought through-
out the world, in order to establish the foundations of the Empire’ (Sasaki 2002, 
231–235, quote on 235). 9 e implications of this for mathematics were particu-
larly concrete. In 1872, the government decreed that the traditional Japanese style 
of mathematics, wasan, was no longer to be taught and that it was to be replaced 
by Western mathematics in the school curriculum. Five years later in 1877, the 
University of Tokyo was established as Japan’s [ rst modern university with 
English-trained Kikuchi Dairoku as its [ rst professor of mathematics (Sasaki 
2002, 235–237).14

Prussia, not England, soon came to de[ ne the standards on which Japan mod-
eled itself, however.15 As Inoue Kowashi, outspoken supporter not merely of 
Westernization but actually of Prussianization, expressed it:

[ . . . ] of all nations in present-day Europe, only Prussia is similar to us with regard to the 
circumstances of its uni[ cation [. . .] If we want to make men throughout the land more 
conservative-minded, we should encourage the study of German and thereby allow it, 
several years hence, to overcome the dominance now enjoyed by the English and French 
(Sasaki 2002, 238).

Relative to mathematics, this had the fairly immediate impact of introducing to 
the University of Tokyo (which became the Imperial University in 1886) the twin 
objectives of high-level teaching and research in the context of both the class-
room and the research seminar.

9 ese changes were implemented by German-trained Fujisawa Rikitaro, who, 
aN er studying under Karl Weierstrass and Leopold Kronecker at the University of 
Berlin, earned his doctorate under the tutelage of 9 eodor Reye and Elwin Bruno 
Christo\ el at the University of Strasbourg in 1886 and returned to Japan to take 
up a professorship in Tokyo (Sasaki 2002, 239–240). One of Fujisawa’s most fam-
ous students, the algebraic number theorist Takagi Teiji, became one of the [ rst 
Japanese mathematicians to star on the international mathematical stage.

Sent by the Japanese government to Germany for advanced mathemati-
cal study at Berlin and Göttingen between 1898 and 1901, Takagi learnt and 
embraced much of the modern language of, and approach to, algebraic number 
theory as it had been developing particularly in Germany in the hands of Leopold 
Kronecker, Hilbert, and others. Takagi joined Fujisawa at Tokyo following his 

14. Here and below, Japanese and Chinese names are rendered in their traditional order, that is, surname 
followed by given name.

15. Of course, England did serve as the primary model for those mathematical societies that ultimately 
formed in the various corners of its far-d ung empire. For example, in India, the Analytic Club, founded in 
1907, became the Indian Mathematical Society in 1910. Mathematical societies independent of the London 
Mathematical Society did not form in Australia and New Zealand until the second half of the twentieth cen-
tury, however.
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foreign study tour, but found himself isolated from European mathematical 
developments,  particularly aN er the outbreak of war in Europe in 1914. Even 
in isolation, however, he worked on algebraic number-theoretic research. 9 e 
result was the 1920 publication in German in the Journal of the College of Science 
(Imperial University of Tokyo) of his stunning theorem that every ([ nite) abe-
lian extension over an algebraic number [ eld is a class [ eld over that [ eld and 
vice versa (Frei 2007, 128).

In an interesting example of internationalization, Takagi’s work became known 
in the West and contributed fundamentally to the rapidly developing area of class 
[ eld theory. 9 is owed not so much to his lecture on it at the Strasbourg ICM in 
1920 (recall that the Germans were banned from this ICM) but rather to his post-
Strasbourg visit to Hamburg where the number theorist Carl Ludwig Siegel was 
then on the faculty. Siegel told Hilbert and Emil Artin about the result; Hilbert 
urged Takagi to republish it in the Mathematische Annalen; Artin used it essen-
tially as the foundation on which to complete class [ eld theory and so to solve 
Hilbert’s ninth problem (Sasaki 2002, 241–242; Frei 2007, 127–128, 142; Yandell 
2002, 219–245).

If Takagi was Fujisawa’s most renowned student outside of Japan, several oth-
ers went on to foster research level mathematics in Japan through their profes-
sorships at Kyoto Imperial University (founded in 1897) and at Tohoku Imperial 
University (opened in 1907). At Tohoku, Fujisawa’s student, Hayashi Tsuruichi, 
founded the Tohoku Mathematics Journal in 1911. Japan’s [ rst international 
mathematics journal, Tohoku published predominantly in European languages 
and thereby served as a means of communication both of Japanese mathematical 
research to those outside Japan and of Western mathematical [ ndings to those 
within the Japanese community (Sasaki 2002, 238–246). Such inter- and trans-
national contacts and initiatives were curtailed, however, following the expan-
sion of World War II into the Paci[ c theater in 1941.

As for China, repeated military defeats in the nineteenth century, and espe-
cially by recently Westernized Japan in 1895, had led to the realization that not 
only knowledge of foreign languages but also a [ rm grounding in Western engin-
eering, science, and mathematics would be critical to the country’s future suc-
cess in a rapidly changing geopolitical world. In addition to establishing new 
schools, beginning in the 1860s, in which Western mathematical techniques were 
oN en taught alongside traditional Chinese methods, active translation initiatives 
were launched in an e\ ort to bring Western science and mathematics directly to 
the students. Moreover, as early as the 1870s, Chinese students were encouraged 
to pursue their studies in science and engineering in Europe, and especially in 
France, Germany, and England (Dauben 2002, 254–261).

Foreign study for Chinese students increased dramatically aN er 1900 in 
the wake of the Chinese Boxer Rebellion (or Boxer Uprising) against Chinese 
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Christians and against outside [ nancial interests in China. An indemnity of over 
$300 million was imposed on the Chinese for their aggression, but ultimately 
at least part of the exorbitant [ ne was remitted by several Western countries in 
the form of educational initiatives aimed at bene[ ting the Chinese and creating 
international ties (Dauben 2002, 266–267, 274–275; Xu 2002, 288–296). In the 
case of the United States, Boxer Indemnity Scholarships and Chinese provincial 
governments brought hundreds of Chinese students to US institutions of higher 
education by 1930. 9 ese students returned to China—with PhDs from Harvard 
University, Cornell University, the University of Chicago, and elsewhere—to sta\  
research oriented mathematics programs at, for example, Qinghua University 
in Beijing. Qinghua, in fact, launched China’s [ rst graduate program in mathe-
matics in 1930 (Xu 2002, 290–292). With the establishment of graduate programs 
on the Western model, China soon began to train its own mathematicians at the 
research level. Many of these, like the di\ erential geometer Chern Shiing-shen 
were drawn, beginning in the late 1930s, to the Institute for Advanced Study in 
Princeton (Xu 2002, 296–301).

And this kind of direct personal contact was two way. German mathema-
ticians like Konrad Knopp, Wilhelm Blaschke, and Emanuel Sperner, French 
mathematicians such as Émile Borel, Paul Painlevé, and Jacques Hadamard, 
English mathematicians most notably Bertrand Russell, and American math-
ematicians like Norbert Wiener spent extended periods of time in China begin-
ning in the 1920s. All of this activity had resulted by 1935 in the founding of the 
Chinese Mathematical Society and in the establishment of its Journal in 1936. 
9 ese e\ orts were interrupted between 1938 and 1945 owing to the outbreak 
of the second Sino-Japanese War (1937–45), and much more severely curtailed 
with the formation of the People’s Republic of China in 1949 (Dauben 2002, 
277–280).

Internationalization in the aC ermath of World War II

With the resumption of peace in 1945, a new geopolitical order emerged. Germany 
was divided into East and West; the Cold War between the Soviet Union and its 
allies and the United States and its allies was already brewing; French, German, 
Italian, and East European Jews had d ed across the globe to the United States, to 
Central and South America, to Palestine, to Australia, and elsewhere (Siegmund-
Schulze, Chapter 9.4 in this volume). In mathematics, these refugees repre-
sented some of the strongest researchers Europe had produced in the [ rst half 
of the twentieth century; as emigrés, they directly transplanted their research 
agendas to their newly adopted soils. 9 e United States, for example, which 
absorbed relatively large numbers of immigrants, bene[ ted in mathematics from 
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the introduction of research areas—within, for example, applied mathematics, 
 probability, and statistics—that had previously been underdeveloped there. 9 ese 
‘new areas’ took root and grew thanks to this wave of immigration (Bers 1988).

As aN er the end of World War I, mathematicians, and especially those in the 
United States like Marshall Stone, sought almost immediately to re-establish 
international mathematical ties. 9 e International Congress of Mathematicians 
that had been scheduled to take place in Cambridge, Massachusetts, in 1940 had 
been cancelled. Stone and others in the United States worked not only to plan 
the [ rst postwar ICM but also to re-establish the International Mathematical 
Union.  9 ey succeeded in both e\ orts. 9 e ICM took place in Cambridge, 
Massachusetts in 1950, and an ICM has occurred every four years thereaN er. 9 e 
IMU was o7  cially reborn in 1951 aN er much behind the scenes political negoti-
ation on the part of Stone and others, which began in earnest in 1946.

9 ose behind the organization of a new IMU were adamant that it would not be 
like the IMU formed in the aN ermath of World War I. As Stone put it in a speech 
in 1947, ‘in considering American adherence to a Union, it must be borne in 
mind that we want nothing to do with an arrangement which excludes Germans 
and Japanese as such’ (Lehto 1998, 76). An explicitly inclusive philosophy thus 
guided both the writing of new statutes for the union and the political strategies 
employed to see them successfully put in place. 9 e [ rst ten member countries—
Austria, Denmark, France, Germany, Great Britain, Greece, Italy, Japan, the 
Netherlands, and Norway—were soon followed by Australia, Canada, Finland, 
Peru, and the United States (Lehto 1998, 87). By the end of the 1950s, even as the 
Cold War escalated, the Soviet Union and other Iron Curtain countries had also 
joined (Lehto 1998, 122–126). 9 e new IMU thus came to embody Hardy’s vision 
of international mathematical cooperation and collaboration, even though geo-
politics have—repeatedly and perhaps inevitably—a\ ected its e\ orts to support 
international mathematical colloquia and to coordinate and organize both the 
ICMs and the Fields Medal selection process.16

Conclusion

By 1962 and the occasion of the fourteenth ICM in Stockholm, it was a well estab-
lished fact that a community of mathematicians existed not just in individual 
national settings but internationally as well. Indeed, the IMU had played a critical 

16. At the [ rst IMU general assembly held in Rome in 1952, the International Commission on the Teaching 
of Mathematics (ICTM) also became an o7  cial commission of the IMU. 9 e ICTM had been founded in 
1908, dissolved in 1920, and reorganized independently of the IMU in 1928 (Lehto 1998, 97). It was o7  cially 
renamed the International Commission on Mathematics Instruction (ICMI) in 1954. Discourse and cooper-
ation relative to the teaching of mathematics was thus an early and successful manifestation of international-
ization within the broader mathematical community.
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role in organizing that ICM by mobilizing its international constituency in order 
to secure, for the [ rst time, ‘the wide experience and knowledge [ . . . ] of experts 
from all over the world’ in choosing ‘the subjects and speakers for the one-hour 
addresses’ and in appointing ‘chairmen of the international panels which [ . . . ] 
proposed the half-hour speakers’ (Lehto 1998, 158; my emphasis).

9 e process which had led to this ‘breakthrough’ (Lehto 1998, 156) had in 
many ways paralleled the tortured path toward international coexistence, if not 
always actual transnational cooperation, that the nations of the world had taken 
from the nineteenth into the twentieth century. Like the world’s nations, math-
ematics was immune to the contingent e\ ects neither of politics, nor of par-
ticular national agendas, nor of the personal agendas of individuals. Unlike the 
world’s nations, however, mathematics and its practitioners were naturally united 
in a common goal, the development—increasingly expressed in a common, tran-
scendent language—of a fundamental body of scienti[ c knowledge.
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CH A P T ER 2 .1

9 e two cultures of mathematics in 
ancient Greece
Markus Asper

The notion of ‘Greek mathematics’ is a key concept among those who teach or 
learn about the Western tradition and, especially, the history of science.1 It 

seems to be the [ eld where that which used to be referred to as ‘the Greek  miracle’ 
is at its most miraculous. 9 e works of, for example, Euclid or Archimedes 
appear to be of timeless brilliance, their assumptions, methods, and proofs, even 
aN er Hilbert, of almost eternal elegance. 9 erefore, for a long time, a historical 
approach that investigated the environment of these astonishing practices was 
not deemed necessary. Recently, however, a consensus has emerged that Greek 
mathematics was heterogeneous and that the famous mathematicians are only 
the tip of an iceberg that must have consisted of several coexisting and partly 
overlapping [ elds of mathematical practices (among others, Lloyd 1992, 569). It 
is my aim here to describe as much of this ‘iceberg’ as possible, and the relation-
ships between its more prominent parts, mainly during the most crucial time for 
the formation of the most important Greek mathematical traditions, the [ N h to 
the third centuries bc.

1. General introductions to Greek mathematics are provided by Cuomo (2001); Heath (1921); Lloyd (1973, 
chapters 4–5); Netz (1999a).
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Reconstructions: Greek practical mathematics

Let us begin with a basic observation. Whoever looks for the [ rst time at a page 
from one of the giants of Greek mathematics, say, Euclid, cannot but realize an 
obvious fact: these theorems and proofs are far removed from practical life and its 
problems. 9 ey are theoretical.2 Counting, weighing, measuring, and in general 
any empirical methods, have no place in this type of mathematics. Somebody, 
however, must have performed such practices in daily life, for example, in [ nan-
cial or administrative [ elds such as banking, engineering, or architecture. 
Some of these [ elds demand mathematical operations of considerable complex-
ity, for example, the calculation of interest or the comparison of  surface areas. 
Occasionally, ancient authors mention such mathematical practices in passing 
(for example, at the end of the [ N h century bc Aristophanes’ play, Wasps 656–
662). What is known about these practical forms of Greek mathematics?

Not much, obviously. Of the social elite who alone wrote and read for pleas-
ure, most were less interested in practical mathematics, which was apparently not 
part of common knowledge. Occasionally, one comes across obvious arithmetical 
blunders, mostly by historians.3 On the other hand, in most cases the practitioners 
themselves leN  no texts. 9 erefore, of all the manifold forms of practical mathem-
atics that must have existed, only two are known a little, partly through occasional 
references by authors interested in other topics, partly through preserved artifacts, 
and, rarely, through the textual traditions of the practitioners themselves.

Pebble arithmetic was used in order to perform calculations of all kinds.4 
‘Pebbles’ (psēphoi, an appropriate translation would be ‘counters’) that sym-
bolized di\ erent numbers through di\ erent forms and sizes, were moved and 
arranged on a marked surface—what is sometimes called the ‘Western abacus’ 
(see Netz 2002b, 326, 342, who remarks that backgammon may well illustrate the 
principle). Several of these have been found, and the practitioners themselves are 
mentioned occasionally.5 9 ese must have been professionals that one could hire 
whenever some arithmetical problem had to be solved, not so di\ erent from pro-
fessionals renting out their literacy. However, manipulating pebbles on an aba-
cus can lead to the discovery of general arithmetical knowledge, for example the 
properties of even and odd, or prime numbers, or abstract rules of how to produce 
certain classes of numbers, for example, square numbers. I call this knowledge 
‘general’ because it no longer has any immediate application. Here ‘theoretical’ 

2. I avoid here the notions of ‘pure’ and ‘applied’ mathematics with their evaluative connotations.
3. For example, Herodotus 7.187.2; 9 ucydides 1.10.4 f.; Polybius 9.19.6 f. See Netz (2002a, 209–213).
4. Netz (2002b) has recently described this practice and its social setting as a ‘counter culture’ (for the sake 

of the obvious pun, he translates psēphos as ‘counter’).
5. Netz (2002b, 325) surveys the archaeological evidence (30 abaci). Pebble arithmetic is mentioned, for 

example, in Aeschylus, Aga. 570; Solon in Diogenes Laertius 1.59.
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knowledge emerges from a purely practical-professional background. Some peb-
ble arithmetic probably shows up in later Greek ‘Neo-Pythagorean’ arithmetic, 
most notably in Nicomachus of Gerasa (probably second century ad) and, slightly 
later, in Iamblichus of Chalcis (Knorr 1975, 131–169).

Pebble arithmeticians, as a group or as individuals, never made it into the 
range of subjects one could write about in antiquity, a fate they shared with most 
professionals that one could hire to perform specialized tasks (physicians being 
the most notable of the few exceptions). 9 erefore, nothing is known about the 
people who did pebble arithmetic in classical Greece, how their profession was 
structured, and how they transmitted their knowledge. 9 eir body of knowledge, 
however, was apparently known to at least some Pythagoreans in [ N h-century 
Greece who used it for their own, semi-religious practices.6 Also, abstract insight 
into the properties of numbers, as it is typically gained by arranging pebbles 
(Becker 1936), must have been already widely known at the beginning of the [ N h 
century in Greece.7 9 ese two cases show how specialized, practical knowledge 
could become abstract and move beyond the circle of specialists.

9 e practitioners of this art in ancient Greece, however, were probably only 
a tiny part of a long and remarkably stable tradition of such arithmetic profes-
sionals that originated somewhere in the ancient Near East (but, admittedly, may 
have changed along the way). It has recently been demonstrated, by characteristic 
calculation errors, that Old Babylonian scribes of the early second millennium 
bc and their Seleucid descendants must have used essentially the same account-
ing board to carry out multiplications of large numbers.8 In the Middle East, the 
tradition resurfaces with people that are called ‘ahl al-gabr’ in Arabic sources of 
the ninth century ad, the ‘algebra people’.9 At least partly, their knowledge about 
algebraic problems and solutions goes back to Old Babylonian times (Høyrup 
1989). It is not too bold an assumption to understand Greek pebble arithmetic as 
part of the same tradition (see West 1997, 23–24 for eastern ind uence on Greek 
[ nancial arithmetic). Recently, a similar claim has been made concerning the 
Greek way of dealing with fractions that apparently shows Egyptian ind uence 
(Fowler 1999, 359).

9 e second subgroup of mathematical practitioners was concerned with meas-
uring and calculating areas and volumes. Unlike the pebble arithmeticians, they 
had textual traditions, of which traces are scarce for ancient Greece, but consid-
erable throughout the ancient Near East. 9 ese textual traditions, however, were 

6. Aristotle, Phys. 203 a 13–15; Metaph. 1092 b 10–13; 9 eophrastus, Metaph. 6 a 19–22.
7. Epicharmus (early [ N h century bc): fr. 23 B 2.1f. ed. Diels-Kranz; see Knorr (1975, 136); compare 

Burkert (1972, 434–439).
8. See Proust (2002, esp. 302), who maintains that this device was somehow based on the hand, that is, it 

would have been an advanced form of [ nger reckoning.
9. 9 ābit ibn Qurra in Luckey (1941, 95–96). Al-Nadim, Fihrist II, in Dodge (1970, 664–665) (ninth and 

tenth century, respectively).
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sub-literary, that is, they never made it into the traditions of Greek mathemat-
ical literature (later we will see why). 9 erefore, most of these texts have been 
found inscribed on papyri, mostly written in imperial times, extant only from 
the Greek population in Egypt because of the favorable conditions of preserva-
tion there. 9 ere is every reason to assume, however, that in antiquity such texts 
were widespread in the Greek speaking world, both earlier and later. Here is an 
example from a [ rst-century ad papyrus, now in Vienna:

Concerning stones and things needed to build a house, you will measure the volume 
according to the rules of the geometer as follows: the stone has 5 feet everywhere. Make 
5 x 5! It is 25. 9 at is the area of the surface. Make this 5 times concerning the height. It 
is 125. 9 e stone will have so many feet and is called a cube. (Greek text in Gerstinger-
Vogel 1932, 17)

9 e papyrus contained thirty-eight such paragraphs in sixteen columns, obvi-
ously meant to codify valid methods or, rather, approved procedures in textbook 
style (for details, see Fowler 1999, 253). Obviously, these methods are what the 
text calls ‘the rules (hoi logoi) of the geometer’. Other papyri contain more dif-
[ cult procedures, as the following example shows:

If there is given a parallelogram such as the one drawn below: how it is necessary, the 13 of 
the side squared is 169 and the 15 of the side squared is 225. (Subtract) from these the 169. 
56 remains. Subtract the 6 of the base from the 10 of the top. 4 remains. Take a fourth of 
the 56. It is 14. From these (subtract) the 4. 10 remains, a half of which is 5. So great is the 
base of the right-angled triangle. Squared it is 25 and the 13 squared is 169. Subtract the 25. 
144 remains, the pleura (= square root) of which is 12. So great is the perpendicular. And 
subtract the 5 from the 6 of the base. 1 remains. (Take) the one from the 10 of the top. 9 
remains. So great is the remainder of the upper base of the right-angled triangle. And the 
12 of the perpendicular by the 5 of the base is 60, a half of which is 30. Of so many arourōn 
(= square units) is the right-angled triangle in it. And the 12 by the 1 is 12. Of so many 
arourōn is the triangle in it. And the 12 by the 9 of the base is 108, a half of which is 54. Of so 
many arourōn is the other right-angled triangle. Altogether it is 96 units. And the [ gure will 
be such. (Pap. Ayer, col. III, [ rst to second century ad, transl. aN er Goodspeed 1898, 31)

9 e diagram is reproduced according to the papyrus (Goodspeed 1898, 30). 9 e 
algorithm gives the area of an irregularly shaped [ gure as the sum of triangles 
and rectangles, the areas of which have to be found [ rst. In order to ensure that 
the reader understands the actual procedure and, thereby, the abstract method, 
the paradigmatic numbers (in Greek, mostly letters) are repeated in the diagram 
from the text. As with the [ rst text, this is also a part of a collection of such para-
graphs. More such collections are known (see Asper 2007, 200): for example, a 
Berlin papyrus (Schubart 1915/16, 161–170) and the better part of two treatises 
(Geometrica, Stereometrica) ascribed to Hero of Alexandria, an engineer active 
in Rome and Alexandria in the [ rst century ad.
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9 e practical relevance of these procedures is fairly obvious, for example, for 
practitioners managing construction sites (‘how many bricks do I need for a wall 
with such and such dimensions?’) or in surveying (‘what is the size of this piece of 
land?’). Both appeal to commonly shared rules and, thereby, hint at a collective of 
practitioners whose professional knowledge was codi[ ed in such texts.10

9 e rhetorical mood of this codi[ cation is clearly one of instruction, of a 
stylized dialogue between teacher and disciple: strong and frequently iterated 
imperatives address a second person. More importantly, the method is given as 
a series of steps, each of which is clearly marked. ON en, the end of the procedure 
is marked as well. 9 at is why these texts remind the modern reader of recipes 
(Robson 1999, 8). Strangely, the method itself is never explained in general terms, 
nor is its e\ ectiveness proved. 9 e actual procedure employs paradigmatic num-
bers that always result in whole numbers (for example, when one has to extract 
square roots). Obviously, the reader is meant to understand the abstract method 
by repeatedly dealing with actual, varied cases. 9 e leap, however, from the 
actual case to the abstract method is never mentioned in these texts. Learning a 
general method is achieved in these texts by repeatedly performing a procedure, 
understanding its e\ ectiveness and memorizing the steps by repetition, when one 
works through the whole text-book. Later, the professional performs his tasks by 
repeating the method per analogiam.

As I have said, these sub-literary Greek texts were written in the [ rst and 
second centuries ad, mostly in Egypt. 9 e problems they solve are so basic that 
one can hardly imagine that these methods were not also used much earlier in 
Greece. 9 ey provide, however, a glimpse at a remarkably strong tradition, of 
which they are probably only a local, rather late branch. Another, older part of 

10. I understand the peculiar phrase ‘how it is necessary’ as shorthand for ‘how one has to solve this kind 
of problem according to the experts’. 9 e Greek is hōs dei. Goodspeed translates as ‘according to the condi-
tion of the problem’.
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Figure 2.1.1 Diagram in Papyrus Ayer 
(? rst to second century AD)
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this tradition is much better known, by thousands of texts preserved on clay tab-
lets found in the Near East. Here is an example, problem 17 of a rather substantial 
textbook (BM 96954), written in Old Babylonian times ([ rst half of the second 
millennium bc). 9 e text describes a procedure of how to calculate the volume of 
a ‘grain pile’ (probably a cone-shaped body):

A triangular grain-pile. 9 e length is 30, the width 10, the height 48. What is the grain? 
You: multiply 30, the length, by 10, the width. You will see 5 00. Multiply by 48, the 
height. You will see 4 00 00. Multiply 1 30 by 4 00 00. You will see 6 00 00 00. 9 e grain 
capacity is 6 00 00 00 gur. 9 is is the method. (transl. Robson 1999, 223)

If one leaves aside the di\ erences, mostly the sexagesimal system, one clearly 
observes the rhetorical features that were so obvious in the Greek texts: a clearly 
stated practical problem, the intense appeal to the reader, the recipe-like struc-
ture, a procedure that operates with paradigmatic numbers, an abstract method 
that is not mentioned but illustrated by actual procedures. Admittedly, these 
texts vary in complexity and in their actual textual conventions. 9 e above listed 
features, however, apply throughout, and not only to Old Babylonian, but also to 
Egyptian, Hebrew, Coptic, Arabic, and even Latin texts (compare, for example, 
Gandz 1929-31, 256–258; Høyrup 1996). 9 e tradition illustrated by these occa-
sional glimpses was alive from at least the second millennium bc well into the 
Middle Ages. It was so stable that some of the younger texts almost appear to 
be translations of the oldest ones (see the Coptic examples in Fowler 1999, 259). 
Moreover, some of the Greek texts show the same methods, and sometimes even 
the same sets of paradigmatic numbers as much older Egyptian or Babylonian 
ones (Gerstinger and Vogel 1932, 39, 47–50). In this tradition, the textbooks are 
complemented by lists of coe7  cients, certain factors, square roots, etc. (the Greek 
examples are collected in Fowler 1999, 270–276).

Although this knowledge, and the textual conventions that were meant to 
secure its transmission, originated in the ancient Near East, in time it moved 
westward and spread over the whole Mediterranean. We have some reasons 
to believe that people who solved practical problems with these methods were 
active in [ N h-century Greece too (and probably much earlier). 9 is argument 
relies on reconstruction by analogies: expert knowledge of several kinds came 
to Greece even before the classical age, especially in technical [ elds as diverse as 
architecture, writing, and medicine (to name but a few).11 I do not see why prac-
tices that involved calculation should have been the exception. At least in some 
[ elds, ‘migrant craN smen’, that is, foreigners seem to have been the transmitters. 
9 e argument from analogy seems the more compelling as one would expect 
numeracy to spread along the lines of literacy, especially when both probably 

11. See Burkert (1992, 20–25); West (1997, 23–24, 609–612); for a general introduction to the topic Burkert 
(2004, 1–15).
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took place in the same time and place (and had to be combined in many practices 
of administration).12 Early Greek pebble arithmetic, therefore, was quite probably 
one of the Greek practices that resulted from acculturation with the Middle East 
in archaic times or even earlier, just like the Greek alphabets (see Netz 2002b, 
344) and writing practices more generally.13

Back to the texts of these practitioners. 9 ere is no notion of de[ nition, proof, 
or even argument in these texts (and hardly any concept of generality),14 which 
has earned them the label ‘sub-scienti[ c’ (for example, Høyrup 1989). It is import-
ant, however, to understand the lack of these features not as a general intellectual 
‘fault’, but to explain them by the social functions of the knowledge concerned: 
in order to solve important problems, what is needed is not a proof of a general 
method, let alone of a theorem, but a reliable, accepted procedure that will lead 
to a reasonable result in every single case. Likewise, it is doubtful whether the 
notion of an abstract rule was present behind all the actual procedures. It might 
be a feature of the educational character of these texts that general knowledge is 
not explicitly stated (pace Damerow 2001).

As was the case with the pebble arithmeticians, almost nothing is known 
about the actual people who were engaged in these practices in Greece. Some 
assumptions, however, appear to be at least reasonable. First, since this kind of 
knowledge was of economic importance, it was probably not popular or wide-
spread but rather guarded, perhaps by guild-like social structures. Performing as 
a practical mathematician in one of these arts was a specialized profession. For 
some of these people, a Greek name has survived: there was a professional group 
called harpēdonaptai (‘rope-stretchers’), obviously surveyors operating with 
ropes for measuring purposes (Gandz 1929–31). Judging from the stability of the 
traditions, their group-structures must have been institutionalized somehow, 
including the education of disciples (maybe in apprenticeship-like relationships). 
Compared, however, to the complex institutional framework of, for example, 
the Old Babylonian scribal schools, the migrant craN smen in Greece must have 
transmitted their knowledge on a much less institutionalized and, above all, less 
literate level.

Second, in many realms of professional knowledge, migrant craN smen had 
already begun arriving in Greece from the East in the ninth century bc. 9 ere 
existed, for example, Phoenician work shops in seventh-century Athens. 9 e 
entire vase industry, so prominent especially in Attica, seems to have employed 
Eastern immigrants with names like Amasis or Lydus (see Burkert 1992, 20–25). 

12. See Netz (2002b, 322–324) on the concept of ‘numeracy’ and its conceptual interdependence with 
 ‘literacy’ (and even its antecedence to it) in early Greece and the Middle East.

13. Of course, I do not suggest any direct contacts between Near Eastern mathematics and Greek theoret-
ical mathematics (including astronomy) at any time before second-century Alexandria (see Robson 2005).

14. 9 ere are very few exceptions, most notably in the Egyptian Papyrus Rhind (seventeenth century bc, 
ed. Chace 1927–9). See Høyrup (2002a, 383); Asper (2007, 201 n727).
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In archaic times, mathematical practitioners were probably such migrant craN s-
men. Later, these traditions certainly became indigenous, but the knowledge 
retained its structures, even the textual ones.

9 ird and most importantly, these practitioners, even if occasionally well-
paid, must have been of a rather low social level, viewed from the perspective of 
the well-o\  polis citizen. Aristotle’s judgment of the craN smen’s social status in 
past and present probably also applied to these experts.15 In [ N h- and fourth-
century Greece, most writers were upper-class citizens writing for their peers, 
which is why we almost never hear about these practitioners. 9 at does not mean, 
however, that they were a marginal phenomenon. Rather, as I will argue, they 
provided the background for the emergence of theoretical mathematics. To think 
of their knowledge as ‘sub-scienti[ c’ makes sense, as long as one remembers 
that our understanding of what science is has been heavily ind uenced by Greek 
 theoretical mathematics.16 9 e ‘sub’ here should be taken literally: ancient prac-
tical mathematical traditions were certainly all-pervasive in ancient Greece, on 
top of which theoretical mathematics suddenly emerged, like a d oat on a river’s 
surface—brightly colored and highly visible, but tiny in size.

Greek theoretical mathematics (and its texts)

Compared with practical traditions such as the ones outlined above, Greek theoret-
ical mathematics strikes the reader as very di\ erent. Most notably, it is almost exclu-
sively geometrical. It consists of a body of general propositions proved by deduction 
from ‘axioms’, that is, evident assumptions or de[ nitions—hence the designation of 
this type of mathematics as ‘axiomatic-deductive’. Whereas the practitioners’ texts 
collected problems and provided procedures for solving them, the theoreticians’ 
texts collected general statements with proofs. 9 e language and the structure of 
these texts are highly peculiar, compared both to the practitioners’ texts and to Greek 
prose of the times in general. From a historian’s point of view, this form of mathem-
atics is no less remarkable: Greek theoretical mathematics suddenly appears at the 
end of the [ N h century bc. Most of the famous mathematical writers (for example, 
Euclid, Archimedes, and Apollonius) were active in the third century bc. A rather 
simple theorem in Euclid (Elements, I. 15) may provide a suitable introduction:

If two straight lines cut one another, they make the vertical angles equal to one another. 
For let the straight lines AB, ΓΔ cut one another at the point E; I say that the angle AEΓ is 
equal to the angle ΔEB, and the angle ΓEB to the angle AEΔ. For, since the straight line 
AE stands on the straight line ΓΔ, making the angles ΓEA, AEΔ, the angles ΓEA, AEΔ 
are equal to two right angles. Again, since the straight line ΔE stands on the straight line 

15. Politics III 5, 1278 a 7. ‘CraN smen were either slaves or foreigners.’
16. Maybe one should rather think of them as of a ‘science du concret’ (Lévi-Strauss 1966, 1–33).
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AB, making the angles AEΔ, ΔEB, the angles AEΔ, ΔEB are equal to two right angles. 
But the angles ΓEA, AEΔ were also proved equal to two right angles; therefore the angles 
ΓEA, AEΔ are equal to the angles AEΔ, ΔEB.17 Let the angle AEΔ be subtracted from 
each; therefore the remaining angle ΓEA is equal to the remaining angle BEΔ.18 Similarly 
it can be proved that the angles ΓEB, ΔEA are also equal. 9 erefore, if two straight lines 
cut one another, they make the vertical angles equal to one another. Just what one had to 
prove. (transl. modi[ ed from Heath 1956, I 277–278)

As can be gathered from the text, the reader had to have in front of him a diagram 
that probably looked like Fig. 2.1.2 (extant in medieval manuscripts of Euclid and 
probably closely resembling the diagrams illustrating the theorem in the third 
century bc).19

Euclid claims the truth of a general proposition, a theorem (above, given in 
italics), about what happens when two lines cut each other. First he construes 
a pseudo-actual case by a diagram, the parts of which are designated by letters. 
9 en he compels his reader to look at the diagram and ask himself which of the 
already proved or axiomatically accepted truths (both were treated earlier in the 
[ rst book of the Elements) one could use in order to prove the statement. Here, 
Euclid uses I.13 (‘If a straight line set up on a straight line makes angles, it will 
make either two right angles or angles equal to two right angles.’), and axioms 
(see notes 10 and 11). From these, already accepted as true, the mathematician 
can safely deduce the truth of the theorem. 9 e whole proof is implicit, that is, 
neither does Euclid tell the reader which parts of the axiomatic material or the 
already proved theorems he uses nor does he ever explain his line of reasoning. At 
the end of the paragraph, he does facilitate the transition from the pseudo-actual 
diagram to the general theorem, in exactly the same words that were used in the 
beginning. 9 e textual unit of theorem, diagram, and proof ends with the explicit 
and nearly proud assertion that the author has proved what he set out to prove.

17. 9 e argument is based on the so-called postulate 4 (‘All right angles are equal to one another.’) and 
so-called ‘common notion’ 1 (‘9 ings which are equal to the same thing are also equal to one another.’). All 
de[ nitions, postulates, and common notions relevant to the [ rst book of the Elements are gathered at the 
beginning of the book.

18. Presupposes common notion 3 (‘If equals are subtracted from equals, the remainders are equal’).
19. On diagrams see Saito, Chapter 9.2 in this volume.
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Figure 2.1.2 Diagram illustrating 
Euclid’s Elements 1.15 (after Heath 
1956, I 277)
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Due to its use in schools well into the twentieth century, Euclid’s Elements are 
by far the best known text written in this style, but by no means the only one. 
Here is a proof from the beginning of the treatise On the sphere and the cylinder 
(I.1), written by the famous Archimedes of Syracuse, probably roughly a contem-
porary of Euclid (Fig. 2.1.3):

If a polygon be circumscribed about a circle, the perimeter of the circumscribed polygon 
is greater than the perimeter of the circle. For let the present polygon be circumscribed 
about a circle. I say that the perimeter of the polygon is greater than the perimeter of the 
circle. For since ΒΑ, ΑL taken together is greater than the arc ΒL, because they have the 
same beginning and end, but contain the arc ΒL, and because similarly LΚ, KΘ taken 
together [is greater] than LΘ, and ΖΗ, ΗΘ taken together [is greater] than ΖΘ, and also 
ΔE, ΕΖ taken together [is greater] than ΔΖ, therefore the whole perimeter of the polygon 
is greater than the perimeter of the circle.20 (transl. aN er Heath 1953, 5)

Archimedes proves a fact that is evident to anyone who takes a look at the 
diagram. His proof utilizes axiomatic material, too (see note 14). Obviously, 
the two texts share a number of technical and linguistic or, rather, rhetorical 
features that further illustrate the theoretical character of these mathemati-
cal traditions. A third example shows that the theoretical ‘culture’ betrayed by 
these texts is almost obligatory for the authors engaged in the [ eld. 9 is is how 
the astronomer Aristarchus (probably early third century bc), famous for hav-
ing claimed heliocentricity, talks about the relation between two spheres (the 
second proposition of his little treatise On the sizes and distances of the sun and 
the moon):

20. 9 e proof is based on the axiomatic ‘second assumption’ that precedes the [ rst proposition in Archimedes’ 
text.
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Figure 2.1.3 Diagram illustrating 
Archimedes, On the sphere and cylinder 
I.1 (after Heiberg, 1972–5, I 13)
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If a sphere be illuminated by a sphere greater than itself, the illuminated portion of the 
former sphere will be greater than a hemisphere. For let a sphere the centre of which is 
B be illuminated by a sphere greater than itself the centre of which is A. I say that the 
illuminated portion of the sphere the centre of which is B is greater than a hemisphere. 
For, since two unequal spheres are comprehended by one and the same cone which has 
its vertex in the direction of a lesser sphere,21 let the cone comprehending the spheres be 
(drawn), and let a plane be carried through the axis; this plane will cut the spheres in 
circles and the cone in a triangle. Let it cut the spheres in the circles CDE, FGH, and the 
cone in the triangle CEK. It is then manifest that the segment of the sphere towards the 
circumference FGH, the base of which is the circle about FH as diameter, is the portion 
illuminated by the segment towards the circumference CDE, the base of which is the cir-
cle about CE as diameter and at right angles to the straight line AB; for the circumference 
FGH is illuminated by the circumference CDE, since CF, EH are the extreme rays. And 
the centre B of the sphere is within the segment FGH; so that the illuminated portion of 
the sphere is greater than a hemisphere. (transl. aN er Heath 1913, 359–361)

Instead of talking about celestial bodies, Aristarchus prefers to ‘geometrize’ the 
whole argument and to assume that these are just two given spheres. Illumination 
is conceptualized as a cone (and illustrated as a triangle). Aristarchus implic-
itly uses a proposition that has already been proved and accepted by the reader 
(proposition one, see note 13). Again, both the language and the structure of the 
argument are completely in line with what Euclid and Archimedes did. 9 is is 
Greek theoretical mathematics. It seems fair to say that these texts are utterly dif-
ferent from those in which practical mathematicians codi[ ed their knowledge. 
Let us bried y describe the theoretical texts by keeping the characteristic features 
of the practitioners’ textual traditions in mind. 9 ey are obviously di\ erent in at 
least three respects:

First, the text’s intention is to prove a theorem by logical means, which implies 
that the status of the objects being discussed is general. 9 erefore, actual numbers 

21. It had been demonstrated in the [ rst proposition that two unequal spheres are contained by one cone.
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Figure 2.1.4 Diagram illustrating Aristarchus, On the sizes, prop. 2 (after Heath 
1913, 358)



GEOGRAPHIES AND CULTURES118

or measurements have no place in this type of mathematics. Even the diagram 
introduces only pseudo-individual forms: the ‘two straight lines AB, ΓΔ’ or the 
‘two circles CDE, FGH’ are in truth any two straight lines or any two circles, 
respectively.

Second and accordingly, the mathematical writer is interested in the abstract 
properties of these general geometrical entities, not in calculating any quantita-
tive properties of real objects or classes of real objects.

9 ird, the rhetoric of the two textual traditions is completely di\ erent. 
Whereas the recipe-like algorithms of the practical tradition employed strong 
personal appeals to the reader, the theoretical tradition produced highly imper-
sonal texts (see Asper 2007, 125–135). 9 is feature is unique, at least to this 
extent, in the context of all Greek scienti[ c and technical literature and deserves 
a closer look. With the exception of exactly one formula that serves to introduce 
the repeated claim and marks the beginning of the proof (‘I say that . . . ’ in the 
three examples above), these texts never introduce an authorial voice nor do they 
ever address the reader. (9 e introductory letters of Archimedes and Apollonius 
are not an exception to this rule: these letters employ a style that is indeed per-
sonal, but they are not an integral part of the mathematic texts they introduce. 
Rather, they have the status of ‘paratexts’.) And even this ‘I’ is not personal in 
the usual sense, since it merely functions as a marker of the internal structure of 
the proof and will always show up at exactly the same place. Especially remark-
able are the impersonal imperatives that regularly feature in the description of 
the objects concerned: English has to paraphrase theses imperatives with ‘let’ 
which makes them less strong: for example, ‘let the straight lines AB, ΓΔ cut one 
another’ (Euclid), ‘let the polygon be circumscribed about a circle’ (Archimedes), 
or ‘let a plane be carried through the axis’ (Aristarchus). In the Greek, these are 
imperatives in the third person, mostly in the passive voice, and oN en even in the 
perfect tense.22 Hundreds of these strange forms exist in the works of theoret-
ical mathematicians. As one would expect, these forms are hardly extant outside 
of mathematical language, that is, they are part of an exclusive discourse, of a 
sociolect. 9 e writers present their objects to the reader as independently given, 
as something that is just there and can be contemplated objectively (Lachterman 
1989, 65–67). 9 ey write themselves, their perceptions and their operations out of 
the picture, as it were,23 which tends to add an air of timeless truth to what they 
have to say. 9 e admirable rigor of this discourse is, however, achieved at the cost 
of explanation and, even more, any context of how the proof was found (famously 

22. 9 e Greek forms of the translations quoted are: temnetōsan (Euclid: ‘they shall cut one another!’), 
perigegraphthō (Archimedes: ‘it shall be circumscribed!’), and ekbeblēsthō (Aristarchus: ‘it shall be 
extended!’).

23. 9 e Aristotelian Aristoxenus (third century bc) explained mathematical imperatives in exactly this 
way (Harmonica II 33, pp 42–43 ed. Da Rios).
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criticized by Lakatos 1976). 9 is weird way of writing has no parallel in Greek 
writing and cannot be anything but a rhetorical stylization. 9 e oral discourse of 
Euclid as he tried to convince a listener of any given proof would have probably 
contained many more personal markers (like demonstratives, interjections, or 
personal pronouns).24 9 us, the main function of the rhetoric of impersonality is 
to convey objectivity. Generally, this is still (or again) the case in modern ‘hard’ 
science (Storer 1967, 79; Rheinberger 2003, 311–315).

As di\ erent as the texts of the two traditions may appear at [ rst glance, they 
also share at least two features. One is their regular use of diagrams, the second 
is the thorough standardization of their language.25

Greek theoretical mathematics always relies on a lettered diagram in order (a) 
to add to the logical force of the proof by means of visual evidence. 9 e 
lettered diagram has proved so powerful that it is still used in modern 
science, in a nearly unaltered form (occasionally, today it is ‘numbered’ 
rather than ‘lettered’). Neglected for a long time, the diagram in Greek 
theoretical mathematics has recently been rediscovered as a very import-
ant feature (Netz 1999a), crucial to the communicative success of any 
proof. However, to anyone examining the traditions and texts of practical 
mathematics, especially the Near Eastern ones, it becomes quite clear that 
the speci[ c ‘theoretical’ Greek lettered diagram is somehow related, like 
a younger member of the same family, to the ‘numbered’ diagram that we 
[ nd in the practitioners’ texts (see the example taken from the Papyrus 
Ayer above, Fig. 2.1.1) and, regularly, in Babylonian problem texts.26 9 ere, 
the parts of the diagram are, usually, connected to the relevant portions of 
the text by repeating the paradigmatic measures given in the text. Greek 
theoretical mathematics uses generalized indices, that is, letters that, in 
this case, do not signify numbers. 9 e Greek lettered diagram is thus a 
generalization of the diagrams employed in the textbooks of practical 
mathematics and therefore closely related to the former (in my opinion, 
one of several reasons to think that Greek theoretical mathematics must 
have emerged from a practitioners’ background).

Anyone who works through the contents of either tradition will be amazed (b) 
by how extremely regulated, even standardized, these texts actually are. 
9 e practitioners always use the recipe-structure, within a given text the 
introduction, the appeal to the second person, and the end of the actual 

24. 9 e mathematical passages in Aristotle or Plato (minus the general di\ erences between written prose 
and oral discourse) might be a model of how mathematicians talked about their objects.

25. A third, not dealt with here, is the ‘discrete’ and, for Greek prose, highly unusual status of the major 
text-units in both traditions (see Asper 2003, 8–9).

26. See, for example, TMS 1, IM 55357, YBC 8633, YBC 4675 (see Damerow 2001, 230, 234, 244, and 280), 
all from Old Babylonian times.
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problem always use exactly the same language. 9 ese texts, being stan-
dardized, are somewhat remote from oral discourse.27 Since these struc-
tures are very old and easily cross cultures and languages, one could guess 
that the most e\ ective way to protect this knowledge was to ensure that it 
was kept traditional, as is evident from the standardization of its textual 
forms. Although Greek theoretical mathematics is comparatively young, 
it is no less standardized, albeit in a more complex way and on several 
levels: the lexicon used is small, nearly free of synonyms, and con[ ned by 
de[ nitions that precede most extant works. Mathematical syntax is even 
more regulated: the same elements of any given argument show exactly 
the same form (Netz 1999a, 133–158 has listed more than a hundred such 
‘formulas’). Even the whole proof always consists of the same parts, always 
introduced by the same particles.28 Of these, the famous phrase ‘QED’ 
(hoper edei deixai, ‘just what one had to prove’) is still used today.

9 erefore, the language of Greek theoretical mathematics strikes one as being 
far removed from living oral discourse and its common rhetorical strategies, and 
being just as far removed from other forms of written argument. Already by the 
fourth century bc, Aristotle’s readers did not appreciate mathematical prose aes-
thetically, because it was too di\ erent.29 To understand why the theoretical trad-
ition produced such unparalleled texts, why it even emerged this way, one has 
to dive deeply into historical inquiries, all of which greatly bene[ t from remem-
bering the strong traditions of Greek practical mathematics that must have been 
constantly present in the environment of the theoreticians.

B eoretical mathematics in Athens: games of distinction

9 eoretical mathematics of the kind outlined in the last paragraph existed only 
in Greece and was, by comparison with the mighty tradition of practical math-
ematics, clearly a local phenomenon, the distinctive features of which call for 
historical explanation or, at least, comment. 9 e traditional, that is, ultimately 
Aristotelian, narrative of how mathematics and philosophy emerged in archaic 
Greece tells us that it all began in Asia Minor (modern Turkey), in the sixth 
 century bc, with half-mythical characters such as 9 ales of Miletus (c 600–550 bc) 

27. Eleanor Robson, however, mentions that, at least in Old Babylonian mathematics, the syntax is quite 
 natural and the terminology ‘local and ad hoc at best’ (personal communication).

28. 9 ese parts, slightly di\ erent depending on whether the proof is a problem or a theorem, and also con-
sistently standardized only in Euclid, were already isolated, described, and named by the ancient tradition, 
preserved in Proclus ([ N h century ad): see Netz (1999b).

29. Aristotle, Rhet. 1404 a 12; Metaph. 995 a 8–12.
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and his Milesian ‘school’ or, somewhat later, Pythagoras of Samos (c 550–500 bc) 
and his followers. It is di7  cult or even impossible to reach [ rm ground here 
 (radical skepticism in Dicks 1959 and Burkert 1972). Both 9 ales and Pythagoras 
are credited with the discovery of geometrical theorems, for example the theo-
rem above quoted from Euclid is ascribed to 9 ales by ancient tradition. It is 
disputed, however, whether these ascriptions are to be trusted (rather not, is my 
guess). Whatever semi-theoretical practices they and their possible successors 
might have engaged in, it is quite certain that they did not produce texts showing 
the characteristics discussed above. It was disputed already in antiquity whether 
they had even produced texts at all. 9 e earliest history of Greek theoretical 
mathematics that we can lay our hands on begins in the late [ N h century bc at 
Athens, where the center of theoretical mathematics in the Greek world would be 
located for some 120 years, until other centers emerged in the beginning of the 
third century bc, most notably at Alexandria in Egypt.

What is known about the persons involved and the contexts in which such a 
peculiar body of knowledge emerged? As always, too little. Partly because the 
impersonality of theoretical mathematics prevented authors from telling us any-
thing about themselves (except in occasional introductory letters), partly because 
the older tradition was obliterated by the star mathematical writers of the third 
century bc. 9 e sources are thus mostly indirect, scattered, and do not go back 
further than the fourth century bc: quotations found in Late Antique commenta-
tors from the earliest historical account of mathematics, by Eudemus of Rhodes, 
an Aristotelian scholar (fourth century bc),30 and occasional remarks in the 
works of Plato and Aristotle.

AN er the shadowy prehistory of theoretical mathematics in eastern Greece,31 the 
political and economical power of Athens in the second half of the [ N h century 
attracted Greeks from Asia Minor who probably came as political representatives 
of their Ionian city-states. Two mathematicians from the island of Chios who were 
active at Athens are still known: Oenopides, who applied geometrical models to 
astronomical problems and is credited with a couple of methodological achieve-
ments, and, more prominently, Hippocrates, who seems to be the founder of the 
tradition of Elements, that is comprehensive axiomatic-deductive treatises in the 
later style of Euclid. His is the [ rst theoretical text that we have in Greek math-
ematics: a short passage on the quadrature of ‘lunules’, that is, certain segments 
of circles, quoted by Simplicius through Eudemus (see Netz 2004). Although dis-
puted in almost all its details, this text shows all the features that struck the reader 
as peculiar in the above quoted examples, especially the standardization, the 

30. Proclus in his commentary on the [ rst book of Euclid’s Elements, Eutocius (sixth century ad) com-
menting on Archimedes’ works, and Simplicius (sixth century ad) on Aristotle’s Physics. See Zhmud (2002).

31. 9 ere are more names, for example Phocus from Samos and Mandrolytus from Priene, but absolutely 
nothing is known about them.
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impersonality, and those strange imperatives. No diagrams have been preserved, 
but the text obviously relies on several lettered diagrams. Hippocrates is usually 
dated to 430–420 bc (see Burkert 1972, 314 n 77). 9 erefore, by this time there 
must have already existed generic conventions for how to write theoretical math-
ematics. Furthermore, there must have been a desire to communicate the know-
ledge to someone, that is, to readers. For Eudemus, writing about a hundred years 
later, Hippocrates was the founder of the genre that included Elements and, appar-
ently, the [ rst ‘real’ theoretical mathematician in Athens. AN er him, throughout 
the fourth century bc, we hear of about twenty names (all in Proclus) and even 
groups of people in Athens associated with theoretical mathematics, partly in 
contact with philosophers and astronomers. It is clear, though, that at least some 
mathematicians were not part of any of these other groups, especially not the 
Pythagoreans or, later, the followers of Plato. From about 400 bc onwards, at the 
latest, a mathematical community, however small, must have existed in Athens.

9 ere are reasons to believe that this theoretical knowledge did not suddenly 
fall from the sky or o\  the trees, but di\ erentiated itself from the practitioner’s 
knowledge. First, some of the terminology in Euclid betrays a practical origin, 
for example the term for ‘drawing a straight line’ (teinō, literally ‘stretch out’), 
goes back almost certainly to the aforementioned surveying practices of the 
‘rope-stretchers’. Similarly, expressions for geometrical entities as angles, certain 
[ gures, or the perpendicular go back to craN smen’s traditions.32 Second, the curi-
ous de[ nition of the line in Euclid (Book 1, def. 2) as ‘a length without width’ 
makes perfect sense when one realizes that the experts of the practical traditions, 
when concerned with measuring, always assume a standard width for every line 
they measure. 9 e theoretician’s text is being implicitly, but quite openly polem-
ical here (Høyrup 1996, 61, according to whom the same is true for Elem. II.1–10). 
9 ird, there is a model for conceptualizing the emergence of theoretical math-
ematics from practitioners’ knowledge. A typical genre of such practitioners’ 
groups and their competitive struggles is the riddle, used by experts to challenge 
one another. Such riddles are characteristically compound problems, and apply 
practical methods to improbable problems that already touch upon a theoret-
ical realm (Høyrup 1997, 71–72). According to the traditional histories of Greek 
mathematics, three problems were at the center of the [ eld’s attention from the 
beginning: how to square the circle, how to trisect an angle, and how to double 
the cube (Saito 1995). On the one hand, these are problems to solve, not theo-
rems to prove, and, therefore, belong to the practical sphere. On the other hand, 
it is not quite clear in what situation one would be faced with the task of, for 
example, doubling a cube. 9 erefore, one model for the transition from practice to 

32. Gandz (1929–31, 273–275). More examples in Burkert (1982, 135–136); Høyrup (2002a, 400–405).
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theory might indeed be the riddle, which pushed competitive practitioners 
towards theory.

One can draw another inference from the impersonality and the uniquely 
coherent terminology of Greek mathematical theory. In other intellectual [ elds, 
most notably in medicine and philosophy, one observes the opposite: texts are 
strongly personal and terminology changes between individuals or, at least, 
between groups (Netz 1999a, 122 f.).33 In these cases, both personality and group-
related terminology function as instruments in a competitive struggle among the 
participants in the [ eld, a competition aimed at patients, in the case of the physi-
cians, and at the glory of being right in the philosophers’ discussions. As was the 
case with the authorial ‘I’, in mathematical texts the reader comes across only one 
standardized usage of an ‘integrative we’ (reserved for the formula ‘ . . . as we will 
show . . . ’), meant to conjure up a group spirit, so oN en used in philosophy and 
medicine. In medicine, personality and polemics in the texts red ect a competitive 
[ eld, at least partially for economic reasons (Miller 1990, 39). Mathematical prac-
titioners were specialized professionals, paid for their services. 9 e sheer imper-
sonality of the texts, in the case of theoretical mathematics, however, hints instead 
at a [ eld comparatively free from economic pressures, a [ eld that, for precisely 
that reason, remained fairly autonomous. 9 e group of theoretical mathemati-
cians in Athens must therefore have been quite homogenous in social terms.

Perhaps it would be adequate to think of theoretical mathematics as some 
form of game rather than something pertaining to a professional occupation, 
which it has become today, and which practical mathematics has always been. 
9 e persons who played this game were certainly at home in the upper circles of 
Athenian society (evidence collected by Netz 1999a, 279 f.), similarly to Plato and 
his followers who eagerly absorbed theoretical mathematics. From the majority’s 
perspective, comedians could already make fun of mathematicians in 414 bc.34 
9 ey must have felt like an elitist little group among Athenians. For them, the-
oretical mathematics was probably a status practice, perhaps enforced by the fact 
that the most common status practice, that is, politics, became quite dangerous 
for the old upper class at the end of the [ N h century. Mathematics was, as phil-
osophy was to become, a status-conscious way to keep one’s head down.35 9 ere 
were, however, practitioners around who were, for Athenians from good families, 
socially unacceptable but who also had some share in mathematical knowledge 
and its practices. I suggest that many of the odd features of the theorists, such 
as expressly refusing to mention any practical applications or any useful e\ ect, 
worked intentionally as distinctive markers, meant to distinguish the precious 

33. 9 e last becomes very clear in the writings of the physician Galen (second century ad), especially in his 
treatise on terminology (On medical names, extant only in Arabic).

34. Aristophanes in his Birds (v. 1005), targeted at the astronomer Meton.
35. Netz (1999a, 293–294); Fowler (1999, 372). See also Carter (1986, 131–186).
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game of distinction36 from sordid occupations that were carried out by people for 
hire.37 Plato himself de[ nes, quite polemically, the di\ erence between practical 
calculations and theoretical mathematics (Philebus 56 D 3–57 A 3, a perspective 
that is still inherent in the modern opposition of ‘pure’ and ‘applied’ sciences). 
Ancient narratives concerning the emergence of mathematics proper always 
stress its emancipation from the demands of daily and practical life.38 Later, this 
game of distinction e\ ortlessly blended into the Platonic disdain for everything 
material. (It is di7  cult to decide whether Platonism adopted theoretical mathem-
atics because it perfectly satis[ ed the Platonists’ desire for immaterial, transcend-
ent truths, or whether Plato and his followers edged theoretical mathematics even 
further into the ivory tower.) Certainly the game of distinction was already being 
played before Plato had even dreamed of his forms. A late and, almost certainly, 
inauthentic anecdote illustrates my point nicely:

Someone who had taken up geometry with Euclid, asked aN er he had understood the 
[ rst theorem: ‘What is my pro[ t now that I have learned that?’ And Euclid called for his 
servant and said: ‘Give him a triōbolon, since he must always make a pro[ t out of what 
he learns’.39

9 e point of theoretical mathematics is precisely that one does not gain any mate-
rial pro[ t from it. 9 e triōbolon, here probably synonymous with ‘small change’, 
was the day’s wage of an unskilled worker in classical Athens, which would bring 
out the contempt for ‘work’ on behalf of the mathematicians even better. 9 e 
anecdote, one of several about Euclid that are all best met with skepticism, prob-
ably belongs to a Platonist milieu which began to dominate theoretical math-
ematics some time aN er Euclid’s lifetime.

For an Athenian gentleman devoted to theoretical mathematics between 420 
and 350 bc, however, professional experts of lower social status were not the only 
group from which it was necessary to demarcate his own pursuits: since the mid-
dle of the [ N h century, there had been the sophists and, increasingly, the philoso-
phers, both of whom had their own ways for intruding into pure and agoraphobic 
mathematics. 9 e sophists were professional experts of knowledge and, as such, 
promised to teach political success, which in a society largely based on public 
debate depended largely on the use of rhetoric. Some of the sophists, apparently 
trying to top all existing forms of knowledge, tackled the conventions of theor-
etical mathematics with rather silly objections.40 Others tried their ingenuity by 

36. 9 e expression is taken from Bourdieu (1979, 431 (jeu distinctif)). Of course, ancient Athenian upper-
classes had, just as their modern equivalents, several ‘games of distinction’ at their disposal, for example, chariot 
races.

37. What Netz (2002b) has termed the ‘marginalization of the numerical’ in theoretical mathematics, I 
see as one more of these distinguishing moves targeted against the practitioners whose practices were almost 
exclusively numerical.

38. For example, Aristotle, Metaph. 981 b 20–25; Proclus, In Eucl. pp. 25.12–26.9.
39. Stobaeus, Anthologium 2.31.114 (pp. 228.25–29 ed Wachsmuth/Hense).
40. Protagoras in Aristotle, Metaph. 998 a 2 f.; compare Anal. post. 76 b 39–77 a 4.
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solving the quadrature of the circle, again in pointedly amateurish fashion.41 By 
doing this, the sophists aimed probably not at the mathematicians, but at poten-
tial customers to whom they could demonstrate that they ‘knew everything’, 
which was the typical sophistic claim (Hippias in Plato, Hippias maior 285 B 
7–286 A 5). Viewed from this perspective, the mathematical excursions of the 
sophists indicate that they had found a body of theoretical mathematical know-
ledge at Athens, against which they tried to set themselves up as experts. 9 ere 
is no indication, however, that the mathematicians even bothered to engage with 
these dilettante newcomers.

A similar argument can be made about the philosophers in Athens.42 Followers 
of Socrates took a great interest in theoretical mathematics: First, the Socratic 
Bryson (c 365 bc) tried to square the circle (Aristotle, Anal. post. 75 b 40–76 a 3). 
Similar to Antipho, he proceeded from premises that were too general and thus 
failed. Aristotle calls this attempt ‘sophistic’, thereby indicating an outsider’s 
approach. Second, and far more importantly, Plato and his circle discovered in 
mathematical knowledge a paradigm of the epistemological quality they were 
generally aN er. Plato’s criticisms of mathematical methods show that, again, his 
is an outsider’s interest.43 Most of the people in the Academy were not math-
ematicians, but were eager to discuss meta-mathematical questions and to apply 
the deductive logic of mathematical proofs to dialectics and even to science in 
general (as Aristotle did in his Second analytics). 9 ere is no reason to assume 
that the mathematicians were interested in these generalizations. Proclus has 
preserved a signi[ cant statement of the otherwise unknown mathematician 
Amphinomus ([ rst half of the fourth century bc) who boldly contended that it is 
not the business of the mathematician to discuss the epistemological foundations 
of his work.44 9 e mathematicians’ desire to distinguish themselves from other 
discourses of knowledge obviously worked to distance themselves from the phi-
losophers, too. 9 e clearer the distinction and the more exclusive the group, the 
more enjoyable were the games of distinction.

B e lack of institutions for theoretical mathematics

Since games require peers, but not necessarily readers, the remarkable form 
of mathematical texts deserves our attention, too. 9 ey probably also served a 

41. Hippias in Proclus, In Eucl. p. 272.7–10; Antipho in Simplicius, In Arist. Phys. I 2, p. 54.12–55.11 ed 
Diels.

42. 9 ere is a dubious tradition that Anaxagoras, a friend of Pericles, engaged in theoretical mathematics, 
in approximately 450 bc (Ps.-Plato, Amat. 132 A 5 f.; Proclus, In Eucl. p. 65.21–66.1).

43. Plato, Resp. 510 C 2–D 2; 533 B 6–C 4.
44. Proclus, In Eucl. p. 202.9–12.
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certain function within their original contexts of communication. Many of the 
features of the theoretical tradition have the e\ ect of ensuring the correct under-
standing of the texts, especially multi-leveled standardization. In a social context 
where mathematics is regularly explained by a teacher to disciples, texts used in 
instruction can a\ ord to be less rigorous and less standardized because there is 
always the option of live dialogue to ensure that the knowledge is transmitted. 
9 e texts of the practical tradition were probably always accompanied by per-
sonal, oral instruction that [ lled in the gaps, explained terms, and so on. Unlike 
these practical texts, the theoretical tradition produced autonomous texts, that 
is, texts that were able to exclude misunderstandings all by themselves, that were 
able to force readers into a consensus by realizing the mathematical truth. 9 is is 
the reason for de[ ning crucial terms, standardizing the structure of proofs, and 
for excluding the context of discovery, every personal trace, and all controversy. 
Greek mathematical prose in the theoretical tradition is a paradigm of written 
knowledge transmission, rigorous in a way that still works today for any reader of 
Euclid or Archimedes. 9 e lettered diagram plays not a small part in this achieve-
ment because it transports visual evidence from the author to the reader.45 For all 
these reasons, one can happily read these texts alone, without a teacher, and still 
be fairly sure (as much as is possible in written communication, and compared 
to, say, poetic or historiographic texts) that one understands the argument in the 
way the authors intended it to be understood. 9 us, the theoreticians have cre-
ated a powerful, very reliable means of purely written communication.

9 e practitioners imparted their knowledge from generation to generation 
within a guild-like institutionalized framework. For theoretical mathemat-
ics, however, there was no institutional background in [ N h- and fourth-century 
Greece (of course not, since the point of this socially distinctive game was its 
being ‘useless’). In its infancy, Greek theoretical mathematics lacked institution-
alization, which Netz (1999a) has shown convincingly. Plato and Aristotle lament 
that the city-state has no esteem for and, accordingly, provides no structures for 
theoretical mathematics.46 True, Plato makes his guardians learn abstract math-
ematics—but his point seems to be that in real-life Athens nobody did (Resp. 525 
B 3–528 E 2). Initially, Greek mathematicians had too few people around to talk 
to, so they resorted to writing and travel. Mathematicians were forced to write 
rather than discuss (compare Plato, 0 eaetetus 147 D 3) and, therefore, developed 
textual forms that could function perfectly in writing alone. In places such as 
Syracuse or Cyrene, there might not have even been any continuous oral trad-
ition, a scenario quite di\ erent from our practical mathematicians whose group-
structure ensured that the trade was handed down from generation to generation. 

45. See, however, Saito, Chapter 9.2 in this volume on ‘over-speci[ cation’.
46. Plato, Resp. 528 B 6–C 8; Aristotle, fr. 74.1 ed Gigon (= Iamblichus, Comm. math. sci.).
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Standardization of proof-structure and the theoretical lexicon may have helped 
to increase the probability of successful knowledge-transmission.

9 e situation was di\ erent in fourth-century Athens and in third- and second-
century Alexandria but, by then, the genre of mathematical prose had already 
emerged with its distinctive features. Besides, even in the third and second cen-
turies, letters and travel were typical for theoretical mathematicians outside of 
Alexandria, as can be glimpsed from the introductory letters of Archimedes, of 
Diocles (ed Toomer 1976), and of Apollonius. Instead of walking into a classroom 
and presenting a new theorem to his graduate students, Archimedes in Syracuse 
sent letters to the other end of the world challenging his friends in Alexandria to 
[ nd the proofs of the theorems he has just found.47 Further, the genre of Elements 
with its peculiar linguistic characteristics emerged as an ideal medium of how to 
store the pertinent knowledge and is still used in this capacity today.

From a modern perspective it is di7  cult to imagine that (theoretical) math-
ematics might not have been institutionalized in some way. In classical Greece, 
institutionalization proper did not begin with a sudden widespread interest in 
theoretical knowledge, but with practices of political representation. AN er the fol-
lowers of Plato and Aristotle had developed a lively interest in theoretical math-
ematics throughout the latter half of the fourth century bc, Hellenistic dynasts, 
above all the Ptolemies in Alexandria, the Seleucids at Antioch in Syria and, on 
a less grand scale, Hiero at Syracuse in Sicily, sponsored theoretical mathematics 
just as they funded poets and grammarians: as a contemporary form of pan-
Hellenic representation. Intellectuals added to the royal splendor.

Paradoxically, we know next to nothing about Euclid. He may or may not have 
been the one who migrated from the then thriving mathematical scene of Athens 
to Alexandria, some time between 320 and 280 bc, and with whom mathemat-
ical institutionalization began at Alexandria.48 9 ere, the Ptolemies had also 
established some center of engineering, not least because they were keenly inter-
ested in siege engines, for which the successful construction and use of practical 
mathematics was of great importance. 9 ere, a tradition of teaching and writing 
practical mathematics continued into Byzantine or even Arabic times. 9 e most 
important author of this tradition is the aforementioned Hero of Alexandria, who 
himself bridged both the practical and the theoretical traditions. Furthermore, 
the Ptolemies assembled mathematically minded astronomers in Alexandria, 
for instance Conon of Samos (third century bc) who also wrote on conic sec-
tions. Apparently there was a nearby observatory. All these persons49 must have 
 constantly met and debated with one another. In Archimedes’ and Apollonius’ 

47. Archimedes, Sph. cyl. praef. vol 1, pp. 168.3–5 ed Heiberg 1972; Lin. spir. praef. vol 2, pp. 2.2–6; Meth. 
praef. vol 2, pp. 426.4–7.

48. At least, this is what Pappus of Alexandria (fourth century ad) tells us (Coll. p. 678 ed Hultsch).
49. More names and a7  liations in Asper 2003, 27.
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introductory letters, we strongly sense the existence of a small ‘scienti[ c commu-
nity’, again with notions of elitist distinction.50 9 ere were several libraries that 
served scholarly purposes and the famous Mouseion, an institution that gathered 
and awarded royal stipends to scholars from a number of disciplines, including 
grammar and, probably, medicine. It was here, with this concentration of various 
sorts of mathematicians that a stable tradition of theoretical mathematics emerged 
that betrays signs of teaching and canonization (editions of mathematical ‘clas-
sics’, commentaries, and collections), with the later works more [ rmly embedded 
in Platonist philosophy and curriculum. But even then, theoretical mathematics 
remains a discourse based on writing and con[ ned to very small, socially elevated 
circles. 9 ey were still not professionals in the modern sense, as the mathematical 
practitioners had always been. Despite the astonishing prominence of theoret-
ical mathematics in modern times, which invites anachronistic re-projections, in 
ancient Greece theoretical mathematics must always have been an epiphenom-
enon, or rather, a marginal di\ erentiation, of strong practical traditions.

Conclusion: the two mathematical cultures of ancient
Greece compared

Practical mathematics must have been present in all the previously mentioned times 
and places, albeit socially invisible. Mostly, its practitioners worked with their long-
established methods without ever paying attention to the theorists and their games. 
On the other hand, upper-class theorists must have aimed at staying clear of modest 
craN smen. Occasionally, one can suspect a direct, polemical reference by theoret-
ical mathematics directed against the practitioners. Platonic ideology contributed 
its share to the dichotomy, which was apparently quite strict at times. Rarely did 
somebody bridge the two traditions, which must have occurred regularly in the 
very beginnings of the theoretical tradition. One might understand these respective 
bodies of knowledge as complementary and, almost, as mutually explanative:

Greek practical mathematics:

was derivative of older traditions that, ultimately, originated in the ancient • 
Near East;

solved ‘real-life’ problems;• 

communicated actual procedures in order to convey general methods;• 

used written texts (if at all) as secondary means of knowledge storage and • 
instruction;

50. Both ask their addressees to distribute their [ ndings only to those who are deserving: Apollonius, Con. 
II praef. vol 1 pp. 192.5–8 ed Heiberg 1893; Archimedes, Sph. cyl. I praef., vol 1 pp. 4.13 f.



The two cultures of mathematics in ancient Greece 129

employed ‘social’ technologies of trust, that is a rhetoric based on insti-• 
tutional authority; for example, the guild’s pristine tradition, the special-
ist status of its practitioners, and the knowledge’s commonly accepted 
usefulness;

worked within a stable and highly traditional social—that is, institu-• 
tional—framework.

Greek theoretical mathematics:

emerged in sixth- to [ N h-century Greece, at least partly from a practical • 
background;

was a theoreticians’ game with artistic implications, pointedly removed • 
from ‘real life’;

communicated general theorems concerning ideal geometrical entities;• 

depended on writing and produced autonomous texts;• 

employed epistemological technologies of trust based on evidence and • 
logic;

was not institutionalized, at least not during its formative stages.• 

9 e two [ elds di\ er so greatly with respect to their practices, traditions, milieus, 
functions, methods, and probably also the mindsets of their participants that 
I could not resist adopting the catchphrase of the ‘two cultures’. 9 us, when 
approaching mathematics in ancient Greece, perhaps one should rather think 
of two mathematical cultures, in many respects neat opposites.51 To the leading 
circles of any given ancient Greek community, the practitioners were probably 
almost socially invisible. As far as sizes of groups and social presence in everyday 
life are concerned, however, the theorists were never more than an epiphenom-
enon. Apparently, the unusual characteristics of theoretical mathematics evolved 
as markers of di\ erentiation, meant to stress a distance from the social and epi-
stemic background that was associated with practical mathematics.
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CH A P T ER 2 . 2

Tracing mathematical networks in 
seventeenth-century England
Jacqueline Stedall

In 2000, Cambridge University Library purchased a unique and important col-
lection of mathematical papers from the library of the Earls of Maccles[ eld at 

Shirburn Castle in Oxfordshire. 9 e Maccles[ eld Collection, previously inaccess-
ible to scholars since the early nineteenth century, consists of items once owned by 
William Jones, tutor to a son of the family in the early eighteenth century. It includes 
not only a number of Newton manuscripts (see Mandelbrote 2002), but also letters 
and papers that Jones inherited from John Collins, who in the later seventeenth cen-
tury had himself been an assiduous collector of mathematical writings. One item that 
has come to light in the collection is of particular interest to us here: a copy made by 
Collins of an unpublished treatise by his friend Nicolaus Mercator, who had arrived 
in England from Denmark in 1653 and earned a living as a mathematics tutor and 
occasional translator.1 9 e treatise is entitled ‘9 e doctrine of di\ erences’ (CUL Add 
MS 9795/9/15). Investigation of its contents has revealed that several of its pages are 
in fact copied directly from papers written many years earlier by Walter Warner, 
who in his lifetime was best known for his posthumous edition of 9 omas Harriot’s 
algebra (Harriot 1631). 9 is discovery was quite unexpected because Warner died in 
1643, ten years before Mercator arrived in England, and there has never been reason 
to think that the two had any mathematical or social connection. 9 e appearance of 

 1. Nicolaus Mercator is not to be confused with Gerard Mercator, inventor of the cylindrical map projec-
tion, who lived a century earlier.
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identical material in their separate writings therefore raises several intriguing ques-
tions: how did Mercator come to have such intimate knowledge of the papers of a 
man he had never met? And why did their content matter to him?

Investigation of the connections between Warner and Mercator uncovers net-
works of informal mathematical communication that spanned more than half a 
century, and which involved not only practitioners but also patrons and interested 
bystanders. It also demonstrates a preoccupation with a kind of mathematics that 
had little to do with the major achievements of the seventeenth century: it was not 
analytic geometry or the new methods of indivisibles that intrigued Warner or 
Mercator and their various acquaintances, but a method (to be described below) 
of interpolating tables using constant di\ erences. 9 eir pursuit of this method 
consumed much time and e\ ort but produced almost nothing in the way of pub-
lished work, and until now the method has gone almost entirely unnoticed as a 
topic of seventeenth-century English mathematical discourse.

9 e method of di\ erences was not an isolated instance of a long-running math-
ematical problem. In the later part of the chapter we will look bried y at a second 
example, this time based on algebra. Taken together, these two case studies dem-
onstrate a lively interest  in mathematics amongst people of widely di\ ering social 
backgrounds, an enthusiasm that nourished a thriving mathematical subculture.

All intellectual activity in England in the mid-seventeenth century has to be 
seen in the context of a volatile and sometimes violent political background. 
From 1642 until the early 1650s, the entire population of Britain su\ ered from a 
series of civil wars in England, Scotland, and Ireland. 9 e causes and changing 
alliances were complex: in the early years the factions divided around the rela-
tive powers of King and Parliament, but there were also profound divisions over 
matters of doctrine and religious authority  between Anglicans of the established 
church and dissenting Presbyterians. As in any civil war there was widespread 
social breakdown. Oxford and Cambridge virtually closed down as universities, 
and Oxford colleges became Royalist garrisons. Elsewhere families and individu-
als were dislocated, and homes, books, and papers were lost. AN er the execution of 
King Charles I in 1649, the country was ruled for nine years by Oliver Cromwell, 
and for two more years aN er his death by his son Richard, until Charles II was 
restored to the throne in 1660. 9 ose who during the 1640s and 1650s privately 
discussed mathematics and experimental science must have found in such sub-
jects a welcome  respite from more intractable and threatening debates.

Harriot and Warner and the method of diF erences

To understand Warner’s mathematical ideas we must begin with those of his 
longtime friend and colleague 9 omas Harriot. Warner was employed as librar-
ian to the Earl of Northumberland, who was also Harriot’s patron from the early 
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1590s until Harriot’s death in 1621. Warner was never in Harriot’s intellectual 
league: the only modern scholar to have studied his non-mathematical writings 
describes him as a ‘not too clear-thinking minor philosopher’ (Prins 1992, xviii). 
Nevertheless, Warner lived and worked in close proximity to Harriot for long 
enough to learn a good deal about his ideas and their potential, and almost all his 
own mathematical writings can be connected back to Harriot’s.

Some of Harriot’s most sophisticated and time-consuming calculations, 
carried out over several years, were to do with problems of navigation on the 
curved surface of the globe. Late sixteenth-century navigators knew that when 
they steered on a given compass bearing they needed to correct for the curva-
ture of the earth, and that the nearer they were to one of the earth’s poles the 
greater the correction had to be. Harriot calculated extensive tables of correc-
tions, or ‘meridional parts’ (see Pepper 1968). 9 e details of his computations 
are complex, but only one aspect is needed here. Borrowing Jon Pepper’s nota-
tion, we may denote a particular constant that arises in the calculations by β 
(its value happens to be 0.99970915409725778). Harriot needed values of βn for 
n = 0.1, 0.2, 0.3, . . . , 0.99. To [ nd them, he used a method of interpolation that 
allowed him to ‘subtabulate’ these 99 new values between the (known) values of 
β0 and β1. 9 is method became so valuable in this and other contexts that in out-
line it is described here, using one of Harriot’s own, much simpler, examples.

Consider Table 2.2.1, in which the tabulated [ gures are in column C. 9 e entries 
in  column B are [ rst di\ erences taken in the positive direction (48 – 3 = 45 and 
so on) and those in column A are second di\ erences (95 – 45 = 50 and so on). 
Clearly the numbers in column C have been chosen (or generated) in such a way 
that the numbers in column A are constant.

Table 2.2.1 A constant difference table

N C
B

0   3 A
 45

1  48 50
 95

2 143 50
145

3 288 50
195

4 483 50
245

5 728

Now suppose, keeping the di\ erences in column A constant, that we wish to 
interpolate four new entries between 3 and 48 in column C. What must the new 
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constant di\ erence in column A be? What changes will we see in column B? And 
what will the new entries be in column C? Harriot was able to derive general for-
mulae to answer each of these questions, and in this particular case his solution 
was as shown in Table 2.2.2.

Table 2.2.2 An interpolated version of Table 2.2.1

N
n

 c

 b
0  3 a

 5
1
5  8 2

 7
2
5 15 2

 9
3
5 24 2

11
4
5 35 2

13
5
5 48

9 e numbers in the leN most column are not part of the main table, but are 
margin entries, or indices: thus 3

5
 is not a fraction, but shorthand for ‘the 3rd 

entry of a table interpolated to 5 times its original length’. In general, Harriot 
wrote this index as N

n  and gave formulae for calculating its value for any (integer)
values of N and n, and for constant [ rst, second, third, or higher di\ erences.2

Harriot’s tables of powers of β, being essentially exponential, do not produce 
constant di\ erences, but may be assumed to do so over relatively short intervals, 
and Harriot used the above method extensively in his calculations of merid-
ional parts. 9 ere are also signs that he began to recognize other uses for it. He 
experimented, for instance, with evaluating polynomial expressions for the [ rst 
few integers. Table 2.2.3 is his table of values of ‘a cube plus three times its root’ or, 
as Harriot wrote it, C + 3R (BL Add MS 6782, f. 246).

9 e [ gures in the three columns on the right are [ rst, second, and third dif-
ferences calculated from the values 4, 14, 36, 76, 140. 9 ose below the stepped 
line are calculated directly from these values, but those above it appear to have 
been obtained by extrapolating upwards, always keeping 6 in the [ nal column. 
In a second table, written alongside this one, Harriot tested the extrapolation for 
negative values of R as well. His interpolation method would allow him to insert 
further [ gures between those listed here (in the manuscript the relevant formu-
lae appear immediately below the tables) and therefore in principle to solve the 
equation C + 3R = N for any required value of N.

2. For fuller details and transcripts of the relevant manuscripts see Beery and Stedall (2008).
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Table 2.2.3 A cube plus three times its root, with ? rst, 
second, and third differences, for R = 1, 2, 3, 4, 5

 4 –6 6

1. 1 + 3 = 4  4  0 6

2. 8 + 6 = 14 10  6 6

3. 27 + 9 = 36 22 12 6

4. 64 + 12 = 76 40 18 6

5. 125 + 15 = 140 64 24 6

9 ere is ample evidence in Warner’s manuscripts that he experimented with 
Harriot’s constant di\ erence method, both for interpolating tables and for solv-
ing simple polynomial equations. Unfortunately there is no clue to the date of his 
work except from his handwriting. By the late 1620s Warner was over seventy 
and his handwriting was visibly shaky.3 His notes on di\ erence methods are still 
in a relatively [ rm hand, suggesting that he made them some years earlier, pos-
sibly before Harriot’s death and with his guidance.

For reference later, four particular extracts from Warner’s manuscripts are 
bried y described here, labelled for convenience as (W1) to (W4).4

(W1) (CUL Add MS 9597/9/15, \ . 72–73) is headed ‘Problema Arithmeticum 
ad doctrinam de di\ erentium Progressionibus pertinens’, ‘An arithmetic prob-
lem pertaining to the doctrine of progressions of di\ erences’, and gives Table 
2.2.4, for which the [ rst di\ erences are a, a + e, a + 2e, a + 3e, . . . , and the 
second di\ erence is always e.

In accompanying notes, Warner explains that he denotes the di\ erence between 
b and c by f, the di\ erence between c and d by h, and the di\ erence between f and 
h by g. We may rewrite the [ rst two relationships as

f = c – b = 10a + 45e
h = d – c = 10a + 145e

from which it is easy to see that

g = h – f = 100e

It therefore follows that e
g

�
100 , and that a

f e
�

� 45

10  Warner gave a rather longer 
derivation but arrived at these same formulae for e and a. In other words, given 
just b, c, and d, it is possible to calculate e and a, and hence to [ ll in all the inter-
mediate values of the table. 9 is is in fact a special case of Harriot’s more general 
interpolation formulae.

(W2) (BL Add MS 4396, \ . 20–29) is a run of ten sheets concerned with the 
following two problems for a given constant di\ erence table: (1) given any index 

3. See, for example, his note on the Preface to the Praxis in BL Add MS 4395, f. 92.
4. For fuller details on each of them see Beery and Stedall (2008).
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N
n

 in the margin, [ nd the corresponding entry in the table; (2) conversely, given 
an entry in the table [ nd its index N

n
.

9 e [ rst worked example is to [ nd the entry corresponding to N
n

�
3
5

 in Table 
2.2.5.

Table 2.2.4 An algebraic difference table

b = b
b + 1a
b + 2a + e
b + 3a + 3e
b + 4a + 6e
b + 5a + 10e
b + 6a + 15e
b + 7a + 21e
b + 8a + 28e
b + 9a + 36e

c = b + 10a + 45e
b + 11a + 55e
b + 12a + 66e
b + 13a + 78e
b + 14a + 91e
b + 15a + 105e
b + 16a + 120e
b + 17a + 136e
b + 18a + 153e
b + 19a + 171e

d = b + 20a + 190e

Table 2.2.5 Warner’s worked example from (W2)

N C
B

0 3 A
45

1 48 50
95

2 143 50
145

3 288 50
195

4 483 50
245

5 728

Clearly this problem is identical to the one posed by Harriot shown in Table 
2.2.1. 9 e other problems in (W2) are numerical and algebraic variations on the 
same theme.
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(W3) (BL Add MS 4396, f. 19) is concerned with the interpolation of tables of 
antilogarithms, or (since Warner was working in base 10) values of 10x. As we 
will see later, Warner devoted the [ nal years of his life to such calculations. 9 e 
method is illustrated by two worked examples: the [ rst shows how to interpolate 
nine new entries at the beginning of the table, between those for 0 and 0.0001, 
namely, those for 0.00001, 0.00002, . . . , 0.00009. Over this range the second di\ e-
rence (taken as far as the twelN h decimal place) can be considered constant, and 
Warner’s method is exactly Harriot’s interpolation method for constant second 
di\ erences. Warner’s second example, on the reverse of the same sheet, gives a 
calculation for the end of the table, for the entries to be interpolated between those 
for 0.9999 and 1, namely those for 0.99991, 0.99992, . . . , 0.99999. (Antilogarithms 
need only be tabulated between 0 and 1 because any others are found by scaling 
by an appropriate power of 10.) 9 is, of course, was the problem that Harriot had 
also worked on when computing his tables of meridional parts.

(W4) (BL Add MS 4395, \ . 166–166v and 181) consists of just two pages and 
a postscript, on the subject of solving equations by the method of di\ erences. 
Warner begins:

9 ere is another way for the solution of equations by di\ erentiall progressions to be con-
sidered of. As for squares aa + 3a = 130 // a = 10

He then gives Table 2.2.6, which shows the [ rst few values of aa + 3a together 
with [ rst and second di\ erences (f. 166).

Table 2.2.6 Values of aa + 3a for a = 1, 2, 3, 4

a = 1 //  4 –  –  –  4 –  –  – 2

a = 2 // 10 –  –  –  6 –  –  – 2

a = 3 // 18 –  –  –  8 –  –  – 2

a = 4 // 28 –  –  – 10 –  –  – 2

&c. usque ad 130 (‘etc. as far as 130’).

Clearly this is similar in layout to Harriot’s table for a cube plus three roots, in 
Table 2.2.3 above. It is followed in Warner’s manuscript by other tables showing 
the [ rst few values of aaa + 2aa + 3a (with a constant di\ erence of 6 in the [ nal 
column), and of aaaa + 1aaa + 3aa + 2a (with a constant di\ erence of 24). All 
the tables are set out in neat rectangular blocks, and Warner gave rules for writ-
ing down the crucial [ rst row simply by inspection:

9 e primes [[ rst terms] of these progressions [columns] are given thus, [ rst of the 
squares, the [ rst is the summe of the coe7  cients, the second is the same, the third 
the caracteristik 2. Of the cubes the [ rst is the summe of the coe7  cients, the second the 
same, the third the double of the coe7  cients of the squares, the fourth the caracteristik 6. 
[ . . . ] the like rules are to be found for the rest [ . . . ]
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9 e rules are correct, but Warner gave no hint as to how he had found them.
Suppose now that one wishes to solve the equation aa + 3a = N, where N is a posi-

tive number. All one has to do is extend the table downwards and hope that N will 
appear in the column of values on the leN . It may happen, of course, that N will fall 
somewhere between the calculated entries. Warner returned to this problem with a 
note added [ N een pages later (f. 181), and gave the rules for interpolating new entries 
between each of those already calculated, using the worked example aa + 6a = N.

Warner and Pell and analogics

9 e Earl of Northumberland died in 1632 and from then on Warner was supported 
by Sir 9 omas Aylesbury, one of the few surviving members of Harriot’s circle. By 
then Aylesbury and Warner had published Harriot’s Praxis, and planned to edit 
more of Harriot’s papers. 9 e project came to the attention of Samuel Hartlib, a 
scienti[ c ‘intelligencer’ who noted such mathematical and scienti[ c advances in his 
Ephemerides (see Clucas 1991). Hartlib in turn introduced Aylesbury to his own 
mathematical protegé, John Pell, then in his late twenties and seeking employment.

From Pell we have an unusual account of a mathematical conversation between 
him and Aylesbury in January 1638 (BL Add MS 4419, f. 139), a conversation of 
a kind that is instantly recognizable but rarely written down. 9 e subject under 
discussion is the equation aa + ba = bb, in which the unknown quantity is a. 
9 e technical details are less important, however, than the verbal negotiation 
between Aylesbury [A] and Pell [P].

P. You are farre enough already Sr for a numerous exegesis. A. No. P. Yes, I can exhibit 
a by that equation for it is no other than Harriot’s aa + da = 5 . A. True. Let us goe on. 
Let b be equall to 2c.

Heere I was not willing to stop him and say why doe you take b = 2c. But let him goe 
on. (More he might have sayd 4cc for bb, but he changed not that.)

A. aa + 2ac = bb
(adde cc to both)
aa + 2ca + cc = bb + cc
A. 9 e former is a true square, therefore let the other be so, viz = xx, whose roote x = to 

the roote of aa + 2ca + cc which is a−c. P. No Sr a + c. A. No? are we mistaken? tis true.
a+c=x
a=x–c
and heere he leN  o\  as having found a.

‘Harriot’s aa + da = 5 ’ is an equation discussed in the Praxis (Harriot 1631, 
119–121). Earlier in the conversation Aylesbury had also described Harriot’s idio-
syncratic equals sign (with two short vertical stokes between the horizontals), a 
sign that had never appeared in print but only in the manuscripts. 9 us, through 
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Aylesbury, Pell acquired an intimate knowledge of Harriot’s work, understand-
ing some of it rather better than Warner did (see Malcolm and Stedall 2005, 
273–276).

Aylesbury probably thought that Pell would make an ideal assistant for Warner 
who, though over eighty, was engaged in a new project: the calculation of antilog-
arithms or ‘analogics’. When Warner and Pell met for the [ rst time in November 
1939, Warner explained to Pell that he already had a table of 10,000 antiloga-
rithms and that he now wanted to interpolate it to 100,000 entries (BL Add MS 
4474, f. 77). As we have already seen, Warner had written out worked examples of 
such interpolation in (W3).

Pell did not become actively involved until the summer of 1641, by which time 
Warner must have recognized that without his help the task would never be com-
pleted. Pell kept a detailed record of the time he spent on the calculations (BL 
Add MS 4365, \ . 36–39), from which we can see that he followed exactly the nota-
tion and rules outlined by Warner in (W1). Here, for example, is his record of his 
second hour of work on Friday 25 June 1641:

I calculated all the 2nd di\ erences (g = 100e)
subtracted their tenths (10e)
bisected their remainders 45e
subtracted those halfes from both f and h to [ nd
the upper and lower 10a
Tried them by adding g to the lower 10a.
Found and wrote downe a and e in every
semi-columne of the 500 in a little lesse than an houre.

(9 e values that Pell calls ‘lower’ and ‘upper’ 10a are f − 45e = 10a and h − 45e =
10a + 100e, respectively. Since g = 100e, adding g to ‘lower’ 10a should give him 
‘upper’ 10a, a useful check.)

Warner had o\ ered Pell the sum of £40 to complete the work, but Aylesbury 
increased it to £50.5 Nevertheless, by the middle of August Pell was complain-
ing about his outlay on materials, the project faltered, and Warner asked for all 
the papers back. Pell’s list of items returned on 27 August includes the ‘Problema 
arithmeticum’, identi[ ed above as (W1).

9 e [ nancial di7  culties must have been resolved because Pell began calculating 
again on 20 September. By November he had subcontracted some of the work to 
a Mr Edward Watts and a Mr Turner, to whom he communicated his method ‘in 
writing and instructions viva voce’ (see also Croarken, Chapter 4.4 in this volume). 
As in earlier conversations between Pell and Aylesbury, much of the communica-
tion was oral, and once again, Pell’s meticulous recording reveals to us a little of 
the behind-the-scenes discussion. On 9 ursday 17 November Watts brought him 

5. 9 is would have been equivalent to about £6000 in 2007 (O7  cer 2007).
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three sheets of completed calculations and one hundred and four sheets prepared 
for new entries, but Pell immediately saw that something was wrong:

[. . .] from 10950 to 52350 that is 41400 Analogicalls which at 400 in a sheete makes 103 
sheetes 1

2
. So that heere is somewhere halfe a sheete too much. I sought and found it in his 

30th sheete, he had written out the numbers of 2 pages into the 2 following pages. And so 
put all out of Square for from that sheete forward the sheetes began 21500, 21950, etc.

9 e three sheets completed, however, were correct, more or less:

Wats his 3 sheetes were true save that in one decad he had erred in the [ rst di\ erence and 
propagated it to the end which he could not [ nde. I examined 3 sheetes more for him and 
let him carry it all home again for Turner to examine.

Pell must have decided it was easier to continue alone, because Watts and Turner soon 
disappear from the record, transient characters of whom we know nothing more.

By July 1642 the calculations were complete, but the outbreak of civil war pre-
vented their publication. 9 e tables are now lost but in the seventeenth century 
they were known and discussed by those interested in such things. In 1693 John 
Wallis reported, on information from Pell, on the origins of the project: ‘I do not 
know but that the tables were begun by Harriot; [ . . . ] which was recently told 
to me by Pell, who was well known by Warner’.6 9 us as late as 1693, more than 
seventy years aN er his death, Harriot and his achievements continued to be the 
subject of oral history.

What else might Pell have learned from Warner of Harriot’s methods? Many 
years later, Pell repeatedly claimed that he knew a method of solving equations 
by tables, though he could never be prevailed upon to describe it. John Collins, 
with whom Pell lodged for some months during the second half of 1669, did not 
understand what the method was, but wrote in 1670 that: ‘Dr Pell a7  rmeth he 
hath for above 30 yeares used to solve Aequations by tables’ (Gregory 1939, 142). 
Indeed, Collins thought that the tables calculated by Warner and Pell were made 
for precisely that purpose. Describing the tables in 1675 he wrote:

[. . .] considering the logarithms were already made, and more proper for compound 
interest and annuity questions for all ratios, I could not conceive but that this table was 
made properly for algebraical uses in resolving equations; what use it was intended for 
Dr. Pell is not free to disclose; none of his friends here can render him communicative. 
(Rigaud 1841, I, 216; see also II, 197, 219)

Collins was almost certainly confused here. 9 e method Pell knew, but for some 
reason would not explain, was actually the one Warner had experimented with in 
(W4), relying on extrapolation and interpolation from constant di\ erences.

 6. Canonem illum nescio an inchoaverit D. 0 omas Harriot; [ . . . ] Quod mihi nuper inidicavit D. Johannes 
Pell, qui et Warnero fuerat familariter notus (Wallis 1693, 63).
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Collins, Mercator, and Warner’s papers

Warner died in 1643, and at the end of that year Pell took up a teaching post in 
Amsterdam. A few months later he feared that Warner’s papers would be ‘throwen 
into the [ re; If some good body doe not reprieve them for pye-bottoms’ (Malcolm 
and Stedall 2005, 358). Fortunately, however, the papers went to Warner’s nephew, 
Nathaniel Tovey, and were saved from both frying pan and [ re. In 1652 Tovey passed 
them to Herbert 9 orndike, a clergyman at Westminster Abbey with an interest in 
mathematics. 9 orndike discussed with Pell the possibility of publishing the tables 
of antilogarithms, but Pell was reluctant because the section from 29,759 to 39,750 
was now missing (BL Add MS 4279, \ . 275–276). 9 en in 1667 9 orndike loaned 
some of the papers to John Collins, who was always keen to acquire and peruse new 
mathematical material. In 1668 Collins wrote to James Gregory in Scotland:

I have some papers of Mr Warner deceased, wherein he proves if parallels be drawn to an 
asymptote, so as to divide the other into equal parts, the spaces between them, the hyper-
bola, and asymptote, are in musical [harmonic] progression [. . .] (Gregory 1939, 45)

9 e second part of (W4) follows immediately aN er Warner’s treatment of the 
hyperbola, indeed on the same page, and so if Collins read one he must also have 
seen the other.

Collins was elected to the Royal Society in 1667, the year aN er Nicolaus Mercator, 
so the two would certainly have come to know each other then, if not before. Indeed it 
was in 1667 or 1668 that Collins engaged Mercator to translate Gerard Kinckhuysen’s 
Algebra o_ e  stel-konst (1661) from Dutch to Latin (see Whiteside 1967–81, II, 280–
291). In 1667 Mercator was also writing his own Logarithmotechnia, a short treatise 
o\ ering two new methods for calculating logarithms. 9 e [ rst of his methods is 
very obscurely explained, but is based on the calculation of di\ erences between 
known logarithms. 9 e book therefore contains several examples of di\ erence 
tables and results derived from them (Mercator 1668, 11–14). His second method is 
based on the calculation of a partial area under a hyperbola. Both of these topics, 
as we have seen, were touched on in Warner’s papers, so it would have been natural 
for Collins to o\ er to show Mercator the relevant portions, though we do not know 
whether he did so before or aN er Mercator completed the Logarithmotechnia.

Mercator took a particular interest in Warner’s work on di\ erence methods and, 
as noted in the introduction to this chapter, his own treatise ‘On the doctrine of 
di\ erences’ incorporates several extracts copied verbatim from Warner’s papers. 
Unfortunately, the two sets of manuscripts are now separated in two di\ erent librar-
ies and it is impossible to compare them directly. My [ rst inkling of the shared mate-
rial came from [ nding (W2) itself folded into the back of Collins’ copy of the treatise. 
9 ere is no name or date on it but Warner’s handwriting is unmistakable. 9 e con-
tents have also been copied out in the body of the treatise itself. From a comparison 
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of my notes on Mercator’s treatise in Cambridge with those I had made some years 
earlier on Warner’s papers in the British Library, it became obvious that Mercator 
had in fact copied out (W1) to (W4) in their entirety. ‘On the doctrine of di\ erences’ 
opens with a general introduction to solving quadratic and cubic equations, but then 
turns to the method of solving equations by di\ erences, and Mercator’s examples 
and rules are exact copies of those in (W4). 9 ese are followed by a transcript of 
(W1), the ‘Problema arithmeticum’, and then by material from (W2), problems and 
theorems on the method of di\ erences, rearranged into a more logical order, but 
otherwise unchanged. Finally there is a copy of (W3), on the calculation of antiloga-
rithms by interpolation. 9 e remaining few pages of the treatise are also devoted to 
further discussion of antilogarithms. 9 us almost all of Mercator’s treatise is devoted 
to themes previously treated by Warner, and over half of it is directly copied from 
his manuscripts. Further, the original of (W1) tucked into the back of Collins’ copy 
strongly suggests that Collins himself was the source of this material.

Further signs of collaboration between Collins and Mercator are to be found in 
notes written by Collins under the heading ‘Improvements of algebra in England’ 
(BL Add MS 4474, \ . 1–4), a subject he was concerned with during 1668 and early 
1669 (Collins 1669). One of the improvements hinted at in his notes is a ‘Method of 
Progressional Di\ erences’. Collins did not understand it very well but wrote that it 
‘seemes to be no other but a Generall method of interpol[at]ing such ranks whose 
3d 4th 5th 6th Di\ erences are aequall’. 9 is was all he could say, but right at the 
end of the notes we [ nd a few examples of di\ erence tables for polynomials, and 
they are precisely those from (W4) together with the rules for writing down the 
[ rst row. Perhaps Collins saw that he was more likely to learn about the method 
from Warner than from Pell. Perhaps it was at this point too that he turned to 
Mercator for help, and persuaded him to write ‘On the doctrine of di\ erences’.

It is clear that the method of di\ erences devised by Harriot around 1610 was 
still under discussion sixty years later, and still with reference to Harriot’s own 
examples. 9 is is already a remarkable story of transmission through oral report 
and the circulation of manuscripts. 9 e full picture is actually even more com-
plex. I have not mentioned, for example, the work of Harriot’s friend Nathaniel 
Torporley, who in the 1620s penned his own treatise on the method of di\ erences 
based on Harriot’s [ ndings. 9 is document too has recently come to light in the 
Maccles[ eld Collection (CUL Add MS 9597/17/28) and awaits further study by 
anyone brave enough to grapple with a hundred pages of Torporley’s inpenetra-
ble Latin. Nor have I discussed Sir Charles Cavendish, who became acquainted 
with Warner in the 1630s and copied out not only (W1) and (W2) but many 
other pages on the method of di\ erences from Harriot’s manuscripts.7 Twenty 
years later, when Cavendish and Aylesbury were both living in exile in Antwerp, 

 7. Cavendish referred to the method of di\ erences as the ‘doctrine of triangular numbers’; see Beery and 
Stedall (2009).
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they discussed this material yet again, and Cavendish wrote to Pell asking for an 
explanation of it (Malcolm and Stedall 2005, 584). His letter is not only evidence 
of a continued interest in Harriot’s method, but also shows that Aylesbury con-
sidered Harriot’s manuscripts important enough to carry with him into exile.

If one tries to construct some sort of diagram of the many people who knew 
about or worked on the method of di\ erences between 1610 and 1670, what 
emerges is not a picture of simple linear transmission, but a tangled web of cross-
ing threads and loose ends.8 An attempt at such a diagram is shown in Fig. 2.2.1. 
9 e threads link individuals who knew and communicated with each other, 
sometimes by letter but more oN en through conversations and the passing on of 
manuscripts. 9 e possibility of reconstructing such networks is very much a mat-

8. For further details of the dispersal of Warner’s papers see Stedall (2002, 113–116).
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ter of chance. In this case, thanks to the obsessional recording habits of Pell and 
the willingness of Collins to share everything he knew with anyone who would 
listen, we have relatively detailed information. At the same time, the  evidence 
remains tantalizingly fragmentary and a new discovery, like Mercator’s treatise, 
can signi[ cantly change the existing picture.

Brereton’s problem and others

9 e discussion of the method of di\ erences was not an isolated occurrence of 
a long running mathematical problem. Here we will look bried y at a second 
example, this time based on the use of algebra, and in this case too our evidence 
comes largely from the manuscripts of Pell and Collins.

In 1649 Pell was teaching in Breda in the southern Netherlands, a city that at 
the time was also the temporary headquarters of the exiled Charles II. 9 e pres-
ence of the court brought a number of other Englishmen to Breda, one of whom 
was Silas Titus, a member of the Presbyterian delegation that was trying to nego-
tiate with the King. Titus took some interest in mathematics, and it is likely that 
the long friendship between him and Pell was [ rst formed during his months 
in Breda. Another expatriate was the eighteen-year-old William Brereton, son 
of a commander in the Parliamentary Army, who had been sent to Breda from 
Cheshire to complete his education; he too became a lifelong friend to Pell.

A problem brought to Pell by Brereton in 1649, and probably discussed at the 
time with Titus as well, was the following (BL Add MS 4413, f. 52): to [ nd num-
bers a, b, and c satisfying the equations:

aa + bc = 16
bb + ac = 17
cc + ab = 22.

9 e solution in positive integers is easily seen to be a = 2, b = 3, and c = 4, but 
Pell decided to challenge himself by changing the [ nal equation to:

cc + ab = 18.

In this form the problem is very much harder, leading to an eighth-degree equa-
tion with no easy method of solution.

By 1662 Titus and Pell were both back in England, Titus in a high ranking pos-
ition as O7  cer of the King’s Bedchamber, and Pell as a clergyman. It seems that 
in the autumn of 1662 Titus once again brought up Brereton’s problem, and Pell 
tried to reconstruct the solution he thought he had found in Breda, but with little 
success (BL Add MS 4413, f. 52). Pell now posed it in turn to John Wallis, Savilian 
Professor of Geometry at Oxford, and the two of them worked on it together over 
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a period of several weeks. In December 1662 Pell leN  notes on their progress for 
Titus (BL Add MS 4425, \ . 367, 368), and by April of the following year he and 
Wallis had successfully solved it, calculating values of a, b, and c to 15 decimal 
places each (BL Add MS 4425, f. 161). It is not clear whether Wallis and Titus 
had any direct contact at this time. Wallis was later to describe Titus as ‘a very 
Ingenious Person [ . . . ] and very well accomplished in Mathematical and other 
Learning’ (Wallis 1685, 225), but one wonders what he really thought in 1662. 
Back in 1649, while Pell and Titus had been whiling away their time on alge-
bra, Wallis had been busy deciphering coded letters captured from the Royalists, 
many of which were intercepted between Breda and London. One of the names 
that Wallis discovered in them and inserted in red ink into his plain text was that 
of Silas Titus (Bodleian Library MS e Mus 203, \ . 193, 195, 198, 200). Did Wallis 
remember this when he and Titus both took up Brereton’s problem thirteen years 
later? Did Titus know or guess that Wallis had once held such dangerous infor-
mation on him? 9 is is one of the most extreme examples, but by no means the 
only one, of a common interest in mathematics eventually transcending deep 
political and religious di\ erences.

Wallis later lodged a copy of the solution with Collins. 9 at copy is now lost, 
but we know from Pell that Collins labelled it with the words ‘Dr Wallis his 
Resolution of an exercise upon a probleme put by Dr Pell’ (BL Add MS 4411, f. 
361). Pell possibly resented the implication that he had been unable to solve the 
problem for himself, and replaced the last three words with ‘put by Colonel Titus, 
who had received it from Dr Pell’, which was more or less the form of words used 
by Wallis when he later published the solution in A treatise of algebra (1685, 225–
256). Once such a problem was in the hands of Collins it was likely to go further. 
In 1672 Collins sent it to James Gregory, who referred to it as the ‘Breretonian 
problem’ (Rigaud 1841, II, 242). 9 is attribution to Brereton (rather than to Pell 
or Titus) suggests that information about it came by word of mouth from Pell. It 
is yet another example of oral mathematical history, in the form of stories and 
gossip about problems, papers, and people.

In 1677 Robert Hooke noted in his diary that he had borrowed Mr Baker’s 
solution to the problem ‘aa + bc = x. bb + ac = y. cc + ab = z.’ from Collins 
at the Rainbow, a London co\ ee house (Hooke 1935, 322). 9 omas Baker was a 
Devon clergyman, a regular correspondent of Collins at this period and later the 
author of a treatise entitled 0 e geometrical key (1684). We thus know of at least 
eight people who at some time saw or attempted Brereton’s problem, and there 
may well have been others. Wallis’s publication of the problem in 1685 was there-
fore little more than the [ rst public announcement of a problem that had already 
been passed around for well over thirty years.

We have now seen a signi[ cant number of individuals, throughout the sev-
enteenth century and from a wide variety of social backgrounds, who pursued 
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mathematics at a  relatively mundane level out of pleasure or interest. Much of 
our information comes from the correspondence of Collins and the manuscript 
notes of Pell, but more is to be gleaned from the biographical notes made by 
John Aubrey (Bennett, Chapter 4.2 in this volume), from Wallis’s Treatise of 
algebra which took up Collins’ theme of promoting ‘Improve ments of algebra in 
England’, and from a number of other miscellaneous sources.

From Collins we learn, for example, of ‘men of inferior rank that have good skill 
in algebra [ . . . ] One Anderson, a weaver, [ . . . ] Mr Dary, the tobacco cutter, [ . . . ] 
Wadley, a lighterman’ (Rigaud 1841, II, 479–480). Michael Dary, whose occupation 
changed frequently and who later became a gauger, published 0 e general doctrine 
of equation in 1664, a sixteen-page pocket guide to solving equations, and a simi-
larly tiny mathematical Miscellanies in 1669, but later turned to Pell for help with a 
‘soure crabbe’ of a biquadratic equation that he could not handle himself (BL Add 
MS 4425, f. 57). Robert Anderson took some pleasure in pointing out the errors 
in the Miscellanies, writing dismissively of Dary’s friends that ‘I value the snares 
of one, the stab of the other, and the envy of the rest, no more than the dirt of my 
shoes’ (Anderson 1670, 13). Dary and Anderson are men of whom we know a little 
because they published a little, but of Wadley the lighterman we know nothing.

From Aubrey we hear of others, amongst them pupils of William Oughtred, 
like Charles Scarburgh, who later became Royal physician but who never lost his 
interest in mathematics (Aubrey 1898, II, 108, 284; Malcolm and Stedall 2005, 
316); or the young 9 omas Henshawe, later lawyer and alchemist, who brought 
his own candles in order to study with Oughtred in the evenings (Aubrey 1898, 
II, 108, 110). Or there was Edward Davenant, who learned mathematics from his 
father and taught it in turn to his own ten children, and whose eldest daughter, 
Anne Ettrick, Aubrey described as ‘a notable Algebrist’ (Aubrey 1898, I, 199, 201, 
202). In similar vein, Edward Sherburne, in the appendix to his Sphere of Manilius 
published in 1675, mentioned William Milburne, curate of Brancepeth near 
Durham, who around 1640 had made astronomical observations but was also 
‘very knowing in Arithmetick, particularly in Algebra (having in the year 1628 
extracted the roots of the equation 1,000 = aaaaa − aaaa − 4aaa + 3aa + 3a)’ 
(Sherburne 1675, 91). Wallis, in a list he wrote in the 1690s of those interested 
in algebra, mentioned Scarburgh, and Davenant, but others too, for example, 
Adam Martindale, schoolmaster and dissenting clergyman; and the otherwise 
unknown George Merry, who went to the trouble of writing two hundred and 
thirty-six pages on the factorization of polynomials (Wallis 1693, 233–234; see 
also Wallis 1685, ‘Additions and emendations’, 157–162).

None of these people ever had a theorem named aN er them or made any sig-
ni[ cant contribution to mathematical thinking. But nor did they belong to the 
class sometimes known as ‘mathematical practitioners’, who routinely carried 
out calculation or mensuration as part of their daily lives and trade (though some 
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of them, like Dary, may sometimes have done so). 9 ese people formed a di\ erent 
group, a kind of mathematical middle class, with enough education and leisure 
to engage in mathematics for pleasure and intellectual stimulation. Very oN en, 
their preferred subject of study was algebra, which must have seemed satisfyingly 
new and modern, and where even beginners, with some assistance, could make 
good progress. 9 ese loosely connected networks of mathematical enthusiasts 
came from a broad range of social backgrounds and displayed widely varying 
abilities. Some, like Cavendish, Aylesbury, or Collins, had only a tenuous grasp 
on the subject, but nevertheless devoted much of their lives to promoting and 
supporting it. For the most part, the existence of such people is known to us not 
through published work but only because discussions or encounters happen to 
have been recorded in notes, letters, or diaries. 9 is kind of evidence is inevitably 
rare, fragile, and partial.

Conclusion

Our knowledge of mathematical activity in the past relies upon a combination 
of circumstances, some of which are very much a matter of chance. First, the 
mathematics itself must have been recorded in some permanent form. Such a 
statement seems obvious, but can obscure the fact that most mathematics is not 
done this way: a mathematical text of any kind almost always arises from, or is 
meant to be accompanied by, oral discussion and explanation, and such com-
munication is by its nature ephemeral. We can recognize the authenticity of the 
scraps of conversation recorded by Pell with Aylesbury or Watts, but we also 
know that such records are extremely rare. Second, the material must survive, 
having escaped the fate of being ‘throwen in the [ re’. 9 e records that have come 
down to us are inevitably incomplete, and sometimes very sparse indeed, and a 
more comprehensive picture of the mathematics of the past might also be a very 
di\ erent one. 9 ird, the material must be accessible, which for reasons of pol-
itics, conservation, or lack of translation it may not be. Finally, the dispersal of 
material in separate libraries or on di\ erent continents means that comparisons 
and connections are sometimes possible only through the lucky recognition of 
handwriting or content.

For England in the seventeenth century, the material conditions of existence, 
survival, and availability have been relatively favourable. What one then reads 
into the evidence, however, depends on what one is looking for. At one level, the 
period presents major mathematical stories such as the development and consoli-
dation of the calculus, or the emergence of gravitational theory. But the preoccu-
pations of Warner with antilogarithms, or of Collins with solving equations, show 
that there were also mathematical concerns of a di\ erent kind, still with new and 
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‘modern’ ideas, but played out at a more mundane level by men who were follow-
ers rather than innovators. Moving yet further into the obscure and little known, 
we [ nd such disparate [ gures as Brereton, Titus, Anne Ettrick, Dary, Anderson, 
Merry, Mercator, and many others, busying themselves for no obvious purpose 
with mathematical problems of an essentially useless kind. Clearly such people 
regarded this as a meaningful and worthwhile use of their time. Individually, 
they are relatively insigni[ cant, but collectively o\ er us a new perspective on the 
seventeenth-century mathematical landscape.
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This chapter is devoted to the transmission of mathematical expertise from 
China to Vietnam. 9 roughout this chapter China and Vietnam will play 

the parts of ‘centre’ and ‘periphery’. However, the conventional use of these terms, 
suggesting that the tradition was established in one speci[ c location (identi[ ed 
as the ‘centre’) before being transferred to a number of others (the ‘periphery’), 
proves to be somewhat inadequate. 9 is model excludes other possible options, 
such as interaction between several centres, each contributing to the growth of 
knowledge circulating in the network. Another phenomenon not accounted for 
in the ‘centre-periphery’ model is that of ‘counter-currents’ of scienti[ c expertise 
transmitted from the presumed ‘periphery’ to the ‘centre’.

Another premiss is invoked by the word ‘China’ and its derivatives. 9 e modern 
toponym suggests that the social network within which the older scienti[ c tra-
ditions were implemented remained entirely within certain ethnic and cultural 
boundaries, and that these boundaries, moreover, were identical with the present-
day geo graphical borders. In order to solve or circumvent this problem when speak-
ing about the plethora of mathematical schools that d ourished in east and southeast 
Asia, mainland Chinese scholars coined the term ‘Han zi wen hua quan shu xue 

’, literally ‘mathematics of the sphere of the culture of Chinese characters’. 
Its conventional English rendering as ‘mathematics using Chinese characters’ is not 
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only incomplete but also misleading: taken literally, it would imply, for instance, 
that the Chinese translation of Euclid’s Elements and other Western mathematical 
works into Chinese should belong to this category. Moreover, the Chinese term, as 
well as its English rendering, suggests that the mathematical treatises belonging to 
this tradition were always written exclusively in (classical) Chinese. However, as 
we shall see below, in Vietnam a number of mathematical treatises were partly or 
entirely written in Vietnamese using the local script Nôm .

One more way to refer to the mathematical traditions which, as conventionally 
believed, originated from China, would be to use the term ‘Confucian Heritage 
Culture’ adopted by a number of researchers working on mathematics educa-
tion and its history (for example, Fan et al. 2004; Siu 2004). Even though this 
term avoids the aforementioned di7  culties related to the notions of ‘centre’ and 
‘periphery’, it remains unclear why among the various philosophical and religious 
teachings that existed in east and southeast Asia, only Confucianism has been 
chosen to label the scholarly tradition under consideration. 9 e term implies that 
Confucian culture played a particular role in the development of mathematics, 
but this is a challenging hypothesis that still awaits con[ rmation.

9 ese terminological di7  culties related to transmission stem from unresolved 
theoretical problems that deserve discussion but which cannot be treated in the 
limited scope of this chapter. 9 e conventional model of transmission, in which 
the relationship between China and Vietnam is pictured as that between a ‘cen-
tre’ and its ‘periphery’, adopted in this chapter for the sake of conciseness, thus 
does not necessarily represent the actual historical processes; nevertheless, it can 
be viewed as a convenient framework for the present discussion.

Transmission of Chinese mathematical expertise:
Korea, Japan, and Vietnam

Standard books in Western languages on the history of Chinese mathematics do 
not usually pay much attention to the transmission of mathematical expertise 
from the Chinese ‘centre’ to the ‘cultural peripheries’ of Korea, Japan, and, in 
particular, Vietnam. 9 e Japanese mathematical tradition Wasan , histori-
cally based on Chinese ‘applied’ mathematics and on medieval Chinese algebra, 
is arguably better studied than the other two.1 During the past three decades, a 
number of works by Korean authors on traditional Korean mathematics have 

1. 9 e works on the history of the traditional Japanese mathematics in Japanese language are too numer-
ous to be cited here; I will limit my references to the works published in European languages. 9 ey are: the 
earliest and yet still important monographs written or co-authored by Mikami Yoshio (Mikami 1913; Smith 
and Mikami 1914), the discussion of the temple mathematical tablets sangaku  by Fukagawa and Pedoe 
(1989), and the monograph of Horiuchi (1994) dealing with the establishment of the most important Japanese 
mathematical school, that of Seki Takakazu and his disciples.
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become available (Kim 1973a; 1973b; 1973c; 1986; Kim and Kim 1978; Cha 2002; 
Jun 2006), and other publications on Korean mathematics have recently appeared 
in Japan (Kawahara 1998; 2001), China (Li, Xu, and Feng 1999; Guo 2005), and 
Taiwan (Horng 2002; 2003; Li 2003; Horng and Li 2007).

It appears that the Chinese mathematical tradition was implemented in Korea 
and Japan in rather di\ erent ways: in Korea, it was the o7  cial occupation of 
professional mathematicians and astronomers, while in Japan it was taught in a 
network of private schools. We will see that the Vietnamese case is closer to that 
of Korea: there existed professional mathematicians and astronomers working 
at the Court, and mathematics was a subject of state examinations. Korean and 
Japanese mathematicians practised the tradition stemming from the so-called 
Chinese algebra of the Song dynasty (960–1279 ad) but Vietnamese mathemat-
ical treatises more closely resemble treatises on Chinese ‘popular mathematics’ of 
the Ming dynasty (1368–1644).

9 e circumstances of the implementation of the Chinese mathematical trad-
ition in Vietnam remained almost completely unknown for a long time. 9 e [ rst 
attempt to investigate the extant materials on Vietnamese mathematics was made 
in the early twentieth century by the outstanding Japanese historian of mathem-
atics Mikami Yoshio . He provided an analysis of the Vietnamese math-
ematical treatise Chἰ minh toán pháp  ‘Guide towards understanding of 
the methods of calculation’,2 but he did not have access to the extant corpus of 
Vietnamese mathematical books.3 In 1938 the Chinese mathematician and his-
torian of science Zhang Yong  visited Hanoi and explored the mathemat-
ical books preserved at the École Française d’Extrême-orient. Unfortunately, 
he died the following year and his [ ndings remained unpublished, except for 
one paper devoted to the history of the Vietnamese calendar (Zhang 1940).
Li Yan  listed the Vietnamese mathematical treatises found by Zhang Yong
(Li 1954), but it remains unclear whether Li Yan had access to the books purchased 
or (partially) copied by Zhang Yong in Vietnam.4 In 1991 Han Qi  provided 
a brief introduction to extant Vietnamese astronomical and mathematical texts, 
on the basis of his study of partial copies of Vietnamese treatises preserved in 
the Institute for the History of Natural Sciences in Beijing and originating from 
Zhang Yong’s collection (Han 1991). Vietnamese historians themselves have pro-
duced only very general descriptions of extant treatises (for example, Ta 1979; 
Tran and Gros 1993). As far as works in European languages are concerned, the 
publications of P Huard and M Durand provide a general introduction to the 

2. According to Mikami (1934), it was purchased in Vietnam in the 1930s and preserved in a private col-
lection in Japan. I was unable to locate copies of this book in Vietnamese or French libraries.

3. I am grateful to Professor Ôhashi Yukio  who drew my attention to Mikami (1934) and kindly 
sent me a copy of it.

4. Li Yan also mentions papers prepared by Zhang Yong for publication; to my knowledge, they were not 
published and the whereabouts of the draN s (if any) remain unknown.
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 sciences in traditional Vietnam but mathematics is treated rather unsatisfactor-
ily (Huard and Durand 1954, 120, 144; Huard and Durand 1963, 538, 540). In his 
recent monograph on the history of mathematics in China, J-C Martzlo\  devotes 
only a dozen lines to Vietnamese mathematics (Martzlo\  1997, 110; Volkov 2002, 
378 n24). Recently, I published the results of my preliminary investigation of the 
Vietnamese mathematical treatises preserved in Vietnam and in France (Volkov 
2002; 2008a).

All these authors explicitly or implicitly assumed that traditional Vietnamese 
mathematics was a continuation of the Chinese tradition, but most did not 
attempt to discuss the details and modalities of transmission. In particular, it 
remained unclear whether the Vietnamese tradition was the product of long-
term ‘osmosis’ of Chinese mathematical expertise, or whether it resulted from 
single transmissions of mathematical treatises. Were there attempts by profes-
sional practitioners or by the authorities to select the best and the most represent-
ative Chinese treatises, or were they selected randomly? Were only governmental 
institutions involved in the transmission, or did it also take place at grass roots 
level, through teachers and schools? Where certain treatises were written partly 
in local Vietnamese script (Nôm), what were the functions of the sections writ-
ten in Chinese and in Nôm, and why were both languages used rather than only 
one? What counting instruments were used in Vietnam, how did they di\ er from 
their Chinese counterparts, and how did such di\ erences ind uence computa-
tional procedures or the style of mathematical texts? 9 is chapter will o\ er a 
preliminary description of the Vietnamese mathematical tradition in order to 
address at least some of these questions, even if only tentatively.

B e extant sources

9 e available information on extant Vietnamese mathematical treatises can be 
summarized as follows: the number of the treatises amounts to twenty-two,5 
thirteen of which are written in classical Chinese, while the remaining nine are 
written partly in Vietnamese using the so-called Nôm  script (discussed fur-
ther below). One book, the Toán pháp đ i thành  ‘Great compendium of 
mathematical methods’, is credited to the authorship of the [ N eenth-century o7  -
cial L ng 9 ế Vinh , but his authorship is doubtful and the book well may 
have been compiled as late as the eighteenth or nineteenth century on the basis of 
earlier mathematical treatises (see Volkov 2002; 2005; 2006). Another book, the 
C u chu’o’ng l p thành tính pháp  ‘Ready-made methods of addition 

5. 9 e lists published in Volkov (2005; 2008a) contained only nineteen treatises; three more were identi[ ed 
by the author in 2006–2007.
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of nine categories’ by Ph m H u Chung , was block-printed in the early 
eighteenth century.6 9 e dates of nine mathematical treatises are uncertain, but 
it can be argued that they were compiled aN er the beginning of the nineteenth 
century. 9 ree more books were published in 1909. 9 e dates of publication of the 
remaining eight treatises are still unknown, but on the basis of my preliminary 
comparison of their contents with those of books with established dates, it seems 
that they were compiled no earlier than the late eighteenth century, and probably 
as late as the mid- or late nineteenth century.

All the extant Vietnamese mathematical treatises are written in traditional 
‘Chinese’ format: collections of problems with algorithms for their solution and 
numerical answers. Fig. 2.3.1, for example, shows two pages from Toán pháp quy ên 

 (1909) by Đô Đ c T  , containing four problems. Reading from right 
to leN , the four rightmost vertical lines contain the [ rst three problems (separated 
by short breaks). 9 e problems are all of the same type and read as follows: ‘9 ere 
are M men carrying B measuring units of rice each; how much rice do they carry 
together?’ 9 e results are obtained by multiplying M and B. 9 ese lines contain only 
the conditions and the answers. In the [ N h line a four-character title heads a new 
section: ‘Method of establishing the amount of millet in a [ eld’, with a brief descrip-
tion of the method written in small characters under the title. 9 e method is then 
exempli[ ed by a problem: calculate the amount of millet collected from a [ eld of a 
given area. 9 e amount of grain collected from one cao  (unit of area) is supposed 
to be three  bát so the problem is solved by multiplying the given area by three.

Many problems and methods in the Vietnamese books are similar or identical 
to those of Chinese treatises that antedate the introduction of European methods 
in the early seventeenth century. At least nine of the twenty-two treatises contain 
lengthy quotations from the ind uential sixteenth-century Chinese treatise Suan 
fa tong zong  ‘Systematic treatise on methods of computation’ by Cheng 
Dawei . For instance, Toán pháp  ‘Computational methods’ preserved 
in the Institute for Han-Nôm Studies in Hanoi7 contains problems on areas of 
rectilinear and curvilinear [ gures, and problems devoted to root-extraction and 
solution of polynomial equations. 9 e computational procedures and geometri-
cal diagrams for the calculation of areas are similar to those found in chapter 
(juan ) 3 of the Suan fa tong zong,8 while the problems and methods for poly-
nomials are identical to those found in chapter 6 of the same treatise.9 Another 

6. A version of it entitled C u ch ng l p thành toán pháp  with a preface dated 1721 forms 
an appendix to the manuscript copy of the Chἰ minh l p thành toán pháp  by Phan Huy Khuông 

 dated 1820.
7. Call number A 3150. 9 e [ rst few pages are missing so the author, date of compilation, and original title 

are unknown. 9 e provisional title ‘Computational methods’ was probably given to the manuscript by the 
copyist(s) or by librarians on the basis of its contents.

8. Compare Toán pháp, 24a–28b, with Mei and Li (1990, 246–248, 258–263, 267–272).
9. Compare Toán pháp, 40a–60b, with Mei and Li (1990, 454–498).
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example is from the treatise 0 ống tông toán pháp  ‘Systematic treatise on 
computational methods’. 9 is manuscript of unknown date was authored by T  
H u 9 ng  and is preserved in the National Library in Hanoi.10 Its title 
makes an obvious allusion to the Suan fa tong zong . Moreover, certain 
parts of the Chinese treatise are quoted verbatim (but without references), as, for 
example, versi[ ed rules of calculation for areas of plane [ gures11 and the problem 
of two walkers.12 Nevertheless, the compiler of the Vietnamese treatise consid-
erably modi[ ed certain sections of the Chinese book by adapting the original 

10. Call number R 1194. 9 is treatise is not listed in Tran and Gros (1993).
11. Compare 0 ng tông toán pháp, 27–29, with Mei and Li (1990, 226–227).
12. Compare 0 ng tông toán pháp, 207–208, with Mei and Li (1990, 895–896).

Figure 2.3.1 Pages 21b–22a of Toán pháp quyê

˛

n  (1909) by Ðô Ð c T  
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problems and solutions to Vietnamese units of measure, inserting a large number 
of new problems, and providing his own explanations.

In Volkov (2002) I suggested an approach based on the analysis of a number of 
problems and methods found in the Toán pháp đ i thành , of an unknown 
date and credited to the state functionary L ng Th  Vinh. More speci[ cally, I 
compared the following elements found in the Vietnamese treatise with their 
Chinese (and, in certain cases, Japanese) counterparts: (1) the multiplication 
table; (2) the hierarchy of ‘large numbers’ (that is, the terms designating ascend-
ing powers of 10 greater than 104); (3) rhymed algorithms for computation of 
areas; (4) methods of remote surveying; and (5) problems on ‘numerical divina-
tion’13 and indeterminate analysis.14 9 is comparison enables us to identify con-
nections between the Vietnamese treatise and Chinese treatises compiled prior 
to the seventeenth century. To give one example, a comparison of the problems 
on numerical divination found in the Vietnamese treatise as well as in the extant 
version of the Sun zi suan jing  (1213),15 in the Japanese text Kuchizusami 

 (c 970), in the Chinese treatises Jiu zhang suan fa bi lei da quan 
 (1450) by Wu Jing  and the Suan fa tong zong (1592) by Cheng Dawei, 

showed that one possible reason for the similarity of the methods is that the three 
latter treatises drew on the same Chinese prototype, presumably a version of the 
Sun zi suan jing of the late [ rst millennium ad, which seems to have contained 
divinatory calculations di\ erent from those found in the versions subsequently 
printed in China in 1084 and 1213.

9 e analysis of these elements also showed that the compiler of the Vietnamese 
treatise adapted Chinese problems and methods to local units of measure, cur-
rency, and taxation system, as well as to native animals or plants. However, the 
analysis did not determine the date of compilation or authorship of the Toán 
pháp đ i thành, nor the kind of counting instrument that was supposed to be 
used for calculations. A full and systematic comparison of extant Vietnamese 
treatises with their Chinese counterparts still remains indispensable to discern-
ing the history of the transmission of the Chinese mathematical tradition to 
Vietnam and the independent mathematical development of the latter. 9 e [ rst 
results of this ongoing project will be reported elsewhere; in this present chapter 
I will limit myself to discussing the three topics directly related to the transmis-
sion of mathematical knowledge to Vietnam: the use of counting instruments, 
the use of the Vietnamese written language Nôm in mathematical treatises, and 
the Vietnamese state mathematics examinations.

13. 9 is category includes divination techniques for the sex of an unborn child and prognostications of 
health for an invalid, using arithmetical operations based on the date of conception and the age of the mother, 
in the [ rst case, and on the date when the disease was contracted and the age of the invalid, in the second.

14. 9 is category includes a modi[ cation of the famous ‘hundred fowls for a hundred pence’ problem.
15. 9 e Sun zi suan jing was compiled at some time between 280 and 473 ad; see Volkov (2002, 384, n39). 

9 e earliest extant edition of the treatise (1213 ad) is based on its blockprint edition of 1084.
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Counting rods in China and Vietnam

All the algorithms found in Chinese and Vietnamese mathematical treatises were 
designed for speci[ c counting instruments. In China, the instruments used until 
the mid-second millennium ad were counting rods, which were then gradually 
replaced by the abacus;16 the equivalent instrument used in Vietnam has not been 
identi[ ed. In this section I will argue that counting rods were used in Vietnam 
until the late seventeenth century and that there is evidence that they may still have 
been in use as late as the early nineteenth century, concurrently with the abacus.

Counting rods17 were described for the [ rst time in China around 60 ad in 
the Lü li zhi  chapter of the Qian Han shu  ‘History of the early Han
dynasty’ by Ban Gu .18 According to his description, the counting rods were 
round bamboo sticks of six cun , that is, 13.8 cm long, and 1 fen  = 1/10 cun = 
0.23 cm in diameter.19 9 ere exist descriptions in even earlier sources of objects 
that can be interpreted as counting rods, though their meaning is somewhat 
uncertain. Needham quotes several sources that, according to him, suggest that 
counting rods were used in China by the late third century bc (Needham 1959, 
71); however, some of the sources deserve more detailed investigation.20 9 e text 
usually quoted as evidence of the early existence of counting rods is chapter 27 of 
the philosophical treatise Dao de jing , which contains the phrase shan shu 
bu yong chou ce , literally ‘a person good at [operating with] shu  does
not use bamboo tallies and bamboo slips’; this has been conventionally under-
stood to say that ‘a skilful calculator does not need to use counting instruments’.21 
On the grounds of this phrase alone Lam Lay-Yong and Ang Tian-Se claimed 
that ‘it can be safely assumed that the invention [of the counting rods] would 
not be later than the 5th century bc’ (Lam and Ang 1992, 22; Needham 1959, 
70–71). Modern scholarship, however, dates the compilation of the treatise to the 
late third century bc (Bolz 1993). Further, the term shu  has a wide semantic 

16. 9 e Chinese abacus, suan pan , is the well-known Chinese instrument constructed as a wooden 
frame with a number of bars with sliding beads.

17. In China, the most common name of the instrument beginning from the Song dynasty (960–1279) 
onwards was suan zi , yet in earlier texts other terms can also be found; see Volkov (1998; 2001).

18. 9 e chapter, except for the introductory and, probably, concluding remarks of Ban Gu, is traditionally 
credited to the authorship of Liu Xin  (46 bc–23 ad).

19. One cun of that time was approximately equal to 2.3 cm, see Wu (1937), 65. Martzlo\  (1997), 210, mis-
calculates the diameter of the rods (0.69 cm instead of 0.23 cm).

20. To support the hypothesis of the early origin of the counting rods suggested by Needham, one might 
add that the term zhi , ‘to represent (literally, “set”) [a number with a counting instrument]’ later used in 
calculations with counting rods appears in the mathematical treatise Suan shu shu  completed prior to 
186 bc (Cullen 2004) and in the astronomical chapter of the philosophical treatise Huai nan zi  (c 139 bc) 
(Volkov 1997, 144). However, neither of these two texts explicitly mentions the counting instrument used, even 
though the word suan  (interchangeable with the character suan , ‘counting rods’) appears in the title of the 
former treatise: it appears in the text (strips 72–73) meaning ‘string of cash’, as Cullen (2004, 61) suggests.

21. See, for example, Needham (1959, 70): ‘Good mathematicians do not use counting-rods’; compare with 
a rather unconventional English rendering by the translators of Li and Du (1987, 7).
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range, including ‘fate computation’. 9 e evidence of ‘counting-rod numerals’ on 
Chinese coins of the fourth to third centuries bc mentioned by Needham (1959, 
70) and Martzlo\  (1997, 185–186) also appears to be inconclusive (Ch’en 1978, 
278–279; Djamouri 1994, 20). 9 e most ancient objects considered to be count-
ing rods were recently excavated from Chinese tombs dated to the second to [ rst 
centuries bc; some of them are made of bamboo and some of bone (Mei 1983, 
58–59; Li and Du 1987, 8; Lam and Ang 1992, 22).

Sizes of counting rods varied considerably,22 as did the materials from which 
they were made: historical sources mention bamboo, bone, ivory, iron, and jade. 
Positive and negative numbers were distinguished by the colours red and black 
(or white and black),23 or by di\ erent cross-sections, triangular for positive and 
square for negative.24 9 e number of the sides in the cross-sections was explained 
by the framework of traditional cosmology according to which triangles were 
associated with odd numbers and the ‘positive principle’ Yang, while squares 
were associated with even numbers and the ‘negative principle’ Yin.25

Calculations with counting rods were performed on a d at surface, probably 
covered with a special cloth.26 It is not known whether the decimal positions 
were always marked on its surface as square/rectangular cells or whether they 
sometimes had only imaginary boundaries.27 A position on the surface was [ xed 
for units, and positions to its leN  were then used for the powers 101, 102, 103, . . . , 
while the positions to the right were used for the 10–1, 10–2, . . . , respectively. 
A number n from one to [ ve was represented with n rods set horizontally or ver-
tically (see below), and a number n from six to nine with (n–5) rods set horizon-
tally or vertically plus one rod set orthogonally (thus symbolizing [ ve units); for 
zero the position was leN  empty.28 9 e orientation of the rods in a given decimal 

22. 9 e Sui shu  ‘History of the Sui dynasty’ compiled in the seventh century also mentions 3 cun 
counting rods made of bamboo; the length was therefore 93 mm, 89 mm, or 71 mm, depending on the length 
of the unit cun (Wu 1937, 65).

23. See Jiu zhang suan shu, chapter 8, problem 3; the problem mentions the zheng , literally ‘straight’, 
‘upright’, numbers, and the fu , literally, ‘borrowed’, numbers (the coe7  cients of simultaneous equations), 
without indicating any speci[ c medium for representing them. 9 e third century ad commentator Liu Hui

 mentions red and black rods representing positive and negative numbers, respectively (Guo and Liu 
2001, 175). Some sources also mention white and black rods presumably used for the same purpose (Needham 
1959, 71).

24. 9 e earliest explicit description is found in the ‘Lü li zhi’ chapter of the Sui dynasty history Sui shu from 
the seventh century ad, but the underlying idea was already alluded to by Liu Hui. He mentions ‘oblique’ (xie 

) and ‘upright’ (zheng ) rods, thus referring to their triangular and square cross-sections, and not to their 
‘oblique’ and ‘upright’ position on the counting surface, as some modern authors have suggested.

25. Lam and Ang (1992, 21) mention only the rods with square cross-section and do not explain their sym-
bolic signi[ cance (suggesting instead that the ‘square cross sections prevented them [= rods] from rolling’).

26. Such a cloth is mentioned in Liu Hui’s commentary on the Jiu zhang suan shu, chapter 8, problem 18 
(see Guo and Liu 2001, 182). Much later, in Japan, a sheet of paper was used (Horiuchi 1994, 97).

27. Some modern authors believe that operations were performed on a special (wooden?) counting board 
(Needham 1959, 62–63, 72; Libbrecht 1973, 398). Recently Martzlo\  argued that there is no evidence in 
ancient and medieval Chinese sources for the existence of such an instrument (Martzlo\  1997, 209).

28. 9 e method of representing digits with the counting rods is described in Sun zi suan jing 
 ‘Mathematical treatise of master Sun’, third to [ N h century ad, and Xiahou Yang suan jing  

‘Mathematical treatise of Xiahou Yang’, conventionally dated to the eighth century ad. For translations of 
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position depended on the power of 10: rods were set vertically for even powers 
and horizontally for odd powers, whether positive or negative. 9 e conventional 
explanation for this is that if the rods were all set vertically they might have been 
easily confused; the number 13, for example, would be represented by (| |||) and 
therefore could be easily mistaken for 4 (||||). With alternation of the orientations, 
13 is represented by —|||, and it is impossible to make that mistake (Needham 
1959, 9; Mei 1983, 59; Chemla 1994, 3 n4). 9 is does not explain, however, why 
the rods were not always set horizontally. Another way to explain the alterna-
tion would be to evoke the symbolic associations according to which ‘vertical’ 
and ‘horizontal’ might have been associated with heaven and earth, and with the
cosmic principles Yang and Yin (Kalinowski 1994, 43–44, 57, 59; 1996, 77). 
However, neither explanation takes into account the fact that horizontal and 
vertical strokes had been used as early as the Shang dynasty (c 1750–1045 bc) 
in inscriptions, to designate 1 and 10 respectively (Djamouri 1994, 39). 9 at is, 
the alternation may have been originally conceived for written numerals, so that 
representation with counting rods then followed the same conventions.

9 e exact time that counting rods disappeared in China is unknown. All the 
surviving Song dynasty (960–1279) mathematical treatises mention them exten-
sively. Xiang ming suan fa  ‘Computational methods explained in detail’ 
(1373) by An Zhizhai  and Suan xue bao jian  ‘Precious mirror of 
the learning of computations’ (late [ N eenth century) by Wang Wensu  both 
discuss operations with them. On the other hand, the Li suan quan shu 

 (seventeenth century) by Mei Wending  suggests that by the end of the 
seventeenth century they had fallen out of use, and even professional mathema-
ticians were not certain about their existence in the past.29 9 is means that in 
China the use of counting rods came to an end between the early sixteenth cen-
tury and the mid-seventeenth century, that is, during the time when the abacus 
was rapidly becoming the main computational device.30

9 e circumstances of the transmission of Chinese counting rods and related 
computational methods to Vietnam remain unknown. Huard and Durand (1963, 
540) believed that the abacus was introduced to Vietnam from China in the [ f-
teenth century. Han Qi (1991, 6) also mentioned the introduction of the abacus to 
Vietnam from China, but suggested that Vietnamese use of the instrument was 
based on the Chinese mathematical treatise Suan fa tong zong; he does not spec-
ify when the treatise was transmitted to Vietnam. Sometimes the same  algorithm 
had to be written in di\ erent ways for counting rods and abacus, so the transition 

the relevant passages from the Sun zi suan jing and the Xiahou Yang suan jing, see Berezkina (1963, 23; 1985, 
298); Lam and Ang (1992, 155).

29. See the section ‘Gu suan qi kao’  in chapter 29 of Li suan quan shu  (Mei 1986); for 
translations, see Vissière (1892); Jami (1994).

30. By the sixteenth century the abacus was widely used in China. Jami (1998) suggests that the two instru-
ments coexisted for some time, being used by two di\ erent social groups: the counting rods by professional 
mathematicians and calendrical astronomers, while the abacus was used in ‘popular arithmetic’.
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from one to the other may have ind uenced considerably the style and contents of 
mathematical treatises.

9 ere is evidence that the counting rods were used in Vietnam as late as the 
mid-seventeenth century. A description of the rods and their use in Vietnam 
was written by the Jesuit Giovanni Filippo de Marini, also known as Philippe 
de Marini, or de Marino (see Dehergne 1973, 72–73), who stayed in Tonkin (in 
the part of northern Vietnam controlled by the Tr nh  Lords) in 1647–58, and 
in Cochinchina (the central part of modern Vietnam, controlled at that time by 
the Nguy n  Lords), in 1671–74 (Volkov 2008b). De Marini’s Histoire nouvelle 
published in Rome in 1663 contains a description of the work of Vietnamese 
Court astronomers and mentions their use of counting rods (Marini 1663, 100). 
De Marini describes the computations as if he actually witnessed them during 
his stay in Tonkin in 1647–58:

9 eir Algebra and their way of counting are practiced di\ erently and in another way 
comparing to those of other Nations, because instead of [written] digits they solely use 
certain little rods of the length of one palm.31 9 ey dispose them on the ground sometimes 
vertically and sometimes horizontally, and by this means they practice all the operations 
of their Arithmetic, be it Addition, Multiplication, Subtraction, or Division.32

De Marini’s account suggests that as late as the mid-seventeenth century, 
Vietnamese mathematicians and astronomers perpetuated methods of com-
putation which were no longer used in China by then.33 He mentions di\ ering 
 orientations of the counting rods (‘[t]hey dispose them on the ground sometimes 
vertically and sometimes horizontally’) but it is unclear whether this was the 
alternating system used in China.

9 e last question deserves special attention. Mikami Yoshio found pictures of 
numbers represented by counting rods accompanying the multiplication table in 
the Vietnamese treatise Ch  minh toán pháp  ‘Guide towards understanding 
of methods of calculation’ of unknown date; according to him, the book contained 
no evidence of the use of the abacus (Mikami 1934, 4). Mikami noticed that in 
this treatise the conventions concerning the orientations of the rods di\ ered from 
those in China: in the same decimal position the rods could be placed vertically 

31. 9 is means that Vietnamese counting rods were longer than the Chinese rods used in the [ rst half of 
the [ rst millennium ad.

32. ‘La ragione de’numeri, e la loro Arithmetica in diuersa maniera si calcula, da quel, che fanno altre 
nationi, perche a fare presti, e diritti conti, non hanno cifere, mà certi stecchi lunghi vn palmo. Questi dis-
pongono in terra horo per lungo, hora a trauerso in più maniere, e con ciò mettono a [ ne ogni operatione, 
sia di sommare, sia di moltiplicare, e sottrare, o diuidere’ (Marini 1663, 100). My rendering is based on the 
French translation ‘Leur Algebre & leur façon de nombrer se pratique diuersement & d’vne autre façon que 
parmi les autres Nations ; parce qu’au lieu de chi\ re ils ne se seruent que de certains petits bastons de la 
longueur d’vne palme. Ils les disposent sur la terre tantost de long & tantost de trauers ; & par ce moyen 
ils pratiquent toutes les regles de leur Arithmetique, soit l’Addition, la Multiplication, la Soustraction ou la 
Diuision’ (Marini 1666, 182).

33. Marini’s description does not mention any kind of special ‘counting board’ and is thus evidence against 
the aforementioned theory that computations with counting rods were performed on such a board.
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or horizontally, depending on whether the number was odd or even (one vertical 
rod for 1, two horizontal rods for 2, and so on). 9 e treatise studied by Mikami 
remains unavailable to me, but three block-printed editions of the C u chu’o’ng
l p thành tính pháp  ‘Ready-made methods of addition of nine categories’ 
by Ph m H u Chung , published in the early eighteenth century,34 contain 
a multiplication table with numbers represented by counting rods in a way that is 
di\ erent from either the Chinese system or the one described by Mikami. In some 
cases, increasing powers of ten are disposed from leN  to right, and unconventional 
con[ gurations of rods are used to represent digits greater than [ ve.35

9 ere is evidence for the use of counting rods in Vietnam even as late as the 
nineteenth century, in a ‘model’ mathematics examination paper in the treatise 
entitled Chἰ minh l p thành toán pháp  ‘Guidance for understanding 
of the “Ready-made computational methods” ’, compiled by Phan Huy Khuông 

 in 1820. Here a ‘model student’ requests the counting rods in order to solve 
a problem. 9 e relevant phrase reads: ‘I asked for counting rods [and] disposed 
[them on the counting surface in order] to investigate it [= the problem] 

’ (MS A 1240, chapter 4, 30b).
Given that Vietnamese treatises based on the Chinese treatise Suan fa tong 

zong contain pictures of the abacus and describe operations with it,36 one can 
conjecture that in the early nineteenth century the two calculating devices were 
used simultaneously for a time. At present, however, it is impossible to establish 
exactly how the two traditions coexisted, and whether calculations with both 
instruments were practised within the same professional community. In the next 
section the reader will [ nd an example of a computational procedure using, pre-
sumably, counting rods.

Use of Nôm in mathematical treatises

Nôm  (or, more precisely, ch  Nôm, ‘southern script’, as distinct from ch  Nho, 
‘script of Confucian scholars’) is the original Vietnamese writing system, using 
both Chinese characters and local modi[ cations (see Nguyen 1990). Knowledge 
of the ‘script of Confucian scholars’, using classical Chinese characters, granted 

34. Call numbers AB 53, AB 173, and VHb 374 in the library of the Institute of Han-Nôm Studies, Hanoi.
35. One can ask whether the unorthodox con[ gurations resulted from low print quality and the poor 

mathematical expertise of the editors.
36. See, for example, the anonymous manuscript treatise catalogued in the National Library (Hanoi) 

under the bogus title Toán pháp đ  c ng  ‘Presentation of the key points of the computational meth-
ods’, call number R 1952, unmentioned in Tran and Gros (1993). 9 e [ rst page(s) of the manuscript is (are) 
missing and Toán pháp đ  c ng is, most probably, the subtitle of its [ rst remaining section. 9 e [ rst part of 
the manuscript contains a very detailed explanation of operations with the abacus, and a number of diagrams 
representing con[ gurations of beads on the abacus, see 10a–16b, 19a–24a, 26a–29b, 34b, 35b. 9 e instrument 
featured in the treatise is the standard Chinese abacus with eleven bars and 2 + 5 beads on each bar.
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Vietnamese literati direct access to the immense corpus of Chinese literature, 
including treatises on science, technology, and medicine. But classical Chinese 
remained a foreign language, and Nôm was the medium used to write in 
Vietnamese. To a certain extent the two written languages in scholarly texts can 
be compared to Latin and vernacular languages in sixteenth-century Europe. 
Historically, the use of Nôm in o7  cial documents and, accordingly, in the state 
education and examination system was subject to the o7  cial language policy of 
the Court. For example, the reign of the Emperor Minh Mang (1820–41) was 
marked by a renewal of Confucian learning in Vietnam and a return to classical 
Chinese in o7  cial documents and state examinations.

Since a relatively large number of surviving Vietnamese mathematical trea-
tises include sections written in Nôm, it is worth investigating the role played by 
these sections, which for local readers were presumably easier to understand than 
those in classical Chinese. 9 e way Nôm was used in mathematical treatises thus 
illustrates strategies of ‘localization’.

As an example I will examine the way Nôm was used in the treatise Toán pháp 
đai thành . 9 e treatise contains 138 mathematical problems, although 
several problems are incomplete and are known only from the algorithms for 
their solution or from geometric diagrams. 9 e text is not divided into chap-
ters, but the problems form groups devoted to the same topic or method (see 
Volkov 2002). Nôm is used only in a few places, but the sections written in it are 
lengthy. More speci[ cally, it is used in the short rhyming preface that introduces 
mathematics and is placed before the table of ‘large numbers’ in the very begin-
ning of the treatise (A 2931, 1b), in commentaries on several problems,37 and in 
the concluding part of the manuscript (A 2931, 117a–120b). 9 e distribution of 
the fragments in Nôm suggest that the main part of the treatise was originally 
compiled in classical Chinese and that sections and commentaries in Nôm were 
added later. To con[ rm this hypothesis more generally, it would be necessary to 
examine all other mathematical texts containing sections in Nôm.

9 e remainder of this section will be devoted to a discussion of the Nôm 
commentaries to problem 18 of the Toán pháp đai thành. 9 e problem reads as 
follows:

Suppose that there is [the amount of] 503 quan  7 bách  of o7  cials’ money to be dis-
tributed among 345 military personnel.

Question: how much [one] person [should] obtain?

37. In A 2931, in the Institute of Han-Nôm studies, they are: problem 18 and explanations,19a–22b; problem 
19 and explanations, 22b–27a; problem 68 and explanations, 62a–62b; problem 69 with a relatively long solution, 
62b–66b. Rhyming explanations in Nôm conclude problems 70–85, devoted to the extraction of square roots, 
71a–72a. 9 e section on areas of plane [ gures opens with an introduction in Nôm, 79b, and contains commentar-
ies in Nôm on the solution of problem 94, 81b–82a, and on the method, 82b.



GEOGRAPHIES AND CULTURES166

Answer: [9 e total amount of] money is 302,220 văn . Each man obtains 876 văn, 
which is 1 quan 4 bách and 36 văn. No remainder leN .

(MS A 2931, 19a )

Mathematically, the problem is elementary: N units of money are to be distrib-
uted among M persons, and therefore each person obtains S = N  M units.38 
However, the problem contains a di7  culty: N is expressed in quan and bách, 
where 1 quan = 600 văn and 1 bách = 60 văn.39 9 e solution should consist of the 
following steps: (1) convert quan and bách to văn; (2) divide the number of văn by 
the number of the militaries; (3) express the result in terms of quan and bách. Let 
us see how this is implemented in the solution found in the treatise.

9 e beginning of the computational procedure (or algorithm) is marked with 
the term cáo  ‘report’.40 9 is suggests that the data of the problem are to be 
‘reported’ or set out on a counting surface or abacus. It is di7  cult to decide which 
of the two instruments was meant to be used, because terms such as ‘upper [row]’, 

, and ‘lower [row]’, , could refer to positions on the counting surface (if the 
computations are performed with the counting rods) or to the positions on an 
abacus (in which case the ‘upper row’ would be the leN  part of the abacus, and 
the ‘lower row’ the right part). As we have seen, counting rods were mentioned in 
a mathematical treatise as late as the early nineteenth century, so in what follows 
I shall present the operations as if they were performed with counting rods. 9 e 
original disposition of the counting rods is shown in Fig. 2.3.2(a). 9 e number 
345 occupies 3 positions. Surprisingly, the total amount of money, 503 quan 7 
bách, is presented on the counting surface occupying six positions as if it were a 
decimal number 503,700.

9 e next statement in the text, in classical Chinese, reads as follows:

Take 7 bách in position of bách. 9 en multiply 6 and 7, [it will be] 42.

9 is is followed by a commentary in Nôm which can be rendered as saying:41

At this moment ‘break’ this 7; leave 40; besides, [it] yields 2; no ‘injection’ [needed].

9 e [ rst part of the instruction in Chinese ‘takes’ the 7 bách. To convert those 
7 bách to văn, one should multiply 7 x 60 = 420. It is not speci[ ed whether the 

38. One can suggest that the compiler(s) of the problem selected some convenient integer values M and S, 
and then calculated N (= M x S), and then designed the problem using N and M. 9 e values of M and N/M 
in this problem, 345 and 876, are both obtained as permutations of consecutive natural numbers: 3, 4, 5 and
6, 7, 8. 9 e reason for choosing 876 and not 678 may have been that 345 x 678 văn = 233910 văn = 389 quan 8 
bách 30 văn, which cannot be expressed solely in terms of quan and bách.

39. 9 e values for these units can be obtained from external historical sources, but the solution of the 
problem itself provides the information necessary to reconstruct the values of quan and bách: if 1 quan is 
equal to x văn, and 1 bách to y văn, we have the simultaneous equations 503x + 7y = 302,220 and x + 4y + 36 
= 876. 9 e solution is x = 600, y = 60.

40. To the best of my knowledge, this term is never used in Chinese mathematical treatises, where the 
terms shu  ‘procedure’, fa  ‘method’, or cao  ‘record of computations’ were used instead.

41. I thank Nguyen To Lan (Hanoi) for her help in translating the Nôm in this section.
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product 420 should replace the initial 700 or should be set in another row. For 
convenience, we will assume temporarily that the product was set in an extra row 
as shown in Fig. 2.3.2(b). 9 e digit 7 was probably now removed.42

9 e Chinese text goes on:

[Take] 3 quan. 9 en multiply 3 and 6, [it will be] 18.

9 is states that 3 quan (of the total amount of 503 quan) should be converted 
to văn (3 quan is 3 x 600 = 1800 văn). 9 e disposition (before addition) on the 
counting surface is shown in Fig. 2.3.2(c).

9 e commentary in Nôm reads:

At this moment ‘break’ this 3; leave 10; besides, [it] yields 8; 8 then is ‘tied-up’ [with 4?], 
2 returns, outside in second [position?] ‘inject’ returning 1, [it] becomes 2, no [more?] 
‘injection’ [needed].

42. 9 e result was probably not placed in the row between the ‘upper’ and ‘lower’ numbers, since this posi-
tion was reserved for the quotient of the [ nal division.
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Figure 2.3.2 Division of money using counting rods
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9 is commentary describes the addition of 1800 and 420. One adds 8 and 4 to 
obtain 12; 2 is set below 8 and 4, and then 1 is added to the 1 of 1800. 9 e mean-
ing of ‘injection’ in this case is thus the equivalent of ‘carrying’. 9 e text goes on 
in Chinese:

[For] 500 thus multiply 5 times 6, obtain 30.

9 e commentary in Nôm states:

9 en ‘break’ this 5 to obtain 30.

9 is instruction states that 500 quan (of the total 503 quan) should be converted 
to văn, to obtain 500 x 600 = 300,000 văn. On our counting surface this will be 
represented as in Fig. 2.3.2(d).

9 e next statement mentions the total amount of the money ‘as stated in the 
[question] of the problem’; therefore, at this step the total is obtained by adding 
the three partial products. 9 e disposition on the counting surface is thus as in 
Fig. 2.3.2(e). 9 e [ nal stage of the process is the division of 302,220 by 345; this 
part also contains commentaries in Nôm of a similar kind.

In this particular problem the commentary in Nôm does not add any new 
information to the text in Chinese; instead the Nôm rephrases the instructions 
in Chinese in order to render them more understandable. However, it would be 
incorrect to believe that in this or other mathematical treatises the sections in 
Nôm were always simply technical comments. For instance, the treatise Toán 
đi n tr  cu’’u pháp  ‘Methods of computations [of the areas of] [ elds 
[using] elimination of nines’43 contains a number of long sections in Nôm; more 
speci[ cally, four sections at the beginning of the book explaining elementary 
arithmetical operations, (MS VHb 50, 1a–3a), as well as two long sections intro-
ducing new methods followed by some relevant problems in Chinese (MS VHb 
50, 28b–29a, 30b–32b).

Mathematics examinations in traditional Vietnam

State mathematics education and examinations in China were established dur-
ing the Sui  dynasty (581–618), conducted throughout the Tang  (618–907) 
and Song  (960–1279) dynasties, and then discontinued for unknown rea-
sons. No Chinese mathematics examination papers have been found so far, 

43. 9 is is a provisional translation of the title of the MS VHb 50 preserved at the Institute for Han-Nôm 
Studies in Hanoi; the date of compilation and the name of the author are unknown. 9 is title is probably not 
the title of the treatise but of the section on the [ rst page of the surviving copy, since the cover, the table of 
contents, and probably some of the opening pages are lost.
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and reconstructions of instruction and examination procedures in China have 
been made on the basis of descriptions in other documents.44 In a number of 
Vietnamese documents from the eleventh to the late eighteenth centuries there 
are references to examinations in toán  ‘counting’.45 It is plausible to con-
jecture that procedures for state mathematics instruction and examination in 
Vietnam were similar to their Chinese prototypes. No Vietnamese examina-
tion papers have been discovered either, but there exists a ‘model’ mathemat-
ics examination paper in a treatise of 1820 by Phan Huy Khuông , who 
was presumably an instructor in a state or private educational institution. It is 
in the fourth (and last) chapter of his Chἰ minh l p thành toán pháp 

 ‘Guidance for understanding the “Ready-made computational methods” ’ 
(MS A 1240, 30a–32b). 9 is model paper is interesting for two reasons: [ rst, it 
allows a reconstruction of examination procedures in Vietnam and China; sec-
ond, it provides important evidence of the reasoning strategies of Vietnamese 
mathematicians.

9 e model examination paper consists of a relatively simple problem together 
with its solution written by a model examinee. 9 e problem is:

[Let us suppose that] now there is money to award [o7  cers], the total amount is 1,000 
cân  [of silver].46 [In order] to award [those] o7  cers, the amount of money agreed upon 
is 5,292 l ng. [9 e superiors] kindly award the aforementioned corpus of 328 o7  cers. 
[If they] intend to distribute [the silver] equally [in dividing by] the number of people, 
[then] there would be a remainder of 4 phan 8 li. [9 at is, if for those o7  cers] in high 
[position] and in low [position] [the superiors adopt] the pattern of ‘d at rate distribution’ 
( ) [for all the] ranks, then there is a d aw. 9 e method of ‘d at rate distribution’ can-
not be equally applied [to all ranks], this is already clear. Now, [one] wishes to use this 
silver to be distributed equally [within one rank], [yet] taking into account the unequal 
ranks of the aforementioned corpus [of the o7  cers]. 9 ere are [o7  cers of] three di\ erent 
ranks: rank A, 8 persons, each person receives 7 parts; rank B, 20 persons, each person 
receives 5 parts; rank C, 300 persons, each person receives 2 parts.47

[If we proceed in this way], then what would be the amounts of the parts received by 
each person, and the due amount of money for each [of the three groups]?

In other words, three categories of o7  cials, A, B, and C are to be remunerated 
with an amount S = 5,292 l ng . 9 e ratio of the amounts of money to be given 

44. Translations of the most important documents relevant to state education during the Tang dynasty 
can be found in des Rotours (1932); for a discussion of instruction and examinations see Siu and Volkov 
(1999). A discussion of mathematics instruction during the Song dynasty is in Friedsam (2003).

45. More speci[ cally, in 1077, 1179, 1261, 1363, 1404, 1437, 1472, 1505, 1698, 1711, 1725, 1732, 1747, 1762, 
1767, and 1777. In a record from 1762, mathematics examinations were ordered to be held every 15 years 
(Volkov 2002).

46. 9 e author uses the following measures of weight: 1 cân  = 16 l ng , 1 l ng  = 10 tien , 1 tien 
 = 10 phan , 1 phan  = 10 li .
47. 9 e original denotes the three categories by the cyclical characters , , and  (see Jami in this vol-

ume). In the translation and subsequent discussion these have been replaced by the letters A, B, C.
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to the individual o7  cials of the three ranks is 7:5:2, and the numbers of o7  cials 
in each category are NA = 8, NB = 20, and NC = 300, respectively. 9 e questions 
are: (1) what are the amounts of money to be given to individual o7  cials of the 
categories A, B, and C? (2) What is the total amount of money allotted to each 
category?

In modern notation, this is a problem on ‘weighted distribution’: one has to 
[ nd values x1, x2, . . . , xn such that x1 + x2 + . . . + xn = S and x1 : x2 : . . . : xn = k1 : k2 

: . . . : kn for given weighting coe7  cients k1, k2, . . . , kn. Problems of this type are 
found in the Chinese treatises Suan shu shu and Jiu zhang suan shu 

, where the solution procedure (in modern notation) is as follows:48 calculate 
the sum of the coe7  cients K = k1+ k2 + . . . + kn, and then [ nd the values xi = (S × 
ki)/K. However, the problem in the Vietnamese treatise is modi[ ed: for all o7  -
cials in the same category the weightings are the same, that is, kA = k1 = k2 = . . . =
k8 = 7, kB = k9 = . . . = k28 = 5, and kC = k29 = . . . = k328 = 2; one must therefore [ nd 
xA = x1 = . . . = x8, xB = x9 = . . . = x28, and xC = x29 = . . . = x328 such that xA : xB : xC = 
7:5:2, and 8xA + 20xB + 300xC = S. 9 e examinee is also asked to [ nd the total 
amount allotted to each group as a whole, that is, the values XA = 8xA, XB = 20xB, 
and XC = 300xC. A problem of this type is found in the Jiu zhang suan shu (chap-
ter 3, problem 7), where there are two groups containing three and two persons, 
respectively, and k1 = k2 = k3 = 3, k4 = k5 = 2, and S = 5 (Guo and Liu 2001, 112; 
Chemla and Guo 2004, 293). However, the solution in the Chinese treatise sim-
ply suggests that the weight coe7  cients should be written 3, 3, 3, 2, 2 and treats 
them as individual coe7  cients without grouping them into 3, 3, 3 and 2, 2.

9 e structure of the model solution can be summarized as follows. First, the 
candidate checks that the data given in the problem [ ts its conditions. At this step 
he [ nds that the amount of money, 1000 cân, does not give the 5292 l ng men-
tioned in the problem. 9 e discrepancy between the two values leads him to the 
conclusion that part of the correct amount, 10,708 l ng, was taken away. Second, 
he checks the ‘d at-rate distribution’. To do so, he divides the amount of money, 
5292 l ng, by the number of o7  cials, 328. 9 e remainder, 4 phan 8 li, is the 
one mentioned in the condition of the problem, and shows that an unweighted 
distribution cannot be fairly applied. 9 ird, he describes an algorithm that can 
be used to solve the problem, di\ erent from that in the Jiu zhang suan shu.49 

48. Cullen (2004, 44–47); Guo and Liu (2001, 109); Chemla and Guo (2004, 283). 9 e term used for this 
procedure is  ‘distribution [according to] grades’, that is, Vietnamese authors used the standard Chinese 
term from the Jiu zhang suan shu.

49. In order to [ nd xA, xB, and xC he calculates the sum K = k1 + k2 + . . . = k328. He does this by calculating 
NA⋅kA = 56, NB⋅kB = 100, NC⋅kC = 600 and adding these to obtain K = 756. 9 en he divides the total amount of 
money, S = 5292 l ng, by K to yield the ‘constant norm’ of 7 l ng. 9 e amounts xA, xB and xC to be paid to 
each o7  cer are then found by multiplying the ‘constant norm’ by kA, kB, kC, respectively. Perhaps the exami-
nee was not expected to know the algorithm described in the Jiu zhang suan shu, and this was why he was not 
required to reiterate it in the examination. 9 e conjecture that the examinee was familiar only with the Suan 
fa tong zong and not with the Jiu zhang suan shu does not explain why the ‘classical’ method was not used, 
since the former treatise contains both methods.
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Moreover, the examinee suggests an alternative algorithm for the second part of 
the  problem. 9 e solution includes a veri[ cation of the answer and a formal end-
ing (see Volkov forthcoming).

Interestingly, the text [ ts closely to the format of Chinese mathematics exami-
nation papers of the Tang dynasty (618–907) (Siu and Volkov 1999): (1) the task 
is represented by a particular problem; (2) the examinee checks the consist-
ency of the given numerical data, and (3) designs a computational procedure of 
which (4) the ‘structure’ is discussed in detail. In this discussion of structure the 
model Vietnamese examinee used the concept of lü  ‘the proportional vari-
able amount’50 which played a central role in traditional Chinese mathematics as 
seen in Liu Hui’s third-century ad commentary on the Jiu zhang suan shu. 9 e 
Vietnamese examinee thus was expected to produce a text in which the structure 
and style resembled algorithms of the Jiu zhang suan shu, as interpreted with the 
help of mathematical terms suggested by Liu Hui (Volkov 2004; see also Chemla 
and Guo 2004, 99–119).

Conclusion

9 is brief investigation of the surviving documents of Vietnamese mathematics 
does not provide conclusive answers to the questions posed at the beginning of 
the chapter. However, it is possible to advance a number of hypotheses concern-
ing the process of transmission, which can be summarized as follows.51

It is plausible to conjecture that the transmission of Chinese mathematical 
expertise to Vietnam may have commenced in the [ rst millennium ad, when 
Vietnamese candidates started participating in Chinese state examinations. From 
the eleventh century onwards, when Vietnam was established as an independ-
ent political entity, mathematics examinations were perpetuated, unlike their 
counterparts in China which were discontinued by the late thirteenth century. 
However, the content of the Vietnamese curriculum remains unknown, because 
the manuals used for mathematical instruction are lost.

It is also known that the Chinese calendar Shou shi  (Vietnamese 0  thì) 
promulgated in China in 1281 was used in Vietnam as early as 1306 (Hoàng 
1982, 142–143). It is therefore possible that mathematics instruction was con-
ducted in two institutional settings, namely, in the network of governmental and 
private schools preparing candidates for mathematics examinations, and in the 

50. In modern notation, a number B is a lü  of another number, B ,ʹ if one can establish a proportion in 
which both numbers occupy the same positions: A : B : . . . = Aʹ : Bʹ : . . . . For discussion of the term, see Chemla 
and Guo (2004, 135–136, 956–959).

51. 9 ese hypotheses are made on the basis of material presented in this chapter and in my earlier publica-
tions as listed in the bibliography.
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astronomical bureaus focused on computation of the calendar and prediction of 
eclipses (Volkov 2008b).

AN er a brief Chinese occupation of Vietnam in 1408–27, the reinstated exami-
nation system once again included mathematics; it is plausible that at the time o7  -
cial mathematics textbooks went through radical reform, and were most probably 
compiled on the basis of treatises brought, once again, to Vietnam from China. 
However, none of the Vietnamese textbooks has survived, despite the fact that 
the manuscript Toán pháp đ .ai thành  is believed to have been authored 
by the [ N eenth-century literatus L ng 9  Vinh . Why L ng 9  Vinh, 
a government o7  cer credited with a certain supernatural bond with the charis-
matic leader of the country, the Emperor Lê 9 ánh Tông , was believed to 
possess extraordinary mathematical skills still remains to be explored.

9 e earliest reliably datable mathematical book, the C u chu’o’ng l p thành 
tính pháp  ‘Ready-made methods of addition of nine categories’ by 
Pham H u Chung , was block-printed in 1713. 9 e fact that large portions 
of the treatise are written in Nôm suggests that the Chinese mathematical meth-
ods were studied and adapted by Vietnamese mathematicians no later than the 
early eighteenth century. 9 e fact that the book mentions counting rods suggests 
that the contents can be dated back to the time when the rods were still in use in 
China, that is, the late sixteenth to early seventeenth century, or even earlier, thus 
preceding the adaptation of the ind uential Chinese treatise Suan fa tong zong 

 (1592) which featured the use of the abacus.
As for the social institutions in which the mathematical tradition was perpet-

uated, they arguably remained the same as before. On the one hand, de Marini 
reported that in the mid-seventeenth century, old Chinese methods using count-
ing rods were practised within a narrow circle of governmental o7  cials charged 
with the duty of updating the calendar. On the other hand, the presence of a large 
number of applied problems (especially devoted to distribution of money and 
measuring of surfaces) in the treatises of the eighteenth to twentieth centuries 
and, in particular, in the model examination paper, suggests that government 
o7  cials were expected to be capable of solving mathematical problems of certain 
types. 9 is situation is mirrored in the large number of mathematical treatises 
produced in the nineteenth and early twentieth centuries; the interesting feature 
common to these books is that the Western mathematical methods known in 
China from the seventeenth century onwards were not included, probably inten-
tionally. 9 e Vietnamese compilations were thus styled ‘old Chinese’ (or perhaps 
‘old Vietnamese’) mathematical treatises. 9 e model examination paper of 1820 
o\ ers compelling evidence that mathematical education perpetuated reasoning 
strategies of the same type as those employed in China of the late [ rst millen-
nium ad. 9 is examination paper, together with abundant explanations in Nôm 
found in other treatises, suggest that by the nineteenth century the main e\ ort 
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was on the production of explanatory discourses for a rather stale and restricted 
body of mathematical methods.

9 e end of the story is well known: being institutionally bounded to the 
Vietnamese state examination system, the incarnation of the Chinese mathem-
atical tradition ended in a deadly collision with the colonial French education 
system by the dawn of the twentieth century. A description of this dramatic event 
is another challenging task awaiting historians.

Bibliography

Berezkina, El’vira I, ‘O matematicheskom trude Sun’-tszy. Sun’-tszy: Matematicheskiï trak-
tat. Primechaniya k traktatu Sun’-tszy’, in Iz istorii nauki i tekhniki v stranakh Vostoka, 
Nauka, 3 (1963), 5–70.

Berezkina, El’vira I, ‘Matematicheskii traktat Syakhou Yana’, Istoriko-matematicheskie issle-
dovaniya, Nauka, 28 (1985), 293–337.

Boltz, William G, ‘Lao tzu Tao te ching’, in M Loewe (ed), Early Chinese texts, 9 e Society for 
the Study of Early China, and 9 e Institute of East Asian Studies, University of California, 
1993, 269–292.

Cha Jong-chun, ‘Reception and appropriation of Chinese mathematics in Joseon dynasty: with 
special respect to Hushilun’, Sungkyun Journal of East Asian Studies, 2 (2002), 233–247.

Chemla, Karine, ‘Nombres, opération et équations en divers fonctionnements: quelques 
méthodes de comparaison entre des procédures élaborées dans trois mondes di\ érents’, in 
I Ang and P-E Will (eds), Nombres, astres, plantes et viscères. Sept essais sur l’histoire des 
sciences et des techniques en Asie orientale, Collège de France, 1994, 1–36.

Chemla, Karine, Guo Shucun (présentation, traduction), Les Neuf chapitres. Le classique 
mathématique de la Chine ancienne et ses commentaires, Dunod, 2004.

Ch’en Liang-ts’o [= Chen Liangzuo] , ‘Xian Qin shu xue de fa zhan ji qi ying xiang 
’, Li shi yu yan yan jiu suo ji kan , 49 (1978), 263–320.

Cullen, Christopher, 0 e Suan shu shu ‘Writing on reckoning’: a translation of a Chinese 
mathematical collection of the second century BC, with explanatory commentary, Needham 
Research Institute, 2004.

Dehergne, Joseph, Répertoire des jésuites de Chine de 1552 à 1800, Letouzey & Ané, 1973.
Djamouri, Redouane, ‘L’emploi des signes numériques dans les inscriptions Shang’, in A 

Volkov (ed), Sous les nombres, le monde: Matériaux pour l’histoire culturelle du nombre en 
Chine ancienne (Extrême-Orient Extrême-Occident, 16), PUV, 1994, 12–42.

Fan Lianghuo, Wong Ngai-Ying, Cai Jinfa, Li Shiqi (eds), How Chinese learn mathematics: 
perspectives from insiders, World Scienti[ c, 2004.

Friedsam, Manfred, ‘L’enseignement des mathématiques sous les Song et les Yuan’, in 
Christine Nguyen Tri et Catherine Despeux, Éducation et instruction en Chine, vol 2, 
Editions Peeters, 2003, 49–68.

Fukagawa Hidetoshi, and Pedoe, Daniel, Japanese temple geometry problems—Sangaku, 
Charles Babbage Research Center, 1989.

Guo Shirong , Zhong guo shu xue dian ji zai Chao Xian de liu chuan yu ying xiang yan jiu 
, unpublished doctoral dissertation, Beijing: Kexueyuan, 

2005.
Guo Shuchun , Liu Dun  (eds), Suan jing shi shu , Taipei: Chiu chang [Jiu 

zhang], 2001.



GEOGRAPHIES AND CULTURES174

Han Qi , ‘Zhong Yue li shi shang tian wen xue yu shu xue de jiao liu 
’, Zhong guo ke ji shi liao , 12 (1991), 3–8.

Hoàng Xuân Hãn, ‘Calendrier et calendriers vietnamiens’, T p san khoa h c xã h i, 9 (1982), 
134–144.

Horiuchi, Annick, Les mathématiques japonaises à l’époque d’Edo (1600–1868) : une étude 
des travaux de Seki Takakazu (?–1708) et de Takebe Katahiro (1664–1739), Vrin, 1994.

Horng Wann-Sheng, ‘Sino-Korean transmission of mathematical texts in the 19th century: a 
case study of Nam Pyong-gil’s Kugo Sulyo Tohae’, Historia Scientiarum, 12 (2002), 87–99.

Horng Wann-Sheng , ‘ :  (1820–1869) ’ 
‘Transmission and transformation of mathematical cultures: a case study of Korean math-
ematician Nam Pyung Gil’s Sanhak Chongyi’ ,  ‘Communications of the 
National Normal University, Section of Humanities and Social Sciences’, 48 (2003), 21–38.

Horng Wann-Sheng , Li Chien-Tsung , ‘
’ ‘Kyong Song-Jin and a mathematics workshop in seventeenth-century Choson Korea’, 

 ‘Chinese Studies’, 25 (2007), 313–340.
Huard, Pierre, et Durand, Maurice, Connaissance du Viet-Nam, Imprimerie Nationale; 

Hanoi: École française d’Extrême-Orient, 1954.
Huard, Pierre, et Durand, Maurice, ‘La science au Viet Nam’, Bulletin de la Société des études 

indochinoises, 38 (1963), 531–558.
Jami, Catherine, ‘History of mathematics in Mei Wending’s (1633–1721) work’, Historia 

Scientiarum, 4 (1994), 159–174.
Jami, Catherine, ‘Abacus’, in R Bud and D Warner (eds), Instruments of science: an historical 

encyclopedia, Garland, 1998, 3–5.
Jun Yong Hoon, ‘Mathematics in context: a case in early Nineteenth-century Korea’, Science 

in Context, 19/4 (2006), 475–512.
Kalinowski, Marc, ‘La divination par les nombres dans les manuscrits de Dunhuang’, in I 

Ang and P-E Will (eds), Nombres, astres, plantes et viscères. Sept essais sur l’histoire des 
sciences et des techniques en Asie orientale. (Mémoires de l’Institut des Hautes Études chi-
noises, 35), Collège de France, 1994, 37–88.

Kalinowski, Marc, ‘Astrologie calendaire et calcul de position dans la Chine ancienne: les 
mutations de l’hémérologie sexagésimale entre le IVe et IIe siècle avant notre ère’, in K 
Chemla et M Lackner (eds), Disposer pour dire, placer pour penser, situer pour agir: pra-
tiques de la position en Chine (Extrême-Orient Extrême-Occident, 18), PUV, 1996, 71–113.

Kawahara Hideki, ‘Tongsan and Chonwonsul—Choson’s mathematics in the middle 17th 
through early 18th century’, Chosen gakko, 169 (1998), 35–71.

Kawahara Hideki, ‘9 e science of four forms in Joseon dynasty’, Sungkyun Journal of East 
Asian Studies, 1 (2001), 283–293.

Kim Yong-Woon, ‘Introduction to Korean mathematics history’, Korea Journal, 13 (1973a), 
16–23; 13 (1973b), 26–32; 13 (1973c), 35–39.

Kim Yong-Woon, ‘Pan-paradigm and Korean mathematics in the Choson dynasty’, Korea 
Journal, 26 (1986), 25–46.

Kim Yong-Woon and Kim Yong-Guk, Kankoku sugakusi (A history of Korean mathematics 
[in Japanese]), Maki Shoten, 1978.

Lam Lay Yong, Ang Tian Se, Fleeting footsteps. Tracing the conception of arithmetic and alge-
bra in ancient China, World Scienti[ c, 1992.

Li Chien-Tsung , Chao Xian suan fa jia Qing Shan Zheng Mo si ji suan fa chu tan 
 ‘A preliminary investigation of the Muk sa chip san pŏp 

 by the Korean mathematician Kyong Sŏn Ching’, unpublished MA thesis, Taibei: Guoli 
Taiwan shifan daxue, 2003.



Mathematics and mathematics education in traditional Vietnam 175

Li Wenlin, Xu Zelin, and Feng Lisheng, ‘Mathematical exchanges between China and Korea’, 
Historia Scientiarum, 9 (1999), 73–84.

Li Yan, ‘Zhang Yong jun xiu zhi Zhong guo suan xue shi yi shi ’ ‘9 e 
heritage of Mr. Zhang Yong’s work on the restoration of the history of Chinese mathem-
atics’, in Li Yan, Zhong suan shi lun cong  ‘Collected papers on the history of 
Chinese mathematics’, vol 1, Taibei: Zhengzhong shuju, 1954, 135–146.

Li Yan and Du Shiran, Chinese mathematics: a concise history, Clarendon Press, 1987.
Libbrecht, Ulrich, Chinese mathematics in the thirteenth century: the Shu-shu chiu-chang of 

Ch’in Chiu-shao, MIT Press, 1973.
Marini, Giovanni Filippo de, Delle Missioni de padri della compagnia di Giesv Nella Prouincia 

del Giappone, e particolarmente di quella di Tonkino. Libri cinqve. Del P. Gio: Filippo de Marini 
Della medisima Compagnia. Alla santita di N.S. Alessandro pp. Settimo, Rome, 1663.

Marini, Philippe de, Histoire nouvelle et curieuse des royaumes de Tunquin et de Lao. Contenant 
une description exacte de leur Origine, Grandeur & Estenduë ; de leur Richesses & leurs 
Forces ; des Mœurs, et du naturel de leurs Habitants ; de la fertilite de ces contrees, & des 
rivieres qui les arrosent de tous cotez, & de plusieurs autres circonstances utiles & necessaires 
pour une plus grande intelligence de la Geographie. Ensemble la MagniF cence de la Cour des 
Roys de Tunquin, & des Ceremonies qu’on observe à leur Enterrements, Paris, 1666.

Martzlo\ , Jean-Claude, A history of Chinese mathematics, Springer, 1997.
Mei Rongzhao, ‘9 e decimal place-value numeration and the rod and bead arithmetics’, in 

Ancient China’s technology and science, Foreign Language Press, 1983, 57–65.
Mei Rongzhao  and Li Zhaohua  (eds), Cheng Dawei zhu Suan fa tong zong jiao 

shi  ‘Systematic treatise on counting methods, by Cheng Dawei, with 
emendations and explanations’, Hefei: Anhui jiaoyu, 1990.

Mei Wending , Li suan quan shu Complete writings on calendrical calcula-
tions, in Wenyuange Siku quanshu’, vols 794–795, Taibei: Taiwan Shangwu, 1986.

Mikami Yoshio, Development of mathematics in China and Japan, Leipzig: Teubner, 1913; 
reprinted New York: Chelsea, 1974.

Mikami Yoshio , ‘Annan-no ichi sansho-ni tsuite ’ ‘On one mathe-
matical book from Annam’, Gakko sugaku  ‘School mathematics’, 14 (1934), 3–11.

Nguyên, Đình-Hoà, ‘Graphemic borrowing from Chinese: the case of ch  nôm, Vietnam’s 
demotic script’, Bulletin of the Institute of History and Philology, Academia Sinica [Taiwan], 
61 (1990), 383–432.

Needham, Joseph, Science and civilisation in China, vol 3 (Sciences of the Heaven and the 
Earth, with the collaboration of Wang Ling), Cambridge University Press, 1959.

des Rotours, Robert, Le traité des examens, traduits de la Nouvelle histoire des T’ang (chap. 
44–45), Librairie Ernest Leroux, 1932.

Siu Man-Keung, ‘O7  cial curriculum in mathematics in ancient China: how did candidates 
study for the examination’, in Fan et al. 2004, 157–185.

Siu, Man-Keung, and Volkov, Alexei, ‘O7  cial curriculum in traditional Chinese mathemat-
ics: How did candidates pass the examinations?’, Historia Scientiarum, 9 (1999), 87–99.

Smith, David Eugene, and Yoshio Mikami, A history of Japanese mathematics, Chicago, 
1914.
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Ever since the invention of the term ‘the Balkans’, the area has attracted the 
attention of the international community for negative reasons: wars, atroci-

ties, and incessant squabbling about the rightness or wrongness of ethnic or reli-
gious origin or denomination. An entirely di\ erent and more positive side to the 
people of the Balkans will be examined here: their e\ orts to introduce the pursuit 
of mathematics to the nations to which they belonged.

9 e development of Balkan mathematics will be examined through the history 
of three national schools of mathematics. First, we will look at the mathematics of 
the ruling Ottomans at the end of the eighteenth and the beginning of the nine-
teenth century, and see how mathematical culture developed under a programme 
of modernization of the state and its military apparatus. 9 e second focal point 
will be the mathematics of the Orthodox population of the Ottoman empire. 
Greeks were the predominant Orthodox ethnie within the empire, both in terms 
of their heritage and cultural ind uence, and the spread of the Greek diaspora, with 
merchant communities scattered throughout the empire, gave them an enviable 
position in terms of their ability to import learning from other countries. Finally, 
focusing on a particular and relatively small national mathematical culture, that 
of Serbia, we will examine a personal story that contains many ingredients con-
sidered typically Balkan, interwoven with a love of mathematical studies.

CH A P T ER 2 .4

A Balkan trilogy: mathematics in the Balkans 
before World War I
Snezana Lawrence
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A theme such as this poses several di7  culties: in de[ ning the geographical 
region, the historical period we need to consider, and what kind of mathemat-
ics may be considered to be Balkan. ‘9 e Balkans’, a term that originates in the 
Turkish word balkan ‘mountain chain’ (Obolensky 1971), was [ rst used by the 
German geographer Johann August Zeune (1808) in relation to the peninsula 
that now includes Bosnia, Serbia, Monte-Negro, Albania, Macedonia, Greece, 
Bulgaria, and Romania (see Fig. 2.4.1). By the end of the century it was used in the 
context of describing the struggle of some of these nations against the Ottoman 
empire (Minchin 1886). In the early nineteenth century the national awakening 
of ethnic groups in the region marked the beginning of European nation-build-
ing.1 9 is was followed by the establishment of institutions of higher learning 
for the elite of Balkan societies. 9 is chapter will examine general trends in the 
development of mathematics by the ruling Ottomans, as well as the parallel evo-
lution of mathematical awareness in the rebelling Orthodox population.

B e mathematics of the Ottomans

9 e Ottoman empire (1299–1922) at the height of its power in the sixteenth and 
seventeenth centuries stretched from Gibraltar to the Persian Gulf and from 
Austria to Sudan and Yemen. Relative religious tolerance meant that non-Islamic 
ethnies were allowed to profess their faith.2 9 e Ottomans developed schools 
known in Arabic as madrasas, ‘places of learning’, which were founded through-
out the Muslim world from the ninth century (see Brentjes, Chapter 4.1 in this 
volume). 9 e primary aim of madrasas was to teach jurisprudence. It is signif-
icant that certain madrasas also included teaching on ‘rational’ sciences such 
as logic, ethics, Arabic language subjects, and arithmetic, apart from religion 
and jurisprudence.3 It is generally believed, however, that individual madrasas 
included mathematical sciences and astronomy only if the madrasa professors 
were themselves expert in such subjects.

Students entered madrasas aN er their basic schooling in the mektebs (equiva-
lent to primary schooling), and spent years rising through twelve grades or ranks, 
corresponding to the ranks of their teachers. AN er completing his studies, a stu-
dent might enter the teaching profession or, if he had completed all grades, the 

1. 9 e Serbian Uprisings and the Greek Revolution happened more than forty years before the uni[ cation 
of either Italy or Germany. 9 e First Serbian Uprising began in 1804, and it was aN er the Second Uprising that 
the Serbs gained partial independence from the Ottomans. 9 e Greek War of Independence (1821–31) ended 
with the Treaty of Constantinople, which proclaimed Greece a free country.

2. Roudometof (1998, 12) describes ethnie thus as a pre-modern concept of identity: ‘An ethnie may have 
the following characteristics to di\ ering degrees: a collective proper name, a myth of common ancestry, 
shared historical memories, some elements of common culture (e.g., language, religion), an association with 
a speci[ c homeland, and a sense of solidarity.’ See also Smith (1986, 40).

3. 9 is trend was most widespread under the reign of Kanuni Sultan Suleyman (1495–1566), but became 
less common aN er the end of the sixteenth century. See (Sürmen, Kaya, Yayla 2007).
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Figure 2.4.1 Alexandre Emile Lapie: map of ‘Turkey in Europe’, Paris, 1816

hierarchy of ulema ‘legal scholars’ to become a learned man or a religious cleric. 
9 is type of education was based on tradition, and the handing on of existing 
knowledge, rather than the development of new concepts (Zil[  1983). A major 
challenge to this system came aN er the Ottomans lost the Battle of Vienna in 1683. 
9 e Ottomans subsequently fought a number of wars with the Russians, until 
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they established the Habsburg–Ottoman–Russian borders in southeast Europe. 
At the same time they lost large areas of the empire such as Egypt and Algeria 
to Britain and France. 9 e Ottoman government therefore became increasingly 
concerned with two major problems: the loss of power and ind uence on the one 
hand, and the perceived decline and corruption of the military apparatus on the 
other. 9 ere was thus seen to be an urgent need to modernize the army and its 
technologies, which in turn led to changes in the learning of mathematics.

At its core, this modernizing process was not motivated by ideas of Western 
Enlightenment. Rather, the empire sought to create an educational system geared 
to military needs by introducing Western engineering and scienti[ c learning. 
Western sciences were therefore imported in relation to the art of war rather than 
to peace or the pursuit of knowledge itself. One major problem that eventually 
arose through this process was exclusion: because of its close link with military 
goals, the new educational programme, at least for the [ rst half-century, excluded 
de facto the many ethnic groups whose culture was linked to Christianity rather 
than to Islam.

9 e French and the Turks had had a long history of cooperation since the six-
teenth century, when France received permission to trade in all Ottoman ports, 
and it was through this longstanding liaison that Western mathematics [ rst came 
into the Ottoman empire. A Naval Engineering College was founded in Istanbul 
in 1773 under the guidance of Baron de Tott, a French diplomat of Hungarian 
origin (de Tott 1785). A Military Engineering College was established in 1795, 
with a mathematical syllabus almost identical to that of the Naval College, but 
with the additional subject of forti[ cation. 9 ese two institutions were the [ rst in 
the empire to teach modern mathematics, departing from the traditional Islamic 
teaching of the madrasas, and focusing on the application of the sciences to mili-
tary and civil engineering. 9 e two colleges later merged and were, in e\ ect, the 
origin of the Istanbul Technical University.

Among the [ rst group of teachers at the Naval Engineering College was 
Gelenbevi Ismail, who is credited with introducing logarithms to the empire. 
Born in the town of Gelenbe in southern Turkey he rose through the ranks of the 
madrasas to become professor at the age of thirty-three. In algebra he worked 
in the classical Arabic tradition of al-Khwārizmī (c 825), in which problems 
were presented rhetorically and justi[ ed geometrically (Høyrup 1987, 281–329; 
Berggren 2007). 9 e second generation of teachers initiated a more organized 
programme of Western mathematics by translating texts into Turkish. Huseyin 
RiÆ i, for example, who taught at the Military Engineering School, became a 
proli[ c translator of Western works. 9 is was a part of a growing trend among 
Ottoman scholars to look to the West rather than to the East or to the Arabic 
mathematical heritage (Sürmen, Kaya and Yayla 2007, 5). RiÆ i’s most important 
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work, in collaboration with Selim Ağa, an English engineer who converted to 
Islam, was a translation of Bonnycastle’s 1789 edition of Euclid’s Elements. Until 
this translation appeared in 1825, Euclid was taught from a ninth-century Arabic 
translation modi[ ed in the [ N eenth century by Bursali Kadizade-i Rumi, head 
of the Samarkand madrasa. Rumi published shortened and simpli[ ed versions 
of the Elements under the title EsKalü’t-te’sis. His books were studied across the 
empire and were regarded as the most signi[ cant works of Ottoman mathemat-
ics, but RiÆ i nevertheless preferred to translate from an English edition. Perhaps 
his assistant Selim Ağa persuaded him that this would be more appropriate for 
modern education than the version of Rumi. 9 e practice of translating into 
national languages from Western sources rather than from local translations 
demonstrates how Western mathematics and ideas of education overrode even 
material that was already known.

Ishak Efendi, a Jewish convert to Islam and a student of RiÆ i, also became a 
translator of Western works into Turkish, and created Turkish equivalents for 
many scienti[ c and mathematical terms. He translated (but never published) 
Robert Fulton’s Torpedo war and submarine explosions (1804), but is best known 
for his four-volume Mecmua-i Ulum-u Riyaziya ‘Compendium of mathematical 
sciences’, [ rst published in 1831 for the pupils of the Army Engineering School. 
Another edition was published in Cairo in 1845 for the use of the new military 
school there. 9 e ‘Compendium’ was an adapted translation of a number of 
Western works: although some students could read the originals in French or 
English, these were not widely available. A substantial work of over two thousand 
pages, it introduced readers not only to mathematics, but also to physics, astron-
omy, biology, and chemistry. In mathematics it o\ ered a new approach, heavily 
ind uenced by what was perceived as Western materialist science (Özervarli 2007). 
It emphasized modern mathematics, and claimed that the crucial Islamic notions 
of jihād and ghāza were dependent on knowledge of mathematics (Findley 1992, 
141). Jihād and ghāza have a range of meanings, but here referred to the aspir-
ation to live a moral and virtuous life, and the need to spread and defend Islam, 
the latter being a raison d’etre of the Ottoman state. Although there is evidence 
that some atheism was included in the learning imported from the West, such 
religious aspirations were based on the spiritual traditions of Islam (Özervarli 
2007).

9 e [ rst non-military institutions to o\ er modern science and technology 
were the Mekteb-I Maârif-I Adliyye ‘School of Learning’, and the Mekteb-I 
Ulûm-I Edebiyye ‘School of Literary Sciences’, founded in 1839 for training 
o7  cials. 9 e School of Learning proposed that aN er learning Arabic, students 
should take subjects such as French geometry, geography, and history. 9 is 
marked the beginning of an education that was both secular and non-military 
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(Somel 2001, 34–35). It coincided with the beginning of a movement known 
as Tanzimat ‘Reorganization’ (during the period 1839–76), whose primary aim 
was the secularization of the educational system, but which in view of the rising 
nationalist movements also promoted inclusiveness amongst all the peoples of 
the empire.

In terms of educational reform, a compulsory primary system (lasting for four 
years) was introduced, with a system of further schools, such as Rushdiya (four 
higher grades of primary school, or middle school), İdadiya (o\ ering four years 
of vocational education), and Sultaniya (six-year secondary schools, based on the 
French lycées). For the Rushdiya there was no mention of mathematics in the 
o7  cial syllabi, but the İdadiya and Sultaniya had ambitious programmes. 9 e 
İdadiya taught practical mathematics such as bookkeeping, geometry, and alge-
bra, while the Sultaniya were supposed to o\ er descriptive geometry, analytical 
geometry, perspective, algebra, and trigonometry.

Tanzimat aimed to bring these subjects into general teaching practice, and at 
the same time initiated a wide ranging reform of teacher education. By the middle 
of the Tanzimat period, however, mathematics was still not widely taught in the 
teacher training schools. A teacher named Tahsin, for example, who graduated 
from the School of Civil Service, and who was subsequently appointed admin-
istrator in the province of Rumeli (now Macedonia), reported in 1864 that local 
teachers knew nothing of subjects such as mathematics or geography (Somel 
2001, 77).

9 us, during the nineteenth century, Ottoman mathematics was strongly ind u-
enced by military preoccupations, and texts were mostly translations of French 
and English material. Very little original mathematics was done before World 
War I. A rare exception was the secondary school headteacher, Mehmet Nadir, 
who obtained some signi[ cant results in number theory, particularly in relation 
to Diophantine equations (İnönü 2006). In 1915 he became the [ rst professor of 
mathematics at the University for Women (established in 1914 in Istanbul), and 
was appointed to a chair in number theory at Istanbul University in 1919. 9 e 
[ rst Ottoman mathematician to be granted a PhD in mathematics was Kerim 
Erim, at Erlangen in 1919 (İnönü 2006, 234–242). Nor was there much e\ ort to 
communicate with Western mathematicians: Nadir did so, as did his contempor-
aries Tev[ k Pasha and Salih Zeki, who both published in foreign languages or in 
foreign journals. 9 e former wrote a Linear algebra in English (second edition 
1893) for use in teachers’ colleges, and the latter published an article on ‘Notation 
algébrique chez les Orientaux’, ‘Algebraic notation in the East’ in the Journal 
Asiatique in 1898. 9 e general lack of communication with the West, other than 
in importing and translating texts from French and English, has sometimes been 
seen as having adverse consequences for the development of Ottoman science 
and mathematics (Rabkin 2003, 196).
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B e mathematics of Greece

Until the end of the eighteenth century, the ind uence of Greek culture on the 
Orthodox community within the Ottoman empire was wide and all-encompassing 
(Tsourkas 1943). 9 e Greek diaspora spread as far as the Black Sea coast and the 
Venetian territories, with communities also in cities such as Vienna, Amsterdam, 
and Budapest. It played an important role not only in commercial development, but 
also in supporting the intellectual and cultural advancement of Greeks and other 
Orthodox ethnies within the empire. During the nineteenth century, however, vari-
ous other national ind uences began to pervade Greek mathematical culture, from 
France, Germany, and even, for a brief period, the United States (Kastanis 2007).

During the eighteenth century, Greek intellectual and educational life centred 
around four areas: Bucharest and Jassy (in what is now Romania), 9 essaly, the 
eastern Aegean, and the Ionian islands. 9 e territories around Bucharest and Jassy 
were run by Greek Phanariots, a community that had grown out of the prominent 
families who originally lived in the Greek quarter of Istanbul called Phanar. 9 ey 
became the o7  cial translators to the Ottomon government during the period 
when the Ottomans lost northern and eastern territory to the Austrians and 
Russians in the seventeenth century, and their ind uence on state apparatus and 
foreign policy grew substantially from then on. 9 e fact that by the nineteenth 
century they were sometimes called ‘Christian Turks’ (Vucinich 1962, 602) indi-
cates their social power as well as their isolation from other Christian communi-
ties of the era. 9 e Phanariots, however, fostered a multilingual and metropolitan 
outlook, and an international network, all of which contributed to the creation of 
later Greek identity (Dialetis, Gavroglu, and Patiniotis 1977; Sonyel 1991).

9 e areas around 9 essalonika, the eastern Aegean, and the Ionian islands 
were the most signi[ cant in introducing new educational trends into Greek cul-
ture at the beginning of the nineteenth century, especially into mathematics. 9 e 
intellectual prestige of these areas was related to sea trade, which brought with it 
both relative prosperity and exchange of ideas. 9 e centre of learning in 9 essaly 
was Ampelakia, at the foot of Mount Olympus, where a school was founded in 
1749. In the Aegean, the centres were Chios, Kydonies, and Smyrna. Academies 
were founded in Kydonies and Smyrna in 1800 and 1808, respectively, o\ ering 
the equivalent of undergraduate studies. 9 e Ionian Islands were under British 
protection between 1814 and 1864, during which time the Ionian Academy, estab-
lished in 1824, introduced a Western model of mathematical education.

Some of those who taught mathematics in these institutions were trained abroad 
with support from Greek individuals or communities outside the empire. For 
example, Veniamin of Lesvos, who studied at Pisa supported by the Greek com-
munity at Livorno and then taught at Kydonies from 1796; Dorotheos Proios who 
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studied in Pisa and Paris and aN er 1800 taught at Chios (see Kastanis and Kastanis 
2006, 523); and Ioannis Carandinos, who studied at the École Polytechnique 
in Paris and later became Dean of the Ionian Academy. Another person who 
trained abroad, with support from the brothers Lambros and Simon Maroutsis 
of Venice, was Evgenios Voulgaris who studied at the universities of Venice and 
Padua. Rather than returning with modern ideas, however, Voulgaris focused on 
the re- establishment of ancient teaching in mathematics, believing that classical 
Greek geometry was the basis for any further progress (Roudemetof 1998, 21). 
His view was that mathematics was valid in its connection with philosophy rather 
than with the experimental sciences. 9 us the new context of the Enlightenment 
escaped him, as it did some of his followers (Dialetis, Gavroglu, and Patiniotis 
1997). Voulgaris translated many philosophical and some mathematical works 
into Greek, among them, in 1805, Euclid’s Elements from Tacquet’s 1694 edition. 
At the time Voulgaris was living at the royal court of Russia, having become a 
protégé of the empress Catherine. 9 is may be the reason for his having chosen 
Tacquet’s edition, which was available to him in the library there, rather than an 
existing Greek edition.4

9 e [ rst translations into Greek of modern works on mathematics were made 
by Spyridon Asanis, a medical doctor who taught mathematics at Ampelakia in 
9 essaly in the 1790s. His translations drew on works by Nicolas-Luis de Lacaille 
and Guido Grandi, and two of them were published: Arithmetic and algebra 
(from Lacaille 1741) in Venice in 1797, and Conic sections (from Grandi 1744) in 
Vienna in 1803. 9 eir success encouraged several further translations by others.5 
Iosipos Moisiodax at the Greek Academy in Jassy also drew upon Lacaille. Indeed 
Lacaille was very popular in both Italy and Austria during the second half of the 
eighteenth century, having been introduced into their respective educational sys-
tems by the Jesuits (Kastanis and Kastanis 2006, 518).

Carandinos in Corfu translated from French all the books he thought neces-
sary to create an undergraduate mathematics department similar to those in 
western Europe. Between 1823 and 1830, he translated works by Bourdon, Biot, 
Lagrange, Poisson, Monge, Lacroix, and Legendre (Kastanis 1998, 186; Phili 1998, 
303–319). Hence, virtually all the mathematics studied at the Academy was based 
on the work of French mathematicians. As in other areas under French ind uence, 
institutions were modelled on their Parisian counterparts (Mazzotti, Chapter 3.3 

4. 9 e Elements were [ rst translated into contemporary Greek in 1533 by a German theologian and 
scholar Simon Grynäus. 9 is edition included Proclus’ Commentary, given to Grynäus by the then president 
of Magdalen College, Oxford, John Claymond. Original manuscripts in ancient Greek were by this time no 
longer available.

5. See Kastanis and Kastanis (2006, 518–520). Algebra was extended by the study and publications of three 
scholars: Zisis Kavras, who studied in Jena and translated works from German; Dimitrios Govdelas, who 
studied in Pest and wrote Stoicheia Algebras ‘Elements of Algebra’, based on German sources and published 
in Halle in 1806; Stefanos Dougas, who studied at Halle, Jena, and Göttingen, and published a four-volume 
work on arithmetic and algebra, inspired by German tradition, in Vienna in 1816.
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in this volume). A Military Academy founded at Napd ion in 1829 with the help 
of the French government was modelled on the École Polytechnique, and the 
mathematics curriculum was based on books already translated for the Ionian 
Academy (Kastanis 2003, 136). Later military schools in Greece were also mod-
elled on the École Polytechnique, and there was also a strong French ind uence 
in the University of Athens, founded in 1836. 9 e [ rst professor of mathematics 
there was Constantinos Negris, who had studied in Paris at the Lycée de France 
and the École Polytechnique (see Kastanis and Kastanis 2006, 531).

Although French mathematics predominated in the Greek academies there 
were also other ind uences. Constantinos Koumas, for instance, studied at Vienna 
from 1804 to 1808 and completed his doctorate at Leipzig. His approach to math-
ematics has been described as ‘Austrian scholastic’ (Kastanis and Kastanis 2006, 
521) in that his main focus was the work of Jean-Claude Fontaine (see Fontaine 
1800; Koumas 1807). He also developed a method of teaching physics experi-
mentally, transforming the Gymnasium of Smyrna (modern day Izmir, Turkey), 
of which he was a director, into the most famous scienti[ c school for the Greek-
speaking community (see Dialetis et al, 1999). 9 e progressive and rationalistic 
leanings of this school, as well as the teaching of modern mathematics and sci-
ences in the ‘Western’ manner at the Evangelical School in Smyrna, attracted 
attention from the Patriarchate. Koumas’ school was burnt by an angry mob in 
1819, while at the same time Patriarch Grigorios V issued a warning to all students 
of mathematics: ‘cubes and triangles, logarithms and symbolic calculus . . . bring 
apathy . . . jeopardizing our irreproachable faith’ (Kastanis and Kastanis 2006, 
525; for longer account see Terdimou 2003, 53–62).

Between 1810 and 1820, two mathematics teachers, Stefanous Dougas (educated 
at Halle, Jena, and Göttingen) and Dimitrios Govdelas (educated at Pest), intro-
duced German-inspired education into the Patriarchic School of Constantinople 
and the Academy of Jassy. AN er the appointment of the Bavarian prince Otto 
Wittelsbach as King of Greece in 1832, Bavarian o7  cials also ind uenced the 
Greek educational system. 9 ey established a system of secondary education 
divided into lower and upper Gymnasia. 9 e emphasis was on classical stud-
ies, although mathematics was placed as the third most important subject aN er 
ancient Greek and Latin. 9 e syllabus in mathematics gave plenty of freedom to 
the teacher but prescribed the general outline of study and the number of hours 
of teaching. Mathematics teaching was heavily dominated by Euclidean geom-
etry, and on Diesterweg’s principles of teaching geometry by heuristic or dis-
covery learning.6 9 e insistence on classicism, and the shortage of mathematics 

6. Friedrich Adolph Wilhelm Diesterweg (1790–1866) was a German educational thinker whose most 
famous work, Wegweiser zur Bildung für deutsche Lehrer (‘A guide to education for German teachers’) (1835) 
set out the principles of teaching based on a theory of development and improvement, heavily coloured by the 
ideology and philosophy of neo-Classicism (Günther 1993).
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teachers, meant that there was a pressing need for suitable textbooks, which were 
provided through the Bavarian connection. Georgios Gerakis, for example, stud-
ied in Germany (with support from the state) and aN erwards published textbooks 
in Greek based on German textbooks: Elementary geometry and trigonometry 
(1842),7 Arithmetic and algebra (1855), and Plane geometry and Stereometry.8

Principles of heuristic teaching similar to those of Diesterweg came to Greece 
from another source also. During the early 1830s, American missionaries came 
to Greece, hoping to set up a mathematical programme based on Pestalozzian 
principles.9 9 is was a short lived and fairly unsuccessful episode but one which 
for a few years exposed Greek mathematical culture to the ‘inductive’ method as 
de[ ned by Pestalozzi (Kastanis 2007).

9 roughout the nineteenth century Greek mathematical and scienti[ c think-
ers were preoccupied with introducing these subjects into educational institu-
tions. In their approach they ranged on the one hand from the view that ancient 
mathematics was closely linked to ancient Greek thought, and on the other with a 
concern to model mathematical culture and education on the examples of France 
(with the École Polytechnique as a model for higher education) and Germany. 
9 e ind uence of Germany blended well with references to ancient Greek thought 
and mathematics as it was closely linked to ideas of classicism, and geometry 
was considered to be a de facto embodiment of neo-Classical philosophy. Euclid 
remained one of the main sources of knowledge at lower levels of education, until 
the reforms of Greek educational system in the middle of the twentieth century. 
French ind uence, however, was most pervasive at the higher levels. 9 e French 
initiated a long-lasting trend towards analysis but, more than anything else, 
French mathematical thought and teaching entered Greece through the text-
books and personal experience of the [ rst teachers of mathematics in the schools 
established aN er the Greeks gained independence from the Ottomans. 9 e two 
foremost institutions for the further development of mathematics in Greece, the 
Ionian Academy and the University of Athens, had the mathematics of the French 
built into their foundations.

