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Foreword and Acknowledgements 

This book has grown out of the long-lasting interaction among researchers 
with heterogeneous skills and sensibilities in the group which promoted WE-
HIA (Workshop on Economies with Heterogeneous Interacting Agents) at the 
University of Ancona in 1996. The success of that initiative has been amaz-
ing. Ten years ago we did not expect so many people from so many countries 
to be so eager to discuss their work. With the benefit of hindsight, we can 
now detect an underground need to compare methodologies, conceptual and 
analytical frameworks in an exciting new field. At present, WEHIA is a well 
established international forum for discussion and cross fertilization of ideas 
on social interaction of heterogeneous agents. 

Our starting point was (and still is) a deep dissatisfaction with the Rep-
resentative Agent approach to macroeconomics and the companion idea that 
agents interact only through an anonymous market signal such as the price 
vector. In our opinion, there must be something wrong with a science which 
encounters embarrassing difficulties in explaining in a convincing way cru-
cial phenomena such as the origin of money, the reasons for unemployment, 
the role of banks - to name only a few - and recurs to calibration of the 
model parameters to fit the empirical evidence. Suffice it to note, en passant, 
that had this practice of scientific discovery been used by astronomers during 
the last five centuries, we would still believe in the Ptolemaic system as the 
guiding principle for spatial explorations. 

Going back to economics, if interactions and aggregations are ruled out 
from the beginning of the analysis, there will be no substantial difference 
between microeconomics and macroeconomics. As any bright student easily 
recognizes, the only remaining difference is that micro is taught on Monday 
and Tuesday and macro on Thursday and Friday (well, Wednesday is devoted 
to econometrics). 

Economists have always been fond of the idea of the invisible hand gov-
erning the efficient allocation resources in a market economy. Alas, the Wal-
rasian Auctioneer, i.e. the metaphor employed to model decentralized decision 
making, implies that equilibrium prices are determined through a centralized 
market clearing mechanism. The Walrasian approach abstracts from the way 
in which real-world transactions take place. By construction, interactions 
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among agents are ruled out with the only exception of the indirect interac-
tion through a clearinghouse institution. 

After years of haunting with scientists exploring complex systems we 
are convinced that direct and/or indirect interaction among heterogeneous 
agents at the microeconomic level is a sufficient condition for macroeconomic 
regularities to emerge. Moreover, the interaction of microeconomic behaviour 
based on rules of thumb of a multitude of dispersed individuals can develop 
into some form of aggregate rationality. The main idea which percolates 
through this book is that aggregate phenomena (i.e. the dynamics of gross 
domestic product, the general price level etc.) cannot often be inferred from 
the behavior of the Representative Agent in market equilibrium continuously 
brought about by the implicit coordination of the Walrasian auctioneer. 

On the contrary, aggregate phenomena emerge spontaneously from the 
interactions of individuals struggling to coordinate their actions on markets: 
macroscopic regularities emerge from microscopic behaviour. In other words, 
aggregate "laws" are due to emergence rather than to microscopic rules. In 
turn, emergent macroeconomic dynamics feeds back on microeconomic be-
havior through a downward causation process, in which economic and social 
structures affect the evolution of opportunities and preferences characterizing 
microeconomic units. 

Mainstream, axiomatic economics is right: the invisible hand is often truly 
invisible. It continues to be out of sight simply because it is of a completely 
different nature than we were used to think so far or it has never been where 
it has been looked for. 

The list of people who deserve our thanks for the help they provided 
during the preparation of this book is very long. We owe a huge intellectual 
debt to Alan Kirman, Joe Stiglitz, and to numerous participants of various 
WEHIA conferences, in primis Masanao Aoki and Thomas Lux, who have 
all been very inspiring. Special thanks to Beppe Grillo, a comedian with 
a penchant for economic analysis whose unorthodox view of the economy 
is surprisingly insightful. The vision outlined in this work has been refined 
in the course of stimulating conversations with many friends, in particular 
Bob Axtell, Xavier Gabaix and Matteo Marsili. It is that all of them are 
still friends even after having paid attention to our thoughts on the issue 
at hand. Of course, we are deeply indebted to many co-authors we had the 
opportunity to work with during the last twenty years or so (Anna Agliari, 
Tiziana Assenza, Tomaso Aste, Stefano Battiston, Carlo Bianchi, Michele 
Catalano, Pasquale Cirillo, Fabio Clementi, Giovanna Devetag, Marco Gal-
legati, Corrado Di Guilmi, Tiziana Di Matteo, Giorgio Fagiolo, Anna Florio, 
Yoshi Fujiwara, Laura Gardini, Bruce Greenwald, Nozomi Kichiji, Roberto 
Leombruni, Riccarda Longaretti, Mauro Napoletano, Paul Ormerod, Barkley 
Rosser, Alberto Russo, Emiliano Santoro, Enrico Scalas, Wataru Souma, 
Roberto Tamborini, Pietro Vagliasindi). All of them should be considered 
accomplices for the outcome you have in front of you. We also thank Simone 
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Alfarano, Gian-Italo Bischi, Buz Brock, Bruno Contini, Guido Fioretti, Cars 
Hommes, Paolo Pin, Peter Richmond, Leigt Testfasion, Richard E. Wagner, 
for their comments to an early version of this book. Comments and sugges-
tions from participants in many conferences and workshops held at several 
Institutes and Universities (Bank of Prance; Bank of Italy; Unicredit Bank, 
Milan; Econophysics meetings at Bali, Canberra, Oxford and Warsaw; ISI 
Foundation, Turin; Lorenz Center, Leiden; Santa Fe Institute; Universities 
of Bielefield, Chieti-Pescara, Durham, Lille, Marseille, Milano "Bicocca", Mi-
lano "Cattolica", Pisa, Rome "La Sapienza", Sapporo, Seattle, Siena, Teramo, 
Tokio "Chuo", Trento, Udine) helped us very much. Finally, financial sup-
port from the MIUR (PRIN03 and FIRB02), the INFIM and the Universita 
Cattolica di Milano, UPM and Trento is gratefully acknowledged. 

The material assembled in this book is the outcome of a long-lasting 
endeavor. Our kids often complained about the time it took away from playing 
with them, asking "when it will be finished?" or firmly stating that they "can't 
stand it any more". We hope these same thoughts will not come to the mind 
of the reader while going through the book. 

DDG, EG, MG, GG, AP 
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1 Crucial Issues 

"Economists study the actions of individuals, 
but study them in relation to social rather than individual life" 

Principles of Economics, A. Marshall 

1.1 Introduction 

The conceptual divide between microeconomics and macroeconomics is usu-
ally associated in textbooks to the different viewpoints from which the econ-
omy is looked at. While the focus of microeconomists is the study of how 
individual consumers, workers and firms behave, macroeconomics deals with 
national totals and, in doing that, any distinction among different goods, mar-
kets and agents is simply ignored. The methodological device to accomplish 
such a task is aggregation, that is the process of summing up market outcomes 
of individual entities to obtain economy-wide totals. However, what macro-
economists typically fail to realize is that the correct procedure of aggregation 
is not a sum whenever there exists interaction of heterogeneous individuals. 
Aggregation is therefore a crucial step: it is when emergence enters the drama. 
With the term emergence we mean the becoming of complex structures aris-
ing from simple individual rules (Smith, 1937; Hayek, 1948; Schelling, 1978). 
The physics taught us that to consider the whole as something more than 
its constitutive parts is a physical phenomena, not only a theory. Empirical 
evidence, as well as experimental tests, shows that aggregation generates reg-
ularities, i.e. quite simple and not hyper-rational individual rules when aggre-
gated becomes well shaped: regularities emerge from individual "chaos". This 
book is a first, modest, step from the economics as an axiomatic discipline 
toward a falsiable science at micro, meso and macro level. It also tries to go 
into the details of economic interactions and their consequences for aggregate 
economic variables. By doing so, we suggest the agent based methodology as 
a framework for sound microfoundations of macroeconomics^. According to 
us, mainstream economics by ignoring interaction and emergence, commits 
what in philosophy is called "fallacy of division", i.e. to attribute properties 

^ For an other very interesting approach, discussing the social interaction frame-
work to derive the evolution of macrovariables, see Brock-Durlauf (2005). 
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to a different level than where the property is observed (game theory offers 
a good case in point with the concept of Nash equilibrium, by assuming that 
social regularities come from the agent level equilibrium). 

In particular, we are interested in applying this perspective to what is 
probably the most important single problem in macroeconomics: the analy-
sis of the business cycle. We will do it in a untraditional way which differs 
from both the mainstream analysis (the impulse-propagation approach) and 
the disequilibrium approach, analyzing the business cycle as the outcome of 
the complex interaction of firms and industries (a procedure reminiscent of 
Schumpeter, 1939) in which small shock and endogenous elements coexist. 
In the physical jargon: individual behavior is at the root of the phenomenon, 
but when we aggregate or analyze the whole system a picture quite different 
from its constitutive elements emerges which allows to ignore the individual 
dynamics. In the following we will show that, even if this methodology is 
correct, we can keep track of the behavior of the aggregate and of the a very 
large quota of the individual firms at a very high confidence level. 

Prom the very beginning of the discipline, the recurrence of upturns and 
downturns of aggregate output has fascinated the profession. In the period 
of time which spans from the end of World War I to the eve of the 21st 
Century, theoretical explanations of the business cycle have been loosely in-
scribed in two main contending methodological approaches. On the one hand, 
there is the so-called impulse-propagation or equilibrium approach, in which 
large exogenous stochastic perturbations are superimposed to a system of 
linear (or suitably linearized) deterministic difference/differential equations 
describing the dynamic relationships between economic variables.^ Since, by 
assumption, the solution of the underlying deterministic system is unique 
and stable, expansions and contractions driven by random disturbances oc-
cur around a stable (general) equilibrium, while fluctuations themselves are 
stationary stochastic processes. There is nothing like a cycle, according to 
this definition but, rather, "recurrent fluctuations of output around trend and 
co-movements among other aggregative time series" (Kydland and Prescott, 
1990). Interestingly enough, such an analytical device has been equally ap-
plied to explanations of the business cycle devised by competing schools of 
thought, suffice it here to cite the monetarist model of Lucas (1975), the real 
business cycle model of Kydland and Prescott (1982), or the New Keynesian 
model of Taylor (1980). 

At the other end of the methodological spectrum one can find the en-
dogenous approach to business cycles. This class of models, of which the 
most prominent ones are those by Kaldor (1940) and Goodwin (1967), does 
not rely on some external shock to account for business cycle phenomena. In-
stead, cycles are conceived of as self-sustained oscillations, a result obtained 

^ The idea of explaining the mathematical nature of business fluctuations in terms 
of a combination of deterministic and stochastic components can be traced back 
to the work of Prisch (1933) and Slutzky (1937). 
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by exploiting the disequilibrium and non-linear relationships among economic 
aggregates. Prom an empirical point of view, this approach resemblaces the 
old NBER view, according to which: "the business cycle [... ] consists of ex-
pansions occurring at about the same time in many economic activities, fol-
lowed by similairly general recessions, contractions, and revivals which merge 
into the expansion phase of the next cyxle" (Burns and Mitchell, 1946). They 
add that the movement, although recurrent, is not periodic, lasting from 1 to 
12 years, and it is not divisible into shorter cycles. 

Of course, both approaches are not free from limits and inconsistencies. 
In spite of the equilibrium approach having nowadays became the workhorse 
of modern macroeconomics, for example, their users still find enormous dif-
ficulties in explaining why small shocks produce large fluctuations. A well-
known argument in multi-sector real business cycle models (see e.g. Long 
and Plosser, 1983) is that as the number of sectors or industries considered 
in the analysis becomes large, aggregate volatility must tend to zero very 
quickly. This result, which follows directly from the Law of Large Numbers 
(LLN), rests on the hypothesis that each sector is periodically buffeted with 
idiosyncratic, identically and independently distributed shocks to Total Fac-
tor Productivity (TFP). As negative and positive shocks tend to cancel out, 
in an economy consisting of Â  sectors - each one of approximately size 1/N 
of GDP - aggregate volatility must converge to zero at a rate A/"̂ /̂  (Lucas, 
1981). Furthermore, under rather general conditions, such a curse of dimen-
sionality is so compelling to offset any shock-propagation effects due to factor 
demand linkages among industries (Dupor, 1999). Hence, for a multi-sector 
neoclassical business cycle model to be able to replicate aggregate fluctua-
tions with a degree of volatility in line with that observed in real data, one 
has necessarily to appeal to aggregate shocks (but the empirical evidence 
seems to rejects this hypothesis). 

The disequilibrium approach, in turn, shares with its competing mate 
the major limitation of being completely time reversible. In such a case, the 
Laplace demon would be able to predict the future (or to re-construct the 
history) of a system by simply knowing the exact actual conditions. If such 
a hypothesis is accepted, then historical time is out of the game and reversibil-
ity (or time reversal symmetry^ as the physicists define it) follows directly. 

However, it seems to us that the most severe drawback of both approaches, 
and in turn of modern theorizing about macroeconomic fluctuations (growth 
theory, aggregate consumption, aggregate investment, and so on) as a whole, 
relates to the unsolved issue of the exact relationship between statements 
at the microeconomic level in terms of behavioral rules and aggregate cate-
gories, like income, expenditure or savings. The two issues at stake are, on 
the one hand, how to address the remarkable and persistent heterogeneity 
among individual economic entities, and, on the other hand, the fact that in 
real-world situations agents do not take their decisions in isolation but are 
influenced by the network of social affiliations whom they belong to. 
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1.2 Aggregate Among Peers — If You Please 

Mainstream economics is based on reductionism^ i.e. the practice of scientific 
discovery at the root of classical physics. On the one hand, the ceteris paribus 
method developed by Marshall reflects the idea of a physical world which 
can be suitably described by a dynamical system capturing some features 
of nature in isolation, and an environment which affects the object of study 
only by means of perturbations. On the other hand, economists generally 
accept that structures at an aggregate level can be deduced and predicted 
just by looking at the individual components of the system. The key principle 
which has guided neoclassical economics since its inception is the restricted 
idea of equilibrium as developed in rational mechanics (Mirowski, 1989), in 
particular in its static version attributed to Archimedes (McCauley, 2004). As 
should become clear, such a methodology of scientific advancement is likely 
to be successful in economics only if: a) the functional relationships among 
variables are linear, and b) there is no direct interaction among economic 
units. 

If one "translates" these 2 conditions into economic terms, she actually 
assumes a very particular nature of the economic system: i) all the n-agents 
are connected to a single coordinating individual, an auctioneer or a planner; 
ii) all the information is freely mediated by this guy. In the most extreme 
case, any individual strategy is excluded and agents have to be uniform. Small 
departures from perfect information open up the chance of having direct links, 
thus changing the economic network and therefore violating conditions a-b). 

Refusal of conditions a) and b) are the two minimum requirements to 
define a complex system. What characterizes complex system is the notion 
of emergence, that is the spontaneous formation of self-organized structures 
at different layers of a hierarchical system configuration (Crutchfield, 1994). 

Since economies are complex systems and non-linearities are pervasive, 
mainstream economics generally adopts the trick of linearizing functional re-
lationships. Moreover agents are supposed to be all alike and not to interact. 
Therefore, any economic system can be conceptualized as consisting of several 
identical and isolated components, each one being a copy of a Representa-
tive Agent (RA). The aggregate solution can thus be obtained by means of 
a simple "N-replication" of the choices made by each optimizing agent. 

The RA device, of course, is a way of avoiding the problem of aggrega-
tion by eliminating heterogeneity and, in some situations, such a simplifi-
cation may capture real world qualitative features. But heterogeneity is still 
there. If the macroeconomist takes it seriously, he/she has to derive aggregate 
quantities and their relationships from the analysis of the micro-behaviour 
of different agents. This is exactly the key point of the aggregation prob-
lem: starting from the micro-equations describing/representing the (optimal) 
choices of the economic units, what can we say about the macro-equations! 
Do they have the same functional form of the micro-equations (the analogy 
principle)! If not, how to derive the macro-theory? 
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The aggregation problem in macroeconomics has a long history. Since 
Gorman (1953) it is well known that the conditions for exact aggregation 
are stringent and almost never satisfied. Stoker has gone so far as to propose 
a methodology for stochastic aggregation. Aoki (1996, 1998) has put forward 
a combinatorial method. These efforts are welcome but the science (or the 
art?) of aggregation is still in its infancy. 

1.3 Robinson Crusoe Meets Friday 

A distinctive feature of the (nowadays mainstream) neoclassical school of 
thought is the chase for sound microfoundations for macroeconomic analysis, 
as a methodological overtaking of the Keynesian approach centred on aggre-
gate categories. Conceptually, a description of how this endeavour has been 
substantiated in theoretical modelling requires two steps. The first one con-
sists in assuming that all " [ . . . ] relative prices are determined by the solution 
of a system of Walrasian equation^^ (Friedman, 1968, p. 3), in order to apply 
such a framework with brute force to a macroeconomic problem. No atten-
tion is paid to the well-known fact that the Walrasian general equilibrium 
model does not guarantee either the stability or the uniqueness of the general 
equilibrium itself (Kirman, 1989) or to who does change the price in a per-
fect competition setting (Arrow, 1959). The second step derives consequently 
from the first one, and we find no better way to express it than to recur to 
the following quotation from Plosser (1989, p. 55): 

''How does one think about the competitive equilibrium prices and 
quantities that are implied by this framework? The first step is to rec-
ognize that all individuals are alike, thus it is easy to imagine a repre-
sentative agent, Robinson Crusoe, and ask how his optimal choices of 
consumption, work effort and investment evolve over time. [... ] (W)e 
can interpret the utility maximizing choices of consumption, invest-
ment and work effort by Robinson Crusoe as the per capita outcomes 
of a competitive economy''\ 

No caveats! The simplifying hypothesis of a RA might be far too simplify-
ing, but it is instrumental for greed, rationality and equilibrium to be the 
only necessary and sufficient conditions for scientific macroeconomic theory. 
Standard economics is not falsifable since it became an axiomatic discipline. 

Admittedly, some dissenting voices urging towards an analysis of how 
social relations affect the allocation of resources resounded loudly from the 
start even in the rooms of the neoclassical citadel (e.g., Leibenstein, 1950; 
Arrow, 1971; Pollack, 1975). They went almost completely unheard, however, 
until the upsurge in the early 1990s of a brand new body of work aimed at 
understanding and modeling the social context of economic decisions, usually 
labeled new social economics or social interaction economics (Durlauf and 
Young, 2001). 
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The key idea consists in recognizing that the social relations in which in-
dividual economic agents are embedded can have a large impact on economic 
decisions. In fact, the social context impacts on individual economic deci-
sions through several mechanisms. First, social norms, cultural processes and 
socio-economic institutions may influence motivations, values, tastes and, ul-
timately, make preferences endogenous (Bowles, 1998). Second, even if we ad-
mit that individuals are endowed with exogenously-given preferences, the per-
vasiveness of information asymmetries in real-world economies implies that 
economic agents voluntarily share values, notions of acceptable behavior and 
socially-based enforcement mechanisms in order to reduce uncertainty and 
favor coordination (Denzau and North, 1994). Third, the welfare of individu-
als may depend on some social characteristics like honor, popularity, stigma 
or status (Cole et a/., 1992). Finally, interactions not mediated by enforceable 
contracts may occur because of pure technological externalities in network in-
dustries (Shy, 2001) or indirect effects transmitted through prices (pecuniary 
externalities) in non-competitive markets (Blanchard and Kyiotaki, 1987), 
which may lead to coordination failures due to strategic complementarities 
(Cooper, 1999). 

A useful operational classification of the channels through which the ac-
tions of one agent may affect those of other agents within a reference group 
is given by Manski (2000), who distinguish among: i) constraint interactions: 
the decision to buy or sell by one agent influences the price of the good, thus 
affecting the feasible choice set of other individuals; ii) expectations inter-
actions: asymmetric information on markets means that one agent forming 
expectations of the future course of relevant variables may try to augment 
his/her information set by observing the actions chosen by others {observa-
tional learning), under the assumption that this could reveal private infor-
mation; iii) preference interactions: the preference ordering over the choice 
set of one agent depends directly on the actions chosen by other agents. 

Models of social interactions are generally able to produce several inter-
esting properties, such as multiple equilibria, when the social component of 
utility (e.g., the social pressure to conform to the average education level) 
is higher than the private one (e.g., private expected return to education) 
(Brock and Durlauf, 2001); non-ergodicity due to the path-dependency fea-
ture of the statistical equilibrium and phase transition, that is the passage 
from a state of multiplicity of equilibria to one of uniqueness, at a critical 
threshold ratio between private and social utility (Durlauf, 1993); a tendency 
toward equilibrium stratification in social and/or spatial dimension (Benabou, 
1996; Glaeser et al, 1996); and finally the existence of a social multiplier of 
behaviors (Glaeser et al, 2002). 

The stage is now complete for presenting the main message in this book: 
heterogeneity matters, interactions amplify its role in shaping aggregate re-
sponses and the economic regularities emerge from the interaction of hetero-
geneous agents. Interaction and adjustment involve dynamics at the Individ-
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ual level and, as Axtell (2001) shows, is not a fixed point (it is complex). 
Macroscopic regularities emerge from the interactions of the agents: micro-
equilibrium is sufficient to have macroequilbrium, but it is not necessary at 
agent based level, where there are fluctuations, continuous adaptation and 
adjustement to one another: here is the room for computation, or the agent 
based modeling we develop in Chap. 3. 

1.4 Complexity 

Complexity is a complex word: It has a lot of heterogeneous interacting mean-
ings. For simplicity, we can focus on two (among many) ways in which the 
qualifier "complex" has shown up in economics. In the literature of the '80s, 
it has been associated with dynamics: The expression complex dynamics has 
been often used as a synonym of chaos or chaotic dynamics. As such it has 
been essentially applied to the evolution over time of macro variables. Chaotic 
motion, in fact, is characterized by the simultaneous properties of local in-
stability and global stability that is so attractive for business cycle theorists. 
Since Goodwin and the introduction of limit cycles in macroeconomics, in 
fact, the idea of the macroeconomy being locally repelled by an unstable 
state and globally converging to a cycle has been an intriguing feature of 
macrodynamics. 

Limit cycles, however, are "too regular". Chaotic dynamical structures are 
even more appropriate for business cycle analysis because of the deterministic 
unpredictability of the time series they generate. There are plenty of models 
in this line of research (a pioneer in this field is R. Day, see, e.g. Day, 1994). 
Most of these models are aggregative in nature: By construction, they do not 
deal with the microeconomic components or determinants of macrovariables. 
In any case there is not much refiection in this literature on the relationship 
between individual and macroeconomic behaviour. Attention is paid mainly 
to the "irregular" (complex) - i.e. aperiodic and asymmetric - dynamics of 
the time series generated by sometimes very simple non linear mathematical 
structures, which are observationally equivalent to those generated by a linear 
structure continuously aflPected by stochastic disturbances. 

This line of research is still active but somehow less thriving. There are 
many reasons for this. First: Results are not robust for deterministic sys-
tems^. Very small changes in the parameters yield huge qualitative changes 
in the properties of the dynamics generated by these models. Second: even 
though chaotic regions may have positive Lebesgue measure in the parameter 
space, complex dynamics occur often for particular, generally small, intervals 
of the parameters of interest. Third: From the empirical point of view, it is 

^ If we add noise to the system then there may be "robust features" determined 
by the underlying invariant measure such as the autocorrelation pattern of noisy 
chaotic time series (as an example see Hommes, 1996). 
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extremely difficult to find traces of complex deterministic dynamics in the 
macroeconomic time series. The econometric tests developed to suit this pur-
pose, such as the BDS test, are only capable to discern non-linearity in the 
structure of the economy but do not detect the particular type of non-linearity 
which is necessary for chaotic dynamics^. 

With the passing of time, the meaning has slowly shifted so that the quali-
fier complex is now usually associated with the working of economic structures 
with heterogeneous interacting agents. The so-called science of complexity, 
which has grown out of the joint efforts of hard and soft scientists in the 
'80s and '90s, in fact, claims that there are common properties of complex 
systems which are the object of study in many different fields such as the cell, 
the brain, language, the capitalist market economy. The focus therefore has 
moved from the macro to the micro level. Macroeconomic variables can be 
reconstructed by summing up individual magnitudes (bottom up procedure). 
Complex structures consisting of heterogeneous interacting agents generate 
complex dynamics also of the macrovariables (a case in point is the model of 
Chap. 3). 

Complex economic structures are usually associated with adaptive agents 
so that they are often referred to in the literature as Complex Adaptive 
Systems. The pre-analytic vision of a complex market economy, in fact, is 
centered upon agents endowed with limited information and computational 
capability (bounded rationality) so that they adopt rules of thumb (instead of 
optimization procedures) and are naturally led to interact with other agents 
to access information, learn and imitate. In this sense, complexity goes hand 
in hand with evolutionary dynamics and direct interaction among agents. 
Complex structures, however, can emerge even when agents are rational, i.e. 
they maximize an objective function subject to constraints and interaction is 
only indirect (once again a case in point is the model in Chap. 3). 

Sometimes complexity applied to economics overlaps with econophysics. 
The underlying methodological assumption of econophysics is that, even if 
economics is a social science and has to deal with incentives and human 
decisions the aggregate behaviour can be described by models of statistical 
physics. Collective behaviour is the outcome of the interaction of many het-
erogeneous individuals in ways which recall the interaction of particles in 
statistical mechanics. Recent works in econonophysics has focused mainly on 
three issues: the analysis of the time series of Stock prices, exchange rates and 
goods prices; the evolution over time of the distribution of firms' size, indi-
vidual wealth and income; the exploration of economic phenomena by means 
of networks. In this book we contribute to the second strand of literature. 

^ In case of "chaos plus noise" a recent literature do not reject the possibility of 
chaos buffered by small dynamic noise (see Hommes-Manzan, 2006). 
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1.5 Outline of the Book 

In this book we explore the consequences of heterogeneity of firms' size and 
degree of financial fragility in a financial accelerator model along the lines 
of Greenwald and Stiglitz (1993). The presence of imperfect information has 
several important consequences in the modeling strategy. First of all, agents 
have to be heterogeneous, since the access to different informative sets dis-
criminate among them. Then, agents are ex-post bounded rational, since 
their constrained information prevent them to be in a Pareto efficient, even 
if sub-optimal, equilibrium position (Greenwald and Stiglitz, 1990). Finally, 
if agents are heterogeneous they interact outside the price system while time 
becomes important since future is uncertain. A decision to produce today will 
affect the future because of debt commitment (which depends on the firm's 
past decision as well from the behavior of the other firms) is a crucial issue 
for the future profits. A financially fragile framework should encompass it. 

Before going into the detail of the model, in Chaps. 2 and 3 we present and 
discuss the empirical evidence on the evolution over time of the distribution 
of relevant industrial variables. In Chap. 4, we explore the link between the 
distributions of firms' size and rate of growth, showing that the power law 
distribution of firms' size may be at the root of the fat-tail distribution (often 
approximated, over a relevant subset of the support, by a double exponential 
or Laplace-type distribution) of the growth rates. Our main claim is that the 
evolution over time of these distributions is of central importance not only 
in industrial organization but also in business cycle analysis. 

In Chap. 4 we also present the model. In our approach, the origin of fluc-
tuations can be traced back to the everchanging configuration of the network 
of heterogeneous firms. A major role in shaping dynamics is played by finan-
cial variables. In the absence of forward markets, the structure of sequential 
timing in our economy implies that agents have to rely on credit to bridge 
the gap between decision and realization. Highly leveraged - i.e. financially 
fragile - firms, are exposed to the risk of default. When bankruptcies occur, 
non performing loans affect the net worth of the banking system, which reacts 
reducing the supply of credit. Shrinking credit supply makes interest rates go 
up for each and every firm increasing the risk of bankruptcy economy wide. 
A snowball effect consisting in an avalanche of bankruptcies can follow. 

Chapter 5 is devoted to the discussion of further issues in this line of 
research. It concludes the book but is not a conclusion at all. The research 
project we would like to carry out is still in its inflacy. The present book 
cover a non negligible but still short distance in what we think is the right 
direction. 



2 Stylized Facts of Industrial Dynamics: 
The Distribution of Firms' Size 

2.1 Introduction 

Economists interested in business cycle and growth theory have long been 
trained to the use of stylized facts as a practical guide in implementing their 
research agenda, as the pioneering accounts of Burns and Mitchell (1946) and 
Kaldor (1963) testify. The advent of the neo-classical counter-revolution in 
the late 1960s, rooted in what Robert Solow dubbed the holy trinity of Ra-
tionality, Equilibrium and Greed, has somehow inverted the logic of scientific 
discovery in economics. The first step in nowadays orthodox macroeconomics 
consists in building a model of microeconomic behavior based on axiomatic 
descriptions of preferences and technology. Afterwards, the model is solved 
via the representative agent and taken to the data. Alas, as shown inter alia 
in Caballero (1992) and Kirman (1992), the falsifiability of the model may 
be fatally prevented due to a fallacy of composition, that is the presumption 
that what is true of each single part of a whole is necessarily true of the whole 
as well. In particular, the straight application of a microeconomic rationale to 
aggregate data can be seriously misleading whenever the probabilistic forces 
at work as the number of entities grow large, i.e. the Central Limit Theorem, 
the Law of Large Number or any of their extensions, are not properly taken 
into account. 

A proper methodology to tackle these issues consists of two pillars. First, 
empirical laws at a macroeconomic level should be expressed in terms of sta-
tistical distributions, such as the distribution of people according to their in-
come or wealth, or the distribution of firms according to their size or growth 
rate (Steindl, 1965). A great deal of useful information and several addi-
tional questions waiting for a scientific explanation can be derived by looking 
at such empirical distributions and their invariant, or long-term, character 
as the cumulated responses of individual entities concerning their choices of 
labor supply, investment demand, pricing, and so on. Second, suitable model-
ing strategies should be adopted, that is explanatory methodologies capable 
to combine a proper analysis of the behavioral characteristics of individual 
agents and the aggregate properties of social and economic structures (Sun-
der, 2006). 

Anecdotic and econometric evidence largely confirm the coexistence of 
firms and households characterized by non negligible and persistent hetero-
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geneity along several dimensions (Haltiwanger, 1997; Diaz-Gimenez et al, 
1997). For example, it is well known at least since Gibrat (1931) that the 
size distribution of firms is right skewed for several different countries and 
historical periods (De Wit, 2005). A more recent stylized fact on firm dy-
namics concerns the distribution of firms' growth rates, which appears to be 
approximated by a Laplace (double-exponential) distribution (Amaral et al, 
1997; Bottazzi et a/., 2002). Finally, earnings, income and wealth are well-
known to be highly concentrated over households, regardless of the measure 
of concentration, i.e. the Gini coefficient, the coefficient of variation or the 
inter-quartile ratio (Diaz-Gimenez, 1997). What is missing is an analysis of 
the interrelationships between heterogeneity, its change and macroeconomic 
dynamics both in terms of business fiuctnations and long-run growth. 

In what follows we will add some new evidence on the shape of the 
distribution of heterogeneous firms and households, making use of several 
databases. In particular, we will focus on four issues: i) the shape of the long-
run firms' size and growth rate distribution (Sect. 2.2); ii) the distribution of 
firms as they exit the market (Chap. 3); iii) the heterogeneity of productiv-
ity over firms, and of income over households; iv) the distributional features 
of business cycle phases. The last point is a first attempt to close the gap 
between micro and macro emphasized above. 

2.2 Pareto, Gibrat, Laplace: The Statistical Analysis 
of Industrial Dynamics 

The distribution of firms' size is empirically approximated by a Zipf or power 
law. A well known object mainly in physics and biology, the power law distri-
bution has been originally derived more than a hundred years ago by Vilfredo 
Pareto, who argued that the distribution of personal incomes above a certain 
threshold follows a heavy-tailed distribution (Pareto, 1897). This fact baffled 
scholars since the Central Limit Theorem implies that the income distribu-
tion should be lognormal under the reasonable assumption that the rates of 
growth of income brackets are only moderately correlated. 

A similar conundrum recurred again about 30 years later in industrial 
economics, due to the pioneering work of Gibrat who put forward the Law of 
Proportional Effects or GihraVs Law (Gibrat, 1931). According to Gibrat's 
law in weak form, the growth rate of each firm is independent of its size. If 
the law of proportional effect is true, the distribution of firms' size will be 
right skewed. Gibrat went even further, arguing that, if the rates of growth 
are only moderately correlated, such distribution will be a member of the 
log-normal family (Gibrat's law in strong form). 

In a nutshell, the size (measured by output, the capital stock or the num-
ber of employed workers) of the z-th firm KIT in period T is defined as 
KiT = KiT-i{l -\- gir), where QIT is the rate of growth. Taking the log of 
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both sides and solving back recursively from time 0 size Kio, it is straight-
forward to obtain^ log Kir = ^t=i 9'^t "̂  log^io- Assuming that the growth 
rates are identically independently distributed, the distribution of the log 
of firms' size tends asymptotically - i.e. for t approaching infinity - to the 
lognormal distribution. The reason is that under the central limit theorems 
assumptions one would expect that X]t=i 9^i tends to be normal. 

Recent research has shed several doubts, however, both on the true nature 
of this stylized fact, and on its explanation. Prom a theoretical perspective, for 
example, it has been argued that stories based on pure random processes have 
too little economic content to be acceptable (Sutton, 1999). The empirical 
literature, on its part, has shown that attempts to make generalizations on 
the shape of size distributions for firms have generally failed (Schmalensee, 
1989). 

As a matter of example, in recent work Robert L. Axtell (2001) disputes 
the finding of log-normality for the size distribution of U.S. firms reported in 
Stanley et al (1995), claiming that correct results should be expected only af-
ter recognizing the right proxy for firm sizes, and after adopting a sufficiently 
large sample. In particular, he finds that a Zipf or power law (or Pareto) 
distribution returns a good fit to the empirical one, and that the scaling ex-
ponent is strikingly close to 1 over time, a result which is partly consistent 
with early findings reported in Ijiri and Simon (1977).^ Moreover, Stanley 
et al. (1996) and Amaral et al. (1997) have found that the growth rate of 
firms' output is better approximated by a Laplace distribution compared to 
a normal distribution. 

To explain these facts, the literature has followed two lines of research. 
The first one is a-theoretical and focuses only on the statistical properties of 
the link between the distribution of the state variable (firms' size) and that 
of the rates of change. For instance. Reed (2001) shows that independent 
rates of change do not generate a lognormal distribution of firms' size if 
the time of observation of firms' variables is not deterministic but is itself 
a random variable following approximately an exponential distribution. In 
this case, even if Gibrat's law holds at the individual level, firms' variables 
will converge to a double Pareto distribution. 

The second line of research - to which the model described in Chap. 4 
belongs - stresses the importance of non-price interactions among firms hit 
by multiplicative shocks, hence building on the framework put forward by 

^ Taking the logarithm on both side and using the fact that log(l + f̂) is equal to 
g -\- o{g) when g is small. 

^ To be precise, Zipf's law is the discrete counterpart of the Pareto continuous 
distribution (power law). It links the probability to observe the dimension of 
a social or natural phenomenon (firms' size, cities, earthquakes, words in a text, 
etc.) with rank greater than, say, K, to the complementary cumulative frequency. 
In case of firms' size the scale parameter is equal to 1. In words: the probability 
that the i-th firm has size Kit greater of equal to a certain level k is equal to 
1/k. In symbols: Pr{Kit > n) oc K~^. 
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Herbert Simon and his co-authors during the 1950s and '60s (Ijiri and Simon, 
1977). As a matter of example, Bottazzi and Secchi (2003) obtain a Laplace 
distribution of firms' growth rates within Simon's model, just relaxing the 
assumption of independence of firms' growth rates. In their model, using 
a finite linear Polya urn, they assume that if firm i had in the past k times 
opportunity to growth compared to firm j , than firm i has in the next period 
k times the probability of firm j to get a new opportunity to growth. 

In principle these results can induce the reader to reject the strong version 
of Gibrat's law. After all, this law claims that the distribution of the levels 
(firms' size) is lognormal while the empirical analysis points to Zipf's law 
and the distribution of growth rates seems to be Laplace. As a matter of fact, 
things are not that simple. The idea according to which Gibrat's law has to be 
fully discarded is wrong, since in the recent literature a weak version seems to 
hold, in which growth rates seem to be independent at least in mean. In fact, 
Lee et al, (1998) show that the variance of growth rates depends negatively 
on firm's size. The implications of the strong version of Gibrat's law are not 
necessarily true in the weak version. 

Critics to the scaling empirical evidence can be found in Quandt (1966) 
and Kwoka (1982) since they found systematic departures from the power 
law distribution at the sector level. A recent work shows that these findings 
(power law at the aggregate level and a plethora of distributions at the sector 
one) are consistent if firms' growth is characterized by common components 
(Axtell et al, 2006). 

2.3 Unconditional Firms' Size Distribution 
for Pooled International Data 

Axtell (2001) puts forward the testable conjecture that the Zipf distribution 
may be the best fit of the empirical distribution of firms' size not only in the 
U.S. but also in other countries and calls for new evidence to be gathered 
and explored by means of alternative data-sets. 

The evidence available so far on Axtell's conjecture is mixed.^ Thus, it 
seems worthwhile to further extend the empirical analysis on cross-country 
samples, in order to test Axtell's null hypothesis of a Zipf distribution for 
firms' size outside the U.S., against the alternatives of a power law with 
scaling exponent different from 1 on the one hand, or of a log-normal distri-
bution, on the other hand. First of all we analyze company account data 
extracted from the commercially available Datastream International (DI) 
data-set, which reports annual time series of company accounts for a sam-
ple of quoted companies. We focus on non-financial firms located in the G7 
countries over the 1987-2000 time span. 

^ See, for example, Takayasu and Okuyama (1998), Voit (2000) and Knudsen 
(2001). 
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For the sake of pooling consistency, several selection criteria have been 
applied sequentially to obtain the final sample used for estimation. First, we 
removed from the sample firms with missing data points. Second, in order to 
control for the impact of major mergers and acquisitions, we excluded firms 
whose capital stock had changed by a factor of two or more from any one year 
to the next. Third, to avoid biased estimates due to outliers we removed firms 
with data points outside a conventional three standard deviations confidence 
band for any of the variables of interest. 

Thus, the resulting panel is unbalanced both because there is a different 
number of observations for different firms, and because these observations 
may correspond to different points in time. The number of firms is 126 for 
Canada (1099 observations), 178 for France (1415 observations), 176 for Ger-
many (1378 observations), 84 for Italy (460 observations), 748 for Japan 
(7416 observations), 376 for UK (3467 observations) and 682 for USA (6829 
observations). 

The variables we employed are total sales, y, total capital employed, /c, and 
total debt, d. The last variable is not a conventional size variable. It seems 
however to be generally highly correlated with firms' dimension, so that we 
used it as an additional proxy for size. In order to pool all the countries 
together, we standardized all the variables by dividing them for their mean, 
so that one obtains quantities which are independent of the different account 
standards adopted in the G7 countries. 

Roughly speaking, a discrete random variable Z is said to follow a Pareto-
Levy (also known as Rank-Size or power law) distribution, if its complemen-
tary cumulative distribution function takes the form: 

Pv[Z>Zi]=(^y (2.1) 

with Zi > ZQ. The scaling exponent a > 0 is also known as the shape param-
eter, while ZQ (the minimum size) is the scale parameter. On a log-log space, 
this distribution yields a downward sloping straight line with slope —a. The 
special case a = 1 is known as Zipf's Law. 

In panels a) to c) of Fig. 2.1, we present the log-log plot of the frequency 
distribution of firms' size^ for firms' real sales, total capital and debt, re-
spectively. The interpolating line, which informs us on the goodness of fit of 
a Power Law distribution, has been determined by means of the following 
OLS regression: 

\n{f{Si)) = a-{a + l)ln{Si), (2.2) 

where Si stands for firms' size, and f{Si) is the correspondent frequency, with 
i = y,k,d. 

^ The graph are computed using simple histograms. In order to avoid the bias 
caused by the small number of observations in the right tail, only frequencies 
bigger than 0.05% are displayed. 
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a Total sales 

b Total capital 

c Total dept 

F ig . 2 . 1 . Zipf plots of total sales (y), total capital employed (k) and total loan 
capital (d). The two dashed lines identify the 95% confidence interval for predictions 
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The point estimates of a are equal to 0.96 (34.53) for sales, to 1.16 (46.27) 
for capital, and to 1.14 (35.32) for debt, where figures in brackets represent 
t-values^. The goodness of fit is in any case truly remarkable, with values for 
adjusted R'^ equal to 0.979, 0.988 and 0.978, respectively. 

Notice that only when the size is measured by total sales our findings 
are fully consistent with those in Axtell (2001) for the U.S., where size is 
measured in turn as the number of employees per firm. In fact, in this case 
the null hypothesis that the size distribution is Zipf, that is that the "true" 
a is 1, could not be rejected as the estimate returns a value which lays in 
a one standard deviation confidence band. If size is measured by means of 
capital or debt, instead, the distribution appears to be less even-sized than 
predicted by the Zipf Law. 

2.4 The Size Distribution of Firms Conditional 
on the Business Cycle 

As argued extensively in Brock (1999), the good linear fit of a distribution 
in the log-log space should be interpreted with great care, since these dis-
tributions are unconditional objects and many conditional data generating 
processes (DGPs) are consistent with them. Thus, in order to refine the evi-
dence in a way which could be suitably used to discipline theory we condition 
the processes under scrutiny on business cycle episodes. 

In other terms, we are interested in assessing whether the statistical mod-
els driving firms' growth change from upturns to downturns or, in other 
terms, whether firms long-run growth processes are influenced by short-run 
fluctuations. 

To analyze this issue, we applied the Hodrick-Prescott (HP) filter^ to the 
time series of the industrial production index for each country in order to 
detect country-specific recessions and recoveries. Recessions (recoveries) are 
then defined as the period between a peak (trough) and a trough (peak) in de-
trended industrial production, where a peak is the year before the de-trended 
index turned negative, and a trough as the year before it turned positive. 
Table 2.1 reports the ratio - which we label ry - of the estimated conditional 
mean of y calculated for recoveries to the estimated conditional mean of 
the same variable for recessions. The labels rd and rk are self-explaining. 
Moreover, in the same table we report the ratio - which we label ra{y) - of 
the standard deviation of y for recoveries to the standard deviation of the 
same variable for recessions. The labels ra{d) and ra{k) are self-explaining. 

^ Of course, t-values are referred to the "reduced form" parameter (a + 1). 
^ Prom a technical viewpoint, the HP is a low-pass filter. Hence, the cyclical compo-

nent is obtained by subtracting from the raw series the filtered one. The smooth-
ing parameter A has been tuned at the value 100 for annual data. See Hodrick 
and Prescott (1997), 
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Table 2.1 . Percentage ratio ri (i — y,d,k) of the estimated conditional mean 
of variable i in recoveries to the estimated conditional mean of the same variable 
in recessions and percentage ratio ra{i) of the standard deviation of variable i in 
recoveries to the standard deviation of the same variable in recessions 

Country 

Canada 
France 
Germany 
Italy 
Japan 
UK 
USA 
Joint test 

ry 

-4 .3 
18.2* 
10.5 
13.6 

1.0 
17.3* 
28.1** 
18.66** 

ra{y) 

-12.6 
29.6** 
16.3** 
14.3* 
2.3 

18.2** 
27.3** 

220.36** 

rd 

1.7 
27.1* 
11.5 
19.2 

-6 .2 
43.4** 
26.0* 
20.215** 

ra{d) 

- 0 . 5 
61.2** 

4.7 
22.1** 

- 2 . 3 
56.1** 
32.4** 

543.25** 

rk 

-10.9 
26.2** 

9.1 
14.9 

- 2 . 1 
28.9* 
30.1** 
20.451** 

ra{k) 

-26 .7 
57.6** 
10.7** 
14.8* 
0.4 

109.1** 
42.5** 

1128.3** 

* denotes rejection of the null of no difference between expansion and recession vs. 
the alternative of bigger values in expansion, at the 5% significance level. 

** denotes rejection of the null of no difference between expansion and recession vs. 
the alternative of bigger values in expansion, at the 1% significance level. 

In other words, what these numbers say is how big are the above mentioned 
descriptive statistics in expansions relative to t he magni tude they assume in 
recessions. 

All t he countries, with the exceptions of C a n a d a (for sales and capital) and 
J a p a n (for debt and capital) , present a common pa t t e rn : bo th the mean and 
t h e s t anda rd deviation of firms' size are bigger dur ing expansions.^ This effect 
is par t icular ly important in the U.K. and the U.S. In the former country bo th 
t h e mean and the s tandard deviation of d increase of about 50% on average 
dur ing expansions, while the s tandard deviat ion of k doubles. In the U.S. the 
huge increase in to ta l sales during expansions suggests the presence of some 
kind of leverage effect. Overall, these figures suggest t h a t there are significant 
changes in firms' distribution during the different phases of the business cycle. 
Indeed, as reported in the last row of Table 2.1 a x^ test dis t r ibuted wi th 
7 degrees of freedom rejects the null of no differences at the 1% significance 
level for the mean of each variable and its s t anda rd deviation. 

In spite of this variability, it is par t icular ly interesting to note from panels 
a) to c) of Fig. 2.2 t h a t a power law scaling behavior emerges as an invari-
an t feature of the size distribution of firms, regardless of the proxy used 
t o measure size or of the phase of t he business cycle used to condition the 
dis t r ibut ion. 