B e mathematics of Serbia

9 e history of Serbian mathematics is interwoven with the colourful lives of sev-
eral of its most prominent exponents. Indeed, in some respects, their lives epit-
omize some of the connotations of the term ‘Balkan’: a bridge between West and 

7. Based on Snell (1799).
8. Based on Koppe (1836a; 1836b).
9. Johann Heinrich Pestalozzi (1746–1827) was a Swiss educational reformer, whose main contribution 

to the development of pedagogy was his insistence on a child-centred approach to learning, progressing from 
the familiar to the new.
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East, bohemian passion, and violent confrontation. All these seemingly ‘Balkan’ 
traits are exempli[ ed in the life of the mathematically inclined Crown Prince of 
Serbia, Djordje Karadjordjević, and in his friendship with the most famous of 
Serbian mathematicians, Mihailo Petrović.

First some background: Serbian mathematics education in the nineteenth 
century developed [ rst under the Ottomans, and aN er 1833 under the Austro-
Hungarian Empire. 9 e [ rst book on mathematics in Serbian was Nova serbskaja 
aritmetika ‘A new Serb arithmetic’ (1767) by Vasilije Damjanović, but under-
graduate education was established only in 1838, at the Lyceum in Kragujevac. 
9 e [ rst mathematics professor there was Atanasije Nikolić, who had studied in 
Vienna and Pest, and his initial task was to write the [ rst undergraduate text-
books in the Serbian language.

Belgrade University grew out of a succession of institutions, the most promin-
ent being Matica Srpska, literally ‘the Serbian Queenbee’, founded in 1826 in Pest 
to promote Serbian culture and science. 9 is institution grew into the Lyceum, 
and the Lyceum developed into the Superior School. 9 e [ rst trained mathemat-
ician to teach at the Lyceum, Dimitrije Nešić, had been educated at Vienna and 
Karlsruhe Polytechnic, and is credited with de[ ning Serbian terminology for all 
mathematical concepts and processes known at the time.

At the end of the nineteenth century several Serbian mathematicians stud-
ied for doctorates at western universities: Dimitrije Danić at Jena (1885), Bogdan 
Gavrilović at Budapest (1887), Djordje Petković at Vienna (1893), Petar Vukičević 
at Berlin (1894), and [ nally, the most famous Serbian mathematician, Mihailo 
Petrović, who completed his thesis in Paris in 1894. It is not known why Petrović 
chose Paris when all his contemporaries had studied in Germany or Austria, but 
he established important links with the French government during his studies and 
maintained them later. 9 us, although most educational ind uences in the middle 
of the century were Austro-Hungarian or German, the most prominent of Serbian 
mathematicians, who set the future direction of the national mathematical school, 
introduced French mathematics and French mathematicians to his country.

Petrović, who was from a well-to-do family in Belgrade, completed a degree 
in natural sciences at the Superior School, sometimes called the Great School, 
in Belgrade in 1889. He then went on to study at the École Normale, originally a 
teacher training institution, rather than the École Polytechnique, which earlier in 
the century had been the preferred place of study for Greek students. 9 e raised 
prestige of the École Normale at the end of the nineteenth century may have 
been a deciding factor, but it is not clear whether Petrovic was aware of it. He was 
awarded his doctorate in 1894 for a thesis entitled Sur les zéros et les inF nis des 
intégrales des équations di5 érentielles algébriques ‘On zeros and in[ nities of inte-
grals of algebraic di\ erential equations’. 9 e examining commission consisted of 
Charles Hermite, Charles Émile Picard, and Paul Painlevé.
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Petrović dedicated his thesis to Painlevé and Jules Tannery. He had met 
Tannery during the [ rst year of his studies when he attended courses on dif-
ferential calculus and di\ erential equations. He had also become good friends 
with Painlevé, who had come to Paris from Lille in 1891 to become a professor 
at the Sorbonne, having completed his doctorate in 1887, and they continued 
the friendship aN er Petrović returned to Belgrade. Both Petrović and Painlevé 
later gained friends amongst the political elites of their respective countries.10 At 
Petrović’s insistence, Painlevé’s work on mechanics (Painlevé, 1922) was trans-
lated into Serbian by Ivan Arnovljević and published as a textbook in Belgrade 
in 1828.

Petrović also made friends with Hermite, who had already had another Serbian 
student, Mijalko Ćirić. Hermite taught Petrović higher algebra, and his son-
in-law, Emil Picard, was another of Petrović’s examiners. Petrović and Picard 
became lifelong friends, and Picard drew on work from Petrović’s thesis in his 
Traité d’analyse ‘Treatise of analysis’ (1908) (see Trifunović 1994, 27).

Upon his return to Belgrade in 1894, Petrović was made a professor at the 
Superior School. At the beginning of 1905, the Superior School was replaced by the 
University of Belgrade and Petrović was appointed to the Chair in Mathematics, 
a position he held until his death in 1943. His main area of interest was classical 
analysis, and he wrote papers on the properties of real and complex functions 
de[ ned by power series (Petrović 2004, 100). When he [ rst returned to Belgrade, 
he devoted some time to creating an analogue computer for solving a certain 
type of analytically unintegrable di\ erential equation (see Petrović 1896). He 
completed the machine, the Hydro Integrator, for the Universal Exhibition held 
in Paris in 1900, and was awarded a Bronze medal for it (Petrović 2004).

In the years prior to World War I, he also worked on mathematical 
phenomenology,11 with a view to developing a mathematical apparatus that would 
be able to encompass all facts, and link apparently unconnected phenomena in 
a mathematical fashion (Petrović 1911). As an outcome of his work on cryptog-
raphy during the war, he founded the theory of mathematical spectra, which has 
analogies with the spectral method in chemical analysis. It consists of dispersing 
unknown quantities from a problem into a numerical spectrum. 9 e quantities 
are dispersed, separated, and determined in the same way as in spectral analysis 
in chemistry. 9 is theory was to be applicable to arithmetic, algebra, and in[ ni-
tesimal calculus, and Petrović taught a course on it at the Faculté des Sciences at 
the University of Paris in 1928 (Petrović 1919; 1928).

10. In 1906 Painlevé became a Deputy for the [ N h arrondissement of Paris, the so-called Latin Quarter. 
He was later Prime Minister twice, in 1917 and 1925.

11. An approach in the philosophy of mathematics dealing with issues about rational intuition, the place 
of formal systems in mathematical thinking, and the intuition of essences, the most prominent students of 
which were Husserl and Gödel. See Tieszen (2005).
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In his personal life he was a dedicated [ sherman, and passed the examination 
of Master Fisherman in Serbia in the same year in which he completed his doc-
torate in Paris. Later he draN ed national laws on [ shery, and helped de[ ne inter-
national treaties. He participated in a number of French expeditions to the Arctic 
and the Antarctic, and to islands in the south Indian Ocean, writing travelogues 
and a novel based on these journeys.12 He also had a passion for Gypsy music 
(see Fig. 2.4.2), and is reported to have written to his mother from Paris aN er his 
attendance at a Presidential Ball, forbidding her to tell the neighbours in Belgrade 
in case they did not believe her and because a local gypsy friend might hear of it, 
and it could ruin their friendship.

In 1903 the young crown prince Djordje Karadjordjević returned to Serbia, 
having spent some years being educated with his younger siblings in Geneva and 
St Petersburg, and Petrović was asked to teach him mathematics. Petrović was 
already well connected with the French establishment (Major Levasseur, the [ rst 
tutor to the prince, had also been chosen through his French connections), as 

12. Kroz polarnu ‘9 rough the polar [ eld’ (1932), U carstvu pirata ‘In the kingdom of pirates’ (1933), 
Sa okeanskim ribolovcima ‘With ocean [ shermen’ (1935), Na dalekim ostrvima ‘On remote islands’ (1936), 
Roman o jegulji ‘Novel of the eel’ (1940).

Figure 2.4.2 Petrović  (second from the right) played the violin and had his own 
band, Musical Band-Suz, whose repertoire consisted of traditional Serbian and 
Gypsy songs. The band recorded more than a thousand pieces for Radio Belgrade 
between the two World Wars. Reproduced by the kind permission of Aleksandar 
Petrović  , Belgrade.
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well as something of a bohemian. It seems that the Prince and Petrović struck up 
a friendship immediately, and maintained it through di7  cult times later. 9 ey 
went [ shing together, and also participated in establishing the [ rst fencing club 
in Serbia, as well as spending time studying mathematics.

9 e Prince had a reputation for being hot-tempered, and on one occasion 
attacked his tutor, Major Levasseur, who had to be dispatched back to Paris 
(Karadjordević 1988). In 1909 a more serious scandal broke when he killed his 
valet. Although there were moves to cover up this horrible event, the truth came 
out, and he had to abdicate.13 Djordje Karadjordjević tried to recant his abdica-
tion on a number of occasions, but was unsuccessful. By now Petrović was teach-
ing him mathematics not out of duty, but out of friendship. In the midst of the 
scandal, the Prince became fascinated by Poincaré’s work, and on 3 March 1911 
he wrote to Poincaré as follows:

Dear Professor,
I have learned, as an amateur, some elements of the theory of functions, which inter-

ests me strongly, and more and more, and I have come to a question on which I have 
not been able to [ nd precise explanation. Please excuse the liberty I take in addressing 
myself directly to the Master to clarify the results of modern research on the question.

9 e question is as follows: What is the least of the limiting values which a polynomial 
function F(z) may take when the variable z increases inde[ nitely along the di\ erent vec-
tors in its plane?

Begging you to excuse my importunities, I beg you, Monsieur, to accept this expres-
sion of my respectful regards.

George.14 (Trifunović 1992, 66)

9 e reply arrived on 12 March 1911. 9 e Prince duly thanked the great mathem-
atician, and sent him another letter asking for his signature and a photograph. 
9 e only (known) surviving answer comes from a paper by Petrović, which men-
tions Poincaré’s solution to the problem (Petrović 1929).

9 e letter from the Prince to Poincaré was the high point of his mathematical 
studies. He continued to study mathematics long aN er his abdication and into 
his life as an ordinary citizen. He participated in the Balkan Wars of 1912–13 

13. In his place came his younger brother, later to become the [ rst King of Yugoslavia (which was founded 
in 1918), Alexander Karadjordjević. Alexander was assassinated in Marseille in 1934. George survived him 
and became an ordinary citizen to live and die in Belgrade aN er the fall of the Kingdom and the establishment 
of the Federal Republic of Yugoslavia aN er the end of World War II.

14. ‘Monsieur le Professeur, En ayant appris, en amateurs, quelques éléments de la théorie des fonctions 
qui m’interresse vivement et de plus en plus et en ayant recontré une question sur laquelle je n’ai pu trouver 
nulle part des renseignements précis. Veuillez bien éxcuser la liberté que je prends en m’adressant directe-
ment au Maître pour m’éclaircir sur les résultats acquis par les recherches modernes relative à la question. La 
question est la suivante:

 Quel est la moindre des valeurs limites que puisse avoir une fonction entière F(z) lorsque la variable z 
augmente indé[ niment suivant di\ érents rayons vecteurs dans son plan.

 En vous priant d’éxcuser mes importunités, je Vous prie Monsieur le Professeur d’agréer l’éxpression de 
ma respectueuse reconnaissance. Georges.’
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and World War I, but upon his father’s death in 1925 was con[ ned to a  mental 
 asylum by his brother, King Alexander. During his years of incarceration, Djordje 
Karadjordjević became obsessed with Einstein’s theory of relativity. Petrović vis-
ited him regularly and they spent many hours discussing it. He was eventually 
released by the German occupying forces in 1941, but in the year of his release, 
Petrović in turn was imprisoned and deported as a lieutenant colonel of the 
Yugoslav Royal Army. Djordje Karadjordjević survived another change of regime 
at the end of World War II, and died an ordinary citizen in Belgrade in 1972.

Serbia progressed rapidly from having little or no mathematical culture at the 
beginning of the nineteenth century. 9 ere were some advantages to this rela-
tively short history. At the International Conference on Mathematics Teaching, 
in Paris in April 1914, the Serbian delegation was able to report that the intro-
duction of in[ nitesimal calculus into schools was devoid of problems in their 
country: modernization did not pose a problem in a place where there was no 
tradition that could inhibit it:

For the nations that are but at the threshold of civilization in their development, there 
is no tradition and an idea in general, and especially a new idea, can become very easily 
an ideal of a new generation. As a consequence, in such circumstances the realization of 
this ideal is not prevented or delayed by questions of tradition.15 (L’enseignement mathé-
matique, 16 (1914), 332–333)

9 ere was another important factor. Petrović’s colourful personality, his friend-
ships in the highest and the lowest echelons of local society, his links with the 
French establishment, his passion for music and [ shing, and his approachable 
character, all conveyed an image of a bohemian and intellectual elite, at the core 
of which lay excellence in the study of mathematics. 9 is image was embedded in 
the national mentality for a further century.

Petrović’s work, both in terms of acknowledgement in the international com-
munity and his e\ orts to establish a national school (virtually all mathem-
atical doctorates in Serbia between the two World Wars were done under his 
supervision),16 established far-reaching change. 9 is had a long term e\ ect on 

15. ‘Chez les nations qui ont à peine dans leur développement, passé les premiers seuils de la civilisation, il 
n’y a pas de tradition et une idée en general et surtout une idée nouvelle, devient très facilement l’idéal meme 
d’une generation. Par consequent, dans ces circonstances la realisation de cet ideal n’est pas empêchée ou 
retardée par des questions de tradition.’

16. Petrović’s doctoral students were Sima Marković (1904; became a famous Communist, lost his life in 
Russia under Stalin), Mladen Berić (1912), Tadija Pejović (1923), Radivoj Kašanin (1924; became professor 
at the University of Belgrade), Jovan Karamata (1926; taught mathematics at the Universities of Belgrade, 
Göttingen, and Geneva), Miloš Radojčić (1928; professor at the University of Belgrade and the University of 
Khartoum), Dragoslav Mitrinović (1933; professor of mathematics and founder of mathematical institutes in 
a number of universities of former Yugoslavia), Danilo Mihnjević (1934), Konstantin Orlov (1934; professor 
of mathematics at the University of Belgrade), and Dragoljub Marković (1938). 9 ese ten produced a further 
361 doctoral students during their professional lives.
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Serbian, and later Yugoslavian, study of mathematics. In this way the ind uence of 
the French school, with Poincaré at its centre, was felt long aN er his main Serbian 
student became the founder of the national mathematical school.

Conclusion

9 e modern idea of a periphery, and in particular of societies, such as those of the 
Balkans, lagging behind the West which by contrast is seen as progressively onward-
moving (Ahiska 2003; Heper 1980), implies a need to catch up with developments 
at ‘the centre’ by introducing new technologies, sciences, and cultural innovations. 
In the case of the Ottoman Empire, the sense of being on the periphery began to 
emerge at the end of the seventeenth century, which marked the beginning of the 
empire’s decline in military prowess and ind uence. 9 is was the beginning of the 
period during which the Ottomans began the process of Westernization, including 
the adoption of Western mathematics, which entered Ottoman education mainly 
through the military engineering schools (see Güvenç 1998; Grant 1999; Somel 
2001; Ekmeleddin 2003; Gökdogan 2005). In this case the periphery took what it 
considered useful from the West with a view to regaining military and political 
prestige, but at the same time [ ltered out other aspects of imported culture.

In the case of the Greek mathematics of the nineteenth century, the pursuit of 
mathematics was ind uenced by the centre to such an extent that the centre oN en 
set the agenda for reform in the periphery. 9 is can be seen in the mathematics 
exported by the French to the Ionian Islands, which at the time were a British 
protectorate. 9 e mathematics developed at the Ionian Academy in turn impreg-
nated all future developments in Greece aN er the Wars of Independence in 1821.

Finally, the particular story of Balkan mathematics, described in some detail, 
focuses on a small national mathematical culture, that of Serbia. In this case, the 
search for authenticity and individualism was interwoven with the personalities 
involved, linking the highest and the lowest levels of society. In such a setting 
mathematics and its narrative became embedded in the national culture, certain 
elements of which gave rise to an archetypal view of mathematical pursuit linked 
to a bohemian but also intellectually superior way of life.

With World War I, the intellectual map as well as the political map changed 
dramatically. First, the centres of political and cultural ind uence changed irrevo-
cably aN er the disintegration of the Austro-Hungarian Empire. Second, whilst the 
choices made by mathematicians and mathematics educators in the nineteenth 
century were oN en a matter of inheritance, opportunity, or circumstance, mathe-
maticians of the new era became acutely aware of the seriousness of decisions they 
had to make in developing their national schools. 9 rough this awareness they 
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began to create their own intellectual landscape, and drew from the ind uences 
they considered most appropriate to their national circumstances. 9 e Russian 
Revolution of 1917 brought another factor into play. Many mathematicians d ed 
from the Russian Revolution towards the west, with a number of them settling in 
the Balkans. By the end of World War II the division of Europe into Western and 
Eastern blocs meant further changes to the mathematical cultures of the Balkan 
societies. One modern historian has likened the developments in the region to 
the dramatic drawings of M C Escher: weird and frightening, but also containing 
some wonderful narratives, set in an improbable and oN en impossible perspec-
tive (Glenny 1999, 57). To one degree or another all these elements make up the 
diverse culture of the Balkans and, as a result, of their mathematics too.
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CH A P T ER 3.1

Mathematics education in an Old Babylonian 
scribal school
Eleanor Robson

In the early second millennium bc, southern Iraq—ancient Babylonia—produced 
large quantities of mathematics, written on small clay tablets in the Akkadian 

in Sumerian languages using the cuneiform, or wedge-shaped, script. For many 
decades aN er its discovery and decipherment in the early twentieth century the 
study of Old Babylonian (OB) mathematics quite rightly focused on the recov-
ery of knowledge: what was known, and where and when.1 9 e 1990s saw a move 
towards conceptual history: how mathematical language red ected the thought 
processes behind the techniques. Nevertheless, the corpus of Old Babylonian 
mathematics was still treated, more or less, as a closed set of disembodied texts: 
there were few attempts to publish new sources, or to acknowledge that they were 
recorded on physical objects which could be located in time and space and fruit-
fully related to other archaeological artefacts. 9 is was in large part due to the 
academic backgrounds of the small number of core researchers concerned, who 
were almost exclusively trained in mathematics or the history of science or ideas, 
and inevitably lacked the technical skills involved in the decipherment of cunei-
form tablets or the reconstruction of the archaeological record. Conversely, there 

1. 9 is chapter is an edited and updated version of Robson (2002). I thank Kai Metzler for permission to 
reproduce it here.
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was a conspicuous lack of cuneiformists willing to do so. It appeared that the great 
pioneers of cuneiform mathematical studies—Otto Neugebauer, Abraham Sachs, 
Evert Bruins, and François 9 ureau-Dangin—had done it all, and there was little 
leN  to do but reanalyse their data. 9 e contextual evidence for the material they 
had published was at best meagre and more commonly non-existent, while the 
mathematical tablets coming out of more recent excavations were invariably fur-
ther exemplars of the multiplication tables and lists of weights and measures that 
Neugebauer had so thoroughly classi[ ed in the 1930s and 1940s.

Since the mid-1990s, however, there has been an increasing interest in the 
material culture of Babylonian scribal schooling, and a growing realization that 
a wealth of archaeological and artefactual data can be used to counterbalance the 
traditional sources of evidence, the Sumerian literary narratives about school. 
9 is move has gone hand in hand with an increasingly sophisticated approach 
to textual evidence, which acknowledges that authorial intention was oN en com-
plex and that literary works in particular cannot be used straightforwardly as a 
historical source.

9 is study is situated [ rmly within that research tradition. It takes as its starting 
point one single architectural unit and the objects found within it to reconstruct 
the role of metrology, arithmetic, and mathematics within the curriculum of an 
individual school. Its aim is not to produce a generalized pedagogical framework 
for Old Babylonian mathematics, but rather to stress the variety of approaches 
to mathematics education that existed in the early second millennium bc. Just 
as modern scholarship is conducted by individuals who are constrained by their 
environment and education while free to make personal choices about the direc-
tion and character of their work, we shall see that ancient education was imparted 
by people with similar freedoms and constraints.

House F, an eighteenth-century scribal school

House F was excavated in the [ rst months of 1952 by a team of archaeologists 
from the universities of Chicago and Pennsylvania. It was their third [ eld season 
in the ancient southern Iraqi city of Nippur and one of their express aims was to 
[ nd large numbers of cuneiform tablets (McCown and Haines 1967, viii). For this 
reason they had chosen two sites on the mound known as Tablet Hill, because 
of the large number of tablets that had been found there in the late nineteenth 
century. 9 ose previous digs, when the development of recorded stratigraphic 
archaeology was still in its infancy, had necessarily been little more than hunts 
for artefacts. 9 e new generation of archaeologists, however, made detailed arch-
aeological records of [ nds and [ ndspots as a matter of course, so that when they 
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hit upon the large cache of tablets they had been hoping for, the architectural 
context, stratigraphic location, and physical description of every one of them was 
noted.2 9 ey labelled their excavation areas TA and TB (Fig. 3.1.1), deliberately 
siting TB right next to the pits leN  by their nineteenth-century predecessors.3 
9 e tablets, over 1400 of them, were in an unremarkable looking house in the 

2. Nevertheless, the 1950s [ eld records still present major problems for researchers: see Zettler (1996, 
88–89).

3. Gibson et al (2001) give a thorough overview of the excavations at Nippur and their results.

Figure 3.1.1 Topographic map of Nippur. Area TA is south of Inana’s temple (Gibson 
et al 2001, ? g. 1)
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corner of Area TA, one of eight mud-brick dwellings packed into the 20 × 40 
m  rectangle. Other houses in TA and TB had yielded tablets, but in handfuls 
or dozens, not in the thousands. 9 e House F tablets were not stored in jars or 
discarded on the street as some of the others had been, but were part of the very 
fabric of the house itself, built into the d oors and walls and furniture (Fig. 3.1.2). 
It quickly became apparent that the tablets were not a normal household archive 
of documents relating to property ownership, debt, and business matters, but 
comprised in the most part Sumerian literary compositions and standardized 
lists of signs and words, in numbers that had never before been recovered from a 
controlled excavation.

9 e excavators of House F had found a school. While the huge number of 
school tablets were not enough to con[ rm this at the time, having been found 
in secondary context used as construction rubble, the presence of large quan-
tities of unused tablet clay and facilities for soaking and reusing tablets has since 
been attested in other schooling environments and leaves little room for doubt. 
9 e schooling took place, it appears, in the courtyards, loci 192 and 205, where 
benches and three recycling bins were found. 9 ree small rooms to the north-
west, 184, 189, and 191, seem to have been private quarters (a bread oven was 
discovered in 191, domestic pottery in 184 and 205, and decorative plaques in 
191 and 205), while the partially excavated 203 must have served as the entrance 
hall. 9 e tablets, it seems, were laid down shortly aN er 1740 bc, the tenth reg-
nal year of Samsu-iluna, king of Babylon and son and successor of Hammurabi. 
Mud-brick structures like House F needed to be rebuilt or extensively renovated 
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Figure 3.1.2 Plan of House F, level 10 (after Stone 
1987, pls. 17–19)
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every twenty-[ ve years or so (Gasche and Dekiere 1991) and indeed House F 
appears to have undergone three or four such remodellings over the course of 
its life, from the late nineteenth century to about 1721 bc. 9 e use of tablets as 
building material seems to mark the end of the house’s life as a school: when it 
was later reoccupied the new inhabitants appear to have been engaged in other 
activities.

AN er excavation, the [ nds were distributed between the Oriental Institute 
in Chicago and the University Museum, Philadelphia. 9 e Iraq Museum in 
Baghdad also took a share, while sending portions of its allocation to Chicago 
and Philadelphia on long-term loan for publication purposes. 9 e Chicago loan 
was returned in the 1980s. 9 e excavation report on TA and TB came out [ N een 
years aN er the dig (McCown and Haines 1967) and was later reanalysed in the 
light of information from about one hundred household archival records from 
the two sites (Stone 1987). Neither work treated in any detail the school tablets 
from House F or the rest of the site. Meanwhile, many of those tablets were mak-
ing their way into critical editions of Sumerian literary and lexical works, some-
times contributing as much as 25 percent of the sources. Only the fragments 
loaned to Philadelphia were systematically published (Heimerdinger 1979), but 
even this work consisted solely of sketches of the tablets with no textual com-
mentary, edition, or discussion of the archaeological context. As the tablets were 
published, it became clear that fragments could be joined to form larger pieces, 
but that oN en these joins had to be made virtually, across the three collections. 
Nevertheless, the preservation in Philadelphia of the original [ eld notebooks 
containing a complete record of the epigraphic [ nds as they were excavated, as 
well as a tablet catalogue drawn up in the 1970s, has made it possible to attempt a 
reconstruction of the original tablet assemblage. When Baghdad bried y became 
more accessible to the international community, I started to check those records 
against the tablets in the Iraq Museum. As this process had only just begun 
before the 2003 war, there are still some gaps and inconsistencies in the data, 
which should therefore not be taken as completely accurate. Nevertheless, it is 
already possible to make some interesting observations and draw some prelim-
inary conclusions about the functioning of the House F school in the mid-
 eighteenth century bc.

In total, 1425 tablets were recovered from Level 10 of House F, some 9 percent 
of which are mathematical. All but four of these belong to the tablet typology 
of elementary schooling, which account altogether for 50 percent of the tablets 
found in the house. 9 e position, content, style, and purpose of mathematical 
instruction within the House F elementary curriculum will be discussed in the 
[ rst two sections below. 9 e bulk of the remaining tablets bear extracts from 
Sumerian literary compositions (42 percent), which collectively help to shed light 
on post-elementary mathematical training. 9 is is the topic of the [ nal  section. 
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9 e remaining 8 percent, household documents and hitherto  unidenti[ ed 
 fragments, will not come into the discussion.4

Metrology in the elementary curriculum

Several types of tablet were used for elementary schooling in Nippur, as clas-
si[ ed by a scheme devised by Miguel Civil (e.g., 1995, 2308) to describe lexical 
lists—standardized lists of signs and words. But, as Niek Veldhuis (1997, 28–39) 
showed, this tablet typology applies equally to all elementary school exercises, 
including mathematical ones. It happens that mathematics has survived on just 
three types of tablet of from House F: the small Type IIIs and the larger Type 
I and IIs, of which it will be important to distinguish between the d at obverse 
(Type II/1) and the slightly convex reverse (II/2):

Type I refers to generally large tablets [ . . . ], with a full lexical list and a substantial part 
thereof and nothing else.

Type II [ . . . ] tablets contain divergent material on each of [their] two sides. To the leN  
of the d at side (II/1) there is a carefully written lexical passage extracted from a fuller 
list, apparently the work of an instructor, while to the right the passage is copied by a 
student. On the convex side (II/2) of a Type II tablet, there is a multicolumn excerpt from 
a longer list.

Type III tablets [ . . . ] contain just one column with material extracted from a longer 
list. (Civil 1995, 2308)

Because the Type II tablets contain di\ erent compositions on the obverse and 
reverse they can be used to reconstruct the curricular sequence of elementary 
education in Nippur (Fig. 3.1.4 below). Veldhuis (1997, 40–63) correlated the con-
tents of obverse and reverse on some 1500 Type II tablets from Nippur, work-
ing from the hypothesis that they had been written by the same student, who 
reviewed on the reverse an earlier part of the same composition he was learning 
on the obverse, or long sections from one he had completed earlier.5 Veldhuis’s 
results were impressively consistent, enabling him to assign about twenty di\ erent 
compositions to four phases of the elementary curriculum: writing techniques, 
thematic noun lists, advanced lists, and introductory Sumerian. He discussed 
the educational function of each phase in turn, showing a steady progression 

4. Several other assemblages of Old Babylonian school tablets have been identi[ ed, all much smaller than 
the House F corpus (Robson 2002, 329–330). House F falls in the middle of the chronological and geograph-
ical spread of these school corpora. Mathematics is present in all of them, in proportions ranging from 5 per-
cent to 16 percent; the 9 percent proportion of mathematics in House F can thus be seen as relatively normal. 
However, the contents and format of the mathematical tablets in the di\ erent assemblages, as far as they can 
be identi[ ed, varies quite remarkably.

5. In some circumstances Old Babylonian women could train to be scribes too: see Lion and Robson 
(2006); Robson (2007).
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from [ rst exposure to the physical form of cuneiform signs, the construction of 
whole words, and the exploration of the complexities of cuneiform writing, to the 
use of whole sentences of grammatically correct Sumerian. All phases involved 
the rote memorization of set texts, mainly of the sort traditionally character-
ized in Assyriology as ‘lexical texts’, namely, lists of cuneiform signs or Sumerian 
words. But the curriculum also included model legal documents, Sumerian prov-
erbs, and—most importantly for our purposes—long sequences of multiplica-
tion tables and lists of metrological units. It is impossible, though, on present 
evidence, to estimate how long the student(s) had been at school, or how old they 
were, at this or any other point in their educational careers.

Using the same methodology on the 250 or so Type II tablets from House F 
yields a similarly consistent picture (Table 3.1.1). It di\ ers from Veldhuis’ general 
conclusions primarily in the ordering of the third phase, where mathematical 
matters are addressed (Robson 2001). Weights and measures were learnt system-
atically, by means of a standard series, towards the end of the third phase of the 
House F curriculum. Multiplication and division facts were memorized imme-
diately aN erwards. However, metrological matters were [ rst addressed within 
the second phase, as sequences within the thematic noun list (see below) and 
later contextualized in the model legal contracts of phase four. Looking at the 
numbers of tablets attested, it is striking that the series of divisions and multipli-
cations is one of the most frequently occurring compositions, while the metro-
logical sequence is among the least represented. Why this might be, if it is not 
simply an accident of preservation, cannot for the moment be determined.

9 e students’ [ rst exposure to metrological notation was in the second 
phase of elementary education, as sub-sequences within the six-part the-
matic noun list. In Division 1, the list of trees and wooden objects, students 
met the main capacity measures in descending order. Larger capacity measures 
(c 1,500–18,000 litres) were contextualized as standard sizes of boat, while smaller 
units (c 0.17–60 litres) were treated later on, in a section of their own (Veldhuis 
1997, 157, 163). Weights were treated very bried y in the list of trees and wooden 
objects, within a [ ve-line section on weighing equipment, but were covered 
more exhaustively, as stone weights, as a section in the list of stones (Division 4
of the thematic noun list: Veldhuis 1997, 161; Landsberger et al 1970, 60–61). 
A very few length measures were listed in a section on reed  measuring-rods in 
Division 2 (Landsberger 1959, 191–192), but in general length and area metrol-
ogy was not covered, presumably because little of it could be related to the sizes 
of material objects.

Later in the curricular sequence, the names of some metrological units crop 
up in the more advanced list now called Proto-Ea, whose function was to list dif-
ferent Sumerian readings of single signs. Because the list is ordered by the shapes 
of the signs, the signs with metrological signi[ cance are scattered  randomly 
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Table 3.1.1 The elementary curriculum in House F

 Phase/Composition Educational function No. of tablets in House F6

First Phase: writing techniques 146
0 Exercises in sign forms Writing single and 

 combined cuneiform 
wedges

  1

1 Syllable Alphabet B 9 e proper formation of 
simple cuneiform signs

 70

2 Lists of personal names 9 e combination of signs 
into meaningful sense 
units

 82

Second Phase: thematic noun 
lists

Vocabulary acquisition: 
realia

 98

3 Division 1: List of trees and 
wooden objects 

 28

4 Division 2: List of reeds, ves-
sels, leather, and metal objects

 20

5 Division 3: List of animals and 
meats

 19

6 Division 4: List of stones, 
plants, [ sh, birds, and 
garments

 25

7 Division 5: List of geograph-
ical names and terms, and 
stars 

  6

8 Division 6: List of foodstu\ s   7

0 ird Phase: advanced lists 207
Nigga      }  16

10 Proto-Kagal } order uncertain Structured by key signs  11
Proto-Izi    }  30

12 Proto-Lu 9 ematic vocabulary 
acquisition: titles and 
professions

 22

13 Proto-Ea Sumerian readings of signs  17
14 Metrological lists and tables Weights and measures  15
15 Multiplication and reciprocal 

tables
Number facts  93

16 Proto-Diri 9 e readings of compound 
signs

 16

Fourth Phase: introductory 
Sumerian 

107

17 Model contracts Simple Sumerian prose  54
18 Proverbs Sumerian literary language  54

6. Of all tablet types, not only Type II. 9 e numbers in the column are not commensurate because of the 
co-occurrence of di\ erent compositions on the Type II tablets.
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throughout the 994 entries. For instance the metrological unit ninda ‘rod’ is just 
one possible reading of the sign 6GAR:7

ni-im3 niĝ2 9 e sign GAR can be read as niĝ 

ĝa2-ar ĝar 9 e sign GAR can be read as ĝar 

in-da ninda 9 e sign GAR can be read as ninda 

šu-ku šuku 9 e sign sequence U GAR can be read as šuku 

pa-ad pad 9 e sign sequence U GAR can be read as pad 

ku-ru-um-ma kurum6 9 e sign sequence U GAR can be read as kurum. 

(AN er Civil et al 1979, 40, ll 208–213)8

Immediately aN er Proto-Ea, it appears, the students of House F moved on to 
learning the standard metrological series. 9 ey had thus already acquired some 
systematic knowledge of measures in context (in sub-sequences of the thematic 
noun list), and learnt the contextualized readings of many of the signs for metro-
logical units, before they encountered the system as a whole.

Very little has been studied of the Old Babylonian metrological lists since 
Neugebauer and Sachs (1945, 4–6) established the organization of the four sys-
tems—length, area and volume,9 weight, and capacity. 9 e standard pedagogical 
series comprises four sections in the following order and ranges:

Capacity: 1/3 sila3 − 1 00 00 gur  (5 × 604 sila3) c 0.3 − 65 million litres 

Weight 1/2 še − 1 00 gun (3 × 604 še) c 0.05 g − 1,800 kg 

Area: 1/3 sar − 2 00 00 bur3  (604 sar) c 12 m2 − 47,000 ha 

Length: 1 šu-si − 1 00 danna  (3 × 604 šu-si)  c 17 mm − 650 km (aN er Friberg 
1987–90, 543).

As sources for the metrological history of Babylonia, the series yields nothing 
more than the approximate sizes of the basic units and the relationships between 
them. However, when viewed as the product of scribal education it becomes 
potentially interesting again. Extracts from the series could be written in the 
form of lists—with each entry containing the standard notation for the measures 
only, or as tables—where the standard writings were supplemented with their 
sexagesimal equivalents (Friberg 1987–90, 542–543). For instance, the reverse of 

6. 

7. Metrological units written with more than one sign, such as ma-na ‘mina’ and šu-si ‘[ nger’ make no 
appearance in Proto-Ea, and nor do measures such as ban2, barig, and eše3, whose units are implicit in the 
writing of the numerical values.

8. 9 e modern letters ĝ and š represent sounds like ‘ng’ and ‘sh’, as for instance in ‘shopping’. 9 e sub-
scripts indicate to Assyriologists which sign-forms have been used in the cuneiform.

9. Exactly the same units were used for areas and volumes, volume units being de[ ned as 1 (horizontal) 
area unit × 1 cubit height (Neugebauer and Sachs 1945, 5).
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3N-T 316 contains an extract from the end of the metrological table of lengths 
(Fig. 3.1.3):10

10 danna 5 10 leagues = 5 00 00 (rods) 

11 danna 5 30 11 leagues = 5 30 00 (rods) 

12 danna 6 12 leagues = 6 00 00 (rods) 

13 danna 6 30  13 leagues = 6 30 00 (rods) 

14 danna 7  14 leagues = 7 00 00 (rods) 

15 danna 7 30 15 leagues = 7 30 00 (rods) 

16 danna 8  16 leagues = 8 00 00 (rods) 

17 danna 8 30 17 leagues = 8 30 00 (rods) 

18 danna 9 18 leagues = 9 00 00 (rods) 

19 danna 9 30 19 leagues = 9 30 00 (rods) 

20 danna 10  20 leagues = 10 00 00 (rods) 

30 danna 15  30 leagues = 15 00 00 (rods) 

40 danna 20 40 leagues = 20 00 00 (rods) 

50 danna 25 50 leagues = 25 00 00 (rods) 

1 danna 30 1 00 leagues = 30 00 00 (rods)

FiN een tablets with extracts from the standard metrological series survive 
from House F. Some or all of their contents, tablet type, and compositional for-
mat can be determined for twelve of them. Almost all identi[ able pieces are Type 
II/2 tablets. On their obverses are a reciprocal table, sections of Proto-Diri, model 
contracts, and Sumerian proverbs: metrology thus preceded these topics in the 
House F curriculum. One Type II/1 table of weights has an extract from Proto-Izi 
on the reverse: metrology thus followed this composition in the House F cur-
riculum. 9 e other fragments also appear to have come from Type I or Type II 
tablets; there is no metrology surviving on tablet type III. Of the six tablets whose 
contents and compositional format are identi[ able, all but one are from the start 
of the sequence, but there is an even split between tabular and list format.

In short, on present evidence little can be said about the standard metrological 
series within House F, except that its position in the curriculum can be estab-
lished, and Type II/2 extracts from the beginning of the compositional sequence 
apparently predominate the meagre extant record. But it is impossible to deter-
mine whether the list and tabular formats had distinct pedagogical functions; nei-
ther is there much to be deduced from comparative material (primarily because it 

10. 1 ninda or rod = 6m; 1 danna or league = 1800 ninda = 10.8 km.
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Figure 3.1.3 3N-T 316 = A 30211. Detail of reverse (lines II 3–18), showing large length measures
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is under-published). However, we can do a great deal more with the much more 
abundant remains from the standard arithmetical series which immediately fol-
lowed it in the House F curriculum. First, though, we will jump ahead to the 
end of the elementary curriculum to examine the use of metrology in model 
contracts.

Towards the end of elementary education in House F students were introduced 
to whole sentences in Sumerian for the [ rst time, in the form of model legal con-
tracts. 9 e genre as a whole, although apparently a relatively common element in 
scribal schooling, has not yet been studied in depth. 9 e contracts from House 
F concern grain and silver loans, inheritance divisions, and sales of slaves and 
houses. All of them use metrological units in quasi-realistic contexts, as the fol-
lowing example shows:

1/3 sar (c 12 m2) of built-up house, next to Dingir-gamil’s house 

25 sar (c 900 m2) of [ eld, the ruin mound of Ahuni, bordering Dingir-gamil’s (land) 

12 1/2 sar (c 450 m2) date orchard of the royal waterway [ eld next to Dingir-gamil’s date 
orchard 

[1] large [o\ ering table], 1 wooden pot stand for beer, 

[3 wooden spoons] and a quarter of its (i.e., the estate’s) equipment. 

Apil-ilishu’s share.11 (3N-T 342 = IM 58436, lines 10’–16’)

11. 1/3 sar e2-du3-a da e2 diĝir-ga-mi-il / 25 sar a-šag4 du6 a-hu-ni uš-a-du diĝir-ga-mil / 12 1/2 sar  ĝiš-kiri6 
<a>-šag4 id2 «lugal» lugal / zag ĝiš-kiri6 diĝir-ga-mil / [1 ĝiš-banšur-zag]-gu-la 1 ĝiš-ga-nu-um-kaš / 
[3  ĝiš-dilim2] u3 niĝ2-gu2-[un]-a igi-4-ĝal2-bi / ha-la-ba a-pil2-i3-li3-šu.

Figure 3.1.4 3N-T 594 = IM 58573. The obverse of the Type II tablet (left) shows a 
teacher’s copy of the list of reciprocals, with the student’s copy to the right erased. 
The reverse (right) is an extract from the standard metrological list, with capacity 
measures from 12 to 19 gur and 3000 to 360,000 gur
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In short, some aspects of metrology ran right through the elementary 
 curriculum in House F. However, the focus appears to have been on memoriza-
tion and contextual use; there is no evidence that the House F students practised 
metrological conversions or calculations of any kind.

Arithmetic

9 e standard list of multiplications was described long ago by Neugebauer 
(1935–7, I 32–67; Neugebauer and Sachs 1945, 19–33) and is very well known. 
Nevertheless, it is useful to summarize its salient features from an educational 
standpoint. Systematic di\ erences in content and textual format across tablet 
types red ect their pedagogical function, while regular omissions from the stand-
ard list suggest one or two idiosyncrasies particular to House F.

9 e series starts with a list of one- and two-place reciprocal pairs, encompass-
ing all the regular integers from 2 to 81. It is followed by multiplication ‘tables’ for 
sexagesimally regular head numbers from 50 down to 1 15, with multiplicands 
1–20, 30, 40, and 50.12 Some series also include the squares and inverse squares 
of each head number. Neugebauer reconstructed the standard sequence on the 
basis of what he called ‘combined multiplication tables’, that is, several tables on 
one tablet—or in curricular terminology long extracts of the standard series on 
tablet types I and II/2. What he called ‘single multiplication tables’ turn out to be 
tablet types II/1 and III.

Neugebauer also identi[ ed three main textual formats for multiplications, 
and four less common variants (Neugebauer and Sachs 1945, 20). We could call 
Neugebauer’s Types A and Aʹ  verbose formats, in that they repeat the word a-ra2 
‘times’ in every line of each table (h a-ra2 1 h, a-ra2 m hm “h times 1 is h, times m is 
hm”). His Types B, Bʹ, Bʹʹ, C, and Cʹ, however, are all terse, as a-ra2 ‘times’ makes at 
most one appearance in the [ rst line; thereaN er the text is entirely numerical (m 
hm). In fact, it turns out that the formats so far attested in House F are all either 
Type A or Type C; for that reason they will be referred to simply as Verbose and 
Terse formats, to prevent the confusing proliferation of Types in the discussion 
(Fig. 3.1.5). Analogously, the reciprocal tables at the head of the series may be 
in Verbose format (igi-n-ĝal2-bi 1/n ‘Its nth part is 1/n’, e.g., Fig. 3.1.4, above) or 
Terse (n 1/n) (cf. Neugebauer and Sachs 1945, 12).

Of the 97 House F tablets currently known to contain extracts from the 
 standard multiplication sequence, 32 can be identi[ ed as Type III, 38 as Type II, 
and 10 as Type I. Nine fragments may be from Type I or Type II tablets and the 

12. In the following paragraph, I abbreviate ‘head number’ as h and ‘multiplicand’ as m. I have put the 
word ‘tables’ in inverted commas because these tablets are not laid out as formal tables with columnar divi-
sions but as lists like the bulk of the rest of elementary school subject matter (see Robson 2003).
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typology of the remaining seven is unknown. Eleven of the twenty-[ ve probable 
Type II/2 tablets have identi[ able compositions on their obverses: eight are tables 
from towards the end of the multiplication series, while there is one model con-
tract, one sequence of Sumerian proverbs, and one composition yet to be distin-
guished. 9 ere are 21 multiplication tables on Type II/1 tablets; apart from the 
eight multiplication reverses just mentioned, one exemplar each of the thematic 
noun list (Division 4), Proto-Lu, Proto-Izi, and a metrological list (Fig. 3.1.4) have 
been identi[ ed.

Why were three di\ erent types of tablet used to record the multiplication ser-
ies in House F? Looking [ rst at the 34 tablets which bear just one identi[ able 
multi plication or reciprocal table each, namely Types II/1 and III, attested tables 
are scattered apparently randomly through the series: there are nine tablets from 
the [ rst quarter of it, eight from the second, nine from the third, and seven from 
the last, and there is little di\ erence between the two tablet types. 9 e picture 
that emerges from the tablets containing longer extracts from the series is very 
di\ erent, however. On both the Type II/2 and the Type I tablets the attested tables 

Figure 3.1.5 3N–T 261 = UM 55-21-289 (obverse), a verbose Type III multiplica-
tion table for 1;40 (left), and 3N–T 608 = UM 55-21-360 (obverse), a terse Type III 
 multiplication table for 3 (right)
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are predominantly from the [ rst quarter of the series, namely 18 of the  25 Type 
II/2 tablets and six of the ten Type Is (69 percent in total). All but one of the 
remainder are from the second quarter, where it appears that there was a formal 
section break between the tables for 20 and 18.

9 is distribution is not peculiar to House F. A simple analysis of the Old 
Babylonian ‘combined multiplication tables’ published by Neugebauer before 
House F was excavated reveals a striking similarity (Neugebauer 1935–7, I 35, II 
37; Neugebauer and Sachs 1945, 25–33). Of the 70 tablets he listed, 51 of them (72 
percent) apparently begin their sequences of multiplications in the [ rst quarter 
of the series, six in the second quarter, eight in the third, and [ ve in the last.13 
On the other hand, the number of Neugebauer’s 159 ‘single multiplication tables’ 
(Neugebauer 1935–37, I 34, II 36, Neugebauer and Sachs 1945, 20–23) decreases 
more or less linearly across the series: 56 are from the [ rst quarter, 44 from the 
second, 34 from the third, and 25 from the last. While this pattern of attest ation 
does not exactly match the even distribution of tablet types II/1 and III in House 
F, it is clearly distinct from the heavy skew towards the beginning of the ser-
ies found in the ‘combined’ multiplication tables (Tablet Types I and II/2) from 
House F and elsewhere.

Neugebauer (1935–37, I 62–64) highlighted the strong correlation between tab-
let type and textual format: some 80–90 percent of his ‘combined’ multiplication 
tables (depending on how one de[ nes and counts the tables) are in terse formats 
and the remainder are verbose. Conversely, about 70–80 percent of the ‘single’ 
multiplication tables are verbose and the rest terse. Once again we [ nd similar 
results in the House F corpus, where formats can be identi[ ed: 31 of the 35 Type 
I and Type II/2 tablets (89 percent), bear tersely formatted tables, while 29 out of 
the 34 Type II/1 and III tablets (85 percent), are verbose.

In sum, there are two clearly marked distinctions between the ‘single’ multipli-
cation tables on the one hand and the ‘combined’ tables on the other. On the one 
hand, the single tables (on tablet Types II/1 and III) are evenly distributed across 
the whole series (but with some skew towards the beginning in Neugebauer’s 
sample) and are predominantly verbosely written, while the longer extracts con-
taining sequences of tables are very heavily weighted towards the start of the 
series and are generally terse. One can also make a further di\ erentiation: it is 
generally true that the ‘single’ tables are written in a careful, calligraphic hand 
with clear line spacing, while the long extracts comprising many tables appear to 
have been written with little regard for visual appearance: there are generally no 
line rulings, for instance, and even the columnar divisions are oN en di7  cult to 
make out.

13. However, it is di7  cult to judge from the descriptions given by Neugebauer and Sachs (1945, 25–33) 
whether the tablets are fragments or not, and therefore whether complete sequences are attested on them.
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9 ese three factors combine to suggest a clear pedagogical distinction between 
the well written, fully worded single tables on the one hand and the hastily scrib-
bled, terse sequences of tables on the other. We have already reviewed Veldhuis’s 
hypothesis that Type II tablets had a dual function: on the obverse (II/1) the stu-
dent repeatedly copied the teacher’s model of an extract (or table) that he was 
learning for the [ rst time, and then on the reverse (II/2) wrote out a much longer 
extract from earlier in that same composition, or from one he had already mas-
tered. 9 e evidence from the standard series of multiplication tables presented 
here not only allows us to con[ rm that hypothesis but also to draw some further 
conclusions. First, it appears that Type III tablets were also used in the initial 
stages of learning an extract, presumably aN er the student had memorized it well 
enough to no longer need a model to copy in the Type II/1 pattern. Equally, the 
Type I tablets appear to have served a similar revision purpose to the Type II/2 
tablets, on which students reviewed long stretches of material they were no longer 
actively working on, or perhaps [ tting their most recent achievements into their 
place in the compositional sequence. Second, and perhaps more interestingly, it 
seems that while students were given initial exposure to the whole of a compos-
ition, by means of short extracts on tablet Types II/1 and III, their revision of that 
work was much less systematic, starting from the beginning again each time and 
rarely reaching the end.

9 is distribution of tablet types across the series is found in other elementary 
educational compositions too. It is comparable, for instance, to the survival pat-
terns of Old Babylonian tablets from Nippur containing extracts from division one 
of the thematic noun list, the trees and wooden objects. Dividing the tablet types 
into their functions of ‘[ rst exposure’ (Types II/1, and III) and ‘revision’ (Types I 
and II/2), we see that there are never more than four ‘[ rst exposures’ for any one of 
the lines sampled but more oN en one or none. Conversely, the ‘revision’ tablets are 
very heavily weighted indeed towards the beginning of the composition (taking 
into account the commonly occurring damage to the corners of tablets which has 
lowered the number of attestations for the very [ rst two or three lines) (Veldhuis 
1997; Robson 2002). In other words, this suggests that although elementary stu-
dents in Nippur tended to be taught compositions in their entirety, from beginning 
to end, all revision in the elementary curriculum was slanted towards the opening 
sections of compositions to the detriment of their middles and closing lines.

Returning to the standard series of multiplications as attested in House F, nine 
of the 40 known head numbers—namely 48, 44 26 40, 20, 7 12, 7, 5, 3 20, 2 24,
and 2 15—do not survive on known tablets. Should we attribute these omissions 
to the accidents of recovery or to deliberate exclusion from the series? 9 e pat-
terns of attestation make it easier to make de[ nitive statements about the higher 
head numbers than the lower. 9 e head number 48, for instance, is included in 
just [ ve of the 71 ‘combined’ tables catalogued by Neugebauer (two of those [ ve 
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are from Nippur), compared to 23 certain omissions. He lists no ‘single’ tables for 
48. Similarly, 2 15 occurs in two out of nine possible ‘combined’ tables, neither of 
them from Nippur, and in no ‘singles’. It is not surprising, therefore, that the 48 
and 2 15 times tables were apparently not taught in House F. 9 e exclusion of 44 
26 40, is rather more surprising: given its place near the start of the standard ser-
ies it is presumably not simply missing by archaeological accident. On the other 
hand none of Neugebauer’s ‘combined’ tables appear to omit it, while he lists 
three ‘single’ tables for 44 26 40. 9 is is a deliberate but idiosyncratic omission 
then, particular to House F—though perhaps a judicious one; none of the other 
head numbers are three sexagesimal places long. It is probably best to reserve 
judgement on the remaining six ‘missing’ head numbers.

Mathematical imagery in Sumerian literature

As we have seen, the vast majority of mathematical tablets in House F can be 
assigned to the elementary curriculum on grounds of content and tablet typ-
ology, but there are four which cannot be. 9 ree of those tablets bear calcula-
tions, while the fourth contains an extra-curricular table. Although the table is 
di7  cult to place pedagogically, it is possible to position the calculations within 
the ‘advanced’ curriculum, which in House F was dominated by Sumerian litera-
ture. First, however, we need to review what is known of the Sumerian literary 
curriculum in House F.

Over eighty di\ erent literary works have survived from the House, attested 
on around six hundred di\ erent tablets. Although we do not have a clear-cut 
tablet typology from which to deduce a well de[ ned and ordered curriculum, it 
is possible to at least outline the contents of that curriculum, based on contem-
poraneous literary catalogues and some basic quantitative methods (Tinney
1999; Robson 2001). First, by simply counting the number of sources for each 
composition, it becomes clear that there is one ‘mainstream’ group of twenty-
four literary works, each with a mean of eighteen sources, compared to the rest 
which have on average just three attestations. Second, ten of those twenty-four 
‘mainstream’ works comprise a widely-attested curricular grouping that Steve 
Tinney (1999, 168–170) has labelled the Decad. 9 e remaining members of that 
mainstream grouping, which I have called the House F Fourteen (Robson 2001), 
appear on three of those same catalogues, in a [ xed order though not clustered 
together in a single block like the Decad.14 9 e remaining House F literature can 
be roughly categorized into four groups (Robson 2001): myths, epics and laments 

14. Outside House F, the Decad members are found on an average of 41 Nippur tablets each and 35 non-
Nippur tablets. For each of the Fourteen there are, on average, 30 Nippur tablets (outside House F) and 10 
from beyond Nippur.
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(13 works), hymns to kings and deities (11), school narratives, debates, and dia-
logues (7), and literary letters and related short pieces (25).

At [ rst glance this seems a very eclectic mix of genres and subject matter, 
but it has recently become clear that they were not randomly selected for use 
in House F but were chosen with particular purposes in mind. On average the 
literary works in House F contain ten times as many references to literacy and 
numeracy as non-pedagogical works of OB Sumerian literature (Robson 2007). 
Sumerian literary references to mathematical achievement and failure have been 
collected before, usually in a misguided attempt to use literary works as unprob-
lematic sources of historical evidence about ‘Sumerian school’ (e.g., Sjöberg 1975; 
Nemet-Nejat 1993, 5–10). However, once we recognize that those literary works 
were themselves elements of a scribal curriculum, as for instance in House F, it 
becomes interesting and important to study them for the messages that they con-
veyed to the students about mathematics and the scribes’ relationships to it.

Mathematical and metrological elements appear in some of the humorous nar-
ratives and dialogues about school life (the so-called eduba texts, named aN er the 
Sumerian word for school). Although we can occasionally verify that particular 
details in the narratives are in some sense ‘true’ in that they concur with other 
evidence, they are highly unlikely to have been straightforward documentary 
accounts: aN er all, their intended audience, the scribal students, already knew 
exactly what school was like. 9 e narratives oN en make use of very broad humour 
to get their message across (or at least broad humour is the only type that we, with 
our unsophisticated understanding of Sumerian, can currently understand). It 
may be that other elements of humour lay in the contrast between school life as 
depicted and as experienced by the students; in that case those apparently real-
istic details would have served simply to add elements of verisimilitude to other-
wise highly [ ctionalized accounts.15

In the most famous of these works, oN en known by its modern title ‘Schooldays’, 
the teacher of an incompetent scribal student is invited home for dinner and 
bribery, in an attempt to make him ease up on the hapless child. 9 e father d at-
ters the stern teacher shamelessly, saying:

My little fellow has opened (wide) his hand, (and) you made wisdom enter there; you 
showed him all the [ ne points of the scribal art; you (even) made him see the solutions of 
mathematical and arithmetical (problems).16 (Eduba composition A 59–61, aN er Kramer 
1963, 239)

15. Compare Hogwarts, the boarding school for wizards in training, in the highly popular children’s nov-
els and [ lms about Harry Potter. No child reader has ever set foot in an institution anything like Hogwarts, 
yet it is still recognizably a school. Its fascination and attraction lie in the judicious combination of realism, 
fantasy, and humour with which the stories are constructed—just as in the Sumerian school narratives. 9 is, 
of course, is where the similarity ends.

16. lu2-tur-ĝu10 šu-ni i-ni-in-ba9-ra2 kug-zu i-ni-in-kur9-ra / nam-dub-sar-ra niĝ2-galam-galam-ma-bi 
 mu-ni-in-pad3-pad3-de3-en / šag4-dub-ba šid niĝ2-kas7 ki-bur2-bur2-ra-bi igi mu-un-na-an-sig9-ga-aš.
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An earlier passage in the narrative, however, makes it clear that the teacher had 
showed him little except the business end of his cane.

In a gentler companion piece, now sometimes called ‘Scribal activities’, a 
teacher quizzes a student on what he has learnt, some three months before he 
is due to leave school. 9 e student lists everything he has mastered so far, much 
of which can be matched quite closely to the evidence from the archaeologically 
recovered elementary tablets themselves. (9 is is hardly surprising, as one aim of 
the composition must have been to encourage identi[ cation with, and emulation 
of, this paragon of learning.) 9 e standard metrological lists are as closely asso-
ciated with the model contracts here as they are in the elementary curriculum 
itself.

In the [ nal reckoning, what I know of the scribal art will not be taken away. So now I 
am master of the meaning of tablets, of mathematics, of budgeting, of the whole scribal 
art. . . . 

I desire to start writing tablets (professionally): tablets of 1 gur of barley all the way to 
600 gur; tablets of 1 shekel all the way to 20 minas. Also any marriage contracts they may 
bring; and partnership contracts. I can specify veri[ ed weights up to 1 talent, and also 
deeds for the sale of houses, gardens, slaves, [ nancial guarantees, [ eld hire contracts . . . , 
palm growing contracts . . . , adoption contracts—all those I can draw up.17 (Eduba com-
position D 27–29, 40–48, aN er Vanstiphout 1997, 592–3; Friberg 1987–90, 543)

A third piece is oN en known as ‘9 e dialogue between Girini-isag and Enki-
manshum’ although it is more of a rumbustious slanging match, in which the 
advanced student Girini-isag belittles and humiliates his younger colleague 
Enki-manshum (whose defences are oN en rather ine\ ectual):
19–27(Girini-isag speaks): ‘You wrote a tablet, but you cannot grasp its meaning. You wrote 
a letter, but that is the limit for you. Go to divide a plot, and you are not able to divide the 
plot; go to apportion a [ eld, and you cannot even hold the tape and rod properly; the [ eld 
pegs you are unable to place; you cannot [ gure out its shape, so that when wronged men 
have a quarrel you are not able to bring peace but you allow brother to attack brother. 
Among the scribes you (alone) are un[ t for the clay. What are you [ t for? Can anybody 
tell us?’

28–32(Enki-manshum replies): ‘Why should I be good for nothing? When I go to divide 
a plot, I can divide it; when I go to apportion a [ eld, I can apportion the pieces, so that 
when wronged men have a quarrel I soothe their hearts and [ . . . ]. Brother will be at peace 

17. niĝ2-kas7-bi ĝar-ra nam-dub-sar i3-zu-a-ĝu10 nu-ub-tum3-da(?) / a-da-al-ta šag4-dub-ba a-ra2 niĝ2-kas7-
še3 ba-e-de3-ĝa2-ĝa2-de3-en / nam-dub-sar-ĝu10 niĝ2-ĝar niĝ2 nu-u3-ĝar NIĜ2 ba-ba e-ne KA dub sar-re-de3 
ga-ĝen / dub 1 še gur-ta zag 600 gur-še3 / dub 1 giĝ4-ta zag kug 10 ma-na-še3 / ki nam-dam-ta(?) lu2 hu-mu-
un-DU-[(X)] / nam-tab-ba 1 gu2 kur7 igi hu-mu-da-zaĝ3-[X] / e2 a-šag4 ĝiškiri6 saĝ-geme2-arad2 sa10-sa10-[(X)] / 
kug-ta gub-ba-aš a-šag4 nam-apin-la2 [(X)] / ĝiškiri6 ĝiš gub-bu-de3 [ . . . ] X / u3 dub dumu-tul2-ta-pad3-da 
sar-re-[bi] mu-un-[zu].
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with brother, their hearts [ . . . ].’18 (Following lines lost). (Eduba dialogue 3, Vanstiphout 
1997, 589)

Girini-isag’s point is that accurate land surveys are needed for legal reasons—
inheritance, sales, harvest contracts, for instance. If the surveyor cannot provide 
his services e\ ectively he will unwittingly cause disputes or prevent them from 
being settled peacefully.

For the scribal students in House F these passages, and others, helped to de[ ne 
the role of mathematical training within their education. 9 e [ rst extract implies 
that a truly competent teacher can help even the most hopeless student under-
stand di7  cult subjects like mathematics. 9 e second outlines what successful 
students can hope to achieve in the appropriate application of metro logical know-
ledge to legal documents of various kinds, while the last warns of the humili-
ations of practical incompetence. It is not enough, Girini-isag implies, to have 
learnt your school exercises well if you are physically incapable of putting them 
into practice.19

Two royal praise poems, widely used in the early stages of the Sumerian lit-
erary curriculum (Vanstiphout 1979; Tinney 1999, 162–168), cite mathematical 
achievement within the repertoire of a good king’s accomplishments, bestowed 
on him by Nisaba, the patron goddess of scribes. 9 eir message to the students 
is that literacy and numeracy are very desirable skills, valued so highly that even 
kings boast about acquiring them. 9 e following extract from a linguistically 
elementary hymn to Lipit-Eshtar of Isin (c 1934–1924 bc) addresses the king as 
one who is divinely aided in his literacy and divinely endowed with measuring 
equipment:20

Nisaba, woman sparkling with joy, righteous woman, scribe, lady who knows every-
thing: she leads your [ ngers on the clay, she makes them put beautiful wedges on the 
tablets, she makes them (the wedges) sparkle with a golden stylus. A 1-rod reed and a 
measuring rope of lapis lazuli, a yardstick, and a writing board which gives wisdom: 
Nisaba generously bestowed them on you.21 (Lipit-Eshtar hymn B 18–24, aN er Black et al 
1998–2006, no. 2.5.5.2)

18. dub i3-sar dim2-ma-aš nu-e-kur9 / u3-na-a-dug4 i3-sar ki-šer11 a-ra-ab-tuku / e2 ba-e-de3 ĝen-na e2 nu-
mu-da-ba-e-en / a-šag4 sig9-ge-de3 ĝen-na eš2-gana2 gi-1-nindan nu-mu-da-ha-za-an / ĝišgag-a ki nu-e-da-
du3-en dim2-ma nu-e-ni-kur9 / lu2 du14-mu2-a-ba zi li-bi2-ib2-gi4-gi4-in / šeš šeš-da teš2-bi bi2-ib2-dab5-be2-en / 
lu2-IM nu-ub-du7 dub-sar-re-e-ne / a-na-še3 ba-ab-du7-un me-še3 lu2 he2-en-tum2-mu a-na-aš niĝ2 na-me-še3 
la-ba-ab-du7-un / e2 ba-e-de3 ga-ĝen e2 mu-da-ba-e-en / a-šag4 sig9-ge-de3 ga-ĝen ki sig9-ge-bi mu-zu / lu2 du14-
mu2-a-bi šag4-bi ab-huĝ-e zi mu-da-gi4-gi4-in / šeš šeš-da teš2-bi bi2-ib-dug3-ge-en šag4 mu-da-sed4-de3-en.

19. Eduba composition A is on eighteen tablets from House F; it is the tenth member of the House F 
Fourteen. Eduba dialogue 3 is on three tablets. No House F sources have yet been identi[ ed for Eduba com-
position D but the whole composition is not yet in the public domain.

20. Attested on three tablets from House F (and on tablets from other sources).
21. dnisaba munus ul-la gun3-a / munus zid dub-sar nin niĝ2-nam zu / si-zu im-ma si ba-ni-in-sa2 / šag4 

dub-ba-ka gu-šum2 mi-ni-in-sag9-sag9 / gi-dub-ba kug-sig17-ka šu mu-ni-in-gun3 / gi-1-nindan eš2-gana2 za-
gin3 / ĝiš-as4-lum le-um igi-ĝal2 šum2-mu dnisaba-ke4 šu daĝal ma-ra-an-dug4.
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Goddesses carry divine measuring equipment in several myths from House F 
too. Ninlil receives a rod and rope as a wedding present (‘Enlil and Sud’, Black 
et al 1998–2006, no. 1.2.2); Inana refuses to relinquish hers until she reaches the 
penultimate gate of the Underworld (‘Inana’s Descent’, Black et al 1998–2006, 
no. 1.7.1). Male deities, by contrast, are never shown measuring or counting in 
the House F literature, and tend to use capacity measures as beer mugs (Robson 
2007).

A few of the Sumerian literary works use metrological concepts as an essential 
part of their narrative framework. For instance, a thirty-three-line [ ctionalized 
letter from Ishbi-Erra ([ rst king of the Isin dynasty, c 2017–1985 bc) to Ibbi-Suen, 
last king of Ur (c 2028–2004 bc), describes how he, while still in the latter king’s 
service, has been sent north to buy grain in order to alleviate the famine in the 
south, but is held back by incursions of nomadic Martu people:22

Say to Ibbi-Suen, my lord: this is what Ishbi-Erra, your servant, says:
You ordered me to travel to Isin and Kazallu to purchase grain. With grain reaching 

the exchange rate of 1 shekel of silver per gur, 20 talents of silver have been invested for 
the purchase of grain.

I heard news that the hostile Martu have entered inside your territories. I entered with 
72,000 gur of grain—the entire amount of grain—inside Isin. Now I have let the Martu, 
all of them, penetrate inside the Land, and one by one I have seized all the forti[ cations 
therein. Because of the Martu, I am unable to hand over this grain for threshing. 9 ey 
are stronger than me, while I am condemned to sitting around.

Let my lord repair 600 barges of 120 gur draught each; 72 solid boats, 20 . . . . . . , 30 
bows, [40] rudders (?), 50 . . . . . . and 60 (?) boat doors on the boats (?), may he also . . . . . . all 
the boats.23 (lines 1–16, aN er Black et al 1998–2006, 3.1.17)

9 e letter reads suspiciously like an OB school mathematics problem: the [ rst 
paragraph gives the silver–grain exchange rate and the total amount of silver 
available (72,000 shekels); in the second the silver has been correctly converted 
into grain. Next that huge capacity measure is divided equally among large boats 
(cf. the contextualized large capacity measures in the list of trees and wooden 
objects). As is typical for school mathematical problems, the numbers are con-
spicuously round and easy to calculate with (Friberg 1987–90, 539). 9 e letter, at 
one level, is no more than a pretext to show simple mathematics and metrology at 
work in a quasi-realistic context.

22. One attestation from House F; several other sources known.
23. di-bi2-dsuen lugal-ĝu10-ra u3-na-a-dug4 / miš-bi-er3-ra arad-zu na-ab-be2-a / kaskal i3-si-inki ka-zal-luki-

še3 / še sa10-sa10-de3 a2-še3 mu-e-da-a-aĝ2 / ganba 1 še gur-ta-am3 še sa2 di / 20 gun2 kug-babbar še sa10-sa10-
de3 ba-an-ĝar / inim mar-tu lu2-kur2-ra šag4ma-da-zu kur9-ra ĝiš bi2-tuku / 72000(ŠAR2×MAN) še gur še 
du3-[a]-bi? šag4 i3-si-inki-na-ke4 ba-an-kur9-re-en / a-da-al-la-bi mar-tu du3-du3-a-bi šag4 kalam-ma-še3 ba-an-
kur9-re-en / bad3

? gal-gal dili-dili-bi im-mi-in-dab5-dab5 / mu mar-tu še-ba sag3-ge nu-mu-e-da-šum2-mu / 
lugal-ĝu10 600 ĝišma2-gur8 120 gur-ta-am3 he2-em-du8-e / ĝišma2 72 kalag-ga 20 ĝišZA PI X 30 X X GAN / 50 ĝišX 
60? ĝišig ma2 ugu ma2

? ĝa2-ĝa2 / u3 
ĝišma2 du3-a-bi he2-X.
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A longer composition now known as ‘9 e farmer’s instructions’24 uses school 
mathematics in a very di\ erent way. Ostensibly it is a description of the agricul-
tural year from irrigation to harvest, but it is hardly pastoral in tone. Central to 
its whole rationale are the standard work obligations by which state institutions 
of the twenty-[ rst century bc measured out agricultural labour to contract man-
agers and their work gangs (Civil 1994, 75–78, Robson 1999, 138–66). A short 
extract from the 111-line composition is enough to catch its d avour:

9 e plough oxen will have back-up oxen. 9 e attachments of ox to ox should be loose. 
Each plough will have a back-up plough. 9 e assigned task for one plough is 180 iku 
(c.65 ha), but if you build the implement at 144 iku (c.2 ha), the work will be pleasantly 
performed for you. 180 (?) sila of grain (c.180 litres) will be spent on each 18 iku area (c.6 
1/2 ha).

AN er working one plough’s area with a bardil plough, and aN er working the bardil 
plough’s area with a tugsig plough, till it with the tuggur plough. Harrow once, twice, 
three times. When you d atten the stubborn spots with a heavy maul, the handle of your 
maul should be securely attached, otherwise it will not perform as needed.25 (lines 23–34, 
Black et al 1998–2006, no. 5.6.3)

‘9 e farmer’s instructions’ is reminiscent of a small group of Sumerian liter-
ary compositions studied by Niek Veldhuis (2004). He highlighted the intimate 
lexical and pedagogical relationship between the standard list of [ sh and birds 
(division four of the thematic noun list) and two works now known as ‘Home of 
the [ sh’ and ‘Nanshe and the birds’ (Black et al 1998–2007, nos. 5.9.1, 4.14.3). But 
whereas they provide a literary framework for naming and describing [ sh and 
birds, ‘9 e farmer’s instructions’ sets out to sugar the bitter pill of learning agri-
cultural work rates. It was probably several hundred years behind contemporary 
scribal practice by the time it was taught in House F, but so was much of the other 
literature taught there (as can be seen from the regnal dates of the kings referred 
to in the extracts quoted in this section).

From memorization to calculation

By a great stroke of fortune, one tablet has survived from House F that bears 
both Sumerian literature and a mathematical calculation. 9 ey are on the same 
sort of tablet as the elementary Type III, which was commonly used to write 

24. It is the thirteenth member of the House F Fourteen (and well attested elsewhere in Nippur).
25. gud-ĝišapin gud dirig-ga a-ab-tuku-a / gud gud-da dur bi2-ib-tu-lu-a / ĝišapin-bi ĝišapin-na a-ab-dirig /

eš2-gar3 ĝišapin 1-e 180 iku-am3 / za-e 144 iku ĝiš du3-ba-ab / a2
? šag4 hul2-gin7 a-ra-ab-dim2-e / 18 iku-ba 

3 še gur ba-an-ĝa2-ĝa2 / usu ĝišapin 1(DIŠ)-e a-šag4 
ĝišbar-dili-bi u3-bi2-ak / ĝišbar-dili-bi ĝišapin-tug2-saga11 

u3-bi2-ak tug2-gur-ra-ab / ĝiš ur3-ra-ab ĝiš gi4-a-ab ĝiš peš-bi2-ib / ki sumur-bi ĝišniĝ2-gul-ta ĝišgag-dag2-aš 
u3-bi2-ak / ĝišmud ĝišniĝ2-gul-zu saĝ-za he2-ha-za niĝ2al di-še3na-du-un.
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 single-column extracts of up to sixty lines of literary works (and for that reason 
called Type S in this context (Tinney 1999, 160). 9 e literary extract is from the 
[ rst lines of a composition now known as ‘9 e advice of a supervisor to a younger 
scribe’, one of the curricular grouping discussed above whose [ ctionalized set-
ting is the school and whose aim is to instil professional identity and pride into 
trainee scribes (Black et al 1998–2006, 5.1.3). Most of the reverse is taken up with 
a calculation of regular reciprocal pairs (Robson 2000, no. 2) using a method that 
Sachs (1947) called 9 e Technique (Fig. 3.1.6):

17 46 40 9 

2 40  «2» 22 30 

3 22 30 [2] 

6 4[5] 

9  6 40 

8 53 20 

17 46 40

Other tablets with similar arrangements of numbers are known, as well as one 
very damaged tablet of unknown provenance which originally contained twelve 

Figure 3.1.6 3N-T 362+366 (reverse) 
(Robson 2000, ? g. 2)
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worked examples with instructions.26 Like much Old Babylonian mathematics, 
although it [ rst appears to be analogous to modern algebraic operations it can in 
fact be best understood in terms of very concrete manipulations of lines and areas 
(Høyrup 1990; 2002). 9 e best preserved of the twelve problems runs as follows:

What is the reciprocal of 2;[13] 20?27 [You, in your] working: Find the reciprocal of
0;03 20. [You will see] 18. Multiply 18 by 2;10. [You will see] 39. Add 1. [You will see] 
40. Take the reciprocal of 40. [You will see] 1 30. Multiply 1 30 by 18. You will see 27. 
Your reciprocal is 27. [9 at is the method.]28 (VAT 6505, II 8–16. Neugebauer 1935–37, I 
270–273, II pls. 14, 43; Sachs 1947, 226–227)

We can plug the numbers from our House F tablet into this solution. 9 e prod-
uct of any reciprocal pair is, by de[ nition, 1. We can therefore imagine 17;46 40 as 
the side of a rectangle whose area is 1 (Fig. 3.1.7a); the task is to [ nd the length of 
the other side. We can measure o\  a part of the [ rst side, so that it has a length that 
is in the standard reciprocal table—in this case 0;06 40, whose reciprocal is 9. We 
can thus draw another rectangle with lines of these lengths, whose area will also be 
1 (Fig. 3.1.7b). 9 is gives us an L-shaped [ gure. We can [ ll it in to make a rectangle 
by multiplying the 9 by 17;40, the part of the original length that we haven’t used 
yet—2 39 (Figure 3.1.7c). Add 1, the area of the 9 by 0;06 40 rectangle. 9 e total area 
is 2 40. 9 is new large rectangle, 9 by 17;46 40, is 2 40 times bigger than our original 
rectangle, with area 1. 9 erefore 9 is 2 40 times bigger than our mystery reciprocal. 
We divide 9 by 2 40 by [ nding the inverse of 2 40—0;00 22 30—and multiplying. 
9 e reciprocal we wanted to [ nd is thus 9 × 0;00 22 30 = 0;03 22 30 (Fig. 3.1.7d). 
9 is is the number in the middle of the calculation. 9 e scribe then checks his 
result by working backwards from 0;03 22 30 to 17;46 40 again.

9 e other two calculations identi[ ed so far on House F tablets are also attempts to 
[ nd reciprocals, but conspicuously less successful than the [ rst. 9 e longest, written 
on the back of a roughly made, approximately square tablet (Fig. 3.1.8), reads:

 16 40 
 16 40
 16 40
20 4 37 46 40 9 
50 42 39 [ . . . . . . ]
(3N-T 611 = A 30279)

Nothing remains on the obverse apart from a few apparently random signs. 9 e 
[ rst part of the calculation is a squaring of the number 16;40, set out in the usual 

26. For the most recent discussion, see Robson (2000, 21).
27. I have assigned arbitrary absolute sexagesimal value to the numbers in this problem and those in the 

following discussion.
28. 2 [13] 20 igi-[bu-šu en.nam] / [za.e] kidx.ta.[zu.de3] / igi   du8.a  [ta-mar] / 18 a-na 2 10 tum2.a 

[ ta-mar] / 1 dah.ha  [ta-mar] / igi  du8.a   [ta-mar] / 1 30 a-na 18 tum2.a / 27 ta-mar 27 igi-bu-
[šu] / [ki-a-am ne-pe2-šum].
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way with the multiplicands and product aligned vertically (Robson 1999, 250–
252), albeit with an unexplained extra copy of the 16;40. 9 e answer is  correctly 
given as 4 37;46 40, but the 9 written immediately to the right strongly suggests 
that 9 e Technique was then used to [ nd its reciprocal.

As in our [ rst example, the student has split 4 37;46 40 into 4 37; 40 and 0;06 
40. He has appropriately taken the reciprocal of the latter—9—and multiplied it 

Figure 3.1.7 Finding sexagesimally regular reciprocals using The Technique

2;13,20

2;10 0;03 20

?

18

40

39 1
18

0;27

2;10

d.

c.

a.

b.

1

1

1

Figure 3.1.8 3N-T 611 = A 30279 (reverse), a student’s calculation
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by the former, adding 1 to the result. However, instead of arriving at 41 39 + 1 =
41 40, our student has lost a sexagesimal place and found 41;39 + 1 = 42;39. 
Unable to go further with his calculation (for the next stage is to [ nd the recip-
rocal of the number just found, but his is coprime to 60) he has abandoned the 
exercise there. 9 e correct answer would have been 0;00 12 57 36.29

9 e last calculation of the three is the most pitiful (Fig. 3.1.9). Writing on a 
Type S tablet like the [ rst example, the student has got no further than:

4 26 40 4;26 40 

igi-bi 2 13 20 Its reciprocal is 2;13 20

(3N-T 605 = UM 55-21-357, Robson 2000, no. 1)

9 e double ruling underneath shows that he thinks he has [ nished, although he 
has done nothing more than halve the [ rst number (Fig. 3.1.9). 9 e correct result 
is 0;13 30.

Two of the three numbers whose reciprocals are to be found come from the 
standard school sequence of reciprocal pairs to which all other known exemplars 
of this exercise belong (Robson 1999, 23). 9 e sequence is constructed by succes-
sively doubling/halving an initial pair 2 05 and 28 48. Our two are eighth (4 26 40) 

29. I have no explanation for the 20 and 50 written to the leN  of the calculation; presumably they relate to 
intermediate steps in the procedure. Compare similarly positioned auxiliary numbers in calculations from 
Ur, e.g. UET 6/2 387 (Robson 1999, 245).

Figure 3.1.9 3N-T 605 = UM 55-21-357 (obverse), an attempted reciprocal 
calculation
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and tenth (17 46 40) respectively. On the other hand, 4 37 46 40 does not, as far as I 
can ascertain, [ t the pattern; presumably it was chosen because, like the other two, 
it terminates in the string 6 40. One possible interpretation of this commonality is 
that three students were set similar problems at the same time, using a common 
method and a common starting point but requiring di\ erent numerical solutions. 
One of three used the method correctly, producing the right answer and checking 
his results; the second chose the appropriate method but couldn’t apply it satisfac-
torily, while the third had missed the point of the exercise entirely.

Finally, there is just one mathematical tablet from House F which cannot be 
securely related to other elements of the scribal curriculum. It bears a list of 
inverse squares, which takes the form n2-e n ib2-si8 ‘n2 squares n’, where n = 1–30. 
It would perhaps be tendentious to connect it with the squaring exercise on 3N-T 
611. It is a well attested table: Neugebauer (1935–37, I 70–71; Neugebauer and 
Sachs 1945, 33–34) lists 18 other exemplars, 13 of which are in this format; six of 
those 13 are also from Nippur.

Conclusion

It turns out that a wealth of interesting insights can be gained from mathemat-
ical material that has traditionally been dismissed as unimportant and trivial. An 
awareness of archaeological and social context can illuminate the dullest of texts. 
Perhaps most importantly, it is now clear that thousands of Old Babylonian multi-
plication tables and metrological lists survive not because every numerate citizen 
kept a handy reference collection at home. Conversely—and paradoxically—they 
are the throw-away by-products of training in an essentially oral, memorized 
numerate culture passed on by tiny numbers of professionals within a restricted 
social circle. 9 at is not to say that only the scribes were numerate, but simply 
that we have very little access to non-scribal numeracy from this time.

Further, the study of imagery in pedagogical literature proves vitally import-
ant for understanding the construction of OB scribal identity. Numeracy and 
literacy, and linear measurement in particular, were considered to be divine giN s, 
from goddesses not gods, and therefore to some extent gendered female even 
if most (but not all) human practitioners were male (Robson 2007). Moreover, 
goddesses such as Nisaba bestowed numeracy and mathematics on humanity for 
a purpose: to enable kings, and their servants the scribes, to deliver social just-
ice through the equitable distribution and fair management of assets. Although 
House F contains few examples of mathematical word problems, it is well known 
that OB mathematics was predominantly concerned with labour management 
and quantity surveying on the one hand (Robson 1999) and the abstract manipu-
lation of lines and areas on the other (Høyrup 2002). In this light, it becomes 
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clear why this was so: pedagogical mathematical exercises embodied the prac-
tices of metro logical, numerate justice, a principle that was central to early 
Mesopotamian royal and scribal self-identity.

However, while these large-scale conclusions about the socio-political context 
of mathematics apparently hold true for much of early Mesopotamian history, 
we should be careful not to blithely generalize the particular details of the House 
F curriculum. Comparative study of contemporary schools has highlighted both 
the variations large and small between individual corpora of tablets and the vir-
tual impossibility of ascribing those di\ erences to diachronic change, geograph-
ical variation or personal choice—although it appears that this last was more 
pervasive than we might have thought (Robson 2002).
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CH A P T ER 3. 2

9 e archaeology of mathematics in an ancient 
Greek city
David Gilman Romano

A modern mapping and research project, the Corinth Computer Project, has 
been underway in ancient Corinth in Greece, as well as in Philadelphia, 

for the past twenty years, 1988–2007.1 By means of highly accurate electronic 
total station surveys in the [ eld, and advanced digital cartographic techniques 
in the laboratory, one of the project objectives has been to analyze the ways in 
which Greek and Roman surveyors worked, both in the city of Corinth and in the 

1. Since 1988 a research team from the Mediterranean Section of the University of Pennsylvania Museum of 
Archaeology and Anthropology has been involved in the study of the planning of the Roman city of Corinth. 
Known as the Corinth Computer Project, the [ eld work was carried out under the auspices of the Corinth 
Excavations of the American School of Classical Studies at Athens, Dr Charles K Williams, II, Director 
(until 1997). I thank Dr Williams for his interest in and support of this project. I would also thank Dr Nancy 
Bookidis, Associate Director of the excavations, for her assistance during the same years. Since 1997 I thank 
Dr Guy Sanders, Director, for his assistance. 9 e original objectives of the modern project were to study 
the nature of the city planning process during the Roman period at Corinth, to gain a more precise idea of 
the order of accuracy of the Roman surveyor, and to create a highly accurate computer-generated map of the 
ancient city whereby one could discriminate between and study the successive chronological phases of the 
city’s development. 9 e latest summary of the work is found in Romano (2003). A website has been created 
to discuss the methodology as well as some of the results of the project, <http://corinthcomputerproject.org>. 
9 e [ nal publication of the Corinth Computer Project is planned for a volume in the Corinth Excavation ser-
ies and will include a text volume, a CD-ROM, and a gazetteer of maps. I thank the more than 140 University 
of Pennsylvania students who have assisted me in this study, both in the [ eld at Corinth and in the lab in 
Philadelphia. I am grateful to David Paci[ co, Tim Demorest, Nicholas Stapp, and Dan Di\ endale for assist-
ance in the production of [ gures for this chapter.

http://corinthcomputerproject.org
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surrounding landscape. A careful study of their practical techniques at Corinth 
gives us an opportunity to better understand exactly how the surveyors practiced 
their skills and, perhaps, some insight into the mathematical principles that their 
work was based on.

A brief history of Corinth

Corinth was one of the most famous cities of the ancient world. Located adjacent 
to the isthmus that joined Central Greece to the Peloponnesos, Corinth controlled 
the land routes across the isthmus as well as those between the adjacent bodies of 
water, the Corinthian Gulf to the west and the Saronic Gulf to the east. Corinth 
established harbors on both Lechaion on the Corinthian Gulf and Kenchreai on 
the Saronic Gulf (Fig. 3.2.1). 9 e city’s acropolis, Akrocorinth, is a 573 m high 
outcropping of rock that rises up only 5 km to the south of the Corinthian Gulf. It 
was ideally suited to serve as a strategic military location, commanding both land 
and sea routes. 9 e land immediately to the south of the Corinthian Gulf was a 
rich agricultural coastal plain that was famous in antiquity for its fertility.

Figure 3.2.1 Map of the Peloponnesos, illustrating the location of Corinth
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9 e Archaic and Classical city of Corinth grew up to the north of Akrocorinth, 
on a limestone plateau approximately seventy meters above sea level. 9 e  earliest 
‘city’ of Corinth was a loose collection of small rural communities in the eighth 

and seventh centuries (Roebuck 1972; Williams 1982). But it had sent out import-
ant colonies to the west, to settlements such as Kerkyra, Apollonia, and Syracuse. 
Its political history begins with the aristocratic Bacchiadae clan, who were over-
thrown in around 650 bc and succeeded by the tyrants Cypselus and his son 
Periander (Salmon 1984, 38–80). It was probably Periander who built the stone 
roadway between the Corinthian and the Saronic Gulf, the diolkos, over which 
commercial shipments, and perhaps small boats, were transported (Verdelis 
1956; Werner 1997). Corinth was an architectural leader among Greek cities: 
its seventh-century bc Temple of Apollo is among the [ rst to be constructed in 
Doric style, and is roofed with the [ rst example in the Greek world of terra-
cotta roof tiles.2 Corinth was also well known for its pottery, traded all over 
the Mediterranean. Proto-Corinthian style wares, featuring oriental or eastern 
designs and motifs, were sent out to many of the earliest Greek colonies. In about 
720 bc Corinth invented the black-[ gured technique of vase painting that was 
copied all over the Greek world.

By the sixth century bc the upper Lechaion Road valley and areas nearby were 
[ lled with cults, hero shrines, springs, buildings, and monuments, and a race-
course for athletic foot races. In addition, a series of roadways approached this 
valley from various directions (Fig. 3.2.2). 9 e successive temples of Apollo dom-
inated the city from Temple Hill and the fountain houses of Glauke and Peirene 
were close by. By the [ N h century bc the city was surrounded by a forti[ cation 
wall and by the fourth century bc it also included long walls to its harbor at 
Lechaion on the Corinthian Gulf.3

During the Archaic and Classical periods, Corinth oN en allied itself with Sparta 
and against Athens, and fought on Sparta’s side during the Peloponnesian War 
of 431–404 bc. During the fourth and third centuries bc a Macedonian garrison 
occupied Akrocorinth under the control of Ptolemy I, Demetrius Poliorcetes, 
and Antigonos. When Aratus captured Corinth in 243 bc it joined the Achaean 
Confederacy of Greek city states. In the second century bc Corinth was a leader 
of Greek cities’ opposition to the coming of Rome (Gruen 1984, 523–527). As 
a result, in 146 bc Corinth was singled out to be sacked by the Roman consul 
Lucius Mummius who, according to a literary account, killed all the men and 
sent all the women and slaves into slavery (Pausanias 7.16.8).

2. Coulton (1977, 32–35, 49–50) suggests that the impetus for the large-scale stone Doric architecture at 
Corinth, and at nearby Isthmia, may have been due to ind uences coming from Egypt in the second half of 
the seventh century bc.

3. 9 ere is evidence of a defensive wall in the Potters Quarter at Corinth that dates to the seventh century 
bc (Stillwell 1948, 14–15).
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9 e city was abandoned and deprived of a political identity until 44 bc, when 
Julius Caesar founded a new Roman colony, Colonia Laus Iulia Corinthiensis, on 
the site of the former Greek city (Walbank 1997). 9 e Roman colony imposed a new 
urban plan on the city as well as a new rural organization on the land of Corinthia. 
Later in the [ rst century ad under the Emperor Vespasian a second Roman col-
ony was instituted at Corinth, Colonia Iulia Flavia Augusta Corinthiensis, with 
more new urban and rural planning. Corinth has been continu ously occupied 
through the Late Roman period into the modern day. Following a devastating 
earthquake in 1858, the modern town of Corinth was moved 8 km to the north-
east, to the Gulf of Corinth, where it exists today. A small village remains on the 
original site. 9 e successive ancient cities of Corinth have been under  excavation 
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and study by the Corinth Excavations of the American School of Classical Studies 
at Athens since 1896.

Part of the work of the Corinth Computer Project has been to undertake a 
study of the planning of the Roman city and landscape, including a survey of 
the standing buildings and monuments of all periods in the ancient city. In the 
course of this work several ancient mathematical questions were encountered, 
each of which required some concentrated study and analysis to determine the 
nature of the design process that had been employed by the ancient surveyor. We 
will discuss two here: the design and construction of a curved starting line to a 
racecourse in the early [ N h century bc, and the planning of [ eld systems in the 
Roman period.

B e curved starting line of a racecourse, c 500450 bc

During excavations undertaken by the American School of Classical Studies in 
the area of the Eastern Roman Forum in 1937, successive starting lines of two 
Greek racecourses were discovered (Morgan 1937, pl. 13, [ g. 2). 9 e later starting 
line, located immediately to the west of the foundations for the Roman Julian 
Basilica, was excavated completely. It was found to be in the form of a straight 
line composed of a series of cut rectangular limestone blocks covered in stucco, 
with a series of small regular rectilinear cuttings in the top surfaces of the blocks. 
At a lower level a small portion of a second starting line was excavated, of similar 
composition but at a di\ erent orientation.

During the excavations of 1980 by the American School of Classical Studies, 
a greater portion of the earlier starting line was exposed (Williams and Russell 
1981). It became clear that both starting lines were parts of successive rectilinear 
racecourses, each one stadion in length,4 which extended to the west across the 
upper Lechaion Road valley (Fig. 3.2.2). 9 e later of the two starting lines dates to 
aN er 270 bc, while the earlier dates to 500–450 bc or possibly even the sixth cen-
tury bc. 9 e most signi[ cant di\ erence between the two starting lines is that the 
later one is straight while the earlier is curved (Fig. 3.2.3). It is between 1.25 and 1.3 
m wide and c 12.20 m long, apparently describing the arc of a circle with a radius 
of c 54 m. 9 e curved shape of this starting line is unique in the Greek world. One 
of the author’s interests in the starting line was to determine how it was planned 
and constructed in an e\ ort to better understand its design and speci[ cally how its 
design related to the athletic event that it was intended to serve (Romano 1993).

On the top surface of the earlier starting line a series of painted letters as num-
bers was discovered, red letters against the black painted surface of the starting 

4. 9 e stadion was a measure of linear distance in ancient Greece always equal to 600 feet, although the 
absolute measure of the foot could vary from place to place.
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Figure 3.2.3 Corinth, starting lines as preserved to the west of the Julian Basilica, 
actual-state plan. Courtesy of the Corinth Excavations, American School of Classical 
Studies at Athens
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line. Each of the running lanes was labeled with a number from alpha to pi, 
written in the Corinthian epichoric alphabet (Williams and Russell 1981, 2–10), 
although the [ rst [ ve positions alpha to epsilon were destroyed by the later start-
ing line. It was thus originally designed for seventeen positions, of which thir-
teen remain. Each of the starting positions is characterized by grooves cut into 
the stone blocks for the toes of the front (leN ) foot and the rear (right) foot of the 
athlete (Fig. 3.2.4). 9 e distance between the foot positions varies from 0.658 to 
0.705 meters (center to center, standard deviation 0.0128 m). 9 e thirteen exca-
vated starting positions are spaced at an average interval of 0.951 m, center to 
center.5 9 e individual starting positions of the excavated curved starting line 
were found to be almost exactly one degree of a circle, on average 1.019° apart,6 
with a radius of 53.960 m.7 In modern mathematical terms, it would appear that 
the architects intended to set out a starting line with starting positions 1º of arc 
apart from each other.

But this interpretation poses a di7  cult historical conundrum. How could the 
Greek architects or surveyors have created such a starting line with the interval 
so accurately spaced out, on average, at 1º intervals, several centuries before the 
360-degree circle became standard mathematical fare?

Until recent years it was common historical methodology to apply ‘rational 
reconstruction’ (Kragh 1987, 161) to the remains of ancient structures, whether 
Neolithic stone circles or Egyptian pyramids, to determine the mathematical 
methods used in their design. But more recent studies have shown that such work 
tends to be over-reliant on modern mathematical knowledge and under-sensitive 
to the concepts and theories of the culture under investigation (e.g., Angell 1976; 
Rossi 2004). Rather, current scholarship starts from contemporary written math-
ematics, from the same time and culture as the ancient structure under study, to 
try and identify planning techniques. It is only if these fail to adequately account 
for the design features of the structure that previously unattested mathemat ical 
knowledge must be adduced. 9 at, however, is a vanishingly rare outcome of 
carefully researched historical studies.

So, what can be said of the mathematics of circles, as understood in the [ N h 
 century bc? No ‘strictly mathematical’ texts survive in Greek from the [ N h or 
fourth century bc (Cuomo 2001, 5). 9 e best contemporary evidence is from 
some 2000 km away in Babylonia (southern Iraq), where astronomers had 

5. 9 e standard deviation can be computed only for the distances measured between successive positions. 
9 e measurements are taken as center to center measurements on the front leN  groove of each position. 9 e 
mean of these nine distances is 0.983 m and the standard deviation 0.127 m.

6. 9 e standard deviation can be computed only for those angles measured between successive positions. 
9 e mean of these nine angles is 1.038º and their standard deviation is 0.134. I am grateful to Chris Rorres 
for this explanation.

7. For an earlier discussion of how the circle was created see Rorres and Romano (1997). 9 e archaeo-
logical surveyors originally used a ‘three points circle’ to estimate the radius of the circle, while the 1997 
study utilized the ‘least-squares circle’.
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Figure 3.2.4 Photograph of curved starting line at Corinth, ? fth century BC, view 
toward the south. Courtesy of the Corinth Excavations, American School of Classical 
Studies at Athens
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divided harrān Sîn ‘the path of the moon’ into 360 equal parts by around 460 
bc (Neugebauer 1975, 593).8 9 ese 360 divisions consisted of the twelve zodiacal 
zones (essentially those that are still in use today), each subdivided into 30. But it 
would be anachronistic to conclude that they had thereby invented the 360° circle. 
With hindsight, it is clear that this was certainly the origin of the concept, as it 
eventually evolved over the following millennium, but no contemporary scholar 
would have understood it as such. 9 e Babylonian unit of ecliptic measure was the 
uš, which historians of Babylonian astronomy conveniently translate as ‘degree’. 
But the astronomers themselves conceptualized it both as a linear measure—the 
distance between one celestial body and another—and as a chrono logical unit—
the time between the rising or setting of one celestial body and another (Powell 
1990, 467–468). It mapped onto the millennia-old Babylonian ideal of the 360-
day year (Englund 1988) and was used only to measure the distances or periods 
between events on the ecliptic, never to subdivide other circles, whether terres-
trial or celestial (Brown 2000).

9 e narrow conceptual and contextual range of the 360-part circle in [ N h-
 century Babylonia is best exempli[ ed by the writings of Šamaš-iddin of the 
Šangû-Ninurta family, who lived and worked as an āšipu ‘healer’ in the southern 
city of Uruk shortly before 410 bc (Oelsner 1993). His family library contained 
several hundred cuneiform tablets across a wide scholarly spectrum, from myth-
ology to medicine, including astronomy. His mathematical writings on  circles 
use the  traditional Babylonian methods, in which the de[ ning component of the 
circle is its circumference, kippatum, from which all other parameters are calcu-
lated. 9 ese mathematical circles have no radii, and their circumferences are not 
divided into degree-based arcs (W 23291x (i)–(iii): Friberg et al 1990; W 23291 
(vii): Friberg 1997).

Šamaš-iddin and his contemporaries worked within small kin-based groups, 
training sons and nephews in their professional skills and scholarly knowledge 
while swearing them to secrecy. Curses against those who shared nis.  irtī šamê ‘the 
secrets of the heavens’ with lā mūdû ‘the ignorant’, and similar injunctions, were 
commonly added to Babylonian astronomical writings from the twelN h century 
bc onwards (Rochberg 2004, 212–219, esp n11). Given these circumstances, it is 
not surprising that the earliest evidence for the 360-part circle in Greek mathem-
atics is not until the second century bc. A fragmentary astronomical inscription 
found on Rhodes, dating to about 150–100 bc, states that ‘the circle contains 360 
degrees’ (Neugebauer 1975, 699). A roughly contemporary work by Hypsicles of 
Alexandria, On the ascension of the stars, also divides the zodiacal circle into 360 
equal parts. (De Falco and Krause 1966, 47).

8. 9 e earliest known attestation is in a diary of astronomical observations taken in Uruk in 462 bc (Sachs 
and Hunger 1988, 54–55).
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So it is chronologically impossible for the surveyors of Corinth to have used 
the 360-part circle for the construction of their curved starting line in the early 
[ N h century bc. At that time only a few secretive scholars of astronomy, over a 
thousand miles away, were beginning to divide the ecliptic in this manner—a 
technique which did not reach the Greek-speaking eastern Mediterranean until 
200 bc at the earliest, and which would not be used in non-astronomical con-
texts for many centuries to come.9 But the construction of a circular arc does 
not entail a sophisticated knowledge of angle geometry: all one needs are some 
pegs, a hammer and a stout rope (Angell 1976). 9 e simplest possible interpret-
ation of the curved starting line, based on the archaeological survey data given 
above and a foot of 0.27 meters, is that the surveyors marked out two concentric 
arcs 60 ancient feet (16.2 meters)10 long with a rope tethered 200 feet (54 meters) 
away. 9 e athletes had to have enough room between them so that they would not 
be jostled by their rivals; a distance of 3 1/2 feet (0.95 meters) allowed su7  cient 
space for seventeen competitors.

9 us it can be no more than an extraordinary coincidence that the starting 
blocks of the earlier starting line at Corinth are placed almost exactly 1º of arc 
apart on a circular segment. Such coincidences are not unique. For many  decades 
it was widely supposed that the Babylonian mathematical table, Plimpton 322, 
gave unequivocal evidence for 360° trigonometry in the eighteenth century 
bc (Neugebauer and Sachs 1945, text A; Calinger 1999, 35–36). Plimpton 322 
does indeed list the short sides and hypotenuses of [ N een triangles whose acute 
angles decrease in approximately 1˚ increments (mean 0° 55ʹ 09ʹʹ, standard devi-
ation 0° 25ʹ 33ʹʹ). But that is no more than an accidental outcome of the way in 
which the table was constructed from mutually reciprocal pairs of sexagesim-
ally regular numbers, drawing on a repertoire of mathematical techniques that 
are widely attested in early second-millennium Babylonia (Bruins 1949; Robson 
2001; 2002).

9 e question remains as to why the Greek architect and surveyor wanted a 
curved starting line for the racecourse. What was the nature of the race to be 
contested and why did it need a curved as opposed to a straight starting line? 9 e 

9. Alternative methods for partitioning the circle are attested in Greek mathematics from the mid-third 
century bc. In a work called On the sizes and distances of the sun and the moon, Aristarchus of Samos han-
dles it as four quadrants, each of which can be divided into unit fractions (Heath 1913, 352–3; Neugebauer 
1975, 590, 773). According to 9 eon of Alexandria, a fourth-century ad commentator on Ptolemy’s Almagest, 
Hipparchus of Rhodes created a table of chords by successive fractionings of the quadrant, down to 12ths, 
or 7º 30’ in modern terms, in the early second century bc (Toomer 1973). 9 e origins of these methods are 
unknown: they may originate with these particular authors, or may have been in common use for some time 
before. 9 e great paucity of direct evidence for Greek mathematics before about the third century bc means 
it is virtually impossible to know for certain: (Cuomo 2001, 4–38). But as both scholars were working and 
thinking in a solely astronomical context, it is unlikely that any hypothetical precursor works were on the 
mathematics of terrestrial circles.

10. Of which 12.2 meters survive (see above).
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answer may be that the Greek architect purposely chose a curved starting line to 
provide the fairest possible start, as well as an equal distance to be run, by the 
seventeen athletes towards a distant point. 9 e race was to be multiple lengths 
of the stadion, a distance race in other words. 9 e athletes would have run in 
lanes from the starting line to a ‘break line’, so that they would not interfere with 
each other, at which point they would be equidistant from the middle of the sta-
dion. It is likely that from this point onwards the athletes would have run directly 
toward the turning post at the west end of the racecourse (Fig. 3.2.5) (Romano, 
Andrianis, and Andrianis, 2006).

Roman centuriation in Corinthia, second century bc? rst century ad

9 e Corinth Computer Project, which primarily studied the planning of the 
Roman city of Corinth and its territory, also considered the rural agricultural 
land that surrounded the Caesarian colony of the [ rst century bc and the Flavian 
colony of the [ rst century ad. 9 e Romans are famous for their systems of rural 
and urban planning throughout the Empire, and the Roman colonies of Corinth 
were no exception.

In its simplest form, centuriation was the division of land by the Roman sur-
veyors, agrimensores, into large squares or rectangles of land that were then sub-
divided into smaller regular units (Dilke 1971). 9 e system was applied to urban 
as well as to rural areas, principally to facilitate the collection of taxes based 
on known areas of land. 9 e Romans used as their primary unit of measure-
ment the actus, or 120 linear Roman feet, approximately 35.4 meters (1 Roman 
foot = 0.295 m). 9 e word ‘centuriation’ refers to the fact that the large squares 
or rectangles of land were typically divided into 100 units or heredia. A here-
dium was an area of land equal to 2 iugera or 4 square actus, in modern units 
0.504 hectares.

Much is known about the work of the Roman agrimensores from archaeo-
logical remains from di\ erent areas of Europe and North Africa. 9 ere also exist 
extensive literary accounts of the agrimensores, known collectively as the Corpus 
Agrimensorum Romanorum.11 9 e Corpus is a collection of ancient land survey-
ors’ manuals originally compiled in the [ N h century ad, but it includes texts 
that were composed as early as the [ rst century ad. 9 e surveyors’ manuals give 
very speci[ c information about the training of the agrimensores, their methods 

11. For an early discussion of air photographic evidence used to understand Roman city and land plan-
ning see Bradford (1957, 145–216). For a translation of the Corpus Agrimensorum Romanorum see Campbell 
(2000). Campbell’s work is critical to the understanding of exactly how the agrimensores worked. For a dis-
cussion of the modern methods used in the study of Roman centuriation and a summary of the important 
publications in the area see Campbell (2000, lvii–lviii, nn189, 190).
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Figure 3.2.5 Corinth drawings illustrating design and use of curved starting line. (a) Circle with radius of 200 feet intersect-
ing with curve of starting line and with seventeen starting positions equidistant from centre of circle. (b) Athletes run in lanes 
to ‘break line’ to avoid collision, where they have an equidistance to run to a point at 300 feet. (c) Actual nature of race where 
athletes run to break line at 200 feet and then to turning post at west end of racecourse and return
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of work, and the kinds of problems and issues that they encountered during the 
course of their daily activities. 9 ere are also fragments of ancient stone maps 
from Orange (ancient Aurasio in France) that illustrate the Roman agricultural 
division of land (Piganiol 1962; Salviat 1977). More commonly, perhaps, maps 
depicting the work of the agrimensores would have been made on perishable 
materials that have not survived.

9 e agrimensores’ principal surveying instrument was the groma, a simple 
device composed of a vertical sta\  with two horizontal crossbars, connected by a 
bracket. From each end of the crossbars hung a cord, which was held vertical by a 
plumb bob (Fig. 3.2.6). Roman surveyors were skilled at using the groma together 
with decempeda (sighting rods), to create straight lines and right angles (Schiöler 
1994). 9 e agrimensores sighted along the groma to the survey rods, hammered 
wooden stakes in the ground at every actus, then drew a straight line on the 
ground connecting the stakes. 9 e surveyors next created a furrow or a shallow 
ditch to represent the line.12

9 ese furrows, or vestiges of them, have been found in various parts of the 
Roman world. Modern rectilinear [ elds that are spaced approximately 35 meters 
apart and have the same orientation as a nearby Roman urban grid may be a part 
of the Roman land division. In some places vast areas of centuriation have been 
recognized, for instance in the Po Valley of Italy or in portions of North Africa, 
where hundreds of square kilometers of centuriated land are known (Bradford 
1957, 155–166, 193–207; Mengotti 2002). Elsewhere only fragments of organ-
ized land systems have been discovered. 9 e vestiges of orthogonal urban plan-
ning are seen in such modern cities as London, Paris, Florence, and Barcelona 
(Woloch in Grimal 1983, 111–301). 9 e archaeological evidence from Corinth 
suggests that the urban Caesarian colony was based on four equal quadrants 
(centuriae), each measuring 32 × 15 actus = 240 iugera, with the forum in the 
center of the plan and intersecting the cardo maximus (Fig. 3.2.7). In Greece, sev-
eral systems of rural centuriation have been discovered: at Dyme and Patrae in 
the Peloponnesos, and at Arta in Ambracia (Rizakis 1990; Doukellis and Fouache 
1992). Evidence of centuriation has been presented from Nicopolis and Butrint in 
Epirus (Doukellis 1988; Bescoby 2006).

At least two phases of rural centuriation have been identi[ ed from di\ erent parts 
of Corinthia, the region of Corinth, areas of which overlap. 9 e Caesarian sys-
tem covers a total area of approximately 100 km2, while the Flavian system covers 
about 300 km2 (Romano 2003, 293–299). Generally speaking the Caesarian system 
is found closer to the city of Corinth, and extends only as far as the Longopotamos 
River to the west and eastwards across the isthmus as far as modern Loutraki 

12. 9 ere were many ways to indicate limites (see glossary), including a line of trees or bushes, a stone wall, 
a pile of stones, a series of wooden stakes, a road, or a stream. See the text of Siculus Flaccus, from the second 
century ad, ‘Categories of land’ (Campbell 2000, 103–119).
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Figure 3.2.6 a) Schematic drawing of the four quadrants of the urban colony, 
each of which is 32 × 15 actus, with  centrally located forum and cardo  maximus. 
b) ‘Drawing board’ plan of the urban  colony of 44 BC
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(Fig. 3.2.8). In southern Corinthia it extends as far as Tenea and Kleonai. 9 e Flavian 
system is wider-ranging, extending into southwest Corinthia as well as along the 
south coast of the Corinthian Gulf to Sikyon and beyond (Fig. 3.2.9).

9 e evidence for centuriation associated with the Roman colony of Julius Caesar 
outside the urban area indicates a division of land into large units of 16 × 24 actus 
(566.4 × 849.6 m) at the same orientation as the city, or approximately 3° west of 
north. 9 ese large units were subdivided into smaller sections,  probably typically 
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Figure 3.2.7 Groma (courtesy of 
Mrs O A W Dilke)

1 × 4 actus (35.4 × 141.6 m). Within the area of the defensive long walls, between 
the city circuit of Corinth and the Lechaion harbor, there is evidence that parts of 
the landscape were laid out and planned prior to the founding of the colony; the 
Romans sent out surveyors to begin dividing up the land for sale or rent. During 
the century that passed between the destruction of Corinth in 146 bc and col-
onization in 44 bc, the land that had been under its control became ager publicus 
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‘public land’, although several ancient authors suggest that the city of Sikyon had 
taken over part of the land of Corinth (Livy 27.1; Cicero, Leg. Agr. 1.2.5; 2.19.51). 
9 e lex agraria ‘land law’ of 111 bc, passed in Rome by the Assembly of Tribes, 
indicates that some parts of Corinthian territory were measured out for sale, and 
boundary stones were erected (Crawford 1996, I 139–180; Lintott 1992, 171–285). 
9 e archaeological corroboration of this ancient survey is a break through the 
Greek circuit wall of Corinth by the Romans in order to construct a road in a 
location that was not previously a Greek gate (Romano 2003, 279–283).

9 e evidence for centuriation associated with the colony of Vespasian in the 
70s ad is more extensive. A series of linking grids borders the south coast of the 
Corinthian Gulf, with extensions to these grids in southern Corinthia. 9 e grids 
are composed of 16 × 24 actus units, subdivided into smaller units,  e\ ectively 
wrapping around the southern coast of the Corinthian Gulf. Table 3.2.1 lists 
the speci[ c topographic regions of the Flavian system along the southern 
coast of the Corinthian Gulf and the orientation of the individual units. 9 e 
areas,  however, represent the total areas of the vestiges of the systems across 
Corinthia (Fig. 3.2.9).

Figure 3.2.8 Extents of Caesarian centuriation in Corinthia
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Figure 3.2.9 Extents of Flavian centuriation in Corinthia

Table 3.2.1 Flavian grids south of the Gulf of Corinth

Unit Geographical region Orientation Area in km2

A00 Sikyon Northwest N20°20ʹ22ʹʹE  10
A0 Sikyon North N34°22ʹ32ʹʹE  12
A1 Sikyon N62°26ʹ52ʹʹE  40
A2 Sikyon, coastal region N48°24ʹ42ʹʹE  58
A3 Nemea River area N34°22ʹ32ʹʹE 108
A4 Longopotamos River area N20°20ʹ22ʹʹE  27
A5 Corinth, Lechaion to Kenchreai N6°18ʹ12ʹʹE 142
A6 Corinth to Kenchreai, south corridor N20°20ʹ22ʹʹE  12
A7 Xerias River area N7°43ʹ58ʹʹW  30
A8* West of Isthmus N34°22ʹ32ʹʹE  11
A9 West of Isthmus N21°46ʹ8ʹʹW  15
A10 East of Isthmus N35°48ʹ18ʹʹW  16
A11* Area of canal (parallel to canal) N48°20ʹ02ʹʹW  17

* not linked in the same way
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9 ere are several reasons why the overall grid comprises separate, linked units 
with di\ erent orientations. First and most obviously, the coastline is not straight 
but curved, and the land division needed to take account of this. Second, the 
 rivers in this area drain toward the gulf and many of the individual units of the 
grid follow the general course of the rivers.13 9 ird, each unit is roughly parallel 
and perpendicular to the coastline. 9 is would have been an advantage in the 
subdivision of the larger units into smaller ones, since the land to be divided 
would not have irregular shapes and sizes at the coastline.

9 e Roman agrimensores were able to change the orientation of a continuous 
system of land planning by the creation of right triangles whose long and short 
sides measured whole numbers of actus. 9 ey had a number of di\ erent ratios to 
choose from in order to change the orientation of the individual planned unit. 
Table 3.2.2 shows the possible ratios used to utilize this system of change and the 
resulting angular values. 9 e angles are measured today in degrees, minutes, and 
seconds, but these would not have been known to the Roman agrimensor.

In the area to the west of Corinth, along the southern coast of the Corinthian 
Gulf, there is a transition from the A1 system to the A2 system to the A3 sys-
tem, and so on (Fig. 3.2.10). Each of these transitions creates an angular change 
to the centuriation grid of 14° 2ʹ 10ʹ .ʹ 9 e agrimensores easily achieved that 
re- orientation, based on a 1:4 triangle, by the simple process illustrated here 
(Fig. 3.2.11). 9 ey would have followed an instruction like the following: ‘In the 
exisiting grid, measure four actus from the corner of the section and one actus 
from the outside edge of the grid. Join these two points.’

Related to the linked Flavian centuriation units, A00–A10, along the south coast 
of the Corinthian Gulf, is a second series of linked units. 9 e secondary units (the 
so-called B system) are linked to certain of the primary units (of the A system) by 

13. Siculus Flaccus, in his discussion of categories of land, discusses questions related to ownership of land 
bordering rivers and streams (Campbell 2000, 117–119).

Table 3.2.2 Agrimensores’ whole number ratios

Ratio of sides of triangle Modern angular measurement

1:1 45° 00ʹ 00ʹʹ
1:2 26° 33ʹ 54ʹʹ 
1:3   18° 26ʹ 05ʹʹ
1:4 14° 2ʹ 10ʹʹ
1:5 11° 18ʹ 35ʹʹ
1:6 9° 27ʹ 44ʹʹ
1:7 8° 07ʹ 48ʹʹ
1:8 7° 07ʹ 30ʹʹ
1:9 6° 20ʹ 24ʹʹ
1:10 5° 42ʹ 38ʹʹ
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triangles of ratio of 1/10 or 5° 42ʹ 38ʹ .ʹ 9 e B grids have been  identi[ ed in the area 
of the A2, A3, A4, and A5 grids (Fig. 3.2.12). 9 e linking of the A  system with 
the B system appears to have been an easy way for the surveyors to make smaller 
adjustments to the orientation of some of the [ elds. It is not obvious why this was 
done, and nor is it clear what the chronological relationship was between the two 
orientations. Were these linked units, the A system and the B system, created at 

Figure 3.2.10 a) Flavian centuriation 70 AD, showing restored grid of 16 × 24 actus 
units. b) A1, A2 and A3 evidence
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1 Actus

4 Actus

14˚ 2�10�

Figure 3.2.11 Change of orientation utilizing the ratio of 1 actus to 4 actus

the same time or at di\ erent periods? Based on the location and density of the 
vestiges of the [ eld lines, as well as the fact that the B series is not known from 
each unit of the A series, the B series was probably created as a supplement at a 
later date.

Although the A series and the B series generally do not overlap, the A series 
does overlap to some degree with the earlier, Caesarian centuriation. Why might 
this be? It is known that the Emperor Vespasian was interested in recovering 
non-utilized or under-utilized portions of agricultural land, subseciva, around 
the Roman Empire for the purpose of increasing revenues through taxation 
(Charlesworth 1936, 1936, 13–19). Subseciva could be either land that was out-
side a centuriated area or land that was within a centuriation, but which had not 
been formally assigned for one of a number of possible reasons.14 It would appear 
that there was available land near Corinth that had been under-utilized, as well 
as new land in the territorium of the city, which was centuriated on the same axis 

14. Julius Frontinus, in his consideration of ‘land disputes’, discusses several types of subseciva (Campbell 
2000, 5–9).
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as the under-utilized land in order to be assigned to new colonists by Vespasian 
(Romano 2000, 102–104).

Conclusion

Modern results of archaeological [ eld work in Corinth have brought to light these 
two di\ erent ancient mathematical applications that are witness to everyday life 
in the Greek and Roman cities. Both relate to very practical matters: to assure 
that a Greek athletic foot race has a fair start, and to be able to divide up land 
in the Roman territorium in as judicious and economical a manner as possible. 
Literary and historical sources relating to ancient mathematics should be sup-
plemented with archaeological evidence whenever possible, especially when the 

Figure 3.2.12 Relationship of A system to B system in the area of A1, A2, A3
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literary accounts are limited or non-existent. Likewise, archaeological research 
is heavily dependent on literary and historical accounts and the combination of 
all sources is the best way to proceed. New archaeological discoveries promise to 
further elucidate the history of mathematics.
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CH A P T ER 3. 3

Engineering the Neapolitan state
Massimo Mazzotti

In 1808 a corps of civil engineers was constituted in the southern Italian 
Kingdom of Naples to provide it with new infrastructures and to implement 

a plan of economic and technological renewal. 9 e activity of the corps led to 
controversy, however. In part the debate concerned their mathematical and sci-
enti[ c knowledge: was it sound? And could it legitimate their reshaping of the 
Neapolitan landscape? Around this debate, two opposite views of mathematics 
and of its relationship to engineering practices took shape: that of the engineers 
and that of their critics. While debates over the legitimacy and scope of mathem-
atical methods in this period were not exclusive to Naples, they were experienced 
there with unparalleled intensity. 9 e analysis of the production and use of math-
ematical knowledge in this context can therefore be particularly revealing.

9 e emergence of modern professions in the pre-unitary Italian states has 
attracted growing interest, and has proved to be an area where the methodo-
logical resources of the history of science and those of social theory can be fruit-
fully combined (Betri and Pastore 1997; Banti 1993; Malatesta 1995; Santoro 
1997). Research has highlighted the relationships between changes in curricula, 
the rede[ nition of academic disciplines, the creation of new professions, and the 
emergence of modern administrative and bureaucratic structures (Brambilla 
1997). 9 e connection between professionalization and modernization is most 
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evident in the case of the ‘modern engineer’ (Castellano 1987; Giuntini 1989; 
Santoro 1989; Zucconi 1992; Bigatti 1995; Foscari 1996; d’Elia 1996; Blanco 2000; 
di Biasio 2004). Two main issues have emerged so far from the body of litera-
ture on engineering around 1800. First, the institutionalization and legitimiza-
tion of modern engineering was strictly connected to administrative reform. 
A  second and less straightforward issue has to do with the nature of the engin-
eers’ know ledge, the new analytic rationality that informed their action, and 
with its  relevance as a cause of social change. It is precisely the relationship 
between the cognitive- technological level and the socio-historical level to which 
I shall turn my attention here. How did the scienti[ c and mathematical know-
ledge of  engineers relate to their professionalization and to the modernization of
the state?

It is generally assumed that the mathematical knowledge of modern engineers, 
in the Italian states as elsewhere, was the product of a gradual, quantitative incre-
ment of previous forms of mathematical and technical knowledge. In this per-
spective, the novelty of modern engineering training is described as the presence 
of more and more advanced mathematics. 9 e development of a technoscienti[ c 
culture, and the improved mathematical training of engineers, would thus be 
the cause of the shiN  of their practice from art to profession (Foscari 1996, 16). 
Accordingly, historian Luigi Blanco (2000, 18) has referred to a ‘problematic 
knot’, a dilemma that characterizes the current historiographical debate: was the 
professionalization of engineering primarily an intrinsic e\ ect of scienti[ c and 
technological innovation, or was it shaped by the intervention of the state? In 
this chapter I shall address this question by exploring aspects of the process of 
modernization of the kingdom of Naples in the early nineteenth century, and by 
focusing on the ways that professional civil engineering emerged and was legiti-
mated (Giannetti 1988; de Mattia and de Negri 1988; di Biasio 1993; Foscari 1996; 
d’Elia 1996, 1997; Foscari 1997, 2000).

Redistributing power

9 e implementation of forms of administration that distinguish a modern state 
from earlier semi-feudal systems can be seen as a process of redistribution of 
power. In Naples, this process took the form of a long lasting struggle against 
the feudal system and the juridical and cultural institutions that sustained it, a 
struggle that reached a turning point in 1806, when this independent  kingdom 
was invaded and occupied by the French army. From 1806 to 1815 Naples and 
southern Italy were an integral part of Napoleon’s imperial system (Davis 2006). 
9 e French installed a new government, advised by local reformers and repub-
lican sympathizers. 9 e government abolished the feudal system once and for all, 
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and put in place an ambitious project of reform. Essentially, this meant trans-
forming the semi-feudal Neapolitan kingdom into an e7  cient and  centralized 
 administrative monarchy (de Martino 1984; Rao and Villani 1995). 9 e govern-
ment could count on the collaboration of the reformist intelligentsia and of a 
signi[ cant portion of the local trading and landed middle-classes, to whom the 
new order could o\ er unprecedented economic opportunities and new forms 
of political representation. 9 e new administrative system can be described as 
vertical, in the sense that it linked each administrative level to the one above 
and eventually to central government. By contrast, the traditional system can be 
described as horizontal, because the various administrative and juridical institu-
tions worked almost independently, oN en following cond icting strategies.

9 e fate of the entire process of modernization rested upon the successful 
reshaping of the relation between central government and peripheral adminis-
trative institutions. 9 e redistribution of power threatened the interests of elites 
both in Naples and in the provinces. 9 e traditional semi-feudal system had 
guaranteed a large degree of autonomy and discretionary power to local elites. 
It also gave small groups of private investors a monopoly over lucrative [ nancial 
and commercial enterprises such as public works, the grain trade, and money 
lending. French reform, by drastically reducing the discretion of provincial 
institutions, threatened the interests embedded in the administrative status quo 
(Davis 1981; di Ciommo 1988; Macry 1988). 9 e new centralized and vertical 
administrative system was designed to allow the government to act quickly and 
e\ ectively in any portion of the kingdom. Matters that had previously had an 
exclusively local dimension could now be managed by the central bureaucracy. 
At the same time, the map of the kingdom was redesigned by dividing it into 
provinces, districts, and communes, and by ranking towns and ports that hosted 
public functions according to their newly acquired status. Administrators at all 
levels acted more and more as civil servants in a hierarchical and meritocratic 
system, which was a threat to the powerful ancien régime institutions that were 
still functioning.

Emblematic of the new system of vertical relations was the government rep-
resentative in each province, the intendente provinciale ‘provincial superintend-
ent’. Also central to the plan of reform was the creation ex novo of the Ministry 
of the Interior, which accumulated a large number of functions. All peripheral 
personnel depended on the Ministry, which was also in charge of controlling 
the [ nances of the communes, the administration of prisons, hospitals, hospices, 
agriculture, trade, manufacture, public education, the production of statistical 
data and, crucially for our present concerns, public works.

9 is plan of centralization was by far the most ambitious and radical to be 
implemented by the French anywhere in the newly occupied territories. As might 
have been expected, resistance was remarkably strong. Local elites voiced their 
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concerns primarily through the provincial councils, especially aN er the 1815 
 restoration of the Bourbon monarchy, when it became clear that the  administrative 
reform would be continued (Spagnoletti 1988).

9 e reform aimed to shiN  the decision-making process from the periphery to the 
centre of the state. 9 is was not only a physical phenomenon: the very discourse 
of decision-making was shiN ed to a new cognitive level. French polit icians and 
the Neapolitan intellectuals who advised them did not have [ rst-hand knowledge 
of local conditions in the provinces. Instead, the new government legitimated its 
decisions and long-term plans by referring to a new kind of authority: the tech-
nical expertise of civil engineers. With this move, traditional interlocutors of the 
government such as the landed aristocracy, the church, local communities, and the 
other relevant local institutions, lost their status as  decision-makers. 9 ey could 
not speak the mathematical language of the engineers and they could not under-
stand their technical knowledge. 9 eir opinion on local matters could therefore be 
reasonably dismissed as irrelevant. 9 us the future of reform depended essentially 
upon the authority of new experts: at the core of the modernization programme 
were the engineer and his highly specialized mathematical knowledge (for a com-
parison with the French case, see Porter 1995).

B e knowledge of the engineer

9 e mathematical language of the professional engineer and the supposed neu-
trality of his scienti[ c judgements embodied the hopes and ambitions of the 
emerging middle class. In the technical reports of the engineers, as well as in the 
political and literary discourse, a new bourgeois myth was being forged: that of 
the engineer’s exceptional cognitive, technical, and moral stand. He spoke the 
voice of Reason and fought against the obscure political interests of immoral 
individuals who threatened the ‘common good’ and the future of the country.

9 e Real Corpo degli Ingegneri di Ponti e Strade ‘Royal Corps of the Engineers 
of Bridges and Roads’ was established by royal decree in 1808. Never before in 
Naples had engineers been granted such a high social status, comparable to that 
of professionals in law and medicine (de Mattia and de Negri 1988). 9 e corps 
was operative early in 1809, and included twenty-three engineers on four levels: 
Inspectors, Chief engineers, Ordinary engineers, and Assistant engineers. Each 
Inspector was responsible for a large territorial unit called a divisione, and was in 
charge of technical, [ nancial, and administrative matters for all public works in 
his area. Chief engineers supervised all projects within their own dipartimento, 
and negotiated with local contractors. Ordinary engineers were responsible for 
the technical details of speci[ c projects, and were supported by Assistant engin-
eers. A small number of candidate engineers could also be employed as trainees. 
On a small scale, the corps was an exemplary model of a vertical, centralized, 
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and well-administered institution, based on a meritocratic system of promotion 
and alien to the myriad particular interests that had shaped social life under the 
ancien régime.

9 e Neapolitan liberal intelligentsia rallied to support the modernizing battle 
of the engineers. Many believed that, due to the particular features of Neapolitan 
entrepreneurship, modernization guided from above was the only viable option 
for reforming both the administration and the economy. As for the engineers, 
their adherence to the values of a moderate political and economic liberalism was 
never in question, and culminated in the direct involvement of many members of 
the corps in the 1848 liberal revolution. 9 e periodical Il progresso delle scienze, 
delle lettere e delle arti ‘9 e progress of sciences, letters, and arts’, a leading voice 
of Neapolitan and Italian liberalism, provided constant support for the activities 
of the corps. One contributor referred to engineering practice before the cre-
ation of the corps as greatly imperfect, because traditional civil architects had not 
been trained in the necessary scienti[ c and practical disciplines. 9 eir shortcom-
ings were cognitive as well as moral: unlike the members of the corps, the writer 
complained, these architects had been chosen only because they were devoted to 
powerful ministers; as it might be expected, he wrote, their technical errors had 
been extremely grave (Rossetti 1835).

In straightforward prose, Carlo Afan de Rivera, director of the corps and its 
school from 1826 to 1852, o\ ered the same fusion of cognitive and moral virtues, 
not only in the more rhetorical pieces he wrote for the general public, but also in 
the technical reports he sent to the ministry. Every technical intervention in the 
territory was an occasion for lauding the exceptional virtues of the members of 
the corps, and defending their exclusive prerogatives. 9 e works around Lake 
Salpi, for instance, included land reclamation, the construction of new channels 
connecting the lake to the sea, and the creation of a modern [ shing industry. 
Rivera reported that the former feudal owner of the lake lacked the relevant sci-
enti[ c knowledge to manage it, and therefore had been unable to make any pro[ t 
out of it. With engineers now in charge of it things had changed dramatically: 
they had transformed a malarial area into a pro[ table investment for the govern-
ment, a model site for national industry. 9 e technical activities of the engineers 
always had a clear economic and political dimension. Rivera himself liked to refer 
to his activity as economia politica, ‘political economy’: he did not simply design 
channels and roads but also planned new colonie ‘villages’ the relocation of the 
population, and the establishment of factories. Rivera criticized Neapolitan entre-
preneurs for their conservative investing strategies, and celebrated the engin eers’ 
e\ ort to promote the various branches of political economy and hence the public 
wealth (Rivera 1842, 4, 6).

9 e intervention of the corps altered the socioeconomic structure of entire 
regions. Not surprisingly, Rivera had to [ ght what he regarded as preoccupa-
tions and prejudices, and admitted that the greatest obstacles to his plans were 
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moral, rather than physical. He lamented that many discredited his work pub-
licly, guided either by their own illecito guadagno ‘illicit interest’, or by the mis-
guided belief of having lost some legitimate right. A typical example was the 
oppos ition of sheep-breeders to his project for agricultural exploitation of the 
Apulian plan. Rivera judged their traditional breeding system to be a heritage 
of barbarie de’ tempi andati ‘barbaric times’ and the sign of a vizioso ‘immoral’ 
system of administration (Rivera 1842, 26).

In Rivera’s discourse, the superior morality of the engineer was grounded on 
his understanding of natural and social reality, which legitimated and guided his 
transforming action. 9 is was not the knowledge produced and transmitted in 
universities, where architects and civil engineers had traditionally been trained. 
Modern engineers were trained in an entirely new institution of higher educa-
tion, the Scuola di Applicazione di Ponti e Strade ‘School of bridges and roads’, 
based on the model of the Ecole des Ponts et Chaussées in Paris, reformed in 
1804 (Blanco 1991; Picon 1992). For the [ rst recruits to the corps, in 1809, entry 
was by direct nomination by the king on the recommendation of the director 
of the corps; thereaN er, suitable candidates were trained at the highly selective 
Scuola where courses started in the autumn of 1811 (Russo 1967). 9 e course 
lasted three years (in 1818 it was reduced to two; in 1826 it was extended to 
four), and at the end the top students could enter the corps of engineers at the 
lower level (the numbers varied: the 1814 class saw three students entering the 
corps). 9 e curriculum was radically di\ erent from that of the university, and 
mathematics was a central element. Students were selected through an entrance 
examination designed to test their mathematical knowledge. It included ques-
tions of plane and solid geometry, trigonometry, analytic geometry (curves and 
second degree surfaces), di\ erential and integral calculus, design, French, and 
Latin. Successful candidates entered the ‘[ rst class’, a course in which most of 
the time was devoted to mathematical disciplines (Rossetti 1835, 330). 9 ey 
studied the basics of mechanics, hydraulics, descriptive geometry, perspective, 
and geodesy. At the end of this cycle, another examination selected those who 
would enter the ‘second class’, mainly devoted to practical applications. Here 
the students studied subjects such as applied chemistry, agronomy, the appli-
cation of mechanics to constructions and machines, architectonic structures, 
architectonic machines, and the features of the various kinds of constructions, 
primarily walls, roads, roofs, dikes, bridges, and suspended metal bridges. At 
the end of this second cycle, students went through a [ nal one-week examin-
ation, on the basis of which they were ranked (Rossetti 1835, 333–335). 9 e level 
of the entrance examination, and the career prospects, made the Scuola an ideal 
choice for college-trained men of 18 to 20 years old, mostly from the middle and 
upper levels of the southern bourgeoisie (Foscari 1997, 286–287). From 1812 a 
new and multifunctional Scuola Politecnica e Militare ‘Polytechnic and military 
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school’ began to train, among others, candidates for the engineering school. In 
this way, the curriculum of the engineer became entirely independent from the 
local  colleges and universities.

9 e life of the corps and the Scuola became more di7  cult under the restored 
Bourbon regime from 1815 to 1860. A powerful conservative block returned to 
power, representing the local and monopolistic interests that were most threat-
ened by engineering activities. Reducing the autonomy and prerogatives of 
 engineers became a primary objective of conservative political strategy. At [ rst, 
in 1817, the corps and the Scuola were suppressed. 9 e corps was replaced by a 
Direzione generale di ponti e strade, ‘General directorate of bridges and roads’, 
which was closely modelled on an ancien régime institution for the control of 
roads. Personnel were reduced from sixty-nine to [ N een; Inspectors were elim-
inated; a new [ gure of contract engineer was created; and the provinces were 
entitled to supervise some of the works in their own territory. 9 e careers of 
provincial engineers were ind uenced by the yearly reports that provincial super-
intendents sent to the government. 9 e new institution was less structured than 
the corps, and it was also much less independent of local interests. 9 e juridical 
status and career prospects of engineers, particularly those on short-term con-
tracts and working under the control of the provincial councils, became uncer-
tain. Even more crucially, public works were now planned on a short-term basis, 
which made it di7  cult to modify landscapes (Maiuri 1836).

9 e aim of these changes was to assimilate engineers under other administrative 
employees, thus reducing the autonomy and e\ ectiveness of their action in the prov-
inces. 9 e Crown was largely responsible for this weakening of the prerogatives and 
authority of the corps, and for the closure of its school. Behind these decisions was 
the political aim of compromising between centralization and the interests of the 
provincial elites. In the mid 1820s, aN er the conservative excesses of the early restor-
ation period, the appointment of a new director, Carlo Afan de Rivera, signalled that 
the balance had again shiN ed in favour of the centralizing process. Rivera prepared 
a plan that restored the authority and autonomy of the corps almost to its original 
form, starting with the name. 9 e plan also included an increase in the number of 
engineers, limitations on the ind uence of provincial authorities, and the strength-
ening of the Scuola di Applicazione, which had reopened in 1819. 9 e course was 
lengthened to four years and the number of teachers was increased. 9 e government 
accepted the plan almost in its entirety, and it became operative in 1826.

Conservative utopia versus the ideology of progress

In the years that followed, as the debate over modernization intensi[ ed, the 
engineering school increasingly became a target for conservative politicians. 



geographies and cultures260

Already in the early 1820s, the director Colonel Francesco de Vito Piscitelli had 
to defend the special nature of the school, remarking that the distinction between 
civil engineers and other scienti[ c practitioners was a feature of every civilized 
nation. He also defended the legislation according to which the school was the 
only entrance to a career of engineering (de Mattia and de Negri 1988, 464). In 
1835, Rivera set up a public demonstration of the didactic e\ ectiveness of the 
school: a one-week exhibition held at the Scuola di Applicazione to celebrate the 
corps, its many remarkable achievements, and its role in the modernization of 
the country. 9 e liberal periodical Il progresso reported on it enthusiastically, 
and asserted that the superiority of modern engineering over previous forms 
of architecture and engineering derived from its being a coordinated collect-
ive activity, in contrast to the traditional image of the isolated genius. Modern 
engineering was described as the practice of a well-structured group of experts, 
which acted as if guided by a single mind. 9 e exhibition was a success. Projects 
exhibited by students included plans of ports, prisons, and bridges. Plans of pub-
lic works recently completed by the corps were also shown, such as those for the 
metal suspension bridges over the rivers Garigliano and Calore. Students from 
the school gave lectures on topics such as mechanics, hydraulics, and descrip-
tive geometry. 9 e author of the report in Il progresso was con[ dent that the 
future productions of these alert and educated minds (sì svegliati e culti ingegni) 
would bene[ t the country greatly, and would keep it apace with the wealthi-
est European countries. 9 e author touched only cursorily upon the reasons for 
such an unusual exhibition but the relevant passage is revealing. Rivera had to 
prove that the scienti[ c training of his engineers was sound, and that the school 
was not a waste of public money (Rossetti 1835, 329–335). Apparently some ind u-
ential people were convinced of the contrary, and were putting pressure on the 
ministry of [ nance to cut its funding. Leading the critics was a [ rst-rank polit-
ician, Giuseppe Ceva Grimaldi, president of a major ancien régime institution 
and future prime minister.

9 e activity of Ceva Grimaldi is key to understanding conservative cultural 
and political strategies. In the 1830s, crucial years for Neapolitan modernization, 
he repeatedly attacked Rivera on the practices of his engineers and the usefulness 
of the Scuola di Applicazione. He defended the interests of the provincial elites, 
landowners, and private contractors, and did whatever he could to restrict the 
autonomy and functioning of the corps. He pressed for a reduction of personnel, 
for lower wages, and for giving back to the provinces the responsibility for [ nan-
cing and supervising public works (Giannetti 1988, 936–938). By attacking the 
engineers, conservatives were attacking, although indirectly, the entire centraliz-
ing policy of the Crown, and criticizing its absolutist ambitions.

Rivera replied promptly, pointing out the reasons for the socioeconomic devel-
opments he considered necessary, and more generally for the need to ‘civilize’ 



Engineering the Neapolitan state 261

the provinces. But the technical language in which he described the activities of 
his engineers, and the large amount of technical data with which he presented 
Ceva Grimaldi, were now being questioned by conservatives. 9 e modern engin-
eer’s ‘analytic reasoning’ was to Ceva Grimaldi an expression of arid and abstract 
knowledge, which had little to do with the complexity of practical reality and 
with the art of economic and political decision-making.

9 e debate generated various publications, which even in their titles showed 
two opposing perspectives. 9 us Rivera published Considerazioni su i mezzi da 
restituire il valore proprio a’ doni che ha la natura largamente conceduto al Regno 
delle Due Sicilie, ‘Remarks on the means to value the giN s that nature has lavished 
upon the Kingdom of the Two Sicilies’ (1832), which emphasized the new possi-
bilities for exploiting the kingdom’s natural resources through the application 
of modern science. In response, Ceva Grimaldi published Considerazioni sulle 
opere pubbliche della Sicilia di qua dal faro dai Normanni sino ai giorni nostri, 
‘Remarks on public works in continental Sicily from Norman times to the present 
day’ (1839), an historical essay on the art of administration and the Neapolitan 
tradition of public works since the Middle Ages. Ceva Grimaldi ridiculed the 
‘prejudice’ that civilization in southern Italy had began with the establishment of 
the Corps of Bridges and Roads, and called the tendency to attribute all adminis-
trative evils to the feudal system ‘a boring commonplace’. In his writings Rivera 
referred constantly to such well-known myths of modernity as the inexorable 
path of progress, the rationality of a liberal economy, and the superior moral sta-
tus of engineers. In response, Ceva Grimaldi seemed to ground his reasoning on 
an unmistakably conservative utopia. Behind his sceptical remarks on modern-
ity lay references to a mythical description of the kingdom in the pre-French 
period. In those days, according to Ceva Grimaldi, all channels were navigable, 
all roads well kept, the administration functioned perfectly, and the skills of 
Neapolitan master masons were unsurpassed. He asserted that the Neapolitans 
knew how to build roads even before the French arrived, and that modifying 
their routes was a sign of little respect for their ancestors. His descriptions are lit-
erary reconstructions of a past that never was, where peasants and artisans lived 
peacefully around the manor and the church, in a kingdom made up of hun-
dreds of small, highly independent patrie, ‘fatherlands’. Behind Ceva Grimaldi’s 
utopia, and behind each of his arguments, lay the aim of preserving as much as 
possible of the current territorial and administrative structure of the country. 
He claimed to be speaking for the many small patrie, which were desperately 
opposing the ‘tyranny’ of the capital. 9 e enemy was not the king, of course, but 
whatever was ‘foreign’, ‘abstract’, ‘anti-historical’. 9 e new ‘industrial feudalism’, 
in Ceva Grimaldi’s view, was no less tyrannous than the old one (Ceva Grimaldi 
1839, 149, 172–173). In these same years, the mythical image of a happy and time-
less Neapolitan countryside was being di\ used all over Europe by the extremely 
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successful school of romantic landscapists known as the Posillipo School. What 
they portrayed, I suggest, was Ceva Grimaldi’s conservative utopia: a still and 
eternal rural society, founded on nature and tradition: a world that did not require 
any signi[ cant change (Causa 1967; Ortolani 1970; Martorelli 1993).

Analytic rationality

9 e example of the 1835 exhibition makes it clear that in addition to their legis-
lative battle, conservatives also undermined the authority of the engineers by 
questioning the training on which their power was based. In particular, it was 
argued that the mathematical knowledge of the engineers did not provide them 
with a superior understanding of physical and social conditions. Ceva Grimaldi 
led this de-legitimizing campaign, criticizing the kind of mathematical training 
o\ ered by the engineering school. He argued that the school should be open to 
everybody, not only those ‘few initiates’ who passed the entrance examination, 
and he portrayed its analytic training as an ideological device, and an arbitrary 
source of ‘privilege’ (Ceva Grimaldi 1839, 169).

To understand how the cond ict over modernization was structured at the cog-
nitive level, we need to look bried y at the mathematical practice of the engin eers. 
9 e curriculum and teaching of the Scuola di Applicazione were shaped by a dis-
tinctive set of epistemological and cultural assumptions. Sessions consisted of 
two hours, one for the teacher’s lecture, and the other for the students to engage 
actively in the learning process. 9 us they familiarized themselves with instru-
ments, machines, chemical reactions, or mathematical techniques presented by 
the teacher. Whenever possible, students were encouraged to handle objects, and 
to acquire direct experience of the content of the lecture. At the end of every aca-
demic year, students took part in a summer campaign, where they assisted the 
engineers of the corps in their routine operations. Students were to be actively 
involved in the process of acquiring knowledge, and discover empir ical and scien-
ti[ c truths through their own experience. 9 e importance attributed to handling 
and sensory experience derived from precise beliefs about how the mind works. 
Teaching was based on a sensationalist concept of knowledge: once exposed to 
the appropriate sensory inputs and assisted in developing what was supposed to 
be the most natural way of reasoning, the student would be able to discover by 
himself the relevant scienti[ c truths. But what was ‘the natural way of reason-
ing’? 9 e teachers of the Scuola identi[ ed it with what they called the ‘analytic 
method’.

In this context, the term ‘analysis’ was used to refer to di\ erent but related 
kinds of objects and practices. 9 ese included problem-solving techniques based 
on the decomposition and subsequent composition of ideas, the mechanization of 
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thinking according to the combinatorial rules of algebra, the study of economic 
issues on the basis of individual and collective utility, a philosophy of teaching 
based on sensation and experience, and the corresponding reorganization of sci-
enti[ c disciplines and curricula. It was a set of cultural resources, styles of think-
ing, skills, mathematical techniques, relevant problems, and possible solutions 
that informed the activities of the engineers (Picon 1992). 9 e teachers of the 
Scuola built their experimental and mathematical courses accordingly, so that 
analytic rationality was incorporated into the training of an engineer from the 
very beginning.

In its more general sense, analysis was a way of thinking based on the assump-
tion that all complex problems could be broken down into their elementary com-
ponents, and that these components could be then solved independently thus 
providing a solution for the original problem. In mathematics, the integration of 
an equation was taken to be emblematic of this way of proceeding. Mathematical 
analysis, although a polysemic term, was oN en used as a general label for the 
techniques of algebraic analysis and those of calculus, as based on the mechan ical 
manipulation of symbols and in opposition to the intuitive procedures of syn-
thetic geometry. In this sense, analysis was described by its supporters as natural 
and easy-to-learn. With proper training, any student could master it, because it 
was simply an extension and formalization of the normal way the human mind 
works. Once the spirit of the analytic method was grasped, the authors of engin-
eering textbooks claimed, the solution of any relevant mathematical problem 
would be straightforward, the outcome of a mechanical procedure (Padula 1838, 
13). 9 ere were no child-prodigies in the engineering school, just enthusiastic 
students.

It followed that the engineering school taught its students not just more or more 
advanced mathematics, but a new kind of mathematics altogether. Representative 
of the analytic approach was a textbook of plane and solid geometry entitled 
Raccolta di problemi di geometria risoluti con l’analisi algebrica ‘Geometric prob-
lems resolved by algebraic analysis’ (1838), by Fortunato Padula, a graduate of 
the engineering school and one of its future directors. Padula grouped the stand-
ard problems of a university course and solved them in a purely analytical way, 
through the manipulation of general equations that represented the properties of 
the [ gures in question. Padula was not simply translating geometrical problems 
into analytic language in order to make the discovery of the solution easier, and 
then performing an appropriate [ nal construction, as synthetic mathematicians 
required. Rather, he did what he had been trained to do: he showed how the solu-
tion to each problem could be seen as a particular case of a general structural 
relationship between families of geometrical entities. 9 e problem-solving pro-
cess did not begin with inspection of the [ gure, but with the immediate introduc-
tion of the relevant equations, each of them generalized by means of appropriate 
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parameters and variables, and thereaN er manipulated without any reference to 
the initial [ gure. 9 e particular origin of the problem thus became irrelevant. 9 e 
necessity for inspecting the [ gure was eliminated, as was the entire constructive 
phase. 9 e paradigmatic work, in this respect, was Joseph Lagrange’s art icle (1773) 
on triangular pyramids. In this article Lagrange completely dispensed with the 
use of [ gures, and instead provided a description of the general structural prop-
erties of the pyramids. 9 ese technical developments accompanied a major epis-
temological shiN  in mathematics, as the meaning and heuristic power of algebraic 
algorithms were now conceived as completely detached from geometrical intu-
ition (Fraser 1989). 9 e Lagrangians—the Neapolitan engineers among them—
considered analytic reasoning that detached algebraic reasoning from geometric 
intuition, as a fully legitimate and autonomous heuristic method.

Standardization

One of the key issues in the debate over modernization was the standardization 
of weights and measures. Here all the main social, political, and scienti[ c themes 
that we have touched upon converged in a single, crucial issue. 9 e engineers, 
Rivera in the [ rst place, campaigned strongly in favour of standardization (Rivera 
1840; 1841). Rivera had his engineers adopt a single and all-purpose decimal sys-
tem as early as 1830. To him standardization was a necessary if the corps was to 
take full control of the territory of the kingdom. Once again it was centralization 
versus local autonomy, uniformity versus variety, rational administration versus 
a world of autarchic communities.

Traditional Neapolitan measuring systems red ected the complex socio- political 
structure of the country, and the variety of its traditional occupations. So, for 
instance, land was oN en measured in terms of the number of days needed to 
plough it or the number of men needed to harvest it in a day, or else in terms of its 
monetary value. 9 is meant that metrological units could not be [ xed, because 
working in the plain was di\ erent from working in a mountainous region, and 
the value of land varied from place to place. Further, products that were manufac-
tured by di\ erent processes, like wine and oil, were measured in di\ erent units, 
none of which was decimal. Such variety was of no concern to users, who had 
developed the necessary translating skills. In the personal negotiations that char-
acterized internal trading, buyers and sellers used their discretion to re-shape the 
rates of exchange between units. To Rivera and the o7  cials of the corps this was 
chaos, and a sign of bad administration. A uniform plan of development for the 
country needed a uniform measuring system.

9 e heated anti-standardization campaign was guided, as might be expected, 
by Ceva Grimaldi, and has been described by later commentators as rhetorical and 
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historical, and opposed to the rational, technical arguments of Rivera (Giannetti 
1988; d’Elia 1997). 9 e problem with this account of the controversy is that it 
implies that the contemporary scienti[ c establishment was united in defending 
Rivera’s arguments when, in fact, it was quite the contrary. In other words, the 
two fronts did not map onto humanistic and scienti[ c culture, respectively, but 
rather onto two di\ erent kinds of humanistic and scienti[ c culture. Let us con-
sider Ceva Grimaldi’s essay against the reform of weights and measures (1838), 
one of the most representative texts of the conservative literature. Interestingly 
enough, this essay contains a long scienti[ c introduction signed by the lead-
ing Neapolitan mathematician of the time, Vincenzo Flauti, professor at the 
University of Naples and secretary of the Royal Academy of Sciences. In oppos-
ition to all basic beliefs of the reformist intelligentsia, Flauti noted that math-
ematical abstractions are beautiful intellectual productions, but they are useless 
in addressing questions related to public welfare. Flauti openly attacked Rivera 
and his banda ‘gang’ of engineers for trying to standardize the many systems of 
weights and measures in the kingdom. 9 e engineers were, he claimed, attempt-
ing to provide an abstract solution to a concrete problem, and in so doing they 
threatened to destroy the inveterate customs of the people. In the past, the people 
did not need any expert to tell them how to measure and weigh, as they were con-
[ dent of their own ancient customs. To modify these customs, Flauti concluded, 
would amount to modifying human nature itself. Flauti agreed that the deci-
mal system was suitable for calculations and for certain scienti[ c purposes, but 
argued that it was much less so for everyday transactions (Ceva Grimaldi 1838). 
He believed that decisions regarding weights and measures should be taken by 
the users themselves, while only economists and historians should advise the 
government on these matters. 9 is was certainly not the terrain for professional 
mathematicians, let alone engineer-mathematicians.

Rivera held precisely the opposite view. He thought that a corporation of 
 scientist-artisans should plan and direct public works, and he ridiculed the snob-
bish behaviour of Neapolitan academic mathematicians, who thought they would 
degrade themselves if they got close to the factories, and therefore neglected the 
application of the sciences to the arts (Rivera 1832, II 461). What Rivera aimed for 
was precisely the application of science to the administration of the state (Rivera 
1823, 38).

Another mathematics

On what grounds did Flauti criticize the mathematical practice of engineers? 
Around 1800 Naples had seen the emergence and rapid institutionalization of 
a mathematical methodology that was di\ erent from the analytic approach. 
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Following the innovative teaching of Nicola Fergola, a group of young and 
 talented mathematicians had developed a lively school of synthetic mathemat-
ics (Loria 1892; Amodeo 1905; Mazzotti 1998). 9 is meant that their approach 
to mathematics was essentially geometrical. 9 eir practice and techniques were 
constructed around the basic notion of intellectual intuition as the foundation 
of all mathematics and the source of its certainty. 9 ey emphasized the visual 
dimension of geometrical knowledge—its distinctive perspicuity—against faith 
in the unlimited power of analysis and the focus on the mechanical manipulation 
of algorithms, which had characterized late eighteenth-century French math-
ematics and which was central to early nineteenth-century engineering training 
in Naples. 9 e Neapolitan synthetic school denied that there could be something 
like a universal problem solving method, and insisted on the irreducible spe-
ci[ city of di\ erent kinds of mathematical problems and techniques. Crucially, 
their problem-solving techniques were to be used exclusively in the realm of pure 
mathematics: they insisted upon the limited scope of mathematical reasoning, 
which they believed could not guide human action in empirical matters. 9 ese 
beliefs led Fergola and his students to shiN  their attention from applications to 
foundational issues, and to prefer the study of classical geometrical problems to 
that of eighteenth-century analysis.

To solve a geometrical problem elegantly was, according to the synthetics, a 
matter of long training and exceptional talent. 9 e necessary procedures could 
not be mechanized in the way the analytics believed and, importantly, they could 
not be deployed in other disciplines without losing most of their heuristic power. 
On these grounds, the synthetics asked for a clear-cut demarcation between the 
speculative pure mathematician and the engineer. 9 e former might lead math-
ematical research in universities and academies, while the latter would merely 
use portions of mathematical knowledge for speci[ c practical purposes (Flauti 
1820; 1822).

Synthetic teaching was based on discovering and grooming the natural talent 
of exceptional students through the study of the ancient paradigmatic examples. 
9 e best students formed a kind of inner circle that met oN en at the professor’s 
house. A typical product of this system was the child prodigy Annibale Giordano 
who, aged [ N een, had been invited by Fergola to solve a certain geometrical prob-
lem, and whose classically elegant solution was published in the journal of the 
most prestigious Italian scienti[ c society of the time (Giordano 1786). Fergola’s 
synthetic school was an innovative phenomenon with respect to previous aca-
demic traditions. However, Fergola and his students tended to conceal their 
novel scienti[ c and philosophical interests by presenting their work as essen-
tially derived from an ancient tradition in geometrical problem solving, which 
stretched from the Classical era through Galileo and the geometers of the seven-
teenth century. 9 is tradition, with its emphasis on Greek and Latin sources, was 
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intended to give the synthetic school an authoritative position in conservative 
Neapolitan academic culture. It also reinforced the impression, among later his-
torians, that Neapolitan synthetics were survivors of a past age. On the contrary, 
Fergola was well versed in algebraic techniques, and in integral and di\ eren-
tial calculus (Fergola 1788a; 1788b; undated manuscript). Fergola’s mathemat ical 
project was far from being a mere return to the ancients. Rather, this devout 
professor was clearly concerned by the recent association of certain mathemat-
ical techniques—namely analysis—with philosophical and political projects that 
in his view threatened the stability of traditional society. His scienti[ c work can 
be seen as a thorough attempt to investigate the foundations of mathematical 
reasoning, in order to rede[ ne the range of its meaningful applications.

Working along the same lines, Fergola’s former pupil Flauti challenged the 
engineers in 1839 to solve a number of geometrical problems, with the intention 
of showing the intrinsic superiority of the synthetic over the analytic method. 
A reply came from Padula, with an essay signi[ cantly dedicated to Rivera. 
Padula stated once again that algebra and calculus should be applied to solve the 
socioeconomic problems of the country. Anyone who is interested in modern 
mathematics, Padula argued, should be concerned with its applications to nat-
ural philosophy, constructions, and industrial mechanics, and should abandon 
the sterile and uninteresting exercises favoured by the synthetic school (Padula 
1839, 46). He was referring to the concern of the synthetics with pure mathem-
atics, their development of methods of synthetic and projective geometry (Flauti 
1807), their study of the history of mathematics, and their attempt to provide a 
solid  logical foundation to the entire edi[ ce of mathematics, including calculus. 
Indeed, in some respects the synthetics’ programme of research was closer to 
what we now perceive to be the main European trends of the early nineteenth 
century rather than the dated Lagrangian programme defended by Padula. 9 e 
engineers remained ostentatiously uninterested in pure mathematics and syn-
thetic geometry until the mid-century (Besana and Galluzzi 1980).

Having emerged together in years of deep political and cultural struggle, the 
two Neapolitan schools developed goals and practices that were in most respects 
opposite. 9 ey encouraged di\ erent skills and techniques, and were di\ erently 
receptive to novelties coming from abroad. I would not like to argue here that 
there was a necessary connection between certain political and religious atti-
tudes and certain problem-solving methods. Rather, my interpretation is histor-
ical. In early nineteenth-century Naples di\ erent cultural resources, including 
mathematical knowledge, were being mobilized and reshaped to express and 
support di\ erent socio-political projects for the future of the country. On the one 
hand, engineers and their supporters among the southern bourgeoisie reshaped 
analysis as an emblem and instrument of modernization. On the other hand, 
devout and conservative mathematicians like Fergola and Flauti considered the 
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synthetic approach, and the institutionalization of the new subdiscipline of ‘pure 
mathematics’, as the most appropriate response to what they perceived as a broad 
cultural and moral crisis of European civilization.

9 e analytic rationality of the engineers, and their mathematical and technical 
knowledge, were openly challenged by university-trained mathematicians until 
the late 1830s, when the conservative opposition lost ground in the broader pol-
itical and social arena. Ultimately, the mathematical knowledge of the engineers 
became legitimated as enough relevant groups within Neapolitan society began 
to share the orientation of men like Rivera. 9 e emergence and stabilization of 
analysis, in other words, should not be seen as a pre-existing historical cause for 
the process of modernization, but rather as an expression of this process, and the 
emblem of its success.

Conclusions

In this chapter I have explored some aspects of the relationship between math-
ematical knowledge and its carriers. 9 e Neapolitan case o\ ers an e\ ective illus-
tration of how mathematical knowledge can be shaped, mobilized, and deployed 
to support the goals of particular collectives. It therefore provides evidence for 
the socially constructed nature of mathematical knowledge, and more speci[ c-
ally for the contingent character of the relationship between mathematics and 
engineering. 9 e boundaries between these two sets of practices and the form of 
their interaction are the product of socio-historical conditions, and as such are 
constantly open to negotiation and rede[ nition.

9 e chapter has also investigated the way in which the institutionalization of 
new forms of mathematical reasoning in the [ rst half of the nineteenth century 
was related to the creation of professional elites and to the formation of the mod-
ern state. My reconstruction of the Neapolitan case suggests that these should 
be understood as di\ erent aspects of an essentially unitary process of social and 
cognitive change. 9 e emergence and stabilization of new forms of mathematical 
reasoning does not appear to have been the cause of the emergence of new and 
more e\ ective engineering practices. Rather, the establishment of the new math-
ematics was a condition for the legitimization of engineering activity—and the 
socio-political vision that shaped it.

In the light of these considerations, the historiographical dilemma mentioned 
at the beginning of this chapter should be rejected as misleading. One does not 
have to choose between two competing historical explanations for the profession-
alization of engineering—either the appearance of a new body of knowledge or 
the intervention of the state. My interpretation of the Neapolitan case o\ ers fur-
ther evidence that science and technology do not evolve by virtue of some inner 



Engineering the Neapolitan state 269

logic independent from the intentions and purposes of those who learn, teach, 
use, and change them. In particular, engineering practices seem to be the negoti-
ated outcome of speci[ c cultural, political, and economic interactions rather than 
the result of a straightforward application of scienti[ c knowledge to the solution 
of practical problems (Alder 1997; Kranakis 1997). 9 us, the analytic rationality 
and speci[ c mathematical practice of Neapolitan engineers were shaped by, and 
sustained, their theoretical and practical orientations (for the French case, see 
Picon 1992; Brian 1994). 9 e institutionalization of what they called ‘analysis’ 
was part of a broader mobilization and transformation of cognitive resources in 
support of social reform. In other words, the battle for modernization had to be 
won not just with but also in the textbooks of mathematics.
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CH A P T ER 3.4

Observatory mathematics in the nineteenth 
century
David Aubin

The value of the service of an Assistant to the Observatory’, the Astronomer 
Royal George Biddell Airy wrote in 1861, ‘depends very materially on his 

acquaintance with Observatory Mathematics’.1 9 ere is a rather strange ring to 
this expression. One knows, of course, that mathematics has always been used 
extensively in observatories. Ever since permanent astronomical stations were set 
up in Europe during the Renaissance, observers have drawn on the most elabor-
ate mathematical tools available to them to correct the observational data they 
produced and to come up with theoretical predictions to which it could be com-
pared. Up until the nineteenth century, astronomers played a central role in the 
development of many parts of mathematics. Indeed, together with geometry and 
arithmetic, astronomy had always been considered as one of the main branches 
of mathematics.

Still, in what sense can one talk of ‘observatory mathematics’? Should one 
understand the expression as designating the subset of mathematics that was 
especially relevant to the scienti[ c activities carried out inside observatories? Or 
is there—has there ever been—a speci[ c character common to all mathematical 

1. ‘Remarks on the neglect, by the Junior Assistants, of the course of education and scienti[ c preparation 
recommended to them’ (4 December 1861). Cambridge University Library, Airy’s Papers, RGO 6/43, 235.

‘
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tools and concepts used in those places? If so, what sense is there in carving out a 
portion of mathematics on the basis of it being used in a speci[ c institution?

In this paper I want to introduce the question of place and space in the his-
tory of mathematics by looking at the various ways in which mathematics was 
practised at a speci[ c location—the observatory—in a given period—the nine-
teenth century. My claim is that this exercise will enrich our understanding of 
changes undergone by mathematics in that period. As Michel de Certeau (1984) 
has shown, a focus on place as ‘practised space’—that is, space where human 
practices are deployed—can help the historian identify cultural practices that are 
common to the users of the same space but that are not necessarily talked about. 
9 e issue of place in the history of science was in fact inaugurated by a debate 
about Tycho Brahe’s observatory (Hannaway 1986; Shackelford 1993). Numerous 
studies have since been devoted to the topic, mapping out various spatial aspects 
of the laboratory and [ eld sciences (Ophir and Shapin 1991; Livingstone 1995; 
Kuklick and Kohler 1996; Smith and Agar 1998).

At [ rst sight, the history of mathematics, where disciplinary approaches have 
been dominant for so long, would seem more immune to spatial approaches than 
any other part of the history of science. What scienti[ c domain could be less 
tied to a speci[ c place than mathematics? Mathematicians only need pen and 
paper. And even those, the Bourbaki mathematician André Weil once wrote, 
could sometimes be dispensed with.2 Historians, however, have shown that the 
universality of mathematics was actually forged in large part in the nineteenth 
and early twentieth centuries (Parshall and Rice 2002). A few institutional sur-
veys underscore the imprint made on mathematics by particular institutions (the 
École polytechnique, Göttingen, the Institute for Advanced Study . . .). Even Weil 
would at times concur—if only for opportunistic reasons—that institutional his-
tories may be indispensable:

It is unthinkable that anyone would write the history of mathematics in the 20th 
Century without devoting a large portion of it either to the Institute [of Advanced Study 
in Princeton] as such, or to the mathematics which have been done here, which comes 
very much to the same thing.3

Similarly, I contend that to study the history of mathematics in the nineteenth 
century it might be useful to pay special attention to the observatory. It has 
recently been suggested that a tight focus on observatory techniques can pro-
vide new insights about the social organization of science for the nineteenth-
century state (Aubin 2002; Boistel 2005; Lamy 2007; Aubin, Bigg, and Sibum

2. ‘Let others besiege the o7  ces of the mighty in the hope of getting the expensive apparatus, without 
which no Nobel prize comes within reach. Pencil and paper is all the mathematician needs; he can even some-
times get along without these’ (Weil 1950, 296).

3. André Weil, ‘Talk to the Trustees of the Institute for Advanced Study, by Professor André Weil, April 1, 
1960’, Archives of the Institut des hautes études scienti[ ques, Bures-sur-Yvette.
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 forthcoming). Observatory techniques have been de[ ned as the coherent set of 
physical, methodological, and social techniques rooted in the observatory because 
they were either developed or extensively used there. Among them, mathemat-
ical techniques [ gure prominently. Whether concerned with astronomy, geo-
desy, meteorology, physics, or sociology, in their quest for precision observatory 
scientists were both major consumers and producers of mathematical knowledge 
and techniques. Most of the founders of the German mathematical renaissance 
around 1800 had strong ties to observatories (Mehrtens 1981, 414–415). 9 e same 
is true of other countries. Some observatory scientists, such as Pierre-Simon 
Laplace or Carl Friedrich Gauss, are even considered among the most outstand-
ing mathematicians of all time. 9 e roster of famous mathematicians who worked 
in (and oN en directed) observatories includes Friedrich Wilhelm Bessel, Nikolai 
Lobatchevski, August Möbius, Adolphe Quetelet, and William Rowan Hamilton. 
Others, like Augustin-Louis Cauchy, Karl Weierstrass, Henri Poincaré, and David 
Hilbert, were oN en passionately interested in celestial mechanics and gravitation 
theory. So, while mathematical techniques centrally belonged to the arsenal of 
the observatory, the mathematics developed to serve various observatory sci-
ences equally became prominent areas of mathematics.

9 e special relation between mathematics and the observatory—or between 
mathematics and astronomy—is of course in no way a characteristic solely of the 
nineteenth century. Recall how mathematical analysis has, since Isaac Newton’s 
time, been closely tied with the problems of celestial mechanics. I focus on the 
nineteenth century because the observatory was, at that time, the place that (as 
opposed to the Academy of Sciences earlier or the laboratory later) best embo-
died the intimate link between science, states, and societies in Europe and North 
America. I do so also because mathematics was then undergoing crucial changes 
that our look at the observatory will lead us to reinterpret in signi[ cant ways.

Indeed, we have a paradoxical view of nineteenth-century mathematics. In 
historical lectures, Felix Klein said that in earlier times ‘independent works of 
pure mathematics were overshadowed by the powerful creation in which pure 
and applied mathematics united to answer the demands of the times’ (Klein 1979, 
2). But in the nineteenth century, mathematics increasingly seemed to be split 
in two. While the use and application of mathematics went on unabated, pure 
mathematics—and especially its most abstract and foundational aspects—took 
centre stage. Mathematics took on larger and larger new territories, providing 
tools for describing, controlling, and changing the world. In the physical as well 
as in the social realm, scores of laws expressed in the forms of di\ erential equa-
tions were derived by scientists. 9 e number of phenomena that were subjected 
to precise quantitative measurement increased tremendously. In o7  ces, factories, 
army barracks, schools, and observatories, people with elementary or advanced 
mathematical skills multiplied. While the mathematical apprehension of our 
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world progressed, mathematics as an academic discipline became increasingly 
abstract. Foundational questions started to assume a primary importance for 
the professional community: ‘a revolution [ . . . ] characterized by a change in the 
ontological status of the basic objects of study’ (Gray 1992, 226). Pure mathem-
atics was detaching itself from the physical world at the very moment when it 
seemed more applicable than ever.

Most historians of mathematics have focused on the ‘revolution’ at the expense 
of the routine expansion of mathematical territories. Even when they have not, 
historians have found it di7  cult to deal with both processes at once. By focusing 
on the observatory, as a speci[ c place where mathematics was intensely used and 
produced, I hope to throw new light on those two parallel large-scale processes. 
When examining mathematical practice in observatories, the major role played 
by numbers is immediately striking. Numbers are the main mediators between 
the various parts and functions of the observatory. Faced with an ‘avalanche of 
printed numbers’ (Hacking 1990) in their practical work, observatory scientists 
developed tools and techniques that became prominent factors in both mathem-
atics’ move towards abstraction and its increasing appeal as a privileged instru-
ment for understanding nature and society.

9 ere are two aspects to my study. First, I examine the speci[ c spatial arrange-
ment of mathematical work within observatories. I want to illuminate mathem-
atical practices at this site, including its social organization. In order to do this, 
I focus on a social history of numbers, tracing their trajectory from their pro-
duction with instruments to their insertion in observatory outputs. Second, I 
consider the observatory as the locus of particular mathematical cultures, which 
had important e\ ects on the development of the [ eld. I pay particular atten-
tion to three domains of mathematics: celestial mechanics, geometry, and sta-
tistics. In other words, this paper examines [ rst the place of mathematics in the 
 nineteenth-century observatory and then resituates the observatory in the his-
tory of mathematics.4

B e place of mathematics in the observatory

‘Every part of the operations of an observatory is mathematical’, Airy wrote in 
the 1861 memo quoted above. ‘Mathematical Mechanics’ was involved in the con-
struction of all instruments. ‘9 e action and faults of telescopes and microscopes 
require for their understanding a knowledge of Mathematical Optics. Every dis-
cussion and interpretation of the observations requires Mathematical Astronomy. 

4. Computing aspects will be slightly downplayed here in order not to overlap too much with Mary 
Croarken’s Chapter 4.4 on human computers.
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9 e higher problems, such as the discovery of the elements of a comet’s orbit 
from observations, require the high Mathematics of Gravitational Astronomy.’ 
In a word, mathematics was omnipresent in the observatory.

Five years earlier, Airy had spelled out the mathematical knowledge he thought 
was indispensable at each level of the strict hierarchy he had devised for the work-
ings of Greenwich. A [ rst draN  was drawn up on 20 November, 1856 and a slightly 
revised version was adopted on 10 May, 1857.5 At the bottom of the scale, accord-
ing to this scheme, were supernumerary computers. In addition to being able to 
‘write a good hand and good [ gures’ and ‘to write well from dictation, to spell 
correctly and to punctuate fairly’, computers were to have rudimentary mathem-
atical knowledge, essentially restricted to arithmetic, including vulgar and deci-
mal fractions, extraction of square roots, use of logarithms, and the use of ±. Next 
came the Assistant, [ rst grade, who was required to read French and to under-
stand geometry (equivalent to the [ rst four books of Euclid), plane trig onometry, 
and simple and quadratic equations. Assistants, second grade—like, at the time, 
Hugh Breen (who had [ rst been hired as a teenager computer in 1839)—needed 
to read Latin and speak a little French. In mathematics, they ought to understand 
simple algebraic rules such as the binomial theorem, spher ical trigonometry, and 
di\ erential calculus (‘to Taylor’s theorem, and applications to small variations of 
plane and spherical triangles, &c.’), as well as to have some notions in integral 
calculus. Beyond pure mathematics, they should have elementary knowledge of 
mechanics and optics and be able to master applications of plane and spherical 
trigonometry to astronomy. Long-time associates of Airy’s had then achieved the 
higher level of Assistants, third grade. Supposing they conformed to the require-
ments spelled out by their boss, Edwin Dunkin and James Glaisher would then 
have understood analytical geometry, conic sections, integrations for surfaces and 
solids, advanced mechanics, optics, analytical mechanics ‘especially in reference 
to Gravitational Astronomy’. More speci[ cally, they would be conversant in the 
complete theory of telescopes and microscopes: object glasses, mirrors eyepieces, 
micrometers, etc. 9 ey would be able to apply methods for computing orbits of 
comets and planets. 9 ey should also read ordin ary German. Clearly the skills 
required to work in an observatory were many.

Airy’s memo not only sketched a relatively well de[ ned perimeter of the know-
ledge required for working in an observatory, but also set up a scale of value in 
mathematical knowledge. While analysis and mixed mathematics (mechanics 
and optics) clearly stood at the top of his scale, geometry, elementary algebra, the 
[ rst notions of calculus, and arithmetic especially, lay at the bottom. One may 
note that contemporary non-university mathematical textbooks red ected such 

5. Several slightly di\ erent copies of this memo are extent in Airy’s papers in Cambridge University 
Library. Above and in the following I quote from RGO 6/43, pp. 170–175.
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scales, paying much attention to its lower parts and almost none to the top levels 
(Rogers 1981). In such textbooks, practical astronomy rather than analysis and 
rational mechanics oN en occupied the last and more di7  cult chapters, thus being 
set up as the ultimate goal of the ‘practical mathematician’.

In addition to establishing a scale of mathematical knowledge, Airy also put 
mathematics above all the rest in a general scale of knowledge. Recognizing that 
mathematical skills were not the only ones required from an observatory assist-
ant—he cited foreign languages, ‘general or photographic chemistry’, ‘telegraphic 
galvanism’, and so on—the Astronomer Royal nonetheless insisted on the special 
value of mathematical knowledge. Routine telescopic observations, ‘which a lad 
acquires in two months, and which a man scarcely improves in many years’, Airy 
added parenthetically, required few mathematical skills. Beyond those, the oper-
ations of an observatory required one to expand one’s knowledge ‘mainly in the 
mathematical direction’.6 And this alone allowed one to rise up the hierarchy at 
the observatory. Astronomers with a more democratic bent similarly concurred 
that mathematics was what blocked the masses from familiarity with observatory 
sciences. In his public lectures, the director of the Paris Observatory François 
Arago (1836) tried to introduce the subject without using advanced mathem-
atics. Like him, Alexander von Humboldt, John Herschel, Auguste Comte, and 
Laplace were much praised for presenting the public with treatises that circum-
vented mathematical technicalities.

But, as Yves Gingras (2001) has shown, mathematization also had an import-
ant social role as a technology demarcating insiders from outsiders (on this point, 
see also Scha\ er 1994a). Over the course of the nineteenth century, dozens of new 
observatories were set up all over the world and the number of sta\  working in 
major national observatories increased signi[ cantly. Cond icts over the best ways 
to organize collective work inevitably arose. During the French Revolution, obser-
vatories in Paris were placed under the direction of the Bureau of Longitudes, a 
collegial body of astronomers, mathematicians, seamen, and instrument  makers 
specially set up for that purpose. Others opposed the view that collegiality 
would ensure that national observatories carried out their regular tasks prop-
erly. In the early twentieth century, the American astronomer Simon Newcomb 
drew the  following lesson from those discussions: ‘9 e go-as-you-please system 
works no better in a national observatory than it would in a business institu-
tion’ (Newcomb 1903, 332). More than a century earlier, in a memoir presented 
to the Revolutionary Comité de Salut Public (Committee of Public Salvation) in 
June 1793, the former head of the Paris Observatory Jacques-Dominique Cassini 
had similarly explained why, as far as the working of an observatory was con-

6. Airy, ‘Remarks on the neglect’ (note 1), RGO 6/43, pp. 235–236.
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cerned, he thought it necessary to go against the Republican principle of ‘sacred 
equality’:

In astronomy, one distinguishes between the astronomer and the observer: the former is 
the one who embraces this science as a whole, who knows the facts, the data, and draws 
results from them. 9 e observer is the one who is more speci[ cally devoted to obser-
vation; he only needs to have good eyes, skill, strength and a lot of energy.7 (Cassini 
1810, 207)

At the Paris Observatory as at any national observatory, Cassini went on, a 
director was needed pour la même raison que l’on place un pilote dans un vais-
seau, un chef dans un bureau ‘for the same reason one places a pilot on a ship, 
a supervisor in an o7  ce’ (Cassini 1810, 206–207). 9 ere were a whole range of 
observations that needed to be carried out regularly and without interruption. 
While young observers could be found with enough zeal to ful[ l this task, an 
experienced astronomer was needed to direct them. His special task would be 
not only to oversee the work of the observers but also to compile their results in 
general annual publications, presenting not simply gross observations but nicely 
reduced ones seamlessly woven into un narré instructif de l’histoire et des progrès 
de l’astronomie ‘an instructive narrative of the history and progress of astron-
omy’ (Cassini 1810, 207).

In this context, exceptional mathematical skills were oN en singled out as those 
most likely to determine who would make a good observatory director. In the 
memos quoted above, Airy underscored his opinion that mathematical know-
ledge was what counted most to head an observatory. As an enticement for study-
ing abstract mathematics, he wrote that the ‘acquisition of these attainments 
would be at least as valuable to the Assistants (particularly if opportunities of 
quitting the Observatory should occur) as to the Observatory’. Later, especially 
aN er the emergence of astrophysics in the second half of the century, other types 
of skill seemed at least as important as mathematics for rising to the directorship 
of an observatory. But, as is well known, mathematics never completely lost its 
prominence as a tool for social selection.

9 e nineteenth-century observatory was a place where the quantitative spirit 
was valued most highly. Astronomy in particular was la science où l’on rencontre 
de plus fréquentes occasions de faire des calculs longs et compliqués ‘the science 
where one has most frequently the occasion to carry out long and complicated 
computations’ (Francœur 1830, vii). While Gauss’s love of numerical  calculation 

7. On distingue en astronomie l’astronome et l’observateur: le premier est celui qui embrasse l’ensemble de 
cette science, qui en connaît et approfondit toutes les théories, rassemble et compare les faits, les données, et 
en tire les résultats. L’observateur est celui qui se livre particulièrement à l’observation; il lui su7  t d’avoir de 
bon yeux, de l’adresse, de la force et beaucoup d’activité.
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is legendary (Bourbaki 1994, 153), Airy is also known to have had a special 
 obsession with quantitative results. His son Wilfrid once recalled:

He was never satis[ ed with leaving a result as a barren mathematical expression. He 
would reduce it, if possible, to a practical and numerical form, at any cost of labour: and 
would use any approximations which would conduce to this result, rather than leave the 
result in an unfruitful condition. He never shirked arithmetical work: the longest and 
most laborious reductions had no terrors for him, and he was remarkably skilful with 
the various mathematical expedients for shortening and facilitating arithmetical work of 
a complex character. 9 is power of handling arithmetic was of great value to him in the 
Observatory reductions and in the Observatory work generally. (Airy 1896, 7)

9 e observatory indeed was a true factory of numbers and, as such, it needed 
competent people able to withstand the ‘avalanche’. Simon Scha\ er (1988) and 
Robert Smith (1991) have debated the most proper metaphor to describe the 
observatory—the factory or the accounting o7  ce. What is more signi[ cant to us 
right now is that the production and treatment of numbers on a massive, ‘indus-
trial’ scale was observatory scientists’ main business over most of the nineteenth 
century. And this implied forms of social organization that put mathematics at 
the centre of observatory scientists’ practices (see also Ashworth 1994; 1998). But 
which part of mathematics?

A factory of numbers

At the end of the eighteenth century, it appeared clear that an astronomical obser-
vatory should be built around its instruments and that the most important of 
them should generate numbers, accurate numbers. On ne peut s’occuper de la dis-
tribution d’un Observatoire qu’après avoir F xé le nombre, la grandeur, la forme et 
l’usage des instruments dont on se propose de le meubler. ‘9 e proper distribution 
of an observatory can only be addressed aN er the number, size, shape and use of 
the instruments intended for it has been [ xed’ (Cassini 1810, 74). While some of 
those instruments were portable, others needed to be precisely and [ rmly posi-
tioned in a well-designed, controlled environment. Astronomers in Paris always 
complained that their observatory, built by Claude Perrault around 1667, was too 
monumental for this purpose. In a memoir he wrote to make explicit the demands 
an astronomer wished to place on architects eventually engaged designing a new 
observatory, Cassini insisted on two special types of telescope, respectively called 
the transit instrument and the mural quadrant (or circle) (for a detailed architec-
tural memoir on how to design an observatory around 1800, see Borheck 2005).

Both instruments consisted in a combination of telescope and graduated limb, 
and both were used in conjunction with other instruments (Chapman 1995). Fixed 
to a wall precisely oriented along the North–South line, the mural quadrant was 
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usually larger and more [ nely graduated than the transit instrument. On a quad-
rant, special microscopes on the limb and wire nets, called micrometers, enabled 
a more precise reading of the graduations. Transit instruments were used together 
with highly precise astronomical clocks. While the former combination of instru-
ments was used to determine the right ascension of a star or planet above the celes-
tial equator, the second measured the exact time at which it crossed the meridian.

Using mural quadrants and transit instruments, both angular coordinates of 
a celestial body at a speci[ c moment could therefore be measured to a remark-
able degree of precision. In the eighteenth century, graduation had been improved 
by a factor of 200, from 20 seconds to a tenth of a second, and progress over the 
nineteenth century was no less spectacular (Frangsmyr et al 1990, 6). Achromatic 
lenses and clock regulators further improved the precision of the measurements 
made in observatories. In the [ rst half of the nineteenth century, quadrants and 
transit instruments were combined and signi[ cantly transformed by German 
instrument makers (Chapman 1993), but the telescope’s function as observatory 
scientists’ main purveyor of numerical data was unchallenged until the last dec-
ades of the century brought the advent of photography, polarimetry, and spectros-
copy. At the transit instrument, the astronomer ‘listens in silence to the ticking 
of the clock, and [ . . . ] notes exactly the hour, minute, second, and fraction of a 
second when the star passes each wire’ in the telescope (Biot 1810–1, I 55). In the 
dark, the observer at his eyepiece jotted down a few numbers on a paper slip (Lesté-
Lasserre 2004). From then on, those numbers would be copied into large regis-
ters, preserved for centuries, averaged, combined with scores of other numbers, 
and transformed through various computational procedures, tabulated, printed 
in large folio volumes, distributed across the globe, and eventually picked up by
seamen or theoreticians.

While meridian observations, even routine ones, required great manual skill, 
the level of mathematical sophistication involved at each step of these processes 
varied greatly. Barely literate teenagers could spend weeks ticking each number 
in long columns just to make sure that no mistake was made when they were cop-
ied from one register to another. But reductions were not trivial computations. 
In fact it was argued that since the reduction of other people’s observations only 
inspired ‘boredom and disgust’, it was the observers’ task to ‘compute’ their own 
observations: ‘being the only one to know well the circumstances that go with 
them, he knows more than anyone else how to choose those that are most trust-
worthy’ (Cassini 1810, 190). 9 is is why any observatory scientist needed to be at 
least conversant in mathematical techniques.

9 e mathematical treatment of data served various purposes. Raw data was of 
little use to the outside community. Reductions made observations at di\ erent loca-
tions and times comparable with each other. Because a variety of factors a\ ected 
the interpretation of data, that data was corrected using various mathematical 



geographies and cultures282

algorithms. Corrections increased the precision of the observation, for example 
by taking into account d aws in the construction or alignment of the telescope, 
by compensating for di\ erences in individual perception (the personal equation), 
or by compensating for aberration (itself dependent on the angle of observation, 
but also on temperature and atmospheric pressure at the time of measurement). 
Logarithms were said to be artiF ce admirable qui, en abrégeant les calculs, étend 
pour ainsi dire la vie des astronomes (comme) le télescope avait aggrandi (sic) leur 
vue ‘admirable arti[ ce that, by shortening computations, extends astronomers’ 
lives (just as) the telescope has increased their sight’ (Biot 1803, 26).

In this sense, mathematics was therefore just another instrument in obser-
vatory scientists’ panoply.8 As such, mathematics was accordingly taken into 
account in the spatial arrangement of observatories. At Greenwich, around 1850, 
it was highly symbolic that, between the transit room, where most transit obser-
vations were made, and the east room, previously devoted to Bird’s now derelict 
quadrant and where jotting books and correspondence were stored, stood the 
computing room—‘the grand scene of labour of the whole Observatory’:

It is only by exception that the astronomer or his assistants are to be found using the 
instruments, even during the regular hours of observatory work; but they are nearly sure 
to be found assembled in the Computing Room, busied, at di\ erent tables, with their 
silent and laborious tasks,—the assistants on watch turning an eye now and then to a 
small time-piece which regulates their task of allowing no celestial object of consequence 
to pass the meridian unobserved. (Forbes 1850, 449)

Produced in the transit room and stored in the east room, observatory num-
bers were processed in the computing room located between them. Besides tele-
scopes, there was a wide variety of instruments (thermometers, barometers, 
magnetometers, polarimeters, and so on), which, alone or in conjunction with 
clocks, also gave out numbers. In the natural history of numbers churned out by 
observatories, the operations carried out in the computing room were therefore 
crucial mediating steps between the instruments producing the numbers and the 
outside consumers of these numbers.

Prior to the 1830s, the proportion of published numbers with respect to over-
all production was rather small. When published, numbers oN en played a part 
in narratives that underscored di7  culties encountered (Terrall 2006). As pub-
lication became an indispensable part of the public observatory’s mission, the 
labour that went into preparing such publications was increasingly erased. When 
Airy endeavoured to make old Greenwich observations public, he coped with the 
amount of work involved neither by relying on mathematical innovations nor 
by having recourse to technical advances (contrary to Charles Babbage’s hopes, 
see Scha\ er 1994b), but by organizing work hierarchically. A senior wrangler at 

8. A similar argument is made by Switjink (1987) without making explicit what is owed to observatory 
culture.
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Cambridge, Airy owed much of his professional success to his mathematical tal-
ents, and these he attributed in large part to his ‘high appreciation of order’. He 
sometimes went as far as to consider mathematics ‘as nothing more than a system 
of order carried to a considerable extent’ (Airy 1896, 6). For reducing the lunar 
and planetary observations of his predecessors, the Astronomer Royal designed 
several printed skeleton forms which were used by lower level sta\  to carry out 
computations. Mathematical operations involved in data reductions were there-
fore for the most part reduced to elementary operations. 9 ey mainly consisted 
in carrying out additions and subtractions in decimal and sexagesimal forms, 
and in using numerical tables. Mathematical tasks were split in two: the execu-
tion of computations was rendered as mechanical as possible, while the algorith-
mic part of the work—deciding on the computations that needed to be done and 
in what order—remained the Astronomer Royal’s responsibility.

In the nineteenth century, observatory mathematics was therefore character-
ized by the same paradox as the one already mentioned for the whole of mathem-
atics. Obsessively quantitative, it nevertheless put non-numerical practices at the 
top of its hierarchical scale. Publications streaming out of observatories spread 
were over[ lled with numbers. 9 is type of production was a tremendous boost to 
the widespread di\ usion of mathematical practices not only among physicists and 
statisticians, but also among craN smen (such as instrument and clock makers), 
military o7  cers, and seafarers. Nevertheless, forced to manipulate great quan-
tities of numbers, observatory scientists became famous, won prizes and medals, 
and were elected to academy seats not because of their computations but for the 
ingenious ways they devised for avoiding them. ‘To the astronomer’ belonged the 
task of ‘looking for ways to shorten [computations], since by his constant prac-
tice, he is better placed than anyone to perceive the shortcomings of methods 
and resources to be drawn on to make them more bearable’ (Delambre 1810, 
100).9 9 ese methods also played a role, which remains to be studied carefully 
by historians, in widening the number of mathematically literate people in the 
nineteenth century. We will now examine in more details the various  methods 
they developed, by focusing on a few famous instances where observatory math-
ematics had a great impact on the [ eld as a whole.

B e observatory in the history of mathematics

Up until the end of the eighteenth century, it went without saying that astronomy 
had its place in any book on the history of mathematics. Mathematics and astron-
omy were so close to one other that they were for all purposes united.

9. C’est à l’astronome à chercher les moyens de les abréger, puisque, par un usage continuel, il est plus à 
portée que personne d’apercevoir les inconvéniens des methods, et les ressources qu’on peut avoir pour le 
rendre plus supportables.
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An astronomer, in order to be skilful, must be a Geometer [that is, a mathematician]; a 
Geometer, to deal with grand topics, need to have some of the Astronomer’s knowledge. 
[ . . . ] 9 e Astronomer in his observatory, the Geometer in his cabinet—this is always the 
same man who observes and meditates, who applies to the heavens either his senses or 
his thought. (Bailly 1785, III 208)

As James Pierpont’s address to the Saint-Louis International Congress attests, by 
1904 the situation had completely changed. As the title of this talk made explicit, 
‘the history of mathematics in the nineteenth century’ could now be written by 
focusing exclusively on the pure domain (complex variables, algebraic functions, 
di\ erential equations, groups, in[ nite aggregates, non-Euclidean geometry, and 
so on) without even mentioning applications, let alone the observatory sciences.

Meanwhile it seemed that ‘mathematics [had] separated from astronomy, geo-
desy, physics, statistics, etc.’, a fact that Klein (1979, 3) attributed to the profes-
sionalization and specialization of the sciences that were consequences of the 
social and cultural upheavals unleashed by the French Revolution. 9 e increasing 
autonomy of the mathematical [ eld, as well as the growing number of mathem-
aticians earning a living as teachers, had important e\ ects in shaping the evo-
lution of the [ eld towards foundational and structural aspects of mathematics 
(Mehrtens, Bos, and Schneider 1981). Nevertheless, for most of the nineteenth 
century the observatory remained one of the central scienti[ c institutions of 
every nation that wished to be called ‘civilized’. It was, as we have seen, a place 
where mathematics was its workers’ daily bread. 9 at observatories went on to 
play major roles in the development of the physical and mathematical sciences 
therefore comes as no surprise.

9 e question, however, is whether observatory mathematics leN  a speci[ c 
imprint on nineteenth-century mathematics. In this second section, I would like 
to suggest that the ‘values of precision’ (Wise 1995) so dear to observatory culture 
had in fact everything to do with some of the evolutions of mathematics in that 
period. In 1846, the alliance between precise observation and precise computation 
was fully realized when it became possible to predict the presence of a missing 
planet just by taking into account anomalies in the orbit of its neighbour. Urbain 
Le Verrier and John C Adams acquired instant universal fame when they com-
puted the orbit of Neptune to explain why Uranus was deviating from the orbit 
assigned by Newton’s gravitational theory. 9 e uncanny [ t between theory and 
observation was a product of the extreme precision that characterized observa-
tory culture. In the second half of the nineteenth century, con[ dence in the value 
of Newton’s law of gravitation, in observational accuracy, and in the analytical 
methods brought to perfection by Laplace (the so-called ‘French Newton’), was 
so high that some astronomers actually spent decades of their lives computing 
numerical tables, developing a single function, or trying to determine the value 
of a single number such as the solar parallax (Aubin 2006). If a discrepancy was 
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found, instruments, theory, or both were usually blamed. Other times, extreme 
precision also provided a test for the e7  ciency of mathematical methods them-
selves, and even for the soundness of the foundations of mathematics.

In the following I will use an abundant secondary literature to discuss three 
famous instances where observatory culture seemed to be pushing known math-
ematics to its limits with considerable impact on its future development: (1) Gauss 
and non-Euclidean geometry; (2) Quetelet’s uses of statistics and his theory of the 
average man; and (3) Poincaré’s solution to the three-body problem. All three epi-
sodes have given rise to controversies among historians, and underscore the di7  -
culty of discussing the relationship between mathematical innovations and their 
social environments. My claim is that by considering each of these contributions 
as anchored in observatory culture, we may gain insight into how conceptions of 
space, time, and society are related to the foundations of mathematics.

Geodesy, geometry, and the concept of space

9 ere has been much debate about the exact relationship between Gauss’s unpub-
lished anticipations of non-Euclidean geometry and the commission he received 
in 1820 to carry out the geodetic survey of the state of Hanover. Director of the 
Göttingen Observatory since 1807, Gauss was a natural choice for this task. For 
most of the eighteenth and nineteenth centuries, geodesy was closely associated 
with observatories, since the precise measurement of the earth and that of the 
heavens were interdependent. Careful astronomical observations of [ xed stars 
were crucial in any geodetic survey, while it had always been important for the 
purpose of comparing observations to know the exact geodetic position of obser-
vatories with respect to one another. In the early nineteenth century, moreover, 
the skills needed to carry out a geodetic survey were close to those developed in 
observatories. 9 e lengthy trigonometric computations involved were exactly of 
the type observatory scientists were well equipped to carry out, intellectually as 
well as materially. When repeating circles and theodolites were introduced to geo-
detic practice, the observatory scientist’s special skill with the telescope became 
so indispensable that, even in the turbulent times of the French Revolution, only 
astronomers could be sent out, at great risk to themselves, to survey the country 
from Dunkirk to Barcelona (Adler 2002).

Gauss’s correspondents, however, thought that the director of the Göttingen 
observatory could have made better use of his precious time than to spend days 
and nights crisscrossing the countryside for up to six months a year. His friends’ 
and colleagues’ opinions notwithstanding, Gauss seems to have relished this 
exercise in high numerical and instrumental precision. In September 1823, to 
link up his triangulation of Hanover with existing ones to the east and the south, 
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Gauss, together with Christian Ludwig Gerling, measured the angles of a large 
triangle between Brocken, Hohehagen, and Inselsberg (BHI). Since that time, it 
has oN en been said that Gauss undertook the task just to be able to check whether 
the sum of the angles would add up to 180°, as expected in Euclidean geometry 
(Miller 1972).

9 e claim that Gauss made this measurement only to test Euclidean geometry 
is of course ludicrous. But a detailed examination of his geodetic work concluded 
that Gauss was bothered enough by the axiom of parallels to bring it up in fre-
quent conversations, sometimes making mention of this large triangle: ‘9 e myth 
of the BHI triangle as a deliberate test of Euclidean geometry appears a fanciful 
embroidery upon indubitable fact, encouraged possibly by reports made by Gauss 
in his inner circle’ (Breitenberger 1984, 289). 9 e precision of Gauss’s trigono-
metric surveys was indeed extraordinary (Scholz 2004). In other contemporary 
surveys (that of Baron von Krayenho\  in the Dutch Counties, for instance) the 
error in closing triangles was oN en of the same order of magnitude as the correc-
tion that needed to be made to account for the curvature of the earth’s surface. 
In Gauss’s survey, however, the closing error was smaller than the latter correc-
tion. In this context, Scholz wrote, it was imaginable for Gauss to provide a lower 
bound for the curvature of physical space, although he never expressed it that 
way—and for good reason, if we are to follow Gray (2006), since we have no indi-
cation that the key concepts of three-dimensional Euclidean geometry were ever 
truly achieved by Gauss.

If one had no need for non-Euclidean geometry to carry out a precise geodetic 
survey, nor did one need to be immersed in the tedium of measuring angles in the 
[ eld to breed doubts about the validity of the parallel postulate, the fact is that to 
discover—or invent—non-Euclidean geometry one needed to spend much time 
developing a logically coherent edi[ ce, not checking whether numbers added up. 
Mathematicians who were versed in observatory techniques knew only too well 
that absolute precision was not achievable. But they were also acutely aware of 
whether errors were signi[ cant or not. In his geodetic survey (as well as in his 
magnetic experiments, see Aubin 2005), Gauss used observatory precision tech-
nologies to extend the limits of what could be explained mathematically.

Indeed, what may be more signi[ cant for the invention of non-Euclidean 
geometry is the realization that physical and mathematical spaces need not coin-
cide. Neither Girolamo Saccheri, Johann Heinrich Lambert, nor Adrien Marie 
Legendre, who had tried to show before Gauss that contradicting the parallel pos-
tulate led to inconsistencies, ever harboured doubts about the fact that they were 
working with physical space (Alexander 2006). By contrast, having served as head 
of the observatory in Kazan, Lobatchevski thought that the nature of phys ical 
space could be tested by precisely measuring the angles of a large stellar triangle. 
An alumnus of the Royal Engineering College in Vienna and a sub-lieutenant in 
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the army engineering corps, Janós Bolyai was certainly familiar with geodetic 
techniques. When a correspondent of Gauss’s, Ferdinand Karl Schweikardt, came 
up with the basic idea of a geometry where the sum of the angles of a triangle was 
not equal to 180°, he named it ‘astral geometry’, because he conjectured that one 
might be able to observe this departure from Euclidean geometry in triangles 
drawn in the heavens between stars. It is also highly signi[ cant that despite his 
qualms Gauss expressed his ideas about non-Euclidean geometry quite freely to 
other observatory directors such as Bessel and Schumacher.

To the scientist working in the observatory and in the [ eld, the di\ erence 
between physical and mathematical space perhaps went without saying. To illus-
trate the way in which observatory scientists might be drawn to special ideas 
about space, let me quote from Emmanuel Liais, the French astronomer who 
founded the Rio de Janeiro Observatory and extensively surveyed Brazil:

In 1862, I was travelling through the Brazilian campos [ . . . ]. Constantly admiring the 
various but inde[ nite panoramas in front of me, my thoughts inexorably driN ed towards 
immensity and my attention was caught by our ideas relative to space [l’espace]. [ . . . ] 
From the physical point of view, space indeed is another thing than from the point of 
view of mathematics.10 (Liais 1882, 6–7)11

Liais went on to explain that physical space had many more properties than 
mathematical space, that even the fact that it could be measured away from 
the earth was debatable and that mathematical space was a mere abstraction. 
Experience of space in the Brazilian wilderness or on top of German hills was 
certainly di\ erent to experiencing it in one’s armchair. With theodolites, clocks, 
and numbers, observatory scientists constructed spatial networks. In these net-
works, observatories were crucial nodes that Bruno Latour (1987) has, for good 
reason, called ‘centres of calculation’. Observatory scientists were thereby recon-
structing phys ical space in a manner that went hand in hand with the recon-
struction of the mathematical concept of space.

Quetelet and statistical thinking

From the perspective of the conceptual history of mathematics, the geodetic 
exper ience is less signi[ cant as an inspiration for non-Euclidean geometry than 

10. En 1862, je circulais dans les campos brésiliens ( . . .). En voyant continuellement des tableaux variés 
mais indé[ nis se succéder, ma pensée se reportait invinciblement vers l’immensité, et mon attention se [ xait 
sur nos idées relatives à l’espace. ( . . .) L’espace, en e\ et, au point de vue physique est autre chose qu’au point 
de vue mathématique.

11. Although this comment was made long aN er Gauss’s measurement, it is roughly contemporary with 
Bernhard Riemann’s famous Habilitation lecture that brought non-Euclidean geometry to a large public 
(Gray 2005).
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as a [ eld where the least-square method was directly and systematically applied, 
in particular by Gauss (Rondeau Jozeau 1997). If errors in measurement were dis-
tributed according to the bell curve, Gauss showed that the most probable value 
for the ‘true measure’ was the mean value. In the history of statistics, observatory 
scientists are quite prominent (Sheynin 1984; Stigler 1986; Porter 1986; Armatte 
1995; Desrosières 1998). But pride of place is oN en given to Quetelet, whose work, 
it was claimed, ‘helped create a climate of awareness [ . . . ] that was to lead to truly 
major advances in statistical methods’ (Stigler 1986, 215). With his book On man 
(1835), Quetelet tried to develop statistical methods in order to found sociology. 
As such, it was a major step in the development of mathematical tools for the social 
sciences, as well as in the design of general strategies for making mathematics rele-
vant to the social realm. As the founding director of the Brussels Observatory, 
Quetelet drew extensively from an array of analogies he found in his daily practice. 
He introduced the central concept of the ‘average man’ as the formal analogue of 
the average position of a star deduced from several measurements. 9 e distinction 
made by Laplace in the study of planetary motion between periodic and secular 
motion was also mobilized in Quetelet’s work on social phenomena.

My claim is that Quetelet’s debt to observatory culture is perhaps less deep 
but much wider than historians have usually been willing to admit. While his-
torians have fallen prey to the temptation of over-interpreting the meaning of 
his formal analogies, they have neglected to consider the full range of observa-
tory techniques he drew on. In the domain of number manipulation, especially, 
Quetelet mobilized the whole array of table construction, averaging, corrections, 
and data standardization. Observation was also organized in ways taken from 
observatory culture, with standardized instruments distributed across a network 
of trained observers. In my view, Quetelet therefore had ambitions to understand 
and perhaps manage the sublunar world (meteors, the weather, plants, animals, 
and humans) by applying to it the observatory techniques that helped to under-
stand and manage time and space.

9 e heuristic value of analogies with celestial mechanics [ rst occurred to him 
at the time of Belgian independence in 1830. He later explained the growing 
importance such analogies would assume for him:

At a time when passions were vividly excited by the political events, I sought to distract 
me by establishing analogies between the principles of mechanics and what was happen-
ing in front of my eyes. 9 ese rapprochements I had made without at [ rst attributing 
more value than to a spiritual game later came to take the character of truth.12 (Quetelet 
1848, 104)

12. Dans un moment où les passions étaient vivement excitées par les événements politiques, j’avais cher-
ché, pour me distraire, à établir des analogies entre les principes de la mécanique et ce qui se passait sous mes 
yeux. Ces rapprochements que j’avais faits, sans y attacher d’abord plus de valeur qu’à un jeu de l’esprit, me 
parurent ensuite prendre le caractère de la vérité.
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9 is retrospective account is corroborated by several other documents, such 
as the letter Queletet sent to the minister Sylvain Van de Weyer on 22 August 
1834:

9 e most interesting part of my work will be, I think, the theory of population. I was able 
to import it entirely into the domain of the exact sciences [ . . . ]. 9 e great problems of 
population motion will be as solvable as those concerning the motion of celestial bodies; 
and what is most remarkable is the astonishing analogy that exists between the formulas 
that are used for the computations. I think I have partly realized what I have been say-
ing for a long time about the possibility of making a social mechanics, just as we have a 
celestial mechanics.13 (quoted in Delmas 2004, 57–58)

In his unpublished thesis, Michel Armatte (1995) also quoted portions from 
this interesting letter and discussed the way its author was clearly conscious of 
the analogical transfer of methods from celestial mechanics that he was operat-
ing. 9 e question is: what exactly was transferred and how? At the conference 
organized for Quetelet’s bicentennial in 1996, the historian of statistics Stephen 
M Stigler (1997) opposed the received wisdom according to which it was neces-
sary to insist on Quetelet’s astronomical training in order to understand the intel-
lectual sources of his social thinking. Canonical thinking was that Quetelet had 
sought to repeat in the social sphere what Newton had achieved for the planet ary 
spheres. Stigler thought that this was ‘misleading’:

9 e problem, as I see it, is that astronomy, as it was conceived in the 1820s, encompassed 
a much richer variety of mathematical and empirical problems that can be captured by 
any simple description; certainly it was much more than Newtonian or Laplacian celes-
tial mechanics. It is quite proper to associate Quetelet with astronomy, but with which 
part?

9 e solution o\ ered by Stigler deserves a closer look. According to him, Quetelet 
was neither the mechanician, nor the physicist, nor even the astro nomer of the 
social, but its ‘meteorologist’. It is true that at the Brussels observatory, which for 
many years lacked proper instruments, Quetelet spent as much—if not more—
time working in meteorology and climatology than in either astronomy or the 
social sciences. He moreover published several books on Belgian meteorology and 
climatology compared to that of the world. But his scienti[ c practice was intim-
ately linked with the site he was establishing, that is, an observatory. To Quetelet, 
as far as scienti[ c practice went, the meaningful category was not astronomy, 

13. La partie la plus curieuse du travail sera, je crois, la théorie de la population. Je suis parvenu à la 
 transporter entièrement dans le domaine des sciences exactes ( . . .). On pourra résoudre les grands problèmes 
des mouvements de population comme ceux des mouvements des corps célestes ; et ce qu’il y a de plus remar-
quable, c’est l’étonnante analogie qui existe entre les formules qui servent à ces calculs. Je crois avoir réalisé 
en partie ce que j’ai dit depuis longtemps sur la possibilité de faire une mécanique sociale comme ĺ on a une 
mécanique céleste.
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physics, or meteorology, but the observatory sciences. And while the misconcep-
tion that astronomical practice in the 1820s could be reduced to Laplacian celes-
tial mechanics has been a block to a proper understanding of Quetelet’s thinking, 
there is no doubt that, for someone like Quetelet, underestimating the unity of 
the observatory sciences and overvaluing disciplinary boundaries would not be 
of much help either. Like many of his colleagues and correspondents in obser-
vatories around the globe, Quetelet was not set on enlar ging the dominion of 
Laplacian determinism. Rather, he was trying to adapt what he perceived as a 
coherent set of knowledge and techniques that characterized the practice of the 
observatory sciences to the needs of the world outside the observatory, whether 
physical or social.

Quetelet’s practice in the social sciences is characterized by a strong faith in the 
quanti[ cation of the sciences. One should remember here that the quanti[ cation 
of statistics—that is, the ‘science of the state’, as it was still understood etymo-
logically—was no trivial business and faced [ erce resistance (Quetelet 1830). To 
him, numbers seemed more objective, less controversial, and less prone to betray-
ing political and ideological a priori opinions than other types of description (on 
the history of objectivity, see Daston and Galison 1992). But Quetelet could draw 
on the observatory tradition for material and conceptual techniques to manipu-
late numbers in large quantities. Tables, equations, averaging, and graphical tools 
all [ gure prominently in his social physics, as well as probability theory.

In the 1830s and 1840s, Quetelet’s network of collaborators in the physical 
and in the social sciences, in Belgium and abroad, expanded steadily. Standard 
instruments were distributed, procedures were shared. By mid-century, it seemed 
clear that greater coordination was needed. In 1853, Quetelet welcomed two 
inter national congresses to Brussels, within two months of one another. 9 e [ rst 
was devoted to navigation and climate science, under the inspiration of Admiral 
Matthew Fountain Maury, the head of the US Naval Observatory, while the second 
founded a series of International Statistical Congresses that is uninterrupted to 
this day. In both cases, the ideals of the observatory sciences were held in high 
respect. 9 e aim was to set up vast instrumental networks covering the whole 
globe and churning out standardized numerical data. Historians have shown the 
major impact of this vision on the future development of mathematical statistics 
as well as the social sciences (Armatte 1995; Desrosières 1998).

In this story, the powerful ind uence of observatories would quickly wane. 
Quetelet’s role in the history of mathematics was therefore not so much to use 
astronomical analogies at a conceptual level, as it was to adapt the very wide 
arsenal of tools he had found and developed in the observatory tradition in order 
to make them pertinent to the sciences of man. In so doing, he mobilized prob-
ability theory to an extent rarely done before by physical scientists, leading to 
important innovations by James Clerk Maxwell and Ludwig Boltzmann, who 
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set out the foundations of statistical physics (Porter 1986). Similarly, this use of 
statistical and probabilistic tools led to the further development of mathemat-
ical statistics (Stigler 1986; Hacking 1990). As the nineteenth century unfolded, 
it became less and less a characteristic of the observatory to insist on the pre-
cise production of numbers, while the mathematical techniques developed for 
manipulating data were increasingly used outside the observatory. Mathematical 
statistics was no longer typically associated with the observatory (though some 
observatory scientists did contribute to it). But, signi[ cantly, it was again through 
the exact quantitative confrontation of mathematics with observations that tech-
niques were developed for standardizing data on an international scale. Numbers 
extended their empire to society and, by the same token, so did the mathematical 
techniques for producing and manipulating numbers (Porter 1995).

Poincaré, analysis, and celestial mechanics

International congresses similar to those Quetelet presided over in Brussels—
the Congress for establishing a Prime Meridian, in Washington in 1882, the 
Geodetic International Conference in Rome in 1883, the Solvay Congresses, and 
so  on—loom large in Peter Galison’s account of the origins of relativity theory 
(2003). 9 e close alliance of precision technology (clocks, telegraphs, and the-
odolites) with numerical precision, in short everything I have associated with the 
observatory culture of the early nineteenth century, are described as the basis for 
the material cultures of Albert Einstein and Henri Poincaré. At the beginning 
of the twentieth century, they had independently developed similar ideas about 
time and space—although claims in favour of Poincaré’s contributions to rela-
tivity theory have been greatly exaggerated (Gingras 2007). But a clerk in a Bern 
patent o7  ce could not see things identically to someone sitting on various coun-
cils and bureaus. 9 e worldview of a young theoretical physicist in the German 
cultural sphere was di\ erent from that of an established professor of mathemat-
ics, physics, and mechanics at the Sorbonne.