Point est imates are reported in Table 2.2, from which it is clear t ha t the 
linear fit is very good, but t ha t only in two cases the conjecture of a Zipf 
dis t r ibut ion can not be rejected, namely for to ta l sales during expansions 

^ As a matter of fact, the ratios for Canada and Japan result always statistically 
non-significant. 
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Table 2.2. Estimated scaling parameters and goodness of fit for linear log-log 
regressions. Numbers into brackets are t-values 

y 
k 
d 

Expansions 
a 

0.97 (28.25) 
1.18 (31.82) 
0.84 (34.00) 

i?2 

0.971 
0.984 
0.982 

Recessions 
a 

0.81 (30.90) 
1.04 (27.43) 
0.73 (23.58) 

R? 

0.972 
0.965 
0.970 

a Total sales distribution during expansions and contractions 

b Total capital distributions during expansions and contractions 

c Total debt distribution during expansions and contractions 

Fig. 2.2. Zipf plots of total sales (a), of total capital employed (b) and of loan 
capital (c), conditioned on expansions (E) and recessions (R) 
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and for total capital employed during recessions. Furthermore, the scaling 
exponent for the unconditional distribution seem to be a weighted average of 
the conditioned scaling exponents in expansions and recessions when firms' 
size is proxied by total sales and total capital, but not when size is measured 
by total debt. 

A final related feature deserves to be stressed. While the variability in 
means and standard deviations associated with business cycle fluctuations 
does not seem to affect the shape of the size distributions, which obey to 
a Power Law both in expansions and in recessions, the scaling exponents 
are systematically lower during downturns in comparison to upturns. This 
means that on average firms are more evenly distributed during expansions 
than during recessions. 

2.5 The Size Distribution Shift over the Business Cycle 

The study of the shape and the stability of the size distribution in countries 
other than the U.S. is here extended by moving from pooled data for very 
large firms, to samples of medium to large firms at a national level. The 
source for our data is the Bureau van Dijk's Amadeus commercial dataset, 
which contains descriptive and balance-sheet data of about 260,000 firms of 
45 European countries for the years 1992-2001. 

For every firm, juridical, historical and descriptive data are reported (as 
e.g. year of inclusion, participations, mergers and acquisitions, names of the 
board directors, news, etc.). Furthermore, Amadeus reports the current values 
of stocktaking, of balance-sheets (BS), profit and loss accounts (P/L) and 
financial ratios. The amount and the completeness of available data differ 
from country to country. To be included in the data set, firms must satisfy 
at least one of these three-dimensional criteria: 

— for UK, France, Germany, Italy, Russian Federation and Ukraine, 
— operating revenue greater or equal to 15 million euro; 
— total assets greater or equal to 30 million euro; 
— number of employees greater or equal to 150; 

— for all other countries, 
— operating revenue greater or equal to 10 million euro; 
— total assets greater or equal to 20 million euro; 
— number of employees greater or equal to 100. 

The plots reported in Fig. 2.3 are a representative sample of our findings, 
showing that the size distribution follows a power-law in the range of ob-
servation regardless of the proxy we take to measure firms' size. Evidence is 
reported for the cumulative distributions of total assets (a) and sales (b) in 
France, and number of employees in UK (c).^ The power-law fit for s > SQ, 

The number of data points are 8313, 15,776 and 15,055, respectively. 
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Fig. 2 .3 . Cumulative distribution of firm's size: a Prance (2001), total assets higher 
than 30 million euros; b France (2001), sales higher than 15 million euros; c UK 
(2001) number of employees in excess of 150 persons 
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where SQ denotes the threshold mentioned above, yields the following values 
of a; (a) 0.886 ib 0.005, (b) 0.896 ± 0.011, (c) 0.995 ± 0.013 (s tandard error 
a t 99% significance level). The power-law fit is quite good for firms spanning 
nearly three orders of magni tude. 

Figure 2.4 reports the annual change of the size distr ibution Pa re to in-
dices for four countries, namely Italy, Spain, France and UK. The degree of 
variability of the size distr ibution over the business cycle seems to be country-
dependent . 

Figure 2.5 extends the evidence for the country where the variability is 
higher, t h a t is Italy, by plot t ing the t ime series of the (log of the) scale (dashed 
line) and the shape (continuous line) parameters of the size distr ibution. 
Es t imates have been obtained by OLS linear fitting on a log-log space. After 
get t ing rid of finite sample biases, each regression explains more t h a n 98% of 
t h e to ta l variance. 

All the series display a significant variability, and changes of the scale and 
shape parameters are strongly correlated in each case. Notice also t h a t the 
size distr ibution measured by different proxies do not t end to move together. 
T h e size distr ibution defined in te rms of t h e number of employees shifts in-
ward and presents a decreasing slope dur ing the recession of the early 1990s,^ 
while bo th the minimum size and the exponent of the power law increase dur-

Fig . 2.4. Annual change of Pareto indices for Italy, Spain, France and UK from 
1993 to 2001 

^ According to the business cycle chronology calculated by the Economic Cycle 
Research Institute, Italy experienced a peak in February 1992 and a trough in 
October 1993. Gallegati and Stanca (1998), using annual data, calculate turning 
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Fig. 2.5a—c. Estimates of the scale parameter (dashed line, left axis) and of the 
shape parameter (continuous line, right axis) for the Italian firms, Italy 1992-2001 

ing the long expansion of the 1994-2000 period. Movements in t h e oppos i te 
direction are displayed by the size distribution proxied by value added a n d 
to ta l assets. 

As said before, these results should be interpreted in the light of previous, 
apparent ly conflicting, empirical and theoretical work. Amara l et al. (1997), 
for instance, present evidence on the probability density of firms' size as mea-
sured by sales for a sample of U.S. firms from 1974 to 1993, showing t h a t 
the dis t r ibut ion is remarkably stable over the whole period. M a t t e r of factly 

points to be in 1990 (peak) and 1993 (trough). It is generally accepted that the 
following expansion has lengthen at least until the first quarter of 2001. 
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Amara l and his co-authors recognize t h a t " [ . . . ] there is no existing theoret-
ical reason to expect that the size distribution of firms could remain stable 
as the economy grows, as the composition of output changes, and as factors 
that economists would expect to affect firms ^ size (like computer technology) 
evolve'^ (Amaral et ai, 1997, p . 624). Stabili ty of the size distr ibution, how-
ever, is precisely the outcome one should expect according to Axtell (2001). 
Making use of a random growth process wi th a lower reflecting barrier s tud-
ied by Malcai et al. (1999), he calculates theoret ical power law exponents for 
t h e U.S. size distribution measured by the number of employees in each year 
from 1988 to 1996. It turns out t ha t the hypothesis of a Zipf Law can not be 
rejected at any s tandard significance level, t he same finding he has obtained 
empirically for 1997 using more t han 5 millions d a t a points from the Census 
Bureau . It must be incidentally noticed, however, t h a t Axtell 's calculations -
and therefore his conclusions about the stabil i ty over t ime of the Zipf Law -
a re biased towards an acceptance of the null of the Zipf Law due to the way 
t h e smallest size of the system's components is specified. ^^ 

Our main points, however, go well beyond this technical drawback. In the 
following section we shall argue tha t : 

1. Provided tha t the Pare to distr ibution represents an a t t r ac to r for the dis-
t r ibut ion dynamics regardless of the proxy one uses to measure firms' 
size, there are indeed theoretical reasons to expect its position and shape 
to fluctuate over t ime. Fur thermore , even small fluctuations can have 
impor tan t effects; 

2. There are also compelling theoretical reasons to expect the fluctuations 
of the size distribution to diverge as we measure firms' size by recurring 
to different proxies. Fur thermore, such differences represent a key for 
unders tanding the na ture of the business cycle. 

Analytically, let the cumulative dis tr ibut ion of firms' size a t t ime t be given by 
Ft{x). Time is assumed to be discrete. We can now follow Quah (1993) in as-
sociating to each Ft a probabili ty measure At, such t h a t At((—oo, x]) = Ft{x), 
Vx G M. Given tha t we are working wi th counter-cumulat ive distr ibutions, 
we introduce a complementary measure /i, such t h a t /it = 1 — \t = 1 — Ft. 
T h e dynamics of the counter-cumulative size dis t r ibut ion is then given by the 
stochast ic difference equation: 

/it = V{fit-uet) , (2.3) 

^̂  The reason lies in the fact that in Axtell's calculation, the minimum size SQ has 
been assumed fixed and equal to 1. From the argument reported in Blank and 
Solomon (2000), who discuss a paper by Gabaix (1999) who makes use of the 
same assumption, it emerges that the formula (4) in Axtell (2001) implicitly 
returns the Pareto exponent a if and only if the minimum size is assumed to be 
a constant fraction c of the current average of firms' size (s), so that one should 
posit So = c{s){t), which clearly varies in time. 
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where 6 is a disturbance, while the operator V maps the Cartesian product 
of probabiUty measures with disturbances to probabiHty measures. The em-
pirical evidence discussed above suggests that the invariant size distribution 
is Pareto so that, for sufficiently large intervals (̂ 2 — si) and /i, we impose 
that: 

^ ^ ^ i — = '-^ , (2.4) 
52 - S i S2 - Si 

while at the same time asking whether do there exist theoretical reasons to 
expect the operator V to fluctuate around its mean as business cycle phases 
alternate. 

2.6 Does it Make any Sense? 

Despite some work on Pareto distributions' dynamics in the last decade by 
physicists (see among the others Cont et a/., 1997; Joh et a/., 1999; Eng et al.^ 
2002; Czirok et al.^ 1996; Powers, 1998), economists have largely neglected 
such an issue. Notable exceptions are Brakman et al (1999), who report a n-
shape time series for the scaling exponent of Dutch city sizes distribution 
over more than four centuries, and Mizuno et al. (2002), who find that the 
cumulative distribution of Japanese company's income shifts year by year 
during the 1970-1999 period, while the scaling exponent of the right tail 
obeys Zipf Law.^^ In what follows we further elaborate on this issue, with 
particular regards to fluctuations of the size distribution over the business 
cycle. 

Shifts of the size distribution on a log-log space are related to a change of 
the system's minimum size (ZQ in (2.1)), which in turn reflects a change of the 
minimum efficient scale (MES) of operating flrms. There are many theoretical 
reasons to expect the MES to change over the business cycle. Furthermore, 
changes of the MES over the cycle depends on the proxy we use to measure 
the operating scale (i.e., the size). 

Consider for instance a diffused technical innovation process. While at 
the aggregate level we observe an increase in total factor productivity, at 
a microeconomic level we expect a shift of the size distribution by added value, 
while size distributions by employment and capital should remain stable, or 
decreasing. In turn, if the technology remains constant in the presence of 
a product innovation or an increase in demand, than we expect a shit of the 
value added Pareto distribution, while the size distribution should remain 
stable if the firms' size is measured by inputs. Finally, if there is a labor 
saving innovation one expects that the employees distribution shifts towards 
south-west more than the capital one. 

^̂  Mizuno et al. (2002) prove this last result only by means of visual inspection: no 
calculations of the scaling exponents are explicitly reported. 
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According to this approach, one should look at the various distributions 
not in isolation, but in terms of their relative movements. Meaningfully, rel-
ative movements of employment and capital with respect to the value added 
can be immediately translated into changes of productivity, although these 
movements should be appropriately disentangled to be fully appreciated. Fig-
ure 2.6 reports the relation between labor productivity (roughly measured as 
the ratio of added value to employment) and firms' size by total assets for 
Italy between 1996 and 2001, while Fig. 2.7 reports the labor productivity 
probability density plot on a log-log space. 

Three facts clearly emerges from the data. First, there is not clear cor-
relation between labor productivity and firms' size. From the viewpoint of 
business cycle analysis, the choice of the proxy one uses to measure firms' size 
is far from neutral. Second, labor productivity seems to be approximated by 
a Pareto distribution.^^ In other words, labor productivity shares the same 
distributive features of the size distribution. Third, the distribution of the 
labor productivity shifts over time. As a first order approximation, a unify-
ing explanation to these facts can be given along Schumpeterian lines. The 
typical cyclical dynamics should have the following structure: firms follow 
a directed technical change path by accumulating capital that allows the 
production of the same output using less quantities of labor as input. The 
growth of firms' size implied by labor-saving innovations generates a wage in-
crease, due to a positive wage-firm size relationship and, consequently, a shift 
towards south-west of the firms' size power law distribution in a log-log space. 
After the wage level has reached its peak, the capital accumulation re-start 
to grow, while wages diminish and the power law shifts towards north-east. 

Fig. 2.6. Labor productivity versus corporate firms' size, Italy 1998-2001 

^̂  More on this in Sect. 2.4. 
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Fig. 2.7. Shift of the distribution of labour productivity for corporate firms. Italy 
1996-2001 

Size distribution may also shifts because of firms' demography. In par-
ticular, a major cause of exit is due to bankruptcy, which is likely to affect 
firms at different scale of operation, as recent examples in U.S. and Italy has 
taught. Nevertheless, a large amount of empirical evidence has shown that 
smaller firms are in general more financially fragile (Fazzari et al, 1988). 

2.7 Power Laws' Changes in Slope 

The evidence reported in Fig. 2.4 highlights that movements of the size dis-
tribution over time are not confined to shifts on a log-log plane, but also the 
slope of the rank-size representation - that is, the scaling exponent of the 
Pareto-distributed size distribution - fluctuates. 

This fact has important implications for a proper understanding of the 
industry and macroeconomic dynamics from a structure-conduct-perform^ance 
(SCP) perspective. In fact, fluctuations of the scaling exponent of the 
size distribution immediately translate into fluctuations of the well-known 
Hirschman-Herfindahl Index (HHI) of industry concentration (Naldi, 2003): 
the lower the estimated scaling exponent a from the empirical size distribu-
tion, the higher the degree of concentration of the supply side of the economy. 
Under the simplifying assumptions of an economy composed of firms playing 
a homogeneous Cournot game and of a constant elasticity of demand, fluctu-
ations of the HHI may in turn be associated to fluctuations of the weighted 
average of the firms' price-cost margins (Cowling and Waterson, 1976), that 
is fluctuations of markups and profits. 

The possibility of slope changes conditioned to business cycle phases for 
a power law distributed size distribution can be easily proved, depending on 
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the generative process under scrutiny. For instance, let the process generating 
industry dynamics be given by a simple random multiplicative process: 

ki (t + 1) = A, (t) h (t) , (2.5) 

where ki{t) is the size of firm i (measured by its capital stock) at time t^ and 
Xi{t) is a random variable with distribution yl(A,cr^). The total number of 
firms Â  increases according to a proportionality rule (at each t, the number 
of new-born firms A A/", each one with size /cmin, is proportional to the in-
crease of the economy-wide capital stock K), while firms which shrink below 
a minimum size (once again kmin) go out of business. Blank and Solomon 
(2000) show that the dynamics of this model converges towards a power law 
distribution, whose scaling exponent is implicitly defined by the following 
condition: 

^ = k~AN = jrrT) • (2.6) 

It seems plausible to expect that the quantity F , which is the inverse of 
the weight of entrants' contribution to total capital accumulation, changes 
with the business cycle. In particular, F is likely to increase during reces-
sions (when the number of entrants generally shrinks) and to decrease during 
expansions. If this assumption is correct, this simple model implies that the 
scaling exponent of the size distribution fluctuates over the business cycle, to 
assume lower values during recessions and higher values during expansions, 
as in real data. 

2.8 A Mean/Variance Relationship 
for the Size Distribution 

Another distributional empirical regularity regarding the size distribution 
relates to the emergence of a scaling relationship between average sizes and 
cross-sectional volatility of firms, very much in line with a concept - the 
Taylor's power law (TPL) - firstly associated to biological systems. (Taylor, 
1961; Taylor et a/., 1978). 

The TPL is defined as a species-specific relationship between the temporal 
or spatial variance of populations cr^(5) and their mean abundance (S). Such 
a relationship turns out to be a power law with scaling exponent /3 

a^ (S) oc (5)^ , (2.7) 

with (2.7) holding for more than 400 species in taxa ranging from protists to 
vertebrates over different ecological systems (Taylor and Woiwod, 1982). 

The intriguing trait of the TPL does not reside in the scaling relation-
ship per se, but in the values assumed by empirical estimates of the scaling 
exponent p. In fact, from a time series perspective (T^{S) OC (5)^ is pre-
cisely what one would expect as soon as populations' dynamics are modelled 
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as homogeneous, independent random processes endowed with finite m e a n 
and variance. ^^ Thus , an es t imated slope lower (higher) t h a n 2 signals t h a t 
the per capi ta variability tends to decrease (increase) as the m e a n popu-
lation abundance increases. From a spatial perspective, if there exists an 
equal probabil i ty of an organism to occupy a given point in space, popula-
tions should be composed of many independent elements leading t o a Poisson 
distr ibution, which is characterized by a variance-mean rat io equal t o 1. I t 
follows t h a t es t imates of jS higher (lower) t han 1 indicate spat ial c luster ing 
(over-dispersion). 

In their seminal contr ibut ions, Taylor and his co-authors r epor t ed esti-
mates for (3 for various a r th ropods ranging from 0.7 to 3.08, b u t for t he 
majori ty of species the scaling exponent lies between 1 and 2, a resul t largely 
confirmed bo th in ecological studies (e.g. Anderson et a/., 1982; Ke i t t a n d 
Stanley, 1998) and epidemiology (Keeling and Grenfell, 1999). Such an evi-
dence signals t h a t the p a t t e r n of spatio-temporal distr ibution of n a t u r a l pop-
ulations is generally characterized by a significant degree of aggregation, "̂̂  b u t 
a t the same t ime abundan t populat ions tend to be relatively less variable.-"^^ 
Keeling (2000) and Kilpatr ick and Ives (2003) provide probabil ist ic models 
based on negative interact ions among species and spatial heterogeneity a imed 
at explaining this empirical regularity. 

As firms can be plausibly grouped in well defined sectors of act ivi ty -
or, extending the biological metaphor , species - it seems na tu ra l t o s t a r t 
applying the T P L approach in economics from here. Hence, firms belonging 
to a certain sector i a t year t may be considered as a single popula t ion . T h e 
relevant characterist ic subject to measurement we choose is t h e m e m b e r s ' 
size, so t h a t we can calculate the mean iii{t) and variance cr|(t) of t ime t 
firms' size belonging to sector i. 

The d a t a we employ have been retrieved from the da tase t Amadeus . For 
the sake of exposition, we select three countries, namely France, I ta ly and 
Spain, which could be considered representative of different behaviours in 
the relevant pa ramete r ' s space. Fi rm da ta cover 18 primary, manufac tur ing 
and service industr ies according to the two digit Nace Rev. 1 classification 
from year 1996 th rough 2001.^^ For each country in our sample, we check for 

^̂  Let X be a random variable with finite mean /i and variance cr ,̂ and k a constant. 
Then, the mean and the variance of kX are k^ and /c^o- ,̂ respectively. On a log-
log plot, the relationship between kfji and k^a^ is a line with a slope of 2. 

^^ In other words, upon finding one organism/individual there is an increased prob-
ability of finding another. In epidemiology, a natural interpretation is given in 
terms of contagion. 

^̂  That is, larger populations display a relatively lower probability of extinction. 
^̂  The nomenclature of the industries (Nace code inside brackets) employed 

is: 1) Agriculture (A); 2) Manufacture of food products, beverages and to-
bacco (DA); 3) Manufacture of textiles and textile products (DB); 4) Manu-
facture of leather and leather products (DC); 5) Manufacture of wood and wood 
products (DD); 6) Manufacture of pulp, paper and paper products, publishing 
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Fig. 2.8a—c. Firms' size variance-mean plots for three European countries. Each 
point represents the time t {t = 1996, 2001) pair log(variance) — log(mean) for 
firms' size belonging to sector z (z = 1 , . . . , 18 as defined in footnote 6), with sizes 
measured by total assets (circles), value added (squares) and number of employees 
(triangles), respectively. If the power law (1) holds, data are organized on a linear 
relationship with positive slope 

t h e existence of a scaling relationship between the mean and the variance of 
firms' size by considering three al ternat ive measures , i.e. to ta l assets, value 
added and the number of employees. Hence, for each size measurement we 
have 108 observations. Results of scat ter plots are presented in Fig. 2.8. 

From (2.7), it is immediate to note t h a t if t he T P L holds the relationship 
between the log variance and the log mean is linear: 

log a^ = log a-\- P log fi (2.8) 

with a being a scale parameter . Interestingly enough, for all three countries, 
a n d for all t he three alternative size measurements as well, a linear relation-
ship emerges neatly. In other terms, besides being typical of na tura l popula-
t ions, t he T P L seems to characterize the relat ionship between the mean and 
t h e dispersion around it of firms' size. 

The linear specification (2.8) implies t h a t its parameters can be con-
sistently est imated by means of OLS. Regression results are repor ted in 
Table 2.3. All parameters are statistically significant a t the 1% level, and 
t h e goodness of fit can be considered largely satisfactory in all cases. W i t h 
regards to the scaling exponent /?, two results deserve to be emphasized. First , 

and printing (DE); 7) Manufacture of coke, refined petroleum products and nu-
clear fuel (DF); 8) Manufacture of chemicals, chemical products and man-made 
fibres (DG); 9) Manufacture of rubber and plastic products (DH); 10) Manufac-
ture of other non-metallic mineral products (DI); 11) Manufacture of basic metals 
and fabricated metal products (DJ); 12) Manufacture of machinery and equip-
ment n.e.c. (DK); 13) Manufacture of electrical and optical equipment (DL); 
14) Manufacture of transport equipment (DM); 15) Manufacturing n.e.c. (DN); 
16) Electricity, gas and water supply (E); 17) Construction (F); 18) Wholesale 
and retail trade (G). 
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Table 2.3. OLS estimation results of the TPL parameters, as derived from equa-
tion (2.8) in the text. Numbers in parenthesis are standard errors. For each equation, 
the total number of observations is 108 

Prance 

Italy 

Spain 

a 
f3 
i?2 

a 
/3 
E? 
a 
f3 
R^ 

Total assets 

1.713 (0.442) 
2.056 (0.108) 
0.903 

-3.177 (0.562) 
3.089 (0.135) 
0.929 

1.191 (0.261) 
1.905 (0.068) 
0.952 

Value added 

1.200 (0.342) 
2.161 (0.170) 
0.815 

-3.427 (0.475) 
3.326 (0.132) 
0.941 

1.820 (0.27) 
1.905 (0.067) 
0.953 

# of employees 

1.200 (0.342) 
2.161 (0.170) 
0.815 

-2.095 (0.287) 
3.822 (0.159) 
0.936 

1.327 (0.151) 
1.940 (0.084) 
0.931 

for each country size measurements are quantitatively equivalent. Second, t h e 
slope of the T P L in its log-linear version differs substantially across countr ies . 
The es t imated f3 t u rns out to be slightly below 2 for Spain, somewhat higher 
t h a n 2 for France, and well above 3 for Italy. 