What Poincaré’s story illustrates well in my opinion is that the extreme preci-
sion of observatory science provided incentives to re-examine the inner workings 
of its mathematical technologies. Poincaré had no intention of revolutionizing 
physics or mathematics. Instead of questioning Newtonian tenets, he wished 
to [ ll the blanks in the picture. In the process, he developed his own philoso-
phy of science, conventionalism. Conventionalism proposes that the statements 
with which we choose to express the laws of physics, mechanics, and astronomy 
are used not because they are real but because, due to their simplicity, they are 
the most convenient we can think of. 9 is was a very di\ erent attitude from 
Einstein’s, who thought that new principles were needed to replace old ones. 
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In Galison’s assessment, there thus was a form of ‘optimistic modernism’ in 
Poincaré’s conventionalism.

Lately, our understanding of Poincaré’s work has had to be reconsidered. One 
reason has been the recent discovery of an error he made. In 1889, he submitted 
a fundamental essay to a prize competition organized by Gusta Mittag-Le¡  er 
on the three-body problem. When Edvard Phragmén started to edit the paper 
and found the error, Poincaré was devastated. Reworking the argument, he was 
led to discover ‘homoclinic’ points, ‘the [ rst mathematical description of chaotic 
motion in a dynamical system’ (Barrow-Green 1997, 71).

As opposed to the [ rst draN  of Poincaré’s prize-winning essay, which ‘conveys 
a sense of optimism about the ultimate resolution of the problem’, the tenor of 
the second draN  was ‘quite di\ erent: the future progress of the problem has lost 
its air of inevitability’ (Barrow-Green 1997, 75). ‘Chaos’ is of course the second 
reason why Poincaré’s work is now seen in a di\ erent light (Aubin and Dahan-
Dalmedico 2002). While some scientists and popularizers have hailed chaos as a 
new scienti[ c revolution—the third of the century aN er relativity and quantum 
mechanics—others pointed out that it had [ rst been explored towards the end of 
the nineteenth or the beginning of the twentieth century (Hirsch 1984; Diacu and 
Holmes 1996). Most people, however, have agreed on one point—namely, that a 
new look at many parts of Poincaré’s work (his memoirs on curves de[ ned by dif-
ferential equations, his study of the three-body problem in celestial mechanics, 
his pioneering work in dynamical systems theory and topology, his contributions 
to ergodic theory, and so on) played crucial parts in the emergence of chaos the-
ory in the mid-1970s. While it is no doubt true that Poincaré’s work foreshad-
owed concerns, and introduced key concepts and methods used in chaos theory, 
it is hard to explain why the great burst of activity only took place several decades 
aN er his death. 9 is problem has given rise to various attempts to account for this 
‘nontreatment’ (esp. Kellert 1993), but most have eschewed the admittedly ardu-
ous task of placing Poincaré among contemporary observatory scientists.

When he submitted his paper in 1889, Poincaré was not directly involved with 
the observatory.14 But through his training at the École polytechnique he was 
fully aware of its scienti[ c culture and trained in the use of theodolites and of the 
least-square method. Poincaré shared with Cauchy, Le Verrier, and Weierstrass 
a strong interest in the problem of the stability of the solar system. Further, his 
main sources very much belonged to the observatory: Hugo Glydén was director 
of the Stockholm Observatory; Andres Lindstedt had observed at Hamburg and 
Dorpat; George W Hill worked for the US Nautical Almanac O7  ce.

14. Poincaré was nominated as a member the Bureau of Longitudes in 1893, joined the editorial board of 
the Bulletin astronomique published by the Paris Observatory in 1897, and the Paris Observatory Council in 
1900.
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A source for Poincaré’s optimism may be found in observatory culture. Although 
the social history of celestial mechanics in the nineteenth century remains to be 
written, there is little doubt that it constitutes one of the most optimistic branches 
of science at a time when there was particular optimism about science. AN er the 
discovery of Neptune, the highpoint of celestial mechanics was perhaps Charles-
Eugène Delaunay’s publication of his Moon theory (2 vols, 1860; 1867). In these 
books, Delaunay pushed to the extreme the formal analytical expansion of a single 
function. He spent twenty years of his life developing it to the seventh order (and 
sometimes even to the ninth order), computing over 1259 terms in the expansion 
series for the moon’s longitude and 1086 for its latitude. Although this extraordin-
ary e\ ort has sometimes been ridiculed, Delaunay’s work is emblematic of the 
tremendous optimism invested both in the precision of the measurements made 
in the observatory and in the precision of the analytical method.

In the 1860s, however, mathematicians at the university and astronomers in 
the observatory were already starting to move apart from one another. 9 e rise 
of astrophysics implied great changes in observatory culture (Le Gars 2007). New 
instrumentation had given rise to new problems about the physical nature of celes-
tial bodies. To provide answers to these questions, mathematical tools seemed 
less useful than those taken from physics and chemistry. Similarly, the now fully 
professionalized mathematical community was shiN ing its focus (Lützen 2003). 
Unlike earlier generations of observatory mathematicians, Poincaré was no com-
puter. ‘9 e mathematical style of Poincaré was intensely modern. [ . . . ] Few of 
his results depend on long or di7  cult computations. He said of himself with a 
furtive touch of humor [ . . . ] that he was poor at arithmetic’ (Veblen 1912, viii). 
Mathematicians were now emphasizing rigour, which led them to reconsider the 
concept of convergence. Where astronomers had been content with series whose 
terms decreased rapidly, mathematicians insisted that convergence had to be 
proved formally (Barrow-Green 1997, 18). For someone like Poincaré, rigour held 
the key to the elusive proof of the stability of the solar system.

If we follow Galison (2003), we recognize in Poincaré’s conventionalism the 
technical world of diplomats, scientists, and engineers, where international con-
ventions, telegraphy, and maps were used by modern states and businesses to 
control time and space. My account suggests that it was this same enterprise that 
required the foundations of mathematics to be opened up and examined anew. But 
for this task, a new generation of mathematicians, with few ties with the observa-
tory, was coming along: they would focus more on the implications of Poincaré’s 
work in logic, geometry, and philosophy than in old-fashioned celestial mechan-
ics. A product of the mathematical culture of the observatory, Poincaré’s homo-
clinic points did not seem fundamental enough to modern mathematicians, yet 
too mathematically rigorous to the observatory community. 9 is is probably why 
very few people at the time were able to understand their signi[ cance.
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Conclusion

For all the inaccuracies he is known to have perpetrated in his historical work, 
Eric Temple Bell was drawing attention to an interesting characteristic of 
 nineteenth-century mathematics when he wrote:

Too oN en for comfort, mathematics in the nineteenth century followed the same formula 
of glut without digestion as the rest of civilization in that heroic age of expansion at any 
cost. But according to the abstractionists of 1940, the discarnate spirit of simplicity was 
then about to descend and bless all mathematics, and the more rococo masterpieces of 
the nineteenth century were to be preserved only in museums frequented exclusively by 
historians. (Bell 1992, 410)

Like Bell’s abstractionists, historians of mathematics have paid greater atten-
tion to the foundational aspects of mathematics than to the bulk of the mathem-
atical work done in the period. By examining the place of mathematics in a 
speci[ c but signi[ cant site, we have been able to grasp the signi[ cance of some of 
the ‘rococo masterpieces’ of observatory mathematics. Computing astronomical 
tables, eliminating errors in geodetic surveys, compiling social data, and analyt-
ically expanding solutions of di\ erential equations represented massive e\ orts 
that led to impressive results. Other sites, like accounting o7  ces, army training 
grounds, or engineering projects would similarly unveil interesting aspects of the 
mathematical practice of the period.

In the course of the nineteenth century, precision instruments, mathemat-
ical techniques of number manipulation, and social techniques for establishing 
standardized conventions became ubiquitous. Because of the prominent position 
occupied by the observatory in the nineteenth-century worldview, it had a special 
e\ ect on mathematics as a discipline, and many mathematical innovations came 
out of the work of observatory scientists. But my study has shown that, more than 
what it directly contributed in terms of mathematical concepts or theories, the 
importance of observatory mathematics may lie in what it teaches us about trans-
formations in the relationship between mathematics and the world. Or rather, 
observatory mathematics is an especially good platform from which to look at 
the way in which mathematics was transformed between 1800 and 1900 so as to 
become an autonomous logical construct—a construct that was actually made to 
account for the physical and social worlds that shaped each other.

An anonymous reviewer wrote in 1900 that:

A really good history of mathematics in the nineteenth century has yet to be written; it 
would probably require the combined labour of an organised body of experts. [ . . . ] For 
the history of modern mathematics is not mainly that of individual discoveries, however 
brilliant; but that of the systematic investigation of mathematical notions such as ‘num-
ber’, ‘continuity’, ‘function’, ‘limit’ and the like. (GBM 1900, 511)
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I hope to have shown that the intense examination of the abstract, founda-
tional, and structural aspects of mathematics that was to characterize the next 
half-century was a direct consequence of collective e\ orts made by observatory 
scientists to construct both a world that could be mathematized and a mathem-
atics whose basic concepts were precise enough to account for increasingly large 
chunks of that world.
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CH A P T ER 4 .1

Patronage of the mathematical sciences in 
Islamic societies
Sonja Brentjes

Patronage is a term that has no direct equivalent in any of the languages in 
which mathematical sciences were practised in Islamic societies.1 If we take 

one of the ancient Roman meanings of patronage, namely the existence of a cli-
entele relationship between a protector and a protégé, as the starting point for 
exploring social relationships involving the mathematical sciences in Islamic 
societies, we will see that practitioners of these sciences could indeed enter rela-
tionships with people of higher social status and greater wealth, which provided 
them with relatively stable positions and various bene[ ts. 9 e complexity of the 
terminology used to talk about such relationships, and the diversity of forms of 
exchange involved in them, suggest that there was not one single type of patron-
age relationship in every Islamic society through the centuries. Indeed, whether 
all such relationships actually qualify as patronage demands further study.

Patronage and other forms of support for the mathematical sciences constituted 
part of a much wider phenomenon of social and cultural dependence between 
men and women of di\ erent social status, upbringing, and access to resources. 
9 ese [ elds of knowledge shared basic rituals that con[ gured clientele rela-
tionships with sectors such as medicine, the arts, administration, and even the 

1. 9 e names and dates of all the dynasties, scholars, and patrons discussed in this chapter are given in 
Tables 1 and 2.
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military. At the same time, there were certain di\ erences within the mathematical 
sciences and their practitioners’ access to patrons and their resources. Studies of 
these manifold aspects of patronage for the sciences, particularly in the mathem-
atical disciplines, are relatively rare compared to ancient Rome or early modern 
Catholic and Protestant Europe. In particular, theoretically grounded investiga-
tions are lacking (Elger 2007). 9 ere is no clarity about the types of patronage and 
other  clientele relationships that existed in di\ erent Islamic societies. Only one 
study has tried to survey the rhetoric, rituals, and, to some extent, the e7  cacy of 
patronage relationships and their speci[ c forms, in ninth to eleventh-century Iran 
and Iraq (Mottahedeh 1980). Being limited to the military and the administration, 
it pays no attention to the practitioners of the ancient sciences. A second study 
focuses on patronage in medieval Cairo relating to scholars of Islamic legal the-
ories (F qh), the transmission of Muhammad’s tradition ( adīth), the reading and 

Table 4.1.1 Islamic dynasties

Abbasid caliphs (750–1258), capital Baghdad
Umayyad emirs and caliphs in al-Andalus (756–1031), capital Cordoba
Samanid emirs (819–1005), capital Bukhara
Fatimid caliphs (910–1171), [ rst capital in Mahdiyya, second capital in Cairo
Buyid emirs (945–1055), capitals Baghdad and Shiraz, with semi-independent courts in 
 Rayy, Hamadan, Isfahan, Kirman: governed Iran and southern parts of Iraq under the 
 Abbasid caliphs
Khwarazmshahs, capitals Kath, Gurganiye, Urgench (Kunya-Urgench): pre-Islamic title of 
 Afrighids ruling since the early centuries ad, converted to Islam in the early ninth 
 century; destroyed in 995 by their commercial rivals and successors, the Mamunids 
 (995–1017) who were overtaken by the Ghaznavids; the last dynasty with this title existed 
 from 1077 to 1231. 9 ey began as Saljuq slave governors; aN er gaining independence their 
 title was [ rst emir and later shah; they conquered large parts of the Saljuq empire, were 
 [ nally destroyed by Mongols
Ghaznavid sultans (975–1187), capital Ghazna
Great Saljuq sultans (1037–1157), capitals Baghdad, Isfahan, Nishapur, govern Iran, Iraq, 
 Anatolia, Syria, and Palestine under the Abbasid caliphs
Zangid atabegs and emirs (1127–83), capitals Mosul, Aleppo, Damascus, Sinjar, Jazira: 
 recognized Abbasid caliphs as overlords
Ayyubid maliks (1169–1260), capital Cairo with semi-independent courts in Damascus, 
 Aleppo, Hama, Hims and other cities in Syria, Palestine and north Iraq: recognized 
 Abbasid caliph as overlord
Mamluk sultans (1250–1516), capital Cairo
Ilkhanid khans (1258–1336), capitals Tabriz, Maragha, Sultaniyye: recognized Mongol 
 rulers of China as overlords
Ottoman sultans (1299–1922), capitals Bursa, Edirne, Istanbul
Timurids (1370–1506), capitals Samarkand, Herat, with semi-independent courts in
 Shiraz, Isfahan, and other cities in Iran
Ā̔dil Shāhis (1518–1686), capital Bijapur

Mughal shahs (1526–1857), capitals Delhi, Agra, Lahore
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interpretation of the Qur’an (qirā’a; tafsīr), and the fundaments of  religion and law 
(u ūl al-dīn; u ūl al-F qh) (Berkey 1992). Berkey’s observations and insights agree 
with most of what I have read in primary sources about patronage relationships 
for the non-religious sciences, including the mathematical disciplines. As the only 
available studies of patronage in Islamic societies, these two works gave me guide-
lines for examining the terminology and social practices of patronage in other 
Islamic societies, applying their questions whenever possible to the mathemat-
ical sciences. In order to enhance the conceptual basis of the paper, I also sought 
inspiration from studies of patronage in early modern Catholic and Protestant 
societies, particularly their theoretical and methodological approaches (Kettering 
1986; 2002; Asch and Birke 1991; Danneskiold-Samsøe 2004).

In this chapter I use the term ‘mathematical sciences’ in accordance with its 
de[ nitions and descriptions in primary sources from Islamic societies. Until 
the classical system of knowledge was replaced during the nineteenth and early 
twentieth centuries, the notion of the mathematical sciences, their values, and 
practices were based on Platonic, Aristotelian, and neo-Pythagorean classi[ cat-
ions of philosophy enriched by Stoic and sceptical elements on the one hand and 
perspectives developed within the religious disciplines of Islam, in particular law 
and theology, on the other. 9 e mathematical sciences comprised the four main 
theoretical disciplines of Antiquity, namely number theory, geometry, astron-
omy, and musical theory (theory of proportions). 9 ey also included a variety of 
applications, such as optics, burning mirrors, mental or written calculation, alge-
bra, magic squares, business arithmetic, surveying, timekeeping, architecture, 
and water liN ing. 9 e twelN h-century scholar Bahā’ al-Dīn Kharaqī summarized 
this view as follows:

9 e mathematical (sciences) are called the four teaching (disciplines). 9 ey are four 
because their subject matter is quantity. Quantity is either that which is continuous or 
that which is discrete. 9 e continuous is either in movement or in rest. 9 e moving is 
hay’a (mathematical cosmography) and the non-moving is handasa (theoretical geom-
etry). 9 e discrete is either that which has a compound ratio, and this is music, or that 
which does not have it, and this is the numbers.2 (Bayhaqī 1996, 173)

Astrology was rarely included explicitly in the classi[ cations of the math-
ematical sciences. But since it was oN en seen as the ultimate goal of astronom-
ical theory, and since most practitioners of astronomy also exercised the craN  of 
astrology either as textbook writers or as composers of horoscopes, astrology will 
be included in the spectrum of disciplines discussed in this chapter.

2. Inna l-riyā iyyāt tusammā l-ta̔ līm al-arba̔ a, wa-innamā kānat arba̔ a li-anna maw ū῾uhā al-kamiyya, 
wa-hiya immā an takūna mutta ila aw munfa ila, wa’l-mutta ila muta arrika aw ghayr muta arrika, wa’l-
muta arrika hiya al-hay’a, wa-ghayr al-muta arikka hiya al-handasa, wa’l-munfa ila immā an takūna lahā 
nisba ta’lī[ yya wa-hiya al-mūsīqā, aw lā takūna wa-hiya al-a̔ dād.
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9 e multiple cultural backgrounds that de[ ned the mathematical sciences 
and their status explain some of the speci[ cs of patronage for the various discip-
lines united under this heading. Linked to philosophy, cosmography, F qh, busi-
ness, administration, and licit magic, the mathematical sciences commanded a 
rich but contradictory social prestige. Books by Euclid, Archimedes, Ptolemy, 
and other ancient authors were translated into Arabic, Persian, and occasionally 
other  languages such as Ottoman Turkish. 9 ese translations, and works based 
on them, were studied by scholars involved in mathematical research and by stu-
dents preparing for religiously sanctioned positions such as that of muezzin, the 
caller for prayer, and muwaqqit, the person responsible for determining prayer 
times, the directions of prayer towards Mecca, and the beginning of the new 
month. Names of Greek scholars were given as epithets to people seen as experts 
in their [ elds. Copies of, and commentaries on, their texts were prepared for 
individual reading, for classes at schools and colleges, and lavishly illuminated if 
destined for the library of a collector or wealthy connoisseur.

In the twelN h century, under the impact of Abū āmid Ghazālī’s writings 
on the relationship between the religious and non-religious sciences, however, 
theoretical geometry became to be seen by some as a threat to the faith of the 
believer because of its claim to absolute truth. By contrast, calculation, algebra, 
surveying, and astronomy were appreciated as useful knowledge for determining 
inheritance shares and taxes, measuring [ elds, and predicting eclipses. Excessive 
 practice, however, was also seen as a threat to the mental and psychic balance of 
the believer (Rebstock 1992, 19–22).

Astronomy, astrology, and music equally found themselves both cherished 
and challenged. Astrology was heavily disputed and eloquently defended by 
 philosophers, astronomers, theologians, and transmitters of adīth. In the view 
of some practitioners, their competitors did not know enough philosophy to 
understand the workings of the universe and the impact of its di\ erent spheres 
on the climate, a\ airs of the state, and the lives of individuals. Others accused 
their  colleagues of not having mastered the technicalities demanded by these 
 disciplines (Burnett 2002, 206–211). A number of speci[ c issues of  theory and 
 reliability of results were also at stake, for instance, whether astrology could deliver 
forecasts only for universal events in nature and politics or was also applicable 
to the life of the individual (Burnett 2002, 207). 9 e unreliability of astrological 
predictions could lead to ridicule and occasionally to imprisonment or even exe-
cution. Music, when practiced, not so much when dealt with as a mathematical 
theory, was regarded by various Sunni and Shi῾i legal authorities as compromis-
ing the true path of a believer, while Su[ s and courtiers appreciated it as support 
for spirituality and the enhancement of courtly life. As a result, scholars of vari-
ous legal orientation wrote fatwas and other kinds of texts either commending or 
condemning these [ elds of mathematical knowledge and their practitioners.
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In a sweeping simpli[ cation, one can di\ erentiate two major periods for 
patronage of scienti[ c knowledge, including the  mathematical sciences. 9 e 
[ rst period spans the eighth to the later twelN h century, while the second period 
stretches over six hundred years to the nineteenth century. 9 e grounds for 
the earlier period were laid during the two [ rst  centuries of the Abbasid dyn-
asty, when the so-called Translation Movement, centred on Baghdad, made 
Middle Persian, Greek, Syriac, and Sanskrit scienti[ c works accessible, in 
Syriac and Arabic. Interested readers included physicians, theologians, astrolo-
gers, courtiers, princes, and rulers. Scienti[ c enterprises resulting from these 
translations were [ rst undertaken in the Abbasid capital and other cities of the 
empire. With the emergence of powerful governors, local  rulers, and independ-
ent Muslim dynasties such as the Fatimids, the Umayyads, and the Ghaznavids, 
a richer spectrum of courtly patronage became available. 9 e second period 
began in the twelN h century, when endowed teaching institutions became a 
regular feature of scholarly practice in most of the lands from Central Asia to 
the Atlantic.

Patronage from the eighth to the twelC h centuries

Until the twelN h century, patronage relationships, including those of the math-
ematical sciences, were mostly located in courts and among wealthy urban 
groups such as viziers and their families, tutors of princes, and other court 
o7  cials. 9 e relationships were primarily forged between individuals and 
between families. Mottahedeh’s (1980) study of loyalty and leadership, which 
also deals with forms of patronage, concentrates on the period of Buyid rule in 
Iran and Iraq under the formal suzerainty of the Abbasid caliphs. In his view, 
loyalties were created through three main features: bene[ ts, various forms of 
formal commitment (oath, vow, guarantee of safe conduct), and gratitude. 
Bene[ ts (ni῾ma) given by a ruler to his subjects served to create stable, recip-
rocal ties. Generosity (samā a) was expected from the ruler when handing out 
bene[ ts, but when combined with indulgence (musāma a) could diminish the 
ruler’s reputation (Mottahedeh 1980, 90–91). Formal commitments regulated 
‘duties and obligations that could be enforced without coercion’ (Mottahedeh 
1980, 43). A personal oath of  allegiance (bay̔ a) followed by a payment (rasm 
al-bay̔ a) bound rulers and (male)  members of their families to their soldiers 
and high-ranking o7  cials. Such  personal oaths were also exchanged between 
leading members of the administration, but were oN en concealed from the 
 rulers, to maintain the façade of a unilateral  top-to-bottom hierarchy of power 
(Mottahedeh 1980, 70–79).
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It is unclear whether such personal oaths were also exchanged between  rulers 
or viziers and practitioners of the mathematical sciences. Such practitioners did 
bene[ t, however, from the second type of formal commitment, the vow. 9 e vow 
was made from man to God and contained the promise to do some good work on 
the basis of a good intention. Repairs of irrigation channels and bridges, or the 
building of mosques and later madrasas, could be publicly announced in the form 
of such a vow and contributed, in addition to the actual work of repair, to elevat-
ing the symbolic power of the ruler. Practitioners of the  mathematical sciences, 
in particular surveyors and muhandisūn (geometers, engineers, architects), were 
oN en involved in the repair and replacement work. 9 e recipient of bene[ ts was 
obliged to show gratitude (shukr al-ni῾ma), since masculine honour was based on 
acknowledging received bene[ ts, reinforced by the Qur’an’s repeated reminder 
that the (true) believer is grateful for God’s  continuous  bene[ ts (Mottahedeh 
1980, 72–76).

Mottahedeh (1980, 42) argued that patronage during Buyid rule resulted from 
this triangular net of bene[ ts, formal commitments, and gratitude. A central 
form of the Buyid patronage system was a relationship called i inā̔ , which saw 
the patron as a parent or protector (mu ana̔ ) and the client as a child or pro-
tégé ( āni῾). 9 is relationship was introduced in the middle of the ninth century, 
together with slavery, by the Abbasid caliphs to rebuild their army, complement-
ing and eventually replacing the older form of clientship (walā’). In the texts of 
the tenth and eleventh centuries, i inā̔  dominates, while walā’ has disappeared 
almost completely. Its verb, i ana̔ a, oN en meant that someone’s career was fos-
tered. In exchange for this promotion, the patron expected his protégé to serve 
him in various ways as long as either of the two lived (Mottahedeh 1980, 82–84). 
Indeed, many of the scholars who worked as astrologers or physicians at the 
Buyid court, as well as other courts of the period, stayed until they died in courtly 
service, oN en through the reign of more than one ruler. It is no exaggeration to 
claim that many of the most productive and innovative mathematical  scholars 
of this period, such as 9 ābit b. Qurra, Abu l-Wafā’ Buzjānī, Abu Sahl Kūhī, 
Abū Ray ān Bīrūnī, Ibn al-Haytham, and ῾Umar Khayyām, spent long years in 
courtly service. 9 is means that the impressive results of nearly [ ve centuries of 
mathematical research and teaching were produced through the institution of 
patronage at its major centres—central and local dynastic courts.

9 e patronage relationships that rulers, viziers, and other courtiers extended 
to physicians, astrologers, and other scholars were more oN en discussed in a 
 variety of other terms. A patron extended honour (ikrām) and bene[ ts, oN en in 
a generous manner, to the men who healed him, cast his horoscope, or observed 
the stars. 9 e physicians and occasionally also the astrologers are said to have 
served (khadama) their patrons, oN en until their patron’s death. 9 e content of 
honouring included precious robes, monetary giN s, privileged ranking in seating 
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at court during o7  cial occasions, and the inclusion into caliphs’, sultans’, or 
viziers’ groups of boon companions (nadīm). Patrons also shared other, more per-
sonal favours with their clients. Ibn abī U aybī a̔ and Shams al-Dīn Shahrazūrī 
report, for instance, how Caliph al-Mu̔ ta id greatly honoured his astrologer and 
boon companion 9 ābit b. Qurra by apologizing for a mistake in etiquette the 
caliph had committed while walking with 9 ābit in one of the palace gardens 
(al-Shahrazūrī 1976, I 4–5; Ibn a. U aybī a̔ n.d., 295). 9 ābit was one of the lead-
ing translators of Greek mathematical works, himself an excellent mathemat-
ician and astronomer, but also a philosopher, physician, and writer on the beliefs 
of the Sabeans, his religious community. He also took his obligations as a caliph’s 
boon companion very seriously. When al-Mu̔ ta id’s uncle and o7  cial prede-
cessor as caliph, al-Mu̔ tamid, was imprisoned on the instigation of his brother 
 al-Muwa\ aq in the house of Ismā̔ īl b. Bulbul, the caliph’s vizier, 9 ābit visited 
the prisoner three times a day at Ibn Bulbul’s invitation to keep the  caliph com-
pany. He entertained him with topics from philosophy, geometry, and astrology. 
9 e caliph hungered for 9 ābit’s company and felt pleased in his presence. When 
freed, al-Mu̔ tamid described 9 ābit as the man he valued most aN er his pre-
ferred military slave al-Badr. He made him sit close to him in audiences for the 
military and civil elite (al-khā ) and the general public (al-‘āmm) while  leaving 
al-Badr and the vizier to stand (al-Shahrazūrī 1976, I 5–6).3

9 e scholars engaged in patronage relationships were expected to o\ er 
 expertise in areas such as healing, observing the planets and stars, casting horo-
scopes, constructing instruments, writing books, making automata, and repair-
ing clocks, water wheels, channels, and other infrastructural components. Some 
of the best known services of mathematical scholars and instrument makers 
 carried out for courtly patrons are the expeditions for measuring the length of 
1° of a meridian, patronized by Caliph al-Ma’mūn in the early ninth century (King 
2000). Al-Ma’mūn presented himself as the prince of the Translation Movement. 
Later he was both praised and cursed for this patronage of the ‘foreign’ (in particu-
lar ancient Greek) sciences (Gutas 1998). His support and encouragement of the 
geodetic measurements became standard narrative fare in geographical, astro-
nomical, and also some historical writings. Patronage of the sciences was thus 
transformed into a powerful discursive instrument, either initiating the reader 
into its heritage and shaping his scienti[ c identity or admonishing him to abstain 
from this heritage due to its danger to one’s religious beliefs.

An important professional service of physicians and astrologers was to accom-
pany their patrons on military campaigns, pilgrimages, and other travels. Abū 
Ma̔ shar, a favourite of the caliph al-Muwa\ aq, was in his retinue as an astrologer 

3. Shahrazūrī reports this story for al-Mu̔ ta id. But al-Muwa\ aq was the latter’s father. Al-Muwa\ aq 
usurped the power of Caliph al-Mu̔ tamid, who was his brother.
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when al-Muwa\ aq besieged the Zanj, the mutinous slaves of the great estates in 
Southern Iraq (Ibn al-̔ Ibrī 1958, 149). Teaching sons of rulers, their relatives, 
and other courtiers was another service scholars of the mathematical sciences 
provided for their patrons. Scholars of all disciplines dedicated books and instru-
ments to patrons from the early Abbasid period onwards. It is, of course, not 
always clear whether the dedication was an expression of gratitude for bene[ ts 
received or a proposal to enter into a patronage relationship. 9 e vocabulary used 
in histories of scholars and bibliographies includes translating, writing, com-
posing, or doing a work for a ruler, a vizier or a scholar. Besides texts, instru-
ments too were named aN er patrons and designed speci[ cally for them (Charette 
2006, 133 Tables 2a, 2b). Dedications could take various forms, such as joining 
a part of the patron’s name to the title of the book or including the name and 
titles of the patron as well as wishes for him in the introduction of the work. 
Dedications indicate another important service that scholars were supposed to 
deliver: appealing to God for their patrons’ worldly and otherworldly well-being. 
9 e belief in such a possibility of intermediation was fundamental to all forms 
of patronage, including that of endowed teaching institutes through which the 
donors, in  addition to protecting their wealth for their children, aspired to secure 
their  salvation through the continuous recitation of Qur’anic verses and other 
religious texts. Writing  eulogies for rulers was as a rule the obligation of poets 
and historians, but in dedications mathematical scholars too waxed eloquently 
about their patron’s eminence, goodness, care for his subjects, and religious 
steadfastness. Occasionally practitioners of the mathematical sciences are even 
remembered in the biographical literature as writers of panegyric verses.

Other ways of talking about patronage relationships in the mathematical 
sciences included terms like linking oneself with someone (itta ala bi), being a 
ghulām (slave/apprentice?), carrying someone away ( amala), elevating some-
one or making him great or powerful (a̔ ama; ῾azzaza), binding someone by 
an obligation to someone else or being bound by an obligation to someone 
(irtaba a), engaging someone’s service (istakhdama), summoning someone 
(ista ara), ardently desiring someone (ishtāqa ilā), being in someone’s favour 
or good graces ( a iya ῾inda), and inviting someone (da̔ ā). Some of these 
expressions, such as irtaba a, istakhdama, and da̔ ā, were applied to both rul-
ers and viziers, while others, such as amala, were used only of rulers. Irtaba a, 
istakhdama, and da̔ ā describe relationships in which power, although asym-
metric, is shared. While scholars looked for patrons, rulers and viziers tried
to attract clients to their courts, occasionally going to great lengths to do so. 
But the scholars did not always accept the prospective patron’s o\ ers, invita-
tions, or giN s. 9 e Saljuq sultan Sanjar sent the enormous sum of 1000 dinars 
to A̔bd al-Ra mān Khāzinī, a freed slave of Byzantine origin. Khāzinī refused 
to take the money, saying that he possessed ten dinars, three of which su7  ced 
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Table 4.1.2 scholars and patrons of the mathematical sciences

Abu l-Khayr al- asan (tenth/eleventh century)
Abu l-Jūd, Khalīl b. Ibrāhīm ([ N eenth century)
Abū Ma̔ shar (c 787–886)
Abu l-Wafā’ Buzjānī (940–998)
‘A ud al-Dawla (r 949–982), Buyid emir
A mad b. Khalaf (ninth century)
Akbar (r 1556–1605), Mughal shah
A̔lam al-Dīn Qay ar (d 1251)
A̔lī b. ῾Isā (ninth century)

al-Ashraf (r 1229–1237), Ayyubid ruler of Damascus
Awrangzīb Ā̔lamgīr (r 1659–1707), Mughal shah
Bīrūnī, Abū Ray ān (973–1048?)
Fanarī, Shams al-Dīn (d 1435)
Fāti  A̔lī Tippu (1750–1799), second and last sultan of Mysore
Ghazālī, Abū āmid Mu ammad b. Mu ammad (1058–1111)
Ghāzzān (r 1295–1304), Ilkhanid ruler
Hülägü (r 1258–1265), founder of the Ilkhanid dynasty

asan b. A̔lī al-Qaymarī (d 1480)
Ibn abī U aybī῾a (1194–1270)
Ibn al-Akfānī (d 1348)
Ibn al-A̔ lam, al-Sharīf (tenth/eleventh century)
Ibn al-̔ Amīd (d 970), Buyid vizier
Ibn al-Fuwatī (1244–1323)
Ibn al-Haytham (d aN er 1042)
Ibn al-Lubūdī = Najm al-Dīn Ya yā b. Mu ammad (1210–c 1265), Ayyubid vizier
Ibn al-Majdī (1365–1447)
Ibn al-Nadīm (d 993)
Ibn Naqqāsh, Nūr al-Dīn (d 1475)
Ibn al-Shā ir (1306–1375)
Ibn Sīnā (d 1037)
Ibn Wā il, Jamāl al-Dīn (1207–1298)
Ismā ῾īl b. Bulbul (879–890), Abbasid vizier
al-̔ Izz Abū Na r Beg Arslān, Saljuq emir
῾Izz al-Din al- asan (d  c 1314)
Karajī, Abū Bakr Mu ammad b. al- asan (d c 1030)
Kāshī, Ghiyāth al-Dīn (d 1429)
Khafrī, Shams al-Dīn (d 1550)
Kharaqī, Bahā’ al-Dīn Abū Bakr Mu ammad (twelN h century)
Khayyām, ῾Umar (d 1131)
al-Khāzin, Abū Ja̔ far (tenth century)
Khāzinī, A̔bd al-Ra mān (twelN h century)
Kūhī, Abū Sahl (tenth century)
Ma mūd b. Sebügtegīn (r 998–1030), founder of the Ghaznavid dynasty
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to [ nance him for a year, plus a cat. He also rejected the same sizable monetary 
giN  when o\ ered by the wife of one of the Saljuq emirs (Bayhaqī 1996, 181).

9 e term amala ‘to carry someone away’ red ects the oN en violent nature of 
medieval society and the role of scholars as pawns in cond icts between rulers, 
invaders, rebels, and other claimants for power. When Sebügtegīn and his son 
Ma mūd conquered parts of Central Asia and Iran in the late tenth century, they 
forced numerous scholars, such as the eminent physician and philosopher Ibn 
Sīnā, to d ee westwards into the protection of the Buyid dynasty or else carried 
them away to Ghazna (in modern Afghanistan). Among those who had to  relocate 

Table 4.1.2 Continued

al-Ma’mūn (r 813–833), Abbasid caliph
al-Māridānī, Jamāl al-Dīn (d 1406)
Ma ῾ūd b. Ma mūd (r 1030–1041), Ghaznavid sultan
Mehmet Fāti  (r 1451–1481), Ottoman sultan
Mu’ayyad al-Dīn al-̔ Ur ī (d 1266)
Mu ammad Ā̔dil Shāh (r 1626–1660), Ā̔dil Shāh sultan
Mu ammad b. Armaghān ([ N eenth century)
Mu ammad b. Khalaf (ninth century)
al-Mustan ir (r 1226–1242), Abbasid caliph
al-Mu̔ ta id (r 892–902), Abbasid caliph
al-Mu̔ tamid (r 870–892), Abbasid caliph
al-Muwa\ aq (r 875–891), Abbasid regent
Nā ir alā  al-Dīn Dā’ūd (r 1227–1229), Ayyubid ruler of Damascus
Nā ir alā  al-Dīn Yūsuf (r 1250–1260), Ayyubid ruler of Damascus
Rāzī, Abū Yūsuf Ya̔ qūb b. Mu ammad (tenth century)
Rukn al-Dawla (r 932–976), one of the three founders of the Buyid dynasty
adr al-Sharī῾a (fourteenth century)

al-Samaw’al, Abū Na r (d 1175)
am ām al-Dawla (r 989–998), Buyid emir

Sanjar (r 1117–1157), Saljuq sultan
Sebügtegīn (976–997), Samanid governor
Shāh Jahān (r 1628–1659), Mughal shah
Shahrazūrī, Shams al-Dīn (d aN er 1288)
Shīrāzī, Qu b al-Dīn (1236–1311)
Sib  al-Māridānī, Mu ammad b. Mu ammad (1423–c 1495)
Sijistānī, Abū Sulaymān (c 912–c 985)
ūfī, A̔bd al-Ra mān (903–986)

9 ābit b. Qurra (d 901)
Timur (r c 1369–1404), founder of the Timurid dynasty

ūsī, A īl al-Dīn (d 1316)
ūsī, Na īr al-Dīn (1201–1274)

Ulugh Beg (r 1447–1449), Timurid ruler
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aN er the [ nal campaign in 1017 were the scientist Bīrūnī and the  physician Abu 
l-Khayr al- asan (Bayhaqī, 1996, 36; Matvievskaya and Rozenfel’d 1985, II 264). 
9 e Ghaznavids were not the only dynasty that forced scholars into their patron-
age. Various Khwarazmshahs brought scholars to their court in this manner, as 
did the Mongols in the thirteenth century and Timur and his family in the late 
fourteenth to [ N eenth centuries (Bayhaqī, 1996, 36, 173).

9 e historical sources paint a complex and rich picture of di\ erent forms and 
formats of patronage. Successful relationships that lasted a lifetime are found, 
as are those of a more d uid nature. Cases of stability over two or even three suc-
cessive rulers occurred at several courts during this period. Cases of cond ict 
and failed continuation of patronage were, however, unexceptional. Important 
factors in the d uidity of courtly patronage were enmity among members of the 
patron’s family and towards his clients as well as military, economic, and pol-
itical instabil ity. Competition among di\ erent factions within a ruling family 
and among families of administrators, and the growing ind uence of the Turkish 
military slaves upon the choice of the next caliph, made patronage an unreliable 
[ eld of social relations. As a result the [ gure of the itinerant, oN en impover-
ished, scholar emerged. AN er the Buyid ruler A̔ ud al-Dawla’s death, one of his 
two teachers of astronomy, al-Sharīf Ibn al-A̔ lam, fell into poverty when A̔
ud’s son, am ām al-Dawla, did not take over his father’s patronage obligations 
(Ibn al-̔ Ibrī 1958, 174). 9 e asymmetry of power and the instability inscribed in 
it are red ected in the various acts of punishment that a patron could heap on a 
client, either on his own behalf or on behalf of another client. Extortion, loss of 
o7  ce and property, exile, imprisonment, and execution were widespread means 
of regulating access to power and funds among the civil elites, in particular at 
the level of viziers and their immediate entourage. Scholars of the mathematical 
sciences, even those who were powerful patrons in their own right, also su\ ered 
under the arbitrariness of the patronage system. Several were exiled, incarcer-
ated, or killed.

Boundaries that separated patronage from other kinds of relationships, for 
instance those that existed in the realm of craN smanship, are oN en blurred due 
to a lack of precise information in the sources. 9 e tenth-century bookseller Ibn 
al-Nadīm, a member of the circle of philosophers and literati surrounding the 
philosopher Abū Sulaymān Sijistānī and well connected with courtly life under 
the Buyids, wrote a work about intellectual life in the Abbasid caliphate. He used 
the term ghulām (plural ghilmān), which primarily meant in the period a mili-
tary slave, to describe relationships among scholars of the mathematical sciences 
and instrument makers. In most cases, the owner or master of the ghulām was 
either an astrologer or an instrument maker. Instrument makers like A mad and 
Mu ammad, the sons of Khalaf, oN en started their career as ghilmān and later 
had ghilmān themselves. Both brothers had been ghilmān of the astrolabe maker 
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A̔lī b. ῾Isā and then trained six other men as their ghilmān, all of whom became 
known as instrument makers (Ibn al-Nadīm n.d., 343). Hence it is perhaps rea-
sonable to interpret this relationship as one between a master and an apprentice 
rather than one of patronage.

Since scholars rarely focused on one discipline alone but were oN en well edu-
cated in several branches of knowledge, neither did patronage focus only on one 
type of knowledge. Scholars who excelled in the mathematical sciences can be 
found heading the administration of a hospital founded by their patron or serv-
ing as head of courtly protocol, as in the case of Abu l-Wafā’ (Kraemer 1993, 182, 
216). Abu l-Wafā’’s eminence in courtly a\ airs was such that he also participated, 
together with elders and representatives of the religious sciences, in political and 
[ nancial negotiations between his Buyid patron and the city of Baghdad about 
protecting the populace against the threat from the Byzantine army’s invasion of 
northern Iraq (Kraemer 1993, 100). Another tenth-century mathematical scholar, 
Abū Ja̔ far al-Khāzin, acted as ambassador for his patron, the head of the Samanid 
dynasty in Samarqand, in a war between the Samanids and the Buyids. AN er he 
had successfully concluded negotiations between the defeated Samanid general 
and his Buyid opponent, Abū Ja̔ far was patronized by the Buyid overlord Rukn 
al-Dawla, who esteemed him, made his vizier Ibn al-̔ Amīd employ him, and 
strongly recommended that the vizier emulate the scholar (Kraemer 1993, 252).

Patronage at courts and endowed teaching institutions from the late 
twelC h century onwards

9 e proliferation of richly endowed teaching institutions from the twelN h cen-
tury changed the framework of patronage of the mathematical sciences. 9 e 
dynasties that contributed most to this new development were the Saljuqs, the 
Zangids, the Ayyubids, and the Mamluks. 9 e success of the new system of 
endowed teaching institutes was such that aN er the twelN h century many other 
dynasties also donated funds for building madrasas, Su[  khānqāhs (lodges), 
tombs, mosques, houses for teaching the Qur’an and adīth, as well as hospitals. 
9 e waqf (religious endowment) typically included the costs of new and regularly 
funded posts as well as stipends for students. 9 e new system extended the scope 
and complexity of patronage relationships between scholars and courts on the 
one hand and among scholars themselves on the other, by opening new possibil-
ities for participating in the distribution and redistribution of the donated funds 
and endowed o7  ces (Berkey 1992, 96). Socially, it was characterized by four 
major features. First, the donors and appointed administrators of the endow-
ment, the ruling military aristocracy, in particular the rulers themselves and the 
highest ranking o7  cials of the court hierarchy, the scholars, the head judges of 
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the di\ erent legal schools, and other leading religious o7  cials shared respon-
sibilities and opportunities for making appointments to professorships and 
other posts. Second, professors amassed positions in more than one discipline 
and more than one endowed institute. 9 ird, it became possible to buy, sell, and 
outsource professorships and other o7  ces. Fourth, it became feasible to choose 
one’s own  successor, preferably from among immediate family members (includ-
ing minors) or one’s own students, which created the phenomenon of hereditary 
teaching posts (Berkey 1992, 96–97, 102–119, 121–125).

Most of the available teaching posts were within law, adīth, Qur’anic stud-
ies and languages. But there were also positions for medicine at madrasas and 
mosques in Anatolia, Iraq, Syria, and Egypt; for timekeeping (̔ ilm al-mīqāt) in 
Mamluk Egypt and Syria as well as in regions of the Ottoman Empire; and for 
a special mathematical discipline linked to law and dealing with the determin-
ation of inheritance shares and legations (̔ ilm al-farā’i ) in di\ erent regions of 
the Islamic world (Petry 1981, 65, 428, n90; Berkey 1992, 69; al-Sakhāwī, III 119). 
In the [ N eenth century posts for the mathematical sciences in general were cre-
ated, when the Ottoman sultan Mehmet Fāti  began a tradition of endowing new 
madrasas, while the Mughal shah Akbar initiated a similar practice in some of 
the teaching institutes. Mathematical sciences were also taught in madrasas in 
north Africa, Iran, and Central Asia. 9 is is veri[ ed by colophons and owner-
ship marks in mathematical manuscripts as well as the donation of such books 
as waqf to madrasa and mosque libraries. But there is little to no information 
about whether the teachers held positions speci[ cally linked to the one or the 
other of the mathematical disciplines in these regions. Occasionally writers of 
biographical dictionaries report a scholar of the mathematical sciences settling 
in a madrasa, such as al-̔ Ur ī who lived in the ῾Izziya Madrasa in Maragha, 
northwest Iran, founded by the Saljuq emir al-̔ Izz Abū Na r Beg Arslān (Ibn 
al-Fuwatī n.d., 387–388). 9 e d uidity of the teaching system in regard to where 
and what was taught, and its character as a scholarly network, opened wide doors 
to teachers and students of non-religious disciplines living in madrasas and Su[  
khānqāhs, or simply visiting them for classes.

During the Ayyubid period, the rhetoric of patronage lost some of its previ-
ous richness. As main terms there remained service (khidma), honour or grace 
(ikrām), and bene[ t (ni῾ma). Most of the patronage relationships between a ruler or 
prince and a physician were described by this terminology (Ibn a. U aybī a̔ n.d., 
584–586, 589–591, 598–601, 635–637 et passim). Occasionally a ruler is reported 
to have esteemed (i tarama) one of his clients excelling in the  mathematical 
sciences. Although several Ayyubids sponsored astrologers at their courts, 
the authors of biographical dictionaries seldom applied to them this  standard 
vocabu lary of patronage. Writers of historical chronicles and mathematical 
scholars, however, talked about patronage of the mathematical sciences in such 
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terms. In the mid-thirteenth century, al-̔ Ur ī described his relationship with the 
last Ayyubid ruler Nā ir alā  al-Dīn Yūsuf as one of service. He told his new 
friends and colleagues in Maragha how he had escaped through his own cour-
age, announcing his professional expertise to the enemy soldiers and his future 
usefulness to their lord during the bloodbath in which all members of the court 
died except for himself and two sons of the ruler (Ibn al-̔ Ibrī 1958, 280). On the 
day of the attack the scholar had just had a session with the unfortunate Ayyubid 
prince to cast his horoscope. Al-̔ Ur ī remained silent, though, about whether 
he had predicted his patron’s imminent demise. Ibn Wā il, court historian of the 
Ayyubid dynasty and well educated in various disciplines including mathemat-
ics, characterized his relationship to his father’s patron, the Ayyubid prince Nā ir 
alā  al-Dīn Dā’ūd, exclusively by one term—service—which he also used of the 

relationship between his older colleague A̔lam al-Dīn Qay ar and al-Ashraf, an 
earlier Ayyubid ruler of Damascus (Ibn Wā il 1977, 145–146).

While the Ayyubids continued to exercise their patronage to a substantial 
degree at court, which for this dynasty was usually the city’s fortress, male and 
some female members of the family put a huge investment into building madra-
sas and other endowed teaching institutions and in maintaining those built by 
their predecessors in Syria, northern Iraq, and Egypt. 9 is meant that an increas-
ing part of their patronage relationships included endowing such institutions for 
a particular client, or providing a client with a professorship or another o7  ce in 
an already created institution. Whether practitioners of the mathematical sci-
ences received such dynastic support within the framework of endowed teaching 
institutions needs to be further explored.

In other regions, the rhetoric of patronage also increasingly privileged the 
vocabulary of service. Ibn al-Fuwatī was a student of Na īr al-Dīn ūsī and head 
of the library of the Mustan iriyya Madrasa in Baghdad, founded by the  caliph 
al-Mustan ir. He spoke of service when talking about relationships between a 
variety of scholars, including practitioners of the mathematical sciences, and 
Ilkhanid rulers, their viziers, and governors of cities (Ibn al-Fuwatī n.d., IV/1, 
40, 392, 458, 620; III 103). Ibn al-Fuwatī frequently also used an earlier term that 
emphasized the character of the patronage as a connection (itta āl bi), occasion-
ally adding new ones of a similar vein by speaking of establishing a relationship 
or link, and being devoted to or depending on (nasaba, ta̔ alaqqa) (Ibn al-Fuwatī 
n.d., IV/1 40, 132, 149, IV/2 754, II 513, III 513).

9 e successors of the Ayyubids, the Mamluks, removed patronage of the math-
ematical sciences from their courts and linked it almost exclusively to endowed 
teaching institutions. Sultans and high-ranking court o7  cials promoted  scholars 
of the mathematical sciences to professors at prestigious madrasas, donated 
 professorships and stipends for students at their madrasas, and appointed to the 
fortress mosque religious functionaries such as muezzins who had taken classes in 
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timekeeping, arithmetic, and other mathematical disciplines (Brentjes forthcom-
ing). 9 e rhetoric of patronage under the Mamluks continued to revolve around 
the same terms as in the Ayyubid period. Clients served, linked themselves with 
patrons, and patrons honoured or bene[ ted them (al-Sakhāwī, al- aw’, III, 296; 
VI, 112, 235; VIII, 191; IX, 15; X, 48). New terms are to settle or establish some-
one [ nally or [ rmly (istaqarra bihi), to appoint or establish someone (qarrara hu 
or fī), and to favour, distinguish, or confer distinction (ikhta a bi). All red ect the 
demands and opportunities created by the system of endowed teaching  institutions 
with their secure posts.

9 e mathematical sciences became part of the general education provided by 
the endowed teaching institutions, although only some madrasas had a profes-
sor capable or willing to teach them. Students and teachers of the mathemat-
ical sciences were fully integrated into this new framework. 9 ey could acquire 
paid positions and o7  ces as muezzins, muwaqqits, teachers, preachers, imams, 
or physicians. Patronage proved useful for acquiring more than one position and 
keeping them, since competition was strong and interference in the distribu-
tion of posts widespread. O7  ces could also be lost frequently, either due to envy 
and greed among patrons and scholars or because the o7  ce holder was sick or 
 meddled in dynastic policy.

As in the previous period, scholars acted as ambassadors and mediators in 
moments of war, cond ict, or other needs. Na īr al-Dīn ūsī, one of the leading 
philosophers, mathematicians, and astronomers of the thirteenth century, nego-
tiated for his Isma̔ ili patron the peaceful surrender of the fortress of Alamut 
in northwestern Iran with the attacking Mongols, who, however, did not hon-
our the negotiated contract. ūsī changed sides and later wrote diplomatic letters 
for his new Mongol patron Hülägü to the last Ayyubid ruler Nā ir alā  al-Dīn 
Yūsuf. His student Qu b al-Dīn Shīrāzī, a Su[ , physician, philosopher, and giN ed 
 practitioner of the mathematical sciences, served the Ilkhanid ruler Ghāzzān as 
ambassador in Mamluk Cairo. Authors of mathematical treatises, such as Ibn 
al-Lubūdī, were appointed as viziers or took other administrative positions. 

ūsī and later his son A īl al-Dīn, in addition to directing the observatory in 
Maragha, headed the dīwān for religious donations of the Ilkhanid dynasty and 
were thus powerful patrons in their own right who were served by scholars as 
well as princes.

Dedications of manuscripts and instruments continued during this period. 
Due to the impact of courtly patronage on the arts of manuscript production, 
scienti[ c books grew ever more lavish in decoration and design. Several of 
the most beautifully decorated scienti[ c manuscripts went from one princely 
library to the next, acquired as giN s, bought for a high price on the market, 
or taken as booty in a war between neighbours. A few examples are the copy 
of A̔bd al-Ra mān ūfī’s Star catalogue made from a copy owned by Na īr 
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al-Dīn ūsī for the library of Ulugh Beg; A̔lī Qushjī’s work on mathematical 
 cosmography written for Ulugh Beg in Persian and translated into Arabic for 
Mehmet Fāti ; a partial copy of Bīrūnī’s astronomical magnum opus dedicated 
to the Ghaznavid sultan Ma ῾ūd b. Ma mūd, acquired by a courtier of Shāh 
Jahān’s court in 1649; a copy of ūsī’s edition of Euclid’s Elements, which in 
1659 was part of the library of Sultan Mu ammad Ā̔dil Shāh in Bijapur and 
later came into the library of the Mughal ruler Awrangzīb Ā̔lamgīr; and a copy 
of Ghiyāth al-Dīn Kāshī’s work on arithmetic dedicated to Ulugh Beg, which 
was bound for Sultan Fāti A̔lī Tippu’s library (Blochet 1900, 87; Schöler 1990, 
172; Loth, 1877, 215–216, 220).

Patronage exercised by scholars, including those in mathematical discip-
lines, broadened too. Visiting, travelling together, deputizing, [ nding a pos-
ition for a former student, marrying one’s daughters to one’s students, choosing 
a family member or a former student as one’s successor: all were oN en-used 
means to secure one’s own and one’s family’s position, ind uence, and pos sibly 
[ elds of knowledge. asan b. A̔lī al-Qaymarī was excellent in arithmetic, 
algebra, timekeeping, the determination of inheritance shares and legations, 
and  prosody, also possessing good knowledge in law and grammar, and was 
a student of Ibn al-Majdī and Khalīl b. Ibrāhīm Abu l-Jūd from Damietta in 
Egypt. He received a chair in the [ eld of inheritance shares and legations at the 
Jawhar al- afawī Madrasa in al-Ramla aN er his teacher Abu l-Jūd had talked to 
its donor (al-Sakhāwī, al- aw’, III 119).

9 e vocabulary of courtly patronage found its way into describing relation-
ships between scholars, teachers, and students. Having travelled widely in 
the East, including China, the son of an educated family from Wasit in Iraq, 
῾Izz al-Dīn al- asan turned to Syria where he ‘joined the service (khidma) of 
the judge [Mu ammad b. Wā il al- amawī], the judge of Hama. He was well 
versed in the Almagest and mathematics. I [read] with him for some time’ (Ibn 
al-Fuwatī n.d., IV/1 101–102).4 Sons were in the service (khidma) of their fathers 
when studying with them, were launched into the service of princes through 
serving their fathers, and professors served the books of their intellectual fathers 
by writing  commentaries and glosses on them (Ibn al-Fuwatī n.d., IV/3 318, 338; 
al-Sakhāwī, al- aw’, X 48). Students formed connections (itti āl) with teachers 
and married their daughters (Ibn al-Fuwatī n.d., IV/3 418–419). 9 e obligation 
embedded in o\ ers of marriage to a professor’s student could lead to severe fric-
tion if rejected. In the [ N eenth century, Mu ammad b. Armaghān, a student of 
Shams al-Dīn Fanarī and later a prominent scholar, fell out with his teacher’s sons 
because he refused their father’s o\ er to marry their sister. Armaghān justi[ ed 

4. wa’jtami῾tu bi-khidmat al-qā ī [Mu ammad ibn Wā il al- amawī] qā ī amā wa-huwa ā̔rif bi’l-Majis ī 
wa’l-riyā ī [qara’<tu>] ῾alayhi mudda
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his  decision by pointing to an earlier promise of marriage to another scholar’s 
daughter (Tasköprüzade 1978, 45–46). Occasionally, a holder of a chair preferred 
to appoint one of his students rather than a relative as his successor. 9 e muwaqqit 
Sib  al-Māridānī was the grandson of Jamāl al-Dīn al Māridānī, himself a muwaq-
qit and successful teacher of the mathematical sciences in Cairo who leN  at least 
six treatises on timekeeping and astronomical instruments. Sib  al-Māridānī, a 
proli[ c writer on arithmetic, algebra, timekeeping, astronomical handbooks, and 
instruments, received his teaching position at the Ibn ūlūn Friday Mosque due 
to the desire of the previous professor and muwaqqit Nūr al-Dīn b. Naqqāsh that 
he should take the o7  ce (al-Sakhāwī, al- aw’, IX 36). 9 e increasing transform-
ation of the positions at endowed teaching institutions into family holdings was 
not limited to the professorships. Other posts could also be handed down in the 
family, such as that of the librarian of a madrasa or mosque library (al-Sakhāwī, 
al- aw’, II 154).

Professional identities and remuneration

In the eighth to twelN h centuries, the [ rst period of patronage, courtly patrons 
paid their clients in two forms, although the information given in the sources 
regarding them is so irregular and sparse that it is di7  cult to get a clear picture. 
9 e form mentioned most oN en are giN s such as robes of honour and one-time 
monetary payments made from the patron’s personal treasury ( abarī, 1989, 313; 
Ibn al-̔ Ibrī 1958, 131, 137, 182). 9 e second form was regular monthly and yearly 
payment (rizq; ujra) allocated mostly from the general treasury of the court or 
the private treasury of the patron, but also from the dīwān for religious donations 
(King 2000, 211; Ibn a. U aybī a̔ n.d., 198–200; Halm 1997, 75).

By the twelN h century, regular stipends, paid annually or monthly, seem 
to have been the more widespread format. It is not always clear whether they 
came exclusively from the personal treasury of the patron. In addition, other 
forms of payment were also used, in particular the turning over of an iq ā῾, a 
taxable region, although occasionally already in the [ rst period a village had 
been given as a giN  to a physician or other scholar. 9 e stipends (jāmakiyya; 
jirāya) and the iq ā῾ had previously been standard forms of paying the mili-
tary. In the twelN h and thirteenth centuries, the Ayyubid dynasty applied such 
forms to reconcile members of the civil elite of a city with the conquest and 
destruction wrought by Ayyubid troops, to express their highest appreciation 
for a local notable or a courtly client, and to pay for services rendered (Eddé 
1999, 280). Some Ayyubid court physicians received such remuneration and 
gratitude but it is unclear whether astrologers or engineers were also recom-
pensed in this manner.
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With the proliferation of endowed teaching institutes, regular salaries in 
conjunction with non-monetary components such as food and lodging for pro-
fessors, teaching assistants of di\ erent kinds, muwaqqits, muezzins, and other 
positions linked to these institutes became the norm. 9 e highest salaries oN en, 
but not always, went to the professors. 9 e amount depended on the endowment 
and thus on the wealth and status of the donor. Even among the members of 
the Mamluk elite in Cairo, the endowments and hence the stipulated salaries 
varied considerably (Berkey 1992, 77–78). Muwaqqits at Mamluk mosques and 
 madrasas got substantially less, but a little bit more than the muezzins. A muwaq-
qit in a major mosque or madrasa in Cairo earned at the highest 60 percent of 
what a Su[  shaykh and 40 percent of what a professor of law received. More oN en, 
however, this post was supported by a salary of less than a third of a profes-
sor or an imam (King 1996, 302). 9 e further bureaucratization of the system 
under the Ottomans [ xed salaries for positions according to their distance from 
the capital, their status within their city, and the access it could open to pos-
itions in the religious and civil administration of the empire. Salaries were paid 
on a yearly, monthly, or daily basis. 9 e money for the salaries came from pro[ ts 
gained from agricultural production in donated villages, fruit gardens, and shops 
or were taken from the dynasty’s waqf treasury, from the dīwān for taxes, or from 
economic enterprises monopolized by a dynasty, such as salt mining. In addition 
to the salary [ xed by the donor or prescribed by the administration, patrons 
could add substantial monetary and other giN s to honour the person they had 
appointed and keep him from looking for other lucrative income (Tasköprüzade 
1978, 59).

Earning a living through teaching was a lifestyle that was heavily contested 
over several centuries in a number of Islamic societies. Many remarks and dis-
cussions about which kinds of knowledge it was permissible to be remuner-
ated for, and which kinds of o7  ces a devout believer should accept or refuse, 
[ ll the pages of manuscripts. Algebra, for instance, could be safely taught for 
money, while knowledge of adīth should be shared for free (Berkey 1992 95–97; 
Tasköprüzade 1978, 26, 57). Taking the position of a judge or other, less pres-
tigious positions for discharging the law for a salary was seen as an acceptable 
form of paid employment aN er long years of learning. 9 e rise of endowed teach-
ing institutions altered the framework of access to remuneration for knowledge, 
bringing with it new employment opportunities (Berkey 1992, 96). Regularly 
remunerated positions increased substantially in the centres and spread to the 
provinces and even villages. Most opportunities were, of course, found in capitals 
and major administrative centres. But the oN en d uid forms of power, and the dis-
tribution of governance of provinces and smaller cities among male members of 
a dynasty or members of the military, o\ ered men of the lower ranks their own 
[ elds of patronage. In addition, everyone with su7  cient wealth could donate an 
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endowed teaching institute, even if it consisted of one position only. Hence fam-
ilies who could a\ ord it were able to create posts for the scholars of their own 
family and stipulate the kind of disciplines that would be taught. A number of 
medical madrasas were created in this manner, but no case of a scholar of the 
mathemat ical sciences is known who founded his own madrasa chair speci[ c-
ally dedicated to these disciplines. Most teachers of mathematical disciplines at 
endowed institutes in Mamluk Cairo, for instance, were appointed by courtly 
patrons to teach a broad range of religious and other disciplines, or succeeded 
their former teachers or relatives in their positions. 9 e biographical literature 
shows clearly that most of them focused on teaching a particular branch of law, 
the determination of inheritance shares and legates. 9 is focus allowed them 
to carve out a substantial space for teaching mathematical knowledge covering 
arithmetic, algebra, practical and theoretical geometry, three astronomical dis-
ciplines (timekeeping, planetary theory, compiling astronomical handbooks and 
ephemeredes), and the construction of scienti[ c instruments. In this sense, the 
mathematical sciences underwent a process of stabilization and professionaliza-
tion once they became integrated into the new framework of endowed teaching 
institutions.

9 is substantial and important gain of territory, opportunity, and stability is 
well documented through the thousands of texts introducing these disciplines 
to many generations of students, extant today in manuscript libraries across 
the globe. It was accompanied, though, by a focus on elementary content and a 
submission to the teaching methods and values that governed the religious and 
philological disciplines. Learning by heart was seen as the highest expression of 
scholarship and reason for fame. Scholars were praised and admired for the speed 
and quantity of their memorizing. Studying the texts of one’s teachers and of 
their teachers in turn—that is, chains of texts determined by chains of scholars—
became the norm not only for transmitting adīth, where it evolved in the early 
centuries as the only method considered leading to trustworthy knowledge if the 
transmitters of the chain were deemed reliable, sound and morally worthy, but 
also in the mathematical sciences. As a result, fewer and fewer texts by scholars 
of previous generations, centuries, and cultures were directly studied. Editions, 
paraphrases, commentaries, and super-commentaries of Euclid’s Elements, for 
instance, replaced in many classes the study of the Elements themselves.

9 e goal of education in endowed teaching institutes was not to create crit-
ical or substantially new knowledge. New ways of looking on taught knowledge 
and asking questions about it, although lauded as marks of excellence, were 
 considered exceptional. A major way of establishing a scholar’s academic cre-
dentials, in particular when he was new to town, was to hold a public disputation 
(munā ara). In such disputations a series of questions was asked to bring out the 
depth of knowledge of what was taught and discussed in the various disciplines. 
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Defeat, evaluated by an arbiter who was either a well-established scholar or occa-
sionally a ruler, vizier, or another high-ranking court o7  cial, was declared when 
a partici pant was not able to answer these questions satisfactorily. 9 us scholarly 
excellence did not consist in raising questions beyond the already established 
concepts and beliefs but in being broadly and substantively familiar with what 
was taught and discussed in scholarly circles. Such broad, encompassing know-
ledge was worthy of patronage and promotion.

Outcomes of patronage for the mathematical sciences

Outcomes of patronage for the mathematical sciences extant today include 
instruments and manuscripts, art objects, and architectural and technological 
monuments. 9 eir character as products of patronage can be established through 
dedications, frontispieces, colophons, and marks of ownership. Other results of 
patronage were expeditions, measurements, observations, and oral performances 
as teachers, boon companions, and participants in sessions of serious debate or 
conviviality. 9 ese survived the centuries through reports and descriptions. 
Since it is impossible to describe here all known outcomes of patronage, or to 
summar ize all the results of patronage relationships, a few examples will have 
to su7  ce.

According to King (2004, II 993–1020) and Charette (2006, 134, n1), over a 
thousand astrolabes and several hundred globes, quadrants, sundials, and other 
scienti[ c devices made in Islamic societies survive. At least one hundred and 
[ N y extant astrolabes, some twenty sundials, and about a dozen quadrants go 
back to pre-sixteenth-century workshops. Astronomical instruments were part 
and parcel of the Translation Movement. 9 e prominent role of instruments 
resulted from the political and ideological functions that transformed the act of 
translating into a cultural movement sustained for almost two centuries by a [ ne 
net of patronage acts from Abbasid caliphs, courtiers, and practitioners of the 
 translated knowledge. Gutas (1998, 41–50) convincingly argued that these func-
tions rested on a concept of translation that was part of a pre-Islamic ideology of 
kingship from Sasanian Iran.

Closely linked to a new, modi[ ed form of this ideology, which now was directed 
against the Byzantine Empire, was the organization of geodetic measurements 
and astronomical observations between 828 and 833 in Baghdad, Damascus, 
Mecca, and the desert of Sinjar near Mosul under the caliph al-Ma’mūn (Gutas 
1998, 83–95). 9 e geodetic observations were presented as a means of checking, 
comparing, and verifying data found in ancient texts and instruments in use in 
di\ erent regions of the Abbasid caliphate (King 2000, 215, 217–218, 223–224). 
9 e observation of a lunar eclipse in Mecca is described as a caliphal order to 
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determine the qibla of Baghdad, the direction of prayer towards Mecca (King 
2000, 214, 218–219). Other observations most likely served for astrological coun-
selling (Charette 2006, 125). Astrology was probably not merely the practical but 
also the theoretical context of this astronomical programme, due to the rising 
impact of Aristotelian natural philosophy (Charette 2006, 135 n18).

Astrologers, instrument-makers, and a judge participated in these measure-
ments and observations—constructing a series of instruments; determining 
appropriate sites; choosing the team members; supervising their work; witness-
ing, recording, and communicating the results to the caliphal patron. He in turn 
formulated successive research questions, informed himself about the reliability 
of the instruments and evaluated the results (King 2000, 215, 218–220, 223–224). 
9 e cultural and scienti[ c results of this [ rst major programme of empirical sci-
enti[ c activities had immediate and long-lasting consequences. 9 ey supported 
the radical shiN  from Indian and Sasanian models and parameters to Ptolemaic 
astronomy that took place in the following decades. 9 e series of reports on this 
programme and its scienti[ c results established astronomical observations and 
measurements as an important icon of courtly patronage. Elements such as specif-
ically constructing instruments, forming a team of scholars, and inviting witnesses 
were repeated in later programmes under the Buyids, Saljuqs, and Ilkhanids.

Several princes of the Buyid dynasty either received an excellent education 
in the mathematical sciences or were presented with high quality writings on 
 theoretical and practical mathematical problems. Berggren (unpublished) 
has evaluated some aspects of Buyid patronage of the mathematical sci-
ences. He describes a deeply structured network, with patrons in the dyn-
asty and the administration, and clients among the administrators, scholars, 
and  instrument makers. 9 e princely patron of this dynasty was [ rst and 
foremost A̔ ud al-Dawla. But several other princes also contributed, among 
them Rukn  al-Dawla—one of the three founders of the dynasty and father to
A̔ ud—and ̔ A ud’s sons Sharaf al-Dawla and am ām al-Dawla. Rukn al-Dawla, 

an illiterate mercenary from Daylam on the Caspian Sea, ordered the meas-
urement of the latitude of the city of Rayy and its longitudinal di\ erence from 
the Abbasid capital. He provided an excellent education for his son by giving 
him his own vizier, Ibn al-̔ Amīd, as tutor. Ibn al-̔ Amīd collected manuscripts, 
commissioned a commentary on Book X of Euclid’s Elements from Abū Yūsuf 
Ya̔ qūb Rāzī, and  himself excelled in mechanics. He used the latter for inventing 
new siege machines and is credited with constructing a mural quadrant used 
in the astronomical observations requested by Rukn al-Dawla (Sijistānī, iwān 
al- ikma, 321–324; Sayılı 1960, 104). Other Buyid viziers also patronized scholars 
of the mathematical sciences. Numerous scholars sponsored by Buyid patrons 
wrote works on geometry, number theory, algebra, and arithmetic in addition to 
texts on astrology and astronomy.
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Works on higher geometry were of two types. One type continued and 
 completed the research of ancient Greek geometers. 9 e two main [ gures for 
identi[ cation and imitation were Archimedes and Apollonios. 9 e scholars of 
the Buyid courts wrote on conic sections, loci, polygons, projections of the sphere 
on the plane, the construction of two mean proportionals, and the trisection of 
angles and studied the transformation of curves into equations and vice versa 
(Hogendijk 1981; Berggren 1986, 77–85). 9 e other type began to modify and 
then to replace the methods and concepts of Greek mathematics with new theo-
rems, procedures, and topics. Works on Menelaus’ theorem and new  theorems 
of plane and spherical trigonometry constitute one [ eld of such innov ation. 
Other [ elds of geometrical research that went beyond the classical heri tage, or 
drew rather on Indian precedent, related to astronomical problems such as inter-
polation procedures for calculating tables. Approximate solutions were found 
to practical problems in architecture, surveying, accounting, and determining 
inheritance shares and legacies.

In number theory, arithmetic, and algebra, Buyid scholars also wrote import-
ant books which they dedicated to their patrons. In Karajī’s Fakhrī, for instance, 
the author departs from the former understanding of algebra as a set of rules for 
solving quadratic equations and verifying their solutions, as de[ ned by ninth-
century scholars, some of whom had been patronized by Abbasid caliphs. Karajī 
now presented algebra as a discipline which applied the rules and procedures of 
arithmetic systematically to unknowns of the type xn and 1/xn and to polyno-
mials (Rashed 1984/1994). Taken up a century later by the physician and math-
ematician al-Samaw’al, who wandered through Syria, Kurdistan, Azerbaijan, and 
other Islamic lands in search of patrons, Karajī’s new algebra has had a deep 
impact on how the [ eld was taught and studied by later generations.

In the period of endowed teaching institutions, patronage of the mathemat-
ical sciences took place, as discussed above, at courts, among the civil educated 
elite, and within the framework of the endowed institutions. 9 e manuscripts, 
tables, and instruments that were produced in these diverse environments 
were primarily created within the context of teaching. Luxury specimens were 
fabricated mainly for princely education, as giN s for members of the ruling 
family, and as items held and displayed in princely libraries. At times the pro-
duction of new knowledge, in the form of new solutions to standard  problems, 
variations to extant solutions, and modi[ cations of unsolved problems occu-
pied scholars at court as well as in madrasas, khānqāhs, or mosques. Planetary 
theory and timekeeping are the two prominent [ elds of such innovative e\ orts. 
Debates over modi[ cations to Ptolemaic models, and the  relationships between 
geometrical models, physical properties, and philosophical prin ciples, per-
haps began as early as the ninth century. Major scholars patronized by rulers 
 contributed to this debate, among them Ibn al-Haytham, Na īr al-Dīn ūsī, 
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al-̔ Ur ī, Qu b al-Dīn Shīrāzī and A̔lī Qushjī. In the second period of patron-
age, scholars linked to the endowed teaching institutions participated in it 
(Roberts and Kennedy 1959; Kennedy and Ghanem 1976; Saliba 1979; 1990; 
1993; Langermann 1990; Ragep 1993; 2005). In addition to al-̔ Ur ī, Shīrāzī, 
and Qushjī who also lived in and taught at madrasas, Ibn al-Shā ir, muwaq-
qit and muezzin in Damascus, adr al-Sharī῾a in Bukhara, and Shams al-Dīn 
Khafrī in Qazvin were important contributors to planetary theory (Kennedy 
1957; Saliba 1994; Dallal 1995).

Muwaqqits, and people engaged in similar works and with similar professional 
links to mosques and madrasas, but named di\ erently, start to appear in the late 
thirteenth and early fourteenth centuries, [ rst in Mamluk Egypt and Syria. Later 
they also are known from al-Andalus, parts of north Africa, the Yemen, and the 
Ottoman Empire. As mentioned earlier, their task consisted in solving the astro-
nomical and mathematical problems connected with determining prayer times, 
the direction of prayer towards Mecca, and the beginning of the new month (King 
1993; 2004). 9 ese tasks had been tackled since the eighth century, oN en by some of 
the most brilliant scholars involved with the mathematical sciences. Independent 
of their religious beliefs they contributed to [ nding exact as well as approximate 
numerical and geometrical solutions to these problems. From this perspective it 
could well be claimed that a major outcome of courtly patronage for the mathem-
atical sciences in both periods was the development of a rich [ eld of methods for 
[ nding astronomical and mathematical solutions important to religious practices.

When the muwaqqit emerged in the late thirteenth and early fourteenth cen-
tury, such methods became acknowledged as an independent branch of the 
mathematical sciences called ῾ilm al-mīqāt. In Charette’s view (2006, 129) this 
included a broadening of content, as it united spherical astronomy, timekeeping, 
astronomical instrumentation, gnomonics, determination of the direction of 
prayer, chronology, and the prediction of the beginning of the new month with 
the [ rst visibility of the lunar crescent. 9 e muwaqqits and the teachers of the 
new discipline developed new instruments, calculated multi-entry tables (oN en 
up to 40,000 entries and occasionally even to 415,000 entries), developed sophis-
ticated tools for simplifying the necessary calculations, and created means for 
[ nding solutions valid for all latitudes.5 9 e emergence of ῾ilm al-mīqāt also 
involved issues of legitimacy within the discursive framework set by al-Ghazālī 
in the eleventh century. Ibn al-Akfānī, a physician and madrasa professor in 
Cairo, declared ῾ilm al-mīqāt to be a discipline obligatory (wājib) for a Muslim 
(Witkam 1989, 59). Instrument making was mostly seen as socially bene[ cial 
(Charette 2006, 129). 9 is discursive support for the new [ eld stabilized its 

5. For the most complete survey of the available corpus of tables, problems, methods, texts and instru-
ments published to date see King (2004; 1975, 83); Charette (2003, 26).



PEOPLE AND PRACTICES324

establishment within the teaching system and ῾ilm al-mīqāt indeed became a 
respectable mathematical discipline studied as part of a general education by 
numerous, but by no means all, students, including some of the later leading 
scholars in Mamluk society.

9 e outcomes of patronage of the mathematical sciences in Islamic societies 
described here are only a fraction of what was produced. Numerous instruments, 
more treatises, and wonderfully illuminated copies were produced over the cen-
turies for courtly display in libraries and private settings, for men and women, 
rulers and their families, viziers, and emirs. Many professors, muwaqqits, phys-
icians, and other professionals who contributed to the mathematical sciences as 
teachers, researchers, observers, and instrument makers owed their positions 
directly or indirectly to military as well as civil patrons. Without patronage, 
the d ourishing mathematical cultures of Islamic societies would have been 
 impossible or at least much poorer.

Conclusion

Sources about patronage of the mathematical sciences in Islamic societies 
between the eighth and the nineteenth century are rich, but narrow in scope and 
uncertain in both the meaning and the reliability of their claims. It is possible 
and useful to collect all dedications of texts, instruments, paintings, and other 
relevant objects and analyse their rhetoric, focus, and function. Such research 
will broaden our knowledge about the mathematical [ elds supported by di\ erent 
kinds of patrons and can elucidate the meaning given to this support.

However, we should not consider dedicated works as the sole outcomes of 
patronage. 9 ey are, without doubt, the central elements in the exchange of 
 bene[ ts, honour, and gratitude that constituted and kept alive the patron-
age relationship. Patronage, however, is not reducible to the exchange of giN s 
between patron and client. It also was a relationship of work or, as the medi-
eval authors preferred, of service, which bound the participants to each other 
in the many ways discussed in the previous sections, work that included study-
ing, researching, observing, interpreting, and writing. Without continuous 
intellectual work the scholars may have lost their patrons, although in some 
cases sources indicate that wit and sociability were more valuable commodities 
than mathemat ical pro[ ciency. 9 e criticism uttered against the [ N eenth-cen-
tury scholar Kashi, for instance—that he was a bore who had not mastered the 
re[ ned protocol of Ulugh Beg’s court and thus was frowned upon—reminds us 
that scholars of the mathematical sciences were participants in larger networks 
of social relationships, expectations, and behaviour. Excellence in the mathem-
atical sciences while important was not su7  cient for creating stable and com-
fortable  connections between a client and a patron.
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A second substantial [ eld for research about patronage is o\ ered by the rhet-
oric of patronage and its variations and changes over time and space. Islamic 
societies di\ ered from each other while sharing a number of elements. 9 e rhe-
toric of patronage embodies some of these di\ erences and similarities. It red ects 
di\ erent degrees of violence, instabilities in client–patron relationships, the new 
opportunities provided by the endowed teaching institutes, the spread of patron-
age forms among the civil elites, and other changes. In this chapter I have tried to 
trace major di\ erences, similarities, and changes. Focusing on shorter periods of 
time and smaller territories will help to uncover local and temporal particular-
ities. Such particularities will o\ er possibilities for understanding why certain, 
but by no means all or even most, Islamic societies supported the mathematical 
sciences through patronage.

A third domain for further research is the study of the relative place ascribed to 
the mathematical sciences in the complex web of courtly patronage. 9 e support 
given to individual mathematical [ elds by speci[ c dynasties in relationship to 
other domains of culture such as medicine, history, law, or the arts and the social 
loci of these sciences de[ nes their reputation, forms of practices, and various 
elements of their content. A clearer picture of the speci[ cs of these relations and 
places will improve our understanding of the substantial changes in productiv-
ity, creativity, and focal points in the mathematical sciences in Islamic  societies 
between the eighth and nineteenth centuries.
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CH A P T ER 4 . 2

John Aubrey and the ‘Lives of our 
English mathematical writers’
Kate Bennett

One Sunday evening in February 1680, John Aubrey smoked a pipe of tobacco 
and dreamed up a new literary project. Stimulated by his collaborative work 

on a Life of 9 omas Hobbes, he resolved to write ‘my honoured friend Sir William 
Petty’s life, which will be a [ ne thing, and which he shall peruse himselfe, and 
then it shall be leN  for Posterity heraN er, to read (published)’.1 He started imme-
diately ‘to scribble a sheet of paper close’ with notes which he intended soon to 
‘enlarge’ into three Lives ‘of the worthy and ingeniose Knight Sir William Petty 
from his cradle; Sir Christopher Wren the like. as also Mr Robert Hooke’.2 He 
also recalled that he had ‘lodged 5 yeares since a sheet of Minutes of John Dee’ 
with Elias Ashmole.3 Soon he had drawn up a list of ‘55 persons’ and had ‘done 10 
of them’: these included the Life of Petty, inventor of ‘political arithmetic’ or pol-
itical economy, and those of three mathematicians: Edward Davenant, who had 
been Aubrey’s own mathematics tutor, John Pell, and William Oughtred.4 9 us 
his biographical collection, which we now call ‘Brief lives’, had at its core a cluster 

1. MS Ballard 14, f. 127. All manuscripts cited are in the Bodleian Library, Oxford, unless otherwise stated. 
For the Hobbes Life, see Hunter 1975, 78–80.

2. MS Ballard 14, f. 126. 9 e ‘Brief Life’ of Wren was cut out of the manuscript, almost certainly by Anthony 
Wood, and lost. It was between \ . 28 and 29 of MS Aubrey 6.

3. MS Ballard 14, f. 127.   4. MS Ballard 14, f. 131–131v.
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of Lives of English mathematicians.5 To these Aubrey later added John Wallis, 
Henry Billingsley, Seth Ward, Sir Jonas Moore, Isaac Barrow, 9 omas Harriot, 
Walter Warner, Francis Line, Henry Coley, Edmond Halley, and many more; 
as well as some Continental mathematicians: Nicolas Mercator, who had been 
another of Aubrey’s tutors, and Descartes. John Pell contributed a very great deal 
of information to the ‘Lives’—he was the main source for the Lives of Harriot, 
Briggs, and Warner—and was one of those who read the work in manuscript, 
although not very attentively.6

Aubrey’s category of ‘English mathematician’ thus encompasses a very wide 
range of people, from astrologers to instrument makers to mechanics. He began 
to make biographical collections from the early 1650s, as a part of what he hoped 
would be a wider contribution to the advancement of learning. 9 e Life of Henry 
Briggs, which includes an account of attempts to carry out Briggs’s proposal for 
a canal to link the 9 ames and Avon, describes Aubrey’s e\ orts to revive the 
project in the 1670s. 9 e version found in ‘Brief lives’ is later than that in his 
manuscript ‘9 e Wiltshire antiquities’ (1671), but in its turn it was superseded 
by a fuller version for ‘9 e naturall historie of Wiltshire’ (1685).7 Aubrey knew 
Edward Davenant by 1642, when he was sixteen; he was a close friend of two of 
Davenant’s relations. He attempted, without success, to encourage Davenant to 
print his work by sending him letters and mathematical books and by introdu-
cing him to John Collins FRS, who was hoping to publish a collection of alge-
braic writings.8 It seems to have been Aubrey who told Samuel Hartlib in early 
1653 that ‘Dr Davenant of divinity [ . . . ] hath made ready several Mathematical 
Arithmetical Geometrical Astronomical Work’s in Latin which he intends shal 
be publish’t aN er his death’.9 9 is death occurred in early 1680; and Aubrey’s 
Life was written two weeks later. Many of these Lives were similarly intended as 
a contribution to collaborative projects, oN en ones which Aubrey tried to initi-
ate or revive. An example is the Life of William Oughtred, originally prepared 
as part of a county history of Surrey in 1673, but abandoned when Aubrey was 
dropped from the project. In 1680, as we have seen, he wrote another version for 
‘Brief lives’; later, in 1691, Aubrey also revised what he called his ‘Surrey notes’ 

5. At some stage Aubrey inscribed ‘Σχεδιάσματα. Brief Lives’ on the cover of Volume 1 (see Clark 1898, 
I 8; much of the Greek text is now no longer visible). Even aN er so doing, he never used these titles in his 
correspondence, continuing to call them ‘my minutes of Lives’ or ‘my Lives’.

6. Aubrey told Anthony Wood that he had ‘deposited’ his ‘Minutes of lives in Dr Pells hands’ in autumn 
1680 ‘expecting he would have made additions or amendments, but (poor, disconsolate man!) I recieved it of 
him without any’ (MS Wood F 39, f. 351).

7. MS Aubrey 6, \ . 47v–49; MS Aubrey 3, \ . 22v–23a; 84v; MS Aubrey 1, \ . 49–51. 9 e version of the 
account of Briggs in the ‘Naturall historie’ transcribed for the Royal Society in 1690–1 is di\ erent again 
(London, Royal Society, MS 92, 66–69). See Bennett 1993, 114–17. 9 e nineteenth-century editions of Aubrey’s 
Wiltshire manuscripts exclude these biographies.

8. John Collins to Francis Vernon, in Rigaud 1841, I 154–155; MS Aubrey 12, f. 96 is Davenant’s letter to 
Aubrey which shows that in 1667 Aubrey was acting as an intermediary between Davenant and Collins.

9. Hartlib Papers 28/2/49B.
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into what is now ‘A perambulation of Surrey’, with an extended version of the Life 
of Oughtred.10 In the previous year, Aubrey had prepared an ‘Apparatus for the 
lives of our English mathematical writers’.11

Aubrey shared with Sir William Petty and John Pell a wish to bring about edu-
cational reform, as a result of which mathematics and other scienti[ c subjects 
would be a central subject for study in schools. Aubrey’s collections look forward 
to ‘Posterity heraN er’, in which a more enlightened world might combine the 
study of mathematics with the pious duty of doing ‘right’ to those who had in the 
‘darke time’ before the establishment of the Royal Society patronized mathemat-
icians or added to mathematical knowledge. It was towards this idealized future 
that Aubrey ‘religiously collected’ the vestigia of the past.12

Aubrey’s wish to ‘doe right’ in this way led to his most signi[ cant collabor-
ation, that with the antiquary Anthony Wood, whom he sought out in Oxford 
in 1667. He had been collecting antiquarian and biographical material since the 
1640s, and expected that some of it would be published and accredited to him in 
Wood’s writings: the brief biographical parts of Wood’s history of the colleges 
and halls of Oxford University, Historia et antiquitates universitatis oxonienses 
(1674), and the entirely biographical Athenae oxonienses (1691), his account 
of Oxford writers. Aubrey accordingly supplied Wood until the latter’s death 
in 1695 with an extensive range of material on biographical, bibliographical, 
and antiquarian subjects. As well as a great number of letters, Aubrey sent him 
books, pamphlets, transcriptions of parish registers, and epitaphs; he copied 
materials which he also passed to other correspondents; he acted as intermedi-
ary between Wood and other informants; he sent him separate manuscript Lives 
and, most valuable of all, he lent him his manuscripts, including ‘Brief lives’. 
9 ese were in Wood’s  custody for long periods of time. Aubrey would continue 
his researches and  hastily revise his manuscripts when he occasionally got them 
back. He regularly sent material to Wood instructing him to add it to the ‘Lives’; 
but Wood usually took no notice, treating the manuscripts as his own: at the 
end of their collaboration, he even cut out nearly all of the second volume of the 
‘Lives’ and destroyed it. 9 e fact that Aubrey, homeless from 1671, had his own 
manuscripts in his possession for such a short time, never had all his books and 
papers together, and relied on an unreliable collaborator is the main cause of the 
textual confusion that characterizes the ‘Lives’ manuscripts. Much of the work 
he sent Wood was not used by him; thus much of Aubrey’s work, and of his work 
on the history of mathematics, remains unprinted.13

10. 9 e earliest Life of Oughtred is MS Aubrey 4, f. 237v; the Brief Life is MS Aubrey 6 \ . 39–42v; the 
extended ‘Surrey’ Life is MS Aubrey 4, \ . 102v–5.

11. MS Aubrey 8, \ . 69–88v.
12. MS Ballard 14, f. 127; MS Wood F 39, f. 229; MS Wood F 45, f. 204; MS Aubrey 6, f. 60.
13. MS Wood F 49, f. 67. In the 1690s Aubrey donated his manuscripts to the Ashmolean Museum, Oxford; 

they are now held in the Bodleian Library, Oxford.



PEOPLE AND PRACTICES332

Aubrey’s ? ne net

Aubrey’s chief reason for helping Wood to such an extent was that he found 
his historical approach so congenial. On one of several occasions on which he 
found himself defending Wood’s historiography, Aubrey said his work mattered 
because of its inclusiveness of record. Wood, he said, was a ‘Candid Historian’, 
who ‘made not’ himself a ‘Judge’ of men’s ‘merites or Abilities’ but on the  contrary 
took extraordinary pains to record all his subjects’ writings, including, to the 
scorn of many, details of ephemeral publications such as tracts and unpublished 
manuscripts.14 He warmly approved of the way Wood found many strategies to 
avoid restricting the scope of his publications to Oxford-educated writers: there 
are plenty of Cambridge-educated, or self-taught, or nonconformist writers, for 
example, in the Athenae oxonienses. However, Aubrey felt Wood did not go far 
enough. He constantly tried to persuade Wood to add accounts of persons whom 
Wood did not think proper to include, and details which Wood disdained to 
notice; and he always wanted Wood to make his entries fuller. Aubrey, as we 
have seen, expected his papers to be kept safe in Wood’s archive for posterity, 
and the bene[ t of this for his purposes was that he did not try to make all of 
his work suitable for print. He was free to include in his manuscripts material 
that could not be transmitted to print without losing its value, such as the letter 
in William Oughtred’s hand, which Aubrey stitched into his manuscript along-
side the mathematician’s Life.15 He was not exclusively interested in the ‘Lives of 
Eminent Men’, as a nineteenth-century editor renamed ‘Brief lives’, although he 
certainly made them a priority: his interests were wider. Sometimes this led to 
eccentric judgements: in 1690, eagerly expressing the hope that the autodidact 
astronomer 9 omas Streete would be memorialized by those who talked ‘of club-
bing towards an Inscription’ in Westminster New Chapel where he was buried, 
Aubrey exclaimed that ‘No man living haz deserved so well of Astronomie’.16 But 
the reason for Aubrey’s championship of lesser mathematical mortals is that in
an age when many, like Davenant, who ‘being a divine’ was ‘unwilling to print’, 
were liable to feel conscientious scruples about neglecting their proper religious 
duties to pursue their studies, Aubrey feared that a focus on major and public 
achievement would exclude from the notice of posterity many of those who had 

14. MS Aubrey 12, f. 8.
15. Oughtred’s letter is MS Aubrey 6, \ . 41–2. Aubrey owned Oughtred’s annotated copy of Pitiscus 1614, 

now in the library of Worcester College, Oxford. On the front endpaper, below Oughtred’s annotations, 
Aubrey wrote: ‘Sum Johannis Aubrij de Easton-Piers. 9 is was old Mr Oughtreds booke, and the Notes are of 
his owne handwriting’. It is not known what became of Oughtred’s library aN er his death: it was a ‘compleat’ 
mathematical library (see Lloyd 1668, 287). Aubrey does not say how he obtained the Pitiscus, but he was 
looking for a copy in 1649. In March 1650 Ralph Bathurst found a copy for him at the steep price of 7 shillings, 
which may have been Oughtred’s copy (MS Aubrey 12, \ . 300, 304, 306).

16. MS Aubrey 8, f. 88v.
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mething of interest to o\ er, however fragmentary.17 He also feared that such 
squeamishness about printing mathematical works during one’s lifetime would 
result in no publication at all, as family members might not have the skills or 
inclination to see such recondite works through the press. Aubrey hoped both to 
record and to stimulate a very wide pattern of participation in the advancement 
of learning; and this led him to record details of hundreds of people who were not 
included by Wood in his biographical collections. Aubrey’s net was both wider 
and [ ner than Wood’s, and caught smaller [ sh.

For example, in ‘Idea of education’ Aubrey gives details of mathematicians who 
had taught their female relatives, such as the niece, ‘6 yeares old goeing in seven’, 
of William Holder, for whom Holder prepared a ‘Mathematical Catechism’, 
designed to teach her to add, subtract, multiply, divide, and to understand 
 simple geometrical principles. She is not named, but the likeliest candidate is 
Sir Christopher Wren’s daughter Jane who would have been seven at the time of 
writing in 1684.18 Aubrey also transcribed part of Anne Ettrick’s mathematical 
manuscripts, which were prepared as part of her instruction in algebra from 
her father, Edward Davenant: he describes her as a ‘very good Logist’.19 Aubrey 
gives a great deal of explicit information about his informants, not disguised as 
‘an ingenious gentleman of my acquaintance’ or a similar formula, but named 
outright. An example is ‘Mr Bayes the Watch-maker’, the ‘nephew’ of Samuel 
Foster whom Aubrey identi[ es as his source in the margin of Foster’s Life.20 
9 is example may stand for many. Aubrey looked forward to a new intellectual 
community in which obscure as well as luminous persons would be recognized 
for their contribution to the advancement of  learning, and in which support 
networks of family, patronage, intellectual mentoring, and education would 
become apparent. 9 e ‘Lives’ were only a part of a wider ambition to transmit 
their subjects’ work to posterity.

One of Aubrey’s biographical sources for mathematicians was his ‘old cosen’ 
James Whitney (d. 1670), quondam fellow of Brasenose College, Oxford, vicar of 
the Wiltshire parish of Donhead St Andrew, and ‘a great Nomenclator of Oxford 
men’ such as Sir Walter Ralegh. Whitney had an interest in mathematics, and as 

17. MS Aubrey 6, f. 43.
18. MS Aubrey 10, f. 36b. Holder, the subject of one of Aubrey’s Lives, was a neighbour of the Wrens during 

this period and had been Wren’s mathematical tutor.
19. Worcester College, Oxford, MS 64 (unfoliated).
20. In this case, the detail of the informant allows us to trace an association between Foster and the watch-

making trade in Coventry; it also gives evidence of watchmaking in the city earlier than has been previously 
known. Foster mentions his ‘Sister Martha Bayes widdowe living in Coventry’ in his will as well as two 
 nephews, `John Bayes Watchmaker in London’ and `Beniamin Bayes liveing in Coventry’ (London Public 
Record O7  ce, PROB/11/222, f. 42v). Coventry became a major centre for watch-making in the eighteenth 
century. John was probably the John Bayes of London who became a member of the Clockmakers’ Company 
in 1647 and warden in 1658. A John Bayes, whom I suggest was his father, supplied watches to Charles I and 
John Pym in 1647 and 1628. Benjamin Bayes was apprenticed to John in 1661 and would also have been living 
in London (see Britten 1911, 615).
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well as donating to Aubrey his copy of Münster’s Rudimenta mathematica, he also 
passed on an Oxford tradition of mathematical storytelling.21 He informed the 
horri[ ed Aubrey that during the Visitation of Oxford under Edward VI mathem-
atical books were burned ‘for Conjuring bookes’, and that ‘if the Greeke Professor 
had not accidentally come along, the Greeke Testament had been throwne into 
the [ re for a Conjuring booke too’.22 He told Aubrey ‘by tradition’ that Robert 
Hues, author of De globis, was of St Mary Hall, Oxford; and said that Edward 
Brerewood studied mathematics so intensively because he was too poor to leave 
his chamber in Brasenose and so was obliged to remain there, in worn-out gown 
and ‘slip-shoes’, but pro[ ting ‘exceedingly’ in ‘knowledge’.23

9 is tradition of storytelling, with its gloomy portrayal of neglected math-
ematical studies in Oxford, is red ected in many places in Aubrey’s work. We 
should be careful not to take it at face value. Mordechai Feingold argues that 
the passages in the autobiographies of Wallis, Hobbes, and Locke, written in 
old age, in which these thinkers insist that they were intellectually self-made, 
 alleging that the universities of their undergraduate days were entirely given 
over to Aristotelianism and were thus devoid of any opportunities to study nat-
ural philosophy, should be understood in light ‘of the marked tendency of such 
men towards self-aggrandizement’ (Feingold 1997, 359). Biographical chat-
ter, as well as the formal written or orated biography of this period, conveys 
values rather than fact; and indeed is the particular refuge of those who do not 
feel their values to prevail. Whitney’s mathematical memorializing seems to 
have consolidated a sense of identi[ cation between teller and listener as voices 
crying in the wilderness.24 When Aubrey uses such stories in his writing he 
strikes a melancholy note: many of his lives depict mathematicians as pursu-
ing their interior and private studies in a hostile or uncomprehending world. 
It was certainly uncomprehending: in his will, Whitney bequeaths ‘my Silver 
Watch which I usually carry about me to know how the day passeth’, suggest-
ing that he felt the need to explain the purpose of his watch to those in his rural 
Wiltshire household, or parish, who did not understand its function or allure.25 
But such hostility as they encountered was normally due to professional rivalry. 
William Oughtred, publicly accused by his former student of being an ‘ignor-
ant mechanick’ maker of the slide-rule rather than its inventor, and of neglect-
ing his religious duties for mathematics, retorted furiously that ‘the time which 
over and above those usuall studies I employed upon the Mathematicall sci-
ences, I redeemed night by night from my naturall sleep’ (Oughtred 1634, A4v). 

21. Münster 1551. Aubrey’s copy is Ashm. F. 7. Judging by an inscription on the back page, ‘Peter Carret 
is a knaue/so god me saue’, it was used as an undergraduate textbook. Bound with it is Whitney’s copy of 
Blagrave 1585.

22. MS Wood F 39, f. 282v.   23. MS Wood F 39, \ . 234, 237, 343v, 347.
24. MS Wood F 39, f. 234. 25. London Public Record O7  ce, PROB/11/333, f. 156
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What this dedication meant for Oughtred’s family life is suggested by a story 
his son Ben told Aubrey, ‘that his Father did use to lye abed till eleaven or 12 a 
clock with his Doublet on, ever Since he can remember. Studyed late at night 
went not to bed till 11 a clock, had his tinder-box by him, and on the top of his 
Bed-sta\ e, he had his Inkehorne [ x’t. He slept but little. Sometimes he went not 
to bed in two or three nights, and would not come downe to meales, till he had 
found out the Quaesitum’ [that which was sought].26 It could be a lonely busi-
ness, and its practitioners oN en equated its satisfactions to those of the devout. 
9 omas Streete wrote his own epitaph, which Aubrey seems to have been 
shown by Streete’s widow: ‘Here lies the Earth of one, that thought some good,/
Although too few him rightly understood:/Above the Starres his heightned 
Mind did d y,/His hapier Spirit into Eternity.’ John Pell similarly defended the 
value of his mathematical studies by equating them to prayer: Aubrey records 
that he had ‘sayd to me, that he did believe, that he solved some Questions non 
sine divino auxilio [not without divine help]’.27 Oughtred asserted that there 
was ‘in all’ mathematical ‘inventions aliquid divinum [something divine], an 
infusion beyond human cogitations’ (Rigaud 1841, I 35). In ‘Idea of educa-
tion’, Aubrey recommends that students should carry in their pockets ‘Euclid’s 
Elements: as religiously as a Monke his Breviarie’.28 A breviary instructs the 
monk how to mark the passing of the hours. Aubrey implies that geometry is 
a fundamental discipline governing the conduct and narration of every phase 
of daily life.

Oughtred’s son told Aubrey that his father ‘would drawe lines and diagrams 
on the Dust’. 9 is may have been merely an old-fashioned frugal practice from 
the Cambridge of Oughtred’s undergraduate days, one which saved the expense 
of paper, but in Aubrey’s account, it was a sign of genius: of a ‘Witt’ which was 
‘always working’.29 9 is reminiscence of Oughtred, a Royalist who su\ ered for 
his political allegiances during the English Civil War, shapes him in the like-
ness of Archimedes, said to have been killed by a Roman soldier during the 
fall of Syracuse while intent on the geometrical [ gures he had traced in the 
dust; oblivious to ‘many shameful examples of anger and many of greed’.30 9 is 
tendency to cast mathematicians in the role of ‘the English Archimedes’, as 
Oughtred characterized Briggs, testi[ es to a determination amongst mathema-
ticians and virtuosi to gain the respectability of the Ancients for their Modern 

26. MS Aubrey 6, f. 39v.   27. MS Aubrey 6, f. 52.
28. MS Aubrey 10, f. 94.
29. MS Aubrey 6, f. 39. A mathematical lectureship established in 1573 at Queens’ College, Cambridge, 

speci[ ed that the geometry lectures were to be ‘redd [. . .] with a penn on paper [. . .] or a sticke or compasse 
in sand or duste’. See Feingold (1984, 39).

30. MS Aubrey 6, f. 39; Livy, Ad urbe conditia XXV.31. Aubrey wrote in the margin of his copy alongside 
this passage, ‘Geometricall [ gures’ (Ashm. D 23, 478), and he made a memorandum of the passage on the 
back endpaper.
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studies (Oughtred 1633, 18). 9 omas Sprat, describing the early meetings of 
those who were to be the founder members of the Society, dramatically claims 
that they were ‘scatt’red by the miserable distractions of that Fatal year’ of 1659, 
when the country seemed on the brink of a second civil war. Sprat has them 
fearing that the ‘continuance of their meetings’ at Gresham College ‘might have 
made them run the hazard of the fate of Archimedes: For then the place of 
their meeting was made a Quarter for Soldiers’ (Sprat 1667, 58–59). Sprat uses 
the innocently-occupied geometrician to represent the Society as construct-
ive, peace-loving, and patriotic. Archimedes was a particularly congenial [ g-
urehead because, as John Wilkins argued in his Mathematicall magick, unlike 
those ‘ancient Mathematicians’ who ‘did place all their learning in abstracted 
speculations’, he was willing to apply his mind to ‘Mechanicall experiments’. 
9 e culture in which Archimedes worked, Wilkins maintains, led him to make 
a ‘superstitious’ choice not to ‘leave anything in writing’, but rather to ‘con-
ceale’ his learning from the ‘apprehension’ of the  ‘vulgar’ (Wilkins 1648, 3–4). 
However, the ‘vail’ of ‘mysticall’ language and practices clearly had appeal for 
Oughtred: there is some evidence that he may have  practiced divination.31

Sprat’s and Wilkins’s ‘English Archimedes’ had no intention of getting killed o\ ; 
theirs was an improved version, without the mysticism and with more common 
sense. Mathematicall magick is not about magic at all; it o\ ers rational explan-
ation and information, bringing the means of acquiring mathematical knowledge 
to a wider public. Its title could be that of a twentieth-century textbook. In his Life 
of Wilkins, Aubrey calls him ‘a lustie strong growne, well sett broad shoulderd 
person. cheerfull, and hospitable’, and follows this amiable portrait with the asser-
tion that Wilkins ‘was the principall Reviver of Experimentall Philosophy (secun-
dum mentem Domini Baconi) [according to the way of Master Bacon] at Oxford, 
where he had weekely, an experimentall philosophicall Clubbe’, the nucleus of the 
Royal Society.32 Aubrey once again makes a positive association between charis-
matic conviviality and scienti[ c invention in his description of Wren as ‘Englands 
Archimedes [ . . . ] a person not only of admirable parts but of a sweet communi-
cative nature’.33 Biography, concentrating as it does on personal character, proved 

31. Aubrey observes in the Life that he had seen ‘some notes’ in Oughtred’s ‘hand-writing on Cattan’s 
Geomantie’. 9 is was a copy of Cattan’s Geomancie (1591, 1608), which was among those of Oughtred’s books 
and papers which had been bought by the physician Richard Blackburne. Aubrey says that Oughtred’s ‘marks 
and notes’ showed that he had ‘thoroughly perused’ the work (MS Aubrey 6, f. 39; MS Aubrey 4, f. 102v). 
Aubrey quotes from the work in his ‘Remaines of gentilisme’, where he de[ nes ‘Geomantie’ as a form of divin-
ation to be performed with a great deal of seriousness and prayers and ‘in a very private place; or on the sea 
shore’ (British Library, Lansdowne MS 231, f. 111).

32. MS Aubrey 6, f. 92. See the accounts in Tyacke 1997, 430, 548–550, and Feingold 2005, 167–183. 
Feingold, who supports Aubrey’s version of the origins of the Society, gives an account of scienti[ c and math-
ematical clubs before the Society’s foundation.

33. Wood’s transcription from ‘Mr Awbrey’s collection B. p. 58’, that is, the lost ‘Liber B’. MS Wood F 
39, f. 129v.
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especially suitable for the advancement of an understanding of mathematics not 
merely as a body of knowledge found out by those possessing ‘admirable parts’, but 
as a culture. For Aubrey, the well-being of mathematics was dependent on ethical 
practices and principles, governing the communication of knowledge and skill by 
the sweet-natured to support, encourage, and give credit to others. Mathematical 
stories were a medium through which such social  values and aspirations might 
be communicated. In the ‘Lives’, this understanding is crystallized in anecdotes 
of personal behaviour and interaction. John Wallis is punished in the ‘Lives’ for 
plagiary; those ignorant or drunken souls who threw pocket watches into moats 
or smashed sundials are rebuked; and ‘the old gentleman’ William Oughtred is 
lovingly remembered for his care of his pupils, and for having ‘taught all free’.34 
His long-su\ ering wife, required to support his hospitality on a modest income, is 
depreciated as ‘a penurious woman’ who denied her husband candles to light his 
night-time work.35 9 rough ‘Brief lives’ Aubrey tries to create societies ‘secundum 
mentem Domini Baconi’: pursuing links between minor and grand individuals, 
and between the living and the dead; and seeking to engage the reader’s sympa-
thies through a literary style that is itself of a  ‘cheerfull, and hospitable’ nature.

9 is kind of social breadth, encompassing innkeepers and Wiltshire parsons 
as well as Hooke and Wren, can be seen across Aubrey’s entire career. In his ‘Idea 
of education’, Aubrey recommended that young men should follow his example 
by collecting information in notebooks. ‘Semper excerpe [always copy down] in 
some kind or other’, he recommended. ‘One may take a Hint from an old Woman, 
or simple bodie. Contemne no Body: aime still at Trueth. Had I not excerped, 
these Notions that are here stitch together, and good part whereof I have gott from 
my learned and deare Friend Dr John Pell, had been utterly lost, and buried in 
Oblivion.’36 Aubrey did indeed collect reminiscences from the  ‘simple bodies’ who 
made up the domestic circle of the mathematicians he wished to memorialize. He 
suggests that we should regard these as ‘a Hint’ for further historical research; 
and certainly as a source of information his testimony was sometimes of mixed 
quality. 9 is is demonstrated in the case of John Dee, one of the cornerstones of 
Aubrey’s projected ‘Lives of our English mathematical writers’.37 Aubrey visited 
Mortlake in early 1674 and found Dee’s place of burial: he also interviewed an 
eighty-year-old woman called Goody Faldo, with the intention of including her 
memories in his contribution to a collaborative Life. Mrs Faldo seems to have 

34. Aubrey, like others in the Royal Society, believed that Wallis had plagiarised several members of the 
Society, in particular William Holder. See Hobbes 1994, II 753–756; Bennett 2001, 216–217.

35. MS Aubrey 6, \ . 39, 42.
36. MS Aubrey 10, f. 114.
37. Aubrey added a note in the Life of John Pell in ‘Brief lives’ to instruct Wood (who took no notice) that 

‘I would have the Lives of John Dee, Sir Henry Billingsley, the two Digges, father and sonne, Mr 9 omas 
Hariot, Mr  . . . . Warner, Mr Brigges, and Dr Pells be putt together’ (MS Aubrey 6, f. 51. 9 e ellipsis marks, 
indicating that Warner’s [ rst name was not known to him, are Aubrey’s).
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done laundry and perhaps needlework for Dee’s family: she certainly describes his 
‘black gowne’ with ‘long sleeves, with slitts but without Buttons and loopes and 
tuN s’ in convincing detail. 9 rough her account we are permitted to see Dee as a 
kind and wise man who used ‘a great many stilles’, and employed magic to recover 
hampers of stolen linen; we are also told that children ‘dreaded’ him because of 
his reputation as a conjuror. It is a very confused narrative: Elias Ashmole was 
so discontented with it that he made a special trip to re-interview her; but his 
account, although clearer, is not remarkably coherent. In fact Aubrey’s version 
seems a very faithful record of the disjointed memories which were all she had 
to o\ er him, and he deliberately preserved this incoherence in three texts of the 
interview, one of which is incorporated into the Life of Dee. 9 us his ‘digressive 
and inconsequential treatment’ of the interview with ‘an old Woman’ is not, as 
Ashmole’s editor Josten said of it, an indication of Aubrey’s weak psychology: it 
is an indication of his respect for the terms in which his interviewees transmit-
ted their own memories. In doing so, Aubrey has provided us with a revealing 
record—or ‘Hint’—of how the obscure  practices of mathematicians and natural 
philosophers might appear to their family, neighbours, and domestics (Ashmole 
1966, IV 1298–1300, 1332–1335, and 1335 n8; Bennett 1993, 94–104).

9 is [ delity to the origins of his information is characteristic. Aubrey saw his 
role, not as a writer, but as an intermediary: as one who was to collect the materials 
which would allow posterity to write fuller, more accurate history. He was unsure 
what to call his life of Hobbes and initially wrote ‘Supplementum Vitae 9 omae 
Hobbes’ [a supplement to the Life of 9 omas Hobbes] on the title-page.38 Wood, 
puzzled, wrote in the margin ‘what need you say Supplimentum pray say 9 e Life of 
9 omas Hobbs’.39 But Aubrey resisted this advice, and later called the manuscript a 
‘supellex’. He also called his astrological work ‘Collectio  geniturarum’ a ‘supellex’.40 
9 is word forms part of Bacon’s argument in 0 e advancement of learning that:

‘Schollers in Vniversities come too soone, & too vnripe to Logicke & Rhetoricke’ which 
are ‘the Rules & Directions, how to set forth & dispose matter; & therfore for mindes 
emptie & vnfraught with matter, & which haue not gathered that which Cicero calleth 
Sylua and Supellex, stu\ e and varietie, to beginne with those Artes’ brings learning into 
contempt (Bacon 2000, 59).

9 is Ciceronian term, literally ‘household furniture’, was by the late-seventeenth 
century oN en used by those with scienti[ c interests to mean the equipment or 
apparatus for an experiment or operation, and sometimes by extension, the 
 literature appropriate for scienti[ c study. In 1684 Sir William Petty prepared a 
‘Supellex Philosophica’, a list of forty scienti[ c ‘Instruments requisite to carry 
on the designs of the’ Dublin Philosophical ‘Society’ (Petty 1927, 29). 9 is docu-
ment was a proposal, not an inventory; it was one of the lists which Petty, and 

38. Aubrey’s dissatisfaction with his collaborators came later: see below.
39. MS Aubrey 9, f. 28.   40. MS Ballard 14, f. 125; MS Aubrey 6, f. 12v.
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others in his circle including Hooke, were fond of drawing up: Petty included it 
in his collections towards an ideal school. William Stukeley, antiquary, natural 
philosopher, and biographer of Newton, described the Exeter library of William 
Musgrove FRS, the editor of the Philosophical Transactions, as a ‘good collec-
tion of books, coins, and other antiquarian supellex’ (Chope 1918, 139). Stukeley’s 
phrase implies that something is a ‘supellex’ when it crosses the boundary of 
material object or book and is instead, in Petty’s words, a thing ‘requisite to carry 
on the designs’ of an interest-group.

Aubrey’s use of the word in two biographical contexts (for, as there are signi[ -
cant connections between ‘Collectio geniturarum’ and ‘Brief lives’, the astrological 
manuscript can be so considered) may encourage us to link this connotation of the 
word ‘supellex’ with the word ‘brief ’ in ‘Brief lives’: not merely something short, 
nor merely ‘notes towards’ a biographical work; but also a condensed instruction 
to posterity, like a lawyer’s brief. 9 ese ‘briefs’ do not simply consist of the utter-
ances made in the biographical texts: as we saw in the case of Davenant, Aubrey’s 
Lives oN en refer to e\ orts to preserve the manuscripts, annotated books, instru-
ments, and libraries of mathematicians aN er their deaths; e\ orts in which Aubrey 
was oN en a prime mover, or even the only mover (Bennett 2001, 213–245).

From this combination of biography and bibliographical collecting derives the 
peculiar nature of Aubrey’s ‘Apparatus for the Lives of our English Mathematical 
Writers’, begun 25 March 1690.41 Aubrey uses the word ‘apparatus’ in several 
other contexts to denote materials towards a larger work or a work-in-progress; 
for example, he uses the word on the title-page of his ‘Wiltshire antiquities’, which 
is un[ nished and was intended to form part of an ambitious collaborative pro-
ject; and he told Sir William Petty in 1675 that he was hard at work ‘transcribing 
out of my Description i.e. apparatus for a Description of Wilts all my Naturall 
observations’.42 Aubrey began his ‘apparatus’ with a list of those mathematicians 
whom he wanted to include, then he wrote their names in the manuscript, leav-
ing room for their biographies to be added later. Some of these, such as 9 omas 
Hobbes, 9 omas Allen, Sir Henry Billingsley, John Collins, and William Lilly, 
are followed by no new material, but are merely marked with the word ‘donne’. 
9 is is revealing. In the case of Billingsley and Allen, this means that Aubrey had 
written Lives of these men in ‘Brief lives’. In the case of the astrologer William 
Lilly, ‘donne’ means that Lilly had written his own manuscript Life, in the hands 
of Elias Ashmole. John Collins has an entry in the index, directing us to page 27 
of the manuscript, which in its turn merely says that the work has been ‘donne’. 

41. John Britton, who examined the Aubrey papers in the Ashmolean Library before they were transferred 
to the Bodleian, rebound and repaginated, describes the ‘Apparatus’ as a separate manuscript: ‘9 ese lives 
occupy sixteen leaves, foolscap folio, written on one side only, and paged by the author. 9 ey are stitched 
together, and fastened inside the cover of part iii. of the “Lives of Eminent Men” ’ (Britton 1845, 110). 9 is 
indicates that their current position (MS Aubrey 8, \ . 69–88v) is probably not the position in which they were 
found before rebinding. 9 ey are paginated, rather than foliated (as the Lives are).

42. MS Aubrey 3, f. 1a; British Library Add MS 72850, f. 141.
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Only the briefest of biographical notices of Collins survives in Aubrey’s letters 
to Anthony Wood, and nothing is found in ‘Brief lives’ except for an entry in 
the index: ‘Collins John Mathematician in print hereto annexed’. Yet no printed 
material relating to Collins survives in any of the remaining ‘Lives’ manuscripts. 
9 ese were, however, signi[ cantly tampered with aN er they were deposited in 
the Ashmolean Museum in the 1690s, and in a volume of papers and pamphlets 
also donated by Aubrey to the Museum is found Collins’s preface for the reissued 
edition of his Introduction to  merchants-accompts, which  contains his account 
of his life.43 Collins probably gave it to Aubrey, whom he knew well: they col-
laborated in collecting the  unpublished papers of mathematicians and natural 
philosophers such as Davenant, as we have seen, and Briggs. So by calling his 
text an ‘apparatus’, Aubrey implies that he is engaged, not in a project of personal 
authorship, but in the task of constructing a repository of biographical data, of 
the kind he had supplied to Collins: an equipping of the intellectual world so that 
it might better undertake the advancement of learning.

B e advantages of a mathematical education

We need not take Aubrey entirely at his word. Despite their profoundly collab-
orative context, Aubrey’s ‘Lives’ are far more than an apparatus. As we have seen, 
Aubrey intended to write the Lives of his mathematicians from their ‘cradle’ (or, 
in the case of Robert Boyle, his Irish nurse’s ‘pendulous Satchell’).44 9 e emphasis 
in ‘Brief lives’ on early youth, and on education, supports an argument for the 
‘great advantage’ of a mathematical education for the very young. In his life of 
Hobbes, Aubrey records that Sir Jonas Moore was ‘wont much to lament’ that 
Hobbes had not learnt mathematics before the age of forty, when he discovered 
Euclid.45 Aubrey devotes a part of his own very inchoate Life to a counter-example, 
describing his own wasted potential. He tells us how he was ‘bred’ in the depth of 
the Wiltshire countryside in an ‘Eremiticall Solitude’, a boy of great curiosity, and 
with a ‘zeale’ to learning, whose ‘greatest delight’ was ‘to be continually with the 
arti[ cers’; but ‘discouraged’ in this by his father, a country squire whom he char-
acterizes as educated merely to ‘Hawking’. He describes the lack of a sustained 
period of education, and says that he was obliged to study geometry on horseback 
and in the privy, with a copy of Oughtred’s Clavis mathematicae hidden in his 
pocket for spare moments.46 Against this he assembles in the ‘Lives’ the cases of 
those who were more fortunate: Oughtred, Edward Davenant, Edmond Halley.

43. Ashm. F 4 (45). 9 is preface (Wing 5382A) is not identical with that of the 1674 and 1675 editions, but 
may be that of 1664; alternatively, the preface may have been issued separately.

44. MS Aubrey 6, f. 16.   45. MS Aubrey 9, \ . 36, 53.
46. MS Aubrey 10, f. 83; MS Aubrey 7, f. 3.



John Aubrey and the ‘Lives of our English mathematical writers’ 341

9 ese accounts, dispersed in the ‘Lives’, are collected together and repeated 
almost verbatim in the introduction to ‘Idea of education’:

Without doubt it was a great advantage to the learned Mr W. Oughtred’s naturall parts, 
that his father taught him common Arithmetique perfectly while he was a schoole-boy. 
9 e like advantage may be reported of the reverend and learned Edward Davenant D.D. 
whose father a Merchant of London taught him Arithmetick when a Schoole-boy. 9 e 
like may be sayd of Sir Chr. Wren; & Mr Edmund Halley R.S.S. <in margin: his fathers 
Prentice taught him Arithmetique & to write at nine yeares old.> and Mr 9 . Ax his 
father taught him the Table of Multiplication at seaven years old.47

Halley’s father was a ‘soap-boiler’; Oughtred’s father’s duties as a clerk employed 
by Eton College included keeping [ nancial records; Davenant’s was a merchant 
who had made money [ shing pilchards. Aubrey’s argument in ‘Idea of educa-
tion’ was that, at the age at which boys were usually introduced to Latin gram-
mar, gentlemen should receive the kind of education which was given to those of 
their social inferiors who were being taught navigation at Christ’s Hospital. For 
‘no Nobleman’s son in England [ . . . ] can have so good Breeding’ as ‘the Kings 
Mathematicall Boyes at Christ-church-Hospital’.48

Aubrey’s emphasis on ‘good Breeding’ is deliberate. Along with his loving bio-
graphical record of the personal and domestic interactions of mathematicians, it 
challenges a common prejudice against those who were primarily interested in 
mathematics (as opposed to those who had studied mathematics as an integral 
part of their university studies) as unsocial beings. In the leading text of Tudor 
education, the humanist Roger Ascham famously argued that those who were par-
ticularly fond of mathematical studies were solitary by nature, ‘un[ t to live with 
others’, and ‘unapt to serve the world’, unskilled in negotiation (Feingold 1997, 
363–365). 9 e usual response was to point to the practical bene[ t of mathematics, 
as Aubrey does in an early chapter in ‘Idea of education’ entitled ‘Mathematical 
Prudence’. Here he begins to assemble the grounds of such arguments, by show-
ing the value of a knowledge of mercantile mathematics: lawyers, shopkeepers, 
and young heirs would all bene[ t from a capacity to understand interest, calcu-
late rent, and read a balance sheet. Aubrey recommends exercises that schoolboys 
might perform to acquire these skills, but his researches were not con[ ned to 
printed works on the subject. He was arguing for a far more ambitious scienti[ c 
education than the smattering of arithmetic usually thought su7  cient to allow 
a landowner to check his steward’s accounts; and the real value of even this level 
of learning would best be demonstrated if it were [ rmly grounded in experience. 
Hence 9 omas Axe (as we have seen, an example of one who had bene[ ted by 
early mathematical teaching) was to be asked for his ‘Calculations of Sir William 
Portman’s Old Rents’ which Axe had used as the basis of his investment advice 

47. MS Aubrey 10, f. 9.   48. MS Aubrey 10, f. 7.
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to Portman, whose attorney he was.49 At the outset of the chapter Aubrey quotes 
Francis Osborne in his Advice to his son saying ‘that he haz known many men 
of good Estates, have been undonne meerly for want of skill in a little plaine & 
common Arithmetick’.50

9 is advice was, Aubrey apparently felt, the weaker for its general nature. 
As Bacon said, ‘knoweledge drawne freshly and in our view out of particul-
ers, knoweth the waie best to particulers againe. And it hath much greater life 
for practise: when the discourse attendeth vpon the Example, then when the 
 example attenddeth vpon the discourse’ (Bacon 2000, 162). Aubrey accordingly 
substantiates it by adding a biographical ‘particuler’ in the margin: the name of 
Colonel Alexander Popham, of Littlecote House, Wiltshire. In a Chancery suit of 
1649, Popham told the court that his late brother John had ‘wasted his Estate in 
Hospitalitye’, leaving debts of £38,000.51 In his Brief Life of John’s father, Judge 
Popham, Aubrey says that John ‘was a great waster’ whose extravagant hospitality 
stretched as far as inviting three or four lords and their retinue to stay at Littlecote 
at a time. His equally ‘vaine’ wife is also said to have spent her substantial mar-
riage portion in inviting ‘all the woemen’ of the county to heavy-drinking house-
parties: ‘9 ey both dyed by excesse; and by Luxury, and cosonge by their servants, 
when he dyed there was I thinke a hundred thousand pound debt’: a grievous 
example of the want of mundane prudence. Further on in ‘Mundane Prudence’, 
Aubrey records that ‘Alderman Gombleton of London told me, that Colonel 
Alexander Popham (who had 900li [pounds sterling] per annum) was wont to 
make his complaints of casting-up of long Bills, and Accounts, which terri[ ed 
him: and many times he lookt only on the foot of the Account’.52 9 is statement 
is entirely substantiated by the Colonel’s use of his will to ‘make his complaint’ 
of his inheritance of ‘many Debts and inconveniences, not of my owne contrac-
tion’, the discharge of which, he grumbled, had brought upon him ‘much travell 
and disquiet’.53 9 e Alderman’s anecdote thus forms a counterpart to Aubrey’s 
Life of Judge Popham in ‘Brief lives’, where the general view of Wiltshiremen that 
the Pophams were a wild, boorish, and spendthriN  lot is retailed. Aubrey’s use of 
such biographical details to support an argument about mathematical learning 
endorses what Sir William Petty had once told him: that ‘the great Logicians of 
the Schooles are the least persuasive men in the world: the reason is plain: they 
want practicall, and Prudentiall Mediums’.54 9 e best arguments, then, are those 

49. MS Aubrey 10, f. 36a. Portman’s will is annotated in Axe’s hand; he had received it ‘for the use’ of the 
executors. Sir William and Axe were both of Orchard, Somerset (London Public Record O7  ce, PROB/11/401, 
f. 254v). Axe’s letters to Aubrey of 1684, the year of the ‘Idea’, refer to the business Axe was doing for Portman 
(MS Aubrey 12, f. 13).

50. MS Aubrey 10, f. 27.
51. Calendar of state papers domestic 1637–8, 169, 176. Most of the family’s landed property survived the 

[ nancial crisis.
52. MS Aubrey 10, f. 35a.   53. London Public Record O7  ce, PROB 11/334, f. 445v.
54. MS Aubrey 10, f. 51.
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which substantiate advice and maxims with ‘practicall and Prudentiall’ anec-
dotes drawn directly from personal experience, or second-hand through gossip. 
Although Aubrey was aware that his texts were neither unquestionably true nor 
exclusively based on well attested experience (but might o\ er a ‘hint’ for such 
certainty), his collections o\ er the means of potential forms of persuasion—or 
briefs—based on the amassing of experience.

Sir William Petty and the ‘Faber fortunae’

9 e connection between life-writing and mathematics is most forcefully 
advanced in the Life of Petty, a man of relatively humble mercantile origins 
whose  mathematical education brought him spectacular rewards and who was 
Mathematical Prudence personi[ ed. Petty’s Life is ‘the [ rst’ in Volume I of ‘Brief 
lives’. 9 is is deliberate: Aubrey draws particular attention to it, and parallels it 
in another collection. In the ‘Lives’ manuscript, Petty’s horoscope faces the [ rst 
page of the biographical text. A fuller version of this astrological information is 
found in ‘Collectio geniturarum’, where Petty’s horoscope and the 1676 judge-
ment on it by the astrologer Charles Snell occupy the equivalent primary place in 
the volume immediately aN er the index.55 It would seem that, whatever it is that 
we are to [ nd out by studying lives, Aubrey believes that Petty’s is the example 
best worth our investigation.

9 is is not merely an example of ‘gratitude’ to a ‘singular good friend’ 
and patron who had supported him through a [ nancial crisis.56 Petty’s lead-
ing  position signals, once again, a commitment to Baconian historiography. 
Aubrey reported to Wood that Petty had ‘perused’ a draN  of his collections 
towards a Life of Hobbes, and entirely approved of what he read. But Aubrey’s 
collaborators, Richard Blackbourne, John Dryden, and John Vaughan, Earl of 
Carbery, had reservations, and they did not use all the material that Aubrey had 
painstakingly collected. He complained that in ‘the compiling’ of a work from 
a number of sources, they ‘agree to leave out all minute things’. Dryden, poet 
laureate and historiographer royal, had strong views on biographical genre, and 
as a result, Aubrey felt, there would ‘be the trueth, but not the whole’. 9 is 
displeased Petty, who ‘would have [ . . . ] all stand’; but Aubrey was obliged to 
‘submitt to these great Witts’. 9 e printed Life of Hobbes proved to be ‘writt 
in a high style’. ‘Now’, Aubrey objected, ‘I say the O7  ces of a Panegyrist, and 
Historian, are much di\ erent. A Life, is a short Historie: and there minutenes 
of a famous person is gratefull. I never yet knew a Witt (unles he were a piece of 

55. MS Aubrey 6, f. 12v–15v; MS Aubrey 23, \ . 11v–19v.
56. BL Add MS 72850, \ . 141–142; MS Ballard 14, f. 135.
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an Antiquary) write a proper Epitaph, but leave the reader ignorant, what coun-
tryman etc only tickles his eares with Elogies’. So in ‘Brief lives’ Petty stands 
for a principle: that life-writing is, as Bacon de[ ned it in 0 e advancement of 
learning, a branch of history, not that which ‘hath most estimation and glory’, 
but certainly that which ‘excelleth’ in ‘pro[ t and vse’. Aubrey identi[ ed life-
writing with antiquities, the ‘Remnants of History’ in Bacon’s phrase, a matter 
of ‘industrious [ . . . ] diligence and obseruation’ (Bacon 2000, 66). Life-writing, 
for Aubrey, involved the recording of detailed particulars, however undigni-
[ ed in content or origin, fragmentary, dry, or even, for the time being, imper-
fectly siN ed and veri[ ed. Against this model, Aubrey sets up the [ gure of the 
‘great Witt’ Dryden, who stands for the view that life-writing is a branch of 
rhetoric, not a form to be cluttered with details and trivialities. 9 e role of the 
biographer is to conform to classical literary patterns; and the facts should be 
manipulated or leN  out when to record them faithfully would mean sacri[ cing 
the opportunity to create some prized rhetorical e\ ect, such as a Plutarchan 
biographical parallel. A page is set aside for Dryden in the ‘Lives’ manuscript, 
among the collection of lives of the English poets and dramatists, honourably 
positioned between Ben Jonson and Shakespeare. Yet it is empty, with only the 
title and a marginal note announcing that ‘he will write it for me himselfe’.57 
Perhaps this was Dryden’s way of declining to have anything more to do with 
Aubreyan biography. Petty’s, on the other hand, is long and full of ‘minute 
things’. We may fruitfully consider in what respect, and to what extent, he, too, 
had resolved to write it ‘himselfe’.

When the ‘great Witts’ leN  out many details from Aubrey’s Life of Hobbes, 
he particularly resented the fact that they would not ‘mention his being Page’.58 
One possible narrative of Hobbes’s life, that of the humble boy who had made 
good through the exercise of an unusually keen and independent intelligence, 
would thus be suppressed. Life-writing of this kind claims to o\ er the wisdom of 
experience, that knowledge ‘wherein mans life is most conuersant’ (Bacon 2000, 
218). Accounts of those who have been able to improve their state are, by implica-
tion, most worthy the attention of the Baconian reader. As Bacon did not advo-
cate the study of mathematics, the special connection which Aubrey and some 
of his circle made between life-writing and mathematics seems to be in part an 
attempt to reconcile mathematics with Baconian principles. In Aubrey’s view, 
one shared by many in his circle, Petty is the consummate example of one who 
‘hewed-out his Fortune himselfe’ through innovative thinking, skill in modern 
as well as ancient languages, and the application of new scienti[ c and technical 

57. MS Aubrey 6, f. 108v.
58. In the manuscript of the Life of Hobbes, Aubrey adds notes to those friends among whom the text 

would circulate. Against his statement that Hobbes’s brother Francis was a glover, Aubrey queries, ‘shall I 
expresse or conceale this [Glover.] 9 e Philosopher would acknowledge it.’ MS Aubrey 9, f. 29v.
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knowledge to the advancement of learning.59 In his ‘Idea of education’, a work 
profoundly indebted to Petty’s own educational proposal 0 e advice of W. P. to 
Mr. Samuel Hartlib (1647), Aubrey claims of his utopian mathematical school 
that ‘9 is Institution will teach’ boys ‘to be Fabri suae Fortunae [makers of their 
own fortunes], e.g. that noble and ingeniose Knight Sir William Pety my ever 
honoured Friend, who from a small Stock’ gained in Ireland ‘by Surveying, etc.’ 
a fortune of ‘severall 9 ousand pounds per annum, honestly and ingeniosly’.60 
9 e maxim Faber quisque fortunae suae, ‘each man is maker of his own fortune’, 
derives from Bacon’s ‘newe and vnwoonted Argumente to teach men how to raise 
and make theire fortune’ which is one of the essential purposes of the educational 
reform propounded in the Advancement of learning (see Bacon 1985, 264; Bacon 
2000, 163–179). 9 e belief that although ‘Outward Accidents’, such as ‘Favour, 
Opportunitie, Death of Others’ and the like, ‘conduce much to Fortune’, never-
theless ‘the Mould of a Mans Fortune, is in his owne hands’, forms the theme 
of Bacon’s essay ‘Of Fortune’, as it does of his ‘Faber Fortunae sive Doctrina de 
ambitu vitae’ [9 e maker of one’s fortune or the doctrine of the pursuit of suc-
cess in life], an essay which the ambitious Samuel Pepys liked to carry in his 
pocket (Pepys 1971, II 102 and n1). 9 e narrative of the ‘Faber fortunae’, a dis-
tinctively Baconian form, is therefore a Royal Society form also: Evelyn describes 
another Irish adventurer, the father of Robert Boyle, as ‘Faber Fortunae, a person 
of  wonderful Sagacity in A\ aires [ . . . ] by which he compass’d a vast Estate’.61

9 e narrative of the ‘Faber fortunae’ is, I suggest, one of the stratagems used 
by the circle of the Royal Society in attempting to demonstrate the real bene[ ts of 
their interests and the intellectual enterprise and creativity of their luminaries. It 
was autodidacticism which was emphasized; what was not appreciated was a nar-
rative of commonplace educational charity and minor patronage. When Aubrey 
recorded that Seth Ward had been a sizar at Cambridge, a poor student in receipt 
of [ nancial support in return for performing menial tasks such as waiting at 
table, he later told Wood to expunge this information from the ‘Lives’ manuscript 
‘for the sake of euphony’.62 Petty’s political brilliance made his life history par-
ticularly interesting to those who had been persuaded by Bacon’s argument that 

59. MS Aubrey 6, f. 15.   60. MS Aubrey 10, f. 143.
61. Hunter 1994, 87. 9 is life-model was so identi[ ed with practical activity that ‘faber fortunae’ is also the 

name of the characteristic late-seventeenth-century list of potential money-making schemes. When Aubrey 
was in [ nancial di7  culties in 1671, Petty provided him with a list of desirable public projects, such as the 
keeping of statistical records to give ‘a true State of the Nation at all times’. Aubrey transcribed these into a 
manuscript full of ideas of ways of repairing his fortunes, entitled ‘Faber Fortunae’. Petty had a brief manu-
script among his own papers, also entitled ‘Faber Fortunae’, with ideas such as a method of maintaining 
servants ‘by shewing rarityes to the curious’ (BL Add MS 72891, f. 8v).

62. Expunge Servitor, euphoniae gratiâ (MS Aubrey 8, f. 8). Sometimes undergraduates registered with 
their colleges as ‘sizars’ in order to escape the highest scale of fees, but were not in fact poor and were not 
required to do manual work. Even if this was so in his case, Ward very probably did not want his ‘sizar’ status 
known once he became a bishop.
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‘Histories of Liues’ are the best ‘grounde’ for investigating the arts of negotiation 
and business.

In the ‘Life of Petty’, Aubrey records that Petty liked to present himself 
as a faber fortunae. ‘He haz told me, that wheras some men have accidentally 
come into a way of preferment by lying at an Inne, and there contracting an 
Acquaintance; on the Roade: or as some others have donne; he never had any 
such like opportunity, but hewed-out his Fortune himselfe.’ 63 9 is is only really 
true in that Petty did nothing accidentally, particularly not acquiring ind uential 
acquaintance; he certainly displayed a skill in networking which gave him an 
introduction to Hobbes’s circle in Paris, and made the most of his college fel-
lowship. However Petty’s determination so to represent himself gained him dis-
tinction in scienti[ c circles. Aubrey reports admiringly that Petty had said that 
in choosing St Andrew’s Day for their foundation, the Royal Society had chosen 
the wrong disciple. 9 ey should instead have chosen St 9 omas, who refused to 
believe in Jesus’s resurrection until he had put his [ ngers in the Lord’s wounded 
body (John 21: 24–28). 9 is is representing natural philosophy not only as the 
antithesis of superstition and the unexamined acceptance of received wisdom, 
but as  fundamentally opposed to deference. He represents himself, in Aubrey’s 
words, as one who ‘hewed-out’ a fortune, as if he were a manual labourer, rather 
than one who employed charm, wit, and address, like a courtier. 9 rough his 
quick wit, he deliberately created a reputation for himself. His contemporaries 
loved the ridiculous anecdote about Petty’s having responded to a challenge by 
suggesting that, as he was very short-sighted, the duelling-weapon should be a 
carpenter’s axe and the venue a dark cellar; it circulated not only in scienti[ c and 
governmental circles but in the printed jest-books.64 However, in his extensive 
plans for his sons’ education, he stipulates that they were not only to be taught 
mathematics, but also to bow gracefully and ‘to go to plays, and learn the com-
pany’ (Fitzmaurice 1895, 303).

Yet the faber fortunae was not an entirely respectable category: in his essay 
Bacon states that ‘Overt, and Apparent vertues bring forth Praise; But there 
be Secret and Hidden Vertues, that bring forth Fortune.’ Among these clan-
destine personal qualities is a freedom from excessive loyalty to persons or to 
one’s  country: certainly, Bacon says, there are no more fortunate properties 
than to have ‘a Little of the Fool; And not Too Much of the Honest’ (Bacon 
1985, 122–123). As we shall see, Aubrey’s Life of Petty corresponds closely to 
Petty’s own carefully shaped narrative of his rise from obscurity to fortune; but 
although Aubrey deeply admired Petty, telling Wood in a private letter that his 
survey of Ireland demonstrated ‘the great Elevation’ of his intelligence ‘which 

63. MS Aubrey 6, f. 15.
64. See Evelyn’s life of Petty in BL Add MS 4229, f. 56v, and 0 e complaisant companion, or new jests, witty 

reparties, bulls, rhodomantado’s and pleasant novels, London, 1674, 24.
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like a Meteor moves above the Sphaere of other Mortalls’, nevertheless he does 
record in the Life something which Petty was at pains to conceal.65 9 is was the 
existence of Frances, Petty’s illegitimate daughter, who in 1676 had appeared 
on stage aged eleven in Settle’s Pastor Fido. She played Dorinda, a very young 
nymph who ignores the counsel of an older con[ dante to protect herself from 
destruction by giving way to her passionate sexual feelings for Sylvio until she 
is more mature: she concludes Act II with the innuendo-laden utterance ‘Young 
though I am, I’m Old enough to dye’. 9 is sexualizing of a child actress was 
intended to titillate; and ‘Mrs Petty’ leN  the stage aged thirteen, either because 
Petty intervened or because she was taken on as someone’s mistress. Aubrey 
thought she was twenty-one in 1680; in fact she was [ N een. She returned to the 
stage in 1681 and was said to be ‘grown a very Woman’ in a prologue of 1682. 
Petty paid her some money to keep her quiet, on condition that she changed 
her name and stayed away from his family and from London: he did not want 
a scandal.66

Petty began early to shape his own representation. When he commissioned his 
portrait, he had himself painted holding a skull and with his [ nger resting on 
Johann Vesling’s 0 e anatomy of the body.67 He employed Isaac Fuller to paint the 
portrait, choosing an artist who had a special interest in anatomy. 9 e date of the 
picture is either 1649 or 1650: in 1649 he took his doctorate of physic at Oxford; 
in 1650 he was appointed deputy to the professor of anatomy. Petty’s education is 
central to his self-presentation and, in turn, to his career.

Petty was publicly accused of getting his money in Ireland by sharp practice: 
and in later life he took steps ‘to shew the World that’ he ‘was no such horrible 
Knave, no such Fox or Wolfe as some would make him’.68 Facing the Life in the 
‘Brief lives’ manuscript is Petty’s coat of arms, carefully drawn and coloured by 
Aubrey. 9 e ‘Lives’ manuscripts have many coats of arms in them but none so 
large as this. Aubrey checked it carefully at Petty’s funeral, when the house was 
full of the heraldic decorations expected at an event of the kind, and corrected 
an error, although he did not get the motto quite right. 9 is was unfortunate, for 
Petty had given his coat of arms much thought. In his Life of Petty, Evelyn says 
that ‘He Chose for his Coate-Armor (and which he caus’d to be depicted on his 
Coach) a Mariners Compase, the Needle pointing to the Polar-star, and for his 
Crest, a Bee-hive; the Lemma, (if I remember well) Operosa et Sedula. than which 
nothing could be more apposite’.69 9 e motto was not in fact ‘operosa et sedula’, 
diligent and zealous, but ‘Ut Apes Geometriam’: as bees, so geometry. Evelyn’s 
error suggests that he saw Petty’s Latin poem on his coat of arms, in which these 

65. MS Wood F 39, f. 275. 
66. BL Add MS 72850, \ . 110, 159–60v; Summers (1964, 177–178); High[ ll (1987, XI 276–277).
67. Now in the National Portrait Gallery, London, NPG 2924.
68. BL Add MS 72853, f. 104.   69. BL Add MS 4229, f. 56v.
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words are found.70 Petty explains that as bees [ nd honey and seek to be  useful, 
so the geometrician seeks knowledge, and thus we should be diligent in the prac-
tice of geometry. Petty told Sir Robert Southwell, his intended biographer, that 
his life would prove that he was ‘no musherome nor Upstart, but that my Estate 
is the Oyle of Flint, and that Ut Apes feci Geometriam’.71 His reference is to 
Deuteronomy 32: 9–14, in which Moses instructs the Israelites that Jacob ‘is the 
lot of his inheritance’; and that he ‘found him in a desert land, and in the waste 
howling wilderness; he led him about, he instructed him; he kept him as the apple 
of his eye [ . . . ] He made him ride on the high places of the earth that he might eat 
the increase of the [ elds; and he made him to suck honey out of the rock, and oil 
out of the d inty rock’. ‘Butter of kine, and milk of sheep’, and suchlike riches were 
provided for the Israelites by their God. A parallel with Moses was also made by 
Abraham Cowley, in his ode which forms the dedication ‘To the Royal Society’ of 
Sprat’s History. Cowley identi[ ed the wandering in the  wilderness as the scholas-
tic Aristotelianism in which ‘our wandring Praedecessors [ . . . ] many years did 
stray’ until ‘Bacon, like Moses, led us forth at last [ . . . ] And from the Mountains 
Top of his Exalted Wit’ saw the promised land and ‘shew’d us it’.72 Bacon showed 
it; but Petty colonized it. Petty, who reminded Southwell that he had shown him-
self to be ‘like Moses upon the Mount’, intended his vast wealth to be understood 
as proof of exceptional virtue; as a sign of his having been born to conquer the 
‘waste howling wilderness’ by subduing Ireland and stripping it of its wealth, not 
to his having been a vulgar social climber.73

Petty’s implied distinction between faber fortunae and mere ‘musherome’ is a 
delicate one, but for this Modern Moses it hinges on ‘instruction’: the possession, 
application, and augmentation of mathematical knowledge. Petty leN  an alter-
native list of mottoes, many of which, such as ‘ut apes Arithmeticem politicam 
facere’ [to do political arithmetic like the bees], substitute the rational practice 
of the mathematical sciences and his invention, political economy, for the more 
usual, if unpro[ table, qualities like [ delity or honour.74 Petty’s bland explan-
ation of his coat of arms was designed to protect himself from ‘the wildnesse of 
Imaginacion’, but he wittily tempted his biographer to ‘pick’ an interpretative 
‘hole’ in his ‘coate’.75 For the compass does not only stand, as he says, for the com-
monplace conceit that the mind is directed by God as the needle is by the stars. It 
also alludes to a life-narrative which, as Petty tells it, commences with his math-
ematical education which allowed him, a skilled navigator, to take a job in the 
navy. From this point, we may extrapolate, he guided his fortunes in a straight 

70. BL Add MS 72853, f. 103.
71. BL Add MS 72853, f. 105v, printed in Petty (1928, 224–227).
72. Cowley, ‘To the Royal Society’, verses 5 and 6, in Sprat (1667, B2r–v).
73. BL Add MS 72853, f. 106.   74. BL Add MS 72853, \ . 106v–107.
75. BL Add MS 72853, f. 106v.
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path upwards towards the polar star. His motto, ‘ut apes geometriam’, may sug-
gest that his knowledge of geometry, which permitted him to survey Ireland, 
allowed him to coordinate a vast number of workers to bring home the honey 
of Irish revenues; certainly it implies that the bee-hive, studied closely by both 
 natural and political philosophers, demonstrates the fundamental place of geom-
etry in the ideal commonwealth.

Petty’s exposition of his coat of arms was made in the context of a series of 
letters which he sent to Southwell, aN er he had ‘rumaged and Methodized my 
papers which amount to 53 chests, and are so many monuments of my Labours 
and Misfortunes’ (Petty 1928, 138). In 1686 Petty sent three autobiographical 
letters to Southwell, and instructed him to ‘pick’ him ‘an Epitaph out of these 
3 Letters’.76 9 e [ rst alluded to ‘a paper shewing what Mony I had at Christmas 
1636 which was 1s.77 how it rise to 4s. 6d. then to 24s. then to 4 li. 9 en to 70 Next 
how it fell to 26. then rose to 480 li at my Landing in Ireland Next to 13060 li at 
[ nishing the Survey’, concluding that ‘Perhaps 9 e like hath not been se[en]’.78 
Southwell described the [ rst letter as a ‘short hint of Meliorations from the yeare 
1636’ (Petty 1928, 212). Petty’s educational and [ nancial ‘Meliorations’ amount 
to a demonstration of political arithmetic in the form of a life-narrative. 9 ey do 
not include the private anecdotes he told Aubrey, about his subsisting a week in 
Paris on a bag of walnuts, or of his being imprisoned there for debt. Although 
Petty used Aubrey, Southwell, and Wood to tell his story, he took no risks and 
placed the ‘o7  cial biography’ where it would not be overlooked: in the preamble 
to his will of 1685. Petty begins his Life by saying:

9 at at the full age of [ N eene yeares I had obtained the Latine Greeke, and French 
tongues, the whole Body of Common Arithmetick, the practicall Geometrie and 
Astronomie  conduceing to Navigation, Dyalling etc with the Knowledge of Severall 
Mecanicall Trades. All which and haveing been att the Universitie of Caen preferred me 
to the Kings Navye, where att the age of twentie yeares I had gotten up about threescore 
pounds with as much Mathematicks as any of my Age was knowne to have had. With 
this Provision Anno 1643. when the Civill Warrs betwixt the King and Parliament grew 
Hott, I went into the Netherlands and France for three yeares, and haveing vigorously fol-
lowed my Studyes, especially that of Medecine att Utrech Leyden, Amsterdam and Paris, 
I Returned to Rumsey where I was borne bringing back with me my Brother Anthonij 
whome I had bred with about tenn pounds more then I had carried out of England. With 
this Seventie pounds and my Endeavors within less then foure yeares more I obtained 
my Degree of Dr. of Phisick in Oxford, and forthwith thereuppon to be admitted into the 
Colledge of Phisicians London. and into Severall Clubbs of the Virtuosi. AN er all which 

76. BL Add MS 72853, f. 101v.
77. In the currency of Aubrey’s day (as up to 1971) there were 12 pence (d.) in a shilling (s.) and 20 shillings 

in a pound (l. or li. or £).
78. BL Add MS 72853, f. 92r–92v.
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Expences defrayed, I had leN  twenty eight pounds, And in the next two yeares being 
made Fellow of Brason Nose and Anatomie Professor in Oxford and alsoe Reader att 
Gressham Colledge I advanced my said Stock to about foure Hundred pounds.

9 is is a remarkably individual statement. It was quite normal to say explicitly 
that the intention of the will was to prevent cond ict over the estate; it was usual 
to add a brief personal note such as a statement of a\ ection to one’s wife; it was a 
very frequent practice to commend one’s soul to God; but it was not in the least 
usual to give an extensive life-history with the intention of ‘justifying in behalfe 
of my children the manner and meanes of getting and acquiring the estate which 
I hereby bequeath unto them exhorting them to improve the same’.79 As we have 
seen, Petty anticipated a broader readership than his family; and indeed this life-
narrative, o\ ering as it did a new model for the mathematician, proved of great 
appeal to those within the Royal Society who were interested in writing the Lives 
of mathematicians and thereby ‘justifying’ the value of mathematics and impli-
citly ‘exhorting’ its improvement. It was transcribed by Abraham Hill, who also 
wrote Lives of Isaac Barrow and of Seth Ward; and it was also used by Evelyn as 
the basis for his Life of Petty, ‘this Faber Fortunae’, which he communicated to 
William Wotton in a letter of 1703.80

Epilogue / conclusion

Because mathematics in the seventeenth century was a recondite intellec-
tual  pursuit, without a positive public image and with very few employment 
 opportunities, some of its exponents chose to pursue their studies while  living a 
retired life, or sought encouragement by joining mathematical societies,  formal 
and  informal. In print, many appealed to the authority of antiquity, even while 
refashioning it. Some found support even in private life from the authority 
of the ancients; some found parallels for their own lives and practices in reli-
gious models; some preferred a modest obscurity; but a prominent few, headed 
by Sir William Petty, took possession of new biographical territory, the ‘faber 
 fortunae’ narrative. It was a part of their legacy to the eighteenth century. Henry 
Fielding, in Shamela (1741), his parody of Richardson’s wildly successful epistol-
ary novel Pamela, had his charletan ‘editor’ claim that in arranging the papers of 
the gold-digging imposter Shamela, he had ‘exactly followed’ Euclid’s Elements 
as the ‘properest’ model ‘for Biography’, a joke against the Moderns which has 

79. London Public Record O7  ce, PROB/11/390, f. 166v.
80. BL Sloane MS 2903, \ . 16–18; Add MS 4229, f. 56v. Aubrey had discussed life-writing with Abraham 

Hill in 1674 when Wood’s Historia et antiquitates universitatis oxonienses was published, and Hill gave 
Aubrey a paper of corrigenda to pass on to Wood ‘for the amending of them in the next Impression’. See MS 
Wood F 39, f. 340.
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passed without comment from literary critics (Fielding 1980, 318). 9 ey might 
have asked what the portrayal of Shamela, that shameless upstart, a semi- literate 
servant-maid who succeeds in marrying her employer for his money, has to do 
with Euclid; and what Euclid has to do with biography. In this chapter we have 
explored some claims made for mathematics through the medium of biographical 
narrative which might explain these connections, and which may have provoked 
Fielding’s amused indignation. For Shamela, I suggest, testi[ es to the enduring 
power of an association between the promotion of practical mathematics, the 
narrative of the ‘faber fortunae’, and ind ated claims for the centrality of math-
ematics to the study of ordinary human a\ airs. ‘Euclid’, Aubrey warmly asserted, 
was ‘certainly the best booke that ever was writt’. Newton’s admiration was more 
tempered; yet when a friend of Newton, who had been advised by the great man 
to read Euclid, asked him doubtfully what ‘bene[ t in life’ could possibly derive 
from the reading of his Elements, it was the one time in [ ve years that he was seen 
to be ‘merry’ (Ili\ e 2006, I 283).81 Aubrey’s answer to sceptics like Newton’s friend 
was the conventional one: that mathematics makes one ‘tread sure steppes’.82 
Fielding’s joke [ nds its most elaborated form in Laurence Sterne’s novel Tristram 
Shandy (1759–69), in the attempts by Uncle Toby to narrate his own life, [ rst by 
studying geometry, and then by erecting a mathematical model of the forti[ ca-
tions of Namur on his brother’s bowling-green: a project of Quixotic perplexity, 
producing no ‘sure steppes’ but, on the contrary, as the narrator cautions, ‘intri-
cate are the steps! intricate are the mases of this labyrinth!’ (Sterne 1983, 73). 
Neither Sterne’s narrators nor Aubrey achieve a perfect  structure or a [ nished 
narrative; but through, and beyond, the medium of life-writing, Aubrey, and the 
enormous circle of learned and unlearned persons who contributed information 
and publications to his project, began to construct a history of mathematics for 
their times.
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CH A P T ER 4 . 3

Introducing mathematics, building 
an empire: Russia under Peter I
Irina Gouzévitch and Dmitri Gouzévitch

European mathematics [ rst appeared in Russia at the beginning of the 
 eighteenth century as a result of the modernizing reforms implemented by 

Peter I, who reigned from 1695 to 1725. Within a quarter of a century Russia 
was transformed from a country with a traditional and medieval culture to a 
modern European-style state, with a new capital built on reclaimed lands and 
a navy dominating the Baltic Sea. In this new empire, mathematics was used in 
civil and military construction projects and taught in new educational estab-
lishments. 9 ere were changes in metrology (units of measurement), the mon-
etary system, and the calendar, in the [ gurative arts (drawing, engraving, and 
perspective), and in publishing. By 1725 St Petersburg had its own Academy of 
Sciences, in which mathematics predominated over all other subjects.

For a nation to cross the cognitive distance that separates elementary arith-
metic from di\ erential calculus in such a short time is an uncommon phenom-
enon, and to understand the change we must analyse Peter I’s reforms and the 
reasons for them. 9 e fact that Russia was conducting wars on several fron-
tiers made it essential and urgent to train military experts and engineers. 9 e 
reforms were also intended to help preserve the territorial and political integ-
rity of Russia, to rebuild its weak economy, and to sustain its international 
authority.
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In the rapid transfer of European knowledge to Russia, the role of Peter I has 
been likened to a savage visiting a supermarket who, fascinated by the riches on 
display, shovels everything into his basket without knowing whether he needs 
it or not.1 Grotesque as this image may be, it illustrates the controversial char-
acter of Peter’s reforms. In particular, did he know whether or not he needed 
 mathematics? If so, how would it be used and developed?

Peter I and mathematics: awakening and impulse

9 e mathematical inheritance that Peter I received from his predecessors was 
minimal. When he began his reign in 1695 little more mathematics was known 
in Russia than the four operations of arithmetic and a few elementary geomet-
ric constructions. 9 e word ‘mathematics’ had appeared in Russia in 1524 in 
its Greek form mafematik, in relation to astrology. Mathematicians of the past 
had indeed been astrologers, almost all foreign, who served the tsars as med-
ical consultants, preachers, or private tutors. To most Russians, mathematics 
 embodied miraculous knowledge, fearsome and impenetrable, transmitted by 
people thought to be charlatans. Apart from astrology, the applications of math-
ematics were rudimentary, in land-surveying, primitive mapping, or elementary 
calculations. Arabic numerals were known but not much used; calculations were 
written instead with characters from the old Cyrillic alphabet.

9 e only printed mathematical document published in Moscow before 1703 
was a multiplication table in alphabetic notation (1682). A few manuscripts on 
arithmetic or geometry were compiled and translated from Western works for use 
at court but only in small numbers (Ustûgov 1974, 81; Simonov 1996, 122–126). 
9 ey all su\ ered from the same handicap: the absence of Russian  mathematical 
terminology. Besides, possessing a book on mathematics could be dangerous, 
leading to accusations of witchcraN .

Peter I was crowned in 1682 at the age of ten but taken away from the court 
because of dissent in the ruling family. He thereby escaped the traditional cur-
riculum centred mainly on Orthodox theology and Greek philosophy. Rather, 
his education was based on practical experience and games. Two incidents in 
particular ind uenced his later interests. In February 1687, the ambassador Âcov 
Dolgorukij spoke to him about a marvellous instrument with which one could 
measure great distances. Peter I ordered one from France, and in May 1688 he 
received an astrolabe, as well as a pocket compass and drawing instruments. 
Since no one in his entourage knew how to use the instruments, a Dutchman, 
Franz Timmerman, was engaged to explain them. Timmerman also taught Peter 

1. 9 is image was evoked by W Bérélowitch in his seminar at the EHESS in Paris in the mid-1990s.
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geometry, forti[ cation, arithmetic, astronomy, and navigation (Bogoslovskij 1940, 
I 62; Golikov 1837, 73; Arhiv knâzâ Kurakina 1890, 70, 83; Pis’ma i bumagi 1887, 
485; Ustrâlov 1858, II 18–25, 120, 398–399). 9 e last was inspired by the discov-
ery of a botik, an old English sailboat, abandoned in the barn of a distant relative, 
Nikita Romanov. Under instruction from Timmerman the boat was renovated. 
By 1693 a small d eet had been constructed, comprising three three-masted sailing 
boats, two large yachts, a galley, and a frigate. 9 e second signi[ cant event was 
that Peter I started frequenting the Nemeckaâ sloboda ‘German suburb’, a small 
township outside Moscow, inhabited by a heterodox (non-orthodox) population 
of artisans, traders, soldiers, and technicians from the Western Europe. On these 
visits he discovered European knowledge and technology, which never ceased to 
fascinate him. His adult life was punctuated by incessant military campaigns on 
land and at sea. 9 e [ rst were the two successive sieges of Azov (in 1695 and 1696), 
a Turkish fortress defending access to the Azov Sea and to the Black Sea. 9 e fail-
ure of the [ rst siege and the narrow success of the second one demonstrated to 
Peter the obsolete state of his war technology and the lack of specialists in forti-
[ cation, artillery, and shipbuilding. He therefore took reforming initiatives, one 
of which was the creation of a navy. With such plans in mind he set out incog-
nito on a European voyage, known as the Velikoe posol’stvo ‘Great Embassy’. In 
eighteen months, in 1697–98, he crisscrossed Europe and became a hard-working 
pupil of Western artisans, war specialists, and scientists (Guzevič 2003). He hired 
foreign specialists and trained his own, purchased technical equipment, and col-
lected books, maps, and drawings. In Europe he was acquiring more, however, 
than objects, methods, and ready-to-use technologies. He also began to desire 
mastery of fundamental theories as the key to long-lasting success. In his mind, 
theory was equivalent to method, and the method was mathematics, in which he 
saw the quintessence of all sciences. He was dissatis[ ed, for instance, with the 
empiricism of Dutch shipbuilders, who were unable to tell him the proportions 
of their vessels from a drawing, and leN  for England where, he had heard, naval 
architecture had been perfected (Ustav morskoj 1993, 9). Peter’s study in England, 
at Deptford, from 3 February to 1 May 1698, was directed by Sir Peregrin Osborn, 
rear-admiral of the British Navy, who introduced him to the proportions used in 
the English shipbuilding. 9 e theoretical lessons could be practically applied on 
boats still under construction.2

Two other initiatives with their roots in the Great Embassy were essential 
for the introduction of mathematics in Russia. 9 e [ rst was an accord signed 
in Amsterdam with the Dutch entrepreneur Jan Tessing, on the publication of 
books on mathematics and technology in Russian. Even for the tsar,  publishing 

2. Bogoslovskij (1941, II 307, 309); Žurnal Gosudarâ (1787), 67; Ûrnal 206-go (1867), 5; Ustrâlov (1858, 
III 602–605).
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secular books in his own country was a dissident action. Books were seen as 
vehicles for ‘the divine word’ not as a means for individuals to express themselves 
on a subject of their choice (Pančenko 1984, 172). 9 e publications entrusted to 
Tessing were not important scienti[ c works, but translations and compilations 
on subjects of immediate interest: maps, military matters, mathematics, and 
architecture (Opisanie izdanij napečatannyh kirillicej 1958, 321). In this foreign 
 context, between 1699 and 1701, there were printed for the [ rst time in Russian an 
arithmetic manual, a work on astronomy, and a guide to navigation,  integrating 
elements of geometry and cosmography.3

9 e second initiative arose from contacts that Peter established in England 
in 1698. 9 ere he had met a number of mathematicians and astronomers, for 
 example, John Flamsteed, director of the Greenwich Observatory.4 9 ree Scottish 
mathematicians were hired in Peter’s service of the Crown: Henry Farquharson, 
tutor at Marischal College, Aberdeen, and his two young colleagues, Stephen 
Gwyn and Robert Grice, students at the Royal Mathematical School at Christ’s 
Hospital of Oxford, from which the British Navy drew personnel. Russian 
mathematics gained much from this: the Scots developed and taught courses in 
 mathematics in the School of Mathematical Sciences and Navigation, the [ rst 
Russian technical institution, founded in Moscow in 1699/1701 and in the Naval 
Academy founded in St Petersburg in 1715. Meanwhile, a Russian of Scottish 
 origin, Jacob Bruce, stayed in England aN er the Great Embassy to study math-
ematics under John Colson. He became one of the best educated men in Peter’s 
inner circle and the [ rst Russian Newtonian (Boss 1972).

Mathematical changes under Peter I

It is di7  cult to overestimate the impact of the Great Embassy on Peter I’s reforms: 
the tsar went to Europe in search of a means to construct a d eet and brought back 
an aspiration to integrate ‘European civilization’ into his own country. Most of 
his subsequent innovations were inspired by his visit to Europe. But for these 
initiatives to take root it was essential to maintain a regular transfer of scienti[ c 
and technical knowledge.

Barely two years aN er Peter’s return from Europe, Russia embarked on what 
was to be a lengthy war with Sweden (the Northern War, 1700–21). 9 e need to 
engage with an enemy that was militarily and technically much more advanced 

3. 9 e following books were published by Ilias Kopievskij, Tessing’s assistant: Kratkoe i poleznoe ruko-
vedenïe vo aritmetyku (1699); Ougotovánïe i tolkovánïe âsnoe i śělω izrωdnoe krásnoóbraznagω poverstánïâ 
krugóv” nebesnyh” (1699); Kniga učaŝaâ morskogω plavanïâ (1701). 9 is last work was a Russian version of a 
treatise by Abraham de Graaf.

4. In Peter’s journal of the Great Embassy, Flamsteed is sometimes referred to as matematik and some-
times as astronomic (Ûrnal 206-go 1867, 7, 11–12).
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led to the development on an unprecedented scale of construction work (for-
tresses, arsenals, ports, vessels) and transportation. For this, highly quali[ ed spe-
cialists were needed, and training technical experts became a priority. From the 
beginning of the eighteenth century, groups of technicians were formed in the 
main branches of engineering, followed or preceded by the establishment of cor-
responding schools. Besides the School of Mathematical Sciences and Navigation 
already mentioned, there were also the Gunnery School (1701) and the School of 
Military Engineering (1709). Foreign specialists were urgently required as direct-
ors of projects and as trainers, and they were to introduce mathematics into both 
realms of activity.

Attracted by the promise of enticing careers, foreign experts brought to 
Russia their methods, instruments, and units of measurement. As a result, 
Russia, which had its own traditional systems of measurement,5 found itself 
confronted by a wide variety of units (Gouzévitch 2004–05). In the shipyards in 
Voronež and St Petersburg, four main systems of measurement, English, Dutch, 
French, and Danish, rivalled each other. Towards the end of Peter’s reign the 
English system prevailed over rival systems in this important industry. 9 e 
general but incorrect view is that Peter I replaced traditional Russian units with 
English units. In reality, he hardly modi[ ed Russian units at all, but simply did 
not apply them where Russia did not have experience (Kamenceva 1962; 1975). 

9 e shipyards were not the only example of such problems, which also beset 
building, artillery, and forti[ cation.

An e7  cient remedy—because it was applicable to most [ elds involved—was 
the traditional practice of using a ‘module’ (originally the length of a log or a 
beam) as a basic unit of measure. Under Peter I this principle reappeared in ship-
building, where the unit of measurement was a ‘porthole’; in construction, where 
the unit was a ‘window’; and in artillery, where the unit was the diameter (about 
5 cm) of a cannonball of speci[ ed weight (115 zolotniks, or about 480 g) (Gordin 
2003, 788). 9 is loose and almost universal application of modules, and a belief in 
the possibility of measuring everything, inspired Peter I to use the same principle 
to govern the structure of Muscovite society by the meritocratic placing of people 
according to module, or class. 9 is resulted in a famous regulatory administra-
tive chart, a ‘table of ranks’, established in 1722 and not abolished until 1917.

9 e ancient Russian monetary system also underwent transformation. Here 
the need for reform was felt long before military needs made it imperative in 
the [ rst part of the eighteenth century. 9 e traditional system had a number of 
defects. On the one hand, it did not include coins of su7  ciently varied  values. 
9 e only coins in circulation were the kopejki ‘kopecks’, with very little value. 

5. For example, the archin (aršin, 72 cm) and the sazhen (sažen’, 216 cm) for length, the funt (409 gr) and 
the pud (16.38 kg) for weight.
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Other units were used—altyn = 3 kopecks, grivennik = 10 kopecks, poltinnik = 50 
kopecks, rubl’ = 100 kopecks—but these had only a virtual value, for the  purposes 
of calculation. On the other hand, money was based on the decimal principle 
(1 rubl’ = 10 grivenniks = 100 kopecks) which made it easier to  calculate with 
and also easier to mint. But low quality metals and inferior minting practices 
meant that coins deteriorated easily, with the result that the amount of currency 
in circulation did not satisfy the needs of the population or the Treasury even in 
times of peace. Reform was therefore urgently required in order to produce both 
the necessary quantity and quality. Peter had visited the London Mint, run by 
Isaac Newton, in 1698. He did not change the traditional structure but now gave 
each unit its own coin (Ivanov 2001).

9 e calendar also underwent change. In 1700 Peter decreed that the New Year 
should be celebrated on 1 January instead of 1 September. 9 is marked the begin-
ning not only of a new century but of a new chronology. Years were no longer 
counted from the creation of the world, but from the birth of Christ, as elsewhere 
in Europe. Peter I maintained the Julian calendar then in use in England and 
Sweden rather than adopting the Gregorian calendar used in other European 
countries, and for the next two centuries Russia remained ten (later on twelve, 
and today thirteen) days behind the Gregorian calendar.

A substantial change of attitude can also be noticed in the case of astrological 
calendars. During this period astrology came to be regarded as a science like any 
other, its image less demonized. Peter I had never been much interested in it, but 
in 1721 he ordered that his horoscope should be mathematically produced, and 
it was probably done by Bruce. 9 is questioning of the stars produced a charac-
ter very like to his own, but this may perhaps be attributed less to the science of 
astrology than to his long-lasting friendship with his ‘mathematician’.

Drawing and printing

Nowadays, graphic techniques are essential for map-making and projections, 
but no such techniques were known in Russia in the [ rst half of the eighteenth 
century (Gouzévitch 2006). Icon painting was a traditional art, taught through 
apprenticeships in painters’ workshops. Subject to strict religious canons, it 
was based on a principle of reverse perspective, which highlighted the sym-
bolic importance of the subject rather than representing relationships of place 
and size. It was therefore of little relevance in technology and science. 9 e only 
deviations from this style that were allowed were in decorative art objects for 
the court, produced in the Armoury of the Moscow Kremlin by foreign artists. 
Here European-style perspective was found, but its use was limited and it did not 
spread to other domains.
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Early in the eighteenth century two European techniques, life drawing and 
technical drawing, provided architects, engineers, cartographers, and art-
ists with new tools. Both [ rst appeared in engraving, which at the time was 
used for illustrating technical books, for producing maps and plans, and for 
recording military feats and political achievements. Drawing thus became, 
along with mathematics, a compulsory element in the curriculum of the tech-
nical schools.6 As early as 1705, the Navigation School worked with a private 
engraving and printing workshop headed by V Kipriânov to publish teaching 
materials (maps, calendars, logarithmic tables, handbooks) drawn up by its 
Scottish teachers (Bruce, Farquharson, Gwyn, and Grice). From 1715, drawing 
and technical drawing were included in the curriculum of the newly opened 
Naval academy, and in 1716, they were introduced along with medicine and 
Latin into the Surgery School of the St Petersburg military hospital. In 1721, 
they began to be taught at Feofan Prokopovič’s Karpovskaâ School, whose pur-
pose was to educate children from all backgrounds to ful[ l various functions 
of public use.

Printing was essential to the spread of such techniques and of mathemat-
ics more generally. A rapid expansion of secular printing was a significant 
feature of this period. In principle publications were aimed at the general 
public, but for at least the first fifteen years they were directed at profession-
als involved in the reforms. Technical teachers and students, in particular, 
needed specialized knowledge in a systematic and understandable form. To 
achieve this, a number of problems had to be overcome, above all the taboo 
on secular books in Old Slavic. This required the development of a new lan-
guage better adapted to secular  writing, with its own alphabet, numerical 
expressions, lexicon, and style. Further, books in European languages had to 
be selected and translated. Specialists were required for all these aspects of 
publication.

Reforms in publishing were launched by a royal decree on 1 January 1708, 
which imposed the civil alphabet. From then on all secular literature had to be 
published in this alphabet, which resembled Old Slavic in much the same way 
that Roman script resembles Gothic. 9 us two objectives were achieved at once: 
Old Slavic was relegated to its traditional stronghold of religious  literature, 
and secular writing was relieved of its constraint. 9 e adoption of Arabic 
numerals was an easier task because it had started earlier: the numerals had 
made their [ rst appearance in Russian writing on the art of troop formation

6. 9 e Russian word risunok ‘drawing’ itself indicates foreign ind uence: it was borrowed from Polish 
around 1705 (Fasmer 1987, 485–486) and replaced the former znamenit’, which meant the art of painting 
d ags (Gouzévitch, 1990, I 16; II 14–15; Evsina 1975, 15; Vladimirskij-Budanov 1874, 36–37, 141–142).
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(Wallhausen 1615; Val’hauzen 1647–49),7 and then in Russian  coinage (1655).8 
9 e new civil alphabet gave full legitimacy to Arabic numerals in secular lit-
erature and marginalized traditional literal numeration along with Old Slavic. 
At the same time, important changes were also made to printing techniques. 
9 e former polygraphic system was completely reformed by Dutch printers 
invited to Russia speci[ cally for this purpose. A heterogeneous group of trans-
lators and writers, working in all craN s and coming from all social classes, also 
assisted in the urgent publication of texts in all the main branches of know-
ledge (Gouzévitch 2003, 2006).

To assess the e\ ect of these measures, some [ gures on mathematical publica-
tions between 1708 and 1724 are given in Table 1.9 9 e d ow of publications dealing 
with mathematics, science, and technology illustrates Peter I’s concerns and inter-
ests at di\ erent stages of his reign. Table 1 shows that out of a total of 1303 works 
published, there were 179 (in rows 1–9) related to mathematics and technology. 
9 ey ranked only behind 682 administrative publications (14–15) and 363 issues 
of periodicals (16). 9 ey outnumber the 110 works of an educational, social, polit-
ical nature (10–13). Works on mathematics, engineering, and astronomy (includ-
ing calendars) were issued at an almost steady annual rate for sixteen years. For 
the [ rst four years the focus was on artillery and forti[ cation, but later on atten-
tion turned to the navy. From 1713 to 1723 publications relating to the navy (navi-
gation, astronomy, geodesy, geography) were issued frequently, with peaks of six 
or seven publications in 1714, 1716, and 1719. 9 e change of  emphasis coincided 
with the transfer from land to sea of military operations against Sweden.

To add a qualitative dimension to this analysis, let us focus on some particular 
domains. It is usually held that Petrine publications were issued on pragmatic 
grounds and were intended for immediate application. 9 is is based on the fact 
that technical and military publications, in particular on forti[ cation and artil-
lery, were issued as soon as the civil alphabet was implemented. However, this 
statement loses weight when closer attention is paid to some of the technical 
works amongst the early publications. Forti[ cation, for example, is represented 
by [ ve European authors. Charles Sturm’s Arhìtektura voìnskaâ, ‘Military 
architecture’ (1709) explained existing systems of forti[ cation. Two works by 
the Austrian author Ernst Borgsdorf, Poběždaûŝaâ krěpost’, ‘9 e triumphant 
fortress’ (1708), and Pověrennye voìnskìe pravila kako neprìâtelskìe krěpostì 

7. Wallhausen’s [Val’hauzen’s] treatise was published by two printing shops: the text was printed in 
Moscow whereas the title page and plates with Arabic numerals were engraved in Holland. Arabic numer-
als appeared in the text only when they referred to a plate. In other words, the use of illustrations engraved 
abroad encouraged Russian editors to use Arabic numerals. 9 e numerals also in[ ltrated due to the incorp-
oration into Russia of Ukraine, where they were already in use. Finally, most works on mathematics were of 
Western origin, and translators generally kept the original numeration.

8. Actually on a coin minted for use in Ukraine (Kamenceva 1975, 185).
9. 9 e classi[ cation corresponds to our modern perception but would have been less distinct at the time, 

when drawing was classed with geometry and engineering with mathematics, which is why these subjects are 
grouped together in the table.
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sìloû bratì, ‘Military rules for taking enemy fortresses by force’ (1709), taught 
methods of attack and defence.10 9 e treatises by Georg Rimpler, Rìmplerova 
manìra o stroenìì krěposteì, ‘Rimpler’s method of building fortresses’ (1708) and 
by François Blondel, Novaâ manera, ukrěplenìû gorodov”, ‘A new method of for-
tifying towns’ (1711) both presented particular systems of forti[ cation. Lastly, 
Minno Coehorn’s Novoe krěpostnoe stroenìe na mokrom” ìlì nìśkom” gorìśontě 
‘A new forti[ cation for wet and low-lying lands’ (1709) summed up, on the one 
hand, the Dutch experience of constructing forti[ ed towns, and, on the other, 
a new way of forti[ cation based on a close analysis of European methods of 
attack and defence. Laskovskij, a historian of Russian forti[ cation, has argued 
that Coehorn’s treatise could not be used as a guide to engineering unless it was 

10. 9 e interest of these rather unoriginal works was that they had been written in Russia by one of the 
 foreign experts who contributed to the conquest of Azov (Sturm 1702; Borgsdorf 1708).

Table 4.3.1 Mathematical publications from 1708 to 
1724

 Subject Number of books

1 Mathematics, engineering 11
2 Geography, astronomy, 

geodesy
12

3 Calendars 38
4 Navigation, ship 

construction
35

5 Hydrotechnology, medical 
sciences*

7

6 Forti[ cation 14
7 Artillery 5
8 Military 15
9 Architecture, gardening 5

10 Education, lexicons 15
11 History, philosophy, 

literature, bibliography
34

12 Heraldry, ceremonial, 
uniforms, pyrotechnics, fes-
tivities, theatre, etc.

48

13 Diplomacy, international 
relations

19

14 Civil, military and adminis-
trative law

62

15 Decrees 620
16 Periodicals 363

  1303

 * 9 e few publications in medical sciences are on thermal and min-
eral water springs and so they are grouped here with hydrotechnology.
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understood in the  context of the author’s arguments against the French mili-
tary engineering school. Such knowledge could hardly be expected from Petrine 
engineers who had only just acquired the basics of science (Pekarskij 1862, II 219). 
Coehorn’s manual was, in short, too theoretical for any practical application. 
9 ere is a similar  example in a di\ erent domain, that of artillery. 9 e four works 
published between 1708 and 1711 provide an overview on the artillery of the 
time. 9 ree treatises, by Ernest Braun (1709), Timofej Brinck (1710), and Ioann 
Buhner (1711) dealt with practical artillery. An earlier publication, of a slightly 
di\ erent kind, was the anonymous Razsuždenïe ω metanïi bombov” ‘Reasoning 
on the launching of bombs and the [ ring of cannons’ (1708), translated by Bruce 
and published in the form of twenty-one engravings, with comments but with-
out text (Opisanie izdanij graždanskoj pečati 1955, 80–82; Mandryka 1960). 
Uniquely, it presented the theory of parabolas that had been known in Europe 
since the early seventeenth century. In Russia however, the theory would not be 
used until a century later (Mandryka, 1960). In other words, Bruce’s translation 
published in Moscow in 1708 was probably as obscure to Russian artillerymen 
as Coehorn’s treatise was to builders of forti[ cations.

9 e impracticality of some of the early publications resulted neither from 
ignorance nor from blind actions. Peter I had already led fourteen sieges and 
taken part in the (re-)construction of forty-seven forti[ ed towns (Gouzévitch 
1990, I 25, II 33). From this point of view it is more sensible to question the nature 
of Peter I’s utilitarianism. According to Robert (1973) something ‘useful’ is that 
‘of which the use is or can be pro[ table  . . .  to society, which satis[ es a need’. Peter 
I’s giN  was perhaps one of apprehending what might be ‘pro[ table to society’, not 
only then but in the future.

Unlike publications on forti[ cation and artillery, which were concentrated 
into the [ rst four years, works on mathematics, mechanics, and astronomy 
(61 items in all) multiplied noticeably aN er 1714. Over a period of ten years 
between the Great Embassy and the reform of the alphabet, there had been 
only [ ve Russian publications of this kind, among which were two arithmetics: 
one by Ilias Kopievskij (1699), mentioned earlier, and one by Leontij Magnickij 
(1703). Among the forty-eight pages of the former, only thirteen are devoted 
to the operations of arithmetic, while the remaining thirty-[ ve pages con-
tain a collection of classical maxims in Latin and in Russian and a selection 
of Aesop’s fables. Clearly Kopievskij considered mathematics as being essential 
knowledge in the same way as logic and ethics (as taught through maxims and 
fables) (Robson, Chapter 3.1 in this volume). All of this was based on Latin writ-
ings; hence the bilingual texts (Okenfuss 1998). Magnickij’s Arïθmétïka (1703), 
a compilation in Old Slavic of Western works, was used in the training of three 
generations of Russian engineers, artillerymen, and navigators. Besides these 
two texts, Tablicy logarìθmωv” ‘Tables of logarithms’ (1703), also primarily in 
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Russian, were produced by Magnickij, Farquharson, and Gwyn on the basis of 
the similar tables of the Dutchman Adrian Vlacq (1681).

9 e eleven works on mathematics and mechanics issued aN er 1708 in the 
new alphabet were of a totally di\ erent type. First was the famous Geometrìa 
slavenskì śemleměrìe (1708), a Russian version of Anthon Ernst Burckhardt 
von Purkenstein’s Ertzherzogliche Handgri5 e desz Zirckels und Lineals (1686). 
Translated by Bruce and Pause and re-edited four times, this was the [ rst book 
in Russian devoted to geometry and its practical applications (Pekarskij 1862, 
II 198, 210; Danilevskij 1954, 72–88; Opisanie izdanij graždanskoj pečati 1955, 
67–69, 74–75, 85–86). 9 e book was also a means of testing out new presenta-
tions, which turned it into a working tool for technicians instead of a luxury 
object. 9 us the second edition of the Geometrìa, issued in November 1708 just 
eight months aN er the [ rst edition, had lost the beautiful binding and golden 
edges, the thick characters and wide margins, and the views of Hungarian for-
tresses. 9 e edition of February 1709 issued under the title Prìemy cìrkulâ ì 
lìneìkì ‘Methods with compass and ruler’ inherited its drawings and small print 
from the previous version. Its size was that of a ‘pocket’ guide (15 x 9 cm instead 
of 19.5 x 15.5 cm in March 1708). Meanwhile a hundred pages were added with 
further drawings and two new chapters. 9 e [ rst of these was on the trans-
formation of plane [ gures; the second on construction of sundials. 9 e [ rst 
was attributed to Jacob Bruce and the second one to Peter I himself (Fel’ 1952, 
151–152).

9 e study of mechanics in Russia was inaugurated by Magnickij in his 
Arïθmétïka (1703), aimed at students of the Navigation School. Contrary to what 
its title suggests, it taught not only arithmetic but also geometry, navigation, and 
some elementary algebra. Some years later, in 1722, Grigorij Skornâkov-Pisarev 
published Nauka statïčeskaâ ili mehanïka, ‘9 e science of statics, or  mechanics’. 
At the time the author was manager of the building works for the Ladoga 
canal northeast of St Petersburg (1718–23) and president of the Naval Academy 
(1719–22). From his knowledge of teaching at the Academy he knew the need 
for such a treatise, and his experience as a civil engineer ensured its practical 
character.

9 e gap of nineteen years between one text and the other seems strange, espe-
cially compared to the dynamism of publication in other areas of mathematics. 
In fact a translation of Sturm’s Mathesis juvenalis (1702–05) had been undertaken 
by Vinius in 1709 but had failed: Peter I had discarded it as being unreadable. 
Bruce took up the same task but could do no better, and consequently no transla-
tion was ever published. In mechanics the linguistic problems seemed insoluble. 
9 e [ rst full text on mechanics was therefore not a translation but a work written 
in Russian. An important aspect of this story is the personal interest of the tsar 
and his companions in mechanics, at least in the didactics of the subject.
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9 e importance of these works is better understood in the context of con-
temporary printing in Russia. 9 e number of printers could be counted on both 
hands, and no more than two of them were able to publish technical and sci-
enti[ c works. Further, Peter I faced resistance from pious printers who feared 
God more than their earthly ruler; he was openly called the Antichrist by 
the Orthodox clergy. 9 e editorial vicissitudes of Christiaan Huygens’ Kniga 
mìrozrěnìâ ‘Kosmotheôros’ (1717) o\ ers a good example of such a resistance. 
Mikhail Avramov, director of the St Petersburg printing o7  ce, was in charge 
of printing it. 9 e process took seven years and two draN s: thirty copies were 
produced in 1717 and 1200 in 1724. In 1741, Avramov wrote about the [ rst draN  
to the Empress Elizabeth:

Once his majesty had leN  [for Europe, in 1716], I examined the book in question, 
entirely despicable and impious, and it made my heart pound and horri[ ed my spirits, 
and I bowed down before the image of the Virgin Mary, shaken by sobs [ . . . ], being 
scared of printing and of not printing, but thanks to Christ’s grace, I relied on what 
my heart told me to do: in order to expose [ . . . ]these wicked atheists, [ . . . ] I printed 30 
books instead of 1,200 and sealed them, and I hid them until the monarch came back. 
(Kirsanov 1996, 30)

Avramov thought that the author and translator (who was Bruce), who were 
clearly insane and atheist, should be burnt alive without delay. Fortunately 
Huygens, Bruce, and Peter I himself were now already dead, but clearly Avramov 
had not come to terms with the fact that the book had eventually been printed, 
by transferring it to Moscow printers.

9 ere were also, of course, linguistic problems. Early translations of Western 
treatises were oN en unreadable because of complex and obscure language [ lled 
with newly invented Germanisms and Russianisms. Even the simplest words 
could be hard to translate. Several manuscripts bear corrections made by Peter I 
himself, who tried to clarify the language, simplify the grammar, and get rid of 
archaic Slavonisms. Essential words were taken from other languages, with the 
result that most European languages, whether dead or alive, provided vocabulary 
for the Russians. Groups of borrowings (around 11,000 words between 1690 and 
1725) corresponded to the countries used for the main reference works (Biržakova 
1972, 83–84). 9 us German provided administrative and military terms; French 
supplied vocabulary for forti[ cation workers, artillerymen, hydraulic engineers, 
and diplomats; Italian words entered architecture and navigation; Dutch and 
English provided maritime vocabulary; Swedish and Danish inspired the lexicon 
of regulations; for mathematics, most of the words were borrowed from Latin. 
Modern literary Russian was less the product of natural evolution than of a delib-
erate e\ ort to appropriate technical and scienti[ c knowledge, a process directed 
to some extent by the tsar himself.
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B e Petrine school of mechanics and mathematics

A number of intellectuals, without being scholars in the Western sense of the 
word, were members of Peter I’s entourage and shared his wish to develop the 
 sciences. 9 eir joint e\ orts, aimed at systemizing empirical and theoretical 
 knowledge, gave birth to a phenomenon we can call the Petrine school of mechan-
ics and mathematics. Since this group’s activity was as a catalyst for the later 
founding of the Academy, let us try to get a better understanding of its nature. 
First of all, was it a ‘school’? For a group of individuals to be called a ‘school’, 
three elem ents generally need to appear together: an original and distinctive out-
put production bearing some distinctive features; a transmission of collective 
knowledge to following generations; and a programme of activity shared and 
followed by all the members. 9 e Petrine group seems to ful[ l these three con-
ditions. It was an intellectual group that produced formalized knowledge in its 
texts, passed it on to new generations, and carried out common activities accord-
ing to an agreed programme. Its protagonists can be classi[ ed into three categor-
ies depending on their training and the activities in which they were involved.

9 e [ rst category consists of the pioneers. Besides Peter I himself, it included 
his companions from his tour to Europe (Bruce, Skornâkov-Pisarev, Ša[ rov, 
Korčmin) and others, like Prokopovič, who had also had European training. As 
the ideologist of the Petrine group, Prokopovič o\ ered a philosophical argument 
advocating autonomy for science with regard to theology, though for a clergyman 
this was considered heretical (Ničik 1977, 124). 9 e second category included 
those who had been trained in Russia, like Magnickij or Vinius. 9 e third cat-
egory consisted of the Scotsmen Farquharson, Gwyn, and Grice. 9 ey too had 
been recruited during the Great Embassy and their contribution was as import-
ant as that of Vinius or Bruce in setting up a technical teaching programme.

9 e next generation of the group, disciples of the pioneers, were hired by 
the technical schools. In larger number than their predecessors, they followed 
a greater variety of professional career paths, commonly punctuated by train-
ing courses abroad. Some of them, like Andrej Nartov, later became driving 
forces of the Russian school of mechanics and mathematics. Others joined for 
a brief period, for instance Konon Zotov, Boris Volkov, and Vasilij Suvorov, who 
were technical translators and who, aN er training abroad, taught in engineering 
schools. Some others, without directly joining the school, organized their profes-
sional activity according to the methodological principles elaborated within it: 
Abram Hannibal, godson of Peter I; Burkhard Christoph von Münich, a  military 
engineer from Oldenburg; or Ivan Kirillov, a Russian cartographer. 9 is new 
generation also included former students of the Naval Academy, a speci[ c group 
of ‘Petrine geodesians’ (Vasil’ev 1959, 42; Zagorskij, 1969, 44).
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At this stage, the Petrine school began to grow o\ shoots. One was the učenaâ 
družina ‘group of learned friends’, founded in the late 1720s around Prokopovič.11 

Among its members whose work a\ ected Russian culture we can mention 
Gavriil Bužinskij and Feofan Krolik, learned priests and experienced translators; 
Vasilij Tatiŝev, a future historian; Antioch Kantemir, future poet and transla-
tor; A Čerkasskij and N Trubeckoj. Teachers, writers or translators of specialized 
 handbooks, practising engineers, and scienti[ c instrument  manufacturers, were 
some of the many people produced by the activity of the original group. 9 e 
transmission of knowledge from one generation to the other was thus guaran-
teed, and its mechanism, the training system, became [ rmly rooted in Russia.

Paradoxically, Peter I cannot be called the scienti[ c leader of the school bear-
ing his name. A few articles dealing with questions in mechanics (especially 
clock making) comprise the short list of his scienti[ c output. Two mathemat-
icians, Farquharson and Bruce, could have claimed the title if each had not 
found a niche of his own. It would be more appropriate to describe the whole 
group as a polycentric training scheme animated, encouraged, and spurred on by 
Peter I, who acted as its true driving force. 9 is is the reason we can talk about a 
‘Petrine’ school. Its works bear common characteristics which make them easy to 
 recognize. Everything in these imperfect works testi[ es to the tensions of cross-
ing uncharted territory: from the still unstable handwriting to the occasionally 
obscure language, from the essentially pragmatic orientation to the  unusual 
 association of new ideas and traditional representations. 9 ese were people strug-
gling to overcome the powerlessness of their existing means of expression.

No document seems to have formalized beforehand the series of energetic 
measures which, within two decades, d ung the quasi-medieval civilization of 
Russia into modern times. 9 e civil alphabet and Arabic numerals, the network 
of printing shops and the new printing techniques, the d ow of secular books, the 
accelerated training of technicians and an intellectual elite, and the setting up of 
the engineering schools all arose from the requirements imposed by a constant 
state of military emergency. Nevertheless, Peter I’s initiatives, despite their uni-
fying and structured nature, can hardly be called an organized scienti[ c plan. 
9 ese actions of the tsar were situated at another level, which we would rather 
call ‘methodological’. How could it be otherwise? Russia had [ rst to absorb basic 
knowledge in technology and science, an aim that was achieved within two 
 decades. 9 is in itself was a pioneering achievement but one which never yielded 
to original scienti[ c research.

At the same time, it became clear that a policy of simply transferring know-
ledge was not always a panacea. Within [ N een years, translators accomplished 

11. Traditionally družina were troops at the prince’s disposal; here they are people sharing common inter-
ests and grouping voluntarily (Čistovič 1868, 607–617; Pypin 1902, 343–388; Epifanov 1963).
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the task of creating fundamental texts in the principal disciplines and helped to 
make mathematics the foundation on which professional training was based. 
However, as the example of mechanics showed, translation had its  limits. 
Reaching the level of European science, let alone competing with Western coun-
tries in the production of new knowledge, was still a long-distance target. An 
alternative idea therefore emerged in Peter I’s mind: creating within his own 
empire a centre capable of producing scienti[ c knowledge and thus accelerating 
the process of development.

B e St Petersburg Academy of Sciences

9 e project of founding an Academy was developed over some time and was the 
subject of debates inside Russia as well as discussion abroad (Suhomlinov 1885; 
Pekarskij 1870–73; Vucinich, 1963; Komkov 1977; Kopelevič 1977; Nevskaâ 1984; 
Graham 1993, 16–20). Western scholars did everything they could to persuade 
Peter I to give his initiative an institutional form. Leibniz wrote several letters and 
notes to Peter I between 1697 and 1716, encouraging him to create scholarly insti-
tutions, notably a chemistry laboratory, an astronomic observatory, universities, 
and a college which would include painters and artisans (Kopelevič 1977, 34). On 
22 December 1717, Peter I was elected a member of the Paris Academy (Galitzin 
1859; Poludenskij 1865, 675–702; Riabouchinsky 1934, 46–50; Knâžeckaâ 1960, 
1964, 1972; Kopelevič 1977, 44). From 1721, the mathematician Christian Wol\  
actively began recruiting scholars for the future St Petersburg Academy.

Inside Russia, the debates were intense. Was it reasonable to create a centre for 
the development of advanced sciences in a country where the number of schools 
could be counted on one’s [ ngers? Would it not be more logical [ rst to estab-
lish schools capable of producing suitable candidates for the Academy? 9 ese 
arguments never dissuaded Peter I. He responded with a fable about a peasant 
who, knowing he was dying, insisted on erecting a mill in the hope that it would 
encourage his children to provide it with water (Vucinich 1963, 78; Kopelevič 
1999). 9 e Academy took shape at the end of 1724, but Peter I died without taking 
part in the inauguration of his ‘mill’.

In order to assess the achievement of the [ rst generation of mathematical 
academicians, we must bried y recall two aspects of the institution which, more 
than anything else, assured the accelerated development of the sciences in Russia: 
payment and status. In Russia the pensions and bonuses paid to academicians in 
other countries were immediately subsumed into a [ xed salary system, including 
rises, which assured academicians of a comfortable life. In return, they could be 
required to act as experts and advisors to solve problems in monetary production, 
analysis of mineral ores, technical work, ballistic and mechanical experiments, 
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assessment of works of art, or the teaching of sciences. 9 ese diverse functions 
corresponded to two motivations of the organizers of the Academy: the bene[ t 
Russia could expect from the training of its young people and the glory the State 
could gain from it. Scholars were thus employees of the State working under its 
orders, civil servants of the Crown.

In the absence of native candidates, invited scholars were proposed to bring 
their own students to Russia. 9 e scholars who were given priority were not 
neces sarily the most notable ones, but the most promising. Certain countries 
were held to have reached a degree of generally acknowledged perfection in cer-
tain sciences: thus astronomers were sought from France; chemists and builders 
from Holland and England; specialists in human sciences from Germany; math-
ematicians from Switzerland.

Among the [ rst seventeen scholars who arrived in St Petersburg between 
June and December 1725, the majority represented the sciences, equally divided 
between the natural sciences and the human sciences. 9 e pioneers were Jacob 
Hermann, Friedrich Christoph Mayer, Nicolas and Daniel Bernoulli, Joseph-
Nicolas Delisle, Christian Goldbach and Georg Bernhard Bül[ nger. 9 e young 
Leonhard Euler, a student of Johann I Bernoulli, joined them the following year. 
9 eir average age was thirty-three, ranging from nineteen (Euler) to [ N y-nine 
(Leutmann). Some stayed only a year or two, others spent the rest of their lives in 
Russia, and others, like Euler, would come and go.

What was their collective contribution to the development of mathematics in 
Russia? When we talk about mathematics in this context, we mean both pure 
mathematics and sciences ind uenced by mathematics: astronomy, geodesy, and 
theoretical mechanics, as well as engineering sciences like ballistics,  hydraulics, 
or map-making. In fact most of the scholars excelled in each of the subjects 
mentioned.

From the beginning, the Academy held lectures twice a week. In 1726, more 
than forty presentations dealt with various aspects of mathematics. In 1735 an 
attempt was made to group these presentations into a special mathematics meet-
ing, but this practice did not last. Of one hundred and thirteen records of schol-
arly sessions that have been kept until today, eighty deal with mathematics and 
mechanics. In the early decades, research focused on di\ erential and integral 
calculus, the theory of numbers, the foundations of mechanics, and the analysis 
of the in[ nitely small. To begin with, importance was given to [ elds of research 
inspired by Leibniz. Later research was stimulated by Euler.

9 e scale of the output is demonstrated by some statistics on the work of Daniel 
Bernoulli and Euler. 9 e former, who spent seven years in Russia,  published 
around [ N y works on mathematics and mechanics. Bernoulli’s work in hydro-
dynamics, mechanics, and acoustics extended mathematical methods to the 
 natural sciences. 9 is later became a dominant practice at the Academy. Euler’s 



Introducing mathematics, building an empire: Russia under Peter I 369

links with the Academy lasted [ N y-six years, thirty-one of which were spent in 
Russia. In his [ rst Russian decade alone (1726–35) he published one thousand 
eight hundred pages, a quarter of which dealt with higher mathematics, and more 
than a third with mechanics. Over the same period, he laid the foundation of 
the theory of functions of a complex variable and began his work on the calcula-
tion of variations, using imaginary numbers for the calculation of integrals. Other 
subjects of research included ballistics, vessel stability, geodesy, and practical 
astronomy. Half of the mathematical works he ever produced were issued in the 
journals of the Academy and their publication did not slow down for one hundred 
years (1729–1830). Euler leN  about ten students, who themselves became notable 
mathematicians, including Fuss, Rumovskij, KraN , Kotel’nikov, and Golovin. 9 is 
group is sometimes regarded as St Petersburg’s [ rst school of mathematics.

We may also add a few words on Joseph-Nicolas Delisle. On his arrival, the 
French astronomer joined a project to create a general map of the Empire based 
on astronomical data. To him we owe the ‘Delisle projection’ used in map making 
until the middle of the nineteenth century. He was also behind the training of 
geodesians, recruited from former students of the Naval Academy. 9 ese scien-
ti[ c schools, one founded by Euler, who was Swiss, and the other by Delisle, who 
was French, have been regarded as the glory of Russian mathematics.

B e legacy of Petrine mathematics

In conclusion, we return to the essential character of Petrine reforms. 9 eir con-
troversial character has been underlined in many of the examples mentioned 
above. We may therefore ask how useful these initiatives were, which could have 
either anticipated or interfered with the country’s natural evolution. 9 ey had in 
common the fact that they were all able to overturn the paradigms of the time. 
Calendrical change modi[ ed man’s relationship to historical time; currency 
reform ind uenced daily calculations; the civil alphabet and Arabic numerals 
determined the way measurements were written. It is hard to deny the generally 
disturbing e\ ect these changes must have had on ordinary people. Further, at 
least three of the reforms—in chronology, alphabet, and numeration— challenged 
spheres traditionally controlled by religion. 9 ey therefore overturned, both 
 symbolically and practically, traditional ways of living and governing.

At the same time, there is another question, which at [ rst might sound para-
doxical. In the story just presented, is the term ‘reform’ always appropriate? In 
its broadest sense, ‘reform’ usually means some kind of ‘transformation’. But in 
most cases the changes did not abolish or destroy an existing system. Instead, 
they took place in domains void of any native tradition (the military d eet, artil-
lery, the new capital city, technical teaching, graphic and [ gurative arts, secular 
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books, and so on). 9 e old systems (including Russian measurements; Orthodox 
chronology; Old Slavic with its alphabet and its literal numeration; icon painting 
with its reverse perspective; holy texts and religious printings—and the list does 
not stop here) were simply put aside, or con[ ned to a limited domain, relegated 
to the margin of the new world.

What can be said about mathematics? Did the forced and accelerated intro-
duction of this complex body of foreign knowledge also constitute a disturb-
ing element? It did so in old Muscovite culture, since it clearly challenged the 
 established order. Peter I’s aim in bringing a European-inspired moderniza-
tion process to his country, however, was to challenge this order by opposing it. 
He did so by devoting his life to building a new entity with the image and the 
 dimensions of Europe: the Russian Empire. Mathematics was at the heart of this 
process right from the start. Mathematics took root in unexploited domains, free 
from tradition and religious censorship. According to the new imperial ideology, 
mathematics ful[ lled both the pragmatic aspirations of the empire (pro[ ts) and 
its intellectual ambitions (glory). Peter I clearly formulated this ambition in a 
speech he gave at a boat christening ceremony, ten years before the St Petersburg 
Academy of Sciences was created, when he claimed that one day, the sciences 
would d ee England, France, and Germany and would come and settle in Russia 
for the coming centuries (Nikolaev 1986, 109). Peter I did everything he could to 
make this hope come true, above all by bringing to life a new mathematical and 
scienti[ c culture.
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CH A P T ER 4 .4

Human computers in eighteenth- and 
nineteenth-century Britain
Mary Croarken

In eighteenth- and nineteenth-century Britain, people who earned their living 
either by calculating mathematical tables or by undertaking other computa-

tional work were referred to as computers or calculators (see Simpson and Weiner 
1989). Today we associate these terms with electronic or mechanical devices, but 
there are strong parallels between the modern use of the word computer and 
its application to people two hundred years ago. 9 e most common sphere in 
which human computers worked was astronomy, but they were also employed in 
a variety of scienti[ c [ elds on a lesser scale. 9 e work undertaken by the human 
computers of the eighteenth and nineteenth centuries was characterized by the 
repetitive use of arithmetical steps, oN en of considerable sophistication, to prod-
uce tables or tools for use by others, in astronomy, navigation, tide prediction, 
and scienti[ c calculation. 9 e work required patience and attention to detail and 
computers were usually required to adhere to strict algorithms with little scope 
for individualism.

9 e distinction between computers and clerks was sometimes blurred, espe-
cially in the banking and insurance industries, but was usually characterized 
by the complexity of the work. Clerks tended to count (manufactured goods, 
population, and so on) or add (columns of [ gures) and computers tended to cal-
culate (positions of stars, tide predictions, and so on) using several arithmetic 
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operations and logarithms. Some computers were teachers or clergymen who 
supplemented their income by producing mathematical tables. Others worked 
as full time professionals and had rarely had a university education. Some were 
identi[ ed in published work but most remained anonymous. Only a very few 
were women. 9 e work was repetitive, sedentary, and oN en wearisome. 9 ey were 
employed, oN en on a freelance or ad hoc basis, by public bodies, private individ-
uals, and commercial enterprises.

9 is chapter will identify and describe some of the human computers known 
to have been working in Britain during the eighteenth and nineteenth centur-
ies. It will examine the nature of their work along with their pay and conditions 
where such information is available. Because the majority of computers were 
employed on astronomically related projects, the work of computers employed 
at the Nautical Almanac O7  ce and the Royal Greenwich Observatory will be 
described in some detail to illustrate the nature of work during this period. Later 
sections will identify other computers and computing groups. Because com-
puters were oN en seen as just hired help, records outlining their work are dif-
[ cult to [ nd, and there existed many whose work in the scienti[ c community 
remains unidenti[ ed and unrecorded. 9 is account should not therefore be seen 
as de[ nitive.

Nautical almanac computers

From 1767 onwards, increasing numbers of British seamen used the astronom-
ical tables published in the annual Nautical almanac to determine longitude at 
sea.1 9 e annual preparation of these tables was a huge undertaking, carried out 
by a group of computers paid from the public purse, under the supervision of 
Nevil Maskelyne, Astronomer Royal from 1765 to 1811 (Croarken 2003a).

In the Nautical almanac, the tables for each calendar month were contained 
in twelve pages giving the sun’s position, the position of the planets, the position 
of the moon, lunar distances from the sun (see Fig. 4.4.1), and [ xed stars at three 
hourly intervals along with extra data such as the days of the month, festivals 
and feast days, eclipses of the moons of Jupiter, and so on. While the calcula-
tions required to compute each entry of the Nautical almanac were not di7  cult, 
they were time consuming. Maskelyne devised a series of precepts (computing 
principles or algorithms) for each calculation. Most required nothing more dif-
[ cult than addition or subtraction of sexagesimal numbers extracted from one 
of fourteen other types of tables (for example, logarithm tables, lunar tables, and 

1. 9 e use of chronometers did not come into widespread use (largely because of cost) until the beginning 
of the nineteenth century, see Croarken (2003a).
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Figure 4.4.1 Sample page from the 1767 Nautical almanac showing lunar distances. 
Courtesy of the National Maritime Museum; negative number 7147
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solar tables) but the computers were required to have a grasp of the theory on 
which the precepts were based in order to be able to detect errors in the work. 
9 e true di7  culty of the work was the volume and tediousness of the task. Each 
Nautical almanac entry might require up to twelve table look-ups and fourteen 
seven-[ gure sexagesimal arithmetical operations; in any one Nautical almanac 
month there were up to one thousand three hundred and sixty [ ve table entries 
to be computed.

To undertake these calculations, Maskelyne built up a network of people 
spread across Britain, working largely at home on a part time, piece-work basis 
as either ‘computers’, ‘anti-computers’ (see below), or ‘comparers’. Before each 
computer or anti-computer began work, Maskelyne sent them his precepts (see 
Fig. 4.4.2), together with pre-printed pro formas on which to enter the results of 
the calculations, and a set of fourteen di\ erent books containing mathematical 
and astronomical tables. One computer and one anti-computer were allocated 
to each Nautical almanac month. For a table of lunar positions, for instance, the 
computer was asked to compute the moon’s position at noon each day and the 
anti-computer its position at midnight each day. When a month’s calculations 
were complete, they were posted back to Maskelyne. He then sent them to the 
comparer, who checked them by comparing those of the computer against those 
of the anti-computer. In addition the comparer was required to merge the tables 
to give the moon’s positions at noon and midnight. Finally he calculated fourth 
di\ erences for the merged table as an additional check for errors.2 If an error was 
found, the comparer wrote to the computer (or anti-computer) to point it out 
(Hitchins 1792). Next the computers were required to subtabulate the merged 
table to give the moon’s position every three hours. 9 e tables were sent back to 
the comparer for checking, who then returned the corrected version with a list of 
the [ xed stars for which the lunar distance was to be calculated for each position 
of the moon (see Fig. 4.4.3). When all was completed it was the comparer’s job to 
prepare the tables for press and do the proofreading.

At any one time there would be several computers working on various Nautical 
almanac months, with Maskelyne coordinating the work from the Observatory 
in Greenwich. Computers carried out the work in their own homes and commu-
nication between Maskelyne, his computers and comparer was by post. Payments 
were authorized only when a whole Nautical almanac month was complete. 
Maskelyne’s account book shows that payments were made only intermittently, 
usually whenever a computer, or their representative, was in London (Maskelyne 
1765–1811a). In the 1770s, the salary of the Nautical almanac computers was £75 
per Nautical almanac year, which gradually rose to £180 in 1810; the equivalent 

2. First di\ erences are di\ erences between successive entries in the table; second di\ erences are di\ er-
ences between the [ rst di\ erences; and so on.
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Figure 4.4.2 Letter from Nevil Maskelyne to Joshua Moore 30 September 1788 
giving the instructions for computing the moon’s distance from a star using loga-
rithms. Courtesy of the Library of Congress Manuscripts Division
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Figure 4.4.3 Manuscript tables of the moon’s position for December 1798 show-
ing which stars the computer is to use for the lunar distance predictions. Sent by 
Malachy Hitchins to Joshua Moore. Courtesy of the Library of Congress Manuscripts 
Division
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spending power today would be approximately £7,500 and £9,500, respectively.3 A 
di\ erential between the computers’ pay and the comparers’ pay (the  computers’ 
work being more time consuming but the comparers’ requiring more skill) was 
not made until 1808, when the comparers’ pay exceeded the computers’ by £40 
per Nautical almanac year.4 9 e time it took for computers to complete their 
 calculations varied considerably: some took several months to prepare two 
months’ worth of tables while others turned in the same amount of work in less 
than a calendar month (Maskelyne 1765–1811b).

9 e computers lived in di\ erent parts of England, and included clergymen, 
teachers, surveyors, ex-Royal Greenwich Observatory assistants, and astron-
omers on temporary leave from Board of Longitude voyages of exploration. Some 
computed for the Nautical almanac only for a few months, others for forty years 
or more. For most it was a way of supplementing other sources of income but for 
a few it was their only employment. Although the work was tedious and required 
long hours hunched over a desk piled high with books of tables, the computers 
and comparers of the Nautical almanac could choose where and when to do the 
work and how much to take on at any particular time. 9 ey also got to com-
plete the whole range of work needed to compute the tables in contrast to, for 
 example, Gaspard de Prony’s table making project in France in the 1790s, where 
one  individual did only one part of a calculation without ever seeing or needing 
to understand the whole (Grattan-Guinness 2003, 109).

Maskelyne’s computing system was designed to make the Nautical almanac 
as accurate as possible, because an incorrect entry in the third or fourth deci-
mal place of some tables could potentially lead to a longitude calculation being 
out by over thirty miles. 9 e comparer’s role was therefore the cornerstone of 
Maskelyne’s methods. Although he and his comparers understood the need for 
accuracy, his computers were sometimes not so fastidious. In 1770 the comparer 
Malachy Hitchins found that the work of Joseph Keech and Reuben Robbins 
(computer and anti-computer respectively) matched too well and deduced that 
they had copied each other’s work instead of computing independently. Keech 
and Robbins were part of the same London co\ ee house set and lived near each 
other. 9 e pair were immediately dismissed and required to pay compensation 
for the waste of the comparer’s time (Board of Longitude 1770). 9 e event taught 
Maskelyne to ensure that work for the same Nautical almanac month was allo-
cated to a computer and anti-computer living in di\ erent parts of the country. 
By the beginning of the nineteenth century, there was a cluster of computers 

3. Equivalent modern spending power has been calculated using http://www.MeasuringWorth.com. In 
2008, £1 was worth approximately 2 US dollars.

4. 9 e salaries paid to Almanac computers and comparers have been gathered from a variety of manu-
scripts in the Royal Greenwich Observatory archives at Cambridge University Library, namely, RGO 16/55; 
RGO 14/5 f. 165; RGO 14/6 f. 317; RGO 14/7 \ . 5, 39, 32.

http://www.MeasuringWorth.com
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living in Devon and Cornwall close to Malachy Hitchins, the longest serving 
comparer, but care was taken not to allocate work relating to the same month to 
near neighbours.

Following Maskelyne’s death in 1811, Nautical almanac computing contin-
ued in much the same way but Maskelyne’s successor, John Pond, took no active 
interest in computational astronomy in general or the Nautical almanac in par-
ticular. Consequently the accuracy and reputation of the Nautical almanac fell 
to such an extent that the issue was raised in Parliament (Hansard 1818). Steps 
were taken to restore the accuracy of the publication by appointing the polymath 
9 omas Young as Superintendent of the Nautical almanac, but throughout the 
1820s and early 1830s there was considerable clamour from British astronomers 
to reform both the way the Nautical almanac was computed and the tables it con-
tained (Ashworth 1994). 9 anks to advances in telescope technology, and the rise 
of the gentleman astronomer (Chapman 1998), a new rigour was being brought 
to  land-based observation and stellar cataloguing by young mathematicians, 
astronomers, and business men such as Charles Babbage, John Herschel, 9 omas 
Colby, and Francis Baily. Many of these men had commercial interests in the 
insurance and banking industries, and their ideas on observation and scienti[ c 
recording were heavily ind uenced by their experiences computing life assurance 
tables, and by the increasing propensity of business culture to record, analyse, 
and standardize. 9 ey perceived a reformed Nautical almanac as a vehicle for 
ensuring standardization of land based astronomy.

9 e issue of reform of the Nautical almanac was part of a wider cond ict at the 
time within the upper echelons of London scienti[ c society (Miller 1983). 9 e con-
d ict centred around the domination of the Royal Society by its President, biolo-
gist Joseph Banks, and his followers on the one hand, and young mathematicians 
and scientists who wanted to push the boundaries of what constituted science on 
the other. In practical terms this discontent manifested itself in the creation of 
both the Astronomical Society and the Geological Society, both of which were 
strongly opposed by Banks. Reform of the Nautical almanac should therefore be 
seen against this background rather than as to do with problems associated with 
the computation methods themselves (Miller 1983; Ashworth 1994).

In 1830 the Admiralty asked the Astronomical Society (later the Royal 
Astronomical Society) to report on ways of improving the Nautical almanac. 
9 e Society set up a committee that included many of the dissatis[ ed astron-
omers, as well as mathematicians, naval o7  cers, and others (South 1831, 448). In 
its 1831 report, the committee called for both radical revision and expansion of 
the Nautical almanac, to make it more useful for astronomers while retaining its 
usefulness for navigators.

Many of the committee members were as active in accounting and assur-
ance as they were in astronomy, and had strong ideas about the organization 
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of astronomical computing and its parallels with the work of assurance o7  ces 
(Ashworth 1994). Red ecting the early nineteenth-century drive to mechanize 
industry (Babbage 1835), reform of the Nautical almanac was also seen as a 
vehicle for centralizing the way the computing was undertaken. 9 e Admiralty 
accepted the committee’s report and all its twenty-six recommendations. Most 
of the reforms were aimed predominately at land-based astronomers rather 
than seamen. Examples include: giving the places of the sun and the moon 
to several places of decimals; giving more details in the tables of the satel-
lites of Jupiter; changing the places of the [ xed stars to show time of transit 
at Greenwich rather than at apparent noon; and extending the list of monthly 
astronomical phenomena. One reform, replacing apparent time for mean solar 
time in the Nautical almanac tables—a change made possible by the technical 
improvement of clocks and watches over the previous [ N y years—would be of 
long term bene[ t to  navigators but in the short term would cause confusion at 
sea for several years to come. At the same time responsibility for the Nautical 
almanac was removed from the Astronomer Royal, John Pond, who had lit-
tle interest in computational astronomy, and assigned to Francis Beaufort, 
the Hydrographer of the Navy. 9 e Hydrographic O7  ce remained respon-
sible for the Nautical  almanac until 1937 when responsibility reverted to the 
Astronomer Royal. In April 1831 Beaufort, who had been a prominent member 
of the Astronomical Society committee and ind uential in preparing the report, 
appointed William Stratford, another  committee member and secretary of 
the Astronomical Society, as Superintendent of the Nautical almanac. Almost 
immediately Stratford centralized the work in London.

In the late 1820s, just before the reform, the Nautical almanac was being pre-
pared by [ ve computers and one comparer, with the work being coordinated by 
9 omas Young in London using the same techniques that Maskelyne had put 
into operation sixty years earlier. 9 ree of the computers were from Cornwall 
(William Dunkin from Truro, Nicholas James from St Hilary, and Richard 
Martyn from St Mabyn) and had all been recruited to the work by Maskelyne’s 
long-serving comparer Malachy Hitchins. Of the other two, George G Carey 
was a scienti[ c lecturer and author from Arbroath in Scotland, and Eliza 
Edwards from Ludlow in Shropshire was the daughter of Mary Edwards, one of 
the Maskelyne’s long-serving computers. 9 e comparer was 9 omas Brown, a 
Church of England vicar from Tideswell in Derbyshire.

In 1831, the computers were told that their services would no longer be 
required once the preparations for the 1833 Nautical almanac were complete, 
as the work was to be moved to London (Dunkin 1999). Edwin Dunkin, whose 
father William was one of those computers, remarked that most of the computers 
were past middle age, fearful of learning new computing methods, and unwilling 
to leave their homes, and it was also considered that the new o7  ce should employ 
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new sta\  (Dunkin 1999, 45). However, William Dunkin, then in his [ N ies, did 
go to London to join the new Nautical Almanac O7  ce. He was the only existing 
computer to make the move and did so thanks to the patronage of Davies Gilbert, 
then president of the Royal Society. For Dunkin, however, the move proved far 
from successful. His son recalled:

I have oN en heard him express a real regret at the loss of his semi-independent position 
at Truro, in exchange for the daily sedentary con[ nement to an o7  ce-desk for a stated 
number of hours in the company of colleagues all junior to himself in age and habits 
(Dunkin 1999, 45).

Dunkin recognized that computing in a tightly controlled central o7  ce was not 
a profession that was likely to bring advancement to his sons Edwin and Richard, 
and he tried to educate them for a life in trade. Unfortunately Dunkin died in 
1838 and the sons, who quickly needed to become the wage earners of the family, 
both took up computing positions at the Royal Greenwich Observatory despite 
their father’s wishes. In 1847 Richard transferred to the Nautical Almanac O7  ce; 
Edwin stayed at the Royal Observatory.

Information about the early organization of the Nautical Almanac O7  ce 
can be gleaned in part from the incoming and outgoing letter books of the 
Hydrographic O7  ce. Written communications were exchanged between 
Stratford, based in the Nautical Almanac O7  ce in Verulam Buildings o\  the 
Grays Inn Road, and Beaufort, based in the Hydrographic O7  ce at Somerset 
House. 9 e buildings were less than a mile apart so much communication 
would probably also have been face to face. From the records it is di7  cult to be 
sure about exactly who was employed when, on what salary, or exactly how the 
computations were organized. It is likely that Stratford began by hiring approxi-
mately seven computers in 1831 but that number had risen to sixteen by 1836. 
Once the initial computers had been hired and trained, Stratford spent much 
of his time at his commercial business in the Metropolitan Loan Company and 
communicated his instructions to his sta\  by letter. One of the computers, hired 
at a rate of £100 per annum in 1831,5 was the twenty-two-year-old Wesley Stoker 
Barker Woolhouse, recommended to Stratford by a Greenwich schoolmaster 
(Anon 1838). Woolhouse proved very able and in 1833 was appointed Deputy 
Superintendent with an increase of £50 to his salary. Stratford himself was earn-
ing £500 per annum. Over the next three years Woolhouse supervised many of 
the computations and wrote several well-regarded technical supplements to the 
Nautical almanac.

In 1836, while the computers were working on calculations for the predic-
tion of the return of Halley’s comet (Grier 2005, 49), Stratford requested that 

5. Approximately £7,000 in spending power today.
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the computers work an extra hour per day to catch up with Nautical almanac 
work delayed due to the comet work (Woolhouse 1837). Woolhouse felt that the 
computers already worked long enough hours, from 9am until 5pm, and refused 
to comply. Relations deteriorated, accusations were made on both sides, others 
got involved and the a\ air continued to be acrimonious even aN er Woolhouse’s 
resignation in early 1837.6 Woolhouse later went on to have a successful career as 
an actuary.

9 e following years went more smoothly. By the 1840s the size of the Nautical 
Almanac O7  ce had stabilized at eleven sta\  plus the Superintendent. 9 e com-
puters were now called ‘assistants’, a term which red ected change of status rather 
than a change in the work undertaken. 9 e Superintendent was supported by a 
Chief Assistant who was responsible for arranging calculation for the Nautical 
almanac as a whole, and undertook independent computations of various parts 
of the tables to check for accuracy. He selected the stars liable to occultation,7 and 
those required for lunar distance calculations (Hind 1878). He was also respon-
sible for seeing the Nautical almanac through the press. Under the Chief Assistant 
were First Class Assistants and Second Class Assistants, whose numbers varied 
over the period 1840 to 1920.

In 1831, Stratford had begun by hiring computers at £100 per annum. By the 
1850s the salaries for second class assistants and junior computers had fallen, 
as shown in Table 4.4.1. 9 is drop was partly due to the greater availability of 
clerical labour and partly due to centralization, which meant that tasks could 
be divided up between computers with varying levels of skill. 9 is was red ected 
in the pay structure. Not until 1880 was the lowest salary point back near the 
1833 level. In the meantime the social status of junior computers had also fallen 
and they were no longer seen as skilled individuals but as part of the disposable 
 cler ical workforce of Victorian London.

Table 4.4.1 Salaries of the Nautical almanac assistants 1833–18788

Date Chief Assistant  First Class  Second Class Junior
  Assistant  Assistant  Computer

1833 £150 £100 £100 £100
1850 £190 £150   £90   £40–£75
1880 £350–£400 £260–£300 £100–£250 disestablished

6. Clippings from 0 e Times concerning the a\ air are held at Cambridge University Library Manuscripts 
RGO 16/1.

7. 9 at is, stars which are predicted to pass behind another celestial body and therefore out of sight.
8. 9 is data is extracted from Hydrographic O7  ce Incoming letters H798, Hind to Beaufort 27 April 1853; 

and Royal Greenwich Observatory Archives RGO 16/3 C Packet 1.
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Sometimes more than one member of a family was employed in the Nautical 
Almanac O7  ce, and many individuals spent their entire careers there. Richard 
Farley, for example, who became Chief Assistant in 1837, was employed for 
 thirty-eight years and his brother for forty-two years. Similarly William Godward, 
who became Chief Assistant in 1869, was a Nautical Almanac O7  ce employee for 
forty-three years and his brother John for eighteen years. Even Superintendents 
tended to stay for long periods.

Although the work was repetitive, it was secure and well paid compared to 
private observatory assistants and commercial city clerks, but just below the 
salaries of government clerks in the Board of Trade. 9 is put senior Nautical 
almanac computers in the middle classes of Victorian England, though not of 
the same social standing as graduates (Chapman 1998, 150; Select Committee 
1850, 85). 9 e other traditional employment of the mathematically inclined, 
schoolteaching, was usually less well remunerated, but wages were very variable 
and depended to a great extent upon the personality of the teacher and the social 
class of the pupils.

Very little changed in the way that the Nautical Almanac O7  ce was organ-
ized until the early twentieth century when the then Superintendent Phillip 
Cowell began to employ retired members of sta\  on a piece-work basis in their 
own homes, much as Maskelyne had done. 9 e [ rst real change to the comput-
ing methods of the O7  ce came in the late 1920s when mechanical calculating 
machines began to be introduced (Croarken 1990).

Observatory assistants

While the computers and assistants of the Nautical almanac spent their days pre-
paring tables of positions of celestial objects as a practical tool for navigators 
and astronomers, the computers employed at the Royal Greenwich Observatory 
concentrated on past and current observations (see Aubin in this volume). At the 
detailed level much of the work was similar in nature—for example, sexagesimal 
arithmetic and looking up tables—but the context was rather di\ erent and, at 
least in the eighteenth century, the work a little more varied because observing 
was also part of the job.

Most observations made at the Royal Observatory at Greenwich were carried 
out as a set of three or [ ve observations over a short time. 9 ese observations 
then had to be ‘reduced’, that is, averaged, corrected for refraction, paral-
lax, instrument and observer error, and converted from relative positions as 
observed from earth to absolute positions in the celestial sky. From the appoint-
ment of John Flamsteed as First Astronomer Royal in 1675, it had been custom-
ary for the Astronomer Royal to hire an assistant to make routine observations, 
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reduce the sets of [ gures, and carry out whatever other computing work the 
Astronomer Royal might require. 9 e post thus combined observing and com-
puting. 9 e work was hard, lonely, and tedious: not only did observations need 
to be taken to a strict timetable, oN en at night and with the observatory roof 
open to the  elements, but the task of reduction was repetitive and never end-
ing. In addition the assistant was required to live at the Observatory, four miles 
from London and, at least in the late eighteenth century, was not expected to 
engage with outside society to any great extent and was forbidden to marry 
(Croarken 2003b, 289).

Despite the hardship of the post, some assistants stayed at the Observatory 
for many years but others lasted only a few weeks or months. Before the mid-
nineteenth century many Greenwich assistants used the post as a stepping-
stone to other, more interesting employment. For example, several assistants 
leN  Greenwich to sail as astronomers on the late eighteenth-century voyages 
of exploration with Cook and others. Others, such as John Hellins and John 
Brinkley, used the experience to further their own scienti[ c careers, becom-
ing Fellows of the Royal Society and, in Brinkley’s case, Astronomer Royal for 
Ireland.

For others, employment at the Observatory was anything but life a7  rming. 
9 omas Evans, assistant at the Royal Observatory from 1796 to 1798, wrote the 
following:

Nothing can exceed the tediousness and ennui of the life the assistant leads in this place, 
excluded from all society [. . .] Here forlorn, he spends days, weeks, and months, in the 
same long wearisome computations, without a friend to shorten the tedious hours, or
a soul with whom he can converse. He is also frequently up three or four times in the 
night [. . .] (Evans 1810, 333–335)

For another assistant, David Kinnebrooke (1795), not only were the working 
conditions di7  cult, but his career was signi[ cantly blighted by being dismissed 
because his observations consistently di\ ered by 800 milliseconds from those 
of the Astronomer Royal. 9 e case later resulted in the realization by Friedrich 
Bessel that every observer has di\ erent but predictable aural and visual reaction 
times and that a correction for this should be made on all observations and for all 
observers (Mollon and Perkins 1996; Sha\ er 1988). Bessel’s 1821 analysis of what 
has become known as the personal equation came too late to rescue the career of 
Kinnebrooke, who had died in Norwich in 1802 (Kinnebrooke 1802).

When George Biddell Airy was appointed Astronomer Royal in 1835, the sta\  
of the Observatory expanded signi[ cantly to accommodate extra work that Airy 
persuaded the Admiralty to pay for, on the backlog of unreduced observations that 
had built up over the past eighty years (Airy 1896). Airy began both by improving 
the quality of the assistants (Meadows 1975, 1) and by increasing their number 
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from two in 1835 to six by 1846 with annual salaries ranging from £100 to £400,9 
with additional housing allowances of £70 to £90 (Airy 1846). Many assistants 
now stayed at Greenwich for much of their working lives. 9 e salaries paid by the 
Observatory were almost twice those paid by most universities or private obser-
vatories and three times those paid to assistants at the Nautical Almanac O7  ce. 
In addition the terms and conditions at the Royal Observatory were good, with 
an o7  cial [ ve-hour working day, a month’s paid holiday per year, and a pension 
at sixty-[ ve (Chapman 1992). Some assistants started as youths, rising through 
the ranks to end their careers as senior or sometimes Chief Assistant. 9 e work of 
the assistants was varied and included much computing alongside observation.

One of Airy’s rotas for his assistants is given below.

Day 1 – On duty with the transit circle from 6am until 3am the following day (that is, 
21 hours continuously)

Day 2 – 2 to 3 hours computing

Day 3 – Full day’s computing followed by night duty with the altazimuth

Day 4 – 2 to 3 hours computing

9 e 4-day cycle was then repeated. (Meadows 1975, 10)

9 e transit circle was a telescopic instrument used to observe the time at which 
a celestial object crossed the meridian. Observations were limited to speci[ c 
objects, depending on the current pattern of work, but the instrument required 
long hours of manpower. 9 e altazimuth measured the altitude and horizontal 
angles of celestial bodies and again had its own observing schedule. 9 e comput-
ing part of the work focused on reducing and correcting the observations, or any 
other work that Airy required. 9 ere were other rotas depending on the depart-
ment and type of additional work being undertaken. 9 e rotas were drawn up by 
Airy and pinned up above the mantelpiece in the computing room each Monday 
morning (Dunkin 1862, 26).

Before Airy’s appointment as Astronomer Royal in 1835, the Greenwich assis-
tant’s life was a lonely one, made up of computing and observing. AN er Airy’s 
appointment, the sta\  at the Observatory rapidly expanded and the work became 
more varied though it still retained a mix of observing and computing. 9 e 
 computers could live with their families within a mile of the Observatory and 
the terms and conditions improved as the assistants became formally part of the 
British Civil Service. 9 ere was a distinct division, however, between the working 
conditions of the Greenwich assistants and those of the temporary supernumer-
ary computers who were hired and [ red according to need.

In his e\ orts to reduce the backlog of unpublished observations, Airy began by 
employing three supernumerary computers speci[ cally to work on the reduction 

9. Approximately £6,500 to £25,500 per annum in spending power today.
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of planetary observations from 1750 to 1830: James Glaisher, John Hartnup, and 
a Mr 9 omas. Airy placed them in the Octagon Room of the Observatory and 
set them to work using a strict algorithm. In 1838 he obtained another £2000 to 
calculate lunar reductions for the same period, and was able to employ [ rst seven 
and later sixteen supernumerary computers (Airy 1896). 9 e working conditions 
of the supernumerary computers were not good but, by the standards of the time, 
they were not dreadful either. 9 e brothers Edwin and Richard Dunkin, aged 
seventeen and [ N een respectively, whose father William had been an Nautical 
almanac computer (see above), were hired by Airy on 21 August 1838 as tem-
porary supernumerary computers. Edwin was set to work calculating the right 
ascension and north polar distance for the planet Mercury with a large book of 
printed skeleton forms and Lindenau’s tables of the position of Mercury (1813). 
His recollections of that day give us an indication of the life of a Greenwich super-
numerary computer.

I felt a little nervous at [ rst, and a momentary fear crossed my mind that some time 
would be required to enable me to comprehend this intricate form, and to [ ll up 
the various spaces correctly from the Tables. 9 ough Lindenau’s Tables were new to 
me, I soon found that the Astronomer Royal had so skilfully prepared the skeleton 
forms, that any intelligent and careful computer could hardly go astray. AN er very lit-
tle instruction from Mr. 9 omas, the principal computer in charge, I began to make 
my [ rst entries with a slow tremulous hand, doubting whether what I was doing was 
correct or not. But aN er a little quiet study of the example given in the Tables, all 
nervousness soon vanished; and before 8 p.m., when my day’s work was over, some 
of the older computers complimented me on the successful progress I had made. My 
brother was employed on a less advanced class of calculations, and he also satis[ ed 
Mr. 9 omas, the superintendent of the room. We went home tired enough to our 
lodgings [. . .] but with light hearts and the happy thought that we had earned our [ rst 
day’s stipends. On looking back [. . .] I cannot help thinking that it was some what 
remarkable that these two youths, full of life, and fresh from school, could feel any 
elation at the prospect of passing eleven hours, day aN er day, in a situation allowing 
no time for that physical recreation considered so indispensable for all classes in the 
present day. (Dunkin 1999, 72)

9 is was the start of a pattern of work in the Observatory for which Airy is well 
known and indeed notorious. He is particularly remembered for having brought 
factory methods of production to the work of the Observatory (Grier 2005). Airy 
set out each step of a calculation in a logical sequence and used pre-printed forms 
to guide the computers through the work (see Fig. 4.4.4), just as Maskelyne had 
done for the Nautical almanac computers sixty years before.10 9 e work was then 
carried out by relatively unskilled computers under the supervision of senior 

10. Examples of Airy’s skeleton forms can be found in the Royal Greenwich Observatory Archives at 
Cambridge University at RGO 6/42.
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Figure 4.4.4 Skeleton form number 17 from the Royal Greenwich Observatory, for 
the calculation of the Heliocentric place of Saturn. It was completed by Robert 
Dunkin in the 1820s from observations made at Greenwich in 1751. Royal Greenwich 
Observatory Archives, Cambridge University Library RG0 127/53
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assistants, and there was no scope for individual computers to adapt or improve 
on the method (Dunkin 1892, 78; Meadows 1975, 3). Airy used this technique 
as cheaply as he could by employing boys and young men aged between four-
teen and twenty-three rather than men with more experience. 9 e sta\  of the 
Observatory was thus divided between senior assistants with considerable astro-
nomical and mathematical ability and junior assistants and computers with 
much more  modest skills.

Simon Newcomb, Director of the US Nautical Almanac from 1877 to 1897 and 
a computer himself as a young man, summed up the situation of the Greenwich 
computers:

A third grade [of Greenwich Assistant] is that of computers: ingenious youth, quick at 
[ gures, ready to work for a compensation which an American laborer would despise, yet 
well enough schooled to make simple calculations. Under the new system they needed 
to understand only four rules of arithmetic: indeed, so far as possible Airy arranged 
his calculations in such as way that subtraction and division were rarely required. His 
boys had little more to do than add and multiply. 9 us, so far as doing of the work was 
concerned, he introduced the same sort of improvement that our times have witnessed 
in great manufacturing establishments, where labor is so organised that unskilled men 
bring about results that formally demanded a high grade of technical ability. He intro-
duced production of a large scale into astronomy. (Newcomb 1903, 288)

Airy’s treatment of the Greenwich computers has had a bad press, with the 
work being classed by one ex-Greenwich assistant, Edward Walter Maunder, as 
‘remorseless sweating’ (Maunder 1900, 117). However, the truth may be more 
complex. Dunkin (1999) recalls that when he started work as a computer in 1838 
the hours of work were 8am to 8pm with an hour for dinner, but admits that 
these hours were at the request of the computers themselves, who were paid at 
an hourly rate of 6 pence to 10 pence an hour and wanted to maximize their 
income. During the winter, illumination in the computing room was inadequate. 
By Christmas 1838 Airy noticed that productivity in the second half of the day 
was poor and that some of the computers’ health was su\ ering. Consequently he 
o\ ered, and the computers accepted, a [ xed rate of pay for a computing day of 
8am to 4pm with no midday break.

A further problem was the temporary nature of their employment: com-
puters had no tenure and could be dismissed at a month’s notice. In Airy’s 
eyes, however, he was not using boys as disposable labour but was providing 
training for future careers. Most came from surrounding schools and had to 
pass an entrance exam that covered arithmetic, use of logarithms, and elemen-
tary algebra before being taken on. Airy reports that his computers used their 
training at Greenwich to [ nd employment as assistants in other observatories, 
as Nautical almanac computers (as in the case of Richard Dunkin), as clerks 
in the Civil Service, or in London banks (Airy 1872; see also Chapman 1998). 



PEOPLE AND PRACTICES392

Airy recommended others for particular posts: for example, Charles Todd, the 
son of a Greenwich tradesman, was employed by Airy in the early 1840s as a 
computer of lunar reductions before becoming an assistant at the Cambridge 
University Observatory in 1848 (Meadows 1975, 11). He returned to Greenwich 
in 1854 to take charge of the telegraphic transmission of time signals before 
being recommended by Airy to the South Australian Government as a suit-
able candidate for the post of superintendent of telegraphs. He subsequently 
had a long and successful career (Symes 1976). 9 ere was also the possibility of 
advancement within the Observatory itself: Edwin Dunkin was promoted from 
computer to temporary assistant in the new magnetic observatory in 1840,11 
and [ ve years later became an established assistant. Dunkin ended his career as 
Chief Assistant, the [ rst person without a university education to be appointed 
to the post.

During the nineteenth century, innovative astronomical research was  carried 
out not only at Greenwich but also at university observatories in Oxford, 
Cambridge, and Durham, and at public observatories at Liverpool, Edinburgh, 
and Armagh. Many of the assistants in the public observatories were poorly paid 
compared to those at Greenwich. 9 ere were also a number of private observa-
tories, usually owned or run by men of considerable social and scienti[ c stand-
ing (Chapman 1998). Assistants in these observatories held a social position in 
the household similar to that of a governess, that is, they were intelligent and 
well educated but were employees just a few steps up from servants (Chapman 
1998, 145). Some started out as supernumerary computers at Greenwich: John 
Hartnup, for example, worked [ rst as a computer at Greenwich, then as an assis-
tant at Lord Wrottesley’s observatory in Blackheath, and later as an Assistant 
Secretary to the Royal Astronomical Society, before being appointed Director of 
the Liverpool Observatory in 1843.

Tide computers

Another group of human computers were those involved in the preparation 
of tide tables.12 Britain’s commercial and imperial development depended on 
 reliable tide tables for major world ports, and the sale of accurate tables was a 
 commercially competitive business. Considerable amounts of direct and indirect 
state funding were channelled into tide research through the British Association 
for the Advancement of Science, and during the 1830s and 1840s such research 

11. 9 e magnetic observatory was designed to observe changes in the force and direction of the earth’s 
magnetism, important to navigation because of advances in compass technology and the increasing use of 
iron rather than wood for ship building.

12. Tide computers were known as ‘calculators’ but here we will retain the use of the word ‘computer’.
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gathered momentum, led by John William Lubbock and William Whewell (Reidy 
2007; Cartwright 1999).

By the 1830s the Hydrographic O7  ce employed at least one full time tide com-
puter (Daly 1967). Two employees of the Hydrographic O7  ce, Joseph Foss Dessiou 
and Daniel Ross, also did tidal computing work at home, paid for by tide table 
publishers or the British Association. Dessiou collaborated with Lubbock and 
the Society for the Di\ usion of Useful Knowledge to publish tide tables for the 
Port of London, while Ross, the tide computer for the Hydrographic O7  ce, was 
able to analyse tidal data from around the world and to contribute to Whewell’s 
research. 9 us, unlike the computers at Greenwich and the Nautical Almanac 
O7  ce, Dessiou and Ross not only carried out calculations but also contributed 
signi[ cantly to the development of tidal theory and computational methods, and 
their work was reported to the Royal Society (see Lubbock 1833; Whewell 1840; 
Reidy 2008).

Complementing the computers at the Hydrographic O7  ce were commercial 
tide table computers like George Holden and 9 omas Bywater in Liverpool, and 
9 omas Gamlen Bunt in Bristol (Reidy 2003; 2008). 9 e importance of accurate 
tide tables meant that techniques for preparing them were valuable intellectual 
property, handed down in families from one generation to the next (Reidy 2003). 
Hence the relationship between Whewell and commercial tide computers was 
not a straightforward one: Whewell could pay for some of their time to work 
on theories, but the individuals themselves oN en depended on the commercial 
 success of their tables to make a living, and were understandably reluctant to 
reveal their techniques (Reidy 2008).

Freelance table makers

9 e work of human computers can perhaps most readily be seen in the wide range 
of mathematical tables and ready reckoners that have been produced since earliest 
times (Campbell-Kelly et al 2003). 9 ese include tables of squares, roots, recipro-
cals, and trigonometric functions, as well as cross-sectional areas of commodities 
such as wood and steel, and interest calculations. From the mid- eighteenth cen-
tury to the mid-twentieth century a great many general mathematical tables were 
published with a wide variation in the accuracy of the computations presented 
and quality of production. Authors of such tables usually worked freelance and 
bene[ ted commercially from the sales, which increased with the quality of the 
tables and the reputation of the table maker.

One such table maker was Michael Taylor (c 1756–1789) who earned his living 
as a freelance computer for the Board of Longitude. He is best known for two sets 
of mathematical tables: Sexagesimal tables (1780) and Tables of logarithms (1792). 
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His Sexagesimal tables were of high quality and were used extensively within 
astronomical circles and also by surveyors (Glaisher 1873, 40). Glaisher remarked 
that Taylor’s Tables of logarithms were a ‘near approach to accuracy’ with only six 
uncorrected errors (Glaisher 1872/3, 336), but they never came into general use, 
possibly because of their size: two thick volumes measuring 32 cm x 28 cm each.

Little is known about Taylor’s early life. He came from Cumbria in northwest 
England, and Wallis (1993) indicates that he was at one time employed as a land 
surveyor. His life seems to have changed in the mid-1770s, when  computing 
began to take up more and more of his time. It is not clear how he was introduced 
to Maskelyne, but from 1776 to 1789 he computed for the Nautical  almanac 
(Maskelyne 1765–1811a). On average Taylor earned approximately £42 a year 
from the work, but the income was irregular: some years he received £80, in 
 others nothing at all.

Taylor also undertook various table making and publishing tasks for the Board 
of Longitude. 9 e [ rst was to compile sexagesimal tables as a practical computing 
tool for ‘Astronomers, Mathematicians, Navigators and Persons in Trade’ whose 
everyday work involved calculations involving time or angle measurements. 
9 e worked examples given at the front of the tables (Taylor 1780, iii) make it 
clear that the majority of users were expected to be astronomers or surveyors. 
In essence all the worked examples used the tables to simplify division of sexa-
gesimal numbers. 9 e tables facilitated the conversion of English money, weights, 
and measures to and from sexagesimal numeration, to solve such problems as:

How much super[ ne cloth can be bought for 15 l. 14 s. 3 ¼ d. of which 43 yards 1 quarter 
and 2 nails costs 56 l. 19 s. 8 ½ d?

9 e answer is 11 yards, 3 quarters, 3 nails, and 0.8 inches but it is doubtful that 
people for whom this kind of calculation was part of daily life would have [ rst 
converted to sexagesimal, and then reconverted back to imperial measures.

In the preface, Taylor acknowledged Maskelyne’s help in designing the 
 precepts (or algorithms) used in compiling the tables and the support of the 
Board of Longitude, which between June 1778 and March 1781 paid him £450 
for his work, signi[ cantly more than his Nautical almanac income.

As soon as Taylor’s Sexagesimal tables were available, Maskelyne issued them 
to other Nautical almanac computers, and set Taylor to work on other projects. 
He was well recognized as a reliable computer, and in 1786, for example, Sir 
Joseph Banks, then President of the Royal Society, called on him to check the 
accuracy of parts of the Nautical almanac for 1784 and 1785 (Howse 1989, 171).

In spring 1784 Taylor began work on a table of seven-[ gure logarithms of 
numbers up to 10,100 and of sines and tangents to every second of the quad-
rant, designed to be the most extensive and accurate tables then available, again 
[ nancially supported by the Board of Longitude (Maskelyne 1788–91, f. 44). 9 e 
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origins of the project are not recorded, but it is likely that it developed from a 
suggestion by Maskelyne, who would have been aware of the lack of such tables 
in any readily available form. Maskelyne developed the precepts and oversaw the 
progress of the tables. He advertised the book widely, playing on the reputation 
of Taylor’s Sexagesimal tables, and obtained £600 in advance subscriptions with 
another £490 promised. Every e\ ort was made to ensure that the tables were 
as accurate as possible. Taylor prepared them to every second of arc by inter-
polating from Vlacq’s logarithmic sines and tangents (1631) and then abridg-
ing to seven [ gures. With the help of an unknown assistant, he also took great 
care in correcting the proofs: the [ rst proofs were compared to his manuscript 
tables; at second proof stage, the second, third, and fourth [ gures were again 
compared to the original manuscript, the entries every 36’ were compared to 
Briggs’ Trigonometria britannia (1633) and every 10’ with Vlacq’s Triangulorum 
 logarithmicus (1631); third proofs were compared with Hutton’s Mathematical 
tables (1785) (Maskelyne 1793).

When Taylor died on 24 December 1789, [ ve pages of tables remained calcu-
lated but un[ nished. Maskelyne completed the work, and wrote the preface and 
introduction, explaining how the tables had been calculated and how they could 
be used. 9 ey were [ nally published in 1792 and Maskelyne saw to it that Taylor’s 
son bene[ ted from the sales (£930 aN er his father’s death) (Howse 1989, 178).

Over his lifetime Taylor gained £4050 from his table making work13 (Maskelyne 
1788–91) and secured his son’s future. Computing seems to have been his whole 
life, and family legend has it that he changed his name to Michael Napier Taylor 
in honour of John Napier, the inventor of logarithms (Dykes 2004). When he 
named his son he also commemorated Napier’s collaborator, Henry Briggs, 
by calling the boy John Napier Henry Briggs Michael Taylor (Taylor 1792, 
 subscription list).

Another freelance computer was Henry Andrews (1744–1820) who, like 
Taylor, was a computer for the Nautical almanac, but who also published com-
mercial almanacs as well as being a schoolmaster, bookseller, and trader of sci-
enti[ c instruments. Andrews was born in Lincolnshire and showed an interest 
in mathematical astronomy from an early age (Anon 1820). He was largely self 
educated and worked in service, but in his late teenage years he made solar and 
lunar tables and accurately predicted the 1764 solar eclipse. In the summer of 
1766 Andrews moved to Royston, then in Cambridgeshire, where he set up a 
school in which he taught reading, writing, arithmetic, bookkeeping, mensur-
ation, cosmology, astronomy, and the use of globes and maps (Andrews 1767). He 
remained a schoolmaster until 1805 taking both day and boarding pupils, and 
also ran a shop selling books and instruments (Croarken 2003c).

13. Approximately £385,000 in spending power today.
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Andrews is best remembered for contributions during more than half a 
century to the astronomical data and weather predictions for the annual Old 
Moore’s almanack. He prepared the tables for Old Moore’s from 1766 to 1819, 
for which he was paid £25 a year. It would seem likely that this drew Andrews 
to the attention of Maskelyne, who in 1768 was expanding the number of com-
puters on the Nautical almanac (Maskelyne 1765–1811b). For the next 47 years 
Andrews  computed an average of three Nautical almanac months a year earning 
approximately £36 a year from the Board of Longitude. 9 e Board also paid him 
a pension of £250 a year14 when he retired at the age of seventy-one. Maskelyne’s 
account book reveals that Andrews rarely collected his Nautical almanac pay-
ments directly but asked Maskelyne to use the money to pay the London book-
sellers and instrument makers who supplied his shop. By 1782 he was acting as a 
mortgage lender in Royston and when he died he owned three properties, £600 
in cash, and a signi[ cant stock of scienti[ c instruments and books.

Taylor and Andrews are just two examples of freelance computers in the late 
eighteenth century and early nineteenth century. 9 ere were many more, as the 
large number of almanacs, ready reckoners, and mathematical tables published 
in this period demonstrates. Many freelance computers remain anonymous 
because they undertook the work on behalf of others, and it is usually impossible 
to determine whether they were entirely freelance or whether they were employ-
ees of the Observatory or Nautical Almanac O7  ce undertaking extra work out-
side their formal employment. George Biddell Airy, for example, was engaged in 
 numerous projects that required computers or mathematically trained assistants, 
and  probably drew on computers from the Greenwich Observatory who were 
known to have the requisite skills. 9 e mathematician Charles Babbage pub-
lished a Life Table in 1826 and acknowledged in the preface that the tables had 
been computed by unnamed calculators.

Women computers

Almost all of the computers employed in Britain during the eighteenth and 
nineteenth centuries were men or boys. 9 e only two women known to have 
made income-generating careers from computing during this period were Mary 
Edwards and her daughter Eliza (Croarken 2003d). Mary Edwards began com-
puting for the Nautical almanac in June 1773 under the name of her husband 
John (Edwards 1811). John Edwards was a clergyman from Shropshire, earning 
£30 a year15 plus a house from his clerical duties, who took in paying pupils to 

14. Approximately £12,500 per annum in spending power today.
15. Approximately £2,700 in spending power today.
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help fund his real passion, which was making telescopes. To supplement the 
 family income further, he became one of Maskelyne’s Nautical almanac com-
puters, or at least that is what the o7  cial records show. On John’s death in 1784, 
 however, Mary Edwards o7  cially took over her husband’s computing work, 
which she had been doing all along, but now did on full time basis as her sole 
source of income.

It is possible that Maskelyne was already aware that Mary had been doing the 
computing, because he visited the family on more than one occasion. It mattered 
little to him that Mary was a woman; what mattered was that the job was done 
and done well. All went well until Maskelyne died in 1811 and Mary Edwards 
found that the new Astronomer Royal, John Pond, was no longer giving her the 
same amount of work. Eventually the Board of Longitude ruled that Pond should 
continue to allocate work to her. Mary Edwards died in 1815 and her daughter 
Eliza, who had been assisting her over the years, took on the role until 1831, when 
Nautical almanac computing was centralized in London (see above). 9 ere was 
no place in the new Nautical Almanac O7  ce, or the Greenwich Observatory, for 
women employees, even if Eliza had wanted to make the move to London.

Civil Service rules made the employment of women very di7  cult until 
World War I (Zimmeck 1986) and the Nautical Almanac O7  ce did not employ 
women computers until the 1920s. 9 e same rules applied at the Greenwich 
Observatory. In 1890, however, William Christie, then Astronomer Royal, was 
interested in employing some of the highly educated women then beginning 
to graduate from English universities (Brück 1995). Christie got around the 
regulations by paying the women as supernumerary computers, as this was a 
part of the Observatory budget over which he had control, and since the com-
puters were not on the permanent payroll they did not have to conform to Civil 
Service regulations.

Four women computers were appointed, not to do the work of the super-
numerary computers for which they were being paid, but to work in the same 
way as second assistants undertaking both observing and computing. Most of 
them stayed only a few years. One of them, Alice Everett, obtained a post at the 
Astrophysical Observatory at Potsdam in Germany. Another, Annie Russell, 
married Maunder, the Greenwich assistant who complained that work at the 
Observatory was ‘remorseless sweating’ (see above). Russell’s job at Greenwich 
was not routine computing but examining and measuring the daily sunspot 
photographs taken in the new solar photography department led by Maunder. 
Russell married Maunder in 1895 and became an independent amateur astron-
omer, publishing original research and working closely with her husband to 
found the British Astronomical Association. She continued to be a signi[ cant 
[ gure in British astronomy and was elected to the Royal Astronomical Society in 
1916 (see Ogilvie 2000).



PEOPLE AND PRACTICES398

While there is limited evidence of other women in paid employment as com-
puters, we do know that some women did unpaid computing, usually for their 
husbands. Elizabeth Sabine, for example, wife of the physicist Edward Sabine, was 
an accomplished woman who translated the works of Humboldt and undertook 
calculations to support her husband’s scienti[ c work. Similarly, Frances Kater 
assisted her husband Henry with his work (Somerville 2001, 106, 112). Elizabeth 
and Frances were not employed as computers but were associated with science by 
having husbands with high social status, who were part of the Royal Society trad-
ition of scienti[ c gentlemen. Were it not for Mary Somerville’s mention of them 
in her memoires, we would be unaware of their work behind the scenes.

9 e invisibility of women working as computers, or more generally as scien-
tists, is not at all uncommon. Caroline Herschel, for example, was elected an hon-
orary member of the Royal Astronomical Society in 1835 in recognition of her 
work recording and computing for her more famous astronomer brother William 
Herschel rather than for her own work in discovering comets (Fara 2004, 146). 
Caroline and William worked in partnership, with Caroline recording and redu-
cing William’s observations, and it was Caroline who carried out any extra com-
puting work required.

In other countries the situation was similar. One of the few eighteenth-cen-
tury women other than Mary Edwards to be employed as a computer was Nicole-
Reine Lepaute who worked for the French astronomer Joseph Lalande. Lepaute 
met Lalande through her husband, Jean André Lepaute, the Royal clock maker. 
9 eir [ rst major collaboration was with Alexis-Claude Clairaut, calculating the 
predicted return of Halley’s comet (1758). In 1759 Lalande was appointed dir-
ector of the Connaissance des temps, an annual almanac similar to the British 
Nautical almanac but smaller in scale and without the lunar distances for lon-
gitude calculations which made up such a large part of the Nautical almanac 
computations. He immediately appointed Nicole-Reine as his paid assistant, 
a post she held for [ N een years. 9 e division of labour between Lelande and 
Lepaute was simple and red ective of the social norms of the day: Lalande, a 
respected [ gure in European astronomical circles, prepared the computing 
plans and checked the results, while back in the o7  ce Lepaute calculated values 
for the tables that appeared annually in Connaissance des temps (Grier 2005).

In her discussion of women in science in the enlightenment, Patricia Fara 
(2004, 10) makes the point that women of high social standing with no need 
to earn a living could become involved in scienti[ c pursuits by assisting a male 
 relative, as an adjunct to their domestic responsibilities. During the eighteenth 
and nineteenth centuries women had much more freedom to become involved 
with science and mathematics within the home than in the workplace. For this 
reason the number of women working as paid computers is small. 9 ose working
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as unpaid assistants to male relatives or in the privacy of their own home, how-
ever, are virtually invisible in the historical record.

Amongst those women who needed to earn a living, computing was not  usually 
an option unless they came to the work through husbands or brothers. While 
many boys had a basic mathematical education, this was not the case for girls 
who, if from the upper classes, were usually taught domestic skills and/or social 
accomplishments. 9 e number of women in white collar occupations in Britain 
began to rise only in the mid-nineteenth century, and then only slowly, until 
the 1890s saw the introduction of large-scale o7  ces. Later, World War I led to a 
shortage of male clerks whose positions were [ lled by women (Anderson 1976; 
Zimmeck 1986).

Conclusion

Astronomy, navigation, tide tables, and table making were four areas where human 
computers were employed to great e\ ect during the eighteenth and  nineteenth 
centuries, yet they are seldom remembered. Most were of relatively low social 
standing without the advantages of a university degree, yet all were intelligent, 
hard working people who spent much of their life surrounded by mathematical 
tables and using their mathematical skills to perform repetitive but necessary 
tasks in order to earn a living.

9 e Nautical almanac computers of the eighteenth century were required to 
undertake entire computations, to understand the work they were doing and 
understand checking techniques such as di\ erencing. 9 ey worked in their own 
homes and could control how much they worked in any one day, week, or month. 
Many combined the work with other occupations, so though it was repetitive and 
done largely for [ nancial gain rather than intellectual stimulation, it could not 
be described as exploitative. Even those like Mary Edwards, for whom comput-
ing the Nautical almanac was a full time job and her only source of income, the 
 timing of the work was within her own control.

Maskelyne’s outsourcing of Nautical almanac computing work can be com-
pared to other cottage industries such as lace making and glove making, which 
employed hundreds of women in the towns and villages on the English–Welsh 
border at that time. Computing too entailed a never ending pile of work, to be 
done amidst other domestic duties, but it was a much more solitary occupation. 
Glove and lace makers could congregate and talk as they worked, but computing 
was not a social task. 9 e computer had to concentrate fully because not only 
their hands but their minds were employed on the task. In any case there were 
oN en no other computers in the same geographical location (Cornwall being a 
notable exception), so there was no sense of comradeship with a neighbour, or 



PEOPLE AND PRACTICES400

anyone with whom to share the everyday trials and tribulations of the job. It is 
therefore not surprising that Mary Edwards drew on the help and support of her 
daughter Eliza.

Although working to prescribed methods, the eighteenth-century  computers 
who worked for the Board of Longitude were both more independent and more 
skilled than the later, o7  ce bound, computers who worked in the Nautical 
Almanac O7  ce. Computers at the Nautical Almanac O7  ce and Royal Observatory 
became deskilled through the nineteenth century as their work became more and 
more centralized and systematized. 9 is was a red ection of the spread of factory 
 methods, as in other industries, as opposed to cottage industry and small work-
shops, and to more mechanistic ways of organizing work (Babbage 1835; Berg 
1985). Bringing all the Nautical Almanac computers together in a single O7  ce 
allowed jobs to be divided up so that they could be undertaken by workers with 
di\ erent skills and on di\ erent salary scales. Under Maskelyne all the computers 
had needed the same skills and had earned the same piecework rates.

9 e same pattern of di\ erentiation is also seen in the Royal Observatory under 
Airy, who brought in lower-paid young men to do the ad hoc computing, allow-
ing better skilled assistants to do more interesting or complex tasks. By contrast, 
the tide table computers working with Lubbock and Whewell were highly skilled 
and knowledgeable, and contributed signi[ cantly to tidal theory. In addition to 
institutional computers, there was considerable need for computers to carry out 
one-o\  pieces of computing work, or to prepare mathematical tables. Computers 
did not move in the same scienti[ c and social circles as the mathematicians and 
astronomers of their day. 9 ey were the labourers behind the scenes, creating 
mathematical tools that others could use. As such they contributed greatly to 
scienti[ c work in Britain while at the same time earning a living with which to 
support themselves and their families.
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CH A P T ER 5.1

Mixing, building, and feeding: mathematics 
and technology in ancient Egypt
Corinna Rossi

The number of surviving mathematical sources from ancient Egypt is 
 relatively small, but they all give a consistent picture of mathematics as 

deeply  intertwined with a variety of practical activities. Mathematics, aN er all, is 
a constant presence in the daily life of any population, even if in di\ erent forms 
or contexts (Selin 2000; Cuomo 2001; Asper, Chapter 2.1 in this volume). Beside 
the presence of geometrical patterns in decorative or functional objects (e.g., 
Robson 2000; Wendrich 2000; Whitley 2001, 77–133; Brezine, Chapter 5.4 in this 
volume), counting and measuring are naturally embedded in a large number of 
technological activities.1

Our knowledge of ancient Egyptian mathematics relies on a small number 
of sources, including [ ve papyri, a leather roll, and a pair of wooden tablets, all 
 dating to the Middle Kingdom (2055–1650 bc). 9 e most important is the Rhind 
papyrus, which contains the most complete and varied list of mathematical  
 problems, followed by the Moscow papyrus, organized in a similar way but 
 narrower in scope (Peet 1923; Chace, Bull, and Manning 1929; Struve 1930). 9 ey 
appear to be school texts, specially conceived to teach mathematics to young 

1. I thank Dr Sera[ na Cuomo for discussing several key issues of this chapter. 9 anks also to Professor 
Mahmoud Ezzamel and to the editors of this volume for their comments and suggestions.
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scribes (Ritter 2000, 120), and their contents may be divided into two categories: 
tables and problems (Imhausen 2002). Table texts are ready-made collections of 
mathematical data to be consulted while performing calculations (such as the 
table listing all the results of the number 2 divided by the odd numbers from 3 to 
101). Problem texts, instead, show how to solve sample tasks that scribes might 
be assigned: measuring the area of [ elds, calculating the volume of granaries, 
dividing loaves of bread among men, or calculating the slope of a pyramid. Other 
types of texts, although not strictly mathematical, nevertheless provide import-
ant evidence of how mathematics was used: the Reisner papyri, for instance, con-
tain building records and administrative accounts relating to the construction of 
an unidenti[ ed building (Simpson 1963; Rossi and Imhausen, forthcoming).

Present knowledge of ancient Egyptian technology, by contrast, derives from 
a variety of textual, iconographic, and archaeological sources, including ancient 
representations on tomb walls, objects, and the remains of manufacturing sites 
unearthed by archaeologists. To this must be added the invaluable support of 
modern technology, which provides information on the physical and chemical 
composition of ancient objects and products (Nicholson and Shaw 2000).

At [ rst sight, the scarcity of ancient Egyptian mathematical sources appears to 
prevent a detailed reconstruction of the way mathematics was involved in techno-
logical processes. However, we can compensate for this lack of direct information 
in at least two ways: on the one hand by turning to less obvious sources, such as 
ancient records of building activities or medical recipes, with the aim of extracting 
from them indirect but valuable information; on the other hand by reconsidering 
the well-known mathematical texts in search of further clues. 9 e study of ancient 
Egyptian mathematics has in fact recently taken a new methodological turn that 
aims to reassess the nature and structure of the ancient documents and to cast a new 
light on their contents (Imhausen, Chapter 9.1 in this volume). Even if the number of 
actual sources is limited, the information they can provide has not been exhausted.

Counting, measuring, calculating

A potentially productive area of study concerns the various units of measure-
ments and the di\ erent ways they were used. It may be useful at this point to 
distinguish between three di\ erent mathematical actions: counting, measuring, 
and calculating.

Ancient Egyptians counted in base 10, which super[ cially makes their 
 system similar to our own. Measuring, however, relied on a number of units of 
 measurement with di\ erent characteristics: some closely resemble their modern 
counterparts, whilst others di\ er in more or less substantial ways. It is therefore 
necessary to pay close attention to the way metrological units were used: only 
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by fully appreciating their nature can we reconstruct the ancient mathematical 
(and/or technological) processes in which they were employed. A clear example of 
these di7  culties is represented by the main linear unit of measurement, the cubit, 
corresponding to the forearm. In particular, one ‘royal’ cubit corresponded to 
7 palms (c 52.3 cm), whereas 1 ‘small’ cubit was equal to 6 palms (c 45 cm); each 
palm (c 7.4 cm) was divided, in turn, into 4 [ ngers (c 1.8 cm). Volumes were gen-
erally expressed in cubic cubits; however, as we shall see below in the section on 
stone, the subunits of this cube with length of 1 cubit appear to have been signi[ -
cantly di\ erent from what one might expect: the ‘volume’ palm, instead of being a 
cube with a length of 1 palm, was a ‘slice’ of cubic cubit with a width of 1 palm.

Another important ind uence on the ancient Egyptian mathematical system 
was the fundamental role played by commensurability, which derived from the 
ancient Egyptian practice of performing multiplications and divisions by means 
of progressive doubling or halving, and/or working with powers of ten. 9 is 
explains not only the general preference for even numbers, but in particular the 
speci[ c focus on the numbers belonging to the progression 2, 4, 8, 16, 32, 64 and 
their reciprocals 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and on those derived by multiply-
ing these by 10 or powers of 10. A clear example is the subdivision of the capacity 
unit heqat, corresponding to c 4.8 litres: it could either be divided into 10 parts, 
called henu (thus corresponding to about half a litre) or progressively halved into 
1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 of a heqat. 9 e smallest subdivision was the ro, 
corresponding to 1/320 of a heqat; the convenient combination of progressive 
halving and powers of 10 determined the commensurability of these subdivi-
sions, with 5 ro corresponding to 1/64 of heqat. A similar example referring to 
the calculations of the area of [ elds will be discussed below in the section on food 
production.

Finally, the way calculations can be performed may be an important source 
of information, because the mechanisms that regulated them are a faithful mir-
ror of the mental processes that lay behind them. Reconstructing the algorithms 
involved can provide important leads for further research: [ rst, within ancient 
Egyptian mathematics, by better understanding its internal mechanisms; and 
second, in ancient mathematics more generally, by studying the chronological, 
geographical, and cross-cultural transmission of such mechanisms (Imhausen 
2002). Within Egyptology, the close study of calculations may help to clarify the 
role of mathematics in various areas of knowledge.

Technology is one [ eld that may bene[ t from such an approach. Here we examine 
the technologies of extracting and processing stones and metals and those involved 
in food production. 9 e characteristics of the relevant units of measurement  and 
the ways in which they were employed (or not employed) o\ er a means of explor-
ing and reconstructing ancient technological processes, and also provide hints 
about the attitudes that lay behind both mathematics and technology.
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Understanding metals with the aid of medicines

9 e mathematical sources relating to the technologies of metal extraction and pro-
cessing are extremely scanty. 9 ere is only one surviving mathematical  problem 
on the general subject of metal objects, namely problem 62 of the Rhind papyrus 
(henceforth pRhind 62). It is centred on the relationship between the shaty 
‘value’, and weight of three di\ erent metals. 9 e weight unit deben  corresponded 
to 13–14 g in the Old and Middle Kingdoms (2686–1650 bc) (Imhausen 2003, 
156; 270–271; Clagett 1999, 169–170).

9 e task, as stated by the scribe, can be translated as follows: ‘A bag containing 
equal weights  of gold, silver and lead is bought for 84 shaty. What is the amount 

of each precious metal?’ For 1 deben of each metal the values in shaty (12, 6, and 3 
respectively) are given. 9 e procedure starts by adding together the values in shaty 
of 1 deben of each metal (12 + 6 + 3 = 21), then moves on to [ nding how many 
times one should multiply the result to reach the value in shaty of the bag (in other 
words, it calculates 84:21). 9 e result is 4 deben of each metal. At [ rst sight, this lit-
tle problem provides only rather banal and arti[ cial information: for instance, that 
the value of gold was twice the value of silver, and four times the value of lead; and 
that a [ xed price for each metal allowed the scribe to shiN  easily from units of value 
to units of weight. However, as we shall see below, it may contain indirect informa-
tion on how to deal with more complex issues. Dealing with metals in practical 
contexts, in fact, is likely to have entailed more complicated calculations.

9 e identi[ cation of several mining sites in the Egyptian desert has enabled the 
reconstruction of the political and strategic background of mining expeditions 
commissioned by several pharaohs (Shaw 1998) and, to a certain extent, of the 
various extraction methods used by them (Klemm and Klemm 1994; Shaw 1996). 
Abundant information on how metals were processed and worked comes from 
ancient representations carved on tomb walls (Wainwright 1944; Chappaz 1983), 
from the study of the archaeological remains of ancient mining and manufactur-
ing areas (Pusch 1990), and from analysis of the objects produced (Scheel 1989). 
What is currently known of the structure and composition of ancient Egyptian 
metals, by contrast, depends almost entirely on modern technology: binocu-
lar, metallurgical, and scanning electron microscopes are especially useful for 
 analysing surface and technological details, whilst a variety of spectrographic 
analyses, including atomic absorption and plasma spectroscopy, are generally 
used to determine chemical composition (Ogden 2000, 171–172).

9 ese analyses reveal that the Egyptians made substantial use of alloys. In 
fact, because pure metals are extremely di7  cult to [ nd and to obtain, ancient 
metallic objects invariably contain a combination of elements. Small percent-
ages of secondary components are generally regarded as natural impurities, 
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but above a certain threshold the combination of elements is considered to be 
arti[ cial: copper was voluntarily mixed with arsenic, lead, or tin (the latter 
combination is generally called bronze), whereas gold might be combined with 
silver, copper, or occasionally other metals. 9 e reasons may have been prac-
tical, as in the case of copper, the strength of which was greatly increased by 
the addition of other metals, or aesthetic, as in the addition of a signi[ cant 
amount of copper to gold to give a distinctive reddish colour to the [ nal prod-
uct (Ogden 2000, 164).

9 e proportions of the various components of alloys may vary. In the case of 
gold alloys, the quantity of gold ranged from 50% to over 85%, the latter purity 
rarely achieved before the Late Period (664–332 bc). Whilst it is clear that gold 
was oN en deliberately combined with large quantities of silver, it is di7  cult to 
distinguish between arti[ cial and natural combinations of gold with small quan-
tities of other metals (Weill 1951; Ogden 1993, 39). In the case of copper, it is eas-
ier to provide [ gures: archaeological scientists consider a percentage up to 2% of 
iron to be natural, whereas higher [ gures (up to 20%) suggest arti[ cial additions; 
the threshold for the natural presence of arsenic is 1%, but it might be arti[ cially 
added up to 7%. 9 e line dividing the natural from the arti[ cial presence of tin is 
also 1%, although it might reach 10% in an alloy. Finally, a natural and bene[ cial 
presence of up to 2% of lead in copper could be arti[ cially increased to 25% by 
volume (Ogden 2000, 152–155).

No extant ancient document contains direct information on how alloys were 
created in practice, in particular on how the various parts were measured and 
mixed. However, indirect information may be derived by comparing the result of 
modern analyses with information on how the Egyptians mixed other substances, 
for instance for pharmacopoeia (Nunn 1996, 140–143). 9 e various quantities to 
be combined in a single remedy were oN en expressed in units of capacity, mainly 
using the small henu, corresponding to 1/10 of a heqat (c 450 ml). Strangely 
enough, the use of the even smaller and rather convenient ro, corresponding to 
1/320 of a heqat (c 14 ml) is not unequivocally attested. 9 e commonest method 
appears to have been combining parts of substances, oN en expressed by means 
of fractions. Two examples may be a ‘prescription for renewing the skin: honey 
1, red natron 1, northern salt 1, ground into a compound and smeared on’ (pEd-
win verso 4, 3–6; Allen 2005, 113) and another involving ‘fresh bread cooked in 
oil and honey; absinthe 1/32; resin of the umbrella pine of Byblos 1/16; valerian 
1/8; add it together, cook as one thing. To be drunk for four days’ (pEbers, 190; 
Nunn 1996, 142).

9 e creation of metal alloys might have been achieved in a similar way by 
combining parts by volume rather than weights, that is, by establishing ratios 
between the various components. For instance, iron may have been added to 
 copper in proportions varying from 1:30 (corresponding more or less to 3%) to 
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1:5 (20%); arsenic may have contributed a proportion up to 1:14 or 1:15 (c 7%), tin 
may have reached 1:10 (10%), and [ nally lead may have varied from 1:30 to 1:4 
(c 3%–25%).

Combining parts of elements instead of weighing them would have been an 
easy and e\ ective way to create any desired quantity of alloy. Such a method 
would not have directly depended on any unit of measurement but, as pRhind 
62 reminds us, if the weight was known then the value of the metal would have 
been easier to establish. In fact, if the value of an alloy corresponded to the 
sum of the values of its components, the problem stated in pRhind 62 (cen-
tred on a bag containing equal quantities of metals) might have also applied 
to objects made of alloys. 9 is would be in line with the general nature of the 
Rhind papyrus (and ancient Egyptian mathematical sources in general): that 
is, it contains sample problems that would have covered the majority of tasks 
that might have been assigned to a scribe. Even if the data di\ ered, the scribe 
could search for the most similar problem and use it to carry out his particular 
task (Clagett 1999, 94). 9 erefore, the procedure contained in pRhind 62 might 
have been applied to the general issue of mixtures of metals, either in separate 
pieces or melted together.

Stone

For stone, in contrast to metals, a range of ancient sources collectively provides 
substantial information on the way mathematics was involved in its use. It is 
useful to distinguish between two phases: extraction, quarrying, and processing 
procedures on the one hand, and [ nal destination on the other—the shape and 
function eventually adopted by a block in a building, for instance.

In general, only linear and volumetric measurements are found in relation 
to stone: masses larger than small vessels, statuettes or tools, of course, would 
have been impossible to weigh. 9 e dimensions of stone blocks were generally 
expressed in royal cubits and their subunits, palms and [ ngers. As already men-
tioned above, papyrus Reisner I, suggests that the cubic cubit was subdivided 
into ‘volume palms’ corresponding to ‘slices’ of cubic cubits 1 palm wide, rather 
than small cubes with a side-length of 1 palm (Rossi and Imhausen, forthcom-
ing). Such a subdivision would have been useful both in theory for performing 
calculations and in practice for quarrying trenches or rock-cut chambers. In cal-
culations, it would avoid converting all cubits into palms or [ ngers in order to 
shiN  from large to small units, or vice versa. In practice, volumes with a square 
base of 1 by 1 cubit and a thickness corresponding to 1 (or more) palm(s) would 
correspond to parts of the cubic cubits in a straightforward and evident way. 9 is 
practical approach to subunits is not an isolated case: as we shall see below in the 
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section on food production, it strongly resembles the way in which areas were 
also subdivided.

Stone quarries provide important information, not only on ancient technology  
but also on wider issues such as the intentions, strategies, and organization of 
the quarrying process (Shaw 1998). 9 e marks leN  by the ancient quarrymen, 
for instance, help to reconstruct the geometry involved in the process of stone 
removal, which depended on the hardness of the rock. SoN  stones (such as lime-
stone and sandstone) were quarried by digging narrow trenches, generally 3 
palms wide, between the outlines of the blocks. As the remains of the quarry 
north of the Fourth Dynasty pyramid of Khafra at Giza show (2558–2532 bc), 
larger blocks required larger and proportionally deeper trenches to accommo-
date a standing or kneeling stonecutter (Arnold 1991, 31). 9 e process for quarry-
ing hard stones (granite, quartzite, and gneiss) was similar, but required more 
time, energy, and patience.

9 e un[ nished obelisk abandoned in the granite quarry of Aswan during the 
Eighteenth Dynasty (1550–1295 bc) (Fig. 5.1.1), is the main piece of evidence on 
the subject. A 10-palm wide trench (c 75 cm) was cut all around the outline of the 
obelisk; then vertical lines marked in red on the walls of the trench divided the 
latter into 8-palm wide spaces (c 60 cm), each allocated to a stonecutter. 9 e men 
squatted in their positions, their tools next to them, and rhythmically pounded 
the surface of the stone with heavy dolerite balls. 9 e division of the area under 
their feet into four quadrants shows that they regularly turned around and 
changed position according to a precise scheme (Arnold 1991, 37). 9 e progress 
of the excavation was managed by a foreman, who periodically lowered a cubit 
rod into every working space of the trench, and marked on its wall the position 
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Figure 5.1.1 Control marks on the inner face of the Aswan granite quarry (Clarke 
and Engelbach 1930, ? g 29, reprinted by permission of Oxford University Press)
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of the top of the rod with a little red triangle. 9 e progressive lowering of the bot-
tom of the trench was therefore indicated by a sequence of red triangles pointing 
upwards (Engelbach 1923). Measuring the workmen’s progress was an important 
element of the entire process, which would have allowed the foreman both to 
keep under control the e7  ciency of every single workman and to report to higher 
authorities on the status of the work.

To sum up, quarries tell us that the work was organized on the basis of a sim-
ple geometry, easy to measure, apply, and keep under control. 9 is observation 
becomes even more interesting if we extend the discussion to rock-cut tombs 
and temples. Quarrying stone always involves the same problems and is carried 
out with similar (if not identical) techniques and tools, thus implying an intrin-
sic similarity between stone quarries and, for instance, rock-cut tombs (Owen 
and Kemp 1994). Moreover, a study of the internal dimensions of rock-cut tombs 
shows that the starting point of the ancient builders was generally a plan com-
posed of simple measurements, expressed in whole cubits (Rossi 2001a; 2001b). 
9 us, it appears that every quarrying activity was carried out on the basis of 
simple geometry, which helped to organize the work and the working space allo-
cated to the stonecutters. In general, workers were expected to remove a known 
quantity of material per day, which allowed foremen to calculate in advance how 
many man-days of work were required to complete a certain task (e.g., pReisner I,
Section G; Simpson 1963).

Even leaving aside rock-cut temples and tombs and focusing on standing 
constructions, the dividing line between quarrying and building may have 
been very thin. For instance, some stone blocks were partially processed at 
the quarry, to an extent that depended on the hardness of the stone. Dressed 
blocks of soN  stone might be damaged during the transport to the building site, 
whereas blocks of hard stone would su\ er less (Arnold 1991, 52; Aston, Harrell, 
and Shaw 2000, 15). Equally, the more hard stone that could be removed at the 
quarry, the lighter the block would be for transport. 9 e partial processing of 
stones at the quarry implies that the stonecutters were informed of the [ nal 
dimensions (and probably the function) of the blocks they were quarrying and 
dressing (Kemp, Rossi, and Harrell, in preparation). Assuming that a [ nal pol-
ishing would have been undertaken at the building site, the ancient builders 
must have known how much stone was to be removed in this last stage, so the 
dimensions requested of the quarrymen would have included an appropriate 
margin.

Finally, a direct transition from quarrying to building is represented by the 
talatats, the blocks used to build the stone temples of Amarna during the reign 
of Akhenaten (1352–1336 bc). 9 is king abandoned the traditional polytheistic 
religion in favour of a monotheistic cult centred on the sun-disk, and moved the 
capital from the strong religious centre of 9 ebes to the newly-founded capital 
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Akhetaten (modern Amarna) in Middle Egypt. 9 ere, in just a few years, he 
built new temples with an innovative design and palaces and tombs for the royal 
family,  around which a large city grew. 9 e main building material was mud brick, 
whilst stone was reserved for the most important parts of the main buildings.  9 e 
 rectangular stone blocks used in these cases, called talatats, were 1 cubit long, and 
were already quarried to this shape and dimensions in the  mountains around the 
ancient city. Beside o7  cial quarries, such as the one bearing the name of Queen 
Tiy, mother of Akhenaten, recent studies suggest that commoners might have 
freely quarried stone blocks from the rock surface of nearby mountains in order 
to contribute to the construction of local temples (Kemp, Rossi, and Harrell, in 
preparation). 9 eir standardized dimensions and their relatively small size made 
the talatats easy to manage, both by professional stonecutters and builders and 
by private citizens, contributing signi[ cantly to the speed and e7  ciency of the 
building process.

Building with stone relied on the usual set of linear units of measurement, 
which were oN en used to calculate volumes as well. Again, no weight is ever 
recorded, and no traces of structural calculations exist: the ancient builders 
relied on combining large blocks of stone into more or less stable compositions 
(Arnold 1991, 109–115), and probably adapted their plans to the available mater-
ial (Wysocki 1984).

9 e calculation of volumes to be removed or built played an important role. In 
the case of excavations, it helped both to calculate in advance how many men would 
be needed and how long the task would take, and to record how much work had 
already been carried out. 9 is applied both to rock-cut and standing  monuments. 
Ostracon Strasbourg H.112, for instance, contains a list of work done in the tomb 
of Khaemweset, son of Ramses III (c 1170 bc): besides the linear dimensions of all 
chambers, the scribe also recorded the volume of some of them and the total vol-
ume excavated, up to the twentieth regnal year of the Pharaoh (Koenig 1997, 9, pls. 
44–47; Rossi 2004, 144). Similarly, the Reisner papyri record construction  activ-
ities on unidenti[ ed buildings of stone and mud-brick: the text lists the length, 
breadth, height, and volume of each room, plus volumes of sand and  rubble to be 
removed (Simpson 1963, 124–126; 1969, 27; Clagett 1999, 261–279).

In the case of standing buildings, calculating in advance the volume to be 
constructed would have been particularly easy in the case of simple geometrical  
shapes, such as pyramids. Problem 14 of the Moscow papyrus calculates the 
 volume of a truncated square pyramid (Clagett 1999, 221; Imhausen 2003, 
88–89, 330–331). 9 e method is exactly the same as the one we use today, and 
entails the calculation of the volume of a whole pyramid. 9 erefore, even if no 
mathematical  problem involving the volume of a whole pyramid has survived, 
we know that ancient Egyptians could calculate it and also, indirectly, how they 
did so (Gillings 1972, 189). It may therefore be inferred that the ancient builders 
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were able to  calculate in advance the volume of the royal pyramids that they were 
about to build. Such an estimate might have helped them to establish whether or 
not a quarry could provide the necessary amount of stone, and how much (for 
instance, for the outer casing) needed to be imported from elsewhere.

Problems 56–60 of the Rhind papyrus clearly inform us on how the slope of 
a  pyramid (or any sloping surface) might be calculated using the seked, that is, 
the  horizontal displacement of a sloping surface for a vertical height of 1 cubit 
(Clagett 1999, 166–168; Imhausen 2003, 166–168; see Fig. 5.1.2). In other words, 
ancient Egyptian surveyors would measure or calculate how much the sloping 
surface had ‘moved’ from the vertical line at the height of 1 cubit. 9 ey basic-
ally  constructed a right-angled triangle in which the hypotenuse corresponded 
to the sloping surface (the length of which was irrelevant), the height to 1 cubit, 
and the horizontal top to the seked. 9 e seked of real pyramids was expressed in 
palms and [ ngers, and generally varied between 6 and 3 palms (giving an ele-
vation of c 49° 30′–c 67°), with rare exceptions outside these values (Rossi 2004, 
[ g 99). Although no direct evidence has survived, it is possible that the workmen 
involved in pyramid building might have actually constructed wooden triangles 
in the shape of the chosen seked in order to check their work (Hinkel 1982, [ gs 19 
and 20; Lehner 1997, 220; Rossi 2004, 188–199).

From a geometrical point of view, pyramids were relatively simple to build. 
Apart from the case of the Bent Pyramid (the earliest ‘true’ pyramid, dating 
around 2600 bc, where structural problems forced the builders to drastically 
reduce the slope twice during construction; Maragioglio and Rinaldi, 1964, 
58–62, Stadelmann 1985, 87–92, Rossi 2004, 221–225), the [ nal result must 
have been identical to the expected design. More complicated buildings, how-
ever, might undergo a certain amount of modi[ cation during construction. A 
careful study of ancient sources and [ nished monuments shows that the ancient 
builders  generally started from simple dimensions, easy to handle and to com-
bine (Arnold and Arnold 1979). In the case of rock-cut tombs, for instance, the 
corridors were ideally meant to be 30 cubits long, and the length and breadth of 
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the various chambers were supposed to correspond to round and simple [ gures, 
such as 18 × 16 or 16 × 15 cubits (e.g., Engelbach 1927).

In practice, however, the [ nal dimensions could be di\ erent, depending on 
time constraints or di7  culties encountered during the work. 9 is discrepancy 
between ideal and outcome was not a problem and, in fact, was oN en completely 
ignored: papyrus Turin 1885, representing the tomb of Ramses IV (1153–1147 bc),
suggests that the completion of the work in a royal tomb was o7  cially ‘certi[ ed’ 
by an extremely detailed survey of the interior, where the dimensions of each 
architectural element were recorded with a precision expressed in cubits, palms, 
and [ ngers (Carter and Gardiner 1917). 9 e [ nal survey was meant to con[ rm 
that the tomb had been completed and that every detail had been taken care of; 
at this stage, the dimensions used years earlier to start the excavation appear to 
have been long forgotten (Rossi 2004, 142–147).

One exception to this preliminary (and theoretical) adoption of simple meas-
ures can be found in the so-called Building Text, engraved on the walls of the 
Ptolemaic temples of Edfu (237–142 bc) and Dendera (54–20 bc) (Cauville and 
Devauchelle 1984; Cauville 1990). Here the dimensions of the various rooms are 
said to comprise a combination of round [ gures and a series of fractions, evi-
dently the result of a rather complex planning process (Rossi 2004, 166–173). 9 e 
degree of correspondence between the text and the [ nished monument is still 
unclear but, again, it may be irrelevant: in this case, the builders were evidently 
proud of these complicated [ gures, to the point of immortalizing them on the 
temple walls. 9 eir symbolic meaning might have been more important than 
their manifestation in the actual building.

In conclusion, building or quarrying a monument was a complex task that 
required a large number of well-organized workmen, backed by an e7  cient 
 system that supported their work, their life, and their families. Keeping under 
control factors ranging from the daily e7  ciency of each worker to the successful  
completion of the project required organization based on simple [ gures that 
could be easily understood by everyone involved and monitored by those who 
were in charge of managing and recording the process.

Food production, from ? eld to granary to table

Mathematics was deeply embedded in the seasonal and daily activities of 
 measuring [ elds, assessing harvests, calculating taxes, storing agricultural 
 products, and producing staple foods. 9 ese activities, which all included 
 counting, measuring, and calculating with units of length, area, and capacity, 
involved the great majority of ancient Egyptians. For many of them it represented 
their main daily occupation (Samuel 2000, 537).
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Agriculture was, and still is, the main source of food in Egypt. In ancient times, 
emmer wheat and barley played a fundamental role in the Egyptian society, not 
only as basic elements of the daily diet but also as a measure of wealth (Murray 
2000a, 506). Fruit, vegetables, and pulses were also widely consumed (Murray 
2000b, 609), whereas [ sh and meat were probably eaten once or twice a week 
(Ikram 2000, 669). Cultivation was heavily dependent on the annual Nile d oods. 
In August, water progressively inundated the cultivable land, which was divided 
into large basins by means of earthen dykes; it slowly receded aN er about a month 
and a half, washing away the damaging salts and leaving behind well soaked and 
e\ ectively fertilized soil (Butzer 1976, 17–18).

It appears that the slightly wetter climate of the Old Kingdom (2686–2160 
bc) did not require particular management of the d oods, whereas some atten-
tion started to be paid to this subject in the Middle Kingdom (2055–1650 bc). In 
general, however, for most of ancient Egyptian history, human intervention was 
limited to helping this event to take place in the best possible way. Trenches chan-
nelled the d ood as far as possible, in case of low d oods water would be retained 
for longer in order to ensure a satisfactory saturation of the soil, and the con-
struction of dykes protected settlements and other installations from particularly 
high d oods (Butzer 1976, 51–56; Murray 2000a, 514–515). In the New Kingdom 
(1550–1069 bc), the introduction of the shaduf, a simple pole and lever device to 
liN  water, improved the agricultural production of small plots but had little ind u-
ence on large-scale cultivation. A major change took place in the Ptolemaic Period 
(332–30 bc), with the introduction of the saqiya, a ‘water-wheel’ that ensured a 
continuous d ow of water on a much larger scale (Butzer 1976, 47–50; Venit 1989; 
Eyre 1994, 63–64). Until then, and even aN er, the Nile remained the crucial factor 
in determining successful or unsuccessful agricultural production.

9 e height of the d ood was a potential indicator of the prosperity (or misery) 
of the coming year. For this reason, the level of the river, carefully measured in 
cubits, palms, and [ ngers, appears among the earliest ancient Egyptian records 
(Clagett 1999, 3). 9 roughout ancient Egyptian history, a series of ‘nilometers’ 
scattered along the river helped the population and the authorities to observe 
the d uctuations in the water level, to estimate the productivity of the next har-
vest and, as we shall see below, the ensuing ‘taxes’ (Murray 2000a, 515). Once 
the d ood water receded, it was necessary to re-establish the rightful boundaries 
of the agricultural plots (Gri7  th 1926, 204). 9 e ancient Egyptians must have 
been very skilled in this practice, since they had to deal with this problem every 
year: their long-established ability prompted the [ N h-century bc Greek histor-
ian Herodotus to report that geometry, whose original meaning is simply ‘land-
measurement’, was born in Egypt and from there had been later exported to 
Greece (Histories II, 109).
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Beside the basic cubit, [ elds could be laid out and measured by means of the 
khet, equal to 100 cubits. 9 e commonest unit of area measurement was the setjat 
(also called aroura) equal to 1 square khet (that is, an area of 100 × 100 cubits), 
which could be subdivided in two ways: either in progressive halves (1/2, 1/4, and 
1/8 of the setjat, used in the Pharaonic period, to which 1/16 and 1/32 were added 
in the Ptolemaic period) or into so-called ‘cubit-strips’, that is, elongated areas 
1 cubit wide and 1 khet (100 cubits) long (Clagett 1999, 12–13; Imhausen 2003, 
66–67). Several tombs contain representations of men surveying [ elds by means 
of ropes, marked at regular intervals by knots (Campbell 1910, 87; Berger 1934; 
Borchardt 1967; see Fig. 5.1.3). Pairing this information with the fact that the 
hieroglyphic sign for the number 100 was a coil of rope(s), it may be concluded 
that ropes 100 cubits long were used to survey the [ elds (Arnold 1991, 252). It has 
also been suggested that another hieroglyphic sign  (s3), may represent a 
measuring rope, ‘taking the end loops as handles and the side loops as tags mark-
ing the ells [i.e., cubits]’ (Reisner 1931, 78).

Long cords made of coarse plant [ bres would have inevitably been very thick, 
and even if the length was subdivided by means of painted marks instead of bulky 
knots, precision could not be guaranteed (Dorner 1981, 94–95). Approximation 
might have been acceptable for measuring [ elds, but the adoption of the same 
method in other contexts is a matter of debate. It is well known, for instance,
that the ‘stretching of the cord’ was one of the most important ritual steps of the 
elaborate ceremonies that had been performed since earliest times to mark the 
foundation of important buildings (Borchardt and Schäfer 1900, 97; Engelbach 
1934; Fakhry 1961, 94; Barguet 1962, 31; Redford 1971, 114–115; 1976, pl. 18; 
Wilkinson 2000, 111–112, 139). In general, cords must have played an important 

Figure 5.1.3 Land-surveyors from the Eighteenth Dynasty tomb of Amenhotepsesi 
at Thebes (Davies 1923, pl X, courtesy of the Egypt Exploration Society)
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role in establishing and keeping the alignment of the walls and, to a certain extent, 
of the corners of buildings (Pendelbury 1951, 6). It is likely, however, that opera-
tions requiring a high level of precision (such as establishing right angles) were 
carried out by technicians outside the ritual ceremony, perhaps using wooden 
tools or shorter and thinner cords, that ensured a higher degree of accuracy 
(Rossi 2004, 154–161).

Going back to agriculture and turning to the shape of the [ elds, beside the 
most obvious rectangular outline the mathematical sources also include examples  
of calculation of triangular, trapezoidal, and circular areas as large as [ elds 
(respectively,  pRhind 51 and pMoscow 4; pRhind 52, reproduced in Fig. 5.1.4; 
pRhind 50). Whereas the triangular and trapezoidal cases may well have arisen 
as the result of a regular grid of [ elds intersecting with an irregular  element of the 
landscape, the third case (a circle with a diameter of about 470 m and a circum-
ference of nearly a kilometre and a half) is likely to have been purely theoretical 
(Gillings 1972, 139). In fact, the presence of such an unrealistic example might 
even prompt further comments on the nature of these mathematical papyri: on 
the occasion of giving practical instructions for one of the commonest tasks that 
a scribe might be assigned, that is the calculation of the area of [ elds, the papyri 
provided in fact a complete list of methods to calculate the areas of the most com-
mon geometrical [ gures, including the circle, under the same practical example. 
Once more, it appears that the scope of the mathematical papyri was not simply 
to list speci[ c cases, but also to provide examples and methods that might be 
applied to wider issues.

9 e cycle of food production lasted for months: the harvest of cereals took 
place between February and May, followed by threshing, winnowing, and sieving. 
9 e [ nal product was stored still as spikelets, postponing the elaborate  process 
of obtaining the clean grain to the moment immediately prior to consumption 
(Murray 2000a, 526–527). Before that, it was carefully measured in order to estab-
lish the amount that had been produced and to set aside the portion that corre-
sponded to the expected state revenues. 9 e use, in this instance, of the modern 
word ‘taxes’ may be problematic, as in New Kingdom Egypt (1550–1069 bc)
there seems to be a di\ erence between dues in kind (items counted or items 

Figure 5.1.4 pRhind problem 52, on the area of a trapezoidal ? eld (Chace, Bull, and 
Manning 1929, pl 74, reprinted by permission of the Mathematical Association of 
America)
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produced by labour) imposed on o7  cials or on ordinary people on the one hand, 
and harvest-yield or harvest-tax, dues and tributes or giN s on the other (Gardiner 
1941, 60; Katary 1989, 172; Ezzamel 2002a, 20–21). At any rate, it is clear that 
a [ xed proportion of the harvest was taken from the cultivators, transported 
 elsewhere among strict security measures (Gardiner 1941, 23–34, 38–41; Ezzamel 
2002a), and used either to supply state institutions or to pay for exchanges of 
services between them (Menu 1970, 83–91; Katary 1989, 18). Labelling as ‘taxa-
tions’ a number of intra-governmental transactions listed in the ancient sources 
is a matter of debate, and depends not only on establishing the level of control of 
the various institutions on the land, but also on whether or not some institutions 
(such as temples) should be considered part of the state (Katary 1989, 24, 184; cf. 
Stuchevsky 1974; Janssen 1979).

9 e amount to be collected by state o7  cials was calculated on the basis of 
the quality of the [ elds, which were classi[ ed into three groups (Janssen 1975, 
143). 9 e assessment, carried out by scribes, depended on a combination of fac-
tors including size and position of the [ elds but also the presence of canals, 
lakes, wells, and trees (Goedicke 1967, 56, 72). 9 e extent of the land was mea-
sured in setjat and then multiplied by a factor conventionally called ‘measure 
of corn’, which might be 5, 7 1/2, or 10; dues of 1 part in 13 1/3 (that is, 7.5%) 
were then levied from the resulting [ gure (see Gardiner 1948, 35). If necessary, 
the damage ind icted by irregular inundations was taken into account to correct 
these initial expectations (Ezzamel 2002b, 80; cf. Katary 1989, 214). 9 e crop 
was surveyed when still standing by an o7  cial team including the tax scribe, the 
clerk of the land, the envoy of the stewards, the ‘stretcher of the cord’, and the 
‘holder of the cord’ (Ezzamel 2002b, 72–74). Once harvested and threshed, the 
product was measured again by pouring it into containers of known quantity, 
thus e\ ectively establishing its volume rather than weight (Murray 2000a, 523, 
[ gs 21.9–10). In this respect, the unit of measurement that was used, the heqat, 
may be considered both a unit of volume and a unit of capacity (Chace, Bull, 
and Manning 1929, 33–34; Clagett 1999, 13). For extremely large volumes, the 
Egyptians used the double- and the quadruple-heqat, the values of which corre-
sponded to twice or four times the value of the heqat. 9 e largest unit of volume/
capacity was the khar, or ‘sack’, corresponding to 20 heqat or 5 quadruple-heqat 
(Clagett 1999, 14–15; Imhausen 2003, 58). 9 e khar corresponded to 2/3 of a 
cubic cubit, thus allowing the scribes to easily shiN  in their calculations between 
the volume of a container (expressed in cubic cubits) and the volume of prod-
uct (expressed in volume/capacity units). Once the former had been calculated, 
the latter, expressed in khar, could immediately be obtained by multiplying the 
number of cubic cubits by 1 1/2. By [ rst turning the khar into quadruple heqat, 
the scribe could have obtained the number of heqat stored in the given granary 
(e.g., pRhind 41–44).
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Weighing the grain and establishing how much could be stored in each granary 
was not only the [ nal act of the long cultivation process that had started a year 
earlier: it was also the basis for the wealth and well-being of the population in the 
following year. Large quantities of stored grain ensured a steady supply of basic 
ingredients. Cooking, baking, and brewing were daily activities, based on trad-
itional practice, and transmitted by means of recipes in which the ingredients were 
mixed by parts rather than weights, as in pharmacopoeia (Nunn 1996, 140–143; 
Wilson 2001). Taste, of course, also played an important role in the composition of 
the mixture, and the Egyptians appear to have been very skilled at manipulating 
the ingredients to obtain the desired result (e.g., Samuel 2000, 557).

Bread and beer represented a constant on every Egyptian table, from the peas-
ant’s to the king’s. 9 e two products had a lot in common, as they were made of 
the same main ingredients (emmer wheat and barley) and were manufactured 
using similar technologies. 9 e close relationship between brewing and baking is 
also witnessed by the large number of ancient representations which show these 
two activities together (Samuel 2000, 596). Bread and beer also shared the use of 
a peculiar unit of measurement, the pefsu, generally translated as ‘cooking ratio’. 
In the case of bread, the pefsu corresponded to the ratio between the number of 
loaves and the quantity of cereal in heqat that had been used to make them; in the 
case of beer, it corresponded to the ratio between jugs of beer and heqat of grain. 
In other words, the pefsu measured the strength of the product and, as a conse-
quence, its nutritional contribution and therefore its commercial value. A pefsu 
of 5, for instance, meant that [ ve loaves had been made from one heqat of grain, 
whereas a pefsu of 10 meant that one heqat had been diluted into ten loaves, and 
a similar process applied to beer: the lower the pefsu, the more valuable were the 
bread and the beer.

9 e mathematical sources contain several problems involving the pefsu of 
bread and beer. In the Rhind papyrus the pefsu of bread ranges between 5 and 
45, whilst that of beer is always 2; in the Moscow papyrus, the pefsu of bread 
is always 20 and that of beer varies between 2 and 6. Some Middle Kingdom 
administrative texts report pefsu values ranging between 60 and 80 for bread 
and between 1 and 2 for beer (Imhausen 2003, 115–116). By assessing the nutri-
tional value of bread and beer, the pefsu played an important role in the ancient 
barter society, since it established their commercial value and allowed a bal-
anced exchange of products (Clagett 1999, 60). In fact, a number of extant 
mathematical problems involve not only exchange of loaves of di\ erent pefsu 
(pRhind 72–76), but also exchange of bread for beer (pRhind 77–78). In the 
latter case, a fair exchange could only be performed if the strength of both 
products was known.

9 e Rhind and Moscow papyri may not contain the entirety of ancient 
Egyptian mathematical knowledge, but they certainly contain a good sample of 
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the tasks that might have been assigned to a Middle Kingdom scribe. 9 e pre-
dominance of certain types of problems, therefore, very likely red ected the most 
common events. In the Rhind papyrus, for instance, ten problems deal with pefsu 
of bread and beer (69–78), eight with the calculation of large areas (48–55), six 
involve various quantities of grain (35–38, 80–81), six concern the calculation 
of the volume of rectangular and cylindrical granaries (41–46); then eight focus 
on the distribution of loaves among men (1–6, 63, 65), one on the distribution 
of fat (66) and one of grain (68), and three on the distribution of food to various 
animals (82–84). 9 is means that, out of eighty-seven problems contained in this 
document, thirty deal directly with food production and fourteen with the dis-
tribution of food. In the Moscow papyrus, out of twenty-[ ve problems, ten focus 
on pefsu of bread and beer and six on the calculation of areas.

9 e huge task of re-organizing the land aN er the annual inundation, the 
repeated necessity of measuring the [ elds, the ability to forecast the productivity 
of the land and to calculate the consequent ‘taxes’ and the storage of the products, 
were all activities that required simple, e7  cient, and d exible mathematical man-
agement. Conveniently based on a system of intertwined units of measurement, 
it allowed scribes and technicians to exchange information easily and ensure an 
equitable distribution of goods.

Conclusions

9 e study of the relationship between mathematics and technology in ancient 
Egypt highlights a number of interesting points and suggests possibilities for 
 further exploration.

Many details of how mathematics was involved in various technological 
 processes remain obscure, but the available material still yields some  important 
information. New studies of ancient mathematical papyri, for instance, can pro-
vide new insights into the nature of the ancient sources and extend their realm 
of ind uence beyond their obvious [ eld. As we have seen, the extremely practical 
character of the mathematical papyri might distract our attention from the fact 
that, aside from providing straightforward examples of precise tasks, they may 
also indirectly provide solutions for problems that are not speci[ cally mentioned. 
9 is may be the case, for instance, for pRhind 62, which directly mentions a bag 
full of separate pieces of precious metals, and indirectly may imply any mixture 
of metals. It is possible to push this argument even farther, in a way reversing it, 
to suggest that in the Egyptian mathematical papyri general issues were normally 
presented as practical examples. Instead of talking about ‘mixtures’ of metals, the 
papyri mention a particular bag with particular contents; instead of indicating 
how to calculate the areas of various geometrical [ gures, they list a sequence of 
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[ eld-areas, even including what in practice would be an unrealistic shape for a 
[ eld—an enormous circle.

9 e available sources from ancient Egypt are extremely limited both in num-
ber and in scope (Ritter 2000, 115–116). Postulating the existence of now lost 
documents that would cast a completely di\ erent light on ancient Egyptian 
mathematics may be unrealistic, but the possibility that texts of similar nature 
but listing di\ erent topics existed but did not survive should not be dismissed. 
For instance, pRhind 62 appears to be the only problem dealing with an area 
of craN smanship that occupied an important position in the ancient society. 
Metal working was involved in the production of objects ranging from simple 
tools to precious jewels, and the technology involved and the organization of 
the working areas shared several characteristics with glass working and faience 
production sites.

Modern experimental archaeology and scienti[ c analyses provide important 
information about technological processes and the chemical and physical com-
position of the [ nal products. In some cases, such as bread and beer production 
and the composition of metal alloys, the ancient method has been more or less 
reconstructed; in other cases, however, such as glass and faience, many import-
ant details of the technology employed in their production remain unclear 
(Nicholson and Henderson 2000; Nicholson and Peltenburg 2000). 9 e lack 
of mathematical problems referring to these technological areas may be due 
to several factors; the most obvious is the uneven preservation of the ancient 
mathematical texts. Another reason may be the nature of the surviving math-
ematical sources: as already mentioned above, the extant mathematical texts 
are school exercises meant to teach mathematics to scribes, and it is possible 
that scribes were not expected to be professionally involved in glass or faience 
working. If this is true, then one may even infer that mathematics did not play 
a particularly important role in the technology relating to glass and faience, 
which instead relied on a long and consolidated practice that did not require 
speci[ c calculations.

In conclusion, it is vitally important to look at ancient technological processes 
from an ancient point of view and, in particular, whenever possible, to adopt 
ancient mathematical language: expressing the slope of pyramids in degrees may 
help us to visualize their shape, but it tells us nothing about how ancient archi-
tects understood the mathematics involved in their work. Similarly, percentages 
certainly help us to describe the composition of certain mixtures, but only by 
expressing them as proportions can we visualize the ancient method of making 
them. Such a d exible and careful approach ensures that modern points of view 
do not interfere with reconstructing ancient methods, and do not hide the fun-
damental di\ erences between the two systems.
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CH A P T ER 5. 2

Siyaq: numerical notation and numeracy in the 
Persianate world
Brian Spooner and William L Hanaway

Siyaq1 is a system of numerical notation that was introduced during the early 
Islamic Caliphate, probably under one of the Umayyad caliphs in Damascus 

between 656 and 751 ad, and was preferred throughout the Persianate regions 
down to recent times. 9 e basic system is shown in Figs. 5.2.1–5.2.3. It is derived 
from writing out the words for each of the Arabic decimal numerals. 9 e earliest 
extant records of siyaq are found in [ nancial accounts written for the Abbasid 
Caliph al-Moqtader in Baghdad in 918–19 adad (Kremer 1887). By this date, each 
grapheme2 had already evolved into a cursive shorthand, and was di7  cult to 
read for anyone not practised in it, whether or not they were otherwise literate 
in Arabic. As a system it did not introduce any new principles of numeration, 
since it is decimal and ciphered, in the sense that there is a distinct grapheme for 
each numeral. But it o\ ered a new range of advantages and disadvantages, which 
 conditioned its historical role. From the ninth century down into the twentieth,  
siyaq was the primary system for recording quantities, measurements, or 

1. 9 is is the most common name, which is pronounced with a long [ nal syllable. Other names include: 
khatt-e siyāq, khatt-e raqam, khatt-e roqumi, khatt-e dināri, hesāb-e roqum, hesāb-e dināri. In Romanizing 
words from the Arabic script we have followed current Persian usage throughout, in order to avoid using 
 di\ erent systems for di\ erent languages.

2. We refer to the siyaq numerals as graphs (rather than, for instance, raqam characters, signs) in order
to avoid the associations that come with the other terms.



Figure 5.2.1 Siyaq graphs for units, teens, and tens, as used in the central Persianate 
region, showing how the words for the numbers became progressively deformed 
(from Kazimzadeh 1915)



Figure 5.2.2 Siyaq graphs for hundreds and thousands, as used in the central 
Persianate region, showing how the words for the numbers became progressively 
deformed (from Kazimzadeh 1915)



Figure 5.2.3 Siyaq graphs for larger numbers, as used in the central Persianate 
region, showing how the words for the numbers became progressively deformed 
(from Kazimzadeh 1915)
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anything involving a quanti[ ed amount in certain types of documents through-
out the Persianate world.

We use the term ‘Persianate’ (aN er Hodgson 1974) for the northern and eastern  
areas of the Islamic world, where Persian has been the primary language of literacy  
(except in certain religious contexts) throughout the past millennium. Persian 
had been the court language of the Iranian Achaemenid (559–330 bc), Parthian 
(238 bc–224 ad), and Sasanian (224–651 ad) empires, when it was written [ rst 
in a cuneiform alphabet, later in a form of the Aramaic script. It re-emerged aN er 
the Arab conquest of west and central Asia in the court of Samarqand (in modern  
Uzbekistan) under the local ninth-century Samanid dynasty—in the Arabic 
script. Persian then spread through the territory we now know as Central Asia, 
Afghanistan, and Iran (Fig. 5.2.4). In the thirteenth  century, under the Mongols, it 
moved further east along the major trade routes into central China. 9 e Ottomans 
took it further west through Anatolia into southeastern Europe and the Balkans. 
Finally, under the Mughals in sixteenth-century India, it became the primary 
language of administration and belles  lettres across most of South Asia. Over this 
vast area Persian thus became both the common medium of  literacy, along with 
all interaction that was based on literacy, and for a time also the preferred lingua 
franca for oral communication between people of di\ erent language backgrounds 
(though it surrendered the latter function to Turkic in the later medieval period). 
Although it began to give way to progressive vernacularization in the peripheral 
areas as early as the fourteenth century, throughout most of this territory, from 
roughly the ninth century into the nineteenth and twentieth, Persian remained 
the primary medium of written communication, irrespective  of what was spoken  
locally, whether for administration, belles lettres, or even trade. In India the 
British colonial government replaced Persian with English for administration 
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in 1837, while elevating Urdu (a vernacular Persian–Hindi creole) to law-court 
usage. As a result, siyaq disappeared from government documents, but continued 
to be used in matters relating to landholding and other rural accounting.

Not long aN er siyaq was adopted in the early Arab-Islamic administrations in 
Damascus and Baghdad, new regional political centres in the east (now eastern  
Iran, northern Afghanistan and the Central Asian republics) began to revive 
court protocols and genres of literacy from the Sasanian past. 9 ey also turned to 
Persian for administration. 9 ey did not, however, return to the Sasanian system 
of numerical notation.3 Ironically, it was in the Persianate region, as described 
above, rather than the Arabic-speaking regions of Syria, Arabia, and Egypt, that 
siyaq continued as established practice down to modern times. 9 e survival of 
siyaq throughout the Persianate world for so long irrespective of other possibilities,  
and irrespective of changes in neighouring regions, requires explanation,  and we 
shall return to consider it at the end of this article.

Persianate numeracy

Siyaq is one of several complementary components of Persianate numeracy. As 
was common elsewhere, the various functions we now understand under the 
single  heading of numeracy were learnt and practised independently.4 In this vast 
Persianate area from Bosnia to China and India, both in Persian and in the succes-
sor Persianate languages of literacy,5 numbers were written in di\ erent ways for 
di\ erent purposes. Only two of these purposes, namely counting or numbering  
and recording, were written, but they were written di\ erently. Calculating did 
not entail writing. We will consider each of these functions, in order to clarify 
the conditions of siyaq usage.

First, calculation is almost invisible in the written record. It was done with 
counters—moveable objects organized in various ways—either in columns on a 
d at surface, (takht, ‘board’) or, later, on the wires of an abacus, that symbolized  
decimal place. (No written form of numeration in the Islamic world showed 
place value until the later adoption of Indian-Arabic numerals.) All money was 
in the form of coins, which easily fell into the conceptual framework of counters 
(cf. Netz 2002, 11). Further, some of the region’s most popular games, such as 
backgammon, depend not only on counters but also on the highly developed 
skill in the movement and manipulation of counters that comes as a matter of 

3. 9 e Sasanians had used an additive, non-place value system of numerical notation (Nyberg 1964, 173).
4. Compare, for example, Netz (2002) on Greece in the [ N h century bc. 9 is article, which came to our 

attention aN er most of this chapter was written, pursues a number of arguments from the perspective of 
ancient Greece that are complementary to the orientation presented here.

5. Such as Ottoman Turkish, which emerged in the [ N eenth century, and Urdu, which became dominant 
in the seventeenth.
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course with takht or abacus calculation. 9 is non-literate method of calculation 
 satis[ ed the needs of the majority non-literate population, separating them from 
the minority literates—a situation that was probably common in most civiliza-
tions down to modern times. But the divide may have been deeper and even more 
 historically signi[ cant in the Persianate world—for reasons that will become 
clearer as we proceed.

Second, counting and ranking were, as we would expect, by Persian or 
 vernacular cardinal and ordinal numerals, both oral and (for the literate) written, 
using the words for the number, and later also the Indian numerals.

9 ird, the oldest system of numerical notation associated with Arabic and 
Islamic literacy was the alphabetic ciphered system, which had been inherited 
from the early versions of the Semitic alphabet. Each Arabic letter carried the 
same numerical value as its equivalent in Aramaic and Greek. In Arabic-script 
languages this system was known as abjad, aN er the [ rst four letters of the early 
Semitic alphabet (a, b, j/g, d). It was used to assign simple numbers to successive 
objects, especially pages, and continues to be used in some of the situations where 
Roman numerals are still in use in English, such as the pages of a book preface. 
9 e same system was also used for chronograms, making possible the construc-
tion of words that carry the meaning of signi[ cant dates. 9 ough it served these 
purposes well enough, it was unwieldy for large numbers.

Fourth, the Arabic form of what are known in the West as Arabic numerals 
arrived in the Islamic world from India not long aN er the adoption of siyaq. 
9 ey were already used by al-Khwārizmī in early ninth-century Baghdad, but 
were not adopted generally or applied in common daily use, except sometimes 
in place of the abjad system (Hinz 1950, 6), until the late medieval period. Even 
then they did not replace siyaq but were used alongside it to make falsi[ ca-
tion more di7  cult. One reason suggested for the delay in adopting the Indian 
numeral system is its dependence on ‘points’ (Bagheri 1998, 301 in reference 
to Mazandarani 1952, 24)—zero had still not evolved from the Indian bindu (a 
simple dot indicating the absence of a number) to the full-size numeral of mod-
ern numeration.

Against this background we can now concentrate on siyaq. Literacy was less 
established among the conquering Arabs than in the ruling class of the Sasanian 
Empire that they replaced. In Sasanian society professional writers were a 
 privileged class. 9 e status carried over to Islamic chanceries, where the profes-
sional writers were called monshi, which has generally been translated as scribe. 
During the early development of Islamic administrative practice, scribes and 
 accountants were recruited mainly from the bureaucracy that had managed the 
administration of Western Asia for the Sasanians since the early third  century, 
and which probably enjoyed continuity from much earlier. By default these 
recruits continued the practices of the earlier regime. But there was a gradual 



people and practices436

process of Arabization—perhaps an explicit policy. Arabization is said to have 
been launched by the Umayyad Caliph Àbdu’l-Malik in 706 ad (Hinz 1950, 3). 
9 e use of Arabic in all writing, including administration, spread fast, and it 
appears to have been assisted, perhaps facilitated, by non-Arabs, especially the 
literate elite of the Sasanian bureaucracy. Non-Arab scribes, oN en converts to 
Islam, practised, rationalized, taught, and promulgated Arabic grammar and 
the new genres of literacy that came with the language of the Qur’an. Although 
the memory of Sasanian practice continued to be a signi[ cant ind uence, at some 
point, possibly as early as the turn of the eighth century, numerical notation 
was also Arabized. Since chancery practice in general was in Arabic, it is not 
surprising  that the recording of numbers should also have been Arabized.

9 e introduction of siyaq appears to have preceded the arrival of the Indian 
numerals: the general Arabizing atmosphere would probably have inhibited 
the latter’s adoption. However, it is di7  cult to assess how strong such ethnic 
 considerations might have been in earlier historical periods. 9 ere is circumstan-
tial evidence to suggest that the change was more the result of zeal for the new 
regime among scribes who were non-Arab converts to Islam (opposed by some of 
their—perhaps unconverted—peers), than an ethno-political drive on the part of 
the new rulers, who may not have been fully literate anyway. Siyaq, which o\ ered 
far greater d exibility than other systems available at the time, in particular by 
easily accommodating the expression of numbers of any magnitude, was both 
introduced and used by scribes. By contrast, the Indian numerals, when they 
arrived, were used by scholars in mathematics and science.

How the term siyaq came into use, both in its origin and its etymology, is 
uncertain. Arabic dictionaries list it under the same root as suq ‘market’, but 
without suggesting the connection. It is later explained as siyāq al-mostà rabin, 
meaning the method of those in favour of Arabization, which would [ t nicely, but 
may be a later (thirteenth century) rationalization (ibn Tiqtaqa, in Bagheri 1998, 
299). One Iranian scholar argues for tracing it back to a pre-Islamic Persian word 
meaning ‘number’ (Rahnama 1995).

B e formal features of siyaq

9 e Arabization of numerical notation that became known as siyaq took the form 
of simply writing out the Arabic names of the numerals. It may have been adopted 
from known models in other languages. For instance, the same procedure was 
apparently customary in early Greek before the adoption of various acrophonic 
numeral systems in the seventh century bc (Tod 1911–12). But whether by original 
design or by simple professional scribal process—there is no textual evidence—
the names of the numerals quickly became abbreviated, distorted, stylized into 
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convenient shorthand, producing a form of numerical notation that was uniquely 
cursive. 9 e transition from the transparently readable words for the numerals, that 
would have been accessible to anyone who was literate in the Arabic script, to what 
became known as siyaq, which is very di7  cult to read even for the literate unless 
they were trained, was helped along by the unique nature of the Arabic script along 
with the particular sociology of literacy in the Islamic world. 9 e process was no 
doubt facilitated by the longstanding practices of the scribal profession.

Despite common assumptions about reading in alphabetic scripts, when we 
read fast we in fact read not letter by letter but by word-shape, ideographically. 
When we work with numbers, we scan numbers and combinations of numbers 
similarly. If this is true for us as we read Roman printing, it is more so for readers 
of Arabic script. In fact before Arabization the Persians were accustomed to what 
they called huzvarishn ‘logograms’: in writing their pre-Islamic Persian language 
in a modi[ ed form of the Aramaic script they wrote many common words in their 
Aramaic equivalent and read them as though they had written out the Persian.6 
9 ey were reading ideographically, and could therefore easily take to siyaq—writ-
ing in a simpli[ ed form of one language and reading it straight o\  in another.

Writing in the Arabic script, compared to other scripts, is not only cursive by 
default, but cursive to a much greater degree than what we know as cursive in 
the Latin alphabet. Although alphabetic, it is written not by the individual letter 
but by the pen-stroke. Each pen-stroke advances the writing through a succes-
sion of letters. 9 e number of letters incorporated into each pen-stroke varies 
according to the nature of the particular letters and the order in which they are 
to be written.  (9 e letters fall into groups according to their form, each of which 
connects to preceding and succeeding letters di\ erently.) In practice, therefore, 
writing in any Arabic-script language draws not simply on the small number of 
letters in the alphabet (28 for Arabic, 32 for Persian, slightly more for Urdu, and 
so on), but on a far larger repertoire of pen-strokes, each of which is a particular 
pattern of letters, usually one to four, but sometimes more. 9 ese pen-strokes 
easily become rushed, condensed, abbreviated, stylized, and distorted—more so 
than in the case of western handwriting. Since siyaq was introduced, handwriting  
in the Arabic script has moved through a succession of styles, each of which are 
red ected in the writing of siyaq. 9 erefore, once numeracy became embedded 
(in the form of siyaq) in Arabic literacy, it became subject to all the factors that 
governed the sociology of literacy in that script down to the time when social 
changes began to transform and open up literacy in modern times. 9 e relative 
lateness of the general adoption of printing in this part of the world, especially 
printing other than lithography, is a consequence of the same sociology.

6. Readers of English also do this to some extent: we are more likely to verbalize ‘e.g.’ as the English phrase 
‘for example’ than as the Latin exempli gratia.
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Bureaucrats were a small, elite professional community. Recruitment was 
largely hereditary. 9 ey were interested in maintaining, and probably (to fur-
ther their interests under the new political regime) enhancing, the cultural value 
of written language (already greatly elevated by the way the Qur’an had come 
to be understood as the written word of God), reinforcing restrictions on its 
accessibility  and by extension promoting their own status.

Despite its di7  culty, and apart from some regional divergence of form between 
the three main empires of late medieval Islam, the Ottomans, the Safavids, 
and the Mughals, the practice of siyaq continued and remained stable for both 
administrative and commercial purposes well into the twentieth century. It was 
used both by accountants and bookkeepers in the [ nancial administration of 
the Iranian, Ottoman, and Mughal governments, the Uzbek governments of 
Central Asia, and by merchants, landholders, irrigation o7  cials, and other pri-
vate individuals from as early as the eighth until well into the twentieth century. 
It was taught in schools in Iran as part of the standard curriculum until the early 
1930s, and in India and Pakistan until later. It was terminated by Romanization 
in Turkey in 1928. In Iran it ceased to be taught in schools a few years later. But it 
did not entirely go out of use in rural areas of South Asia until some time in the 
second half of the twentieth century.

Siyaq di\ ers from other systems of numerical notation in that although it is 
essentially a ciphered system, the history of its development is akin to the his-
torical transformation of copperplate into bad handwriting. For this  reason, 
it is read ideographically, even more so than may be the case with any hand-
writing. 9 e basic graphs, written from right to leN , are organized in units, 
tens, hundreds, thousands, and so on. Compound numbers are formed by com-
bining the basic shapes, oN en with small changes, sometimes with the second 
component written through or above, as well as at least slightly to the leN  of the 
[ rst (Figs. 5.2.5–5.2.6). 9 e higher decimal places are written (and read) [ rst, 
except that units come before tens (as in the earlier English ‘[ ve and twenty’). 
9 e value of a number is the sum of the absolute values of the graphs that 
 constitute it.

It is a feature of the Persian language that numbers are always used with 
counters, or classi[ ers, in speech as well as in writing. Siyaq numbers similarly 
always implied an amount of something, rather than an abstract number. 9 e 
siyaq graphs used in what is now Iran, which was central to the communication  
networks throughout the Islamic world, were used for two principal purposes: 
to record amounts of money, and to record quantities of goods. 9 e unit for 
recording  amounts of money was the dinar, multiples of which are:

50 1. dinars = 1 shahi

200 2. dinars = 1 àbbasi
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1,000 3. dinars = 1 qeran (crown)

10,000 4. dinars = 1 tuman.

From 1 to 9,999 all numbers are written in terms of dinars, while from 10,000 
up they are written in terms of tumans. 9 e close conceptual relationship with 
money should be noted, in view of the reference to coins as counters (see above). 
9 e same graphs were used to record quantities of goods measured by weight, 

Figure 5.2.5 Siyaq graphs from northern India, including examples of combinations 
of units and tens (Stewart 1825, 25)
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sometimes with a determinative [ gure denoting man (a measure of weight 
that varied in value from city to city) or kharvar (donkey-load) appended. For 
example,  one kharvar = 100 man of Tabriz (the major city of Persian Azarbaijan) 
or 50 royal man. Weights above 99 man of Tabriz were recorded in kharvar. Siyaq 

Figure 5.2.6 Examples of variant siyaq graphs from various medieval and early 
 modern Ottoman documents (Öztürk 1996, 66)
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was also used to record quantities other than dinars and mans, such as mesqal (a 
weight equal to 3.64 grams), areas of land, and so forth. Since relatively few per-
sons, even among the numerate, were able to use siyaq with ease, it was employed 
for land records, business accounts, and other information for which privacy or 
secrecy was at a premium.

In surviving medieval manuals for scribes siyaq is generally described in 
groups of 9 graphs for each decimal place, thus:

1 10 100 1,000 10,000 100,000 etc.

2 20 200 2,000 20,000 200,000
3 30 300 3,000 30,000 300,000
4 40 400 4,000 40,000 400,000
5 50 500 5,000 50,000 500,000
6 60 600 6,000 60,000 600,000
7 70 700 7,000 70,000 700,000
8 80 800 8,000 80,000 800,000
9 90 900 9,000 90,000 900,000

In later Ottoman documents the recording of fractions and decimal numbers 
was also contrived in the siyaq style. Figs. 5.2.1–5.2.3 and 5.2.5–5.2.6 illustrate 
the actual siyaq graphs and show their relationship to the Arabic words for the 
numerals.7

B e sociology of siyaq

9 e formal classi[ cation of siyaq as a ciphered system derived from the words 
for the numerals obscures its larger historical signi[ cance. What distinguishes it 
from similar systems is the underlying sociology of its introduction and usage. 
Both the way it was introduced and conditions of its use for some twelve centur-
ies were shaped by particular factors in the organization of society in the Islamic 
world, that were di\ erent from the Christian, Hindu-Buddhist, and Confucian 
societies to the west and east of it. Instead of being developed by merchants or 
scientists whose primary interest was in quantity and number, siyaq is simply a 
component of the skills of the Arabizing non-Arab chancery scribe, who wrote 
mainly for other scribes, in the service of Arab superiors, the state of whose lit-
eracy is not known. 9 ese scribes operated in small professional communities in 

 7. Further examples of regional variation may be found in Öztürk (1996, 66): various medieval and early 
modern Ottoman documents; Majmà  al-arqām (Mirza Badὶ’ Diwān 1981, 117): Bukhara in Central Asia; 
Weber (2007, 251): Kashmir; Shakeb (no date, 182): Hyderabad and southern India.
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urban centres of government and commerce, making it easier for them to develop 
all the dimensions of their writing work in ways that came naturally to them but 
were di7  cult for outsiders to penetrate. 9 ey produced calligraphic documents 
for public consumption when appropriate, but their writing for other scribes 
developed into something more like a code. 9 ey also communicated routinely 
with similar scribal communities in other cities (under other governments)—
su7  ciently to maintain a general standardization of practice over the centuries, 
but not enough to prevent some regional driN  in style—resulting in the stylistic 
di\ erences that are visible later between examples from the Ottoman, Safavid, 
and Mughal empires.

For similar reasons siyaq remained little known outside these small elite 
 communities in government, land management, and trade. It did not appear in 
other types of writing, and people outside these professions did not need to know 
it. It was learnt as part of the scribal apprenticeship, and is introduced in their 
professional manuals. It was considered part of a restricted professional, rather 
than a general, education. Western scholars of the region similarly paid little 
attention to it, except to a limited extent in the specialized [ elds of economic 
history and diplomatics.

9 e history of literacy in general in Persianate civilization contained a  paradox. 
On the one hand there were more people who were able to read the Arabic 
text of the Qur’an aloud (that is, vocalize the text, irrespective of the ability to 
 comprehend) than who possessed any degree of literacy in other civilizations 
before the recent spread of mass education. On the other hand, the culture of 
interactive or functional literacy was con[ ned to a small elite. 9 e ability to read 
and write siyaq was even more restricted. Why should the historical development  
of numeracy be so di\ erent in Persianate civilization from elsewhere? Why, when 
in its earliest stages Persianate society generated people like al-Khwārizmī, who in 
their numeracy based on Indian numerals were ahead of other parts of the world, 
should siyaq not have been replaced by these numerals in Persianate society  at 
large centuries before anywhere else?

We now live in a society which depends on universal literacy and numer-
acy, even though not everyone is fully literate or numerate. 9 e combination 
of Roman numerical notation and calculation by abacus began to give way to 
general written  numeracy in Indian-Arabic numerals in the West some three 
hundred years ago. Over the past two centuries this new numeracy has spread 
throughout the world to become a universal language. It has become the basis of 
a larger cultural orientation, underlying everything that generates what we rec-
ognize as modernity—scienti[ c knowledge, technological capability, and admin-
istration. Abacus usage was similarly the basis of a larger cultural orientation. 
But such non-written calculation did not have the same capability, because it was 
a face-to-face activity: it was not communicated in writing, and so could not have 
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become the foundation of large organizational frameworks. Since literacy and 
numeracy are now both taken for granted, there are no social barriers to their 
acquisition, and they carry no distinctive status.

Why did Persianate societies lag behind in this process? It is interesting to note 
that one eighteenth-century ruler, Nader Shah, actually gave orders that his reg-
isters be written in normal Persian script and that the use of siyaq be abandoned 
(Mohammad Kazem, Nameh-ye Àlamara-ye Naderi, I f 11a, in Floor 1998, 95). 

But aN er his death in 1747, the succeeding bureaucracies returned to siyaq for a 
further century and a half. 9 e explanation lies in the way Persianate society was 
organized. It was based in shari`a, Islamic law, which specialized in contract. 
9 e law was derived from principles that were independent of the government, 
and it was interpreted and practised by a literate elite of scholars, whose opinions 
were formally independent of government control. From the early ninth cen-
tury the caliph was no longer comparable to an emperor, and from 1256 to 1871 
there was no caliph to symbolize any centrality of authority. Political centraliza-
tion was only regional, oN en no more than local. Long distance trade connected 
 population centres as distant as Morocco and China. 9 e populations of this vast 
area enjoyed the most open society of the medieval period. Long distance trade, 
though slow, d ourished.8

Paradoxically, it may have been as a result of this openness and mobility over 
such a vast area that Persianate society did not experience the same pressures 
for socio-political change and the opening up of literacy that eventually ushered 
in modernity in the West. Literacy had an extremely narrow social accessibility 
down to the twentieth century, and numeracy remained a narrow specialization 
within literacy. 9 is accessibility was further narrowed by the fact that, whereas 
behind writing in general there lay calligraphic models and a cultural awareness 
of the major Islamic art form of calligraphy, there were no calligraphic models 
for siyaq. Furthermore, the functionality of the abacus and its popularity reduced 
the pressure for the spread of literate numeracy.

In these conditions scribes were motivated to preserve their largely hereditary 
social status by increasing their power over the information available to them and 
maintaining the boundaries on the accessibility to the skills that would unlock 
it. 9 e drive to preserve status and privilege facilitated the perseverance of siyaq 
and retarded the development of numeracy as well as literacy.

Nothing disturbed the scribes’ hold on the spread of numeracy until pressures 
built up at the end of the nineteenth century as part of the response to coloni-
alism. If Netz (2002, 15) is correct in his discussion of the relationship between 
numeracy and political organization in classical Greece, we may perhaps argue 
a similar relationship between numeracy and political history in the Persianate 

8. Hodgson’s 0 e venture of Islam (1974) remains the best entry to the study of this unique social texture.
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world: speci[ cally that its political development did not require the counting of 
citizens, while its economic development required no more than the counting 
and monetization of their produce on the local level.

Conclusion

Numeracy facilitates larger group awareness. 9 e larger the numbers that can be 
counted, the larger the entity that can be organized and administered, the lar-
ger the empire and the economy, and the more powerful the state. 9 ere were no 
pressures to change the political economy of the Persianate world until the jolt 
of colonialism. Once the social restrictions on literacy were removed as part of 
the struggle against colonialism, which began towards the end of the  nineteenth 
 century, the restrictive numeracy of siyaq, that had served commercial and 
administrative needs for a millennium, could no longer survive.

However, only a fraction of the documentary sources for this practice have so 
far been seriously studied by historians. Further study of the uses of number and 
quantity in Persianate society will in time no doubt improve our understanding 
of the social conditioning of numeracy.
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Mirza Abu al-Hasan Shà rani), Tehran: Eslāmiya, 1377/1998. See especially vol I, 303–311, 
`elm-e estifā, on accounting and auditing. [In Persian]

Anon, MoF d nāma, Cawnpur: Naval Kishore, 1913. Pages 15–16; chapter 19 shows Persian 
numbers 1–100, 1,000, lakh (100,000), and under each of them are given the siyaq notation 
with no explanation or discussion. A book for beginners in Persian. [In Persian]

Bagheri, Mohammad, ‘Siyaqat accounting: its origin, history, and principles’, Acta Orientalia 
(Budapest), 51 (1998), 297–301. A short introduction to siyaq from a modern mathematical 
standpoint, citing Kremer (1888).

Barker, M A R, A course in Urdu, 3 vols, Montreal Institute of Islamic Studies, 1967. See
volume I, 356–357.

Elker, Salahaddin, Divan rakamları, Ankara: Türk Tarih Kurumu, 1953. A general discus-
sion of the history and use of siyaq graphs, in Turkish documents, with useful plates illus-
trating the [ gures. [In Turkish]

Farāhāni, Salmān, Bayān al-Saltana, ‘Qavā’ed-e dafāter va hesāb’, Farhang-e Iran Zamin, 23 
(1357/1978), 149–177. 9 e author was a Qajar chancery scribe. He presents the theory and 
practice of writing siyaq in accounting. [In Persian]

Fekete, Lajos, Die Siyaqat-Schri_  in der Türkischen Finanzverwaltung, Akademiai Kiado, 
1955. 9 e introduction is very important for understanding the development of siyaq. 
Many plates showing documents, with transcriptions into Latin script.

Floor, Willem, A F scal history of Iran in the Safavid and Qajar periods, 1500–1925, New York: 
Bibliotheca Persica, 1998. See pages 70, 95, 296. Includes short sections mentioning the use 
of siyaq in administrative documents.

Forbes, William, A grammar of the Goojratee language, Bombay: private publication, 1829. 
One page of siyaq, called hesāb-e roqum. ‘[A] short method of writing numbers which is 
alone used in all Persian writings where sums of money are noted’.

Forugh Esfahāni, Mohammad Mahdi, Forughestān, (ed Iraj Afshār), Tehrān: Mirās-e Maktub, 
1378/1999. A rich source of information about siyaq, plus an extensive bibliography  of 
written and ms sources. [In Persian]
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1500 to the present, Costa Messa, CA: Mazda, 1995; 2nd revised ed, 2007. ‘An aid to research 
in historical and other textual materials written in the styles [of Persian] known as nastà liq 
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CH A P T ER 5. 3

Learning arithmetic: textbooks and their users 
in England 1500–1900
John Denniss

Numbering’, ‘reckoning’, ‘cyphering’, and even ‘arithmetic’ itself are words 
that now have an archaic ring to them, but for centuries there have been 

textbooks entirely devoted to these subjects. As the Hindu-Arabic numerals 
began to pass westwards from Baghdad in the ninth century they were accom-
panied by treatises that explained how to write and use them. In the Latin West 
such treatises became known as ‘Algorisms’ (aN er al-Khwārizmī, the author of 
the best known of them), and their contents became the essential core of all later 
textbooks on arithmetic for many centuries. 9 is chapter will discuss the content 
and presentation of Arithmetics published in England from the middle of the 
sixteenth century until the end of the nineteenth. In the earlier part of this period 
such books were as likely to be used by adults as children. Later, they were writ-
ten more especially for schoolchildren, and evidence of how they were used in 
practice can be discovered from children’s manuscripts, a substantial collection 
of which is held by the author.

9 e [ rst Arithmetic published in England was Cuthbert Tunstall’s De arte 
 supputandi in 1522. Tunstall, who had studied in Italy, claimed (in his dedication)  
to have read all previous Arithmetics. In particular he would have been aware 
of some published in the vernacular, but wrote his own work in Latin, per-
haps because it was speci[ cally intended for use in the two English universities, 

‘



Learning arithmetic: textbooks and their users in England 449

Oxford and Cambridge.1 It does not seem to have been popular: only one edition 
was ever published in England, though further editions were printed in Paris. 
Within twenty years Tunstall’s book was followed by two others, both in English: 
An introduction for to lerne to rekyn with the pen and with counters, published 
anonymously in 1537, and Robert Recorde’s 0 e grounde of artes, in 1543. Both 
were to remain in use for many years.

An introduction for to lerne to rekyn was largely a translation from works of 
the same title in Dutch and French. Allie Wilson Richeson (1947, 49) estimated 
that the original print run was perhaps of the order of 500. 9 e [ rst edition had a 
somewhat haphazard appearance, with the later pages elaborating material pre-
sented earlier. Changes were introduced in the second edition, in 1539, with less 
space given to the basic operations of arithmetic and more at the end to the Rule 
of False Position (see below). AN er that there were no signi[ cant alterations. In 
all there were eight editions from 1537 to 1629. In the past it has been treated 
with less than justice: Augustus de Morgan did not mention it in his Arithmetical 
books of 1847, presumably because he never saw a copy. David Eugene Smith, 
in his History of mathematics, gave it only a few lines, claiming that ‘it never 
ranked with 0 e grounde of artes either in scholarship or popularity’ (Smith 1951, 
320), but for almost a century it provided an attractive alternative to 0 e grounde 
of artes. Isaac Newton, for example, owned a copy of An introduction, but not 
0 e grounde of artes (Harrison 1978, 167). 9 e book’s lasting popularity can be 
gauged by the fact that a pared-down version of the original French edition was 
published as late as 1752.

9 e [ rst edition of 0 e grounde of artes was more than half as long again as 
An introduction. It was a well-constructed work, comprehensive in content, and 
with extensive explanations given in the form of a dialogue between Master and 
Scholar. Its homely style must have contributed much to its success. A ‘second 
part’ on fractions was added in 1551, taking it to 407 pages. A substantial ‘third 
part’, including instruction in calculation of interest, loss and gain, bartering, 
exchange, a few pages on sports and pastimes, and further material on the rule 
of three, was added by John Mellis in 1582. 9 e book subsequently went through 
many more editions, revisions, and extensions. Robert Norton (who had pub-
lished an English translation of Simon Stevin’s seminal treatise on decimals, De 
thiende, in 1608) introduced decimals into 0 e grounde of artes in 1615 but Robert 
Hartwell removed them again in 1618. Hartwell, however, added a short appen-
dix that included the calculation of square and cube roots. In the [ nal  edition 
in 1699, Edward Hatton added a section entitled ‘Decimals made easie’, but his 

1. Arithmetics in Latin aN er Tunstall’s were very rare. One was Elementa arithmeticae numerosae et spe-
ciosae by Edward Wells in 1698. It has the phrase In usum juventutis academicae ‘For the use of young schol-
ars’ on the title page. It is not a commercial arithmetic and focuses mostly on arithmetica speciosa, that is, 
algebra.
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attempts to modernize a book that was one hundred and [ N y years old were not 
enough and other textbooks now began to displace it. By then 0 e grounde of 
artes had gone through some forty-seven editions spanning one hundred and 
[ N y-six years.

An introduction and 0 e grounde of artes were representative of a genre with a 
very long history: they red ected the standard pattern of all previous Arithmetics, 
and most of the topics taught in them were to remain in the curriculum for 
another three hundred years or more. For that reason we will set the background 
to the rest of the chapter with a description of their contents, and an explanation 
of some of the terms used in them.

B e contents of early Arithmetics

9 e chief headings, in more or less the same order in both An introduction and 
0 e grounde of artes, were: numeration, addition, subtraction, multiplication, div-
ision (called ‘partition’ in An introduction), reduction, progression, Rule of 9 ree, 
fractions (in the 1551 and later editions of 0 e grounde of artes), Fellowship, the 
Rule of False Position, Alligation (in 0 e grounde of artes), and arithmetic with 
counters. 9 e [ rst edition of An introduction also had sections on duplation 
(doubling) and mediation (halving) but these were dropped from the second and 
all subsequent editions.

Both An introduction and 0 e grounde of artes (until the three [ nal editions), 
had substantial sections on arithmetic with counters, a topic that continued to 
be discussed in textbooks until the eighteenth century. 9 e tension between 
abacist arithmetic, performed with counters manipulated between lines drawn 
on a board or table, and algorithms worked with numerals on paper or other 
materials, was a long drawn-out a\ air (see Chrisomalis, Chapter 6.1 in this vol-
ume). Barnard notes that jettons ‘counters’ did not become obsolete in England 
until the end of the seventeenth century (Barnard 1981, 5, 87). One of the major 
problems with describing counter arithmetic was that every move on the board 

Figure 5.3.1  Recorde’s demonstra-
tion of 1542 x 365 using counters, 
from The grounde of artes, edition of 
1654, page 242



Learning arithmetic: textbooks and their users in England 451

required a new diagram. To multiply 1542 by 365, for example, Recorde needed 
seven pages, with eight separate illustrations like the one in Fig. 5.3.1, in which 
the hand indicates the latest move. Recorde devoted further space to showing 
how, by allocating di\ erent values to lines and spaces, the counting board could 
be adapted to arithmetic with, for example, pounds, shillings, and pence, the 
 currency then in use. Counter arithmetic is, of course, much more easily taught 
by practical demonstration and oral instruction than by textbook.

Several of the terms used in early Arithmetics will be unfamiliar to  modern 
readers, though all were in use until the late nineteenth century. 9 e ‘Rule 
of 9 ree’, or the ‘Golden Rule’ as it was sometimes called, was taught in all 
Arithmetics until then, when it was subsumed under the heading of Proportion. 
9 e basic version, the Rule of 9 ree Direct, taught how to [ nd a fourth number 
from three given numbers, in such a way that the ratio of the fourth to the third 
is the same as that of the second to the [ rst. 9 e rule (multiply the second num-
ber by the third and divide by the [ rst) was learned by rote. Another version of 
such a problem required a di\ erent rule, the Rule of 9 ree Inverse. Where more 
than four numbers were involved, the rule had to be elaborated to the Double 
(or Compound) Rule of 9 ree Direct, or the Double (or Compound) Rule of 
9 ree Inverse. Here is an example of the latter, from Cocker’s arithmetick (1614), 
in which [ ve numbers are given and a sixth is to be found:2

If a regiment consisting of 939 soldiers, can eat up 351 Quarters of Wheat in 168 Days, 
how many soldiers will eat up 1464 Quarters in 56 Days at that Rate?

9 e word ‘Alligation’ is now obsolete, but it meant the mixing of materials, for 
example, spices or metals, to produce a blend or alloy at a given price (see Rossi 
in this volume). Here is an example from 0 e grounde of artes:

9 ere are foure sorts of wine of severall prices, one of 6 pence a gallon, another at 8 
pence, the third at 11 pence, and a fourth at 15 pence the gallon. Of all these wines I 
would have a mixture made to the summe of 50 gallons, and so the price of each gallon 
may be 9 pence. Now demand I: how much must be taken of each sort of Wine?

Recorde devoted more than three pages to this problem. He began by calculating 
the di\ erences between the actual and required prices and applying the Rule of 
9 ree Inverse four times (indicated by the Zs in the diagram in Fig. 5.3.2). Clearly 
his purpose was to provide a method that could be adapted to any example of 
this type. A modern solution would be to form two equations in four unknowns, 
from which we obtain a general set of integer solutions 20 + n, n, 30 – 4n, 2n, 
but in the sixteenth century algebra was in its infancy and not generally used in 
Arithmetics.

2. Precise page references have not been given for this and other examples because of the large number of 
editions many of the books went through.
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‘Fellowship’ is another term that needs explanation. It arises in situations 
where several partners invest unequally in an enterprise and want to know 
how the pro[ t or costs should be apportioned. For example (from Wingate’s 
Arithmetique (1630)):

A, B, and C, hold a pasture in common, for which they pay 45,l. [£45] per annum; In this 
pasture A had 24 oxen went 32 dayes, B had 12 there 48 daies, & C had 16 oxen there 24 
dayes, now the question to be resolved by this Rule is, what part each of these tenants 
ought to pay of the 45,l. rent?

9 e ‘Rule of False Position’ begins with an estimated answer and works from that 
to the true answer. 9 e rule was introduced by Recorde to his Scholar thus:

[the rule] . . . beareth its name, not for that it teacheth any fraud or falsehood, but for that 
by false numbers taken at all adventures, it teacheth how to [ nde those true  numbers 
you seeke for.

Like the Rule of 9 ree, the steps had to be learned by rote, and Recorde o\ ered a 
verse as a mnemonic (and the equivalent of a modern formula):

Ghesse at this work as hap doth lead,
By chance to truth you may proceed,
And [ rst work by the question,
Although no truth therein be done.
Such falshood is so good a ground,
9 at truth by it will soon be found.
From many bate too many moe,
From too few take too few also:
With too much joyn too few agayn;
To too few add too many plain;

Figure 5.3.2 The beginning of Recorde’s 
solution to a problem in alligation, from 
The grounde of artes, edition of 1642, 
page 355. (‘Scholar: It shall please you 
to work the ? rst Example, that I may 
mark the applying of it to the Rule: then 
I trust I shall be able not only to doe the 
like, but also to see the reason in the 
order of the work. Master: Mark then 
this form, and the placing of every kind 
of number in it.’)
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In cross-wise multiply contrary kinde,
And all truth by falshood for to [ nde.

One of Recorde’s examples concerns a forgetful servant of an a¡  uent master:

9 ere is a servant that hath bought of Velvet and Damask for his master 40 yards, the 
Velvet at 20 shillings a yard and the Damask at 12 shillings, and when hee cometh home, 
his master demandeth of him, how much he hath bought of each sort; I cannot tell (saith 
hee) exactly, but this I know, that I paid for Damask 48 shillings more than I paid for 
Velvet: now must you ghesse how many yards of each sort.

In 1363, a law that later became obsolete had prescribed the quality of cloth 
 di\ erent classes could wear: ploughmen and shepherds, for example, could not 
wear cloth valued at more than 12 pence a yard (Miles 2006, 280). Even allowing  
for ind ation the prices in Recorde’s question are high, and a sign of social  status. 
Arithmetics give many examples of goods traded and their relative values, though 
one must always allow, as perhaps here, for arti[ cially rounded [ gures.

All these techniques were taught as rules to be learnt by rote. Pupils were 
expected to recognize which type of problem they were faced with, which was the 
appropriate rule, and how it was to be applied. 9 e problem with such a system of 
teaching is that the rules mount up and any variation in the problem, or even in 
the wording of it, can lead to uncertainty. A cautionary note regarding too much 
reliance on rules was expressed by Recorde himself:

Yea, but you must prove your self to do some things without my aid, or else you shall not 
be able to do any more than you are taught: And that were to learn by rote (as they call 
it) then by reason.

Writing more than a century aN er the publication of 0 e grounde of artes, Isaac 
Newton expressed similar concerns when he was asked, in 1694, to comment on 
the proposed changes to the mathematics curriculum at the mathematical school 
at Christ’s Hospital:

A Vulgar Mechanick can practice what he has been taught or seen done, but if he is in 
error he knows not how to [ nd it out and correct it, and if you put him out of his road, he 
is at a stand; Whereas he that is able to reason nimbly and judiciously about [ gure, force 
and motion, is never at rest till he gets over every rub. (Turnbull 1961–77, III 359)

Newton had strong views about the place of arithmetic in the mathematics cur-
riculum; in the same letter about Christ’s Hospital curriculum he said:

Arithmetick is set down preposterously in the 12th Article aN er all the rest of 
Mathematicks. For a man may understand and teach Arithmetick without any 
skill in Mathematicks, as writing masters usually doe, but without Arithmetick 
he can be skilled in noe other parte of Mathematicks, & therefore Arithmetick 
ought to have been set down in the very [ rst place as the Foundation of all the rest. 
(Turnbull 1961–77, III 357)
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Nevertheless, although Newton suggested books that might be suitable for the teach-
ing of algebra, geometry, and trigonometry, he did not suggest one for arithmetic.

9 e idea that arithmetic should be used as a foundation for mathematics in gen-
eral, and not just for practical purposes, led to the inclusion of topics of no imme-
diate practical use. An introduction had six pages on arithmetical and geometrical 
progressions, while 0 e grounde of artes had no less than thirty-three. 9 e rules 
for summing such series were clearly stated but the examples were not very realis-
tic. Here, for example, is Recorde’s [ rst problem on arithmetic progressions:

A Merchant buyeth 50 pounds of Spices, and agreeth to pay for the [ rst pound 4 pence, for 
the second 7 pence, for the third 10 pence, for the fourth 13 pence, etc. 9 e question is, how 
much hee should pay for the last pound, and then how much the 50 pounds cometh to?

For a geometric progression, he gave the traditional nails-in-a-horseshoe 
problem:

If I sold unto you an horse having 4 shoes, and every shoe 6 nails, with this condition, 
that you shall pay for the [ rst nayl one ob [a halfpenny], for the second nayl two ob. for 
the third nayl four ob. and so forth, doubling untill the end of all the nails. Now I ask you, 
how much would the price of the horse come unto?

AN er the Scholar has diligently worked his way through to the answer, which was 
34,952 pounds, 13 shilling, 7 pence and an ob, the Master remarks mildly: ‘9 at 
is well done but I think you will buy no horse of the price’, to which the Scholar 
responds: ‘No sir, if I be wise’.

Problems of this kind gave practice in calculation, which was the main reason 
for their inclusion, but they also added variety and even humour to what could 
be a rather dull diet of computation.

Adult readers and owners

9 e long and detailed expositions given by Recorde, as compared to the pithier 
presentations of An introduction, raise the question of who the books were writ-
ten for. Recorde, in his Preface to the Reader in 0 e grounde of artes, claimed to 
be writing especially for those who needed to study alone:

I doubt not but some will like this my Book above any other English Arithmetick hith-
erto written; and namely, such as lack Instructors, for whose sake I have so plainly set 
forth the Examples, as no Book that I have seen hath done hitherto: which thing shall be 
great ease to the rude Readers.

Recorde’s reference to ‘any other English Arithmetick hitherto written’ is 
 ambiguous: would he have regarded Tunstall’s work as ‘English’? Writing for 
those who ‘lack instructors’ was undoubtedly the reason for Recorde’s dialogue 
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form: he anticipated the questions a pupil would ask and put them in the mouth 
of the Scholar. 9 e Master, in turn, explained every step with great care, [ rst 
 giving a clear de[ nition and then illustrating the calculation by means of worked 
 examples. Several later authors adopted the same form.

9 e readers of Arithmetics were not just children. Indeed there are several 
examples of otherwise well-educated people who learned arithmetic more or less 
on their own with the aid of such books. John Wallis, later Savilian Professor 
of Geometry at Oxford, attended Felsted School in Essex, but describes how 
he learned arithmetic at home in the holidays from the books of his younger 
brother:

While I continued a Scholar there, at Christmas 1631 (aged 15), I was, for about a   
fortnight, at home with my mother at Ashford. I there found that a younger Brother 
of mine (in Order of a Trade) had for about 3 months been learning (as they call’d 
it) to Write and Cypher or Cast account (and he was a good pro[ cient at that time). 
When I had been there a few days; I was inquisitive to know what it was, they so 
called. And (to satis[ e my curiosity) my Brother did (during the Remainder of my 
stay there before I returned to School) shew me what he had been Learning in those 
3 months. Which was (beside the writing a fair hand) the Practical part of Common 
Arithmetick in Numeration, Addition, Subtraction, Multiplication, Division. 0 e Rule 
of 0 ree (Direct and Inverse), the Rule of Fellowship (with and without, Time) the Rule 
of False-Position, Rules of Practice and Reduction of Coins and some other little things. 
Which when he had shewed me by steps, in the same method as he had learned them: 
and I had wrought over all the Examples which he had before done in his book; I found 
no di7  culty to understand it and I was very well pleased with it: and thought it was ten 
days or a fortnight well spent. 9 is was my [ rst insight into Mathematicks; and all the 
Teaching I had. (Scriba 1970, 26–27)

Another future Savilian Professor (of astronomy), Edmund Halley, also learned 
arithmetic from a man in ‘trade’. John Aubrey tells us that Halley’s father was a 
‘Soape-boyler’ and that ‘At 9 yeares old [in 1665], his father’s apprentice taught 
him to write, and arithmetique’ (Aubrey 1992, 120).

9 e diarist, Samuel Pepys, born in 1633, did not receive any education in math-
ematics until he was nearly 30, despite attending St Paul’s school in London and 
Trinity Hall, Cambridge. He had to engage a private tutor, a Mr Cooper, who 
seems to have begun by directing Pepys to get to grips with the multiplication 
table, which he found particularly hard work (Pepys, Diary, 4 July 1662).

As late as 1783, William Taylor wrote, in the Preface to A complete system of 
practical arithmetic:

 . . . there are a great many adult persons, and grown up youth, who through the narrow-
ness of their circumstances, or the neglect of their friends, are forced to endeavour to 
improve their lost time as well as they can. To such as these the following Treatise will be 
of great service. (Taylor 1783, vii)
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Diversi? cation in the seventeenth and eighteenth centuries

Two new trends emerged during the seventeenth century: one was the publication 
of ready reckoners, which enabled those with little or no knowledge of arithmetic 
to [ nd answers to practical problems, and those who did have some knowledge to 
obtain the answer more rapidly and with less labour. Some authors, like Leonard 
Digges, had included individual tables in their arithmetical works, but complete 
books devoted to tables came much later. 9 e other change was the wider range 
of mathematics taught in Arithmetics.

9 e simplest ready reckoners were multiplication tables. By the seventeenth 
century these were being extended: John Darling’s Carpenter’s rule made easy 
(1658), for example, gives all products up to 100 × 100 and some beyond that. 
Other tables gave the cost of n articles at a given price. Simple interest was 
also important. An early collection of interest tables was Edward Hatton’s An 
index to interest (1711). 9 ere were also tables for calculating areas and vol-
umes, to be used by carpenters, surveyors, builders, and merchants. 9 e use 
of calculating aids such as Napier’s bones, the slide-rule, and logarithms was 
also taught.

One device employed to keep such books pocket-sized and yet cover the range 
of measurements needed was to adapt the tables for more than one  purpose. 
Darling, for example, who aimed his book particularly at carpenters, gave a ‘Table 
of the square of unequal sided timber’ (in e\ ect, a square root table  giving the 
answer in inches) in order to [ nd the volume of a block of wood. If, for example, 
the dimensions were 8 ½ inches, by 13 ½ inches, by 7 feet, one could consult this 
table to [ nd the side of a square of the same cross-sectional area (10 ½ inches), 
then a relatively short ‘Table of timber measure’ to give the volume as 5.393 cubic 
feet, an accuracy justi[ ed neither by the initial data nor the needs of any timber 
merchant (see Fig. 5.3.3).

9 e other notable trend in seventeenth-century Arithmetics was the inclusion 
of a greater range of material, land measurement being one of the most com-
mon. Some authors also began to strive towards a broader based mathemat-
ical text, though still keeping a strong arithmetical core. Algebra, in particular, 
began to gain a foothold. William Leybourn divided his Arithmetick of 1657 into 
four books: vulgar arithmetic (that is, common arithmetic), decimal arithmetic, 
instrumental arithmetic, and algebraical arithmetic (that is, arithmetic with let-
ters), and managed to do so in 346 small pages. Samuel Jeake’s A compleat body
of arithmetick in four books, [ rst published in 1696 and re-issued in 1701, was 
a massive volume of 664 folio pages, possibly the most comprehensive work on 
arithmetic ever written. 9 ese and similar works, like Alexander Malcolm’s A



Learning arithmetic: textbooks and their users in England 457

new system of arithmetick (1730) and John Mair’s Arithmetic, rational and prac-
tical (1766), were more like reference books than textbooks.

For general use, something simpler, smaller, and cheaper was needed. 
Recorde’s Grounde of artes was gradually replaced by a succession of best-sell-
ers such as Edmund Wingate’s Arithmetique made easie (1630), James Hodder’s 
Arithmetick (1661), and, especially, by Edward Cocker’s Arithmetick (1694),
which went through at least sixty editions over more than one hundred years. 
9 omas Dilworth, too, was highly successful with 0 e schoolmaster’s assistant 
(1743). Like Recorde, Dilworth wrote in dialogue form. His book went through 
forty-nine editions in England and many more in north America. Many other 
authors tried their hand but were less popular; Wallis and Wallis (1986) list more 
than forty Arithmetics published in the [ rst sixty years of the eighteenth  century, 
but most did not go beyond the [ rst edition. 9 e most successful author of all 
was Francis Walkingame, who established a boarding-school in London. His 0 e 
tutor’s assistant (1751) became an immediate best-seller with at least two hun-
dred and forty-six editions over one hundred and thirty years. Print runs were in 

Figure 5.3.3 Tables of squares and timber measure, from Darling’s The carpenter’s 
rule made easy, 1727, pages 60 and 89
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the thousands, particularly for nineteenth-century editions. 9 e reason for the 
book’s popularity is not immediately obvious. Its explanations are brief to the 
point of inadequacy and, unlike Recorde’s, are no help to anyone working alone. 
Here, for example, is Walkingame’s description of subtraction:

SUBTRACTION
TEACHETH to take a less Number from a greater, and shews the Remainder, or 
Di\ erence.

RULE. 9 is being the Reverse of Addition, you must borrow here (if it requires) what you 
stopped at there, always remembering to pay it to the next.

PROOF. Add the Remainder and less Line together, and if the same as the greater, it is 
right.

One attraction of Walkingame’s book must have been that it was compact and 
cheap at 1s 6d for the [ rst edition, rising to 2s for the second, and good value in 
 relation to his competitors; another very important factor was that it included 
copious exercises. Recorde had included virtually no exercises and Cocker very 
few, but Dilworth had a large number. It is thought that Walkingame mod-
elled his book on Dilworth’s, recasting his dialogue into a more straightforward 
didactic presentation. 9 e use of such exercises is evident in the many children’s 
manuscripts that have survived, particularly from the eighteenth and nineteenth 
centuries.

Children’s manuscripts

Pupils would not normally have had access to printed texts unless they had an 
individual tutor, but instead created their own manuscript textbooks (see Yeldham 
1936; Cline Cohen 1982). Two major collections of children’s manuscripts sur-
vive, dating from 1684 to 1900. 9 e larger one, of one hundred and ninety-[ ve 
 volumes from one hundred and forty pupils, is in the John Hersee Collection in the 
Mathematical Association Library in Leicester University. 9 e second, my own, 
collected over about seventeen years, consists of seventy-three volumes from sixty 
pupils. 9 e manuscripts come from all over England, from Kent in the southeast 
to Cumberland in the northwest, and there is also one from Scotland, though none 
from Wales. Very few of the manuscripts give the child’s age. We know the ages 
of only four of the sixty children represented in the second  collection; those four 
were between ten and fourteen years old. About 15 per cent of the manuscripts in 
both collections were written by girls, though these appear only aN er 1809.

Typically each topic in the manuscripts begins with a de[ nition taken 
 verbatim from a textbook. 9 e [ rst worked example is usually the [ rst given in 
the  textbook, and many of the subsequent examples are also from the same book. 
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9 e examples are not marked or corrected by the teacher, suggesting they were 
exercises in copying rather than calculation. 9 e resulting manuscript was meant 
to be a permanent record of what had been learnt, to be kept and referred to in 
later life. For this reason they were properly bound, oN en in leather or vellum.

9 e earliest manuscript in either collection is from 1684, by Richard Daw. One 
of its examples is the following (Fig. 5.3.4): ‘If 1 hogsett [hogshead] rebate 13 gal-
lons ½ what will 25 Tun ½ rebate?’ Daw used reduction and multiplication to 
bring every quantity to quarts, the rule of three (dividing 1,388,016 by 252) to get 
the answer in quarts, then division twice more to change quarts to gallons, and 
gallons to hogsheads. He forgot to add 54 gallons to his [ nal answer, though it 
is clear he knew he should do so since he worked out the rebated quantity in the 
right hand calculation.

Figure 5.3.4 Example of the ‘Rule of Three’ from a manuscript by Richard Daw, 
1684, f. 93v. (‘If 1 hogsett rebate 13 gallons ½ what will 25 Tun rebate’)

Children were oN en allowed, or possibly encouraged, to decorate the pages with 
elaborate scrolls and sometimes pictures. Figs. 5.3.5 and 5.3.6 show the artwork 
of G Nicholas in 1832. 9 e problem in verse in Fig. 5.3.5 is:

As I was beating on the Forest Grounds,
Up starts a Hare before my two Greyhounds:
9 e Dogs, being light of Foot, did fairly run,
Unto her [ N een Rods, just twenty-one.
9 e Distance that she started up before
Was fourscore sixteen Rods just, and no more:
Now this I’d have you unto me declare,
How far they ran before they caught the Hare?
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Figure 5.3.5 Problem in verse, illustrated, from a manuscript by G Nicholas, 1832, 
f. 71r

9 is comes from a book that Nicholas worked from, 0 e tutor’s guide by Charles 
Vyse (edition of 1807, page 67).

Most of the manuscripts (some 70 per cent) were devoted entirely to arithmetic. 
In every case they appear to be based on textbooks, though it has not always 
been possible to identify the author. Some contain work taken from more than 
one author and many used supplementary material. Occasionally the questions 
are related to individual pupils, for example: ‘Barnet Butter[ eld suppose you are 
12 years old what year was you Born in?’ (Fig. 5.3.7) Amongst the non-arithmetical  
material in these books there is oN en a section on mensuration eliding into prac-
tical geometry, surveying, trigonometry, and occasionally a little algebra, its [ rst 
appearance in these collections being in 1722. 9 ere are one or two short excerpts 
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Figure 5.3.7 A personal subtraction, from a manuscript by Barnet Butter? eld, 
1802, f. 19

from Euclid, logarithms rarely, and single instances of spherical trigonometry, 
d uxions (Newton’s calculus), and the arithmetic of in[ nites.

9 e manuscripts give an invaluable insight into contemporary teaching 
methods. De[ nitions, taken from a textbook, were faithfully copied out by the 
pupils (presumably from the blackboard). Teachers then set problems taken 
from  textbooks, oN en drawing on a variety of sources. Answers were helpfully 
given in the textbooks, in brackets at the end of each question, though teach-
ers must have given some oral explanation of the intermediate steps. Additional 
help for  teachers was provided from the second half of the eighteenth century in 
 separate ‘keys’, in which many of the problems were shown with their working. 
9 e  practice of having a pupil’s book without answers and a teacher’s book with 
answers was a late nineteenth-century development.

Figure 5.3.6 Decorative heading from a manuscript by G Nicholas, 1832, f. 67
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B e nineteenth century

Consideration of textbooks published in the nineteenth century has to be set 
against developments in education in that period. Non-governmental agen-
cies had done much to make education more readily available since early in the 
nineteenth century. 9 e National Society, established in 1811 by the Church of 
England, opened schools whose aims were primarily religious, but they also taught 
a wider curriculum, which usually included arithmetic. 9 e Non-Conformist 
churches soon followed with the establishment of what came to be known as 
British Schools, run on similar lines. Despite these moves, a Parliamentary Select 
Committee reported in the 1840s that about one-third of children were receiv-
ing no formal education whatever, and of those who did attend school few did so 
for long. In the 1840s the average length of school attendance was between one 
and two years (Howson, 1982, 104). As to what these children learned, a Public 
Commission in 1858 reported that only 69.3 per cent of children attending the 
1824 public weekday schools visited were taught arithmetic, and only 33.8 per cent  
of those attending 3495 private schools (run by individuals).

9 ere was some relevant legislation in the [ rst half of the century. Sir James 
Graham’s Factory Act of 1844, for example, required factory owners to ensure that 
children in their employ should spend three whole days or six half days in school, 
though this was somewhat counterbalanced by the lowering of the  minimum age of 
employment from nine to eight in the same Act. But there can be no doubt that the 
most important development was the 1870 Education Act, which gave every child 
the right to elementary education and made it the Government’s responsibility to 
ensure its delivery. 9 e expansion of education required a corresponding increase 
in the number of teachers. 9 e [ rst Teacher Training College was opened in 1839, 
and by 1860 there were sixty such  colleges, though their output was relatively small. 
Many teachers entered the profession  simply as pupil-teachers, supposedly under 
regular instruction from the headteacher. Untrained child ‘monitors’ were also 
employed, until they were gradually phased out in the 1870s by the introduction 
of ‘supplementary’ teachers. However, these too were unquali[ ed, the only require-
ments being that they should be at least eighteen years of age, have been vacci-
nated against smallpox, and be ‘employed during the whole of the school hours in 
the general instruction of the scholars and in teaching   needlework’ (such teachers 
being almost always female) (Horn 1989, 183).3

Under such circumstances it is hardly surprising that rote learning and 
 copying from textbooks remained favoured methods of teaching. Many authors 

3. 9 e relationship between the learning of needlework and the learning of mathematics in the education 
of girls has been explored in detail by Harris (1997).
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continued to model themselves on Walkingame, whose Tutor’s assistant itself ran 
on until 1885. John Colenso’s Arithmetic designed for the use of schools, [ rst 
published in 1843 and in many further editions, contained more explanatory 
material than Walkingame, but a much more signi[ cant advance was made by 
John Brook-Smith in his Arithmetic of 1860. In the preface to the 1891 edition 
he wrote:

Every writer on Arithmetic at the present day feels the necessity of explaining the prin-
ciples on which the rules of the subject are based, but every writer does not as yet feel the 
necessity of making these explanations strict and complete; or, failing that, of distinctly 
pointing out their defective character. Di7  culties are still avoided or slurred over, and 
incomplete proofs without one word of remark or warning are used as though they were 
full and satisfactory. 9 is surely ought not to be.

Brook-Smith was as good as his word; he set out his explanation of Subtraction, for 
example, very clearly over three pages before giving a set of exercises. Signi[ cantly, 
too, the book ends with twenty-four pages of sample examination papers, from 
University of London Matriculation, entry to the Royal Military Academy, and so 
on. 9 e answers to these papers were given at the end of the book, not aN er each 
question as had been the custom. 9 is subsequently became common practice.

9 e examination system for older pupils, particularly the introduction of 
the School Certi[ cate (for age sixteen) and Higher School Certi[ cate (for age 
eighteen), developed strongly through the nineteenth century and came to 
determine the curriculum for secondary schools. 9 e Arithmetic published in 
1886 by Charles Pendlebury, senior mathematics master at St Paul’s School in 
London, was primarily aimed at older pupils (over eleven) being prepared for 
examinations. Pendlebury made every e\ ort to keep up with new types of ques-
tion being set by examiners, and each new edition incorporated examples of 
questions set for the [ rst time the previous year. 9 e book was immediately 
successful, going through at least thirty-nine editions and still in print until 
1947. Pendlebury’s simpler A shilling arithmetic (1899), for younger children, 
was if anything even more popular. Pendlebury’s Arithmetic [ nally put paid to 
the Rule of 9 ree and all its variants, replacing it by a chapter on proportion 
and its applications.

9 ese works provided little help to teachers of younger children. One obstacle was 
the adult language in which they were written; children would have had to be able to 
read pro[ ciently to be able to work from them. Some simple books were published 
to help with the memorization of the multiplication tables: Marmaduke Multiply’s 
merry method of making minor mathematicians (1816) had a picture on each page 
(Fig. 5.3.8), to be hand-coloured by the pupil, and a short rhyme, such as:

Twice 7 are 14
9 ey’re dancing on the Green
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Figure 5.3.8 ‘Twice 7 are 14’ from Marmaduke Multiply’s merry method of making 
minor mathematicians (1816)

Charming as these were, however, they were not textbooks, nor were they  teachers’ 
guides. 9 ere was a worrying gap.

9 e Swiss educational reformer, Johann Heinrich Pestalozzi, active in the early 
years of the nineteenth century, believed that children should pursue their own 
interests and learn through activity rather than formal teaching. In England 
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Horace Grant promoted similar ideas in his two books on arithmetic: Arithmetic 
for children, published sometime before 1835, followed by Arithmetic for schools 
and families in 1841. Introducing the [ rst, he wrote:

Arithmetic is commonly learnt by rote, and is never thoroughly learnt; it is almost always 
an unpleasant task both to the pupil and the teacher.

A great defect of the existing elementary works on Arithmetic arises from the little var-
iety they o\ er to the child, either in objects, thought or language.

During the lesson, the teacher should place at hand a small box containing a few counters, 
pebbles, beans, and small shells. A variety of any kind of small objects, such as wooden 
cubes, buttons, marbles, nuts, nails, and bits of stick or cork, will also answer the purpose.

He later added to this list a few small weights, coins, and a foot and yard measure, 
emphasizing his central idea that number teaching must start with the concrete 
and be applicable to the real world of the child. 9 e rest of his book is a collec-
tion of questions and exercises, to be read to the child and to be answered using 
objects as necessary, the objects to be discarded as the child progresses. In the 
Introduction to Arithmetic for schools and families, Grant says that the book is 
for the instruction of children between the ages of eight and eleven, but that it 
is written for teachers (or parents) rather than for the children themselves. It is 
divided into chapters on the various aspects of arithmetic to be found in any text-
book of the period, but explained with more than typical clarity.

Although both of Grant’s books went through a number of editions, they did 
not make the impact in Britain that Warren Colbourn’s An arithmetic on the 
plan of Pestalozzi (1821), based on the same principles, made in the US, where 
new ideas were embraced earlier and more readily (Cline Cohen 1982, 134–138). 
Shortly before he died in 1891, the teacher and pedagogist, Reverend Robert 
Herbert Quick, gave a lecture entitled ‘9 e [ rst stage in arithmetic’ to the College 
of Preceptors, an institution concerned with raising the professional standing of 
teachers, in which he said:

How children should get their [ rst notions of number hardly anybody in this country 
knows, and, but for the goodly band of ladies who have now begun to study education 
scienti[ cally, we might add hardly anybody in this country seems to care. (Quick 1896)

Both Recorde and Newton had long ago pleaded for more imaginative teaching 
of arithmetic, based on understanding rather than on rote learning. At the end of 
the nineteenth century such ideals had still barely begun to be put into practice.

Conclusion

In the mid-sixteenth century, An introduction and Recorde’s 0 e grounde of artes 
made arithmetic available for the [ rst time in English. 0 e grounde of artes in 
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particular o\ ered material relevant to the everyday and commercial needs of the 
time, and both books survived well into the seventeenth century. 0 e grounde 
of artes, however, came to have two main drawbacks: it grew too large and yet 
it contained hardly any exercises. Some Arithmetics attempted to be compre-
hensive, and became correspondingly larger and more expensive, but in the end 
those that were pared down became more popular. Space for exercises was made 
at the expense of the exposition, which was reduced in some cases beyond the 
point at which it could be helpful.

Arithmetics were used both by students trying to learn alone and by teachers 
whose own elementary training leN  them in need of such aids. As the years went 
by, inertia and the success of existing books meant that Arithmetics tended to 
perpetuate the content and methods of the past, rather than responding to new 
methods of education in a changing social context. One would hardly guess from 
nineteenth-century Arithmetics, for example, that an industrial revolution was 
under way. 9 e curriculum remained essentially mercantile in nature, and pupils 
continued to learn through the copying and rote learning of rules and methods. 
Some of the [ rst hints of permanent change can be seen in the early nineteenth-
century writings of Grant, who encouraged children to establish ideas of number 
and measurement using simple concrete objects or through exploration of their 
own environment. Major reforms in the teaching of arithmetic in England, how-
ever, had to wait until the twentieth century, and it was only then that Arithmetics 
as a genre [ nally disappeared.
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CH A P T ER 5.4

Algorithms and automation: the production of 
mathematics and textiles
Carrie Brezine

Mathematics is a diverse [ eld. To the uninitiated, it is a mysterious sub-
ject, oN en presumed to be unintelligible and frighteningly abstract. Many 

people assume that mathematics is all about numbers, and it is; but it is also 
about shapes, sets, symmetry, networks, algorithms, and transformations. 9 e 
specialized de[ nitions and notational systems of mathematics make it almost 
impossible for a lay person to pick up a recent article on, say, knot theory and 
make any sense of it. But the mathematics of scholarly publications is not and 
has never been the only practice of mathematics. Mathematical principles have 
long been used by artists and engineers, just as anyone dealing with currency 
practices basic arithmetic to manage income and expenditures. Nor is the aca-
demic tradition of western Europe the only method of framing and disseminat-
ing mathematical ideas. Indigenous cultures from diverse areas and time periods 
have developed sophisticated artifacts, games, and methods of record-keeping 
which show that mathematics has evolved in many di\ erent ways (Urton 1997; 
Gerdes 1999; Selin 2000). 9 e practice of weaving encompasses a multitude of 
mathematical  problems ranging from arithmetical calculation to abstract sym-
metrical manipulations. CraN speople who create good fabric are practicing 
mathematical principles, though they may not communicate them in the way
we expect western mathematics  to be presented. 9 e sophisticated thought 
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processes behind the production of intricate textiles indicate that even weavers 
in societies without text have control of abstract mathematical concepts. Framing 
weaving in terms of mathematics also suggests numerous open problems touch-
ing on various modern [ elds, including combinatorics and geometry.

9 is chapter broadly describes two methods of textile production and considers 
their mathematical implications. 9 e two cases are d oor loom weaving, as prac-
ticed in Europe from medieval times, and weaving on a variable tension (back-
strap) loom, the common method in the Andes of South America. In the Andes 
the machine used to produce cloth is, at [ rst glance, substantially simpler than 
a western-style loom, yet Andean cloth is some of the most structurally complex 
in the world. Each technique has its advantages and drawbacks. Both incorpor-
ate sophisticated mathematical concepts. Because they are so di\ erent, they make 
good comparative studies for investigating how people solve the many conceptual 
challenges associated with creating cloth. In order to understand these challenges, 
and their relationship to mathematics, basic de[ nitions of fabrics will be discussed 
[ rst.

De? nitions and classi? cations

Words used in speaking about textiles oN en have di\ erent connotations than 
accorded them in ordinary everyday speech. 9 is article adheres to Irene Emery’s 
terminology as closely as possible (Emery 1994); even among textile scholars the 
use of terms is not always consistent. Fabric is used as ‘the generic term for all 
[ brous constructions’ (Emery 1994, xvi). 9 ough the latter part of this chapter 
focuses on weaving, other structures will be bried y discussed, so that the spe-
cial characteristics of woven constructions can be better understood. Fabrics are 
composed of elements. In general, the elements are long and d exible. Plant and 
animal [ bers are the most common materials used for fabric construction. Some 
plants, such as those of the bast family, can yield long unbroken [ bers which are 
strong enough to be stuck together end to end to produce continuous lengths. 
Silk, unwound from the cocoons of silkworms, is another natural [ ber that 
occurs in very long strands (up to 2,000 m). In contrast, materials such as wool 
and cotton come in short lengths (approximately 1.5–5.0 cm for cotton, 5.0–30.0 
cm for wool, depending on the breed of the animal) (Ross 1983, 89–90, 104–107). 
To make a continuous thread, short [ bers must be twisted together. Spinning 
involves extenuating a mass of [ ber to the desired thickness while applying twist. 
Two twist directions are possible, named S and Z according to the angle the [ bers 
make relative to the axis of the yarn. 9 e twist helps hold the [ bers together and 
endows the thread or yarn with stored energy. ON en the energy is neutralized 
by plying a spun thread with one or more others of its kind, twisting the group 
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together in the direction opposite to that in which they were spun.1 9 is process 
produces a stronger, more stable, and even product and signi[ cantly reduces the 
tendency of the yarn to kink back on itself. 9 ough continuous [ bers such as silk 
and linen do not strictly need to be spun, depending on how they are harvested, 
it is most common to use them in some spun form.

Once the yarns or threads are prepared,2 fabrics can be manufactured in numer-
ous ways. An in[ nite variety of structures is possible, and each structure can be 
achieved in several ways. 9 e domain of fabric structures has been classi[ ed into 
divisions based on the number and types of elements used (Emery 1994). Fabrics 
can be made with a single element, a set of equivalent elements, or multiple sets 
of elements; they make an integral structure by interworking. Interworking is a 
general term which includes speci[ c techniques such as twisting,  knotting, loop-
ing, and interlacing (to be de[ ned later). Knitting is a common example of a sin-
gle-element construction, so called because it ‘is made up of a single  continuous 
element interworked with itself ’ (Emery 1994, 27). A knitted fabric is composed 
of a series of loops side by side; on each row, the yarn is drawn up through each 
loop in turn, creating another row of loops.

A set of elements is a group of elements ‘all used in a like manner, that is, 
 functionally undi\ erentiated and trending in the same direction’ (Emery 1994, 
27). In fabrics made with one set of elements, each element has an equivalent role. 
9 e braiding of hair is a common example of this kind of structure: each of three 
sections interlaces over and under the others in the same pattern. Each strand of 
the braid performs equivalent motions and they contribute equally to the integ-
rity of the [ nal structure. 9 e elements are [ xed at one point, and all tend gen-
erally downward from the origin of the braid, though they meander back and 
forth within it. Assuming all of the elements are of the same grist, any element is 
isomorphic to any other element in the fabric. 9 is general idea applies to bands 
made of more than three elements. Interlacing is a speci[ c form of interworking 
in which each element follows a generally linear path (allowing for turns at the 
edge of a fabric) and passes over or under the elements it crosses (Fig. 5.4.1). Even 
in structures based on one set of elements the patterns of interlacing need not 
be restricted to over one, under one; in[ nite variation is possible (Owen 1995; 
2004). 9 is class of structures also includes examples which are not interlaced, 
but held together through linking, twining, or knotting. Linked and interlaced 

1. 9 e basic principle of spun energy can be observed in a simple exercise: take a shoelace or a similar short 
length of string. Hold one end [ xed and twist the other end repeatedly in the same direction. When you bring 
the two ends of the string together, the middle portion will rotate back on itself, creating a twisted cord. It will 
tend to do this at any point where it is not under tension.

2. 9 e distinction between yarn and thread is not always clear. In general, yarn is less tightly twisted 
and larger in diameter than thread (Emery 1994, 12–13). In this Chapter I use the terms interchangeably. 
Regardless of the name applied, it is important to remember that any fabric structure will be heavily ind u-
enced by the type of element used to construct it.
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fabric structures with one set of elements are direct physical representations of 
the mathematical de[ nition of braids (Sossinsky 2002, 15–34).

9 e potential for structural elaboration and variety increases dramatically with 
each additional set of elements. 9 e simplest class of woven structures is that in 
which the fabric is made of two sets of elements which interlace  perpendicularly 
to each other (Fig. 5.4.2a). Within each set, the elements are parallel to each 
other during construction, and do not interwork with others of the same set. 9 e 
textile is created by holding one set of elements taut, to facilitate threading the 
other through it. 9 e taut set of threads, by necessity prepared [ rst, is called the 
warp. A single warp thread is called an end. ON en the warp is longer than it is 
wide, but this is not a requirement. 9 e second set of elements, which crosses the 
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Figure 5.4.1 Ten-strand interlaced braid, a fabric structure made with one set of 
 elements. Each strand plays an equivalent role in the fabric and all move from top 
to bottom in the process of construction

Figure 5.4.2 a) Diagram of plain weave interlacement
b) Cross-section of plain weave: weft goes over one, under one throughout the 
cloth
c) Graphic representation of plain weave interlacement. Each square represents one 
warp-weft intersection; black squares indicate warp on top, white indicate weft on 
top
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warp at right angles, passing over and under individual ends, is called the we_  (or 
woof); a single weN  is termed a pick. At each intersection of warp and weN , either 
warp or weN  will be uppermost. 9 e arrangement of intersections with weN  on 
top and those with warp on top within each pick and in successive picks deter-
mines the woven structure of the cloth. A matrix of squares is oN en used as visual 
shorthand for depicting woven structures (Fig. 5.4.2c). Each square represents 
one warp-weN  intersection; the squares are colored black to indicate warp on 
top, white to indicate weN  uppermost (Grunbaum and Shephard 1980, 141). 9 e 
pattern of interlacement ind uences the strength of the cloth, its elasticity, texture, 
and thickness, and determines the apparent pattern on the surface.

Plain weave is the most basic interlacement. In this structure, the [ rst weN  
pick goes over one warp, under the next, and repeats this over-one-under-one 
sequence all the way across the web. 9 e next weN  pick reverses the sequence, so 
that it lies over the warps it was previously below, and below those it crossed over 
on the previous pick (Fig. 5.4.2). 9 is creates a stable, strong cloth with many 
practical uses. Usually the weN  is a continuous length of yarn; at the edge of the 
textile, it is not cut, but simply turns around the last warp and is re-inserted for 
the next pick. 9 e appearance and properties of plain weave can be altered dra-
matically by changing the relative spacing of the warp and weN .3 9 ough not very 
ornamental in itself, plain weave is a perfect foundation for additional decoration 
such as embroidery. 9 e Bayeux Tapestry is embroidery on a plain weave base, as 
are richly embellished mantles from the Paracas culture (Paul 2004).

9 e weN  can pass over, or stay under, multiple warp ends. A I oat is a weN  
thread that passes over more than one warp, or a warp thread that passes over 
more than one weN . 9 e length and sequence of weN  d oats can be denoted by 
numerals indicating the number of warps passed over or under, separated by 
slashes: 2/2 indicates that the weN  passes over two warps and under two, all the 
way across the cloth. Twills are produced by determining a repeating weN  inter-
lacement and shiN ing the pattern one thread to the leN  or right on each successive 
pick. 9 ey show a diagonal pattern in the cloth, though it may be obscured by the 
[ neness of the thread or the quality of the [ ber. 9 e weN  can be more prominent 
on one side of the face than the other; for instance, in a 3/2/2/1 twill the weN  d oats 
over [ ve ends for every three it goes under (Fig. 5.4.3). On the face where the 
weN  is less prominent, the warp will be more prominent, and vice versa. Twills 
and their mathematical classi[ cation are discussed by Grunbaum and Shephard 
(1980). Fabrics in which the diagonal patterns are red ected in one or two direc-
tions to form zigzags or diamonds are still considered twills. Floats do not have 

3. Tapestry is a plain weave structure in which the weN  entirely covers the warp. By using di\ erent col-
ored weN s in di\ erent areas, pictorial designs can be created which appear to break the rectilinear bounds of 
the fabric grid. At the other extreme, a cloth in which the weN s are entirely hidden by warps is called warp 
faced.
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to be aligned diagonally; crepes, satins, and lace weaves derive their particular 
characteristics from varying the length and arrangement of d oats. Excellent 
technical  descriptions of weave structures can be found in van der Hoogt (1993) 
and Strickler (1991).

Compound weaves have more than two sets of elements. 9 e additional sets 
may be in the warp, the weN , or both. 9 ey may be supplementary: ornamental 
only, not essential to the structure of the cloth, or complementary: contributing 
equally to the integrity of the fabric. One example of a compound structure is 
double cloth, in which two layers of plain weave are woven superimposed on one 
another. Each layer has its own warp and it own weN . Usually the layers are of 
di\ erent colors and are interchanged at various points in the fabric, so that each 
surface will have some areas of one color and some of another; a design on one 
surface of the fabric appears in mirror image with color reversed on the other 
side of the cloth (Cahlander 1985; Strickler 1991; van der Hoogt 1993, 94–97).

From this brief description, it is apparent that in theory the possible  number 
of distinct fabric structures is huge. Counting the distinct possibilities is not 
straightforward.4 How are textile interlacements achieved in practice? 9 ere are 
numerous technical challenges to be overcome. 9 e warp threads must be held 

4. Grunbaum and Shephard (1980, 149) provide a formula for the number of distinct twills of a given 
repeat size.

Figure 5.4.3 a) Diagram of 3/1 
twill interlacement
b) Cross-section of 3/1 twill; 
weft goes over three, under one
c) Graphic representation of 3/1 
twill
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taut and parallel. 9 ey must be strong enough to bear tension and to withstand 
abrasion. Weaving is made much easier if the warps can be divided into two 
groups and temporarily held apart so that the weN  can be inserted between them. 
Such an opening in the weN  is called a shed. 9 e most basic warp division is that 
in which the [ rst warp end and every alternate warp end thereaN er belong to one 
group, and the alternate warp ends belong to the second group. In practice this 
means that if the [ rst group is raised, the odd numbered warps are raised and the 
weN  goes over every even-numbered end; when the second group is raised, the 
weN  goes over every odd numbered end.

9 e machines which facilitate weaving are called looms. Most are similar in that 
they allow the warp to be stretched under tension and provide some tool for creat-
ing a shed so that the weN  can be easily passed from side to side. Looms have been 
developed and elaborated in di\ erent ways in di\ erent cultures. 9 e European d oor 
loom,5 descended from a Chinese invention, is a large, sturdy wooden machine 
with multiple rotating beams. 9 e Andean variable tension loom can be rolled up 
and carried from place to place. 9 ough the capabilities of d oor looms and vari-
able tension looms overlap somewhat, their comparison points to di\ erent ways 
of thinking about planar embellishment and the structural production of pattern. 
9 e creation of cloth involves the application of arithmetic, in the counting and 
distribution of threads (Urton 1997), but the mathematical concepts at work in 
fabric go beyond addition and division. 9 e special features of the textile plane—its 
thickness and directionality—a\ ect the expression of symmetry and geometry. In 
both the European and Andean traditions, weavers pushed the boundaries of their 
art to create visually and structurally  complex textiles.

B e European tradition: R oor loom weaving

Floor looms di\ er in size and complexity. 9 ey are designed to hold the warp taut 
in a horizontal plane and automate the opening of sheds (Fig. 5.4.4). Working from 
the back of the loom to the front, each loom has a warp beam, to which one end of 
the warp is attached. 9 is beam usually rotates, so that many meters of warp can be 
tightly wound on it and released as needed. From the warp beam the warp ends pass 
over a [ xed back beam and up to the harness, which is usually near the middle of the 
loom. 9 e harness is the device that creates the shed. It includes two to thirty-two

5. I use the term ‘d oor loom’ to refer to the pre-industrial hand weaving machine and its modern descend-
ants. 9 e boundaries between hand and machine weaving, never clear, are becoming increasingly blurred. 
Many hand weavers today use computer-controlled looms; some include mechanical assistance for raising 
and lowering shaN s and for passing the shuttle across very wide webs. For the sake of clarity in this chapter, 
d oor looms are assumed to have no computerized components and to work through the input of human power 
only.
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sha_ s.6 Each shaN  holds numerous heddles, devices of wire or string with an eye 
in the middle, at the plane of the warp. Each warp end goes through an eye in 
exactly one heddle. Each warp end is therefore associated with exactly one shaN . 
9 e loom must have some mechanism for raising and lowering the shaN s;7 usu-
ally the opening is created by pressing a treadle below the loom. When there are 
more than two shaN s, the loom oN en includes the ability to raise a combination of 
shaN s by depressing only one treadle. Near the front of the loom, each warp end 
passes through a slot in the reed, a device with small equally spaced openings; the 
reed maintains the distribution of the warp. It is situated in a beater which swings 
back and forth to help push the weN  into place. 9 e woven cloth goes over the 
breast beam at the front of the loom, and is wound around the cloth beam.

9 e shaN s are numbered from the front of the loom to the back. 9 e order 
in which the warp ends are put through the heddles is oN en abbreviated by a 
sequence of shaN  numbers: 1–2–3–4 indicates that the [ rst end is on shaN  1, the 
second on shaN  2, and so on. When a shaN  is raised, all warps which are threaded 
through heddles belonging to that shaN  are raised. Assuming a [ xed order for 
warps, the structure of the cloth is determined by the sequence of shaN s through 
which they are threaded, the combinations determined between shaN s, and the 
order in which the combinations are raised. 9 e number of shaN s, and the num-
ber of di\ erent combinations of shaN s (usually determined by the number of 
available treadles), determines the possible complexity of the pattern that can be 
woven, including the size of the pattern repeat.

6. In theory, there is no upper bound to the number of shaN s. Practical engineering issues tend to limit 
the number.

7. 9 e shed opening can be created by raising some warps and leaving others [ xed, by lowering some and 
leaving the rest [ xed, or by raising some and lowering others (van der Hoogt 1993, 10–11).

Warp beam

Back beam

Shafts

Cloth beam

Breast beam

Reed and beaterHeddles

Shed

Woven cloth
Warp threads

Figure 5.4.4 Schematic of the main features of a U oor loom. Not to scale. Arrows 
indicate the direction of moving parts
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Weavers have developed a visual shorthand called a dra_  for recording how 
to set up a loom to reproduce a particular structure. A draN  has four parts: 1) 
the threading, showing on which shaN  each warp end should be threaded; 2) the 
tie-up, showing which shaN s are attached to which treadles; 3) the treadling, indi-
cating the order in which the treadles are depressed; 4) the drawdown, a visual 
representation of the fabric structure. Typically drawdowns are represented on a 
grid with black and white squares, as already described. Fig. 5.4.5 shows a draN  
for 2/2 twill. 9 e drawdown is a direct result of the other three pieces of the draN . 
An examination of the draN  will help clarify the relationship between the parts. 
9 e warp ends, weN  picks, shaN s, and treadles are numbered. To insert the [ rst 
pick, the weaver presses treadle 1. 9 is treadle is attached to shaN s 1 and 2, as 
indicated by the tie-up, so shaN s 1 and 2 are raised when treadle 1 is depressed. 
9 erefore any warp end on shaN  1 or shaN  2 will go over weN  pick 1. 9 is is 
indicated by the black squares in the drawdown under warp ends 1, 2, 5, 6, and 
so on. 9 e same relationship between threading, treadling, and tie-up holds for 
each pick.8

A study of draN s helps explain how woven cloth models algebraic relationships 
between matrices. Note that if there are n shaN s and m treadles, the size of the 
tie-up is n x m. To create matrices representing the tie-up, threading, and tread-
ling, replace each black mark with 1, and the white spaces with 0. 9 e resulting 
matrices are called binary since they include only 0s and 1s. If the repeat length of 
the treadling is r and that of the threading is s, the product of these three matrices 
is an r x s matrix which is equivalent to the drawdown: 1s appear in the positions 
which are black in the drawdown, and 0s appear elsewhere. A formal proof is 
given in Hoskins (1983).9 Using the draN  from Fig. 5.4.5, the multiplication of the 
treadling, tie-up, and threading would look like:
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8. 9 e astute reader will notice that in this visual representation, the cloth grows from top to bottom, 
unlike what the weaver would actually encounter at the loom. Also, the face of the cloth which appears to 
the weaver will depend on whether the shaN s are raised or lowered when treadles are depressed. 9 e reader 
should be able to convince herself that any given structure can be woven with the other face up by exchanging 
all white squares for black and black for white in the tie-up. DraN s can be written in any of four orientations—
that is, with the tie-up in any of the four corners of the diagram. 9 e relationship between the parts is the 
same in each case. For a more detailed discussion of draN ing, see van der Hoogt (1993).

9. 9 is is a simple example since all the matrices are square and one is the identity matrix. A more gen-
eral multiplication order is treadling * Transpose(tie-up) * threading. Fuller treatment is found in Brezine 
(1993).
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9 is mathematical modeling of loom interlacement prompts one to ask whether 
there might be mathematical solutions to weaving problems. Some common 
questions include: what is the smallest number of shaN s and treadles needed to 
weave a given structure? Given two structures, how can a weaver determine if 
they can both be woven with the same threading and tie-up? How many di\ er-
ent structures can be woven on the same threading and tie-up? (9 e treadling 
can easily be changed during weaving, so this is a reasonable question.) How 
can one determine if plain weave is possible for a given threading? How can the 
weaver calculate the maximum d oat length? How can one ensure that the longest 
warp d oats and weN  d oats are the same length? Can the treadling or threading be 
re arranged to be easier to remember, without changing the pattern of the cloth? 
In answering any of these questions, one must remember that not all drawdowns 
produce viable fabric. Some arrangements of black and white squares represent 
interlacements that separate into two or more layers (Clapham 1980).
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Figure 5.4.5 Draft for a 2/2 twill, woven on four shafts with four treadles
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9 ough the relationship between the structure of cloth and binary matrices 
is intriguing, one need not assume that weavers in historic times would have 
expressed principles of loom interlacement in our mathematical terms. What 
concepts must a weaver control in order to design and create cloth? 9 ough there 
may be more practical skill than theory involved in passing the shuttle and beat-
ing the weN , the setting up of the loom can be quite complex, and in fact was 
oN en done by specialists. Each type of fabric structure has its own constraints, 
and the invention of new structures is far from obvious. 9 e machine itself does 
not guarantee that cloth woven on it will have structural integrity.

9 e arithmetic of cloth production is [ nicky, but straightforward. 9 e weaver 
must calculate how many warp ends per unit of measurement the cloth is to have, 
and multiply that by the width of the cloth to prepare the correct number of warps. 
If the fabric is to have a pattern that is balanced at the edges, adjustment must be 
made for the number of threads in the repeat. Symmetry is a signi[ cant attribute 
of most cloth structures. 9 e choice of symmetry is determined in part by culture 
(Washburn and Crowe 1988; Washburn 1999), but is also ind uenced by the tools at 
hand. In weaving complex patterns, a common treadling choice is ‘tromp as writ’: 
depressing the treadles in the same order in which the warp ends were threaded 
through the shaN s. If the warp order is 1–2–3–4–5–6–7–8–7–6–5–6–7–8, the trea-
dles would be used in the order 1–2–3–4–5–6–7–8–7–6–5–6–7–8. (9 e number of 
shaN s must be the same as the number of treadles.) Tromp-as-writ produces a diag-
onal line across the cloth, which helps the weaver remember her place in the tread-
ling sequence aN er a break from work; it also has the e\ ect of producing bilateral 
symmetry around the diagonal. If the threading has mirror symmetry, the tread-
ling will too, and the cloth will have p4m symmetry.10 9 is patterning is extremely 
common in d oor loom cloth. 9 e traditional North American tradition of coverlet 
weaving shows an overwhelming preference for such symmetry (Davison 1953). 
Interestingly, all non-hexagonal symmetries are structurally possible on only four 
shaN s (Brezine 2004). Implementation of these symmetries depends on an under-
standing of how to mirror, shiN , and d ip threading orders and treadling orders, 
what e\ ect the tie-up has on the interlacement, and the interaction between thread-
ing and treadling. E\ ectively, weavers use a practical application of matrix trans-
formations to achieve the interlacements in their cloth.

Certain weave structures depend on numerical relationships for their unique 
properties. Among these is satin. Originally developed to show o\  the high sheen 
of silk, an ideal satin has very long d oats and the appearance of a perfectly even 
surface texture. If n is the number of shaN s, the weN  d oats under n – 1 warp ends 
for a warp-faced satin.11 9 e single warps which it goes under are distributed as 

10. 9 at is, it will have 4-fold rotational symmetry and horizontal and vertical red ective symmetry.
11. Both warp- and weN -faced satins are possible; oN en a warp-faced satin is woven face down, so that 

fewer shaN s must be liN ed.
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evenly as possible through the available number of shaN s: the goal is to avoid any 
obvious diagonals, patterns, or irregularities which would mar the surface. In 
practice, this means that the number of the single shaN  raised for each pick shiN s 
by a number relatively prime to the number of shaN s (Grunbaum and Shephard 
1980, 15; van der Hoogt 1993, 23, 69).

In addition to all the issues of innovating within known rules, there is the 
ever-present challenge of creating new and better cloth. 9 e number of possible 
variations on threading, tie-up, and treadling is huge; the variations increase dra-
matically with each added shaN  and treadle. However, not all possibilities are 
good ones. It is quite possible to come up with combinations that produce two 
or more layers of loosely interlaced threads instead of one stable fabric. 9 ere is a 
mathematical algorithm based on the matrix representation of a fabric for deter-
mining whether a given structure will fall apart (Clapham 1980); historically, 
weavers had to depend not on algorithms but on their understanding of di\ er-
ent weave structures and the relationships between threading, tie-up, and tread-
ling. Given the striking variety of successful cloth that has been produced, one 
must conclude that weavers’ conception of the rules governing geometric inter-
lacement are entirely as successful as the algebraic algorithm given by Clapham, 
though framed in di\ erent terms.

Certain aspects of the western system of cloth production invite comparison 
to western mathematical concepts. Our traditional geometry is based upon ideas 
of in[ nite planes and never-ending lines. Being a part of the real world, lengths 
of cloth are [ nite; but in construction they are more oN en than not treated as 
in[ nite in the sense that no particular attention is given to the beginning and 
ending of the warp. Since the advent of tailored clothing the assumption has been 
that cloth will be cut and shaped once it is o\  the loom. 9 e focus is on mak-
ing the fabric of consistent quality; the ends themselves can be leN  to ravel. 9 e 
d oor loom provides enormous mechanical advantages of speed and replicability. 
Because the machine constrains the spacing of the warp and the order in which 
the threads are raised, and maintains consistent tension throughout the length of 
the warp, it is relatively easy to duplicate a particular piece of cloth. In pattern-
ing, repeats are considered correct only if they exactly duplicate previous motifs. 
9 e only equivalence is equality. 9 e downside to the automation of pattern is 
that once the threading and tie-up are [ xed, the structural variations possible 
are drastically reduced. 9 is is not important if producing yardage in quantity in 
a plain  structure. However, it can be a limitation if elaborate or pictorial designs 
are desired, or if one wishes to change the pattern along the length of the cloth. 
9 e desire to expand the patterning possibilities of loom weaving led to the inven-
tion of the Jaquard loom, patented in 1804. 9 is loom used punched cards to 
 individually select which warps to raise and lower. 9 e chains of punched cards 
were a direct precursor to the earliest computer punchcards (Essinger 2004).



people and practices480

Concerns with replicability led to various systems for writing down the 
 information needed to produce a particular piece of cloth. Early versions of 
weaving draN s were closely guarded and can be very hard to read. In present 
times the format is fairly standardized, and computer soN ware makes it pos-
sible to quickly view the e\ ects of changes in the threading, tie-up, or treadling 
before setting up the loom. Before computers simpli[ ed the process of creating 
a visual representation of cloth structure, it was more common to experiment 
directly at the loom. However, it is not at all impossible that even long ago new 
structures were devised or inspired by doodling on paper, tweaking existing 
draN s which had been  previously recorded. Perhaps the separate medium of 
writing played a signi[ cant role in the creation of cloth—not only for working  
out possible new threadings, but in calculating the number of warp ends 
needed, the total yards of thread required, or making adjustments in the draN  
to balance the pattern.

Weaving in the Andes: the variable tension loom

Andean civilizations never developed text as we know it. 9 ere are no direct 
 correlates to our system of symbols marked onto a d at surface representing lan-
guage. 9 e communication device of the Andes, at least from the time of the 
Inkas (approximately 1400–1532 ad), was the khipu, an arrangement of col-
ored and knotted cords (Ascher 1981; Urton 2003). 9 ough still undeciphered, 
the khipu were by colonial accounts essential bureaucratic tools of the empire. 
9 ey may have encoded narrative information; it is well attested that they hold 
 complex numerical data, and that separate khipu objects can reference each other 
(Urton and Brezine 2005). We do not usually consider cloth, or string, to be a 
medium with explicit textual communicative capacity. However, reviewing the 
outstanding textiles from ancient Peru and the astonishing variety of complex 
 structures used by ancient Andean weavers, it is clear that a great deal of time 
and e\ ort were devoted to exploring textile variations and possibilities. It has 
been  suggested that textiles were perhaps the main medium in which Andean 
cultures met and grappled with theoretical problems (Frame 1986; Lechtman 
1993; Urton 1997; Franquemont 2004). Geometry, symmetry, reciprocity, energy, 
hierarchy, and structure are all explored in Andean weaving.

9 e Andean method of production can be deduced from existing textiles,
and from modern ethnographic weaving studies.12 9 e following is a general 

12. Extrapolating ethnographic observation to make assumptions about ancient practices is always prob-
lematic. I am not being chronologically speci[ c in this chapter. A good overview of the development of warp-
faced weaving in the Andes is given by Rowe (1977); detailed treatment of the traces leN  by various weaving 
techniques can be found in numerous sources including Rodman and Cassman (1995).
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description; contemporary details of practice may vary by region or village, and 
not all ancient cloth adheres to exactly the same production methods. I use the 
present tense, as these methods are in use today in many areas of the Andes. 
9 ere is no evidence that Andean cultures ever invented or used a d oor loom as 
described above. Instead, their weaving equipment is the most basic: two stout 
sticks to which the warp is attached and a third stick which maintains a separ-
ation between two sets of warp ends (Fig. 5.4.6). Typically, the warp beam furthest 
from the weaver is tied to a pole or lashed to stakes [ rmly stuck in the ground 
(Fig. 5.4.7). 9 e closer beam may also be held [ xed to stakes, but is just as com-
monly attached to the weaver herself by a belt which goes around the hips. 
Depending on the height at which the far beam is held, the plane of the cloth 
may be horizontal or slanted upwards to almost vertical. 9 e unwoven portion 
of the cloth is not usually wound around the far warp beam; instead, the entire 
length of the warp is stretched before the weaver. To bring the fell of the cloth 
within range, the completed part of the weaving is wound around the closer warp 
beam. 9 ere is no distinction between the two beams; in fact, oN en the weaving 
progresses from both ends and meets somewhere in the middle, a clear contra-
diction to the strictly unidirectional sequence of d oor loom weaving.

To set up a d oor loom, each warp must have at least one cut end, to allow it to 
be threaded through a heddle and the reed. 9 e very beginning and very end of 
loom-woven cloth has free hanging warp threads. Andean cloth is much more 
economical of yarns. 9 e warps are prepared by winding in a continuous [ gure 
eight. 9 is produces a length of ordered yarns with loops at both ends. 9 e loops 
are attached to the warp beams of the loom, and the weaving begins exactly at 
the sticks, so that there are no dangling loops. 9 e warp selvedges mimic the 
weN  selvedges: the warp reaches the edge of the cloth, turns, and reenters the 
weave, creating a cloth that is [ nished on all four sides. As the unwoven por-
tion of the warp gets shorter and shorter, it becomes more and more di7  cult to 
insert the weN . A termination area, where the last several picks were inserted, is 
oN en identi[ able by a looser weave, a change in structure, or a discontinuity in 
pattern. However, it is possible to weave four-selvedge cloth without an obvious 
termination area, and in the best Andean examples it is impossible to tell where 
the weaver [ nished.

9 e third stick mentioned above maintains one division in the warp yarns. 
Typically every other thread goes over this shed stick. 9 e alternate warp ends 
go through yarn heddles in front of the shed stick, simple loops applied to the 
warp aN er it is attached to the beams. 9 e heddles may be lashed to a heddle rod 
to maintain spacing and make liN ing easier. LiN ing the heddle rod raises every 
yarn which goes through a heddle loop. In practice, liN ing the heddles can be 
a  time-consuming and laborious process, especially when the warp yarns are 
of sticky wool and set very close together. Bringing the shed stick forward to 
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the heddles pushes the heddled yarns down, and raises the yarns which go 
over the shed stick. 9 is creates the opposite shed opening. 9 e most com-
mon arrangement of heddles and shed stick creates a 1–1 interlacement, the 
familiar plain weave. Multiple sets of heddles are certainly possible and are not 
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Figure 5.4.6 a) Schematic of a variable tension loom
b) Side view of the variable tension loom, showing heddle rod raised
c) Side view showing shed stick on edge to create the opposite shed
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unknown. For instance, several villages on the east side of the Urubamba valley 
in Southern Peru weave complex twill skirt borders, in which the twill patterns 
are automated by eight or more sets of string heddles. However, most Andean 
textiles, even the most structurally complex, were and are woven with only two 
opposing  sheds.

In the Andean tradition, the machinery for facilitating complex patterns lies 
not in the elaborateness of the machinery, but in the weaver’s head and [ ngers. 
Many structures are possible, but complementary warp weave will be described 
here as a typical example; typical both because it is widespread and because it 
reaches far back in time. Complementary warp weave also embodies several 
crucial Andean aesthetic principles: the structure is the pattern—neither can be 
altered without altering the other; the two faces are the same, but with colors 
reversed; and because of the characteristics of the weave, designs oN en have no 
clear [ gure/ground, but instead favor interlocking shapes which to our eyes may 
seem almost like optical illusions.

Complementary elements in a fabric are those which ‘have the same  direction 
in a fabric and are co-equal in the fabric structure’. (Emery 1994, 150). 
Complementary warp weave is based on a warp of two colors, light (L) and dark (D).

Fig. 5.4.7 Weaver from Accha Alta, Peru, 2001. Her loom is lashed to two stakes at 
one end and the other end is held around her waist by a belt. She is in the process 
of selecting threads for a pattern. The complex colored skirt borders can be seen on 
her skirt and on that of the woman to the right (photo by author)
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Each light yarn has a dark partner. 9 e colors alternate across the pattern area: 
L-D-L-D-L-D-L-D. When the threads are arranged into plain weave, on one 
shed, all the light threads will be up; on the next shed, all the dark threads will 
be up (Fig. 5.4.8). When the warps are pushed together, so that no weN  shows 
between them, repeating the plain weave sequence results in a series of horizon-
tal light and dark stripes, each stripe one pick high. To create designs, the weaver 
individually selects which light and dark threads she wants to appear on top for 
each weN  pick. For instance, if the light colored shed is up, but dark threads are 
required for the design, she will pick up the dark threads in the correct  position 
with her [ ngers, dropping their light colored partners to the bottom of the shed. 
9 us for every place a light warp appears on the front of the fabric, a dark one 
appears on the back (Cason and Cahlander 1976; Rowe 1977; Franquemont 1991). 
9 e design is the same on both faces, except that the colors on one side are the 
reverse of those on the other. Both light and dark threads contribute to the struc-
ture of the cloth. Removal of either set would destroy the integrity of the fabric. 
9 e designs made in this technique are not merely ornamental, but red ect the 
deep structure of the fabric (Lechtman 1993).

9 ough motifs are oN en repeated without variation through the length of the 
cloth, the pick-up process o\ ers opportunities for improvisation on every weN . 
9 e basic design unit is a band motif that occupies a relatively small number of 
L-D thread pairs (approximately 6–30; Franquemont 1991; Franquemont and 
Franquemont 2004). Wider and more complex designs entailing a greater num-
ber of threads are built from known band patterns by applying the symmetrical 
principles of translation, red ection, glide red ection, and/or rotation. 9 e repli-
cation of motifs in various orientations oN en creates spaces in the design that 
are used for additional improvisation. For instance, one vertical zig zag repli-
cated by red ection creates a series of bounded diamonds; each diamond area is a 
space where a new motif can be created (Franquemont and Franquemont 2004, 
199–201). Because the patterns are not constrained by any previously deter-
mined loom set up, the motif in each diamond can be di\ erent. Manipulation 
of motifs is only one level of a hierarchical system of nested symmetry opera-
tions in making a woman’s shawl. Each shawl is woven in two pieces of equal 
size which are sewn together so that the shawl has a seam down the center, 
parallel to the pattern bands (Franquemont and Franquemont 2004, 184–187). 
One of the two pieces is rotated 180 degrees before the two are seamed, so that 
termination areas, if visible, occur at di\ erent sides of the cloth. Each half of 
the shawl follows interior principles for placement of the patterned areas and 
plain weave; each patterned area is framed by symmetrical color stripes, and 
the pattern bands have their own internal symmetries. Variations in the size, 
position, and coloring of these elements at any level can denote styles speci[ c 
to a region or village.
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Unlike a d oor loom weaver, an Andean weaver is intimately engaged with the 
threads creating the pattern at every pick. Because there is no automation, the 
design can change throughout the length of the cloth. It is not uncommon for 
one motif to be transformed into another. Most motifs can be expanded or con-
tracted to be woven over more or fewer warps than usual. A textile from Huilloc 
in my personal collection has two bands of a common hooked design side by side. 
One band of hooks is created over ten pairs of warps, ten light and ten dark, and 
the adjoining band takes up eight pairs. Because they are woven over a di\ erent 
number of warps, they also take a di\ erent number of picks for the completion of 
each motif. 9 e end result is that the motifs, while they begin near the bottom of 
the textile neatly aligned, are soon o\ set by half the length of a motif, and move 
gradually back into alignment along the length of the textile. 9 e repeat length 
for such a combination is very long, even though the repeat on each individ-
ual band is relatively short. On a d oor loom such a long repeat would require a 
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a) b) Figure 5.4.8 a) Diagram of 
complementary  warp-faced weave with 
a typical Andean pattern. The weft 
is not visible because the warps are 
packed together
 b) Cross-section showing the equal 
but opposite paths taken by one light-
dark warp pair. The dots represent 
wefts in this diagram
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great number of shaN s and treadles. One might think that such a long repeat 
would also make it di7  cult for a weaver to recreate by hand. Add to the simple 
hooks the large zig zags and multiple animal forms that occur on the same tex-
tile, and it is di7  cult to imagine how such complex designs can be created with-
out  sophisticated equipment or remembered without written notation.

9 e answer is that the Andean weaver depends on algorithms rather than 
on automation. 9 e requirements of the current weN  pick are in many cases 
 determined fairly easily by looking at the previous pick. Instead of remembering  
a se ries of instructions such as two dark, two light, six dark; three dark, two 
light, [ ve dark; four dark, two light, four dark . . . an Andean weaver may have 
a set of mental instructions for creating a diagonal line by shiN ing the light 
threads over by one on each successive pick. 9 is general principle allows her to 
create diagonals of any width or length, over any number of warp threads. 9 e 
diagonal line is of course a very simple example, but a similar principle holds for 
more complex designs. An algorithmic approach simpli[ es weaving the same 
design at di\ erent scales side by side; the weaver is prompted at each step by 
what is already woven. Ethnographic observation suggests that Andean weavers 
remember not every pick in a complete repeat, but the critical picks which form 
turning points in the design, and a series of transformations (Franquemont 
and Franquemont 2004, 197). Altering the sequence of transformations in the 
algorithm can create any desired symmetrical operation on the motif. Weavers’ 
facility in creating the same design in di\ erent orientations can be seen in the 
fact that common motifs are oN en recreated not just at di\ erent scales but in dif-
ferent structures: designs from warp-faced weaving are also seen in weN -faced 
weaving, requiring a mental shiN  of 90 degrees. Motifs from weaving may show 
up on knitted items, involving not just a change in the orientation of the design 
but the ability to translate the requirements of one structure to those of another. 
9 ough complete textiles include many layers of complexity, the total number 
of decisions required to warp a shawl may be as small as twelve (Franquemont 
and Franquemont 187).

Complementary warp-faced weave can be replicated on a d oor loom, and the 
patterns can be automated, but most designs would require more  numerous 
shaN s and treadles than are commonly available, particularly when multiple 
 patterns are combined in the same cloth. Improvisation of large motifs is impos-
sible on a d oor loom without signi[ cant manual intervention. Despite the sim-
plicity of their equipment, ancient Andean weavers experimented with every 
known weave. 9 e d exibility of their simple loom allowed great patterning 
potential even in structures that are typically ‘shaN  hungry’. For instance, auto-
mated double cloth woven on a d oor loom requires four shaN s for each inde-
pendently changing area of color. A simple checkerboard design requires eight 
shaN s; designs of any complexity can easily use sixteen or more. On an Andean 
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loom, just as in complementary warp weave, a double weave pattern is selected 
pick by pick (Cahlander 1985). 9 is allows the creation of [ nely detailed shapes 
including smooth diagonals, and the inclusion of multiple designs across and 
along the cloth. Double cloth can be extended in theory to three, four, or more 
layers. 9 is is rarely done on a d oor loom, but examples are found from ancient 
Peru (Cahlander 1985).

Gauzes are an example of a class of textile structures which are di7  cult to 
create on a d oor loom. In gauze weave, warps cross each other and cross back. 
Common crossing patterns are one warp crossing its nearest neighbor, two warps 
crossing the two nearest neighbors, and one warp crossing its next neighbor but 
one (O’Neale 1948; d’Harcourt 1974; Emery 1994, 180–186). Simple one-over-one 
crossings can be duplicated on a d oor loom with some modi[ cations to the 
 heddling, but complex crossings are practically impossible to achieve.13 9 e warp 
ends on a d oor loom are restrained both by their arrangement in the reed and 
the order of heddles. A variable tension loom has no such restrictions: there is 
no reed, the heddles are d exible, and the crossings are achieved through [ nger 
manipulation of the threads. Gauzes have distinct properties unlike those of any 
other structure. 9 e crossing of the threads compresses the fabric in the weN  
direction, but also lends elasticity. Di\ erent crossing patterns result in di\ er-
ent rates of compression, and di\ erent amounts of stretch. 9 e warp crossings 
hold the weN s apart so that they cannot be packed tightly; the visual e\ ect is of 
open spaces in the cloth. 9 ese openings may be small or large, depending on the 
structure chosen, the thread used, and the spacing of the yarns. Regardless, most 
gauzes have a lacy, transparent quality in which pattern is the result of di\ ering 
weave densities. 9 e most famous Andean gauzes are woven with very [ ne single 
cotton yarns with lots of extra energy, adding even more potential buoyancy to 
the cloth.

Because the peoples of the Andes leN  no texts that have yet been decoded, we 
do not know if they de[ ned for themselves a category of intellectual endeavor 
comparable to our mathematics. Based on the numerical relationships within 
and between khipu (Ascher 1981; Urton 2003; Urton and Brezine 2005), it 
is clear that they had control over the principles of arithmetic in a base-ten 
number system. 9 e sophistication of their architecture, terracing, irrigation 
systems, and textiles suggests that they also had highly developed ideas of 
geometry, symmetry, and engineering. Because we have no mathematical trea-
tises to help us understand how they approached problems, we can only turn to 
the artifacts they leN  and try to deduce what patterns of thought could have led 
to such complex constructions. It should be clear that the nested hierarchical 

13. Becker has replicated ancient Chinese gauzes, some of which have the same structure as some Peruvian 
gauzes. 9 e loom used for these samples is signi[ cantly more complex than the d oor loom described here; 
see Becker (1987) for details.
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structures of Andean cloth are not the result of felicitous invention. Rather, 
they echo cultural principles and ways of perceiving the world (Franquemont 
2004; Franquemont and Franquemont 2004; Washburn 1999). Algorithms for 
creating woven pattern allow a degree of improvisation (Franquemont 2004) 
while ensuring that the structure maintains its integrity. Designs are built up 
pick by pick and thread by thread. Weavers thus work in a [ nite plane com-
posed of discrete elements, rather than on a continuous unbounded Euclidean 
surface. It is tempting to suppose that Andean mathematics before the Spanish 
conquest lay largely in the [ elds we would consider to belong to discrete math-
ematics. Certainly there is no shortage of combinatorial puzzles in Andean 
textiles. A stunning example is given by the symmetrical designs on Paracas 
mantles: they are so complex that they defy traditional group theory classi[ -
cations. Inspired by Peruvian fabrics, Grunbaum pictures 125 distinct planar 
symmetry schemes and 79 ‘ribbon’ patterns (Grunbaum 2004). 9 e addition of 
multiple colors to each motif, and the rotation of colors between motifs, adds 
signi[ cant complexity to the cloth as a whole (Grunbaum 2004, 57–60; Paul 
2004). Color rotations in modern skirt borders are reminiscent of map color-
ing problems. All of these examples indicate that Andean weavers do practice 
mathematics, in the form of sets of principles and transformations that, when 
properly practiced, produce astounding cloth.

Textile puzzles for future mathematical study

9 e above descriptions have focused on the classi[ cation of di\ erent woven 
structures and two di\ erent methods for producing them. Most methods of pro-
ducing woven textiles, regardless of geographic region or historic period, will 
have some similarity to one of the two techniques described. 9 ere are many 
additional complexities that have not been covered here. For instance, it is pos-
sible for a warp thread to go through more than one heddle and so to belong to 
two di\ erent shaN s; this is the basic principle of the drawloom, which was used 
to produce elaborate pictorial textiles (Becker 1987, Crowfoot et al 2001, 23). Two 
sets of shaN s greatly increase the patterning possibilities, and the di7  culty of cal-
culating and enumerating possible structures (Hoskins 1983). Andean weavers 
sometimes use a similar concept: in dual lease weaving, a forked stick holds one 
warp division [ xed, while a set of heddles creates a second, di\ erent but non-
exclusive division of the warp (Franquemont 1991).

Color is the [ rst thing a viewer notices about a piece of cloth, but interest-
ingly, it is oN en excluded from classi[ cation and analysis. 9 e mathematical 
issues associated with the use of color are considerable. 9 ere is a vast family 
of so-called ‘color and weave e\ ects’, in which the apparent pattern on the cloth 
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is a result of the alternation of colors in warp and weN , and does not red ect the 
actual structure (Hoskins 1983, 308; van der Hoogt 1993, 14, 20–21). It would 
be interesting to enumerate the di\ erent two- or three-color possibilities for a 
given set of structures. Is it the case that any two-color design can be produced 
through some color-and-weave e\ ect? What if restrictions are placed on d oat 
length? One might also explore the realm of complementary weaves with three 
or more colors—that is, the class of complementary weaves with more than two 
sets of warps.