3 Stylized Facts in Industrial Dynamics: 
Exit, Productivity, Income 

3.1 The Exit of Firms 

In principle, a firm can go out of business as an independent unit for three 
reasons: i) voluntary exit, due for example to the prospective of unsustain-
able reduction of profitability; ii) merger with another firm or acquisition by 
another firm; iii) bankruptcy due to the inability of a firm to pay its financial 
obligations as they mature. 

Empirical studies on the determinants of firms' exit have long noted that 
the probability of survival to events i) and iii) appears to increase with age 
and size, and that industry characteristics do not affect significantly the prob-
ability of survival (Siegfried and Evans, 1994; Caves, 1998). These results, 
which contrast with the prediction of the purely random-driven Gibrat's law 
of proportional effect, are in fact fully consistent with existing behavioral 
accounts of the firm's life cycle, including both passive learning models (Jo-
vanovic, 1982; Hopenhayn, 1992) and active learning (Ericson and Pakes, 
1995) models. 

The strong positive dependence of the probability of survival on size re-
ported in the empirical literature on firm dynamics leads naturally to ask 
whether very large corporations may actually fail. For instance, Marshall 
(1920) seems dubious on the eventual demise of large firms: " [ . . . ] vast joint 
stock companies [... ] often stagnate hut do not readily die^\ However, a cur-
sory look at the available evidence seems to return a picture which is at odds 
with Marshall's view. Hannah (1999), for example, constructs a data set list-
ing the 100 largest industrial companies in the world in 1912. By 1995, only 
52 of these firms survived in any independent form. Furthermore, 24 out of 
the 52 survivors were smaller than they were in 1912. All in all, very large 
firms do in fact die. The search for additional evidence in different datasets 
on the exit of firms may therefore be useful for addressing this and other 
interesting issues. This is precisely what we do in the following. 

3.1.1 Evidence on the Extinction Rate 

Scaling plot techniques have been recently applied to research on firms' ex-
tinction rate. The main example is the paper by Cook and Ormerod (2003) 
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(henceforth, CO), who present evidence of power law scaling for the demises 
of US firms. In particular, CO show tha t the exit ra te approximately follows 
a power law distribution with exponent close to 2 by sector. Interestingly 
enough, this value is very much in line wi th the l i terature on the Raup-
Sepkoski's kill curve, according to which biological extinction events " [ . . . ] 
can he reasonably well fitted to a power law with exponent between 1 and ^" 
(Bak, 1997, p . 165). In this Section we apply the same methodology to d a t a 
retrieved from the O E C D firm-level d a t a project , regarding demises of firms 
in eight O E C D countries in the period 1977-1999.^ 

The dataset contains information on the frequency of firm demises on an 
annual basis, split into 40 different industr ial sectors for each of the eight 
countries (see Bartelsman et a/., 2003). Demises are then expressed in te rms 
of frequencies, as we divide the to ta l number of exits by the to ta l number 
of operat ing firms. This gives rise to a to ta l number of 5051 observations. 
We call each of these observations a group: each group specifies a par t icular 
indust ry in a particular year in a par t icular country. 

The correlation of extinction ra tes in the same sector across countries is 
qui te high (0.6), while the tempora l correlation and the correlations across 
sectors and countries are much lower (0.19 and 0.15, respectively). These 
figures suggest tha t the exit of firms is probably driven by sectoral shocks 
instead of country-specific shocks, and t h a t the overall s t a te of the economy 
plays a minor role in determining demises. 

It must be noted tha t , while the d a t a we employ have annual frequency, 
exits during a year occur on a daily basis. The stat ist ical model we adopt as 
a benchmark for empirical analysis pos tula tes t h a t each observation of the 
sample is t rea ted as the sum of 250 independent and identically dis tr ibuted 
r a n d o m variables (250 being the approximate number of working days per 
year) . If our assumption is correct, according to the law of large numbers the 
dis t r ibut ion of firms' exit will be Gaussian. As shown in Fig. 3.1, however, if 
any convergence to a Gaussian dis tr ibut ion occurs it seems to be extremely 
slow. More formal statistical analysis suppor t s t he conclusion one can a t ta in 
by visual inspection. In fact, a Kolmogorov-Smirnov test rejects the null 
hypothesis of normality at the 1% significance level. 

Due to the significant kurtosis and the high weight on the right tail showed 
by the empirical distribution, as an al ternat ive to the Gaussian we propose 
a t runca ted power law model with exponent r. To test the hypothesis of 

^ The countries in our sample are Denmark, Finland, France, Italy, Netherlands, 
Portugal, United Kingdom and United States. The data set covers varying time 
spans over the period 1980-1998, even if it mainly refers to the period 1989-
1994. Firm is individuated, adopting the Eurostat definition (Council Regulation 
(EEC) No 696/93), as "[...] an organizational unit producing goods or services 
which benefits from a certain degree of autonomy in decision-making, especially 
for the allocation of its current resources'\ All single-person business were not 
considered. The industry classification follows the OECD Structural Analysis 
Database (STAN). 
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Fig. 3.1. Absolute frequency of ex-
tinctions on total number of firms 
(mean = 0.1, s.d. = 0.07) 

a power law distribution for daily occurrences, for each annual observation 
we register the occurrence of a random variable generated by the following 
probability distribution: 

P{X = i) = (^+1)" 

E ( j 
j=0 

1)-
(3.1) 

with i, j = 0 , . . . , 771, where m is the maximum of daily demises. Notice that 
a finite value for the parameter m allows us to set the variance of the distri-
bution to a finite value. 

After obtaining a sample of 5051 simulated data-points, we plot them 
against the actual data. We perform alternative simulations for the two par-
ameters r and m varying on a wide range. The highest correlation between 
simulated and actual data has been obtained for r = 2 and m = 400, with 
a correlation coefficient equal to 0.992 (Fig. 3.2). The Kolmogorov-Smirnov 
test confirms that the two samples come from the same distribution at the 
standard significance level. Although the central part of the theoretical dis-

Fig. 3.2. Scatter plot of real data and data drawn from a truncated power law 
distribution 
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Fig. 3.3. Zipf plot of pondered values of annual demises 

t r ibut ion displays a remarkable good fit to the ac tua l one, the tails tend 
somehow to overestimate the upper pa r t and to underes t imate the lower par t 
of the distribution. 

As a further test to check the robustness of the our results, in Fig. 3.3 
we report the Zipf plot of the absolute values of annual demises, weighted 
wi th their relative frequency, on their absolute frequency. Also in this case, 
t he interpolation line, which re turns a R^ equal to 0.962, implies a decay 
coefficient very close to two (2.003). 

As an additional issue, we notice t h a t exits due to bankrup tcy and vol-
un ta ry shut down are a major de terminant of ou tpu t and employment con-
t rac t ion or, in other terms, are likely to be somehow related to aggregate 
downturns . Note, in part icular , t ha t changes in the aggregate demise ra te 
are not characterized by strong auto-correlat ion, while disaggregated da t a 
show a s trong temporal dependence among the same size class. Thus , we test 
t he hypothesis tha t demises of firms grouped by size are fitted by a WeibuU 
distr ibution, tha t is the same distr ibution which seems to characterize the 
magni tude of business cycle phases. 

The d a t a set we examine reports the demises sorted by number of employ-
ees^ for a to ta l of 548 observations for 9 countries.*^ Again, each observation 
represents a group, identified by year, country and size. Groups are then 
divided into five classes sorted by firm sizes. 

For any class, the Kolmogorov-Smirnov test rejects the hypothesis t ha t 
t h e sample da t a are normally dis tr ibuted at s t anda rd significance level. Even 
restrict ing the sample to a merely 5 percent a round the mean, results do not 
change. Thus , as an alternative we consider a Weibull dis tr ibut ion for the five 
classes of demises by sizes (in their absolute values). T h e Weibull cumulative 

The firms are sorted in six classes by number of employees (less than 20, from 
20 to 49, from 50 to 99, from 100 to 499, more than 500). 
In this section we extend the analysis to also West Germany, which was not 
included in the previous section because of the absence of data relative to the 
first dimensional class that may cause distortions in the aggregate (and thus in 
the percentage) of demises in that country. 
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distr ibution function takes the form: 

F{x) = l- exp {-ax^) , (3.2) 

where a is the scale pa ramete r and f3 is the characteristic shape p a r a m e t e r 
t h a t quantifies t he speed of decay of the distribution (Malavergne et al^ 
2003). Notice t h a t if we rank n observations from the largest to t h e smallest 
and we indicate wi th Xi the zth observation (xi > X2 > . . . > x^) , we obta in : 

- = l-F{xi) . (3.3) 

Subst i tu t ing (3.2) in (3.3) and taking the na tura l logarithm yields: 

o 1 , . . In (n) 
x^ = In (2) + — ^ . (3.4) 

a a 

Finally, set t ing ^^^^ = 99 and ^ = A, we get: 

x^ = - A l n ( i ) + (/?, (3.5) 

tha t is the interpolat ion line on the semi-log plane, as we plot t he variable x 
taken a t exponent (3 against the na tura l logarithm of its rank. We m a y also 
identify an addi t ional pa ramete r 

t ha t represents a reference scale, from which all the moments can be deter-
mined. 

Es t imates by OLS of (3.5) on the semi-log plane re tu rn a good fit for 
each class {E? is more t h a n 0.96 in every case), a l though the right tai ls are 
systematically overest imated, a result which may be due to finite size effects. 
Table 3.1 repor ts t he results of the estimation. 

Recall t h a t if /? = 1, the Weibull distribution coincides wi th t he expo-
nential. As (3 goes below 1 the distribution becomes flat while, for /3 > 1, 
observations are concentra ted around their mode and the dis t r ibut ion m a y 

Table 3 .1 . Parameter estimates for the Weibull model of firm demises by size 

Classes 

> 0 
> 20 
> 5 0 
> 100 
> 500 

Xo 

7,0448 
6,0498 
4,36 
3,0555 
2,022 

P 
1,1469 
1,2989 
1,164 
0,9978 
0,787 

A 

4,9627 
3,5243 
3,0426 
2,5552 
1,9492 
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resemble the Gaussian. The t rend of the shape paramete r f3 as we move from 
small t o large firms shows tha t the tail becomes flatter, a result confirmed 
also by the slope of the regression line. 

Another way to look at our results is in t e rms of the hazard function, 
t h a t is the "memory" or persistence of the dis t r ibut ion (see Lancaster , 1992), 
t h a t becomes null (the so-called lack of memory proper ty) as /? = 1, and 
positive (negative) if (3 greater (smaller) t h a n 1. In our case, our parameter 
es t imates suggest t ha t the probabili ty to record a number x + ^ of demises, 
once a number x has been already recorded, progressively diminishes as we 
focus on greater firms. 

3 . 1 . 2 P o w e r Law for B a d D e b t 

In spite of the strong evidence suppor t ing the hypothesis t ha t bankruptcies 
are negatively correlated with size, large firms are far from immune from 
default. T h e recent examples of Enron and Worldcom corroborate this claim. 
In fact, the available evidence (Pia t t , 1985) is clear-cut in suggesting t h a t 

Fig. 3.4. a Profile analysis of the average equity bcise of bankrupt firms in each of 
the year before bankruptcy. Data points are referred to mean values for 676 Italian, 
1786 French and 750 Spanish firms went bankrupt during the 1992-2001 period. 
b Semi-log plot of the distribution of bankrupt firms by age 
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insolvencies occur at all scales, and that the proportion of failures varies 
significantly over time. 

To shed some light on the issue of the vulnerabiUty of large companies to 
bankruptcy, we analyze the available evidence for bankruptcies in a sample 
of European countries, namely Italy, Spain and Prance. Data are retrieved 
from the dataset AMADEUS from 1992 through 2001. 

First, we find that financial ratios are invariably a good predictor of firms 
failure, and therefore exit. In particular, the equity ratio, defined as the ratio 
of net worth (current assets minus current habilities) to total assets, deterio-
rates almost monotonically as the date of bankruptcy approaches (Fig. 3.4a). 
The distribution of exits by age turns out to be exponential, signaling that 
the probability to fail is independent of time (Fig. 3.4b). Given that firms 
generally enter at a small scale, and that they grow over time through in-
vestments, this suggests that big and small firms should have a rather equal 
probability to go out of business. 

Fig. 3.5. a Zipf plot for the debt of bankrupt firms in Italy (217 firms), France 
(1166), and Spain (455) during 1999. b Zipf plot for European corporate long term 
debt defaults, from January 1985 through May 2002 
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As far as debt is concerned, it is interesting to note that the right tail 
of the distribution of debt of bankrupt firms scales down as a power law for 
all sampled countries (Fig. 3.5a), Q{B > 6) ~ b~^. In particular, the scaling 
exponents for the 60% right tails are a = —1.09 for Italy, a = —0.87 for 
Prance and a = —0.67 for Spain. Furthermore, a quantitatively similar scaling 
exponent results also for data on defaulted debt collected from a different 
dataset, that is for the European corporate long term debt defaults occurred 
from January 1985 through May 2002, as reported by Moody's (Fig. 3.5b). 
The bad debt of insolvent bond issuers is distributed as a power law with 
a = —0.92. All in all, the power law seems to be an invariant structural 
pattern for the bad debt of European companies. 

Indeed, our findings are strikingly close to the ones reported in Aoyama 
et al. (2000) and Fujiwara et al. (2003) for Japanese bankrupt firms, with 
the bad debt for large failed firms (i.e. the right tail of the distribution) 
being estimated to scale down with an exponent a comprised between 0.91 
and 1. This result strongly suggests that universality, as defined in statistical 
physics, seems to hold for the bad debt distribution. Any reasonable model 
of industrial dynamics should take this evidence into account. 

3.2 Productivity and Income 

The research agenda which drives our empirical exploration consists in think-
ing about macroeconomic interconnections in terms of distribution functions 
and their dynamics. Paraphrasing Steindl (1965), a concrete example of such 
an approach deals with the relationships among the distributions of produc-
tivity and personal income. In a nutshell, the productivity of a firm is the key 
to its average profitability. Profits, in turn, are distributed among firms' own-
ers contributing to their personal income. This information, combined with 
the positive relationship displayed by data between firm' size and the wage 
paid to employees on the one hand, and what we know about the size distri-
bution of firms on the other one, determines the distribution of households' 
income. 

3.2.1 The Distribution of Productivity in France and Spain 

The recent availability of huge sets of longitudinal firm-level data has gen-
erated a number of studies on productivity.^ In this section we consider two 
basic measures of productivity: labour and capital productivity. The pro-
ductivity of labour is defined as the ratio of value added to the number of 
employees (where value added, defined according to standard balance sheet 
reporting, is the difference between total revenue and the cost of inputs ex-
cluding the cost of labour). Although elementary, this measure has the ad-
vantage of being accurately approximated from the available data. 

See inter alia Hulten et al. (2001) and Kruger (2003). 
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The productivity of capital is defined as the ratio of value added to the 
value of fixed assets (i.e. the capital stock). This measure of productivity has 
some drawbacks since the value of firms' assets changes continuously in time. 
The volatility of the Stock price, for instance, affects the market value of the 
capital stock. Usually the industrial organization literature recognizes that 
the productivity distribution is not normally distributed, and empirical fat 
tails with power law behaviour are observed. 

Figures 3.6 to 3.9 show the log-log plot of the frequency distributions (left) 
and the complementary cumulative distributions (right) of labour productiv-
ity and capital productivity measured as ratios of total added value of the 
firms. In these figures the different data sets correspond to the years 1996-
2001 for two different countries: Prance and Italy. The frequency distributions 
show a very clear non-Gaussian character: they are skewed with asymmet-
ric tails and the productivity (Figs. 3.6-3.9 (left)) exhibits a leptokurtic peak 
around the mode with 'fat tails' (for large productivities) which show a rather 
linear behaviour in a log-log scale. In these figures we also report, for compar-
ison, the linear trend corresponding to power-law distributions {N{x) oc x~'^ 
with a = 2.7, 2.1, 3.8 and 4.6, respectively). 

The complementary cumulative distributions (P>(x), being the probabil-
ity to find a firm with productivity larger than x) also show a linear trend at 
large x (in log-log scale) implying a non-Gaussian character with the probabil-
ity for large productivities well mimicked by a power-law behaviour. The 'fat 
tails' character of such distributions is highlighted in the inserts of Figs. 3.6-
3.9 (right) where log-normal plots show that the decay of P>{x) with x is 
much slower than exponential. 

Fig. 3.6. Frequency distributions (left) and complementary cumulative distribu-
tions (right) for the labour productivity in Italy in the years 1996-2001. The theo-
retical behavior is for a = 2.7, m = 22, n = 11, cr = 10 and 0 = 3. The insert 
shows P>{x) v.s. X in log-normal scale 
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Fig. 3.7. Frequency distributions (left) and complementary cumulative distribu-
tions (right) for the labour productivity in France in the years 1996-2001. The 
theoretical behavior is for a = 2.1, TTI = 30, n = 4, a — 20 and (3 = 1. The insert 
shows P>(x) v.s. X in log-normal scale 

Fig. 3.8. Frequency distributions (left) and complementary cumulative distribu-
tions (right) for the capital productivity in Italy in the years 1996-2001. The theo-
retical behaviour is for /? = 3.8, m = 0.04, n = 0.02, a = 0.01 and f3 = 25. The 
insert shows P> (x) v.s. x in log-normal scale 

Fig . 3.9. Frequency distributions (left) and complementary cumulative distribu-
tions (right) for the capital productivity in France in the years 1996-2001. The 
theoretical behaviour is for a = 4.6, m = 0.06, n = 0.02, a = 0.4 and jS = 68. The 
insert shows P>(x) v.s. x in log-normal scale 
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3.2.2 Power Law Tails in the Italian Personal Income Distr ibut ion 

The first appearance of the power law distribution in economics is due Vil-
fredo Pareto, who observed in his Course d'economie politique (1897) that 
a plot of the logarithm of the number of income-receiving units above a certain 
threshold against the logarithm of the income yields points close to a straight 
line. Recent empirical work seems to confirm the validity of Pareto (power) 
law. For example, Aoyama et al. (2000) show that the distribution of income 
and income tax of individuals in Japan for the year 1998 is very well fitted 
by a Pareto power-law type distribution, even if it gradually deviates as the 
income approaches lower ranges. 

The applicability of Pareto distribution only to high incomes is actu-
ally acknowledged; therefore, other kinds of distributions have been proposed 
by researchers for the low-middle income range. According to Montroll and 
Shlesinger (1983), US personal income data for the years 1935-1936 suggest 
a power-law distribution for the high-income range and a lognormal distribu-
tion for the rest; a similar shape is found by Souma (2001) investigating the 
Japanese income and income tax data for the high-income range over the 112 
years 1887-1998, and for the middle-income range over the 44 years 1955-
1998. Nirei and Souma (2004) confirm the power-law decay for top taxpayers 
in the US and Japan from 1960 to 1999, but find that the middle portion of 
the income distribution has rather an exponential form; the same is proposed 
by Dragulescu and Yakovenko (2001) for the UK during the period 1994-1999 
and for the US in 1998. 

In this section we look at the shape of the personal income distribution 
in Italy by using cross-sectional data samples from the population of Italian 
Households during the years 1977-2002. We use microdata from the Histor-
ical Archive (HA) of the Survey on Household Income and Wealth (SHIW) 
made publicly available by the Bank of Italy. All amounts are expressed in 
thousands of Italian Lire. Since we are comparing incomes across years, to get 
rid of inflation data are reported in 1976 prices using the Consumer Price In-
dex (CPI) issued by the National Institute of Statistics. The average number 
of income-earners surveyed from the SHIW-HA is about 10,000. 

Figure 3.10 shows the profile of the personal income distribution for the 
year 1998. On the horizontal axis we report the logarithm of income in thou-
sands of Lire and on the vertical axis the logarithm of the cumulative prob-
ability. 

Two facts emerge from this figure. First, the central body of the distri-
bution - matter of factly almost all of it, i.e. the distribution up to the 99th 
percentile - follows a two-parameter lognormal distribution, whose probabil-
ity density function is: 

f{x\^x,a) = 7 q = e ^ P i - ^ I \ (3.6) 
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Fig. 3.10. Cumulative probability distribution of the Italian personal income in 
1998 

wi th 0 < X < 00, // and a^ are the first two moments of the distr ibution. The 
value of the fraction /? = Ijypla^ r e tu rns the so-called Gibra t index; if /5 is 
relatively low (i.e. if the variance is high), the personal income is unevenly 
dis t r ibuted. Prom our dataset we obta in the following maximum-likelihood 
estimates:^ /} = 3.48 (0.004) and G = 0.34 (0.006);^ the Gibra t index is 
/3 = 2.10. 

Second, about the top 1% of the dis t r ibut ion follows a Pare to distribu-
t ion. This power law behaviour of the tail of the dis t r ibut ion is evident from 
Fig. 3.11, where the red solid line is t he best-fit interpolat ing function. We 
ext rac t the power law slope by running a simple OLS regression, obtaining 
a point est imate o f 5 = = l - | - a = 2.76 (0.002). Given this value for 5, our esti-
m a t e of xo (the income-level below which the Pa re to dis tr ibut ion would not 
apply) is 17,141 thousand Lire. The fit of the linear regression is extremely 
good, as one can appreciate by noting t h a t the value of the B? index is 0.99. 

The pa t t e rn of the distr ibution of personal income consisting of a log-
normal for most of the distr ibution and a power law for the tail seems to 
hold over the entire t ime span, as one can easily realize from Fig. 3.12, which 
repor t s the shape of the income dis tr ibut ion for all t he years. The corre-
sponding est imated parameters for t he lognormal and Pare to distr ibutions 
a re given in Table 3.2. The table also shows the values of the Gibra t index. 
Note , however, tha t the scaling exponent of the power law and the curvature 
of the lognormal fit change from year to year. 

^ We excluded from the sample used for estimation the top 1.4% of the distribution, 
which we considered an outlier, and about the bottom 0.8%, which corresponds 
to non-positive entries. 

^ The number in parentheses represents the standard error. 
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Fig. 3.11. The fit to the power distribution for the year 1998 

Fig. 3.12. Time development of the Itahan personal income distribution over the 
years 1977-2002 

In order to quantify the fluctuations of income distribution from year to 
year, we start by noticing that the origin of these fluctuations are probably 
related to changes in the growth rate of the gross domestic product (GDP). 
To evaluate this conjecture, we study the fluctuations in the growth rates of 
GDP and personal incomes (PI), and try to show that similar mechanisms 
may be responsible for the observed growth dynamics of income for both 
the aggregate economy and individuals. The distribution of the GDP annual 
growth rates is shown in Fig. 3.13. The data are retrieved from the OECD 
Statistical Compendium. The growth rates are defined as log-differences, 
^GDP = log(GDPt+i/GDPt). Data are reported in 1976 prices; moreover, 
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Table 3.2. Estimated lognormal and Pareto distribution parameters for all the 
years 

Year 

1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1986 
1987 
1989 
1991 
1993 
1995 
1998 
2000 
2002 

A 
3.31 
3.33 
3.34 
3.36 
3.36 
3.38 
3.38 
3.39 
3.40 
3.49 
3.53 
3.52 
3.47 
3.46 
3.48 
3.50 
3.52 

(0.005) 
(0.005) 
(0.005) 
(0.005) 
(0.005) 
(0.004) 
(0.004) 
(0.004) 
(0.004) 
(0.004) 
(0.003) 
(0.004) 
(0.004) 
(0.004) 
(0.004) 
(0.004) 
(0.004) 

(J 

0.34 (0.004) 
0.34 (0.004) 
0.34 (0.005) 
0.33 (0.005) 
0.32 (0.004) 
0.31 (0.005) 
0.30 (0.004) 
0.32 (0.005) 
0.29 (0.006) 
0.30 (0.004) 
0.26 (0.003) 
0.27 (0.004) 
0.33 (0.004) 
0.32 (0.003) 
0.34 (0.006) 
0.32 (0.004) 
0.31 (0.005) 

P 
2.08 
2.09 
2.08 
2.15 
2.23 
2.27 
2.32 
2.24 
2.40 
2.38 
2.70 
2.58 
2.15 
2.19 
2.10 
2.20 
2.25 

s 

3.00 
3.01 
2.91 
3.06 
3.30 
3.08 
3.11 
3.05 
3.04 
2.09 
2.91 
3.45 
2.74 
2.72 
2.76 
2.76 
2.71 

(0.008) 
(0.008) 
(0.009) 
(0.008) 
(0.008) 
(0.005) 
(0.006) 
(0.007) 
(0.005) 
(0.002) 
(0.002) 
(0.008) 
(0.002) 
(0.002) 
(0.002) 
(0.002) 
(0.002) 

^0 

10,876 
11,217 
11,740 
11,453 
10,284 
11,456 
11,147 
11,596 
11,597 
24,120 
15,788 
14,281 
16,625 
16,587 
17,141 
17,470 
17,664 

R" 

0.9921 
0.9933 
0.9908 
0.9915 
0.9939 
0.9952 
0.9945 
0.9937 
0.9950 
0.9993 
0.9995 
0.9988 
0.9997 
0.9996 
0.9993 
0.9994 
0.9997 

Fig. 3 .13. Probability density function of Italian GDP annual growth rates, 1977-
2002, together with the Laplace fit (solid line) 

t o improve comparison of the values over the years we det rend them by ap-
plying the Hodrick-Prescot t filter. 

By means of a nonlinear algorithm, we find t h a t the probability den-
si ty function of annual growth rates is well fitted by a Laplace distr ibution. 
Th i s result seems in agreement with the growth dynamics of PI , as shown in 
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Fig. 3.14. Probability distributions of the Italian PI for the years 1987/1989 ans 
1991/1993 

Fig. 3.14 for a randomly selected yearly sample. These finding leads us t o con-
jecture t h a t the two phenomena obey the same distr ibution. Before tes t ing 
this conjecture, in order to consider almost the same number of d a t a points 
for the two da tase t s we draw a 2% random sample of the da t a we have for 
individuals, and normalize it using the transformations {Rpi — Rpi)/crpi a n d 
(-RGDP — - R G D P ) / < ^ G D P - A S shown in Table 3.3, which reports the p-values for 
all the cases we studied, the null hypothesis of equality of the two dis t r ibut ions 
cannot be rejected at t he usual 5% marginal significance level. Therefore, t h e 
da t a are consistent wi th the assumption tha t a common empirical law might 
describe the growth dynamics of bo th G D P and PI , as shown in Fig. 3.15, 
where all curves for b o t h G D P and PI growth ra te normalized d a t a a lmost 
collapse onto t he red solid line representing the non-linear Laplace fit.^ 

Table 3 .3 . Kolmogorov-Smirnov test p-values for GDP and PI growth rate 

Growth rate 

i^GDP 

^ 8 9 / 8 7 

^ 9 1 / 8 9 

^ 9 3 / 9 1 

-^95/93 

^ 9 8 / 9 5 

^ 0 0 / 9 8 

-f^89/87 

0.872 

^ 9 1 / 8 9 

0.919 
0.998 

^ 9 3 / 9 1 

0.998 
0.984 
0.970 

^ 9 5 / 9 3 

0.696 
0.431 
0.979 
0.839 

^ 9 8 / 9 5 

0.337 
0.689 
0.995 
0.459 
0.172 

^ 0 0 / 9 8 

0.480 
0.860 
0.994 
0.750 
0.459 
0.703 

^ 0 2 / 0 0 

0.955 
0.840 
0.997 
1.000 
0.560 
0.378 
0.658 

^ See Lee et al. (1998), for similar findings about the GDP and company growth 
rates. 
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Fig. 3.15. Probability distribution of Italian GDP and PI growth rates 

Fig. 3.16. The temporal variation of the Pareto (left) and Gibrat (right) indexes 
over the period 1977-2002 
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We now turn to the fluctuations of the indexes specifying the income 
distribution, i.e. the Pareto and Gibrat indexes, whose yearly estimates are 
reported in Fig. 3.16. 

Since income deriving from financial assets has been regularly recorded 
only since 1987, we cannot take it into account for the period 1977-1987. 
The longest line in the graphs, therefore, depicts the time series obtained 
by excluding all the income deriving from financial assets, while the shortest 
one refers to the yearly estimates obtained from data including income from 
financial assets. The pattern of the two series is similar, with the more com-
plete definition of income showing a greater inequality because of the strongly 
concentrated distribution of returns on capital. 

Although the frequency of data (initially annual and then biennial from 
1987) makes it difficult to establish a link with the business cycle, it seems 
possible to find a (negative) relationship between the Gibrat and Pareto 
indexes and the fluctuations of economic activity, at least until the late 1980s. 
For example, Italy experienced a period of economic growth until the late 
1980s, but with alternating phases of the domestic business cycle: a slowdown 
of production up to the 1983 stagnation has been followed by a recovery in 
1984, to be followed again by a slowdown in 1986. The values of Gibrat and 
Pareto indexes, inferred from the numerical fitting, tend to decrease in the 
periods of economic expansion (concentration goes up) and increase during 
the recessions (income is more evenly distributed). 

The time pattern of inequality is shown in Fig. 3.17, which reports the 
change of the Gini coeflficient over the considered period. The level of inequal-
ity decreased significantly during the 1980s and raised in the early 1990s, to 
be substantially stable in the following years. In particular, a sharp rise of 
the Gini coefficient (i.e., of inequality) is encountered in 1987 and 1993, cor-

Fig. 3.17. The Gini coefficient for the Italian personal income, 1977-2002 
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responding to a sharp decline of the Pareto index in the former case and of 
both Pareto and Gibrat indexes in the latter case. 

3.3 Power Law Scaling in the World Income 
Distribution 

In the literature sprung up in recent years on the dynamics of the world 
distribution of per capita GDPs across countries, two empirical results have 
surfaced.^ First, while convergence in terms of per capita GDP has been 
achieved among a restricted set of industrialized countries, i.e. the so-called 
convergence club (Baumol, 1986), divergence has been the rule for the GDP 
distribution taken as a whole (see e.g. Pritchett, 1997). Second, the density 
function of the cross-country GDPs distribution has moved from a unimodal 
shape in the 1960s to a "twin-peaks" shape in the 1990s (see e.g. Quah, 1993, 
1996). 

In this section we aim to add a new perspective to this literature very 
much in the spirit of the empirical methodology put forth so far, by dis-
cussing a third stylized fact regarding the world GDPs distribution which to 
our knowledge has been largely neglected so far.^ We show that the GDP 
per capita of countries falling in the range between the 30th and the 85th 
percentiles of the distribution follows a power law, and that this result is 
extremely robust as we move from 1960 to 1997. Furthermore, over the same 
period the exponent of such a power law distribution displays a downward 
trend. 

We study the world distribution of per capita GDPs as taken from the 
Penn World Table (PWT) Mark 6.1 (Summers, Heston and Ater, 2002), from 
1960 to 1997. For the sake of brevity, in what follows we will refer to this 
object as the world income distribution. Though the PWT dataset contains 
estimates for some countries extending from 1950 to 2000, a restriction of the 
time horizon has been imposed in order to minimize the trade-off between 
the cross-section dimension and the time dimension of the panel. 

Let the distribution of GDP per capita of M countries at year t be 
x^ = {xit^... ,XMt)' Suppose each observation xn is a particular realiza-
tion of a random variable x with cumulative distribution function Ft{x). 
Furthermore, let the observations in x^ to be ordered from the largest to the 
smaller, so that the index i corresponds to the rank of xu- When we make 
use of this simple algorithm to graphically represent the income distribution, 
which operationally corresponds to a scatter plot of the log of rank against 
the log of GDP per capita, we obtain a Zipf plot. As a matter of example, in 
Fig. 3.18 we show the Zipf plot of the world income distribution for t = 1980. 
Qualitatively similar findings hold for all the other years in our sample. 

Interesting reviews are e.g. Parente and Prescott (1993) and Jones (1997). 
For an example of work very close in spirit to ours, see Sinclair (2001). 
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Fig. 3.18. Zipf plot of the world income distribution (GDP per capita) in 1980 

In the figure we superimpose a dashed line, which helps us in visually 
isolating four different regions of the distribution: i) starting from the early 
1970s, in several years there is a small group of extremely rich countries -
typically, scarcely populated oil-producing ones - which can be considered 
outliers; ii) the remainder of the left tail consists typically of high income 
OECD countries, plus other more densely populated oil-producing nations; 
iii) the central part of the distribution, contains roughly 55% of the coun-
tries. For these countries, the log of per capita income is arranged along an 
interpolating line; iv) the right tail, which can be identified, for any practical 
purpose, with Africa. 

The most intriguing feature emerging from this analysis is undoubtedly 
the regularity characterizing region iii), that is the fact that the data on 
GDP per capita for middle income economies fit a downward sloping straight 
line remarkably well. This fact holds invariably for the range of per capita 
GDP ranging from the 30th to the 85th percentiles^^ of the world income 
distribution in each single year of our time horizon, though the slope of the 
fitting line tends to change significantly over time, as one can easily recognize 
from Fig. 3.19. 

We run an OLS regression for each year of the time span 1960-1997, 
for the data in the range between the 30th and the 85th percentiles of the 
world income distribution. The results are summarized in Fig. 3.20, where we 
plot the estimated value of the scaling exponent 7 (continuous line)^^, and 
a measure of the goodness of fit expressed in terms of R'^ (dashed line). 

The hypothesis that the central part of the world income distribution 
follows a power law seems to be corroborated by the extremely good fit 
of linear regressions, as one can appreciate by noting that the value of R^ 

°̂ This range has been obtained on a pure data-dependent basis. 
^̂  The coefficient 7 was always statistically significant at the 1% level. 
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Fig. 3.19. Zipf plot of the 30th-85th percentiles of the world income distribution 
in 1960 and 1997 

Fig. 3.20. Time path of the power exponent 7 {continuous line), and goodness of 
fit of OLS estimates in terms of R^ {dashed line) 

is never below 0.978. Furthermore, note t h a t 7 shows a clear tendency to 
decrease over time. Both features have interest ing implications for theory. 

A possible explanation of this finding can be advanced along the following 
lines. Let us assume continuity bo th of G D P per capi ta levels and of t ime. 
Let p{x,t;xo) be the probability density function for Xt, where XQ represents 
t he initial condition. The evolution over t ime of p(x , t ;xo) is given by the 
following Fokker-Plank diffusion equation:^^ 

dp{x,t;xo) _ d[xijL{x)p{x,t;xo)] Id [x^cr^ (a:)p (x, t; xp)] 

dt ~ dx 2 9x2 
(3.7) 

where ^ (x ) and a{x) are the drift and the diffusion coefficients, respectively. 
Cordoba demonstrates (Theorem 2, p . 14) t h a t for the probabili ty distribu-

^̂  See Aoki 1996 for an introduction to the Fokker-Plank equation. 
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tion function of x to be Pareto with exponent 7, necessary conditions are 
that: i) the conditional mean, or drift, is constant, ii{x) = </>; ii) the diffusion 
coefficient takes the form (T{X) = Ax^~^, where 4̂ is a positive constant. 

With reference to the issues at stake, these two conditions imply that 
countries belonging to the range of the world income distribution which scales 
down as a Pareto distribution are characterized by a common average growth 
rate 0, and that the variance of growth decreases with size as soon as I7I < 1. 
The first condition, in particular, states a precise relationship between scale 
and growth, in that growth rates have to be scale-invariant. 

This result is in line with the prediction of a recent stream of endogenous 
growth literature focusing on the driving role of R&D expenditure, according 
to which scale effects show up on GDP per capita levels, but not on growth 
rates^^. Furthermore, the conjecture of a common average growth rate is 
consistent with panel data estimations provided by Evans (1998), who shows 
that the null hypothesis of different trend growth rates among a sample of 
countries with well-educated populations is rejected at standard statistical 
levels. 

While steady state growth without scale effects seems to characterize 
countries with GDP per capita in the middle of the distribution, however, 
from our analysis it turns out that the mechanics of growth is likely to differ 
widely for very rich and very poor countries. In particular, the finding that 
growth processes for countries in the first 15% of the world income distribu-
tion seem to differ from those of the other high and middle income countries 
is somehow puzzling, and it deserves further research. 

If the assumptions at the core of model (3.7) hold true, our estimates 
of 7 imply that the variance of growth rates scales down on average as 
(j^(x) ~ x~^'^^, meaning that the standard deviation follows a Pareto dis-
tribution with exponent P = —0.11. This guess is strikingly close to direct 
estimates of cr{x) reported in Canning et al (1998) and Lee et al. (1998), 
where /3 = —0.15±0.03. Notice that if an economy J consists of j > 1 identi-
cal and independently distributed units of size XQ^^, XJ = jxo, the volatility 
of its growth tends to decrease with the square root of its size, so that for the 
whole vector gc_ fluctuations as a function of size should scale down with an 
exponent /? — —0.5 (Buldyrev et al, 1997). Therefore, an average (3 smaller 
(in absolute value) than 0.5 can be interpreted as suggesting the existence of 
long-range correlation between an economy's components, like in models of 
the business cycle based on direct interactions^^. 

Furthermore, the negatively sloped trend of the estimated parameter 7 
signals that the volatility of fluctuations in countries in the lowest part of 

^̂  See e.g. Dinopoulos and Thompson (1998) and Segerstrom (1998). Jones (1997) 
surveys the topic. 

^̂  Think, e.g., to the multi-sector Real Business Cycle model of Long and Plosser 
(1983). 

^̂  As a matter of example, the models by Durlauf (1996) and Aoki (1998). 
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the 30th-85th range of the distribution has been increasing in relative terms 
all over the span 1960-1997, so that (5 has actually increased over the same 
period. Of course, our analysis is unsuited to ascertain whether this fact is due 
to an increase in the amplitude of output fluctuations in low-income countries 
or to a decrease of volatility in countries with higher incomes. Independent 
evidence (Agenor et a/., 2000; IMF, 2001), however, seems to suggest that the 
first conjecture is likely to be the right one, probably reflecting a strength-
ening of the inverse relationship between income levels and vulnerability to 
financial and debt crisis. 

3.4 Distributional Features of Aggregate Fluctuations 

The last piece of evidence presented in this chapter is related to some distribu-
tional features of macroeconomic fluctuations, under the implicit assumption 
that the alternation of expansionary and contractionary phases of aggregate 
activity simply reflects the complex dynamics of firms' demography. 

Our starting point consists in noticing the great effort that the profession 
has put forth so far to investigate whether the business cycle exhibits dura-
tion dependence. In fact, the received wisdom in mainstream macroeconomic 
theory is that business fluctuations are driven by recurring identically inde-
pendently distributed (iid) random shocks, so that cycles' duration should 
be independent of length. The empirical work on duration dependence has 
been conducted by means of both nonparametric (McCulloch, 1975; Diebold 
and Rudebusch, 1990) and parametric techniques (Sichel, 1991; Diebold et al^ 
1993; Zuehlke, 2003), the latter being generally favoured because of modeling 
convenience and higher statistical power. 

While the evidence as a whole is far from conclusive, a relative consen-
sus has been recently established in favour of positive duration dependence, 
at least for pre-war expansions and post-war contractions. A tentative ex-
planation for this result has been advanced by Sichel (1991). Suppose that 
policymakers are interested in lengthening expansions. Hence positive dura-
tion dependence of contractions and null duration dependence of expansions 
might emerge simply because policymakers are urged to act countercyclically 
as downturns lengthens, while macroeconomic policy mistakes could be as 
likely to end short as well as long expansions. 

This type of reasoning resembles the so-called stabilization debate, that 
is whether macroeconomic policy effectiveness in decreasing the volatility of 
business cycle fluctuations around trend has improved after the second World 
War (WWII). Romer (1999) argues in the affirmative while Stock and Watson 
(2005) have a partially dissenting view. Regardless of the position one is prone 
to take in this debate, it should be recognized that policymakers are plausibly 
not interested in the length of a business cycle phase (to end it if a recession, 
and to lengthen it if an expansion) per se. A recession could be disturbing not 
only if it is very long, but also if it is short and particularly severe. By the 
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same token, an expansion could force antinflationary (i.e., countercyclical) 
policies if it is gaining excessive momentum, regardless of its duration. In 
other terms, macroeconomic policy could well be targeted at controlling the 
magnitude of business cycle phases, rather than their duration alone. 

In line with this assumption, in this section we aim to extend the empirical 
literature on dependence in business cycles by posing a related but different 
question: are expansions or contractions in economic activity more likely to 
end as they become bigger? 

The concept of business cycle fluctuations we adopt here is that of growth 
cycles, that is expansions and contractions expressed in terms of devia-
tions from an estimated GDP trend or potential (Zarnowitz, 1992). A useful 
method to summarize information on either time (i.e., duration) and size (i.e. 
output gap) of any single episode consists in calculating its steepness,^^ ex-
pressed as the ratio of the amplitude y (i.e. cumulative percentage points of 
peak-to-trough and trough-to-peak output gap for recessions and expansions, 
respectively) to the amplitude t (in time periods), x = ^ > 0.^^ In what fol-
lows, we will use this measure to approximate the magnitude of a business 
cycle phase. 

The following step consists in deriving the conditional probability that 
phase i will end at magnitude x^, given that a magnitude xi has been ob-
tained. Our investigation is based on a WeibuU parametric hazard model 
(Lancaster, 1979): 

hw (x) = aPx^-^ (3.8) 

and on its associated survivor function S^{x) = exp(—cex^), with a = rj~^, 
7/ > 0 being the scale parameter, while the shape parameter /3 > 0 measures 
the elasticity of magnitude dependence. If P is higher (lower) than one, then 
the conditional probability that a phase ends increases (decreases) linearly 
as its magnitude increases. Finally, when /? is equal to 1, the hazard function 
corresponds to that of an exponential, or memory-less, distribution. 

It is well known that in model (3.8) unobserved heterogeneity across ob-
servations biases the estimate of the elasticity parameter /? downward (Lan-
caster, 1979). In particular, if estimates point towards negative magnitude 
dependence it could be practically impossible to identify whether such a re-
sult owes to true negative dependence or to heterogeneity bias. McDonald 
and Butler (1987) explain how to use mixture distributions to handle hetero-
geneity, showing that if the location parameter is inverse generalized gamma 
distributed, the distribution for observed data will be Burr type IIX. 

^̂  The concept of steepness we use has a geometrical meaning and it is therefore 
different from the one in Sichel (1993), where this same term has been used to 
define a property of asymmetric business fluctuations. 

^̂  This measure corresponds to the slope of the hypotenuse of the triangle approx-
imation to the cumulative movement during a business cycle phase as discussed 
in Harding and Pagan (2002). 
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Our empirical exercise is based on a sample of pooled internat ional da ta , 
so t ha t heterogeneity is likely to seriously affect our est imates . Hence, in 
addi t ion to the s tandard 2-parameter Weibull model (W) we check the ro-
bustness of our results by recurring to the hazard function for the general-
ized 3-parameter Weibull model proposed by Mudholkar et al (1996) (MSK), 
which contains the Burr type XII dis t r ibut ion as a special case: 

husK {xi) - af3x^-^ [ 5 M S K ( X ^ ) ] " ^ (3.9) 

where S'MSK — [1 " 7ce^^]^ is the corresponding survivor function, the lo-
cation parameter 7 is real, and the sample space for x is (0, cx)) for 7 < 0 
and (0, {a'y)~^^~^' ) for 7 > 0. Besides correcting for unobserved hetero-
geneity, the additional parameter 7 allows the hazard function to be nonlin-
early monotonic increasing {(3 > 1, 7 > 0), nonlinearly monotonic decreasing 
(/? < 1, 7 < 0), ba th tub shaped (/? < 1, 7 > 0), unimodal (/3 > 1, 7 < 0) 
or constant (/3 = 1, 7 = 0). Finally, when (3 > 0 and 7 < 0 the generalized 
Weibull corresponds to the Burr type XII dis tr ibut ion. 

For bo th models parameters ' es t imat ion has been conducted by means of 
Max imum Likelihood. The log-likelihood function for a series of expansions 
(contractions) with observed magni tude Xi is: 

iV 

InL,- (•) = Y, {^i In [hj (x,)] + In [Sj (a;,)]} (3.10) 

wi th ^ = W , MSK, and where Ai is a b inary variable t h a t controls for the cen-
soring of incomplete phases. Given t h a t we are opera t ing wi th nested models, 
a significantly positive (negative) es t imate of 7 is evidence, besides of pos-
itive or b a t h t u b shaped (negative or unimodal) magni tude dependence, of 
a stat ist ical superiority of the MSK model relative to the W model (Zuehlke, 
2003). Furthermore, the sign of the es t imated 7 allows us to control for het-
erogeneity in the data : the magni tude elasticity obtained with the W model 
is likely to be biased downward as soon as 7 in the MSK model is significantly 
negative. 

The da t a we use are annual G D P indexes for 16 countries^^ spanning 
from 1881 through 2000 (IMF, 2002). T h e t ime series do not contain da t a 
for the periods corresponding to the two WWs, i.e. 1914-1919 and 1939-
1948. For each country, the G D P potent ia l has been calculated by means of 
t h e Hodrick-Prescot t filter. Finally, in order to obta in enough observations 
to a t t a in reliable estimates, we built samples for expansions (276 observa-
t ions) and contractions (284 observations) by pooling d a t a for individual 
countries.-^^ 

^̂  The 16 countries are Australia, Canada, Denmark, Finland, France, Germany, 
Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United 
Kingdom and United States. 