Complex cloths such as the gauzes have not been classi[ ed mathematically, in 
part because of the di7  culty of standardizing a diagrammatic representation of 
warp crossings. 9 is is an area where mathematical investigation could be amply 
repaid by the discovery of many new structures that have not been utilized in 
the history of textile production. Each gauze structure has a di\ erent density; it 
would be valuable to specify the relationship between the structure and the elas-
ticity of the cloth. 9 e quality of a gauze is also greatly ind uenced by the charac-
teristics of the yarn used; the impact of yarn energy on [ nished cloth is an area 
that has not been fully studied (Collingwood 1987; van der Hoogt 1993, 19). One 
of the most fruitful collaborations between mathematicians and weavers could 
be the mathematical speci[ cation of structures with certain characteristics. For 
example, what kinds of structures will produce fabric that puckers, stretches, or 
skews? How can one predict from a weaving draN  the [ nal texture of the fabric?

Mathematics can o\ er an inspiring perspective on the study and creation of 
textiles. Being unfettered by assumptions of what can and cannot be practically 
achieved on existing equipment, mathematical classi[ cations can o\ er new [ elds 
for exploration. Grunbaum and Shephard’s work on isonemal fabrics (1988) is a 
case in point. Triaxial weaving, in which three sets of elements cross each other 
at angles of 120 degrees, is not oN en attempted outside of basketry. 9 ree way 
isonemal fabrics o\ er wide scope for experimentation—assuming one can come 
up with a loom on which to weave them!

Conclusion

Within the general principles of interlacement, the possible number of dis-
tinct structures is vast. When pattern is created through structure, rather than 
applied by dyeing, printing, or embroidery, the woven surface acts as a very 
particular kind of canvas. It is a plane with thickness and directionality,  given 
by the orientation of warp and weN  (Grunbaum 2004). Structural elaboration 
is subject to the constraints of machinery, in the case of the d oor loom, or 
to algorithms of pattern construction and elaboration, in the case of hand-
 manipulated weaves created on a body-tensioned loom. 9 ere are clearly di\ erent 
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cultural priorities in each case. European looms were used to increase e7  -
ciency, and to turn out long lengths of consistent cloth with repetitive patterns. 
Continual development and improvement led eventually to power looms and 
the industrial revolution, which forever changed the economic landscape of 
western culture. 9 e desire for increasingly complex woven patterns inspired 
the Jacquard loom, which in turn inspired the [ rst computers. By contrast, 
Andean cloth was and is created in complete, [ nished units. It is never cut. 9 e 
design potential lies not in the physical machinery, but in the mental concepts 
each weaver brings to the loom.

Each textile bears traces of its technique of production and the cultural 
context in which it was created. Fabric structures, their relationship to vis-
ual pattern, and the choice of symmetrical manipulations are all evidence of 
craN speople’s understanding of the geometrical principles of interlacement. 
Whether one creates cloth by inventing an elaborate machine, or by construct-
ing the intellectual framework for complex mental computations, the existence 
of cloth is evidence of mathematics at work in the tangible world. Creating 
pattern through interlaced structure is no less astounding than patterning a 
d oor with an elaborate tiling or a hillside with terraces. It red ects the applica-
tion of abstract principles to physical objects. In the Andean case, surviving 
textiles are some of the few hints we have about how people conceived of space, 
number, and symmetry. European textiles are no less telling as evidence of 
the careful planning and geometric understanding needed to achieve complex 
patterning within the restrictions set by the d oor loom. 9 ose who make cloth 
are always interested in new structural possibilities, and many mathematicians 
are intrigued by unfamiliar puzzles inspired by real-world situations. 9 e two 
[ elds have much to o\ er each other.
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CH A P T ER 6 .1

9 e cognitive and cultural foundations of 
numbers
Stephen Chrisomalis

Every known human society has the capacity to manipulate quantity; in 
this sense, mathematics is panhuman. 9 e extent to which any individual 

or group pays special attention to mathematical concepts, however, is cross-
culturally variable. 9 e study of the cultural, (pre)historical, and social aspects 
of numeration and arithmetic—the foundations of mathematics—is preoccupied 
with the tension between the universal and speci[ c aspects of the subject. While 
recent scholarship from cognitive science, generative linguistics, and neuro-
psychology provides ample evidence that there are some ‘hard-wired’ aspects of 
human numerical faculties, developmental psychologists, ethnomathematicians, 
anthropologists, historians, and historical linguists stress the di\ erences among 
cultures and historical periods. How, then, can we synthesize and reconcile these 
disparate literatures? To assume, a priori, either that universal aspects of numer-
ation or local and historically contingent developments are of primary interest is 
premature and misguided.

To add to the confusion, the history of numeration lingers under a series of 
pervasive myths. Nineteenth-century unilinear notions of the evolution of soci-
ety from ‘savagery’ or ‘primitiveness’ to ‘civilization’ continue to haunt the sub-
ject. Such notions have persisted despite a paucity of evidence, partly because the 
data to refute them are spread among multiple disciplines, and partly because 
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there is a su7  cient kernel of truth to them to warrant further investigation. A 
comparative and historical perspective can help debunk the untenable and shore 
up the sustainable propositions.

Every known human language has some means of expressing quantity, and in 
virtually all languages this includes two or more words for speci[ c integers (oral 
only in non-literate societies, oral or written in literate ones). Most societies, per-
haps all, possess one or more means of conducting arithmetic mentally or with 
the aid of various artifacts and techniques that serve as computational technolo-
gies. Finally, a smaller number of societies have a set of visual but primarily non-
phonetic numeral-symbols that are organized into a numerical notation system. 
Western numerals and Roman numerals are merely two well-known examples 
among the many distinct systems used over the past 5,500 years.1 9 e linkages 
between number words, computational technologies, and number symbols are 
complex, and understanding the functions each serves (and does not serve) will 
help illustrate the range of variability among the cognitive and social systems 
underlying all mathematics.

Number words and number concepts

Although linguists, particularly European philologists, have been interested in 
numeral systems for centuries (Pott 1847; Kluge 1937–42; Salzmann 1950), most 
of this work was largely non-theoretical description of the numeral systems of the 
world’s languages. In the 1960s, both the generative grammar framework pio-
neered by Noam Chomsky and the research into cross-linguistic universals led 
by Joseph Greenberg used numerical evidence as support for panhuman linguis-
tic capabilities, leading to a renewed interest among psychologists, philosophers, 
and linguists in the foundations of numerical systems in the human language 
faculty.

Linguists are divided about just what the existence of a universal number 
concept means in terms of human evolution and the existence of an ‘innate’ 
number sense. Chomsky (1980, 38–39) believes that natural selection could 
not have selected for the human number concept, and thus contends that it is 
qualitatively di\ erent from the quanti[ cational abilities of apes and other ani-
mals. Mathematics must, therefore, be no more than a by-product of some other 
evolved ability, such as the language faculty. For Chomsky, the language fac-
ulty and the number faculty (and these two faculties alone) share the concept 

1. I use the term ‘western’ to refer to the signs 0123456789 instead of ‘Arabic’ and ‘Hindu-Arabic’, not to 
deny that this innovation was borrowed from a Hindu antecedent through an Arabic intermediary, but to 
avoid confusion with the distinct Indian and Arabic numerical notations used widely to this day. Rendering 
these latter notations ‘invisible’ through nomenclature is counterproductive and potentially ethnocentric.
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of ‘discrete in[ nity’—the ability to create an in[ nite number of things from a 
smaller and [ nite set of discrete symbols (Chomsky 1988, 167–168). However, 
while all languages can, in theory, produce an in[ nite number of sentences or 
phrases from their existing vocabulary, there is no natural language whose num-
ber sequence can be extended inde[ nitely without the creation of new numeral 
terms (Greenberg 1978, 253). For instance, English dictionaries normally end the 
number sequence at ‘decillion’, and one needs a new number word to form ‘one 
thousand decillion’ in a regular fashion. 9 is is in direct contrast with place-value 
numeral notation systems, in which one may add zeroes to a number ad in[ n-
itum. Unless one wishes to argue that the number concept is divorced entirely 
from the numeral words, this is poor evidence that the number concept derives 
from the language faculty. Nevertheless, attested languages display considerable 
regularities in the structure of their numerical systems, which suggests that some 
underlying principles severely constrain or even determine the range of outcomes 
(Hurford 1975; Greenberg 1978; Corbett 1978).

A more sophisticated version of this hypothesis is that promoted by the cogni-
tive linguist Heike Wiese (2003; 2007). Wiese argues, based both on her empir-
ical research and on the mathematical philosophy of Frege (1884), Russell (1903), 
and others, that numeral words ‘do not refer to numbers, they serve as num-
bers’ (Wiese 2003, 5). 9 e number concept is a byproduct of the language faculty; 
numerals developed once language did, as a means of labeling objects within 
the context of counting activities (for example, naming the [ ngers, or pebbles, 
or other physical objects), and thus became the numbers themselves. It is com-
mon cross-linguistically for the names of numerals, particularly ‘[ ve’ and ‘ten’, 
to be connected etymologically to the [ ngers or hands (Bengtson 1987). Hurford 
(1987) argues along similar lines that one possible origin of number words is 
through counting rhymes and games such as ‘eeny-meeny-miney-mo’, rather 
than as an automatic linguistic expression of an underlying concept. 9 is inter-
dependent co-evolution of numeral words and numerical concepts is a reasonable 
proposition and is congruent with much of the linguistic literature on the subject 
of number, but as a historical or evolutionary hypothesis remains untested at 
present.

In contrast to these perspectives, which stress the universality of the number 
sense but also deny that it evolved speci[ cally under natural selection, Stanislas 
Dehaene (1997) and Brian Butterworth (1999), working from neurological and 
psychological foundations, argue that the structure of the brain will tell us a great 
deal about how humans count and compute. One line of evidence suggesting 
that this is so is that various animals have been demonstrated to possess quan-
ti[ cational abilities, particularly the ability to distinguish small quantities up to 
three or four (McComb et al 1994; Hauser 2005). Pre-cultural and pre-linguistic 
infants have been shown to possess such abilities as well, by means of attention 
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studies that examine the attention and gaze of infants at arti[ cially unexpected 
or counterintuitive numerical situations (Wynn 1992; 1998). Regardless of lan-
guage, humans can more easily distinguish four from [ ve objects in a group than 
nineteen from twenty objects, and more easily distinguish eight from twelve 
objects than nine from eleven—suggesting some sort of intuitive, plausibly hard-
wired analog numerical representations.

Yet, as Carey (2001) points out, even if this is the case, the number line itself, 
based on the successor function of discrete integers, may nonetheless be a cul-
tural construction and may not be evolutionarily hardwired. Geary (1995) and 
Miller and Paredes (1996) have discussed the di\ erences between Chinese and 
English numerical systems and their cognitive consequences in terms of ease of 
learning for children, suggesting that even where there are universal aspects of 
numeration, variability also plays a major role. While the ability to distinguish 
two lions from three seems relevant from the perspective of natural selection 
within the evolutionary history of hominids, the ability to do most arithmetic, or 
to organize numerical systems in terms of a base and its powers, does not. If these 
are indeed universal phenomena, other explanations are needed.

Culture, number, and cognition

From early in the study of other societies, the absence or relative paucity of 
numeral words has been regarded as evidence of savagery among the indigen-
ous peoples of the world. Perhaps the most notable statement of this sentiment 
is ‘On the Numerals as Evidence of the Progress of Civilization’ by the Scottish 
surgeon-scholar John Crawfurd, then president of the Ethnological Society 
(Crawfurd 1863). Crawfurd’s position was that numerals were among the last 
words invented in any language, and that they ‘advance with the progress of civ-
ilization’, and thus that the ‘social condition of a people is, therefore, in a good 
measure, indicated by its numeral system’ (Crawfurd 1863, 84). Nothing about 
the concept of natural selection implies progress. Nevertheless, following the 
publication of Charles Darwin’s Origin of species in 1859, Darwin and his col-
leagues, working in a Victorian context where British imperial rule was nearly 
unchallenged, oN en wrote and behaved as if culture evolved in a single line from 
simple to complex. In this social and intellectual context, which owed much to 
Enlightenment speculative histories and racialism, numerals could serve as an 
easily quanti[ able surrogate for measuring cultural progress. Darwin’s cousin 
and friend, Sir Francis Galton reported of the Damara of Namibia that:

they certainly use no numeral greater than three. When they wish to express four, they 
take to their [ ngers, which are to them as formidable instruments of calculation as a 
sliding-rule is to an English schoolboy. 9 ey puzzle very much aN er [ ve, because no 
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spare hand remains to grasp and secure the [ ngers that are required for units. (Galton 
1853, 133)

Galton’s report need not be taken at face value; he was not d uent in Damara, 
which in fact has more numerals than he suggests. His und attering account was 
used by Conant (1896) and others as evidence for the proposition that small-scale 
societies were generally numerically incompetent. 9 e notion that the inventory 
of numeral words in a language is evidence for or against its speakers’ degree of 
civilization remained current throughout much of the twentieth century. It is 
found prominently in the psychologically-informed ethnology of Lucien Lévy-
Bruhl (1966 [1910]), who distinguished ‘primitive’ numeration based on ‘con-
[ gurations’ of small quantities (pair, triad, etc.) from true cardination and the 
successor principle. Yet the lack of any meaningful de[ nition of ‘primitive’ and 
‘civilized’ independent of this assertion renders these conclusions invalid; they 
do no more than assert that societies that lack extensive series of numeral words 
are representative of an earlier stage of human development.

It nonetheless cannot be denied that there is some correlation between the 
size of the set of numeral words in a language and other aspects of social life. 
Greenberg (1978), in his study of universals of numeration, pointed out that all 
the languages with limited sets of numeral words were small-scale societies, and 
suggested the need to inquire further into the implications of this [ nding for 
cultural evolutionary studies. Divale’s (1999) study of two samples of sixty-nine 
and one hundred and thirty-six societies and their numeral-words revealed a 
reasonably strong correlation between the highest number normally expressible 
in a language, and the degree to which the speakers of that language relied on the 
storage of foods (especially grain cereals) to prevent starvation due to climatic 
instability. He reasons that one potential explanation is that societies need to 
quantify such foods in order to collect and distribute them (see also Steensberg 
1989). 9 e degree to which a society is able to marshal resources to store food on 
a large scale, in turn, is related to social size and complexity. 9 is correlation is 
interesting and deserves further study, but is unlikely to be the sole or even the 
primary determinant of the size of the numerical lexicon.

A recent controversy involves the ethnographic study of the Pirahã by the lin-
guist Daniel Everett, who asserts that this group of Amazonian horticulturalists 
possess no numeral words whatsoever, as part of a general cultural constraint 
against referring to objects and concepts outside of immediate experience (Everett 
2005). 9 is represents the most forceful and best-documented instance of such an 
assertion, and comes from a lengthy period of ethnography over some decades. 
Although the Pirahã have had centuries of contact with Brazilians of Portuguese 
descent, including trade relations, Everett has never heard them use any numeral-
words, although he recognizes that certain grammatical constructions have a 
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‘quanti[ cational smell’ (Everett 2005, 625). 9 e Pirahã themselves are acutely 
aware of this absence, and expressed concern to Everett that their lack of arith-
metic was hindering their trade relations with Portuguese-speaking itinerant trad-
ers, but nevertheless had limited success in an educational program designed by 
Everett to teach them quanti[ cation. Gordon (2004), based on a short [ eld period 
among the Pirahã, presents some evidence from psychological testing that seems 
to suggest that the Pirahã lack of quanti[ cational words extends to the perceptual 
and cognitive domains as well. Dixon (1980, 107–108), similarly, has argued that 
there are no true numeral words in some Australian languages. Everett’s assertion 
that a Pirahã cultural constraint inhibits their use of quanti[ cation and structures 
their thinking about the world is contentious but deserving of further study.

Aside from the work of Everett and Gordon, there is some evidence that speak-
ers of languages that have limited sets of numeral words also have speci[ c limita-
tions in numerical cognition. Findings from developmental psychologists such 
as Piaget (1952) and Vygotsky (1962) provide an independent set of criteria on 
which numerical cognition can be judged cross-culturally. Lancy (1983) under-
took detailed psychological testing of members of various groups in Papua New 
Guinea and found that monolingual children who spoke local languages and had 
no formal education had considerable di7  culty with tasks considered simple for 
their age. 9 is work is supported by the massive linguistic research of Lean (1991). 
Yet as Gay and Cole (1967) note, traditional mathematical practices can in fact 
have cognitive advantages over those achieved through Western-style education; 
the Kpelle of Liberia, among whom they worked, could, for instance, more accur-
ately estimate the volume of a pile of rice than Western-educated individuals, 
although they performed arithmetical calculations more poorly (see also Reed 
and Lave 1979). We must be cautious before inferring causation from correlation 
in these cases, and be wary of ethnocentrically projecting Western interests and 
values onto tribal societies.

9 e presence or absence of many numeral words in these languages must 
be conceived in terms of perceived social needs (or lack thereof) rather than as 
an intellectual failing. Hallpike (1979, 237), who generally follows Lévy-Bruhl 
in asserting that abstract number concepts are absent from primitive societies, 
nonetheless cautions that numerical abstraction ‘cannot be deduced merely from 
the existence of a series of verbal numerals, even a series extending to 100 or 1,000 
or more’. Hallpike stresses instead that only the presence of the right sort of social 
problems leads to the cultural evolution of formal-logical reasoning about quan-
tity. 9 ere is abundant evidence that when numeral words are desired, speakers 
of any language are capable of extending their numeral word sequence, either 
through modeling new words on older ones in their own language, or through 
borrowing words from other languages. It cannot be ruled out that when the 
need is no longer present, higher numeral words cease to be used.
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Some languages use di\ erent sets of numeral words for counting di\ erent 
classes of object, or numeral classiF ers. Some linguists and ethnographers argue 
that numeral classi[ ers represent evidence of ‘concrete’ counting as opposed to 
‘abstract’ numeration. While in some cases this variability simply amounts to 
the use of di\ erent morphemes at the end of a single set of numeral words, in 
other cases the numeral words are radically di\ erent. Conant (1896) presented 
a group of numeral systems from the Tsimshian language of northern British 
Columbia, Canada (Table 6.1.1). Conant held that the use of multiple systems 
represented linguistic ‘primitivity’ and suggested a lack of numerical abstraction, 
and through Lévy-Bruhl and others this idea enjoys some currency in the con-
temporary study of numerals. 9 e work of the Near Eastern archaeologist Denise 
Schmandt-Besserat (1984; 1992) on token systems of the prehistoric Middle East 
relies heavily on the notion that the use of di\ erent symbols (lexical or graphic) 
for the same numerical referent has cognitive implications for the users of such 
semiotic systems. 9 is theory has been developed more thoroughly by Peter 
Damerow (1996), who notes that the multiplicity and semantic ambiguity of the 
numerical notation systems of late fourth-millennium Mesopotamia suggest an 
incompletely abstract number concept.

Yet the languages that have numeral classi[ ers include the Maya languages, 
whose users developed complex astronomy, mathematics, and architecture 
(Berlin 1968; Macri 2000) and Japanese (Downing 1996), whose speakers can 
hardly be accused of non-abstract mathematical thought. In fact, numeral clas-
si[ ers are no more than a taxonomic system akin to (though more speci[ c than) 
grammatical gender. 9 ey may well red ect particular cultural perspectives on 
the classi[ cation of reality, but they do not imply that their speakers thus have 
no sense that gy’ap and kpal have an underlying ‘tenness’ any more than English 

Table 6.1.1 Tsimshian numerals with classi? ers (Conant 1896, 87)

No. Counting Flat 
objects

Round 
objects

Men Long objects Canoes Measures

  1 gyak gak g’erel k’al k’awutskan k’amaet k’al
  2 t’epqat t’epqat goupel t’epqadal gaopskan g’alpēeltk gulbel
  3 guant guant gutle gulal galtskan galtskantk guleont
  4 tqalpq tqalpq tqalpq tqalpqdal tqaapskan tqalpqsk tqalpqalont
  5 kctōnc kctōnc kctōnc kcenecal k’etoentskan kctōonsk kctonsilont
  6 k’alt k’alt k’alt k’aldal k’aoltskan k’altk k’aldelont
  7 t’epqalt t’epqalt t’epqalt t’epqaldal t’epqaltskan t’epqaltk t’epqaldelont
  8 guandalt yuktalt yuktalt yuktleadal ek’tlaedskan yuktaltk yuktaldelont
  9 kctemac kctemac kctemac kctemacal kctemaetskan kctemack kctemasilont
10 gy’ap gy’ap kpēel kpal kpēetskan gy’apsk kpeont
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speakers are confused between six eggs and a half-dozen. With regard to late 
fourth-millennium Mesopotamian tokens and numerals, the accountants and 
scribes who used them were able to manage complex administrative tasks, and it 
is implausible that they did not recognize that ‘8 sheep’ and ‘8 bushels of grain’ 
had something in common. 9 ere is simply no evidence from existing human 
languages for Bertrand Russell’s assertion that, ‘It must have required many ages 
to discover that a brace of pheasants and a couple of days were both instances of 
the number 2’ (Russell 1919, 3).

Since the 1980s, the development of ethnomathematics has stressed that numer-
ical concepts develop in di\ erent cultures in di\ erent ways, and that we should 
not dismiss too readily the achievements of non-western societies (Ascher 1991; 
Powell and Frankenstein 1997). Ethnomathematics provides a useful antidote to 
the sometimes aggressive Eurocentrism of earlier decades, and has brought con-
temporary anthropological insights to the study of mathematics, but balances a 
[ ne line between universalism and radical relativism. It is di7  cult to know what 
to make of Mimica’s claim (1988) that the Iqwaye of Papua New Guinea devel-
oped the concept of trans[ nite numbers on the basis that an informant used the 
same numeral word for ‘one’, ‘twenty’, and ‘four hundred’ (that is, x = x2 = x3). 
Similarly, despite Urton’s fascinating assertion (1997) that the Quechua number 
concept is strikingly di\ erent from the western standard, and thus that the ontol-
ogy of numbers is culturally relative, it is extremely di7  cult to evaluate such 
statements in the absence of some criteria for evaluating the universality of the 
concept in the [ rst place. Crump’s (1990) anthropologically and psychologically-
informed synthesis remains the best of this work to date, forcing us to recognize 
both similarities and di\ erences in number concepts. Ethnomathematics high-
lights the fact that there can be di\ erences in numerical cognition that do not 
imply necessary distinctions between right/wrong, simple/complex, or primitive/
evolved.

Tallying and abacus methods

Alongside the universal or nearly universal employment of numeral words, the 
use of notched sticks, knotted strings, and other artifacts for recording number 
is similarly quite widespread cross-culturally. 9 is has been thoroughly dem-
onstrated for African societies (Lagercrantz 1968; 1970; 1973; Zaslavsky 1973), 
and more sporadically elsewhere in the world. Yet some objects called ‘tallies’ 
are structurally complex and are designed to represent completed enumerations; 
the Inka khipu knot records, for instance, record numbers using a decimal sys-
tem with place-value (Ascher and Ascher 1980; Urton 1997, 2003). Many of the
so-called tallies of medieval Europe are simply wooden slabs or blocks on which 
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Roman numerals have been carved (Baxter 1989). ‘Tallies’ of this sort are sim-
ply numerical notations that happen to be notated on media di\ erent than those 
used for phonetic scripts.

Tallies that notate quantities serially, using one mark for each object, however, 
are distinct from numerical notation. 9 us, a tally for 15 might read IIIII IIIII 
IIIII. 9 ey are visual and representational, but the function of such artifacts is 
quite distinct: they are serial records of an ongoing enumeration activity rather 
than a [ nal cardinal count (as in the Roman XV). Each sign, regardless of its 
shape or the spacing, represents one unit, and even though the signs can be read 
as a cardinal count, the process of making them is ordinal. 9 ey are immedi-
ate aids to computation, albeit of fairly limited d exibility. Because they are not 
intended primarily for permanent record keeping, their archaeological survival 
is limited, and in fact some tallies may not survive to be discarded. For instance, 
Herodotus relates an episode in which Darius of Persia tied sixty knots in a thong 
and then instructed a group of Ionian despots to untie a knot each day while 
awaiting his return (Herodotus, Histories 4.98).

Tallying is evidently of great antiquity, and probably dates back at least to the 
Upper Paleolithic period (35,000–10,000 bc), when anatomically modern humans 
notched bones and possibly other perishable materials (Absolon 1957; Marshack 
1972). In some cases, as in the Etruscan/Roman numerals, tally-systems gave rise 
to numerical notation systems (Keyser 1988). Nonetheless, by no means are tal-
lies primitive, sub-optimal, or simply precursors of written numerals. 9 eir func-
tions are completely di\ erent; even in contemporary western societies all sorts of 
repetitive numerations are taken by marking tallies in groups of [ ve, with the 
[ N h crossing out the [ rst four. Even in an age of widespread electronic computa-
tion there is no reason to believe that the humble tally, likely tens of thousands of 
years old, is at risk of disappearing. Nevertheless, tallying systems are primarily 
suited to serial counts of objects, rather than general arithmetical functions, and 
thus merchants and administrators generally require additional computational 
devices or representational systems to aid in arithmetic.

9 ere is substantial ethnographic and historical evidence demonstrating that 
computational techniques among non-literate or minimally literate groups are 
abundant and e7  cient for the tasks for which they are needed. While school 
arithmetic is generally decimal, the mental arithmetic of non-literate artisans and 
traders is oN en based on doubling, halving, and quartering (Petitto 1982; Rosin 
1984). Basque-speaking shepherds in contemporary California use a highly e\ ect-
ive array of computational techniques including spoken numeral words, mental 
arithmetic, and a tallying-system of pebbles and notched sticks (Araujo 1975). 
9 e Kédang people of Indonesia accomplish complex mensuration and numer-
ation tasks, such as the measuring and evaluation of elephant tusks as part of 
the ivory trade (Barnes 1982). In various societies of Melanesia, ‘body-counting’
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is used in place of numeral words, naming various parts of the body in sequence 
as a means of counting (Saxe 1981; Biersack 1982).

9 e pebble-abacus was the central technique for performing computations 
in the ancient eastern Mediterranean (Lang 1957; Taisbak 1965; Schärlig 2001). 
Roman and Greek numerals were oN en used to notate the column-values on 
the device, and to record the results of computations performed on permanent 
media, but otherwise were irrelevant to the practice of arithmetic. While only 
around thirty classical abaci have survived, Netz (2002, 327), noting that ‘9 e 
abacus is not an artefact; it is a state of mind’, rightly cautions that any d at sur-
face and set of objects can su7  ce. Nevertheless, following the classical period, 
there is no substantial archaeological, textual, or artistic evidence for the use 
of the abacus between the [ N h and tenth centuries ad. In the tenth century in 
Europe, a sort of abacus was revived under the particular ind uence of Gerbert of 
Aurillac (later Pope Sylvester II), who was also one of the primary early adopters 
of Arabic numeration in the West aN er being exposed to Arabic arithmetic dur-
ing his travels in Toledo around 970 (Folkerts 2001). Instead of using multiple 
pebbles or balls in each column, Gerbert’s ‘abacus’ was a grid on which tokens 
called apices were laid out, each one bearing a western numeral from 1–9, or 
a zero-sign called tsiphra (Berggren 2002, 355–357). 9 ese tokens were manip-
ulated by moving them from column to column, and its users were known as 
‘abacists’. Yet Roman numerals predominated for actually writing the results of 
computations performed, and not until Leonardo of Pisa (Fibonacci) wrote his 
Liber abaci in 1202 did pen-and-paper arithmetic using western numerals begin 
to spread across western Europe, among the so-called ‘algorismists’ (Burnett 
2006). Yet until the sixteenth century and the advent of printed arithmetics, 
most merchants and administrators used neither ‘Gerbert’s abacus’ nor Western 
numerals, but rather computation on boards with unmarked tokens or pebbles, 
much like the Greco-Roman abacus (Baxter 1989). 9 roughout the Middle Ages 
the English technique of choice was the cloth ‘Exchequer board’, etymologically 
related to ‘checkerboard’ (with results written in Roman numerals); the mod-
ern British title ‘Chancellor of the Exchequer’ preserves the linkage between the 
counting board and commerce (Murray 1978, 169).

Another reliable, inexpensive, and portable computational ‘technology’ are 
the [ ngers. 9 ere is widespread evidence for the use of [ nger-numbering and 
arithmetic in classical Greece and Rome, including depictions of individuals 
reckoning with the [ ngers, tesserae ‘gaming tokens’ showing particular [ nger 
con[ gurations along with Roman numerals, and abundant textual references 
(Alföldi-Rosenbaum 1971; Williams and Williams 1995). Finger-reckoning was 
the primary arithmetical technique employed in early medieval Europe, and 
was strongly praised by Bede in his work on calendrical computation (Wallis 
1999). Finger-reckoning systems remained in use in Europe and the Middle East 
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throughout the Middle Ages into the early modern period (Saidan 1996). Like 
any technique (including pen-and-paper arithmetic), [ nger-reckoning rests on a 
foundation of memorized arithmetic facts and/or visual representations such as 
multiplication tables. Chisanbop, an arithmetical technique developed in Korea 
in the 1940s, uses the [ ngers to notate and reckon as if they were a quasi-abacus 
(Lieberthal 1979).

From at least the fourth century bc until the sixteenth century ad, East Asian 
arithmetical procedures were centered around the suan zi, or counting rods, and 
their written representation, the rod-numerals (see Volkov, Chapter 2.3 in this 
volume). 9 e counting rods were thin sticks or strips of bamboo, wood, ivory, or 
bone, and could be manipulated in columns to represent numbers in a place-value, 
decimal manner, much as the Roman abacus. As with most technologies, the ini-
tial reaction to them involved some skepticism—the Daodejing, written around 
300 bc, asserts that ‘Good mathematicians do not use counting-rods’ (Needham 
1959, 70–71). Yet they were very quickly adopted, and were the foundation of 
Chinese mathematical practice until the late Ming dynasty. One of the primary 
advantages of the system was that the physical rods could easily be transformed 
into written numerals using horizontal and vertical lines to notate the position of 
the rods. Many Chinese mathematical terms use the radical for ‘bamboo’, further 
signifying the linkage between the counting rods and mathematics (Needham 
1959, 72). Although physical rods themselves are no longer used, they survive in 
written form today in a numerical notation system called an ma, used in com-
mercial contexts such as bills and invoices (Martzlo\  1997, 189).

9 e suan pan or Asian bead-abacus is of relatively recent origin, probably no 
earlier than the fourteenth century, and not until the seventeenth century did it 
de[ nitively supplant counting rods. 9 ere is little evidence of a competitive envi-
ronment between users of the suan zi and the suan pan to parallel the ‘abacist–
algorismist’ debate in Europe or the later debate between users of the counting 
board versus users of western numerals. Nevertheless, the transition did occur 
throughout East Asia, where the suan pan (called soroban in Japanese) is a central 
part of mathematics education to the present day. No similar transition seems 
imminent today that would result in the abandonment of the suan pan. Although 
western numerals are ubiquitous in Japan and commonly used in China, Chinese 
numerals are rarely used for pen-and-paper arithmetic.

9 is state of a\ airs is by no means indicative of a hidebound mindset or stub-
bornness. Stigler (1984) showed that Japanese master abacus users employ a ‘mental 
abacus’—a mental representation of intermediate and prior positions in a computa-
tion that greatly enhances the purely material aspects of the technology. A trained 
abacus user can normally manipulate multi-digit numbers far more rapidly than 
any reckoner using pen and paper. On 12 November 1946, the American military 
service newspaper, Stars and Stripes, sponsored a competition between Private 
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9 omas Wood, an American soldier trained in the use of one of the sophisticated 
electronic calculators available at the time, and Kiyoshi Matsuzaki, an administra-
tor and abacus master (Kojima 1954). Although the competition was surely designed 
to impress the audience with the superiority of American technical ingenuity, the 
Japanese competitor won four of the [ ve events. Zhang and Norman (1995) scorn 
abacus users for using one technique for arithmetic and another for writing results 
in numerals, as part of their argument that western numerals are uniquely e7  cient 
arithmetical tools. 9 e merit of such a position vanishes once it is recognized that 
pen-and-paper arithmetic with western numerals cannot be demonstrated to pos-
sess this putative superiority.

Although their surviving calendrical and divinatory texts do not notate cal-
culations performed (only results), Landa reported in his Relación de las cosas de 
Yucatán that the Maya and related peoples of lowland Mesoamerica computed 
using a d at board or on the ground (Tozzer 1941, 98). 9 e Guatemalan Maya at 
Panajachel in the 1930s reckoned using cacao beans or stones in groups of [ ve or 
twenty, and this may be a survival of earlier Maya practices (9 ompson 1941, 42). 
In sixteenth-century Peru, Don Felipe Guaman Poma de Ayala, the son of a con-
quistador and an Inka princess, depicted a khipukamayuq (khipu-administrator) 
using the traditional khipu system of knotted cords along with an abacus-like 
grid of black and white pebbles or stones (Wassén 1931; Urton 1998, 417–420). 
Because the khipu could not meaningfully have been manipulated for arithmetic, 
some abacus-like technique would have been needed to administer the expansive 
and multi-ethnic Inka Empire.

Computational devices like the abacus were so prevalent in pre-modern states 
that one might reasonably ask why they would be replaced, given that, at the 
very least, they seem to have been as e7  cient as pen-and-paper computation. To 
answer this question, we need to look seriously at the alternative.

� e emergence and spread of numerical notation

While many societies possess visual and/or material tallying techniques, only 
some societies possess numerical notation. Numerical notation systems are vis-
ual but primarily non-phonetic structured systems for representing numbers 
permanently. Typically they do so using a set between three and forty signs, 
which combine together by means of a numerical base, oN en but not always that 
of the language spoken by its inventors. Over 100 structurally distinct numerical 
notation systems are known to have been used between 3500 bc and the present 
day (Chrisomalis forthcoming; see also Cajori 1928; Smith and Ginsburg 1937; 
Menninger 1969; Guitel 1975; Ifrah 1998). Unlike number words, they represent 
numbers translinguistically, and do not follow the grammar or lexicon of any 



The cognitive and cultural foundations of numbers 507

speci[ c language. Unlike tallies, they represent completed enumerations, and 
unlike computational technologies, they create permanent records of numerals. 
9 ey can be used for computation, but historically this function has been rare. 
9 e primary typological distinction among them is between additive and pos-
itional (place-value) systems, although this is not the only relevant distinction 
that can be made (Boyer 1944; Chrisomalis 2004).

9 e earliest attested numerical notation is the proto-cuneiform system used in 
the ancient Mesopotamian city-state of Uruk in the late fourth millennium bc 
(Nissen, Damerow, and Englund 1993). In its initial state, proto-cuneiform writ-
ing consisted of a large repertory of at least [ N een di\ erent systems for numerical 
representations of di\ erent categories of objects, persons, and capacity measures, 
along with ideograms and pictograms for the various things being enumerated. 
It served as an administrative system for the urban temple economy of Uruk and 
other cities throughout Mesopotamia, and well as the Proto-Elamite area to the 
east, in modern Iran (Potts 1999).

In a series of articles and books, the Near Eastern archaeologist Denise Schmandt-
Besserat has suggested that the Uruk numerical notations, and ultimately writing 
itself, are the end product of a millennia-long history of accounting and adminis-
tration. 9 roughout the Neolithic in Mesopotamia, possibly as early as 8000 bc,
clay tokens were used as administrative tools much as tally-sticks and knotted cords 
might, using one-to-one correspondence between the counters and the objects being 
enumerated, as part of a sophisticated accounting system. Schmandt-Besserat’s 
hypothesis, itself derived from the earlier work of Amiet (1966), is suggestive, but 
must be read in the context of severe criticisms such as those of Lieberman (1980) 
and Zimansky (1993). In particular there is little evidence that the speci[ c forms of 
the clay tokens bear any resemblance to the proto-cuneiform signs.

It would be erroneous, however, to assume that numerical notation developed 
independently only in Mesopotamia, or that the developmental trajectory that it 
took there provides a general template for its development elsewhere. In Egypt, 
the earliest numerals are found on labels for mortuary o\ erings, in a royal tomb 
from a cemetery at the city of Abydos, dating to around 3250 bc (Dreyer 1998). In 
China of the Shang Dynasty, the [ rst written documents (c 1200 bc) are records 
of royal divinations (Tsien 2004). In the Middle and Late Formative periods in 
Mesoamerica (c 600 bc–150 ad), virtually all of the earliest Zapotec, Olmec, and 
Maya inscriptions contain numerals, but their use is strictly in names and dates, 
never administrative (Houston 2004). With the possible exception of the Egyptian 
case, there is very minimal likelihood that the development of numerical nota-
tion was spurred by di\ usion from Mesopotamia or anywhere else. Rather, the 
development of both writing and numerical notation is correlated with the for-
mation of early states in each region, but the functions for which these represen-
tational systems are used are quite distinct.



people and practices508

Postgate, Wang, and Wilkinson (1995) suggest that the reason we have not 
found evidence of early administrative writing and numerical notation in Egypt, 
Mesoamerica, and China is that such documents were written on perishable 
materials that have not survived. 9 ey use this line of reasoning to propose that 
writing emerges everywhere as it did in Mesopotamia: for bookkeeping and 
accounting-related functions concerning state administration. Yet in the absence 
of evidence that this is so, such assertions are unjusti[ ed. 9 ere is simply no rea-
son to expect that the invention of writing and numerical notation must always 
have the same underlying function everywhere. It is nonetheless true that numer-
ical notation developed independently only in socially complex societies that had 
considerable need to represent quantities. Nevertheless, in other cases—as in the 
expansive, densely populated states of West Africa—numerical notation simply 
never developed, so it cannot be regarded as an absolute necessity.

Because numerical notation is used widely in exchange and administration, its 
spread and adoption is strongly correlated with imperialism, long-distance trade, 
and other political and economic processes associated with states. Although most 
numerals are used for representation rather than computation, the employment 
of numerical notation systems for astronomy, mathematics, and related scien-
ti[ c practices has also played a central role in their di\ usion. Because numerical 
notation is not tied to any speci[ c language, is not as di7  cult to learn as, for 
instance, a writing system, and is a communication technology used in the con-
text of long-distance commercial and scienti[ c exchanges, it di\ uses readily in 
many circumstances. 9 e well-attested spread of Hindu numeration to Europe 
through Arabic intermediaries has led di\ usionist explanations to be wide-
spread in the literature on numerals, oN en with good reason. I have argued, on 
the basis of cultural contact and structural similarities that the Greek alphabetic 
(or Ionian) numerals developed out of the Egyptian hieratic or demotic numerals 
used in the 6th century bce in the context of circum-Mediterranean trade rela-
tions (Chrisomalis 2003). Yet the Greek inventors of the alphabetic system were 
highly innovative; their use of the letters of the alphabet, in sequence, as numeral-
signs was unparalleled elsewhere, and the uses to which Greek numerals were put 
di\ er substantially from those for which Egyptians used them.

On the other hand the notion that most people are uncreative and therefore 
most mathematical developments made only once, and spread from a single 
center, is quite incorrect and frequently tinged with racist assumptions about 
non-European peoples. Seidenberg’s (1960; 1962) pronouncements on the dif-
fusion of mathematics, geometry, and all numbers higher than two as part of 
a Mesopotamian or Indian Neolithic ritual complex, and his insistence that all 
Maya numeration and mathematics was derived from Babylonia (Seidenberg 
1986), are extreme and unsupported by any textual or archaeological evidence. 
Joseph Needham’s remarks on the subject of the priority and di\ usion of Chinese 
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mathematics are more tentative and a necessary counterpoint to Eurocentrism, 
but nonetheless the notion that the Chinese spread place-value to Babylonia 
(Needham and Wang 1959, 146–150) or that Chinese mathematics ind uenced 
Mesoamerica (Needham and Lu 1984) cannot be sustained.

In fact, it is highly probable that place-value numerical notation, or something 
quite like it, developed at least [ ve times independently: in Middle Bronze Age 
Mesopotamia (c 2100 bc), in the Warring States period in China (fourth century 
bc), in lowland Mesoamerica (no later than 100 ad), in India (c 500 ad), and in 
the Andes (no later than 1300 ad). No two of these regions are less than 3000 km
apart, and the development of place-value occurred centuries apart in each. 
Each development had antecedents in earlier, local notations and computational 
techniques, and each is distinct in various ways. For instance, the Chinese rod-
numerals have a sub-base of 5, like the Roman abacus, and the Andean khipu 
notation lacks a sign for zero. 9 e most parsimonious explanation for these 
developments is that place-value is more easily conceived than extreme di\ u-
sionists allow. 9 is also provides support for the notion that mathematics is a 
pan-human activity whose foundations do not di\ er greatly among di\ erent 
societies.

Numerals and computational e$  ciency

A connection is frequently asserted between the present ubiquity of the Western 
numerals in worldwide usage and the utility of this system for performing basic 
arithmetic using pen-and-paper computation. At [ rst glance, this hypothesis 
is extremely appealing. Many of the references to positional numerals by ‘early 
adopters’ explicitly praised positional numeration in comparison with other 
techniques and representations. 9 e Syrian Christian bishop Severus Sebokht 
discussed Hindu mathematics in 662 ad, noting ‘their clever method of calcula-
tion, their computation which surpasses all words, I mean that which is made 
with nine signs’ (Nau 1910, 225–227). In introducing the system more broadly 
to the Middle East in the ninth century, the mathematician al-Khwārizmī pro-
moted the use of the nine digits plus zero as an alternative to reckoning with the 
letter-numerals (hisāb al-abjad) with its twenty-seven alphabetic signs, or [ nger-
numeration (hisāb al-‘uqūd), discussed above.

Similarly, the western European debates between the abacists, proponents of 
the use of the medieval abacus with tokens, with numbers written in Roman 
numerals and algorismists, proponents of pen-and-paper arithmetic with west-
ern numerals, red ect contested narratives of e7  ciency. 9 e algorismists struck 
hard with many positive evaluations of the western numerals’ e7  ciency, and 
eventually became predominant among mathematicians (Burnett 2006). Yet 
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cond ict over computational techniques continued heatedly among users of 
the mercantile counting board as late as the seventeenth century. 9 e famous 
allegorical representation in Gregor Reisch’s Margarita philosophica depicts 
Arithmetic, bedecked with western numerals on her gown, looking approvingly 
upon Boethius using western numerals while Pythagoras toils at his counting 
board with pebbles (Reisch 1503). Similarly, in his dictionary of 1530, the lexicog-
rapher-priest John Palsgrave included the sentence, ‘I shall reken it syxe tymes by 
aulgorisme or you can caste it ones by counters’ as a sample sentence for the verb 
‘to reckon’ (Palsgrave 1530, 337).2

Nevertheless, we ought not to assume that the proclamations of advocates and 
early adopters perfectly red ected reality. 9 e debate surrounding the adoption 
of place-value numeration, both in the Middle East and later in western Europe, 
pitted traditionalists against innovators and threatened to overwrite—literally—
much of the practice of arithmetic, astronomy, mathematics, and accounting as 
they had been practiced for centuries. 9 ese debates were never solely about e7  -
ciency, but had signi[ cant ideological components. Struik (1968) argued that the 
prohibition of western numerals by the Guild of Moneychangers of Florence in 
1299 was primarily part of the longstanding cond ict between the Guelphs and 
Ghibellines in the mercantile economy of the city. 9 e denigration of western 
numerals on the basis that they can be too easily altered, another oN en-heard 
reason for their prohibition, may have been a product of xenophobia against 
an Oriental invention. So, too, authors promoting the use of western numerals 
might do so, not solely on the asserted technical grounds, but because the promo-
tion of a new arithmetical technique was part of broader social trends within late 
medieval society.

9 e argument that the western numerals are computationally more e7  cient 
than Roman numerals for doing arithmetic is true, and continues to be raised 
by authors attempting to explain the decline of Roman numerals to their present 
vestigial use. 9 e limitations of Roman numerals have been invoked as an explan-
ation for the supposed impoverishment of Roman and early medieval account-
ing and mathematics (Glautier 1972; Murray 1978; Crosby 1997). 9 e di7  culty 
with this proposition is that Roman numerals, to our knowledge, were never used 
in written arithmetic in anything like the manner in which western numerals 
are, but of course through the abacus, through [ nger-computation, and through 
mental arithmetic.

To a considerable extent, the preference for positional numerals is an artifact 
of modern western mathematics. Many additive systems of the past survived for 
millennia, such as the Egyptian hieroglyphic and hieratic numerals which per-
sisted largely unchanged from the pre-Dynastic to the Roman period, suggesting 

2. Ironically, though not unusually for the time, Palsgrave’s dictionary was foliated in Roman numerals.
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that they must have been perceived as desirable or useful for many purposes. 
9 ere is a trend towards positional notation over time, but it is not inexorable and 
should not be presumed to now be irreversible (Chrisomalis 2004).

In South Asia, the positional numerals ancestral to our own largely replaced 
the older additive Brahmi system between the sixth and eleventh centuries ad 
(Salomon 1998). However, in southern regions of the subcontinent, additive 
numerals continued to thrive alongside the Tamil, Malayalam, and Sinhalese 
scripts, right up to the colonial period (Guitel 1975, 614–617). 9 e Tamil addi-
tive numerals continue to be used today for many purposes. Cultural resistance 
against the dominant traditions of northern India probably explains the retention 
of the additive numerals, but users of these notations su\ ered no evident disad-
vantage in their ability to undertake arithmetic. Similarly, the additive Chinese 
numerals would long ago have been abandoned in favour of the Tibetan numer-
als (a positional, decimal system transmitted from India) if this were the case. 
Of course, the reverse is true, for perfectly understandable reasons having to do 
with Chinese political domination in the region and throughout much of Central 
Asia. No one would consider e7  ciency for computation as the explanation in 
this circumstance. Yet the assumption that the western numerals predominate 
mainly due to their supreme utility, and that we have reached the timeless pinna-
cle of the history of numeration, remains commonplace in scholarly and popular 
works (Dehaene 1997, 101; Ifrah 1998, 592).

A more parsimonious explanation for the current worldwide predominance of 
western numerals is the predominance of all sorts of western institutions, most 
notably scienti[ c and economic, since the formation of the modern capitalist 
world-system with western Europe and later America [ rmly ensconced within 
the prestigious and powerful core (Wallerstein 1974). 9 is process was acceler-
ated by the early use of western numerals in printed books, in accounting docu-
ments, and on money—both the transmission of wealth and the transmission of 
information were governed by the western numerals. Changes in patterns of trade 
and intercultural communication correlate frequently with changes to numeral 
words as well as numerical notation; as the need for commerce and mathematics 
with larger, more complex societies increases, the numeral word series expands 
(Crump 1978, Schuhmacher 1975). 9 e highest basic numeral word in European 
languages was ‘thousand’ until the thirteenth-century invention of ‘million’ 
among Italian bookkeepers, from which it spread to a wide variety of languages, 
Indo-European and otherwise.

More signi[ cant was the fact that pen-and-paper arithmetic with western 
numerals produced permanent records of calculations performed, permitting 
errors to be perceived more easily. 9 e regular practice of writing down calcu-
lations and their results also provided early modern landowners, merchants, 
and administrative o7  cials a high degree of information and control over their 
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economic a\ airs (Swetz 1987). Nevertheless, much bookkeeping and arithmetic 
continued to be done without the aid of western numerals (Jenkinson 1926). As 
prominent a [ gure as William Cecil (Lord Burghley), Lord High Treasurer to 
Elizabeth I of England, regularly transcribed economic documents from west-
ern back into Roman numerals for his own convenience (Stone 1949, 31). Roman 
numerals were adequate if not optimal for recording results. 9 e length of Roman 
numeral-phrases, oN en cited as a defect of the system, is only one of many factors 
users consider.

Once the western numerals had achieved a critical mass of popularity among 
the newly emboldened European middle class, it became likely that others oper-
ating within the same economic and communication networks would adopt the 
system. New users adopted western numerals partly because the current users of 
the system were prestigious and wealthy—in terms of cultural transmission, this 
is a prestige bias (Richerson and Boyd 2005, 124–126). 9 eir popularity allowed 
new users to transmit information to more individuals and thereby created a 
feedback system that further increased their popularity—a frequency depend-
ent bias (Richerson and Boyd 2005, 120–123). 9 eir utility cannot be conceived 
simply in terms of a structured system of signs, but also in terms of who and 
how many people were using them, and for what purposes. 9 e property of fre-
quency dependence is particularly notable in systems such as numerals for which 
communication is of central importance. It is linked to the ‘QWERTY principle’ 
explaining the persistence of sub-optimal but popular phenomena despite the 
existence of alternatives, and to the predominance of poor but popular recording 
media and computer operating systems. 9 e ‘cost’ of not using the popular sys-
tem is greater than the advantage of using the technically superior one.

Conclusion

At various times and places, individuals and groups may have adopted new 
numerical notations because of their perceived e7  ciency for computation. As 
a general explanation for the di\ usion, adoption, and extinction of numeri-
cal notation systems, however, this theory is weak in comparison to the host 
of political and economic factors operant in any given social context. 9 ere is 
minimal evidence for the widespread use of written numerals as a computational 
technique prior to the development of Arabic numerals in the ninth century ad 
and their subsequent spread westward to Europe. Modern scholarly evaluations 
of the e7  ciency of various numerical systems for computation are interesting 
but irrelevant to their di\ usion and extinction (Detlefsen et al 1975; Lambert 
et al 1980; Anderson 1958). When attempting to show these systems’ inferior-
ity (as opposed to demonstrating the feasibility of such work), such analyses are 
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perniciously derogatory. Moreover, with the growth of the electronic calculator 
industry over the past thirty years, pen-and-paper arithmetic may go the way of 
the slide rule before too many generations have passed.

Because the relations between number words, arithmetical techniques, and 
numerical notation symbols are complex, the evaluation of the foundations 
of mathematics in any society is similarly complex. No two societies are alike, 
and yet the striking linguistic and cross-cultural parallels observed suggest 
that human thinking about numerals and arithmetic is highly constrained. 9 e 
debate between universalistic and particularistic numerical systems will surely 
continue, as will the comparison of the utility of di\ erent numerical systems. An 
awareness of the common core of features they share make the di\ erences among 
numerical concepts so much more interesting.
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CH A P T ER 6 . 2

Sanskrit mathematical verse
Kim Plo. er

The word ‘mathematics’ nowadays inspires an expectation of numbers and 
formulas visually presented on a written page. 9 e dominance of literacy 

in modern learning makes it di7  cult for us to conceive of advanced mathemat-
ical knowledge in any non-literate (or even non-symbolic) format. In ancient and 
medieval Indian cultures, on the other hand, the veneration of spoken Sanskrit 
produced an ideal of oral learning that embraced technical subjects including 
the mathematical sciences, as well as narrative literature and belles lettres. 9 e 
resulting genre of Sanskrit mathematical verse exempli[ es in fascinating and 
sometimes bizarre ways the challenges and advantages of looking beyond the 
written word and symbol for the means to express mathematics.

Literacy and orality in Sanskrit learning

9 e earliest surviving texts in a form of Sanskrit, the sacred Vedas of the ancient 
Indo-Aryan tradition, were evidently composed and codi[ ed long before they 
were [ rst written down. 9 ey are traditionally considered to have been ‘heard’ 
by the ancient sages as spoken revelation; the literal meaning of śruti, a stand-
ard Sanskrit name for these holy texts, is ‘hearing’. It is their memorization and
recitation that constitutes a sacred act, not the writing or reading of them. Indeed, 
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for many centuries the Vedas were transmitted from generation to generation 
only via oral learning, in forms carefully designed to preserve them verbatim.

Most of the content of the Vedas is in metrical verse, consisting chied y of 
hymns and invocations that are to be chanted during rituals. Sanskrit verse 
meters are based on the division of spoken syllables into two kinds, ‘heavy’ and 
‘light’. Heavy syllables are those that contain a long vowel or diphthong, or are 
followed by more than one consonant; in recitation they are held for a longer 
duration than light syllables. 9 e combination of prolonged heavy syllables with 
briefer light ones in a speci[ ed sequence is what gives each verse meter its charac-
teristic form, just as di\ erent meters in English prosody combine speci[ ed num-
bers of short and long syllables in regular patterns. However, Sanskrit meters are 
usually more complex than English ones: their standard repeating unit is not the 
metrical foot of two to four syllables, but the pāda ‘quarter-verse’ which typically 
ranges from around six syllables in length to twelve or more.

Early Vedic meters were more d exibly structured than most of the metrical pat-
terns in later Sanskrit verse. For instance, the ancient meter called Gāyatrī has an 
eight-syllable pāda with an irregular pattern in its [ rst four syllables, and a Gāyatrī 
verse contains three pādas rather than the standard four of later prosody. 9 e fol-
lowing Gāyatrī verse, taken from a hymn to the god Indra in the gveda, is shown 
in roman transliteration with the syllables marked as light (˘ ) or heavy (ʹ ). Reading 
it aloud a couple of times will illustrate how the rhythmic pattern of the meter helps 
[ x the words in the mind. 9 e accompanying metrical English translation (Gri7  th 
1896) mimics the iambic-like form of the Gāyatrī meter, and has a similar e\ ect.

ʹ ʹ  ˘ ʹ ˘ ʹ ˘ ʹ ʹ ʹ  ˘ ʹ ˘ ʹ ˘ ʹ
asmā  avantu te śata  asmān sahasram ūtaya  |
ʹ ʹ   ʹ    ˘  ̆  ʹ  ̆  ʹ
asmān viśva abhi t.aya  ||

May thine assistance keep us safe, thy hundred and thy thousand aids: May all thy 
favours strengthen us. ( gveda 4.31.10)

Not shown here are the archaic pitch accents preserved in this and other early 
Vedic hymns, where certain syllables are distinguished by a high, low, or falling 
pitch. 9 e tonal patterns of such accents together with the measured rhythm of 
the verse structure helped preserve the sacred hymns orally in their canonical 
form through literally hundreds of generations.

9 e exegetical and didactic Sanskrit literature that grew up around the Vedas 
from about the early [ rst millennium bc onwards also red ected this emphasis on 
the spoken word. In particular, the six scholarly disciplines known as the ‘limbs 
of the Veda’ were designed to support the proper performance of Vedic ritual and 
the proper use of its divine language. 9 e six limbs were pronunciation, gram-
mar, etymology, prosody, ritual practice, and astronomy/calendrics. 9 e purpose 
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of the [ rst four limbs was understanding the meaning, utterance, and structure 
of the sacred verses, while the other two limbs indicated how and when the sacred 
rites should be performed. 9 is auxiliary learning was summarized in texts like-
wise designed to be memorized, and consisting either of verses or of brief prose 
sentences called sūtras ‘string’ or ‘rule’.

9 e extant textual sources for the limbs of the Veda include many of the sub-
jects that later split o\  into a separate genre of mathematical texts in Sanskrit. 
Most of them appeared in the Vedic limb of astronomy and calendrics, which 
of course involved detailed calculations to keep track of the ritual calendar. 
Others formed part of the discipline of ritual practice, particularly the geo-
metric procedures for constructing sacri[ cial altars. Still others originated 
in prosody, which classi[ ed metrical patterns in quantitative ways that were 
appropriated by later Indian mathematicians as belonging to the topic called 
a kapāśa ‘net of numbers’, that is, combinations and permutations. Hence from 
the very beginning of Sanskrit technical and didactic literature, mathemati-
cal subjects were woven into the great tradition of oral learning rooted in the 
sacred texts.

B e mathematical verse treatise in Classical Sanskrit

By the last third of the [ rst millennium bc at the latest, Sanskrit had become 
primarily a learned and liturgical language rather than a cradle speech. Its use 
was codi[ ed by Indian grammarians of that period in the form known to mod-
ern linguists as ‘Classical Sanskrit’, which remained the chief common language 
of scholarship in the Indian subcontinent until well into the second millennium 
ad. During the [ rst several centuries of the ascendancy of Classical Sanskrit, 
the didactic treatise in short prose sūtras was largely replaced by its metrical 
verse counterpart as the typical medium for instructional and scholarly works in 
almost all disciplines. 

By the early [ rst millennium ad writing was widely used in India, but the 
ancient sacred texts were still ritually passed down in oral form, and memoriz-
ing rather than reading was still the ideal for studying a learned composition. A 
scholarly culture developed which relied heavily on written manuscripts to dis-
seminate and preserve its learning, but which at the same time highly valued the 
traditional aims and techniques of oral transmission. 9 is culture gave rise to the 
standard genre of instruction in Classical Sanskrit disciplines: namely, the verse 
treatise or ‘base-text’ with accompanying prose commentary, a uniquely hybrid 
monument to orality and literacy combined. 

9 e disciplines nourished on these hybrid prose-verse texts included mathem-
atical astronomy and mathematics in general. Even the most technical subjects 
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and complicated calculations were evidently not considered unsuitable for the 
traditional format of mnemonic verse, if it was suitably buttressed with com-
mentarial exposition. 9 e verse treatise was ideally concise and densely written, 
containing as much information as possible in a small collection of memorized 
rules.

A prose commentary, on the other hand, was generally ample in extent and 
broad in scope. 9 e comments on an individual verse or group of verses might 
consist of any or all of the following: a gloss and grammatical analysis of each 
of the verse’s words; an ampli[ ed paraphrase of the verse’s content; de[ nitions 
of technical terms; one or more worked examples illustrating the operation of 
the rule it described; and an explanation, oN en in the form of an imagined dia-
logue between teacher and pupil, of the usefulness or mathematical validity of 
the rule. Less frequently, a commentator might insert a little biographical infor-
mation about the author of the verse treatise (particularly if the author was the 
commentator’s own teacher or a pedagogical ancestor of his teacher), an excursus 
on the philosophical meaning of the concepts in the rule, or a comparison with 
the statements of other mathematical authors treating the same topic.

9 e following brief selection from an early seventh-century treatise on math-
ematical astronomy illustrates the terse style that Sanskrit didactic authors gen-
erally favored. 9 e mathematical technique discussed is what we now call the 
Euclidean algorithm for [ nding the greatest common divisor of two integers. 
9 e algorithm involves dividing the larger integer by the smaller, then dividing 
the smaller by the remainder, then dividing that remainder by the remainder 
from the second division, and so on, until the process produces a division with 
remainder zero. 9 e last nonzero remainder in the sequence is the greatest com-
mon divisor. When both integers are divided by this divisor, they are reduced to 
smaller integers which are relatively prime.

9 is technique was used in dealing with what Indian mathematicians termed 
the ku aka ‘pulverizer’, that is, problems in linear indeterminate equations. In 
astronomy, such problems were linked to the task of [ nding some time at which 
a planet would be located at a particular point in its orbit, if its mean rate of 
orbital motion was known. 9 at is, if a planet is considered to complete an inte-
ger number R of revolutions about the earth in an integer number D of days, then 
we need to [ nd some other integer number d of days in which the planet moving 
with the same mean motion will complete some integer number r of revolutions, 
plus a given fraction C of a single revolution. In modern mathematical terms, this 
involves solving the indeterminate equation

R
D

r C
d

=
+
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for integer r and d, where R, D, and C are given. 9 e [ rst step is to reduce the 
given numbers R and D (which are usually very large so that the mean motion 
parameters can be expressed with reasonable precision) so that they are relatively 
prime. 9 e seventh-century mathematician Bhāskara describes how to do this, in 
thirty-two carefully craN ed syllables in the somewhat free meter called anu t.ubh
(‘following in praise’, because of its close relation to the twenty-four-syllable 
hymn meter Gāyatrī mentioned above):

 ʹ  ˘ ʹ ˘ ˘  ʹ  ʹ  ˘ ʹ ˘ ʹ ʹ ˘ ʹ ˘  ʹ
k mādine t.aga ānyonyabhaktaśe e a bhājitau |
 ʹ  ˘ ʹ   ʹ   ˘  ʹ    ʹ ʹ  ʹ ˘  ʹ ʹ  ˘ ʹ  ˘ ʹ
hārabhājyau dr. hau syātā  kut.t.akāra  tayor vidu  ||

When divided by what remains post division of each by each, Days and cycles become 
reduced, both divisor and dividend. Once reduced, then they pulverize.

Or, less metrically and more literally:

9 e divisor [D] and dividend [R], divided by the mutual division-remainder of the num-
bers of days and [revolutions] of the desired [planet], become [ xed [or reduced: dr. ha, 
literally ‘[ xed’, ‘solid’]. 9 ey [mathematicians] should know the pulverizer in the case of 
those two [the reduced divisor and dividend]. (Mahābhāskarīya 1.41, Kuppanna Sastri 
1957, 53)

9 is highly compressed formula (requiring a whole extra pāda in the [ rst 
English translation to make it even somewhat comprehensible) would probably 
not have seemed much more informative to the medieval student than to the 
modern reader. He would doubtless have turned either to a teacher or to a com-
mentary like the one by the ninth-century astronomer Govindasvāmin, part of 
whose prose exposition on this verse is translated here:

One should divide the days and the revolutions of the planet by the remainder from 
mutual division of the days and revolutions of the desired planet. 9 en the two quo-
tients are [ xed [dr. ha]. When the divisor and dividend are reduced [apavartita, literally 
‘taken away’ but with the technical meaning ‘divided by a common measure without 
remainder, reduced’], the pulverizer is easy to do: therefore the reduction [procedure, 
apavartana] is stated. And it is to be performed when the two [integers] are not [already] 
reduced [that is, relatively prime]. On account of that, it is said: ‘9 ere is no di\ erence 
perceived [between] the dividend and divisor reduced [apavartita] with the quantity 
one, and [those two] not reduced.’1 In such [cases], however, when the two are divided 
by a number [such as] two, etc., their division without remainder is not produced. But 
[when they are divided] by the number one, no change in [their] form occurs. Hence 

1. Correcting the published text from apavartitayonapavartitayośca to apavartitayoranapavartitayośca.
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they are [already] [ xed: thus it is explained. 9 ose who understand this should know [to 
apply] the pulverizer when those two have been [ xed.

What is the meaning of the word ‘pulverizer’ [kut.t.ākāra]? It is said: ‘pulverizing’ 
[kut.t.ana, kut.t.ā] is as much as [to say] ‘dividing’. Doing thus is an act: the act of pulver-
izing is the pulverizer. 9 at by which division with remainder is done is the pulverizer. 
(Kuppanna Sastri 1957, 54)

Sometimes it was felt that a second layer of commentary was required to eluci-
date the [ rst, as well as to provide additional information about the original base-
text. Such a ‘supercommentary’ was composed on this joint work of Bhāskara 
and Govindasvāmin by a [ N eenth-century mathematician named Parameśvara. 
His exposition, in addition to glossing technical terms, closes the verse–prose 
loop by quoting an unattributed set of verses explaining the rationale of the rule 
in Bhāskara’s original verse. (No attempt is made to translate these metrically in 
the following rendering of the passage.) 

‘Desired number’: number of revolutions of the desired planet. ‘9 ey should know the 
pulverizer in the case of those two’: they should know the operation of the pulverizer 
when those two become thus [ xed. When divided by the remainder from mutual div-
ision of the divisor and dividend, those two are without remainder. By the word ‘reduc-
tion’ [apavartana] is meant here division. If [one asks]: in the case of division of two 
quantities without remainder by means of the remainder from [their] mutual division, 
how is [that] demonstrated? It is said [in verse]: 

In the case of mutual division of two quantities, when the large is divided by the small, 
whatever is the remainder, and the small[er] quantity, are to be divided by a number
which itself becomes a quantity to be divided. And the [original] large quantity is 
omitted, because whatever is the great[er] is divided by the small[er] quantity.
And in the same way again, the ‘dividend-ness’ of the large and small quantities is to be 
conceived. 9 e remainder is just another dividend to be divided by the last remainder.
Because of that, when the divisor and dividend are divided by the remainder from 
mutual division, they become without remainder: such is the rationale.

It is not clear what percentage of verse base-texts were actually learned by heart 
by the mathematicians and students who worked with them. A scholar might 
encounter in his working lifetime at least dozens of treatises in his [ eld contain-
ing scores if not hundreds of verses apiece: could he really memorize every verse 
of each of them? As evidence of such learning, there are many manuscript copies 
of commentaries in which most of the verses of the original base-text are leN  out, 
with only the opening words of each verse included as a place-marker in the com-
mentary. Either the scribes expected their readers to turn to a separate copy of 
the base-text to [ nd out what the commentator was talking about (which seems 
absurd), or else they took it for granted that someone who was studying a com-
mentary would have memorized the treatise it expounded.
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9 e prose commentaries, of course, were not meant to be memorized. But as 
the above examples show, they were so closely entwined with the Sanskrit ideal 
of learning embodied in the recited word, with so many layers of quotation and 
exegesis, that they maintained rather than supplanted the genre of mathematical 
verse. Sanskrit scholarly mathematics did not incorporate signi[ cant numbers 
of purely prose works until late in the second millennium under the ind uence of 
Islamic and European texts, when the institutional basis of Sanskrit learning in 
general was already losing ground to education and scholarship in vernaculars.

Mathematical verse vocabulary and style

Mathematical verse as a didactic and scholarly genre was not without its draw-
backs. As a brief glance at the examples of translation in the previous section 
will show, one of the most intractable problems is the metrical ind exibility of 
standard technical terms. An English word like ‘divisor’ or ‘dividend’ has a [ xed 
pattern of syllabic stresses, and this a\ ects where it can appear in a verse with a 
given metrical form. Likewise, in Sanskrit every word has its pattern of light and 
heavy syllables, which may not [ t into the particular place in a verse where the 
author wants to put it.

To reconcile the cond icting demands of meaning and meter a poet has to pad 
out the verses with mathematically unnecessary text around the crucial tech-
nical terms. Consider Coleridge’s attempt at versifying Euclid in ‘A mathematical 
problem’, where four stanzas of Pindaric ode (much of it wasted, from a didac-
tic viewpoint, on non-technical poetic imagery) are required just to state and 
prove Proposition I.1 of the Elements.2 Coleridge, of course, was writing a parody 
rather than a serious didactic treatise, so he could a\ ord to be long-winded. An 
author desiring in earnest to explain a mathematical topic in verse as concisely 
as possible needs a more e7  cient way of expressing mathematical statements 
metrically.

To get around this problem, Indian authors ingeniously exploited the structure 
and literary style of Classical Sanskrit. 9 e vocabulary of Sanskrit is both rich in 
synonyms and heavily polysemic, meaning that individual words generally have 
multiple meanings. For instance, there are two common Sanskrit words (and 
various other obscure ones) meaning ‘bow’ as in an archer’s bow: dhanus and 
cāpa. A mathematical author can use either word as a technical term to mean ‘arc 
of a circle’, depending on whether he needs its [ rst syllable to be short or long. 

2. 9 e opening and [ rst stanza are: 9 is is now—this was erst,/ Proposition the [ rst—and Problem the 
[ rst./ On a given [ nite Line/ Which must no way incline;/ To describe an equi–/ –lateral Tri–/ –A, N, G, L, 
E. / Now let A. B./ Be the given line/ Which must no way incline;/ 9 e great/ Mathematician/ Makes this 
Requisition,/ 9 at we describe an Equi–/ –lateral Tri–/ –angle on it:/ Aid us, Reason—aid us, Wit!
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Similarly, any of the Sanskrit words meaning ‘bowstring’ can refer to the chord 
of an arc, or else to its sine: the sense can be leN  ambiguous or can be clari[ ed 
with a descriptor such as ‘complete bowstring’ for the chord or ‘half-bowstring’ 
for the sine. 9 e versed sine (that is, the di\ erence in length between the cosine of 
an arc and the radius of the circle) can be indicated by any word meaning ‘arrow’, 
because it extends between the bowstring and the bow. Furthermore, the same 
quantity can also be called the ‘backwards’ or ‘reversed’ sine, as it is in English, 
because the di\ erences between its successive values in a trigonometric table are 
the same as those between successive values of the sine, but in reverse order. 9 is 
multiplicity of technical terms for each mathematical concept greatly eases the 
task of [ tting them into a [ xed metrical pattern.

Another handy feature of Sanskrit for the mathematical poet is the almost 
in[ nite possibility of creating compound words from combinations of other 
words. English has a limited capacity to form descriptive or possessive com-
pounds from at most two or three words (as in ‘gold[ sh’ for ‘a [ sh that is gold’ 
or ‘peabrain’ for ‘one having a brain the size of a pea’). Sanskrit places no restric-
tions on the number of terms that can be compounded into a single word. It 
also recognizes copulative compounds, which in English require a somewhat 
clumsy hyphenation of terms and conjunctions, as in ‘black-and-white (photog-
raphy)’, ‘yes-or-no (answer)’. Moreover, Sanskrit stacks and nests multiple com-
pounds of any type to form still more elaborate compounds. 9 us in the verse 
by Bhāskara on Euclidean division quoted above, the [ rst word k mādine t.aga -
ānyonyabhaktaśe e a is a compound constructed from six or seven other com-
pounds. For instance, anyonya is a copulative compound literally meaning ‘the 
other and the other’ or ‘each other’. Juxtaposed with the past participle bhakta, 
‘divided’, it becomes the descriptive compound anyonyabhakta, ‘divided by each 
other’. In this way the complete compound uses the word-string ‘day-desired-
number-each-other-divided-remainder’ to convey the meaning ‘the remainder 
from dividing by each other the days and number [of revolutions] of the desired 
[planet]’. What the reader may lose in transparency of meaning, the author gains 
in conciseness of expression.

9 e author can also take advantage of the grammatical and philosophical 
sophistication of Classical Sanskrit to state complex ideas in few words. 9 ere are 
standard constructions for transforming any verb x into various words to express 
related concepts, such as the abstract noun x-ing, the act of doing x, the quality 
or state of having been x’d or needing to be x’d, and so forth. 9 us, for example, 
the unique English technical term ‘dividend’ can be expressed in many ways in 
Sanskrit just by adding a su7  x indicating the future passive participle to any verb 
meaning ‘break’, ‘cut’, or ‘divide’: hence ‘[the thing that] will be broken’ means 
‘dividend’. Likewise, when the author of the verses quoted by ParameŚvara above 
wants to say that the larger and smaller numbers in the Euclidean algorithm 
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should both be considered as quantities to be divided, he can simply tack on 
another su7  x, to signify the abstract quality of ‘dividend-ness’ or condition 
of being a dividend: ‘their dividend-ness is to be conceived’. Delicate shades of 
meaning within nearly synonymous forms may be emphasized, as in the above 
use of dr. ha ‘[ xed, reduced’ to suggest ‘reduced to its [ nal relatively prime form’, 
as opposed to apavartita ‘reduced’ implying ‘in the process of being reduced
by division by a common measure’. Or they may be elided, as in the collection
of similar nouns ku ākāra, ku ana, ku ā to reinforce the sense of the single 
mathematical technical term ‘pulverizer’.

Modern mathematicians may be inclined to deplore all this verbal d exibility 
as an unjusti[ able sacri[ ce of clarity and precision. Using multiple words for 
the same mathematical entity seems superd uous, while using the same word to 
mean di\ erent entities, or neglecting to explain exactly which entity is meant, is 
a serious violation of standard practice. But we have to bear in mind that seman-
tic ambiguity was seen in Classical Sanskrit literary verse as a virtue rather than 
a defect. Words in a poem might be deliberately chosen to harmonize with one 
another’s multiple meanings, so that a verse could be read in two di\ erent senses 
simultaneously. Mathematical authors were well aware of this literary use of 
paranomasia, or double meaning, and occasionally employed it themselves as 
an ornament. For example, the last verse of the famous twelN h-century arith-
metic book by Bhāskara Ācārya (no relation to our seventh-century Bhāskara) 
is an extended pun on the book’s name, Līlāvatī, a feminine adjective meaning 
‘beautiful’ or ‘charming’. So the same verse can be read as praising either the 
book called Līlāvatī with ‘ornamented sections’, which brings success to those 
who ‘keep it in their throats’ (that is, ready for recitation), or a beautiful woman 
with ‘adorned limbs’, delighting those who ‘clasp her to their necks’ (Līlāvatī 272, 
Āpate 1937, 285).

Indian mathematicians thought of semantic ambiguity as appealing and desir-
able not just for literary purposes but also for pedagogical reasons. A mathemat-
ical rule in verse is evidently intended to be not so much a detailed explanation of 
a mathematical fact as a helpful reminder of it. 9 e more facts that are simultan-
eously referenced by the same memorized verse, the more useful that verse will be. 
Commentators sometimes employed considerable ingenuity in [ nding additional 
interpretations of verses to link them to additional mathematical formulas.

Furthermore, ambiguous or imprecise rules require more mathematical 
awareness in their application than do laboriously detailed algorithms that pupils 
can use as procedural black boxes to produce correct answers without the need 
for thinking. When Bhāskara describes Euclidean division with the curt state-
ment that ‘the divisor and dividend divided by the remainder from dividing by 
each other become reduced’, he does not speci[ cally explain what ‘dividing by 
each other’ means. A student trying to apply this rule to [ nd the relatively prime 
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reduction of two numbers has to put in some e\ ort to understand, or at least to 
recall from previous drills, the steps of the full procedure. We cannot infer con-
clusively that authors deliberately courted vague or ambiguous forms of expres-
sion in order to trip up lazy readers, but we can tell that they certainly declined 
to cosset them with foolproof formulas.

Verbal number systems for verse texts

Number words such as ‘ten’ and ‘[ N y-two’ are special and especially stubborn 
examples of mathematical terminology that are di7  cult to shoehorn into a given 
metrical pattern. Very few number words naturally develop useful synonyms like 
‘dozen’ for ‘twelve’ or ‘score’ for ‘twenty’. Pre-Classical Sanskrit appears to have 
been no exception in this regard. In ancient verses like the one quoted above 
from the gveda, the words for ‘hundred’, ‘thousand’, and so on are almost all 
unique and follow a standard linguistic pattern resembling that of their cognates 
in other Indo-European languages. Alternatives like ‘thrice seventy’ may some-
times replace the equivalent standard constructions like ‘two hundred and ten’, 
but the range of ways to express a particular number remains very limited.

While it may be possible to insert a few number words here and there in a verse 
hymn dealing mostly with non-mathematical subjects, the task of constructing 
usable verses becomes impossible when the content is heavily numerical. Indian 
mathematicians got around this problem as they had [ nessed the more general 
problem of mathematical vocabulary, by deliberately creating synonyms for com-
mon number words, as well as by [ nding ingenious ways to represent numerals 
by letters.

9 e method employing verbal synonyms is the simplest to use, and seems to 
have been devised somewhat earlier than the alpha-numeric method. It works by 
permitting a number word to be replaced by any word signifying any object that is 
physically or conventionally associated with that number. 9 us any word mean-
ing ‘hand’ or ‘eye’ can be used to mean ‘two’, while a word for ‘nail’ (as in [ nger- or 
toenail) indicates ‘twenty’. A far from complete sample of these ‘concrete num-
bers’ is shown in the following list (see Sarma 2003 for a fuller enumeration):

zero: void, sky, dot• 

one: earth, moon, the deity Vi• u

two: eye, hand, wing, twin• 

three: [ re (from the three sacred [ res of Vedic ritual), quality (from the • 
three qualities of Indian ontology: darkness, passion, and truth), the hero 
Rāma (in his three incarnations)
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four: ocean (four principal ones are identi[ ed), dice-spot (on the four-sided • 
Indian die), age (one of the four ages in an aeon)

[ ve: sense-perception, arrow (since the deity Kāma, the Indian Eros, uses • 
the [ ve senses as the [ ve arrows with which he pierces his victims)

six: d avor (sweet, sour, salt, pungent, bitter, or astringent), limb (as the six • 
limbs of the Veda)

seven: mountain (seven principal ones are identi[ ed)• 

eight: elephant (one assigned to each of the eight principal directions; see • 
‘ten’ below)

nine: hook (since the Sanskrit numeral nine looks like a hook)• 

ten: direction (the four cardinal directions, the four intercardinal direc-• 
tions, and up and down)

eleven: the deity Śiva (in his elevenfold incarnation as the beings called • 
Rudras)

twelve: sun (in each of the twelve solar months), sundial gnomon (conven-• 
tionally twelve digits long)

[ N een: lunar day (of which there are [ N een in a half-month)• 

twenty: nail• 

twenty-four: Jain saint (the 24 tirthankars of Jain tradition)• 

thirty-two: tooth• 

9 e list thins out drastically on reaching the two-digit numbers, many of which 
have no recognized ‘concrete number’ synonyms. Larger numbers were expressed 
by stringing together small number synonyms, starting with the least signi[ cant 
digit, to form copulative compounds interpreted as decimal place-value numer-
als. 9 us the compound ‘eye-[ re’ would mean 32, while the number 3212 could 
be represented by the compound ‘sun-tooth’, far easier to [ t into a verse meter 
than its unwieldy equivalent ‘three thousand two hundred and twelve’.

9 is system of number-word synonyms would seem to o\ er great scope for 
literary double meanings, but in fact Indian mathematicians appear to have been 
generally uninterested in its wordplay possibilities (or else the subtlety of their 
punning has so far eluded the attention of researchers). A student studying a 
mathematical verse and encountering a statement such as ‘When the planetary 
disk is two-twin-multiplied and arrow-mountain-Rāma-divided . . .’ (MB 1.39, 
Kuppanna Sastri 1957, 52) is evidently expected just to multiply by 22 and divide 
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by 375 without pondering the existence of cryptic narratives in the number 
words. (An apparently unique exception is furnished by the sixteenth-century 
astronomer-mathematician Jñānarāja, who constructed a score or so of verses 
that can be read either as computational examples, with their numerical param-
eters expressed in concrete numbers, or as narrative aphorisms, with the number 
synonyms interpreted in their literal meanings (Knudsen 2008, section 1.3.6, 
41–42).)

9 e evidence of the concrete-number system has signi[ cant implications for 
the history of decimal place-value numerals. Compounding number synonyms 
to spell out successive digits of multi-digit numbers presupposes a place-value 
system: otherwise it would not be clear whether a compound like ‘two-twin’ is 
intended to mean ‘22’ or ‘2 plus 2’ or ‘2 times 2’ or some other construct. 9 e 
earliest known use of concrete-number compounds occurs in an astrological text 
of the mid-third century ad (Pingree 1978, I 506), several centuries before the 
date of the oldest surviving inscription using decimal place-value numerals. So 
the invention of a decimal place-value system for written numerals (including, 
presumably, a zero symbol as a place-holder between non-zero digits) must date 
back at least that far.

Decimal place-value notation is also implied by the other main Sanskrit sys-
tem for representing numbers verbally in verse, namely the alphabetic encoding 
scheme called ka apayādi. In this system, each of the thirty-three consonants 
of the Sanskrit alphabet is assigned to one of the ten decimal digits 1, . . ., 9, 0, 
as shown in Table 6.2.1. (Note that aspirated consonants such as dh and bh are 
single sounds in Sanskrit, although represented with two consonants in roman 
transliteration). 9 e name ka apayādi, literally ‘beginning with k, , p, and y’, 
is derived from the fact that those four consonants are assigned to the digit 1. 
Multi-digit numbers can then be represented by any appropriate succession of 
syllables, including actual Sanskrit words: for instance, ‘Rāma’ in ka apayādi 
notation would signify 52, since r stands for 2 and m for 5.

Table 6.2.1 The kat.apayadi encoding

k kh g gh  c ch j jh ñ

1 2 3 4 5 6 7 8 9 0

 h  h  t th d dh n

1 2 3 4 5 6 7 8 9 0

p ph b bh m 

1 2 3 4 5 

y r l v ś s. s h 

1 2 3 4 5 6 7 8   
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9 e ka apayādi system apparently dates from around or shortly before the 
middle of the [ rst millennium ad. It was employed primarily by medieval south 
Indian authors, some of whom made breathtakingly ingenious use of its capac-
ity to represent numbers and words simultaneously. 9 is is illustrated in the
so-called ‘sentence’ tables of south Indian astronomy, in which long lists of numer-
ical data were encoded in ka apayādi notation as sequences of short sentences 
whose syllables correspond to successive digits of the table entries. For example, 
the last entry in the sine table of Mādhava (fourteenth century), representing the 
sine of 90º in a circle of circumference 21600, is ‘devo viśvasthālī bhr.gu ’, meaning 
roughly ‘9 e deity Bh gu has the all-containing vessel’. 9 e signi[ cant consonants 
of this phrase (that is, all the ones immediately followed by a vowel) are d, v, v, v, 
th, l, bh, g, corresponding in the ka apayādi table to 8, 4, 4, 4, 7, 3, 4, 3. 9 is digit 
sequence is actually in mixed decimal and sexagesimal notation: it represents the 
number 3437; 44, 48, or 3437 + 44

60
48

3600
+  = 3437.74666 . . ., the radius of a circle 

with circumference 21600 = 360º 00ʹ (taking π = 3.14159). Storing a quantity of 
this precision in eight easily-recollected Sanskrit syllables is a triumph of verbal 
mathematics, and it is hard to imagine any way in which it could be further com-
pressed and still remain mnemonically useful. Even in English with its briefer 
number words, nine syllables would be required to express this number merely 
as a sequence of digits with no mnemonic value at all.

9 e prize for conciseness in verbal number systems, however, has to go to the 
unique alphabetic encoding apparently devised by the astronomer Āryabhat.a 
around 500 ad. It is not known whether Āryabhat.a was inspired by (or even aware 
of) the ka apayādi notational system,3 but his own system in some ways resem-
bles it. He arranged the thirty-three Sanskrit consonants in a one-to-one map-
ping with the thirty-three numbers 1, 2, 3, . . ., 25, 30, 40, . . ., 100. 9 en he assigned 
vowels to the decimal places as far as 1017 (Āryabhat.īya 1.2, Shukla 1976, 7). Hence 
any consonant-vowel combination, or syllable, had a unique numerical meaning, 
and individual syllables could be strung together in any order to represent larger 
numbers. For example, in Āryabhat.a’s system the consonant b stands for 23, ph 
for 22, n for 20, and c for 6, while the vowel u represents (in this context) the ten-
thousands place, i the hundreds place, and a the ones place. So the parameter 
value ‘buphinaca’ is 23 × 104 + 22 + 102 + 20 × 100 + 6 × 100 = 232226. And unlike
a ka apayādi number, it would mean exactly the same thing if it were written 
‘phibucana’ or ‘canaphibu’ or any other permutation of the same four syllables.

9 e drawbacks to Āryabhat.a’s scheme are that it is mnemonically use-
less and phonetically a mess. While a concrete-number digit sequence like 

3. Sarma 2003, 27, concludes that he was, but the evidence rests on the assertion of a commentator writing 
many centuries later who may have been projecting his own knowledge onto Āryabhat.a.
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 ‘earth-hand-tooth’ is at least somewhat more memorable than a mere list of 
numeral names, and a ka apayādi sentence much more so, Āryabhat.a’s nonsense 
syllables o\ er no intrinsic aid to memory. Worse, his assignment of every con-
sonant and vowel to a speci[ c numerical value means that he sometimes needs to 
combine sounds in ridiculously unpronounceable ways. For instance, Āryabhat.a 
let the consonant ch stand for 7 and l for 50, so he could write the number 57 
as ‘chala’ or ‘lacha’. But if the verse meter allowed him only one syllable for this 
number, he had to squeeze both consonants onto one vowel as the syllable ‘chla’ 
(Āryabhat.īya 1.11, Shukla 1976, 39). 9 is phonetic monstrosity, not found in 
nature, is no more pronounceable in Sanskrit than it is in English (although it 
is at least preferable to the alternative ‘lcha’). Dysphony of this sort is a de[ nite 
handicap in a number encoding system that is supposed to conduce to verbal 
memorization and recitation. 9 ese disadvantages may explain why Āryabhat.a’s 
version of alphabetic numerals never became popular even among followers of 
his own school, all of whom preferred to stick with the concrete-number or ka-
apayādi systems instead.

Graphical features and the verse-text ideal

Of course, verbal formulations by themselves do not su7  ce to handle all the fea-
tures of an advanced mathematical corpus. Diagrams and complicated numeri-
cal computations, to name but two examples, are impossible to manipulate in 
words alone. 9 e content of Sanskrit treatises makes it clear that mathematicians 
were intimately familiar with such non-verbal features of their subject. Even their 
technical vocabulary, with terms like ‘bow’ for ‘arc’ and ‘bowstring’ for ‘chord’ 
or ‘sine’, frequently suggests visual interpretations of mathematical concepts. But 
visual and graphical representations, however important they might be to math-
ematical thinking, could not be directly incorporated into a verse text designed 
for oral recitation. It was therefore necessary to [ nd some way of reconciling the 
canonical verse treatise with the requirements of written mathematics.

9 is reconciliation was primarily the task of commentators and scribes. For 
instance, aN er copying in a manuscript a number verbally encoded as concrete-
number words or ka apayādi syllables, a scribe would typically write out the numeral 
corresponding to it. So the concrete-number compound ‘earth-hand-tooth’, for 
example, would appear in a manuscript as ‘earth-hand-tooth 3221’. Sometimes 
this practice led to further confusion instead of clari[ cation. Scribes were gener-
ally not very familiar with the technical details of the texts they copied, and thus 
were not always clear about identifying numerical values. Concrete numbers in 
astronomical texts were an occasional source of misunderstanding, because a 
scribe might mistake a literal reference to, say, the sun or moon for a concrete 
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number, and throw in a ‘12’ or ‘1’ aN er it accordingly. A manuscript of the treatise 
of Jñānarāja mentioned in the previous section shows a similar error in a verse 
discussing a sundial gnomon: the scribe read the word ‘gnomon’ as a concrete 
number and followed it with the equivalent numeral ‘12’, although in fact the 
number 12 is irrelevant to this verse (Knudsen, 2008, verse 2.8.8, 234).

To complicate the issue further, scribes might misunderstand the intentions 
not only of the verse-text author but of their own professional predecessors, the 
copyists of earlier manuscript versions. Sexagesimal parameters displayed in col-
umn format in the middle of lines of text were liable to be unwittingly split up 
into separate numbers, and assigned to unrelated parts of the verse, as illustrated 
in Fig. 6.2.1. Or a non-numerical character might simply be misread as a num-
ber: for instance, the visual similarity between the Sanskrit consonant r and the 
numeral 2, or between the numeral 1 and the vertical stroke used in Sanskrit 
script as a punctuation mark, not infrequently interfered with a scribe’s e\ ort to 
represent numbers correctly.

(a)

(b)

Figure 6.2.1 Misplaced numerals in 
a manuscript. The scribe of the top 
manuscript (a) (Benares 35566, f. 39v) 
has correctly written the sexagesimal 
number 182;37,45 as three separate 
decimal numbers (the integer part 
and two fractional parts) stacked ver-
tically in a box near the right margin 
of the text. The scribe of the other 
manuscript (b) (Bhandarkar Oriental 
Research Institute 860 of 1887–91,
f. 5v) has evidently mis-copied a simi-
lar presentation of the same number, 
splitting its component parts (circled 
in the reproduction) into two differ-
ent lines of the text

Commentators were more directly involved than scribes with the technical 
content of a text, and bridged its verbal–numerical divide in more sophisticated 
ways. It was the commentary that actually showed how to translate a verse algo-
rithm into a written computation, usually by means of a worked example. 9 e 
sample problem was frequently stated in a verse, but its solution procedure would 
be described in prose, beginning with the conventional ‘statement’ or numeral 
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expression of its parameters. 9 e following verse from the Līlāvatī, with the 
author’s own commentary, illustrates the style:

[Verse:] Friend, tell [me] quickly the square of three and one-half, and then the square 
root of the square, and the cube, and then the root of the cube, if you know fractional 
squares and cubes.
[Prose:] Statement: 3 1

2. AN er the integer is multiplied by the denominator, the result
is 7

2
. 9 e square of that is 49

4
. 9 en the root is 7

2
. 9 e cube is 343

8 ; its root is 7
2
. (Līlāvatī 

44, Āpate 1937, 38)

Examples of this sort make it clear that there existed various notational con-
ventions for written computations. Algebra problems, for instance, used a kind 
of proto-symbolism that represented operations and unknown quantities by the 
[ rst syllable of their names. In problems of simple proportion, or the ‘Rule of 
9 ree’, where one must [ nd a quantity x in the proportion a : b = c : x in which 
a, b, and c are known, the known quantities were speci[ ed in a standard order
a | b | c (Sarma 2002, 137; see also Denniss Chapter 5.3 in this volume). 9 ere are 
even special Sanskrit names for certain operational layouts, such as ‘door-hinge’ 
multiplication (with the digits of multiplier and multiplicand aligned vertically) 
and ‘cow’s-urine’ multiplication (apparently, zigzagging backwards and down-
wards through the digits to produce a ‘stream’ of sub-products to be added up). 
(Datta and Singh 1962, I 134–149.) 

Most of these conventions have to be reconstructed from manuscript content 
ancillary to the verse base-text. Although verse-treatise authors might bried y 
allude to particular notational or computational methods, or provide a very 
vague and general introductory description of them, they did not devote much 
space to explaining their details. 9 at was evidently considered to be part of writ-
ten mathematics, subsidiary to the purely verbal content of the treatise itself.

Similarly, in verse treatises diagrams might be mentioned only in passing, leav-
ing their detailed description to commentators. For instance, Āryabhat.a summed 
up the geometric procedures for deriving sine values in a single verse as follows:

One should divide up a quarter of the circumference of a circle. And from triangles and 
quadrilaterals, [[ nd] as many sines of equal arcs as desired. (Āryabha īya 2.11, Shukla 
1976, 77)

It is the prose commentary of a di\ erent author (our seventh-century friend 
Bhāskara, in fact) that actually undertakes to explain how to use triangles and 
quadrilaterals inscribed in a quadrant to derive the sines of various arcs (Shukla 
1976, 77–83).

But authors could be more painstaking in providing verse descriptions of 
[ gures that their users would actually need to draw. For instance, an astron-
omer was expected to be able to sketch, on the basis of his computations for a 
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given time, the predicted size and orientation of the crescent moon, as shown in
Fig. 6.2.2. 9 e ‘base’ is computed from the di\ erence in azimuth between the 
moon and the sun, and the ‘upright’ from their di\ erence in altitude. 9 ose two 
quantities determine the inclination of the hypotenuse, or the observed degree of 
tilt in the moon’s crescent. Part of the description of this [ gure in the treatise of 
the eighth-century astronomer Lalla is translated below:

Some point [marked] on d at ground is considered as the sun, and from it the base is 
drawn, and the upright, [each] in its own direction [. . .] 9 e hypotenuse [extends] from 
the tip [of the upright] to the sun-point. 9 e [center of the] disk of the moon is at the 
juncture of the hypotenuse and the upright. [. . .] (Śis.yadhīvr.ddhidatantra 9.15–9.16, 
Chatterjee 1981, I 142)

As usual, though, a prose commentary is required to [ ll in all the details, 
a few of which are given below for comparison with Lalla’s more abbreviated 
description:

[ . . . ] Extending the upright perpendicularly, one should make a point at the tip of that. 
9 en, extending the hypotenuse obliquely from the sun-point, one should set it at the 
center-point at the tip of the upright. One should put the point at the place of junction of 
the tip of that upright and the tip of the hypotenuse. [ . . . ] (Chatterjee 1981, I 142)

Like demonstrations and numerical computations, geometric [ gures clearly 
had an important place in Classical Sanskrit mathematics, and a recognized 
technical terminology. But all of them remained o7  cially secondary to the 
chief vehicle of mathematical learning, the collection of verbal rules in metrical 
verse.

hypotenuse

upright

base sun

Figure 6.2.2 The diagram of the moon‘s crescent described by Lalla
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Conclusion

9 e modern student of Sanskrit mathematics may be tempted to wonder why the 
overburdened commentators did not just give up on the verse-text ideal altogether 
and turn mathematics into a purely literate endeavor, with its true focus on expla-
nations and calculations and drawings. 9 is temptation, of course, red ects the 
dominance of literacy in modern mathematics, which shapes our expectations 
of mathematical methodology. It appears that purely literate mathematics of the 
sort that developed in the West, with its dependence on laborious descriptions of 
[ gures and equations, would have seemed to Indian mathematicians simply too, 
well, prosy. 9 e verbal rule in Sanskrit verse did not lose its charm or the cen-
trality of its truth just because its subject-matter happened to be mathematical. 
On the contrary, the authors of the verse texts were considered the authorities on 
the subject, not the commentators who explained their work in prose. As in other 
Sanskrit disciplines, the title ‘teacher’ or ‘learned one’ was bestowed not on com-
mentators or copyists, those drudges in the service of knowledge, but rather on 
the master of knowledge himself, the speaker of the word.
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CH A P T ER 6 . 3

Antiquity, nobility, and utility: picturing the 
Early Modern mathematical sciences
Volker R Remmert

In Early Modern Europe the term ‘mathematical sciences’ was used to describe 
those [ elds of knowledge that depended on measure, number, and weight, 

red ecting the much quoted passage from the ‘Wisdom of Solomon’:1 ‘thou hast 
ordered all things in measure and number and weight’. 9 e scientiae mathemati-
cae ‘mathematical sciences’ were generally subdivided into those that were purae 
‘pure’, dealing with quantity, continuous and discrete, as in geometry and arith-
metic, and those that were mixtae or mediae ‘mixed’ or ‘intermediate’, which dealt 
also with quality, for example, astronomy, geography, optics, music, cosmography, 
and architecture. 9 e Jesuit Gaspar Schott enumerated more than twenty [ elds 
among the mathematicae mixtae in his Cursus mathematicus ‘Course of math-
ematical sciences’ of 1661. 9 e mathematical sciences, then, consisted of various 
[ elds of knowledge, oN en with a strong bent toward practical applications, and 
only became independent scienti[ c disciplines from the late seventeenth to the 
early nineteenth century.

In the hierarchy of scienti[ c disciplines of the Middle Ages and up to the late 
sixteenth century, the mathematical sciences were subordinate to theology, phi-
losophy, and natural philosophy. Even though they then began to challenge the 

1. Apocrypha, Wisdom of Solomon 11:20, King James version.
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traditional primacy of philosophy and theology, supremacy did not pass to the 
mathematical sciences until the seventeenth century. In 1676 the Jesuit Claude-
François Milliet de Chales could proudly announce in the letter of dedication in 
his Cursus seu mundus mathematicus ‘Course or world of mathematical sciences’ 
that: plebeiae sunt ceterae disciplinae, mathesis Regia ‘the other disciplines are 
plebeian, the mathematical sciences are royal’. Modes of explanation informed 
by the mathematical sciences increasingly dominated the sciences and also in[ l-
trated other parts of society.

9 e foundations of the mathematical sciences’ new status were laid by the work 
of mathematicians from the mid-sixteenth century onward. In the seventeenth 
century, e\ orts to legitimize the mathematical sciences were actively driven for-
ward through various strategies intended to bring them out of seclusion. 9 ese 
strategies usually involved the use of print: mathematical textbooks, books of 
mathematical entertainments, editions of the classics, inaugural speeches, and 
so on. In printed media, the processes of legitimization are found not only in 
the texts themselves, but equally in what Gerard Genette (1987) has called ‘para-
texts’, meaning additional writings such as dedications and prefaces. To these 
we may also add images, such as illustrations, diagrams, and frontispieces, and 
other characteristics, such as typography, format, and binding, which convert 
texts into books. Genette describes paratexts as the seuils ‘thresholds’ of books, a 
term also adopted by Marc Fumaroli in his discussion of frontispieces (Fumaroli 
1994, 325). Paratexts such as dedications and prefaces, as well as frontispieces and 
illustrations, point directly to the realm of panegyric, public praise, in the world 
of Early Modern mathematicians.

In the sixteenth and seventeenth centuries the iconographies of the old disci-
plines of the quadrivium—arithmetic, geometry, astronomy, and music—were 
fairly standardized, rooted in their representations in liberal arts cycles since the 
Middle Ages (Scriba 1985). 9 e (female) personi[ cation of arithmetic carried a 
table of numbers, whereas Geometry held a compass and oN en also surveying 
instruments (see Fig. 6.3.1). 9 us, these disciplines were easy to depict and easy to 
recognize, as were Astronomy with her heavenly sphere and Music with her lute. 
With the emergence of more and more subdisciplines during the seventeenth 
century, the iconographies of the newcomers became increasingly confusing. 
9 e mathematician and engineer Johannes Faulhaber, for example, in the fron-
tispiece of the second part of his Ingenieurs-Schul (1633), a book on forti[ cation, 
presented eighteen subdisciplines of the mathematical sciences (Fig. 6.3.1) and 
helpfully identi[ ed each of them to prevent confusion about new disciplines such 
as logarithmographia, stereometria, algebra, and naval architecture.2

2. On Faulhaber see Schneider (1993); on his frontispieces see Remmert (2005, 108–111).
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Figure 6.3.1 The mathematician and engineer Johannes Faulhaber presented eighteen 
(female) personi? cations of the mathematical sciences. As was standard, Arithmetic 
carried a table of numbers, Geometry held a compass and surveying instruments, 
Astronomy could be seen with her heavenly sphere and Music held her lute, but 
Faulhaber also identi? ed new disciplines such as Logarithmographia, Stereometria, and 
Algebra. (Faulhaber 1633, by permission of Herzog August Bibliothek Wolfenbüttel)
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Engraved title pages and frontispieces were an ideal medium for the visual 
legitimization of the mathematical sciences. In the nexus between the ideas of 
seventeenth-century scholars (be they mathematicians, mathematical practition-
ers, experimental scientists, or natural philosophers) and the visual images they 
used to represent those ideas—the active encoding of ideas into iconographical 
signs—frontispieces become evidence of scholars’ deliberate intentions to make 
and shape their own images of scienti[ c inquiry. Decoding these visual state-
ments to try to understand these processes o\ ers insights into the self-perception 
and self-fashioning of their protagonists, the advancement of their cause, and the 
enhancement of status of their respective disciplines. In the mathematical sci-
ences, frontispieces played speci[ c and signi[ cant roles, covering a wide variety 
of functions and audiences (Remmert 2005; 2006). I shall not be able to consider 
all of these here. Instead I will use the topics of antiquity, nobility, and utility as 
pathways into the immensely rich world of imagery representing, praising, and 
propagating the Early Modern mathematical sciences.

Antiquity, nobility, and utility

During the [ N eenth century, three aspects of the mathematical sciences were 
usually singled out as praiseworthy: their value as preliminary instruction for 
the study of philosophy, their practical advantage for the community, and their 
antiquity. During the sixteenth century the arguments in favour of the math-
ematical sciences became fairly standardized, and drew on a common basis of 
argumentation (the practical and educational role of the mathematical sciences) 
and examples (Archimedes’ burning mirrors being among the most popular). 
9 e educational value of the mathematical sciences, to which their epistemologi-
cal status was closely related, was usually seen to be in their importance for train-
ing the mind and in their recreational potential, but not oN en in their necessity 
or value to other disciplines, such as philosophy, medicine, law, or theology (Rose 
1975). 9 is situation gradually changed until, in the [ rst half of the seventeenth 
century, mathematicians, emphasizing the absolute certainty of mathematical 
knowledge, which had been so hotly debated in the sixteenth-century, declared 
that the mathematical sciences deserved a new position in the hierarchy of sci-
enti[ c disciplines. In doing so they usually referred to essential characteristics of 
the mathematical sciences, namely their antiquity, nobility, and utility (Imhausen 
and Remmert 2006).

Antiquity—mostly Greek antiquity—could, naturally, be referred to in vari-
ous forms. In the Early Modern mathematical sciences, Archimedes and Euclid 
featured prominently, both rhetorically and visually. Archimedes was possibly 
the more prominent as he carried the double symbolism of both pure and mixed 
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mathematics. We [ nd them both in the engraved title page of Samuel Marolois’ 
Opera mathematica (1614), with special emphasis on Archimedes at war
(Fig. 6.3.2). While the latter’s usefulness to the military was an important aspect, 
the other achievements of Archimedes and Euclid, and their undiminished cul-
tural importance, were rather more to the point in emphasizing the antiquity of 
the mathematical sciences, as can be seen in a series of frontispieces (Fig. 6.3.3) 
used by Oxford University Press for editions of Euclid in 1703, Apollonius in 
1710, and Archimedes in 1792 (Fasanelli and Rickey, 2008). 9 e only variations 
between the di\ erent versions are the geometric drawings in the front leN . 9 eir 
meaning was explained by a quotation from Vitruvius, which appears below 
the picture: ‘Aristippus the Socratic philosopher, when he was shipwrecked in 
Rhodes, noticed geometrical diagrams drawn on the beach and said to his com-
panions, “We can hope for the best for I see the signs of men” ’. Here, the math-
ematical sciences stood for civilization and, even more, cultural superiority.

9 e technique of conferring antiquity and nobility through images and fron-
tispieces was [ rmly rooted in the prevailing political culture, where the elements 
they contained were intimately understood. 9 e Danish nobleman and astron-
omer Tycho Brahe, for example, had a clear understanding of the importance of 

Figure 6.3.2 In the lower right we see Archimedes at war. (Marolois 1614, by
permission of Herzog August Bibliothek Wolfenbüttel)
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Figure 6.3.3 ‘We can hope for the best for I see the signs of men’. (Gregory 1703, 
by permission of the Museum of the History of Science, Oxford)



picturing the Early Modern mathematical sciences 543

artistic legitimization and the glori[ cation of power, and applied this technique to 
the science of astronomy. His ind uence on the visual legitimization of astronomy 
was manifold (Remmert 2005, 125–188; 2007a). In 1574, in his inaugural speech, 
De disciplinis mathematicis oratio ‘Oration on the mathematical disciplines’, at 
Copenhagen University he named Timocharis, Hipparchus, Ptolemy, al-Battānī, 
King Alfonso of Castile, and Copernicus as the most important astronomers of the 
past, thus citing standard astronomical tradition. He also consistently used these 
astronomers in the iconographic programmes of his Uraniborg and Stjerneborg 
institutions on the island of Hven, where he built what amounted to a temple to 
Urania, the muse of astronomy, full of pictures and sculptures glorifying astron-
omy. It included material describing the mythological background of astronomy 
and the evolution of the astronomical tradition, the latter in the form of a canon 
of authorities beginning with Hipparchus and ending with Brahe himself. Brahe 
documented his world of images and emblems best of all in his slender volume 
Astronomiae instauratae mechanica ‘9 e restoration of mechanical astronomy’ 
of 1598, which contained numerous engravings of the instruments at Uraniborg 
and Stjerneborg, and a meticulous description of the institutes themselves.

Brahe’s canon of astronomical authorities subsequently ind uenced a number 
of frontispieces to Dutch publications, the [ rst of which was the engraved title 
page of Nicolaus Mulerius’ Tabulae frisicae ‘Frisian tables’ (1611) (Fig. 6.3.4). 9 e 
book was published by Willem Janszoon Blaeu, who had adhered to Brahe’s icon-
ographic conventions ever since he had been his assistant in 1595–96. 9 e fron-
tispiece unmistakably conforms to Brahe’s canon in its portrayal of Hipparchus, 
Ptolemy, King Alfonso, Copernicus, and Brahe himself. 9 e astronomical tradi-
tion it invokes is that of observational astronomy, as distinct from theoretical 
astronomy or cosmology: the issue here was the antiquity and nobility of astro-
nomical observation and calculation, not the question of which world system was 
to be given credence.

Twenty years later, Adriaan Metius’ introduction to astronomy, Primum 
mobile ‘Primary motion’ (1631), appeared with more or less the same engraved 
title page (Fig. 6.3.5), except that a portrait of Metius is inserted between Brahe 
and Copernicus. 9 e light of the luminaries of astronomy shines on Metius, 
thereby enhancing his authority and generating credibility for the book itself. 
In the years to come, the tradition used by Mulerius and Metius became very 
popular in Dutch publications. 9 e Copernican Philipp Lansbergen, in the 
engraved title page of his Tabulae motuum coelestium ‘Tables of celestial motion’ 
(1632), added only Aristarchus (as the [ rst heliocentric astronomer) and him-
self to Brahe’s original list. With obvious sympathies for the Copernican system, 
Andreas Cellarius followed the same line in the frontispiece of his impressive 
Harmonia macrocosmica ‘Macrocosmic harmony’ (1661) portraying Ptolemy, 
King Alfonso, Lansbergen, Copernicus, Brahe, and Al-Battānī. Finally Jan Luyts 
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Figure 6.3.4 A reference to Brahe’s canon of astronomical authorities: Hipparchus, 
Ptolemy, King Alfonso, Copernicus, and Brahe himself. (Mulerius 1611, by permission 
of Herzog August Bibliothek Wolfenbüttel)
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Figure 6.3.5 Metius adds himself to Brahe’s list of astronomical authorities. (Metius 
1631, by permission of Herzog August Bibliothek Wolfenbüttel)
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in his Astronomica institutio ‘Foundations of astronomy’ (1692), a Tychonic intro-
duction to astronomy, depicted Hipparchus and Ptolemy, Copernicus and Brahe, 
Galileo and Hevelius, thus alluding to the earlier iconographic programmes.

9 ese frontispieces demonstrate an intense common awareness of the visual 
elements involved. 9 e continuity of iconographic elements gave rise to strong 
local and national conventions, a tradition in itself in the republic of letters. 
Legitimization and credibility were underpinned by visual references to a tradition 
stretching back to antiquity, indicating the nobility and value of the astronomical 
matters treated in the text.

Another approach also became popular in the seventeenth century through 
Brahe, who introduced the symbolically loaded mythical [ gures of Atlas and 
Hercules (Remmert 2007a). 9 ose inspecting his great armillary sphere in the 
Stjerneborg observatory, for example, found themselves face to face with Atlas, 
upon whose shoulders the sphere was supported. As can be seen from the fron-
tispiece of Johannes Bayer’s Uranometria (1603) (Fig. 6.3.6), Atlas and Hercules 
were the teacher and the disciple of an astronomy that had existed from time 
immemorial (Atlanti vetustissimae astronomiae magistro; Herculi vetustissimae 
astronomiae discipulo ‘Atlas, teacher of the most ancient astronomy; Hercules, 
disciple of the most ancient astronomy’). Bayer, drawing on Brahe, thus asserts 
that astronomy is one of the oldest and noblest of all disciplines. But he also 
identi[ es Atlas with Ptolemy, who represents the old geocentric astronomy, and 
shows Hercules, who represents the new Tychonic astronomy, taking over Atlas’s 
task of holding up the world.

To legitimize the new as good and deserving, astronomers of the late six-
teenth and the seventeenth centuries could hardly [ nd a better ambassador than 
Hercules, who signi[ ed many positive qualities that could be adopted by propa-
gators of the new astronomy. At the same time, associating the old astronomy 
with Atlas honoured it as a venerable, indeed royal, part of the tradition. 9 e new 
astronomy, symbolized by Hercules, is no usurper: presented in benign tandem 
with Atlas, he becomes the legitimate heir to a regal heritage, and speaks to rulers 
as an equal.

Antiquity and tradition were fundamental in any argument for the intellec-
tual nobility of the mathematical sciences, and in making them acceptable to the 
political nobility whose patronage was needed. 9 e Jesuit Gaspar Schott stressed 
this aspect in the frontispiece of his Cursus mathematicus (1661), mentioned 
above (Fig. 6.3.7). 9 is impressive volume was dedicated to Leopold I, Austrian 
Emperor since 1658, who can be seen receiving his dedication copy of the Cursus 
from a crowned personi[ cation of the mathematical sciences. Schott emphasized 
that Mathematica was the Queen among the sciences, worthy to communicate 
with the Emperor himself (Remmert 2005, 78–85, 210–217). 9 us the nobility 
of the mathematical sciences could be played out under the eyes of kings and 
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Figure 6.3.6 Johannes Bayer presents Atlas and Hercules as teacher and disciple 
of an astronomy that has existed since time immemorial, thus asserting, like Brahe, 
that it is one of the oldest and noblest of disciplines. Bayer identi? es Atlas with 
Ptolemy, representing the old geocentric astronomy, and Hercules with Brahe, rep-
resenting the new Tychonic system. (Bayer 1603, by permission of Herzog August 
Bibliothek Wolfenbüttel)



Figure 6.3.7 The quest for patronage: the nobility of the mathematical sciences 
could be played out under the eyes of kings and emperors on impressive stages, in 
vast and beautiful gardens. (Schott 1661, by permission of Herzog August Bibliothek 
Wolfenbüttel)
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emperors on impressive stages, in vast and beautiful gardens—to which I shall 
return later.

Amongst the Jesuits, visual strategies of legitimization became more and more 
elaborate. In the frontispiece (Fig. 6.3.8) of Mario Bettini’s Apiaria universae 
philosophiae mathematicae ‘Beehives of all mathematical philosophy’ (1645), 
for example, the beehives represent ten branches of the mathematical sciences 
(arithmetic, geometry, cosmography, optics, music, architecture, astronomy, 
mechanics, hydrology, and forti[ cation), and the bees d ying in and out testify to 
their usefulness (Bennett, Chapter 4.2 in this volume). 9 e Dedication stresses 
the utility of the mathematical sciences: ‘What do you expect from beehives if 
not honey? 9 e mathematical sciences are the honey of human sciences’ (Bettini 
1642, I 5).3 Surveying stands out on the front leN  and the inevitable burning mir-
ror of Archimedes to the right. Bettini makes use of the nobility of the mathem-
atical sciences too, turning his work into a hortus mathematicus ‘garden of the 
mathematical sciences’.

9 e mathematical sciences were useful both in times of war (Archimedes’ 
burning mirror) and of peace (Remmert 2005, 103–124). 9 e Dutch mathem-
atician Martinus Hortensius in his inaugural speech at the Athenaeum illustre 
‘Illustrious School’ in Amsterdam in 1634 succinctly made the point that the 
mathematical sciences were equivalent to prosperity, because they contributed 
to navigation, navigation in turn to trade, and trade to the solid and [ rm pros-
perity of the country (Imhausen and Remmert 2006, 129). Similar arguments 
could easily be made for individual branches such as arithmetic. Utility was, 
of course, central to advertising the mathematical sciences in general and on 
the book market in particular. Jonas Moores’ New systeme of the mathematicks 
(1681) covered, amongst other things, arithmetic, practical geometry, trigonom-
etry, cosmography, and navigation. Its frontispiece (Fig. 6.3.9) deals with the link 
between these disciplines and trade, thereby stressing the utility of the math-
ematical sciences in the world at large and, of course, that of the book itself. 9 e 
framed vignette shows a group of men gathered around a globe occupied with 
mathematical instruments, while various illustrations represent the mathemat-
ical sciences. 9 e sea and maritime commerce can be seen through a window, 
while Neptune, lord of the seas, and Aeolus, keeper of the winds, watch over the 
assembly. 9 at Aeolus is smoking a pipe is a tiny but important detail illustrat-
ing the importance of maritime trade: tobacco was imported to England from 
Virginia and re-exported to Amsterdam. Potential buyers were those looking for 
overviews like this that could provide them with useful basic information on 
various branches of the mathematical sciences.

3. Quid ab Apiariis nisi mella expectes? Humanarum scientiarum mella sunt Mathematicae.



Figure 6.3.8 The beehives represent ten branches of the mathematical sciences 
(arithmetic, geometry, cosmography, optics, music, architecture, astronomy, mechan-
ics, hydrology, and forti? cation), and the bees U ying in and out testify to their useful-
ness. Surveying stands out on the front left and the burning mirror of Archimedes to 
the right. (Bettini 1645, I, by permission of Herzog August Bibliothek Wolfenbüttel)
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Figure 6.3.9 Neptune, lord of the seas, and Aeolus, keeper of the winds, watch over 
the mathematical assembly. That Aeolus is smoking a pipe is a tiny but important detail: 
tobacco was imported to England from Virginia and re-exported to Amsterdam. (Moore 
1681, by permission of Niedersächsische Staats- und Universitätsbibliothek Göttingen)
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Casual viewers or readers did not require any special knowledge to understand 
and decode these advertising frontispieces. 9 us they were accessible to a larger 
audience than those concerned with scienti[ c debates or patronage. 9 eir mes-
sage was a clear and simple ‘Buy this book!’ As a result they were oN en copied 
or imitated over long periods of time, much like the frontispiece to Mulerius’s 
Tabulae frisicae, discussed earlier. Such re-appropriations of frontispieces and 
the recurrence of their iconographic elements have repeatedly led interpreters 
into pitfalls. 9 is is not my concern here; the repetition stands as another proof, 
however, of the power and dissemination of visual strategies in early modern 
Europe.

Scienti? c debates: squaring the circle

In 1647 the Jesuit Grégoire de Saint Vincent published his massive Opus geo-
metricum quadraturae circuli et sectionum coni ‘Geometrical quadratures of the 
circle and sections of a cone’, in which he presented four methods of squaring 
the circle. He was so proud of this spectacular result that he presented it in the 
frontispiece (Fig. 6.3.10). On the leN  we see Archimedes presenting his famous 
theorem that a circle can be transformed into a right-angled triangle of equal 
area. From above the sun’s rays pass through a square and meet the ground in 
a circular shape. To this well-known phenomenon of ‘Sonnentaler’, described 
by Kepler in his Optics (1604), de Saint Vincent adds a quotation from Horace: 
Mutat quadrata rotundis ‘He changes square things to round’ (Epistulae I, I 100). 
One could hardly devise a clearer visual statement of the fact that the author, in 
the tradition of Archimedes, had indeed squared the circle. Moreover, in Jesuit 
imagery the light emanating from the heavens carried the obvious connotation of 
divine inspiration. And divine inspiration was indispensable if one wished to fol-
low the Habsburg motto seen just above Archimedes’ pointer: plus ultra ‘further 
beyond’, to transcend the limits of traditional knowledge.

9 e book is dedicated to the House of Habsburg and the frontispiece abounds 
with Habsburg symbolism. On the lower right two cherubs show two sides of an 
ancient coin depicting Constantine the Great, founder of the Holy Roman Empire 
to which the House of Habsburg was heir. One cherub points to Constantine’s 
personal emblem, a sphere on a cubical altar with the motto beata tranquilitas 
‘blessed tranquillity’. 9 is symbolism has led William B Ashworth to suggest that 
de Saint Vincent ‘was attempting to justify the quadrature problem as the math-
ematical equivalent of the essential imperial problem: good government’. He 
put his book and discoveries in the context of Habsburg patronage, ‘suggesting 
that the problem of changing a circle into a square is particularly [. . .] appropri-
ate to the Habsburg House, since the combination of circle and square, orb and 
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Figure 6.3.10 Plus ultra ‘further beyond’, or transcending the limits of traditional knowl-
edge: ‘He changes square things to round’ (Horace: Epistulae I, I 100). Archimedes, on the 
left, had not been able to square the circle. (de Saint Vincent 1647, by permission of Herzog 
August Bibliothek Wolfenbüttel)
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altar, has emblematically represented the Empire since the days of Constantine’ 
(Ashworth 1991, 137–167; 149). In the frontispiece (beneath the lion’s head) he 
even renamed the problem as problema austriacum ‘the Austrian problem’.

De Saint Vincent also borrows the Habsburg motto plus ultra and the pil-
lars of Hercules (with the Golden Fleece between), set at the Atlantic end of the 
Mediterranean to mark the limits of the ancient world, the ne plus ultra ‘no fur-
ther beyond’. So it is appropriate that the squaring of the circle is situated beyond 
the pillars, in the unknown, which not even the great Archimedes, who stands 
behind the pillars, had been able to reach. 9 is allegory red ects the widespread 
optimism of seventeenth-century mathematicians, who were convinced that they 
lived in an age of scienti[ c progress which transcended the boundaries of know-
ledge of the Ancients.

Among several voices critical of de Saint Vincent’s Opus geometricum, the 
booklet Examen circuli quadraturae ‘Examination of the quadrature of the circle’ 
of his fellow Jesuit Vincent Leotaud (Lyons 1654), is of particular interest because 
of its engraved title page (Fig. 6.3.11). Leotaud neatly summarizes his critique 
in the image: the circle cannot be squared, not even by the sheer brutality of 
a cannon or a sledgehammer (Hofmann 1938). 9 is example nicely illustrates 
the important function of frontispieces in seventeenth-century scienti[ c debates. 
While Leotaud’s image shows this in its purest form, St. Vincent’s frontispiece 
embeds the scienti[ c message in a rather complex design that also proves his rev-
erence for the Habsburgs.

Patronage among the Jesuits: the example of Francesco Eschinardi

9 e Jesuits were among the most proli[ c users of art in the Early Modern period, 
and in their pictorial worlds various styles and intentions were oN en combined 
in arbitrary ways. An intensive culture of frontispieces and engraved title pages 
began to d ourish amongst them in the 1620s. Among Jesuit mathematicians, 
this interest was [ rst seen in Christoph Scheiner, and later on in Athanasius 
Kircher, as well as Mario Bettini, Gaspar Schott, and de Saint Vincent, whose 
frontispieces were carefully designed patronage artefacts, (Remmert 2005, 
189–224).

9 e Italian Jesuit Francesco Eschinardi published widely in the mathematical 
sciences and contributed regularly to the Giornale de’ letterati from 1668 to 1675. 
He had been trained in Jesuit schools since 1637, later read natural philosophy 
and metaphysics and [ nally taught the mathematical sciences at the Collegio 
Romano (Feldhay 1989). In his Centuria problematum opticorum ‘One hun-
dred optical problems’ (1666) and its second part Centuriae opticae pars altera 
‘One hundred optical problems, part two’ (1668) he treated topics from optics in 
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Figure 6.3.11 The circle cannot be squared, not even by the sheer brutality of a
cannon or sledgehammer. (Leotaud 1654, by permission of Herzog August Bibliothek 
Wolfenbüttel)
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textbook fashion, concentrating on microscopes and telescopes, and the theory of 
mirrors and their applications. 9 e second part was dedicated to Leopold Medici, 
who from 1657 to 1667 had presided over the Florentine Accademia del Cimento 
‘Academy of Experiment’ founded by Ferdinand II and was committed to the 
experimental programme of Galileo and his school. In his letter of dedication, 
Eschinardi praised the support Leopold and the Medici had given to the sciences. 
In particular he emphasized the importance of ‘vestro Galileo’ ‘your Galileo’, who 
at the same time was the link to optics because he had built a telescope and found 
the four moons of Jupiter, which he had then dedicated to the Medici as ‘sidera 
medicea’ ‘the Medicean stars’.

9 e frontispiece by François Spierre (Fig. 6.3.12) refers to this connection 
(Remmert 2005, 218–222). On the upper leN  we see the crescent moon with the 
earth-like surface that Galileo had [ rst described. On the opposite side Jupiter 
and its four moons are clearly visible, observed by a man with a long telescope, 
possibly Galileo. 9 e personi[ cation of optics points to his telescope, using 
another telescope as a pointer. Her leN  hand is directed towards the moon as if 
she is explaining the observation and understanding of celestial phenomena to 
the girl standing beside her. 9 e girl pays close attention as she holds an over-
sized lens in her hands. 9 e Medici coat of arms dominates the scene at front leN , 
where a putto leaning on it has just cut a piece o\  one of the six palle ‘balls’ and 
presents it to Optics. 9 is is not an act of vandalism but homage to the generosity 
of the Medici, because the cut-o\  piece is itself a freshly polished lens.

What might seem playful to a modern spectator was deeply rooted in the quest 
for patronage. Accordingly, before publication, a sketch of the frontispiece was 
sent for approval to Alessandro Segni, a friend of Leopold and secretary of the 
Accademia del Cimento. 9 us when Eschinardi cautiously showed his reverence 
for Galileo in the [ nal version, he could have been assured of the protection of 
Leopold. 9 e patronage aspect of a frontispiece would oN en be prominent, but its 
other messages were manifold.

B e garden of the mathematical sciences

From images and frontispieces it is only a small step to further metaphor in the 
history of Early Modern mathematical sciences. We have seen that in the frontis-
piece of Mario Bettini’s Apiaria universae philosophiae mathematicae (Fig. 6.3.8), 
bees carry an important message, and one could [ ll a book with the metaphorical 
use of bees and beehives in Early Modern natural philosophy and the mathemati-
cal sciences. But in the Apiaria another, equally powerful metaphor comes up: 
the hortus mathematicus, the ‘garden of the mathematical sciences’ (Remmert 
2004; 2007b).
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Figure 6.3.12 Homage to the Medici: the cut-off piece from the Medici coat of 
arms is a freshly polished lens. (Eschinardi 1668, by permission of Herzog August 
Bibliothek Wolfenbüttel)
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It is more fruitful to take this metaphor seriously, and others too, than to dis-
miss it as a typical blossom of early modern rhetoric and iconography. Let us 
take a short glimpse at the hortus mathematicus as a [ eld where the theory and 
practice of gardening and the mathematical sciences interacted. Gaspar Schott in 
the frontispiece of his Cursus mathematicus (Fig. 6.3.7) made good use of the fact 
that everything needed to create gardens and entertainment in them is covered 
by the mathematical sciences: practical arithmetic, architecture, perspective, 
optics, music, and so on. 9 us, it was only [ tting for the powerful and rich, with 
whom gardens were fashionable, to support the mathematical sciences.

At the same time, in the 1660s, the English virtuoso, co-founder of the Royal 
Society and diarist, John Evelyn, pursued the ambitious goal of turning the art 
of gardening into a science. He spent almost [ N y years of his life writing and 
re-writing a compendium on gardens, his Elysium britannicum, or the royal gar-
dens. Of this magni[ cent encyclopaedia only small parts were published in his 
lifetime, but the twenty-[ rst century has brought us an annotated printed edition 
of the whole manuscript (Evelyn 2001). Evelyn drew on the whole range of the 
mathematical sciences. Accordingly in the chapter ‘Of a gardiner, and how he is 
to be quali[ ed’, Evelyn emphasized that knowledge of the mathematical sciences 
was indispensable for gardening and that ‘what Plato caused to be inscribed upon 
the Architrave of his Schoole dore, would be set with as much reason over that 
of our Garden, Αγεωμέτρητος nemo [Let no one ignorant of geometry enter].’ 
(Evelyn 2001, 33–34).

In fact, several mathematical textbooks were closely tied to the needs of garden-
ing, in theory and practice. By way of example I mention the Géométrie pratique 
‘Practical geometry’ (1702) of Alain Manesson-Mallet, maitre de mathématiques 
‘teacher of mathematics’ at the court of Louis XIV. Of more than [ ve hundred 
engravings, many are related to gardening (Fig. 6.3.13). Usually they show castles 
and gardens in their upper part, so that visually the Géométrie pratique is close to 
architecture and landscape architecture. But Manesson-Mallet uses the engrav-
ings not only as a form of reverence to his patron and king, glori[ ed through 
numerous views of Versailles; he also depicts problems and exercises of everyday 
garden design. One example concerns a gentleman whose garden is too long and 
too narrow and who wants to remedy this by exchanging land with his neighbour. 
9 us he desires the piece QNXY, better proportioned than the original MNOP 
(Fig. 6.3.14). Manesson-Mallet gives detailed instructions on the basis of Euclid’s 
Elements, book VI. 9 e text refers directly to the image: Manesson-Mallet is in 
operating in the garden itself (Manesson-Mallet 1702, III 248).

From the late sixteenth to the early eighteenth century many authors on gar-
dening were convinced that the mathematical sciences were indispensable in 
turning the art of gardening into a reliable and calculable enterprise, a science of 
nature (Remmert 2007b). 9 e mathematical sciences with their many branches 
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Figure 6.3.13 Mathematics in the garden. (Manesson-Mallet 1702, III 133, by per-
mission of Herzog August Bibliothek Wolfenbüttel)
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Figure 6.3.14 Mathematics in the garden: Euclid helps to trade land in order to 
obtain the piece QNXY, better proportioned than MNOP. (Manesson-Mallet 1702, 
III 248, by permission of Herzog August Bibliothek Wolfenbüttel)



picturing the Early Modern mathematical sciences 561

thus had two important roles to play. On the one hand, gardening as a discipline 
was transformed and emancipated, for example, from its old rival architecture. 
On the other hand, gardening reached into the political sphere by o\ ering new 
possibilities and forms of representation, and not only in the gardens of Versailles, 
which were, perhaps, the most magni[ cent example of political representation in 
seventeenth-century Europe (Mukerji 1997). From this point of view the hortus 
mathematicus was not just one more visual strategy used to legitimize the math-
ematical sciences, but an essential element of their visual representation.

Conclusion

In the Early Modern period mathematicians, astronomers, and other practition-
ers of the mathematical sciences attached great importance to the visual strat-
egies for legitimizing the mathematical sciences. From the early seventeenth 
century the mathematical sciences began to play a leading role in the hierarchy 
of scienti[ c disciplines, and modes of explanation informed by them increas-
ingly dominated many branches of the sciences and segments of society. In my 
view, this complex process cannot be understood if we concentrate exclusively on 
scienti[ c texts, which could be hard to digest then and now. Rather, much of the 
labour of convincing patrons, readers, and spectators, was invested in paratexts, 
visual as well as written.

9 ere are considerable gaps in our historical understanding of frontispieces as a 
means of communication and transmitters of knowledge and opinions. However, 
there were good reasons for choosing frontispieces as a visual medium because 
they provided an obvious way of incorporating pictorial methods into the realm 
of scholarly expression. Visual strategies used by authors and publishers could 
be based on various models, from the politically loaded symbolism of Atlas and 
Hercules, to the lines of tradition well known among scholars. Whether frontis-
pieces were suited to a particular audience or a speci[ c discipline depended on 
whether an appropriate existing iconography could be drawn upon or developed. 
For astronomy, a huge iconographic repertoire already existed and its range could 
easily be extended, as, for example, in the Copernican debate and the develop-
ment of ingenious geo- and heliocentric symbols (Remmert 2003). However, the 
situation was di\ erent for other branches of the mathematical sciences and natu-
ral philosophy, where no established iconographic tradition was available (for 
example, in magnetism). In addition to the availability of suitable forms of icono-
graphic representation, an important issue in designing (or choosing) a frontis-
piece (aside from who would cover the expense) was its intended audience. 9 e 
frontispiece as part of a personal patronage scheme had a clearly de[ ned audi-
ence, probably extremely small, noble, or wealthy, whereas the frontispiece as 
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advertisement had to be accessible to a larger audience of unknown buyers. But 
when legitimization was the main concern, patrons, scholars, and laymen were 
all among the addressees.

Naturally most of the images were designed to persuade more than to prove. 
And when it came to persuasion, visual material and frontispieces were signi[ -
cant. Whereas readers of the main text would expect proofs, observers of the 
frontispiece, who might never look at the main text, would not necessarily object 
to being caught in a persuasive, if unsubstantiated, visual web. 9 e latter were 
oN en the main target of various strategies of patronage and legitimization, the 
success of which was, as it still is, essential for the formation and advancement of 
ideas and new disciplines.
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CH A P T ER 6 .4

Writing the ultimate mathematical textbook: 
Nicolas Bourbaki’s Éléments de mathématique
Leo Corry

Mathematical textbooks have played a signi[ cant role in the history of math-
ematics. Still, with a few—if important—exceptions, and especially in the 

twentieth century, mathematical textbooks do not in general convey new results. 
Rather, they attempt to summarize and present an updated picture of a discipline. 
Such summaries can hardly be neutral with regard to the body of knowledge they 
present. Writing a textbook involves much more than simply putting together 
previously dispersed results. Rather, it requires selecting topics and problems, 
and organizing them in a coherent and systematic way, while favoring certain 
techniques, approaches, and nomenclature over others. A mathematical textbook 
thus privileges certain avenues of research rather than others. Producing a math-
ematical textbook involves, above all, providing a well-de[ ned structure of the 
discipline. But this structure is, in general, not forced upon the author in a unique 
way. 9 e author makes meaningful choices to produce a distinctive image of the 
discipline.1 If the textbook turns out to be successful and ind uential, it will dis-
seminate this image as the preferred one for the discipline in question. Had the 

1. I will refer to the distinction between ‘body’ and ‘images’ of mathematical knowledge (Corry 2001; 
2004). Roughly stated, answers to questions directly related to the subject matter of any given discipline con-
stitute the body of knowledge of that discipline, whereas claims and knowledge about that discipline pertain 
to the images of knowledge.
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author chosen a di\ erent image, or had a book conveying a di\ erent disciplinary 
image been more successful, then the subsequent development of that discipline 
might have been considerably di\ erent. Occasionally a new disciplinary image 
put forward in a textbook constitutes an innovation no less important than a 
breakthrough individual result (Grattan-Guinness 2004).

Euclid’s Elements is, of course, the paradigm example of a textbook compiled 
from existing knowledge that promoted an enormously ind uential discipli-
nary image, de[ nitively shaping mathematics (and more) for millennia. Gauss’ 
Disquisitiones arithmeticae is a second prominent example, sometimes compared 
in importance to the Elements, although more clearly circumscribed in its aims 
(Goldstein et al 2007). More recently, Nicolas Bourbaki’s Éléments de mathéma-
tique embodied a unique attempt to play a similarly fundamental role in twentieth-
century mathematics, with far-reaching ambitions for its impact on the discipline 
at large. It comprised a collective undertaking that drew on the e\ orts of scores 
of prominent mathematicians and appeared as a multi-volume series published 
between 1939 and 1998 (with new editions and printings appearing to this very 
day). Its ind uence spread throughout the mathematical world and it was instru-
mental in shaping the course of mathematical research and training for decades.

Bourbaki’s extremely austere and idiosyncratic presentation—from which dia-
grams and external motivations were expressly excluded—became a hallmark 
of the group’s style. 9 e widespread adoption of Bourbaki’s approaches to spe-
ci[ c questions, concepts, and nomenclature indicates the breadth of its ind uence. 
Concepts and theories were presented in a thoroughly axiomatic way and dis-
cussed systematically, always going from the more general to the particular and 
never generalizing a particular result. A noteworthy consequence was that the 
real numbers could only be introduced well into the treatise, and not before a 
very heavy machinery of algebra and topology had been prepared in advance.

9 e Bourbaki phenomenon and the presentation of mathematics embodied in 
the Éléments de mathématique was followed in the mathematics community with 
a mixture of curiosity, excitement, awe, and, less frequently, criticism or even 
open disgust. 9 is piece from Mathematical Reviews is an inspired description of 
the di7  culties readers faced:

Confronted with the task of appraising a book by Nicolas Bourbaki, this reviewer feels 
as if he were required to climb the Nordwand of the Eiger. 9 e presentation is austere 
and monolithic. 9 e route is beset by scores of de[ nitions, many of them apparently 
unmotivated. Always there are hordes of exercises to be worked painfully. One must be 
prepared to make constant cross references to the author’s many other works. When the 
way grows treacherous and a nasty fall seems evident, we think of the enormous learning 
and prestige of the author. One feels that Bourbaki must be right, and one can only press 
onward, clinging to whatever minute rugosities the author provides and hoping to avoid 
a plunge into the abyss. (Hewitt 1956, 507)
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9 is chapter is devoted to describing the origins and development of the enter-
prise of writing the Éléments, which was oN en seen, by those who took part in 
it, as the writing of the ultimate mathematical textbook. 9 e chapter opens with 
an account of the origins of the group and the [ rst stages of the project. 9 is is 
followed by a more focused description of the writing of the volumes devoted to 
algebra and set theory, as well as their relationship to existing textbooks. 9 e fol-
lowing section discusses the centrality of the idea of a mathematical structure for 
the Bourbakian image of mathematics, and its relationship to the technical con-
tents of the Éléments. A [ nal section discusses the cond ict that rose in the mid-
1950s within the group around the question of whether to adopt the language of 
categories and functors as a general, unifying language of mathematics.

Bourbaki: a name and a myth

Nicolas Bourbaki is the pseudonym adopted during the 1930s by a group of young 
French mathematicians who undertook the collective writing of an up-to-date 
treatise of mathematical analysis adapted to the latest advances and the current 
needs of the discipline. Among the ten founding members of the group Henri 
Cartan, Claude Chevalley, Jean Delsarte, Jean Dieudonné, and André Weil—all 
former students of the École Normale Supérieure in the early 1920s—remained 
the most ind uential and active within the group for decades. Over the years, 
many younger mathematicians participated in the group’s activities, while the 
older members were supposed to quit at the age of [ N y. All were among the most 
prominent of their generation, actively pursuing their own research in di\ erent 
specialisms, while the activities of Bourbaki absorbed a part of their time and 
energies (Chouchan 1995; Mashaal 2006; Beaulieu 2007).

By the early 1930s, the future founders of the group had already launched suc-
cessful careers and had started publishing important, original research. As was 
typical in French academic life at the time, their careers started in provincial uni-
versities. Weil and Cartan were colleagues at Strasbourg for several years, where 
they felt increasingly dissatis[ ed with the way that analysis was traditionally 
taught in their country and with the existing textbooks written by the old mas-
ters (Dieudonné 1970, 136; Weil 1992, 99–100; Beaulieu 1993, 29–30). Edouard 
Goursat’s Cours d’analyse mathématique (1903–5) was the most commonly used 
at the time. Its standards of rigor were unsatisfactory for these representatives of 
the younger generation. It treated the classical topics of analysis by considering 
case aN er case in an extremely detailed fashion, rather than introducing general 
ideas that could account for many of them simultaneously.

9 e search for better ways to introduce the basic concepts and theorems of the 
calculus was a topic of constant conversations between Cartan and Weil. 9 eir 



people and practices568

predicament also a\ ected their contemporaries teaching at other universities 
around France and was part of a more general feeling that postwar French math-
ematics was lagging far behind research in other countries, especially Germany, 
because of the loss of an entire generation of young mathematicians in the war. 
9 is situation provided the central motivation for the deliberations that would 
lead to the Bourbaki project.

At that time, Cartan and Weil used to meet every fortnight in Paris with their 
friends Chevalley, Delsarte, Dieudonné, and René de Possel. 9 e framework of 
the meeting was the ‘Séminaire de mathématiques’ held from 1933 at the Institut 
Henri Poincaré under the patronage of Gaston Julia. Visiting mathematicians 
oN en participated too, but the ‘Séminaire Julia’, as it came to be known, was 
above all a joint production of the proto-Bourbakians. Each academic year, the 
seminar was devoted to a single general topic in which the participants wished 
to gain a broader and more systematic knowledge: groups and algebras, Hilbert 
spaces, topology, and variational calculus. In each meeting, one of the partici-
pants was commissioned to prepare a topic for discussion, edit his talk, and then 
distribute it among the other participants. 9 is approach would later develop 
into Bourbaki’s famous modus operandi, described further below.

Over co\ ee aN er the meetings of the Séminaire Julia, Weil started to dis-
cuss with his friends an ambitious collective initiative to produce the much 
needed new textbook in analysis. In December 1934, a more clearly delineated 
plan was stated by Weil, Cartan, Chevalley, Delsarte, Dieudonné, and de Possel: 
‘to de[ ne for 25 years the syllabus for the certi[ cate in di\ erential and inte-
gral calculus by writing, collectively, a treatise on analysis. Of course, this trea-
tise will be as modern as possible’ (Beaulieu 1993, 28). Following a ‘modern’ 
perspective was one of the apparently clear and suggestive ideas that, once the 
project started to materialize, proved to be in need of a more detailed de[ n-
ition that was not always easily agreed upon. At this meeting several other ideas 
were suggested concerning the plan of action: subcommittees should be put in 
charge of the various parts of the treatise; an agreed synopsis should be ready 
by the summer of 1935; the treatise should be about a thousand pages long; all 
decisions should be taken by consensus. Even a potential publisher was already 
in sight: Hermann (whose chief editor, Enrique Freymann was Weil’s friend), 
rather than the leading Gauthier-Villars, where the old masters typically pub-
lished their treatises.

Under the provisory name of ‘Comité de rédaction du traité d’analyse’ 
the group met again in January 1935. 9 is time detailed minutes were taken 
by Delsarte (2000), who would continue to ful[ ll this task until 1940. It was 
decided that the committee would also include Paul Dubreil, Jacques Leray, and 
Szolem Mandelbrojt. Dubreil and Leray, however, were soon replaced by Charles 
Ehresmann and Jean Coulomb.
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At this second meeting Delsarte and Dubreil presented a list of topics they 
wanted in the treatise: modern algebra; integral equations with special emphasis 
on Hilbert space; the theory of partial di\ erential equations with emphasis on 
more recent developments; and a long section devoted to special functions. 
Mandelbrojt brought forward a principle that he considered of the utmost import-
ance: whenever a result was intended for discussion in full generality, the general 
theory needed to prove this result would never be developed in the course of the 
exposition itself. Rather, all the general, abstract theories would be developed in 
advance. 9 is was in line with the idea of a ‘paquet abstrait’ that had already been 
mentioned in the [ rst meeting, and all participants agreed that this principle 
should be thoroughly pursued. Weil insisted that the treatise should be useful 
for all possible audiences: researchers, aspiring school teachers, physicists, and 
‘technicians’ of various kinds (Delsarte 2000, 17).

AN er several preliminary encounters in Paris, the [ rst real Bourbaki working 
meeting took place in July 1935, at the little town of Besse-en-Chandesse, close to 
Clermont-Ferrand. It was here that the mythical name was adopted. 9 e expected 
length of the treatise was now calculated at three thousand two hundred pages 
and it was planned to be completed within a year. Along with a treatment of the 
classical themes of analysis, increased attention was given to the basic notions of 
algebra, topology, and the theory of sets. 9 ese now appeared necessary to pro-
vide the presentation with the kind of coherence and modern perspective that the 
group insistently spoke about.

9 is was the starting point of a long and fascinating endeavor. Its scope, struc-
ture, and contents went far beyond the initial plans of the group and their initial 
assumptions about the amount of work it would require. Except for a break dur-
ing the war years, over the following decades the group (in its changing mem-
bership) continued to organize ‘congresses’ three times a year at di\ erent places 
around France for a week or two. Minutes of these Bourbaki congresses were 
circulated among members of the group in the form of an internal bulletin ini-
tially called Journal de Bourbaki and, from 1940, La Tribu.2 Although La Tribu 
abounds with personal jokes, obscure references, and slangy expressions which 
sometimes hinder their understanding, they provide a very useful source for the 
historian researching the development of the Bourbaki project.

At each meeting, individual members were commissioned to produce draN s of 
the di\ erent chapters, which were then subjected to harsh criticism by the other 
members, and reassigned for revision. Only aN er several draN s was the [ nal 
document ready for publication (Cartan in Jackson 1999, 784; Schwartz 2001, 
155–163). Each chapter and volume of Bourbaki’s treatise was thus the outcome 

2. For details on the Bourbaki archives and the issues of La Tribu quoted here, see Corry (2004, 293 n13; 
Krömer 2006, 156–158). Direct quotes are taken from volumes in the personal collection of Professor Andrée 
Ch. Ehresmann, Amiens, and used with her permission. Other issues are quoted indirectly as indicated.
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of arduous collective work. 9 e spirit and viewpoint of the person(s) who had 
written it was hardly recognizable. 9 e personal dynamics at work in the group 
are a matter of considerable interest and it represents, no doubt, a unique case in 
the history of science. For many, the most surprising fact about Bourbaki is that 
it could work at all.

What was initially projected as a modern analysis textbook eventually evolved 
into a multi-volume treatise entitled Éléments de mathématique, each volume of 
which was meant to contain a comprehensive exposition of a di\ erent mathe-
matical subdiscipline. As with any other textbook, the material covered was not 
meant to be new in itself, but the very organization of the body of mathematical 
knowledge would certainly embody a novel overall conception of mathematics 
and, above all, underlying unity would be stressed. 9 e ‘paquet abstrait’, initially 
conceived as a supporting toolbox of limited scope, gradually took center stage 
and became the hard core of the treatise, whereas classical topics of courses in 
analysis were continually delayed and some of them eventually leN  out of the 
treatise or relegated to speci[ c sections or to the exercises.3

9 e [ rst chapter of the Eléments appeared in 1939. By this time the plan had set-
tled around six basic books: I. 9 eory of Sets; II. Algebra; III. General Topology; 
IV. Functions of a Real Variable; V. Topological Vector Spaces; VI. Integration. 
At a second stage in the 1950s additional chapters were added, including Lie 
Groups and Lie Algebras; Commutative Algebra; Spectral 9 eories; Di\ erential 
and Analytic Manifolds (essentially no more than a summary of results). In its 
[ nal form the treatise comprised over seven thousand pages, with new chapters 
continuing to appear until the early 1980s.

In the succeeding decades, Bourbaki’s books became classics in many areas of 
pure mathematics, where the concepts and main problems, nomenclature, and 
Bourbaki’s peculiar style were adopted as standard. 9 e branches upon which 
Bourbaki exerted the deepest ind uence were algebra, topology, and functional 
analysis, becoming the backbone of mathematical curricula and research activity 
in many places around the world. Notations such as the symbol ∅ for the empty 
set, and terms like injective, surjective, and bijective, owe their widespread use 
to their adoption in the Éléments de mathématique. Bourbaki even ind uenced 
[ elds like economics (Weintraub and Mirowski 1994) and, especially in France, 
anthropology and literature (Aubin 1997).

Yet disciplines like logic, probability, and most [ elds of applied mathematics, 
which were beyond Bourbaki’s scope, became under-represented in the many 
places worldwide where Bourbaki’s ind uence was most strongly felt. 9 is was the 

3. Reviewers of Bourbaki, favorable and critical alike, typically describe the choice of exercises as one of 
the outstanding features of the collection. In most cases Dieudonné was in charge of this choice (Kaplansky 
1953). In fact, for many years Dieudonné was the o7  cial scribe of the project and ‘every printed word came 
from his pen’ (Senechal 1998, 28).
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case for many French and several American universities at various times between 
1940 and 1970 (Schwartz 2001, 162–164). Further, group theory and number
theory, despite being strong points of some members (notably Weil for number 
theory) were not treated in the Éléments, mainly because they were less amenable 
to the kind of systematic, comprehensive treatment presented in the collection. 
As part of an underlying tendency of estrangement from the visual, geometry 
was completely omitted from the Bourbakian picture of mathematics, except for 
what could be reduced to linear algebra.

Writing a textbook on modern algebra

As mentioned above, one of the group’s declared aims was that their analysis 
treatise would be ‘as modern as possible’. Most likely, the word ‘modern’ referred 
in their minds to the current trends in German mathematical research, especially 
to Bartel van der Waerden’s epoch-making Moderne Algebra (1930). 9 is book, 
the most important individual ind uence behind the entire Bourbaki project, rep-
resented the culmination of the deep transformation of algebra that had begun 
in the last third of the nineteenth century. Before then, algebraic research had 
mainly focused on theories of polynomial equations and polynomial forms, 
including algebraic invariants. 9 e ideas implied by the works of Évariste Galois 
had become increasingly central aN er their publication by Joseph Liouville (1846). 
Together with important progress in the theory of [ elds of algebraic numbers, 
especially in the hands of Leopold Kronecker and Richard Dedekind, they gave 
rise to new concepts such as groups, [ elds, and modules. But this development 
was only gradually red ected in textbooks.

Towards the end of the 1920s, a growing number of works investigated the 
properties of the abstractly de[ ned mathematical entities now seen as the focus 
of algebraic research: groups, [ elds, ideals, rings, and others. Like many other 
important textbooks, Moderne Algebra arrived at a time when the need was felt 
for a comprehensive synthesis of what had been achieved since its predecessor, 
in this case Heinrich Weber’s Lehrbuch der Algebra (1895). It presented ideas 
that had been developed by Emmy Noether and Emil Artin—whose courses van 
der Waerden had attended in Göttingen and Hamburg—and by algebraists such 
as Ernst Steinitz, whose works he had studied under their guidance (van der 
Waerden 1975).

Van der Waerden masterfully incorporated many of the important innova-
tions of the early twentieth century into the body of algebraic knowledge. But 
his book’s originality and importance comprises its totally new way of conceiv-
ing the discipline. Van der Waerden systematically presented those mathematical 
branches then related to algebra, deriving all relevant results from a single, uni[ ed 
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perspective, and using similar concepts and methods for all of them. 9 e result-
ant image was based on the realization that a certain family of notions (groups, 
ideals, rings, [ elds, and so on) are individual instances of the general idea of an 
algebraic structure, and that the aim of research in algebra is the full elucidation 
of those notions. None of them, to be sure, appeared for the [ rst time in this 
book. Groups had featured in the third edition of Joseph Serret’s Cours d’algèbre 
supérieure (1866). Ideals and [ elds had been introduced by Dedekind in his elab-
oration of Ernst Edward Kummer’s factorization theory of algebraic numbers 
(1871). But the uni[ ed treatment they were accorded in Moderne Algebra, the 
single methodological approach adopted to de[ ne and study them, and the com-
pelling new picture of a variety of domains that had formerly been seen as only 
vaguely related, constituted a striking and original innovation.

One fundamental advance was an implicit rede[ nition of the conceptual 
hierarchy underlying the discipline of algebra. Under this image, rational and 
real numbers no longer had conceptual priority over, say, polynomials. Rather, 
they were de[ ned as particular cases of abstract algebraic constructs. 9 us, for 
instance, van der Waerden introduced the concept of a [ eld of fractions for inte-
gral domains in general, and then obtained the rational numbers as a particular 
case of this kind of construction, namely as the [ eld of quotients of the ring of 
integers. His de[ nition of the system of real numbers in purely algebraic terms 
was based on the concept of a ‘real [ eld’, recently elaborated by Artin and Otto 
Schreier, whose seminars van der Waerden had attended in Hamburg.

9 e task of [ nding the real and complex roots of an algebraic equation, which 
was the classical main core of algebra in the previous century, was relegated to 
a subsidiary role in van der Waerden’s book. 9 ree short sections in his chap-
ter on Galois theory dealt with this speci[ c application of the theory, and they 
assume no previous knowledge of the properties of real numbers. In this way, two 
central concepts of classical algebra (rational and real numbers) were presented 
merely as [ nal products of a series of successive algebraic constructs, the ‘struc-
ture’ of which had been gradually elucidated. On the other hand, additional, non-
algebraic properties such as continuity and density were not considered at all by 
van der Waerden as part of his discussion of those systems.

Another of Moderne Algebra’s important innovations concerns the way in 
which the advantages of the axiomatic method were exploited in conjunction 
with all other components of the structural image of algebra. Once one has real-
ized that the basic notions of algebra (groups, rings, [ elds, and so on) are, in 
fact, di\ erent kinds of algebraic structures, their abstract axiomatic formulation 
becomes the most appropriate one. 9 e central disciplinary concern of alge-
bra became, in this conception, the systematic study of those di\ erent varieties 
through a common approach, underpinned by the idea of isomorphism. 9 is 
fundamental recognition is summarized in the Leitfaden ‘leading threads’ in the 
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introduction to the book, which pictures the hierarchical, structural interrelation 
between the various concepts investigated in it (Fig. 6.4.1).

Obviously, van der Waerden’s new image of algebra red ected the current state 
of the body of algebraic knowledge. However, that image was not a necessary 
outcome of the body, but rather an independent development of intrinsic value. 
Several other contemporary algebra textbooks also contained most of the lat-
est developments in the body of knowledge, but essentially preserved the clas-
sical image of algebra. Perhaps the most interesting example is Robert Fricke’s 
Lehrbuch der Algebra (1924), with the revealing subtitle Verfasst mit Benutzung 
vom Heinrich Webers gleichnamigem Buche ‘based on Heinrich Weber’s book of 
the same name’.

9 e main idea embodied in van der Waerden’s book—the structural concep-
tion of algebra—became highly ind uential for Bourbaki. Before receiving his 
doctorate in 1928, Weil had visited Göttingen, where he came into direct contact 
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with Noether and her collaborators. 9 is visit leN  a signi[ cant imprint on the 
young mathematician, which reverberated through the centrality later accorded 
to modern algebraic approaches as a unifying perspective in the Éléments. 
Bourbaki’s volume on Algebra (hereaN er A) is also closely modeled in many 
respects on Moderne Algebra. But the pervasive ind uence of the book is much 
broader than that, as I argue below.

Set theory

9 e process around the writing of Bourbaki’s book on Set 9 eory (hereaN er ST) 
sheds interesting light on the kinds of hesitations and problems that accompa-
nied the entire project. Indeed, the initial plan did not envisage a systematic, 
axiomatic elaboration of the theory of sets as an independent subject. Rather, 
the original idea was to use only elementary set-theoretical notions, introduced 
from a naive perspective, such as the direct needs of a treatise on analysis would 
require. 9 is approach red ected a longstanding tradition with respect to set the-
ory in France (Beaulieu 1994, 246–247), and in particular it red ected the fact that 
this mathematical [ eld was not a major concern for most of the members of the 
group. One exception, however, was Chevalley, for whom foundational questions 
were, especially in his early career, a matter of direct interest (Dieudonné and 
Tits 1987).

Chevalley was the most active force behind the inclusion of a separate book on 
set theory as the plan evolved for the contents of the Éléments. In 1949 La Tribu 
pointed to the underlying discussions around one of the main questions that had 
occupied the Bourbaki project from the beginning: the possibility of presenting 
a self-contained, highly formalized treatment of the entire body of mathematics, 
with little or no external motivation of the topics treated. Discussions repeatedly 
arose around the exact way to present many individual topics or theories. 9 is was 
clearly the case with sets, debates around which continually delayed publication. 
In the [ nal account, the contents of ST were a compromise between the attempt 
to fully formalize the topic and explore it in detail, as demanded by Chevalley, and 
the need to produce a relatively easily readable book that would provide a basic 
language for the treatise while [ tting the general reader’s interest. 9 us, set theory 
was adopted as a universal language underlying all mathematical domains because 
of its unifying capabilities (Bourbaki 1968, 9). But this very basic theory was not 
presented in a truly formalized language, because Bourbaki acknowledged that 
no mathematician actually works like that: ‘his experience and mathematical d air 
tell him that translation into formal language would be no more than an exercise 
of patience (though doubtless a very tedious one)’ (Bourbaki 1968, 8). Within the 
entire treatise, only in ST does one [ nd explicit statements like this.
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9 e question of the consistency of set theory also arises here. Bourbaki did not 
attempt to address the question head-on but rather reverted to a strongly empiri-
cist position. In an ironic turn, Bourbaki simply stated that a contradiction was 
not expected to appear in set theory because none had appeared aN er so many 
years of fruitful research (Bourbaki 1968, 13). Yet one of Bourbaki’s earlier pub-
lications had stated that ‘absence of contradiction, in mathematics as a whole or 
in any given branch of it, thus appears as an empirical fact rather than as a meta-
physical principle . . . We cannot hope to prove that every de[ nition . . . does not 
bring about the possibility of a contradiction’ (Bourbaki 1949, 3).4

A Fascicule de résultats, ‘Summary of results’, on set theory was published as 
early as 1939. 9 e [ nal volume was published only during the 1950s, comprising 
the following chapters: 1. Description of Formal Mathematics; 2. 9 eory of Sets; 
3. Ordered Sets, Cardinals, Integers; 4. Structures. 9 is fourth chapter introduced 
the new concept of structure,5 which was meant to provide a formal notion that 
supposedly underlies all other mathematical theories described in the remaining 
parts of the treatise. Bried y put, in order to de[ ne this concept Bourbaki consid-
ered a [ nite collection of sets E1, E2, . . ., En, and used an inductive procedure, each 
step of which consists either of taking the Cartesian product (E×F) of two sets 
obtained in former steps or of taking their power set B(E). For example, begin-
ning with the sets E, F, G the outcome of one such procedure could be: B(E);
B(E) ×F; B(G); B(B(E) ×F); B(B(E) ×F) ×B(G) and so forth. Upon such constructs 
some additional conditions can be imposed to imitate the way in which various 
known mathematical entities are typically de[ ned. For instance, an internal law 
of composition on a set A is a function from A×A into A. Accordingly, given any 
set A, one can form the scheme B((A×A) ×A) and then choose from all the sub-
sets of (A×A) ×A those satisfying certain conditions of a ‘functional graph’ with 
domain A×A and range A. 9 e axiom de[ ning this choice is a special case of what 
Bourbaki calls an algebraic structure. Similarly, Chapter 4 of ST showed how the 
general concept allowed for the de[ nition of other types, such as ordered struc-
tures or topological structures. Finally, the general de[ nition of structures led to 
some further, related concepts such as isomorphism among structures, deduction 
of structures, poorer and richer structures, equivalent species of structures, etc. 
Chapter 4 was the most idiosyncratic of the volume and of the entire collection, 
and in an important sense the most problematic one.

4. Imre Lakatos (1978, II 24–42) has called attention to the fact that foundationalist philosophers of math-
ematics, from Russell onwards, when confronted with serious problems in their attempts to prove the con-
sistency of arithmetic, have not hesitated to revert to empirical considerations as the ultimate justi[ cation 
for it. Although Bourbaki is not mentioned among the profusely documented quotations selected by Lakatos 
to justify his own claim, it seems that these passages of Bourbaki could easily [ t into his argument. See also 
Israel and Radice (1976, 175–176).

5. HereaN er I write structures (italicized) to indicate this speci[ c, Bourbakian technical term, as opposed 
to the non-formal, general usage of the term.
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9 e Fascicule de résultats is strikingly di\ erent from the chapters themselves. 
Whereas the book’s stated aim is to show that it is possible to provide a sound, 
formal basis for mathematics as a whole, the Fascicule aims simply to provide the 
basic lexicon and to explain the non-formal meaning of the terms used. 9 us, the 
opening lines read:

As for the notions and terms introduced below without de[ nitions, the reader may safely 
take them with their usual meanings. 9 is will not cause any di7  culties as far as the 
remainder of the series is concerned, and renders almost trivial the majority of the prop-
ositions. (Bourbaki 1968, 347)

9 us, for example, the painstaking e\ ort invested in Chapters 2 and 3 is here 
represented by the laconic statement: ‘A set consists of elements which are capable 
of possessing certain properties and of having relations between themselves or 
with elements of other sets’ (Bourbaki 1968, 347). As for structures, the Fascicule 
reduces the whole formal development to a very short, intuitive explanation of 
the concepts in which the main ideas are explained. 9 e only important related 
concept which is mentioned is that of isomorphism.

Between the appearance of the Fascicule in 1939 and the four chapters in 
1954–7 there were many important developments in mathematics, in particular 
the emergence of category theory. As a consequence, some of the ideas that had 
perhaps looked very promising in 1939 soon became obsolete. 9 us, ST, and espe-
cially its chapter on structures, became one of the least interesting of the entire 
collection. As a textbook for the discipline, it received little attention and very 
few of its concepts and notations were widely adopted. As Paul Halmos put it:

It is generally admitted that strict adherence to rigorously correct terminology is likely to 
end in being pedantic and unreadable. 9 is is especially true of Bourbaki, because their 
terminology and symbolism are frequently at variance with commonly accepted usage. 
9 e amusing fact is that oN en the ‘abuse of language’ which they employ as an infor-
mal replacement for a technical name is actually conventional usage: weary of trying to 
remember their own innovation, the authors slip comfortably into the terminology of 
the rest of the mathematical world. (Halmos 1957, 90)6

Even more interesting, the terminology and the concepts introduced in the 
set theory book, and particularly on the chapter on structures, were hardly used 
in the other parts of Bourbaki’s own book. And, on the few occasions when it was 
used, this only made more patent the ad hoc character of the supposedly fun-
damental part of the treatise. In order to understand this important point in its 
precise context, it is necessary now to discuss the role of ‘structure’ in Bourbaki’s 
overall conception of mathematics.

6. For a detailed review of Chapters 1 and 2 of ST, see Halmos (1955). For an assessment of the technical 
shortcomings of Bourbaki’s system of axioms for the theory of sets, see Mathias (1992).
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Two meanings of ‘structure’

As work on the treatise developed, an implicit but pervasive idea increasingly 
came to underlie the overall approach. 9 is was the conception of mathemat-
ics as a systematic, elaborate hierarchy of structures: essentially an extension of 
the idea from van der Waerden’s algebra textbook. He had undertaken a uni[ ed 
‘structural’ investigation of several concepts that were de[ ned in similar, abstract 
terms (groups, rings, ideals, modules, [ elds, hypercomplex systems) while ask-
ing similar kinds of questions about them and using similar kinds of tools to 
investigate them. Now, in Bourbaki’s textbooks, algebra, topology, and func-
tional analysis started to appear as individual materializations of one and the 
same underlying, general idea: the idea of a mathematical structure. Bourbaki 
attempted to present a uni[ ed, comprehensive picture of what they saw as the 
main core of mathematics, using a standard system of notation, addressing simi-
lar questions in the various [ elds investigated, and using similar conceptual tools 
and methods across apparently disparate mathematical domains.

In 1950 Dieudonné, under the name of Bourbaki, published an article that came 
to be identi[ ed as the group’s manifesto, ‘9 e architecture of mathematics’. Faced 
with the unprecedented growth and diversi[ cation of the discipline, Dieudonné 
again raised the well-known question of the unity of mathematics. Mathematics 
was a strongly uni[ ed branch of knowledge in spite of appearances, he claimed, 
and now it was clear that the basis of this unity was the use of the axiomatic 
method, as the work of David Hilbert had clearly revealed.7 Mathematics should 
be seen, Dieudonné added, as a hierarchy of structures at the heart of which lie 
the so called ‘mother structures’:

At the center of our universe are found the great types of structures, . . . they might 
be called the mother structures . . . Beyond this [ rst nucleus, appear the structures which 
might be called multiple structures. 9 ey involve two or more of the great mother-struc-
tures not in simple juxtaposition (which would not produce anything new) but combined 
organically by one or more axioms which set up a connection between them . . . Further 
along we come [ nally to the theories properly called particular. In these the elements of the 
sets under consideration, which in the general structures have remained entirely indeter-
minate, obtain a more de[ nitely characterized individuality. (Bourbaki 1950, 228–229)

9 us, the idea that van der Waerden had applied successfully and consistently 
but only implicitly—namely the centrality of the hierarchy of structures—be-
came now explicit and constitutive for Bourbaki. At the same time, an elaborate 
attempt was made in Chapter 4 of ST to present a formal de[ nition of structure, 
which was somehow meant to provide a solid conceptual foundation on which 

7. Dieudonné frequently described Bourbaki as Hilbert’s ‘natural heir’. Nevertheless, there were very sig-
ni[ cant di\ erences between their respective conceptions. See Corry (1997; 2001).
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the whole edi[ ce of mathematics could be built. 9 us, two di\ erent meanings 
of the term mathematical ‘structure’ appeared in Bourbakian discourse, which 
were not always properly distinguished from one another: (1) a non-formal and 
perhaps even metaphorical meaning, used for example in Dieudonné’s manifesto 
to present the entire science of mathematics as a hierarchy of structures, and 
implicitly implemented by van der Waerden in his new image of algebra, and (2) 
a formal technical term, structure, appearing in a mathematical theory that was 
never incorporated into current mathematical research or exposition, and was 
not even really used by Bourbaki in their own treatise.

As already stated, the main interest of most members of the group was in the 
various disciplines covered in the treatise but not in ST or in its chapter on struc-
tures. And yet many discussions about the correct way to present those various 
disciplines were necessarily ind uenced by the introduction of the basic concepts 
associated with structures. It is remarkable that members of the group tended 
not to separate the two meanings clearly, thus giving the impression that it was 
Bourbaki’s own formal concept of structure, and not the general, structural image 
of mathematics, that was so central to much of twentieth century mathematics.

Bourbaki’s theory of structures never received any real attention from working 
mathematicians, even Bourbaki’s members when involved in their own research. 
When we look at how the concept of structure was used in the treatise, all we 
see is that in the opening chapters of the books on branches such as algebra and 
topology, some sections were devoted to showing how that branch could, in prin-
ciple, be formally connected to the general concept of structure. 9 is connection, 
however, was rather feeble, a formal exercise that was forgotten aN er the [ rst few 
pages. For instance, while A presents vector spaces as a special case of groups, so 
that all the results proved for groups hold for vector spaces too, this hierarchical 
relationship is not presented in terms of the concepts de[ ned in ST. Likewise, 
neither commutative groups nor rings are presented as structures from which a 
group can be ‘deduced’, nor is it proved that Z-modules and commutative groups 
are ‘equivalent’ structures. Structure-related concepts do appear in the opening 
sections of A, but the rather arti[ cial use to which they are put and their absence 
from the rest of the book suggests that this initial usage was an ad hoc recourse to 
demonstrate the alleged subordination of algebraic concepts to the more general 
ones introduced within the framework of structures. Neither new theorems nor 
new proofs of known theorems are obtained through the structural approach.

As the book advances further into theories of the hierarchy of algebraic struc-
tures, the connection with structures is scarcely mentioned. Ironically, the need 
for a stronger unifying framework was indeed felt in later sections. For instance, 
Chapter 3 discusses three types of algebras de[ ned over a given commutative 
ring: tensor, symmetric, and exterior algebras. Bourbaki de[ nes each kind and 
then discusses for each case, ‘functorial properties’, ‘extension of the ring of 
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scalars’, ‘direct limits’, ‘free modules’, ‘direct sums’, and so on (Bourbaki 1973, 
484–522). Not only would a uni[ ed presentation of the three have been more eco-
nomical and direct but their properties lend themselves naturally to a categorical 
treatment, a possibility which is not even mentioned. 9 e ‘functorial properties’ 
of the algebras are explained through the use of the standard categorical device 
of ‘commutative diagrams’, but without mentioning the concepts of functor or 
category.

9 e volume on General Topology is the most outstanding example of a the-
ory presented through Bourbaki’s model of the hierarchy of structures, starting 
from one of the ‘mother structures’ and descending to a particular structure, 
namely that of the real numbers. And yet, as with A, the hierarchy itself is not 
introduced in terms of structure-related concepts. 9 us for instance, topological 
groups are not characterized as a structure from which the structure of groups 
can be ‘deduced’. Structure-related concepts appear in this book more than any-
where else in the treatise but, instead of reinforcing the purported generality of 
such concepts, a close inspection of their use immediately reveals their ad hoc 
character.

9 e central notion of structure, then, had a double meaning in Bourbaki’s 
mathematical discourse. On the one hand, it suggested a general organizational 
scheme for the entire discipline, which turned out to be very ind uential. On 
the other hand, it comprised a concept that was meant to provide the under-
lying formal unity but was of no mathematical value whatsoever either within 
Bourbaki’s own treatise or outside it. But Bourbaki’s theory of structures was 
only one among several attempts aN er 1935 to develop a general mathematical 
theory of structures, and was not even the only such attempt in which members 
of the group were involved.8 9 us, in order to understand the full historical and 
mathematical context of the theory of structures and its role within the Éléments, 
we now discuss the cond ict created by the rise of its most serious competitor, the 
theory of categories.

B e categorical imperative and its demise

In the early 1940s, Samuel Eilenberg and Saunders Mac Lane, who would both 
later become involved in Bourbaki, introduced the concepts of category and func-
tor. 9 ese concepts and the general perspective they furnished gradually became 
a widely adopted unifying tool and language for mathematical disciplines, and 
pursued a structural spirit similar to Bourbaki’s. Groundbreaking early instances 

8. In Corry (2004) I presented a full account of such red exive theories of structures, their origins and their 
interrelations.
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appear in the works of two younger-generation Bourbaki members, Alexander 
Grothendieck and Jean-Pierre Serre, who used categories in the early 1950s as 
basic tools for their own research in homological algebra and algebraic geometry 
(Krömer 2007, 117–190). Against this background, it is only natural to expect that 
the categorical approach would easily [ nd its way into Bourbaki’s debates as an 
ideal candidate to support the unifying, structure-oriented perspective that the 
group had been striving for. Indeed, the idea was discussed at various Bourbaki 
congresses but in the end it never materialized.9

If categorical language were to be adopted by Bourbaki as a unifying lan-
guage for the Éléments, this would entail the reformulation of considerable parts 
of existing chapters to make them [ t the new approach. 9 e chapter on struc-
tures in ST would be a particularly obvious nuisance. As already mentioned, this 
entire chapter was rather ad hoc and in any case did not represent a main focus 
of interest for most members of the group. 9 is in itself was a meaningful obs-
tacle to incorporating categories into the treatise; additional obstacles came from 
diverging views about the intrinsic value of the categorical approach in general. 
Weil, for one, actively opposed the introduction of categories in any way into the 
Éléments.

Some topics discussed in Bourbaki’s book on Commutative Algebra were 
presented in a manner for which the categorical formulation would have been 
the most natural, but without explicitly doing so (Corry 2004, 327–328). 9 is 
was also the case with other topics on which Bourbaki had already published by 
1950 or would soon publish. During the 1950s La Tribu documented recurring 
attempts to write chapters on homological algebra and categories, and the discus-
sions that ensued. In 1951, Eilenberg was commissioned several times to prepare 
draN s to be discussed. He had not only created the theory of categories with Mac 
Lane. In the 1950s he was collaborating on the [ rst two books to systematically 
use this language to present elaborate mathematical disciplines that had emerged 
and developed in completely di\ erent terms: algebraic topology (Eilenberg and 
Steenrod 1952) and homological algebra (Cartan and Eilenberg 1956). When it 
came to Bourbaki, however, he immediately realized the serious di7  culties to 
be expected in the context of the Bourbaki treatise, because it had already intro-
duced structures. In an undated, unpublished text possibly written around that 
time, he said so explicitly:

9 e method of functors and categories is in some sort of ‘competition’ with the method of 
structures as developed at present. Unless this ‘competition’ is resolved only one of these 
methods should be presented at the early stage. . . . 9 e resolution of the ‘competition’ 

9. In Corry (1992) I called attention to the inherent tension between structures and categories, and pub-
lished some illuminating related documents (mainly issues of La Tribu), some of which are also included here. 
More recently, Ralf Krömer (2006) has added signi[ cant insights to this important point, using previously 
unpublished material, some of which I quote below.
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is only possible through the de[ nition of the ‘structural homomorphism’ which would 
certainly require a serious modi[ cation of the present concept of structure. It would 
certainly complicate further this already complicated concept. Despite my willingness to 
complicate things I am still unable to produce a general de[ nition that would [ t known 
typical cases.10

Over the next few years, the younger-generation Bourbaki members increas-
ingly adopted categorical language for their own research, and repeatedly 
attempted to introduce it to the Éléments. At this time, structures had been 
announced in the Fascicle of 1939 but the related chapter in ST had not yet been 
worked out. In principle, there was still room for categories, but, as Eilenberg was 
quick to see, this would require more than trivial reformulation. La Tribu docu-
ments heated debates around structures and categories throughout the 1950s, 
which culminated on publication of Grothendieck’s famous Tohoku article 
(1957), a milestone in the history of category theory. In it Grothendieck innova-
tively applied cohomological methods (fully couched in categorical language) to 
algebraic geometry, thus opening the road for developments that would continue 
to engage mathematicians for decades. La Tribu and the contemporary Serre-
Grothendieck correspondence (Colmez and Serre 2001) provide clear evidence 
that Grothendieck had conceived his famous article as a possible contribution to 
the Bourbaki treatise. Grothendieck’s functorial ideas were well received by most 
of the group’s younger generation, and by Dieudonné, but the continued oppos-
ition of others, especially Weil, prevented their adoption in the Éléments.

9 e chapter on structures came out in 1957 without the slightest explicit refer-
ence to categorical ideas. 9 e incompatibility of the two approaches and the work 
already invested were the main reasons behind this decision. Cartan wrote that 
the structural point of view should not be abandoned without ‘very serious rea-
sons’. Some members of the group, however, notably Grothendieck, were highly 
dissatis[ ed. He continued to suggest that a new Chapter 4 of ST should replace 
the old one, ‘unusable in all respects’ (Krömer 2006, 144).

It is important to delineate more precisely the internal historical context within 
which this discussion was taking place. By the mid-1950s younger members 
(Serre, Grothendieck, and others) had started to join the group. Naturally, and 
partly because of Bourbaki’s ind uence, the mathematical scene was by then very 
di\ erent to that faced by the founding fathers over twenty-[ ve years earlier. At 
the same time, the age of self-imposed retirement at [ N y had arrived for the latter 
(but was not always strictly adhered to). To the extent that the younger generation 
members wanted to invest their energies in the Bourbaki project they pursued 
agendas that di\ ered at various levels from the original one, and also, sometimes, 

10. Quoted in (Krömer 2006, 142), from an original document in the Eilenberg archive, Columbia 
University, New York.
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from those of each other. Towards the end of the decade, the [ rst six books of the 
Éléments had essentially been completed, covering much of what the group had 
come to consider as the hardcore of the project. It was time to deal with more 
advanced and specialized topics, while the younger members wanted a say in the 
project’s overall direction. 9 e possibility of universal participation in each topic 
and the original view that writing should not be assigned to ‘specialists’ were 
both reconsidered. Basic questions about the entire enterprise arose anew, pro-
voking cond icting views and sometimes personal tensions. 9 e debate around 
the adoption of categories was part of this situation, particularly the opposition 
between Grothendieck and Weil, two strongly opinionated mathematicians and 
di7  cult people to deal with.

Indeed, Weil was a very dominant character whose mathematical prestige and 
intellectual personality, coupled with his authority as one of the leading forces in 
the Bourbaki project, bestowed upon him an undisputed, unique position within 
the group. 9 e retirement of some prominent members over the years has com-
monly been attributed to cond icts or tensions with Weil. 9 at was certainly the 
case with de Possel, to whom Evelyn, Weil’s wife since 1939, had previously been 
married. Weil had been the [ rst to suggest that members should retire from active 
participation at the age of [ N y, but ironically, on arriving at that age in 1956 he 
gave very little sign of wanting to diminish his ind uence on the project.

Grothendieck, in turn, was a highly unconventional personality even by the 
standards of this bunch of rather unconventional individuals. He was born in 
Germany, but escaped during the war to France. He remained an alien citi-
zen, which created obstacles to [ nding a position in his new country. In 1959, 
Grothendieck got a research position in the newly created Institut des Hautes 
Etudes Scienti[ ques (IHES), where he spent twelve years creating and teaching 
his revolutionary ideas. In the framework of Bourbaki, he favored the continu-
ation of the generalizing spirit that had permeated the early books, but with 
more powerful, increasingly abstract, algebraic tools. Not all members, how-
ever, approved. Many years later, Armand Borel recalled that Grothendieck’s 
approach was at times ‘discouragingly general, but at others rich in ideas and 
insights’, and thus, ‘it was rather clear that if we followed that route, we would be 
bogged down with foundations for many years, with a very uncertain outcome’ 
(Borel 1998, 376).

In Grothendieck’s memoirs, a remarkable document called Récoltes et semailles 
‘Reaping and sowing’, which initially circulated only within closed circles,11 he 
referred to his special status within the group, while pointing to the underlying 
tension with Weil:

11. Two useful websites containing digital editions of Récoltes et semailles, and additional material related 
to Grothendieck, are http://math.jussieu.fr/~leila/grothendieckcircle/index.php and http://kolmogorov.unex.
es/~navarro/res.

http://math.jussieu.fr/~leila/grothendieckcircle/index.php
http://kolmogorov.unex.es/~navarro/res
http://kolmogorov.unex.es/~navarro/res
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. . . until around 1957 I was regarded with certain reservations by more than one mem-
ber of the Bourbaki group aN er it had [ nally co-opted me, I believe, with some reti-
cence. . . . More oN en than not, I was, moreover, the one most frequently excluded from 
the Bourbaki congresses, especially during the common readings of the draN s, as I was 
rather incapable of following the readings and discussions at the pace in which they were 
conducted. I am possibly not really giN ed for collective work. However, the di7  culty I 
had in coping with group-work or the kind of reservation I may have elicited for other 
reasons from Cartan and others did not once attract sarcastic remarks or rebu\ s, or even 
a shadow of condescension, except once or twice from the part of Weil (evidently a very 
di\ erent case!).12 (Grothendieck undated I, 142–143)

From Grothendieck’s correspondence with Serre in 1956, it is quite evident 
that both mathematicians disliked Weil’s style, although they surely recognized 
the importance and originality of his ideas for their own concerns (Colmez and 
Serre 2001, 49–53). Writing retrospectively about this period, Grothendieck put 
matters in proportion, stressing the positive balance that he attributed to the pro-
ject and to Weil’s role within it (Grothendieck undated, I 46). As it happened, 
however, Grothendieck quit the group around 1958–59 while some members, 
such as Serre and Dieudonné, continued to be his close friends and collaborators. 
In 1970 he completely retired from public scienti[ c life, when he discovered that 
IHES was partly funded by the military.

Laurent Schwartz, who had directed Grothendieck’s dissertation, explained 
why the latter remained in the group for only a few years: ‘he lacked humor and 
had di7  culty accepting Bourbaki’s criticism’ (Schwartz 2001, 284). 9 ere is every 
reason to accept this explanation, yet there is also clear evidence that the non-
adoption of category theory and Weil’s attitude towards this question and towards 
Grothendieck were the main reasons for the latter’s decision to quit. An anonymous 
text (possibly by Serge Lang) was appended to La Tribu in the early 1960s under 
the title Ad majorem fonctori gloriam, ‘To the greater glory of functors’. It described 
Grothendieck’s departure as a clear indication of a decline in the originally innova-
tive spirit of the Bourbaki enterprise, implying that Weil was to blame:

I have learnt that Grothendieck is no longer a member of Bourbaki. I regret that very 
much, as I regret the circumstances that led to this decision . . . [namely,] a systematic 
opposition, more or less explicit depending on this or that person, against his math-
ematical point of view, and especially against the use of the latter by Bourbaki. . . . It is 

12. Ce fait est d’autant plus remarquable que jusque vers 1957, j’étais considéré avec une certaine réserve 
par plus d’un membre du groupe Bourbaki, qui avait [ ni par me coopter, je crois, avec une certaine réti-
cence. . . . J’étais d’ailleurs le plus souvent largué pendant les congrès Bourbaki, surtout pendant les lectures 
en commun des rédactions, étant bien incapable de suivre lectures et discussions au rythme où elles se pour-
suivaient. Il est possible que je ne suis pas fait vraiment pour un travail collectif. Toujours est-il que cette 
di7  culté que j’avais à m’insérer dans le travail commun, ou les réserves que j’ai pu susciter pour d’autres rai-
sons encore à Cartan et à d’autres, ne m’ont à aucun moment attiré sarcasme ou rebu\ ade, ou seulement une 
ombre de condescendance, à part tout au plus une ou deux fois chez Weil (décidément un cas à part !).
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a scandal that Bourbaki not only did not take the lead in the functorial movement, but 
rather that is not even in its tail. . . . If some of the founding members (e.g., Weil) wish to 
revert on the decision not to ind uence the direction that Bourbaki wants to follow, he 
should say so explicitly. . . . If Bourbaki refuses, not just to join the new movement, but to 
take the lead in it, then those treatises pursuing the formulation of the elements of math-
ematics (and not just those dealing with algebraic geometry) will be written by others 
who will take inspiration not in the spirit of Bourbaki 1960, but in his spirit 1939. 9 at 
would be a great pity.13 (Krömer 2006, 152–153)

9 e consequences of the debate around categories and structures continued to 
be felt for many years, and are manifest in Bourbaki’s book on homological alge-
bra, published in 1980 as a chapter 10 of A. Categories had become the standard 
framework for treating homological concepts ever since Cartan and Eilenberg’s 
famous textbook of 1952. In Bourbaki’s presentation, however, these concepts 
are de[ ned within the narrower framework of modules, as using the language 
of categories here would have gone against the most basic principles that had 
guided the enterprise since it inception. 9 us, whereas Bourbaki’s treatment of 
general topology in the 1940s had embodied a truly innovative approach that 
many others were to follow, this was hardly the case with homological algebra in 
the 1980s. 9 is irony is further enhanced by the fact that Bourbaki’s own theory 
of structures was not even mentioned in this [ nal volume of the by now truly 
classic treatise.

Conclusion

9 e Bourbaki project reached its high-point of success and ind uence during 
the 1960s but the impetus that had characterized the project in its early years 
could not be maintained inde[ nitely. Dieudonné’s catalyzing role could hardly 
be matched aN er his retirement. Some new chapters were proposed which never 
materialized, on topics such as analysis of several complex variables, homotopy 
theory, spectral theory of operators, and symplectic geometry. Nothing came 
either of plans to rewrite the [ rst six books. 9 e new books that did appear by 

13. J’apprends que Grothendieck n’est plus membre de Bourbaki. Je le regrette beaucoup, ainsi que les 
circonstances qui ont amené cette décision . . . Ce qui importait, c’est une opposition systématique, plus ou 
moins explicitée selon les uns ou les autres, contre son point de vue mathématique, ou plutôt son emploi par 
Bourbaki. . . . C’est un scandale que Bourbaki, non seulement ne soit pas à la tête du mouvement functorial, 
mais encore n’y soit même pas à la queue. . . . Si certains membres fondateurs (e.g., Weil) désirent revenir sur 
leur décision de ne pas ind uencer Bourbaki dnas la direction qu’il désire prendre, qu’ils le disent explicite-
ment. . . . Si Bourbaki refuse, non pas de se mettre dans le nouveau mouvement, mais d’en prendre la tête, 
alors les traités visant à la redaction des éléments des mathématiques (et pas seulment à ceux de la géométrie 
algébrique) seront rédigés par d’autres, qui s’inspireront non pas de l’esprit de Bourbaki 1960, mais de son 
esprit 1939. Ce serait dommage.
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1980 included a summary of di\ erential and analytic manifolds, seven chapters 
on commutative algebra, eight chapters on Lie groups and Lie algebras, and two 
chapters on spectral theories. In the 1970s the group found itself involved in a 
legal dispute with its publisher, which absorbed a great amount of energy.

Partly because of the very success and impact of the project, the need for its 
continued development became much less pressing. 9 e name of Bourbaki also 
started to elicit negative reactions: for many it represented a style to be avoided, 
rather than emulated. 9 e backlash was gradually felt by the younger members of 
the group, which probably a\ ected their own willingness to invest their e\ orts in 
the project. Grothendieck, for one, wrote openly about it in his memoirs:

I can recall my astonishment when in 1970 I discovered the extent to which the name 
itself, Bourbaki, had become unpopular within large circles (theretofore unknown to 
me) of the mathematical world, which considered it more or less a synonym of elitism, 
of narrow-minded dogmatism, of a cult of ‘canonical’ form at the expense of concrete 
understanding, of hermetism, of castrating anti-spontaneity and so on! (Grothendieck 
undated I, 49)14

Grothendieck also disapproved of the way some of his colleagues (possibly 
mainly Weil), disparaged interests and approaches that di\ ered from the typical 
Bourbakian ones:

It was only during the sixties that, as I remember, some of my friends would denigrate 
mathematicians whose work did not interest them as ‘bullshitters’. Since this concerned 
matters hardly known to me at the time, I tended to accept such appraisals at face value, 
for I was impressed by such o\ -hand assurance—until the day when I discovered that 
such and such ‘bullshitters’ were persons endowed with deep and original minds who 
had not had the luck of pleasing my brilliant friend. (Grothendieck undated I, 148)15

Of course, one must bear in mind that these memoirs were written from a pos-
ition of total retirement and deep hostility towards not just individual members 
of Bourbaki, but the scienti[ c community in general.

Bourbaki’s Éléments de mathématique became a most ind uential and widely 
used classic textbook of twentieth-century mathematics. Generations of stu-
dents learnt their algebra or topology from the treatise. More than that, it was a 

14. Je me rappelle encore de mon étonnement, en 1970, en découvrant à quel point le nom même de 
Bourbaki était devenu impopulaire dans de larges couches (de moi ignorées jusque là) du monde mathéma-
tique, comme synonyme plus ou moins d’élitisme, de dogmatisme étroit, de culte de la forme ‘canonique’ aux 
dépens d’une compréhension vivante, d’hermétisme, d’antispontanéité castratrice et j’en passe !

15. C’est au cours des années soixante seulement que je me rappelle tel de mes amis, quali[ ant 
d’ ‘emmerdeurs’ tels mathématiciens dont le travail ne l’intéressait pas. S’agissant de choses dont je ne savais 
pratiquement rien par ailleurs, j’avais tendance à prendre pour argent comptant de telles appréciations, 
impressionné par tant d’assurance désinvolte - jusqu’au jour où je découvrais que tel ‘emmerdeur’ était un 
esprit original et profond, qui n’avait pas eu l’heur de plaire à mon brillant ami.
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highly useful work of reference. Further, the fact that Bourbaki chose to include 
some disciplines in the treatise while omitting others was itself an ind uential 
factor in the way that mathematical careers were built in various places around 
the world. Some readers may have been aware of the connection between the 
distinctive mathematical style of the text and the unique collective mechanism 
that produced it. Most of them surely knew, at least, that the Bourbaki enterprise 
involved something di\ erent from other textbooks authored in the standard way. 
Very few, of course, knew the details of the internal debates and how they had 
led to the [ nal product. In all likelihood, no one outside the inner circle was 
aware of the tension and cond icts surrounding the structures versus categories 
question discussed above. But the truly curious point is that for all of its success 
and impact, the Éléments did not become a textbook of choice for the study of 
analysis, as originally intended by the founding members. Much less was it used by 
‘all possible audiences: researchers, aspiring school teachers, physicists, and “tech-
nicians” of various kinds’ as Weil had initially called for. Goursat’s Cours d’analyse 
mathé matique was superseded, both in France and elsewhere, by more up-to-date 
textbooks soon aN er Bourbaki started its activities and in accordance with their 
original motivation. Students around the world who took traditional introductory 
courses in di\ erential and integral calculus went on to study from the many texts 
that became available over the next decades in a multitude of languages and that 
followed a multitude of approaches, but never did so with the text that the ‘Comité 
de rédaction du traité d’analyse’ had had in mind in their early meetings of 1935.16
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CH A P T ER 7.1

People and numbers in early imperial China
Christopher Cullen

For a historian of Chinese mathematics, it is a challenging, and indeed slightly 
depressing experience to read the [ rst chapter of 9 omas Heath’s History of 

Greek mathematics (1921, 10–25). For there we [ nd as a natural preliminary to the 
main topic of the book a careful dissection of the stages of evolution of the refer-
ence and content of the various Greek terms that Heath decided to translate as 
‘mathematics’, ‘mathematician’, and so on. 9 us we hear how for Plato mathemata 
simply means any subject of study; we hear how on the other hand for Archytas toi 
peri ta mathemata ‘those concerned with mathemata’ were particularly interested 
in the speed of the stars, their risings and settings, and about geometry, arith-
metic, and sphaeric (astronomy), and also music ‘for these mathemata seem to 
be sisters’. 9 ough Heath does not use such language directly, he at least believes 
in the socially and historically produced discovery of the concept of mathematics, 
even if he would probably not concede that it had been socially and historically 
constructed. 9 e chapter concludes with seven lucid pages on the role of mathem-
atics in Greek education—including a note on Plato’s view that elementary math-
ematical education in Egypt was superior to that in contemporary Greece.

Now the point of this is not to recommend Heath’s octogenarian study as an 
up-to-date reference on such questions. Nor is it to suggest that the historiog-
raphy of ancient Greek culture should be the reference point for studies of all 
other places and times. My aim is rather to point out how de[ cient studies of 
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the history of mathematics in China have generally been in comparison with 
the level of methodological sophistication that has long been established in the 
study of the ancient Mediterranean world. Most historical writing on the sub-
ject in relation to China simply assumes the category of ‘mathematics’ and the 
identity of a ‘mathematician’ as applicable to China throughout its history, and 
treats them as unproblematically identical to concepts designated by those names 
elsewhere—whether in a modern cosmopolitan context, in ancient Greece, or in 
some supposedly ahistorical world of thought.

9 is has had some pernicious consequences. Texts have been studied on the 
assumption that we already have all the concepts needed to understand them. 
9 e idea that one might need to think carefully about the historical context of 
such texts is habitually absent—they are to be understood just in themselves, as 
‘texts on mathematics’, as they simply are. Such texts are best explicated (it is 
thought) by translating them into modern symbolic notation; their statements 
are assumed not just to be equivalent to equations, but to be equations. 9 ey 
must contain proofs—because that is one of the main things that ‘mathemati-
cians’ produce. And so on.1

It would be boring for the reader to read a lengthy critique of the work of 
particular scholars exemplifying these problems, and it would be ungrateful for 
me to write in that way about researchers who have laboured for years to elu-
cidate the di7  culties of technical writing in Chinese. My aim rather will be to 
o\ er a sample of a di\ erent way of thinking and writing, partly to see if it works 
from my own point of view, and partly so that readers can judge for themselves 
whether it is interesting.

But what am I going to think and write about? I have already ruled out the idea 
that there is a priori a universal ahistorical, cross-cultural ‘natural kind’ called 
‘mathematics’ that can simply be located and studied once one can penetrate the 
linguistic barrier to see what it is called in Chinese, and on which one can sim-
ply impose all the structures and expectations that a modern person [ nds in 
the subject called ‘mathematics’ in twenty-[ rst-century English.2 By doing that 
one e\ ectively insulates oneself from learning anything new. To get out of that 
impasse, I suggest we might try to use the stratagem put forward by Wittgenstein 
in Aphorisms 66–67 of his Philosophical investigations (1958, 31–32):

66. Consider for example the proceedings that we call ‘games’. I mean board-games, card-
games, ball-games, Olympic games, and so on. What is common to them all?—Don’t 

1. 9 e move away from this style of scholarship as regards Greece began a generation ago: see the seminal 
discussion by Unguru (1975).

2. A ‘natural kind’ in philosophical parlance refers to a grouping of things that is natural rather than arti-
[ cial. 9 ose who believe that this concept is useful would point to such names as ‘elephant’ or ‘the element 
potassium’ as designating natural kinds, and ‘the blue things I thought observed before January 2000’ as fall-
ing outside the concept. See for instance Quine (1969). 9 ere is an illuminating discussion from the point of 
view of the philosophy of science by Hacking (2000, 103–108).
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say: ‘9 ere must be something common, or they would not be called “games” ’—but look 
and see whether there is anything common to all.—For if you look at them you will not 
see something that is common to all, but similarities, relationships, and a whole series of 
them at that. To repeat: don’t think, but look! –

[ . . . ]
67. I can think of no better expression to characterize these similarities than ‘family 

resemblances’; for the various resemblances between members of a family: build, fea-
tures, colour of eyes, gait, temperament, etc. etc. overlap and criss-cross in the same 
way.—And I shall say: ‘games’ form a family.

And for instance the kinds of number form a family in the same way. Why do we call 
something a ‘number’? Well, perhaps because it has a direct relationship with several 
things that have hitherto been called number; and this can be said to give it an indirect 
relationship to other things we call the same name. And we extend our concept of num-
ber as in spinning a thread we twist [ bre on [ bre. And the strength of the thread does 
not reside in the fact that some one [ bre runs through its whole length, but in the over-
lapping of many [ bres.

In essence, my proposal for identifying what the material for the study of ‘Chinese 
mathematics’ should be amounts to reading the [ nal paragraph with the word 
‘mathematics’ substituted for ‘number’.

Can we identify an activity in ancient China with a family resemblance to 
what would nowadays be called ‘mathematics’? Or was there a self-conscious and 
publicly recognized group of people in ancient China with a family resemblance 
to what would be called nowadays ‘mathematicians’? What did these people call 
themselves? What did they consider their de[ ning skill-set, or their common 
obsession to be? I suggest that such a question may fruitfully be approached pro-
sopographically, and this is mostly the route that I shall take in what follows. But 
[ rst let me add a methodological note.

If we are to take the Wittgensteinian route, it will be important not to frus-
trate that approach at the start by smuggling our modern thinking back into 
the past through the language we use. For that reason, I shall refrain as far as 
I can from translating any ancient Chinese term as ‘mathematics’ in the course 
of the discussion, but shall resort to transliteration where necessary. I shall 
not be so scrupulous about rendering the word shu  as ‘number’ at times, 
partly because I believe there is a good case to make for a ‘family resemblance’ 
for at least part of the range of uses of this word,3 but partly too because if I 
commence the investigation with too many unknowns in the equation the sub-
sequent e\ orts to [ nd a solution will just take more time and space than can 
here be spared.

3. I say here only ‘part of the range of uses’ because as we shall see below this word can also refer to regular-
ities much broader than numbers themselves, of the kind exploited in divination. 9 e very varied functions 
of shu  in Chinese culture are explored in depth by Ho Peng Yoke (1985).
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Beginning the enquiry

A good place to start the investigation might be a famous late imperial biograph-
ical compendium, the Chou ren zhuan  of Ruan Yuan  [ rst published in 
1799,4 within whose pages one will [ nd biographies of most of the people who are 
customarily mentioned in modern books with titles such as A history of Chinese 
mathematics. Inspection of the entries reveals, however, that the people discussed 
fall into a much broader category than would resemble the modern English group 
‘mathematicians’. Indeed there is a much closer resemblance to Archytas and his 
toi peri ta mathemata. If we look at the [ rst [ ve names of chapter two, which 
begins at the start of the imperial age in the late third century bc, we [ nd that 
the [ rst is that of a generalist high o7  cial, Zhang Cang , who was famed for 
calendrical skills and administrative accounting; the second is a great historian, 
Sima Qian , who also functioned as an astrologer and calendrical expert; 
and the other three—Luoxia Hong , Zhang Shouwang , and Geng 
Shouchang —were primarily concerned with the study of the heavens.5 9 e 
pattern continues in much of the rest of the book. It seems therefore that from the 
historical viewpoint adopted by Ruan Yuan, there is no sharp division between 
what we might today call ‘mathematics’ and forms of intellectual activity that 
we might want to distinguish from it—such as astronomy. For Ruan Yuan these 
things were apparently all of a kind, and all could be subsumed under the same 
book title. Indeed, had he wished to limit the coverage of his work to ‘math-
ematicians’ in the modern sense he might have had a problem: while in modern 
Chinese there is a term shu xue jia  which can unproblematically be treated 
as an equivalent to ‘mathematician’, for much of Chinese history the term shu xue 

 referred to the study of numbers purely in the context of divination (jia is a 
su7  x meaning ‘-ist’).

Faced with this situation, perhaps we should try following Wittgenstein’s 
advice, and move from thinking about words to ‘just looking’—and by that I 
mean looking at people, to see which of them in early imperial China seem to 
have a ‘family resemblance’ to what a modern English speaker would call a math-
ematician. Having located some likely candidates (if any exist), we might then 
ask not what features of their existences seem important to us, but how they saw 
their place in society and intellectual life, as well as how their contemporaries 
described them. What did they see themselves as doing, and what did it mean 

4. I use the two volume reprinted edition, Ruan Yuan (1981). In the title ‘Chou ren zhuan’ the [ nal element, 
‘zhuan’ is a common word that can refer to a biographical account, but ‘Chou ren’, which denotes the people 
who are the subject of those accounts, is decidedly odd. It is in fact an archaic and uncommon term whose 
early usages suggest that it refers to a hereditary lineage of star-clerks and calendar-makers. See for example 
Shi ji  26, 1258–1259 (see below).

5. Most of these persons are discussed elsewhere in this chapter.
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to be doing it well? What were the rewards of success, and how did they relate to 
wider patterns of career and reputation building? How does all this relate to their 
use of texts? And how did one acquire and pass on knowledge in relevant [ elds?

Before we begin this attempt at a prosopography, there are some things that 
need to be made clear since we are talking about early imperial China, a society 
that had characteristics very di\ erent indeed from (say) the Hellenistic world in 
which Euclid lived.6 In China from the second century bc onwards, the Chinese 
state proved massively successful in co-opting intellectuals to serve it directly 
as o7  cials as well as inducing them to support it ideologically as teachers and 
writers. In the period before the forced uni[ cation by the Qin  dynasty in 221 
bc that crushed the independent and culturally diverse states that had existed 
until then, the master-disciple lineages that were the basis of the so-called ‘hun-
dred schools’ of thought could count on no consistent support from government 
quarters. Under the brief rule of Qin itself, violent and partly e\ ective e\ orts 
were made to suppress such lineages and interdict the circulation of their texts, 
the only exception being the group of advocates of realpolitik statecraN  favoured 
by the new rulers. 9 e forces that overthrew Qin and founded the long-lived Han 

 dynasty initially held no articulate ideological allegiance; the [ rst emperor of 
Han had begun life as a peasant, and appears to have regarded scholars as social 
parasites whose help was unnecessary in governing his empire. 9 e Han is con-
ventionally divided into Western (or Former) Han, 206 bc–9 ad, and Eastern (or 
Later) Han, 23–221 ad. 9 e interregnum (as the Han regarded it) was occupied 
by the abortive attempt to found a new dynasty by Wang Mang .

As the decades passed and peace and prosperity came, the government faced 
problems very di\ erent from the straightforward suppression of military oppos-
ition, and di\ erent policies were accordingly adopted. What has been called the 
‘Han synthesis’ had a number of elements, of which the principal ones were the 
establishment of the centralized civil service as the preferred career route for liter-
ate male gentry (supposedly recruited by merit, though not yet by the open exam-
ination system of later dynasties) and the privileging of the Confucian intellectual 
lineage over all others as the bearer of the state’s o7  cial ideology. If, then, we try 
to [ nd out about the forms of intellectual life under the early empire, the people 
who lived that life at an eminent level are highly likely to have spent at least part 
of their careers as o7  cials in the state service. Added to that undoubted fact is 
another ind uence that will magnify the prominence of literati o7  cials in the his-
torical record: those records that we have from the early imperial period were over-
whelmingly o7  cially generated by, and concentrate on a world viewed through 
the concerns of, central government o7  cials. For the period we are considering, 

6. An excellent general reference on all aspects of the history of China in the Qin and Han periods is 
Twitchett, Loewe, and Fairbank (1986).
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the vast majority of relevant data are found in three so-called ‘standard histories’ 
(zheng shi , sometimes called ‘dynastic histories’), compiled mainly from o7  -
cial documentary sources, oN en under more or less direct government patronage. 
9 e [ rst is the Shi ji  ‘Records of the historian’ by Sima Qian , c 90 bc, (I 
use the Beijing 1962 edition); the second, which overlaps with it up to about 90 bc 
is the Han shu  ‘History of the Western Han dynasty’ by Ban Gu , largely 
complete on his death in 92 ad (Beijing 1962 edition), and the third is the Hou Han 
shu  ‘History of the Eastern Han dynasty’ by Fan Ye , c 450 ad (Beijing 
1963 edition). 9 us added to the fact that many intellectuals were likely to be in 
the government service is the fact that those who were not are much less likely 
to appear prominently in the historical record. 9 ose few indications of relevant 
activity by those unconnected with government are thus extremely precious.

An excellent example to start with is certainly the [ rst person listed in Ruan 
Yuan’s second chapter: Zhang Cang , a former o7  cial of the Qin  dynasty 
who was to serve under four Han  dynasty emperors aN er the fall of Qin in 
206 bc. His career included mainline administrative functions such as a gov-
ernorship, and like many high o7  cials he was given the title of hou  (usually 
rendered as ‘Marquis’), which carried the right to an income from the taxes of a 
particular district. His biography written half a century aN er his death by Sima 
Qian, who had succeeded to several of his functions, tells us of his skills:

He had a clear understanding of the charts, writings, accounts and documents of the 
empire; he was also good at using suan, at harmonics and astronomical systems.7 (Shi ji 
96, 2676)

His management work, which involved service as Ji xiang  ‘Chancellor in 
charge of reckoning’ needs little explanation: clearly an empire covering most of 
the territory of modern China found it essential to have o7  cials capable of man-
aging accounts at a high level and generally controlling the d ow of data, particu-
larly numerical data, through the administration.

What, however, was meant by ‘using suan’? 9 e word suan , of which  is a 
more archaic written form, is acting here as a noun referring to what have been 
called ‘counting rods’. At this period, long before the medieval introduction of 
the abacus in China, all calculation was done using short rods arranged on a d at 
surface to represent numbers according to conventional patterns. For instance, 
the numbers one to four might be shown by laying down that number of rods 
together, but [ ve was shown by a single rod at right angle to the others, so that 
seven might be two horizontals and one vertical. A place value system operated, 
so that tens were laid out to the leN  of units, and so on.8 Suan as a noun can also 

7.         ;      .
8. For a good discussion of how calculations could be carried out with such rods, see Lay Yong Lam and 

Tian Se Ang (1992).
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refer to what one does with these rods, or to the act of doing it. To avoid begging 
the question in a discussion whose aim is to seek for activities with a ‘family 
resemblance’ to what is nowadays called in English ‘mathematics’, I have declined 
to commit myself in advance to a single rendering of suan such as ‘calculation’ 
or ‘mathematics’, and have simply transliterated the term throughout in the hope 
that the reader will thus be able to judge its content from the historical evidence 
rather than on an a priori basis.9

But why the calendrical astronomy and harmonics? To understand this aspect 
of Zhang Cang’s skills, it is essential to realize that an important element in the 
ideological package of the early imperial synthesis was a cosmology that presented 
the natural order, the order of human society, and its moral underpinnings as 
essentially one single system. Why should one submit to the rule of the emperor 
and his o7  cials? 9 e answer given was not (as in some other times and places) 
that a divine being had put him in place and commanded obedience, nor was it 
that a rational evaluation of possible di\ erent political systems on the East Asian 
landmass showed that the imperial system maximized human welfare. Rather the 
argument was that the imperial system was the natural pattern of things. 9 us a 
well-governed empire should be part of an orderly cosmos. Part of the expression 
of that cosmic order was the annual promulgation on the emperor’s behalf of a 
detailed almanac structured round a luni-solar calendar. At a trivial level, this 
almanac enabled the emperor’s o7  cials, as well as the common people, to plan 
future activities and to record action taken against an agreed frame of temporal 
reference. But the most important aspect of such documents was that they made 
it possible for actions to be taken at the moment that was most cosmically favour-
able for them to take e\ ect. For ordinary people, the actions in question might 
be getting married, or concluding a business contract; for the emperor, the vital 
point might relate to the proper timing of the ritual actions by which he actual-
ized and made e\ ectual the unity of the human and cosmic order.10

To use one common example of the latter, it became the custom that the 
Emperor would, at dawn on the day when winter solstice fell, conduct a solemn 
ceremony of sacri[ ce and prayer on behalf of his people. To be e\ ective, this cere-
mony had to be conducted on the right day. Now in astronomical terms, ‘winter 
solstice’ is not a day, but a precise instant of time when the annual cycle of the 
sun round the ecliptic places it at its maximum distance from the north celestial 
pole. 9 is instant can occur at any time of day. If it occurs [ ve minutes before 
midnight on (say) Monday, then Monday is the day when the solstice ceremony 
must take place. If the solstice falls ten minutes later, so that it is [ ve minutes 
aN er the midnight with which Tuesday begins, it must take place on the Tuesday. 

 9. Another common sense of suan is a unit of accounting used in reckoning taxation liability, but this 
sense is not relevant to the present discussion.

10. Introductory discussions of all the issues in this paragraph are presented by Cullen (1996).
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Hence it is essential to have a method that can predict such astronomical events 
as accurately as possible. 9 is was the job done by the structures of astronomical 
calculation known as li , a word for which I prefer the rendering ‘[astronomical] 
system’. 9 e Zhuan Xu li  ‘Zhuan Xu astronomical system’, in which Zhang 
Cang is said to have been expert, had been in use under the Qin, and continued to 
be the o7  cial system until the great reforms of 104 bc, of which we shall shortly 
hear more.11

As for lü  ‘harmonics’, this was another expression of the unity of the cosmos, 
but mediated through the sounds of ritual music, and therefore closely linked to 
the ordering of time through li. From the third century bc one can easily trace 
the construction of a detailed rationale of musical scales supposedly based on 
the use of pitch pipes of standard dimensions, and of the attempt to locate the 
underlying numerical pattern of such dimensions in a broad conception of cos-
mic order.12 By the Han, this was a standard part of o7  cial cosmology, and, as we 
shall see, various more or less successful attempts were made to link it closely to 
the basis of astronomical systems.