^̂  This allows us to employ a number of observations one order of magnitude higher 
that the ones usually employed in the duration dependence literature. 
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Fig. 3.21a,b. Weibull probability plots for expansions and contractions, full sample 

Given that both parameterizations (3.8) and (3.9) yield hazard functions 
belonging to the Weibull family, as a preliminary check of model adequacy 
we study the magnitude empirical distribution of pooled expansions and con-
tractions by means of Weibull probability plots. An advantage of such a plot-
ting technique is that it allows to gain insights on the appropriateness of 
a distribution model by visual inspection: if the data come from a Weibull 
distribution the plot will be linear, while other distribution types would in-
troduce curvature in the plot. Figure 3.21 shows that our modelling strategy 
finds a convincing support for contractions (Panel b), with observations dis-
tributed along the reference line but for few data points in the left tail, 
and a reasonable support for expansions (Panel a), with the Weibull model 
yielding a good fit to the empirical distribution for the central portion, but 
a relatively poor fit for both tails. 
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Table 3.4. Tests of magnitude dependence in pre-WWII, post-WWII and total 
sample expansions and contractions for a pool of 16 countries (1881-2000). Standard 
errors in round brackets, p-values in square brackets 

1) 
V 

p 

Expansions 
Total 
sample 

W model 
0.0387^ 
(0.0024) 
1.0143 
(0.0384) 

2) MSK model 

V 

P 

7 

0.0358^ 
(0.0023) 
0.9635 
(0.0375) 
0.0018^ 
[0.0000] 

Pre-WWII 
sub-sample 

0.0517^ 
(0.0028) 
1.4440** 
(0.0753) 

0.0496^ 
(0.0028) 
1.3853** 
(0.0730) 
0.0016 
[0.4091] 

Post-WWII 
sub-sample 

0.0259^ 
(0.0027) 
0.8643** 
(0.0444) 

0.0242^ 
(0.0026) 
0.8402** 
(0.0437) 
0.0011+ 
[0.0004] 

Contractions 
Total 
sample 

0.0401^^ 
(0.0018) 
1.3832** 
(0.0604) 

0.0389+ 
(0.0018) 
1.3314** 
(0.0586) 
0.0009 
[0.2259] 

Pre-WWII 
sub-sample 

0.0533+ 
(0.0024) 
1.6792** 
(0.0912) 

0.0505+ 
(0.0024) 
1.5808** 
(0.0869) 
0.0022 
[0.4144] 

Post-
WWII 
sub-sample 

0.0265+ 
(0.0017) 
1.5173** 
(0.1007) 

0.0257+ 
(0.0017) 
1.4678** 
(0.0979) 
0.0006 
[0.6995] 

** Significantly different from unity at the 5% level using a one-tailed test. 
+ Significantly different from zero at the 5% level using a one-tailed test. 

In Table 3.4 we report the Maximum Likelihood parameter estimates, 
along with their asymptotic standard errors, obtained with the W model (3.8) 
and the MSK model (3.9) for the full sample, the pre-WWII sub-sample and 
the post-WWII sub-sample, respectively. Expansions and contractions are 
treated separately. 

The evidence from the W model shows that, for the total sample, positive 
magnitude dependence exists for contractions, while for expansions we are 
not able to reject the null of magnitude independence at standard significance 
levels with a one-tailed test. This last result occurs because of a structural 
change over the period studied. Pre-WWII expansions exhibit magnitude 
dependence (/? = 1.444), while for the post-WWII sample the dependence 
elasticity is lower than one (/? = 0.8643), meaning that in this case the prob-
ability expansions end decreases with their magnitude. In turn, contractions 
exhibit a substantially similar degree of positive magnitude dependence either 
in the pre-WWII (/? = 1.6792) and in the post-WWII samples {(3 = 1.5173). 

Estimates for the MSK model seems to confirm the robustness of our 
findings. The additional location parameter 7 turns out to be positive but 
very small in all cases. In this case, an assessment of the statistical superiority 
of the MSK model relative to the W model cannot be based on standard tests 
build on asymptotic standard deviations because of their low power. Instead, 
a better strategy consists in using a minimum statistic test under the null 
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-y = 0, which returns the probability to observe a minimum above the ML 
estimate of 7. 

Contractions still show positive magnitude dependence both in the pre-
WWI and in the post-WWI era. As regards expansions, positive magnitude 
dependence is detected in the pre-WWII period, while for the post-WWII 
period the parameters estimates suggest a bathtub shaped hazard function. 
In fact, over the range of variation of our data the degree of non-linearity 
introduced by the MSK model is negligible for any practical purpose, as one 
can realise by visually inspecting the MSK hazard plots for expansions and 
contractions shown in Fig. 3.22. 

Fig. 3.22. Hazard plots for pre-WWII and post-WWII expansions and pre-WWII 
and post-WWII contractions 
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There are many possible explanations for the evidence at hand. Among 
them, the most appealing for us has to do with the so-called stabilization 
debate, that is whether the coming out of automatic stabilizers and the in-
creased ability in conducting monetary policy after WWII has significantly 
contributed to decrease volatility in aggregate economic activity. Our start-
ing point is that stabilization macroeconomic policy is generally aimed at 
affecting either the duration and the deepness of business cycle fluctuations: 
policymakers are better off if sustainable (i.e., without significant inflation-
ary pressures) expansions lengthen a lot, and mild recessions are short. The 
measure we use for the magnitude of a business cycle phase, i.e. steepness, is 
designed precisely to capture both aspects. Prom this perspective, the struc-
tural shift we find for expansions before and after WWII could be interpreted 
as an indirect evidence that macroeconomic policy has became more effective 
from the 1950s on. 



4 An Agent-based Model 

4.1 Introduction 

Reductionism, i.e. the methodology of classical mechanics which has been 
adopted by analogy in neoclassical economics, can be applied if t h e law of 
large numbers holds t rue , i.e.: 

— the functional relat ionships among variables are linear; and, 
— there is no direct interact ion among agents. 

Since non-linearities are pervasive, mains t ream economics generally a d o p t s 
the trick of linearizing functional relationships. Moreover agents are supposed 
to be all alike and not t o interact. Therefore an economic sys tem can be 
conceptualized as consisting of several identical and isolated componen t s , 
each one being a representat ive agent (RA). The optimal aggregate solut ion 
can be obtained by means of a simple summation of the choices m a d e by each 
optimizing agent. 

Moreover, if t h e aggregate is the sum of its consti tutive elements, i ts dy-
namics cannot bu t be identical to tha t of each single uni t . The reduct ionis t 
methodology implies t h a t t o unders tand the working of a system, one has 
t o focus on the working of each single element. Assuming t h a t e lements are 
similar and do not interact - i.e. the economy is completely descr ibed by 
a representat ive agent - t he dynamics of the aggregate replicate t h e d y n a m -
ics of the sub-unit . T h e existence of an aggregate equilibrium, which is in 
t u r n " [ . . . ] deeply rooted to the use of the mathematics of fixed point theory^^ 
(Smale, 1976, p . 290), merely requires t ha t every single element is itself in an 
equilibrium s ta te . 

The ubiqui tous RA, however, is often a t odds with the empirical evidence 
(Stoker, 1993)^, is a major problem in the foundation of general equi l ibr ium 

1 A modeling strategy based on the representative agent is not able, by construc-
tion, to reproduce the persistent heterogeneity of economic agents, captured 
by the skewed distribution of several industrial variables, such as firms' size, 
growth rates etc. Stoker (1993) reviews the empirical literature at disaggregated 
level which shows that heterogeneity matters since there are systematic individ-
ual differences in economic behavior. Moreover, as Axtell (1999, p. 41) claims: 
" . . . given the power law character of actual firms' size distribution, it would 
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theory (Kirman, 1992)^'^ and is not perfectly coherent with many economet-
ric investigations and tools (Forni and Lippi, 1997)'^. All in all, we may say 
t h a t macroeconomics (and macroeconometrics) still lacks sound microfoun-
dat ions . 

4.2 Heterogeneous Interacting Agents and Power Laws 

T h e search for natural laws in economics does not necessarily require the 
adopt ion of the reductionist paradigm. Scaling phenomena and power law 
dis t r ibut ions are a case in point. If a scaling behavior exists, then the search 
for universahty can be pushed very far. Physicists have shown t h a t scaling 
laws are generated by a system with strong interact ions and multiplicative 
shocks among heterogeneous agents (Marsili and Zhang, 1998; Amara l et a/., 
1998) and therefore are incompatible wi th reductionism. As a consequence, 
t h e occurrence of scaling laws in economics is incompatible with mains t ream 
economics. T h e macroscopic pa t t e rn (consisting of a mul t i tude of heteroge-
neous interacting units) works as a unified whole independent of the dynam-
ical process governing its individual components . T h e idea t h a t systems which 

seem that equilibrium theories of the firm [... ] will never be able to grasp this 
essential empirical regularity." 
According to Hildenbrand and Kirman (1988, p. 239): " . . . There are no assump-
tions on [... ] isolated individuals which will give us the properties of aggregate 
behavior which we need to obtain uniqueness and stability. Thus we are re-
duced to making assumptions at the aggregate level, which cannot be justified, 
by the usual individualistic assumptions. This problem is usually avoided in the 
macroeconomic literature by assuming that the economy behaves like an indi-
vidual. Such an assumption cannot be justified in the context of the standard 
economic model and the way to solve the problem may involve rethinking the 
very basis on which this model is founded." This long quotation summarizes 
the conclusion drawn by Arrow (1951), Sonnenschein (1972), and Mantel (1976) 
on the lack of theoretical foundations of the proposition according to which the 
properties of an aggregate function refiect those of the individual components. 
In General Equilibrium theory one can put all the heterogeneity s/he likes, but 
no direct interaction among agents. Grossman and Stiglitz (1980) has shown that 
in this case one cannot have any sort of informational perfection. If information is 
not perfect markets cannot be efficient. Market failure leads to agents' interaction 
and to coordination failures, emerging properties of aggregate behavior, and to 
a pathological nature of business fluctuations. 
If agents are heterogeneous, some standard procedures (e.g. cointegration. 
Granger-causality, impulse-response functions of structural VARs) may loose 
their significance. Moreover, neglecting heterogeneity in aggregate equations may 
generates spurious evidence of dynamic structure. The difficulty of testing ag-
gregate models based on the RA hypothesis, i.e. to impose aggregate regularity 
at the individual level, has been long pointed out by Lewbel (1989) and Kirman 
(1992) with no impact on the mainstream (a notable exceptions is Carroll, 2000). 
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consist of a large number of interacting agents generates universal, or scaling, 
laws tha t do not depend on microscopic details is now popular in s ta t i s t ica l 
physics and is gaining momentum in economics as well. 

The q u a n t u m revolution of last century radically changed the perspect ive 
in contemporary physics, leading to a widespread rejection of reduct ionism. 
According to the holistic approach, the aggregate is different from t h e s u m of 
its components because of t he interaction of particles. T h e proper t ies of t h e 
sub-units are not intrinsic bu t can be grasped only analyzing t h e behavior 
of the aggregate as a whole. T h e concept of equilibrium is therefore different 
from tha t of mains t ream economics. The equilibrium of a system does not 
require any more t h a t every element is in equilibrium, bu t r a the r t h a t t h e 
aggregate is quasi-stable, i.e. in " [ . . . ] a state of macroeconomic equilibrium 
maintained by a large number of transitions in opposite directions'^ (Feller, 
1957, p . 356).^ 

If the system is far from equilibrium, self-organizing phenomena and 
a s ta te of self-organized criticality (SOC) may occur. According to t h e not ion 
of SOC (Bak, 1997; N0rrelykke and Bak, 2002), scaling phenomena emerge 
because t he sub-units of a system are heterogeneous and interact , a n d th is 
leads to a critical state wi thout any at t ract ive point or s tate^. Since scaling 
phenomena characterize such critical s tates, the occurrence of a power law 
may be read as a symptom of self organizing processes at work. A no tab le 
example of this approach applied to macroeconomics is the inventory a n d 
product ion model developed by Bak et al. (1993). 

If a dis t r ibut ion is described by a power law, firms are located along 
a curve whose coefficient is s table and the intercept changes very slowly over 
time.^ This is due to the fact t ha t the d a t a generating process is r a n d o m : 
in te rms of the s ta tes of a dynamics process we may say t ha t t he t r ans i t ion 
from one s ta te to another is affected by chance as well by agents ' systematic 
actions.^ 

^ Moreover agents' choice should not necessarily be an equilibrium one, de-
rived from their optimizing behavior, because agents' interaction generates self-
organizing solutions. It follows from this that one should not analyze the indi-
vidual problem in isolation from the others (a game against nature) but rather 
the interconnections among HIAs. 

^ In the SOC literature the concept of equilibrium is borrowed from statistical 
mechanics and is very different from that of mainstream economics. In fact, 
equilibrium results from the balance of actions of a large number of many inter-
acting particles. 

^ Stability of the slope through time is a quite standard result in the empirical 
literature on Pareto's law (see e.g., the work by C. Gini, J. Steindl and H. Simon). 
Quite nicely, Steindl (1965, p. 143) defines the Pareto coefficient " . . . a sediment 
of growth over a long time". 

^ The biased behavior of this random process helps to explain the systematic differ-
ences (asymmetries) between expansions and contractions found in the empirical 
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In the model of Sects. 4.5 and 4.6, ou tpu t fluctuations are due to: 1) a ran-
dom process on current revenues as a consequence of imperfect information 
on actual prices; 2) systematic interact ions among agents. The distr ibut ion 
is quasi-stable over relatively long per iods because it represents " [ . . . ] slowly 
changing, age-dependent characteristics of a population which ages and re-
news itself only gradually^^ (Steindl, 1965, p . 142). This means tha t , since 
firms are born small, their growth takes t ime and mortal i ty decreases with 
age and size, the slow change of the dis t r ibut ion comes as a consequence. In 
a nutshell: t he distribution is stable, or quasi-stable, because the dissipative 
force of the process (here, the Gibra t ' s law) produces a tendency to a growing 
dispersion, which is counteracted by a stabilizing force (i.e., t he burden of 
debt commitments and the associated risk of bankrup tcy) . 

Moreover, distributions are interconnected. T h e populat ion is character-
ized by a joint distribution of several variables (in our model: equity, capital , 
debt , age, equity ratio), which is inconsistent with the RA framework. The 
change of firms' distribution (and the business cycle itself) has to be analyzed 
in te rms of changes of the joint dis t r ibut ion of the population.^ 

Alternatively, and in some sense in a way more germane to the economics 
discourse, power laws can be generated by models based on scale free growth 
processes. T h e basic idea can be t raced back to the well-known Simon's model 
(Simon, 1955), where the Gibrat ' s law of propor t ional effects is combined with 
an entry process to obtain a Levy dis t r ibut ion for firms' size. Fur thermore , 
recent work by physicists (e.g. Marsili a n d Zhang, 1998; Amara l et al.^ 1998) 
has shown tha t , by extending the heterogeneity of the system's components 
implied in Simon's scheme to account for direct or indirect interactions among 
uni ts , power laws emerge natural ly and, most notably, without the dis turb-
ing asymptot ic implications of the original Simon's model or of its modern 
successors, like the one by Gabaix (1999).^^ 

It is worthwhile to stress tha t , regardless of the modeling s t ra tegy one 
chooses, t he adoption of the scaling perspective in economics implies reject-
ing the very definition of a representat ive agent because the dynamics of 
t h e system originate from the interact ion of heterogeneous agents. We be-
lieve tha t , in order to grasp the empirical evidence and provide a coherent 
framework, economists have to adopt a methodological approach based on 
heterogeneous interacting agents (HIA). 

evidence. Gaffeo et al. (2003) have found systematic differences of the Pareto ex-
ponents during expansions and contractions. 

^ A recession, e.g., is more likely when firms are relatively young, small and lever-
aged. The RA framework not only is inconsistent with the evidence (i) but it 
also misses and outguesses any dynamical properties of the actual systems (Forni 
and Lippi, 1997). 

^° Discussions on this point can be found in Krugman (1996) and Blank and 
Solomon (2000). 
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4.3 Agent Based Modeling 

A step in this direction is the agent-based modehng strategy, which is in-
creasingly applied also in economics (Epstein and Axtell, 1996; Tesfatsion, 
2002). At the simplest level, agent-based models are computer programs that 
simulate the autonomous behavior of individual entities and the relationships 
between them. Such virtual environments are particularly powerful and flex-
ible, as they can be employed for advancing theoretical conjectures as well 
as for testing alternative normative prescriptions in a controlled situation. In 
fact, we claim that the agent-based approach represents a fruitful methodol-
ogy to do realistic macroeconomics, that is one based on bounded rational, 
heterogeneous interacting agents adapting to a complex world. 

In a sense, agent-based computational techniques provide a route to de-
velop microfoundations for macroeconomics completely at odds with the RA 
approach. The relevance and reliability of these new microfoundations are 
grounded in the empirical evidence they can account for. From this viewpoint, 
microfoundations can be defined as sound if they are based on a reasonable 
model of individual behavior and market and non-market interactions, who 
in the aggregate can produce regularities consistent with the empirical ev-
idence, instead of being grounded on optimizing principles and equilibrium 
solutions. 

In our approach the origin of business fluctuations - which is the most 
important single problem in macroeconomics - can be traced back to the ever 
changing configuration of the network of heterogeneous interacting firms.^^ 
A major role in shaping dynamics is played by financial variables. The se-
quential timing structure of our economy implies that future markets are 
absent, so that agents have to rely on means of payment - here, bank credit 
extended to firms - to bridge the gap between agents' decisions and their real-
ization. Highly leveraged (i.e., financially fragile) firms, in turns, are exposed 
to a high risk of default, that is of going bankrupt. When bankruptcies occur, 
loans not refunded negatively affect banks' net worth, with banks responding 
to their worsen financial position by reducing credit supply. The reduction in 
credit supply impacts on the lending interest rate all other firms have to pay 
to serve their financial commitments. 

In what follows, we build on the HI A framework developed in Gallegati 
et al. (2003) and Belli Gatti et al (2005) to put at work all the notions we 
surveyed in this section, by modeling an economy characterized by aggregate 
scaling behaviors due to multiplicative idiosyncratic shocks and interactions 
among firms. 

^̂  Schumpeter (1939) suggested that business cycle scholars should analyze 
". . . how industries and individual firms rise and fall and how their rise and 
fall affect the aggregates and what we call loosely general business conditions". 
This approach is reminiscent of Marshall's parallel between the dynamics of the 
individual firm and the evolution of a tree in the forest. 
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In Chap. 2, we observed how data on industrial dynamics display several 
empirical regularities which emerge so neatly across countries and over time 
to be characterized as empirical laws. Here we focus on two of them, that 
is: (i) the distribution of firms' size is right skew and can be described by 
a Zipf or power law probability density function; (ii) the growth rates of 
firms' output and countries' GDP follow a Laplace distribution. 

So far, the literature has generally dealt with (i) and (ii) as if they were 
independent stylized facts. In this chapter we aim at making three contribu-
tions. 

— We explore the link between the two, showing that the power law distribu-
tion of firms ^ size may be at the root of the growth rate fat tail distribution 
observed in empirical data. In this part we analyze also the exact condi-
tions under which an exact power law distribution of firms' size implies 
double exponential rate of growth. 

— We discuss a model of financial fragility^ empirically validated through 
conditioning (Brock, 1999), which generates fact (i) (Sect. 4.5). 

— We show that the features of business fluctuations such as the shifts of the 
distribution of firms' size over the cycle, the properties of the distribution of 
individual and aggregate growth rates and many others, are a consequence 
of (i) (Sect. 4.6). 

While the industrial organization literature has explored at length the regu-
larities (i) and (ii) at least since the 1950s,-^^ inadequate attention has been 
paid so far to establishing a link between them and business cycle theory. We 
argue that this is mainly because mainstream macroeconomics lacks adequate 
conceptual and analytical tools to accomplish such an endeavor. 

4.4 Scale Free Property and Fat Tails Rate of Growth 

In this section we analyze the relationship between size and the rate of growth 
of firms. First, we show that simple multiplicative processes with Gaussian 
shocks generating firms' size with Pareto shape may also generate rate of 
growths with fatter than Gaussian tails. Second, we investigate the exact 
conditions under which rate of growth with double exponential shape are 
derived. 

The simplest modification of the Gibrat's multiplicative process (see 
Sect. 2.2), able to generate power laws distributions, is the Kesten's pro-
cess (Kesten, 1973) in which there is a minimum firm's size, say urn-

The 
process generates a Pareto distribution with exponent near to unity. 

In Fig. 4.1 is depicted the rate of growth (computed as log-differences of 
firm's size in the last two iterations) excess kurtosis (i.e., kurtosis minus 3) 
^̂  For a review of the debate on the shape of the firms' size distribution sprung up 

during the 1950s and '60s, see the monograph by Steindl (1965). 
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Fig. 4.1. Excess kurtosis distribution for the Kesten's process 

distribution of 100 simulations with Sm = 100, initial size equal to 1000, and 
10,000 iterations. The multiplicative shocks are extracted from a Gaussian 
distribution with standard deviation equal to 1/4. 

As shown in the figure, the process - with a sufficiently high level of 
individual volatility - generates fatter than Gaussian distributions (whose 
excess kurtosis is zero). An example of such distributions is drawn in Fig. 4.2. 
However, the distribution is not well approximated by a double exponential 
in whole support and seems to be asymmetric. 

This is more clearly shown in Fig. 4.3 where we compute the qqplot for the 
standardized rate of growth (i.e., the rate of growth are transformed in order 
to have the mean and variance of a standard Laplace centered in zero and 
scale parameter equal to 1). The Laplace model seems to be a useful approx-
imation of the rate of growth generated by the Kesten's process only in the 
center-left part of the support. Furthermore such process generates a positive 
probability mass at zero. In other terms, contrary to the standard Laplace 
distribution there is a positive probability (about 7% in the simulation) that 
firms do not change their size. 

The exact conditions under which exact Pareto distribution for firms' size 
implies double exponentials rate of growth are discussed in Palestrini (2007). 
One can start from the definition of the growth rate as the log-difference of 
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F ig . 4 .2. Density estimation of a Kesten's process in the semi-log plane 

F i g . 4 .3 . qqplot for the standardized rate of growth generated by a Kesten's process 
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the state variable's levels, so that the proof consists in showing that: 1) the 
logarithm of a Pareto random variable follows an exponential distribution; 
and 2) the difference of two exponential random variables becomes a double 
exponential distribution. 

Let us start by assuming that the distribution of the firms' size is Pareto. 
The most immediate way to think at the statistical properties of firms' growth 
at any t consists simply in exploiting the statistical features of firms' sizes 
at consecutive periods of time. If we define, as in the simulation, the growth 
rate gt of size St as the log-difference between sizes at time t and t — 1: 

gt = log{St)-log{St-i), (4.1) 

it is immediate to note that, without any further information on the firms' 
size joint density function, gt represents the difference of two dependent expo-
nential distributions. The proof of this proposition is based on the monotonic 
property of the logarithmic function and on the rule of transformation of 
random variables. 