9 is then was Zhang Cang’s skill-set, so far as it concerns us in our search for 
an identity in early imperial China with a Wittgensteinian ‘family resemblance’ 
to the modern identity of ‘mathematician’.13 As his o7  cial biography puts it, ‘He 
was good at the use of suan, at lü, and li’ (Shi ji 96, 2676).14 Despite the relatively 
full documentation on his life, we have no evidence for how Zhang acquired any 
of his skills, nor do we hear of him having any disciples to whom he passed them 
on. No source within three hundred years of his death associates him with a book 
or indeed any other writing apart from o7  cial documents, whether as reader, 
author, or editor.

So to sum up: in our earliest example of an early imperial elite member skilled 
in the uses of numbers, we [ nd a bundle of abilities rather than a single discip-
line. 9 e possession of these skills does not confer on Zhang Cang any kind of 
named identity apart from his o7  cial titles, though two thousand years later it 
wins him a place in the Chou ren zhuan. As later examples will show, although 
there was some tendency for the abilities given here to be found in association 
with each other in any given individual, having one of these skills did not neces-
sarily imply having all of them. 9 e one skill that was probably considered essen-
tial for any main-line o7  cial post was yong suan (or just suan), as we can see from 

11. For a more detailed discussion of the political and ideological background of debates on calendrical 
astronomy in the [ rst half of the Western Han, see Cullen (1993).

12. See for instance Major and Cullen (1993, 106–118).
13. Zhang seems to have had other quali[ cations besides those we consider here, such as good looks 

 su7  ciently striking to have spared him from execution early in his career, and the ability to live on mother’s 
milk obligingly supplied by some of his hundred concubines when he was a toothless centenarian (Shi ji 96, 
2675, 2682).

14. .
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the certi[ cates of pro[ ciency for Han military o7  cers which say of the person 
in question, neng shu kuai ji  ‘He can write and keep accounts’ (Loewe 
1967). If that was the basic standard for the military, then given the consider-
able higher status of the civil o7  cial we may assume that numeracy was a basic 
requirement there too.

9 e next o7  cial [ gure identi[ able as numerically skilled was not as lucky as 
Zhang Cang in his career. 9 is was Sima Qian , who had to make the hard 
choice between suicide and castration when he o\ ended the Emperor Wu  by 
supporting a luckless general who had failed in his mission. He chose castra-
tion, which he saw as the price of being able to complete his massive history of 
China—or rather the entire world then known to him—the Shi ji  ‘Records 
of the historian’. His o7  ce as Tai shi  ‘Grand Clerk’ put him in charge of 
state annals, but also gave him responsibility for recording and interpreting 
celestial omens and for maintaining the astronomical system. His historical 
work includes major monographs on harmonics and astronomical systems. It 
was under his term of o7  ce that the Tai chu  ‘Grand Inception’ astronomical 
reform took place, but it seems he did not succeed in keeping the reform under 
his own control. Indeed, the records of the resulting controversy reveal that the 
government called on the advice of experts without any o7  cial position at all, 
including two persons otherwise almost unknown: Tang Du , Luoxia Hong 

, and twenty min jian zhi li zhe  ‘experts on astronomical systems 
from amongst the people’ as o7  cially summoned consultants. Tang Du ‘distin-
guished the divisions of the heavens’ while Luoxia Hong ‘carried out suan (yun 
suan ) to revise the astronomical system’. And their approach is said to have 
been based on yi lü qi li     ‘raising up an astronomical system on the basis 
of harmonics’ (Han shu 21a, 975).

Here we have clear evidence that despite the fact that the persons said by our 
historical sources to be learned in suan, lü, and li are mostly o7  cials of some 
kind, the skill package already identi[ ed in the case of Zhang Cang was also to be 
found amongst commoners. And although we do not know quite what the rela-
tions were between Sima Qian himself and these ‘commoner consultants’, he says 
himself that one of them, Tang Du, was his own father’s teacher in the subject of 
tian guan  ‘the celestial o7  ces’, which is the title given by Sima Qian to his 
astrological monograph.15

9 e scribal transmission does not appear to give us any surviving writings on 
suan, lü, and li attributed to identi[ able commoner [ gures of the Western Han. 
But the situation has improved considerably with the discovery of the collec-
tion of writings on suan in the tomb of a medium-rank local o7  cial of the early 
second century bc, bearing the label Suan shu shu , for which I o\ er the 

15. Shi ji 130, 3288.
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English rendering ‘Writings on reckoning’.16 I have published a fully commented 
text edition and translation of this work, and have discussed its signi[ cance at 
length in a journal article (Cullen 2004; 2007a). It seems clear from the format 
of the work that knowledge of suan was passed on in a written form similar to 
that found in contemporary medical knowledge transmission—the short inde-
pendent section or ‘textlet’ written on one or more bamboo strips, each of which 
might itself note material evidently taken from several sources. Within each sec-
tion one may typically [ nd a statement of a problem, followed by its numerical 
solution, and [ nally the prescription of a shu  ‘procedure, method’ by which the 
solution may be obtained from the data. Sometimes several di\ erent procedures 
may be given for one type of problem. It is important to grasp that each section 
of this material is more or less independent of the others; these sections were 
collected together by whoever compiled the ‘Writings’, apparently from diverse 
sources, but there is no trace of an e\ ort to write a single and systematic book on 
suan here. Topics covered range from elementary calculations with fractions to 
the solution of problems involving what we would nowadays call the Rule of False 
Position, and [ nding the volume of solids of various forms.

A fascinating feature of the ‘Writings on reckoning’ is that a few of the bamboo 
slips are attributed to one of two people with the common surnames Wang  and 
Yang ; two of the attributed sections contain problems on weaving which are so 
similar in tone and content that it is hard to resist the conclusion that Wang and 
Yang were in conscious competition with one another—and the fact that one of 
them makes a mistake in his method of solution that remains uncorrected sug-
gests that the material we have has not passed through much of a [ ltering pro-
cess between the authors and the text we have today. But although the ‘Writings 
on reckoning’ seems to be good evidence of the existence of individual experts 
in suan at the time of its composition, we have no evidence of their social role 
or status, nor do we know who they were trying to impress as they competed in 
showing their skill in suan. 9 ere is no evidence at this stage of systematic writ-
ing on suan at book length.

Further evidence from the Western Han underlines suan as a skill to be pos-
sessed by the successful o7  cial. 9 e clear association between the practice of 
suan and the use of the counting rods is illustrated by the fact that someone 
with the ability to perform xin ji  ‘mental calculation’ was considered excep-
tional enough to qualify for special appointment to a government position at 
an early age: this is how the specialist in state [ nance Sang Hongyang  

16. 9 e compound expression suan shu  is well attested, and functions as one would expect from the 
two words from which it is composed, which suggest ‘applying suan to numbers’—hence ‘reckoning’. Shu  
is given here its common sense of ‘writing’ rather than ‘book’, since it is clear that the collection of material 
before us is simply a collection of disparate small units of text rather than a book in any normal sense of the 
word. For this reason too I refer to the words Suan shu shu as a label rather than a title.
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[ rst came to o7  cial notice in his teens (Han shu 24b, 1164; Shi ji 30, 1428).17 For 
Geng Shouchang  we have good evidence of his skill in suan relating to civil 
engineering and administration. 9 e Han shu tells us that he:

. . . was good at carrying out suan and was able to estimate the pro[ ts from works . . . he 
was practiced in questions of the estimation of works and the allocation of money.18 (Han 
shu 24a, 1141)

A few sentences later, Geng is credited with the proposing the establishment of 
chang ping cang  ‘Ever Normal Granaries’ to minimize variations in the price 
of grain. Geng Shouchang was also an observational astronomer whose work on 
the motions of the moon was discussed by Jia Kui  in 92 ad (Hou Han shu 2, 
3029); the Han shu bibliography (see below) also records the presence in the imper-
ial library of two hundred and thirty-two rolls of charts and two rolls of numerical 
data by him (Han shu 30, 1766). Xu Shang , an expert in river works and irriga-
tion, held various high o7  ces under Emperor Cheng (33–7 bc); in the autumn of 29 
bc he was called in to advise on d ood control, and it was said of him:

9 e Academician Xu Shang worked on the Shang shu [sc. the ‘Book of documents’, one 
of the Confucian classics]; being good at suan, he was able to plan the use of [resources 
in public] works.19 (Han shu 29, 1688)

We also have evidence that he wrote on suan at some length—as discussed 
below.

When we reach the transition between the Western and Eastern Han dynas-
ties, we [ nd another [ gure who ranks in importance with Zhang Cang and Sima 
Qian, but with the additional feature that he presents us with lengthy red ections 
on his relations to the disciplines he practices. 9 at [ gure is Liu Xin .20 As a 
youth, he was a friend of Wang Mang , who rose to power through his family 
connections with the empress. In 9 ad, aN er having been the e\ ective ruler for 
some years, Wang caused the boy who held the throne as nominal Han sovereign 
to go through a ceremony of abdication in his favour, and took the throne as 
emperor with the title Xin  ‘New’ for his dynasty (Han shu 99a, 4099–100). Liu 
Xin became one of Wang’s chief ministers, and provided intellectual support for 
his claim to be patterning his government on the model of antiquity. Despite his 
membership of the old imperial clan, Liu survived a number of political purges 
during the next three decades, including some involving his own children, until 
in 23 ad he was executed aN er the discovery of a plot to assassinate Wang and 
restore the Han to power.

17. Another example of this was Liang Qiuhe   , who was active in the period 73–47 ad and was 
appointed to (honorary?) military rank as a result of his ability in xin ji (Han shu 88, 3600).

18.  . . . .
19. , , .
20. 9 e dates of individuals are given in the Appendix.
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Before turning to Liu Xin’s own writing, we may note in passing the signi[ -
cance of a project in which he was involved jointly with his father Liu Xiang 

. 9 is involved the classi[ cation of all books in the imperial collection—some 
would even say the construction of at least some of those books—and the making 
of a systematic classi[ ed catalogue, preserved for us in abbreviated form in chap-
ter 30 of the Han shu. Although most of the books mentioned in this listing have 
now been lost, there is still much to be learned from the book titles themselves, 
and also from the way they are classi[ ed. In particular, we may ask whether we 
see signs of the recognition of suan as an independent category of knowledge on 
which it would be appropriate to write books.

9 e answer is generally negative. At [ rst one might be encouraged to [ nd that 
a major portion of the catalogue is devoted to shu shu , a term which one 
might be tempted to translate literally as ‘numerical procedures/methods’. But 
immediately we look at the subheadings of the section and at the books listed 
therein, it is evident that suan is not the main or even a major topic here. As 
already hinted, shu  can refer to much more than ‘numbers’ in the sense of 
things one might count or measure with, and has strong connections with divin-
atory activity. Titles of the subsections of the shu shu section are as follows: tian 
wen  ‘celestial patterns’ (astrology), li pu  ‘astronomical systems and list-
ings’ (calendrical astronomy), wu xing  ‘[ ve phases’ (divinatory cosmology), 
shi gui  ‘milfoil and tortoise’ (divination using these), za zhan  ‘miscellan-
eous divination’, xing fa   ‘the method of forms’ (divination by visual inspec-
tion of landscapes, faces, and so on).

Within all this overwhelmingly divinatory material we can recognize the pres-
ence of li, lü, and suan, but the emphasis is not even. Li certainly dominates the 
second section, but lü appears in only three titles out of 31 titles in the third (we 
also [ nd a book title referring to bells, which is probably also relevant to lü). Suan 
is tucked away at the end of li pu in the following two entries:

Xu Shang’s suan procedures, 26 rolls
Du Zhong’s suan procedures, 16 rolls.21 (Han shu 30, 1766)

Xu Shang is almost certainly to be identi[ ed with the o7  cial mentioned above, 
but Du Zhong is otherwise unknown. Both books are now lost, and we have no 
known quotations from them in extant works.

What are we to make of this situation? One message is clear: suan was not a 
very important subject in the literary repertoire of elite knowledge at the time 
this listing of books was made. 9 at much is clear from the fact that only two 
books refer to it. What we are to deduce from the fact that books on suan are 

21.        .
      .
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classi[ ed under ‘astronomical systems and listings’ is not obvious. While it is 
possible that the ‘suan procedures’ they contain do relate to astronomical prac-
tice, the stated interests of Xu Shang do not support this, and it may be safer to 
assume that the two Lius, faced with the problem of where to put these books, 
simply placed them with others that contained calculations even if the ‘family 
resemblance’ was otherwise not a close one.

9 e main material by Liu Xin that we shall examine stems from a great confer-
ence of the learned summoned by Wang Mang in 5 ad, as part of his campaign to 
build himself into the image of an ideal Confucian minister and potential ruler 
before seizing the reins of power:

He summoned those in the empire who had a comprehensive knowledge of lost classical 
texts, ancient records, celestial patterns, suan [pertaining to] astronomical systems, bells 
and pitchpipes, ‘elementary studies’, historical compilations, recipes and procedures, 
pharmacognosy, and who professed the Five Classics, the Analects [of Confucius], the 
Classic of Filial Piety, and the Literary Expositor.22 (Han shu 12, 359)

Liu Xin’s report on the proceedings of this gathering is preserved in Han shu 21a, 
although the editors state that it has been subject to some censorship. 9 e theme 
of the whole text is the role of numbers in the cosmic order. As Liu says:

Numbers are 1, 10, 100, 1000, 10,000. 9 ey serve to reckon a\ airs and things, and to accord 
with the patterns of inborn nature and fate. 9 e ‘[Book of] documents’ says: ‘First one [per-
forms] suan [to determine] fate’. 9 e basis arises from the numbers of the Yellow Bell. Begin 
from one and triple it; pile up one tripling upon another until you have passed through the 
numbers of the 12 chen, [then with] 177,147 the [ ve numbers are complete.23 In the prac-
tice of suan one uses bamboo [rods] 1 fen in diameter, and of length 6 cun. 271 rods form 
a hexagon, which makes a bundle.24 In diameter they image the 1 of the supernal pitch-
pipe Yellow Bell; in length they image the length of the chthonic pitchtube Forest Bell.25 
9 eir number comes from 50, the Great Expansion number of the Changes, of which 49 
is used, and forms the 6 lines of the Yang, so as to attain to the image which runs through 
the 6 Voids.26 In deriving astronomical systems, producing pitchpipes and making vessels, 
encompassing the circle and setting right the square, weighing the heavy and balancing 

22.                                               
23. 9 e twelve chen are the cyclical signs that can represent such things as the double-hours into which the 

day is divided, the months of the year, or the compass directions. 9 e [ rst chen corresponds to unity, aN er 
which there are eleven multiplications by 3, giving 311 = 177,147.

24. Each rod is a hexagonal prism; the reader may like to carry out the exercise of verifying that a bundle 
of 271 such rods will itself be such a prism.

25. 9 e standard series of resonating tubes for musical pitch were theoretically generated by beginning 
from a tube of diameter one cun  (approximately an inch) and length 9 cun. Subsequent lengths were de[ ned 
by in e\ ect multiplying lengths alternately by 2/3 and 4/3. 9 e Yellow Bell Pipe and all other odd-numbered 
pipes in the sequence were labelled as cosmically yang  and given the title lü , whereas the even-numbered 
pipes (of which the [ rst was Forest Bell) were labelled as cosmically yin  and given the title lü .

26. 9 e reference here is to the divinatory procedures using yarrow stalks set out in the ‘Book of changes’ 
(Yi jing ), an ancient divinatory text which by the Han period had become the basis for an elaborate 
numerical cosmology. For detailed explanations, see Nielsen (2003).
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what is equal, levelling the [builder’s] line and making fair the capacities, in ‘Seeking the 
profound and drawing out the obscure, hooking up from the deep and attaining to the 
distant’—there is nothing in which [numbers] are without application. [By this means] in 
measuring the long and short one will not be out by a hair’s-breadth, in estimating much 
and little one will not be out by a mere pinch, in weighing the light and heavy one will not 
be out by a tiny grain. [Numbers] take their guiding thread from one, unite in ten, grow in 
a hundred, become great with a thousand, and overd ow into a myriad. 9 e methods [for 
handling them] are found in suan procedures. 9 ese are found throughout the empire, and 
are taken as a pattern in elementary studies.27 Responsibility for such matters lies with the 
Grand Clerk, and they are handled by the Xi He o7  cial.28 (Han shu 21a, 956)

9 is introductory statement is played out in detail in the pages which follow, giv-
ing us a priceless insight into the view of numbers taken at the highest levels of the 
elite to which Liu Xin belonged—for the fact is that it was Liu Xin himself who 
held the o7  ce of Xi He, a role whose title had been chosen by Wang Mang to recall 
the names of the star-clerks charged with control of calendrical astronomy by the 
legendary Emperor Yao in high antiquity (Han shu 99b, 4103; 99a, 4090). It is to 
his skill in li that we owe the Triple Concordance astronomical system (San tong li 

), the earliest preserved example of a system with a complete basic planetary 
theory.29 Part of his essay is in fact devoted to an attempt to derive the basic con-
stants of the Triple Concordance system from what Liu considers the ‘basic the-
ory’ of the ‘Book of changes’. But of suan itself Liu Xin says little directly. It is done 
with counting rods, and its practice is based on a repertoire of ‘suan procedures’, 
which form part of ‘elementary studies’—which we may recall was the department 
of learning named immediately aN er ‘suan [pertaining to] astronomical systems, 
bells and pitchpipes’, namely li and lü in the syllabus of Wang Mang’s conference.

If we continue our prosopographical search into the Eastern Han, some fea-
tures already revealed in the Western Han persist. 9 us the most conspicuous 
form of activity involving the use of numbers amongst the elite continues to be 
suan in relation to astronomical systems, li suan. Skill in suan alone is much 
less conspicuous. We do however [ nd evidence that experts in li red ected on 
the extent to which suan procedures could be applied to it, as in this extract 
from a discussion by Jia Kui  around 100 ad. In considering the changing 
position of the winter solstice, he stresses the necessity for periodic revisions of 

27.  ‘Elementary studies’ is my rendering of the term xiao xue , which also refers to the schools a child 
traditionally entered at the age of eight. 9 e Han shu listing of books under this heading contains works on 
writing, and the subsequent editorial discussion focuses solely on that topic. (Han shu 30, 1719–1721).

28.                                        
                                         
                                         
                                        
                                         

                                          
                
29. See Cullen (2004a) for a discussion of the Triple Concordance system and its applications.
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astronomical systems, since none of them can stay permanently in step with the 
cosmos. His reasons for this are nothing to do with some mysterious ine\ ability 
of the heavens or limitations of human reason, but are purely technical, and to do 
with the way that suan treated fractional quantities:

9 e alignments and discrepancies of the way of heaven are not commensurable. 9 ere 
must be remainders, and those remainders [themselves] will themselves di\ er in ways 
that cannot be made commensurable through equalising. 9 ose who manage li [arbi-
trarily] chop o\  a period of 76 years [for commensurability of day, lunation and solar 
cycle], so the fractional remainders gradually increase until they build up to a day.30 (Hou 
Han shu 2, 3028)

9 e terms qi  ‘commensurable’ and deng  ‘equalize’ form part of the tech-
nical vocabulary of the manipulation of fractional quantities in ancient Chinese 
suan practice. Two quantities are ‘commensurable’ in this sense if one can [ nd a 
denominator that enables the fractional parts of both quantities to be represented 
precisely. As part of the process of arriving at this denominator in its simplest 
terms, one will seek for a common factor or deng shu  ‘equalizing number’.31 
Jia Kui’s point is that if one demands that all astronomical cycles have to be com-
mensurable within some [ xed period (such as the 76-year period used by systems 
of the type Jia Kui is discussing here), there are bound to be discrepancies between 
the real value of a quantity and its representation in simple fractional terms, and 
that in time these discrepancies will build up to a signi[ cant amount.

Nevertheless, there are some interesting changes in emphasis during this period, 
which I shall try to bring out in what follows. One unexpected feature revealed by 
searching for the word suan in the Hou Han shu (which uses the form  rather 
than  for suan) is that the [ rst people in Chinese history identi[ able as forming 
a student/teacher pair in the subject of suan are women. 9 ey are the Empress 
Dowager Deng  and Ban Zhao . 9 e Empress’s father had given his daughter 
a literary education along with her brothers, to the displeasure of her mother, who 
reproached her for her lack of interest in ‘women’s work’ by asking sarcastically 
‘Are you going in for a bo shi  “doctorate”?’ Ban Zhao was the sister of Ban Gu 

, the scholar primarily responsible for the Han shu; on his death Ban Zhao was 
commissioned to [ nish the work, and wrote portions of it including the mono-
graph on astrology tian wen. We are told in the Empress’s biography:

From the time that the Empress entered the Palace Apartments, she took lessons from 
Her Excellency Madame Cao [namely Ban Zhao, who was the widow of a Mr Cao] in 
classical writings, together with tian wen, and the application of suan to numbers.32 (Hou 
Han shu 10a, 424)

30.                                       
      
31. For a discussion of how a deng shu is to be found, see below.
32.                     
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Outside the palace there are also signs that suan was beginning to be seen as 
a topic of serious interest amongst the male master–pupil scholarly lineages 
that dominated classical studies. When Zheng Xuan  sought admission to 
the body of more than four hundred students gathered round the great scholar 
Ma Rong , he was for three years kept out of the core group of [ N y who 
met Ma face to face—until Ma heard that he was shan suan  ‘good at suan’ 
and allowed him in (Hou Han shu 35, 1207). Zheng was to become, like Ma, an 
immensely ind uential [ gure in the intellectual life of his time, and his commen-
taries on classical texts were to be cited for centuries to come; in e\ ect, he became 
the Han explicator of the classics.

It is in this milieu that we [ rst hear of a named book on suan that is still extant 
today. 9 is is the Jiu zhang suan shu . 9 e title of this book has been ren-
dered into European languages in many di\ erent ways. Although the most literal 
English rendering would in my view be something like ‘methods/procedures for 
suan, under a ninefold division’, the word zhang is most frequently rendered as 
‘chapters’ in this context, so that English-speaking readers oN en call the book the 
‘Nine chapters’ for short. A brother of Ma Rong, Ma Xu , is said to have stud-
ied this book as a youth around 110 ad, and it likewise formed part of the educa-
tion of Zheng Xuan (Hou Han shu 24, 862; 35, 1207). We know that Ma Rong was 
in touch with Empress Deng and Ban Zhao, and that Ma Xu, like Ban Zhao, also 
worked on the tian wen monograph in the Han shu (Hou Han shu 10, 3215), so 
given all these contacts it is likely that Empress Deng and Ban Zhao would have 
known the ‘Nine chapters’ too.

My main interest in this discussion is the people who wrote and used texts 
rather than the texts themselves, so I shall not give a lengthy description of the 
‘Nine chapters’ here. 9 e material in the book is clearly from the same tradition 
as the Suan shu shu  ‘Writings on reckoning’ described earlier, and the 
problem-answer-method pattern of parts of the earlier collection is dominant 
throughout the later book. In terms of mathematical sophistication, the ‘Nine 
chapters’ goes somewhat further than its predecessor, mainly by adding mater-
ial on problems that would nowadays be formulated as systems of linear equa-
tions in several unknowns, and on applications of what is called in the West the 
Pythagorean theorem. As its name implies, the book is divided into nine sec-
tions, but the contents of a given section do not always form a natural unity. In 
fact the main reason for the nine-fold division seems to be that the anonymous 
compiler of this work wanted to imitate what he or she believed was the pattern 
of mathematical education laid down by the sage rulers of antiquity. 9 e ‘Ritual 
of Zhou’, Zhou li , is nowadays thought to be a text of the late Warring States 
or early imperial age, perhaps from the third century bc. But at the time when 
the ‘Nine chapters’ [ rst appears in the historical record the Zhou li was thought 
to be an accurate description of government organization in the early Western 
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Zhou dynasty around 1000 bc, written by one of the dynastic founders, the Duke 
of Zhou, Zhou Gong . In that work, the education of young aristocrats is 
said to include the liu yi  ‘Six Arts’, which comprise ‘the [ ve rituals, the six 
musics, the [ ve archeries, the [ ve chariot-drivings, the six writings, and the jiu 
shu  “nine numberings/reckonings” ’ (Zhou li, Shi san jing zhu shu ed. of 1815, 
212–3). 9 e Zhou li itself gives us no idea what the last of these might be, but in 
view of the likely sophistication of the students imagined in the text one would 
be surprised to [ nd that this expression (of which there is no other attestation 
before the time when the ‘Nine chapters’ appears) meant much more than the 
multiplication table. 9 e usual term for the multiplication table is jiu jiu  ‘the 
nine nines’, but in the Guan zi  book—a collection of earlier material edited 
by Liu Xiang c 26 bc—it is referred to as jiu jiu zhi shu  ‘the number-
ing/reckoning of the nine nines’, a term suggestive of the Zhou li usage (Rickett 
1998, 499). However from the Eastern Han onwards, all commentators gloss jiu 
shu with a list of the section headings of the ‘Nine chapters’, or some variant 
thereof. Presumably this was part of the Han scholars’ project to ‘reconstruct’ a 
lost antiquity in as much detail as possible.

For all the importance later ascribed to the ‘Nine chapters’ in modern works 
on the history of mathematics, it is striking how little is said about it for the 
remaining century or so of the Eastern Han dynasty aN er its [ rst appearance 
around 100 ad. Apart from the instances already cited, there is no contemporary 
evidence of links between this book and Eastern Han people who de[ nitely pos-
sessed a high degree of numeracy. In the case of the polymath astronomer, maker 
of instruments, and litterateur Zhang Heng , we only have a reference in a 
commentary on the ‘Nine chapters’ written a century later, referring to ‘Zhang 
Heng’s suan’ and ‘[Zhang] Heng’s shu  “method/procedure” ’ in connection with 
a discussion of the volume of a sphere.33 No direct connection between Zhang 
Heng and the ‘Nine chapters’ itself can be made. 9 e most eminent practitioner 
of astronomical calculation later in the dynasty was undoubtedly Liu Hong . 
According to the polymath and bibliophile Cai Yong , who worked with him 
closely on astronomical matters, Liu Hong mi yu yong suan  ‘was accur-
ate in the use of suan’ (Hou Han shu 3, 3083 commentary). 9 e only connection 
with the ‘Nine chapters’ known in his case is that a Buddhist monk writing sev-
eral centuries later referred to a book he called Liu Hong’s Jiu jing suan shu 

 suan ‘procedures/methods of the Nine Capitals’, which seems a probable 
copyist’s error (  ← ) for Jiu zhang suan shu  (Guo 1992, 128). But since 
there are no other attestations of a work under this title by Liu Hong, it seems 
unlikely on the basis of this late and garbled reference that such a book actually 

33. Chemla and Guo (2004, 384–5). I see no reason to assume with these authors that ‘Zhang Heng’s suan’ 
is a book title.
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existed. We do hear of Liu Hong’s astronomical methods being passed on by Xu 
Yue  to Gan Ze  (Jin shu 17, 503), but although later sources mention (pre-
sumably commented) versions of the ‘Nine chapters’ by both the latter two men, 
there seems to be no direct evidence that their learning in that area came from 
Liu Hong.34

As we have seen in following the story through from Zhang Cang at the begin-
ning of the Han, through Empress Deng and Ban Zhao, and onwards through 
Zhang Heng to Liu Hong, during the four centuries of the Han suan in itself was 
an element whose presence in o7  cial and intellectual life was continual but not 
major. If the history of Han ‘mathematics’ is to be de[ ned as the history of suan, 
then that history in itself is not a very rich one. We know relatively few people 
whose main claim to fame was their skill in suan, and we do not know the name 
of anyone responsible for a major innovation in the [ eld. Apart from the single 
instance of Wang and Yang in the ‘Writings on reckoning’ we have no evidence 
of contention or competition in suan. Claiming to have originated a new piece of 
suan, or claiming that one’s teacher had done so, was evidently not a worthwhile 
manoeuvre in Han intellectual life: the contrast with ancient Greece is striking. 
9 at certainly does not mean that early imperial society was innumerate, or that 
numbers did not enter into intellectual life. 9 e skill-package we [ rst identi[ ed 
in the case of Zhang Cang and saw fully played out in the case of Liu Xin—li, 
lü, and suan taken together—was certainly an intellectually signi[ cant element 
in the life of the Eastern Han, as in the Western Han. Its signi[ cance was not 
con[ ned to scholarly writing alone, but could on occasion spill into the area of 
open debate, in which technical points would be argued out between opponents 
in front of an audience.35 Certainly such debates would have been meaningless 
to those without skill in suan, even though the focus was on the results produced 
by its use in the area of li rather than on the process of suan in itself. As one such 
debater (Cai Yong ) remarked around 180 ad:

When one begins dealing with lü and li, one takes suan with counting rods36 as the basis, 
and uses the patterns of heaven as a check.37 (Hou Han shu 3, 3083 commentary)

Numbers mattered a great deal in the early Chinese empire, even though the way 
they mattered was not always the same as in other areas of the ancient world.

34. I am not convinced by the conjecture to this e\ ect by a Qing dynasty commentator; see Guo 
(1992, 128).

35. See Cullen (2007b). A large amount of material from memorials and oral debate on this topic is pre-
served in Hou Han shu, zhi 2.

36. Here the alternative word chou  is used to refer to the counting rods themselves, which leaves suan to 
refer to the act of manipulating the rods. 9 e motivation here is probably the literary one of wanting another 
two-character phrase to parallel tian wen.

37.               .
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Given the fact that suan in the period we are discussing was an essential skill 
but does not appear to have been a major focus of intellectual attention in itself, 
it is not surprising that the extant Han dynasty written material on suan (which 
largely consists of the ‘Writings on reckoning’ and the ‘Nine chapters’) is almost 
entirely concerned with telling us what methods should be used to solve prob-
lems, but says little or nothing directly about why those methods should work, 
or how new methods might be constructed. 9 e only example of material of the 
latter kind, which perhaps we might call meta-suan, from the Han dynasty comes 
in the form of a dialogue between two persons who are almost certainly [ ctional. 
9 e material in question is found in the scribally transmitted book known as the 
Zhou bi  ‘Gnomon of Zhou’, which is mainly concerned with quantitative 
cosmography and calendrical astronomy. In part of this book, a part which I have 
argued is probably from the [ rst century bc (Cullen 1996, 148–156), a teacher, 
Chen Zi , is represented as telling his student Rong Fang  how to learn 
suan. Neither of these characters is known to history.

Long ago, Rong Fang asked Chen Zi, ‘Master, I have recently heard something about 
your Way. Is it really true that your Way is able to comprehend the height and size of the 
sun, the [area] illuminated by its radiance, the amount of its daily motion, the [ gures for 
its greatest and least distances, the extent of human vision, the limits of the four poles, 
the lodges into which the stars are ordered, and the length and breadth of heaven and 
earth?’38 (aN er Cullen 1996, 176)

9 e key to all this, Chen Zi explains, is the knowledge of suan:

All these things can be attained to by suan procedures/methods. Your [ability] in suan is 
su7  cient to understand such matters if you sincerely give reiterated thought to them.39 
(aN er Cullen 1996, 177)

For Chen Zi, according to the explanation he goes on to give, the essence of relat-
ing to numbers is the ability to tong lei  ‘generalize categories’. From this fol-
lows the key ability in using suan e\ ectively—neng lei yi he lei  ‘being 
able to categorize in order to unite categories’. To do this, tong shu xiang xue tong 
shi xian guan  ‘similar methods are studied comparatively, and 
similar problems are comparatively considered’. And thus one is enabled to under-
stand suan shu zhi shu  ‘procedures for applying suan to numbers’ (Cullen 
1996, 177). All this might stand as a user’s guide to the ‘Writings on reckoning’,40 
in which similar problems and similar methods may be gathered together in the 
same short text. And the more systematic arrangement of the ‘Nine chapters’ 

38.                                    
                               

39.                        
40. As noted above, in the label ‘Writings on reckoning’, ‘reckoning’ renders suan shu , the expression 

which begins the phrase just quoted.
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certainly carries the process further. We may note, however, that in telling his stu-
dent how to study suan, Chen Zi says nothing about any kind of standard book to 
be studied; his instructions are a better [ t with the earlier world of the ‘Writings 
on reckoning’, in which it is up to the student to assemble related material, than 
they are with the ‘Nine chapters’, in which the job has been done once and for all.

Liu Hui: a new departure

No-one in either the Western or Eastern Han dynasties seems to have written 
further on suan in any mode resembling Chen Zi’s methodological red ections. 
AN er the end of the Han, in the third century ad we encounter a step change of 
discourse in which Chen Zi’s programme (although not mentioned explicitly) is 
carried out with immense energy and in great detail. Somewhere around 263 ad, 
a man called Liu Hui , otherwise unknown to history, wrote a lengthy and 
detailed commentary on the ‘Nine chapters’. Alone of any other commentaries on 
this work from antiquity, this one has survived to our own day.41 9 e commenta-
tor’s preface is an entirely new departure in itself, since there we [ nd not only the 
[ rst recorded red ections of a real historical [ gure on suan in itself (as opposed 
to the package involving li and lü), but are also given a programme of explica-
tion and justi[ cation unlike anything attempted before. One of the [ rst things 
we may choose to note from Liu Hui’s essay is a con[ rmation of the remarks 
already made here about the lack of intellectual prominence of suan in the cen-
turies before he wrote. Liu writes in tactful terms, but his meaning is quite clear:

Now suan was amongst the Six Arts,42 and anciently those who were worthy and expert 
[in it] were promoted as retainers, and it was used in training the young of a state. Even 
though one [only] speaks of the Nine Numberings, its potential exhausts the arcane and 
enters into the subtle, and its ability to investigate is unlimited. When we come to con-
sider the passing on of such methods, it is like the fact that the compass, trysquare,43 and 
measures of length and capacity can be shared by all. 9 ere is nothing specially di7  cult 
in doing this. But those who favour [such studies] nowadays are few. 9 us although there 
have been many of comprehensive talents and penetrating learning in our age, they have 
not yet always been able to take a full view of it.44 (aN er Chemla and Guo 2004, 127)

He begins his account of his own work, however, by telling us of his own route to 
mastery of the ‘Nine chapters’:

41. Two translations of the ‘Nine chapters’ that include Liu Hui’s commentary and give much additional 
materials are Shen, Crossley, and Lun (1999) and Chemla and Guo (2004); the latter, which includes Chinese 
text, is better based in sinological terms, but see also my essay review of some associated problems (Cullen 
2006).

42. See the reference to the Zhou li above.
43. An L-shaped tool used to set out right angles by carpenters and other craN smen.
44.                                          
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When I was young I was drilled in the ‘Nine chapters’ and when I grew up I went over it 
again carefully. I looked into the breaking apart of Yin and Yang, took a comprehensive 
view of the basis of suan methods/procedures, and of the suppositions involved in seek-
ing the unknown, and thus attained to realisation of its signi[ cance.45 (see also Chemla 
and Guo 2004, 127)

9 e words used here by Liu Hui are signi[ cant. In his youth, he approached the 
‘Nine chapters’ through xi , which describes a process of learning how to do 
something (such as reciting a text) through repetition and practice. In his matur-
ity, he attained a di\ erent level of insight, described here as wu , a word used 
in Buddhist discourse for the sudden break-through to enlightenment. What he 
aims to do in his book is to help other mature minds to make the same leap:

9 erefore I have ventured to exert my meagre capacities to the utmost, and have selected 
from what I have seen in order to make a commentary. 9 e categories under which the 
problems [treated herein fall] extend each other [when compared], so that each bene[ ts 
[from the comparison]. So even though the branches are separate they come from the 
same root, and one may know that they each show a separate tip [of the same tree]. Now 
I have analysed principles with explanations, and dissected forms using diagrams, to 
make them simple and comprehensive, thorough and unconfusing, so that those who 
review them will [ nd their ideas are more than half-way there.46 (see also Chemla and 
Guo 2004, 127)

Essentially speaking, Liu Hui sets himself the task of convincing the reader of the 
‘Nine chapters’ that its methods will work, and making it clear why they work. 
Let us take two simple but very di\ erent examples to demonstrate how he does 
this. 9 e [ rst is his explanation of the method of simplifying fractions prescribed 
in the ‘Nine chapters’. 9 e algorithm is given as follows:

Method for simplifying parts: What can be halved, halve them. As for what can not be 
halved, separately set out the numbers for the denominator and numerator. Subtract the 
lesser from the greater. Go on decreasing by subtracting from one another. 9 is is seek-
ing for equality. Simplify using this equal number.47 (see also Chemla and Guo 2004, 
156–7)

9 is is the mutual subtraction algorithm well-known from a number of cultures. 
But why does it work? Liu Hui tells us:

Simplifying by the equal number means dividing [by it]. 9 e reason for the subtracting 
of one [number] from another is because they are both simply piled up accumulations of 
the equal number.48 (see also Chemla and Guo 2004, 157)

45.                                  
46.                                       
                                     
47. 
48.  ,  .  ,  .
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In other words, if two numbers are commensurable, then they can each be 
regarded as made up of whole numbers of some common subunit, which it was 
the object of the subtraction process to reveal.

In a more complex case, Liu Hui is faced with justifying to his reader the 
relation between what we would call in modern English the base, altitude, and 
hypotenuse of a right angled triangle—which are for Liu Hui respectively the gou 

 ‘hook’, gu  ‘leg’, and xian  ‘bowstring’.

9 e gou multiplied by itself makes the red square, and the gu multiplied by itself makes 
the blue square. Let there be taking out, and putting in, and being made complete, each 
following its kind. 9 us one reaches [a state where] the di\ erences no longer are to be 
adjusted. Together they form the area of the xian square. Find the side of this square, and 
this is the xian.49 (see also Chemla and Guo 2004, 704–5)

It is clear that Liu Hui assumes his readers can see a diagram (now lost) in which 
the two smaller squares on the gou and the gu are in some way dissected and reas-
sembled to form the larger square. For him, no further explanation is necessary; 
we are not in an intellectual milieu where the structure of axiomatic-deductive 
proof is an end in itself.50 Liu Hui does not take an uncritical approach to his text. 
9 us when the ‘Nine chapters’ informs us that to [ nd the area of a circular cap 
of a sphere we should mutiply diameter and circumference, and divide by four, 
he begins his discussion by saying bluntly, ci shu bu yan  ‘9 is procedure 
does not check out’, and goes on to explain why (Chemla and Guo 2004, 188–
189). Further, he is prepared to start from a relatively simple feature of the ‘Nine 
chapters’, such as the assumption that the circumference of a circle is precisely 
three times the diameter, and launch himself into a lengthy and (as he acknow-
ledges) completely original discussion in which he speci[ es the construction of 
polygons of an increasing number of sides within a circle, and envisages carrying 
the process as far as a 3072-gon (Chemla and Guo 2004, 187–193).

My object in placing this very brief glance at the nature of Liu Hui’s work at the 
end of my prosopographical reconnaissance has simply been to point out how it 
is entirely unlike anything we can trace in the preceding four and a half centur-
ies over which we have sketched the work of practitioners of suan in China. We 
are in the presence of something quite new. 9 is should not be a surprise to us, 
because Liu Hui was in fact living in an intellectual world whose parameters were 
radically changed from those of the Han dynasty scholars whose work we have 
been discussing so far.

49. 
50. 9 e reader may enjoy pausing to try to make such a dissection, before turning to one possible and 

ingenious solution suggested by Don Wagner (1985), which may be more conveniently accessed through 
Wagner’s website: <http://www.sta\ .hum.ku.dk/dbwagner/Pythagoras/Pythagoras.html>.

http://www.staff.hum.ku.dk/dbwagner/Pythagoras/Pythagoras.html
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In what is commonly called the ‘period of division’ between the end of the Han 
Empire in 221 ad and the Sui  dynasty reuni[ cation in 581 ad, the old land-
marks of the Han synthesis were gone. 9 e uni[ ed empire of the past four cen-
turies was broken apart into competing kingdoms, and the con[ dent imperial 
ideology that had underpinned it, with a version of Confucianism at its core, was 
no more. What moved into the place of that ideology was a very varied collection 
of intellectual and religious movements. Some of those movements looked back to 
points of departure in traditions of the Warring States period that had preceded 
the Qin uni[ cation, such as the Lao zi  and Zhuang zi  books, and the 
writings of the followers of Mo Di  ([ N h–fourth centuries bc), some of which 
dealt with logical and mathematical de[ nitions. Other movements d owed from 
the establishment in China of Buddhism, which not only supplied a new ration-
ale for living through its religious concepts, but also brought with it a sophisti-
cated philosophical package with Indian roots.51 It has long been a common-place 
amongst Chinese scholars that Liu Hui’s work must be interpreted in the context 
of the intellectual world in which he wrote (e.g., Horng 1983; Liu 1993, 71–75).

9 ere is however an important converse to this need to set Liu Hui in his cul-
tural context as a new voice on the ‘Nine chapters’ and the signi[ cance of suan. 
9 at converse is that writing on suan from the period before Liu Hui must be 
interpreted as far as possible without projecting backwards all the suppositions 
and patterns of thought that belong in his time, and emphatically do not belong 
in earlier centuries. If we do not heed this caution, we run the risk of obliterating 
all earlier evidence by viewing the past through the wrong historical spectacles. 
In the days when almost all the evidence we had of the practice of suan in the 
early Chinese empire was the ‘Nine chapters’, which is intimately associated with 
Liu Hui’s commentary, there was some excuse for that error. But now that the 
‘Writings on reckoning’ have come to light, the time is ripe for a reassessment 
of the numerate arts of the Han in the context of Han culture and history. 9 is 
attempt at a prosopography is o\ ered as a contribution to that project.

Appendix: Persons connected with suan in early Imperial China

9 e following table gives data on everybody during the Qin and Han periods who 
is said by available historical sources to have practised, or studied, or taught a dis-
cipline that has an explicit connection with suan. I have not included here people 
who may be deduced on the grounds of their known activity to have had suan 

51. For an accessible sketch of this new milieu from two well-informed scholars, Paul Demiéville and 
Timothy Barrett, see Twitchett, Loewe, and Fairbank (1986, 808–878).
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Table 7.1.1 Persons connected with suan in early Imperial China

Name Dates Identity Relevant expertise Reference Source

Zhang Cang c 250–152 bc Statesman and 
expert in numerical 
arts

‘Good at the use of 
suan, at lü and li’

                
                
             

HS 42, 2094

Sang 
Hongyang 

   

c 140–80 bc Mental calculator; 
economic planner

Mental reckoning                
   

Works on salt and iron:        �
                
       (SJ 30, 1428)

HS 24b, 1164

Luoxia Hong 
   

active c 104 bc Uno7  cial expert in li  ‘Carried out suan 
to revise the li’ 

                
               
      

SJ 26, 1260

Liang Qiuhe 
  

active under Emperor 
Xuan (73–47 bc)

military o7  cer Mental reckoning                 
    

HS 88, 3600

Du Zhong 
  

unknown unknown; author 
of (lost) writings on 
suan procedures/
methods in 16 rolls

       HS 30, 1766

Geng 
Shouchang 

active 57–52 bc O7  cial; expert on 
li and observational 
astronomy

‘Good at doing 
suan; able to evalu-
ate the advantage 
of public works’ 

  . . . HS 24a, 1141

Xu Shang active under Emperor 
Cheng (33–7 bc)

O7  cial; author of 
(lost) writings on 
suan procedures/ 
methods in 26 rolls

‘Good at doing 
suan; able to plan 
the use of works’

 Author of 
writings on suan:         (HS 
30, 1766)

HS 29, 1688

Ma Yannian active under Emperor 
Cheng (33–7 bc)

O7  cial ‘Clear in reckoning 
and suan’

HS 29, 1689
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Zhuo Mao d 28 ad, having 
studied in the time of 
Emperor Yuan (48–31 
bc) 

O7  cial and scholar Suan applied to li                 
              

HHS 25, 869

Ban Zhao c 45–c 117 ad Female scholar and 
historian

9 e patterns of 
heaven; applying 
suan to numbers 

See Empress Deng: as Mme Cao she instructs 
Empress in tian wen,  . She also [ nishes 
the Han shu tian wen zhi:        

                
         (HHS 84, 2784)

HHS 10a, 424

Fan Ying died c 129 ad aged 
over 70, so born c 60 
ad

Diviner, recluse, and 
o7  cial

Stellar suan                 
               
 

HHS 82a, 
2721

Di Pu   active in time of 
Emperor An (107–125 
ad)

Diviner, shepherd, 
o7  cial

9 e patterns of 
heaven; suan 
applied to li 

          HHS 48, 1602

Lang Zong 
 

active in time of 
Emperor An (107–125 
ad)

Diviner Stellar suan         �   �     
             

HHS 30b, 
1053

Wang Yi Active 114–19 ad O7  cial, literary 
scholar, and editor of 
Chu ci anthology

suan Made ‘accounting clerk’: ; 
Studies suan with son:         

        

HHS 80a, 
2617 and 
comm. 

Zhang Heng 78–139 ad Polymath suan applied to li       �   �   HHS 59, 1897

Empress 
Deng 

80–121 ad Empress 9 e patterns of 
heaven (tian wen); 
applying suan to 
numbers 

                
    

HHS 10a, 424
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Ma Xu c 100 ad Scholar and histor-
ian; brother of Ma 
Rong

‘Good at the Jiu 
zhang suan shu’

     . He also works on the Han shu 
tian wen zhi:           

      (HHS zhi 10, 3215)

HHS 24, 862

Liu Yu   active c 165 ad O7  cial, expert in 
interpretation of 
apocryphal texts

9 e patterns of 
heaven; proce-
dures/ methods for 
suan applied to li 

              
  

HHS 57, 1854

Zheng Xuan 127–200 ad Scholar, commenta-
tor on classics; stu-
dent of the Jiu zhang 
suan shu

‘Good at suan’                
                
   Admitted to see Ma Rong on basis of 

skill in suan:             
                
                
          (HHS 35, 1207) 

Comments on Qian xiang li:     . . .  
           . . .     
 (HHS 35, 1212)

HHS 35, 1207

He Xiu died 182 ad aged 55, 
so lived from 128 ad

o7  cial and recluse suan applied to li    HHS 79b, 
2582–3

Liu Hong (c 135–210 ad) o7  cial, mathemat-
ical astronomer

‘Good at suan—
unmatched in his 
age’ 

        &     HHS 2, 3043 
& HHS 3, 
3083 (comm.)

Shan Yang active c 195 ad o7  cial, including 
Grand Clerk

9 e heavenly 
o7  ces; procedures/ 
methods for suan 

                
            

HHS 82b, 
2733

Table 7.1.1 (cont.)

Name Dates Identity Relevant expertise Reference Source
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expertise, but in connection with whom the word suan or compounds containing 
it are never mentioned.

9 e abbreviations SJ, HS, and HHS refer to the Shi ji, Han shu, and Hou Han 
shu respectively.
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All would-be historians of medieval mathematics must ask themselves where 
to look for their subject matter. One obvious place to start would be in works 

with promising titles; approaching the Latin fourteenth century in this way, one 
might investigate Bradwardine’s Arithmetica speculativa, Geometria speculativa, 
and De proportionibus velocitatum in motibus, Swineshead’s Liber calculationum, 
Oresme’s De proportionibus proportionum, and so on.1 But this method, for all 
its initial merits, has limited scope. 9 is chapter explores a less obvious source of 
material: commentaries on a theological textbook called the Sententiae in quat-
tuor libris distinctae, ‘Sentences divided into four books’.

9 e ‘Sentences’, a compilation of authoritative opinions from the Church 
Fathers and later theologians, was put together in the 1150s by Peter Lombard, 
a master at the cathedral school of Notre Dame.2 Its originality lay solely in its 

1. 9 ere is a brief dramatis personae at the end of this chapter; basic biobibliographical information on 
almost all of these characters can be found in Gracia and Noone (2003). On obviously mathematical works 
like those just mentioned, see the chapters by Mahoney (145–178) and Murdoch and Sylla (206–264) in 
Lindberg (1978), and the new studies in Biard and Rommevaux (2008).

2. Lombard divided the Sententiae into short chapters but in the 1220s it was divided thematically into lar-
ger sections called distinctiones ‘distinctions’ (Lombard 1971, I 137–144). 9 e Latin text is edited in Lombard 
(1971); Books I and II are now translated in Lombard (2007; 2008); for an overview, see Rosemann (2004). On 
the sententiae genre, see Teeuwen (2003, 336–339). On the commentary tradition, see the studies in Evans 
(2002); for its development into the fourteenth century, see Friedman (2002b).

CH A P T ER 7. 2

Mathematics in fourteenth-century theology
Mark 0 akkar
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selective arrangement of extant material, but its importance for the history of 
Western thought can scarcely be overstated. It is not simply that it became an 
enormously popular textbook, or that it earned its author a portrayal as one of 
Beatrice’s crowning lights in Paradiso X (106–108). It is rather that in the thir-
teenth century it was increasingly used by theologians as a matrix for their own 
lectures, giving rise to a proli[ c commentary tradition that lasted for over three 
hundred years.

Still, the reader might be forgiven for thinking that little of interest to his-
torians of mathematics could possibly be found in commentaries, however 
original, on a theological textbook. It would be as well to address such misgiv-
ings with some preliminary remarks on the context in which such works were 
produced.3

First, theology students—secular ones, at least—were required to hold the 
wide-ranging degree of Master of Arts, which took around seven years to obtain. 
By the time they proceeded to the ‘higher’ faculty of theology, therefore, they 
were already trained in, among other things, the arts of logic, arithmetic, geom-
etry, and astronomy. 9 is was not a period of narrow specialization; indeed, the 
modern emphasis on interdisciplinary studies pales beside what has aptly been 
called the ‘unitary character’ of education in the medieval university (Murdoch 
1975; Asztalos 1992; Marenbon 2007, 205–328).

Second, theology was regarded as the pinnacle of intellectual enquiry, and 
attracted many of the sharpest minds; commentaries on the ‘Sentences’ are cer-
tainly some of the meatiest intellectual products of the day. 9 e arts faculty, by 
contrast, was regarded as inferior, not least because of its propaedeutic role. 9 e 
Parisian arts master John Buridan, one of very few notable scholastics never 
to have moved on to theology, suggested that another factor was ‘the wealth of 
those who profess in the other faculties’ (Zupko 2003, 143, 338).4 By this he could 
have meant either that those faculties gave greater [ nancial reward and so were 
more attractive, or that their members were rich and ipso facto highly regarded. 
Either way it would not have been odd for men of a mathematical bent to become 
theologians.

9 ird, the remit of theology was broader than one might expect. 9 e four books 
of the ‘Sentences’ dealt respectively with God, creation, the Incarnation, and the 
sacraments. Fourteenth-century commentaries tended to be weighted in favour 
of the [ rst two books, and commentaries on Book II, in particular, involved mat-
ters which we would not now think of as theological, such as motion, perception, 
cosmology, and astrology (Murdoch 1975, 277–279; Grant 2001, 264–280).

Consequently, the ‘Sentences’ came to be used in the fourteenth century as a 
springboard for discussion of all kinds of topics. An extreme example is Roger 

3. For an excellent introduction to the medieval intellectual world, see Grant (2001).
4. Quare autem nostra facultas sit in[ ma? Potest dici quod hoc est propter divitias eorum qui alias pro[ tent.
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Roseth’s Lectura, written probably in Oxford in around 1335, which bears no 
resemblance in structure, style, or content to Lombard’s work. Roseth instead 
used [ ve theological questions as pegs on which to hang discussions of, inter 
alia, the universality of logic, the relationship between a whole and its parts, and 
in[ nity and the continuum (Roseth 2005; Hallamaa 1998). His lectures were so 
divorced from the roots of the tradition that part of the [ rst question even cir-
culated as a separate treatise, De maximo et minimo, which certainly ful[ ls the 
naive search criterion suggested above.

9 is phenomenon became so widespread that in 1346 Pope Clement VI wrote 
a letter of complaint to the masters and scholars of Paris. Most theologians, he 
said, were ignoring the Bible and the writings of saints and other church author-
ities in order to waste time on ‘philosophical questions, subtle disputations, sus-
pect opinions and various strange doctrines’ (Denid e and Chatelain 1889–97, II 
588–589, §1125).5 9 e tone of the letter is vaguely threatening: if the warning is 
not heeded, ‘we will no doubt think of another remedy’. Twenty years later, the 
new Parisian university statutes included the following (Asztalos 1992, 434):

9 ose reading the ‘Sentences’ should not treat logical or philosophical questions or top-
ics, except insofar as the text of the ‘Sentences’ demands or the solutions to arguments 
require; but they should pose and treat questions of speculative or moral theology that 
are relevant to the distinctions. Also, those reading the ‘Sentences’ should read the text 
in order, and expound it for the utility of the audience. (Denid e and Chatelain 1889–97, 
III 144, §1319)

9 e fourteenth-century context, then, was more conducive than one might 
have thought to the inclusion of technical material in theological commentar-
ies. Still, it is hard to imagine where mathematics might have found a foothold. 
Without further ado, let us look at some examples.

Mathematics in theology

In distinction 24 of the [ rst book of the ‘Sentences’, Lombard posed some ques-
tions about the ever-mysterious Trinity. What, for instance, is signi[ ed by the 
number three when we say that God is three persons? Here is Lombard’s answer:

When we say three persons, by the term three we do not posit a numerical quantity in 
God or any diversity, but we signify that our meaning is to be directed to none other 
than Father and Son and Holy Spirit, so that the meaning of the statement is this: 9 ere 

5. Plerique quoque theologi, quod ded endum est amarius, de textu Biblie, originalibus et dictis sanctorum 
ac doctorum expositionibus [. . .] non curantes, philosophicis questionibus et aliis curiosis disputationibus 
et suspectis oppinionibus doctrinisque peregrinis et variis se involvunt, non verentes in illis expendere dies 
suos [. . .] Alias autem, nisi nostris monitis hujusmodi utique salubribus vobisque multum expedientibus 
non obtemperaveritis cum e\ ectu [. . .] cogeremur proculdubio de alio, sicut videremus expediens, remedio 
providere.
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are three persons, or Father and Son and Holy Spirit are three, that is, neither the Father 
alone, nor the Son alone, nor the Father and Son alone are in the divinity, but also the 
Holy Spirit, and no one else than these. Similarly, it is not only this or that person who 
is there, or this one and that one, but this, that, and the other, and no one else. And 
Augustine su7  ciently shows that this is the sense in which we must understand this, 
when he says that by that term ‘the intention was not to signify diversity, but to deny 
singleness.’ (Lombard 2007, 132)

Lombard went on to give a similarly unilluminating commentary on the phrase 
‘two persons’. Now, if we look up this same distinction in some fourteenth-
century commentaries, we [ nd something very di\ erent. Here the question 
is ‘whether the Trinity is a true number’, and the consensus seems to be that 
we must [ rst ask what numbers are. 9 e Franciscan William of Ockham, 
revising his Oxford lectures for publication in the early 1320s,6 devotes thirty 
pages to this latter question, with no mention of the Trinity, before resolv-
ing the theological issue in one page. Using Ockham as a source, his confrère 
Adam Wodeham, lecturing at a seminary in Norwich, likewise devotes sixty-
two pages to the general question and only three to its theological applica-
tion. 9 e [ gures for the Augustinian Gregory of Rimini are twenty and two 
respectively.7

One contentious issue was whether numbers had real existence outside the 
mind. 9 e di7  culty was that if they did, the existence of any two numbers would 
guarantee the existence of in[ nitely many objects, which most scholastics found 
metaphysically abhorrent. 9 e proof has a distinctly mathematical d avour: given 
a pair of sticks and a pair of stones, we would ipso facto also have a pair of pairs, 
making three pairs all told; but this triple of pairs would itself be an object, so we 
would have four objects; and so on ad in[ nitum. 9 e problem was resolved either 
by allowing numbers only mental existence, or by denying that they existed sep-
arately from the objects that they numbered.

9 e contrast with Lombard’s discussion—brief, unquestionably theological, 
and devoid of mathematical interest even in the broadest sense—is astonishing. 
Nor is this an isolated instance. Later in the ‘Sentences’, Lombard wrote about 
God’s omnipotence, asking such questions as whether He can sin, lie, walk, die, 
do something that He has not foreseen, and so on. Commenting on this passage, 
Gregory of Rimini instead asks ‘whether God, through His in[ nite power, can 
produce an actually in[ nite e\ ect’ (I.42–44.4 in Gregory 1979–87, III 438–481).8 
9 is occasions over forty pages of discussion, during which he argues that God 

6. Lectures were sometimes recorded by students in a set of notes called a reportatio. A lecturer could 
rework a reportatio into a more polished ordinatio, published at the university stationers. On university pub-
lication in Paris and Oxford, see Bataillon, Guyot, and Rouse (1988) and Parkes (1992).

7. 9 ese [ gures, intended only to give a rough and ready comparison, are based on the pagination of the 
critical editions of I.24.2: Ockham (1979, 90–121); Wodeham (1990, 346–411); Gregory (1979–87, III 34–58).

8. Utrum deus per suam in[ nitam potentiam possit producere e\ ectum aliquem actu in[ nitum.
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can indeed create an in[ nite multitude, an in[ nite magnitude, and an in[ nitely 
intense quality.

Gregory appeals in each case to the division of an interval into proportional 
parts, that is, parts that diminish successively by a [ xed proportion. (A modern 
mathematician might think of this in terms of geometric series with common 
ratio 1/n, such as 1/3 + 1/9 + 1/27 + . . . = 1/2.) For instance, if God creates an angel 
at the start of each successive proportional part of an hour—one at the start, one 
aN er say half an hour, one aN er three quarters of an hour, and so on—then by 
the end of the hour he will have created an in[ nite multitude of angels (Gregory 
1979–87, III 443:3–12). 9 is is a clever line for Gregory to take. He himself is 
perfectly happy to say that a continuum contains an actual in[ nity of parts, and 
that the existence of an in[ nite multitude is not absurd, either of which makes 
the question trivial.9 But he knows that his serious opponents might allow only 
a ‘potential’ in[ nity, so that although further increase is always possible, in[ nite 
increase can never be completed. His construction of a ‘supertask’, a task con-
sisting of an in[ nite number of accelerated subtasks (9 omson 1954–5), neatly 
sidesteps this objection. All must agree that, no matter how fast God works, the 
stars move still and the clock will strike.

Speaking of angels, in ‘Sentences’ II.2.iv Lombard asked where they were
created; his answer was that they were created in the highest heaven, the empyr-
ean, and not in the [ rmament. Gregory asks instead utrum angelus sit in loco 
indivisibili aut divisibili ‘whether an angel is in an indivisible or a divisible place’, 
prompting the general question an magnitudo componatur ex indivisibilibus 
‘whether a magnitude is composed of indivisibles’, to which he devotes [ N y-three 
pages (II.2.2 in Gregory 1979–87, IV 277–339; see also Cross 1998; Sylla 2005). 
His answer is negative: a magnitude is composed of, as one might put it, magni-
tudes all the way down. He gives surprisingly short shriN  to the thesis of compos-
ition from in[ nitely many indivisibles, arguing erroneously that in[ nitely many 
indivisibles would yield an in[ nite magnitude. He is keener to discredit the ‘more 
commonly’ held thesis of composition from [ nitely many indivisibles, which he 
does with a barrage of nine mathematical and four physical arguments.

Gregory’s mathematical arguments use simple geometrical constructions to 
deduce absurdities from the atomist thesis. 9 e [ rst, for instance, runs as follows. 
Draw a line of six points. Construct on this base an isosceles triangle with two 
sides of [ N een points, and draw lines from one side to the other, joining the thir-
teen pairs of opposite points. 9 ese lines must shorten towards the apex, so since 
the base consists of only six points, they soon become smaller than a point, which 
is ex hypothesi impossible (Gregory 1979–87, IV 279).

9. Gregory also gives the quicker answers to which his position entitles him (1979–87, III 441:19–28; 
443:13–27). On the distinction between actual and potential in[ nity see, for example, Dewender (1999, 
286–287).
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Gregory was by no means alone in using Lombard’s angelology as a pretext for 
a geometrical refutation of atomism. 9 e tradition seems to have begun in the 
[ rst few years of the century with John Duns Scotus’s Oxford lectures, in which 
he asked utrum angelus possit moveri de loco ad locum motu continuo ‘whether 
an angel can move from place to place in a continuous motion’ (II.2.2.5 in Scotus 
1973, 292–300; see also Murdoch 1962, 24–30; 1982, 579; Trifogli 2004). Indeed, 
two of Gregory’s arguments are explicitly adapted from Scotus (‘Doctor subtilis’), 
and three more are borrowed from Wodeham (‘unus doctor’).10

Geometry also gave rise, in the mid-fourteenth century, to some peculiar argu-
ments concerning the relative perfection of di\ erent species. 9 e source here was 
Elements III.16, where Euclid says that the curvilinear angle between a tangent 
and the circumference of a circle (the angle of contingence) is less than any acute 
rectilinear angle, while the remaining angle between the circumference and the 
diameter perpendicular to the tangent (the angle of the semicircle) is greater than 
any acute rectilinear angle.11 In his Parisian ‘Sentences’ lectures of 1348–9 the 
Cistercian Peter Ce\ ons (Fig. 7.2.1) used this proposition, together with the idea 
that these angles could be increased or decreased by varying the size of the cir-
cle, to derive nineteen corollaries on the proportional excess of certain types of 
angles over others (Murdoch 1969, 238–246; 1982, 580–582). 9 ese results could 
be applied to ‘theological’ problems of the following sort: a man and an ass are 
both in[ nitely inferior to God, but a man, although of [ nite perfection, is in[ n-
itely superior to an ass.

A more obviously theological problem is that of human free will and divine 
judgement, but even this was not immune from mathematical intrusion. In his 
‘Sentences’ commentary of 1331–3, the English Dominican Robert Holcot raised 
a di7  culty based, like Gregory’s divine supertask, on the proportional parts of 
an hour. Holcot did not specify a proportion, but let us take it to be a half. Now 
suppose that a man is meritorious over the space of half an hour, sinful over the 
next [ N een minutes, meritorious over the next seven and a half minutes, and so 
on, and suppose that he dies at the end of the hour. 9 en God cannot reward or 
punish him, because there was no [ nal instant of his life that would determine 
whether he died a bad man or a good man.12 Holcot followed this up with eight 
similar arguments based on the continuum (Murdoch 1975, 327 n101).

My [ nal example of a theological problem that attracted mathematical specu-
lation is the question of the eternity of the world. 9 eologians were obviously 

10. Renowned scholastics acquired honori[ c titles like ‘the Subtle Doctor’ (Scotus) and ‘the Venerable 
Inceptor’ (Ockham, also known as ‘the More 9 an Subtle Doctor’), but contemporary authors were usually 
alluded to indirectly as ‘one doctor’ or ‘some people’. On fourteenth-century citation practices, see Schabel 
(2005).

11. 9 e proposition is numbered III.15 in some editions of Euclid (Murdoch 1963, 248–249).
12. Holcot’s scenario is similar, though ultimately not identical, to that of the ‘9 omson’s lamp’ paradox, 

in which a lamp is switched on and o\  with increasing rapidity (9 omson 1954–5).
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committed to the fact that the world had a beginning in time, but it was disputed 
whether this could be proved using reason alone. In his Parisian ‘Sentences’ com-
mentary of the early 1250s, the Franciscan theologian Bonaventure (canonized 
in 1482) compiled a battery of six arguments to demonstrate that the notion of 
an eternal world was incoherent. Here I will mention only two. 9 e [ rst was that 
each passing day adds to the past revolutions of the heavens, and moreover the 
revolutions of the moon are twelve times as numerous as those of the sun; but one 
cannot add to or exceed the in[ nite because there is nothing greater than it. 9 e 
[ N h was that, given the permanence of species and the immortality of the soul, 
an eternal world would contain in[ nitely many rational souls; but it is impossible 
for in[ nitely many things to exist at the same time (II.1.1.i.2 in Bonaventure 1885, 
20–22; Byrne 1964).13

Bonaventure’s [ N h argument explains why the subsequent debate was oN en 
conducted in terms of multitudes of souls, but the [ rst one is more interesting 
for our purposes. In the fourteenth century two lines of response were developed. 

13. 9 ese arguments ultimately came from the sixth-century Christian John Philoponus via the Islamic 
world, though the speci[ c example of souls was introduced by the twelN h-century Muslim al-Ghazali 
(Davidson 1987, 117–134; Sorabji 1983, 214–226).

Figure 7.2.1 Peter Ceffons lecturing on the ‘Sentences’, from the sole manuscript 
that preserves his unedited commentary (Troyes BM 62 f. 1, c 1354). By permission 
of Médiathèque de l’Agglomération Troyenne, photo by Pascal Jacquinot
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One was to deny, as Galileo was more famously to do in Two new sciences (1989, 
40–41), that terms like ‘equal to’ and ‘greater than’ were applicable to the in[ nite. 
9 e other was to try to explain how these terms, and the terms ‘part’ and ‘whole’, 
behaved when they were applied to the in[ nite (Murdoch 1982, 569–573; Dales 
1990; Friedman 2002a).

9 ese, then, are some of the mathematical topics that one [ nds discussed in 
fourteenth-century theological works. It is hard to get a real sense of the territory 
from such an overview, though, so let us look more closely at two theologians 
writing in the early 1340s who disagreed on the question of in[ nite multitudes.

In? nite multitudes: B omas Bradwardine

9 omas Bradwardine is known to historians of mathematics as one of the Oxford 
calculators, a group of technically-minded thinkers associated with Merton 
College in the second quarter of the fourteenth century.14 It is in this context that 
we [ nd him praising mathematics in his Tractatus de continuo ‘Treatise on the con-
tinuum’ as ‘the revelatrix of all pure truth, which knows every hidden secret and 
bears the key to all subtle letters’ (Murdoch 1969, 216 n1),15 and quoting Boethius’ 
remark from the Institutio arithmetica that ‘whoever neglects mathematical stud-
ies has clearly lost all knowledge of philosophy’ (Bradwardine 1961, 64).16

Bradwardine is also known for his later work as a theologian, and for holding 
the position of Archbishop of Canterbury for a month before succumbing to the 
Black Death in 1349. Unfortunately, his ‘Sentences’ commentary, which would 
have been written in around 1332, has not come down to us. Instead, we shall 
look at a theological work that has a substantial thematic overlap with such com-
mentaries: his sprawling magnum opus of 1344, De causa Dei contra Pelagium 
et de virtute causarum, ‘In defence of God against Pelagius, and on the power of 
causes’, which he dedicated ad suos Mertonenses ‘to his Mertonians’ (Bradwardine 
1618; Dolnikowski 1995).

9 e De causa Dei is essentially a polemic on divine freedom. Pelagius, a British 
monk active at the turn of the [ N h century, had denied original sin and argued 
against Augustine that men were responsible for their own salvation (Pelikan 
1971, 308–318). Bradwardine, perceiving such heretical tendencies among his 
contemporaries, took up the cudgels, stressing God’s freedom to bestow grace 
wherever He saw [ t. Bradwardine’s stance on predestination was famous enough 

14. On the calculators, see Snedegar (2006), North (2000), Sylla (1982), Kaye (1998, 163–199); on the 
Merton connection, see Martin and High[ eld (1997, 52–62); on Bradwardine, see Le\  (2004), Dolnikowski 
(2005).

15. Ipsa est enim revelatrix omnis veritatis sincere, et novit omne secretum absconditum, ac omnium litt-
erarum subtilium clavem gerit.

16. testante Boethio, primo Arithmeticae suae: Quisquis scientias mathematicales praetermiserit, constat 
eum omnem philosophiae perdidisse doctrinam.
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to be mentioned in the Canterbury tales.17 Later, its resonance with Calvinism 
must account for the pedigree of the [ rst printed edition: commissioned by the 
Archbishop of Canterbury, George Abbot, it was edited by the mathematical 
scholar and royal courtier Sir Henry Savile and printed in an unusual format 
at crippling expense by the King’s Printer (Weisheipl 1968, 192; Vernon 2004; 
Wakely and Rees 2005, 484–487).

Savile warns the reader in his introduction that Bradwardine, ‘since he was a 
[ rst-rate mathematician, did not shrink from that art even in treating theological 
matters’ (Bradwardine 1618).18 Indeed, the De causa Dei is presented in so pecu-
liarly Euclidean a style, proceeding from postulates to theorems and corollaries, 
that it has been described as having ‘characteristics of a 0 eologiae christianae 
principia mathematica [mathematical principles of Christian theology]’ (Molland 
1978, 113; Sbrozi 1990). 9 e deductive method cannot go very far unaided in such 
matters, though, as Savile observes: ‘if in the lemmas and propositions he has 
not been able to attain such mathematical precision throughout, the reader will 
remember to impute this not to the author but to the subject matter of which he 
treats’ (Bradwardine 1618).19

9 e subject matter of the De causa Dei turns out to be broader than its title 
suggests. In the fortieth and [ nal corollary of the [ rst chapter, Bradwardine 
fulminates at length against the Aristotelian doctrine of the eternity of the 
world, using what he calls rationes quasi mathematicae ‘quasi-mathematical 
arguments’ to deduce paradoxical consequences from the existence of actual 
in[ nities (Bradwardine 1618, 119–145). I will look at only a limited selection of 
Bradwardine’s many arguments; some of the others are translated into French in 
Biard and Celeyrette (2005, 183–196).

Suppose we have an in[ nite multitude A of souls and an in[ nite multitude B 
of bodies, both arranged consecutively. Now ‘let the souls be distributed [ . . . ] in 
this way: the [ rst soul to the [ rst body, the second to the second, and so on; when 
the distribution is complete, each soul will have a unique body, and each body a 
unique soul. So these [multitudes] jointly and severally correspond equally to one 
another’ (Bradwardine 1618, 122A).20 So far so good. But now instead:

let the [ rst soul be given to the [ rst body, the second to the third (or the tenth, or to one 
as distant as you please from the [ rst), and the third soul to the body as distant from the 

17. In the ‘Nun’s Priest’s tale’, where Chaucer rhymed ‘Bradwardyn’ with ‘Augustyn’ (lines 475–476).
18. ut huius libri genius Lectori melius innotescat, non abs re fuerit pauca praemonuisse: Primo 0 omam 

nostrum, cum summus esset Mathematicus, ut ex praecedentibus apparet, etiam in 9 eologicis tractandis 
non recessisse ab arte.

19. Quod si in lemmatibus, & propositionibus non semper α’κρίβειαν illam Mathematicam potuit usque-
quaque assequi, meminerit Lector non id Auctori imputandum, sed subiectae, quam tractat, materiae.

20. distribuantur animae per Dei omnipotentiam, vel per imaginationem hoc modo: Prima, primo cor-
pori; secunda, secundo; et ita deinceps, qua distributione completa quaelibet anima unicum corpus habe-
bit, et quodlibet corpus unicam animam. Haec igitur singillatim atque coniunctim mutuo sibi aequaliter 
correspondent.
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second ensouled body as the latter is to the [ rst, and so on until the whole distribution is 
completed in this way. 9 is done, either all the individual souls have been distributed to 
bodies, or there are some souls leN  over. If all the individual souls have been distributed 
to such bodies, the whole multitude A jointly and severally corresponds equally to that 
part of B, and vice versa.21 If any soul is leN  over, then since there are only [ nitely many 
between it and the [ rst, the bodies already taken from the multitude B are the same in 
number and [ nite; so the whole multitude B—which was supposed to be in[ nite—is 
likewise [ nite.22 (Bradwardine 1618, 122A)

9 inking of it another way, Bradwardine argues that we could instead assign 
a thousand souls to each body in turn, which leaves us with a similar problem. If 
we run out of souls, then A was [ nite aN er all, contrary to the supposition. But if 
on the other hand the distribution can be completed, then:

to every unit of B there correspond a thousand units of A—nay, even ten thousand, a 
hundred thousand, a thousand thousand, or as large a [ nite number as you like, as long 
as it is distributed to the former in the above manner [ . . . ] From all this it follows, clear 
as day, that multitude A is enough to ensoul multitude B, and double B, and four times 
B, and so on without end.23 (Bradwardine 1618, 122A–B, 122D–E)

Bradwardine’s [ rst complaint is metaphysical: such sheer superd uity ‘in no way 
be[ ts God most wise, [ . . . ] does not [ t with nature, and is detested by all phi-
losophers’ (Bradwardine 1618, 123A–B).24 But he also takes issue with in[ nite 
multitudes from a mathematical point of view:

Many people in many ways have their hands full responding to arguments like this, for 
they are not even ashamed to deny that ‘every whole is greater than its part’, or to concede 
that a whole is equal to its part; so that if A is the whole in[ nite multitude of all souls, 
B just one of them, and C the whole remaining multitude, they say that A is not greater 

21. As a modern mathematician might put it, there is a bijection between {ai} and {bki} for any positive 
integer k.

22. detur prima anima primo corpori, secunda tertio, vel decimo, vel quantum volueris distanti a primo; 
et tertia anima corpori tantum distanti a secundo corpore animato, quantum illud a primo, et ita dein-
ceps donec tota distributio huiusmodi compleatur. Quo facto vel singulae et omnes animae sunt huiusmodi 
corporibus distributae, vel sunt aliquae remanentes; Si singulae et omnes sunt corporibus talibus distribu-
tae, tota A multitudo illi parti B divisim et coniunctim correspondet aequaliter et e contra. Si aliqua anima 
remanet, cum ab illa ad primam sint tantum [ nitae, et omnia talia corpora praeaccepta B multitudinis sunt 
totidem et [ nita; quare et tota B multitudo similiter est [ nita, quae posita fuerat in[ nita.

23. dentur primo corpori mille animae, et secundo totidem, et deinceps quamdiu multitudo su7  cit ani-
marum. Vel ergo distributio ista alicubi desinet, vel ad singula et omnia corpora se extendet: Si alicubi desi-
net, cum inter illum locum seu corpus loci illius, et primum corpus sint corpora [ nita tantummodo, erunt 
et totidem; quare et [ niti tantummodo millenarii omnium animarum, et tota A multitudo [ nita, quae posita 
fuerat in[ nita. Si autem distributio illa ad omnia et singula corpora se extendit, cuilibet unitati B correspon-
det unus millenarius unitatum A, imo et decem, et centum, et mille millenarii, et quantuscunque numerus 
[ nitus volueris, si tantus distribuatur in primis modo praedicto [ . . . ] Ex his quoque ulterius luculenter infer-
tur, quod A multitudo su7  cit animare B multitudinem, et duplam, et quadruplam, et deinceps sine termino, 
sine statu.

24. ut quid ibi superd uunt animae in[ nitae, et in[ nities in[ nitae, ut patet perspicue ex praemissis? [ . . . ] 
ut quid ergo ibi superd uunt corpora in[ nita, et in[ nities in[ nita, sicut ex prioribus clare patet? Hoc Deum 
sapientissimum nusquam decet, [ . . . ] hoc natura non convenit, hoc omnes Philosophi detestantur.
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than C but equal to it—which, consequently, they must also have to say about any two 
in[ nite amounts compared to one another. But does not Euclid in book I of his Elements 
suppose it as a principle immediately known to anyone that ‘every whole is greater than 
its part’, [ . . . ] which all mathematicians and natural philosophers will unanimously 
acknowledge? And to which it seems anyone’s mind, upon knowing the terms, freely 
consents; and which seems to be evident from the meanings of the terms? Surely one 
thing is greater than another if it contains it and more, or another amount beyond or 
outside it? Whose mind says otherwise?25 (Bradwardine 1618, 132D)

9 e complaint that Bradwardine voices so strongly here is a natural one, and 
not even the modern mathematical theory of the in[ nite has entirely silenced it. 
Nonetheless, supporters of actual in[ nity did [ nd ways of answering it. One par-
ticularly notable response was that of Gregory of Rimini, to whom we now turn.

In? nite multitudes: Gregory of Rimini

Gregory of Rimini was a powerful and careful thinker whose ind uence—especially 
on the topic of predestination, on which he held a view not unlike Bradwardine’s—
was felt right through to the seventeenth century. A member of the order of the 
Hermits of St Augustine, he studied theology at Paris in the 1320s before teaching 
in Bologna, Padua, and Perugia in the 1330s. His return to Paris in around 1342 to 
lecture on the ‘Sentences’ is now recognized as a crucial link in the transmission 
of novel ideas from Oxford to Paris by way of Italy. He was unanimously elected 
the Augustinians’ Prior General in 1357, a year before his death.26

Gregory quoted Bradwardine’s De causa Dei on two occasions in his lectures 
on Book II of the ‘Sentences’, as Savile proudly notes in his introduction, but 
sadly for our purposes neither was in the context of in[ nity.27 In fact, the dat-
ing of the two works is so close, and the De causa Dei so long (just shy of nine 
hundred folio pages in Savile’s edition), that Gregory may not have read the 

25. Ad hoc autem et huiusmodi multi multipliciter satagunt respondere, quidem namque non vere-
cundantur negare, Omne totum esse maius sua parte, neque concedere totum esse aequale suae parti; ut si 
A sit tota multitudo in[ nita omnium animarum, B vero una earum, C autem tota residua multitudo, dicunt 
quod A non est maior C sed aequalis, quod et dicunt, sicut et habent necessario dicere consequenter, de 
quibuslibet duobus quantis in[ nitis ad invicem comparatis. Sed nonne Euclides I. elementorum suorum 
supponit istud principium tanquam per se notum cuilibet, Omne totum est maius sua parte, [. . .] quod et 
omnes Mathematici atque naturales Philosophi concorditer pro[ tentur? cui et videtur cuiuslibet animus 
sponte notis terminis consentire; quod et videtur clarere ex signi[ cationibus terminorum. Nonne illud est 
maius alio, quod continet illud et amplius, seu aliud quantum ultra vel extra? cuius animus contradicit?

26. Schabel (2007); on transmission, see Schabel (1998); on Gregory’s ‘Sentences’  commentary, see Bermon 
(2002); on his views on predestination, and their relation to Bradwardine’s, see Halverson (1998).

27. Gregory (1979–87, VI) quotes Bradwardine on free will and grace (131), and on sinful intentions 
(298–300).
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passages on in[ nity before dealing with the same subject in his own lectures on 
Book I.28

In any case, Bradwardine’s complaint that every whole is greater than its part 
was surely a common one, and Gregory tackles it head on. If this Euclidean 
maxim is supposed to be evident from the meanings of the terms, we must be 
clear about what those terms mean. What is a whole and what is a part, and 
what is it for one to be greater than the other? Gregory distinguishes two ways of 
answering both questions:

I respond to the argument by making a distinction about ‘whole’ and ‘part’, for these 
can be taken in two ways, that is, generally and properly. (1) In the [ rst way, everything 
that includes a thing—that is, everything which is a thing plus something else besides 
that thing and anything of that thing—is called a whole with respect to that thing; and 
everything included in this way is called a part of the thing that includes it. (2) In the 
second way, something is called a whole if it includes a thing in the [ rst way and also 
includes more of a given amount than the included thing does (includit tanti tot quot non 
includit inclusum); conversely, such an included thing, not including as many of a given 
amount as the including thing (non includens tot tanti quot includens), is called a part of 
it.29 (Gregory 1979–87, III 457:37–458:6)

In the context of multitudes, the general sense of ‘part’ clearly corresponds to the 
modern notion of a proper subset, and in this sense one in[ nite multitude can 
indeed be part of another. For instance, says Gregory, ‘the multitude of propor-
tional parts of one half of a continuum is a part of the multitude of parts of the 
whole continuum’ (Gregory 1979–87, III 458:11–15).30

9 e additional condition for the proper sense is harder to understand. Gregory 
expands on it as follows: a proper whole includes ‘more of a given amount (tanti)—
that is, more of a particular quantity, for instance more pairs or triples—than the 
included multitude does’ (Gregory 1979–87, III 458:16–19).31 9 e pairs and triples 
here seem intended merely to indicate  di\ erent ways of enumerating a multitude, 

28. Two caveats are in order here. First, neither dating is certain. In particular, Bradwardine mentions 
at one point (1618, 559B) that he is writing in Oxford, leading one historian to argue that a major part of 
De causa Dei must have been written before 1335, the date of Bradwardine’s move from Oxford to London 
(Oberman 1978, 88 n20). Second, ideas can of course circulate without being available in writing.

29. Secundo respondeo ad rationem distinguendo de toto et parte, nam haec dupliciter sumi possunt, scili-
cet communiter et proprie. Primo modo omne, quod includit aliquid, id est quod est aliquid et aliud praeter 
illud aliquid et quodlibet illius, dicitur totum ad illud; et omne sic inclusum dicitur pars includentis. Secundo 
modo dicitur totum illud, quod includit aliquid primo modo et includit tanti tot quot non includit inclusum, 
et econverso tale inclusum non includens tot tanti quot includens dicitur pars eius.

30. Et hoc modo una multitudo in[ nita potest esse pars alterius, sicut multitudo partium proportionalium 
unius medietatis continui est pars multitudinis partium totius continui, nam multitudo totius est omnes 
partes, sive omnia quorum quodlibet est pars, unius medietatis, et omnes partes alterius medietatis, quae 
sunt totaliter aliae ab illis. [I have altered the editors’ punctuation a little. MT]

31. Secundo modo omnis multitudo includens aliam modo iam dicto et includens tanti tot, id est tot deter-
minatae quantitatis, verbi gratia tot binarios vel tot ternarios, quot non includit multitudo inclusa, est totum 
respectu illius et illa econverso pars dicitur huius.
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perhaps to allow the proper sense (like the general sense) to apply to wholes and 
parts that are not themselves multitudes. Understood in this way, a proper part 
is one that does not include as many units as the whole that includes it. In the 
proper sense, then, ‘no in[ nite multitude is a whole or a part with respect to an 
in[ nite multitude, because none includes so many of a given amount without the 
other including as many’ (Gregory 1979–87, III 458:19–21).32

Gregory’s ‘proper’ sense is an odd way of understanding the terms ‘whole’ and 
‘part’, but its additional condition has a more natural counterpart in his distinc-
tion between two senses of ‘greater’ and ‘smaller’:

Secondly, I make a distinction about ‘greater’ and ‘smaller’, although there would be no 
need if it were not that some people use them improperly. (i) For in one way they are 
taken properly, and in this way a multitude is called greater if it contains a given amount 
more times, and smaller if it contains it fewer times; or in another way, which comes to 
the same thing, that is called greater which contains one more times or [contains] more 
units, and that is called smaller which contains [one] fewer times or [contains] fewer 
[units]. (ii) In another way they are taken improperly, and in this way every multitude 
which includes all the units of another multitude and some other units apart from them 
is called greater than it, even if the former does not include more than the latter; and 
in this way to be a greater multitude than another is none other than to include it and 
to be a whole with respect to it, taking ‘whole’ in the [ rst way.33 (Gregory 1979–87, III 
458:26–35)

9 e second sense of ‘greater’ and ‘smaller’ that Gregory identi[ es does indeed 
seem improper. In this sense, ‘one in[ nite is greater than another, just as it is 
also a whole with respect to the other, taking “whole” in the [ rst way’ (Gregory 
1979–87, III 458:37–459:1).34 In the proper sense, however, ‘greater and smaller are 
not said of in[ nites with respect to each other, but only of [ nites, or of in[ nites 
with respect to [ nites and vice versa’ (Gregory 1979–87, III 458:35–37).35

Having established these de[ nitions, Gregory explores the connections 
between them. Of course, anything that is a proper whole or a proper part is also 

32. Et hoc modo nulla multitudo in[ nita est totum aut pars respectu multitudinis in[ nitae, quia nulla tot 
tanti includit quin tot tanti alia includat.

33. Secundo distinguo hos terminos ‘maius’ et ‘minus’, quamvis non oporteret nisi propter aliquos 
improprie illis utentes: Nam uno modo sumuntur proprie, et sic multitudo dicitur maior, quae tantundem 
pluries continet, illa vero minor, quae paucies; sive alio modo, et venit in idem, illa dicitur maior, quae plu-
ries continet unum vel plures unitates, illa vero minor, quae paucies seu pauciores. Alio modo sumuntur 
improprie, et sic omnis multitudo, quae includit unitates omnes alterius multitudinis et quasdam alias 
unitates ab illis, dicitur maior illa, esto quod non includat plures quam illa; et hoc modo esse maiorem 
multitudinem alia non est aliud quam includere illam et esse totum respectu illius, primo modo sumendo 
totum.

34. Secundo vero modo unum in[ nitum est maius alio, sicut etiam est totum ad illud primo modo 
sumendo totum.

35. Primo modo maius et minus non dicuntur de in[ nitis ad invicem, sed de [ nitis tantum vel de in[ nitis 
respectu [ nitorum et econverso.
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a general whole or a general part, but the converse does not hold. 9 e more inter-
esting comparison is between the two senses of ‘greater’ and ‘smaller’:

Not everything which contains more units than another contains those which the other 
contains, just as a group of ten men living in Rome includes more units than a group of 
six men living in Paris, but it does not include those [units]; and therefore not everything 
which is greater in the [ rst way is greater in the second way. And not everything greater 
in the second way is greater in the [ rst way, as is clear from one in[ nite multitude with 
respect to another in[ nite [multitude] which it includes.36 (Gregory 1979–87, III 459:5–10)

It is clear from this that Gregory’s two senses here correspond to the modern 
notions of (i) the size or ‘cardinality’ of a set, and (ii) the inclusion of a proper 
subset within a set.37

Finally, Gregory turns to the objection, which he has stated in the form of a 
dilemma: ‘if there were an in[ nite multitude, either a part would not be smaller 
than its whole, or one in[ nite would be smaller than another’ (Gregory 1979–87, 
III 459:13–14).38 His response depends on how the terms are taken, and we may 
summarize his subsequent treatment of three of the four possibilities as follows:

(1.i) An in[ nite proper subset would indeed not have a lower cardinality than the 
set of which it is a part, but this is only to be expected; aN er all, it would not con-
tain fewer things. (Here Gregory defuses Bradwardine’s objection by showing the 
Euclidean maxim to be violated in a benign way; surely one multitude cannot be 
greater than another if it does not contain more things.)

(1.ii) An in[ nite set would indeed, as a proper subset, be ‘smaller’ in the improper 
sense than another in[ nite set; but the one in[ nite would not exceed the other, 
‘for nothing is properly said to be exceeded by another unless because it does not 
contain as many of a given amount as the other, which is not true of any in[ nite’ 
(Gregory 1979–87, III 459:30–31).39

(2.i) An in[ nite proper subset is not a ‘part’ in the proper sense, that is, a part of 
lower cardinality. ‘And this is the only sense in which it is absurd (inconveniens) 
to concede that a part is no smaller than its whole or that an in[ nite is smaller 
than another in[ nite’ (Gregory 1979–87, III 459:35–36).40

36. Nam non omne, quod continet plures unitates quam aliud, continet illas, quas continet illud aliud, 
sicut denarius hominum existentium Romae plures unitates includit quam senarius existentium Parisius, 
non tamen includit illas; et ideo non omne, quod est maius primo modo, est maius secundo modo, item nec 
omne maius secundo modo est maius primo modo, sicut patet de multitudine una in[ nita respectu alterius 
in[ nitae, quam includit.

37. We need not be squeamish about using the terminology of set theory for the purposes of exposition; the 
essence of these notions was not an invention of the nineteenth century.

38. si esset aliqua multitudo in[ nita, vel pars non esset minor toto, vel unum in[ nitum esset minus alio.
39. nam nihil proprie dicitur excedi ab alio, nisi quod non continet tanti tot quot aliud; quod de nullo 

in[ nito est verum.
40. Et hoc modo tantum est inconveniens concedere partem non esse minorem toto aut in[ nitum esse 

minus esse in[ nito.
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Surprisingly, Gregory does not deal with the fourth combination, (2.ii). But here 
he would again say, as in (2.i), that an in[ nite proper subset is not a ‘part’ in the 
proper sense, so that a fortiori it is not an example of a part that is smaller than 
its whole; and he would again say, as in (1.ii), that, as a proper subset, it would be 
‘smaller’ in the improper sense.

Conclusion: the historiography of medieval mathematics

Historians of mathematics have traditionally said little about the scholastics, and 
what they have said has tended to be dismissive. 9 ere are, it must be admit-
ted, whole areas of mathematics in which this judgement appears to be sound— 
algebra, for instance. But even a brief look at fourteenth-century debates over 
in[ nity should quash the notion that the scholastics either failed to notice the 
apparent paradoxes involved or simply put them aside. However, despite a surge 
in scholarly literature on the topic over the past forty years, this notion remains 
surprisingly widespread. Where not explicitly stated, it is oN en implicit in the 
following potted history: the Greeks abhorred the actual in[ nite, the medievals 
agreed, Galileo noticed that the integers could be paired o\  with their squares, 
Bolzano noticed the full extent of the phenomenon, and [ nally of course there 
was Cantor.41

Why has this misapprehension been so persistent? One undeniable factor is 
the deep-rooted conviction that the medieval period was one of pedantic stagna-
tion; to see this, one need only look up ‘medieval’ or ‘scholastic’ in a dictionary.42 
But this cannot be the whole story, because even sympathetic writers have trad-
itionally despaired of scholastic views on in[ nity; Bolzano, in his Paradoxien des 
Unendlichen ‘Paradoxes of the in[ nite’, claimed that the relationship between 
in[ nite sets and their proper subsets had previously been overlooked (Bolzano 
1919, §20, 27; 2004, 16),43 while Cantor, summarizing the history of the topic, 
wrote that ‘as is well known, throughout the Middle Ages “in[ nitum actu non 
datur” [there is no actual in[ nite] was treated in all the scholastics as an incon-
trovertible proposition taken from Aristotle’ (Cantor 1932, §4, 173–174).44

41. Any overview that fails to mention Gregory of Rimini is likely to give a similar story; in this regard, 
Zellini (2004) and Moore (2001) are commendable, though Moore (2001, 54) misrepresents Gregory’s pos-
ition on continua. 9 e surge in scholarly literature is almost entirely due to the industry of John Murdoch.

42. For the roots of this prejudice in Renaissance self-congratulation, and its subsequent development, see 
Grant (2001, 283–355); a popular caricature of the debate on continua is discussed in Sylla (2005).

43. die man aber bisher zum Nachteil für die Erkenntnis mancher wichtigen Wahrheiten der Metaphysik 
sowohl als Physik und Mathematik übersehen hat.

44. Bekanntlich [ ndet sich im Mittelalter durchgehends bei allen Scholastikern das ‘in[ nitum actu non 
datur’ als unumstößlicher, von Aristoteles hergenommer Satz vertreten.

Cantor’s attachment to the scholastics is explored in Dauben (1979, 271–299) and the rather discursive 
9 iele (2005). 
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A second factor is the di7  culty of gaining access to the relevant texts. For a 
long time they were available only in manuscripts or early printed editions, which 
demand far more time, patience, and training than can be expected of a casual 
researcher.45 To make matters worse, medieval scholarship used to focus on the 
thirteenth century, which was thought to represent the zenith of scholasticism.46 
9 e past thirty or forty years have, however, seen critical editions of several 
important fourteenth-century ‘Sentences’ commentaries and an accompanying 
profusion of scholarly literature within the (inevitably and appropriately) broad 
[ eld of medieval philosophy (Evans 2002). Much manuscript material remains 
to be edited, of course, but the textual situation is far happier than it once was, 
allowing a new appraisal of the quality of fourteenth-century thought.

Perhaps, though, the trouble lies also in the methodological question raised at 
the start of this chapter; from what we have seen above, it is entirely possible that 
some of the best mathematical brains of the time have wrong-footed historians of 
mathematics by working as theologians. For who, investigating treatments of the 
relationship between in[ nite sets and their proper subsets, would have thought 
to look in 9 omas Bradwardine’s polemic on divine freedom, or in Gregory of 
Rimini’s commentary on a theological textbook? If there is some truth in this 
diagnosis, it may be worth repeating something that John Murdoch suggested to 
historians of science over thirty years ago:

in terms of the subject involved, the historian’s search for accomplishments of signi[ cance 
should not be guided by the resemblance of the subject to some feature within modern sci-
ence. 9 us, I would submit that a good deal more of substance, of importance and of interest 
can be found, for example, in the medieval analysis of the motion of angels than in what-
ever astronomy occurs in Easter tables, or in the examination of the question of whether or 
not the in[ nite past time up to today is greater than the in[ nite past time up to yesterday 
than in the geometry of star polygons. One would discover more of importance because we 
would learn more of the whole tenor of late medieval thought. (Murdoch 1974, 73)
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Dramatis personae

Peter Lombard (c 1100–1160), Paris
Bonaventure of Bagnoregio (c 1217–1274), Paris; Franciscan
John Duns Scotus (c 1266–1308), Oxford and Paris; Franciscan
William of Ockham (c 1285–1347), Oxford and London; Franciscan
Francis of Marchia (c 1290–1344+), Paris and Avignon; Franciscan
Robert Holcot (c 1290–1349), Oxford, London, and Northampton; Dominican
John Buridan (c 1300–c 1360), Paris; secular cleric
9 omas Bradwardine (c 1300–1349), Oxford and London; secular cleric 
Adam of Wodeham (d 1358), London, Norwich, and Oxford; Franciscan
Roger Roseth (d  c 1335), Oxford; Franciscan
Gregory of Rimini (c 1300–1358), Bologna, Padua, Perugia, Paris; Augustinian
Peter Ce\ ons (d  1348–1349), Paris; Cistercian
Richard Swineshead (d  1340–1355), Oxford
Nicole Oresme (c 1320–1382), Paris
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The Scienti[ c Revolution saw many subjects given new scrutiny, with attempts 
to use mathematical, mechanical, or experimental modes of explanation to 

gain understanding of them. One of those subjects was music. Already a tradition 
of mathematical study of musical intervals stretched back through the middle 
ages to ancient Greece, where the emphasis had been on ratios of the lengths of 
strings that formed particular musical intervals. In the seventeenth century there 
were new mathematical techniques and new kinds of mechanical explanation 
that could be applied instead (Wardhaugh 2006). 9 ere were also new experi-
ments and experimental instruments. In this chapter I will discuss those instru-
ments, in the particular context of late seventeenth-century England.

9 e Royal Society, founded in 1660, provided a meeting-place for diverse 
approaches to music, and was a potential source of legitimization for the few 
studies of music that incorporated experiments. I will discuss below some of the 
musical experiments performed by the Society: they included the use of a very 
long string to [ nd the absolute frequency of musical vibrations; the use of a short 
string to display relationships between the lengths and tensions of strings and 
their musical pitch; the use of a vibrating glass to display patterns of standing 
waves; the use of a toothed wheel to demonstrate the e\ ect of particular ratios 
of frequency; and [ nally an experimental musical performance using specially 

CH A P T ER 7. 3
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modi[ ed musical instruments. None of these was an ‘experiment’ in the more 
modern sense of producing knowledge or testing a theory; each in fact displayed 
quantitative knowledge which some or all of those present already possessed.

In this chapter I will consider four instruments close to the boundary between 
‘mathematical instruments’ and ‘musical instruments’. As well as throwing that 
boundary into relief, these instruments illustrate a range of issues that arose 
when scholars attempted to make sense in the new seventeenth-century context 
of the mathematical musical tradition they had inherited.

B e Musical Compass

Fig. 7.3.1 shows an instrument, of sorts, called the Musical Compass. It is a paper 
instrument, of the type known as a ‘volvelle’: that is, it consists of two sheets of 
paper attached together at a single place so as to rotate. 9 e upper sheet is cir-
cular, and both are printed. Only one copy of the ‘compass’ now survives, as the 
[ nal page of a pamphlet printed in London in 1684. 9 e pamphlet is anonymous 
but internal evidence strongly suggests that its author was 9 omas Salmon, an 
Oxford-trained clergyman who had studied with the mathematician John Wallis 
and who had a lifelong interest in music theory.

9 is device dates from a period when Salmon was trying out di\ erent strat-
egies for musical tuning. It was surely modelled on similar devices for navigation 
or astronomy, which were sometimes made of paper but more oN en of brass. 
Volvelles, such as those by Fernandez (1626) and Cantone (1668), were also some-
times used in non-mathematical music theory at this period, but I do not know 
of an English example, and it seems relatively unlikely that Salmon would have 
seen either of these (from Lisbon and Turin respectively).

Whatever its inspiration, this is a clear example of an ‘instrument’ that embodies 
a theory, containing a considerable amount of information in a small space. How 
does it work? 9 e rotating paper disc lists the string lengths for each note of a one-
octave scale, for a string of length 1000 units, so that 1000 units represents the 
lowest note of the octave and 500 the highest. On the page beneath are printed the 
letter-names of notes, and a second set of string lengths. Rotating the disc allows 
the mobile string lengths to be variously aligned with the [ xed note names. 9 e 
‘compass’ was probably intended to be used for building or modifying a musical 
instrument, to facilitate the placing of frets on a set of equal-length strings tuned to 
di\ erent pitches. To fret a D string, for example, the user would line up the 1000.00 
on the volvelle with the D on the page, and read o\  the string lengths of other notes 
from the device. It would also be necessary to multiply these lengths by a con-
stant factor depending on the actual length of the string in question: a table printed 
beside the ‘compass’ illustrates this for a string of length thirteen units.
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Also marked on the moving page are the names for the relative positions of 
notes within the key: major second, major third, perfect fourth, and so on; and 
when the device is rotated these move to correlate with the [ xed letter names. In 
D, for example, the major second will be E and the perfect fourth G. So the ‘com-
pass’ also illustrates the variable relationship of the major or minor scale with 
respect to absolute pitches, an emerging feature of music theory more generally 
at this time.

Inspection of the string lengths on the ‘compass’ reveals that they divide the 
octave into thirty-one equal parts. A 31-pitch octave had been proposed in the 
fourteenth century by Marchetto of Padua, and had made occasional appear-
ances since then: in this scheme, which was also used by Christiaan Huygens, 
the tone and semitone were taken as 5/31 and 3/31 of an octave respectively, good 

Figure 7.3.1 The Musical Compass. By permission of the British Library
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approximations to their pure values (Huygens 1986; Marchetto 1985; Herlinger 
1981, 193; Barbour 2004, 117–121).

9 e ‘Compass’ apparently caught the attention of the English mathematician 
Brook Taylor, who was the [ rst to provide a mathematical description of the 
vibrating string by (in e\ ect) solving its di\ erential equation. Among his papers 
are found, dismantled, two ‘musical compasses’. 9 ey are more elaborate than 
Salmon’s, each with not one but three moving parts.1 Although we do not know 
exactly when or how Salmon’s work came to Taylor’s notice, their similarity to the 
earlier ‘musical compass’ is too great for them to be independent of it. 9 ey prob-
ably date from the 1720s, around the time Taylor was working on other aspects of 
mathematical music, and aN er his 1714 analysis of the vibrating string.

9 e [ rst of Taylor’s musical compasses has circular moving parts with, starting 
from the middle, scales based on the division of the octave into twelve, [ N y-three, 
and nineteen apparently equal parts. 9 ese divisions are not arbitrary; they can 
result from quite natural criteria for scale construction derived from successive 
approximations for the relationship between the octave and the perfect [ N h (see 
Wardhaugh 2006, 71–80). Taylor’s second musical compass also has three mov-
ing parts, each of which divides the octave into [ N y-three. Each whole compass 
is about ten centimetres across. All the markings are by hand, unlike Salmon’s 
printed compass. 9 ere are a total of eighteen spare compass parts, most with no 
markings at all, probably red ecting an intention to make further compasses with 
di\ erent combinations of octave divisions.

Taylor’s musical compasses are hard to interpret, but it is clear that he was 
interested in constructing devices consciously based on Salmon’s musical com-
pass and which would demonstrate the variable alignment of di\ erent letter 
names and relative positions within the scale, in at least three di\ erent equal 
divisions of the octave. 9 ere is no evidence that Taylor was interested in a cor-
relation with string lengths, although these could have appeared on a lost page to 
which the moving discs and rings would have been [ xed.

Salmon’s compass illustrates both the use of decimals to quantify pitch and the 
precision with which that quanti[ cation could be realized. He gave string lengths 
to [ ve [ gures, a degree of precision wholly unrealizable with seventeenth-century 
instruments and which scattered references in the sources tell us was known to 
be wholly imperceptible by at least the conscious faculty of hearing. Taylor’s com-
passes illustrate mathematical music in a purer form: they appear to be not a tool 
for instrument building but an aid to the conceptualization of pitch and the com-
parison of di\ erent musical scales which were in discussion among theorists.

9 ese are instruments of display: they display [ rst the belief that music was a 
mathematical art, and second the mathematical description of a speci[ c musical 

1. Cambridge, St John’s College Library, Classmark U 19: Brooke Taylor Papers (unfoliated).
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tuning or group of tunings. 9 e constraints of a rotating circular device were 
perhaps uniquely suited to theories of tuning in which the octave was equally 
divided, in which the depiction of the scale would have a high degree of rota-
tional symmetry.

Other paper instruments for the mathematics of music existed. One was the 
‘Grand Scale’, produced and demonstrated by the musician and theorist John 
Birchensha in the 1660s. Founded on a very elaborate table of string lengths, 
this instrument appears to have had a primarily didactic function, as a way to 
teach Birchensha’s music students about his personal theory of musical tuning. 
Intermediate between Salmon’s aids for instrument building and Taylor’s appar-
ently private tools for musical theorizing, the ‘Grand Scale’ would have formed 
the centrepiece of a whole musical treatise, which was unfortunately never com-
pleted (Wardhaugh 2006, 117–118, 273–292; Field and Wardhaugh 2009). An idea 
of what the ‘Scale’ might have looked like is given by a table of thirty-four pitches 
made by the English mathematician John Pell in 1665, possibly in response to 
a request from Birchensha: each pitch has a ten-digit integer string length, its 
prime factorization, a reference number, and up to three further factorizations 
indicating its relationships with other notes.2

Long strings

While these paper instruments displayed already-established (or assumed) rela-
tionships between pitch and number, there were also instruments whose func-
tion was more ambivalent. One of the most prominent was the long string.

It had been known since antiquity that when simple ratios were realized in 
the lengths of vibrating strings, the pitches produced by those strings formed 
consonant musical intervals. Vincenzo Galilei extended this observation to the 
thickness and tension of the strings (Galilei 1589; Cohen 1984, 82–83).

His son Galileo Galilei quoted and discussed these results, but said that ‘it 
is quite impossible to count the vibrations of a sounding string, since it makes 
so many of them’ (translated in Galilei 1974, 144). 9 e relationship between the 
dimensions of the string and its frequency, important for understanding the 
physical cause of consonance, therefore remained a matter of surmise, or of argu-
ment from analogy. (9 e latter approach was pursued in particular by Galileo.) 
9 e [ rst person to lengthen the string so that its vibrations could be counted 
was apparently Marin Mersenne, a French member of the order of Minim fri-
ars, who recorded in 1636 that a string making the pitch G ‘bat 168 fois l’air . . . 
dans le temps d’une seconde minute’, ‘strikes the air 168 times . . . in a second’. 

2. London, British Library, Add MS 4388, \ . 14r–37v: John Pell, notes and calculations on music, f. 37v.
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9 is was based on extrapolation from the absolute frequency of a string of 67½ 
feet (about 22 m), which he estimated at two cycles per second when tensed by 
a mass of half a pound (about 245 g).3 When this string was reduced in length 
to [ ve inches (13 or 14 cm) it made the G in question (Mersenne 1636, III 169; 
Dostrovsky 1974–75, 198). 9 e [ gure of G = 168 implies A ≈ 377, which is too low 
to be credible. But Mersenne was relatively uninterested in absolute frequencies 
or in numerical precision: he was keener to encourage the reader to experiment 
for himself, and to show that frequency could in principle be measured.

9 e reason that these apparently relatively simple experiments had not been 
performed before was probably to do with the theories of sound that prevailed. 
Although it would not have been di7  cult, at any time from Pythagoras onwards, 
to slow down a musical string by lengthening or slackening it, the incentive to do 
so was absent because the string’s vibrations were not held to be directly associ-
ated with the sound’s pitch. Of the classical sources only one, the Euclidean Sectio 
canonis, described frequency as essential to pitch: most ancient writers apparently 
thought of frequency as only accidentally associated with a sound’s pitch, both 
frequency and pitch being caused by the particular speed of the sound’s travel 
through the air (Barker 1989, 190–208, esp 192 and n2; also 107 n39). Even in the 
late seventeenth century the fairly astute observer Claude Perrault argued that 
the visible vibrations of a string were larger in size and much slower in frequency 
than the invisible vibrations which constituted sound (Perrault 1680, 40–41, 62, 
78–84, 113–7).

Long-string experiments were also performed by Walter Charleton, the 
English physician and natural philosopher, which he described in his Physiologia 
Epicuro–Gassendo–Charletoniana (1654), a work mainly concerned with the 
presentation of his controversial atomism. He began by using a slack string to 
show that vibrations of very low frequency were individually visible but not aud-
ible, those somewhat faster became invisible but produced ‘a certain dull stridor’, 
and vibrations of su7  cient frequency created a pitch (Charleton 1654, 222). Next 
he established the relationship between frequency ratios, as opposed to string 
length ratios, and intervals: ‘Fasten a long Lute-string at one extreme on a hook 
nayled to a wall, and suspend a small weight at the other; then strike the string at 
convenient distance above the weight.’ If the initial vibrations were slow enough, 
it could be con[ rmed that halving the length of the string doubled their fre-
quency. Turning to a string whose vibrations were audible as pitches, the same 
exercise of halving the string’s length would produce a rise in pitch of an oct-
ave, ‘and thence you cannot but concede, that the Acuteness of this half of the 
sonant chord, above that of the whole sonant chord, is caused only by the doubly 

3. 9 ese equivalents assume that Mersenne used the Paris pound and foot.
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more frequent Percussions of the Aer, and proportionate strokes of the Sensory’. 
Similar arguments would associate the other musical intervals with their proper 
ratios (Charleton 1654, 222–223). He extended his observations to the e\ ect of 
changing the string’s tension, and went on to explain how the coincidence of 
strokes could produce consonances. But he did not attempt to establish the abso-
lute frequency of particular musical notes, as Mersenne had.

Pierre Gassendi, Charleton’s source for the long string experiments as for 
the Physiologia generally, referred to Mersenne’s work on the speed of sound 
(Gassendi 1649, 418–419; see also Gassendi 1658, 38–39, although this text would 
not have been known to Charleton in 1654). And when the experiments were 
repeated in 1664 at the Royal Society of London, Charleton was present. 9 ere 
is therefore a plausible line of transmission of the long string experiments from 
Mersenne their originator, through Gassendi and Charleton to the Royal Society. 
Since Charleton was also named by the Stationers’ Register as the translator of 
Descartes’ Compendium musicae into English in 1653, he emerges as quite sub-
stantially responsible for bringing musical science to England in the 1650s and 
60s, an aspect of Charleton’s career which has not previously been recognized 
(van Otegem 1999, 199; Transcript, I 402).

9 e long string experiments of the Royal Society were stimulated by contact 
with the musician and theorist John Birchensha (see above), who appeared at 
a meeting later that summer. 9 e person who actually set up the string, built 
the monochord, and performed the experiments was Robert Hooke: he was the 
Society’s Curator of experiments at the time, and his role in the musical experi-
ments is also implied by a brief reference in a letter to Robert Boyle (Boyle 2001, 
II 292). Here ‘G Sol. Re. Ut.’ is the name of a single note: the G which, in modern 
notation, lies in the top space of the bass clef stave.

[6 July 1664] An experiment was made to measure the velocity of a sounding string, or 
to determine how quick the vibrations thereof are in a certain space of time. 9 ere was 
taken a brass wire of 136 foot long, of 1/32 of an inch diameter; and weighing this string, 
extended by a weight of 3¾lb. + 1lb. 10 ounces, and being made to vibrate in the middle, 
its vibrations were found to be half seconds. 9 en being stopped in the middle, and the 
half of that made to vibrate in the middle, was found twice as swiN , or to vibrate quarter 
seconds: whence the length and vibrations appeared reciprocal. . . . 9 en farther stopping 
the wire within one foot of the end, and striking that short part, it was guessed to give 
a note of G. Sol. Re. Ut; which was to be experimented by a pipe at the next meeting. So 
that it seemed, that the velocity of the vibration of a string tuned to G. Sol. Re. Ut. is two 
hundred seventy-two times in a second (Birch 1756–7, I 446).

A similar account appeared in a letter of Moray to Christiaan Huygens two 
weeks later, adding that a mass of 4 lb 7 oz was initially used and then ‘adjusted’ 
so that half-second vibrations would result (Huygens 1888–1950, V 95). But the 
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[ gure of 272 cycles per second for G is inconsistent with any contemporary pitch 
standard. For the long string described one would expect on theoretical grounds 
a frequency of about 0.82 cycles per second, not 1, and for the short string 112 
(or 224, correcting for the fact that the Society took 1 cycle to contain 2 strokes). 
9 e latter is somewhat more plausible than 272 cycles per second as a late seven-
teenth-century G: the most likely source of error seems the estimation of ‘half 
seconds’ (Charleton took his pulse as a standard for seconds in his experiment), 
although the Fellows’ estimation of G cannot be relied upon (Morse 1948, 84, 
169; Dostrovsky 1974–5; Haynes 2001).4

9 e next week the experiment was repeated, and the results agreed with those 
of the [ rst trial (Birch 1756–7, I 449). A week later again, a monochord was set up 
‘to know the diversity of notes by’:

[20 July] 9 e brass wires were extended upon a long square box of four feet long, one 
with a weight, the other with a pin, till they became unisons. 9 en the one being stopt 
in the middle with a moveable bridge, the two halves on either side were unisons to one 
another, and one of them an eighth higher than the other, which was not stopt. (Birch 
1756–7, I 451)

9 ere followed divisions in the ratios 1:2, producing a [ N h with the unstopped 
string, and 1:4, producing a double octave between the two stopped parts. 9 e 
next week the e\ ect of weights was investigated:

[27 July] . . . one wire being extended by [ ve pounds weight, the other was tuned to an 
unison with it; and then the same string being stretched with a weight of twenty pounds, 
it was found just an octave higher: which shews, that the weight is in a duplicate propor-
tion to the sound or vibration (Birch 1756–7, I 456).

9 e [ nal experiments before Birchensha’s appearance are the most 
interesting:

[3 August] Two strings being tuned unisons, one of them was stopt at one third, and the 
lower end of it gave a [ N h, and the shorter end was an eighth higher than the longer. 
9 en one of the strings was so stopt, as to make it a note [that is, a whole tone] higher 
than the whole; and the proportion of the shorter to the whole was found less than 9 to 
10. 9 en the string was stopt a third higher, and the proportion was found as 3 to 4. 9 is 
was estimated so by the ear. (Birch 1756–7, I 456)

9 e ear became increasingly important during the series of experiments. On 
6 July the ear was used to ‘guess’ the absolute pitch produced by a given string, 
but distrust of the ear was expressed by the promise to check it using a pipe at 

4. Frequency v = (√T/ρσ)/2l where T = tension, ρ = density, σ = cross-sectional area and l = string length: 
here l = 136 feet = 41.45 m, T = 19.67 N (= wg where w = 5lb 6 oz. = 5.375 lb = 2.006 kg, and g = 9.80665), ρ = 
8600 kg/m3 and σ = 4.948 × 10–7 m2 (= πr2 where r = 1/64 in. = 3.969 × 10–4 m). For the wire described the 
nonlinearity due to sti\ ness is only a few percent.
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the next meeting. 9 e implication on 13 July—‘the experiments of determining 
the velocity of the vibrations of a brass wire, to a\ ord a certain sound, was prose-
cuted, and agreeing with what was made at the last meeting  . . .’—was either that 
that pipe had not been supplied, or that it had con[ rmed the ear’s judgement.

On 20 and 27 July the ear was asked to con[ rm that certain string-length 
ratios indeed produced the expected musical intervals. 9 is did not place any 
great reliance on the ear, particularly since the intervals involved were limited to 
the octave, [ N h, and double octave. It is possible that the pipe referred to earlier 
was in fact used to check these intervals also, although a question would have 
arisen about the accuracy of the pipe’s realization of musical intervals: since the 
pipe was not mentioned, it probably did not feature.

Finally, on 3 August, the procedure was reversed: instead of measuring out 
ratios and checking their musical result, two musical intervals were set up ‘by 
the ear’ and the corresponding ratios measured. 9 is use of vibrating strings, to 
move from musical interval to mathematical ratio, featured in the Pythagorean 
legends of the discovery of harmonious ratios, and was mentioned as an unreal-
ized possibility by Ptolemy, but this is a very unusual instance of its actual per-
formance at any period.

9 e ratios that this experiment produced are also of interest, although it is 
frustrating that the Society did not go on to generate more of them. 9 ey sug-
gest, broadly speaking, that the intervals the Fellows of the Society produced 
‘by ear’ were close to those of the ‘mean tone’ tuning, and relatively distant from 
the Pythagorean values which most mathematical theorists of the period might 
have expected the ear to prefer. At the end of this experiment the Fellows again 
expressed distrust of their own ears, asking Silas Taylor to bring John Birchensha 
to the next meeting: the outcome showed that what the Society wanted from 
Birchensha was to make use of his musical ear.

[10 August] Mr Birchinsha being accordingly called in, tuned the string by his ear, to 
[ nd how near the practice of music agreed with the theory of proportions.

9 is was exactly what they had been trying to [ nd out the previous week: the 
emphasis was on the superior ability of Birchensha’s ear to do it.

9 e e\ ect was, that he could not by his ear distinguish any di\ erence of sounds (upon the 
moving of the bridge) above half an inch, especially in the fourths, thirds, and tones.

Assuming they were still using the four-foot monochord of 20 July, moving the 
bridge by half an inch from any of the intervals named would produce an error of 
between 20 and 25 cents, that is up to a quarter of a semitone. 9 is is not a huge 
amount, but it should have been audible to a competent musician.

Whereupon it was resolved, that a virginal should be as exactly tuned, as could be done 
by the ear, and then the monochord examined by it. (Birch 1756–7, I 457)



interactions and interpretations648

So Birchensha’s ear was rejected in favour of an instrument, which presum-
ably would be more reliable. Given an accurately tuned set of virginals all the 
experimenters’ ears would have to do would be to judge when certain notes pro-
duced by the monochord were unisons with notes on the musical instrument. 
Unfortunately the fatal d aw was implied as soon as this strategy was mentioned: 
the virginal itself must be tuned ‘by the ear’, and it would therefore provide no 
more reliability than the ear itself. It is not recorded that anyone pointed this out, 
and the proposed trial was never performed in any case. Birchensha’s own sug-
gestion, to use a bass viol, hinted that the brass-stringed monochord had made 
it hard ‘to distinguish the musical notes’: but although the viol was accepted, no 
(experimental) work was apparently done with it (Birch 1756–7, I 460).

9 e long string provides an intriguing example of an experimental instrument 
which was clearly conceptually derived from musical instruments but was kept 
distinct from them in practice. It was an instrument which could be operated 
satisfactorily by the Fellows of the Royal Society, who made no special claim to 
speci[ cally musical skills (although many of them may well have possessed such 
skills, as Penelope Gouk (1999, 23–65) has documented). It generated an experi-
mental programme in which distrust of the ear was a key problem, mentioned 
explicitly on more than one occasion: a programme which failed when it was 
demonstrated that even the ear of a professional musician could not (though per-
haps due to the limited abilities of the individual concerned) provide the level of 
mathematical precision the Fellows desired.

Depictions of a vibrating string, or even the strings themselves, had long been 
didactic tools for the display of theories about tuning: the depiction of the mono-
chord and the discussion of that depiction were the standard means to display 
such theories during the Middle Ages and Renaissance. 9 e conceptual reversal 
of the string so as to determine, rather than display, the relationship between 
pitch and string length, is a striking development.

Comparable experiments with other instruments are elusive. Later in 1664 the 
Royal Society obtained, at Huygens’ suggestion, a d at plate of bell metal ‘for the 
trial of the vibrations of hard bodies sounding’. 9 eir intention was to obtain 
several such plates, of di\ erent sizes, to determine how their sound depended 
on their size. But the specimen produced was ‘found useless for the experi-
ments’ (perhaps it was cracked), and the project did not proceed (Birch 1756–7, 
I 460, 475). 9 e plate was found among Hooke’s possessions at his death in 1703 
(Hunter and Scha\ er 1989). Attempts to [ nd absolute frequency using sound-
ing pipes were rare until the work of Joseph Sauveur in Paris in the [ nal decade 
of the seventeenth century (Sauveur 1984). Huygens attempted such an experi-
ment using organ pipes—he calculated frequency from pipe length and the speed 
of sound, which he found experimentally—but I know of no English example 
(Dostrovsky 1974–5, 201).
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B e toothed wheel

One other device that was used by Hooke and others, speci[ cally to display the 
mechanical cause of consonance, was the toothed wheel, the teeth of which were 
made to strike against a [ xed metal plate as the wheel turned. It has been linked 
to Francis North’s Philosophical essay of musick, which contained a diagram plot-
ting pulses at various frequencies along a horizontal ‘time’ axis, clearly displaying 
on the page the various rates of coincidence among di\ erent pairs of frequen-
cies (North 1677 (unpaginated plate variously placed in di\ erent copies); Kassler 
2004). Roger North reported in his biography of his brother Francis that Hooke 
converted this diagram ‘into clockwork’:

and made wheels, with small ligulae, in the manner of coggs, which moving each upon 
its pinn, as the wheel turned, struck upon an edg, one aN er another equably; the wheel 
turning slow the pulses were distinguishable, and had no other vertue; but then turn-
ing swiN er, the distinction ceased, and a plain musicall tone emerged. 9 is for one[;] 
then, another wheel was contrived to strike 3 to 2 (for instance) and as the distinction 
begun to fail, and continuation took place, one might hear a consort 5th coming on, 
and setling in the manifest accord so named (North 1995, 250; Chan, Kassler, and Hine 
1999, 73).

Another description emphasized coincidences of strokes:

some wheels should strike together puls for puls, and others in proportions, as 
1/2, 3/2, etc. . . . He would begin to turne slow, and so long the pulses were distinct, 
and he could discerne them, as smiths at anvill, without any other idea; but then 
coming to a mighty swiftness, the consonance called fifth (for instance,) which is 
3/2. . . . which sort of demonstration of the nature of musicall accords is irrefragable 
[irrefutable].5

And another had more speci[ c details of the ratios available:

9 e ingenious Mr. Hook, made an engin of wheels that made pulses in any musical pro-
portion, as 2, 3, 4, 5, or 6 to 1 and so 3 to 2 and the like.6

For Roger North, this device illustrated that a continuous sensation in general 
resulted from a series of separate events too frequent to be distinguished. It also 
con[ rmed the already-known relationship between particular frequency ratios 
and musical intervals.

5. London, British Library, Add MS 32537, \ . 66–109: Roger North, ‘Hasty essay’, quote \ . 91v–92r, see 
Chan, Kassler, and Hine (1999, 49–170); Kassler (2004, 72–3).

6. London, British Library, Add MS 32546, \ . 33–90: Roger North, essay ‘9 e world’, quote \ . 33r–v, see 
Chan, Kassler, and Hine (1999, 72).
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Hooke was already working on sound wheels in March 1676, and his 
diary records that he received material from Francis North only the follow-
ing November; North’s book was published the next year (Hooke 1968, 223). 
Conceivably Hooke had seen the sheets of North’s Essay as they came from the 
press, but I think it more likely that Hooke’s development of the musical wheel 
preceded his contact with North’s ideas (Chan, Kassler, and Hine 1999, 73; Gouk 
1999, 210 and n62).

In 1681 the device was shown to the Royal Society:

an experiment of making musical and other sounds by the help of teeth of brass wheels, 
which teeth were made of equal bigness for musical sounds, but of unequal for vocal 
sounds. (Birch 1756–7, IV 96)

Although incorporating perhaps the earliest attempt at sound synthesis, this 
demonstration did not include what might now seem the most obvious use of 
the brass wheel: to establish the absolute frequency of speci[ c notes. To turn the 
wheel at a known speed would have been quite easy using a gearing mechanism, 
and the sound could then have been matched with a pitch from a musical instru-
ment. 9 is would certainly have been more accurate than the use of the progres-
sively shortened string for the same purpose.

Another use of the brass wheels could have been to falsify the ‘coincidence the-
ory’ of consonance (the term is not a seventeenth-century one, though it catches 
the essence of the idea). 9 is theory proposed that the aural experience of con-
sonance, the ‘blending’ of certain pairs of pitches, could be accounted for by con-
ceiving pitched sounds as associated with regular series of pulses, the frequency of 
which was linked to the sound’s pitch. If the frequencies of two sounds formed a 
simple ratio of whole numbers, many pulses in the two series would coincide. 9 is 
persuasive explanation had [ rst been proposed in letters of 1563 and a publication 
of 1585 by the Italian music theorist Giovanni Battista Benedetti (Benedetti 1585; 
Cohen 1984, 75). 9 ough seriously d awed because of its failure to consider what 
in modern terms would be called the phase of the two sets of pulses, the theory 
was considered unproblematic by writers in the later seventeenth century, when 
it became a routine set-piece at the beginning of treatises on mathematical music. 
It could support a commitment to the founding of music theory on a mechanical 
basis, but did not necessarily do so (contrast North 1677 and Holder 1694).

Robert Hooke’s apparatus could have shown easily that matching of phase was 
unnecessary for the production of consonance, thereby falsifying the coincidence 
theory. But although only one of Roger North’s three descriptions explicitly men-
tioned the two sounds’ being in phase, we have no positive evidence that Hooke 
ever considered trying out unphased sounds.

It has been repeatedly suggested that Hooke’s sounding wheel demonstrated for 
the [ rst time the correctness of the identi[ cation of musical interval with relative 
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frequency (Gouk 1999, 208; Dostrovsky 1974–5, 199). It is not clear whether it did 
any more in this respect than the long strings of Mersenne, Gassendi, Charleton, 
and the Royal Society already had: indeed, it still leN  open the possibility that, 
as Perrault was to suggest in the 1680s, visible vibrations and their frequency 
were only accidentally related to pitch, the vibrations which actually constitute 
sound being much smaller and faster (Perrault 1680). A remark made by Hooke 
to Christopher Wren and William Holder (another mathematical music theor-
ist) in 1676 that ‘the vibrations of a string were not Isocrone [of constant period] 
but that the vibration of the particals was’ hints that he, too, was considering a 
similar possibility (Hooke 1968, 211). 9 is is ambiguous, but it certainly suggests 
that although Hooke considered sound a series of strokes of some kind (at this 
date, almost certainly not waves) with a de[ nite frequency, he did not necessarily 
identify this frequency with that of the sounding body’s visible vibrations. 9 is 
might account for his apparent uninterest in establishing the absolute frequency 
of visible vibrations in the case of the wheel. From other references in his diary 
Hooke seems to have been developing his theories of sound throughout 1676, 
but unfortunately we have very little more information about their content (see 
Kassler and Oldroyd 1983; Gouk 1980).

Huygens, on the other hand, did use a toothed wheel to measure absolute 
frequency, in about 1682. He drove a small toothed wheel from a larger wheel 
using a driving belt, and calculated the frequency of the sound produced as 547 
cycles per second. He judged the pitch to be the same as the D on his harpsi-
chord (Huygens 1888–1950, XIX, 375–376; Dostrovsky 1974–5, 199–201). 9 is 
is a plausible [ gure: it implies A = 410, which is well within the range of pitches 
in use at the time (pitches around A = 400 were normal for instruments used 
at home) (Haynes 2001). It is unlikely that this appearance of a toothed-wheel 
experiment shortly aN er Hooke’s was a coincidence: Huygens had been in touch 
with the Royal Society via Robert Moray, and it is possible that lost letters in that 
correspondence transmitted the idea for the experiment.

Somewhat later Brook Taylor, whose ‘musical compasses’ I discussed earlier, 
performed similar toothed-wheel experiments (as with ‘G. Sol. Re. Ut’ above, ‘A 
la mi re’ is the name of a single note, in this case the A that falls within the treble 
clef stave in modern notation):

6 March 1712/13
I applied a quill to the crown wheel of my chamber clock, and making it fast to one of 

the [pillars] of the clock, I let the works run down for 7 minutes and by my Harpsichord 
I found the quill to sound A la mi re in alt:, and by the works of the clock the quill struck 
766 teeth per second.7

7. Cambridge, St John’s College Library, classmark U 19: Brooke Taylor papers (unfoliated); see Cannon 
and Dostrovsky (1981, 19).
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He also matched this pitch, two octaves lower, with that of a wire whose fre-
quency he was able to calculate from its length, tension, and density. 9 e fact 
that the prediction matched the frequency observed in the wheel he seems to 
have taken as con[ rmation of his analysis of the vibrating string, which he had 
presented to the Royal Society the previous year (Taylor 1713).

9 e experiment implies that Taylor’s harpsichord had A = 383, a very low value, 
but one which Taylor’s careful experiment and the agreement with his theoretical 
prediction (which is correct for the length, tension, and density he gives) oblige us 
to take seriously.8 Of course, matching the wheel’s pitch on a harpsichord involved 
rounding to the nearest semitone and therefore introduced an error of up to half 
a semitone. 9 ree days later Taylor repeated the experiment with a di\ erent fre-
quency and pitch, and found that this result was consistent with the [ rst.9

9 e toothed-wheel apparatus di\ ers from the long string in the crucial respect 
that it is not derived from a musical instrument, and its operation is consequently 
still further from the exercise of distinctively musical skills (and the sound pro-
duced by a cog striking a brass ‘edge’, though pitched, is unlikely to have been 
a recognizably ‘musical’ one). 9 e only role for the ear here was in recognizing 
when two sounds were at the same pitch.

9 e diversity of the uses of this apparatus by di\ erent experimenters is there-
fore striking: for Hooke this was another instrument for theory display, but for 
Huygens and Taylor it was a more genuinely experimental apparatus, capable of 
producing data which in Taylor’s case constituted a meaningful check on a quan-
titative theory. 9 at theory, though, dealt with the vibration of strings in general: 
it was not a theory of music. Next I turn to a rare and valiant attempt at experi-
mental veri[ cation of a speci[ cally musical theory.

Modi? ed viols

9 omas Salmon, whom we met above as the maker of the [ rst musical compass, 
pursued an interest in mathematical music theory throughout his life. In 1672–3 
he was involved in a controversy about the reform of musical notation: his short 
book on the subject, An essay to the advancement of musick, was violently attacked 
in print by Matthew Locke, organist to the Queen’s chapel (Salmon 1672a; Locke 
1672). Two later volumes in the dispute were more concerned with trading insults 
than resolving strictly musical questions (Salmon 1672b; Locke 1673). Although 

8. He gives length = 12.3 inches, weight = 12 ounces, and density = 1 grain per foot, which implies 
frequency = 382.4 Hertz (correcting for Taylor’s terminology which introduces an extra factor of two in 
frequencies).

9. Cambridge, St John’s College Library, classmark U 19: Brooke Taylor papers (unfoliated); see Cannon 
and Dostrovsky (1981, 19).
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a storm in a teacup, the dispute gave both Salmon and Locke the opportunity to 
explain at length their respective ideas about the nature of musical knowledge 
and the proper way(s) to acquire it.

Strikingly, Salmon incorporated public ‘experiments’ into the study of music. 
‘I don’t know’, his ‘publisher’ wrote, ‘what to request more advantageous for [the 
scheme’s] acceptance, than an Experiental tryal’ (Salmon 1672a, ‘epistle’, A4r). 
AN er Locke’s challenge he appealed to experiment again as a way to establish the 
superiority of his scheme: ‘which I have experienc’d before several judicious per-
sons’ (Salmon 1672a, 61). 9 is recalls the Royal Society’s semi-public trials and its 
appeals to a group of reliable observers. Locke, by contrast, was not interested in 
public experiments: when he did refer to experience it was to individual, private 
experience.

9 e point of Salmon’s trials was to persuade hearers of the excellence of the 
scheme and thereby result in modi[ cations to musical practice: ‘surely, ’twere 
well worth the while for Instruments to be contriv’d accordingly . . . for the excel-
lency of Musick’ (Salmon 1672b, 20). A review in the Philosophical Transactions 
endorsed the scheme, and again ‘recommended it to publique practise’ (Anon 
1671–2, 3095). Perhaps the emphasis on experiment had in part been a strategy to 
arouse the Society’s interest.

Musical hearing had an important role in Salmon’s project: it was supposed 
to be able to recognize harmonic excellence reliably. Salmon believed that ‘God 
hath created a peculiar faculty of hearing, to receive harmonious sounds, clearly 
di\ erent from that by which we perceive ordinary noises’, although he declined 
to speculate on whether this faculty was physiological or resided in the soul 
(Salmon 1672a, 2). A di\ erence between the ordinary and musical hearings was 
their sensitivity to small deviations from pure tuning:

9 e Keys of an Harpsochord [sic] are now tuned in a common diluted proportion . . . though 
a vulgar ear may not be able to judg the di\ erence . . . yet there will be a dissatisfaction, 
though it be not evident in what particular to complain. (Salmon 1672b, 20)

Salmon felt that, unlike his opponents, he was concerned with ‘the true nature 
of music’, and oN en returned to the desire to unite theory and practice (Salmon 
1672b ‘epistle’, [i], 12–13). But he always assumed that mathematical theory led 
practice: music ‘consists in proportions’, it ‘is a combination of sounds as they 
are proportioned in numbers’; therefore it is ‘part of the Mathematicks’ (Salmon 
1672a, 2; Locke 1673, 7). For Salmon (as for his Greek sources, most notably 
Ptolemy), aural recognition of a musical interval and intellectual computation 
of a ratio were two di\ erent ways of apprehending the same thing. Eventually, 
Salmon explicitly outlined a whole method for musical science; he would:

establish the mathematical givens, supposedly by doing experiments with (1) 
strings, but in reality by study of other theorists;
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use these to produce a mathematical division of the octave into smaller (2) 
musical intervals;

relate that division to practical knowledge by establishing how these (3) 
intervals correspond to steps of the scale;

invite the reader to check these intervals by measuring them out on a (4) 
string and comparing them with his expectations;

organize persuasive public performances using his scheme; and (5) 
[ nally,

the scheme would be widely adopted in practice. (Salmon 1672b, 248)(6) 

Although experiment was prominent here, it was not meant to test but to per-
suade. 9 e checking of the harmonic intervals by the reader was meant to allow 
the reader to persuade himself the scheme was correct, not to allow Salmon to 
correct it if it were found wrong: in fact, Salmon did not even say that he had 
performed the checks himself. And the point of the public demonstration was 
to persuade others, not to check whether the mathematics had worked (Salmon 
1672b, 6). (One might say that the reader and later the audience were invited to 
become witnesses to the correctness of Salmon’s mathematics and its applicabil-
ity to music: a strategy which arguably owed something to writings of Boyle and 
others which Salmon may have read.)

By contrast, here is Matthew Locke’s statement about how to acquire musical 
knowledge.

All Creatures that have Ears are apprehensive of Sounds, but not of distinguishing 
them; those, whose Ears Nature hath prepared for Practical Music, by dividing and 
sub-dividing a String (for Example) come to experience their di\ erence and distances; 
and from thence, by comparing them, to Tones, which (the Ear having distinguished 
into Consonants and Dissonants) they Arithmetically divide to the greatest quantity 
Practicable . . . and thence . . . advance to 9 at we call Composition, the Mother of all Vocal 
and Instrumental Musick.

. . . 
More of the Mathematicks than this, Sir, (excepting what belongs to the Mechanical 

Part thereof for the Making Instruments) signi[ es nothing to us . . . . You have . . . quitted 
the Field of Practical Musick, and run for shelter to the Nature and Causes of Sounds, 
which properly belongs to Philosophy. (Locke 1673, 15–16)

Salmon’s career aN er the dispute with Locke was less explosive (partly, perhaps, 
because Locke died in 1677). I discussed above the pamphlet probably by him, 
‘9 e Musicall Compass’, about musical tuning and notation, which appeared in 
1684. In 1688 he wrote a book on tuning. He corresponded with John Wallis, and 
there are manuscripts of treatises by Salmon very similar to his 1688 tuning theory 



Mathematics, music, and experiment 655

in both London and Cambridge: the Cambridge manuscript is among Newton’s 
papers (Salmon 1688; Salmon 1705).10 9 e 1688 book was in fact endorsed by 
Wallis.

All this is by way of prelude to, and to shed some light on, my fourth example 
of a mathematical musical instrument, a di\ erent type of modi[ ed viol. In each 
of these tuning texts Salmon described in detail a method for realizing his pre-
ferred tuning on stringed instrument. By contrast with a normal instrument, on 
which straight ‘frets’ govern the position of the [ ngers across all of the strings, 
Salmon proposed a scheme which placed corresponding frets at slightly di\ erent 
positions on each string (Salmon 1688, foldout). At the end of his book were scale 
diagrams for the system, which could in principle be transferred to the relevant 
part of an instrument, the [ ngerboard, quite easily: Fig. 7.3.2 shows an example. 
An advertisement in the London Gazette in 1689 o\ ered to modify lutes accord-
ing to Salmon’s scheme (see Tilmouth 1961, 8).

Salmon continued to promote his new fretting at the Royal Society until shortly 
before his death, and in 1705 a musical ‘experiment’ was [ nally performed at a 
meeting of the Society under his direction:

Two Viols were Mathematically set out, with a particular Fret for each String, that every 
Stop might be in a perfect exactness: Upon these, a Sonata was perform’d by those two 
most eminent Violists, Mr Frederick and Mr Christian Ste. ins, Servants to his Majesty; 
whereby it appear’d, that the 9 eory was certain, since all the Stops were owned by them 
to be perfect. And that they might be prov’d agreeable to what the best Ear and the best 
Hand performs in Modern practice, the famous Italian, Signior Gasperini, plaid another 
Sonata upon the Violin in Consort with them, wherein the most compleat Harmony was 
heard.11 (Salmon 1705, 2069)

9 e ear did not produce knowledge here; it was simply asked to assent to 
knowledge already possessed. If the musical compass was an instrument for the 
visual display of musical theories, the modi[ ed viols enabled their aural ‘display’. 
It is not clear what would have happened if the assembled company had failed 
to judge the harmonies they heard to be excellent: perhaps Salmon would have 
blamed the performers or listeners rather than revised his mathematical theories; 
but it is hard to imagine he would have allowed the trial to go ahead if he were not 
con[ dent of its result.

One of the oddities of Salmon’s tuning scheme was that it contained at least 
[ ve di\ erent sizes of semitone, whose detailed arrangement depended on the key 
in which the performer wished to play. Salmon suggested, in fact, that several 

10. Oxford, Bodleian Library, MS Eng Lett C 130 \ . 27–8: letters, 9 omas Salmon to John Wallis, 
31 December 1685; Wallis to Salmon, 7 January 1685/6; Cambridge, University Library, Add MS 3970, \ . 1–11: 
9 omas Salmon, ‘Division of a monochord’ (copy); London, British Library, Add MS 4919, \ . 1–11: [9 omas 
Salmon?], ‘9 e practicall theory of musick  . . .’ (copy: diagrams only are in Salmon’s hand).

11. See also Royal Society Journal Book X, 97, 102.
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di\ erent [ ngerboards be constructed, and a di\ erent one attached to the instru-
ment each time a piece of music in a new key was to be played. 9 is raises obvious 
questions about the feasibility of using his scheme to play real music, where key 
changes within continuous sections of music were hardly unusual by this period. 
But the problems of producing satisfactory intonation from a viol in a variety of 
keys were not trivial, and unusual fretting schemes are by no means unknown 
in viol technique: slanted, curved, even split frets (Crum and Jackson 1989, 159–
163). What is revealing about Salmon’s scheme is its avoidance of such practical 
and workable compromises, in favour of embodying in a musical instrument 

Figure 7.3.2 Where to place the frets on a viol (Salmon 1688, foldout). By permis-
sion of the British Library
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a mathematical perfection which may not even have been fully translated into 
sounds: the details of how the [ ngers are placed on the strings in relation to the 
frets can also be used to modify the pitch, and Penelope Gouk (1982, 230–231) 
has suggested that in Salmon’s trial the performers may have used such a tech-
nique to cancel the e\ ect of his unusual placement of frets. Although he achieved 
contact of a kind with the world of professional musical performance, he seems to 
have remained ignorant of the interplay between playing and listening by which 
good tuning could be achieved even with theoretically imperfect instruments, 
and indeed of the level of ad hoc negotiation which may be involved in such a 
thing as ‘good tuning’ for both players and listeners.

Apart from this failure of communication—a complex and recurring issue in 
the mathematical music theory of the period—perhaps the most remarkable fea-
ture of Salmon’s theory of music is that both he and ultimately the Royal Society 
apparently thought that a meeting of the Society was an appropriate place to dem-
onstrate it. Salmon’s modi[ ed viols di\ er from the other experimental instruments 
which I have discussed by being very closely related to ordinary musical instru-
ments: even aN er their mathematical modi[ cations they remained real musical 
instruments which would be played, for preference, by professional musical per-
formers. 9 ey were not pieces of experimental apparatus to be operated by the 
Curator of experiments. But the very closeness of Salmon’s scheme to real musical 
performance, and the fact that musical skill was required to judge it, caused prob-
lems of interpretation which perhaps account for the fact that Salmon’s musical 
experiment was entirely unique in the early history of the Royal Society.

Conclusion

9 ese four very di\ erent instruments used for the mathematical study of music 
do not by any means exhaust the contents, or the idiosyncrasies, of mathemat-
ical music in late seventeenth-century England. It raised distinctive and prob-
ably unique problems about the relationship of mathematical knowledge to the 
senses and to instruments and, during this particular period, writers about the 
mathematics of music also laboured to achieve a workable relationship between 
musical practice and the new experimental practices of early modern science. 
One conclusion which these four instruments illustrate is that those writers failed 
to achieve a consensus.

9 e relationship of music to the mathematizing impulse which arose in the 
seventeenth century was complicated by the fact that music was already considered 
a branch of mathematics. Each of these instruments red ected a belief that music 
was inherently mathematical, a programme of study which aimed to update the 
mathematical basis of music, and uncertainty about how that was to be achieved.
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9 ese instruments illustrate how, in the context of the new theories of know-
ledge of the seventeenth century, mathematical music was exceptional, par-
ticularly in its relationships with mathematics, with the ear, and with musical 
practice. Questions about the reliability of the ear and its ability to produce 
knowledge were complex in the seventeenth century. Some musical scientists 
assigned the ear as nearly as possible no role at all, working mathematically in 
terms of pure reason and simply asserting that their results corresponded to real 
music: the musical compass illustrates such an approach, though not in its most 
extreme form. Others permitted the ear the role of recognizing mathematical 
excellence when it was rendered audible: as in Salmon’s demonstration with 
modi[ ed viols. Others tried to [ nd a role for the ear in producing knowledge, as 
d eetingly occurred during the long-string experiments at the Royal Society, but 
which proved problematic.

If the object of study in musical science was seriously considered to be musical 
sound, it was necessary for it to rely on musical practitioners, who alone could 
produce musical sound. Any experiments or experimental instruments used 
were liable also to rely on the skills of musicians and musical instrument makers. 
Musical knowledge was di7  cult to embody except in musical instruments and 
performances.

But this was not a situation in which the kind of objectivity sought in other 
sciences could be attained or even envisaged. A scienti[ c instrument is typically 
supposed to make an experiment more ‘objective’, since ‘an instrument cannot be 
prejudiced or passionate’, but it is far from obvious that this could ever be said of 
a musical instrument or its operator (Hankins and Silverman 1995, 229). 9 is is 
why Salmon’s performance with modi[ ed viols was so exceptional, with its close 
dependence on real musical instruments and musical skills both of production 
and of judgement.

9 e relationship of mathematical theory to musical practice was problematic 
also because that theory remained prescriptive rather than descriptive. 9 e few 
attempts to create mathematical descriptions of contemporary practice were 
hampered by the lack of suitable instruments and by lack of con[ dence in the 
ear’s ability to turn sounds into numbers. 9 e perception by practitioners that 
mathematical theory was therefore irrelevant to them may well have contributed 
to theorists’ failure to build a relationship with practitioners which might have 
solved these problems.
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There were dramatic changes in several branches of mathematics between 1880 
and 1920. Among the best documented are the rise of modern algebra, asso-

ciated with the work of Emmy Noether and her followers and which she traced 
back to the work of Richard Dedekind; Henri Lebesgue’s axiomatic theory of the 
integral; the introduction of algebraic topology by Henri Poincaré; and the new 
axiomatic geometry [ rst developed by the Italian school around Guiseppe Peano 
and later by David Hilbert.1 9 is chapter considers the extent to which these 
developments can be regarded as a ‘modernism’ similar to the rise of modernism 
in cultural spheres such as painting, music, and literature. 9 e [ rst section sets out 
some of the general issues in making a claim of this kind, followed by arguments 
that put the case for a modernist period in algebra, analysis, and geometry.

Modernism in mathematics?

9 e term ‘modernism’ in the arts is well understood to refer to the kind of paint-
ings that Pablo Picasso did, or the kind of music that Arnold Schoenberg wrote. 

1. 9 ere were comparable changes in some other branches of mathematical analysis, notably in the theory 
of metric spaces due to Fréchet and the creation of functional analysis in the wake of Hilbert’s contributions, 
but there is not space here to consider them.

CH A P T ER 7.4

Modernism in mathematics
Jeremy Gray



interactions and interpretations664

James Joyce’s Ulysses is an exemplary modernist novel, and we can also speak of 
modernist architecture. Beyond the general agreement that something major hap-
pened in the practice of those disciplines there is, inevitably, much disagreement. 
When did it start, and when did it end? Was it a complete change in attitudes, or at 
best a partial success? Some of this disagreement is apparent even with the names 
just cited: many more people look at Picasso’s painting with pleasure than listen 
to Schoenberg’s music with enjoyment. We must accept that modernism refers, at 
best, to a sprawling, overlapping set of activities, loosely centred on a decade or so 
around 1900 that has at its core some characteristic features. 9 is chapter argues 
that we can equally well apply the term ‘modernism’ to changes in mathematics, 
in particular that there is a similarly identi[ able core, and that it can be useful to 
do so. But [ rst we should look to see if there is any chance of success.

In fact, it is almost a commonplace that mathematics underwent a major trans-
formation in the years around 1900. Various branches of mathematics, most not-
ably modern algebra, wear the adjective ‘modern’ on their sleeve to this day, and 
until recently the terms ‘modern geometry’ and ‘modern analysis’ summoned up 
recognizable lists of topics that dated more or less from that period. But when 
one attempts to characterize that transformation in any precise way, problems 
arise and multiply. What indeed is involved in portraying this transformation as 
a modernist one? What are the obstacles in our path?

One is simple chronology. What period of time counts as the decisive one? 
9 ere should presumably be quite a short period of time, a matter of two or three 
decades at the most, when modernism was novel and [ ghting for acceptance, 
although outliers can be accepted, and then a possibly longer period where it 
was the new orthodoxy, if still exciting. 9 e arrival should be roughly synchron-
ous with those of the artistic modernisms if the name is to have any real value. 
In point of fact there is a period from about 1880 to 1914, which covers much of 
the work of Dedekind, Georg Cantor, and Hilbert, the heyday of logicism, and 
numerous other developments, that is a strong candidate. Modern algebra, which 
is particularly associated with the work of Noether and her school in the 1920s 
and early 1930s, would then belong to the period of acceptance, as would the rise 
to dominance of Nicholas Bourbaki and the structuralist movement in the 1930s 
and 1950s.

Two more obstacles are the problem of deciding what modernism is, and of 
adapting it to a mathematical setting. 9 e danger here, as Corry (forthcoming) 
has pointed out, is that of [ ring the arrow [ rst and then drawing the bull’s eye 
round it. In other words, one might identify some features of mathematics around 
1900 as coherent, then look around for a suitable exponent of modernism (there 
are many, and one is free to join in) and then announce that these mathematical 
features are examples of that kind of modernism. At its worst, such an exercise 
would be devoid of value, its conclusions artifacts of the construction process and 
liable to collapse as soon as the terms of the analysis were altered. While it is easy 
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to avoid such naked gerrymandering of the debate, more sophisticated variants 
of it are harder to prevent. Corry’s own proposal, that the processes of mathemat-
ical change in some period be analysed and only be agreed to be somehow mod-
ernist if they seem to be close to the processes involved in the cultural modernist 
transformations, is a good one and will be adopted here, but it does not guarantee 
immunity from the charge of drawing the bull’s eye last.

Another obstacle is that abstraction has long been a characteristic of certain 
kinds of mathematics. If one is to lay stress on the formal and abstract charac-
ter of modern painting, music, and architecture with the associated rejection of 
classical conventions of meaning and beauty, then one cannot argue that math-
ematics went the same way at the same time. 9 e most that can be said is that it 
went from being abstract one way to being abstract in a new way, albeit a deeper, 
more signi[ cant way.

Finally, two smaller but still signi[ cant issues. Mathematics is held by its prac-
titioners to remarkable standards of rigour. You cannot simply say what you like, 
as you can in painting or (perhaps to a lesser extent) music. 9 is cognitive aspect 
distinguishes it from the arts and puts it with the sciences, whatever its di\ erences 
from science may be. Connected with this is the social structure of the mathem-
atics profession, which is closer to that of architects, who must also obey a num-
ber of external criteria, than to that of novelists or painters. So if one’s criteria for 
modernism include political ones (for example, a rejection of the bourgeoisie and 
all they stand for) it is unlikely that one will [ nd modern mathematicians. And 
since one does not [ nd anti-bourgeois professors, can one reject that aspect of 
modernism without, once again, drawing the bull’s eye last?

If all these obstacles can be overcome, one still has to redeem the e\ ort. 
Labelling a certain batch of mathematical activities as modernist will only be 
worthwhile if some features of mathematics and mathematical life in the period 
stand out more clearly as a result, if certain useful analogies can be drawn, if 
new and better questions can be asked. We have to know something we did not 
know before, and know it in a useful and insightful way. 9 is, rightly, is the lure 
that has drawn a number of authors starting with Mehrtens (1990), and includ-
ing Everdell (1997), Epple (1999), and myself (Gray 2004; 2008). It is right to hold 
such people to high standards, because they wish to have their work regarded as 
important. If they are to start a trend we need some assurance that they are head-
ing in a good direction.

Here the present state of the historiography of mathematics needs to be con-
sidered. Over the past thirty years, much of the nineteenth century has been well 
studied, the largest single exception being the vast topic of partial di\ erential 
equations with its deep connection to physics. 9 e history of logic and math-
ematical logic in the period has also been well worked over. 9 ere is a feeling 
among historians that much has been done, that it would be convenient if it could 
be drawn together, and that perhaps some substantial general claim has been 
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missed. (For what it is worth, there is presently no articulate exponent of the 
view that such pattern drawing is wrong and good history, like the devil, is all in 
the details, but the point should be remembered). Much less is known about the 
period aN er 1918, for the simple reason that the mathematics is much harder, and 
some historical accounts are little more than a trudge through the major relevant 
papers. Mathematicians have contributed a number of useful surveys, historians 
of mathematics have made inroads, but gaps of all kinds make generalizations 
almost impossible. 9 at in turn contributes to the feeling that some kind of an 
assessment can be made of the period to 1914, but not for any later date.

Let us now see what can be made to push against these obstacles. It will be 
helpful to consider mathematical developments under three headings: algebra, 
analysis, and geometry. If it is agreed that the label ‘modernist’ can only be used 
about developments starting at roughly the same time as modernism began in the 
artistic spheres, that could narrow the [ eld to a period from about 1900 to 1920. 
But it must be allowed, of course, that there is no agreed starting date for any 
kind of modernism. If one takes a hard line, with say Picasso and Schoenberg, 
then 1900 is a good round [ gure. If one admits Stéphane Mallarmé and Paul 
Cézanne, then an earlier starting point is allowed. It does not seem unreason-
able, therefore, to begin by considering the mathematics of the later decades of 
the nineteenth century.

Fishing in these well-trawled waters brings up the following much studied 
items. In algebra, the work of Dedekind in the 1870s and 1880s produced a struc-
tural theory of algebraic number theory, one oN en juxtaposed to the alternative 
contemporary version due to Leopold Kronecker, which was overtly computa-
tional and algorithmic. Dedekind’s version was the one picked up by Hilbert in 
his ind uential Zahlbericht ‘Report on the theory of numbers’ in 1897, his report 
on the state of research in number theory. From there it passed aN er World War 
I to Noether. 9 ere is also the emergence of abstract group theory and the expli-
cit recognition of a new mathematical object, the group. In analysis there is the 
creation of measure theory and the Lebesgue integral (1902), Maurice Fréchet’s 
theory of metric spaces (1906), and the emergence of point-set and algebraic top-
ology. 9 ere is also the construction of the real numbers by Dedekind, Cantor, 
Charles Méray, and Heinrich Heine in the 1870s and 1880s. In geometry there 
is Riemannian di\ erential geometry and the end of the hegemony of Euclidean 
geometry, and abstract axiomatic geometry, most notably but not only on dis-
play in Hilbert’s Grundlagen der Geometrie ‘Foundations of geometry’ (1899). We 
should also note the gradual acceptance of the idea that set theory is the proper 
foundation for mathematics, although space does not permit a discussion of that 
in this chapter (Ferrierós 1999).

9 is trawl generates some problems. We have to settle on a manageable catch 
and not let it become impossibly too large to survey, but the items caught must 
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also make the case, so we have to see what is potentially modernist about these 
[ sh. Evidently there is not room in this chapter to describe each of these items 
adequately and then to argue that they display convincing and characteristic 
modernist features. Besides, we must address the bull’s eye problem, and as yet 
we have not set out a de[ nition of modernism.

9 ere is, however, a well-grounded consensus about what these works con-
tain and what is most signi[ cantly novel about them. Since any claim to novelty 
involves a contrast (it used to go like that but now it goes like this) it will help to 
set out bried y the way things were before, so that a sharp contrast can be made. 
Mathematics in the eighteenth century, for both the philosopher Immanuel Kant 
and the mathematician Jean le Rond d’Alembert, was about quantity: counting 
and measuring. On this view, which may be called naive abstractionism, math-
ematicians have privileged access to certain primitive concepts, such as number 
and length: geometry abstracts from the world its key mathematical features and 
is the idealized study of the space around us. In the eighteenth century there was 
no sharp divide between mathematics and science: the calculus spanned much of 
high level mathematics and almost all of theoretical science. 9 is view persisted 
through the nineteenth century, although it became more sophisticated as math-
ematics and the sciences deepened and diversi[ ed. 9 e supposedly transparent 
quality of mathematical abstraction permitted mathematicians to claim their 
conclusions are true, and that their proofs can be seen to be without error. It also 
limited the applications of mathematics to domains that are broadly amenable 
to similar acts of abstraction. It would be hard, for example, with this philoso-
phy of geometry to study spaces of dimensions greater than three. Part of the 
claim made for mathematical modernism is that these views collapsed and were 
replaced by something very di\ erent.

We now have our candidates for mathematical modernism and criteria for 
comparing them with what went before, so it is time to confront the bull’s eye 
problem. 9 e only way round it is to propose a de[ nition of modernism that is 
fair to the cultural movements commonly reviewed under that heading, to see 
that it can be adapted to the context of mathematics, and that when the case has 
been made there is as little contrivance about the conclusions as possible. It is not 
necessary for an author to drag in every piece of evidence that supports his or 
her case; enough may well be enough. Perhaps items leN  undiscussed will further 
support the case. More importantly, there should not be extensive passages in the 
history of mathematics in the period that refute the case.

9 e de[ nition of modernism that is proposed here is this: modernism is an 
autonomous body of ideas, having little or no outward reference, placing consid-
erable emphasis on formal aspects of the work and maintaining a complicated, 
indeed anxious, rather than naive relationship with the day-to-day world; fur-
ther, it is the de facto view of a coherent group of people, such as a professional 
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or discipline-based group who have a high sense of the seriousness and value of 
what they are trying to achieve.

9 ere is not the space here to argue that this, surely somewhat simpli[ ed, 
description captures the essential features of a modernism. But it is at least 
consistent with the view of one early practitioner and astute critic, Guillaume 
Apollinaire, who in 1912, speaking of many young painters said:

9 ese painters, while they still look at nature, no longer imitate it, and carefully avoid 
any representation of natural scenes which they may have observed, and then recon-
structed from preliminary studies. Real resemblance no longer has any importance, 
since everything is sacri[ ced by the artist to truth, to the necessities of a higher nature 
whose existence he assumes, but does not lay bare. 9 e subject has little or no import-
ance any more. [. . .] 9 us we are moving towards an entirely new art which will stand, 
with respect to painting as envisaged heretofore, as music stands to literature. It will be 
pure painting, just as music is pure literature. [. . .] 9 is art of pure painting, if it succeeds 
in freeing itself from the art of the past, will not necessarily cause the latter to disappear; 
the development of music has not brought in its train the abandonment of the vari-
ous genres of literature, nor has the acridity of tobacco replaced the savoriness of food. 
(Translated by Lionel Abel and cited in Chipp 1968, 222—223)

Similar remarks could be drawn from the writings of Schoenberg about his 
twelve-tone system, or other works that de[ ne modernism in music, as these 
words by Charles Rosen attest:

With Schoenberg and Webern, [ . . . ] and with Stravinsky (starting with the Rite of Spring) 
we must generally begin with a dispassionate understanding of the art and an appreci-
ation of the technique in order to comprehend the emotional content [ . . . ]. In those works 
of the modernist movement considered di7  cult or hermetic, in short, the content is par-
tially withheld from us until we have understood the technique. (Rosen 1999, 44)

9 e next three sections will demonstrate how closely this de[ nition of modern-
ism permits us to speak of the transformation of mathematics in these terms. But 
just as no-one who speaks of modern art or modern music requires every painter 
or composer to work in the modernist way, and merely requires that enough did, 
so too the claim that there was a distinctly mathematical modernism requires 
only that many mathematicians worked that way, not that all of them did. How 
many, and to what extent, will occupy us in the [ nal section.

Modernist algebra

Dedekind’s algebraic number theory is a paradigm case, and the comparison 
with Kronecker’s work done at exactly the same time helps to point up crucial 
aspects of its novelty (Reed 1994; Corry 2003; Avigad 2006).
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For most of his life, Richard Dedekind worked on algebraic number theory, 
and much of his work took the form of extensive commentaries on the work of 
Dirichlet, which itself was a working and re-presentation of the work of Carl 
Friedrich Gauss. Both Dedekind and Kronecker saw themselves as the inheritors 
of a major tradition that had started with the publication of Gauss’s Disquisitiones 
arithmeticae (see Goldstein, Shappacher, and Schwermer 2007). According to this 
tradition number theorists were occupied with certain algebraic generalizations 
of the familiar integers (the numbers 0, 1, 2, . . . and also -1, -2, . . . ) to other objects 
with integer-like properties. 9 e objects might be the roots of polynomial equa-
tions with integer coe7  cients, or (Kronecker’s view) the polynomials themselves. 
9 ese properties include one number object dividing another, or being a prime, 
and so forth. 9 e problem that Dedekind and Kronecker grappled with most 
intently was not merely to extend these concepts but to do so in the ‘right’ way, 
which makes it all the more interesting that their answers di\ ered markedly.

Kronecker employed Gauss’s idea of congruences, with which the Disquisitiones 
arithmeticae opens. Kronecker noted that to de[ ne the negative integers one can 
introduce a letter (an unknown or variable) x and subject polynomials in x with 
positive integer coe7  cients to the congruence x + 1 ≡ 0. Similarly, imaginary 
numbers can be de[ ned via the congruence x2 + 1 ≡ 0. In fact, Kronecker’s general 
treatment of number theory started with the integers as described, the rational 
numbers, and so on, using arbitrary congruences with an arbitrary but [ nite 
number of unknowns (see Neumann 2007). As his obituarist, Heinrich Weber, 
famously remarked, it was Kronecker’s opinion that ‘God made the integers, all 
else is the work of Man’ (Weber 1891–2, 19). Numerical expressions of this kind 
met his standards for what could be truly known, whereas the real numbers could 
only be understood, in Kronecker’s opinion, as sequences of better and better 
approximations to them by rational numbers. Kronecker felt that his essentially 
algorithmic approach was constructive, and he placed non-constructive argu-
ments outside the realm of strict mathematics.

Dedekind’s successive reformulations of number theory began with an issue 
that was also visible in Kronecker’s theory but which went back to the work of 
Kronecker’s mentor Eduard Kummer, who had studied numbers called cyclo-
tomic integers. 9 ese are polynomial expressions in powers of roots of unity, and 
Kummer had come up with a divisibility theory for them. He had found that it 
was possible to de[ ne irreducible numbers of this kind: they are numbers that 
cannot be written in a nontrivial way as a product of two cyclotomic integers. 
It is even possible to de[ ne primes in this context: a cyclotomic integer is prime 
if whenever it divides a product it divides one of the factors. But, rather to his 
surprise, Kummer found that such prime numbers can lack some of the usual 
properties of primes: speci[ cally, there were cases when the uniqueness of factor-
ization into prime numbers failed for the cyclotomic integers (Edwards 1977).
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9 is phenomenon is time consuming to illustrate with the cyclotomic integers, 
but it is easy to demonstrate that, in certain circumstances, irreducible numbers 
can fail to be primes, which already shows that some of the familiar properties of 
the usual integers will fail to generalize. Consider ‘integers’ of the form m + n√−5, 
where m and n are ordinary integers. We have 6 = 2 × 3 = (1 + √−5)(1 − √−5),
and it is easy to show that, in this system, while 2, 3, (1 + √−5), and (1 − √−5) are 
irreducible, none is prime.

In Kummer’s case, to cope with the extensive calculations that can arise, 
he developed a test to show when a cyclotomic integer is divisible by a prime. 
Faced with the problems non-uniqueness of prime factorization would cause, he 
restored uniqueness by allowing that a cyclotomic integer might have ideal fac-
tors, in which case its prime divisors (the ‘numbers’ that made it up as a product) 
would not all be cyclotomic integers. Dedekind’s [ rst objection was that it was 
wrong to have a test for a new number being prime which gave a negative answer, 
and then not to say what the prime factors are. So Dedekind began with the ques-
tion of divisors in mind, and was moved to create still newer kinds of numbers 
(called, reasonably enough, ‘ideals’) to rescue unique factorization by concretely 
de[ ning the new divisors.

AN er a long struggle to give his new objects the ‘right’ de[ nitions, Dedekind 
de[ ned his ideals as in[ nite sets of numbers—a point worth noting—and created 
an arithmetic for them. Interestingly, it was only on his fourth formulation of the 
theory that he was able to base the theory on multiplication of ideals and derive 
division as the inverse of multiplication. More signi[ cantly still, on a number of 
occasions he disdained to use Kronecker’s explicit methods, because he believed 
that they placed too much emphasis on the representation of algebraic numbers 
and not enough on what they really are. It seems likely this distinction between 
an object and its representation is one that he had learned to appreciate from his 
friend Riemann, who had based his dramatically novel theory of complex func-
tions on exactly this distinction in the 1850s. Neither man suggested that objects 
cannot be studied via their representations, but both believed that one must be 
vigilant to ensure that one establishes properties of the objects themselves and 
not the properties of merely this or that representation, and to this end it was best 
to avoid explicit representations whenever possible.

When Hilbert published his Zahlbericht in 1897 it was clear that he preferred 
Dedekind’s way of working to Kronecker’s. From there, abstract ring theory 
passed eventually to Noether, who more or less eliminated polynomial methods 
in her papers of the 1920s. Her inspiration too came from Dedekind, and indeed 
the essential [ rst step into algebraic modernism had been taken by him. Since 
then, the objects of algebraic number theory have been sets, usually in[ nite sets. 
An abstract arithmetic of these sets is de[ ned, and the fundamental properties of 
algebraic number theory are said to be those of (to be anachronistic) commutative 
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ring theory in the number-theoretic setting. It is a long way from, or underneath, 
the familiar theory of the natural numbers, and it makes no appeal to experience 
as a source of knowledge about the objects under study.

Modernist analysis

To this day, modern analysis—the rigorous theory of the calculus—is a topic that 
separates mathematicians from engineers and even physicists. Not only does it 
seem abstract and formal but, and this is the problem it presents to any thesis 
about mathematical modernism, so much had already been done by Cauchy in 
the 1820s that one can wonder what was leN  to be done. Cauchy, aN er all, had 
given recognizably modern de[ nitions of continuity, di\ erentiability, and inte-
grability along with theorems connecting them, couched in the abstract language 
of ε, δ methods. If no further transformations happened in mathematical ana-
lysis then the modernist thesis will fall because of chronological di7  culties or, if 
Cauchy’s achievements are magicked away, it will fall into the bull’s eye problem. 
However, the second half of the nineteenth century saw radical innovations in a 
number of key areas, and here four will be bried y discussed: the idea of a general 
function, the concept of the real number, new ideas about integration, and the 
emergence of algebraic topology.

In a major paper of 1854 on the limitations of the method of Fourier series, 
Bernhard Riemann made a distinction between what he regarded as functions 
that arise in nature—that is, in the study of natural phenomena—and others 
that arise outside the physical sciences, for example in the number theory he 
was studying. He argued that the need for clarity and rigour in the principles of 
the in[ nitesimal calculus could not be met until these new functions were prop-
erly understood. Could there be functions to which the calculus could not apply? 
He produced explicit examples of functions that failed in various ways to agree 
with their Fourier series, or failed to have a Fourier series at all. In Riemann’s 
opinion, these functions were not only entirely arbitrary, they were the exclusive 
property of mathematics because they do not occur in nature. He was quite clear 
that mathematics went beyond objects one might say were (possibly idealized) 
abstractions from things in the ‘real’ world.

9 e problem is particularly acute because one might say that there is an elem-
ent of nonlinearity at work. Riemann’s functions could not be de[ ned without the 
appropriate mathematical techniques; they were a product of the techniques used 
to analyse them. Mathematics then, for Riemann, was about concepts created 
by the mathematician and an important problem was to evaluate the methodo-
logical tools by which functions are created. It was the arti[ cial world of objects 
created by mathematicians that might ba¡  e them, not the ingenuity of nature.
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9 e second issue, the construction of the real numbers, is much better known, 
and I can be brief. Problems with Fourier series made it seem worthwhile to de[ ne 
the real numbers rigorously. Dedekind’s celebrated cuts, [ rst published in 1872, 
de[ ned a real number as a division of the rational numbers into a pair of disjoint 
sets, say L and R, where every member of L is less than every member of R. If L 
contains a greatest element, or R a least element, the cut reduces to that elem-
ent, but it de[ nes a new, irrational, number if no such element exists. Dedekind 
went on to de[ ne an arithmetic for these numbers and to show that repeating the 
construction gives nothing new, so the set of rational and irrational numbers is 
complete (it has no ‘gaps’). Cantor (like Heine and, independently, Méray) started 
from the idea that an irrational number is usefully approximated by a sequence 
of rational numbers that ‘converges’ to it, and de[ ned the irrational numbers as 
equivalence classes of Cauchy sequences of rational numbers.

So mathematicians now constructed the real numbers, and no longer simply 
presumed that they existed. 9 is programme, which Klein (1895) called the arith-
metization of analysis, in a sense reduced the real numbers to the integers, but at 
the high price of admitting in[ nite sets into the foundations of mathematics. 9 e 
measuring numbers, as they were sometimes called, which were among the fun-
damental objects of classical mathematics, changed from idealized abstractions 
obtained from thinking about length and measurement to in[ nite sets of inte-
gers, which could then be proved to have the well-known properties required for 
measurement along lines. Once this was done the way was open, and eventually 
taken, to describe objects in a variety of settings that had only some of the famil-
iar properties of the real numbers. At the same time, the requirement that prop-
erties of the real numbers be properly established changed from being a matter of 
common sense to something requiring proof, and the way properties of the real 
numbers entered into the proofs of theorems changed accordingly as well.

9 e third example is Lebesgue’s theory of the integral as he presented it in 
1903. 9 is illustrates another characteristic feature of modern mathematics, one 
that had been introduced a few years earlier by Hilbert in his work on geometry 
(to be discussed below): the use of axiomatic formulations. In 1902—3 Lebesgue 
was invited to give the prestigious Cours Peccot Lectures at the Collège de France. 
He found the opportunity stimulating, and the published version, his Leçons sur 
l’intégration et la recherche des fonctions primitives ‘Lessons on integration and 
the search for primitive functions’, carries a [ ne axiomatization of the idea of 
integration. Lebesgue showed that there was essentially only one good de[ nition 
of the integral that satis[ ed certain natural axioms, and that his de[ nition of the 
integral exempli[ ed them. 9 e axioms are:
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9 e axioms look unproblematic, even to be the very minimum that anyone 
would require of a theory of the integral. But in fact the sixth is not true of the 
Riemann integral, and Lebesgue had to work hard to show that there was a way 
of de[ ning the integral (known, of course, today as the Lebesgue integral) that 
satis[ ed all six properties. More importantly for present purposes, the axio-
matic approach conceals another novelty. 9 e axioms specify what the integral 
is intended to do. 9 ey do not start from an idea that the integral is about, say, 
area, or any other primitive concept. It is necessary to show that there is a model 
of these axioms, but once that is done it is at least possible to prove properties 
of the integral directly from the axioms and without reference to any model of 
them. 9 e axioms are sometimes said to de[ ne their object implicitly, or to create 
it. 9 ere is no reference to a primitive concept available via abstraction from the 
natural world.

Lebesgue’s theory of the integral was intimately tied to his de[ nition of the 
measure or size of a set. 9 at too was de[ ned axiomatically, and axiomatically 
presented material can be used in ways that concrete examples cannot: to show 
that some things are incompatible with any theory of the indicated kind. 9 is was 
dramatically illustrated when Felix Hausdor\  published what became known as 
his paradox, which established that on any plausible de[ nition of the measure of 
a set there must be non-measurable sets (Hausdor\  1915).

Mathematicians now had three choices. 9 ey could either agree that there are 
non-measurable sets on any de[ nition of measure that obeys Lebesgue’s axioms; 
or they must reject the concept of measure and look for another concept alto-
gether—but Lebesgue’s six axioms are very natural ones; or they must scrutinize 
the proof and hope to [ nd a d aw. 9 e French mathematician Émile Borel, who 
had been close to some of the ideas that informed Lebesgue’s theory of meas-
ure, reacted in the third way. In the second edition of his Leçons sur la théorie 
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des fonctions ‘Lessons on the theory of functions’ he rejected the paradox on the 
grounds that the sets in Hausdor\ ’s paradox were not properly de[ ned, because 
they had been ‘constructed’ using the axiom of choice. ‘If one scorns precision 
and logic’, he wrote, ‘one is led to contradictions’ (Borel 1914, 256).2 Borel was not 
alone at this time in doubting the axiom of choice. Hausdor\ , on the other hand, 
was not at all bothered that any de[ nition of the area of a set is inherently imper-
fect, even though this was a conclusion that could never have been dreamt of by 
researchers a generation before.

9 e nascent [ eld of topology displays the most obviously modernist objects, 
even if they can also be presented very informally (see Epple 1999). Here, one 
example must stand for many. In 1895 Poincaré began to publish a series of papers 
on analysis situs ‘analysis of position’, as he called topology, that were intended to 
open up the [ eld. 9 e opening paper began: ‘9 e geometry of n dimensions has a 
real subject; no-one doubts this today. 9 e objects of hyperspace can be given pre-
cise de[ nitions just like those of ordinary space, and if we cannot represent them 
we can conceive of them and study them’ (Poincaré 1895, 1).3 In fact, even precise 
de[ nitions were hard to give that could also be made to yield results. Poincaré 
knew very well that surfaces can be made out of polygons by glueing pairs of edges 
together. Analogously, one of the ways in which he constructed three-dimensional 
‘spaces’ that had then to be classi[ ed was by glueing pairs of faces of a solid poly-
hedron together. He then asked: what aspect of the study of curves and surfaces in 
ordinary space generalize, what features are entirely new?

He found it was a productive way forward to take an idea that had proved use-
ful in the classi[ cation of surfaces, and to consider loops in the three-dimensional 
‘space’. Two loops are considered equivalent if one can be deformed into the other. 
For example, every loop drawn in a solid ball can be shrunk to a point, so all loops 
are equivalent in this ‘space’. But consider a solid ball from which an unknotted 
solid tube has been removed. Now there are several kinds of in-equivalent loop 
one can draw, which vary according to how they are wrapped around the tube 
(it is still more complicated if the tube is knotted). Poincaré studied the di\ er-
ent types of loop one can draw in the spaces he was interested in, and exploited 
the idea that if all the loops start and [ nish at the same point in the ‘space’ then 
one can follow one loop by another and obtain a third loop. In this way (aN er 
making some technical re[ nements) he was able to regard his loops as elements 
of a group. For the unknotted solid tube, the group obtained in this way is the 
integers, for the solid tube knotted like a torus, the group is more complicated. 
For the spaces Poincaré was interested in, he found that he could only guess, 
but not prove, that the solid three-sphere (the locus x2 + y2 + z2 + w2 = 1 in R4)

2. Si l’on fait si de la précision et de la logique, on est conduit à des contradictions.
3. La Géométrie à n dimensions a un objet réel; personne n’en doute aujourd hui. Les êtres de l’hyperespace 

sont susceptibles de dé[ nitions précises comme ceux de lespace ordinaire, et si nous ne pouvons pas nous les 
représenter, nous pouvons les concevoir a étudier.
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can be distinguished from other spaces in this group-theoretic way. 9 is is the 
origin of the famous Poincaré conjecture, which was only solved over a hundred 
years aN er his comments, in work for which the Russian mathematician Grigory 
Perelman was awarded a Fields Medal in 2006. Such are the di7  culties of this 
branch of mathematics.

9 e modernist shiN  here is from the world of genuine three-dimensional 
objects to arti[ cially de[ ned ‘spaces’ studied via the groups that describe some of 
their cruder geometric features. At stake was the question of how to extend the 
methods of geometry to problems involving three or more variables, and thus 
was born algebraic topology.

Modernist geometry

Modern geometry may be said to have started in Germany and Italy, but was pur-
sued in each country with di\ erent aims. 9 is explains the di\ erent fortunes of 
the two schools: Hilbert’s became famous, but aN er World War I the Italian contri-
bution was largely forgotten. 9 e most radical and ind uential among the Italians 
was Mario Pieri. His work is characterized by the complete abandonment of any 
intention to formalize what is given in experience. Instead he treated projective 
geometry ‘purely deductively and abstractly [ . . . independently of] any physical 
interpretation of the premises’ (Pieri 1895; here Pieri 1980, 13).4 Primitive terms, 
such as line segments, ‘can be given any signi[ cance whatever [ . . . ] in harmony 
with the postulates that will be successively introduced’ (Bottazzini 1988, 276; 
Marchisotto and Smith 2007).5 In Pieri’s (1898) presentation of plane projective 
geometry nineteen axioms were put forward (typically: any two lines meet).

Initially it was the Italian work, rather than Hilbert’s, which travelled best. Pieri’s 
ideas were taken up by Louis Couturat (1905), Alfred North Whitehead (1906), 
and John Wesley Young (1911). It seems that in the early years of the twentieth 
century Pieri’s ideas met with a greater degree of acceptance than is commonly 
recognized today. But the Italians’ work was limited in two ways: they missed the 
potential for creating novel geometries, and they failed to see the broader signi[ -
cance of the axiomatic method. Gino Fano (1892), for example, worked his way 
through the axioms of projective geometry, listing them successively and at each 
stage testing for independence by [ nding a model that satis[ es all the previous 
axioms but not the new one. For example, given three points on a line, is there a 
fourth point on the line that is the fourth harmonic point of the previous three? 
Fano saw that the answer is evidently not if there are only three points on a line, 

4. Puramente deduttivo e astratto [ . . . ] ogni interpretazione [ sica delle premesse.
5. si può attribuire qualsivoglia signi[ cato [ . . . ] in armonia coi postulate che saranno man mano 

introdotti.



interactions and interpretations676

and he produced a geometry in which there are precisely three points on a line. 
9 erefore an axiom is needed to ensure that there are at least four points on a 
line. Fano was certainly not treating points and lines as abstractions obtained 
from the real world. But he also made it clear that a geometry with only three 
points on a line is to be excluded, not embraced and studied. 9 e creative aspect 
of the axiomatic method was passed over, and with it the chance to promote the 
same method in other branches of mathematics.

9 e Fano plane, as this geometry is called today, was neglected because of the 
pedagogic mission of the Italians. 9 eir intention was to spell out, once and for 
all, what elementary geometry was for the purpose of educating future school 
teachers. Novel geometries and research in this area were not on the agenda.

Matters were very di\ erent with Hilbert. Novel geometries had a certain inter-
est for him, although Adolf Hurwitz’s insight was undoubtedly right when he 
wrote to Hilbert to say: ‘You have opened up an immeasurable [ eld of mathem-
atical investigation which can be called the ‘mathematics of axioms’ and which 
goes ‘far beyond the domain of geometry’ (Toepell 1986, 257).6 Hilbert’s presen-
tation of geometry in the Grundlagen der Geometrie sold the axiomatic idea very 
powerfully, and in his lectures over the next decade he promoted the method with 
varying degrees of success in various branches of mathematics and physics.

Hilbert’s axiomatic message would not have been so clear if he had not also 
dramatically changed the whole approach to geometry. Hilbert’s presentation 
of geometry is based on the introduction of successive families of axioms (the 
[ rst three families concern incidence, order, and congruence), together with 
an exploration of what can and cannot be done with the collection of axioms 
at any stage. So Hilbert was the [ rst to prove what others had already begun 
to suspect, that while the axioms of projective geometry in three dimensions 
do permit one to prove Desargues’ theorem, the axioms of projective geometry 
in two dimensions do not. 9 is has the remarkable consequence that there are 
plane projective geometries that cannot be embedded in any three-dimensional 
projective space.

Hilbert found his way to these results through an astute use of what he called 
segment arithmetic, the geometric manipulation of segments that allows them 
to be added and multiplied. Di\ erent axiom systems generate di\ erent seg-
ment arithmetics, which in turn determine the sorts of numbers that can be 
admitted as coordinates. Desargues’s theorem, it transpired, is true only if the 
coordinates are drawn from a [ eld, and will be false in a geometry in which 
the coordinates belong to a non-commutative ring.7 Geometry in this setting 

6. Sie haben da ein unermeßliches Feld mathematischer Forschung erschlossen, welches als ‘Mathematik 
der Axiom’ bezeichnet werden könnte und weit über das Gebiet der Geometrie hinausreicht.

7. Desargues theorem says that if two triangles ABC and A’B’C’ are in perspective from a point O, so that 
the points O, A, A’, the points O, B, B’, and the points O, C, C’ are collinear, and if the lines AB and A’B’ meet 
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is assuredly  modern, abstract, and axiomatic, and it can seem unduly so, as the 
Italians seem to have thought.

Hilbert reserved a special place for the investigation of the Archimedean 
axiom. In geometric terms this says that given two segments a and b where a is 
smaller than b there is an integer n such that na is greater than b. 9 e axiom is 
instinctively felt to be true, and so non-Archimedean geometry is a challenge to 
our fundamental beliefs about geometry. Before Hilbert, the existence of non-
Archimedean geometry had been disputed by a small group of Italian mathema-
ticians, of whom Giuseppe Veronese was the only one Hilbert cited. His work 
was di7  cult to follow, and that by Rodolfo Bettazzi was altogether sharper. But 
only Hilbert took seriously the question of how geometry would fare in the pres-
ence or the absence of the Archimedean axiom, and this question was then taken 
up masterfully by his student Max Dehn, who connected it to non-Euclidean 
geometry.

By the 1880s mathematicians were well aware that there were two distinct 
geometries with a claim to be the geometry of space: the non-Euclidean geom-
etry discovered by János Bolyai and Nikolai Lobachevskii and made rigorous 
by Riemann, Eugenio Beltrami, and Poincaré, and ordinary Euclidean geom-
etry. One might argue that they were slow to recognize there were many other 
possibilities, and a few alternatives were in fact canvassed in the 1890s. But the 
widely accepted view was that there were just these two physically plausible two-
 dimensional geometries. (Geometry on the surface of a sphere, was ruled out on 
the grounds that in it lengths cannot be inde[ nitely extended.)

9 ese geometries were distinguished by the angle sums of triangles. In 
Euclidean geometry the sum is always two right angles; in Bolyai–Lobachevskii 
geometry it is always less; and on the sphere it is always greater. Likewise, given a 
line l and a point P not on it, in Euclidean geometry there is a unique line through 
P not meeting l; in Bolyai–Lobachevskii geometry there are in[ nitely many lines 
through P not meeting l; and in spherical geometry there are none.

Dehn looked at this tidy trichotomy and saw that the theorems which estab-
lished it had oN en and naturally invoked the axiom of Archimedes. Following 
Hilbert’s example, he investigated what would happen if the axiom was dropped 
and found two more possibilities. 9 ere is a non-Archimedean geometry in which 
the angle sum of a triangle is greater than two right angles but given a line l and 
a point P not on it there are in[ nitely many lines through P not meeting l; and 
there is a non-Archimedean geometry in which the angle sum of triangle is equal 
to two right angles but given a line l and a point P not on it there are in[ nitely 
many lines through P not meeting l. 9 is last one struck Hilbert as particularly 
unexpected and remarkable.

at R, the lines BC and B’C’ meet at P, and the lines CA and C’A’ meet at Q, then the points P, Q, and R are 
collinear.
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9 e work of Hilbert, Dehn, and others showed that there was a valuable di\ e-
rence between axiomatizing in the manner of Euclid and in the new way. 9 e 
suggestion that there was no logical choice in the matter had been blown away by 
the discovery of non-Euclidean geometry. As a result, the idea that axioms codify 
what we know was weakened, although it was not clear what the philosophical 
status of the ‘wrong’ geometry was. Hilbert’s work showed that the axiomatic 
method, backed up by the construction of suitable models, was creative, and the 
gap between pure and applied geometry became so wide that it was not even clear 
that Euclidean geometry could be taken to be true.

It was in this context that Poincaré (1902) put forward his philosophy of geo-
metric conventionalism, which said that there was no way a logical decision could 
be made as to whether Euclidean or non-Euclidean geometry was true. Poincaré 
asked his readers to consider an experimental test that showed that the sum of 
angles in a triangle was less than two right angles. 9 e researcher may say either 
that space is Euclidean but that light no longer travels in straight lines, or that 
light travels along the straight lines (geodesics) in a non-Euclidean space. 9 is 
choice, said Poincaré, can only be made by convention. He suggested that we 
should always choose the simpler hypothesis, which was Euclidean geometry. 
9 is argument does not seem to have met with widespread acceptance, but to 
have provoked a debate about which concepts belong to physics and which to 
geometry.

Resistance to change

9 e mathematicians who were least touched by these changes were the British, 
trained as they had been at the University of Cambridge with its strong trad-
ition of applied mathematics. Only Bertrand Russell and Whitehead can be 
counted as exceptions, and Russell was a philosopher while Whitehead, regarded 
in Cambridge as an applied mathematician, was on his way to philosophy (of 
a di\ erent kind from Russell’s). In the period 1900 to 1914, G H Hardy and 
J E Littlewood were emerging into the front rank of mathematical analysis and 
number theory. In 1911 Hardy teamed up with Littlewood for a collaboration 
that lasted thirty-[ ve years. From 1913 they worked also with the Indian math-
ematician Ramanujan until he died in 1920. 9 ese three were pure mathemati-
cians, the [ rst of international stature in Britain to establish a lasting school, and 
their ind uence on the growth of British mathematics was profound, but they did 
not adopt a modernist perspective.

It was Hardy’s view that ‘mathematical reality lies outside us, that our func-
tion is to discover to observe it, and that the theorems which we prove, and 
which we describe grandiloquently as our “creations”, are simply our notes of our 
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observations’ (Hardy 1941, 123–124). Little in Hardy’s view, neither its uncom-
promising stance, nor its implication that it is stating the obvious, nor its lack of 
philosophical sophistication, separates it from the opinion of many a mathemat-
ician from ancient Greek times to today. It is plainly not modernist.

One can go further. Much of real and complex analysis to this day is deep 
and valuable without being particularly modern. 9 e same may be said of much 
work in ordinary di\ erential equations and dynamics. 9 e place of topology can 
be disputed. 9 ere is no question that when it was [ rst introduced topology was 
abstract. It was a largely axiomatically de[ ned study of sets of particular kinds. 
But in a climate where naive set theory serves as a foundation, a standard course 
in point set topology can seem no more than a repository of techniques. Just as 
one might argue that biology does not change signi[ cantly with the advent of 
better microscopes, one can argue that analysis has absorbed topology and is 
in many ways unaltered. 9 at said, the opposite case can be argued: biology is 
di\ erent now that cells can be looked at in detail, topological thinking has trans-
formed analysis. We return to the open question mentioned at the start of this 
chapter: what constitutes a major change is something every writer and reader 
has to decide for themselves.

One can go further still. Many emerging branches of applied mathematics 
seem less tied to the creations of modern mathematics and more directly linked 
to the natural world (or worlds, one should say, of biology, sociology, economics, 
and so on). Even the modernist orthodoxies of Bourbaki (Corry, Chapter 6.4 in 
this volume) look a little less inevitable these days, a little bit more like historical 
events with historical causes. On red ection that is reassuring. It might be possible 
even now to write a Hegelian history in which ideas evolve according to some 
set of natural laws, and the mathematics of this era gives rise to the mathemat-
ics of the next. But we are more comfortable these days with accounts that stress 
human agency, circumstances, and some degree of chance.

Conclusion

9 e cultural modernists were oN en deeply immersed in the art from which they 
sprang, with a thorough grounding in traditional technique. A considerable por-
tion of Schoenberg’s work can be fairly labelled late romantic; Joyce’s Ulysses was 
preceded by much more conventional narratives; Picasso made his modernist 
turn earlier but retained a great respect for earlier, classical, styles; and so on. 
9 ese people felt a need to be composers, novelists, artists, but to be so, even-
tually, in radically new ways. 9 ose ways can be thought about at many levels, 
among them artistic intention (for example, the claim that art should no longer 
be ‘beautiful’), technique, form, and content. All of these were of vital interest to 
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the composers, novelists, and artists of previous generations, but at some period 
around 1900 leading [ gures moved to de[ nitively new positions.

9 e driving forces at work among writers, painters, and composers included a 
strong emphasis on novelty of form and on new criteria for appreciation, which 
were much more internal. 9 e same can be said of the mathematical moderniz-
ers. As modern algebra emerged, it was based on naive set theory. So too was ana-
lysis, insofar as it rested on a rigorized theory of the real numbers. Elementary 
geometries of various kinds and even the theory of the integral were given novel 
axiomatic foundations. 9 ese new foundations were accompanied by new modes 
of proof, appropriate to such formal and non-intuitive concepts. 9 e whole ques-
tion of mathematical intuition and the relation of mathematical truths to natural 
or scienti[ c truths was considerably widened.

9 ese novel ways of doing mathematics made it inevitable that only math-
ematicians could judge the technical quality of a mathematical paper, not just 
for the traditional reason that doing high level mathematics requires training 
and practice, but because only a mathematician had the training in such mat-
ters as naive set theory and abstract axiomatics. More importantly, the novelties 
ensured that only a mathematician could pronounce upon the value or import-
ance of such work. 9 e grey area between truly important work and mere puzzles 
moves at various times in the history of mathematics, it may well vary to some 
extent between mathematicians, but it became much harder to navigate as the 
separation between mathematics and physics grew. To recall just one example 
from those mentioned above, why should Dedekind’s creation of structural alge-
braic number theory have been a worthwhile thing to do? Only a mathematician 
can say; no scienti[ c implication was even suggested.

How, then, should the changes in mathematics around 1900 be regarded? Do 
they constitute enough of a change, and a change of the right type, to be charac-
terized as mathematical modernism? Answers to that question return us to the 
spectrum of responses discussed at the start of this chapter. Art critics and art 
historians have learned not to over-state the novelty of modern painting and to 
see continuities and ind uences while nonetheless holding on to a sense of the 
strong element of change and di\ erence in the principal works of modern art. 
9 e modern novel presents a more complicated case, because it did not become 
impossible to do [ rst-rate work in the manner of the nineteenth century. 9 ere 
were changes, to be sure, but the element of continuity has proved to be much 
stronger. Just so in mathematics the insistence of novelty in form and content 
(here: concept) should not blind us to the strong continuities, some of which were 
sketched above.

9 at said, these continuities presented themselves in a changed mathemat-
ical world. Changed in its very foundations, because naive abstractionism had 
by 1900 been replaced by naive set theory and that in turn was to be made 
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more sophisticated as the paradoxes began to bite (Ferreirós 1999). Changed 
in the nature of the objects it dealt with, which were not only removed from 
daily life (even daily scienti[ c life) but more abstract even for the professional 
mathematician. Changed, accordingly, in its methods: abstract, axiomatically 
de[ ned objects can only be handled by methods that emphasize the formal 
over the intuitive; thus the axiomatic method came to be adopted in geometry, 
in algebra and number theory, and in the theory of integration. Changed by 
the growing recognition that there was a de[ nite subject called, variously, pure 
mathematics, conceptual mathematics, or even (Cantor’s preferred term) freien 
Mathematik ‘free mathematics’ (Cantor 1932, 182). 9 is new subject had its own 
sense of worth as being more fundamental than the older more seamless blend 
of mathematics and physics. Modern mathematics was the hegemonic discipline 
to which all questions about the validity of any mathematical innovation would, 
most likely, have to submit, and its leading exponents controlled the process 
by which di7  cult decisions were rati[ ed. 9 e new generation of mathemati-
cians around 1900, most noticeably in Göttingen, were masters of what they 
surveyed.

Insofar as this new picture of modern mathematics convinces it brings with it 
a coherence to the developments in the [ eld, it makes certain features stand out 
more clearly and shows that they were not particular to this or that branch of 
the subject but were widespread and characteristic. It invites questions, some of 
which I have dealt with elsewhere but some of which will be new: can one see a 
new relationship between mathematics and physics as a result? Will the presently 
imperfectly understood history of partial di\ erential equations [ t or contradict 
this account? What large-scale accounts of the history of mathematics are we 
willing to accept? I believe that if it is accurate and helpful to see a modernist 
transformation in painting or music then it is also accurate and helpful to see it 
in mathematics. 9 ere is the same recon[ guration of the [ eld, the same novel sets 
of priorities and aesthetic criteria which have to be learned, the same emphasis 
on the acquisition of methods and techniques without which understanding is 
impossible.
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CH A P T ER 8 .1

9 e transmission of the Elements to the Latin 
West: three case studies
Sabine Rommevaux

The history of the text of Euclid’s Elements during the Middle Ages and the 
Renaissance is now well known and documented.1 9 e twelN h-century 

translation with the largest number of surviving manuscripts is that attributed 
to Robert of Chester (Busard and Folkerts 1992). In fact it exists in several dif-
ferent versions. Initially it consisted of nothing more than itemizations of the 
de[ nitions, principles, and propositions, compiled from one or more Arabic 
translations.  Later, authors added proofs in the margins, frequently in abbreviated  
form. Finally, copyists inserted these proofs, sometimes reworked, into the text 
itself. At the end of the thirteenth century Robert of Chester’s version was sup-
planted by that of Campanus de Novare, which served as the standard text until 
the Renaissance. Compiled in the 1260s, it was not a translation based on Greek or 
Arabic manuscripts but rather a rewritten version of the Elements, based on other 
versions, notably one of the texts of Robert of Chester’s version, and also on other 
texts such as the Arithmetic of Jordanus de Nemore, from the [ rst half of the thir-
teenth century, and a commentary on the Elements by an-Nayrīzī, translated into 
Latin by Gerard of Cremona. 9 e Campanus version was [ rst published in Rome 

1. All the most important translations of the twelN h and thirteenth centuries have now been published, 
principally by Hubert Busard. For an overview of the various texts, see Busard (1998) and also the introduc-
tion to Busard (2005, I 1–40). For the principal Renaissance editions see Murdoch (1971, IV 437–459).
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in 1482, and there were numerous re-editions throughout the Renaissance. We 
will take it as the starting point for our study of the reception and assimilation 
of the Euclidean treatise in the Latin West. It was recently published in a critical 
edition (Busard 2005), and we shall refer to that edition throughout this chapter.

We will examine how the mathematicians of the Middle Ages and the 
Renaissance reacted to the Euclidean treatise and what they did with the theories 
that they found there. To do this, we will turn our attention to three aspects: the 
study of pyramids and prisms; the theory of the irrationality of magnitudes; and 
the theory of ratios and proportions.

Prisms and pyramids

A [ rst example of the erroneous reception of Euclid’s Elements in the Middle 
Ages concerns the study of pyramids and prisms in Book XII. When we compare 
the medieval versions with Heiberg’s edition of the Greek text (Heiberg 1883–8), 
we [ nd certain important di\ erences.2

In the Greek text, according to de[ nition 12 of Book XI, ‘A pyramid is a solid 
[ gure contained by planes, which is constructed from one plane to one point’ 
(Heath 1956, III 261); in other words it consists of a solid with a polygonal base, 
and triangular faces with a common apex. According to de[ nition 13, ‘A prism is 
a solid [ gure contained by planes, two of which, namely those which are opposite, 
are equal, similar and parallel, while the rest are parallelograms’ (Heath 1956, 
III 261). For example, parallelepipeds are prisms. 9 e study of these two families 
of solids is presented in propositions XII.3 to XII.9 (Heath 1956, III 378–400). 
Propositions 3–5, and 7–9 concern only pyramids and prisms with triangular 
bases. In XII.5 it is demonstrated that triangular pyramids of equal height are 
proportional to their bases; and in XII.6 this result is generalized to pyramids 
based on any polygon. In XII.7, it is proved that triangular prisms can be divided 
into three triangular pyramids (see Fig. 8.1.1, where the prism ABCDEF, based 
on the triangle ABC, is divided into the pyramid ABCD with base ABD and 
summit C, the pyramid EBCD with base EBC and summit D, and the pyramid 
ECFD with base ECF and summit D).

In a corollary, this result is extended to prisms based on any polygon: a 
 pyramid based on any given polygon is a third part of a prism based on the 
same polygon and of the same height. Finally, in XII.8 it is shown that triangular 
 pyramids that are similar (that is, whose sides are in proportion) are in a triplicate 

2. In this chapter Heiberg’s edition of the Elements is taken as the standard Greek version. However, as 
Saito (Chapter 9.2 in this volume) shows, Heiberg’s text itself is not without its problems.
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ratio of their sides.3 In a corollary this result is extended to pyramids on any 
polygonal base. 9 us we have a series of results for triangular pyramids and 
prisms, which are generalized to prisms and pyramids on all polygonal bases.

In the twelN h century Arabic–Latin translations, the de[ nition of the prism 
is replaced by that of a corpus serratile (or sometimes F gura corporea servata)4 
which is a solid with [ ve faces, of which two, opposite to each other, are trian-
gles, connected by parallelograms. It is therefore a triangular prism. 9 ere is no 
mention of polygonal prisms, which were nonetheless used in some proofs of 
the Elements, as Christoph Clavius pointed out with some surprise in his early 
 seventeenth-century commentary (Clavius 1611–12, I 480). For example, in XII.10 
of the Greek text, during the proof, we are asked to take a square and construct 
a prism based on it. In Robert of Chester’s version,5 the construction of such a 
prism is reduced to the construction of two corpore serratilia by dividing the 
square along its diagonal, forming two triangles as bases (Busard and Folkerts 
1992, I 213–216). Campanus treats the proposition in the same way.

Moreover, XII.6 and the corollaries of XII.7 and XII.8 are missing from the 
twelN h-century versions. 9 us, these versions contain a study of triangular 

3. If ABCD and EFGH are two pyramids with summits D and H, the ratio of their volume is, for example, the 

triplicate ratio of the side AB to the side EF, that is 
AB

EF( )3

.

4. Adelard of Bath in his version de[ nes a ‘F gura corporea servata’ (Busard 1983a, 299, def. vii); Gerard 
of Cremona discusses a ‘F gura corporea serratilis’, (Busard 1983b, c.337, def. vi). In the versions by Robert of 
Chester and Campanus, it is a ‘corpus serratile’ (Busard and Folkerts 1992, I 265, def. vii; Busard 2005, I 389, 
def. vii).

5. In this version the proposition is XII.9 (Busard and Folkerts 1992, I 300).

F

E D

C

B A

Figure 8.1.1
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 pyramids and prisms only. 9 is led Campanus to make the following remark 
aN er the demonstration of his XII.6 (corresponding to XII.7 of the Greek text):6

Since Euclid does not propose to demonstrate anything at all on the subject of prisms, 
with the sole exception of those whose bases are triangles, in order that we can su7  -
ciently draw all possible knowledge from the elements he supplies we judge that it is not 
useless to add certain results to the demonstrations given here. For Euclid, by contenting 
himself only with the elements, omits many things which, even though they are conse-
quences, do not appear without di7  culty to students.7 (Busard 2005, I 436)

Campanus’s remark makes sense only in the light of the corrupted text he had 
inherited from Robert of Chester: Euclid certainly does deal with pyramids based 
on any polygon, as we have seen.

Campanus then presents a series of [ ve propositions, by way of extension to 
XII.6. In the [ rst he shows that if two solids, one of which is a prism and the 
other a triangular pyramid, are constructed on the same base or on two equal 
triangles, or the prism on a quadrilateral and the pyramid on a triangle which is 
half the quadrilateral base of the prism, and if the two solids have equal heights, 
then the prism is the triple of the pyramid. 9 is result corresponds to the proof 
corollary to XII.7 of the Greek text, even if Campanus’s result is less general. In 
the second proposition, he proves that pyramids on any bases are equal so long 
as their bases and heights are the same. He generalizes this in his [ N h propos-
ition, corresponding to XII.6 of the Greek text: there he proves that pyramids 
on any base having equal heights are proportional to their bases. His third and 
fourth propositions serve to demonstrate his [ N h. 9 us, in his third proposition, 
he shows that triangular pyramids of equal height are proportional to their bases 
(this has already been shown in XII.5 but it is found again here); and in his fourth 
proposition, he proves that if we have two pyramids of the same height, one with 
a triangular base and the other a base of any other polygon, the pyramids are 
proportional to their bases.8

Proposition XII.6 of the Greek version, along with the corollary of XII.7, are 
thus to be found in the Campanus version as additions to his XII.6 (correspond-
ing to XII.7 in the Greek). As for the corollary of XII.8 in the Greek, missing 

6. In framing this proposition Robert of Chester and Campanus did not specify that the prism is tri-
angular, but it is so by de[ nition (Busard and Folkerts 1992, I 298; Busard 2005, I 436). On the other 
hand this speci[ cation was made by Adelard (Busard 1983a, 339) and Gerard of Cremona (Busard 1983b, 
c.377).

7. Quoniam autem Euclides nihil demonstrandum proponit de piramidibus lateratis exceptis solis hiis 
quarum sunt bases triangule ut omnium cognitionem ex elementis, que ponit, su7  cienter elicere possimus, 
quedam arbitramur non inutile demonstrationibus hic positis adiungere. Solis enim elementis conten-
tus Euclides multa ex eis pretermittit que quamvis ex eis consequantur, non tamen sine di7  cultae patent 
studentibus.

8. Note that Campanus’s demonstration contains a circularity: the proof of proposition 3 makes use of 
 proposition 1, which itself is demonstrated from XII.6. But XII.6 is deduced from XII.5, which is also his 
proposition 3, where we started.
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from Robert of Chester’s version, it is to be found in the [ rst proposition of an 
addition to Campanus’s proposition XII.8. Here he shows that if we have two 
similar pyramids, the ratio of one to the other will be the triplicate ratio of their 
sides. In a second proposition added to XII.8, Campanus introduces what he calls 
a columna laterata and explains that this is a solid whose base and top are equal 
polygons, and that the faces joining them are parallelograms. We recognize here 
the Greek de[ nition of a prism on any polygonal base, which, as we saw above, 
was missing from Robert of Chester’s version. In further propositions added to 
XII.8, Campanus demonstrates for any prism a set of results earlier demonstrated 
for pyramids (for details see Table 8.1.1). 9 e proofs rely on the division of pol-
ygonal bases into triangles and use similar results on corpore serratilia and tri-
angular prisms.

Finally, in Campanus’s XII.7 (corresponding to XII.9 in the Greek), it is shown 
that if two triangular pyramids are equal then their bases are inversely pro-
portional to their heights, and vice versa. Campanus generalizes this result to 
pyramids based on any polygon, a generalization not found in the Greek. We 
therefore [ nd in Campanus’s XII.5–XII.8, and in additions to certain of these 
propositions, a study of pyramids and prisms on any polygon which is absent 
from the Arabic–Latin versions of the twelN h century, but which was partially 
present in the Greek.

Table 8.1.1 Propositions XII.5–XII.8 of Campanus compared with propositions from 
the Greek text

Campanus’s version Greek text (Heiberg)

XII.5 XII.5
XII.6 XII.7
Addition 1 to XII.6 (generalization of XII.6) Corollary to XII.7
Addition 2 to XII.6 (special case of addition 5)
Addition 3 to XII.6 (special case of addition 5) XII.5
Addition 4 to XII.6 (special case of addition 5)
Addition 5 to XII.6 (generalization of XII.5) XII.6
XII.7 XII.9
Addition to XII.7 (generalization of XII.7)
Proposition XII.8 XII.8
Addition 1 to XII.8 (generalization of XII.8) Corollary to XII.8
De[ nition of columna laterata (prism) De[ nition XI.13  
Addition 2 to XII.8 = addition 5 to XII.6 for the columna laterata
Addition 3 to XII.8 = addition 1 to XII.6 for the columna laterata
Addition 4 to XII.8 = XII.7 for the columna laterata
Addition 2 to XII.8 = addition 1 to XII.8 for the columna laterata  
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B e irrationality of magnitudes

In Book X of Euclid’s Elements, which contains the theory of commensurable and 
incommensurable magnitudes, the erroneous transmission goes beyond the loss 
of information that we have just seen in the study of prisms and pyramids. Now 
the theory itself is put into question, allowing an arithmetical reading of results 
in Book X, which Euclid treated geometrically.

In the [ rst de[ nitions of Book X, Euclid introduced, for magnitudes, an initial 
pair of concepts: summetra ‘commensurable’ and assumetra ‘incommensurable’; 
and for straight lines and surfaces a second pair of concepts: rétè ‘expressible’ 
and alogoi ‘irrational’.9 9 us we say that two straight lines are commensurable 
(we oN en add ‘in length’) if a same line can be used to measure both; otherwise 
we say that they are incommensurable. And we say that straight lines are com-
mensurable in square only, when they themselves are incommensurable but the 
squares constructed on them are commensurable, that is to say when there exists 
a surface that can be used to measure both squares. If we now consider a straight 
line E which we call ‘expressible’ (for Euclid, this is in general one of the elements 
of whichever [ gure is being considered), we say that straight lines that are com-
mensurable with E, either in length or in square only, are also expressible, while 
other straight lines are irrational. We can sum this up in Fig. 8.1.2.

Let us take as an example the diagonal and the side of a square. 9 e square 
constructed on the diagonal is twice the magnitude of the original square, so 
these two squares are commensurable. Taking the side of the original square 
as our reference line, we can therefore say that the diagonal is expressible, even 
though it is incommensurable with the side.

Notice that these two pairs of notions are not parallel: expressibility does not 
imply commensurability. 9 is misled many readers of Book X. 9 us, we can read 
in Pappus of Alexandria’s commentary from the fourth-century:

9. 9 e terms ‘expressible’ and ‘irrational’ preserve the asymmetry of the Greek terms rétè and alogoi. In 
his English translation, Heath talks of ‘rational’ and ‘irrational’ lines, picking up, as we shall see, the Latin 
terminology (Heath 1956, III 10).

D and E commensurable 

D and E incommensurable

D commensurable in length with E

D commensurable in square only with E

D incommensurable in square with E

D expressible

D irrational

Figure 8.1.2 
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Euclid, on the other hand, calls the line which is commensurable with the rational 
[expressible] line, however commensurable, rational, without making any stipulation 
whatsoever on that point: a fact which has been a cause of some perplexity to those who 
found in him some lines which are called rational [expressible], and are commensura-
ble, moreover, with each other in length but incommensurable with the given rational 
[expressible] line (Pappus 1930, 81).