Let the random variable S to follow a Pareto distribution with parame-
ter a. Thus, the probability distribution of log(5) is: 

Pr (log (5) > A;) = Pr (5 > exp (k)) oc (exp (k))'"^ = exp (-ak) , (4.2) 

that is, an exponential distribution with parameter a. In other terms, log(5) 
follows an exponential distribution with probability density function equal 
to: 

^ ( l o g ( 5 ) ; a - i ) = i e x p f - i ^ ^ ^ ) . (4.3) 

In the case of independent exponential variables, it is simple to prove that 
an exact Laplace distribution regarding growth rates emerges by making use 
of the convolution theorem and its relation with the characteristic function. 
In fact, the characteristic function of two independent exponential distribu-
tions Zj, j = 1, 2, with parameter a~^ is: 

C , (7) = (1 - iair' , (4.4) 

while their difference y = zi — Z2 has a characteristic function that is the 
product of the two, that is: 

Cy (7) = a , (7) C. , ( -7 ) = (1 - ia^y' (1 + ia^r' = {l + a ^ ^ ) " ' , 
(4.5) 

that is the characteristic function of a Laplace distribution. 
To prove the existence of a relationship between the Pareto distribution 

for firms' size and the double exponential like distribution for their growth 
rates in the case of time dependent exponential distributions, first note that 
for any exponential distribution s (that, for what said above, may be thought 
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as the log of S) the two following properties hold true: 

Pr {st > 51 -h 52 \st > 51) - Pr {st > 52) , (4.6) 

Pr (5t+l > 51 + 52 |5t+l > 51 ) = Pr (5^+1 > 52) . (4.7) 

Marshall and Olkin (1967) proved that whenever the two properties above 
also hold true (in a sense) for the joint probability distribution of 5̂  and 5^+1, 
that is: 

Pr(5t > 5i H-A:,5t+i > 51 -h A:|5t > /c, 5^+1 > k) = Fr {st > 5^,5^+1 > St) , 
(4.8) 

then the only bivariate exponential distribution function consistent with (4.8) 
which has exponential marginals is given by: 

Pr(log(5t) > 5i,log(S't+i) > 52) = e x p ( - a i 5 i - Q;252 - Amax(5i, 52)) , 
(4.9) 

where A is a measure of dependence. In other terms, A = 0 means indepen-
dence whereas when A > 0 there is a positive dependence between observa-
tions in t and t + 1. A well known result of this bivariate distribution is that 
is not absolutely continuous (i.e., has a positive probability mass for the case 
5l = 52). 

If the growth rate is positive (^ = 52 — 5 i > 0 ) the joint density / of 
(51,52) is proportional to the following exponential: 

/ (52, 5i) cx exp ( - a i 5 i - 0̂ 252 - A52) . (4.10) 

Integrating along the line 52 = 5i + ^ in the plane (51, 52) allows us to obtain 
the following relation for the probability density function of g, (t>{9)' 

(t){g)(x / e x p ( - a i 5 i - (A + Qf2)5i - (A + a2)p) d5i 

si=0 

= exp {-{X + a2) g) / e x p ( - a i 5 i - (A + 0̂ 2) 5i) d5i , 

(4.11) 

s i = 0 

that implies: 
0 ( ^ ) o c e x p ( - ( A + a2)^) • (4.12) 

By symmetry, the probability density function of |^| for the case ^ < 0 satisfies 
the following condition: 

0 ( | ^ | ) ^ e x p ( - ( A + a i ) | ^ | ) . (4.13) 

Relations (4.12) and (4.13) show that the rate of change of firms size fol-
lows a double exponential like distribution. Technically, such distribution is 
not Laplace since, as discussed in Bottazzi (2007), has a positive probability 
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that firms do not change their size. This properties comes from the Marshall-
Olkin bivariate distribution that is not absolutely continuous. Bottazzi (2007) 
also note that the double exponential like distribution derived in Palestrini 
(2007) does not fit empirical data. An explanation (Palestrini, 2007) is that 
such distribution is very sensitive to the conditions under which it is derived. 
The Marshall-Olkin condition and, as said before, power law distributions of 
firms' size (and also the Laplace model for firms' growth rate) are not good 
approximations for the whole support of the respective empirical distribu-
tions. 

The main message, for an economist, looming large from the statistical re-
sults discussed so far is that the scaling approach to business fluctuations may 
derive in the first place from the levels of state variables being distributed as 
a power law, at least qualitatively in the sense that may generate fat tail dis-
tributions. Thus, the basic question to be answered is whether scale invariance 
for levels of state variables, in a certain range of the support, is a general fea-
ture of economic systems or not. From this viewpoint, it emerges that power 
law probability functions arise endogenously in economics basically for two 
reasons: 1) the lack of a characteristic scale in empirical and theoretical eco-
nomics, implying that the occurrence of either rare or frequent events (i.e., 
sizes) is governed by the same law (Zajdenweber, 1997); 2) a power law be-
havior in the tail(s) of a distribution is a feature of a family of distributions 
known as Levy-stable distributions. Due to a generalization of the central 
limit theorem (Gnedenko and Kolmogorov, 1954), the sum of a large num-
ber of identical and independent random variables has a probability density 
function characterized by a four-parameter characteristic function. Among 
the many different available parameterizations, we choose the S'o(a,/?, 7, J) 
parameterization proposed by Nolan (2002),^^ according to which the char-
acteristic function of X is given by: 

Eexp{itX) (4.14) 

f exp { - 7 " \tr [1 + iP (tan ^ ) (sign^ ((7 1^1)'"" " l ) ] + i^^} 

if aj^l 

I-7" exp i - r \t l + i / ? - ( s ign t ) ( ln | t |+ ln7 ) 
TT 

+ iSt\ 

if a = l , 

A major advantage of the functional form (4.14) is that the four parameters 
have an intuitive interpretations. The characteristic exponent or index of 
stability a, which has a range 0 < a < 2, measures the probability weight in 
the upper and lower tails of the distribution. In general, the p-th moment of 

^̂  The parameterization of the characteristic function So is particularly convenient 
because the density and the distribution functions are jointly continuous in all 
four parameters. 
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a stable random variable is finite if and only if p < a. Thus, for a < 2, a Levy-
stable process possesses a mean equal to the location parameter S (which in 
turn indicates the centre of the distribution) but it has infinite variance, 
while if a < 1 even the mean of the distribution does not exist. /?, defined on 
the support —1 < P > 1, measures the asymmetry of the distribution, with 
its sign indicating the direction of skewness. Finally, the scale parameter 7, 
which must be positive, expands or contracts the distribution around the scale 
parameter S. The Levy-stable distribution function nests several well-known 
distributions, like the Gaussian A^(/i, cr^) (when a = 2, /9 = 0, 7 = cr^/2 and 
S = fi), the Cauchy {a = 1 and /3 = 0) and the Levy-Smirnov {a = 0.5 and 
/3 = ±1). 

Levy-stable distributions are particular important because they represent 
an attractor in the functional space of probability density functions, in that 
the generalized Central Limit Theorem (Gnedenko and Kolmogorov, 1954) 
states that the only possible limiting distribution for sums of independently 
and identically distributed random variables belongs to the Levy-stable fam-
ily. It follows that the conventional Central Limit Theorem is just a special 
case of the above - a special case which applies whenever one imposes the 
condition that each of the constituent random variables has a finite variance. 
In particular. Levy-stable distributions are stable under convolution. Sim-
ply stated, if we sum N iid Levy-distributed variables with characteristic 
exponent a: 

N 

En 
TN = '-=^, (4.15) 

the renormalized sum T/v is also Levy-stable with characteristic exponent 
a. Besides other interesting properties,^^ non-Gaussian Levy-stable distribu-
tions (i.e., for a < 2) are characterized by tails which are asymptotically 
Pareto distributed with exponent 1 + a. 

When a = 2, /? = 0 and 7 = cr^/2, the distribution is Gaussian with mean 
/i and variance a^. The Gaussian family is the only member of the Levy class 
for which the variance exists. The presence of second moments implies that, if 
disturbances hitting firms are only idiosyncratic ones, aggregate fiuctuations 
disappear as the number of firms N grows large. In fact, without aggregate 
shocks the variance of the average output of N firms is less than the max-
imum variance of firms' output, say cr^ax/^' ^ quantity that, for Â  going 
to infinity, vanishes. On the contrary, stable distributions with a < 2 do not 
need aggregate shocks to generate aggregate fluctuations.^^'^^ 

The difference between the two situations may be well described by the 
example depicted in Fig. 4.4, where we report the average output time path of 

^̂  A comprehensive reference is Samorodnitsky and Taqqu (1994). 
^̂  The first author conjecturing it explicitly has been Mandelbrot (1960). 
^̂  From this viewpoint, in real world normality (in terms of Gaussian distributed 

variables) might just be a special case. 
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Fig. 4 .4. Comparison between two simulated economies, inhabited by 10,000 firms 
each. In the first economy {black line) agents' size distribution is Pareto with lo-
cation parameters k = 1 and stability parameter a = 1.5. In the second economy 
{grey line) agents' size distribution is lognormal, with the same mean (i.e., 3) and 
same estimated variance at t = 0 (i.e., 10.4) of the other economy. The plot de-
scribes the two time series of agents' average output, Fpa (the time evolution of the 
mean of the Pareto distributed firms) and Y\n (the time evolution of the mean of 
the lognormal distributed firms) 

two economies identical bu t for the shape of their firms' size d is t r ibut ions . In 
the first economy firms are Pa re to distributed, whereas in t he second one t h e 
dis tr ibut ion of firm's size is lognormal. Ou tpu t is assumed t o be p ropor t iona l 
to size. T ime series have been obtained by averaging from samples ex t r ac t ed 
from the two dis t r ibut ions a t any t ime period t. 

The t ime evolution of the average output shows almost no aggregate fluc-
tua t ions for the lognormal economy, but large fluctuations in the P a r e t o econ-
omy even in the absence of aggregate shocks. In particular, t he var iance of t h e 
average aggregate ou tpu t in the Pare to case is one order of magn i tude grea te r 
t h a n the variance of t he lognormal case. P u t differently, s table P a r e t o - L e v y 
distr ibutions are good candidates to explain aggregate large fluctuations in 
t ime periods characterized by small aggregate shocks. 
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4.5 An Agent-based Model 

Consider a sequential economy/^ wi th t ime running discretely in periods 
t = 1, 2 , . . . , populated by many firms and banks . Two markets are opened in 
each period: the market for an homogenous produced good, and the market 
for credit. As in the levered aggregate supply class of models first developed by 
Greenwald and Stiglitz (1990, 1993), our model is fully supply-determined,^^ 
in the sense tha t firms can sell all t he ou tpu t they (optimally) decide to 
produce . 

Due to informational imperfections on the equity market , firms can raise 
funds only on the credit market . The d e m a n d for credit is related to invest-
ment expenditure, which is therefore dependent on banks ' interest ra tes . Total 
credit supply, in turn , is a multiple of t he banks ' equity base, which is nega-
tively affected as insolvent borrowing firms go bankrup t . As we will discuss 
below, this mean-field interaction provides a mechanism to create long-range 
in ter - temporal correlations capable t o amplify and propagate idiosyncratic 
shocks. 

4 . 5 . 1 F i r m s 

At any t ime period t, the supply side of the economy consists of finitely 
m a n y competit ive firms indexed with i = 1 , . . . , Â ^ ? each one located on an 
island. T h e to ta l number of firms (hence, islands) Nt depends on t because of 
endogenous entry and exit processes t o be described below. Let the i- th firm 
uses capi tal (Ku) as the only input to produce a homogeneous ou tpu t (Yu) by 
means of a linear production technology, Ya = 4>Kit. Capi ta l product ivi ty {(f)) 
is constant and uniform across firms, and the capi tal stock never depreciates. 

The demand for goods in each island is affected by an iid idiosyncratic 
real shock. Since arbi trage opportuni t ies across islands are imperfect, the 
individual selling price in the z-th island is the r andom outcome of a market 

^̂  Recall that in a sequential economy (Hahn, 1982) spot markets open at given 
dates, while future markets do not operate. 

^̂  Two scenarios are consistent with this assumption. In the equilibrium scenario, 
aggregate demand accommodates supply, i.e. households and firms absorb all the 
output produced by the latter and the goods market is always in equilibrium. 
In this scenario, aggregate investment must be equal to the sum of retained 
profits and households' saving. As we will see, both investment and retained 
profit are determined in the model, so that we have to assume that households' 
saving adjusts in order to fill the gap between the two. In the disequilibrium sce-
nario, aggregate demand does not (necessarily) accommodate supply, so that the 
goods market is generally not in equilibrium. In this case, the difference between 
aggregate investment on the one hand, and the sum of profit and households' 
saving on the other must be assumed to take the form of involuntary inventories 
decumulation. 
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process a round the average market price of output Pt, according to t h e law 
Pit = UitPt^ wi th expected value E{uit) — 1 and finite variance. 

By assumption, firms are fully rat ioned on the equity marke t , so t h a t 
the only external source of finance at their disposal is credit. T h e ba lance 
sheet identi ty implies t h a t firms can finance their capital stock by recurr ing 
either to net wor th {An) or to bank loans {Ln)^ Ku = An + La. Under t h e 
assumption t h a t firms and banks sign long-term contractual relat ionships, a t 
each t debt commitments in real te rms for the z-th firm are ruLit^ where rn is 
t he real interest rate.-*^^ If, for the sake of simplicity, the la t ter is also t he real 
re tu rn on net worth , each firm incurs financing costs equal to rit{Lit + An) 
= Tit Kit. Total variable costs proport ional to financing costs^^, gruKit, w i th 
g > 1. Therefore, profit in real te rms (Tr̂ t) is: 

TTit = UitYit - gruKit = {uucf) - gru) Ku , (4.16) 

and expected profit is E{7rit) = ((/> — grit)Kit. 
In this economy, firms may go bankrupt as soon as their net wor th be-

comes negative, t h a t is An < 0. The law of motion of An is: 

Ait = Ait-i ^ TTit , (4.17) 

t h a t is, net wor th in previous period plus (minus) profits (losses). Making use 
of (4.16) and (4.17), it follows t ha t the bankruptcy s ta te occurs whenever: 

^'* ^ ^ (^^'* ~ ~^~^ ] = '̂ it • (4.18) 

As in Greenwald and Stiglitz (1990, 1993), the probabili ty of b a n k r u p t c y 
(Pr-^) is incorporated directly into the firm's profit function because going 
bankrup t costs, and such a cost is increasing in the firm's ou tpu t . Assuming 
for expositional convenience t h a t Uit is uniformly distr ibuted on t h e su p p o r t 
(0,2), and t h a t bankrup tcy costs are quadrat ic , C^ = cY^ wi th c > 0, t h e 
objective function takes the form:^^ 

Fit = {4>- gru) Kit - Y {gruKl - Au-iKu) • (4.19) 

From the first order condition, the opt imal capital stock is: 

Kf, = ^ ^ + ^ . (4.20) 
ccpgrit 2grit 

^̂  It follows that the credit lines periodically extended by the bank to each firm 
are based on a mortgaged debt contract. 

^° As a matter of example, one can think of retooling and adjustment costs to be 
sustained each time the production process starts. 

^̂  For this program to be well defined g should be such that the condition Au-i < 
gru Kit holds. 
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Thus , the desired capital stock in t is decreasing (non-linearly) with the 
interest ra te and it increases linearly wi th financial robustness, as proxied by 
the t—1 net worth. Time period t desired investment is simply the difference 
between the desired capital stock and the capital stock inherited from the 
previous period, la — Kf^ — Ku-i. To finance it, the i-th firm recurs to 
re ta ined profits and, if needed, to new mortgaged debt , In = 7r^t_i + AL^t,^^ 
where AL^t = La — Lu-i. Making use of (4), the demand for credit is given 
by: 

jd {4> - grit) ^ , fl~'2grit\ ^ 

4 . 5 . 2 T h e B a n k i n g S e c t o r 

We model the banking sector in t e rms of the reduced form from the work-
ing of an oligopolistic industry. T h e balance sheet of the banking sector is 
Lf = Et + Dt, with Lt being to ta l credit supply, Et t he banks ' equity base 
and Dt deposits which, in this framework, are determined as a residual. To 
determine the aggregate level of credit supply, we assume t h a t banks are sub-
ject to a prudential rule set up by a regulatory body such t h a t L^ = Et-i/v^ 
where the risk coefficient v is constant . Hence, the healthier are banks from 
a financial viewpoint, the higher is the aggregate credit supply (Hubbard 
et a/., 2002). 

Credit is allotted to each individual firm i on the basis of the mortgage it 
oflPers, which is proport ional to its size, and to the amount of cash available 
t o serve debt^"^ according to the rule: 

Ll, = X L s ^ + {l- A) L s ^ (4.22) 

wi th Kt-i = Z^2i" Kit-u At-i = E i l Y ' Ait-u and 0 < A < 1. The equi-
l ibrium interest ra te for the i-th firm is determined as credit demand (4.21) 
equals credit supply (4.22), t ha t is: 

^ H" A-it-i , . 
Tit = J- r , (4.23) 

^^^ { ^ "^ ^^^-1 + Ait-iJ + 2cgLs [XK.it-1 + (1 - A) au-i] 

^^ A word of caution is in order here. The law of motion of the net worth (4.17) 
seems to imply that the correct time at which profit had to be taken into account 
in deriving the demand for credit should be time period t. In fact, the timing 
structure of the model is such that when deciding how much to borrow from 
banks, firms do not have received any time t revenues yet. Hence, at the beginning 
of time period t the only internal finance they can count on are inherited equity 
and time t — 1 profits. 
For evidence on the effects exerted by firms' size and credit worthiness on banks' 
loan policies see e.g. Kroszner and Strahan (1999). 
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where hcu-i and au-i are the ratios of individual to total capital and net 
worth, respectively. 

Under the assumption that the returns on the banks' equity are given by 
the average of lending interest rates ft, while deposits are remunerated with 
the borrowing rate rf, the banks' profit (TT^) is given by: 

TT. 

ieNt 

ruLl - ft [(1 - uj) Dt-i + ^ t - i ] (4.24) 

with j 3 ^ being the spread between lending and borrowing rates. Note that 
cj, which in what follows will be treated parametrically, captures the degree of 
competition in the banking sector: the higher is cj, the higher is the interests' 
spread which, in turn, increases with a higher monopolistic power of banks. 

When a firm goes bankrupt, Ku < La. In this case, the banking sector 
as a whole registers a loss equal to the difference between the total amount 
of credit supplied up to time period t and the relative mortgage, Bu = 
Lit — Kit = —^it, where Ait < 0 if firm i belong to the set of bankrupt 
firms i7f Let us call Bit bad debt The banking sector's equity base evolves 
according to the law of motion: 

ieOt 

Et = 7rf^Et-i- 2^ Bt-i. (4.25) 

Through the banking sector's equity base law of motion, idiosyncratic real 
disturbances leading to a bankruptcy have systemic consequences: an increase 
of bad debt forces the aggregate credit supply shifting to the left, thus raising 
the financial costs due to a higher interest rate, ceteris paribus. Furthermore, 
the distribution of firms' net worth influences the average lending interest 
rate, which in turn affects the bank's profit and, eventually, credit supply. 
Thus, firms dynamically affect each other through indirect interactions. In 
particular, interactions are global and independent of any topological space, 
and they occur through a field variable, which in our case is the banking 
sector's balance sheet (Aoki, 1996). 

Interactions, if strong enough, allow the system to escape from the prop-
erty of square root scaling for sums of iid shocks due to the Central Limit 
Theorem. It is well known from statistic theory (e.g, Resnik, 1987) that as 
N grows large, independence of idiosyncratic disturbances implies that the 
volatility of the system decays with the square root of size, leading to a power 
law distribution with exponent f3 = —O.b.li distant agents are sufficiently cor-
related through interactions, in turn, aggregate volatility decays more slowly, 
according to a power law with exponent P < —0.5. The empirical evidence 
reported in Amaral et al. (1997) for companies and in Canning et ai (1998) 
for countries goes precisely in this direction. 
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4.5.3 Firms' Demography 

Recent empirical work has shown that firms entering and exiting markets 
contribute almost as much to employment and macroeconomic fluctuations 
as firms continuing their activity (e.g., Davis et al.^ 1996). Hence, any theory 
of business fluctuations should pay particular attention to the way entry and 
exit of firms are modeled.^^ 

In our framework, exits are endogenously determined as financially fragile 
firms go bankrupt, that is as their net worth becomes negative. Besides mak-
ing the total output to shrink, exits cause the equity of the banking sector -
and, in turn, aggregate credit - to go down. As discussed above, this mean 
field interaction in terms of a hank effect (Hubbard et a/., 2002) amplifies and 
propagates idiosyncratic shocks all over the economy. 

As regards entries, the literature has suggested models ranging from ex-
ogenously defined purely stochastic processes (Winter et al.^ 1997), to models 
where entry is endogenous in that the number of entrants depends on ex-
pected profit opportunities (Hopenhayn, 1992). Alas, the available evidence 
has been so far inconclusive. Caves (1998), for instance, claims that the only 
firm points are that entrants are in general largely unsure about the prob-
ability of prospective success, and that entries does not occur at a unique 
sector-specific optimal size. 

Our modeling strategy aims at capturing these facts by means of a mech-
anism in which a probabilistic process is affected by prospective performance, 
and entries can take place at different sizes. First, the number of new entrants 
^j^entvy^ is obtained by multiplying a constant TV > 1 to a probability which 
depends negatively on the average lending interest rate: 

gentry ^ ^y Pr(entry) = r^ r. , (4.26) 
' ^ '^ l + e x p [ d ( n t - i - e ) ] ^ ^ 

where d and e are constants. The higher is the interest rate, the higher are 
financial commitments, and the lower are expected profits, with entries being 
lower in number. Second, entrants' size in terms of their capital stock is 
drawn from a uniform distribution centered around the mode of the size 
distribution of incumbent firms, each entrant being endowed with an equity 
ratio (a^t = An/Kit) equal to the mode of the equity base distribution of 
incumbents. 

4.5.4 Long-Run Dynamics 

In order to understand the long-run - i.e., growth - properties of our economy, 
it is convenient to consider a deterministic version of the model. Indeed, 
abstracting from uncertainty means getting rid of heterogeneity, so that we 

^^ Delli Gatti et al (2003) provide an extensive analysis on the relationship between 
entries and exits and aggregate fluctuations in a model very similar to this one. 
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can easily keep t rack of the dynamic behavior of a representative firm. If t h e 
interest r a t e is assumed constant , from (4.16), (4.17) and (4.20) it t u r n s ou t 
t h a t the law of motion of the net worth is: 

The solution of this first order difference equation re turns the s teady s t a t e 
gross growth ra te of the economy, l / 2 [ 0 / p r + l ] , which implies positive g rowth 
whenever (0 — gr) > 0: whenever the re turn to capital is higher t h a n its cost, 
t he economy is characterized by endogenous growth. This result is far from 
surprising as soon as we note t ha t in our model the product ion function 
exhibits constant re turns to the only input t ha t can be accumulated, which 
is the same engine of growth as in the well-known AK endogenous g rowth 
model developed by Rebelo (1991). 