In the medieval versions, the de[ nitions of commensurable and incommensu-
rable magnitudes, as well as the de[ nitions of straight lines commensurable in 
square only and incommensurable, are like those in the Greek. In contrast, in 
the Arabic then Latin versions,10 and therefore particularly in the versions of 
Robert of Chester and Campanus, the de[ nition of expressible (or rational) lines 
is abbreviated. Neither speci[ es that rational straight lines must be commensu-
rable with the reference line either in length or in square, but only that they must 
be commensurable.11 We can interpret their de[ nition as saying that the adjective 
‘commensurable’ refers to length only, so that only straight lines commensurable 
in length are to be called rational. 9 us we have the situation in Fig. 8.1.3.

We thus have a strict parallel between rationality (or expressibility) and com-
mensurability. 9 is is how Tartaglia, for example, interprets Campanus’s de[ ni-
tion (Tartaglia 1565, 175v).

9 e parallelism between commensurability and rationality (or expressibility) 
is also ampli[ ed by the introduction in the propositions of non-Euclidean notions 
of lines rational in length and lines rational in square only, which correspond to 
commensurability in length and in square only, in relation to a reference line 
(Rommevaux 2001, 101–105). 9 us we have the diagram shown in Fig. 8.1.4.

10. 9 e Greek terms summetra and assumetra are translated into Arabic by the terms muštarak ‘commen-
surable’ and ghayr muštarak ‘non commensurable’ or mutabāyin ‘separate’ and the terms rétè and alogos by 
the terms munêaq ‘expressible’ and ghayr munêaq ‘non expressible’ or a.samm ‘surd. In Latin, we have on the 
one hand communicantes or commensurabiles and incommensurabiles or incommunicantes and on the other 
rationalis and irrationalis or surde (Rommevaux, Djebbar, and Vitrac 2001, 259).

11. 9 e de[ nition in the Greek text is as follows (de[ nition X. 3): ‘[ . . . ] Let then the assigned straight line be 
called rational, and those straight lines which are commensurable with it, whether in length and in square or 
in square only, rational [ . . . ]’ (Heath 1956, III 10). Campanus has: ‘Omnis autem linea cum quo ratiocinamur 
posita vocetur rationalis. Lineeque ei communicantes dicuntur rationales’ (And let any given line we reason 
with be called rational. And the lines commensurable with it we say are rational.) (Busard 2005, 306).

Figure 8.1.3 

D and E commensurable

D and E incommensurable

D commensurable in length with E

D commensurable in square only with E

D incommensurable in square with E

D rational

D irrational
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Returning to the example of the diagonal and side of a square, the diagonal is 
here rational in square only, relative to a side supposed to be rational.

9 omas Bradwardine, in his treatise on ratios of speeds in 1328, spoke of 
commensurable and incommensurable magnitudes or quantities (see Crosby 
1955). He thereby established a parallel between quantity and ratio (Crosby says 
‘proportion’):

Rational di\ ers from irrational proportion, moreover, in that the former exists only 
between commensurable or rational quantities, whereas the latter is found to exist only 
between incommensurable or irrational quantities (Crosby 1955, 67).

We see then that the terms ‘rational’ and ‘irrational’, which for Campanus 
referred to straight lines that are commensurable or incommensurable with a 
reference line, are here applied to quantities. 9 is helps to reinforce the parallel-
ism between commensurability and rationality that we have already noted. And 
this parallelism includes ratio: ratios between rational quantities are rational, and 
those between irrational quantities are irrational. 9 us, returning to the example 
of the diagonal and the side of the square, and again taking the side as the refer-
ence line, we would hold that the diagonal is irrational (whereas for Euclid it was 
expressible, and for Campanus it was rational in square only). Further, the ratio 
of the diagonal to the side is also said to be irrational. AN er Bradwardine, we [ nd 
this same terminology for quantities and ratios in the works of fourteenth- and 
[ N eenth-century authors such as Nicholas Oresme and Blasius of Parma.

For Euclid, the reference line that is said to be expressible or rational was oN en 
one of the elements of the [ gure under discussion. In the medieval versions, on 
the other hand, and in particular in Campanus’s version, this line is posited a 
priori, without any link to the [ gure. Let us examine XIII.6, for example. In the 
Greek version, it is demonstrated that any expressible line divided in extreme and 
mean ratio is an apotome. Dividing a line AB in extreme and mean ratio means 
dividing it at a point C in such a way that AB : AC = AC : BC. An apotome is a 
line D such that D = D1 – D2 where D1 and D2 are expressible, and commensurable 
with each other in square only. 9 e concept of an apotome is therefore relative to 
a reference line, since it is in relation to this that the lines D1 and D2 are said to be 
expressible. If we examine the proof of the proposition in the Greek version, we 

D and E commensurable

D and E incommensurable

D commensurable in length with E

D commensurable in square only with E

D incommensurable in square with E

D rational in length

D irrational

D rational in square
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see that the reference line is actually the line that is to be divided and which is 
called ‘expressible’ in the description of the proposition. In Campanus’s version 
of this proposition he speci[ es in a commentary that the [ rst part of the proof, 
which is the same as that in the Greek, holds only if the reference line is rational 
in length or in square. 9 us Campanus implicitly posits a reference line, external 
to the problem, to which the line to be divided is said to be rational in length or 
in square.

9 is change in status of the reference line is important. Positing a priori a ref-
erence line external to the given conditions of the problem is the same as intro-
ducing a unit to which all lines will be compared. 9 is is what the majority of the 
commentators of Euclid do. 9 us we [ nd in certain Greek manuscripts an addi-
tion at the beginning of de[ nition X.3, which describes the posited expressible 
line as the one from which measures may be taken, for example, a cubit, a palm, 
a [ nger, or a foot (Euclid 1990–2001, III 34, n48). 9 e expressible line is also 
interpreted as a unit of measure by certain Arab commentators, like an-Nayrīzī 
and Ibn al-Haytham. Clavius, on the other hand, who in the sixteenth century 
rediscovered the Euclidean text as we know it today, explained that the reference 
line is called rétè in Greek and ‘rational’ in the Latin texts, because it is semper 
certa et nota ‘always known and given’ (Clavius 1611–12, I 396). He did not see it 
as a unit of measure.

B e proportionality of numbers and magnitudes

We have seen how the faulty transmission of Book X of the Elements altered the 
theory it contained. With Books V and VII, it was the understanding of the the-
ory of proportionality which was brought into question, leading Campanus to 
introduce a non-Euclidean concept, that of the denomination of ratio.

A ratio is de[ ned as a quantitative relationship between two magnitudes of the 
same kind.12 At the same time, it is not the case that any two magnitudes have a 
ratio. 9 ey do so only if the smaller one, multiplied as oN en as necessary, can be 
made to exceed the larger. Euclid sets out this condition at the start of Book V,13 
but it is absent from the versions of Robert of Chester and Campanus. We should 
note, however, that it does appear in the proof of proposition X.1. Campanus also 
uses it in his commentary to this same proposition, where he argues that the angle 
of contact between a straight line and a circle can never be multiplied enough 
times to exceed a right angle, and therefore there is no ratio between them.

12. De[ nition V.3 in the versions of Robert of Chester and Campanus.
13. De[ nition V.4 in Heiberg’s edition.
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As for De[ nition V.5, on the proportionality of magnitudes and their 
equimultiples,14 it is replaced by two di\ erent de[ nitions in the versions of 
both Robert of Chester and Campanus. First, there is a de[ nition of continuous 
proportion:

Quantities which are said to be in continuous proportion are those for which the equi-
multiples are either equal to, or exceed or fall short of, each other in the same way, with-
out interruption.15 (Busard 2005, I 161)

9 en the de[ nition of being ‘in the same ratio’:

Quantities which are said to be in the same ratio, the [ rst relative to the second and the 
third to the fourth, are those for which the equimultiples of the [ rst and the third are 
similar,16 whether in excess or in de[ cit or in equality, to the equimultiples of the second 
and of the fourth, if they are taken in the same order.17 (Busard 2005, I 164)

9 e second de[ nition introduces the idea of similarity of equimultiples, which 
therefore needs to be de[ ned. 9 is is what Campanus does in his commentary:

And the similarity in excess or in de[ cit is to be understood here [ . . . ] not as excess 
 relative to quantity, but as excess relative to the ratio.18 (Busard 2005, I 164–165)

He goes on to make the idea more precise:

Four quantities are not continually proportional and the ratio of the [ rst to the second 
is as that of the third to the fourth, when having taken equimultiples of the [ rst and the 
third, and in the same way equimultiples of the second and the fourth, the ratio of the 
multiple of the [ rst to the multiple of the second is as that of the multiple of the third to 
the multiple of the fourth.19 (Busard 2005, I 165)

In the end Campanus brought the de[ nitions of proportionality of quantities back 
to the proportionality of equimultiples. But he admitted that his argument was 

14. De[ nition V.5: Magnitudes are said to be in the same ratio, the [ rst to the second and the third to the 
fourth, when, if any equimultiples whatever be taken of the [ rst and the third, and any equimultiples what-
ever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, 
the latter equimultiples respectively taken in corresponding order. (Heath 1956, II 114).

15. Quantitates que dicuntur habere continuam proportionalitatem sunt, quarum eque multiplicia equa 
sunt aut eque sibi sine interruptione addunt aut minuunt.

16. Busard chooses the wording simul, which approaches the idea of simultaneity and which is to be found 
in the Greek de[ nition (Heath 1956, II 120); but older manuscripts have similes which seems to me closer to 
Campanus’s commentary to these two de[ nitions. Likewise, the majority of the manuscripts used by Busard 
and Folkerts for their edition of Robert of Chester’s version have similes (Busard and Folkerts 1992, II 540; 
Rommevaux 2007).

17. Quantitates que dicuntur esse secundum proportionem unam, prima ad secundam et tertia ad quar-
tam, sunt, quarum prime et tertie multiplicationes equales multiplicationibus secunde et quarte equalibus 
fuerint simul vel additione vel diminitione vel equalitate eodem ordine sumpte.

18. Similitudo autem in addendo aut diminuendo intelligatur hic [ . . . ] non quantum ad quantitatem 
excessus, sed quantum ad proportionem.

19. Incontinue proportionales sunt 4 quantitates et proportio prime ad secundam sicut tertie ad quartam 
cum sumptis eque multiplicibus ad primam et tertiam, itemque eque multiplicibus ad secundam et quartam 
erit proportio multiplicis prime ad multiplex secunde sicut multiplicis tertie ad multiplex quarte.
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circular, de[ ning ‘the same by the same’ (Busard 2005, I 165). Most Renaissance 
mathematicians were to take up the same mistaken interpretation.

Murdoch (1963, 251–261) has underlined the fact that this misunderstand-
ing of the role played by equimultiples in the de[ nition of proportionality led 
Campanus to introduce the notion of the denomination of a ratio. It appears in 
his long commentary following the de[ nitions in Book V. Campanus begins by 
admitting his perplexity when faced with the use of equimultiples in the de[ n-
ition of proportionality. He next explains that if all ratios were rational, we would 
have a clear understanding of the equality or non-equality of ratios, because 
ratios of equal denominations would be equal. He then refers to the Arithmetic of 
Jordanus, where we [ nd the de[ nition of the denomination of a ratio at the start 
of Book II:

What we call the denomination of a ratio, at least of a smaller number to a greater, is the 
part or parts that the smaller is of the greater; and of a greater number to a smaller, the 
number by which it contains it and the part or parts of the smaller that remain in the 
greater.20 (Busard 1991, 75)

9 us, in the case of a ratio between a and b where a is smaller than b (we say in 
this case that there is a ratio of lesser inequality), the denomination is the fraction 
p/q if a is p qth parts of b. In the case of a ratio between c and d where c is greater 
than d (a ratio of greater inequality), we determine how many whole times c con-
tains d, say n, then the denomination of the remainder in relation to d, say k/l; 
the denomination is then n + k/l. 9 us the denomination is a quantity associ-
ated with the ratio that allows us to see how the terms of the ratio relate to each 
other. 9 e denomination also allows us to compare ratios: one ratio is larger than 
another if its denomination is larger.

We [ nd an almost identical de[ nition of denomination at the beginning of 
Book VII in Campanus’s version. 9 ere the concept of denomination was no 
doubt introduced to overcome a di7  culty in the version of Robert of Chester, 
who de[ ned the proportionality of numbers like this:

Numbers are proportional where the [ rst is in the second in the same way as the third 
is in the fourth, or where the second is in the [ rst in the same way as the fourth is in the 
third.21 (Busard and Folkerts 1992, 187)

20. Denominatio dicitur proportionis minoris quidem ad maiorem pars vel partes quote illius fuerit, 
maioris vero ad minus numerus secundum quem eum continet et pars vel partes minoris que in maiore 
superd uunt.

21. Numeri proporcionales sunt, quorum primus in secundo tamquam tercius in quarto aut in primo 
secundus tamquam in tercio quartus.

9 is di\ ers from the de[ nition in the Greek texts: ‘Numbers are proportional when the [ rst is the same 
multiple, or the same part, or the same parts, of the second that the third is of the fourth’ (Heath 1956, 
II 278).
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9 e concept of denomination allows us to specify precisely how one number is 
‘in’ another. Campanus also adds to the beginning of Book VII a de[ nition of 
numerical ratio (absent from the Greek):

What we call the ratio of a number to a number, at least of a smaller number to a greater, 
is that by which [in eo quod] it is a part or parts of the greater; and of a greater number 
to a smaller, that by which [secundum quod] it contains it, and its part or parts.22 (Busard 
2005, I 230)

We cannot fail to see the similarity of this de[ nition to that of denomination given 
earlier. 9 us, Campanus’s introduction of the concept of denomination at the 
beginning of Book VII underlies the idea of numerical proportion (Rommevaux 
1999, 89–106).

Campanus’s de[ nition of denomination can be related to the nomenclature 
of numerical ratios coined by Nicomachus (around 100 AD) and transmitted to 
the Latin world by Boethius in his Arithmetic (around 500 AD). Numerical ratios 
are separated in the [ rst place into ratios of equality (between a and b where 
a = b), ratios of greater inequality (where a > b) and ratios of lesser inequality 
(where a < b). Ratios of greater inequality are further separated into [ ve types: 
multiple ratios of denomination n, called doubles, triples, and so on; superpar-
ticular ratios of denomination 1 + 1/k, called sesqui-k-ian (sesquialternate, ses-
quitertian, sesquiquartian, and so on); superpartient ratios of denomination 
1 + h/k, called super-h-partient k-ian (for example, the supertripartient quartian, 
between 7 and 4, with denomination 1 + 3/4); multiple superparticular ratios of 
denomination n + 1/k; and multiple superpartient ratios of denomination n + h/k; 
the latter are named by combining the name of the whole multiple and of the 
superparticular or superpartient ratio. 9 e relationships between the names of 
ratios and their denominations is presented in this way by Oresme in his treatise 
on ratios of ratios written between 1351 and 1360 (Oresme 1966, 210) and again 
in Clavius’ commentary to his edition of Euclid’s Elements, in the second edition 
of 1589 (Clavius 1611–12, 176, translated in Rommevaux 2005).

Another de[ nition of denomination is to be found in two little treatises on 
proportion from the thirteenth century,23 whose subject is the study of the rela-
tions that we can deduce from an initial relation of the type (a:b) = (c:d)•(e:f). In 
these treatises denomination is de[ ned simply as the result of the division of the 
antecedent or [ rst term of the ratio by the consequent or second term (Busard 
1971, 205, 213). It is not speci[ ed that the denomination is of the form n + k/l. 
9 e introduction of this notion serves to de[ ne composition or, if one prefers, the 

22. Numeri ad numerum dicitur proportio minoris quidem ad maiorem in eo quod maioris pars est aut 
partes. Maioris vero ad minorem secundum quod eum continet et eius partem vel partes.

23. Busard (1971) attributes these to Jordanus and Campanus, but the attribution is doubtful.
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multiplication of proportions, by the multiplication of their denominations, and 
the division of ratios by the division of their denominations.

We therefore have two de[ nitions of the denomination of a ratio: in the [ rst 
the denomination reveals the type of relationship (the larger term contains the 
smaller term a whole number of times together with some parts of the smaller 
term); in the second the denomination is simply the result of division of the terms 
of the ratio, without specifying the form in which the result should be presented. 
Under the [ rst de[ nition, the denomination is distinct from the fraction that 
can be made from the terms of the ratio. 9 us, for the ratio between 6 and 4, the 
denomination is 1 + ½, whereas the corresponding fraction is 3/2.

It is tempting to compare the second de[ nition of denomination to the Greek 
notion of pélikotès, which conveys the idea of quantity.24 9 is comparison was 
indeed made by Renaissance mathematicians (see, for example, Fine 1551, 87–88; 
Clavius 1611–12, 176; Rommevaux 2005, 143). 9 e notion of pélikotès appears in 
the Elements, in de[ nition VI.5: ‘a ratio is said to be compounded of ratios when 
the magnitudes (pélikotétès) of the ratios multiplied together make some (? ratio, 
or size)’ (Heath 1956, II 189). Renaissance translators interpreted pélikotès by the 
Latin term quantitas. 9 us, de[ nition VI.5 leads us to associate ratios—which are 
relationships—with quantities, and the multiplication of these quantities give the 
quantity of the composite ratio. 9 e de[ nition is missing from most of the Latin 
translations of the twelN h century (it is today considered a late interpolation into 
the Greek text), and in particular from the versions of Robert of Chester and 
Campanus. Where the de[ nition does appear, pélikotès is rendered by quantitas 
and not by denominatio (see Busard 1987, 125; Busard 1983b, c 137).

9 e concept of pélikotès is also to be found in Eutocius’ sixth-century com-
mentary on Archimedes’ treatise On the sphere and cylinder:

So it ought to be recalled how a ratio is said to be composed of ratios. For as in the 
Elements: ‘when the quantities [pélikotétès] of the ratios multiplied, produce a certain 
quantity,’ where ‘quantity’ clearly stands for ‘the number’ whose cognate is the given 
ratio [ . . . ] which is the same as saying: ‘the number which, multiplied on [by] the conse-
quent term of the ratio, produces the antecedent as well’. (Netz 2004, I 313)

Eutocius refers to de[ nition VI.5 of the Elements and he does not specify the 
form the pélikotès should take. Elsewhere, he explains that the pélikotès gives its 
name to the ratio. It is likely that he was referring to Nicomachus’ nomenclature, 
but he does not specify it. Eutocius’s commentary was translated into Latin along 
with some of Archimedes’ treatises by Guillaume de Moerbecke in 1269. He too 
translated pélikotès as quantitas.

24. 9 e interrogative adverb pélikos means ‘What size?’ In Arabic pélikotès was translated by kammiya, 
which also evokes the idea of quantity.
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From our current understanding, it is di7  cult to establish an incontestable 
textual ancestry between the concepts of denomination and pélikotès, even if the 
two concepts are mathematical neighbours. And if the concept of denomination 
does indeed derive from that of pélikotès, it remains to be explained when and 
why Latin scholars rendered pélikotès, which contains the idea of the quanti[ ca-
tion of a ratio, by the term denominatio, which strictly speaking is a name rather 
than a quantity, but which brings to the fore a quantity associated with a ratio.

It also remains to [ nd the origin of the de[ nition of denomination that appears 
in Jordanus’s Arithmetic, and subsequently in Book VII of Campanus’s Elements, 
and which allows us to understand how the terms of ratio relate to each other. 
As far as we know, there is no Greek or Arab text containing such a de[ nition. 
I would like to propose a hypothesis as to its origin. In Boethius’s Arithmetic, 
the noun denominatio and the verb denominare appear several times in relation 
to the parts of a number (see Boethius 1995, 17–19): the number 3, for example, 
gives its name, or ‘denominates’, a third part. Campanus takes up this notion of 
denomination of a part at the beginning of Book VII: ‘9 e number denominat-
ing is that by which a part is taken in its whole’ (Busard 2005, I 230).25 Campanus 
also adds a criterion concerning the similitude of the parts: ‘We call similar parts 
those which are denominated by the same number’ (Busard 2005, I 230).26 We 
can hardly fail to compare these de[ nitions with those of the denomination of 
proportions, and the similitude of ratios, that Campanus puts forward in this 
same set of de[ nitions at the beginning of Book VII.

9 e denomination allows us to associate a quantity with a rational ratio. Was 
this enough for medieval and Renaissance mathematicians to identify the ratio 
with this quantity? 9 e answer is no. Mathematicians of this period always main-
tained a strict distinction between a ratio and its denomination, continuing to 
insist that ratio is a relationship and not a quantity. 9 us they held [ rmly to 
Euclidean orthodoxy. By way of example, let us look at Blasius of Parma’s red ec-
tions on ratio, and the possibility of considering ratio as a quantity by way of 
its denomination. Blasius taught logic, natural philosophy, and consequently 
mathematics, in some of the universities of northern Italy at the turn of the 
fourteenth and [ N eenth centuries. It was no doubt while engaged in this that he 
wrote Questions on Master 0 omas Bradwardine’s treatise on ratios, two versions 
of which have survived. It is the second that interests us here (Blasius of Parma 
2005), which contains twelve questions concerning the theory of ratios and its 
applications to the study of movement.

In question 2, Blasius asks what a ratio is. Taking up the Euclidean de[ nition 
he explains that in a strict sense it consists of a relation between two quantities 

25. Denominans est numerus secundum quem pars sumitur in suo toto.
26. Similes dicuntur partes que ab eodem numero denominantur.
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of the same kind. According to Blasius, a ratio, as a relationship, is therefore 
nothing but the terms of which it is composed.27 9 us the double ratio is noth-
ing other than 2 and 1; and the ratio of equality between a soul and itself is 
nothing other than the soul itself. 9 is being so, the double ratio of 2 to 1 and 
the subdouble ratio of 1 to 2 are the same, since they are nothing other than 2 
and 1 (Blasius of Parma 2005, 64). At the same time, a mathematician needs to 
distinguish these two ratios, and also to be able to work on ratios as objects inde-
pendently of the terms of which they are composed. So in question 5, Blasius 
introduces what he calls the formal aspect of a ratio, by which we consider how 
the terms of the ratio relate to each other:

I note that on the subject of ratio we express it in two ways. First, we can speak of a ratio 
as things compared to each other. Second, we can speak of a ratio as things compared 
according to the aspect by which they are called equal or unequal in extension or in per-
fection, etc.28 (Blasius of Parma 2005, 90)

In both cases, the ratio is nothing other than things considered in some relation; 
there is therefore no essence which would exist independently of the terms of 
which the ratio is composed. At the same time, in the second case it can be stud-
ied for itself, by a certain way of conceiving which signi[ es that formal aspect. 
And this is how the mathematician considers it, so that he can draw a formal 
distinction between the double ratio and the subdouble ratio. It is according to its 
formal aspect that the ratio can be considered as a quantity:

9 e ratio can be considered in another way, according to its formal aspect. And thus, 
strictly speaking, we say that a ratio is not a quantity but has the nature of a quantity. 
And that comes to the same thing as saying that its formal aspect is explained in terms 
of a category of quantity and not otherwise.29 (Blasius of Parma 2005, 92)

What gives away the quantitative character of the ratio is precisely its denomination:

First conclusion: every ratio is a certain quantity or has the nature of a quantity. 9 is is 
obvious because every ratio has a denomination according to which it is called a ratio of 
equality or inequality, and consequently according to which this ratio is said to be equal 
or unequal to another. And since this is a property of quantity, any ratio will be a certain 
quantity.30 (Blasius of Parma 2005, 91)

27. To see the status in which Blasius of Parma holds relations, see Biard (2003, 390–396).
28. Noto quarto quod de proportione potest esse duplex sermo. Uno modo potest esse sermo de pro-

portione tamquam de rebus invicem comparatis. Alio modo potest esse sermo de proportione tamquam 
de rebus comparatis secundum rationem secundum quam dicuntur equales vel inequales in extensione vel 
perfectione, et sic de aliis.

29. Alio modo potest considerari proportio secundum eius formalem rationem. Et sic loquendo proprie, 
dico quod proportio non est quantitas sed habet rationem quantitatis. Et hoc est dicere quod ratio eius for-
malis explicatur per terminos de predicamento quantitatis et non aliter.

30. Prima conclusio: omnis proportio est quedam quantitas vel habet rationem quantitatis. Patet quia 
omnis proportio habet denominationem secundum quam dicitur proportio equalitatis vel inequalitatis, 
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9 us, since ratios can be compared according to their denominations, they can 
be considered as quantities, because a property of a quantity is that we can say 
it is larger or smaller than another. A ratio remains nonetheless a relationship: a 
quantitative relationship.

Ratios of ratios

9 e transmission of Euclid’s Elements gave rise to modi[ cations to its theories, 
as we have seen in the three examples above. But the reception of the Elements 
was also an opportunity for novel extensions, and the theory of ratios of ratios is 
one of them.

We have seen that we can name numerical ratios, and also rational ratios (of 
magnitudes), according to their denominations. But what about irrational ratios? 
Bradwardine, in his treatise on ratios, explained that irrational ratios are denom-
inated by means of rational ratios, which themselves are denominated by a num-
ber. He gave the example of the diagonal and the side of a square, which he called 
‘half the double ratio’ and that of half a musical tone, which he called ‘half the 
sesquioctave ratio’. He went no further and it was leN  to Oresme to devise a math-
ematical theory that gave meaning to these denominations.

To do this, he had to de[ ne ratios between ratios. How to do this is not obvi-
ous, since a ratio is by de[ nition a relationship between two magnitudes. If we 
are to de[ ne a ratio between ratios we need to be able to consider ratios them-
selves as magnitudes. What are the essential properties of such magnitudes? 
First, they must be in[ nitely divisible and further, they must satisfy the property 
known as the Archimedean Axiom, that is, the smaller of two magnitudes can be 
taken as many times as necessary until it exceeds the larger. Oresme showed that 
ratios of greater inequality can be considered in the same way as magnitudes. 
Actually, he showed that any ratio can be in[ nitely divided by the insertion of 
means between the terms of the ratio: thus the quadruple ratio, 4 to 1, is divided 
into two double ratios by the insertion of 2 between 4 and 1, and so on (the means 
do not need to be whole numbers). If we compose, or multiply by itself, a ratio of 
greater inequality as oN en as necessary, it becomes larger than any given ratio of 
greater inequality (for example, if we take the double and sextuple ratios, we see 
that the ratio composed of the double ratio three times is the octuple ratio, which 
is larger than the sextuple ratio). 9 us, ratios of greater inequality can be consid-
ered as magnitudes, subject to the de[ nitions of Book V of the Elements. We can 
therefore talk of a ratio between ratios of greater inequality. On the other hand 

et per  consequens secundum quam ista proportio dicitur esse equalis vel inequalis alteri. Et quia hoc est 
proprium quantitati, ideo omnis proportio erit quedam quantitas.
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we cannot talk of a ratio between a ratio of equality or of lesser inequality and a 
ratio of greater inequality. For example, the subtriple ratio, 1 to 3, multiplied by 
itself as oN en as we like, always gives a ratio of lesser inequality, which is smaller 
than any ratio of greater inequality.

Denomination of irrational ratios is therefore founded on an additive inter-
pretation of the composition of ratios. If a, b, and c are three magnitudes, the ratio 
a : c is said to be composed of the ratios a : b and b : c, in the same way that a line 
segment AC is composed of segments AB and BC, where B lies between A and C. 
Let us consider composition as an addition and suppose that the magnitudes a, b, 
and c are continuously proportional, that is to say that the ratios a : b and b : c are 
equal. Since the two ratios compose the ratio a : c, each of them will be called the 
‘half ’ of this ratio. So, for example, the ratio of the diagonal to the side of a square 
is called ‘half the double ratio’, because the ratio composed of it twice is the dou-
ble ratio. We can speak in the same way about the irrational ratio ‘two-thirds of 
the triple ratio’, for example: it consists of the ratio which composed three times 
yields the duplicate of the triple ratio, that is to say the nonuple ratio.

In this way we can name irrational ratios, which are parts of rational ratios. 
Bradwardine seemed to think that all irrational ratios were like this. Oresme had 
an intuition that this was not the case, and there could be irrational ratios which 
are not parts of a rational ratio, but he gave no example (Oresme 1966, 160–162). 
We now know that the ratio of the circumference of a circle to its diameter is such 
a ratio, but this was not proved until the nineteenth century.

Conclusion

9 e text of the Elements that reached the Latin West in the twelN h century 
diverged in several ways from the Greek text that we now know. 9 e variations 
can seem, on the face of it, to be of little signi[ cance. However, attentive study of 
the texts, with particular attention to the vocabulary used by the translators and 
commentators, and a precise examination of their claims and demonstrations, 
shows that the divergences sometimes change the Elements and its theories in 
important ways.

In the study of the prisms and pyramids, we were able to present what became 
a concern of many commentators, in particular Campanus: to generalize the 
results presented by Euclid. Faulty transmission had led Campanus to believe 
that Euclid had considered only pyramids and prisms with triangular bases. He 
therefore generalized the propositions that he found in Robert of Chester’s ver-
sion, to pyramids and prisms on any polygonal bases.

9 e study of irrationality o\ ers an example of subtle divergences which pro-
foundly modi[ ed the theory. A corrupt de[ nition allowed medieval writers to 
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put in place a formal parallelism between the notions of commensurability and of 
rationality, a parallel that does not exist in Euclid. Further, while Euclid referred 
to an expressible or rational line that was part of the problem under consideration, 
medieval writers posited a priori a unit of measure against which all other lines 
could be compared. 9 us we have the conditions for the arithmetization of Book X. 
We should emphasize that Campanus did not himself proceed to this arithmetiza-
tion: for him, the choice of reference line remained implicit. And he did not invoke 
the aid of radical numbers to translate the di\ erent concepts of measure, nor did he 
interpret the claims in terms of algebraic operations on these numbers.

Finally, the study of the proportionality of magnitudes and numbers shows 
how Campanus was led to introduce the non-Euclidean concept of the denom-
ination of a ratio, in order to put the theories of proportionality in Books V and 
VII onto solid foundations. 9 us a ratio, which initially was only a relationship, 
came to have a quantity associated with it. It was not until the seventeenth cen-
tury, however, that ratios became irrevocably assimilated with quantities, ready 
to give birth later to the theory of real numbers.

9 ese three examples show how faulty transmission of the Elements led to 
readjustments and important modi[ cations to the theories. Campanus played a 
central role in the reception of the Elements in the Middle Ages and in its trans-
mission to the Renaissance, and the theories he put in place nourished medieval 
mathematics and its applications. 9 us, the theory of irrationality and the concept 
of denomination of a ratio have an important place in the mathematical theories 
devised by Bradwardine and developed by Oresme, in the context of calculations 
of the speed. Bradwardine explained that if we have two bodies moved by two 
movers, the ratio between the speeds of their movements is the ratio between 
two other ratios: the ratio of the power of the [ rst mover to the resistance of 
the [ rst body and the ratio of the power of the second mover to the resistance 
of the second body. To give meaning to this formulation, Oresme developed a 
theory of ratios of ratios which applies to the theories in Books V, VII, and X of 
the Elements in the modi[ ed form of Campanus, of which we have given certain 
elements (see also Rommevaux, in press). 9 is theory of ratios was to be taken 
up and criticized until the sixteenth century, and we [ nd an echo of the debates 
it inspired in Clavius’s commentary on the Elements (Rommevaux 2005, 69–72). 
Oresme’s theory of ratios is also to be found at the origin of certain logarithmic 
constructions in the seventeenth century, for instance, that of Kepler.

In the Middle Ages, theories of ratio and of irrationality found many applica-
tions beyond the theory of movement, notably in music and architecture. In these 
[ elds, studies remain to be done to analyse which theory of ratios is being used 
and to gauge what place is given to the modi[ cations made by Campanus.

9 e impact of Campanus’s edition, however, was felt beyond the Middle Ages. 
Although mathematicians of the Renaissance returned to the Greek text of 



The transmission of the Elements to the Latin West 705

Euclid as we know it, they still drew on Campanus’s commentary and on those 
of other medieval mathematicians, who sometimes helped them to understand 
di7  cult concepts, or to complete the Euclidean treatise where it seemed incom-
plete. 9 us, the non-Euclidean concept of the denomination of ratio crops up 
oN en in Renaissance editions of the Elements to explain what ratio and propor-
tionality are. We also [ nd numerous references to Campanus, explicit or other-
wise, in sixteenth- and even seventeenth-century editions of the Elements. 9 ese 
borrowings sometimes come with criticisms, especially that Campanus misun-
derstood Euclid. But we should be aware that such criticisms are sometimes 
baseless: our study has shown that the same term can hide di\ erent concepts, 
and that the de[ nitions Campanus had to use were not the Euclidean de[ ni-
tions. Renaissance editors of the Elements did not always take this into account, 
sometimes even intentionally, because they needed to show that Medieval com-
mentators had distorted the Elements and that it was necessary to return to the 
Greek sources.
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CH A P T ER 8 . 2

‘Gigantic implements of war’: images of 
Newton as a mathematician
Niccolò Guicciardini

That Newton was a great mathematician was evident in the early 1670s to 
those very few who had privileged access to his early mathematical discover-

ies.1 By the 1680s Newton was regarded by his contemporaries as an outstanding 
mathematician. It was in order to [ nd an answer to a mathematical question con-
cerning the shape of planetary orbits, for example, that Edmond Halley travelled 
to Cambridge to see Newton in August 1684. 9 ere he found that Newton had 
already broached and answered that di7  cult question. When in 1687 Newton’s 
answer appeared in Philosophiae naturalis principia mathematica ‘Mathematical 
principles of natural philosophy’, not a few had reservations about his cosmology 
based on gravitational action at a distance, but even critics of gravitation theory 
were impressed by the depth and scope of the mathematical structure Newton 
had developed.

Since then the image of Newton as one of the greatest mathematicians in history 
has remained unshaken. But the nature of his contribution to mathematics has 
always been di7  cult to de[ ne. Evaluations, most of them eulogistic, have stressed 
di\ erent aspects of Newton’s work. To some he has appeared as the initiator of 

1. 9 e reader seeking information on Newton’s early mathematical work can turn to Westfall (1980, 
 105–139), and for a deeper analysis to Whiteside’s editorial commentary in Newton (1967–81, I).
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new and powerful algorithms, while others have been captivated by his geometri-
cal style reminiscent of ancient Greece. 9 ere has been, as we will see in this chap-
ter, considerable disagreement between those who have tried to delineate Newton’s 
mathematical legacy, which has been constructed and reconstructed again and 
again. 9 e process of reinvention of Newton as a mathematician has been pursued 
for di\ erent purposes and with di\ erent agendas in mind; and in some cases, as we 
shall see, with the purpose of downgrading and criticizing him. Newton’s math-
ematical works have always proved puzzling, and his mathematics has engendered 
reactions from frustration to awe. His style appeared to many as obsolete, or rather, 
endowed with an aura of a past golden age impossible to emulate. Further, in too 
many cases Newton seemed to be hiding his method of discovery, or even to be 
obfuscating proofs by failing to disclose a number of crucial passages.

I begin my chapter by discussing the priority dispute which broke out in the 
[ rst decade of the eighteenth century and which divided Newton’s supporters 
from those of Leibniz. In their confrontation, Newtonians and Leibnizians ren-
dered explicit some shared values that worked as tacit assumptions in normal 
mathematical practice. 9 e priority dispute, therefore, played an important role 
in the making of Newton’s image as a mathematician. We will then consider the 
reception and evaluation of two of his works, the Principia, and the somewhat 
less celebrated Enumeratio linearum tertii ordinis. We conclude the chapter with 
a section devoted to criticisms that emerged aN er a century of successful applica-
tions of Leibniz’s di\ erential and integral calculus.

B e Commercium epistolicum

9 e circumstances surrounding the controversy between Newton and Leibniz 
have been analysed in detail by Rupert Hall (1980) and D T Whiteside (Newton 
1967–81, VIII 469–538). In broad outlines let us recall a few bare facts. Newton 
formulated his method of series and d uxions between 1665 and 1669.2 Leibniz 
had worked out his equivalent algorithm, the di\ erential and integral calculus, 
around 1675 and printed it in a series of papers from 1684, and it is clear from 
manuscript evidence that he arrived at his results independently from Newton. It 
was only in part in Wallis’s Algebra in 1685 and Opera in 1693 and 1699, and in full 
in an appendix to his Opticks in 1704, however, that Newton’s method appeared 
in print. In 1708 a British mathematician, John Keill, stated in the Philosophical 
Transactions of the Royal Society that Leibniz had plagiarized Newton (Keill 
1708). AN er Leibniz’s protest a committee of the Royal Society secretly guided by 

2. From the 1690s Newton denoted ‘d uent quantities’ by letters such as x, y, and their ‘d uxions’, or rates 
of change, by ẋ, ẏ. 
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its President, Isaac Newton, produced a publication, the so-called Commercium 
epistolicum ‘Exchange of letters’, which maintained that Newton was the ‘[ rst 
inventor’ and that ‘[Leibniz’s] Di\ erential Method is one and the same with 
[Newton’s] Method of Fluxions’ ([Newton] 1712, 121). It was also suggested that 
Leibniz, aN er his visits to London in 1673 and 1676, and aN er receiving letters 
from Newton’s friends and from Newton himself, had gained su7  cient informa-
tion about the d uxional method to allow him, aN er changing the symbols, to 
publish the calculus as his own discovery. Most notably, Newton addressed two 
letters, the so-called epistola prior ‘[ rst letter’ and epistola posterior ‘later let-
ter’, to Leibniz in 1676 through Henry Oldenburg, secretary of the Royal Society. 
Only aN er the work of twentieth-century historians such as Hall and Whiteside 
do we have proof that Keill’s accusation was unjust: Newton and Leibniz arrived 
at equivalent results independently and following di\ erent paths of discovery.

9 e Commercium epistolicum can be considered as Newton’s last mathemati-
cal work. Based on archival material (letters, manuscripts, excerpts from printed 
works) it was printed in late 1712 and distributed in January and February 1713. Its 
purpose was to reply to Leibniz’s demand, addressed in December 1711, that the 
Royal Society, of which Leibniz was a Fellow, should protect him from the ‘empty 
and unjust braying’ of such an ‘upstart’ as Keill (Newton 1959–77, V 207).3 Formally 
the Commercium was the work of an independent committee. Materially, as the 
manuscripts, edited by Whiteside, now show, it is a work carefully draN ed and 
engineered by Newton himself, who honed and perfected every detail of it (Newton 
1967–81, VIII 539–560). Not a word passed into print without his supervision.

9 e Commercium epistolicum has been considered puzzling by many com-
mentators. Its purpose was to prove Leibniz’s plagiarism of the calculus, but to 
many readers it failed to do so since it dealt with topics which are deemed to be 
only loosely related to the calculus. Most notably, the two letters that Newton 
addressed to Leibniz in 1676, which constitute the main proof that crucial infor-
mation was passed to Leibniz, are oN en described as lacking this very evidence.

With hindsight we know that Newton could have provided documents that 
would have been considered more convincing to our critical readers. For instance, 
he did not use the manuscript treatise, composed in 1671, known as ‘Tractatus de 
methodis serierum et d uxionum’ ‘Treatise of the method of series and d uxions’, 
which includes algorithms and rules equivalent to Leibniz’s di\ erential calcu-
lus, and their application to the calculation of tangents and curvatures to plane 
curves (Newton 1967–81, III 74–81, 116–194). Why did Newton not use excerpts 
from these problems during the controversy with Leibniz? Why, instead, did 
he amass information on topics that can hardly be considered as proof of his 
transmission of the calculus to Leibniz? 9 e easy answer, that Newton was just 

3. vanae et injustae vociferationes [ . . . ] cum homine docto, sed novo.
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dishonest, does not capture the complexity of his position. Even if one wants to 
concede dishonesty in Newton’s handling of the quarrel with Leibniz, it would have 
been simply stupid not to provide evidence which was as strong as possible in the 
Commercium epistolicum. In this section I will expand on these themes to show 
that in the priority dispute Newton had a di\ erent view of the nature and impor-
tance of the discovery which, he was convinced, Leibniz had stolen from him.

While Leibniz insisted on the importance of his discovery and publication of 
the algorithm for di\ erentiation, Newton and his acolytes focused instead on 
methods of quadrature (namely integration) via power series expansions. 9 ese 
methods were developed by Newton in a early treatise entitled De analysi per 
aequationes numero terminorum inF nitas ‘On analysis through equations with 
an in[ nite number of terms’, composed in 1669 (Newton 1967–81, II 206–247), 
which was reproduced in the Commercium epistolicum. Newton divided his 
method of d uxions into the ‘direct method’, which is equivalent to di\ erentiation, 
and the ‘inverse method’, which is equivalent to integration. When one analyses 
the mathematical examples adduced in the Commercium epistolicum it emerges 
that Newton, and his acolytes who were slavishly editing it, referred to the inverse 
method of d uxions applied to quadratures (for an example, see Fig. 8.2.1).

Leibniz protested, of course: this was not his point. He claimed to have dis-
covered the rules of the di\ erential calculus independently from Newton, but 
the Commercium epistolicum had nothing to say about this. In his rebuttal, the 
Historia et origo calculi di5 erentialis ‘9 e history and origin of the di\ erential 
calculus’, which was to remain unpublished until the nineteenth century, he 
wrote of himself in the third person:

9 ey have changed the whole point of the controversy, for in their publication [ . . . ] 
one [ nds hardly anything about the di\ erential calculus; instead every other page is 
made up of what they call in[ nite series [ . . . ] 9 is is certainly a useful discovery, for by 
it arithmetical approximations are extended to the analytical calculus; but it has noth-
ing at all to do with the di\ erential calculus. 9 ey use this sophism, that whenever his 
adversary works out a quadrature by addition of the parts by which a [ gure is gradually 
increased, at once they hail it by the use of the di\ erential calculus (as for instance on p. 
15 of the Commercium epistolicum [see Fig. 8.2.1]) [ . . . ] Since therefore his opponents, 
neither from the Commercium epistolicum that they have published, nor from any other 
source brought forward the slightest bit of evidence whereby it might be established that 
his rival used this calculus before it was published by our friend; therefore all the things 
that they have reported may be rejected as extraneous to the matter. 9 ey have made 
recourse to the skill of ranters with the purpose to divert the attention of judges from the 
matter on trial to other things, namely to in[ nite series.4 (Leibniz 1849–63, V 393, 410)

4. Mutarunt etiam statum controversiae, nam in eorum scripto [ . . . ] de calculo di\ erentiali vix quicquam 
(invenitur): utramque paginam faciunt series, quas vocant, in[ nitae. [ . . . ] Utile est inventum, et appropinqua-
tiones Arithmeticas transfert ad calculum Analyticum, sed nihil ad calculum di\ erentialem. [ . . . ] Cum ergo 
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9 e policy followed in the Commercium epistolicum surely and bitterly appeared 
to Leibniz as a clever way of shiN ing the level of discourse in order to avoid a 
fair confrontation. But what we know about Newton’s intellectual trajectory as a 

adversarii neque ex Commercio Epistolico, quod edidere, neque aliunde vel minimum indicium protulerint, 
unde constet aemulum tali calculo usum ante edita a nostro; ab his allata omnia ut aliena sperni possunt. Et 
usi sunt arte rabularum, ut judicantes a re de qua agitur ad alia diverterent, nempe ad series in[ nitas.

Figure 8.2.1 ‘An example of calculation by moments of U uents ’ from De analysi 
(1669) reproduced in the Commercium epistolicum. First Newton sets AB = x, and 
considers the circle with diameter AE = 1. The ratio of the ‘moment’ of the arc 
AD, to the ‘moment’ of the abscissa AB (that is, HD/GH) is ( ) ( ).x x x x− −2 22 2  
Expanding this as an in? nite power series and integrating term by term, he obtains 
the arc-length AD of the circle as: x x x x1 2 2 31 6 3 40 5 112( ).+ + + +�  Then, 
setting CB = x and the radius CA = 1, Newton observes that the arc LD is given by: 
x x x x+ + + +3 5 76 3 40 5 112 . . .,  which we now recognize as the arcsin series. 
([Newton] 1712, 15)



INTERACTIONS AND INTERPRETATIONS712

mathematician, what we know about his statements before the controversy, tell 
us that there is something deeper. On the one hand we have Leibniz who focuses 
on algorithm and the basic rules of the ‘simple’ di\ erential calculus. On the other 
there is Newton for whom the prowess of a mathematician is measured by the 
hard ‘inverse’ problems he is able to solve. Newton’s rules, on which much was 
said in the Commercium epistolicum, were the rules of the inverse method of 
d uxions.

9 e fact that Newton and his acolytes focused on the use of series and the inverse 
method (integration), rather than on the direct one (di\ erentiation), is supported 
by the attribution, encountered repeatedly in their writings, of the direct method 
to Barrow rather than to Newton or Leibniz. Wallis, for instance, who in 1693 was 
the [ rst to print the d uxional notation and algorithm (Wallis 1693–9, 2, 391–396), 
stated in his commentary, which was cited in the Commercium epistolicum, that

akin to this method (the direct of d uxions) there is on the one hand the method of 
Leibniz, and on the other hand that method, older than either, which Dr Isaac Barrow 
has expounded in his Lectiones geometricae: and this is acknowledged in the Acta Lipsica 
in January 1691.5 ([Newton] 1712, 98)

9 e Acta Lipsica were the Acta eruditorum (published in Leipzig), and the refer-
ence is to a paper where Jacob Bernoulli, one of Leibniz’s most proli[ c acolytes, 
claimed that the di\ erential calculus was the same as Barrow’s.6 David Gregory 
was of the same opinion. Much impressed by the mine of mathematical results 
that Newton showed him in his chambers in May 1694, once back in Oxford he 
jotted down a widely circulated little treatise entitled Isaaci Newtoni methodus 
I uxionum; ubi calculus di5 erentialis Leibnitij, et methodus tangentium Barrovij 
explicantur.7 In the opening lines, Gregory made it clear that both Leibniz’s and 
Newton’s methods ‘di\ er only in name’ and ‘d ow easily from Barrow’s Method of 
Tangents treated in the 10th chapter of his Lectiones geometricae’.8

9 is interpretation seems not to have bothered Newton too much. Quite the 
contrary, in the Commercium epistolicum, a text that was draN ed under Newton’s 
careful supervision, one repeatedly [ nds the direct method attributed to Barrow, 
James Gregory, and René François de Sluse. In commenting on Leibniz’s letter 

5. Huic Methodo a7  nis est tum Methodus di\ erentialis Leibnitii tum utraque antiquior illa quam Dr Is.  
Barrow in Lectionibus Geometricis exposuit. Quod agnitum est in Actis Leipsiensis (Anno 1691, mense Jan.) 
à quodam qui methodum adhibet Leibnitii similem.

6. Jacob Bernoulli’s paper was to arouse Leibniz’s wrath. An English translation of his draN  of a long reply 
to Bernoulli can be found in Leibniz (2005, 11–20). What provoked Leibniz’s anger was peacefully accepted 
by Newton.

7. Personal contact with Newton was the procedure one had to follow, with due deference, in order to 
obtain private disclosure on the new analysis. 9 e translation of Gregory’s title is ‘Isaac Newton’s method of 
d uxions; in which the di\ erential calculus of Leibniz, and Barrow’s method of tangents are explained’.

8. Calculus Di\ erentialis Leibnizij et Methodus Fluxionum Newtoni tantum nomine tenus di\ erant [ . . . ] 
et facile d uunt ex Methodo Tangentium Barrovij Lect: 10. Geom: tradita. (Christ Church, Oxford, MS B.13.
cxxxI1r)
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of 11/21 June 1677,9 a very important document in which the notation and rules 
of the di\ erential calculus were [ rst displayed to Newton, the editors of the 
Commercium epistolicum note that ‘Barrow did the very same thing [ . . . ] and by 
a very similar calculus’ ([Newton] 1712, 88).10 John Keill in his answer to Leibniz, 
presented in the Philosophical Transactions for 1711 and reproduced near the end 
of the Commercium epistolicum, stated that Sluse, James Gregory, and Barrow 
had methods for drawing tangents to curves ‘which do not di\ er too much from 
the method of d uxions’ ([Newton] 1712, 112).11

9 ese statements, which appeared with Newton’s approbation, have oN en been 
considered counterproductive. For instance, in the second edition of Montucla’s 
Histoire des mathématiques (1802) one reads:12

Is it not contradictory to say that Leibniz’s method, described in the letter which we are 
considering [Leibniz to Oldenburg, 11/21 June 1677], is just that of Barrow, and that it is 
the same as the one that Newton had communicated in 1669, which is claimed to be his 
method of d uxions? Because from this it follows that Newton’s method is equivalent to 
Barrow’s, excepting the notation.13 (Montucla 1799–1802, III 107)

It is highly unlikely that Newton allowed the attribution of the direct method 
to Barrow because of a careless editing of the Commercium epistolicum. Quite 
the contrary, we know from the many manuscripts that Newton leN  that he 
 supervised its publication with an almost obsessive attention to detail.

9 e attribution of the direct method to Barrow, Sluse, and James Gregory 
would have appeared incomprehensible to Leibniz: his elegant algorithm, 
he  frequently claimed, had many advantages over previous tangent meth-
ods, the most  important being that it could be applied to irrational quanti-
ties. In  tangent methods prior to Newton and Leibniz one had to eliminate 
irrational quantities  [ rst. Leibniz’s ‘remarkable calculus’, by contrast, was 
‘impeded neither by  fractional nor by irrational quantities’, a claim which 
appeared in the title of his very [ rst paper on the calculus, published in 1684.14 
Newton also praised the fact that his own direct method of d uxions could 
deal with irrationals ‘without taking away surds’. But for Newton, overcoming 

9. During the seventeenth century England continued to follow the ‘old style’ calendar, so that 21 June in 
France or Germany was 11 June in England.

10. Idem fecit Barrow in ejus Lect.10 Anno 1669 impressa, idque calculo consimili.
11. quae a Fluxionum methodo non multum abludebat.
12. When Montucla died, pages 1–336 of volume III of his new edition of the Histoire were already printed. 

9 e rest was revised by de Lalande. We do not know how much Montucla’s text was changed, especially aN er 
page 336, but it is fair, I surmise, to attribute to Montucla quotations that appear before that.

13. N’y a-t-il pas de la contradiction à dire que la méthode de Leibnitz, décrite dans la lettre é dont nous 
parlons, n’est que celle de Barrow, et qu’elle est la même que celle que Neuton avoit communiquée  dès 1669, 
qu’on prétend être son calcul des d uxions. Car il suivroit delà que la méthode même de Neuton ne seroit que 
celle de Barrow à la notation près.

14. Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas nec irrationales quanti-
tates moratur, et singulare pro illis calculi genus ‘A new method for maxima and minima, as well as tangents, 
which is impeded neither by fractional nor irrational quantities, and a remarkable type of calculus for this’.



INTERACTIONS AND INTERPRETATIONS714

this hurdle, at least in the most elementary cases, was a simple application of the 
binomial expansion that he had communicated to Leibniz in the epistola prior: 
namely the d uxion of xn was easily calculated by expanding (x + o)n, where o is a 
small increment of the d uent x, even when n was a fraction. As he explained in 
the Tractatus de quadratura curvarum ‘Treatise on the quadrature of curves’ in 
1704:

Suppose the quantity x I ows uniformly and the I uxion of the quantity xn is to be found. 
In the time that the d owing quantity x comes to be x + o, the quantity xn will come to be 
(x + o)n, that is, (when expanded) by the method of in[ nite series

x nox n n o xn n n+ + − +− −1 2 2 21
2 ( ) .�

9 e increases o and nox n n o xn n− −+ − +1 2 2 21
2 ( ) �  are to one another as 1 to 

nx n n oxn n− −+ − +1 2 21
2 ( ) �. Now let those increases to vanish and their last ratio will be 

1 to nxn–1; consequently the d uxion of the quantity x is to the d uxion of the quantity xn as 
1 to nxn–1.15 (Newton 1967–81, VIII 126–129)

As in the inverse method of d uxions, the key to the direct method is in power 
series development, the main topic of the Commercium epistolicum.

While Newton put little importance on the direct method for drawing tan-
gents, he was very sensitive about his techniques for the inverse method. A study 
of his mathematical correspondence reveals that he did not easily share his meth-
ods of quadrature. His disclosures reveal a complex strategy, most notably that as 
the years passed Newton allowed more and more of his precious inverse methods 
to be known. 9 e progress in integration techniques achieved in the 1690s by 
John Craig, David Gregory, Leibniz, and Jacob and Johann Bernoulli began erod-
ing Newton’s conviction that he had an unbridgeable advantage over his contem-
poraries. To summarize, one can say that from the early 1670s he considered the 
quadrature methods of the De analysi to be in the public domain: for instance, he 
revealed them to Barrow, Collins, and Wallis, and to Leibniz in the two epistolae. 
But he showed a remarkable jealousy until the mid-1690s in revealing his more 
sophisticated techniques (now recognized as integration by substitution and by 
parts), which are to be found in the concluding pages of the 1671 ‘Treatise of 
series and d uxions’, and which constitute the main body of the De quadratura 
curvarum. When, in his letter of 17/27 August 1676, Leibniz informed Newton 
about his transmutation method applied to circle quadrature (Newton 1959–77, 

15. Fluat quantitas x uniformiter et invenienda sit I uxio quantitatis xn. Quo tempore quantitas x 
d uendo evadit x + o, quantitas xn evadet x o n+ | , id est per methodum serierum in[ nitarum 
x nox nn n ooxn n n+ + − +− −1 21

2 ( ) & .;c  Et augmenta o et nox nn n ooxn n− −+ − +1 21
2 ( ) & .c  sunt ad invicem ut 1 et  

nx nn n oxn n− −+ − +1 21
2 ( ) & .c  Evanescant jam augmenta illa, et eorum ratio ultima erit 1 ad nxn–1;  ideoque 

d uxio quantitatis x est ad d uxionem quantitatis xn ut 1 ad nxn–1.
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II 57–64), Newton replied to Collins (on 8 November) that he himself had a much 
more powerful technique. He boasted that:

I say there is no such curve line but I can in less then half a quarter of an hower [sic] tell 
whether it may be squared or what are ye simplest [ gures it may be compared with, be 
those [ gures Conic sections or others’. (Newton 1959–77, II 179)

But aN er this tantalizing hint at his method of quadratures Newton added:

9 is may seem a bold assertion [ . . . ] but it’s plain to me by ye fountain I draw it from, 
though I will not undertake to prove it to others. (Newton 1959–77, II 180)

In the 1690s Newton, challenged by his younger contemporaries, allowed some 
of his quadrature techniques, his secret ‘fountain’, to be printed in Wallis’s Opera 
(1693–9, II 391–396).

9 e authorial and publication strategies adopted by Newton, as well as the policy 
he followed during the controversy with Leibniz in editing the Commercium epi-
stolicum, reveal something about his agendas and priorities. For us ‘the calculus’ is 
a deductive theory based on de[ nitions (of limit, derivative, di\ erential, and so on) 
and basic rules for di\ erentiation. 9 e crucial questions for many historians have 
oN en been: who was the [ rst to discover these rules? Who was the [ rst to publish 
them? As a matter of fact, it is easier to [ nd the rules of the di\ erential calculus in 
Leibniz’s Nova methodus (the [ rst publication of his calculus in 1684) than in any of 
Newton’s papers. But these questions do not address what was crucial for Newton. 
A formal theory and its basic rules were not a matter of great interest for him. 
Rather, he was concerned with a method for solving geometrical problems, most 
notably problems of quadrature, and this was the whole issue of the Commercium 
epistolicum. In his opinion, his method of series and d uxions showed its power only 
when tested against hard problems in squaring curves (integration) or in what was 
known as the ‘inverse method of tangents’ (integration of di\ erential equations).16 
9 us he saw himself as the discoverer not of simple rules for [ nding tangents, but 
of a secret ‘fountain’ that allowed him to solve such inverse problems.

9 e following remark taken again from the third volume of Montucla’s Histoire 
can be cited as an example of how, from a di\ erent perspective from Newton’s, 
the epistola posterior, one of the chief evidential documents of the Commercium 
epistolicum, can be viewed as defective:

Here we note that aN er having read and re-read this letter [epistola posterior], we [ nd the 
method of d uxions described only with regard to its consequences and advantages, but 
not with regard to its principles.17 (Montucla 1799–1802, III 103)

16. An inverse tangent problem requires the determination of a curve when its tangent is known at every point.
17. Nous remarquons ici qu’après avoir lu et relu cette lettre, nous y trouvons seulement cette méthode 

décrite, quant à ses e\ ets et ses avantages, mais non quant à ses principes.
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But Newton, unlike Leibniz, had always presented his method of d uxions as 
a panoply of successful problem-solving techniques: its ‘consequences’ and its 
‘advantages’ were his priority. When asked to show his prowess, he preferred to 
deliver results rather than methods; Leibniz on the other hand was concerned to 
establish himself as the discoverer of a successful algorithm, and was happy to 
leave the burden and merit of its applications to others. A typical statement that 
Newton anonymously circulated in 1717 can be cited as further evidence of his 
viewpoint:

In the year 1684 Mr Leibnitz published only the Elements of the Calculus di\ erentialis & 
applied them to questions about Tangents & Maxima & Minima as Fermat Gregory & 
Barrow had done before, & shewed how to proceed in these Questions without taking 
away surds, but proceeded not to the higher Problemes. 9 e Principia mathematica 
gave the [ rst instances made publick of applying the calculus to the higher Problemes. 
(Newton 1967–81, VIII 513)

Newton’s pronouncement concerning the use of calculus in the Principia is, 
however, extremely problematic. 9 e image of Newton as a mathematician that 
emerges from his magnum opus is complex and in a way contradictory. In the 
next section I will therefore turn to this image as it was construed on the basis 
of the evidence provided in the Principia. 9 is construal, of course, played an 
important role in the controversy with Leibniz, since proof of the use of calculus 
in the Principia would have tipped the balance in Newton’s favour.

B e Principia

Contrary to Newton’s own pronouncement quoted above, the Principia is writ-
ten almost entirely in geometric form: it is hard to [ nd ‘instances made publick’ 
of applications of ‘the calculus to the higher Problemes’ in its pages, which are 
heavily adorned with geometrical diagrams. However, in a number of proposi-
tions algebraic reasoning and in[ nite series occur. Further, some of the proposi-
tions open with a rather intriguing statement: the reader is asked to concede that 
a ‘method for squaring curvilinear [ gures’ is available. In Book I Proposition 41, 
for instance, which is concerned with determining an orbit under a central force, 
Newton reduces the problem to the quadrature of a curve, in Leibnizian terms 
to an integration. In the corollaries that follow, the results are obtained thanks 
to previously acquired knowledge of the calculation of the curvilinear area, but 
the reader is given not the slightest hint on how such crucial calculations are to 
be carried out.18 Clearly, a strategy of non-disclosure of heuristic techniques is 

18. Corollary 3 is particularly interesting as it deals with the di7  cult problem of determining the trajec-
tories traced by a ‘body’ accelerated by an inverse-cube force.
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at work here, and this frustrated all the competent readers of the Principia, like 
Christiaan Huygens, who complained about Newton’s secrecy.

9 e plurality of methods and complexity of authorial strategies employed in 
the Principia are the main causes for the diversity of judgements that have been 
given over the centuries. A passage from the preface to l’Hôpital’s Analyse des 
inF niment petits pour l’intelligence des lignes courbes (1696) has remained justly 
famous since Newton himself quoted it in the 1710s:

Furthermore, it is a justice due to the learned M. Newton, and that M. Leibniz himself 
accorded to him: 9 at he has also found something similar to the di\ erential calculus, as 
it appears in his excellent book entitled Philosophiae Naturalis Principia Mathematica, 
published in 1687, which is almost entirely about this calculus.19 (l’Hôpital 1696, xiv)

9 is passage, now believed to have been written by Bernarad le Bovier de 
Fontenelle, shows us how Newton’s mathematical natural philosophy was already 
perceived by some late seventeenth-century natural philosophers: as based on 
modern techniques, geometrical limits, or in[ nitesimals, and therefore ready to be 
translated into the language of d uxional, or di\ erential and integral, algorithms. 
9 e geometry of the Principia thus appeared to many as disguised calculus.

A completely di\ erent evaluation was given in 1837 by William Whewell, who 
wrote in History of the inductive sciences:

9 e ponderous instrument of [geometric] synthesis, so e\ ective in [Newton’s] hands, has 
never since been grasped by one who could use it for such purposes; and we gaze at it 
with admiring curiosity, as on some gigantic implement of war, which stands idle among 
the memorials of ancient days, and makes us wonder what manner of man he was who 
could wield as a weapon what we can hardly liN  as a burden. (Whewell 1837, 167)

A few decades later Maximilien Marie seems to reply to Fontenelle, writing:

In the Principia one [ nds excellent in[ nitesimal geometry, but I could not [ nd any 
in[ nitesimal analysis: I add that to those who wish to see the calculus of d uxions in the 
Principia, one could then also show the di\ erential calculus in Huygens’s Horologium 
(Marie 1883–8, VI 13).20

While Fontenelle stresses the modernity of Newton’s mathematical methods in 
the Principia, underlining their equivalence with the new calculus, Whewell and 
Marie are impressed by the distance that separates Newtonian mathematical nat-
ural philosophy from modern analytical mechanics. Marie disagreed  completely 

19. C’est encore une justice dûë au sçavant M. Newton, & que M. Leibniz lui a renduë lui-même: Qu’il 
avoit aussi trouvé quelque chose de semblable au calcul di\ érentiel, comme il paroît par l’excellent Livre 
intitulé  Philosophiae Naturalis Principia Mathematica, qu’il nous donna en 1687, lequel est presque tout de 
ce calcul.

20. On trouve dans les Principes de Philosophie naturelle d’excellente Géométrie in[ nitésimale, mais je n’y 
ai pas découvert d’Analyse in[ nitésimale: j’ajoute qu’à celui qui voudrait voir le calcul des d uxions dans le 
Livre des Principes, on pourrait aussi bien montrer le calcul di\ érentiel dans l’ Horologium.
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with Fontenelle, seeing Newton’s method as closer to the ‘in[ nitesimal geometry’ 
of Huygens than to the di\ erential and integral calculus of Leibniz. To under-
stand the reasons for the enigmatic character of Newton’s mathematics as pre-
sented in the Principia one needs to consider the aims and values of its author, 
which in turn shaped his publication policy.

We have to step back to the early 1670s, when Newton began lecturing in 
Cambridge as a young Lucasian Professor, and had a clear agenda which would 
continue to inform his intellectual life. He saw himself as a mathematician who 
could inject certainty into natural philosophy through the use of geometry. Newton 
positioned himself against the Baconian inductivism in vogue at the Royal Society 
as much as against Cartesian rationalistic hypotheticism. From his many pro-
nouncements on method one can infer that he considered both Bacon’s ‘bottom 
to top’ experimental procedure and Descartes’ ‘top to bottom’ method as doomed 
to yield only probability. Bacon’s proposed bottom line, the patient collection of 
experimental results, was not su7  cient to guarantee certainty. Descartes’ ‘top’, 
consisting of clear and distinct ideas, was not necessary if it was just to deliver, as 
Newton wrote, ‘little better then a romance’ (CUL MS Add 3970, f. 480v).21

In Newton’s time many virtuosi of the Royal Society fostered a moderate scep-
ticism that eschewed the arrogance of certainty and instead aimed at probable 
truth reached through patient experimentation. A passage such as the follow-
ing, taken from the lectures on optics that Newton delivered in about 1670, was 
anathema to eminent fellows of the Royal Society like Henry Oldenburg, Robert 
Hooke, and Robert Boyle. Newton stated:

I hope to show—as it were, by example—how valuable is mathematics in natural philoso-
phy. I therefore urge geometers to investigate nature more rigorously, and those devoted 
to natural science to learn geometry [ rst. Hence the former shall not entirely spend their 
time in speculations of no value to human life, nor shall the latter, while working assidu-
ously with an absurd method, perpetually fail to reach their goal. But truly with the help 
of philosophical geometers and geometrical philosophers, instead of the conjectures and 
probabilities that are being blazoned about everywhere, we shall [ nally achieve a science 
of nature supported by the highest evidence.22 (Newton, 1984, 86–89, 438–439)

21. ‘But if without deriving the properties of things from Phaenomena you feign Hypotheses & think by 
them to explain all nature you may make a plausible systeme of Philosophy for getting your self a name, but 
your systeme will be little better then a Romance.’

22. spero me quasi exemplo monstraturum quantum Mathesis in Philosophia naturali valeat; et exinde ut 
homines Geometras ad examen Naturae strictius aggrediendum & avidos scientiae naturalis ad Geometriam 
prius addiscendam horter: ut ne priores suum omnino tempus in speculationibus humanae vitae nequaquam 
profuturis absumant, neque posteriores operam praepostera methodo usque navantes, a spe sua perpetuo 
decidant: Verum ut Geometris philosophantibus & Philosophis exercentibus Geometriam, pro conjecturis et 
probabilibus quae venditantur ubique, scientiam Naturae summis tandem evidentijs [ rmatam nanciscamur. 
Translation from Latin by A Shapiro.
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Ideas very similar to these were to occur in the Preface to the second edition of 
the Principia (1713) written by Roger Cotes—but under Newton’s careful super-
vision—some forty years aN erwards.23

In order to defend his somewhat isolated position, Newton had to explain why 
mathematics could be considered as a source of ‘highest evidence’ in natural 
philosophy. A tension between his philosophical agenda and his mathematical 
practice soon emerged, since his early works on the method of series and d uxions 
were based on procedures that lacked secure mathematical foundations. Most 
notably, he deployed in[ nitely small magnitudes (‘moments’), and handled in[ n-
ite series on the basis only of analogies and extrapolations. He very soon came 
to the conclusion that what is nowadays considered his greatest mathematical 
discovery, the calculus, could be seen only as a heuristic tool, to be discarded in 
published work. 9 e calculus could not claim to be the mathematical method 
that allowed natural philosophers to become geometrical philosophers by over-
coming uncertainty and probability.

Newton, therefore, turned to geometry and began reading ancient texts, espe-
cially Federico Commandino’s 1588 translation of Pappus’ Collectio mathematica 
(a compilation of Greek geometry from the fourth century AD). In the seventh 
book Newton read that the ancients possessed a method of discovery, the so-called 
‘method of analysis’, which—so he interpreted Pappus’ text—they kept secret, pre-
ferring to publish their results according to the rigorous synthetic method. Many 
Early Modern mathematicians were fascinated by Pappus’ words. Some of them 
attributed knowledge of algebra to the ancients: this would have been their hidden 
method of discovery. Newton, aN er a long and tortuous exegesis of the works of 
Apollonius and Pappus, concluded that the ancient hidden analysis was a form of 
projective geometry. In fact several of Pappus’ results were expressed in terms of 
the invariance of cross-ratios. Newton’s results in this [ eld, developed thanks to a 
creative reading of Pappus’ text, align him with Blaise Pascal, Gérard Desargues, 
and Philippe de la Hire as one of the great geometers of the seventeenth century.

As the years passed by, the method of d uxions became less and less important 
in Newton’s eyes. He relegated algebraic methods to the role of heuristic tools 
which were to be discarded in published proof. In his writings on mathematical 
method Newton frequently deployed the archaic Pappusian concepts of analy-
sis (or resolution) and synthesis (or composition): the former was a method of 
discovery, the latter a truly demonstrative method. In the 1690s he stated:

if a question be answered [ . . . ] that question is resolved by the discovery of the 
equation [ . . . ], but it is not solved before the construction’s enunciation and its

23. Alan Shapiro (2004) has taught us to appreciate the pervasive role of the quest for certainty in Newton’s 
thought. We learn from him that Newton did indeed change his ideas concerning this matter, especially as 
far as the possibility that philosophical geometers and geometrical philosophers actually have of reaching 
absolute certainty.
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complete demonstration is, with the equation now neglected, composed. Hence it is 
that  resolution so rarely occurs in the Ancient’s writings outside Pappus’ collection.24 
(Newton, 1967–81, VII 307)

9 e Ancients, according to Newton:

accomplished [the solution of problems] by certain simple propositions, judging that noth-
ing written in a di\ erent style was worthy to be read, and in consequence they were con-
cealing the analysis by which they found their constructions.25 (Newton, 1967–81, IV 277)

Consequently, Newton’s policy was to shun disclosure of algebraic techniques:

careful considerations should be given to fabricating a demonstration of the construc-
tion which as far as permissible has no algebraic calculation, so that the theorem embel-
lished with it may turn out worthy of public utterance.26 (Newton, 1967–81, III 279)

Historians of Newton’s mathematics cannot avoid feeling disconcerted when 
they realize that most of the mathematical discoveries achieved by Newton in 
the late 1660s and early 1670s were printed only decades later. 9 ese discoveries, 
especially those concerning in[ nite series and d uxions, were so innovative that 
late seventeenth-century European mathematics would have been very di\ erent 
if Newton had been more prompt in publishing some of his early manuscripts. 
Not least, the priority dispute with Leibniz would have been avoided.

Several psychological explanations have been proposed for Newton’s delayed 
publication of calculus and the absence of calculus from the Principia. 9 ese 
focus on Newton’s obsessive fear of disputes and criticisms; they contain more 
than a grain of truth and have to be considered by any serious biographer. But 
they risk underestimating the rationale of Newton’s publication policy. While he 
was adamant about the heuristic validity of his early mathematical methods, he 
felt acutely that their status was controversial and concluded that they were not 
‘worthy of public utterance’.

One should also note that Newton’s readers in 1687 would have found it impos-
sible to follow a text that proposed not only new mechanics and cosmology, but 
also a new mathematical language. In 1687 the language of geometry was the 
most obvious choice in a work devoted to natural philosophy. However, the geo-
metrical demonstrative structure of the Principia could not hide the presence of 
statements whose demonstration was lacking. 9 ese gaps can only be [ lled with 

24. si quaestioni per constructionem aequationis alicujus respondeatur, quaestio illa resolvitur per inven-
tionem aequationis, componitur per constructionem ejusdem, sed non prius solvitur quam constructionis 
enunciatio ac demonstratio tota componitur, aequatione neglecta. Hic est quod resolutio in veterum scriptis 
extra Pappi collectanea tam raro occurrat.

25. At illi rem peregerunt per simplices quasdam Analogias, nihil judicantes lectu dignum quod aliter 
scriberetur, & proinde celantes Analysin per quam constructiones invenerunt.

26. de constructionis demonstratione consulendum est, quacum sine Computo Algebraico quantum 
liceat contexta ornetur 9 eorema ut evadat publicae notitiae dignum.
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the aid of algebra, series, higher-order derivatives, and integration, but very little 
detail of these algorithmic techniques is given in the printed text. Both Newton’s 
British acolytes and his [ erce critics in continental Europe were interested in the 
missing steps. Newton might easily have added details on the use of algebraic 
equations, for example: these were certainly well known techniques to mathem-
atically trained readers in 1687. He could also have given indications on the use 
of more advanced techniques, such as series and quadratures, in an appendix, for 
instance. He actually considered this option in the 1690s when he began ponder-
ing a revised second edition. But the Principia remained, even in its second (1713) 
and third (1726) editions, in a geometrical language which was increasingly per-
ceived as obsolete by younger mathematicians, a geometrical cloak that hid what 
seemed mathematically more interesting.

If we take into consideration Newton’s explicit policy of ‘neglecting the 
equation’ from the printed page, the Principia’s mathematical style is perhaps 
explained. In many propositions Newton made recourse to integration techniques 
(quadratures, as he would say). We know this both because Newton, somewhat 
mysteriously, states in the Principia that he is using a ‘method for squaring curvi-
linear [ gures’, and because he communicated these algorithmic techniques to his 
acolytes when they turned to him for explanations (see Fig. 8.2.2).

Other readers of the Principia were leN  with the gaps in its demonstrative 
structure: much to their frustration the author was hiding what seemed to be 
advanced expertise in integration techniques. Until the mid-1690s Newton used 
correspondence and controlled circulation of his manuscripts to divulge knowl-
edge of his algebra and calculus. 9 is double communication code (public for 
geometry, private for algorithmic techniques) was evident to all competent read-
ers of the Principia. As Montucla wrote:

As a matter of fact, even though his Principia o\ ers many examples of the ancient way, 
in general the calculus surfaces through a concealment with which Newton hides it; a 
drawback which is common to many books delivered according to the ancient method, 
and which are nothing but a concealed algebra.27 (Montucla 1799–1802, III 6)

9 e complex strati[ cation between text and subtext in the Principia has given rise 
to diverging evaluations of its mathematical methods. To some, aN er the develop-
ment of analytic mechanics by men such as Johann Bernoulli and Leonhard Euler, 
its language seemed simply archaic and obsolete. Others argued that Newton 
was capable of writing the whole work in terms of calculus. Recent research has 
shown that both positions miss the point (Guicciardini 1999). Newton did use 
calculus techniques, but he did so sporadically and unsystematically. 9 e second 

27. En e\ et, quoique ses principes nous o\ rent en bien des endroits des exemples de ce tour ancien; en 
général le calcul y perce à travers le déguisement dont Newton l’a couvert, espèce de défaut, commun à bien 
des livres donnés pour écrits suivant la méthode ancienne, et qui ne sont que de l’algèbre déguisée.
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Figure 8.2.2 Letter sent by Newton to David Gregory in 1694, an example of how 
information about the analytic subtext of the Principia circulated amongst Newton’s 
acolytes. It contains details of the quadrature required in Book 1, Proposition 41, 
Corollary 3 of the Principia, where the centripetal force is inverse cube. Newton 
denotes the distance of the body from the centre of force by x, and sets F, the 
centripetal force, inversely proportional to the cube of the distance, equal to 
a4/x3, where a is a constant. This allows the geometrical proportions occurring on 
pages 128 and 129 of the Principia to be translated as U uxional (differential) equa-
tions, which Newton solves for Gregory’s bene? t. For a detailed discussion see 
Brackenridge (2003) (Gregory MS, f. 163, by kind permission of the Royal Society)
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point needs to be stressed. Newton never conceived the calculus as a top-down 
theory which could allow a formulation of the laws of dynamics. 9 e method of 
d uxions was conceived by him as a heuristic tool, to be deployed in the  resolution, 
or analysis, of problems, in order to overcome obstacles that block a much pre-
ferred geometrical route.

9 e enigmatic character of the mathematical methods of the Principia was to 
play an important role in the Newton–Leibniz controversy. According to Johann 
Bernoulli, one of Leibniz’s staunchest supporters, the Principia was proof of two 
weaknesses in Newtonian mathematized natural philosophy. First, that Newton 
was unable to deploy higher-order in[ nitesimals. Second, that he showed no sign 
of being able to formulate and integrate di\ erential equations of motion. As any 
reader of Newton’s mathematical manuscripts knows, the former criticism is 
false. 9 e latter is more problematic. It is di7  cult to believe, as Newton famously 
stated, speaking of himself in the third person, that:

By the help of this new Analysis Mr Newton found out most of the Propositions in his 
Principia Philosophiae. But because the Ancients for making things certain admitted 
nothing into Geometry before it was demonstrated synthetically, he demonstrated the 
Propositions synthetically that the systeme of the heavens might be founded upon good 
Geometry. And this makes it now di7  cult for unskillful men to see the Analysis by wch 
those Propositions were found out. (Newton 1967–81, VIII 598–599)

As I have remarked above, we have good reason to believe that, in certain propo-
sitions, Newton did employ quadrature techniques (integrations, in Leibnizian 
terms), which barely surfaced in the printed text. 9 at the Principia shows evi-
dence of the method of d uxions was repeated again and again by the acolytes who 
set themselves the task of rebuking Leibniz’s challenge (see Fig. 8.2.3).

B e Enumeratio

9 e Principia was not the only work that aroused puzzlement and diverging 
interpretations because of Newton’s publication policy. Another interesting case 
is the Enumeratio linearum tertii ordinis ‘Enumeration of curves of third order’, 
the slim treatise on the classi[ cation of cubic curves that appeared in 1704 as an 
appendix to the Opticks.

Newton developed most of his results on cubics in the 1670s, while he was also 
actively working on Apollonian geometry with a view to recovering the methods 
of the ancients. He systematized them in the 1690s, when he was at the peak of 
his fascination with ancient mathematicians and philosophers. Notwithstanding 
his vehement anti-Cartesianism and his admiration for the Ancients, Newton 
achieved most of the results on cubics through application of Cartesian analytic 
geometry, or even through the use of in[ nite series. 9 us, in the late 1670s there 
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emerged a tension between Newton’s mathematical practice, and the views on 
method that he elaborated in his writing on the use of analysis and synthesis by 
the Ancients (Newton 1967–81, IV 274–335).

9 is tension led Newton to structure his published work on cubics, the 
Enumeratio, in a way that does not render the use of ‘common analysis’ (algebra) 
and ‘new analysis’ (calculus and series) wholly explicit. In many cases Newton 
provided just a hint, or no trace at all, of demonstrations of his statements. His 
way of presenting his results is oN en declaratory rather than argued. His readers 
oN en complained about this, and tried to obtain clari[ cation from manuscript 
sources or oral communication. 9 e Principia, as we have seen, is a rich reper-
toire of such mysteries. In the Enumeratio we encounter quite a number of extra-
ordinary unproved statements.

One of the most disconcerting aspects of the Enumeratio is precisely that no 
proof is given of most of its propositions. One of its most important results is 
that, just as the conic sections can be regarded as projections of a circle, so every 

Figure 8.2.3 Engraving from William Jones’ 1711 edition of Newton’s mathematical 
treatises, Analysis per quantitatum series, U uxiones, ac differentias, printed during the 
dispute with Leibniz. The image expresses an idea cherished by both Newton and his 
acolytes: that the U uxional methods revealed in these treatises constituted the hidden 
analysis of the Principia. The mythological characters display scrolls and shields bearing 
diagrams from some key propositions of the Principia. From left to right are several 
diagrams from Book 1: Proposition 94 (on the ground) on the motion of refracted light 
corpuscles; Proposition 66 (held by a putto) on the three-body problem; Propositions 
32 and 43 (both on the shield) on fall accelerated by an inverse-square force, and on 
precession of orbits; Proposition 1 (on the ground) on the law of areas; Proposition 91, 
Corollary 2 (on the ground) on the attraction exerted by an oblate ellipsoid. The mes-
sage addressed to Leibnizians like Johann Bernoulli could not be clearer
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(nondegenerate) cubic can be generated as a projection of one of [ ve particular 
cubic curves called ‘divergent parabolas’. Nowhere, however, does the reader [ nd 
proof of this fact. Indeed, Newton’s Section 5, devoted to the generation of curves 
as shadows, is so concise that we can quote it in full:

If the shadows of curves caused by a lumininous point, be projected on an in[ nite plane, 
the shadows of conic sections will always be conic sections; those of curves of the second 
genus [that is, of third order] will always be curves of second genus; those of the third 
genus will always be curves of the third genus; and so on ad inF nitum.

And in the same manner that the circle, projecting its shadow, generates all conic sec-
tions, so the [ ve divergent parabolas, by their shadows, generate all other curves of the 
second genus. And so some of the more simple curves of other genera might be found, 
which would form all curves of the same genus by the projection of their shadow on a 
plane. (Talbot 1861, 25)

9 is is all Newton has to say. How did he achieve this profound result? 9 is is 
the question that was invariably asked by readers of the Enumeratio, and before 
the publication of Newton’s Mathematical Papers it was not clear how to [ nd an 
answer.

Sections 3 and 4 of the Enumeratio, devoted to a long classi[ cation of cubics, 
are perhaps less mysterious, but here again Newton limited himself to the clas-
si[ cation and gave the reader little hint about how it was achieved. Each curve 
is meticulously drawn, creating a world of strange and beautiful objects made 
up of ovals and branches extending to in[ nity (see [ gure 8.2.4), but there is no 
instruction on how to construct the curves. It was James Stirling who, in Lineae 
tertii ordinis neutonianae ‘Newton’s curves of third order’ (1717), provided a 
commentary on the Enumeratio where the algebraic character of Newton’s 
work, and his use of in[ nite series, was spelled out. Revealing the analysis 
behind Newton’s published proofs had by now become a highly esteemed prac-
tice among his acolytes.

Newton’s obscure style soon generated complaints and comments, which oscil-
lated between frustration and reverence; Newton was seen as a man who d ew so 
high that he did not need or care to bow down towards mortals who want to be 
told how curves can be constructed and theorems proved. Jean Paul de Gua de 
Malves wrote with veneration:

9 is geometer, whose works are characterized by a unique sublimity, especially in this 
one seems to have elevated himself to an immense height, to which all other minds less 
penetrating and strong would have attempted in vain to attain. But the path he has fol-
lowed in such a di7  cult enterprise escapes the sight of those who marvel at the degree 
of elevation to which he has arrived. 9 e exception are a few light traces that he cared to 
leave in places which would have deserved that he would have stopped there for a much 
longer interval of time. 9 ese places, moreover, are almost always very far one from the 
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Figure 8.2.4 One of the tables that adorn Newton’s Enumeratio. When such dia-
grams were published it was not easy to divine Newton’s methods for plotting them 
in such ? ne detail. (Newton 1704, Table 1, facing page 162)
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other. If one desires to follow the same route, one is compelled to guide oneself along 
such distant intervals.28 (de Gua de Malves 1740, xi–xii)

Gabriel Cramer instead openly showed a critical attitude, not devoid of moral 
reproach:

It is deplorable that Newton was satis[ ed in displaying his discoveries without adding 
the demonstrations, and that he has preferred the pleasure of being admired to that of 
providing instructions.29 (Cramer 1750, viii–ix)

C R M Talbot, who translated and commented on the Enumeratio in the nine-
teenth century, came to Newton’s defence. But although he found ‘the criticisms 
of the French mathematicians [ . . . ] ill founded’ he had to admit that ‘some 
explanation and illustration is wanted’ (Talbot 1861, vii). W W Rouse Ball, who 
wrote on the Enumeratio in the 1890s, observed more bluntly that in Newton’s 
treatise ‘no proofs of the propositions are given’ (Ball 1891, 105).

9 ese are typical attitudes to Newton’s published works, which arouse astonish-
ment at their results, and criticisms for their opacity. Such reactions are evident even 
in Newton’s contemporaries, and are thus a sign that Newton was following a strat-
egy that seemed peculiar even to those of his own time. In fact publication practices 
in mathematics were undergoing deep changes during Newton’s lifetime. 9 e foun-
dation of scienti[ c academies and scienti[ c journals aN er the 1660s rendered the 
double register of the printed book and scribal publication much less acceptable.

Further, as in the case of the Commercium epistolicum and the Principia, 
what Newton wanted to deliver in the Enumeratio were results not methods. A 
famous episode illustrates this attitude well. In January 1697, Johann Bernoulli 
proposed the brachistochrone problem,30 as a challenge acutissimis qui toto 
orbe I orent mathematicis ‘to the sharpest mathematicians in the whole world’.31 
Newton’s solution appeared anonymously in the Philosophical Transactions. He 
had probably found it through a d uxional (di\ erential) equation similar to that 
employed (but not published) for the solid of least resistance in the Principia;32 

28. Ce géomètre dont tous les ouvrages portent un caratctère singulier de sublimité, paroit en particulier 
dans celui-ci s’être élevé à une hauteur immense, à laquelle toute autre génie moins pénétrant et moins fort 
que le sien, auroit tenté vainemment d’atteindre: mais la route qu’il a tenue dans une enterprise si di7  cile, se 
dérobe aux yeux de ceux qui apperçoivent avec étonnement le degré d’élévation auquel il est parvenu. On doit 
en excepter quelques legères traces qu’il a eu soin de laisser sur son passage, aux endroits qui avoient mérité 
qu’il s’y arrétât plus long tems. Ces endroits, au reste, sont presque toujours assez distants les uns des autres. Si 
l’on se propose donc de suivre la même carrière, on est obligé se guider soi-même dans de long intervalles.

29. Il est facheux que M. Newton se soit contenté d’étaler ses découvertes sans y joindre les Démonstrations, 
et qu’il ait préféré le plaisir de se faire admirer à celui d’instruire.

30. Given two points A and B in a vertical plane, what is the curve traced out by a point acted on only by 
gravity, which starts at A and reaches B in the shortest time?

31. Bernoulli’s challenge, which had already appeared in the Acta eruditorum for June 1696, circulated 
as a broadsheet. Newton’s copy is held at the Royal Society of London. A transcript can be found in Newton 
(1967–81, VIII 80–85).

32. Book II Proposition 35 (34 in the second edition).
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in his paper there is a geometrical construction of the required curve (a cyc-
loid), but not the d uxional analysis. Newton’s inclination to present himself as 
the deliverer of results rather than methods distanced him from the agendas 
that were to dominate in the eighteenth century, a period in which universality, 
method, and justi[ cation were deemed more important than achievements in 
problem solving. Newton’s biographers have oN en reported a story recollected by 
his niece Catherine Barton: Newton, coming back home aN er a tiresome day at 
the Mint, found Johann Bernoulli’s de[ ant brachistochrone problem on his desk 
and spent just a few hours solving it. 9 e somewhat inaccurate story continues 
by describing the amazement of Johann Bernoulli, who immediately recognized 
the  anonymous author ‘as the lion from its claw’. 9 is episode celebrates Newton 
the problem solver, whose published paper betrays a genius who idiosyncratically 
hides his method of discovery.

B e nineteenth century

9 e mathematical legacy Newton leN  his followers was complex (Guicciardini 
1989). Newton devoted much e\ ort to the development of algebra and calculus. 
But he also conveyed to his disciples the idea that the Greek classics were superior 
to modern mathematics, and that the Ancients possessed hidden geometric tools 
based on projective geometry, which could be recovered by patient analysis of the 
surviving texts.

We conclude this chapter by considering how this complex and somewhat enig-
matic legacy was re-evaluated in a moment of rupture in the history of mathem-
atics, namely during the [ rst half of the ninenteenth century. 9 is was a period 
in which the calculus, Newton’s and Leibniz’s great discovery, underwent a deep 
change, oN en dubbed as ‘rigourization of analysis’, and epitomized by Cauchy’s 
Cours d’analyse (1821). 9 e calculus moved from being a mathematical algorithm 
based on oN en uninterpretable algebraic manipulations (as was characteristically 
the case with Euler and his contemporaries) to become a carefully craN ed theory 
based upon de[ nitions of convergence, continuity, limit, and derivative, and it 
was unavoidable that a change in the perception of its history also occurred. In 
particular, the confrontation between Newton’s and Leibniz’s algorithms and the 
‘metaphysics’ of the calculus attracted renewed interest.

At the beginning of the nineteenth century there was also renewed interest 
in Newton’s work and biography. 9 is began with disclosure of information on 
Newton’s theological and alchemical work, acquired by somewhat hurried sur-
veys of the Portsmouth Papers (then in private custody at Hurstbourne Castle) 
by Samuel Horsley, David Brewster, and Stephen P Rigaud. Newton’s image as 
a rational and pious scientist began to be questioned. Francis Baily’s edition of 
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Flamsteed’s papers (1835) raised doubts about Newton’s moral conduct. Biot’s 
biographical work (1822) defended Laplace’s claim that Newton’s interest in the-
ology was the result of senility, or even mental derangement, and paved the way 
to de Morgan’s scathing and irreverent writings, which rehabilitated Leibniz in 
the priority controversy and dealt at length with the Catherine Barton a\ air 
(highly embarrassing in Victorian England). Finally the Biot–Lefort edition of 
the Commercium epistolicum (Newton 1856) had an enormous impact in reshap-
ing the image of Newton’s role in the priority dispute. 9 e overall e\ ect of these 
writings was to cast a shadow upon Newton’s dealings during the controversy 
with Leibniz. But more interesting for us is that in the meantime general scepti-
cism was growing in France, Germany, and Italy about the e\ ectiveness of his 
methods, a scepticism which soon crept into his native Britain. 9 e Newtonian 
legacy appeared to many as defective in two [ elds: integration and mathematical 
astronomy, exactly those advanced [ elds Newton boasted about as the sign of his 
superiority over Leibniz.

Montucla’s evaluation is typical in this respect:

9 e reader should not conclude that Newton resolved the problem [of the integration of 
real valued functions] completely; this would not [ t well with what we have said above. 
Newton’s method only delivers the sought relationship [between the independent and 
the dependent variables] as an in[ nite series [ . . . ] 9 is is why geometers, reserving 
Newton’s method for the most desperate cases, have sought means, both for integrating 
in [ nite terms, when this is possible, and for separating the indeterminates.33 (Montucla 
1799–1802, III 165)

Newton’s method of integration by in[ nite series thus appeared to Montucla 
inferior to integration in [ nite terms. Lacroix expressed very similar ideas, also 
stressing the simplicity of Leibniz’s notation compared to Newton’s:

9 e continental geometers did not neglect the theory of in[ nite series; but they did not 
go so far as abusing it, as instead did the English geometers of second rank, who have 
oN en applied series to problems which admit a solution in [ nite terms [ . . . ] 9 e school of 
Leibniz had a marked superiority over that of Newton, due perhaps more to the superior-
ity of the former’s methods than to the genius of his disciples, the Bernoullis [ . . . ] When 
Newton’s writings were circulated on the Continent, one could see that he was in posses-
sion of the method of d uxions well before Leibniz had invented his di\ erential calculus; 
but while it was possible for Newton’s genius to deduce everything from his method that 

33. Le lecteur ne doit cependant pas en conclure que Neuton ait résolu le problème en entier ; cela 
s’accorderoit mal avec ce qu’on a dit plus haut. La méthode de Neuton donne seulement le rapport cherché en 
série in[ nie. Content de cette solution générale, Newton n’a pas poussé plus loin ses recherches. [ . . . ] C’est 
pourquoi les Géomètres, réservant la méthode de Neuton pour les cas désespérés, ont recherché des moyens, 
soit pour intégrer en termes [ nis, lorsque cela se peut, soit pour séparer les indéterminées.
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Leibniz could deduce from his own, the latter could be applied much more easily than 
the former.34 (Lacroix 1797, xviii–xix)

In the second decade of the nineteenth century, the ideas of Montucla and Lacroix 
were to be adopted as a manifesto by the Analytical Society of Cambridge, a short 
lived but ind uential group of reformers of the Cambridge mathematical curricu-
lum, who promoted an algebraic approach to the calculus in the hope of over-
coming the stagnation of British mathematics.

But the Newtonian achievement in mathematical astronomy also came under 
attack. 9 e opinions of John Playfair, a highly reputable Scottish mathematician, 
are interesting in this regard. One of Playfair’s most ind uential papers was a 
review, published in 1808, of Laplace’s Mécanique céleste, oN en praised as one of 
the [ rst attempts to awaken the interest of British mathematicians in the works 
of the French school. Playfair not only commented on the contents of the [ rst 
four volumes of Laplace’s masterpiece but also placed them in the context of the 
development of eighteenth-century astronomy and, by way of conclusion, added 
several considerations on the reasons for the inferiority of British achievements. 
He concluded his account with a query:

In the list of the mathematicians and philosophers, to whom that science [mathematical 
astronomy], for the last sixty or seventy years, has been indebted for its improvements, 
hardly a name from Great Britain falls to be mentioned. What is the reason of this?

Playfair went on to describe the situation in England and Scotland:

a man may be perfectly acquainted with every thing on mathematical learning that has 
been written in this country, and may yet [ nd himself stopped at the [ rst page of the 
works of Euler and D’Alembert. He will be stopped, not from the di\ erence of the d ux-
ionary notation, (a di7  culty easily overcome), nor from the obscurity of these authors, 
who are both very clear writers, especially the [ rst of them, but from want of knowing 
the principles and the methods which they take for granted as known to every mathem-
atical reader. If we come to works of still greater di7  culty, such as the Méchanique [sic] 
Céleste, we will venture to say, that the number of those in this island, who can read that 
work with any tolerable facility, is small indeed. If we reckon two or three in London 
and the military schools in its vicinity, the same number at each of the two English 
Universities, and perhaps four in Scotland, we shall not hardly exceed a dozen; and yet 
we are fully persuaded that our reckoning is beyond the truth. (Playfair 1808, 279–281)

34. Les Géomètres du continent ne négligèrent point la théorie des Suites; mais ils n’allèrent pas jusqu’à 
en abuser, comme [ rent les Géomètres Anglois du second ordre, qui appliquèrent souvent les séries à des 
problémes dont on pouvoit avoir la solution par équations [ nies [ . . . ] L’ école de Leibnitz avoit sur celle de 
Newton, une supériorité décidée, due peut-être autant à la simplicité de la Méthode du premier, qu’au génie 
des Bernoulli ses disciples [ . . . ]Lorsque les écrits de Newton furent répandus dans le continent, on vit qu’il 
avoit été en possession de la Méthode des d uxions, long-tems avant que Leibnitz eût découvert le Calcul dif-
férentiel; mais quoiqu’il fut possible au génie de Newton de tirer de sa méthode tout ce que Leibnitz pouvoit 
déduire de la sienne, l’une étoit d’une application bien moins facile que l’autre.
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Playfair’s review is typical of the pessimism towards the Newtonian mathematical 
legacy shared by several early nineteenth-century British mathematicians. Many 
mathematical reformers, including Robert Woodhouse, John Toplis, Charles 
Babbage, John Herschel, and George Peacock, denounced the lack of commu-
nication between continental Europe and Britain. 9 eir self criticisms reveal the 
chasm separating the British and the Continental schools. Newton’s image as a 
mathematician was lessened in many accounts that were produced at the begin-
ning of the nineteenth century because of the superiority of the developments of 
the integral calculus and the mécanique céleste on the Continent when compared 
with the achievements of the British school. Now eulogy could take Whewell’s 
somewhat lame form: Newton’s ‘gigantic implements of war’, namely his geo-
metrical methods, seemed to lie useless on the battle[ eld of cutting-edge math-
ematical research.

But a new turn in mathematics was again to tip the balance. A renewed inter-
est in projective, or synthetic geometry, opened the way for a re-evaluation of 
still another current of the Newtonian legacy, that stemming from Newton’s pro-
tracted attempts to ‘divine’ Euclid’s lost books of Porisms. It was Michel Chasles 
who in 1837 referred with veneration to Newton and his heirs, Robert Simson and 
Matthew Stewart, who, working along the lines initiated by Pascal, Desargues, 
la Hire, and Newton himself, had developed elegant geometrical results based 
on cross-ratio invariance. Once again Newton’s image as a mathematician was 
reshaped according to agendas that were polarizing debates amongst practising 
mathematicians.

Conclusion

Newton produced his mathematical work in a period of tumultuous change in 
the history of mathematics, a change which might well be seen as an aspect of 
a more general ‘crisis’ in European thought described by Paul Hazard (1935) 
and Basil Willey (1940). His philosophical agendas elaborated in opposition to 
Cartesianism and Baconianism, his preoccupations concerning mathematical 
method and certainty, the tensions which so worried him between his mathe-
matical practice and the ancient exemplars, are all rooted in seventeenth- century 
English mathematical culture. A deep reorientation took place in the [ rst half of 
the eighteenth century: algebraic language acquired independence from geom-
etry, and the Greek mathematical classics became models of rigour useful for 
pedagogic aims in the University curriculum but which had little to teach to the 
practising mathematician. In his mature years Newton himself was aware of a 
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shiN  towards algebra which was slowly isolating him from the younger genera-
tion of mathematicians. In the late 1710s, referring to the Principia, he wrote:

To the mathematicians of the present century, however, versed almost wholly in alge-
bra as they are, this [i.e. the Principia’s] synthetic style of writing is less pleasing, 
whether because it may seem too prolix and too akin to the method of the ancients, 
or because it is less revealing of the manner of discovery. And certainly I could have 
written analytically what I had found out analytically with less e\ ort than it took me 
to compose it. I was writing for Philosophers steeped in the elements of geometry, 
and putting down geometrically demonstrated bases for physical science.35 (Newton 
1967–81, VIII 451)

While the ‘philosophers’ in 1687 were steeped in geometry, the younger mathema-
ticians, trained at the Bernoulli’s school in Paris and Basel, who began their stud-
ies in higher mathematics reading l’Hôpital’s Analyse des inF niment petits (1696), 
found the Principia obscure. Newton’s mathematical work became interesting 
more for the unresolved problems it contained rather than for its methods, which 
appeared more and more obsolete. When, in 1739–42, T Le Seur and F Jacquier 
produced their richly annotated edition of the Principia (Newton 1739–42) they 
provided eighteenth-century readers with long explanatory footnotes written in 
the language of the di\ erential and integral calculus: these footnotes replaced 
Newton’s enigmatic geometric text. As A R Hall writes:

9 e Principia was to remain a classic fossilized, on the wrong side of the frontier between 
past and future in the application of mathematics to physics. (Hall 1958, 301)

Newton’s text, with its idiosyncratic style, and its concealments due to the author’s 
publication policy, became opaque even to well-trained mathematicians.

9 e status of Newton as the prime mover of the scienti[ c revolution remained, 
however, impossible to disown. 9 e readers who turned to his celebrated texts 
had to translate them, as Le Seur and Jacquier had done, into more familiar lan-
guage, and they had even to [ ll the gaps that were so frequent in Newton’s printed 
works. 9 is process of interpretation and interpolation was indeed a process of 
reinvention that generated a plurality of images of Newton as a mathematician: 
we have considered a few of them in this chapter.

9 e plurality that we have encountered in our brief survey of the reception 
of Newton’s mathematical work is part of the same phenomenon that has been 
studied by historians of his natural philosophy and theology, who have made us 

35. Mathematicis autem hujus saeculi qui fere toti versantur in Algebra, genus hocce syntheticum 
scribendi minus placet, seu quod nimis prolixum videatur & methodo veterum nimis a7  ne, seu quod 
rationem inveniendi minus patefaciat. Et certe minori cum labore potuissem scribere Analytice quam ea 
componere quae Analytice inveneram: sed propositum non erat Analysin docere. Scribebam ad Philosophos 
Elementis Geometriae imbutos & Philosophiae naturalis fundamenta Geometrice demonstrata ponebam.
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aware both of the relevance of Newton’s ind uence on eighteenth-century cul-
ture and of the plurality of eighteenth-century ‘Newtonianisms’ (Scho[ eld 1978; 
Scha\ er 1990; Mandelbrote 2002). 9 e Newtonian heritage in natural philosophy 
and theology branched into many di\ erent schools and styles of thought, which 
frequently developed in directions distant from the great master’s intentions. 
9 e same holds true for mathematics. Present-day historians of mathematics are 
thus facing two challenges. 9 e former is to attempt to go beyond the plurality 
of images of Newton in order to relocate his mathematical works, printed and 
manuscript, into the context in which they were produced. 9 e latter is to study 
the complex process of reception, which spans from adulation to rejection, of 
Newton’s mathematical heritage.
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CH A P T ER 8 . 3

From cascades to calculus: Rolle’s theorem
June Barrow-Green

Rolle’s theorem is a simple but important result, familiar to anyone who has 
moved just beyond elementary calculus into the beginnings of analysis. 

Essentially it tells us that if a di\ erentiable function has equal values at a and b, 
then somewhere between those two points it must have a local maximum or a 
local minimum (Fig. 8.3.1).

A more formal statement of the theorem, typical of those given in modern 
textbooks, is as follows.

Let f  be a function that is continuous on the closed interval [a, b] and di\ erentiable on the 
open interval (a, b). If f(a) = f(b), then there exists a point c in (a, b) for which f´(c) = 0.

It is clear from the language of functions and derivatives that the theorem is 
now presented as a theorem of calculus. Its importance lies in the fact that it is 
needed in the proof of the mean value theorem and for establishing the exist-
ence of Taylor series.1 When Michel Rolle (1652–1719) made the [ rst statement 
of this theorem in 1690, however, Taylor series had not yet been discovered and 

1. 9 e mean value theorem states that if f is a function that is continuous on the closed interval [a, b] and 

di\ erentiable on the open interval (a, b), then there exists a point c in (a, b) for which ′ =
−

−
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f b f a
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calculus itself was in its infancy. Moreover, Rolle was deeply suspicious of its 
methods. His theorem [ rst appeared not in the context of calculus at all but of 
equation solving. It is paradoxical, therefore, that the name of a man renowned 
for his opposition to the in[ nitesimal calculus should end up attached to one 
of the fundamental theorems in the subject. I began to investigate how this 
might have happened aN er I came across a translation of Rolle’s statement 
of the theorem in David Eugene Smith’s Sourcebook (1959, 253–260). Florian 
Cajori, the translator, wrote an article (Cajori 1911) in which he gave a (not 
very clear) account of the theorem, and a chronology of sources in which it had 
later appeared, but with little indication of their content. I therefore decided to 
study Rolle’s original work, to follow up some of Cajori’s references and to seek 
others, to see how the theorem was transformed from a theorem in algebra to 
a theorem of calculus.

Rolle and his work

Rolle was born in Ambert, a small French town in the Auvergne, in 1652. At the 
age of 23, with su7  cient education to become a teacher, he moved to Paris. 9 ere 
he became increasingly interested in mathematics and in particular in algebra. 
His [ rst public success, in 1682, was the solution to an indeterminate problem 
posed by Jacques Ozanam:2 to [ nd four numbers the positive di\ erence of any 
two of which is a square, and the sum of any two of the [ rst three is also a square. 
Ozanam believed that the smallest of the four numbers would have at least [ N y 
[ gures but Rolle found solutions in which the smallest numbers each had only 

2. Ozanam, while not a research mathematician, was a successful teacher and writer of several texts. He 
is best remembered today for his Récréations mathématiques et physiques (1694), which went through many 
editions.
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seven [ gures.3 Rolle’s result was published in the Journal des sçavans,4 where 
Rolle was described as a ‘Professeur d’Arithmetique’, indicating that he was by 
this time a teacher of elementary mathematics ([Rolle] 1682). His achievement 
brought him to the attention of Jean-Baptiste Colbert, the minister of [ nance 
and original ‘architect’ of the Paris Academy of Sciences, and whose support was 
decisive for Rolle’s future career. In 1685, Rolle was elected to the Academy as an 
élève astronome ‘pupil astronomer’, responsible for preparing experiments, and 
in 1699 he was promoted to the salaried position of pensionnaire géomètre ‘sti-
pendiary geometer’.5 9 is was a distinguished position—of the seventy members 
of the Academy only twenty were pensionnaires—and one he retained until 1719 
when, only a few months before he died at the age of sixty-seven, he became a 
pensionnaire veteran.

Around 1690 Rolle also enjoyed the patronage of the Marquis de Louvois. For a 
time he taught his fourth son, to whom he dedicated his Traité d’algebre ‘Treatise 
of algebra’ in 1690 and the Démonstration ‘Demonstration’ that followed it in 
1691. 9 e Marquis de Louvois was Louis XIV’s secretary of state for war and it 
was through this connection that Rolle bried y held an administrative position in 
the ministry of war (de Fontenelle 1719, 96).

In the opening years of the eighteenth century, Rolle gained notoriety for his 
involvement in a lively dispute in the Academy on the validity of in[ nitesimal 
methods of the Leibnizian calculus as set out in l’Hôpital’s Analyse des inF ni-
ment petits ‘Analysis of the in[ nitely small’ (1696) (Mancosu 1989). Rolle, who 
attacked the in[ nitesimal calculus for its lack of rigour and, as he believed, its 
propensity for error, initially pitted himself against Pierre Varignon, an estab-
lished Leibnizian, the debate taking place within the con[ nes of the Academy. 
9 e two men locked horns until the end of 1701 when the Academy itself called a 
silence on their disputations. 9 e following year Rolle took up the cudgels again, 
this time engaging in a more public battle through the pages of the Journal des 
sçavans. So determined had Rolle been to reopen the debate that he had managed 
to have a special issue of the journal published—it was dated 9 ursday instead of 
the usual Monday—in which to [ re his opening salvo: a paper on tangent prob-
lems (Rolle 1702).6 It drew a direct response from Joseph Saurin (1702), a protégé 
of l’Hôpital, who himself had a special issue of the journal published, and battle 
lines were drawn. At the beginning of 1706, aN er four years of acrimony, with 
even Leibniz himself being drawn into the fray, the Academy found a way to 

3. For a description of Rolle’s solution of Ozanam’s problem, see Dickson (1920 [1999], 447).
4. 9 e Journal des sçavans (later renamed Journal des savants), began in January 1655, and was the [ rst 

scienti[ c journal in Europe.
5. At this time the term géométrie was used for what would now be described more generally as 

mathematics.
6. I am grateful to Jeanne Pei\ er for alerting me to the special nature of this issue.



INTERACTIONS AND INTERPRETATIONS740

put an end to the [ ght and Rolle [ nally desisted, having been ‘asked to conform 
better to the regulations of the academy’ (Mancosu 1989, 243). Mancosu (1989) 
has convincingly argued that Rolle’s retreat was a decisive factor in the victory 
of the in[ nitesimal calculus in France, but it seems that Rolle himself never fully 
accepted the legitimacy of the new methods.

Rolle also published extensively on topics in Cartesian geometry. In De 
l’evanoüissement des quantitéz inconnuës dans la géométrie analytique ‘Of the 
vanishing of unknown quantities in analytic geometry’ (1709) he was, according 
to Boyer (1956 [2004], 155), the [ rst to use the term ‘analytic geometry’ in the 
modern sense.

9 ough he [ rst became known in Paris for his pro[ ciency in indetermi-
nate problems in arithmetic, Rolle preferred algebra, and in particular work-
ing on equations of the kind that are now known as polynomial. In 1690 he 
published what is now his most famous work, his Traité d’algebre. Its most sig-
ni[ cant feature was Rolle’s ‘method of cascades’ for [ nding roots (see below). 
9 e method is e\ ective, if cumbersome, for equations in which all the roots 
are real and distinct. It seems that Rolle was criticized, however, for not jus-
tifying why it worked. To satisfy his critics, he almost immediately published 
his Démonstration (Rolle 1691),7 written to prove that the method is infallible. 
And it was in this work, almost incidentally, that he established the theorem for 
which he is now famous.

Unlike the Algebre, the Démonstration appears to have had only a small cir-
culation.8 It disappeared from view almost completely during the eighteenth and 
nineteenth centuries: the only reference to it during this period seems to be a 
cursory mention by Montucla, who gave its date of publication as 1692, which 
suggests that he never actually saw it (1799–1802, II, 167). At the beginning of the 
twentieth century, the Swedish historian of mathematics Gustaf Eneström had 
never seen it either, but correctly conjectured that it was the book in which Rolle’s 
theorem was to be found (Eneström 1906, 301–302).

Rolle’s method of cascades and statement of the theorem

Rolle’s statement of his theorem appears as part of his justi[ cation for his 
method of cascades. Rolle was attempting to [ nd what he called ‘hypotheses’, more 
usually known as ‘limits’ of the roots of an equation. Using modern notation, 

7. Although the book was published in 1691, permission for printing was granted by the Academy on 
30 December 1690 and Rolle (1699, Preface, 3) gave its date as 1690.

8. I am aware of only four copies: three in Paris, as listed by Cajori (1911, 300), and one in the New York 
Public Library.
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given a polynomial P(z) and two (real) numbers a and b such that P(a) and P(b) 
are of opposite sign, then between a and b there is a number c for which P(c) = 
0. 9 e numbers a and b are then the ‘limits’ of the root.9 Rolle’s method assumes 
that all the roots are real and distinct. His [ rst step was to ‘prepare’ the equa-
tion using the transformation x = h – z, where h is taken large enough to ensure 
that all the roots x are positive. To [ nd a suitable value for h, which he called the 
grande hypothese ‘largest limit’ for the roots of the equation, Rolle took the nega-
tive coe7  cient –g of the original equation with largest absolute value, divided g 
by the coe7  cient of the highest power of the unknown, added 1 to the quotient, 
and rounded up to the nearest integer.10 Since the equation now has all roots 
positive, 0 is the lower bound, or petite hypothese ‘smallest limit’, for the roots of 
the equation.

Suppose the prepared equation is P(x) = p – qx + rx2 – . . . = 0. Now a ‘cascade’ is 
formed. 9 e method Rolle used throughout the Algebre was to multiply each term 
of P(x) by its own exponent, divide the result by x, and equate the result, –q + 2rx 
– 3sx2 + . . . , to 0. 9 is equation was what Rolle called a cascade. 9 e process can 
be repeated until an equation of [ rst degree is obtained. It is easily seen that it is 
equivalent to taking successive derivatives, but that is not how Rolle described it. 
As he explained it, he was multiplying each term by the corresponding term in 
the arithmetical progression 0, 1, 2, 3, . . . . 9 is technique had [ rst been devised 
by Johann Hudde, though Rolle made no reference to him.11

Here Rolle was using particular arithmetic progressions to generate the cas-
cades, namely those whose [ rst term is zero and whose di\ erence is one. 9 is is 
so that each cascade will be one degree lower than the previous one, the reduction 
in degree being essential for the method to be of use in [ nding roots. Although 
Rolle always used this construction to generate cascades in the Algebre, it is clear 
from the Démonstration, as we will see below, that his concept of a cascade was 
actually more general, and that a cascade could in fact be generated by any arith-
metic progression (as in Hudde’s method).

9 e cascades allow one to [ nd the limits of the roots, and once that is done the 
roots themselves are found by continuous halving of the intervals between the 
limits. Rolle used the following equation as an example (Rolle 1690, 133) .12

v4 – 24v3 + 198v2 – 648v + 473 = 0

 9. 9 is notion of limit implicitly assumes the intermediate value theorem, which was rigorously proved 
only in the nineteenth century.

10. Rolle did not prove that this method for [ nding h did in fact give an upper bound; this was done later 
for cubics by Colin Maclaurin (1748, 172–174).

11. In 1659 Hudde had used the technique to [ nd any double roots of a polynomial equation. For an 
explanation of his method, see Edwards (1979, 127–128).

12. For a more detailed example of the method of cascades, see Shain (1937, 25–27).
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9 e cascades are:

 v4 – 24v3 + 198v2 – 648v + 473 = 0 (4)
 4v3 – 72v2 + 396v – 648 = 0 (3)
 6v2 – 72v + 198 = 0 (2)
 4v – 24 = 0 (1)

Note that here the cascades are in modern notation and in the opposite order to 
Rolle’s.

Cascade (1) has just one root, v = 6. 9 is root is now one of the limits of (2). 9 e 
other limits of (2) are 0 (the petite hypothese) and 13 (the grande hypothese). An 
approximation to the root between 0 and 6 is found by repeated interval bisec-
tion, and yields 4. (Rolle approximated only to the nearest integer.) A similar pro-
cess yields 7 as an approximation to the root between 6 and 13. Since 4 and 7 are 
approximate roots of (2), the limits of (2) are 0, 4, 7, and a new grande hypothese, 
163. A similar calculation to that for (2), gives 3, 6, and 9 as  approximate roots of 
(3). 9 e limits of (4) are then 0, 3, 6, 9, and 649. Using these limits in a similar way 
leads to 1 as an exact root of (4), and 6, 8, and 10 as approximate roots.

Today, interpreting Rolle’s ‘cascades’ as ‘derivatives’ it is not di7  cult to under-
stand why his method works. Rolle, however, neither used nor trusted calculus. 
Considering his method algebraically, it is not at all obvious what is happening. In 
the Algebre Rolle gave no clue as to any theoretical underpinning and introduced 
the idea of multiplying by an arithmetic progression without giving any reason for 
it. Nor did he prove that the roots of each cascade are limits for the previous equa-
tion. 9 e latter in particular is not easy to see—it relies on some clever algebraic 
manipulation—and the fact that it was hidden from the reader in the Algebre is one 
of the reasons that Rolle realized the necessity of bringing out his Démonstration.

In the Algebre Rolle states the following regle ‘rule’ for moving from a cascade 
of lower degree to the next one upwards, of higher degree: ‘9 e roots of each cas-
cade are taken for the mean limits of the following cascade’ (Rolle 1690, 127).13 
However, in the Démonstration his statement of the theorem, given in Corollary 
III, moved in the other direction, from an equation or cascade of higher degree 
to the next one downwards, of lower degree.

Corollary III. It is also clear that the roots are intermediate numbers lying between the 
limits, and consequently if the roots are substituted in an equation whose roots are these 
limits, the substitution must give results that are alternately positive and negative, or 
negative and positive. For example:

(y – 6)(y – 21)(y – 30) Roots of the equation

(y – 0)(y – 12)(y – 26) Roots of the cascade14

13. Les racines de chaque cascade seront prises pour les hypotheses moyennes de la cascade saivante.
14. Here the original equation is y3 – 57y2 + 936y – 3780 = 0 and the cascade, before dividing by y, is 

3y3 – 114y2 + 936y = 0 or y3 – 38y2 + 312y = 0.
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where one can see that 6 being substituted in the roots of the cascade will give, following 
Articles III & IV, results whose product is positive, that 21 will give results whose prod-
uct is negative, and that 30 will give results whose product is positive; and consequently 
the roots 6, 21, 30, each being substituted separately into the cascade must give alterna-
tively + and –, according to Article II. 9 us the roots are themselves limits of their own 
limits.15 (Rolle 1691, 20–21)

9 e signi[ cant part of the Corollary is the last sentence, Ainsi les racines sont 
hypoteses des hypoteses mêmes ‘9 us the roots are themselves limits of their own 
limits.’ In other words, roots and limits alternate in a regular way. In particular, 
two consecutive roots will give rise to a limit on the level of the next cascade 
downwards, that is, they will produce a root on that level. 9 e [ rst part of Rolle’s 
sentence, ‘9 us the roots are themselves limits’, is what today we call Rolle’s ‘theo-
rem’. In this example, however, Rolle gives priority to his ‘rule’, namely, that roots 
of an upper cascade, if they exist, lie between roots of the lower cascade, that is, 
they are ‘limits of their own limits’. 9 us, in e\ ect, Rolle gives his ‘theorem’ as 
a corollary to his ‘rule’. Nevertheless, his proof of the theorem, as given in the 
Demonstration, is independent of that assumption.

An outline of the proof, given in modern notation, is as follows.16 Given a 
monic polynomial P(z) of degree n, with positive, distinct, real roots a > b > 
c > . . . > m, multiply P(z) term by term by the arithmetic series y, y + v, y + 2v, . . . , 
y + nv. We now need to show that the resulting cascade C(z) takes positive and 
negative (or negative and positive) values for the two consecutive roots a, b of 
P(z), thus  making a, b limits (hypotheses) of a root of C(z).

First we may write P(z) = (z – a)(z – b) K(z), where K(z) is a monic polynomial 
of degree (n – 2). Now multiply (z – a)(z – b) = ab – (a + b)z + z2 term by term by 
y, y + v, y + 2v. 9 is gives the ‘partial cascade’

C*(z) = aby – (a + b)z(y + v) + (y + 2v)z2

= aby – ayz – byz – avz – bvz + yz2 + 2vz2.

Now C*(a) = (a – b)va and C*(b) = (b – a)vb. Note that C*(a) and C*(b) depend 
only on v, not on y, and (although Rolle did not explicitly make this point) this 

15. Corollary III. Il est clair aussi que les racines sont des nombres moyens entre les hypoteses, & par con-
sequent les racines estant substituées dans l’égalité que renferme les hypoteses, leur substitution doit donner 
des resultats alternativement positifs & negatifs, ou negatifs & positifs. En voicy un exemple.

y – 6.y – 21.y – 30 Rac. de l’ég.
y – θ.y – 12.y – 26 Rac. de la Cascade. 

Où l’on peur voir que 6 estant substitué dans les racines de la Cascade, donnera suvant les Arti. 3 & 4 des 
resultats dont le produit est positif. Que 21 donnera des resultats dont le produit est negatif, & que 30 don-
nera des resultats dons le produit est positif; & par consequent ces racines 6.21.30 estant substituées chacune 
separément dans la Cascade, elles doivent donner alternativement + & – selon l’Article 2. Ainsi les racines 
sont hypotheses des hypotheses mêmes.

16. I am grateful to Reinhard Siegmund-Schultze for enlightening discussions about Rolle’s proof.
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is the reason that his theorem holds for multiplication of P(z) by any arithmetic 
progression. Note too that since a and b are positive, C*(a) and C*(b) will be of 
opposite sign.

If instead of starting from (z – a)(z – b) we start from (z – a)(z – b)zn it is easily 
seen that the partial cascade C*(z) now has values C*(a) = (a – b)van+1 and C*(b) = 
(b – a)vbn+1. 9 e [ nal stage is to use the polynomial P(z) itself, to obtain the full 
cascade C(z). In this case we have C(a) = (a – b)vaK(a) and C(b) = (b – a)vbK(b).

We now note that K(a) ≠ 0 and K(b) ≠ 0. Further K(a) and K(b) are of the same 
sign, because K(z) = (z – c) . . . (z – m) and, according to the original assumption, a 
and b are both greater than any root of K(z). On the other hand, since a and b are 
both positive, (b – a)b and (a – b)a are of opposite sign. 9 erefore C(a) and C(b) 
must also be of opposite sign. What has been shown here for a and b is, as Rolle 
(1691, 29–30) showed, easily adapted for any other pair of consecutive roots. 9 us 
any two consecutive roots of P(z) produce opposite signs in the cascade C(z) and 
therefore a root of C(z) lies between them. 9 e theorem is thus proved for equa-
tions with (positive) real and distinct roots (Rolle 1691, 30–31).

9 is outline proof follows Rolle in spirit if not to the letter. Rolle’s proof was 
considerably longer, with details of the term by term multiplication worked in full. 
At the same time it was less explicit, because he did not write down the crucial 
co-factors of (b – a) and (a – b), namely vaK(a) and vbK(b), but said only that C(b) 
is ‘measured’ by (b – a). Clearly Rolle knew that his theorem was true for general 
arithmetic series, regardless of the values of y and v. In this sense his original theo-
rem was more general than its modern counterpart, because it was not restricted 
only to derivatives. At the same time it was also more restricted because it applied 
only to polynomial functions. Rolle gave no indication that he considered this 
theorem to have any more importance than his other results, despite the fact that 
it is clearly a cornerstone of his method of cascades (see Fig. 8.3.2).

Figure 8.3.2 Multiplication by an arithmetic series, 
from Rolle (1691, 27)
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9 e assumption (which Rolle did not initially state or prove) that the roots of 
each equation are the limits of the next cascade downwards (of lower degree) is 
crucial for the validity of the method. Translated into the language of the cal-
culus, this says that between two consecutive (real) roots of an equation f(x) = 0 
there exists at least one (real) root of the ‘derived’ equation f (́x) = 0. 9 is is of 
course Rolle’s ‘theorem’.

But the ‘rule’ originally given in the Algebre stated the converse: that the roots 
of each cascade are the limits for the next equation upwards (of higher degree). In 
modern terms: between two consecutive (real) roots of an equation f(x) = 0 there 
lies at most one (real) root of the equation f(x) = 0 from which f´(x) = 0 is derived. 
In this case the roots of f´(x) = 0 serve as limits for the root of f(x) = 0. 9 is is what 
Cajori (1911, 301) called Rolle’s ‘corollary’, though in fact it was Rolle’s original 
‘rule’. Its importance lies in the fact that it guarantees, providing all the roots 
are real, that the method of cascades [ nds all the roots of the original equation. 
It is easily deduced from Rolle’s ‘theorem’, a fact that caused later authors who 
had seen it in the Algebre but who had not seen the Démonstration to question 
whether Rolle’s theorem was aN er all really due to Rolle.

One further remark about Rolle’s method seems appropriate. His argument 
was applicable only to polynomial functions. Rolle did not transcend the latter 
to include other functions for which his theorem is also valid. 9 is can perhaps 
be seen as a consequence of his di7  culties with the new methods of in[ nitesimal 
analysis, which are hinted at in the following remark in the Démonstration:

9 ere are nevertheless several mathematicians who do not always take care in this respect 
[in constructing their proofs], and one [ nds even today some whose frequent mistakes 
would make one believe that in them is formed the habit of being deceived about the idea 
of the in[ nite.17 (Rolle 1691, Preface, 2–3)

9 ough e\ ective, Rolle’s method is lengthy. It was enthusiastically received by 
Rolle’s contemporaries, who were eager to seize upon any new technique for 
[ nding roots, but it did not enjoy an enduring success. By the end of the eight-
eenth century it had fallen into disuse, largely due to its length (Lagrange 1798, 
Note VIII, 1) and to Rolle’s rather inelegant style and idiosyncratic notation 
(Montucla 1799–1802, 168).

It is natural to ask why Rolle did not forestall criticism by including the 
Démonstration in his Algebre. Here one must remember that he worked in a math-
ematical environment that favoured methods that could be shown to work, regard-
less of their theoretical foundation or lack of it. He had provided a description of 
the method of cascades, and he had demonstrated its e7  cacy through numerous 

17. Il y a neanmoins plusieurs Mathematiciens qui n’ont pas toûjours égard à ce rapport, & il s’en trouver 
meme aujourd’huy donts les frequentes méprises seroient croire qu’il se forme en eux une habitude à se 
tromper sur l’idée de l’in[ ni.
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examples. For most readers, that would probably have been su7  cient and perhaps 
Rolle initially thought so too. But the mathematicians gathered around the Academy 
were as strong (and as combative) as any in Europe at the time and it was natural for 
them to put Rolle, who was still making a name for himself, under closer scrutiny.

Rolle’s theorem from 1691 to 1910

Rolle’s theorem, or statements equivalent to it, was published several times dur-
ing the eighteenth century, although it was not always attributed to Rolle. Its [ rst 
appearance seems to have been in Charles-René Reyneau’s Analyse demontrée ou 
la methode de résoudre les problêmes des mathematiques ‘Analysis demonstrated 
or the method of solving the problems of mathematics’ (1708), the [ rst advanced 
account of the integral calculus (Greenberg 1986, 66). Reyneau was a member of 
the group of mathematicians assembled around the Cartesian philosopher Nicolas 
Malebranche in Paris. He would certainly have been familiar with Rolle’s work 
because he had taken an active interest in the Rolle–Varignon calculus debates a 
few years earlier (Mancosu 1989, 230). Reyneau’s book contained an account of the 
method of cascades, and in the preface he acknowledged it as Rolle’s:

In the sixth book we explain and demonstrate a method for [ nding the magnitudes of 
the limits of the values of the unknown in numerical equations of all degrees (Mr Rolle is 
the author of this method); and we give several ways to [ nd, by the [arithmetical] mean 
of these limits, the values of the unknowns of these numerical equations di\ ering as 
 little from the exact values as we require.18 (Reyneau 1708, xii)

Reyneau formulated the theorem itself as follows, replacing Rolle’s ‘hypotheses’ 
by the more familiar ‘limits’.

Corollary VII. Which is fundamental.
9 e roots of a [ rst equation are none other than the limits of the roots of a second, the 

roots of the second are none other than the limits of the roots of the [ rst. Consequently 
if one multiplies each of the terms of any equation in which all the roots are real, positive 
and distinct by the number which is the exponent of that term, and the last term by zero, 
the roots of the equation which result from this multiplication are the limits of the roots 
of the original equation.

For example, suppose that x4 – nx3 + pxx – qx + r = 0 represents an equation where 
all the roots are real, positive and distinct. If one multiplies each term by the exponent 
of the degree of the unknown of that term, and the last term by zero, one will have 

18. On explique et l’on démontre dans le sixiéme livre la methode de trouver les grandeurs qui sont les lim-
ites des valeurs de l’inconnue dans les équations numeriques de tous les degrés; (Monsieur Rolle est l’auteur de 
cette méthode;) & l’on donne plusieurs manieres de trouver par le moyen de ces limites, les valeurs des incon-
nues des équations numeriques aussi peu di\ erentes des valeurs exactes qu’on le peut desirer.
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4x4 – 3nx3 + 2pxx – qx = 0; then dividing by x, 4x3 – 3nxx + 2px – q = 0, the roots of this 
last equation are the limits of the original equation.19 (Reyneau 1708, 290)

Reyneau was already describing the theorem as ‘fundamental’. AN er Rolle’s dis-
putes in the Academy, it is ironic that this [ rst restatement of his theorem should 
have appeared in a textbook on the Leibnizian calculus, though still presented 
[ rmly in the context of algebra.

In Scotland, Colin Maclaurin worked on methods for [ nding ‘impossible’ 
(complex) roots of equations, proving the following theorem in a paper published 
in 1729:

THEOREM III. In general, the roots of the equation xn – Axn–1 + Bxn–2 – Cxn–3 & c. = 0, 
are the limits of the roots of the equation nxn–1 – (n–1)Axn–2 – (n–2)Bxn–3 + & c. = 0, or of 
any equation that is deduced from it by any arithmetical progression l ∓ d, l ∓ 2d, l ∓ 
3d & c.  and conversely the roots of this new equation will be the limits of the roots of the 
proposed equation xn – Axn–1 + Bxn–2 – Cxn–3 & c. = 0. (Maclaurin 1729, 88)

Maclaurin did not use Rolle’s method of cascades. His proof was based on two 
Lemmas, the [ rst of which involved transforming the equation xn – Axn–1 + . . . = 0 
by putting x = e + y and showing that the coe7  cient of each term yr of the new 
equation could be deduced from the coe7  cient of the previous term yr–1 by multi-
plying each part of the coe7  cient by its e exponent and dividing the product by 
re. 9 e second Lemma gave the conditions for two quantities to be limits of one 
or more real roots of the equation. 9 ese results were then used to show that the 
roots of the equation are limits of the equation nxn–1 – (n–1)Axn–2 . . . = 0. Arithmetic 
progressions were invoked only at the end of the proof when they were used to 
produce (by ‘multiplication’ with the original equation) an equation whose roots 
are the limits of the original equation.

Like Reyneau, Maclaurin made no explicit connection to the methods of the 
calculus. Nor did he make any direct reference to Rolle. However, in 1725 a copy 
of Rolle’s Algebre had been donated to the University Library of Aberdeen, where 
Maclaurin was professor of mathematics.20 Reyneau’s text was also known to 
Maclaurin,21 so it is virtually certain that Maclaurin was aware of Rolle’s work.

19. Corrollaire VII. Qui est fundamental. Mais les racines d’une premiere équation ne sçauroient êtres 
les limites des racines d’une seconde, que les racines de la seconde ne soient aussi les limites des racines de 
la premiere; par consequent si on multiplie les termes d’une équation quelconque, dont tout les racines sont 
réelles, positives & inégales, chacun par le nombre qui est l’exposant de l’inconnue de ce terme, & le der-
nier terme par zero, les racines de l’équation qui vient de cette multiplication, sont les limites des racines 
de l’équation proposée. Par example supposant que x4 – nx3 + pxx – qx + r = 0 représente une équation dont 
tous les racines sont réelles, positives & inégales, si on multiplie chaque terme par l’exposant du degré de 
l’inconnue de ce terme, & le dernier terme par zero, l’on aura 4x4 – 3nx3 + 2pxx – qx = 0, ou bien divisant par 
x, 4x3 – 3nxx + 2px – q = 0, les racines de cette dernier équation sont les limites des racines de la proposée.

20. 9 e book was donated by James Fraser, a well known bookseller and court librarian. Maclaurin was 
professor of mathematics in Aberdeen in 1721–2 and again in 1724–5.

21. Reyneau’s text is cited in Campbell (1727, 517), a paper that Maclaurin discussed with James Stirling in 
a letter of 11 February 1728; see Mills (1982, 185–188) for a transcript.
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During the eighteenth century the theorem lived on as a theorem in algebra, 
appearing in a form comparable to that given by Maclaurin. A typical example is 
the version presented by the Italian mathematician Odoardo Gherli (1771, 151). But 
while mathematicians like Gherli still adhered to the language of algebra, a radical 
change had already taken place elsewhere. In 1755 Leonhard Euler had published 
a version of the theorem in his Institutiones calculi di5 erentialis ‘Foundations of 
di\ erential calculus’ (1755, 657–660). 9 e theorem still appeared in the context of 
equation solving, but was now expressed in the language of calculus.

Suppose we have an equation xn – Axn–1 + Bxn–2 – . . . = 0 with distinct roots p < q 
< r < . . . . Euler considered the general function z = xn – Axn–1 + Bxn–2 – Cxn–3 + . . . 
and allowed x to increase from ‘– ∞’ through its range of values:

 . . . continuing to place larger values in place of x, it is clear that z will take values greater 
than zero or less than zero, but it does not vanish before we put x = p; in which case z = 0. 
As the values of x are increased beyond p, the values of z become positive or negative, 
until we arrive at the value x = q; in which case again z = 0. 9 erefore it is necessary, since 
the values of z move from 0 to 0 again that, in between, z will have either a maximum or 
minimum value.22 (Euler 1755, 657–658)

Euler had earlier shown that the values of x which make the function z a maximum 

or minimum are roots of the di\ erential equation 
dz
dx

nx n Axn n= − − + =− −1 21 0( ) … ,
 and so could go on to argue:

Since between any two real roots of the equation z = 0 there holds one of the cases, that 
the function z becomes maximum or minimum, it follows that if the equation z = 0 has

 

two real roots, then the equation 
dz
dx

= 0  necessarily has one real root. Equally, if the 

equation z = 0 has three real roots, then the equation 
dz
dx

= 0  certainly has two real 

roots. And in general if the equation z = 0 has m real roots, the equation 
dz
dx

= 0  neces-
sarily has at least (m – 1) real roots.23 (Euler 1755, 660–661)

Euler’s presentation of the theorem was thus fundamentally di\ erent from that 
of his predecessors. With the calculus at his [ ngertips he had no need for Rolle’s 

22.  . . . continuo maiores in locum ipsius x collocari; perspicuumque est z nacturum hinc esse valores vel 
nihilo maiores vel nihilo minores, neque prius esse evaniturum, quam ponatur x = p; quo casu sit z = 0. 
Augeantur valores ipsius x ultra p, atque valores ipsius z vel a7  rmativi vel negative [ ent, donec perveniatur 
ad valorem x = q; quo casu iterim erit z = 0. Necesse ergo est, ut cum valores ipius z ab 0 iterum ad 0 acces-
serint, interea z habuerit valorem vel maximum vel minimum.

23. Quia inter binas quavis aequationis z = 0 radices reales datur unus casus, quo functio z sit maximum 
vel minimum; sequitur si aequatio z = 0 necessario unam radicem habituram esse realem. Pariter si aequatio 

z = 0 tres habeat radices reales, tum aequatio dz
dx

= 0 certo duas habebit radices reales. Atque generatum si 

aequatio z = 0 habeat m radices reales, necesse est ut a equationis dz
dx

= 0 ad minimum sint m – 1 radices 
reales.
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method of cascades so for the [ rst time, albeit still in the context of polynomial 
equations, the theorem resembles its modern counterpart. Whether or not Euler 
had read Rolle is not known. Characteristically, he makes no reference to any 
earlier work.

Lagrange, like Euler, discussed the theorem in the context of equation solving 
but in the language of the calculus. Unlike Euler, however, he speci[ cally referred 
to Rolle and his method of cascades:

9 e need to deal with this problem [[ nding the limits of roots of equations] was rec-
ognized before the end of the seventeenth century, and once it had been found that the 
equation formed by multiplying each term of the given equation by the exponent of its 
unknown contains the conditions for the equality of roots of the original equation, it was 
not long before it was discovered that the roots of this same equation thus formed were 
the limits of those of the primitive equation. It is known that Hudde is the author of the 
[ rst of these important discoveries, and I believe that the second is due to Rolle, who 
gave it in his Algebre, printed in 1690, and which has as its base his method of cascades.24 
(Lagrange 1798, Note VIII, 1)

9 e version Lagrange refers to is only Rolle’s ‘rule’, as given in the Algebre. 
Lagrange had not seen the Démonstration, but he referred to the theorem itself 
(which of course he would have seen (unattributed) in Euler’s Institutiones calculi 
di5 erentialis) in his subsequent discussion:

It is [ rst clear that the equation F(x) = 0 of degree m will have m real roots and that the 
derived equation F (́x) = 0 of degree m – 1 will necessarily have m – 1 real roots, since 
between two consecutive real roots of the equation F(x) = 0, there is always a real root of 
the equation F (́x) = 0.25 (Lagrange 1798, Note VIII, 12)

By the 1830s the theorem appeared in a number of textbooks on the theory of 
equations, but was still not associated with Rolle. 9 e person who appears to have 
been the [ rst to call it ‘Rolle’s theorem’ was Wilhelm Drobisch (Cajori 1911, 309). 
Drobisch, was professor of mathematics at the University of Leipzig, and noted 
for his clarity and precision (Heinze 1904, 81), published ‘Rolle’s Sätze’ in a text-
book (1834, 179). He cited Lagrange (1798, Note VIII) as his source despite the 
fact that Lagrange himself had not actually associated the theorem with Rolle. 
Drobisch, having noticed the symbiotic nature of the theorem and the rule, 

24. On a senti avant la [ n du xviie siècle la nécessité de s’occuper de ce problème, et, dès qu’on eut trouvé 
que l’équation formée en multipliant chaque terme d’une équation donnée par l’exposant de son inconnue 
renferme les conditions de l’égalité des racines de la proposée, on découvrit bientôt que les racines de cette 
même équation ainsi formée étaient les limites de celles de l’équation primitive. On sait que Hudde et l’auteur 
de la première de ces deux importantes découvertes, et je crois que le seconde et due à Rolle, qui l’a donnée 
dans son Algèbre, imprimée en 1690, et qui en a fait la base de sa méthode des cascades.

25. Il est d’abord évident que l’équation F(x) = 0 of degré m aura m racines réelles et que l’équation dérivée 
F (́x) = 0 du degré m – 1 aura aussi nécessairement m – 1 racines réelles, puisque, entre deux racines réelles 
consécutives de l’équation F(x) = 0, il tombe toujours une racine réelle de l’équation F (́x) = 0.
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advertised it thus in the table of contents: ‘Rolle’s theorems on the limitation of 
the real roots of the derived equation by the real [roots] of the original and vice 
versa’ (Drobisch 1834, xxvi).26

Six years later, François Moigno, a teacher of mathematics at the College Sainte 
Geneviève in Paris, included ‘Rolle’s theorem’ in the title of an article (Moigno 
1840), as did the French mathematician and historian of mathematics, Orly 
Terquem (1844), shortly aN erwards. Joseph Liouville (1864, 84) proved an exten-
sion of the theorem to complex roots, describing it as ‘le théorème celebre de 
Rolle’. Nevertheless, according to Cajori (1911, 309), it was not until 1868, when 
the theorem was attributed to Rolle in a German edition of Joseph Serret’s ind u-
ential Cours d’algèbre supérieure, that the association with Rolle became more 
widely known (Serret 1868a, 216). 9 e theorem was then included, with its own 
subheading, in the next (fourth) French edition of Serret’s text:

If a and b are two consecutive roots of the equation f(x) = 0, such that the equation has 
no other root between a and b, the equation f´(x) = 0, obtained by equating to zero the 
derivative of f(x), has at least one root between a and b, and if it has several, then the 
number of these roots is odd.27 (Serret 1877, 271)

In the latter half of the nineteenth century the theorem underwent its second 
signi[ cant change. From being a useful result in the theory of equations it was 
transformed into a fundamental theorem in analysis. Although it is now used 
to prove the mean value theorem, the two theorems had originally existed sepa-
rately. Cajori (1911, 310) conjectured that the [ rst person to bring the two theo-
rems together was Pierre-Ossian Bonnet, a French mathematician better known 
for his work on di\ erential geometry. Bonnet’s derivation of the mean value 
theorem from Rolle’s theorem was reported by his colleague Joseph Serret in his 
calculus textbook (1868b, 19), although Serret neither mentioned Rolle’s name 
nor provided a reference for Bonnet’s work.

In 1873 Charles Hermite used the theorem in his Cours d’analyse ‘Course of ana-
lysis’ in the context of the theory of Taylor series, now clearly attributing it to Rolle:

When a continuous function is zero for two values x0 and X, the derivative, if it is itself 
continuous, vanishes for a value between x0 and X.

9 is last proposition, that is to say Rolle’s theorem, together with the rules of arithmetic 
established so easily in algebra for the formation of derivatives of sums, products and pow-
ers of functions, is su7  cient to establish the existence of Taylor series.28 (Hermite 1873, 48)

26. Rolle’s Sätze von der Begrenzung der reellen Wurzeln der derivirten Gleichung durch die reellen der 
ursprünglichen, so wie dieser durch jene.

27. Si a et b désignent deux racines consécutives de l’équation f (x) = 0, en sorte que cette équation n’ait 
aucune autre racine comprise entre a et b, l’équation f ‘(x) = 0, obtenue en égalant à zero la dérivée de f (x), a au 
moins une racine comprise entre a et b, quand elle en a plusieurs, le nombre de ces racines est impair.

28. Lorsqu’une fonction continue est nulle pour deux valeurs x0 et X, la dérivée, si elle est elle-même con-
tinue, s’annule pour une valeur comprise entre x0 et X.
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Note that this formulation is not Rolle’s theorem in the generality we know it 
today. Not only does Hermite seem to assume that continuous functions are 
always di\ erentiable (although he may have known from his close correspond-
ent Weierstrass that this was not true)29 but, more importantly, he includes the 
unnecessary condition that the derivative has to be continuous. AN er giving a 
proof of the existence of Taylor series, Hermite concluded:

But the very principle of this simple proof, which rests on Rolle’s theorem, belongs to 
Homersham Cox, as one can see in the work of Todhunter (A Treatise on the di5 erential 
Calculus).30 (Hermite 1873, 49–50).

Rolle’s name does not appear in any of the works to which Hermite referred 
(Homersham Cox 1851a, 80–81; 1851b, 37; Todhunter 1855, 68),31 but Hermite 
would have been familiar with the origins of the theorem from his knowledge of 
the theory of equations. Hermite was the leading French analyst of his generation 
and his Cours d’analyse, which ran to four editions, was extremely ind uential in 
France during the latter part of the nineteenth century. His unequivocal associa-
tion of the theorem with Rolle was thus decisive for future writers.32

From the mid-1870s onward the attribution became standard: during the years 
1876 to 1888 the subject index of the Royal Society catalogue listed six publica-
tions under the subheading ‘Rolle’s 9 eorem’ (1908, 167).33

9 ere was yet another turn in the theorem’s history at the beginning of 
the twentieth century when some mathematicians doubted that the theorem 
was due to Rolle at all.34 9 is was because they had assumed that it was in his 
Algebre, but had only been able to [ nd there the weaker ‘upward’ result, ‘Rolle’s 
Corollary’. It was only aN er Eneström (1906, 301–302), having read Reyneau 
(1708), suggested that the Démonstration was the place to look that the doubts 
were laid to rest.

C’est cette dernière proposition, c’est-à-dire le théorème de Rolle, jointe aux règles de calcul établies si 
facilement en Algèbre pour la formation des dérivées de sommes, de produits et de puissances de fonctions, 
qui nous su7  ra pour établir la série de Taylor.

29. Weierstrass had given an example of a nowhere-continuous di\ erentiable function in a lecture in 
1872.

30. Mais le principe même de cette démonstration si simple, qui repose sur le theoreme de Rolle, appar-
tient a M Homersham Cox, ainsi qu’on peut le voir dans l’Ouvrage de M Todhunter (A Treatise on the dif-
ferential Calculus).

31. 9 e [ rst edition of Isaac Todhunter’s calculus textbook (1852) does not contain a statement of Rolle’s 
theorem nor a reference to Homersham Cox’s publications.

32. Edmond Laguerre, for example wrote :  . . .  sur la théoreme de Rolle (voir notamment Cours d’Analyse . . . de 
M. Hermite 1867–68) ‘. . .  on Rolle’s theorem (see notably Cours d’analyse . . . of Hermite 1867–68)’ (Laguerre 
1880, 230).

33. Cajori (1911, 309) incorrectly gives 1876 as the date of the earliest article in the Index with Rolle’s the-
orem in its title, but Moigno (1840), Terquem (1844), and Liouville (1860) are all listed.

34. Cajori (1911, 301) mentioned Alfred Loewy, Alfred Pringsheim, and Anton von Braunmühl.
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Conclusion

9 e theorem’s transition from algebra to analysis, begun in 1755 by Euler and 
completed more than one hundred years later by Serret and Hermite, mirrors 
the increasing interest in foundational aspects of the calculus over the period. 
Concomitant with this transition was the growing recognition of Rolle as the 
original formulator of the theorem. As the theorem itself grew in status, so too 
the association with Rolle became more widespread. 9 at the attribution became 
a subject of discussion and doubt at the end of the nineteenth century serves only 
to highlight the theorem’s increasing signi[ cance. Had the few surviving copies 
of the Démonstration been lost, the truth would have been hard to con[ rm and 
the story might have had a very di\ erent ending.

9 at Rolle’s theorem, one of the fundamental theorems in analysis, should 
have begun its life as an unexceptional theorem in algebra, now seems rather 
remarkable. Given Rolle’s own views about the calculus it is perhaps less surpris-
ing. Nevertheless it is now so [ rmly entrenched in analysis that for some it seems 
inconceivable that it could ever have been otherwise. As an egregious example 
of such misguided judgement consider the Wikipedia entry for Rolle’s theorem, 
which claims that ‘A version of the theorem was [ rst stated by the Indian astron-
omer Bhaskara in the 12th century. A proof of the theorem had to wait until 
centuries later when Michel Rolle in 1691 used the methods of the di\ erential 
calculus’.35 Without vouching for the correctness or otherwise of the [ rst claim, 
we can be unequivocal in condemning the second.
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During the twentieth century mathematics grew on all fronts. Many univer-
sities were built, universal education became a widespread political goal, 

technology advanced with a speed never seen before. Worldwide, mathematics 
was the most frequently taught school subject, at all levels. 9 e number of PhDs 
in mathematics rose, as did the number of research mathematicians. Mathematics 
expanded into [ elds such as economics, biology, physiology, and psychology. 
Many new mathematical disciplines saw the light of day. In the twentieth cen-
tury mathematics thrived. To get an idea of the volume of research mathematics 
produced in the twentieth century, and the development and expansion of the 
[ eld, one can compare the Mathematics Subject Classi[ cation (MSC) of 2000 
with the one used at the beginning of the century. In 1900 the MSC had twelve 
headings, forty-one subheadings and forty-two sub-subheadings, occupying just 
a few pages of the Jahrbuch über die Fortschritte der Mathematik. By 2000 there 
were ninety-eight headings, more than three thousand subheadings, and a huge 
number of sub-subheadings. 9 e whole scheme, as downloaded from the internet,  
takes up sixty-nine pages. Philip Davis and Reuben Hersh (1981, 24) estimated 
that two-hundred thousand mathematical proofs were produced annually, call-
ing the twentieth century ‘the golden age for mathematical production’.

Just listing the new developments that took place during this period would 
exceed the limits of this chapter. But it is possible to single out two trends in 
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twentieth-century mathematics that most historians and mathematicians would 
recognize and agree upon: (1) a trend towards abstraction, and (2) a trend to 
mathematization that went beyond the physical sciences, resulting in the emer-
gence of new disciplines of applied mathematics, a trend that was greatly accel-
erated by World War II and the advent of the computer. Both led to radical new 
interpretations of pieces of mathematics that had previously been considered 
unimportant and which now became central. 9 is phenomenon will be illus-
trated through two in-depth case studies: the emergence of the theory of convex 
sets and the creation of mathematical programming in the wake of World War II. 
But [ rst I give a brief introduction to the approach used here.

A multi-perspective approach to the history of mathematics

In the paper ‘Where did twentieth-century mathematics go wrong?’ Chandler 
Davis, Editor-in-Chief of 0 e Mathematical Intelligencer, uttered his frustration 
with the picture that twentieth-century mathematicians painted of mathematics: 
‘Most 20th-century mathematicians talk as if they had a subject-matter outside of 
time and space. No wonder they seem snooty to others!’ (Davis 1994, 132). Behind 
the attitude that Davis opposes lies a strongly Platonic view of mathematics as an 
autonomous science with an unchanging eternal subject-matter to be gradually 
uncovered over the course of time. At present the general opinion among his-
torians of mathematics is that such a view of mathematical concepts as time-, 
place-, and context-independent is not very fruitful if one wants to understand 
the historical development of mathematics. A much more rewarding approach 
is to focus on concrete practices of mathematics, acknowledging that, despite 
its universal character, mathematical knowledge is produced by mathematicians 
who live, interact, and communicate in concrete social settings.

9 rough mathematicians’ activities, mathematical ideas and knowledge 
emerge and develop at local places and in speci[ c intellectual contexts and times.1 
Problems, concepts, de[ nitions, and proofs emerge, develop, and change through 
mathematical activities. To understand how this happens, it is productive on the 
one hand to investigate how and why mathematicians have decided to discuss 
and work on particular problems, how and why they have introduced certain 
concepts and de[ nitions, and employed particular strategies of proof; and on the 
other hand to identify changes in the understanding of mathematical entities, 
notions, and approaches. Such investigations provide a foundation for answering 

1. In the history of science there has been a trend to emphasize the local nature of research practices 
(e.g., Buchwald and Franklin 2005, 1). Recently this approach has also been taken up by historians of math-
ematics (e.g., Epple 2000; 2004). For methodological discussions in history of mathematics see also Corry 
(2004); Kjeldsen et al (2004).
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questions like: what ind uenced the development of mathematics? What driving 
forces can be identi[ ed behind its development, and what are they dependent on? 
What kind of factors and actions has modi[ ed the course of mathematics?

One way of answering such questions is to analyse concrete mathematical 
activities and episodes from several perspectives—or points of observation.2 In 
the following two case studies I use such a multi-perspective approach to study 
the emergence of the theory of convex sets and the rise of nonlinear program-
ming. I analyse the sources from one or more of the following points of view: 
mathematicians’ motivations and goals, their perceptions of the objects involved, 
their methods and techniques of investigation, the mathematical context, and the 
institutional context. 9 e choice of perspectives has been dictated by the histori-
cal research questions investigated and by the available sources. 9 e consequent 
analysis shows that a variety of decisive factors, scienti[ c as well as extra-scien-
ti[ c, enter into the explanation of developments and changes in mathematics—
illustrating that its subject-matter is not outside of time and space, while casting 
light on how local di\ erences matter in the history of mathematics.

B e emergence of the theory of convex sets

9 e modern theory of convex sets emerged at the turn of the twentieth century. 
In some textbooks on convex sets introductory historical sketches explain that 
Hermann Brunn was the [ rst to study geometrical objects which were character-
ized only by the property of convexity. 9 e theory was then developed further 
by Hermann Minkowski, who introduced fundamental new concepts to reveal 
some of its many applications (e.g., Bonneson and Fenchel 1934; Klee 1963). 9 e 
emergence of the theory of convexity is portrayed as a homogenous linear his-
torical process that began with Brunn’s [ rst papers in 1887–9, which were suc-
ceeded by Minkowski’s works, published in 1896 to 1903. In these historical 
sketches Brunn’s and Minkowski’s work are interpreted from the perspective of 
later theoretical developments. By contrast, the following presentation of their 
work is based on a reading and interpretation from various perspectives which 
emphasize the di\ erences between Brunn’s and Minkowski’s mathematical 
practices, di\ erences that will highlight some of the changes in mathematicians’ 
conceptions of the subject-matter of mathematics that became characteristic of 
twentieth-century mathematics.

Karl Hermann Brunn (1862–1939) grew up and lived most of his life in Munich. 
He wrote an autobiography (Brunn 1913), which is the source of most of what is 
known about him: for example, that besides publishing mathematical works he 

2. 9 is is partly inspired by the work of the Danish historian Bernard Eric Jensen (2003).
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also wrote poetry. Brunn was intrigued by what he called the elementary geom-
etry of [ gures. 9 is fascination is red ected in Brunn’s inaugural thesis from the 
University of Munich, Über Ovale und EiI ächen ‘On ovals and egg-surfaces’ 
(1887), an investigation of geometrical properties of these special kinds of [ g-
ures. 9 e title he chose red ects the emphasis on the [ gures themselves: ovals and 
egg-surfaces refer to shapes of things we encounter in physical space.

Brunn de[ ned his objects in the [ rst chapter of the thesis (Brunn 1887, 1). By 
an oval he understood a closed curve with the property that every intersecting 
straight line in the plane of the curve intersects the curve in two and only two 
points (Fig. 8.4.1). He used the term egg-surface to denote the corresponding three-
dimensional object, where the word ‘curve’ is replaced by the word ‘surface’ in the 
de[ nition. Today we would call such curves and surfaces boundaries of closed con-
vex sets in the plane and in space. Brunn also introduced the terms volles Oval ‘full 
ovals’ and volles Eigebilde ‘(full) egg-bodies’, by which he understood the bodies one 
gets by considering ovals and egg-surfaces taken together with their inner points.

In the thesis, Brunn investigated what he could prove about his newly de[ ned 
objects when he applied basic geometrical notions like curvature, area, and 
volume.  A characteristic feature of Brunn’s work was his strong opinions on 
proper  methodology in geometry. In the introduction he emphasized that his 
study belonged to the category he called elementargeometrischen Untersuchungen 
‘elementary geometrical investigations’ (Brunn 1887, Vorwort), where he restricted 
himself to the synthetic method in geometry—that is, in the Euclidean style. He 
explicitly stated that he had refrained from presenting these egg-forms analytic-
ally, that is describing—or replacing—them by algebraic formulae.3 9 is prefer-
ence was a major issue for Brunn, as he clearly stated in his autobiography:

I was not entirely satis[ ed with the geometry of that time, which strongly stuck to laws that 
could be presented as equations, quickly leading from simple to fuzzy [ gures that have no 
connection with common human interests. I tried to treat plain geometrical forms in gen-
eral de[ nitions. In doing so I leaned primarily on the elementary geometry that Hermann 
Müller, an impressive character with outstanding teaching talent, had taught me in the 
Gymnasium, and I drew on Jakob Steiner for stimulation.4 (Brunn 1913, 40)

Jakob Steiner (1796–1863) had been one of Germany’s leading geometers. In 
Steiner’s time geometers had been engaged in a controversy concerning the proper 
way of reasoning, with the synthetic geometers on one side and the analytical 

3. For historical discussions of analytical and synthetic geometry, see Kline (1972, chapter 35); Daston 
(1986); Epple (1997).

4. Von der damaligen Geometrie, die sich stark an die in Gleichungsform darstellbaren Gesetzmäßigkeiten 
hielt und vom einfachen rasch zu krausen, dem allgemein menschlichen Interesse fern stehenden Gestalten 
führte, war ich nicht ganz befriedigt. Ich versuchte einfachste geometrische Formen in allgemeinerer 
De[ nition zu behandeln. Dabei stützte ich mich wesentlich auf die Elementargeometrie, die mich im 
Gymnasium Hermann Müller, eine imponierende Persönlichkeit von hervorragendem Lehrtalent, gelehrt 
hatte, und schöpN e Anregung aus Jakob Steiner.
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geometers on the other. Steiner belonged to the synthetic camp, insisting that 
Euclidean descriptive or projective approaches were the only acceptable ones. 
His commitment to the intuitive synthetic method was so great that he literally 
hated analytical geometry. Steiner died only a year aN er Brunn was born and 
soon the controversy died out, as can be inferred from Felix Klein’s description 
of the  di\ erences between the two approaches in 1872:

9 e di\ erence between recent synthesis and recent analytical geometry has no longer to 
be considered an essential one, since the ways of reasoning on both sides have gradually 
evolved into quite similar forms. (cited by Epple 1997, 181)

But even though these purist methodological views were no longer strongly pre-
sent in geometry when Brunn wrote his thesis, he chose to work very much in 
Steiner’s spirit, using synthetic methods. He argued from the [ gures and their 
cross-sections themselves and did not translate the [ gures into equations because 
he felt—as he expressed it in his autobiography—that manipulations of the equa-
tions lead to [ gures that have no connection with common human interests. 
Here Brunn was repeating one of the main arguments in the earlier controversy 
about analytical methods: that the transformations of the geometrical [ gure 
 corresponding to the algebraic manipulations are di7  cult to keep track of, and 
that the analysts ‘oN en lost themselves in blind calculations, devoid of any geo-
metric representation’, as Klein put it (1908 [1939], 56).

Why did Brunn work on these forms? What was his motivation? Only towards 
the end of the thesis did he red ect a little on his work. Here it appears that the 
driving force had been to generalize theorems involving the length of lines in 
the two-dimensional plane to areas and surfaces in three-dimensional space, 
replacing the notion of lines with oval-shaped curves and egg-shaped surfaces. 
He [ nished  the thesis with the following remark:

However, the complete work [which Brunn had not yet provided] is intended to show that 
geometrical [ gures constructed from a few, unusual and specialized laws also  enable one 
to make statements that are not quite obvious.5 (Brunn 1887, 42)

5. Die arbeit im Ganzen aber möchte zeigen, dass sich auch über geometrische Gebilde von ungemein 
wenig spezialisiertem Bildungsgesetz immerhin noch einiges nicht ganz auf der Hand liegenden aussagen 
lässt.

Fig. 8.4.1 Examples of an oval and a 
curve which is not an oval
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In short, no particular unsolved problem lay behind Brunn’s thesis; he was sim-
ply trying to build a (synthetic) geometrical theory of egg-forms.

Whereas Brunn introduced the concept of egg-forms in his [ rst published 
work, Hermann Minkowski’s (1864–1909) concept of convex bodies was devel-
oped through three di\ erent phases in his mathematical practice (Kjeldsen 2008). 
In the [ rst phase Minkowski used a geometrical method to treat the minimum 
problem for positive de[ nite quadratic forms in n variables:

f x x a x x a a an h k h k
h k
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h k h k k h( , , ) ,,
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where f(x1, . . . , xn) > 0 for all (x1, . . . , xn) ≠ (0, . . . ,0). 9 e problem of [ nding the small-
est number N that can be represented by f for integer values (not all zero) of the 
variables x1, . . . xn is called the minimum problem. Minkowski was interested in the 
minimum problem because it was closely related to the theory of reduction for pos-
itive de[ nite quadratic forms. In the second phase he investigated the geometrical 
method used in the [ rst phase, introducing the notions of nirgends konkave Körper 
mit Nullpunkt ‘nowhere-concave bodies with middle point’, Eichkörper ‘gauge-
bodies’, that functioned as a kind of measuring tool, and nirgends konkave Körper 
‘nowhere-concave bodies’. Finally, in the third phase Minkowski began to investi-
gate convex bodies—or nowhere-concave bodies as he then called them—for their 
own sake, investigations that led to the twentieth-century theory of convex sets.

9 erefore, to understand the historical development of Minkowski’s notion of 
convex bodies the point of departure is his geometrical treatment of the mini-
mum problem.6 From the preface to Geometrie der Zahlen (Minkowski 1896) as 
well as from Minkowski’s papers, it is clear that his work was inspired prima-
rily by two sources. 9 e [ rst was the letters from Hermite to Jacobi published in 
Crelle’s Journal (Hermite 1850, 263), in which Hermite proved that for a positive 
de[ nite quadratic form f(x) in n variables x = (x1, . . . , xn), there exist integer values 
(x1, . . . , xn) (not all zero) for the variables such that:

f x Dn n( ) ( / ) / ( ) /≤ −4 3 1 2 1 1

where D is the determinant of the form. 9 e second source was a paper by 
Dirichlet (1850) published in the same volume, in which Dirichlet used a geo-
metrical interpretation of positive de[ nite quadratic forms in three variables to 
study their reduction.7

6. 9 e purpose of this case study is to understand the emergence of the concept of convex bodies in 
Minkowski’s work. Schwermer (2007) discusses Minkowski’s work in relation to the history of the reduction 
theory of quadratic forms.

7. 9 is geometrical interpretation actually goes back to Gauss, who in 1831 had indicated the interpreta-
tion of binary and ternary positive de[ nite quadratic forms as point systems in the plane and space, respec-
tively. See (Gauss 1863).
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In a rectangular (x, y) coordinate system the level curves f(x, y) = λ for a posi-
tive de[ nite quadratic form in two variables:

f x y ax bxy cy( , ) = + +2 22

form ellipses. 9 rough a transformation, new coordinates (u, v  ) can be found 
such that the level curves in the (skew) (u, v  ) coordinate system form circles. 9 e 
vectors (1, 0) and (0, 1) in the (x, y) plane are represented by (m1, m2) and (n1, n2) 
respectively, where:

m m a n n c1
2

2
2

1
2

2
2+ = + =,

and the angle φ between (m1, m2) and (n1, n2) is given by:

   
cos .� = b

ac

9 e unit squares in the (x, y  )-system are mapped to (fundamental) parallelo-
grams in the (u, v  ) plane. 9 e lattice points are the corners of the fundamental 
parallelograms and they correspond to integer values of x and y. 9 e determinant 
of the quadratic form f is the square of the area of the fundamental parallelo-
gram, and for integers x0 and y0, f(x0, y0) is the square of the distance from the 
corresponding lattice point to the origin (Fig. 8.4.2).

9 rough this geometrical construction, a positive de[ nite quadratic form can be 
presented by a lattice. 9 rough geometrical reasoning about the lattice, number-
theoretical problems can be solved. For example, the problem of whether there 
exist integer values of x and y for which a given number N can be represented by f 
transforms into the question of whether a circle with radius N  and centre in the 
origin passes through a lattice point or not. In particular, the minimum problem 
transforms into the problem of determining the square of the smallest distance 
between two points in the lattice associated with the quadratic form.

Minkowski did not publish his geometrical way of thinking about the minimum 
problem until 1891, but he had combined Hermite’s result with Dirichlet’s geomet-
rical image several years earlier. One of its [ rst appearances can be found in the pro-
bationary lecture he gave for his habilitation in Bonn on 15 March 1887 (Schwermer 
1991). In the manuscript Minkowski explains how an upper bound for the minimum 
problem for a positive de[ nite quadratic form in three variables can be reached by 
using a very elegant and intuitive geometrical argument about the corresponding 
lattice. He mentioned that the same could be applied to lattices of any dimension. 
In a letter to Hilbert dated two years later, Minkowski gave an explicit formulation 
of the minimum result for quadratic forms in n variables, stating that:

In a positive quadratic form with n (≥ 2) variables and determinant D one can always 
assign integer values to the variables such that the form becomes < nD1/n. For the 
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coe7  cient n Hermite had only (4/3)½ (n-1), which obviously, in general, is a much larger 
limit.8 (Minkowski 1973 [1889], 38)

Minkowski published the [ rst proof of this statement in 1891, acknowledging 
his debt to Hermite and to the geometrical interpretation of forms of three var-
iables (Minkowski 1911, I [1891a], 246). His proof was purely geometrical and 
indeed ‘almost obvious’: the positive de[ nite quadratic form f  in n variables 
was associated with a lattice. Around each lattice point Minkowski imagined a 
n- dimensional (hyper-) cube, with the lattice point as the centre and edges equal 

in length to 1
n

M , where M  denotes the smallest distance in the lattice. He 

8. In einer positiven quadratischen Form von der Determinante D mit n (≥ 2) Variabeln kann man stets 
den Variabeln solche ganzzahligen Werthe geben, dass die Form < nD1/n ausfällt. Hermite hat hier für den 
Coe7  cienten n nur (4/3)½ (n–1), was o\ enbar im Allgemeinen eine sehr viel höhere Grenze ist.

(–32½, 5½)

f(–3, 1)½ M½, = 1
5½

2½(0,0)

f(x,y)=2x2 + 6xy + 5y2

–2 0 2

Fig. 8.4.2 The lattice associated with the quadratic form f(x, y) = 2x2 + 6xy + 5y2. 
The smallest distance M , between two lattice points is M  = 1. The two coord-
inate axes are the bold lines
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 visualized the hyper-cubes organized in a parallel pattern and argued that the 
hyper-cubes on the one hand have no inner points in common and on the other 
hand do not [ ll out the whole space. Minkowski then concluded that the volume 
of one of the hyper-cubes is smaller than the volume of the fundamental paral-
lelotope and thereby smaller than the square root of the determinant D of the 
form, which means that:

 

1
n

M D
n





 <

or

M n Dn< .

Since the construction of the lattice ensures that if M  denotes the smallest 
distance between two points in the lattice then the square, ( )M 2 , represents 
the smallest number di\ erent from zero that can be represented by f with integer 
variables, Minkowski had reached an upper bound that, as he mentioned in the 
letter to Hilbert as well as in the paper, is better than the one given by Hermite. 
By repeating the argument using n-dimensional (hyper-) spheres of radius 12 M
instead of the hyper-cubes, Minkowski reached an even better upper bound for the 
minimum because the hyper-spheres circumscribe the hyper-cubes (Minkowski 
1911, I [1891a] 255–256).

As [ rst noticed by Joachim Schwermer (1991, 50), Minkowski’s argument 
in the 1891 paper can be interpreted as containing the core of what is known 
today as Minkowski’s convex body theorem about how big a bounded convex 
(or nowhere-concave) body with the origin as middle point has to be in order to 
contain a nonzero lattice point. But the theorem Minkowski proved in 1891 is 
about the minimum of positive de[ nite quadratic forms in n variables, not about 
nowhere-concave bodies with middle point. How did a notion of convexity enter 
into this discussion? And how did the minimum question transform into the 
question of the volume of a nowhere concave body with middle point?

It is hard to tell from the published sources exactly when Minkowski became 
aware of the signi[ cance of nowhere-concave bodies with middle point, but he 
mentioned them in print for the [ rst time in a resume of a talk he gave in Halle 
in 1891 with the title Über Geometrie der Zahlen ‘On the geometry of numbers’ 
(Minkowski 1911, I [1891b], 264). Until this point he had only talked about the 
lattice in connection with studies of quadratic forms, but here he introduced the 
lattice of integer points in ordinary Euclidean space with perpendicular axes. 9 e 
lattice and corresponding objects were the key terms under investigation; quad-
ratic forms were not mentioned.
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Nowhere-concave bodies with middle point are discussed in the resume [ rst 
as ‘very general kind of bodies that are constructed in such a way that in a cer-
tain manner they encompass a speci[ c point of the lattice—the origin’ and then 
as a category of bodies ‘having the origin as middle point and whose boundary 
outward is nowhere concave’ (Minkowski 1911, I [1891b], 264–265).9 9 is way of 
describing the objects shows that they were not generally familiar to mathemati-
cians. 9 ey did not yet have their own name. According to the resume, in the talk 
Minkowski presented the key theorem, later known as the convex body theorem, 
for three dimensions as follows:

9 e [ rst category of bodies consists of all those bodies that have the origin as middle 
point and whose boundaries towards the outside are nowhere concave, and the property 
in question for this category is: If the volume of a body from this category is ≥ 23 then 
this body necessarily contains additional lattice points besides the origin.10 (Minkowski 
1911, I [1891b], 264–265)

To understand the signi[ cance of the convex body theorem and why Minkowski 
was led to introduce the nowhere-concave bodies with middle point we must go 
back and analyse more closely that proof of the minimum theorem for positive 
de[ nite quadratic forms from Minkowski’s 1891 paper.

As we saw, Minkowski interpreted the positive de[ nite quadratic form f geo-
metrically and considered the corresponding lattice. In the (three dimensional) 
lattice the equation f = λ forms a sphere with the origin as centre and radius 

�.  In the rectangular three-dimensional coordinate system, f = λ represents an 
ellipsoid and here the lattice points are the points that correspond to integer val-
ues of the variables. Hence, [ nding the minimum value of f for integer values of 
the variables is similar to determining how big the ellipsoid has to be in order for 
it to contain a nontrivial lattice point. 9 e result, Minkowski announced in the 
talk, states that in a three-dimensional rectangular coordinate system an ellips-
oid with volume greater than 23 will contain a point other than the origin with 
integer coordinates.

9 is explains why the notion of volume became essential; but what about the 
nowhere-concave bodies with middle point? Returning to Minkowski’s proof for 
the minimum question, we can see that the argument depends on the fact that 
the spheres ( )f M= 1 4  with radius 12 M  which Minkowski placed around each 
lattice point do not have any inner points in common. Minkowski did not explain 
this further in the 1891 paper, but it is clear that he had already realized that the 
signi[ cant properties of these bodies were their symmetry about the centre and 

 9. welche im Nullpunkte einen Mittelpunkt haben, und deren Begrenzung nach aussen hin nirgends 
konkav ist.

10. Die erste Kategorie von Körpern besteht aus allen denjenigen Körpern, welche im Nullpunkte 
einen Mittelpunkt haben, und deren Begrenzung nach aussen hin nirgends konkav ist; und die fragliche 
EigenschaN  für diese Kategorie lautet: Wenn der Inhalt eines Körpers dieser Kategorie ≥ 23 ist, so schliesst 
der Körper notwendig noch weitere Punkte des Zahlengitters ausser dem Nullpunkte ein.
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their nowhere-concave shape. In Minkowski’s Collected works there is a paper of 
a talk that was read at the International Mathematical Congress in Chicago in 
1893, from which it follows that he had already realized that such bodies could 
be used to measure distances. He introduced what he called a radial distance 
function and its associated Eichkörper ‘gauge-body’. Minkowksi pointed out that 
every nowhere-concave body with the origin as middle point is the Eichkörper 
of what he called an einhellig ‘reciprocal’ distance function. Today we would call 
such a radial distance function a metric and think of the associated Eichkörper 
as a unit ball (Minkowski 1911, I [1893], 272–273).

So far we have seen how this concept of nowhere-concave bodies with middle 
point emerged out of Minkowski’s work on the minimum problem for positive 
de[ nite quadratic forms, leading to his convex body theorem. Further evidence 
for this interpretation of Minkowski’s path to the general concept of convex bod-
ies can be found in Minkowski’s good friend and colleague David Hilbert’s com-
memorative speech of 1909. Here Hilbert praised Minkowski’s geometrical proof 
of the minimum for positive de[ nite quadratic forms and emphasized that:

Minkowski’s proof led, by the generalization to forms with n variables, to a more natural 
and a far smaller upper bound for the minimum M, than the one Hermite had found. But 
still more important than that was that the essential thought in Minkowski’s argument 
only used the property of the ellipsoid that it is a convex body and has a middle point, 
and therefore could be transferred to any convex [ gure with middle point. 9 is fact led 
Minkowski to realise for the [ rst time that the concept of a convex body is a fundamen-
tal concept in our science and belongs amongst its most fruitful research methods.11 

(Hilbert 1909 in Minkowski 1911, I XI)

Hilbert referred to Minkowski’s geometrical proof of the minimum problem as 
eine Perle Minkowskischer ErF ndungskunst ‘a pearl of the Minkowskian art of 
inventions’. It is indeed a very powerful theorem, which connects the number 
theoretical property of the existence of lattice points in a nowhere-concave 
body with middle point with the geometrical property of its volume. 9 rough 
this theorem Minkowski was able to translate number theoretical problems 
into geometrical problems and solve them without burdensome arithmetic 
calculations.

Even though Minkowski used analytical methods in Geometrie der Zahlen 
there is no doubt that his intuition came from spatial geometrical considerations. 

11. Bei der Verallgemeinerung auf Formen mit n Variablen führt der Minkowskische Beweis auf 
eine natürlichere und weit kleinere obere Schranke für jenes Minimum M, als sie bis dahin Hermite 
gefunden hatte. Noch wichtiger aber als dies war es, dass der wesentliche Gedanke des Minkowskischen 
Schlussverfahrens nur die EigenschaN  des Ellipsoides, dass dasselbe eine konvexe Figur ist und einen 
Mittelpunkt besitzt, benutzte und daher auf beliebige konvexe Figuren mit Mittelpunkt übertragen werden 
konnte. Dieser Umstand führte Minkowski zum ersten Male zu der Erkenntnis, dass überhaupt der Begri5  
des konvexen Körpers ein fundamentaler Begri\  in unserer WissenschaN  ist und zu deren fruchtbarsten 
Forschungsmitteln gehört.
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In a publisher’s advertisement from 1893, Minkowski wrote about the forthcoming  
book:

I have chosen the title Geometry of numbers for this work because I reached the methods 
that give the arithmetical theorems by spatial intuition. Yet the presentation is analytic 
throughout, which was necessary for the reason that I consider manifolds of arbitrary 
order right from the beginning.12 (Minkowski 1910, V)

In the announcement of the 1896 edition he again emphasized this geometrical 
intuition:

I have reached my theorems through spatial intuition [ . . . ]. But here I have prepared a 
purely analytical presentation because the limitation to a three-dimensional manifold  
seemed impossible. But I aim to use expressions that are suitable for evoking the 
 geometrical imagination.13 (Minkowski 1910, VI)

AN er the publication of Geometrie der Zahlen Minkowski followed up on the 
ideas he had developed and began to work out a theory of convex bodies, as he 
soon renamed the nowhere-concave bodies, detached from number theory, thus 
initiating the modern theory of convex sets.

By approaching the works of Brunn and Minkowski from the perspectives of 
their motivations, goals, and how they perceived the objects involved it is possible 
to get insights into the di\ erences of their mathematical practices and the di\ e-
rent impact of their work.

Brunn wanted to generalize theorems involving the length of lines to theorems 
about areas and surfaces for oval- and egg-shaped [ gures. For him the study 
of the properties of these objects was a goal in itself. 9 is was not the case for 
Minkowski. His primary goal was to deal with problems in number theory, not 
to investigate properties of nowhere-concave bodies with middle point for their 
own sake. At the outset, he only did so because he wanted to use them as a tool for 
answering number-theoretical questions. As we have seen, these di\ erent moti-
vations had an impact on how Brunn and Minkowski developed their theories. 
Minkowski’s n-dimensional bodies were dictated by positive de[ nite quadratic 
forms with n variables—a need that was not determined by the nowhere-concave 
bodies with middle point but by the quadratic forms. For Brunn no such need 
was present.

12. Geometrie der Zahlen habe ich diese SchriN  betitelt, weil ich zu den Methoden, die in ihr arithmetische 
Sätze liefern, durch räumliche Anschauung geführt bin. Doch ist die Darstellung durchweg analytisch, 
wie dies schon durch den Umstand geboten war, dass ich von Anfang an eine Mannigfaltigkeit beliebiger 
Ordnung betrachte.

13. Ich bin zu meinen Sätzen durch räumliche Anschauungen gekommen [ . . . ]. Weil aber die Beschränkung 
auf eine Mannigfaltigkeit von drei Dimensionen unthunlich erschien, so habe ich die Darstellung hier rein 
analytisch gefasst, nur bed eissige ich mich des Gebrauchs solcher Ausdrücke, die geeignet sind, geometrische 
Vorstellungen wachzurufen.
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One of the premises for the historical sketches that illustrate the emergence 
of convex sets as a homogenous linear historical process is that both Brunn and 
Minkowski worked on objects that we today recognize as convex sets. But if we 
take a closer look at their work from the perspective of the objects a more di\ use 
picture emerges, revealing that the objects they studied were in practice quite 
di\ erent. Brunn was considering geometrical objects in two or three dimensions. 
He gave them concrete names and probably considered them as quasi-empirical 
objects abstracted from forms in our physical space. Minkowski’s objects were 
signi[ cantly di\ erent: they were not abstractions of empirical objects but abstract 
mathematical entities that ‘lived’ in n-dimensional manifolds.

Brunn’s and Minkowski’s work impacted very di\ erently on the development 
of twentieth century mathematics. Whereas Minkowski’s work laid the founda-
tion for what became the theory of convexity, Brunn’s work only became known 
and acknowledged aN er Minkowski read and criticized Brunn’s thesis around 
1893–4 and began citing it (Kjeldsen forthcoming). 9 e conclusion to be drawn 
from this is that at the outset convex objects were not mathematically inter-
esting in themselves, but placed into a particular context by Minkowski they 
emerged as an e\ ective tool to solve important problems in number theory, and 
consequently became mathematically interesting. 9 is is red ected in the third 
phase in Minkowski’s mathematical practice, leading to the modern theory 
of convexity, where he began to investigate the geometry of nowhere-concave 
bodies, or convex bodies as he renamed them, for their own sake. Before he 
suddenly died of a ruptured appendix in 1909 he had published four papers (a 
[ N h unpublished manuscript was found aN er his death) in which he initiated a 
systematic study of the geometry of convex sets, thereby laying the  foundation 
for the twentieth-century discipline of convexity in mathematics. His work 
inspired other mathematicians, in the beginning especially Ernst Steinitz 
and Constantin Carathéodory, who extended Minkowski’s work for di\ erent 
purposes and in di\ erent directions.

Nonlinear programming: a consequence of World War II?

Nonlinear programming is one of the new disciplines of applied mathematics 
that materialized during the second half of the twentieth century. It concerns 
[ nite-dimensional, inequality-constrained optimization where the problem is to 
minimize a function f de[ ned on Rn where the variables have to ful[ l some con-
straints given as inequalities. It quickly expanded into other areas, all collected 
under the common heading of mathematical programming, which developed 
into a major [ eld in applied mathematics of importance in [ elds such as eco-
nomics and operations research. 9 e main theorem in nonlinear programming 
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is known today as the Kuhn–Tucker theorem. It gives the necessary conditions—
now called the Kuhn–Tucker conditions—for the existence of a minimum for a 
nonlinear programming problem where the functions involved are di\ erentiable. 
It was derived by two Princeton mathematicians, Harold W Kuhn and Albert W 
Tucker, who presented the result to the mathematical community in 1950. 9 e 
following year the theorem was published in the paper ‘Nonlinear Programming’ 
(Kuhn and Tucker 1951), now considered a classic in mathematical programming 
and the founding paper of nonlinear programming. 9 e result itself, as well as 
the creation of the new research [ eld, made Kuhn and Tucker famous in the 
mathematical community.

Later, Kuhn (1991) became aware that the Kuhn–Tucker theorem was not a 
new result in 1950. Two other mathematicians, William Karush and Fritz John, 
had already proved the same theorem in 1939 and 1948 respectively, but each 
time the result had gone almost unnoticed. 9 is raises two interesting questions: 
why were these seemingly identical results perceived so di\ erently? And what 
enabled Kuhn’s and Tucker’s derivation of the result to create a new research 
[ eld in 1950?14 A Platonic view of mathematical concepts as independent of time, 
place, and context cannot provide answers to these questions, and neither can a 
limitation of one’s analysis to the mathematical ideas alone. 9 e following case 
study examines the historical events and the mathematical practices of Karush, 
John, and Kuhn and Tucker from several perspectives, which provide an account 
of the story that can give explanatory answers to these questions.

In 1939 William Karush handed in his master’s thesis, ‘Minima of functions 
of several variables with inequalities as side conditions’, to the mathematics 
department at the University of Chicago (Karush 1939). People familiar with 
mathematical programming will immediately recognize the title as a nonlinear 
programming problem. But as this term did not exist in 1939 Karush’s thesis was 
not about nonlinear programming. So what then was it considered to be about? 
What problem did Karush work on in his thesis and why?15

9 e mathematics department at Chicago, where Karush had studied, was oN en 
referred to as the Chicago School of Calculus of Variation. Its high point came in 
1910, aN er which it gradually declined, especially during the years of Gilbert Ames 
Bliss’s leadership in the 1930s. In retrospect people tend to explain the decline by 
inbreeding and a too narrowly de[ ned focus on ‘the study of local interior mini-
mum points for certain prescribed functionals given by integrals of a special form’ 
(Duren 1976, 245; Browder 1989; Mac Lane 1989; Stone 1989). Karush’s  thesis was 
fostered in this local milieu. He set out to investigate necessary and su7  cient 

14. 9 e signi[ cance of World War II for the emergence of new mathematical disciplines, as well as the his-
tory of nonlinear programming and the Kuhn–Tucker theorem, has been discussed in several papers. See for 
example Kuhn (1991); Kjeldsen (1999; 2000a; 2000b; 2003; 2006).

15. For further details and arguments for the claims made in this section, see Kjeldsen (1999; 2000a).
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conditions for the existence of a relative minimum for a function  f(x1, . . . , xn) in 
the set of points x = (x1, . . . , xn) satisfying the inequality conditions gα(x) ≥ 0, α = 
1, 2, . . . , m where the functions f and gα are subject to certain continuity and dif-
ferentiability conditions. In section three of the thesis he formulated and proved 
what later became known as the Kuhn–Tucker theorem (Karush 1939, 13). 9 e 
problem had been proposed by Karush’s supervisor Lawrence M Graves. At [ rst 
sight it might seem strange to propose such a [ nite-dimensional problem when 
the interesting case, from the perspective of calculus of variation, is the in[ nite-
dimensional case. Karush himself did not explain the relevance of examining the 
[ nite-dimensional case, but he did refer to a work by Bliss published the year before, 
which treated a similar [ nite-dimensional problem in which the constraints were 
given as equalities instead of inequalities (Bliss 1938, 365–367). Bliss carried out 
this analysis because he was interested in the signi[ cance of the notions of nor-
mality and abnormality for the calculus of variations, an important tool in the 
investigation of which was to clarify the signi[ cance of the notion of normality 
for the [ nite-dimensional problem. AN er referring to this work by Bliss, Karush 
presented the problem Graves had put to him, as described above (Karush 1939, 
1). 9 is juxtaposition suggests that Graves’s motivation could have been that a 
[ nite-dimensional analysis might provide a corresponding insight into calculus 
of variation pro blems with inequality constraints.

Nearly a decade later, in 1948, Fritz John published a paper with the title 
‘Extremum problems with inequalities as subsidiary conditions’ in a collec-
tion of papers put together in honour of Richard Courant’s sixtieth birthday 
(John 1948). John had been a student of Richard Courant in Göttingen. He 
moved to the USA in 1935, where he was employed—except for two years of war 
work at Aberdeen Proving Ground—by the University of Kentucky, until 1946 
when he accepted a position at the Courant Institute at New York University 
(Reid 1976, 131–132, 154–155). John worked in various areas of mathematics 
but at the time of Courant’s birthday volume more than half of his publications 
had been on the theory of convexity, and as we shall see below, this is also the 
context in which to understand John’s 1948 paper on extremum problems. As 
with Karush’s masters thesis, from the title alone the paper would later have 
been considered to be about nonlinear programming. But again, nonlinear 
programming did not yet exist in 1948. So the same questions that were asked 
about Karush’s work can be asked again: since John’s paper did not belong to 
the discipline of mathematical programming what then can it be said to be 
about? Why did John investigate this problem? Just two years later Kuhn’s and 
Tucker’s paper resulted in the  emergence of a new mathematical theory; why 
didn’t John’s paper do just that?

John’s paper is divided into two parts. 9 e [ rst deals with the theoretical result 
that, except for the absence of the so-called constraints quali[ cation, is what 
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became known as the Kuhn–Tucker conditions, namely necessary conditions for 
the existence of a minimum. 9 e second part is devoted to two geometrical appli-
cations of the theoretical result to problems concerning convex sets. I will not go 
through the technical details of his paper (for which see Kjeldsen 1999; 2000a) 
but only list the conclusions of the analysis. Even though the structure of John’s 
paper and the title he chose suggest that the theoretical part is the important one, 
several circumstances indicate that geometrical applications were the main focus 
of his attention, while the theoretical result in the [ rst part was simply a tool 
developed for handling those geometrical problems. Instead of being perceived 
as a contribution to optimization theory, John’s paper should rather be thought 
of as belonging to the theory of convexity.

9 e [ rst application concerns the minimal closed sphere containing a bounded 
set in Rm. 9 e problem was to [ nd the sphere of least positive radius that enclose 
a given bounded set S in Rm. By interpreting spheres in Rm as points in Rm+1 
where the [ rst m coordinates represent the centre and the last coordinate is the 
square of the radius, John reformulated the problem as an inequality constraint 
optimization  problem. 9 e constraints ensure that the minimum is sought 
among spheres that enclose S. In the second application John needed the theorem 
on the necessary conditions for the existence of a minimal ellipsoid containing 
a bounded set in Rm to prove a theorem in the theory of convexity that seems to 
have been his main interest. John later revealed in letters to Kuhn that the back-
ground for his work was an attempt to show that the boundary of a compact, 
convex set S in Rm lies between two homothetic ellipsoids of ratio 1/m (Kuhn, 
pers. comm. 1998). Indeed, this is the result of John’s second application (John 
1948, 202). 9 e goal was not to [ nd minimum points but rather to derive general 
theorems about closed convex sets and their relations to ellipsoids.

In short, the result that two years later became known as the Kuhn–Tucker 
conditions has the status of a tool in John’s paper. He was not in general interested 
in extremum problems subject to inequality constraints. In the introduction to 
the paper he had mentioned, as a kind of ‘defence’ for the theoretical part, some 
tools or theories that could be developed further, but he never took this point up 
again and nor did he actually develop any of them. He used his result exclusively 
as a tool to derive other general results about convex sets. Also John’s formula-
tion of the result was clearly dictated by the problems in the applications. It was 
formulated in such a way that it could be used directly in the two geometrical 
applications. 9 is also explains why the constraint quali[ cation is absent from 
John’s version of the theorem: the problem which the constraint quali[ cation 
takes care of does not show up in either of the applications that John treated in 
the second part.

Just two years aN er Fritz John’s paper appeared in the publication marking 
Courant’s birthday, Harold Kuhn and Albert Tucker wrote their names into 
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the ‘Hall of Fame’ of operations research. 9 e explanation lies not in the result 
itself; rather, the signi[ cance, interpretation, and importance of the result were 
dependent on the (local) context in which it emerged. 9 e question then is: what 
was the context that allowed Kuhn and Tucker to launch a new research [ eld in 
which the Kuhn–Tucker theorem became important?

As already mentioned, Kuhn and Tucker presented their result at the Second 
Berkeley Symposium in 1950 and published it in the proceedings of the meeting 
a year later, where they noted that their work had been sponsored by the O7  ce of 
Naval Research’s (ONR) logistics programme (Kuhn and Tucker 1951). 9 is pro-
gramme originated in 1948 as a result of George B Dantzig’s work with so-called 
programming planning problems in the US Air Force during and aN er World 
War II. In October 1947 Dantzig visited John von Neumann, in von Neumann’s 
capacity as a consultant to the Air Force, to discuss the possibility of solving such 
an Air Force problem. At this point Dantzig and his group had built a mathemat-
ical model for the problem, a model they [ rst called ‘programming in a linear 
structure’ but soon to become known as a linear programming problem. Von 
Neumann, who had just completed the [ rst book on game theory with Oskar 
Morgenstern (von Neumann and Morgenstern 1944), suggested that Dantzig’s 
programming problem was equivalent to a [ nite two-person zero-sum game. 
9 is connection to game theory provided the linear programming problem with 
a mathematical foundation in the theory of systems of linear inequalities and 
convexity.16

9 e ONR decided to set up a separate logistics branch with its own research 
programme to further support this kind of research. Mina Rees, then head of the 
mathematics division of ONR, later recalled how this programme originated:

 . . . when, in the late 1940s the sta\  of our o7  ce became aware that some mathemat-
ical results obtained by George Dantzig [ . . . ] could be used by the Navy to reduce the 
burdensome costs of their logistics operations, the possibilities were pointed out to the 
Deputy Chief of Naval Operations for Logistics. His enthusiasm for the possibilities pre-
sented by these results was so great that he called together all those senior o7  cers who 
had anything to do with logistics, as well as their civilian counterparts, to hear what we 
always referred to as a ‘presentation’. 9 e outcome of this meeting was the establishment 
in the O7  ce of Naval Research of a separate Logistics Branch with a separate research 
program. 9 is has proved to be a most successful activity of the Mathematics Division 
of ONR, both in its usefulness to the Navy, and in its impact on industry and the univer-
sities. (Rees 1977, 111)

16. For further literature on this story, the involvement of mathematicians in the US during World War II, 
and details on the history of von Neumann’s work on two-person zero-sum games, see Dantzig (1982; 1991); 
Owens (1989); Leonard (1992); Kjeldsen (1999; 2000a; 2000b; 2001; 2002; 2003; 2006).
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9 e project started out as a university-based trial in the summer of 1948. Tucker 
seems to have become involved by chance. He met Dantzig at one of the lat-
ter’s meetings with von Neumann at Princeton, where he showed an interest in 
mathematical problems concerning linear programming. He was asked by the 
ONR whether he would take on the job of principal investigator for the project. 
Tucker hired two of the department’s graduate students, Harold W Kuhn and 
David Gale, and together they developed the mathematical theory of linear pro-
gramming, published the [ rst rigorous proof of the important duality result for 
linear programming, and showed its equivalence with a two-person zero-sum 
game. For any linear programming problem, that is the minimization/maxi-
mization of a linear form in n variables subject to linear inequality constraints, 
another linear programming problem, called the dual programme, can be for-
mulated on the same set of data. If the original programme, called the primal 
programme, is a minimization problem then the dual is a maximization prob-
lem and vice versa. 9 e duality result states that if either the primal or the dual 
programme has a [ nite optimal solution then so does the other one, and the 
optimal solutions have the same value. 9 is duality theorem, a key result in 
linear programming, caught Tucker’s attention. He chose to continue working 
on the topic together with Kuhn (Albers and Alexanderson 1985; Kjeldsen 1999; 
2000a; 2006).

During the fall of 1949 Tucker was on sabbatical at Stanford University, where 
he continued thinking about the duality question. He and Kuhn began to work 
on an extension of the duality theorem to quadratic programming problems, at 
some point during 1949 changing the focus from the quadratic to the general 
nonlinear case. 9 eir joint paper ‘Nonlinear programming’, which contained 
the Kuhn–Tucker theorem, was the result of this work. Kuhn and Tucker did 
not succeed in deriving a duality result for nonlinear programming, but an ana-
lysis of the mathematics in their paper shows that this was in fact their point of 
departure. 9 eir formulation of the Kuhn–Tucker theorem is di\ erent from both 
Karush’s and John’s. Kuhn and Tucker reformulated the extremum problem as a 
saddle-value problem, an approach that was clearly dictated by the duality result 
for linear programming. 9 at in turn had been suggested by the duality of opti-
mal strategies for two-person zero-sum games. Kuhn’s and Tucker’s ‘Nonlinear 
programming’ paper stimulated further work in linear and nonlinear program-
ming, [ elds that rapidly expanded into many others which are now collectively 
referred to as mathematical programming (Kjeldsen 2000a).17

9 e ONR programme that Tucker headed was an essential component of 
the Kuhn–Tucker theorem’s success. Another was the inclusion of linear and 
nonlinear programming in the toolbox of operations research, along with the 

17. 9 e [ rst duality result for nonlinear programming was proved by Werner Fenchel (1953).



Abstraction and application 773

establishment of operations research as an academic discipline in the post-war 
period. 9 e connection with game theory, which had become a major math-
ematical research area at the RAND Corporation just aN er the war, also secured 
further (military) funding for mathematical programming.18 Finally, the con-
struction of the [ rst computer in 1946, with the promise that solutions to this 
kind of problem could actually be calculated, also played a part in the establish-
ment of nonlinear and eventually mathematical programming in the last half of 
the twentieth century.

Karush’s priority was recognized in 1975 by the mathematical programming 
and the operations research communities. At this time Kuhn was preparing a 
historical overview of nonlinear programming for an American Mathematical 
Society (AMS) symposium. As he explained in a letter to Karush, Kuhn had 
become aware of Karush’s thesis through his reading of Takayama’s book 
Mathematical economics (1974), whereupon he requested a copy of Karush’s the-
sis (Kuhn 1976, 10). From this unpublished letter, dated 4 February 1975, it is 
clear that Kuhn wanted to use the AMS symposium to call attention to Karush’s 
work:

First let me say that you have clear priority on the results known as the Kuhn–Tucker 
conditions (including the constraint quali[ cation). I intend to set the record as straight 
as I can in my talk.

Kuhn also quoted Richard Cottle, the organizer of the AMS symposium who 
is supposed to have said of Karush when confronted with Kuhn’s plan, ‘ “you 
[Karush] must be a saint” not to complain about the absence of recognition’. Kuhn 
had a short correspondence with Fritz John too, whose paper he also became 
aware of through Takayama’s book (Kuhn 1991). As a result of Kuhn’s record-
straightening historical talk, both John’s paper and Karush’s became generally 
known to the mathematical programming community and from then on both 
were considered classics in nonlinear programming.

9 e signi[ cance by then attached to the Kuhn–Tucker conditions is illustrated 
by an unpublished letter to Kuhn from his colleague Richard Bellman on 11 
February 1975:

I understand from Will Karush that you will try and set the record straight on the fam-
ous Kuhn–Tucker condition. I applaud your e\ ort. Fortunately there is enough credit for 
everybody. It would certainly be wonderful if you wrote it as the Kuhn–Tucker–Karush 
condition.

Like many important results, it is not di7  cult to establish, once observed. 9 at does 
not distract from the importance of the condition.

18. 9 e research and development centre Project RAND was established in Sante Monica, California in 
the spring of 1946. In 1948 it became a non-pro[ t free-standing corporation.
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It follows that Bellman thought of this result as important in its own right. One 
gets the impression that importance is an intrinsic property of a theorem, some-
thing that can be objectively ascribed to a mathematical result in itself. But the 
fact that Karush’s thesis was never published, and that nobody at the time appar-
ently encouraged him to do so, shows that this is not the case. Whether a result is 
important or not cannot necessarily be judged outside of the mathematical and 
institutional practice or context in which it was developed.

Two questions concerning the emergence of nonlinear programming were 
posed in this second case study: why were Karush’s, John’s, and Kuhn’s and 
Tucker’s seemingly identical result perceived so di\ erently by the mathematical 
community? Why was Kuhn’s and Tucker’s derivation of the result able to create 
a new research [ eld in 1950? Analyses of the protagonists’ concrete mathematical 
activities, from several perspectives, provide answers to these questions.

Karush did his work in a narrowly de[ ned mathematical milieu of calculus of 
variation. Regarded from within that context his result was relatively unimport-
ant, just a [ nite dimensional simpli[ cation of the ‘real’ thing. And viewed from 
inside that world it is not at all surprising that nobody was able to anticipate the 
future interest in that result. By contrast, the proper context in which to analyse 
Fritz John’s work is the theory of convexity. From that perspective his result can be 
understood as a tool developed to prove general results about convex sets. Viewed 
from inside the mathematical context of convex problems it became transparent 
that the inequality constraint optimization was not John’s main focus of interest.

Kuhn’s and Tucker’s work, on the other hand, belonged to the newly developed 
[ eld of linear programming, and the military promotion of new scienti[ c dis-
ciplines in the post-war USA. 9 ese di\ erent settings o\ er a variety of decisive 
explanatory factors: the internal mathematical context of linear programming; 
the internal scienti[ c context of operations research; the development of the 
computer; the sociological context of the establishment of operations research as 
a scienti[ c discipline; and the more global sociological context of World War II 
and the consequent shaping and supporting of science in the post-war USA.

Conclusion

How and why do these two case-studies illustrate how mathematics was inter-
preted in the twentieth century? 9 e [ rst illustrates how mathematicians’ con-
ception of the subject matter of mathematics went through fundamental changes 
in the period 1870–1940, changes that transformed mathematics from a science 
that examined numbers and geometrical objects to the much more abstract twen-
tieth-century mathematics of investigating structures. Not only did the emer-
gence of the modern theory of convex sets happen in the middle of this period, 
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to a certain extent it also exempli[ es this transformation. Situating this story 
within the larger changes mathematics went through at the turn of the twentieth 
century, we have seen that Brunn perceived of mathematics as a science inves-
tigating quasi-empirical objects, whereas Minskowski studied the geometry of 
n-dimensional entities in mathematical spaces, work that clearly exhibited fea-
tures of twentieth-century mathematics. Like Brunn, Minkowski was inspired by 
‘spatial intuition’ but his notion of Eichkörper and his new concept of distance, for 
example, were detached from empirical experiences in physical space (Kjeldsen 
2008). 9 ese entities belong to the modern side of what Jeremy Gray (1992) has 
called the ontological revolution in geometry. Brunn’s and Minkowski’s works 
were rooted on either side of the fracture line that divided the twentieth century’s 
abstract mathematics from the mathematics of earlier times.

In the second case, one of the characteristics of twentieth-century mathemat-
ics is its migration into a wide variety of non-physical sciences. 9 e emergence 
of nonlinear programming was the result of such an interaction and exempli[ es 
the twentieth-century dynamic between mathematics and its non-physical areas 
of application. Both case studies examine new mathematical disciplines that 
emerged and were established within the subject matter of mathematics during 
the twentieth century and as such they are also exemplary of the huge expansion 
of mathematics that happened in this period. But they also illustrate how pieces 
of mathematics accrue value through the context and language in which they are 
used, and the meanings, values, and uses that mathematicians give to them. In 
the right circumstances, the irrelevant, trivial, or uninteresting can be reinvented 
as key theorems and concepts in new mathematical disciplines.
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CH A P T ER 9.1

Traditions and myths in the historiography 
of Egyptian mathematics
Annette Imhausen

How frequently it happens that books on the history of mathematics copy their asser-
tions uncritically from other books, without consulting the sources! How many fairy 
tales circulate as ‘universally known truths’. (van der Waerden 1954, 6)

9 is statement of van der Waerden’s rather surprised me. It was not that I did not 
agree with it wholeheartedly, since I have encountered just that situation many 
times myself. Rather, it was the fact that it came from one of the authors I blame 
as the source of some of the very same ‘universally known truths’ about Egyptian 
mathematics that I consider to be wrong.

A close look at the variety of widely-held myths about Egyptian mathematics 
reveals that van der Waerden’s criticism is correct, but it is not the only one that 
could be made. 9 ere are at least two further reasons for the origin and longev-
ity of these ‘myths’. 9 e [ rst is the modern popular perception of ancient Egypt, 
originating at least partly in its climate and geography, which account for the 
pattern of survival and destruction of its historical sources. 9 e second is an 
obsolete style of historiography, which is particularly associated with van der 
Waerden, Otto Neugebauer, and others whose names have become inextricably 
linked to popular knowledge of Egyptian mathematics. In what follows, I will 
outline the speci[ c geographical conditions and the resulting source situation 
in more detail, then give examples of some of the more prominent myths and 
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explain what makes them mythical. Of course, while many of these myths have 
prevailed for a long time now, there are also authors who have managed to avoid 
falling for them.

Modern scholars traditionally divide ancient Egyptian history into three sepa-
rate phases known as ‘kingdoms’, each followed by an ‘intermediate period’.1 9 us 
the Old Kingdom (2686–2160 bc), Middle Kingdom (2055–1650 bc), and New 
Kingdom (1550–1069 bc), are each followed by the First (2160–2055 bc), Second 
(1650–1550 bc), and 9 ird (1069–664 bc) Intermediate Periods. 9 e kingdoms 
were times when Egypt was uni[ ed under the rule of one king only. 9 ey are 
associated with periods of stability and cultural activity. 9 e intermediate peri-
ods, in contrast, were times when two political centres fought for supremacy, for 
example Memphis and 9 ebes during the First Intermediate Period. Within all of 
these periods, dynasties of kings are distinguished, oN en indicating succession of 
the throne within one family. Pharaonic history (c 3100–332 bc) also includes the 
end of the Predynastic Period (c 5300–3000 bc) followed by the Early Dynastic 
Period (3000–2686 bc). 9 e Late Period (664–332 bc), during which Egypt strug-
gled to remain independent, constitutes the end of the Pharaonic Period. It was 
followed by the Greco-Roman Period (332 bc–395 ad) when Egypt was ruled by a 
succession of Ptolemies and [ nally became a province of the Roman Empire.

Although mathematical works are extant only from the time of the Middle 
Kingdom (2055–1650 bc) on, the earliest evidence of writing already includes 
numerical information. 9 e mace-head of king Narmer (c 3000 bc) proves that 
the Egyptian decimal system existed, fully developed, even before the uni[ cation 
of Egypt into a single political entity under the pharaohs. Egyptian writing took 
two separate forms throughout pharaonic history: hieroglyphs were mostly used 
for monumental inscriptions on stone, whereas a cursive form of writing, now 
known as hieratic, was used on papyrus and pot sherds for everyday purposes 
such as letters, administrative documents, and literature. During the Late Period, 
hieratic evolved into an even more cursive form, which is known as demotic.2

Mathematical texts fall into two groups, those written in hieratic and those 
in demotic. 9 e [ rst date almost exclusively to the time of the Middle Kingdom 
(for example the Moscow Mathematical Papyrus, pMoscow), with the exception 
of the Rhind Mathematical Papyrus (pRhind), which was written during the 
Second Intermediate Period but claims to be a copy of an older document. 9 e 
second group (for example the Cairo Mathematical Papyrus on the back of the 
legal Codex Hermopolis) originated during the Greco-Roman Period.

1. Years in this outline follow Shaw (2000), where detailed accounts of cultural and political events of each 
period can be found.

2. For an overview of the various stages of Egyptian language see Loprieno 1995. Parkinson 1999 provides 
an up-to-date account of the decipherment of the Rosetta stone, plus a catalogue and essays about various 
stages of Egyptian writing.
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Egypt’s climate and geography

For the western world pharaonic Egypt has always held an unrivalled fascination, 
which even today can be traced by the success of travelling exhibitions of ancient 
Egyptian artefacts3 and the use of ancient Egypt in modern movies.4 9 e exhibi-
tions oN en focus on royal evidence found in tombs or temples, while the cinema 
makes regular use of the myths that surround them in forms of curses, magical 
objects, and the like.

What does the popular perception of ancient Egypt have to do with Egyptian 
mathematics? It creates certain expectations in the modern reader. On the one 
hand, amazing buildings such as pyramids, temples, and other monuments leN  
by Egyptian culture have made such a deep impression on western visitors that 
they are inclined to credit the ancient Egyptians with the invention of many 
modern concepts. 9 is is one of the origins of myths around ancient Egyptian 
knowledge. On the other hand, the exhibits, which oN en consist of tomb deco-
rations and other objects meant to secure the aN erlife, may project an image of 
Egyptian culture exclusively focused on death and the aN erlife. Both of these 
expectations are reinforced by an uncritical reading of ancient Greek historians 
such as Herodotus ([ N h century bc), who credited the Egyptians with the inven-
tion of geometry but also described them as ‘religious beyond measure, more 
than any other people’ (Herodotus, Histories 2.37, 109).5 Corinna Rossi (2004, 
xv) has summarized the negative ind uence that this sort of infatuation can have 
on modern research:

Egypt, with its impressively oversized architectural remains, its legendary wealth, its 
obscure and fascinating writing, seems to be the ideal candidate to hide the key of a lost 
wisdom. Even if the ancient Egyptians would have been d attered by this attitude, the 
results of this kind of speculation have, unfortunately, little to do with the actual histori-
cal and archaeological remains.

Instead, the preponderance of religious artefacts in the archaeological record of 
ancient Egypt is simply the outcome of the country’s speci[ c geographical and 
climatic conditions. 9 e consequences for the preservation of objects can skew 
our perception of its historical culture. 9 e main topographical feature of Egypt, 
in ancient and in modern times alike, is the Nile, which runs through the whole 
country, creating a fertile strip of land next to it some [ N een kilometres wide 
(Butzer 1976). Only in this area are agriculture and urban life possible, so that 

3. E.g., Egypt’s dazzling sun/Amenophis III: le pharaon soleil: Cleveland, Fort Worth, Paris 1992–3 (Kozlo\  
et al 1993); 0 e quest for immortality: treasures of ancient Egypt: North America 2002–7 (Hornung and Bryan 
2002); and Tutankhamun and the golden age of the pharaohs: London 2007, Dallas 2008 (Hawass 2005).

4. E.g., Stargate (1994), 0 e Mummy (1999), 0 e Mummy Returns (2001).
5. Literature with a critical assessment of Herodotus’ views is plentiful, for example, Hartog (1988).
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ancient as well as modern cities have been located almost exclusively along the 
Nile, or on major oases. 9 is settlement pattern has two consequences for mod-
ern archaeology. First, only areas that are not currently occupied by modern hab-
itation can be excavated. Second, excavations in those areas within the Nile valley 
will reveal only that which has survived millennia of damp. Perishable, organic 
materials such as papyrus are swiN ly destroyed under such conditions.

Only objects that came to be leN  outside this narrow strip of moist and fer-
tile land, in the desert or on its margins—the location of ancient temples and 
tombs—stood a good chance of being preserved for the long term. Hence most of 
the papyrological evidence for pharaonic culture, but also for Greek and Roman 
civilization, originates from Egypt’s deserts. 9 is situation very obviously favours 
the preservation of archaeological and textual evidence from funerary and ritual 
contexts. So, on the one hand, given the humidity of the Nile Valley we are lucky 
that any ancient Egyptian papyri have survived at all. On the other hand, only 
about [ N een of them contain mathematical texts—since mathematics was used 
in the business of life, not of death—and these are dispersed across two periods 
separated by over a thousand years. It is exactly this lack of evidence that has 
enabled some myths in the historiography of Egyptian mathematics to d ourish.6 
And rather than accepting this situation and working with it, trying to establish 
as many positive statements as possible while acknowledging the limits of the 
evidence, many historians and mathematicians have tried to exploit the scraps of 
evidence to try to prove ancient Egyptian knowledge or lack thereof of speci[ c 
(modern) mathematical concepts. As Rossi (2004, xv) puts it, such ‘theories do 
not necessarily provide any useful information about the ancient culture to which 
they are supposed to refer’, but rather provide evidence for ‘the culture and the 
historical period that produced them—that is, Europe in the last two centuries’.

Moreover, this very uneven preservation of original sources helps to explain 
why Mesopotamia has fared so much better than Egypt in popular accounts of 
the history of mathematics. Mesopotamian scribes wrote their mathematics on 
clay tablets, while Egyptian scribes used papyrus. Both cultures presumably pro-
duced massive amounts of written text, including works describing, perform-
ing, and explaining mathematical operations. Clay tablets turned out to be much 
more resistant than papyrus to long-term decay, in a wider range of climatic and 
geographical conditions. Hence, while there are fewer than ten copies of Egyptian 
tables, for instance, literally thousands have survived from ancient Mesopotamia. 
Likewise, there are many hundreds of published mathematical problems from 

6. As indicated by Mott Greene (1992, 26), the contrast of the impressive achievements of ancient Egypt 
and the lack of evidence showing how these were attained may also have contributed to the creation of certain 
myths: ‘A corollary to the postulate of Egyptian wisdom has always been that it was esoteric, arcane, hidden. 
9 is assumption is not too di7  cult to concede but even the most enthusiastic supporters of the Egyptians 
have been more or less driven to the postulation of hidden wisdom by the yawning gap between the primitive 
character of their techniques and the great beauty, size and precision of their architectural executions.’
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Mesopotamia but only about a hundred from Egypt (the majority of which origi-
nate from just one source, the Rhind mathematical papyrus). A comparison of 
the two cultures will always be biased because of this situation.7

An outmoded historiography of (ancient) mathematics

Since the 1990s, the aims and methodology of ancient Mesopotamian, Egyptian, 
Greek, and Roman mathematics have been undergoing radical change, as part of 
larger developments in the history of mathematics (see for example Bottazzini and 
Dalmedico 2001). For much of the twentieth century, Egypt and Mesopotamia 
were perceived as the cradle of (modern) mathematics, and hence were oN en given 
pride of place in the introductory chapters of general textbooks and overviews. 
Such chapters typically attempted to describe the sparse roots these civilizations 
had laid down for whatever branch of mathematics was under discussion, from π 
(Beckmann 1971) to trigonometry (Maor 1998). As Jim Ritter (1995, 44–45) has 
noted, historians of ancient mathematics also held a peculiar place within the 
estimation of their colleagues:

9 us it is that the few historians who work on the earliest traces of mathematics are 
generally considered by their colleagues to be exotic specimens, content with childish 
babblings long since surpassed and quite rightly forgotten by both working mathemati-
cians and those who study them.

9 is positioning of ancient Egypt at the opening of grand historical narratives 
is based on the assumption that there is only one mathematics, which continues 
to develop as time progresses and—apart from minor aberrations—inexorably 
leads to current mathematical concepts. It has now been recognized that this 
view of mathematics is rather simplistic. It ignores above all that mathematics is 
a cultural and social activity, and hence dependent on the societies and groups in 
which it originates.8

Jens Høyrup (1996) has identi[ ed several phases in the historiography of 
Mesopotamian mathematics: an initial ‘heroic era’ (1930–40) during which 
the heroes (Otto Neugebauer and Francois 9 ureau-Dangin) [ rst translated 
what were then known as Babylonian mathematical texts and established their 
algebraic interpretation; this was followed by ‘the triumph of translations’ 

7. 9 at a comparison can still be achieved, and can usefully bring out speci[ c characteristics of each of the 
two cultures, has been demonstrated by Jim Ritter (1995; 2004).

8. 9 e best-known article against the universality of mathematics is Unguru (1975). It and the reactions it 
elicited have now been reprinted by Christianidis (2004). For Mesopotamia, the work of Jens Høyrup (2002) 
has identi[ ed a distinct mathematical culture. For a method of analysing procedures of Mesopotamian and 
Egyptian mathematics that brings out the characteristic elements of each, see Ritter (2004).
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(1940–1975), characterized by a tendency to replace the Babylonian source texts 
with their modern mathematical equivalents. From 1971 onwards, ‘a fresh start 
from the sources through new approaches’ was made, resulting in a periodization 
of Mesopotamian mathematics and a better understanding of some of its indi-
vidual phases and social background.9 9 e historiography of Egyptian mathem-
atics followed a similar path, with the addition that, compared to Mesopotamia, 
Egyptian mathematics was perceived as more primitive, more accessible to the 
modern reader (thanks to fewer extant sources and the Egyptian decimal sys-
tem), but ultimately less interesting (as no new manuscripts came to light). 9 e 
[ rst translations of ancient Egyptian mathematics, most of which were made in 
the early twentieth century, thus became accepted as ‘the sources’. Over time, it 
was oN en forgotten that ‘the sources’ were originally written in Egyptian, not in 
English or German. 9 e results, not surprisingly, were sometimes theories that 
could not be substantiated by the source material they were supposedly based on. 
9 is holds especially for the numerous theories concerning the creation of the 
2 ÷ n table, as discussed further below.

9 e move towards cultural context in the historiography of ancient mathemat-
ics has improved the interpretation of Egyptian mathematical writings. It is now 
recognized that it is no longer adequate simply to re-express their mathematical 
content in modern terms. When instead the formal features and cultural context 
of a text are taken into account, a whole new range of interesting questions can be 
asked (Ritter 1995; 2000; Rossi 2004). In order to assess the sources fully, a range 
of expertise is required. 9 at includes an ability to read the Middle Egyptian 
language and hieratic script, an understanding of ancient Egyptian history and 
culture, and a knowledge of mathematics (ancient and modern). From this broad 
base the aim is to overcome the traditional gap between the humanities and the 
sciences and to provide a study that satis[ es readers from both groups.10

Despite these changes, certain earlier historians’ conclusions, which do not 
withstand critical re-examination, have proved surprisingly resistant to revision. 
Over time these myths have acquired the status of truths, whether because they 
accommodate a widely perceived (but false) notion that ancient Egyptian culture 
was overwhelmingly religious, or because it is easier to look at Egyptian math-
ematics from a misleadingly modern point of view. In some cases the evolution of 
the myth can be traced over time; in other instances, an initial, carefully-phrased 

 9. Since then, he and Eleanor Robson have produced studies that have taken our knowledge of 
Mesopotamian mathematics to a new level (e.g., Robson 1999; Høyrup 2002). For an overview of the histori-
ography of ancient mathematics in general see also Netz (2003).

10. However, individual researchers do not have to be versed in all of the necessary skills to make useful 
contributions to understanding and interpreting ancient mathematics: see, for example Abdulaziz (2008) for 
a recent mathematician’s analysis of the 2 ÷ n table. Likewise, teams of researchers can work collaboratively 
together. In such a team, however, a certain critical assessment of each other’s theories and methodologies is 
indispensable.
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observation became simpli[ ed and thereby falsi[ ed over time. 9 e following 
section presents examples of such myths, and explains why they are considered 
obsolete in current historiography of ancient science.

Myth no. 1: Egyptian π

Consider the following statements:

It is certain from repeated examples, certain too from its rather good applicability, for it 
corresponds to a value of
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for the ratio of the circumference to the diameter, which is far from the worst a math-
ematician has ever made use of.11 (Cantor 1880, I 50)

9 is means a quadrature of the circle by � �r2
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. .  9 e error is only 0.0189. (Engels 1977, 137)

In the Egyptian Rhind Papyrus, which is dated about 1650 BC, there is good evidence for 
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.  as a value for π.12

Simply by experimenting, mathematicians in early civilizations must have [ gured out 
that a rope wound around the periphery of a circle equaled just over three lengths across 
its diameter. With more accurate measurements, they probably discovered the value of 
the additional bit of rope at more than one-eighth of a length and less than one-fourth. 
9 e earliest known record of this ratio was written by an Egyptian scribe named Ahmes 
around 1650 BCE on what is now known as the Rhind Papyrus. (Blatner 1997: 7–8)

9 is, as well as the relatively accurate value 3.16 for π resulting from the above for-
mula, gave Egyptian geometry a lead over the corresponding arithmetical achievements. 
(Neugebauer 1969, 78; cf Neugebauer 1929, 14; 1934, 123)

11. Gesichert ist sie durch wiederholtes AuN reten, gesichert ist auch ihre ziemlich gute Anwendbarkeit, 
denn sie entspricht einem Werte
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. …

für die Verhältniszahl der Kreisperipherie zum Durchmesser, der weitaus nicht der schlechteste ist, dessen 
Mathematiker sich bedient haben.

12. School of Mathematics and Statistics, University of St Andrews, ‘A history of pi’, 0 e MacTutor History 
of Mathematics archive, http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Pi_through_the_ages.
html. Accessed on June 15, 2007.

http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Pi_through_the_ages.html
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Pi_through_the_ages.html
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But the Babylonians and the Egyptians knew more about π than its mere existence. 9 ey 
had also found its approximate value. By about 2000 bc, the Babylonians had arrived at 

the value � � 3 1
8  and the Egyptians at the value � � 4 8

9

2






. (Beckman 1971, 12)

Modern mathematical treatment of circles is based on the constant π, the ratio of 
circumference to diameter. We calculate the area of a circle as the product of π 
and the squared radius, and its circumference as the product of π and the diam-
eter. 9 e number π is transcendental, as proved by Ferdinand von Lindemann 
(Lindemann 1882). When it was believed that mathematics was universal, ancient 
calculations of the circle were assessed by their exactness compared to mod-
ern formulae. In this view, a comparison of modern formulae with the ancient 
Egyptian procedure for calculating the area of a circle produced a value for the 
‘Egyptian π’ of 3.16 or 256

81 .
9 e [ rst of the quotations listed above is a statement by Moritz Cantor, made 

just a few years aN er the [ rst decipherment of the Rhind Papyrus. Over time it 
has acquired the status of a truth that does not need reassessment: statements 
about Egyptian calculations of the area of a circle move from describing a proce-
dure that is equivalent to assuming a value for π of 256

81  or 3.16 . . . to the assertion 
that Egyptian mathematics not only knew the concept of π but had also estab-
lished a comparatively good value for it.

However, the ancient Egyptian procedure for calculating the area of a circle, 
found explicitly in pRhind problems 41–43 and 50, and implicitly in 48, is to sub-
tract 1–9  of the diameter from it and then to square the remainder:

pRhind, 50 numerical 
representation

symbolic 
representation

Method of calculating a circular

area of diameter 9 h
˘ 

t. 9 D1

What is its amount as area?

You shall subtract 1–9  of it, (1) 1–9  × 9 = 1 (1) 1–9  × D1

namely 1,

remainder 8. (2) 9 – 1 = 8 (2) D1  (1)

You shall multiply 8 8 times; (3) 8 × 8 = 64 (3) (2) × (2)

it shall be 64.

Consistent with all other known examples, this procedure uses the diameter as 
its point of departure. It then comprises three steps, which use only the constant 
1–9  and the value of the diameter. In order to arrive at the ‘Egyptian value for π’, 
one would have to express this procedure as a modern formula:

Acircle = −





= 





d d d1
9

8
9
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and compare it to the modern one:

Acircle =π r2.

Since a circle is a circle is a circle,13 this exercise yields � �256
81

3 16. ....  While this 
may be a sound way to establish how accurate the Egyptian procedure was, it 
remains historiographically incorrect to state that the Egyptians used an approx-
imation of π which was 256

81 . 9 e Egyptians did not use π. As can be seen from 
the symbolic representation of the text, above, the constant used to calculate the 
area of a circle was 1–9 , which was clearly not an extremely bad approximation of 
π, but rather the constant appropriate to the ancient Egyptian method of math-
ematizing circles.

It is remarkable that secondary literature is more concerned with the fact that 
Egyptian mathematics arrived at such a good approximation for π than with the 
actually rather striking observation that Egyptian mathematics used a procedure 
that did not involve π but resulted in a comparatively accurate result.

Another Egyptian π can be found in studies of the pyramids.14 One of the best 
known achievements of ancient Egypt is its pyramids, the three most famous of 
which are located at Giza. Did you notice anything in this last sentence? It should 
have read either ‘were located at Giza’ or better ‘the remains of the three most 
famous . . . ’, since most of their casing is gone. It is therefore impossible to recover 
their exact dimensions.

From the measurements of what is leN , the following observations have nev-
ertheless been made: dividing the perimeter of the Great Pyramid of Giza by its 
height results in 3.1399667 or in ancient units, assuming that the Great Pyramid 
did indeed measure 440 cubits on a side and 280 cubits in height, 3.1428571—that 
is, (an approximation of) π.15 Strangely enough, however, the measurements of 
the two neighbouring pyramids fail to conform to the same ratio. Further, as 
shown above, the calculations of the area of circles in the Rhind Papyrus make 
no use of this supposed π ‘found’ in the Great Pyramid at Giza. Consequently, 
it seems far more probable that the value obtained by carrying out an arbitrary, 
modern arithmetical operation using guesses of measurements of the remains of 
an ancient building are nothing but that: the result of a modern calculation.16

13. For a more sophisticated view of the circle in various cultures see Goldstein (1995).
14. For a detailed discussion of this π see Hollenbeck (1997); Rossi (2004, 200–202).
15. Depending on what measurements were used, and how the author decided to round, various similar 

values for π have also been obtained (Hollenbeck 1997, 62).
16. For a reliable overview of architectural practices in ancient Egypt see Arnold (1991). For anachronistic, 

coincidental ‘discoveries’ of π or φ in ancient Egyptian architecture see for example Robins and Shute (1985; 
1990, 78).
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Myth no. 2: the Horus eye fractions

One of ancient Egypt’s many appeals for modern students of that culture is its 
writing. Not only is hieroglyphic one of the world’s earliest attested scripts, but it 
comes in the form of little pictures which simultaneously look pleasing and con-
vey a sense of secrecy resembling a code. While readers of histories of Egyptian 
mathematics make little direct contact with the actual Egyptian script—in-
deed Egyptian mathematical texts were not even written in hieroglyphs but in 
the much less attractive hieratic—there are two groups of hieroglyphs that are 
encountered regularly in modern works on the subject: the hieroglyphic signs 
for Egyptian numbers and the signs supposedly used to represent fractions of the 
basic capacity unit, the heqat (approx. 4.8 litres). 9 e latter are commonly known 
as the ‘Horus-eye-fractions’ because the individual symbols ( ) can 

apparently be assembled to form a very Egyptian-looking eye ( ). Further, 
this composite ‘eye’ has been connected with the myth of the Eye of Horus, which 
was destroyed by his evil brother Seth and then restored by the ibis god 9 oth.17 
9 e alleged use of these symbols to represent parts of the heqat then con[ rms 
the impression originally voiced by Herodotus that the Egyptians were ‘religious 
beyond measure’.

9 is historiographical myth originated, as Jim Ritter (2002) has shown, in 1911 
with the publication of Georg Möller’s hieratic palaeography.18 It then made its 
way into Alan Gardiner’s ind uential Egyptian Grammar (1927), and has—apart 
from few doubts arising as early as 1923—since been accepted as a truth. However, 
as Ritter has argued in detail, the signs commonly referred to as ‘Horus-eye frac-
tions’ were not originally associated with the heqat capacity unit. 9 ere is evi-
dence for hieroglyphic versions of the hieratic signs, which are clearly not parts 
of the eye of Horus, representing the subunits of the heqat from as early as the 
Second Dynasty and then further evidence from the Old Kingdom. In addition, 
the later, New Kingdom evidence that was originally used by Möller for his iden-
ti[ cation is far from conclusive (Ritter 2002, 307–311).

17. 9 e most explicit reference can be found in the Middle Kingdom version of spell 17 from the Book 
of the Dead: ‘I have [ lled the eye when it was injured on this day of the cond ict of the two rival gods. What 
is that, the cond ict of the two rival gods? 9 at is the day on which Horus fought with Seth when he (Seth) 
wounded the face of Horus, when Horus seized the testicles of Seth. It was 9 oth who did this with his [ ngers’ 
(Gri7  ths 1960, 29).

18. 9 e relationship between hieroglyphs and hieratic is in some respects similar to that of our printed 
writing and handwriting. Just as some hands today are hard to read, deciphering hieratic can be more or 
less complicated and constitutes the [ rst step in working on an Egyptian papyrus. Editions of hieratic texts 
therefore usually include a hieroglyphic version of the text, to indicate how the editor read the hand of the 
ancient scribe. Hieratic writing also changes over time, hence the need for palaeographies which list typical 
forms of hieratic signs and their hieroglyphic counterparts.
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In the original ancient Egyptian documents, the submultiples of the heqat are 
always written in their hieratic form, and look nothing like the parts of an eye. 
9 ey do not lend themselves to the association with the myth of Horus, Seth, and 
9 oth. Rather, they are no more and no less than what they appear to be at face 
value: speci[ c signs to indicate a system of subunits of the basic grain measure.

Myth no. 3: rope stretching, right angled triangles, and Pythagoras

We can imagine, albeit without any justi[ cation yet, that the Egyptians could have 
known that three sides of length 3, 4, 5 form a triangle with a right angle between the 
two smaller sides . . . . A period which had developed the theory of angles so far that it 
computed the Seqt [seked], we can also imagine capable of knowledge of the right-angled 
triangle with sides 3, 4, 5. 9 is will have been gained substantially through experience, 
without thinking of a strict geometrical proof in our modern sense of the word.19 (Cantor 
1880, I 57)

Another reason for supposing that the Egyptians knew of the 3,4,5 triangle is based on 
the proportions of the fourth dynasty pyramid of Khafre (Chephren) at Giza and of 
many of the later Old Kingdom pyramids. 9 e same proportions occur in some pyramid 
problems included in the Rhind Mathematical Papyrus (nos. 56–59). (Shute 2001, 350)

Claims about the supposed Egyptian use of Pythagorean triplets (especially 
3–4–5) have also spread over from mathematics into architecture (Rossi 2004, 
216–221). Certainly, what we call today a ‘right angled triangle’ was not unknown 
in Egyptian mathematics, as demonstrated by problem 7 of the Moscow 
Mathematical Papyrus:

pMoscow, 7 numeric procedure symbolic procedure

Method of calculating a triangle.

If you are told: A triangle of area 20  20 D1

and the ideb of 21–2 .  21–2  D2

You shall double its area.  (1) 2 × 20 = 40 (1) 2 × D1

40 shall result.

Calculate times 21–2 .  (2) 40 × 21–2  = 100 (2) (1) × D2

19. Denken wir uns, gegenwärtig allerdings noch ohne jede Begründung, den Aegyptern sei bekannt 
gewesen, dass die drei Seiten von der Länge 3, 4, 5 zu einem Dreiecke verbunden ein solches mit einem rech-
ten Winkel zwischen den beiden kleineren Seiten bilden, ( . . . ). Einer Zeit, welche die Winkellehre so weit 
ausgebildet hatte, dass sie den Seqt berechnete, können wir auch die Kenntnis des rechtwinkligen Dreiecks 
von den Seiten 3, 4, 5 zutrauen, die wesentlich erfahrungsmässig gewonnen worden sein wird, ohne dass 
irgendwie an einen strengen geometrischen Beweis in unserem heutigen Sinne des Wortes gedacht werden 
müsste.



INTERACTIONS AND INTERPRETATIONS792

100 shall result.

Calculate the square root.  (3) 100 = 10 (3) 2
10 shall result.

Divide 1 by 21–2 .  (4) 1 ÷ 21–2  = 1
3

1
15 (4) 1 ÷ D2

What results is 1
3

1
15

.20

Calculate for 10.  (5) 1
3

1
15 × 10 = 4 (5) (4) × (3)

4 shall result.

It is 10 as length to 4 as width.

9 is triangle is proven to be a right-angled triangle by the calculations carried 
out to solve the problem; its designation as sepedet ‘triangle’ at the start of the text 
does not indicate this special property. However, the technical terms used here 
also include the word ideb, which is used to designate the ratio of two sides which 
encompass a right angle.

9 e area of the triangle and the ratio of the two sides encompassing the right 
angle are given. 9 e length of these sides is to be calculated. 9 e procedure trans-
forms the triangle into a rectangle (step 1), and then into a square whose base is 
identical to the longer side of the triangle (step 2). 9 en the length of that side is 
calculated (by extracting of the square root in step 3), and [ nally the length of 
the other side of the triangle is found by multiplying the side with the inverse of 
the ideb (step 5).

9 e same procedure is also used in problems 6 and 17 of the Moscow Papyrus, 
and a similar one can be found in the Lahun fragment UC32162 (Imhausen and 
Ritter 2004, 79–80). 9 ere is no evidence for the use of the hypotenuse, or for its 
identity as the square root of the sum of the squares of the two shorter sides of 
the triangle, in any of these problems. However, this does not necessarily mean 
that Egyptian mathematicians were unaware of this property; there simply is no 
evidence of it within the extant hieratic mathematical texts.21

9 e pyramid problems (pRhind, 56–59), cited by Charles Shute (2001, 350) in 
the second quotation above, are all concerned with the seked, the ancient Egyptian 
measure of a sloping surface which indicated the horizontal displacement of the 
sloping face for a vertical drop of one cubit. It was always indicated in palms (and, 
if necessary, [ ngers), where 1 (royal) cubit (approx. 52 cm) = 7 palms = 28 [ ngers. 
Problems 56–59 all deal with the relationship between the side, height, and seked 
of pyramids: from two of these quantities the third is calculated. For instance, in 
problem 56 a pyramid of side 360 and height 250 is given, from which the seked is 
determined as 5 1

25
 palms. While these problems all involve right angled triangles 

20. Egyptian fractions are discussed further below.
21. 9 is situation had changed by the Graeco-Roman period. Problems that involve Pythagorean triplets 

can be found in pCairo JE 89129/89137/89139 (Parker 1972, 35–40).
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(through the concept of the seked), neither their ‘hypotenuses’ (the length of the 
sloping side of the pyramid from bottom to top) nor the Pythagorean rule are 
involved in their solution.22 9 erefore, while it cannot be excluded that Egyptian 
mathematics and architecture might have used Pythagorean triplets, most nota-
bly 3–4–5, it must be kept in mind that our actual ‘evidence’ for this is based only 
on measurements of the remains of buildings, which—as we have already seen—
may well be misleading.

Myth no. 4: Egyptian fractions were restricted to unit fractions

Ahmes did not use fractions in the most general sense of the word, i.e., implied divisions, 
in which the numerator, like the denominator, can be of arbitrary size, but only unit 
fractions—i.e., those which have an integral denominator and unity as numerator, and 
which he indicated by writing the number of the denominator and putting a small dot 
over it.23 (Cantor 1880, I 21)

As the technique of calculation developed, the set of fractions was extended to include the 
unit fractions (fractions which have 1 as a numerator). 9 e Egyptian was not able to write 
any other fraction, except those which have been mentioned. (van der Waerden 1954, 19)

9 e Egyptians could not possibly get beyond linear equations and pure quadratics 
with one unknown, with their primitive and laborious computing technique. (Van der 
Waerden 1954, 29)

To some extent Egyptian mathematics has had some, though rather negative, ind u-
ence on later periods. Its arithmetic was widely based on the use of unit fractions, a 
practice which probably ind uenced the Hellenistic and Roman administrative o7  ces. 
(Neugebauer 1969, 72)

9 e primitive, strictly additive, Egyptian way of computing with unit fractions had a 
detrimental e\ ect throughout, even on Greek astronomy. (Neugebauer 1975, 559)

Another myth oN en encountered in historians’ assessments of the ancient 
Egyptians is that their cumbersome fraction reckoning, which was restricted to 
unit fractions, prevented them from advancing in their mathematics, for instance 
to produce mathematical astronomy, as their neighbours in Mesopotamia did. 9 is 
myth consists of two elements: [ rst, that Egyptian mathematics was ‘restricted’ 
to unit fractions; and second, that Egyptian fraction reckoning was so cumber-
some that it prevented the further development of mathematical techniques.

22. For a distinction between the Pythagorean theorem and the Pythagorean rule see Høyrup (1999).
23. Ahmes benutzt nämlich nicht Brüche in dem allgemeinsten Sinne des Wortes, d.h. angedeutete 

9 eilungen, wobei der Zähler wie der Nenner von beliebiger Grösse sein können, sondern nur Stammbrüche, 
d.h. solche, die bei ganzzahligem Nenner die Einheit als Zähler haben und die er dadurch anzeigte, dass er 
die Zahl des Nenners hinschrieb und ein Pünktchen darüber setzte.
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9 ere are two types of Egyptian fractions. 9 e most frequently used were what 
are now called the ‘common fractions’, 2–3 , 1–2 , 1–3 , and 1–4 , which were written with 
speci[ c signs in hieratic and hieroglyphic writing (see Table 9.1.1). All other frac-
tions were written by placing a ‘fraction marker’ (a dot in hieratic and the symbol 

 in hieroglyphic) above what constitutes, in current terminology, the denomi-
nator. 9 is type of fraction corresponds to modern fractions of the kind 1–n, or, 
unit fractions.

Hence, from a modern point of view, ancient Egyptian fraction reckoning was 
‘restricted’ to fractions with numerator 1, unit fractions. However, a look at the 
Egyptian notation for fractions described above reveals rather that they do not 
have a numerator at all. It is possible (though not currently provable) that the 
concept of fractions, or maybe better inverses, developed through the generaliza-
tion of the common fractions to the idea of the inverse of any counting number, 
for which a general notation (dot/ ) was created. From this basic general con-
cept, fractions of values m

n (in modern notation) were created by selecting those 
fractions that would add up to this value and juxtaposing them in order of mag-
nitude. For instance, 5–6  would be written in hieratic as  1–2  1–3  (note that hieratic 
is written from right to leN ). While such a comparison with modern notation 
makes Egyptian fractions seem like unit fractions, it is more accurate to think 
of them as inverses,24 and to keep in mind that the Egyptian fractional nota-
tion did not encompass a numerator. 9 is was recognized by Otto Neugebauer 
(1926), the [ rst historian to work on Egyptian fraction reckoning, who created a 
transcription for Egyptian fractions which respected their character as inverses. 
It rendered the dot/  as a bar over the number (‘denominator’), for instance 

24. Pace Greene (1992, 36): ‘9 e concept of fraction as a part of a thing rather than the reciprocal of an 
integer was tied to its origins in measurement, from which it was never subsequently freed and abstracted.’ 
While I agree that the origin of fractions is most probably to be sought in dividing and apportioning (Greene 
1992, 35), I believe that the notation for fractions, and their uses within the mathematical texts, indicate that 
the general concept of a fraction was exactly that of an inverse. For Egyptian technical terms relating to frac-
tions, see pRhind, 61b.

Table 9.1.1 Egyptian common fractions

2
3

1
2

1
3

1
4

Hieratic Hieroglyphic Modern
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=5. Neugebauer also used this notation for the common fractions (with 3  
representing 2/3), thus providing a systematic transcription for all Egyptian frac-
tions, but obliterating the notational di\ erences between the common fractions 
and the inverses.

It is evident, then, that the Egyptians did not ‘restrict’ themselves to unit frac-
tions; rather, their concept of fractions did not include a numerator. Hence a dif-
ferent method was used to express fractional values of the (modern) form m/n.25 
Did this cause problems for Egyptian arithmetic? Can this concept of fractions 
be blamed for having ‘prevented’ Egyptian mathematics from developing fur-
ther? What evidence is there to help answer these questions? 9 e mathematical 
texts themselves give two clues. First, the texts come in two varieties: mathemati-
cal problems (and their solutions), such as the examples from the Rhind papyrus 
given here, and mathematical tables. Extant tables are for fraction reckoning, 
most notably the 2÷n table (found at the beginning of the Rhind papyrus and 
in the Lahun fragment UC 32159) and metrological tables for the conversion 
of measures (for instance, pRhind, 81). Jim Ritter (2000, 129) has argued that 
tables were created in order to help overcome technical di7  culties with calcula-
tion. According to the evidence, fraction reckoning was indeed a tricky area of 
Egyptian mathematics. However, with the aid of tables such as the 2÷n table, 
which lists the result of divisions 2 ÷ (odd) n in form of Egyptian fractions, these 
technical di7  culties could to a certain degree be overcome. A look at the problems 
of the Rhind papyrus that involve fractions does not reveal obvious pitfalls for a 
competently numerate scribe. Second, another argument in favour of Egyptian 
fractions may be that they are the one characteristic element of Egyptian math-
ematics that spread and survived beyond pharaonic Egypt. One reason for their 
continued popularity may have been their obvious practicality in assessing the 
size of a fraction. Expressing 5

19  as 1
6  1

12  1
114  1

228  (pRhind, 32) may look cumber-
some to us (especially if expected to perform further mathematical operations on 
it). However, this representation has (at least) one advantage over 5

19
: its magni-

tude is immediately apparent. 9 e modern decimal representation of fractions 
works much in the same way. As for calculations, the accuracy needed could be 
chosen as well through including or ignoring as many elements of the fraction as 
desired, thereby facilitating some operations.

25. It is oN en stated that the demotic mathematical papyri show the use of fractions with a numera-
tor. However, as David Fowler (1999, 259–262) argued, these should rather be interpreted as un[ nished 
divisions.
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Myth no. 5: Egyptian ‘algebraic equations’

At the zenith of these exercises stand the Hau calculations, whose contents are no di\ er-
ent to those which today we call algebraic equations of the [ rst degree in one unknown.26 
(Cantor 1880, 32)

9 ese aha-calculations are quite like our linear equations in one unknown. (van der 
Waerden 1954, 27)

9 ese eleven problems deal with the methods of solving equations in one unknown of 
the [ rst degree. (Gillings 1972, 154)

9 us, some 3,500 years before the creation of modern symbolic algebra, the Egyptians 
were already in possession of a method that allowed them, in e\ ect, to solve linear equa-
tions. (Maor 1998, 4)

Egyptian ‘algebraic equations’ were at the centre of one of the most heated debates 
in the historiography of Egyptian mathematics during the [ rst half of the twen-
tieth century. While scholars were in agreement that sections 24 to 34 of the 
Rhind papyrus constituted problems that are expressed today as algebraic equa-
tions, there was at [ rst much disagreement about the way they were solved and 
whether one could indeed credit ancient Egyptian mathematical practitioners 
with a knowledge of algebra. 9 e question was whether the problems designated 
with the Egyptian technical term ah. a ‘quantity’ were solved as moderns would 
solve algebraic equations or by the method of false position.

Note above how the similarity between ah. a problems and algebraic equations 
in the quotations from 1880 and 1954 had become ‘a method to solve algebraic 
equations’ by the quote from 1998. An example of such an ‘equation’ can be found 
in problem 26 of the Rhind papyrus:

pRhind, 26 numeric procedure symbolic procedure

A quantity whose 1–4  is added to it 1–4  D1

becomes 15. 15 D2

Calculate with 4.27 (1) [*1–4 ] = 4 (1) [*D1]

You shall calculate its 1–4  as 1, (2) 1–4  × 4 = 1 (2) D1 × (1)

sum 5. (3) 4 + 1 = 5 (3) (1) + (2)

Divide 15 by 5. 3 shall result. (4) 15 ÷ 5 = 3 (4) D2 ÷ (3)

Calculate 3 times 4. 12 shall result. (5) 3 × 4 = 12 (5) (4) × (1)

26. An der Spitze dieser Aufgaben stehen die Hau-Rechnungen, die dem Inhalte nach nichts anderes sind 
als was die heutige Algebra Gleichungen ersten Grades mit einer Unbekannten nennt.

27. 9 is instruction cannot be expressed unambiguously as an arithmetic operation. It may result from 
calculating the inverse of the [ rst datum, but an explicit instruction to calculate it is not given.
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From a modern point of view, the assessment of these problems as predecessors 
of ‘algebraic equations’ seems quite straightforward. As the Egyptologist 9 omas 
Eric Peet (1923, 62) commented in his edition of this problem, ‘9 e equation here 
solved is x + 1–4  x = 15’. Egyptian ‘equations’ (of course) lack the use of symbols, 
most notably the variable x. In line with the Egyptian concept of mathematics as 
a systematic collection of procedures, the statement of the problem describes an 
operation and its numerical outcome. 9 e quantity manipulated in the operation 
is an unknown, and the problem is to determine it from the number given as the 
result.

9 e historiographical problem here is similar to that faced above with Egyptian 
fractions. Egyptian mathematics has a sort of ‘equivalent’ in a modern math-
ematical concept; however, it is di\ erent enough to require a careful examination 
of its characteristic features. In the case of the Egyptian ‘equations’ another indi-
cator of the inadequacy of modern assessments may be the argument that raged 
about the method of their solution. As already mentioned, scholars adhered to 
one of two groups: the [ rst was adamant that these problems were solved by 
manipulating an equation; the second, objecting to this, suggested the method of 
false position instead.28 For instance, the [ rst group interpreted problem 26 of the 
Rhind papyrus in the following way:29

x + 1–4  x = 15

can be rewritten as
4–4  x + 1–4  x = 15

therefore
5–4  x = 15

hence
1–4  x = 3

and so

x = 12.

28. For a summary of the beginning of this debate see Peet (1923, 60). Later contributions were made by 
Wieleitner (1925), Vogel (1930), and Neugebauer (1931). 9 e controversy was never really resolved. When 
this group of problems appears in more recent publications, only one side of the argument is cited without 
mentioning the other: see for example Couchoud (1993, 97): manipulations of algebraic equations; Caveing 
(1994, 364–368): false position.

29. Cf. Eisenlohr (1877, 63): ‘Die Division von 15 durch 5 oder was dasselbe ist, die Multiplikation von 5, 
bis 15 erreicht ist, wird zuerst vorgenommen und dann der Quotient 3 mit 4 multiplicirt = 12; der Hau ist also 
12, zu welchem ¼ addirt, 15 geben muss. Text und Rechnung sind selbstverständlich.’ [9 e division of 15 by 5 
or, which is the same, the multiplication of 5 until 15 is reached, is done [ rst and then the quotient 3 is multi-
plied by 4 = 12; the aha is thus 12, to which 1 ⁄4 is added, to give 15. Both text and calculation are obvious.]
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9 e alternative interpretative strategy, of false position, can also be easily dem-
onstrated. Using this example, 4 is chosen as the suitable trial number, giving 5 as 
the false result. Division of 15 by 5 determines the correction factor of 3, which is 
multiplied by the trial number to obtain the result. Supporters of this latter anal-
ysis have the advantage that their ‘method’ is a strategy that can be moulded into 
various formal expressions. 9 at is, even if the interpretation of the ah. a problems 
as equations is given up in favour of interpreting them as procedures (which now 
seems historiographically more appropriate), the underlying strategy of some of 
those procedures may be that of the false position.

Within the mathematical papyri, there are [ N een ah. a problems in total (Rhind, 
nos. 24–34, Moscow, nos. 19 and 25, UC32134A, pBerlin6619, 1). Individual 
problems can be assigned to this type based on their usage of the technical term 
ah. a ‘quantity’, found in thirteen of them, or based on their position within the 
Rhind papyrus (as in the case of problems 28 and 29, which occur between prob-
lems 24–27 and 30–34). An analysis of the procedures they use reveals that they 
can be assigned to several groups, each of which applies a distinct strategy in its 
method of solution (Imhausen 2002, 155–158). 9 e order of the ah. a problems in 
the Rhind papyrus red ects these groups. But only the problems of one group use 
the strategy of false position—which is therefore not a distinguishing feature of 
ah. a problems within ancient Egyptian mathematics.

Conclusion

Egyptian mathematics did not use π, equations, or ‘general fractions’. However, 
to assess it as ‘primitive’ is historically misleading and based on a comparison 
with modern mathematics more than 2000 years later. If there is little to link the 
two, it points to the inadequacy of describing this ancient mathematical culture 
in terms of modern categories like algebra, trigonometry, and so on. 9 e meagre 
evidence indicates that in Egypt, as in Mesopotamia, mathematics constituted 
a key element in the education of scribes (cf. Robson, Chapter 3.1 in this vol-
ume, Imhausen 2003b). Numerous administrative texts (accounts) throughout 
pharaonic history indicate the use of mathematical techniques. Egypt produced 
a mathematical culture that predates most others worldwide. It was motivated 
by practical needs, but did not remain limited to practical applications (e.g., 
pRhind, 79). 9 e limited sources available restrict us in what we can learn about 
it;  however, we will be able to get a better understanding if we stop evaluating it 
according to modern criteria, and instead aim for careful, detailed description 
that is sensitive to its cultural context.
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Since the history of mathematics tells narratives about past mathematics, it is 
obvious that all that it narrates is based on one or more source documents, for 
nobody among us has ever met Archimedes, or even Gauss. However, the source 
documents are not in themselves history, and the fundamental task of the his-
torian is to make a history from those documents. 9 ere are particular features 
and di7  culties in the interpretation of sources for the history of mathematics, 
which depend on the period and area treated. In this chapter I illustrate some of 
the problems surrounding the sources for ancient Greek mathematics, many of 
which are relevant to other times, places, and cultures too.

B e Archimedes palimpsest

9 e most dramatic twentieth-century story about sources for the history of math-
ematics is that of the Archimedes palimpsest, a unique Byzantine manuscript 
containing the Method, an attractive work in which Archimedes expounds his 
procedure for [ nding areas and volumes. 9 e manuscript was made in the tenth 
century ad but much of it was reused to copy a prayer book some three centuries 
later, partially erasing the original text. It was rediscovered in the mid-nineteenth 
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century but its contents remained unknown until 1906, when Johannes Heiberg, 
the great philologist of Greek mathematics, consulted it in Istanbul. Heiberg dis-
covered that in the Method, Archimedes introduced and elaborated an audacious 
technique for determining the volume of a solid. He cut the solid into an in[ nite 
number of parallel planes and put each of them on a virtual balance to evaluate 
the volume of the whole solid. Archimedes’ use of a virtual balance was already 
known from his Quadrature of the parabola, but no historian had ever imagined 
that he had applied the technique so spectacularly.

Heiberg’s discovery was already an extraordinary event, but was only the 
beginning of an equally breathtaking saga. 9 e manuscript went astray in the 
aN ermath of World War I and reappeared some decades later in the posses-
sion of a family in Paris, who put it up for auction at Christie’s in 1998. An 
anonymous purchaser bought the palimpsest for two million dollars, then gen-
erously deposited it with the Walters Arts Museum in Baltimore for study and 
conservation.

9 e manuscript was in a miserable condition. Evidently it had been badly 
looked aN er for most of the twentieth century. Worst of all, somebody had faked 
religious images on four of the pages, so that the text underneath them was com-
pletely hidden. However, thanks to modern technology some of the pages that 
had been illegible even to Heiberg, an expert paleographer of Greek mathemat-
ics, could be read for the [ rst time in centuries.1 In 2001, it was discovered that 
Archimedes a7  rmed that two sets of the plane sections in[ nite in number were 
isai plēthei ‘equal in multitude’, a clear reference to real in[ nity (not the potential 
in[ nity allowed by Aristotle) by one of the greatest mathematicians of antiquity, 
and something that nobody had expected (Netz, Saito, and Tchernetska 2001; 
2002).

Later, a palimpsest page which contained the beginning of the Stomachion was 
examined and a hitherto unreadable word was read. By intriguing coincidence, it 
was again the word plēthos ‘multitude’. 9 is led to a tentative hypothesis that the 
Stomachion does not describe a game of making various [ gures from the four-
teen pieces obtained by splitting a square—the standard interpretation which 
had thus dismissed this work as unimportant. Rather, Archimedes was trying 
to [ nd the number of possible ways to make up the square from these fourteen 
pieces. (Netz, Acerbi, and Wilson 2004; Netz and Noel 2007, chapter 10). If that 

1. 9 e reading of the Palimpsest has been greatly aided by enhanced computer-generated images, as 
explained in detail with illustrations on the website http://www.archimedespalimpsest.org. 9 e ink of the 
Archimedean text red ects red light better than the prayer book text that overlies it. As it looks bright in 
ordinary photos and very dark in ultraviolet photos, the Archimedean text is revealed by combining the red 
channel from the former and the blue channel from the latter. It then appears in red, clearly distinguished 
from the overtext and background. X-rays can also be used to distinguish the Archimedean text from the 
overwritten prayer book and the forged images. However, the discovery of 2001 described below was made 
before these marvellous innovations.

http://www.archimedespalimpsest.org
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interpretation is right, the Stomachion is a work of combinatorics and thus key 
to understanding an important aspect of Archimedes’ mathematical activity that 
has hitherto been neglected because the evidence is scattered sparsely through-
out his writings. In the Sand reckoner, for instance, he enumerates the thirteen 
semi-regular solids, presenting his own notation for very large numbers; in the 
Cattle problem he presents a set of inde[ nite equations whose integer solution he 
surely did not know, for it is over two hundred thousand digits long. All these 
were known, but just as minor achievements of Archimedes unrelated to one 
another. Now his concern with combinatorics in the Stomachion, as suggested by 
the new reading of the palimpsest, would present Archimedes as a great calcula-
tor, as well as a superlative geometer and engineer.

9 e dramatic example of the Archimedes palimpsest illustrates the impor-
tance of primary sources, where close attention to only one word may profoundly 
change our view of the past. If, however, discovery of hitherto unknown works 
were the only important type of event in the history of mathematics, scholars of 
Greek mathematics would have been completely redundant between 1906 and 
1998. Of course this was not the case. Even without new sources, historians always 
have something to do. Almost all Greek mathematical manuscripts available 
today were already known in the second half of the sixteenth century. However, 
they still o\ er challenging problems to historians. In a sense, the sources give us 
questions, not solutions, for they require interpretation. What kind of process 
is interpretation? Why is it necessary (and inevitable)? And why can a de[ nitive 
interpretation not put an end to this process?

In the following we will take the start of the Elements, by far the most fre-
quently read and studied source of Greek mathematics for many centuries. We 
shall see why this mathematically simple text has always required interpretative 
e\ ort since ancient times, and explore what that e\ ort consists of. We will then 
discuss the diagrams in manuscripts which have been silently altered in modern 
print editions, and try to see why diagrams have attracted scholars’ attention 
only very recently.

Sources and interpretation: the case of the Elements

Anyone who has ever glanced at the Elements knows that the work has a very 
particular style. At the beginning there are several de[ nitions to which we will 
return. 9 en the reader is asked to consent to some obvious statements with-
out demonstration, called postulates and common notions. AN er that the prop-
ositions begin. 9 ey are demonstrated one aN er another, using only the initial 
postulates, common notions, and the propositions that have already been dem-
onstrated. 9 at is all that the Elements contains. Euclid gives mathematical 
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proofs, but never speaks of other matters, even about mathematics: the purpose 
of the work, the reason behind the choice of some particular de[ nition or style 
of proof, why he proves certain apparently useless propositions, and so on. In the 
Elements, meta-mathematics is strictly prohibited.2 9 is particularly austere style 
has always made a strong impression on a certain type of reader: for them, being 
mathematical entails looking like the Elements, while mathematicians are those 
who are moved by reading Euclid and who are able to develop arguments in the 
Euclidean manner.

9 e distinctive style of the Elements (and of Greek mathematics in general) 
leads to interpretative problems. 9 ough Euclid writes nothing but mathemati-
cal reasoning—rather, because he writes nothing else—readers try to reconstruct 
what Euclid did not write. Given that it is extremely di7  cult to resist such temp-
tations when reading the Elements, how should one [ ll the void that Euclid leN  
unspoken?

For a long time, philosophy was the language for talking about what Euclid did 
not say. A huge number of commentaries have been written on the Elements from 
a philosophical point of view. Proclus, a neo-Platonic philosopher of [ N h century 
ad, wrote A commentary on the F rst book of Euclid’s Elements, which is an ind u-
ential representative of this tendency (though this work is not the most important 
of his numerous and voluminous philosophical works). Indeed, his approach has 
been so predominant that this sort of commentary forms an important strand of 
the history of mathematical philosophy.

Because mathematics is constantly changing and growing, Euclid’s read-
ers inevitably bring with them some knowledge of the mathematics contempo-
rary to them. If something in the Elements seems superd uous or defective, they 
assume that some philosophical reason must have given rise to such imperfec-
tion. 9 is was, in principle, the predominant approach to Greek mathematical 
sources until the 1970s. Since there was no neat distinction between mathemati-
cians and philosophers in ancient times, and since philosophy and mathematics 
have always ind uenced each other, this seems a legitimate approach. However, 
one risks assuming that the development of ancient mathematics was stunted 
because mathematicians were haunted by philosophical concerns.

A typical example of this approach can be seen in the prevalent interpreta-
tion of the particular style in which the Elements treats length, area, and volume. 
All the arguments concerning such geometrical magnitudes are expressed in the 
language of ratio and proportion, without assigning any numerical values. For 
example, a formula like ‘the area of a rectangle is given by the product of the 

2. Authors like Archimedes and Apollonius put this kind of meta-mathematical discussion in the preface, 
away from the main text where only mathematical reasoning appears. Even so, the meta-mathematical infor-
mation provided in prefaces tends to be sparse, sporadic, and sometimes even enigmatic.



Reading ancient Greek mathematics 805

base and the height’ is never found in the Elements.3 Instead, the corresponding 
proposition is: ‘triangles and parallelograms which are under the same height are 
to one another as their bases’ (VI.1). 9 ough this avoidance of numbers seems 
folly for us moderns, we should remember that the Greeks did not have numbers 
capable of expressing geometrical magnitudes, so that it was natural not to assign 
numerical values to them. Moreover, Euclid is very careful not to assign concrete 
values even to integers in the arithmetical books (VII to IX) of the Elements. 
As we will see later, this particular style can be attributed to a concern with the 
generality of proof.

9 e prevalent interpretation of this style has been that the absence of numbers 
in geometry is the result of a scandalous collapse of the Pythagorean principle ‘all 
is number’, caused by the discovery of incommensurability in the [ N h century 
bc. I do not agree with this interpretation, but it is not my point here.4 Rather, this 
example shows that the Elements necessitates interpretations all the more because 
of its particular style. And as we will soon see, any interpretation, however objec-
tive and disinterested one endeavours to be, is subject to the environment—not 
only mathematical and philosophical, but more generally intellectual and even 
technological—in which one lives. As times change, environments change with 
them, and new interpretative problems arise. 9 us we cannot decide which inter-
pretation is best, but we may say that an attitude toward the sources is better if it 
enables us to pose fruitful interpretative problems: that is, those which reveal our 
ignorance and improve our insight.

Now let us examine some of the propositions of the Elements, the main part of 
the work, constructed from logical chains of demonstrations. 9 e [ rst proposi-
tion is a problem, to construct an equilateral triangle on a given line.

Let the given line be AB, and draw a circle BΓΔ with centre A, distance (i.e., radius) AB 
(Postulate 3). Similarly, draw a circle AΓE with centre B, distance BA. Let the circles cut 
each other at Γ, and AΓ, BΓ are joined (Postulate 1).5 9 en, it is proved that AB, BΓ and Γ 
equal one another.

3. Heron’s Metrica, by contrast, is full of this kind of formulae expressed verbally, accompanied by numer-
ical examples, including the famous one for the area of a triangle widely known by his name—in modern 
algebraic terms, the area of a triangle is √{s(s–a)(s–b)(s–c)}, a, b, c being the three sides and s the half of the 
sum a + b + c —though an Arabic source attributes it to Archimedes.

4. For the alleged impact of incommensurability on Greek mathematics, see Christianidis (2004, part 3).
5. 9 e [ rst three postulates ask for the possibility of basic geometrical constructions: to draw a straight line 

joining two points (Postulate 1), to prolong a given straight line (Postulate 2) and to draw a circle with given 
centre and distance (radius). Árpád Szabó (1978 [1969]) argued that such obvious postulates red ect a conscious 
e\ ort to escape the Eleatic criticism against motion. 9 e Eleatic philosophical school began with Parmenides 
in the early [ N h century bc. 9 e Eleatics argued, elaborating their founder’s thesis that all is one, that motion 
(and any change) is impossible. 9 e well-known Zeno’s paradox, as in Achilles and tortoise, is a typical exam-
ple of their arguments. Szabó argued that it was Eleatic philosophy that gave birth to deductive mathematics 
based on postulates and axioms. 9 ough it is di7  cult to accept any thesis that ascribes the birth or invention of 
deductive mathematics in Greece to one factor, the Eleatic ind uence on Greek mathematics seems undeniable. 
At the very least, both Eleatic philosophy and early deductive mathematics d ourished in the same intellectual 
milieu which made much of logical consistency. It is indeed curious that the Elements seldom makes explicit 
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9 e style of Greek mathematics is concentrated in this simple proposition. 
First, Euclid does not explain why he has chosen this problem to begin the work. 
Second, each construction and deduction is strictly based on postulates or (in 
later propositions) on the results of preceding propositions.

9 e strictly logical style, however, makes the reader hyper-sensitive to any 
logical d aw. In this proposition, Euclid takes it for granted that the two circles he 
has drawn have a common point (more precisely, two). 9 is unproved assump-
tion has long been the target of severe attacks, some of which are mentioned in 
Proclus’ commentary. For us moderns, this is evidence of Euclid’s dependence 
on a spatial intuition which he could not entirely dispose of. But this criticism is 
rather beside the point, for it was not possible to construct geometrical objects 
that were independent of spatial intuition until the purely axiomatic construc-
tion of real numbers in the nineteenth century.

We should rather note that Euclid de[ ned the line not as a set of points, but 
based on a kind of intuition of continuity (De[ nition I.2). His de[ nition of the 
circle is similar: the circle is not the set of points equally distant from a given 
point, but it is a line with the property of being equidistant from some point 
which is called the centre (De[ nitions I.15–16). We can better understand this 
idea if we suppose that for the Greeks the line was an entirely di\ erent geometri-
cal entity from the point, for the point does not have the line’s most basic prop-
erty, namely extension. In this interpretation the notorious (pseudo-) De[ nition 
I.2, ‘the line is length without breadth’, makes some sense.

Proposition 2 is also a problem (Fig. 9.2.2).6 Given a point A and straight line 
BΓ, it is required to construct a straight line beginning at point A and equal to 
BΓ.7 First, construct equilateral triangle ABΔ on AB (Prop. 1), prolong ΔA and ΔB 

recourse to motion. Apart from the [ rst three postulates, Euclid only speaks of rotation of the semicircle, tri-
angle, and rectangle when he de[ nes the sphere, cone, and cylinder respectively in Book XI.

6. We provide diagrams redrawn from the Vatican manuscript P (see below), together with images from 
Heiberg’s edition, except for Proposition I.1, whose diagram is consistent. 9 e di\ erences between Heiberg’s 
diagrams and those in the manuscript are discussed in a later section.

7. For the sake of simplicity, we now omit the general statement (protasis or enunciation) found at the 
beginning of the proposition, and explain its content with labelled objects.

A B E

G

D

Figure 9.2.1 Diagram of Proposition I.1
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(Post. 2) to E and Z, draw a circle with centre B and distance BΓ (Post. 3; though 
Euclid does not say so explicitly, its intersection with ΔZ is H). Now with centre 
Δ, distance ΔH, draw a circle (Post. 3). Let Λ be the intersection of this circle and 
ΔE, then AΛ is proved to be equal to BH (in justifying this, common notion 3 
is used).

One thing is evident from this argument. Euclid did not think that Postulate 
3 (‘to describe a circle with any centre and radius’) permitted him to draw a 
circle with centre A and distance BΓ, for such a construction would have made 
the whole proposition unnecessary. 9 ough Euclid is extremely taciturn about 
his understandings and considerations concerning each of the expressions in the 
Elements, sometimes we can make out his intention clearly.

Let us move to Proposition 3 (Fig. 9.2.3). Given a line AB and another line Γ, it is 
required to cut o\  a line equal to Γ from AB. Drawing a circle with centre A and dis-
tance equal to Γ (Prop. 2), one can cut o\  a line AΔ on AB, equal to Γ. 9 is means that 
you can ‘carry’ any line segment onto any other line, without changing its length.

So far we have witnessed a typical chain of logical demonstrations: Proposition 
1 used to prove Proposition 2, which in turn is necessary for Proposition 3. 
Proposition 4, however, causes a problem. It asserts the side-angle-side test for 
congruence (Fig. 9.2.4). If two triangles have two sides equal to two sides, and the 
angles contained by equal sides are equal, then the two triangles are congruent. 
In two triangles ABΓ and ΔEZ, it is supposed that AB = ΔE and AΓ = ΔZ and that 

Figure 9.2.2 (a) Heiberg’s diagram of 
Proposition I.2; (b) the same diagram, 
redrawn from Codex P
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a) b) Figure 9.2.3 (a) Heiberg’s diagram of 
Proposition I.3; (b) the same diagram, 
redrawn from Codex P
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the angle at A is equal to the angle at Δ. Euclid’s proof is simple. Its essential part 
is as follows.

If the point A be placed on the point Δ, and the straight line AB on ΔE, then 
the point B will also coincide with E, because AB is equal to ΔE.

9 en, from the equality of angle A and Δ, if AB coincides with ΔE, AΓ will 
coincide with ΔZ, and since AΓ = ΔZ, the point Γ will fall on Z. 9 en, BΓ will 
also coincide with EZ,8 and the whole triangle ABΓ coincides with the whole 
triangle ΔEZ.

In this argument Euclid apparently does not use the preceding three proposi-
tions. In fact, Proclus says, ‘9 e proof of this theorem, as anyone can see, depends 
entirely on the common notions and grows naturally out of the very clarity of 
the hypotheses’ (Proclus [1970], 240). 9 en a question arises: if this proposition 
depends on nothing but some of the common notions, why did Euclid decide to 
prove the preceding three propositions before it?

Proclus seems to have been aware of this question, for he says that Euclid had 
to include the [ rst three propositions, which are classi[ ed as problems (not the-
orems), to show that the triangle exists, and that equal lines exist, and so on. 
In Proclus’ interpretation the constructions in the [ rst three propositions serve 
as a kind of proof of existence. Proclus’ idea was prevalent until very recently. 
Zeuthen (1896) maintained that the constructions in the Elements are ‘proof of 
existence’, and this thesis remained unchallenged until Wilbur Knorr’s  rebuttal 
(Knorr 1983).9 In short, historians were all under the ind uence of Proclus’ con-
cern for ontology until just 25 years ago.

8. Otherwise there would be two lines connecting Δ and Z, which is absurd. However, Common Notion 4, 
which explicitly states its impossibility, is certainly a later addition, probably inspired by this argument.

9. Knorr shows Heiberg’s arguments (that go back as far as Proclus) do not [ t the practice of Greek math-
ematicians. First, Knorr examines the chains of constructions in the Elements which lead to some compli-
cated [ gure, such as the construction of the [ ve regular polyhedra in Book XIII. However, Euclid had already 
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Figure 9.2.4 (a) Heiberg’s diagram of Proposition I.4; (b) the same diagram, redrawn 
from Codex P
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9 e idea of proof of existence is indeed attractive in some situations, for exam-
ple, when Euclid suddenly shows how to construct a square (I.46) just before the 
theorem of Pythagoras (I.47). However, as Knorr convincingly argued, the prob-
lem of existence is not always related to construction, and nor does construction 
always serve to prove existence. And it seems out of place to assume existential 
concern on Euclid’s part in the [ rst three propositions of the Elements.

9 en why do they exist? 9 e simplest answer ought to be that they somehow 
serve Proposition 4. As we have seen, in the proof of this proposition points and 
lines are moved and placed onto other points and lines. 9 is is made possible by 
Propositions 2 and 3, although Euclid never says so explicitly.10 9 e point A is 
moved onto another point Δ, then the line AB is moved and placed onto another 
given line ΔE. It is natural to assume that Euclid implicitly resorts to these propo-
sitions when he moves the sides of the triangles in Proposition 4. Strangely, this 
seems to be a rather recent interpretation. As far as I know, Beppo Levi (1949) was 
the [ rst to have this idea, while Bernard Vitrac (1990–2001, 202), also suggested 
it, apparently independently.

9 is interpretation and that of Proclus are quite di\ erent, but they share a 
common motivation. Both try to explain the reason why Propositions 1–3 appear 
before Proposition 4. For Proclus, it was an existential issue, while for Levi and 
Vitrac it was Euclid’s concern about the possibility of motion. If the latter inter-
pretation is right, and if Euclid was indeed conscious of the Eleatic criticisms 
against motion, then the basic philosophical issue had undergone considerable 
change between Euclid’s and Proclus’ time. 9 us Proclus was projecting his own 
concern, that of existence, onto Euclid. It is not important whether Proclus was 
right or wrong. My point is simply that interpretative e\ ort on the text of the 
Elements was already necessary in Proclus’ time, for he no longer had access 
to the intellectual environment in which the Elements had taken shape. 9 is 
point is equally true for mediaeval scholars (Rommevaux, Chapter 8.1 in this 
volume), early modern mathematicians, and today’s historians: the Elements 
has continued to pose di\ erent interpretative questions in di\ erent eras, and 

named them as the pyramid, cube, octahedron, icosahedron, and dodecahedron in their de[ nitions in Book 
XI. With these names he shows no concern about their existence: for it is not known a priori that a regular 
polyhedron whose surface comprises regular pentagons exists, still less that it is a ‘dodecahedron’, a (solid 
with) twelve surfaces. So Euclid’s construction of polyhedra cannot be interpreted as proof of existence. On 
the other hand, the existence of a geometric [ gure equal to the one given (e.g., a straight line equal to a given 
circumference), or satisfying some proportion (e.g., x satisfying the proportion a:b = c:x for given a, b, c) is 
oN en simply assumed in the context of quadrature of [ gures. 9 us the construction problems show, accord-
ing to Knorr, not the existence of the [ gure constructed, but the possibility of constructing that [ gure using 
only some speci[ c postulates of construction (in the case of the Elements, only the use of the straight line and 
the circle is permitted). Knorr concludes that it is rather philosophical concern (ancient and modern) that has 
sustained the thesis of construction as proof of existence. See also Harari (2003).

10. Euclid never explicitly refers to the propositions he uses. 9 erefore Euclid’s silence cannot be con-
strued as evidence that he did not intend to use Propositions 2 and 3 here.
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readers always have to face such questions, no matter whether their answers are 
right or wrong.

Textual criticism: do we really read what the ancients wrote?

So far I have been treating the text of the Elements as [ rmly established, as if we 
still had Euclid’s own autograph copy. However, this is far from the case. 9 e 
Elements, like all ancient Greek works, is available only through medieval cop-
ies which di\ er from each other. If we seriously want to argue about the content 
of the Elements, we should [ rst try to establish the original text through such 
manuscripts as we possess; and if we cannot establish it, we should at least rec-
ognize the extent to which the surviving text resembles the original. 9 is task of 
establishing the original text from extant copies, whether for poetry, philosophy, 
or history, is called textual criticism (see West 1973). I shall bried y explain some 
basic principles of textual criticism, and the particular situation with regard to 
the Elements.

When more than one manuscript of a classical work survives, their texts 
invariably di\ er. 9 ere may be anything from two or three to more than a dozen 
di\ erent readings (variants) on one page of a print edition, amounting to thou-
sands of variants in one work. 9 ere are two main causes of variants. First any 
copyist inevitably errs, omitting some words, mistaking one word for another, 
or inadvertently skipping one or more lines between the same word(s). Second, 
a scribe may consciously ‘correct’ or ‘improve’ the text; for example, a rare word 
or expression may be taken as an error made by a previous scribe. Some may 
write a gloss in the margin, which is later incorporated into the text when the 
manuscript is recopied. 9 e cornerstone of textual criticism is that every time 
a work is copied, errors are inherited and more are added. (For the sake of sim-
plicity, I use the word ‘error’ to denote any di\ erence between a copy and its 
original.)11 Comparison of the errors in individual manuscripts can help to deter-
mine whether one surviving manuscript is a copy of another.

We can thus draw a diagram, or stemma, to represent the relationships 
between the manuscripts of a work (Fig. 9.2.5). A copy of another extant manu-
script tells us nothing new about the author’s original autograph work, so it is 
neglected in the editorial reconstruction of the text. Sometimes all the extant 
manuscripts turn out to be direct or indirect copies of a single extant manuscript 
(as in Figures 9.2.5a–9.2.5.d, if codex A is extant). 9 is is the case for the Conics of 
Apollonius and the Collection of Pappus, so to edit those works it su7  ces to read 

11. Some simple errors may be corrected by conjecture. 9 e errors we speak of are limited to irrecoverable 
ones, such as gaps of one or more lines.
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and transcribe the source manuscript as carefully as possible.12 More oN en, we 
have several copies that share some errors but which each have particular errors 
of their own. 9 ey are thus independent copies of a lost original, or archetype. 
For example, in the stemma of Fig. 9.2.5b, if A is no longer extant we are in this 
situation. Our task is, of course, to restore the text of A from the extant manu-
scripts B and C.

Let us examine some possible cases more in detail. Suppose A is lost and there 
is another copy D of A (Fig. 9.2.5b). For the restoration of the archetype A, the 
two situations in Figs. 9.2.5c and 9.2.5d are signi[ cantly di\ erent. If we have 
three independent copies B, C, D of the archetype A (Fig. 9.2.5d), then it would be 
exceptional for the three copies to give three di\ erent readings at any one place in 
the text. So at least two of the copies should always agree, thus giving the reading 
of A. So, except in rare cases, we can establish the text of A. On the other hand, if 
we [ nd that B and C share some common errors which are not found in D, then 
B and C must have derived from an intermediate copy X of A, which is the cause 
of those common errors (Fig. 9.2.5d). In this case, even if the reading of B and C 
agree against D, the majority rule does not apply, for the agreement of B and C 
shows only the reading of a single copy X, which is worth no more than D. If one 
of the two is clearly corrupt and makes no sense, we can choose the other as the 
reading of the archetype A. But if both traditions give readable and plausible texts 
it can be di7  cult to decide between the two.

9 e situation of the Elements is the latter, more di7  cult one. Let us bried y look 
back at how the critical edition of the Greek text of the Elements was made. 9 e 
[ rst print edition of the Elements was published in 1533 by Simon Grynaeus, based 
on two manuscripts, which are far from the best of those known today. However, 
this edition was the source of all subsequent editions and translations until the 
early nineteenth century. We now understand that all the Greek manuscripts 

12. Even in this type of case, there are oN en other witnesses, that is, citations, translations, and commen-
taries (in mathematical works, commentaries oN en take the form of lemmas to facilitate the understanding of 
di7  cult arguments), which inform us of di\ erent textual traditions. 9 ose traditions must then be evaluated, 
in a similar manner, in order to establish the text.

A

B

C

A

B C

A

B C D

A

X

B C D

a) b) c) d)

Figure 9.2.5 (a–d) Possible relationships between different manuscripts of the 
same text
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then known derived from the recension made by 9 eon of Alexandria in the 4th 
century ad. Some manuscripts clearly show his name, and all include an extra 
proposition at the end of Book VI (an extension of Proposition VI.33), which 
9 eon himself admits to having added (see Heath 1925, II 276).

At the beginning of the nineteenth century, François Peyrard, who was pre-
paring a new edition of the Elements, discovered the Vatican manuscript Grec. 
190 (later named P in his honour), brought to Paris from Rome by the schol-
ars who followed Napoleon’s army. 9 is manuscript does not name 9 eon as 
editor, lacks the proposition added by 9 eon,13 and in many respects provides 
good readings. He recognized that this manuscript belongs to a di\ erent tradi-
tion from all known ‘9 eonian’ manuscripts. Acknowledging the importance of 
this manuscript, and probably inspired by its discovery, Peyrard made a thor-
ough examination of the manuscripts of Euclid’s Elements and Data possessed 
by the Bibliothèque Imperiale (today’s Bibliothèque Nationale in Paris), but did 
not dare to change the accepted text a great deal in his edition (Euclide 1814–18). 
Following the standard procedure of his time, he was generally content to add a 
critical apparatus in which he reported the variants in the Vatican manuscript 
compared to David Gregory’s edition of 1703.

It was only when Johannes Heiberg edited the Elements in the 1880s that this 
non-9 eonian manuscript was properly used to establish the text. Heiberg’s edi-
tion is still considered the standard edition of the Elements. Changing standards 
in nineteenth-century classical scholarship made it mandatory for Heiberg to 
investigate as many manuscripts as possible to construct his new edition. He was 
indeed able to consult the principal manuscripts held in European cities, thanks 
to the railway. In the description at the beginning of the [ rst volume of his Greek 
edition of the Elements, Heiberg presents the six manuscripts he used to establish 
the critical text, of which three are in Italy (P in the Vatican, F in Florence, and 
b in Bologna). 9 e other three are in Oxford (B), Paris (p), and Vienna (V). In 
1880 he consulted V in his home city of Copenhagen (thanks to a generous loan 
of the Vienna manuscript) and Book 1 of p in Paris. 9 e next year he went to 
Italy to consult Books 4 to 9 of P in Rome (the [ rst three books were examined 
by colleagues). In Florence he was lucky enough to consult F alongside b, loaned 
from Bologna municipal library. 9 en in 1882 he went to Oxford to examine B 
and then consulted the Parisian manuscript p again, which this time was loaned 
to the Royal Library of Copenhagen. 9 e [ rst volume of his edition, containing 
Books 1 to 4 with a critical apparatus detailing all the di\ erent readings of these 

13. More precisely, 9 eon’s addition to VI.33 is written in the margin by another hand. 9 is shows that it 
was added later, by someone who had access to another manuscript. 9 is is an example of the phenomenon 
known as contamination, through which a manuscript inherits two traditions, making the reconstruction of 
the stemma di7  cult or impossible when content from another tradition has entered the text in subsequent 
copies.
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codices and distinguishing the di\ erent hands in them, appeared in 1883. By 
1885, all four volumes containing the thirteen books of the Elements had come 
out. Finally, in 1888 Heiberg published the very thick volume 5 which contains 
the additional books 14 and 15 (not actually by Euclid, but which traditionally 
accompany some manuscripts) and numerous scholia, prefaced by over a hundred 
pages of critical introduction, editorial notes, and studies of previous editions.

It is evident that without the railway network Heiberg’s edition would have 
been impossible to put together (just remember Goethe’s Italian journey to imag-
ine the di7  culty of travelling before the railway age). At the same time, one can-
not but notice that this was an incredibly rapid work by a great but still young 
scholar. As he himself admits in the preface, he did not collate all the extant Greek 
manuscripts of the Elements (an impossible task even now, given the enormous 
number of them) and the [ rst volumes in particular have the d avour of a work in 
progress. In fact he honestly admits, ‘I preferred to publish this now, whatever it 
may be, than to prolong the work to in[ nity’.14 Indeed, he reviewed his edition, 
and modi[ ed some of his choices between variants, in the critical introduction of 
1888, and later published an article in which he collected newer results and dis-
coveries, such as that of a papyrus fragment which proved one whole Proposition 
I.40 to be spurious (Heiberg 1903).

In short, Heiberg published a provisory edition of the Elements in the 1880s 
and never ceased improving on it in later life. Some of those results are duly 
included in his successors’ translations (so that Proposition I.40 is always brack-
eted these days), but most of his notes and modi[ cations remain unnoticed, and 
even today the text of the 1880s passes as ‘de[ nitive’, despite Heiberg’s intentions. 
Now I turn to Heiberg’s edition and point out some problems with it, with no 
intention of criticizing him. If the Greek edition we use today is problematic, that 
is due to later historians who have simply accepted Heiberg’s edition as de[ nitive, 
sometimes overlooking even Heiberg’s own later remarks.

Heiberg used Peyrard’s Vat. Grec. 190 and several other manuscripts (all 
belonging to 9 eonian tradition), of which most important was F. But F is badly 
damaged, so other manuscripts were also indispensible. 9 ough none of these 
manuscripts is a copy of another, the tradition is so complicated that it was impos-
sible to reconstruct a stemma for them.15 But at least they all derive from 9 eon’s 
version (let us name it T), which is reconstructible from extant manuscripts, if 
not with absolute certainty in every passage. So we have a stemma like Fig. 9.2.6. 
Note that even though P is free of 9 eon’s editorial work, it is a later manuscript, 
of the ninth century, so it cannot be the exemplar that 9 eon worked with.

14.  . . . haec, qualiacunque sunt, nunc edere malui, quam opus in in[ nitum di\ erre: Elementa (Heiberg) I 
VII-VIII; Elementa (Heiberg-Stamatis) I VIII.

15. Elementa (Heiberg) 5:XLIX, (Heiberg-Stamatis) 5:XXXVII. See note 13 for one reason why.
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Our task is to restore the archetype X. It is obvious that with the discovery 
of P we can go back beyond T, coming closer to the original. However, it is not 
guaranteed that the archetype of X can be reconstructed, for we have only two 
testimonies of X (the situation in Fig. 9.2.3b), and e\ orts to reconstruct X oN en 
leave open questions where P and T do not agree. What is worse is that math-
ematical text is easy to alter, delete, or add to, without leaving any visible traces. 
It is not a poem, nor is it an inimitable masterpiece of prose. It is a chain of logical 
inferences constructed from extremely limited vocabulary and expressions, so 
that anyone with good mathematical sense and some training could try to restore 
corrupt text or add explanations.

Here is an example. In Proposition III.31 (Fig. 9.2.7), it is argued that the angle 
in a semicircle is a right angle, that in a greater segment is less than a right angle, 
and that in a smaller segment is greater than a right angle. In the [ gure, BΓ is 
the diameter. AN er showing that angle BAΓ (the angle in the semicircle) is right 
and that the angle ABΓ (the angle in segment ABΓ, the segment greater than the 
semicircle) is less than a right angle, Euclid goes on to show that the angle AΔΓ, 
an angle in segment AΔΓ, is greater than a right angle. I quote the text:

(a) Next, since ABΓΔ is quadrilateral in a circle, (b) and the opposite angles of quadrilat-
erals in circles are equal to two right angles (III.22),16 [(c) therefore, the angles ABΓ, AΔΓ 

16. 9 e reference to the number of the proposition used in this reasoning is not contained in the manuscripts.
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Figure 9.2.6 Stemma of manuscripts 
assumed in Heiberg’s editorial work
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Figure 9.2.7 (a) Heiberg’s diagram of 
Proposition III.31; (b) the same diagram, 
redrawn from Codex P
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are equal to two right angles,] (d) while the angle ABΓ is less than a right angle; (e) there-
fore the angle AΔΓ which remains is greater than a right angle. (aN er Heath 1925, II 62)

Now, phrase (c) between the brackets was expunged by Heiberg (and so does 
not appear in Heath’s translation), because in P this phrase was added in the 
margin by a more recent hand, while it appears in all the 9 eonian manuscripts. 
However, there is also the possibility that the scribe of P (or a scribe of some 
manuscript between X and P) accidentally omitted phrase (c). 9 is is quite plau-
sible, for both (b) and (c) end with the same expression ‘equal to two right angles’ 
so that a scribe may have jumped from its [ rst occurrence to the second. 9 is is 
a common phenomenon, known as homoioteleuton. If an omitted phrase is dif-
[ cult to replace by conjecture, it is almost certain that the text containing that 
phrase (in this case, T) is to be preferred. However, phrase (c) says the same thing 
as phrase (b), with the addition of the names of the angles. Any commentator 
could have inserted it. 9 erefore, it seems that neither interpretation can easily 
be excluded. 9 e passage may have been added in T, but it may just as well have 
been omitted in P.17 As I have already argued, when there are only two independ-
ent traditions coming down from an archetype, textual criticism cannot give us 
a de[ nite answer about which to choose. In this particular case, Heiberg’s deci-
sion can probably be justi[ ed by other omissions of similar intermediate (and 
relatively trivial) steps of proofs in codex P found in Propositions I.36, III.7, IV.7, 
etc. If such arguments are regularly omitted in codex P, they are less likely to be 
chance omissions in the tradition to which P belongs, than additions of obvious 
intermediate arguments by 9 eon or some other commentator. From a di\ erent 
point of view, phrase (b), which appears in both traditions, is not above suspicion 
either. Euclid does not usually cite general enunciations. 9 us it is not altogether 
excluded that the original text also lacked this part, so that it contained only 
phrases (a), (d), and (e) of the cited passage.

In this hypothetical argument, I introduced another criterion for deciding the 
authenticity of the text: the question of style was tacitly invoked in Heiberg’s deci-
sion to expunge phrase (c). Let us examine this criterion further, for scholars 
today are increasingly sensitive to the stylistic deviations found even in the best 
manuscripts of Euclid. Scholars agree that classical Greek mathematical works, 
including Euclid’s Elements, have certain stylistic features, though there have 
always been disagreements over whether certain speci[ c features are Euclidean 
or not.

Euclid’s most reliable feature is that he never goes backwards. He prepares eve-
rything necessary beforehand, and the proof goes always forward in this man-
ner. He argues: A, therefore B; and it is proved that C, so that D. It is not usual 

17. See Heath (1925, I 52–53) for further discussion on the possible explanations for disagreements between 
P and 9 eonian manuscripts.



INTERACTIONS AND INTERPRETATIONS816

for Euclid to argue, for example: B, for A holds; so that D; this is because of 
C. Recently this feature has turned out to be by far more consistent in Euclid 
(and consequently powerful and compulsory for identifying spurious parts of 
the Elements) than it was thought to be. Wilbur Knorr (1996) pointed out that all 
the lemmas and corollaries of Book XII, as well as dozens of additional explana-
tions that come aN er particular statements, are all absent from the Arabo-Latin 
tradition. 9 is discrepancy had already been raised by Martin Klamroth in 1881, 
but Heiberg had replied that the Arabo-Latin tradition was a shortened version, 
while the Greek manuscripts preserved the genuine form. But Knorr persuasively 
showed that the contrary is much more plausible: that the Greek manuscripts P 
and T both su\ ered later editorial work (but this must be pre-9 eonian, for P 
agrees with T in this respect), while the Arabo-Latin tradition is exempt from 
this alteration, therefore preserving the better text.18

Let us examine an example of a justi[ cation following a statement, which 
Knorr judged to be spurious. In XII.2, in which it is proved that two circles are 
(in the same ratio) as the squares (drawn) on their diameters, Euclid inscribes a 
square EFGH in the circle EFGH, and says:

then the inscribed square is greater than the half of the circle EFGH, inasmuch as 
(epeidēper), if through the points E, F, G, H we draw tangents to the circle,19 the square EFGH 
is half the square circumscribed about the circle, and the circle is less than the circumscribed 
square; hence the inscribed square EFGH is greater than the half of the circle EFGH.

I have italicized the passage which explains why the inscribed square is greater 
than the half of the circle. 9 is passage, introduced by the Greek conjunction 
epeidēper, appears in all the extant Greek manuscripts (except one, see note 
18), leading Heiberg to include it in his edition. However, it is absent from the 
mediaeval Latin translations from Arabic. It, and other similar passages, are 
now regarded as later additions, invented by those who wanted to supplement 
Euclid’s concise reasoning. Without going into the details of Knorr’s arguments, 
I should add that the use of the subject in the [ rst person plural in this passage 
(‘we draw tangents . . . ’) is exceptional in Euclid, and should be regarded as a sign 
of  interpolation. 9 us, at least for this part of the Elements, the authenticity of 
codex P has collapsed, and we should imagine a stemma like in Fig. 9.2.8.20

18. Knorr also found that the 9 eonian manuscript b contains a text which is very close to that of Arabo-
Latin tradition in this section. (But in other books of the Elements, its text is not particularly better than 
other 9 eonian manuscripts.) 9 e peculiarity of b had already been noticed by Heiberg, who gave up trying 
to record its variants in footnotes (for the text was too di\ erent). Instead he put the last part of Book XI and 
the whole of Book XII (XI.36–XII.18) from manuscript b into an appendix. However, he seems to have been 
unaware of its importance. Manuscript b also implies that the tradition of the Elements is so complicated that 
a manuscript may not necessarily be homogeneous but can contain passages from di\ erent traditions.

19. 9 e tangents are not drawn in the [ gure.
20. Around the end of Book XII (especially in proposition XII.17), the text of b deviates from that of 

Arabo-Latin tradition, showing the complexity of the traditions. Knorr concludes that the Arabo-Latin 
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Stimulated by Knorr’s study, Fabio Acerbi (2003a) showed that in Book V too the 
Arabo-Latin tradition preserves the better text. However, the situation for Book X 
has turned out to be more complicated (Djebbar, Vitrac, and Rommevaux 2001), 
and we are now aware that there is no one tradition which consistently preserves a 
better text than any other. In some books one tradition provides the better text; in 
other books, some other tradition is preferable; and in many places we simply do not 
know which tradition is best. We are sure that we are closer to Euclid’s text of the 
Elements than when we ingenuously believed that Heiberg’s edition was ‘de[ nitive’, 
but we are now much more aware of the distance (and sometimes unreachability) of 
Euclid’s original text from the documents we possess (see also Vitrac 2004).

Diagrams

So far I have discussed the text of the Elements. No overall re-examination has yet 
been carried out of Heiberg’s ground-breaking comparative study, though scholars 
have begun to realize that there is room for improvement to his edition, thanks to 
documents from the Arabo-Latin tradition and new stylistic methodology. In this 
section, I will look at the manuscripts from a di\ erent point of view, examining 
the diagrams they contain. 9 e diagrams are, of course, indispensable constitu-
ents of the mathematical text. Except for some very simple cases, it is impossible to 
understand a proposition without its diagram. However, there seem to have been 
no criteria for editing diagrams comparable to those for editing text.

All modern translations of the Elements reproduce the diagrams in Heiberg’s 
edition, which in turn copies those in the edition of E F August (Euclid 1826–9).21 

tradition preserves the oldest form, while b shows an intermediate stage between the Arabo-Latin text and 
other Greek manuscripts. However, Vitrac, in his French translation of the Elements (1990–2001, IV 364–
371), poses reasonable questions about Knorr’s somewhat hasty conclusion with regard to the tradition of 
XII.17. Indeed, the Arabo-Latin text of this proposition does not seem better from a mathematical point of 
view, and the question is still open.

21. In the arithmetical books (Books VII to IX), Heiberg restored the presentation of diagrams with lines, 
while August represented numbers by dotted lines or even by some particular numerical value.
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Figure 9.2.8 Stemma of manuscripts of 
the Elements XI. 36–XII.18, with Arabic 
sources included
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Did August consult manuscripts for the text and [ gures? Not at all. He used 
Peyrard’s text, and modi[ ed the diagrams quite freely for his predominantly 
educative purpose. 9 e fact is that the [ gures in Grynaeus’ editio princeps of 1533 
were fairly faithful to the manuscript he used. 9 ey were then gradually modi[ ed 
by subsequent editors, of whom August was the most determined and thorough. 
What, then, are the di\ erences between the diagrams in the manuscripts and 
those in Heiberg’s edition?

Let us begin with the simple example of Proposition I.7. In this proposition 
Euclid shows that given a straight line AB, no two sets of straight lines equal to 
each other AΓ, ΓB, and AΔ, ΔB (AΓ = AΔ and ΓB = ΔB) can be constructed on the 
same side of the line AB. 9 is is an obvious lemma for the next Proposition, I.8, 
where two triangles having three sides equal to three sides are congruent to each 
other. Euclid proceeds by reductio ad absurdum, assuming that such two sets of 
lines have been constructed.

Fig. 9.2.8 shows an image of codex P and a diagram redrawn from it.22 Only 
the redrawn [ gures are shown for other manuscripts, for they are all faithful 
enough to the originals for present purposes. In all the manuscripts containing 
Arabic and Latin translations that I have seen, the diagram is roughly symmetri-
cal and AB is parallel to ΓΔ. Now, since no other condition is assumed, there is 
no particular reason for the [ gure to be symmetrical, or for AB to be parallel to 
ΓΔ. In Heiberg’s edition, however, the diagram is deliberately drawn so that it is 
not symmetrical.

A similar example is found in Proposition I.43, where Euclid proves that when 
the diagonal AΓ of a parallelogram ABΓΔ is drawn, the complements about the 
diameter, that is, the two small parallelograms BΓEΔ and ΔZKH, are equal to each 
other. In Heiberg’s edition the parallelogram is not rectangular, nor is the point K 
the midpoint of the diagonal. However, all the manuscripts show a rectangle (that 
is, a special parallelogram) and in many the point K bisects the diagonal. First, we 
show the reproduced image of codex B, then the redrawn [ gures.

In these examples, the tendency of the manuscripts is clear. If two sides of a 
triangle can be equal, they tend to be drawn as equal. If an angle can be right, it 

22. Redrawn diagrams from the principal manuscripts of all 48 propositions in Book I of the Elements are 
available in Saito (2006); that is, for the Greek manuscripts PBVb, and for two Latin manuscripts of Gerard’s 
translation. 9 e diagrams are copied and reproduced by a simple computer programme developed for this 
purpose. It works as follows. 9 e coordinates of the principal points—usually the points to which labels are 
attached—are recorded by clicking on them. 9 en one registers how the points are joined, either by straight 
lines or the arc of a circle. 9 us, for example, from the image of Proposition I.7 in manuscript P (adequately 
trimmed) one gets the following data: A(303, 607), B(1199, 641), Γ(510, 208), Δ(1009, 218); and the lines con-
necting these points are the following: AB, BΔ, ΔΓ, ΓA, AΔ, BΓ (as the line BΓ does not exactly start from 
the point B, the coordinates of that starting point are also registered). From this set of information alone, a 
[ gure can be drawn which is faithful to the original image if one is ready to give up some particularities such 
as widths of lines, etc. 9 e reason for this [ delity lies in the fact that scribes used only ruler and compass to 
construct their diagrams.
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Figure 9.2.10 (a) The diagram of Proposition I.43 in Codex B; (b) the same diagram, 
redrawn from Codex B; (c) the same, from Codex P; (d) the same, from Codex b; 
(e) the same, from Codex V; (f) the same, from Bruges 521 (Gerard’s translation); 
(g) Heiberg’s diagram of Proposition I.43
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tends to be drawn as a right angle. 9 us, there are more isosceles triangles and 
rectangles in the diagrams than are required by the conditions of the proposition. 
Let us call this phenomenon ‘over-speci[ cation’. We can [ nd similar examples 
almost in every proposition in all of the manuscript traditions, whether Greek 
or Arabo-Latin.

Now the modern editors’ decision becomes comprehensible: they thought it 
better to banish over-speci[ cation and give diagrams with the maximum gen-
erality allowed in the proposition, avoiding possible misunderstandings that 
the proposition depended on some accidental con[ guration in the diagram (the 
equality of two sides, the perpendicularity of two lines, etc.).23 However, we may 
raise two objections. First, it is not critical (in the sense of a critical edition) to 
silently alter the testimonies of manuscripts that are the only documents we pos-
sess. Second, no drawing is completely general. If, in a proposition valid for all tri-
angles, you draw a triangle with three sides having, say, the ratio 7:6:5 to avoid an 
isosceles or right-angled triangle, you are drawing an acute-angled triangle and 
thus excluding obtuse triangles and right-angled triangles for which the theorem 
is also valid. Even if you draw all three types of triangle, it does not mean that you 
have drawn all possible triangles for which the proposition is valid. 9 erefore, 
from a strictly logical point of view, even if you make the e\ ort to draw a triangle 
with no conspicuous feature (non-isosceles, non-right-angled), the triangle you 
draw is always speci[ c in some sense, so that you do not gain any generality.24

I do not think Euclid was indi\ erent to generality when he drew over-speci[ ed 
[ gures for his propositions on geometry. On the contrary, I believe he was eager 
to secure generality, but in a very di\ erent way than we might. In Proposition 
IX.36, the last in the three books on the Elements concerned with arithmetic, 
Euclid shows that a certain type of number is a so-called perfect number, that is, 
equal to the sum of its divisors apart from the number itself; the smallest perfect 
number is 6 = 1 + 2 + 3.

In modern terms, the Euclidean proposition states that if the sum of the series 
1, 2, 22, . . . , 2p-1 (Euclid knew that their sum is 2p–1) is a prime number, then the 
product of the sum and the largest term, that is (2p–1)2p–1, is a perfect number. 
Euclid gives a proof for the case p = 5. He takes a series of numbers A, B, Γ, Δ in 
double proportion, beginning with the unit. 9 is means that A = 2, B = 4, Γ = 8, 
Δ =16, but he never mentions real values of these numbers. He lets E be the sum of 
them (including the initial unit), so that E = 31 =25–1. And the product of E and Δ 
is represented by ZH (= 496), which he is going to prove to be a perfect number.

9 en he takes another series of numbers in double proportion ΘK, Λ, M (62, 
124, 248). 9 e choice of two letters ZH and ΘK for certain numbers is due to 

23. It should be added that Heiberg was much more faithful to manuscript diagrams in his later work, e.g., 
the edition of 9 eodosius’ Spherics (Heiberg 1927).

24. For a consideration of generality in Greek mathematics, see also Netz (1999, chapter 6).



Reading ancient Greek mathematics 821

the necessity of dividing them into the sum of two (or more) numbers. 9 en, he 
shows that the divisors of ZH (except ZH itself) are only E, A, B, Γ, Δ and ΘK, Λ, 
M, and these make up ZH itself when added together. 9 roughout the argument 
he consistently pretends not to know the values of the each of the numbers A, B, 
Γ, Δ, etc. (except that A = 2), and that the perfect number ZH at issue is 496. (Of 
course, he did know all of these values, and he deliberately chose the case p = 5 
in which the sum of the [ rst series 1 + 2 + 4 + 8 + 16 = 31 really is a prime number, 
and in manuscripts later commentators wrote the value of each number beside 
the line.)

Euclid’s argument reveals that he was concerned with the generality of his 
proofs, whether or not we judge that Euclid argued successfully.25 What is inter-
esting about this proposition is that in the diagram beside the text, all the numbers 
are represented by line segments whose lengths are almost the same (Fig. 9.2.11), 
though in reality they range from 2 to 496 and Euclid was surely aware of that. 
Here the lengths of the lines are not intended to express quantitative relation-
ships between numbers, just as the lines in over-speci[ ed geometrical diagrams 
are not meant to express equality or inequality between them. 9 e only function 
of the line segments in the arithmetical books is to show that the sum of two line 
segments corresponds to the sum of two numbers represented by those segments, 
just as the diagrams in the geometrical books are supposed to be a schematic 
representation of the [ gures.

25. If it is di7  cult to understand Euclid’s concern for generality, it is because we use expressions like 2p–1 
which automatically guarantee the generality of the argument. Here again, it is the change in our intellectual 
environment that necessitates the intepretative e\ ort.
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Figure 9.2.11 (a) The diagram of Proposition IX.36 in Codex B; (b) the same dia-
gram, redrawn
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It was probably wise of ancient mathematicians not to charge diagrams with 
too much meaning, for one could not expect the [ gures to be copied exactly, 
keeping every metrical relationship between their components. By contrast, the 
persistence of the apparent generality of the modern editors’ [ gures may be partly 
due to the fact that print technology enabled their drawings to be reproduced 
correctly in thousands of identical copies. 9 us attitudes towards the sources (in 
this case diagrams) seems to have been partly ind uenced by the means and tech-
nologies available.

Another intriguing example of a diagram is in Proposition III.13, where Euclid 
proves that no two circles touch each other at more than one point, whether inter-
nally or externally. Euclid proceeds by reductio ad absurdum, his usual method 
for proving that something cannot happen, so that he had to draw two circles 
touching at two points, a nonexistent [ gure! However, Heiberg draws two circles 
cutting each other at two points, which is copied in modern translations. I shall 
explain the di7  culty in understanding Euclid’s arguments with Heiberg’s [ gures 
(Fig. 9.2.12).

9 e impossibility of two circles touching internally at two points is based on 
the preceding Proposition III.11, which shows that if two circles touch each other 
internally, the straight line joining their centres, when produced, passes through 
the point of contact.26 Euclid assumes that the circle ABΓΔ and circle EBZΔ 
touch at two points B and Δ, and lets their centres be H and Θ respectively. 9 en, 
the straight line joining H and Θ must pass both B and Δ, so that BH = HΔ and 
BΘ = ΘΔ, leading at once to a contradiction.

9 en Euclid proceeds to the case of two circles touching externally. Here the 
key to the argument is a simple proposition, III.2, which guarantees that any 
chord of a circle falls inside it. Now, let the circles ABΓΔ and AΓK touch externally 

26. It is taken for granted that the centres of the two circles are di\ erent points, for if the circles touching 
each other had the same point for their centres, they would coincide completely.
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Figure 9.2.12 Heiberg’s diagram of 
Proposition III.13
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at A and Γ. So, by Proposition III.2, the chord AΓ falls inside both circles. 9 en 
Euclid states, ‘but it fell inside the (circle) ABΓΔ, [therefore it must fall] outside 
the (circle) AΓK’.27 9 e reader is slightly bewildered by this sudden a7  rmation. 
9 e line AΓ indeed falls inside the circle ABΓΔ. 9 en why does this entail that it 
falls outside AΓK? 9 is deduction must depend on the understanding of ‘touch 
externally’. According to Euclid’s de[ nition, ‘circles are said to touch one another 
which, meeting one another, do not cut one another’ (III.def.3). So, since circles 
ABΓΔ and AΓK touch externally, circle AΓK is entirely outside the circle ABΓΔ, 
and the points inside ABΓΔ are necessarily outside AΓK.

However, this is not explicitly stated and, what is worse, in the [ gure the line 
AΓ is inside both circles! It is precisely here that Heiberg’s [ gure diverges in an 
important and substantial way from those given by the manuscripts. Fig. 9.2.13 
shows the diagrams in early editions and in the principal manuscripts.

27. 9 e original text is: alla tou men ABΓΔ entos epesen, tou de AΓK ektos. As readers who know Greek will 
notice, the word ‘circle’ in parenthesis is not in the text but it is usual and even necessary to add it; the words 
between brackets are additions based on my interpretation.
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Figure 9.2.13 (a) The diagram of Proposition III.13 from Grynaeus’ edition (1533); 
(b) the same diagram, from Gregory’s edition (1703); (c) the same, redrawn from 
Codex P; (d) the same, from Codex B; (e) the same, from Codex V
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9 e [ rst circle is ABΓΔ (or ABΔΓ) and the second one, touching ABΓΔ at two 
points A and Γ, is AΓKΛ which, in diagrams in manuscripts, is constituted by two 
arcs of circles and looks like a crescent moon (a shape called a lunule).28 All the 
manuscripts, including those belonging to Arabo-Latin tradition (as far as I have 
seen), represent the second circle by a lunule, so that we may safely attribute this 
‘lunule as circle’ to Euclid.

As can be seen from the reproduced image, Grynaeus’ edition of 1533 still 
follows the manuscripts, but Gregory’s edition of 1703 has two intersecting cir-
cles, as in Heiberg (see the images of [ gures of these editions). Of course this is 
a ‘wrong’, ‘impossible’ [ gure, but the impossibility comes from the hypothesis 
of the proof by reductio ad absurdum. 9 us, in a sense this is the ‘correct’ [ g-
ure, faithfully representing the hypothesis of the argument, which then turns 
out to be incapable of establishing the proposition. Euclid clearly distinguishes 
the intuitive truth from the hypothesis of the argument in this diagram. It is 
ironic that modern editors are so [ xated by the common sense that circles do not 
have corners and angles that they have changed the diagram of this proposition 
without documented evidence, while criticizing Euclid’s dependence on intui-
tion when he assumes that two circles meet at a point in Proposition I.1.

9 ere is much room for further study of diagrams in manuscript traditions. 
Strangely enough, the apparently obvious fact that Heiberg’s critical edition of 
Euclid (critical in the sense that the text is established by the procedure of tex-
tual criticism) does not faithfully reproduce the diagrams has only recently been 
noticed, along with the realization that their study may reveal something about 
ancient Greek mathematicians’ sense of generality.

Today we can consult the manuscript on the screen of a computer, comparing it 
with any other one with ease. Until very recently—and still today in some cases—
one had to sit in front of micro[ lm reader in a library or, in the best case, have 
them printed on thermal paper, which gave forth a strange smell. Heiberg made 
his edition of the Elements in the early 1880s when micro[ lms were not available, 
not to mention computers.29 We have seen that the railway and the inter-library 
loan of manuscripts both facilitated Heiberg’s work. However, he could not work 
as we do today. When he read a manuscript in the Bodleian Library in Oxford, 
he did not have to hand another important manuscript from the Vatican. He had 
to copy the text and marginal notes with great care (by hand, of course), but it 
was not easy to register every particularity of all the [ gures without photography. 
In short, his conditions were very unfavourable for studying diagrams, and it 
was an understandable choice to use the diagrams of a previous edition in order 

28. In several manuscripts the point Λ is lacking in the text, and in codex P it has been added by a later 
hand. 9 e Λ may thus be a later addition to indicate the second circle with less ambiguity.

29. When Heiberg studied the Archimedes palimpsest in 1906, he had many of its pages photographed and 
continued his study with the photos (now preserved in the Royal Library of Copenhagen).
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to publish his new edition quickly. 9 e rise of interest in the diagram tradition 
among today’s scholars is dependent on the development of the computer, which 
enables us to consult and compare [ gures with ease and, if we wish, to calculate 
every parameter in each [ gure.30

Conclusion

Sources in themselves do not represent facts. 9 ey require interpretation on the 
part of those who read them. In other words, sources do not teach us facts but 
pose questions. 9 e questions are always di\ erent according to the knowledge, 
interests, and attitudes of the reader and the means at their disposal. For Proclus, 
philosophical interests such as the existence of [ gures, or the construction of the 
regular polygons (as cosmic [ gures), prevailed. AN er the Renaissance the aim of 
many scholars was to restore ancient mathematics in a form understandable to 
contemporary mathematics, and occasional redundancy and idiosyncracies were 
attributed to the (sometimes alleged) philosophical concerns of Greek mathemati-
cians. Today, we believe we are trying to understand Greek mathematical texts in 
their proper context, but it is almost certain that coming generations will criticize 
us for imposing some interests of our own, which were not those of the ancients.

We also know that no Greek mathematical text is an autograph and are thus 
interested in textual traditions. If we are more sensitive to this aspect now, it is 
not only because we are open-minded (although we would like to think that we 
really are), but also because we can more easily obtain and examine more sources 
(Greek, Arabic, and Latin manuscripts) with the aid of modern technology, which 
also supports the recently renewed interest in diagrams. 9 us, with the inevitable 
changes of interest and available tools for study, no interpretation can remain 
complete nor de[ nitive, and the sources will not cease to pose new questions to 
historians. 9 us the history of mathematics is no less a dialogue between the past 
and the present than other branches of history.
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Islamic art, when observed through the western lens of art history, is oN en seen 
as decorative and ornamental. 9 is view sets up an opposition between Islamic 
art and general trends identi[ ed in western art since the Renaissance: the focus 
on representations of the human form, pictorial narrative, and spatial perspec-
tive. 9 e treatment of pattern, which evolved and d ourished from the tenth cen-
tury onwards, is at once both universal within the Islamic world and su7  ciently 
distinct from other cultural traditions that it may justi[ ably be characterized as 
Islamic. Just what led to the extraordinary proliferation of geometric ornament 
within the Islamic world, extending from Spain to India and beyond, and why 
geometric ornament proved to be both fascinating and enduring as an expression 
of Islamic art to the present, is not yet fully understood. Islamic art’s emphasis 
on geometry and surface, with the e\ ects of light on form, has not yet received 
the attention it deserves from historians of art, and even less from historians 
of mathematics, science, and Islamic philosophy. One might argue in the lat-
ter case that the primacy given to the textual tradition and its transmission has 
precluded su7  cient consideration of the experiential understanding of craN s and 
their technologies in relation to both the production of art and the production of 
knowledge.

CH A P T ER 9. 3

Number, shape, and the nature of space: 
thinking through Islamic art
Carol Bier
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From another perspective, the very characteristics which may be seen as deco-
rative and ornamental in Islamic works—from architecture and carpets to book 
illumination, ceramics, metalwork, ivory-carving, and other media—express 
abstract mathematical ideas and principles such as linear symmetries (border pat-
terns) and symmetries of the plane ([ eld patterns), or geometry and algorithms 
(units and their repeats)—in short, relationships among numbers, shapes, and 
space in one, two, and three dimensions. From the perspective of higher math-
ematics in the twenty-[ rst century, the existence of such relatively elementary 
mathematics in the visual arts may be readily recognized—and easily dismissed. 
It may be seen on the one hand as mathematically trivial, and on the other hand 
as inherent in the processes of artistic production. But what is thereby dismissed 
is the recognition of the presence in the arts of mathematics at a time when this 
mathematics was newly created. What is yet di7  cult to determine is whether the 
abstract forms, geometric relationships of shapes, and visual algorithms are pre-
ferred in Islamic art solely for aesthetic reasons, or whether they are intentionally 
expressive of emergent mathematical ideas in the context of their creation.

Debate continues within the [ eld of Islamic art history over whether architects 
and artisans were su7  ciently familiar with the work of contemporary mathe-
maticians to apply such thinking, assuming that the arts represent applications 
of knowledge arrived at independently, or, whether mathematicians may have 
been directly involved in the production of architectural forms of ornament 
(Grabar 1992; Özdural 1995). 9 e presence of [ ve-fold symmetries and aperiodic 
tilings on Islamic monuments of the eleventh and twelN h centuries raises ques-
tions about the sophistication of mathematical knowledge and its application to 
architecture nearly a millennium before Roger Penrose described similar two-
dimensional quasi-crystalline patterns (Makovicky 1992; Bonner 2003; Lu and 
Steinhardt 2007). Sheila Blair and Jonathan Bloom (2006), for instance, attribute 
tile patterns of stars and polygons, the most complicated of which comprise pen-
tagons and ten-pointed stars, to traditional artisans’ ‘tricks of the trade’ without 
recourse to ‘higher mathematics’ (Fig. 9.3.1a). Apart from this recent explanation, 
there has been little acknowledgment of empirical play with forms and patterns 
in the production of artistic works, which are so richly endowed with geometric 
possibilities, and even less consideration of art as a possible source for the recog-
nition and development of abstract mathematical ideas (Bier 2005a).

More than a century ago, Owen Jones isolated ornament as a subject of 
inquiry removed from cultural origins. His seminal work, 0 e grammar of orna-
ment (1856), which promoted decorative schemes in architecture, d ourished for 
decades as a source of inspiration in the development of architecture and the 
decorative arts in the West. Jones’ notion that ornament is devoid of meaning 
has persisted to the present. If, however, one delves into the discourse of classi-
cal Islamic philosophy and theology, and the history of mathematics, one [ nds 
meaningful intersections of forms of visual expression with both mathematics 
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(Chorbachi 1989) and metaphysics (Akkach 2005). 9 e proposition of a math-
ematical and metaphysical basis for Islamic art has perhaps been eclipsed by 
disciplinary attention in the arts, on the one hand, to primacy of the [ gural tra-
dition and perspective, and in mathematics, on the other, to the modernist focus 
on quanti[ cation, symbolism, and abstraction from the real world (see Gray, 
Chapter 7.4; Corry, Chapter 6.4; Kjeldsen, Chapter 8.4 in this volume).

E\ orts to relate geometry and Islamic art are extensive, although somewhat 
di\ use; di\ erent approaches have emerged to suit di\ erent purposes. 9 ey 
include e\ orts to interpret the meaning, or meanings, of ornament; to analyze 
geometry in historical works; to understand how Islamic-style geometric pat-
terns can be generated today; to explore Islamic aesthetics; and to relate the his-
tory of Islamic mathematics to art. All of these approaches are in one way or 
another interdisciplinary. In what follows, I present synopses of several bodies of 
recent work. I then try to frame the question of whether geometry is inherent in 
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Figure 9.3.1 a) Wood door, Iran, seventeenth century. David Collection inv. no. 
35/2000, detail (photo by Pernille Klemp). Cat. no. 41, front, detail (Blair and Bloom 
2006, 111). b) Diagram demonstrating the generation of the four principal pattern 
families from common ? ve-fold polygonal sub-grid (Bonner 2003, ? g. 11; courtesy 
of Jay Bonner). c) Standard sub-grid elements that comprise the ? ve-fold system of 
geometric pattern generation (Bonner 2003, ? g. 14; courtesy of Jay Bonner)
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Islamic art simply because of the relationships of juxtaposed shapes, or whether 
the mathematical aspects of Islamic art are themselves visually expressive forms, 
selected purposefully and intentionally to articulate new mathematical ideas. Key 
issues concern pattern making by repetition using di\ erent media, and the con-
temporaneity of such visual forms with the development of new ways of thinking. 
Finally, I address the crucial issue of technologies of transfer: how was relevant, 
useful knowledge transmitted across time and space? 9 e goal of this chapter 
is to suggest new points of departure and lines of exploration for the study of 
intersections of art and mathematics generally, and Islamic art and the history of 
mathematics, philosophy, and metaphysics in particular. 9 e interrelationships 
between texts, artifacts, and monuments are the nexus of such future studies.

InR uential approaches to the study of pattern in Islamic art

Jones, in 0 e grammar of ornament (1856), divorced ornament from its original 
cultural contexts and meanings because he sought to derive principles of design 
that would have universal application. 9 is treatment was reinforced in both 
the nineteenth and early twentieth centuries through the ind uence of Islamic 
design on architecture and the arts in Europe and North America, as well as 
by the active promotion by cultural entrepreneurs such as Arthur Upham Pope, 
who sanctioned the collection of Persian arts as o\ ering a ‘symphony of pure 
form’ (Wood 2000). Literally until the fourth quarter of the twentieth century, it 
was deeply unfashionable to treat Islamic art as anything but decorative. A few 
 die-hard scholars, such as J M Rogers (1973), sought to position the academic 
understanding of Islamic arts and architecture in relation to local cultural mean-
ings. But for the most part, the paradigm established by Jones held fast. Ever 
since publication of 0 e grammar of ornament, geometric pattern in Islamic art 
has been characterized in the West as decorative and ornamental, rather than as 
systems of signi[ cation with cultural associations and contextual meanings.

Within the study of Islamic art history, by contrast, several scholars have 
attempted to understand ornament and its meaning in cultural context. Richard 
Ettinghausen approached pattern as syntactic, looking at the whole in relation to 
its parts, rather than addressing individual elements as separate isolated entities. 
He considered Gestalt ‘form’ as an integrated totality and he sought to determine 
‘principal methods by which the artisans handled the extensive combinations of 
patterns so as to avoid bare areas which it would seem were aesthetically unsat-
isfactory’ (Ettinghausen 1979, 15). He de[ ned an aesthetic ‘which managed to 
overcome in a pleasant fashion the horror vacui, yet did not create the impression’ 
of overcrowding.
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Taking a di\ erent stance, Lisa Golombek (1984) ascribed a ‘textile mentality’ 
to Islamic lands, based on the extent to which patterned textiles were used and 
appreciated, including the use of metaphors such as the Persian term hazār bāf 
‘thousand weavings’ to describe brickwork (Fig. 9.3.2). She hypothesized that 
this might account for what she identi[ ed as a ‘textile aesthetic’ that seems to 
inform Islamic arts and architecture in ways that distinguish it from the arts of 
other cultures. Endorsed by the ind uential Oleg Grabar (1992), Golombek’s view 
has held sway in recent decades. Grabar, however, sought to explore ornament as 
mediation. He expressed puzzlement over why geometric pattern attracted such 
extraordinary focus in Islamic cultures when it was so patently accessible to all. 
He identi[ ed a series of what he called intermediaries, which included calligra-
phy, geometry, d oral elements, and architectural motifs. Margaret Olin (1993) 
described Grabar’s approach as ‘systematically investigating ornamental syntax’. 

Figure 9.3.2 Hazār bāf (‘thousand weavings’), Tomb of the Samanids, Bukhara, 
tenth century AD. (Photo by Ruth Harold, fh-bukhara49, courtesy of Frank and Ruth 
Harold, http://depts.washington.edu/silkroad/)

http://depts.washington.edu/silkroad/
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She emphasized that ornament in architecture comprises precisely those elements 
that are not direct expressions of structure and materials. In my own critique of 
Grabar’s work I called him to task for using the term ‘mediation of geometry’, 
instead of ‘mediation of pattern’, implying the lack of recognition of an emphasis 
on the rhythmic repetition of forms rather than the geometry that is emergent in 
the relationships among shapes when they are repeated (Bier 1994).

Gülru Necipoğlu (1995) and Yasser Tabbaa (2001), by contrast, both attribute 
political motivation to the use of particular geometric patterns: in their works 
historical circumstances are considered primary factors in the choices and use of 
patterning. Necipoğlu explains eleventh-century geometric patterns as expres-
sions of dynastic identity, functioning as a form of propaganda (Necipoğlu 1995, 
96–99, 108–109, 192). Tabbaa focuses on the early Islamic development of pro-
portional styles of Arabic calligraphy, in particular the geometrical regulariza-
tion of naskh script that was put forward by the calligrapher Ibn Muqla around 
the year 1000. Tabbaa identi[ es the role of these new conventions as a tool for 
the restoration of orthodoxy in eleventh-century Baghdad, capital of the Abbasid 
Empire, aN er a period of relative religious liberalism (Tabbaa 2001, 141–145). More 
recently, Blair and Bloom (2006) have o\ ered a new appellation, cosmophilia, 
‘love of ornament’, as an explanation for the phenomenon of pattern in Islamic 
art, ascribing its purpose to providing visual pleasure.

Outside the art historical literature, there is a growing body of work that 
addresses mathematics in Islamic art. A major exhibition of Islamic arts at 
the Hayward Gallery in London, held in conjunction with the World of Islam 
Festival Trust in 1976, generated a spate of publications that sought to explain the 
geometry of Islamic art analytically, approached through a metaphysical lens and 
linked to a cosmological world view (Critchlow 1976). 9 e underlying analyses 
of geometric structures reveal careful mathematical thinking and understanding 
(El-Said and Parman 1976 [1988]). Issam El-Said (1993) lays out three systems of 
design which underlie two-dimensional patterns in Islamic art, the [ rst based on 
the square root of 2 (the diagonal of a square unit), the second the square root 
of 3 (the altitude of half an equilateral triangle), and the third the square root of 
5 (based on the golden mean). Other works of the time pro\ ered a more mysti-
cal interpretation, leaning heavily on contemporary Su[  ideas (Bakhtiyar 1976; 
Bakhtiyar and Ardalan 1973). For this group of essentialists, spirituality is an 
essential component in the construction of pattern. Ismail Al-Faruqi and Lois 
Lamya al-Faruqi (1986) begin to explore aspects of Islamic art, such as abstrac-
tion, modularity, rhythm and repetition, which they relate to expressions of 
tawh. īd, the doctrine of unity and oneness of God.

Nearly a hundred years earlier, Jules Bourgoin had prepared technical draw-
ings with geometric constructions documenting patterns he saw on monuments 
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in Cairo and Damascus; his classic work was reissued in 1973 and is still in print 
today. More recent analytical studies of geometry by Jay Bonner, Craig Kaplan, 
Reza Sarhangi, Slavik Jablans, Jean-Marc Castéra, Lynn Bodner, and Chris Palmer 
have been presented at Bridges Conferences (Mathematical Connections in Art, 
Music, Science and Culture). ON en with applicability to contemporary design, 
their works reckon with systems of repeat and the modularity of Islamic patterns; 
these are published (with related references) in the annual Bridges proceedings.1

In addition to the approaches of art history, mathematics, and design to the study 
of geometric pattern in Islamic art, another body of work addresses more broadly 
the phenomenon of ornament in relation to abstraction and the psychological 
dimension of perception. Ernst Gombrich (1979) sought to establish theoretical 
categories for the functions of ornament, which he identi[ ed as framing, [ lling, 
and linking. But he never considered ornament qua ornament as the subject of 
representation or artistic form. Other theories of ornament also tend to focus on 
formal aspects of ornament and the abstraction of forms found in nature, thereby 
deriving meaning from visual forms and our perception of them by means of see-
ing (Freedberg 1989; Brüderlein 2001; Trilling 2001; 2003; Summers 2003). 9 is 
approach depends upon what is optically recognizable. Discussions of patterning 
in Islamic art that focus on the [ gures themselves explore literal aspects of geom-
etry, rather than its potential meanings on di\ erent levels.

However, the questions I think we should be asking are not about decoration 
and ornament, but about surfaces and the plane, about units and repeats, and 
about circles and the nature of two-dimensional space. It has not been adequately 
recognized that the forms contained within geometric patterns, no matter how 
basic they are understood to be today, were new to the artistic vocabulary of 
pattern at the time they were created. 9 ey seem to represent intensive e\ orts 
to explore the mathematical properties of space in two and three dimensions. Is 
pattern non-representational? Or is it representational in the deepest meaning 
of the word: a visual metaphor of relationships, of existence, of the cosmos, an 
expression of realities beyond that which can be merely seen?

Models and forms

By taking pattern as our subject, we may return to the study of Islamic art with 
mathematical approaches in mind. 9 is may prove a useful exercise in better 
understanding relationships expressed through repetition of forms, using a vari-
ety of traditional technologies on a wide range of available materials including 
clay, metal, wood, ivory, leather, [ ber, stone, and glass. Relationships between 

1. See <http://www.bridgesmathart.org/>.

http://www.bridgesmathart.org/
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arithmetic and geometry, as explored in Islamic intellectual discourse from the 
eighth to the eleventh century, may allow us to consider a new theory of Islamic 
ornament that treats patterns not as representations or symbols but as expressive 
forms—expressive of newly emergent mathematical ideas (Bier 2007a). Meaning 
is not so much evident in the forms themselves as it is inherent in the processes of 
formation. According to this line of thinking, at some point between the eighth 
and the eleventh century, Islamic ornament and its formal expression became 
connected to abstract ideas articulated in contemporary philosophy, mathemat-
ics, and religion. If this identi[ cation of the origin of a paradigm shiN  is correct, 
the e\ ect on artistic production was dramatic. A new aesthetic of pattern came 
to depend upon the direct relationship with the new mathematical idea of algo-
rithms, and found deliberate articulation in repeat patterns in textiles as well as 
the expression of patterns in all media.

What is meant by this new aesthetic of pattern? Let us begin by considering 
carpets, even though surviving examples are from the Saljuq period (thirteenth 
century) and later. Typically, traditional Oriental carpets (a Western category used 
to encompass carpets produced in a variety of weaving cultures of the Islamic 
world) exhibit a multiplicity of patterns. 9 is profusion of patterns contributes 
to the complexity and intricacy which so characterize the appearance of Oriental 
carpets. Various systems of repeats are displayed within the oblong central [ eld, 
framed by the borders. 9 is arrangement results in a contrast between [ eld pat-
terns (designs repeated in the plane) and border patterns (designs repeated in lin-
ear fashion). 9 e presence of both symmetry and symmetry-breaking—creating 
an expectation of symmetry that is not met—yields patterns that both please the 
eye and tease the mind, o\ ering delight as they confound. In contrast, patterns 
that rely solely on symmetry are boring because they are so readily perceived; 
such patterns do not actively engage the mind. As we oN en see in Oriental carpets, 
it is a playfulness with symmetry that results in intriguing patterns. In nature, 
symmetry is imperfect although mathematicians treat it as an ideal. 9 e evidence 
of Islamic art suggests a deep appreciation of the visual impact of the approxima-
tion of symmetry, rather than its precision, to create patterns perceived as beauti-
ful (Bier 2005b).

Patterns in carpets (Fig. 9.3.3) are carried by the pile, but the underlying fabric 
structure relies [ rst upon the rectilinearity of the loom, a structure designed to 
secure the warps (longitudinal elements) and keep them taut during weaving (see 
Brezine, Chapter 5.4 in this volume). 9 e woven structure of a carpet results from 
the interlacing of the warps with weN s (transverse elements), which are inserted as 
weaving progresses. 9 e interlacing of warp and weN  creates a mathematical grid 
that underlies the patterns, which are carried by colored yarn segments secured 
in the weave to form the pile. 9 ese yarn segments are inserted between two 
warps and wrapped around another one or two warps (or pairs of warps) to form 
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what are called knots. 9 e knots are arranged by color in horizontal rows, each 
row of knots inserted above a weN  yarn as weaving progresses. Patterns result 
from counting and repeating sequences of knots of the same or di\ erent colors. 
Field patterns and border patterns in all handmade Oriental pile carpets rely 
upon the weaver’s counting and repeating sequences of knots. Patterns emerge 
based upon the weaver’s choices of color, and the execution of repeated sequences 
of selected designs. 9 e pile projects from the foundation; aN er weaving, it is cut 
to a uniform height. In the completed carpet, only the pile yarns are visible on 
the surface, since they hide the warp and weN . It is the pile that carries the colors, 
designs, and patterns. 9 us, Oriental carpets are two-dimensional in the appear-
ance of surface design; they are, however, three-dimensional in structure.

9 e technology involved in carpet-weaving is very simple; it is much simpler 
than that of other weaving technologies. Because of the technology involved, and 
the counting and repeating of sequences of knots, the two-dimensional patterns 
in carpets bear many features that may be explored mathematically. Indeed, car-
pets bear inherently signi[ cant mathematical concepts that their makers may 
have understood intuitively or empirically. Not only are the arithmetic systems 
of addition, subtraction, multiplication, and division rendered visible, but so are 

Figure 9.3.3 Turkmen carpet. Fine Arts Museums of San Francisco 2000.118.5 The 
Caroline and H McCoy-Jones Collection, gift of Caroline McCoy-Jones



INTERACTIONS AND INTERPRETATIONS836

halves and wholes, multiples and fractions, squares and square roots, grids and 
tessellations, and points, lines, angles, and shapes in the plane; in short, the fun-
damental elements of geometry. Not immediately apparent to the untrained eye, 
the sharp contrast of [ nite borders enclosing an in[ nitely repeating pattern in 
the central [ eld renders visible the representation of in[ nity and ambiguity, fea-
tures also encountered frequently in Islamic art in other media. But [ eld patterns 
and border patterns in carpets also relate to algorithms, number theory, topol-
ogy, sometimes knot theory, even fractals, which nowadays may all be taught 
using carpets. Weaving at the simplest logical level—interlacing weN s with warps 
in a sequence over-one-under-one—can be related to linear algebra, while more 
complicated weave structures render visible geometrical combinatorics (Brezine, 
Chapter 5.4 in this volume). 9 e question remains as to whether these fundamen-
tal mathematical principles as we understand them today were understood at a 
theoretical level by those who designed and wove carpets in traditional weaving 
cultures.

9 e fascination with color and pattern in Islamic art, however, is not restricted 
to carpets. Rather, it is expressed in all media in many areas of the Islamic world, 
from the western Mediterranean to Indonesia, where two-dimensional repeat pat-
terns provide the primary means for organizing color and space. Ornamentation 
of architecture, ceramics, metalwork, book illumination, and textiles all rely upon 
the repetition of complex or simple designs, creating overall surface patterns of 
apparent complexity and intricacy, which may be reduced through analysis to the 
identi[ cation of symmetries and symmetry-breaking (Bier 2005b).

In looking at these artifacts and monuments from a mathematical perspective, 
it is useful to keep in mind that a pattern depends upon three characteristics—a 
unit, repetition, and an organizing principle. To relate patterns to the processes of 
pattern formation links both craN  and technology to the concept of an algorithm. 
Today an algorithm is understood to be a [ nite set of steps, which when repeated, 
always yields the same result. It functions in the manner of a recipe or formula. 
For example, when you create an eight-pointed star and then repeat it succes-
sively (Fig. 9.3.4), adding one star to the next, the result is a pattern comprising a 
square grid with centers all in alignment forming parallel and perpendicular sets 
of axes, intersecting at right angles to create an orthogonal grid (Bier 2007c). As 
you line up the stars, negative space emerges within the spatial con[ guration and 
new relationships are formed within the set of visual elements.

By participating in the processes of pattern making, an artisan may quickly 
become familiar with the principles of applied geometry without ever needing 
to know or understand the symbolic or formulaic expression of repetitions, or 
the geometric relationships they represent. Art that relies upon the principles 
of pattern making forces the artist or pattern maker to engage in processes over 
which the individual has little control. Making a pattern, the maker is engaged 
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in a process that is itself limited by the laws of symmetry. Symmetry allows for 
repetition, but only according to certain principles (Bier 1996–2007). Decisions 
are made at the level of design; but once a decision is taken to manipulate that 
design to form a pattern, the laws of symmetry prevail until the pattern is acci-
dentally or deliberately broken. 9 e artist thus participates in a process by which 
number and pattern, unit and shape, are integrated into visual forms. 9 e artis-
tic production of repeated patterns may become deeply meaningful as both a 
meditative and contemplative exercise. 9 e artist may experience an engagement 
whose meaning lies beyond optical perception. It is an engagement with process, 
rather than product.

Other fundamentals of mathematics are experienced through pattern mak-
ing. Circles, when tight-packed, naturally combine in two ways. One method 
yields centers that form a square grid (Fig. 9.3.5); the other method yields a more 
tightly packed triangular grid. By connecting their centers with straight lines, 
regular polygons result. By highlighting sections of curves or segments of lines, 
or by adding d ourishes, many complex patterns may be generated from simple 
algorithms. Tight-packed circles in a square grid are typical of the patterns of 
eighth and ninth-century silk textiles woven in regions north of Iran. Such tex-
tiles quickly became the rage throughout the known world—they were presented 
as giN s from ambassadors (as depicted at Afrasiyab, o\ ering a bolt of patterned 
silk) (Fig. 9.3.6), preserved in European church reliquaries wrapping the relics of 
saints, excavated in the tombs of nomadic chieN ains in the Caucasus, treasured 
in the emperor’s repository at shrines in Japan (Bier 2004).

To give another example, by selecting centers in a triangular grid, one may 
establish either a rhombic grid or a hexagonal grid. 9 e triangular grid lends 
itself to six-pointed stars and hexagons; the square grid oN en yields eight-pointed 
stars and cross forms. Further connecting (and obliterating) lines may produce 

Eight-pointed Star
Figure 9.3.4 Eight-point stars arranged 
additively to form a square grid
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Figure 9.3.5 Dirhams laid out tangen-
tially to form a square grid

interlaced patterns. Once a generating unit and its mode of repetition have been 
determined, it is the process of pattern formation that carries the craN sman from 
conception to completion. Such basic mathematical considerations underlie the 
play of pattern in Islamic art.

9 e shiN  in focus from viewer to pattern maker is particularly useful for under-
standing the processes by which geometric patterns are made. Apart from the 
steps involved in constructions using a compass and straight edge, the process 
of pattern formation is radically di\ erent for each medium. For ceramic tile the 
process may entail incising, cutting, and glazing, but for a pile carpet the patterns 
are e\ ected by counting and repeating sequences of knots (pieces of colored yarns, 
wrapped around pairs of warps). On an illuminated page of a manuscript, pat-
terns may be outlined using a compass and straight edge, then [ lled in with a pen 
or brush, using pigments and various gilding techniques. For carved stucco, the 
pattern may be [ rst constructed using a compass and straight edge, then carved 
and painted. Alternatively, templates may be carved then the stucco molded or 
stamped with them in a manner similar to the printing of patterns on cloth. For 
pattern-woven textiles, an entirely di\ erent technique is utilized, whereby a model 
is established to e\ ect mechanical repetition at the loom by calculated manipula-
tion of warp and weN . Each technology a\ ects the process by which relationships 
of number and shape produce what may be perceived on completion as a geomet-
ric pattern. 9 e resulting visual e\ ect in a work of art is far removed from—and 
yet integral to—the temporal processes of pattern formation.



Number, shape, and the nature of space 839

Mathematical aspects of Islamic art inform a beauty of form, pattern, and 
structure. Within the Islamic world, pattern making has served a primary func-
tion in the organization of two- and three-dimensional space, both in archi-
tecture and in arts of the object in all media. Seemingly complicated patterns 
may be analyzed to identify a unit and its repeat according to the principles of 
symmetry, exemplifying pattern making as a process that is at once unitary and 
systemic. 9 e physical and visual e\ ects of pattern making as a process of reitera-
tion thus connect the maker to an implication of in[ nity. By examining relation-
ships among numbers and shapes, units and repeats, circles and centers, with a 
view towards understanding the processes of pattern making, we may recognize 
meaning in the fascination with pattern that is evident in classical Islamic art. 
Several monuments in particular exhibit extraordinary play with the elements of 

Figure 9.3.6 Wall painting of ambassadors at Afrasiyab, Uzbekistan, c seventh cen-
tury AD; central ? gure offers a bolt of patterned silk
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pattern, giving evidence of the artisans’ e\ orts to explore the extraordinary pos-
sibilities of two-dimensional space.

Intersecting polygons executed in cut brick project to catch sunlight on the 
eight sides of each of two Saljuq tomb towers at Kharraqan in northern Iran, 
one built in 1067–68 ad and other in 1093 ad (Fig. 9.3.7) (Bier 2002). In the 
tomb towers at nearby Maragha (Fig. 9.3.8), constructed about a century later, 
color is added to highlight even more complex patterns of illusionary interlace 
(Makovicky 1992). At both Kharraqan and Maragha, units and repeats relate to 

Figure 9.3.7 Tomb tower at Kharraqan, Iran, 1093 AD. Photograph courtesy of 
Ann C Gunter
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number and shape, creating a multiplicity of patterns that cover the plane. 9 e 
patterns themselves are conceivably in[ nite, made [ nite by arbitrary endings at 
the edge of a side, or bounded by the form of a niche or engaged pillars. In con-
trast, the [ eld patterns in carpets are arbitrarily cut o\  by borders. In all such 
cases, the patterns express algorithms, sequences of steps through which units 
are repeated according to particular organizing principles.

Figure 9.3.8 Gunbad-i Kabud (tomb tower) at Maragha, Iran, dated 1196–97 AD 
(AH 593), western and northwestern sides, detail. Courtesy of the Freer Gallery of 
Art and the Arthur M Sackler Gallery Archives, Smithsonian Institution (photo by 
Hans C Seher-Thoss, Lantern slide C156)
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We thus shiN  our vision from the object itself to its role as a medium, its 
service as the bearer of something else that is more important than its physi-
cality. 9 ink of the example of a book, the contents of which are distinct from 
the materials of the book and its binding. Ideas are portrayed in words, which 
are separate and distinct from the physicality of the book. Can we consider the 
notion that ideas are portrayed in patterns, distinct from the medium in which 
they are carried?

In so formulating our thoughts, we move into the realm of philosophy. 9 e 
discourses of mathematics and philosophy had a long history before Islam, evi-
dent not only in works of classical Greek philosophy and Hellenistic mathemat-
ics, and in the works of neo-Platonist philosophers of later Antiquity, but also 
in the reconstructed thought of Pythagoras and others involved in seeking to 
understand the nature of number, space, and the universe. 9 e Abbasid court 
in Baghdad, capital of the Islamic empire from the middle of the eighth cen-
tury, sponsored translations of much of the ancient Greek scienti[ c corpus, with 
its emphasis on geometry and philosophy, and hosted resident scholars and del-
egations of scholars from India who shared their knowledge of arithmetic and 
astronomy (Gutas 1998; Brentjes, Chapter 4.1 in this volume).

Surviving Arabic texts provide evidence that discussions of the one and many, 
limits and in[ nity, center and circumference, and signs of God, were pertinent 
to many areas of theoretical exploration in philosophy that may also have rel-
evance for the arts. In Abbasid Baghdad, mathematicians and philosophers with 
court patronage advanced our collective human understanding of what today 
we call algebra and algorithms. 9 ey studied the signi[ cance of ideas such as 
zero, in[ nity, and limits or boundaries, and explored notions of space (see also 
9 akkar, Chapter 7.2 in this volume). Most obviously, the modern word ‘algo-
rithm’ originates in a thirteenth-century Latin corruption, algorismus, of the 
name of Muh. ammad ibn Mūsā al-Khwārizmī, a ninth-century Abbasid scholar 
who set forth his mathematical problems in Kitāb al-mukhtas. ar fī h. isāb al-jabr 
wa-al-muqābala ‘9 e condensed book of calculation by restoring and balancing’, 
from which we also get the word algebra. For al-Khwārizmī’s algebra did not 
only give de[ nitions, theorems, and proofs in the ancient style. It also gave clear 
instructions on solving algebraic problems, addressed directly to the reader, as 
follows:

What must be the square which, when increased by ten of its own roots, amounts to 
thirty-nine?

9 e solution is this: you halve the number of roots, which in the present instance 
yields [ ve. 9 is you multiply by itself; the product is twenty-[ ve. Add this to thirty-nine; 
the sum is sixty-four. Now take the root of this, which is eight, and subtract from it half 
the number of the roots, which is [ ve; the remainder is three. 9 is is the root of the 
square which you sought for; the square itself is nine. [ . . . ]



Number, shape, and the nature of space 843

9 e proceeding will be the same if the instance be, [ . . . ] what must the amount of 
a square, the half of which when added to the equivalent of [ ve of its roots, is equal to 
twenty-eight?2 (Rosen 1831, 5; Berggren 2007, 543–544).

9 us the idea of following a carefully controlled set of procedures in order to 
achieve consistent results is exempli[ ed mathematically, along with the condi-
tions under which those procedures are valid. Furthermore, al-Khwārizmī con-
ceived of numbers themselves as an in[ nitely repeating pattern of identically 
constructed entities:

When I considered what people generally want in calculating, I found that it always is a 
number. I also observed that every number is composed of units, and that any number 
may be divided into units. Moreover, I found that every number, which may be expressed 
from one to ten, surpasses the preceding by one unit; aN erwards the ten is doubled or 
tripled, just as before the units were; thus arise twenty, thirty, etc., until a hundred; then 
the hundred is doubled and tripled in the same manner as the units and the tens, up to a 
thousand; then the thousand can be thus repeated [ . . . ]; and so forth to the utmost limit 
of numeration.3 (Rosen 1831, 3; Berggren 2007, 543)

Parallel to these developments in mathematical ideas were theological discus-
sions that centered on the nature of God, and the relationships of man and the 
cosmos. 9 ese subjects were debated throughout the Islamic empire in intellec-
tual circles at a time of passionate, vibrant, and sponsored explorations of ideas. 
A group of philosophers known as the Ikhwān al-S. afā’ ‘Brethren of Purity’ wrote 
a series of [ N y-two Rasā’il ‘epistles’ or ‘letters’ covering a vast array of subjects 
(Netton 1982). 9 ey categorized numbers in this theological context, focusing on 
the number one and the additive function, adding one to each number in succes-
sion. 9 eir epistles probably contain signi[ cant information not yet brought to 
bear on the study of Islamic art. For instance, the following passage from the [ rst 
risāla is reminiscent of al-Khwārizmī’s in[ nitely repeating integers, giving them 
cosmological signi[ cance in that ‘the whole scheme of creation and generation 
resembled the generation of numbers from one’:

Know, O brother, that the [ rst thing the Creator originated and invented from the light 
of his Unity was a simple essence, called ‘9 e Active Intellect’ just as he produced two 

2. ayy māl idhā zidta ʿ alayhi mithla ʿ ashara ajdhār balagha dhālika kulluhu tisʿa wa thalāthīn? Fa-qiyāsuhu 
an tans. ufu al-ajdhār wa hiya fī hādhihi al-mas’ala khamsa fa-tad. rubuhā fī mithalihā fa-yakūnu khamsa wa 
ʿashrīn fa-tazīduhā ʿalā al-tisʿa wa al-thalāthīn fa-yakūnu arbaʿa wa sittīn fa-ta’khudhu jadhrahu wa-huwa 
thamāniyya fa-tans. ufu minhu nis. f al-ajdhār wa huwa khamsa fa-yabqā thalātha wa huwa jadhr al-māl 
alladhī turīdu wa al-māl tisʿa.

3. Wa innī lammā naz. artu fī-mā yah. tāju ilayhi al-nās min al-h. isāb wajadtu jamīʿ dhālika ʿadadan wa 
wajadtu jamīʿ al-aʿdād innamā tarakkabat min al-wāh. id wa al-wāh. id dākhilun fī jamīʿ al-aʿdād. Wa wajadtu 
jamīʿ mā yulfaz. u bi-hi min al-aʿdād mā jāwaza al-wāh. id ilā al-ʿashara yakhruju makhraj al-wāh. id thumma 
tathannā al-ʿashara wa tathallathat kamā fuʿila bi al-wāh. id fa-yakūnu minhā al-ʿishrūn wa al-thalāthūn ilā 
tamām al-mi’a thumma tathannā al-mi’a wa tathallathat ka-mā fuʿila bi al-wāh. id wa bi al-ʿashara ilā al-alf 
thummā kadhālika yuraddadu al-alf . . . ilā ghāyati al-mudrak min al-ʿadad.
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from one by repetition. 9 en, he created the ‘Universal Celestial Soul’ from the light of 
the intellect, just as he created three by the addition of one to two. 9 en he created prime 
matter from the movement of the Soul, just as he created four by the addition of one to 
three.4 (Netton 1982, 34)

At the same time, the decades between the eighth and eleventh centuries were 
an extraordinary period of formation and transformation in Islamic art and 
architecture (Grabar 1973; Rogers 1973; Grabar 1992; Necipoğlu 1995; Tabbaa 
2001). From the tenth century on, Islamic art seems to express a new or renewed 
understanding of the plane, exploring many aspects of two-dimensional space. 
9 e visual e\ ects of such explorations reverberated throughout the arts in the 
Middle East, Africa, and India in the following centuries. An argument may be 
advanced to suggest that these experiments eventually stimulated explorations in 
the Renaissance that led to the discovery of perspective.

Sometimes inscriptions on buildings and objects are indicative of the close rela-
tionship between architecture and the arts, and the contemporary intellectual tra-
dition. We now know that this is the case for major monuments such as the Dome 
of the Rock in Jerusalem, Alhambra in Andalusia, and the Taj Mahal in Agra. My 
own work suggests that this may also be the case for the tomb towers at Kharraqan 
(Bier 2002). 9 e Qur’anic passage 59:21 is inscribed on both towers:

Had we sent down this Qur’an on a mountain, verily thou would have seen it humble 
itself and cleave asunder for fear of God. Such are the similitudes which we propound to 
men that they red ect.5 (trans Ali 1978, 1527–1528)

One is tempted to associate the amthāl ‘similitudes’ with the actual patterns 
depicted on the monuments, and thereby consider the patterns to call for our 
red ection both literally and metaphorically. 9 e dramatic number of patterns 
present in the early tower at Kharraqan are pushed to an even higher number in 
the later tower, built less than a generation later, by means of dividing up the two-
dimensional space enclosed by the arches on each face of the monument. Clearly, 
there is a degree of experimentation evident here, with the range of forms and 
patterns suggesting new understandings of two-dimensional space, its bounded-
ness and extent. At Kharraqan, two-dimensional patterns in three-dimensional 
forms interact and combine to inform an aesthetic that depends upon repeti-
tion, patterns, and structures, resulting in standards of beauty that soon spread 
throughout the Islamic world.

4. Iʿlam, yā akhī, anna al-bārī jalla thanā’uhu awwal shay’in ikhtaraʿahu wa abdaʿahu min nūr 
wah. dāniyyatihi jawhar basīt. y uqālu lahu al-ʿaql al-faʿāl kamā ansha’a al-ithnayn min al-wāh. id bi al-tikrār. 
9 umma ansha’a al-nafs al-kulliyya al-falakiyya min nūr al-ʿaql kamā ansha’a al-thalātha bi-ziyādati al-wāh. id 
ʿalā al-ithnayn. 9 umma ansha’a al-hayūlā al-ūlā min h. arakati al-nafs, kamā ansha’a al-arbaʿa bi-ziyādati 
al-wāh. id ʿalā al-thalātha.

5. law anzalnā hādhā al-qur’ān ʿalā jabalin la-ra’aytahu khāshiʿan mutas. addiʿan min khashyati allāh wa 
tilka al-amthālu nad. ribuhā li al-nās laʿallahum yatafakkarūna.
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As we have seen, the timeframe of that broad proliferation of geometric pat-
terns in Islamic art and monuments from Spain to India coincides almost pre-
cisely with signi[ cant advances in mathematical knowledge. 9 is raises important 
questions pertaining to the transmission of mathematical knowledge in relation 
to the arts across expanded trade routes in the eighth to tenth centuries (Bier 
2007b). Further, we may recognize that the same geometric patterns executed in 
cut brick at Kharraqan can be reproduced using other technologies to form pat-
terns in other media, a recognition that will lead us once again to distinguish an 
ontology of pattern that is distinct from the medium in which it appears. 9 at is 
to say that the category of brick, as the medium in this instance, is separate from 
the patterns carried by the bricks. Let us explore further how this may relate to 
the transmission of knowledge.

Technologies of transfer and the transmission of knowledge

By engaging in pattern play, we may begin to recognize aspects of intricacy and 
complexity that are, in essence, simple. 9 ey may result from the reiterative 
manipulation of a single module, with only one or two variables of form, color, 
orientation, or placement. 9 e question remains as to how or whether artisans 
understood mathematically what they were doing when they engaged in pattern 
play. 9 e transmission of mathematical knowledge has been treated as part of 
the textual tradition. In eighth and ninth-century Baghdad, there was an e\ ort 
to gather all knowledge of the world and to translate it into Arabic, oN en with 
commentary and new understandings. Among the works translated was Plato’s 
Timaeus (Bury 1929, 1–254), one of the late dialogues, in which Plato introduces 
through Timaeus the notion of two ideal triangles—a right isosceles triangle (45 -̊
45 -̊90 )̊ and half an equilateral triangle (30 -̊60 -̊90 )̊. Timaeus proceeds to use 
these triangles to create three-dimensional forms that came to be called Platonic 
solids (tetrahedron, cube, octahedron, icosahedron; the dodecahedron formed 
otherwise using pentagonal faces). 9 e same triangles, representative of √2 and 
√3, respectively, underlie the structure of many if not most two-dimensional pat-
terns in Islamic art (El-Said 1993; El-Said and Parman 1988). 9 e question of the 
possible relationship of Plato’s ideal triangles to Islamic art and newly emergent 
mathematical ideas of the eighth and ninth centuries of our era should not be 
dismissed, although research has not yet provided clear evidence of direct ind u-
ence (Bier 2006b).

Another technology of transfer for the transmission of knowledge is instruc-
tion. 9 e tenth-century work of Abu l-Wafā’ Buzjānī on Kitāb fīmā yah. tāju ilayhi 
al-s. āni min al-a’māl al-handasiya ‘On the geometric constructions necessary for 
the artisan’ tells that this was also the case in classical Islam (Özdural 1995; 1996; 
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2000). Until at least the seventeenth century, across the Islamic world, there were 
regular seminars where mathematicians and craN smen gathered to share knowl-
edge. 9 at a delegation of Indian astronomers was present in Baghdad is also 
documented, and travel has been recognized as relevant both to instruction and 
to the publication of books to transmit knowledge.

All of these technologies of transfer were recognized in the fourteenth century 
by the Arab historian, essayist, and encyclopedist Ibn Khaldūn in his Muqaddimah 
‘Introduction (to history)’ (Rosenthal 1967). Ibn Khaldūn addresses the ques-
tion of how knowledge is transferred among individuals, across generations, and 
to di\ erent cultures. Of the means to generate and transfer of knowledge, he 
acknowledges books, observation, travel, and instruction. To these he adds the 
craN s, recognizing the value of experiential learning. He says that writing ‘ena-
bles the innermost thoughts of the soul to reach those who are far and absent’ 
and enables the ‘intention (of one person) to be carried to distant places, and, 
thus, the needs (of that person) may be executed without his personally taking 
care of them. It enables people to become acquainted with science, learning, with 
the books of the ancients, and with the sciences and information written down 
by them’. Ibn Khaldūn links book learning to instruction: ‘9 e transformation 
of writing in man from potentiality to actuality takes place through instruction’ 
(Rosenthal 1967, 327; Bier 2007b).6

With the bene[ t of hindsight, and highlighting the contributions of the Greeks 
and Persians of pre-Islamic times, Ibn Khaldūn recounts several sources of learn-
ing and methods of instruction. Among the latter, he highlights the importance 
of hands-on exercises in addition to book learning, identifying craN s as a source 
for knowledge. He emphasizes that the individual human being cannot exist 
without the cooperation of others, for ‘to make all the things he needs, a man by 
himself would require longer than the time he can keep alive without them. 9 e 
ability to think . . . enables human beings to cooperate’. As for craN s, he says that 
‘9 e mind does not cease transforming all kinds of (craN s) . . . from potentiality 
into actuality through the gradual discovery of one thing aN er another, until they 
are perfect. 9 is is achieved in the course of time and of generations’ (Rosenthal 
1967, 314).7 While emphasizing that the craN s require teaching, he also notes that 
‘the craN s and their habit always lead to the acquisition of scienti[ c norms, which 
result from the habit. 9 erefore, any experience provides intelligence’ (Rosenthal 
1967, 331).8 He argues that the craN s result from man’s natural ability to think 

6. fa-hiya tat. laʿu ʿalā mā fī al-d. amā’ir wa-tata’addā bihā al-aghrād.  ilā al-balad al-baʿīd fa-taqd. ī al-h. ājāt wa-
qad du[ ʿat mu’natu al-mubāshara la-hā wa yat. laʿu bihā ʿalā al-ʿulūm wa al-maʿārif wa s. uh. af al-awwalīn wa mā 
katabūhu min ʿulūmihim wa akhbārihim wa hiya sharīfa bi-hādhihi al-wujūh wa al-manā[ ʿ wa khurūjiha fī 
al-insān min al-quwwa ilā al-[ ʿl innamā yakūnu bi al-taʿlīm.

7. wa lā yazāl al-[ kr as.nāfahā…min al-quwwa ilā al-[ ʿl bi al-istinbāt. shay’an fa-shay’an ʿalā al-tadrīj h. attā 
takmalu wa lā yah. sulu dhālika daf ʿatan wa innamā yah. sulu fī azmān wa ajyāl.

8. wa al-s.anā’iʿ abadan yuh. salu ʿanhā wa ʿan malakatihā qānūn ʿilmī mustafād min tilka al-malaka fa 
li-hādhā kānat al-h. unka fī al-tajriba tufīdu ʿaqlan.
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and to determine outcomes, the causes and e\ ects of reality. If one considers, for 
example, what happens in the laying of bricks one by one in the construction of 
masonry, one may discover by doing, or by observation and analysis, the formu-
las by which a unitary process is at the same time systemic.

9 ere is an additional, potentially signi[ cant, technology for the transmission 
of mathematical knowledge across time and space: the embodiment of math-
ematical knowledge in the woven patterns and physical structures of textiles 
(Bier 2007b). Both physical structures and patterning are visual rather than ver-
bal technologies of transfer; both involve three-dimensional construction and 
surface appearance. When considering textiles as a means of transfer, most oN en 
cited are the transmission of styles and the transfer of cultural forms of expres-
sion through designs and motifs—what is represented visually, rather than what 
is expressed physically or through visual means. 9 is signi[ cant aspect of their 
role in cultural transmission should not be underestimated. But at the same time, 
textiles may also have conveyed other information that is at once both tangi-
ble and abstract, concerning the relationships between number, shape, and the 
nature of space in the formal relationships of patterns that embody a unit and its 
reiteration according to particular principles of organization. 9 is information, 
conveyed within the textile medium, is distinct from the physical form of the 
textile itself and ontologically di\ erent from the style or content of its decoration. 
Just as a book is a ‘technology of transfer’ of information, so may textiles have 
served to impart information di\ erent from their physical or visual qualities. 
Textiles, through their patterns, ‘embody’ mathematical knowledge just as bricks 
through their patterns embody mathematical knowledge; but bricks are not so 
easily transported across great distances, nor in a format that preserves patterns. 
As such, textiles—in the plural—may have played a signi[ cant role in the trans-
mission of mathematical knowledge and other cultural values from the central 
lands of the Islamic world in all directions.

Conclusion

Islamic art, with its focus on abstract d oral forms and geometry, is oN en consid-
ered to be nonrepresentational in contrast to the [ gural tradition more familiar 
in the West. 9 e study of art history through the [ gural tradition has privi-
leged the arts of western Europe and North America. With expanded appre-
ciation of diversity and more global perspectives in the late twentieth century, 
the discipline of the history of art expanded to include consideration of non-
western arts, oN en addressing the arts of India and China, which are nonethe-
less [ gural in their representational aspects. Less well studied in the western 
world, the arts of Islam have more recently attracted broad attention. Yet even 
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within the study of Islamic art as a subject in the art history curriculum, more 
publications have treated the subjects of book illustration (oN en called mini-
atures), exploring aspects of style, attribution, the work of individual artists, 
and pictorial narrative, than the more abstract aspects of geometric pattern 
and d oral ornament.

By the middle of the nineteenth century Islamic geometric pattern had entered 
European visual consciousness through the publication of several sumptuous vol-
umes (Murphy 1815; Jones 1856). By the end of the century the graphic documen-
tary works of Prisse d’Avennes (1877) and Jules Bourgoin (1879) had appeared, 
today available as Dover Reprints. Such designs, predominantly drawn from the 
Alhambra in Spain and Mamluk monuments in Cairo, were initially perceived 
as exotic, decorative, and opulent, non-[ gural and two-dimensional—in short, 
counter in nearly every way to the European artistic idiom. Even M C Escher, 
so profoundly ind uenced by tessellations at the Alhambra, sought to enliven his 
patterns with [ gural forms.

Reconsidering aspects of Islamic art according to a paradigm of algorithmic 
patterns, we may begin to understand the integral relationship between the his-
tory of mathematics and Islamic art within the context of contemporary discourse 
in philosophy, religion, and metaphysics. Further study of the role of algorithms 
in association with the processes of pattern making in Islamic art may advance 
our understanding of both the origins and development of algorithms and the 
signi[ cance of reiterations in the arts. 9 rough analysis of the relationships of 
craN s and technologies, units and repeats, numbers and shapes, algorithms and 
geometry, we may approach recognition of two-dimensional patterns in three-
dimensional forms. 9 is recognition is the inverse of the acknowledged achieve-
ment of Renaissance artists and theoreticians whose experimentation and analysis 
resulted in the phenomenon of perspective, representing  three-dimensional space 
in the two-dimensional picture plane. In this sense, the decorative and ornamen-
tal qualities of Islamic art are geometric forms of expression of great cultural 
signi[ cance worthy of further exploration.
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AN er Hitler became chancellor of the German Reich on 30 January 1933 and 
the Nazi regime consolidated its power in March 1933, serious e\ ects for science 
and mathematics became visible.1 Mathematics was, by and large, less import-
ant to the regime than biology, chemistry, the technical sciences, or history. It 
could not be used for propaganda like biology and historiography and it did not 
have immediate importance for armament and war production (with the pos-
sible exceptions of aerodynamics and ballistics). One can even say that most 
mathematicians (though not all as we will see) were spared from di7  cult moral 
dilemmas, at least as far as their work was concerned. 9 ey had ‘only’ to cope 
with the general moral problems of ordinary German citizens under the Nazis, 
an increasing subliminal feeling of guilt, which oN en forced those citizens into 
solidarity with the regime. Nevertheless, there were speci[ c political e\ ects of 
Nazi rule and Nazi ideology on mathematics as a [ eld of research, teaching, and 
application. 9 ese e\ ects were so clearly palpable that the history of mathematics 
in the 9 ird Reich can be divided (by analogy with other professions) into ‘three 

1. In this chapter the terms National Socialist German Workers Party, NSDAP, and Nazi party are 
interchangeable.
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periods of coordination and legitimization’, directly parallel and connected to 
political events (Mehrtens 1989a; Siegmund-Schultze 1993b).

1933–35 Political coordination, and expulsion of Jews from the state-(1) 
related mathematical professions.

1936–39 Relative stability and internal success of the regime; economic, sci-(2) 
enti[ c, and cultural self-isolation; expulsion of Jews from non state-related 
mathematical occupations, journals, and societies (Remmert 1999; 2004).

1939–45 War research; changes in the profession (diploma); strategies for (3) 
occupation and subordination of European mathematics; mathematics in 
concentrations camps (Ebert 1998, Epple and Remmert 2000; Mehrtens 
1996; Siegmund-Schultze 1986).

9 ere were, of course, political factors acting continuously during all three peri-
ods, namely defamation, emigration, and pressure for political conformity.

In spite of the book by Sanford Segal (2003), which introduces research up to 
1995 to English readers, a monograph on the history of mathematics in the 9 ird 
Reich, devoted to all aspects of the problem, is still a desideratum. 9 ere is not 
enough space in the present article to give a full picture of the various topics that 
have been dealt with in the recent historiography of mathematics in the 9 ird 
Reich, let alone of those that are still unexplored. 9 e table in the Appendix pro-
vides an overview of themes that have been treated, at least in part.

In this chapter I will give a short, general, and cursory review of recent devel-
opments in research on the history of mathematics during the 9 ird Reich and 
of some major results, particularly with respect to the political, sociological, and 
institutional aspects of mathematics. In particular I will red ect on the potential 
and demonstrable ind uences of Nazi ideology on mathematics itself as theory 
and practice, based on discussion of conditions before 1933. Finally I will bried y 
outline one of the most important e\ ects of the 9 ird Reich for global mathem-
atics: mass emigration of mathematicians from Germany.

Historical research on mathematics in the B ird Reich

9 e historiography of mathematics in the 9 ird Reich dates back only to the 
1980s.2 9 is late beginning was due to a multitude of self-restrictions and taboos 

2. It was basically German work by Mehrtens and Richter (1980) that started the historiography of sci-
ence and mathematics under National Socialism. Since Mehrtens focused on mathematics, so in a sense the 
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in the historiography of science and mathematics in Germany. It su7  ces to men-
tion widespread consideration for still active and ind uential scholars from the 
period under scrutiny (1933–45) and for their immediate students, a restraint 
which only began to weaken as a consequence of the student movement of the 
late 1960s.

At the same time, general historical research on the 9 ird Reich was still in the 
midst of serious methodological controversies about the role of elites in the 9 ird 
Reich, the speci[ c and particular interests and ind uences of the state bureaucracy, 
military, and industry, and the role of university professors and students. Again 
there were political taboos at work in both West and East German research. In 
both countries there was a lack of critical will to investigate the part their ideo-
logical ‘ancestors’ (the bourgeois parties of the Weimar Republic on the one hand, 
and the Communists on the other) played in allowing Hitler to seize power in 
1933. In the East, research was hindered by the undeniable de[ cit of democracy 
in both the 9 ird Reich and the German Democratic Republic, with their paral-
lel doctrines of the ‘leading role of the party’. Besides, (self-proclaimed) ‘Marxist’ 
historiography was less interested in the ‘grey zone’ of the political behaviour of 
scientists, who could not usually be easily related to either ‘proletarian resistance’ 
or to the ‘interests of [ nance capital’.3 In the West the failure of ‘de-Nazi[ cation’ 
and the continued reliance on the elites of the 9 ird Reich (stronger than in the 
East) was a source of embarrassment at home and abroad. Many university pro-
fessors with Nazi connections, among them no few who had moved westwards 
in the last months of the war, were reinstalled and uncritically and uncondition-
ally used in rebuilding society in the years of the Wirtscha_ swunder ‘economic 
miracle’.4

Research into the history of mathematics during the 9 ird Reich can be roughly 
grouped under two headings: (I) historical and sociological, and (II) mathemat-
ics-related. However, the transitions are d uid and to some extent both areas have 
to be addressed at the same time to obtain a full picture. Research of type (I) 
is concerned with general conditions for intellectual activity and education in 
the 9 ird Reich, including policies directed towards and responsible for public 
opinion (journalism), arts, and, in particular, science, technology, and mathem-
atics. Research of type (II) asks for the distinctive features of mathematics that 
created speci[ c conditions for mathematics compared to other sciences, allowing

historiography of mathematics had a pioneering role for the history of science and mathematics during the 
9 ird Reich.

3. For the same reason, historiographical explanation of the Nazi ‘dogma of anti-Semitism’ created insur-
mountable di7  culties for East German scholars; see Siegmund-Schultze (1999).

4. Former Nazi scientists were employed for pragmatic reasons in the East too, but on a much smaller scale 
than in the West, not least due to lack of availability. 9 e use of the number theorist Helmut Hasse by East 
German politicians is described by Siegmund-Schultze (1999, 68–70), although Hasse was not a ‘culprit’ in 
any extreme sense; see also Segal (1980).
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its potential either to d ourish or to be curtailed. Within this, one can specify 
di\ erent functions of ‘mathematics’, beginning principally with a tripartite div-
ision into research, teaching, and applications. To type (II) belongs everything 
concerning the methods and cognitive structure of mathematics, for instance, its 
symbolic language, its widely recognized rigour and generality, its special modes 
of communication, and its particular relationships to other sciences and engin-
eering. 9 e most visible but maybe not the most momentous [ eld of contact and 
cond ict between mathematics and the 9 ird Reich on level (II) were undoubt-
edly the various racist theories of mathematics such as the Deutsche Mathematik 
‘German mathematics’ of Ludwig Bieberbach (see below).

Obviously, problems of type (II) cannot be approached without knowledge of 
problems of type (I). One can go a step further and say that one must be aware of 
the distinctive features of the 9 ird Reich compared to political systems before 
1933 (the Weimar Republic) and aN er 1945 (the two German republics and 
Austria), and how the population at large, and Jews in particular, fared under 
these conditions. 9 is latter, more general problem goes beyond the historiog-
raphy of mathematics and has to be taken for granted, even though there is still 
controversial research in this area too.

Much of the research from the last twenty-[ ve years on the history of math-
ematics during the 9 ird Reich belongs at least partly to type (I), making it histo-
riography of science in a ‘social’ or sociological sense. 9 ere were various reasons 
for this initial focus, some of them circumstantial (as for the delay in a general 
history of science in the 9 ird Reich) and some more substantial. Among the lat-
ter is the fact that the most visible e\ ects of National Socialist rule on mathemat-
ics, namely expulsion and emigration, and the accompanying racist theories of 
Deutsche Mathematik, had more to do with National Socialist ideology, particu-
larly anti-Semitism, than with the ideology and research values of mathematics 
itself. 9 us one has to recognize the particularly heavy ind uence of ‘abnormal’ 
social conditions in German science and mathematics between 1933 and 1945. 
But regardless of whether one is occupied with historiography of type (I) or (II), 
the aim of the historian of mathematics is to compare how mathematics is done 
generally and beyond the 9 ird Reich, using the latter as an experimental testing 
ground, albeit a somewhat extreme, even abnormal one.

9 e basic consequences of National Socialist rule for o7  cial educational pol-
icies can be summarized by the following four doctrines, which of course had 
immediate ind uence also on the sciences and mathematics, not least through 
indoctrination in the school and university systems (Nyssen 1969):

Anti-Semitism(1) : a non-negotiable political taboo (in the sense that no dis-
cussion was allowed), and an overall aim of education. It implied the 
superiority of an ‘Aryan’ race and their right to rule.
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Elitism(2) : the superiority of certain Volksgenossen ‘people’s comrades’, which 
led both to the preservations of the traditional, hierarchical,  four-level edu-
cation system (elementary school, middle school, Gymnasium/Realschule, 
university), and to the foundation of Napola ‘National Political Educational 
Institutions’.

Führer-Gefolgscha_ (3)  ‘ideology of leader-follower’: indisputable obedience 
to authority; subordination of the teacher to the school director, or the 
professor to the university rector; the ind uence of political organizations 
at schools and universities (Hitlerjugend ‘Hitler youth’, National Socialist 
student organizations, and so on); rejection of democracy.

Volksgemeinscha_ (4)  ‘ideology of people’s community’: social-demagogic 
rejection of class di\ erences, based on race theory; subordination of indi-
vidual to community.

One of the more general conclusions of research to date has been that uncritical 
talk about an alleged ‘misuse of science and mathematics’ by regimes such as 
the Nazi dictatorship misses the point, given the eagerness of scientists to take 
advantage of certain extraordinary conditions given to them only under Nazi 
rule (see, for instance, Mehrtens 1996). Other work has studied the extent to 
which the aN er-e\ ects of Germany’s defeat in World War I, and long held anti-
Semitic prejudices, shaped the ideology of mathematicians during the Nazi years 
and brought them into conformity with the regime.

9 ere has been much discussion on how ‘resistance’ by scientists to political 
regimes like the 9 ird Reich can be de[ ned and where the line has to be drawn 
between the moral obligation to resist and the individual human right to con-
formity. In this respect existing research has justly been much more critical of 
postwar apologia by mathematicians than of their actual conformity with the 
regime. In particular the myth cultivated by some mathematicians aN er the war, 
that resistance to racist theories such as Deutsche Mathematik already consti-
tuted resistance to the regime, has been rejected by most historians.

One particular and repeated question in this context has been: to what extent 
can membership in the Nazi party be considered as a criterion of guilt. For math-
ematics, this question will be illustrated by a short study, based on the results of 
biographical work.

Research on the political behaviour of mathematicians has con[ rmed what 
has also been shown for other social groups in the 9 ird Reich: membership of 
the Nazi party cannot be considered a decisive criterion of personal guilt. 9 is 
is somewhat contrary to much of the older literature, and to the practice of de-
Nazi[ cation aN er the war which stipulated the dismissal of party members. 
Moreover, it has become very clear that two assets, or social markers, (i) holding 
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an established position in the university system (for example, a professorship) 
and (ii) acknowledged (mathematical) expertise were, particularly aN er the [ rst 
tumultuous years, generally su7  cient to avoid a third social marker (iii) political 
activity in its most visible forms, such as membership of the Nazi party. 9 e pos-
session of one of these two assets alone, however, was usually not strong enough 
to exempt an individual from the need to join political organizations such as the 
Nazi Party, at least formally. Biographical research on mathematicians such as 
Ludwig Bieberbach, Gustav Doetsch, Helmut Grunsky, Heinrich Heesch, Ernst 
Mohr, Oskar Perron, Erhard Schmidt, Kurt Schröder, Wilhelm Süss, and Oswald 
Teichmüller has revealed di\ erent patterns of behaviour (politically active, polit-
ically passive, and anti-Nazi, the latter oN en necessarily hidden), which, together 
with the main social markers (expertise, academic status, and Party membership) 
are shown in Table 1 (see Bigalke 1988; Mehrtens 1987; Litten 1996; Remmert 
1999; Schappacher and Scholz 1992; Siegmund-Schultze 1989; 2004).

One recognizes a variety of combinations, in particular the fact that these 
mathematicians had to meet at least two of the three [ rst and most visible social 
criteria in order to secure a career in Nazi Germany. In this respect, of course, 
older professors, who had been established before the regime, were in a much 
better position. By contrast, Grunsky and Schröder typify competent younger 
mathematicians (of whom there were many) who had to join the Nazi party 
against their own conviction in order to secure even a modest career outside the 
university system. Mohr received only an associate professorship. 9 e equally 
young Heesch of four-colour-conjecture fame was too ‘aloof ’: he met only one of 
the three main criteria and did not d ourish. Mohr, Doetsch, and Süss appear with 
contradictory political attributes in the table. 9 is is either because they violated 

Table 9.4.1 Mathematicians’ engagement for or against the Nazis in relation to 
their academic positions

Name Expertise Professorship Member of 
the Nazi 
Party

Active 
Nazi

Passive 
Nazi

Anti-Nazi

Bieberbach X X X X
Doetsch X X X X
Grunsky X X X
Heesch X X
Mohr X X X X
Perron X X X
Schmidt X X X
Schröder X X X
Süss X X X X
Teichmüller X  X X   
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taboos (Mohr was accused of enemy propaganda during the war and was barely 
saved from execution), or because they felt they had to over-compensate for their 
political positions before 1933 (Doetsch had been a paci[ st), or because it is still 
too di7  cult to label them unambiguously (as is the case with Süss). Teichmüller 
was the one brilliant young mathematician in the table who was also an ardent 
Nazi. 9 is rather exceptional combination cost him his life when he volun-
teered for the Russian front during the war, a fate from which Bieberbach, an 
older mathematician of almost the same ‘combination’, was saved. Süss, who was 
president of the Deutsche Mathematiker-Vereinigung ‘German Mathematicians’ 
Association’, or DMV, from 1937 until 1945, had to expend extra political e\ ort 
to make up for his lack of research prowess.

A comparison with East Germany aN er the war sharpens the eyes, not only 
in the discussion of party membership, though with all due caution as to the 
incomparably more criminal character of the Nazi regime than the Communist. 
Schröder became rector of Humboldt University in East Berlin without being 
forced to join the Communist party: in the 1950s and 1960s he was in the position 
of a professor with expertise, as Schmidt had been twenty years before him.

Mathematics before Nazi rule

A general problem of historiography still under discussion is the following: to 
what extent were scienti[ c careers discouraged by the general irrational ideologi-
cal atmosphere in Nazi Germany? 9 is leads into the complex of more speci[ c 
problems of type (II) which I will now address.

Generally, in order to recognize the potential within mathematics for the dis-
cipline to be ind uenced by the 9 ird Reich in a way speciF c to it, one has to go back 
into the history of German and international mathematics before 1933. But even 
taking this broader view we will see that the ‘loose ends’ in this very complicated 
picture of assumed or psychologically probable ‘threads of ind uence’ of Nazi ideol-
ogy on mathematics have to be tied up, once again, by more general considerations 
of institutional and political developments. 9 at is, only if one considers the pol-
itical system of the 9 ird Reich, including the policies of  mathematicians them-
selves, can one understand which historically existing potentials for oppression 
or stimulation of particular mathematical disciplines were most likely to become 
reality. 9 is, of course, refers back to problems of type (I), that is, problems on a 
more general social level than mathematics. It also means that some discussion of 
the mathematics-speci[ c e\ ects of Nazi ideology and Nazi rule has to be episodic 
and somewhat speculative, because many of these e\ ects came about by intimida-
tion or stimulation of individuals, and were moderated or not by personal ability 
or inability to cope with political conditions under the regime.
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During the entire history of mathematics, the development of its ideas has 
depended on social and political conditions, and on structures of communication, 
which were usually based on dominating centres and dependent peripheries. 9 e 
emergence of nation states (most notably aN er the French revolution), for example, 
had clear rami[ cations for the mathematical topics discussed in di\ erent places in 
Europe. 9 e rise of Göttingen as the dominant mathematical centre in Germany 
around 1900 had thematic consequences both within the country and globally. It 
consolidated German mathematics as the most versatile and modern mathemat-
ical culture in the world, including applications and new developments in teach-
ing under the guidance of Felix Klein. But even then German mathematics did not 
and could not cover all promising developments in an ever expanding discipline. 
It was, for instance, lacking parts of the French theories of real functions (devel-
oped by Baire, Borel, and Lebesgue), and of di\ erential equations and celestial 
mechanics (Poincaré), of Italian algebraic geometry, of British and Scandinavian 
mathematical statistics, or of American work in the logical foundations of geom-
etry. One of the American workers in geometry, Oswald Veblen, had the following 
to say about German mathematics when he visited Göttingen in 1913:

I am beginning to have de[ nite impressions of Germany. Mathematically, even more than 
politically, it is a monarchy. 9 e mathematical situation is well illustrated by a remark of 
Landau’s when I asked him whether there was any interest in Abelian functions and the 
like (more than one variable): No one in Germany is interested in anything Hilbert has 
not worked with. 9 ey are only mildly interested in what is going on elsewhere, unless it 
touches pretty directly on their own work.5

It was fortunate for German mathematics around 1913 that the ‘monarch’, David 
Hilbert of Göttingen, one of the last mathematical universalists, was so broad in 
his research (see Gray 2000) and that the communication network developed by 
Felix Klein was so functional, with many foreign students d ocking to Göttingen. 
But in the years aN er World War I (see Parshall, Chapter 1.4 in this volume), and 
with the rise of several national mathematical cultures, in the US, Soviet Russia, 
Poland, Austria, the Netherlands, and some Scandinavian countries, German 
mathematics was increasingly unable to cover the whole of mathematics. One may 
think, for example, of Polish functional analysis and point set topology, and of 
American, Dutch, and Austrian topology. 9 e ‘envoy’ of Rockefeller philanthropy, 
Augustus Trowbridge, who came to Göttingen in 1926 with the leading American 
mathematician George David Birkho\ , had the following to say in his report:

Birkho\  thinks that the mathematics group to be [sic] a little too self-satis[ ed and needs 
to be shocked out of that state—at least all that A.T. overheard of the mere technical 

5. Veblen to George David Birkho\ , December 25, 1913, from the Birkho\  Papers (Harvard University 
Archives, HUG 4213.2, box 7, handwritten, 4 pages). 9 anks go to June Barrow-Green who kindly shared 
this document with me.
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points B. was making pointed to B.’s evident desire to make the group feel that they 
needed to strengthen their position in mathematics by means of men rather than by 
means of equipment. (Siegmund-Schultze 2001, 153)

Even though German mathematical culture, with Göttingen in the lead, prob-
ably remained the most internationalized in the world until 1933, the dominance 
of Göttingen did not remain unchallenged. It met with envy and resistance even 
within Germany by mathematicians such as Bieberbach and Richard von Mises 
in Berlin. 9 e arguments of these two, and of others such as Schmidt (also in 
Berlin), were partly political in the sense of promoting German nationalism or of 
general distrust of international mathematical relations. 9 ese sentiments were 
stirred by Germany’s defeat in World War I and by the policies of the victorious 
nations, for instance, the boycott against German science in the years immedi-
ately aN er the War, which led to exclusion from mathematical congresses and 
actions against the dominance of German mathematical literature (Mehrtens 
1987; Siegmund-Schultze 2001).

But there was also an early racist, anti-Semitic, dimension to the discussion, 
although it was certainly not promoted by mathematicians of Jewish descent like 
von Mises, even though he partly identi[ ed with the German/Austrian cause. 
Anti-Semitism had its early proponents in mathematicians such as 9 eodor Vahlen 
of Greifswald, who later became an ind uential politician in the 9 ird Reich (see 
Siegmund-Schultze 1984), and in Walther von Dyck from Munich. When in 1925 
the editors of the internationally leading German journal Mathematische Annalen 
controversially discussed the collaboration of French authors in an issue devoted 
to Bernhard Riemann’s hundredth birthday, one member of the board, von Dyck, 
wrote to another, Bieberbach, to query the opinions of a third, Einstein:6

I would like to know Einstein’s opinion about it. To be sure, he has declared, on the occa-
sion of his memorable stay in Paris, that he is no German! By the way, one rather believes 
one is in Hungary, Poland, Russia and Bulgaria if one reads the names of those who now 
publish in the Annalen!

Already in 1923 Vahlen published a talk entitled ‘Wert und Wesen der Mathematik’, 
‘9 e value and nature of Mathematics’, in which he called mathematics a ‘Spiegel 
der Rassen’, ‘mirror of the races’ (Vahlen 1923, 22). He thus anticipated theses that 
Bieberbach was to defend aN er 1933 (see below). Between 1924 and 1927 Vahlen 
was Gauleiter ‘leader’ of the Nazi party in the district of Pomerania. His nationalist 
colleagues, such as von Dyck, tried in vain to prevent his dismissal by the Prussian 

6. ‘Es wäre mir lieb, ganz bestimmtes zu erfahren, wie sich Einstein geäußert hat. Freilich hat er ja schon 
bei jenem denkwürdigen Aufenthalt in Paris erklärt, daß er kein Deutscher sei! Übrigens glaubt man auch 
eher in Ungarn, Polen, Rußland u. Bulgarien zu sein, wenn man die Namen derer liest, die jetzt in den 
Annalen publizieren!’, Munich, 19 January 1925, from the Estate of Bieberbach Oberaudorf, handwritten, 
copy with Menso Folkerts, Munich. All translations from German to English are by the author.
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government in 1927 for his nationalist and anti-Republican activities. Max Dehn’s 
scathing and somewhat one-sided criticism (Dehn 1905) of Vahlen’s book Abstrakte 
Geometrie ‘Abstract geometry’ (1905), apparently increased Vahlen’s anti-Semitic 
resentments and contributed to his move to applied mathematics in the follow-
ing years.7 In retrospect, Vahlen explained his personal shock in a speech to the 
Prussian Academy of Sciences in 1938 in the following manner:8

In the university analytical topics prevailed. My destiny for the intuitive parts of math-
ematics only became evident aN er my studies. My Abstract geometry marks the change. 
AN er its completion I was attracted by the natural, concrete thinking of our race. (Vahlen 
1938; 98)

Vahlen’s talk about the ‘concrete thinking of our race’ was, of course, pure cliché 
and it was neither con[ rmed nor justi[ ed by the mathematical predilections of 
German-Jewish mathematicians of his time, among whom were many applied 
mathematicians such as Richard Courant, von Mises, and Felix Bernstein.

9 e name of Bernstein, director of the Göttingen Institute for Mathematical 
Statistics, conjures up another dimension to the ideological atmosphere of the 
1920s which has to be taken into account in order to fully understand the con-
ditions under which Nazi ideology was able to act aN er 1933: namely, eugenic 
thinking supported by mathematics. Bernstein had become famous in 1924 for 
discovering the mechanism of heredity in blood groups. In the following years, 
including the time of his enforced emigration to the United States aN er 1933, he 
did much statistical work on racial genetic markers. 9 is was respectable research, 
stimulated by internationally shared concerns about the genetic degradation of 
the human race (Schappacher 2006b). As late as 1956 Bernstein argued in a let-
ter to the New York Times (24 June 1956, page E8) that there were three types of 
mathematical aptitude: geometrical, algebraic-combinational, and purely logical, 
and that these were not uniformly distributed geographically.9

Taking into consideration developments and attitudes in German mathemat-
ics during the 1920s, which could only bried y be described here, one is somewhat 
better prepared to understand the events of the year 1933 and the backlash they 
entailed for mathematics under Nazi rule.

7. In the spring of 1935 Vahlen, now an o7  cial in the Nazi ministry of education, contributed to Dehn’s 
early dismissal from his professorship in Frankfurt, although Dehn was then still o7  cially exempted from 
these measures.

8. ‘Auf der Universität überwogen die analytischen Fächer, meine Bestimmung für das Anschauungsmäßige 
trat erst nach beendetem Studim hervor. Meine ‘Abstracte Geometrie’ bezeichnet den Wandel, nach ihrer 
Vollendung zog es mich zu der natürlichen, konkreten Denkart unserer Rasse.’

9. Bernstein did not claim that one type of aptitude was superior to the others. However, he went as far as 
saying that a student’s particular types of aptitude should be taken into account in teaching mathematics, 
though, unlike Bieberbach (see below), without implications for the employment of teachers. Even von Mises’ 
ironic reaction to Bieberbach’s racist Deutsche Mathematik in 1934 did not question the existence of di\ erent 
mathematical talents in di\ erent human races (Siegmund-Schultze and Zabell 2007).
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Mathematics under Nazi rule

9 e theoretically best informed approach to the history of mathematics in Nazi 
Germany (and, incidentally, to the history of science as a whole in that period) is 
that of Mehrtens (1990a), who embeds the discussion of mathematics into larger 
political and philosophical controversies around the ‘production of mathematics 
as a language’ between the late nineteenth century and 1945. On the social level, 
partly inspired by Bourdieu, he considers mathematics as a system that exchanges 
the products of knowledge, plus political loyalty, for material resources and social 
legitimacy.

As to the ind uences of Nazi rule and Nazi ideology speci[ cally on mathemat-
ics, that is, for questions of type (II), one can expect from the outset two main 
lines of ind uence: (a) intrusion, interference, and possibly stimulation on the one 
hand; and (b) neglect, restriction, and isolation on the other. Point (b), particu-
larly international isolation due to the repercussions of general Nazi policies was, 
once again, a feature which mathematics partly shared with other sciences in the 
9 ird Reich. One can nevertheless look for the speci[ c e\ ects of that isolation 
in di\ erent subdisciplines, although little research has been done so far in this 
direction.

AN er the war, in 1947, the German topologist Kurt Reidemeister, who had been 
penalized by the Nazis in 1933 for his lack of compliance with the o7  cial ideol-
ogy, wrote:

9 e general consequence of the in[ ltration of Nazi ideology was that one gradually 
abandoned the truth. 9 e people in the National Socialist state in no way believed the 
o7  cially sanctioned tenets taught in so many indoctrination courses and in so many 
papers. But they were willing to use the o7  cial vocabulary thoughtlessly.10 (Reidemeister 
1947, 35–36)

Reidemeister referred to the general ind uence of Nazi ideology, of course, not just 
in mathematics.

It is impossible to judge how many pupils and students were discouraged from 
taking on the ‘rationalistic’ and ‘aloof ’ subject of mathematics, which had lit-
tle support in the o7  cial political climate. On the other hand, even in the most 
blatant and absurd utterances of Nazi ideology with respect to mathematics 
there was, if not a rational core, then at least some faint red ection of real devel-
opmental problems within German mathematics. When the Deutscher Verein 
zur Förderung des mathematischen und naturwissenscha_ lichen Unterrichts 

10. ‘Die allgemeine Folge der Weltanschauungspd ege war, daβ man sich allmählich der Wahrheit 
entwöhnte. Die Menschen im nationalsozialistischen Staat waren weit davon entfernt, die staatlich sanktio-
nierte Lehre, die auf so vielen Schulungskursen gelehrt, in so vielen SchriN en vorgetragen wurde, für bare 
Münze zu nehmen. Aber sie fanden sich bereit, sie einzukassieren und in das Kleingeld des eigenen Geredes 
umzuwechseln.’



INTERACTIONS AND INTERPRETATIONS864

‘German Association for the Advancement of Mathematical and Natural Science 
Instruction’, usually called Förderverein, cheerfully associated itself with the 
9 ird Reich in April 1933, it not only accepted the ‘Aryan paragraph’ of the Nazi 
‘Law on the Restoration of the Civil Service’ (7 April 1933) in its bylaws. 9 e 
Förderverein also stressed in its resolutions the Unerbittlichkeit mathematischen 
Denkens ‘mercilessness of mathematical thinking’, and connected it to the tasks 
of the military and of Befreiung des Volkskörpers von erblicher Minderheit ‘free-
ing people’s bodies from hereditary inferiority’ (Lorey 1938, 105–106). 9 e idea 
of the ‘mercilessness of mathematical thinking’ had been used in a somewhat less 
radical formulation (for instance as ‘absolute rigour’) in science and school poli-
cies prior to the 9 ird Reich.

When, aN er 1933, the internationally renowned function theorist Bieberbach 
rather unexpectedly presented his infamous, racist, and partly intuitionist11 
‘Deutsche Mathematik’ (Bieberbach 1934), he connected his points to discus-
sions before 1933 on the foundations of mathematics. Indeed, his talk of an 
Entmenschlichung der Mathematik ‘de-humanization of mathematics’ as a result 
of modern axiomatics (Bieberbach 1934, 240) partly red ected concerns about an 
increasingly abstract mathematics, allegedly losing contact with classical prob-
lems of the nineteenth century and with applications. Some of these concerns were 
shared by other mathematicians before 1933, even by the applied mathematician 
Richard Courant of Göttingen, who by Nazi de[ nition was Jewish. Under Nazi 
rule, Bieberbach now distorted the discussion towards an anti-Semitic context of 
‘mathematical styles’. He claimed ‘intuition’ and ‘organic and fruitful’ thinking 
for German and ‘Nordic’ mathematicians, while the non-German type of math-
ematician allegedly ‘beamed his autistic thought into reality’ (Mehrtens 1987, 230). 
Bieberbach never contested the correctness of foreign or Jewish mathematics, and 
seldom called into question the importance of their problems or solutions, but 
declared the mode of discovering those results ‘un-German’.

It was a Jewish emigrant from Germany, the statistician Emil Julius Gumbel, 
who pointed out in 1938, that mathematics, unlike physics, did not exhibit a real 
antagonism of subdisciplines or methods, the existence of which had been a start-
ing point for the idea of ‘Deutsche Physik’ promoted by the conservative experi-
mental physicists and Nobel prizewinners Johannes Stark and Philipp Lenard 
(Gumbel 1938, 254). 9 ough equally racist and demagogic, ‘Deutsche Physik’, was 
in this sense slightly more rational than Bieberbach’s ‘Deutsche Mathematik’.

In fact, few among Bieberbach’s colleagues, usually the more careerist ones, 
were prepared to follow him. It has been shown that roughly the same ‘arguments’, 
accusing foreigners (French or Jewish in Bieberbach’s mind) of lack of ‘intuition’ 

11. 9 at is, on the intuitionist side of the quarrel over the foundations of mathematics, following the ideas 
of the Dutch mathematician Luitzen Egbertus Jan Brouwer.
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and of lacking ‘relation to reality’, had been used by conservative French phi-
losophers like Pierre Duhem before and during World War I against German
mathematics.12 In fact, almost every propagandist of racist theories in mathem-
atics had a di\ erent conception of what ‘un-German’ or artfremd ‘alien’ math-
ematics was, and the understanding was never independent of his own research 
interests. In this way representatives of applied mathematics tried to prove the 
futility of pure mathematics (Tietjen 1936), while others wanted to play ‘German’ 
geometry o\  against ‘Jewish’ number theory and analysis. Bieberbach himself, 
being a representative of pure mathematics, saw even doing mathematics for its 
own sake, as in some parts of number theory, a manifestation of German nature. 
At times he was concerned that his own racist theories could be misunderstood 
and misused for purposes that were too utilitarian. He remarked in 1934:

To prove the importance of mathematics for the people one refers quite oN en to the appli-
cations which [ gured prominently in Klein’s reforms. It seems to me . . . that mathematics 
is an emanation of our racial qualities too and anything which reveals our national char-
acter in a forceful manner requires no additional justi[ cation.13 (Bieberbach 1934, 243)

Several mathematicians ridiculed Bieberbach’s theories, at least in private. 
Some, like the Dane Harald Bohr, and the Germans Hermann Weyl, von Mises, 
and Oskar Perron also did so in public, though all but Perron from abroad (see 
Mehrtens 1989a for Bohr, and Siegmund-Schultze and Zabell 2007 for von 
Mises). 9 ey pointed out that Bieberbach’s typology (based on theories of the 
Nazi psychologist Erich Jaensch) rarely connected individual mathematicians to 
certain styles of doing mathematics. In particular, many leading German math-
ematicians of the past (also living ones such as Hilbert) could easily be classi[ ed 
as ‘foreign’ or ‘un-German’ if Bieberbach’s theories had been taken seriously. It 
comes as no surprise that some students of the great Jewish mathematician Emmy 
Noether in Göttingen tried in 1933 (if in vain) to prevent her dismissal, referring 
to the ‘Aryan character’ of her abstract algebraic works which were, as is well-
known, much inspired by Richard Dedekind (Schappacher 1987, 351). Hermann 
Weyl, who like Noether had d ed to the US, wrote in his obituary of her:

Her a7  nity with Dedekind, who was perhaps the most typical Lower Saxon among 
German mathematicians, proves by a glaring example how illusory it is to associate in a 
schematic way race with the style of mathematical thought. (Weyl 1935, 218)

12. Mehrtens (1990b, 116) argues, based partly on work by Andreas Kleinert, that much of Bieberbach’s 
‘Deutsche Mathematik’ was ‘copied’ from publications of Duhem, but this time (twenty years later) with a 
reversed direction of accusation. However, Duhem connected ‘intuition’ to French ‘common sense’ while 
Bieberbach, as a representative of geometric function theory, connected German ‘intuition’ to geometry.

13. ‘Als Beleg für die Volksnotwendigkeit der Mathematik führt man namentlich gerne die Beziehung 
auf die Anwendungen an, die ja auch in den Kleinschen Reformplänen eine hervorragende Rolle spielt. Mir 
scheint aber . . . auch die Mathematik ein Betätigungsfeld völkischer Eigenart zu sein, und alles, worin sich 
unser Volkstum kraN voll o\ enbart, scheint mir keiner ausführlichen Rechtfertigung mehr zu bedürfen.’
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9 ere was, it is true, some criticism, not only within Germany but also abroad, 
of the extreme way (maybe one can call it ‘style’) of presenting mathematics largely 
without motivation and in a purely logical order, a method for which the Jewish 
analyst and number theorist Edmund Landau was known.14 But when Bieberbach 
took Landau as an example of the ‘un-German’ style of doing mathematics, the 
political aspect was immediately apparent. In one of the politically most explicit 
passages of his pamphlets on mathematical styles, Bieberbach openly supported a 
National Socialist student boycott against Landau with the following words:

A few months ago di\ erences with the Göttingen student body put an end to the teach-
ing activities of Herr Landau. . . . 9 is should be seen as a prime example of the fact that 
representatives of overly di\ erent races do not mix as students and teachers. . . . 9 e 
instinct of the Göttingen students was that Landau was a type who handled things in an 
un-German manner.15 (Bieberbach 1934, 236)

9 us the main political function of Bieberbach’s ‘Deutsche Mathematik’ was sup-
port for expulsions by the Nazis. It provided ‘arguments’ and pretexts for other 
mathematicians, oN en of lesser calibre than Bieberbach himself, to make careers 
for themselves.

Bieberbach, who remained ind uential in Berlin as Dean of the University’s 
Philosophical Faculty, exerted further ind uence on mathematics based on  conservative 
mathematical positions backed up by Nazi ideology. Beside promoting the careers of 
less important but politically ‘reliable’ mathematicians (Siegmund-Schultze 1989), 
and barring careers for promising ones (see the cases of Schröder and Grunsky 
referred to above), he had a conservative ind uence on the German system of mathe-
matical reviewing. 9 e old-fashioned Jahrbuch über die Fortschritte der Mathematik 
was kept alive until the end of World War II, despite the creation of the more mod-
ern Zentralblatt für Mathematik in 1931. 9 e latter was more market-oriented and 
internationalist, and, above all, much more rapid. But it was also less systematic 
in publishing reviews than the Jahrbuch. For Bieberbach and other conservative 
German mathematicians there seems to have existed a subliminal connection 
between the systematic collecting function of the Jahrbuch and the foundational, 
rigour-providing function of axiomatics. Bieberbach approved of this last func-
tion of axiomatics, but he was suspicious of its creative, expansive function, as well 
as of uncontrolled and unsystematic mathematical reviewing (Siegmund-Schultze 
1993a, 91–97). Here again there was some real problem in mathematics, in this case 

14. Weyl belonged to those critics: Landau’s style was very di\ erent from Noether’s even though both were 
strongly focused on rigour and abstraction; they exhibited di\ erent strands of mathematical modernity.

15. ‘Vor einigen Monaten haben Di\ erenzen mit der StudentenschaN  dem Lehrbetrieb des Herrn Landau 
ein Ende bereitet. . . . Man hat darin . . . ein Musterbeispiel dafür zu sehen, daß Vertreter allzu verschiedener 
menschlicher Rassen nicht als Lehrer und Schüler zusammenpassen. . . . Der Instinkt der Göttinger Studenten 
fühlte in Landau einen Typus undeutscher Art, die Dinge anzupacken.’
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both in its reviewing system and in exaggerated use of axiomatics, to which Nazi 
ideology could demagogically refer.

Bieberbach’s ‘Deutsche Mathematik’ and similar ad hoc racist theories in 
mathematics were gradually disregarded once they had ful[ lled their function of 
providing a rationale for expulsions, and when pragmatic mathematical work was 
actually needed in preparation for the war. Ironically, the d ight of many prom-
ising young scientists from the politically oppressive universities and technical 
colleges was more oN en than not to the bene[ t of institutions for armaments 
research, which some scientists perceived as oases of freedom of opinion.

It was indicative of Bieberbach’s waning ind uence that in 1939 Perron, math-
ematics professor in Munich, could publish within Germany an ironic allusion to 
Bieberbach’s ‘Deutsche Mathematik’. He did so in the second edition (1939) of his 
book Irrationalzahlen ‘Irrational numbers’ (1920), when he alluded in the preface 
to Bieberbach’s preference for the Cantor–Méray theory of real numbers. Georg 
Cantor, the German founder of set theory, was generally considered to be Jewish, 
while Charles Robert Méray, was obviously French and thus also ‘un-German’. 
But in 1924, before his sympathies for the Nazis had developed, Bieberbach 
had criticized the [ rst edition of Perron’s book for basing its de[ nition of real 
numbers on Dedekind’s ‘cuts’. Now, in 1939, Perron alluded to that review and 
‘defended’ his own preference for the undoubtedly ‘German’ Dedekind, who, as 
mentioned, happened to be the true spiritual mentor to the ‘Jewish’ algebraist 
Emmy Noether, with the following words:

I believe a German who has the choice between a German product and an equally beau-
tiful and valuable product of foreign origin should be allowed to follow his heart and to 
prefer the German one because it is German.16 (Perron 1939, vi)

Judging the impact of ‘neglect’ and ‘isolation’ on a scienti[ c discipline meets 
almost insurmountable methodological questions of a counterfactual, hypotheti-
cal nature. 9 ere is no doubt, however, that mathematics in the 9 ird Reich was 
indeed neglected and isolated on several levels, both domestic and international. 
9 e international nature of mathematics o\ ered some support to resistance 
against the Nazi regime, as the a\ airs around the political coordination of the 
DMV in 1934 showed, when consideration of foreign members led to a certain 
moderation of the Nazi policies spearheaded by Bieberbach (Mehrtens 1989a). 
But similar consideration was not given to matters that concerned applied or 
school mathematics, as the much ‘smoother’ political coordination (with respect 
to Nazi interests) of the respective organizations showed (Mehrtens 1989a).

16. ‘. . . glaube ich, daß es einem Deutschen, der die Wahl zwischen einem deutschen Erzeugnis und einem 
an sich ebenso schönen und wertvollen Erzeugnis fremden Ursprungs hat, immer erlaubt ist, der Stimme des 
Herzens zu folgen und das Deutsche vorzuziehen, weil es deutsch ist.’
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At primary and secondary schools, teachers found it di7  cult to retain the value 
of mathematics as an intellectual subject, given the strong emphasis on physical 
and purely ideological education. Additional problems were caused by the Nazi 
doctrine of inheritance of personal traits and talents, as indicated in the follow-
ing quotation by the leading school mathematician, Walther Lietzmann:

Didactics in mathematics has been [ ghting for decades against the assumption that math-
ematical talent is a pre-condition of any education at school. Now given that  mathematical 
talent is inherited, is not a continuation of this [ ght doomed to failure? What task remains 
for mathematical education under these circumstances?17 (Lietzmann 1935, 363)

In pure mathematical research, personal prejudices and mathematical predilec-
tions would occasionally get political support, as when the ind uential geometer 
Wilhelm Blaschke alluded to the ‘grey’ (meaning dubious and abstract) theory 
of real functions (Blaschke 1941, 44). Workers in probability and statistics stuck 
to old notions, avoiding measure theory, mainly due to a lack of ‘German tradi-
tions’ in the [ eld and because of interrupted communication with the French and 
the Russians.18 9 e German mathematician Eberhard Hopf, on returning from 
the US, said the following in his pioneering book Ergodentheorie which treated a 
topic neglected in Germany:

 Statistics is measure theory . . . Mathematicians who have no taste for the ‘almost all’ or 
the ‘except for set of measure zero’ must realise that in nature only that which happens 
‘as a rule’ can be interpreted mathematically.19 (Hopf 1937, iii)

Modern mathematical notions connected to Cantor’s set theory were oN en made 
suspect in the context of Bieberbach’s ‘Deutsche Mathematik’. Prejudices against 
modern mathematical techniques based on Cantor’s theories, such as Lebesgue’s 
integral, though they also existed in other countries, gained additional political 
power under the peculiar political circumstances of the 9 ird Reich.

Given that mathematics requires international communication it is clear from 
the outset that disturbances to such communication are bound to hamper the 
development of the discipline. However, to what extent and in what speci[ c ways 
this damage occurred during the 9 ird Reich are questions that remain largely 

17. ‘Die mathematische Methodik hat ein paar Jahrzehnte lang gegen das Axiom von der mathematischen 
Begabung gekämpN , ohne die mathematisches Verständnis auf der Schule nicht möglich sei. Müssen wir das 
nicht . . . als einen verfehlten Kampf ansehen, weil eben die mathematische Begabung erblich bedingt und also 
entweder da oder nicht da ist? Was hat unter solchen Umständen überhaupt noch mathematische Erziehung 
für Aufgaben?’

18. 9 is is a particularly promising topic which the author is currently exploring. Ironically, German sto-
chasticians remaining in Germany aN er 1933 mostly preferred the predominant ‘German tradition’, namely 
the dated frequency approach to probability introduced and defended by the Jewish émigré von Mises since 
1919.

19. ‘Statistik ist Maβtheorie . . . Den Mathematikern, die dem “fast alle” oder “bis auf eine Nullmenge” keinen 
Geschmack abgewinnen können, sei entgegnet, daβ sich nur das, was in der Natur “in der Regel” sich ereignet, 
mathematisch interpretieren läβt.’



The historiography and history of mathematics 869

unanswered. Of course, many German mathematicians remaining in Germany 
aN er 1933 kept in contact with their expelled colleagues, even if those contacts 
were overshadowed by misunderstandings, disappointment, and self-censorship. 
Germans tended to send their letters from occasional trips abroad for fear of Nazi 
control. Heinrich Behnke accepted many invitations, especially to France and 
Switzerland as explained by Behnke (1978), which also describes the atmosphere 
of suspicion and denunciation in Germany aN er 1933. We have extensive corres-
pondence between German mathematicians and Courant, who emigrated [ rst 
to Cambridge (England) and then to New York, and there was continued collab-
oration between him and Kurt Friedrichs (Brunswig) on the second volume of 
‘Methods of Mathematical Physics’ (‘Courant–Hilbert’) which [ nally appeared 
in 1937.

On the one hand, there was early Nazi interference in international work on 
mathematical publications, as in the case of the second edition of the Enzyklopädie 
der Mathematischen Wissenscha_ en ‘Encyclopaedia of mathematical knowledge’ 
published by Teubner in Leipzig. Bieberbach’s partly racist journal Deutsche 
Mathematik (which paralleled and partly propagated the racist theories of the 
same name) appeared in 1936. It was published in Gothic letters which, together 
with its political dimension, contributed to its international isolation and to 
an underestimation of several valuable mathematical publications in it.20 On 
the other hand, the mathematical publication system dominated by Springer, 
and mathematical reviewing by Zentralblatt, edited by Otto Neugebauer from 
Copenhagen aN er 1934, secured considerable international contacts for German 
mathematicians, at least until 1938.

9 e Nazi course towards economic autarchy in the years to come, the shortage 
of foreign currency, and [ nally the war in 1939, created an atmosphere of increas-
ing self-isolation, palpable at the International Congress of Mathematicians in 
Oslo 1936. Alluding to the three invited lectures by the German mathematicians 
Helmut Hasse, Erich Hecke, and Carl Siegel, the Führer ‘leader’ of the German 
delegation, Walther Lietzmann, could still boast about German mathematics at 
that time, claiming that: ‘9 e leading position of Germany in number theoretic 
research has been maintained from Gauss to the present’21 (Siegmund-Schultze 
2002, 343). But at the same time and in the same report, Lietzmann wrote the fol-
lowing to the Nazi ministry, which could perhaps be understood as a slight criti-
cism of the existing ideological interference in mathematics in Germany: ‘9 ere 
is one thing that foreigners have a real problem understanding: our notion of the 

20. For instance, Oswald Teichmüller’s work on quasi-conformal mappings, whose importance was recog-
nized only aN er the war (Schappacher and Scholz 1992).

21. ‘Die führende Stellung Deutschlands in der zahlentheoretischen Forschung ist von Gauss bis auf den 
heutigen Tag erhalten geblieben.’
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national peculiarity of science, regardless of the universal validity of its results’22 
(Siegmund-Schultze 2002, 343).

In the years to come, German participation in the international congresses for 
pure and applied mathematics was increasingly hampered by the Nazi dogma 
of anti-Semitism (Siegmund-Schultze 2002). Even though the communication 
structure of mathematics within Germany stabilized aN er the shockwave of 
expulsions, international communication, especially with western countries and 
the Soviet Union, deteriorated. 9 is was mainly for two reasons which in a cer-
tain sense were intertwined: the insurmountable dogma of anti-Semitism and 
preparations for war. 9 e a\ air around the dismissal of the Italian-Jewish edi-
tor of the Zentralblatt für Mathematik, Tullio Levi-Civita, in 1938 and the ensu-
ing foundation of Mathematical Reviews in the United States have been much 
discussed and will not be repeated here (see Reingold 1981; Siegmund-Schultze 
1993a). Su7  ce it to mention that even mathematicians such as Hasse, who were 
no alte Parteigenossen ‘old comrades’ of the Nazis, would support Nazi measures 
to discontinue reviewing of ‘German authors’ by Jewish mathematicians. Like 
Bieberbach in 1934, Hasse promoted an apartheid notion of ‘internationalism’, as 
in his letter (in English) to American Marshall Harvey Stone on 15 March 1939:

Looking at the situation from a practical point of view, one must admit that there is a 
state of war between the Germans and the Jews. Given this, it seems to me absolutely 
reasonable and highly sensible that an attempt was made to separate within the domain 
of the Zentralblatt the members of the two opposite sides in this war. I do not under-
stand why the American mathematicians found it necessary thereon to withdraw their 
collaboration in bulk. I do not know whether it was the intention, but it certainly has the 
appearance of taking decidedly and emphatically one of the two sides, and thus devi-
ating from a truly impartial and hence genuinely international course. (see Siegmund-
Schultze 1993a, 164; 2002, 341)

9 e Nazis’ distorted view of ‘internationalism’ did not help the development 
of mathematics. 9 ere were, for instance, attempts at international math-
ematical contact under German hegemony, particularly during the war. 
Several German mathematicians and politicians reached out for ind uence over 
 southeast-European mathematics and tried to induce French mathematicians 
under German occupation aN er 1940 to collaborate. With the agreement of the 
Nazi ministry, Harald Geppert, Süss, and other German mathematicians tried to 
use the mutually traumatic experiences of French and German mathematicians 
in World War I to assist with their policies in World War II (Siegmund-Schultze 
1986; 2002).

22. ‘Eines ist allerdings für Ausländer ausserordentlich schwer zu begreifen: unsere Au\ assung von der 
nationalen Eigenart einer WissenschaN , unbeschadet der internationalen Bedeutung jeder Forschung.’
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B e emigration of mathematicians

9 e emigration of mathematicians from Europe aN er 1933 and the ensuing shiN  
of the world centre of mathematics from Europe to the United States (where most 
of the refugees went) is arguably the most important historical consequence of 
Nazi rule for mathematics (Siegmund-Schultze 1998/2009).23 Many of today’s 
hotly debated problems in mathematics, in the US and worldwide (such as the 
relative advantages of various educational and school systems; the need for a 
classical European background in analysis; communication systems in research) 
cannot be discussed without reference to the historical event of emigration.

9 e discussion in the existing literature is largely restricted to German-
speaking emigration, which was by far the most extensive, but was partly matched 
by Polish, and, to a lesser extent, French and Italian. Emigrant mathematicians 
from Germany included Emil Artin, Richard Courant, John von Neumann, 
Emmy Noether, Richard Brauer, Richard von Mises, Issai Schur, Hermann Weyl, 
and many others. Weyl and the American mathematician Oswald Veblen were 
leading [ gures at the Institute for Advanced Study in Princeton aN er 1933, and 
they played an outstanding role in the reception of refugees.

9 e aspects of emigration that can be discussed are both quantitative and 
qualitative. In the latter respect the di\ erent political and economic causes of 
emigration, and the conditions under which emigrants were received in vari-
ous countries, remain to be investigated. 9 e cognitive dimensions of the proc-
ess include the consequences for the world-wide reception of abstract algebra 
and applied mathematics. Some results of research on emigration of German-
speaking mathematicians are summarized in the following paragraph.

Nazi politicians gave no consideration to the international fame of their math-
ematicians and made no e\ ort to keep them in the country, because the dogma 
of anti-Semitism was all-pervasive and allowed no exceptions. Although some 
Americans also held anti-Semitic prejudices, combined with concerns for the 
academic job market in the US as a result of immigration, the realization of the 
bene[ ts for American mathematics [ nally prevailed. 9 e emigration of European 
mathematicians had considerable importance for bringing classical European 
background knowledge to the attention of (particularly) American students. As far 
as German-speaking emigration was concerned, these were [ elds such as number 
theory, applied mathematics, and the history of mathematics. Although mathemat-
ics was one of the most important immigration gains for the US, it had to be organ-
ized by private initiatives. Immigrants to the US went mostly to minor institutions 
or to newly built ones which specialized in research rather than in teaching. Public 

23. It is comparable in importance only with the reorientation of mathematics towards applications due to 
the war, both in Germany and abroad, which, in part, was also promoted by emigration. 9 is aspect of ind u-
ence of the Nazi rule and the war could not be discussed in this article.
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recognition or support for mathematics was minimal until the end of the war. It 
was only aN er the war that growing state support for fundamental science in the 
US also contributed to a second wave of emigration from Germany. Some ‘German’ 
traditions in mathematical research were less represented in the emigration and 
became therefore gradually less visible internationally.24 Important members or 
adherents of the ‘Noether school’ of abstract algebra (van der Waerden, Deuring, 
Witt, Hasse, Artin until 1937) remained in Germany, and the internationally 
acclaimed ind uence of the Noether school in the 1930s was exerted at least as much 
by Noether’s American, French, and Polish followers as by the German emigrants, 
who mostly belonged to the Berlin school of Issai Schur.25 Some modern math-
ematical trends of the 1930s which had had their origin partly in Germany (for 
example, the structural method of Bourbaki, see Corry, Chapter 6.4 in this volume) 
had to be re-introduced into Germany aN er the war due to the relative isolation of 
German mathematical culture in that period. For most emigrants, emigration was 
[ nal; very few (Siegel, Artin, Reinhold Baer) returned aN er the war. But personal 
relations between Germans and emigrants such as Courant served to reintroduce 
international trends into German mathematics aN er the war.

Conclusion

9 is chapter had room to address only a few of the problems relating to math-
ematics in the 9 ird Reich. One important aspect in particular, war research 
in mathematics, which has recently been given promising attention (Mehrtens 
1996; Epple/Remmert 2000; Eckert 2006), could not be discussed here for reasons 
of space. But those developments that have been discussed, like the expulsion of 
about one quarter of German mathematicians aN er 1933, or the temporary rise 
of racist theories like ‘Deutsche Mathematik’, were unique events in the history 
of mathematics, as were the monstrous crimes of the Holocaust to which these 
events would partially contribute.

Science and mathematics have changed considerably since the 1930s with 
regard to their degree of professionalization, their social role, and the nature 
of their problems. ‘Little science’ was far more typical in the Nazi period than 
the few beginnings of ‘big science’, in rocket research, physics, and chemistry. 
9 is is paralleled by deep di\ erences between then and now in mathematics, in 

24. For instance, quasi-conformal mappings as in Teichmüller’s work and the Leibnizian tradition of 
logic, represented by Heinrich Scholz.

25. For the Schur School and combinatorial group theory see Chandler and Magnus (1982). Schappacher 
(2006a) argues, from the example of Max Deuring and his pursuit of the arithmetic paradigm of the Hasse 
school, that some modern algebraic research in Germany remained isolated from the mainstream of alge-
braic geometry, which was ind uenced by Italian work on the theory of geometrical correspondences and its 
reception by André Weil and others.
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the divide between the pre-computer age and the modern period of information 
technology. 9 e indisputable fact that the Nazi regime and the ensuing war put 
an end to the ‘German age’ of science and mathematics should rule out simple-
minded analogies to the situation today. However, as this chapter has shown, the 
history of science in National Socialist Germany, and of mathematics in particu-
lar, remains an inexhaustible source for discussion of burning questions about 
the social role of science and mathematics now.

Appendix: research on mathematics in the B ird Reich

9 e following table lists the main themes that have so far been treated, together 
with the most relevant research (in English where it exists) and printed sources 
(memoires of contemporaries). 9 e importance of archival material from univer-
sity, ministerial and institutional [ les,26 from the papers of emigrants (such as 
Richard Courant), emigrant committees (like the Emergency Committee in New 
York City), and foreign mathematicians helping immigrants (such as the Oswald 
Veblen Papers in the Library of Congress in Washington, DC) is of course all 
pervading. 9 e unpublished sources can be identi[ ed from the relevant research 
articles. 9 ere is also useful information in biographical dictionaries such as 
Röder and Strauss (1983) and Tobies (2006).

26. Among the latter are the [ les of the Deutsche Mathematiker-Vereinigung (DMV) ‘German 
Mathematicians’ Association’, which have been accessible only since 1997. 9 ey throw new light, for instance, 
on the expulsions of Jews from the DMV (Remmert 1999; 2004) but were not used by Segal (2003).

Table 9.4.2   

Topic Research Published Sources

Political Coordination 1933 
and later, particularly DMV

Mehrtens 1989a; Remmert 1999; 
2004; Schappacher/Kneser 1990

Behnke 1978; 
9 ullen 2008

Expulsion and emigration Siegmund-Schultze 1998/2008 Pinl 1965; 1969–72; 
Pinl/Dick 1974–76

Emigration and reception 
abroad

Danneberg et al. 1994; Reingold 
1981; Rider 1984; Siegmund-
Schultze 1998/2009; 9 iel 1984

9 ullen 2008; Pinl 
1969/72; Gumbel 
1938

Resistance Litten 1996; 2000 9 ullen 2008; 
9 omsen 1934; 
Perron 1939

Pro[ teers and Nazi activists Hochkirchen 1998; Schappacher/
Scholz 1992; Mehrtens 1987; 
Remmert 1999

Draeger 1941;
Bieberbach 1934
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Table 9.4.2 (Continued)   

Topic Research Published Sources

School mathematics Mehrtens 1989b; Guntermann 
1992; Genuneit 1984; Radatz 1984

Lorey 1938; Dorner 
1935

Mathematics students in 
National Socialism

Segal 1992

Mathematical research dur-
ing 9 ird Reich (with relevant 
information on National 
Socialism)

Chandler/Magnus 1982; 
Hochkirchen 1998; Hoehnke 1986; 
Lemmermeyer/Roquette 2006 

Siegel 1965

Biographical and autobio-
graphical books

Dawson 1997; Ebbinghaus 2007; 
Georgiadou 2004; Litten 2000; 
Menzler-Trott 2007; Bigalke 1988; 
Segal 2003; Reid 1976; Sigmund 
2001

Behnke 1978; 
Fraenkel 1967

Biographical and auto-
biographical articles (only if 
focused on NS)

Segal 1980; 1992; Litten 1996; 
Peckhaus 1994; Remmert 1999; 
Soifer 2004–05; Siegmund-
Schultze 2004; Sigmund 2004

9 ullen 2008; 
Menger 1994

Development of the system of 
publication

Siegmund-Schultze 1993a; Knoche 
1990

International connections, 
congresses

Siegmund-Schultze 2002; 
Schappacher 2006a

Behnke 1978

Industry, including insurance 
mathematics

Tobies 2007; Petzold 1992

War research Mehrtens 1996; Epple and 
Remmert 2000

Occupation, including 
Austria

Dalen 2005; Einhorn 1985; Ulam 
1976; Weil 1992;
Siegmund-Schultze 1986

Mathematics in concentra-
tion camps

Ebert 1998

Post-war policies, de-Nazi[ -
cation, and remigration

Rammer 2002; Litten 1996; 2000 Rudin 1997

Broader perspective, including 
comparison with Fascist Italy

Epple, Karachalios and Remmert 
2005; Guerragio and Nastasi 2005
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