This analogy can be further extended to appreciate the special role played 
by credit in our economy. First , recall t ha t in the Rebelo's model t h e s teady-
s ta te growth ra te depends positively on the saving ra te . In our par t ia l equi-
librium analysis savings are implicitly defined as the difference be tween in-
vestment and re ta ined profits,^^ so tha t at each t ime period t t o t a l savings 
are equal to banks ' loans. Indeed, changes in the banking regulatory regime 
or in the competi t ive pressure in the banking sector end up affecting t h e 
equilibrium lending interest ra te , and through it the long-run growth r a t e . 

4.6 Simulation Results: Preliminaries 

The complexity of the model directs the analysis of its high-frequency p rop -
erties towards computer simulation techniques. Figures 4.5 and 4.6 exhibi t 
the evolution of an artificial economy lasting 1000 t ime periods, implemented 
using the framework analyzed in the previous section with a s ta r t ing n u m b e r 
of 10,000 firms.^^ In par t icular , in Fig. 4.5 we show the t ime p a t h of t h e log-
ar i thm of to ta l ou tpu t , whereas in Fig. 4.6 it is drawn its volatility expressed 
in terms of ou tpu t ' s growth rates . 

From Fig. 4.5 it emerges t ha t our stochastic economy, buffeted wi th iid 
idiosyncratic d is turbances only, is characterized by sizable aggregate fluctu-
ations; t h a t its growth process displays a broken-trend behavior^^ (Perron , 

^̂  See the equilibrium scenario depicted in note 18. 
^̂  In the following, every simulation were conducted by means of Swarm^ an 

agent-based software developed at the Santa Fe Institute to implement artifi-
cial economies. Interested readers can find it at the web site: www.swarm.org. 

^̂  For instance, the average growth rate goes from 0.19% in periods 150-350, to 
0.25% in periods 351-780, to 0.37% in periods 780-855, to 0.31% in periods 880-
1000. Yearly average growth rates more close to reality could be obtained in this 
model through a more careful calibration exercise. Given that our main interest 
is in business fluctuations, however, we leave this undertaking to future research. 
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1989); and tha t Great Depressions (e.g., t he one during the simulation t ime 
period 855-880) can suddenly punc tua te its t ime pa th , due to bankrupt -
cies of great firms tha t origin remarkable impacts on the business cycle via 
t he financial sector (Gabaix, 2005). T h e ou tpu t series possesses an autocor-
relation parameter equal to 0.99. Interestingly, before large downturns our 
model seems to exhibit a common pa t te rn : s ta r t ing from a constant growth 
t rend, the economy gains momentum with accelerating growth and increasing 
volatility, to subsequently move into a deep recession. 

F ig . 4 .5 . Logarithm of the aggregate output. The first 150 periods have been 
deleted to get rid of transients 

F ig . 4.6. Growth rates of aggregate output 
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Furthermore, as shown in Fig. 4.6, fluctuations as measured by output's 
growth rates are characterized by cluster volatility, a well known phenomenon 
mostly in the financial market literature due to the heavy tails character of 
asset returns' distributions (Cont et a/., 1997). The growth rates' standard 
deviation is 0.0289, 

4.6.1 Firms' Size and Growth Rates Distributions 

In Fig. 4.7 we report the Zipf plot for firm sizes recorded at simulation time 
period 1000. In agreement with recent empirical results (Axtell, 2001) the 
firms' size distribution is skewed and it follows a power law. Furthermore, 
the scaling exponents recorded (a = 1.15) are consistent with what found in 
real data (Gaffeo et al.^ 2003). As widely shown in the complexity literature, 
the emergence of such a distribution is deeply correlated with the hypoth-
esis of interaction of heterogeneous agents that is at the root of the model. 
More specifically, the interaction among units buff'eted with multiplicative iid 
shocks leads the system's dynamics to a complex critical state in which no 
attractive point or state emerges. In terms of business fluctuations, it means 
that there is not a single and determinate equilibrium, but a non-stable state 
emerges after each recessive or expansive episode. 

The firms' size distribution tends to shift to the right during growing 
phases, while during recessions the estimated stability parameter a decreases. 
In fact, during expansions greater firms tend to grow faster than smaller ones, 
causing a higher slope of the interpolating line if compared with the situation 
observed during recessions. On the contrary, bankruptcies of great firms dur-
ing downturns cause a more equal distribution of the size distribution. Once 
again, this is precisely what observed in real data (Gafl'eo et al, 2003). 

Stanley et al. (1996) and Bottazzi and Secchi (2003), among others, find 
that the growth rates of firms are generally well fitted by a Laplace (or 

Fig. 4.7. Zipf plot of firm sizes 
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Fig. 4.8. Distribution of firms growth rates 

double exponential) distribution. As discussed in Sect. 4.4, such a finding 
can be shown to derive from firms' size being distributed as a power law. 
In fact, simulated data for firms' growth rates, reported in Fig. 4.8, are well 
approximated by a (asymmetric) Laplace distribution. 

In another stimulating paper, Lee et al. (1998) show that binned growth 
rates for firms and countries' GDPs settle on the same regression line in 
a log-log plot. If analyzed from a complex perspective, this result signals the 
presence of self similarity'^^ ^ i.e. the behavior of greatest units (countries) 
reproduces the behavior of smaller units (firms), possibly corrected by a scale 
factor (Durlauf, 2003). As shown in Fig. 4.9, where we plot the distribution 
of the growth rates of aggregate output, this feature has been recorded in 
our model as well. The difference of parameters between the firms' growth 
rate and the aggregate output growth rates distributions is sensible, in our 
simulations, to the modeling choice for the production function, though we 
do not have at this stage any analytical result to prove it. 

The model is capable to display several other striking similarities with 
observable facts. In particular: 1) the frequency of firms' exits seems to be 
well approximated by an exponential function of firms' age (Steindl, 1965; 
Fujiwara, 2003); 2) bad debt, that is the amount of unpaid loans due to 
bankruptcies extended by the banking sector, follows a stretched exponential 
distribution (Belli Gatti et a/., 2003); 3) profits are power law distributed, 
and exhibit time reversal symmetry (Fujiwara, 2003); 4) expansions and re-
cessions, measured as trough-to-peak and peak-to-trough of the GDP growth 
rates time series, are distributed as a Weibull (Di Guilmi et al.^ 2003); 5) the 
rate of return on the capital {iTi/Ki) and the equity ratio â  are positively 
correlated; 6) a higher equity ratio is associated with a lower volatility of 

^̂  According to Sornette (2000, p. 94), self-similarity occurs when ".. . arbitrary 
sub-parts are statistically similar to the whole, provided a suitable magnification 
is performed along all directions". 
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Fig. 4.9. Growth rates of aggregate output 

profits, the last two facts being consistent with the evidence one can obtain 
by analyzing real data. 

4.6.2 Conditional Distributions 

In this subsection we address a typical aggregation issue, known as the mix-
ture problem, which is likely to negatively affect the reliability of results as 
soon as scaling plots are taken into account (Brock, 1999; Durlauf, 2003). 
Roughly speaking, the mixture problem asserts that, when aggregating eco-
nomic units with different behaviors, it is possible to observe marginal distri-
butions with heavy tails even though conditional distributions do not possess 
such a property. In other terms, a power law may appear simply because het-
erogeneous units governed by different stochastic processes are erroneously 
mixed, instead of signaling the invariant properties of a unique Levy-stable 
underlying stochastic process. In fact, if the latter is the case one should 
observe the same scaling behavior independently of which conditioned sub-
sample is considered. In fact, the mixture problem may be present in our 
work, since the model described in Sect. 4.5 impHes different behaviors ac-
cording to the financial position of firms, as well as differently aged firms. 

To understand which variable is likely to be most suitable for condition-
ing, we start considering one of the basic hypothesis at the root of the model 
mechanics, that is the fact that an heavy indebted firm is forced to use a large 
amount of its revenues to pay for its financial commitments, instead of using 
it for real investments. In other terms, a high leverage is likely to reduce 
the profitability index. The analysis of the relationship between profit rate 
and equity ratio, conducted by means of nonparametric regression^^, returns 
an upward sloping trend (Fig. 4.10) as one would expect from the theoret-
ical model, and in line with what recorded for empirical data. Furthermore, 

We use a kernel density estimation (Hardle, 1990), with a Gaussian kernel. 
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Fig. 4.10. Profit distribution conditioned on the equity ratio, with firms grouped 
in 10 bins 

simulations show tha t the ra te of profit d is t r ibut ion shifts to the right when 
condit ioning on the equity ratio^^, and t h a t the probabil i ty to fail does not 
depend on the size but only on the financial position^^. This is impor tan t for 
t h e analysis to follow, suggesting t h a t to address the mixture problem it is 
sufficient t o compute firms' distr ibutions condit ional on the equity rat io. 

Hence, the power law behavior of the firms' size distr ibution is analyzed 
par t i t ioning the [0,1] interval, to which a belongs, in several bins (chosen ac-
cording to a percentile al lotment) . Figure 4.11 shows t h a t d a t a from diflPerent 
dis t r ibut ions conditioned on the equity par t i t ion [0,0.1734], (0.1734,0.2269], 
(0.2269,0.3319]^^ collapse on the same interpolat ing line, a clear sign of self-
similarity, thus signaling tha t the uncondit ional dis t r ibut ion of firms' size is 
likely to display a scaling behavior because of i ts t rue na tu re and not due to 
spurious mixing. The level of the equity ra t io seems not to have any influence 
on the relative growth of firms, since t he condit ional distr ibutions of growth 
ra tes , sorted in bins according to their financial position, invariably collapse 
on the same curve (Fig. 4.12). 

To summarize, of the two forms of heterogeneity in the model - i.e., firms' 
financial position and age - the one t h a t really ma t t e r s in firms' behavior is 
t h e former, here measured by the equity ra t io a. T h e analysis above shows 

^̂  The shape of the conditioned profit distributions depends on the assumption one 
makes on the distribution of idiosyncratic real shocks. We made several trials, 
to conclude that the best approximation to what observed in real data could be 
obtained by forcing the relative price shocks to be normally distributed. Never-
theless, none of the model's properties discussed in the main text are qualitatively 
affected by this modeling choice. 

^̂  This finding could be further conceived by recalling that firs' exists are exponen-
tially distributed, and that the exponential distribution possesses the well known 
property of being memory less. 

^̂  A fourth bin, i.e. the partition (0.3319, 1], has been excluded from the plot due 
to a lack of sufficient observations. 
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Fig. 4.11. Zipf plot of firms dimension sorted by equity ratio (a) 

Fig. 4.12. Distributions of firms' growth rates partitioned according to their equity 
ratio 

that the scaling and the self-similarity properties - phenomena which suggest 
complex behaviors - do not depend on the aggregation of different economic 
units but it is an intrinsic property of an economic system with interacting 
units buffeted with idiosyncratic multiplicative shocks. 

4.7 Statistical Aggregation 

Roughly speaking, the job of a macroeconomist consists in analyzing people's 
behavior by focusing on the resulting aggregate quantities and their relation-
ships. This is exactly the key point of the aggregation problem: starting from 
the micro-equations describing/representing the (optimal) choices of the eco-
nomic units, what can we say about the macro-equations! Do they have the 
same functional form of the micro-equations (what Theil (1954) called the 
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analogy principle)? If not, how to derive the macro-theory? Certainly, simu-
lations constitute a useful way round, and probably the only one when the 
model is filled with non-linearities. It seems interesting, however, to look for 
analytically closed-form solution to the aggregation problem even for agent-
based model. 

The modern approach to aggregation is the one proposed e.g. by Kalejian 
(1980) and Stoker (1984) which aims at exploiting the statistical structure 
of the model. In particular, the core idea of the statistical aggregation pro-
cedure consists in looking for relationships between the first moments of the 
macro-variables, given the micro-theory, instead of requiring that the aggre-
gate model inherits the same functional form of the micro-relationship. 

Suppose that the micro-relationship we are interested in has the following 
form: 

yit = fiixit,UiuOi) z = l , 2 , . . . , iV t = l , 2 , . . . , T , (4.28) 

where yu is the strategic choice of the generic economic unit i. In the re-
duced form representation, that choice depends on the vector of explanatory 
variables xa, whereas uu is a vector of unobservable characteristics and Oi 
a vector of parameters. Call P^xu^Uit, Oi\(t)t) the joint distribution of all vari-
ables characterized by a time-variant vector 0f Then, using for the sake of 
simplicity a continuous notation: 

E[yt] = fiy{t) = %{(t)t) = / f{xt,Ut,Oi)P{xt,Ut,Oi;(t)t)dxtdutde , (4.29) 

while the following equation gives the expected (aggregate) variables: 

E[xt] - Mx(0 = ^x{(l>t) = I xtPixt,ut,Oi;(f)t)dxtdutde . (4.30) 

The idea behind this line of research is to partition 0 into two sub-vectors, 
4>t = {4>it^4>2t)^ such that: a) (/)2t has the same dimension of xa] and b) an 
invertible function between (f)2t and //^^(t) exists, say 02t = ^x^i^itil^xi^))-
Conditions a) and b), if combined, imply that we can write: 

/i^(t) =!Z^j0it,'Z^-H^it,Mx(t))] =F(/i .( t) ,( />it) , (4.31) 

which represents the (aggregate) relation between the first moments of the 
economic variables. 

Two remarks are in order. First, notice that the aggregate relationship 
between iJiy{t) and iJix{t) depends on a set of parameters of the joint distribu-
tion, here represented by (f)it. Second, in general the aggregate relationship 
F differs from the true micro-one / . In other words, if one allows for het-
erogeneity in individual choices, it is impossible to use the analogy principle 
even if we are interested in an aggregate model that holds only on average. 

It must be admitted that this approach has been rarely used in the lit-
erature, basically because of its difficult implementability and the need for 
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gathering too much information about cross-sectional distributions. Further-
more, as argued by Pesaran (2000), it is far from clear how this approach could 
be extended to the case of dynamical systems. In what follows, however, we 
will argue that an approximate and simplified adaptation of the stochastic 
aggregation procedure can be derived, which possesses the valuable attribute 
of manageability. Simply stated, the key idea of the aggregation procedure 
we propose here consists in approximating equations (4.29) and (4.30) along 
the line suggested by Keller (1980), and extending such a methodology to 
a dynamical context. This implies to expand around the mean the micro-
relation (4.28) in Taylor series up to a certain order k (usually 2), and to 
take the expectation operator with respect to the agents' cross-section distri-
bution. Obviously, is necessary the existence of a certain number of moments 
of the distribution. In cases, such the power law distributions describes in the 
book, in which second moments may not exist we have to use transformations 
(e.g. the /o^-transformation) giving the number of moments we need. 

For expositional purposes let us suppose that, as it is the case in many 
economic models, the random components u is additive, that the functions fi 
and the parameters Oi are the same across agents {fi = f', 6i = 0), and that 
/ does not depend on 6: 

Vit = f{xit) -^Uit . (4-32) 

Provided that f{x) has the first k-\-l derivatives, the deterministic part of 
(4.32) can be expanded in Taylor series up to order k. In the following, we 
limit ourselves to the case /c = 2, but the reader can easily generalize the idea 
to higher values. In our case, we get: 

f{xit) = fifi^t^eu) = /()U:.t)+r(/ixt)£it + ^4r (Mxt)^ i t+o( | |£ , , | | ) , (4.33) 

where /i^t is the expected value of the vector xu, Su is the vector spreads 
from the mean and / ' and f" are, respectively, the gradient and the Hessian 
matrix oi f{x). 

Taking the expectation we obtain: 

E[yu] = f{l^.t) + ^E[tr{euelf"{fi,t))] + E[o{\\eu\\)] , (4.34) 

where E[.] is the expectation operator and tr is the trace operator. Using the 
linearity property of E, we obtain: 

l^yt = Eivit] = /(M.t) + ^triEtf'in^t)) + E[o{\\su\\)] (4.35) 

where ZJt is the variance-covariance matrix of x. The equation (4.35) rep-
resents the exact aggregate relationship between y and x. When there is no 
dispersion among agents (i.e., Ut converges to the null matrix), (4.35) reduces 
to the representative agent equation in which the analogy principle between 
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first moments of cross-sectional individual behaviors and aggregate variables 
holds t rue . In other terms, we can interpret the two t e rms 

ltriSJ"{ti,t)) + E[oi\\eu\\)] 

as the error we made using the RAH when in fact there is impor tan t hetero-
geneity among agents/firms'^^. 

When we t ry to apply the general exact aggregation procedure discussed 
so far to real-data problems, we have to distinguish between two cases. First , 
suppose we have prior information abou t the agents ' distr ibution. The ag-
gregative relationship between first moments and the paramete rs of the distri-
bu t ion can be now easily inverted. Consider an individual-level scalar micro-
equat ion (i.e., X is a scalar variable). In this case, (4.35) reads:^^ 

t^yt = / (M. t ) + \f"{f^.t)<rlt + E[oi\\6u\\)] • (4.36) 

Suppose, as a mat te r of example, t ha t t he sample dis t r ibut ion of x can be 
approximated by an exponential probabil i ty density function with parameter 
6, i.e. l/bexp{—x/b). Then, the mean /x is equal to b and the variance cr̂  to 
6^. This implies tha t cr̂  = //^ and the exact aggregate equat ion becomes: 

l^yt = f{t^.t) + \f"{(^.t)l4t + E\o{\\eit\\)] = /ii(M.t) + E[oi\\eu\\)] • (4.37) 

Expand ing the micro-relationship in Taylor series of order k = 2 implies t ha t 
t h e approximate equation 

fj.yt ^ ^ l ( / i x t ) (4 .38) 

can be seen as a second order approximation (or, more generally, an approx-
imat ion of order k) to the exact aggregation relation. 

If, on the contrary, we do not have prior dis t r ibut ional information, we 
can usefully exploit any empirical or theoret ical information we have about 
t h e dynamic evolution of x.^^ For example, let t he law of motion of the 

^^ In probability theory, those terms represent the error made linearizing a non-
linear transformation of random variables. In fact, as discussed in the main text, 
there is no aggregation error in an economic theory only when the relationships 
between micro-variables are all linear or affine. 

^^ This method may in principle be applied even when second moments of x do 
not exist (but the first moment of y exists) using an appropriate transformation 
of the microvariable x. In such cases, the approach can give only qualitative 
insights. 

^^ For instance, in the industrial dynamics literature such a kind of information 
comes naturally as one considers the evolution of firm sizes. The asymptotic dis-
tribution for the size of firms usually associated to alternative models of firms' 
size growth is log-normal or power law (Axtell, 2001; Sutton, 1997). As it is 
well known, power law distribution may do not possess second moments. In such 
situations, we need to work on transformed variables (e.g., logarithmic transfor-
mations) to use the above approach. Obviously results must be read carefully 
since they may hold only qualitatively. 
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micro-variable x be described by the following first order difference equation: 

Xit = g{xit-i) + Zit , (4.39) 

where f̂ is a function of the variable x, and zu is some idiosyncratic com-
ponent with zero mean and variance 6'^. Assume, as before, that g can be 
differentiated at least three times, and take an expansion in Taylor's series 
of order 2 of the right hand side of (4.39). The expected value across all xu, 
can then be written as an approximate function of the cross-section mean 
and variance at time t — 1: 

/ix,t = h^{/Ia:,t-U(Tlt-l) ' (4-40) 

Let hy be the function relating the first moment of y with the first and second 
moment of x: 

f^y,t = hy{fi^,ualt). (4.41) 

As we take the variance on both sides of (4.39) after the expansion in Tay-
lor's series has been accomplished, it is possible to compute the approximate 
relation between second moments at time t and first and second moments at 
time t — 1 

alt « 9\f^xt-if(jlt-i + ^^ = v{fi^t-u(Tl,_^,S^) , (4.42) 

that can be substituted in the (4.41) to get: 

l^y,t = hy{liix,t,(^l,t) = hy(fix^t,v(l^xt-i,crlt_-^,S'^)) 

= hyy{/lx,t, / ix t -1 , CT^t-l^ ^^) • (4.43) 

Then, by inverting (4.40) with respect to (jl^t-i ^^ obtain: 

(^l,t-i=lx{/^x,uf^x,t-i) , (4.44) 

and by replacing (4.44) in (4.43) we get a second (approximate) aggregate 
relationship: 

% , t = h2{/J.x,t,/J^xt-i.S'^) , (4.45) 

relating the per-capita value of the variable yi at time t with the per-capita 
value of the variable Xi at time t and t — 1, and with the variance of the 
idiosyncratic shock affecting the dynamics of x. 

Summarizing, whenever we are interested in describing the aggregate im-
plications of a stochastic process x characterizing the evolution of a popula-
tion of agents, we suggest to approximate the dynamic evolution of the first 
two moments (in general the first k moments) by the following map: 

Mxt+i ^ gifJ^xt) + -g'\fj^xt)(rlt 
2 . (4.46) 
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In Fig. 4.13 and 4.14, we present the results of a s imulat ion of the equity ra t io 
s tochast ic process for a simplified version of the model described in Sect, 4.5, 
in which the interest ra te has been considered constant . A set of 10,000 firms 
has been simulated for 20 periods. At the s ta r t , all the firms share the same 
equi ty rat io, set at a value of 70%, and an initial variance equal to 0. For 
each period, the average and the variance of the firm equity rat io distr ibution 
has been recorded, and plot ted as open circles. In b o t h figures, the solid line 
represents the approximation given by system (4.46). 

Fig. 4.13. Mean of equity ratio. The dots represent the results of the stochastic 
simulation, whereas the solid line is the solution of the system (4.46) 

Fig. 4.14. Variance of equity ratio. The dots represent the results of the stochastic 
simulation, whereas the solid line is the solution of the system (4.46) 
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4,8 Summing Up 

Scaling phenomena and power law distributions are rather unfamiliar con-
cepts for scholars interested in business cycle theory, regardless of the fact that 
these objects have been studied in economics since a long time. The reason 
for this neglectfulness should be looked for in the reductionism methodology 
which has so far permeated modern macroeconomics. Our position is that the 
reductionism paradigm is not only theoretically unsatisfying, but it can also 
be falsified as soon as proper new stylized facts are isolated. Concepts and 
methods inspired from physics have revealed particularly useful in detecting 
new facts and guiding theory formation. This work aims at popularize the 
scaling approach to business fluctuations, by discussing some scaling-based 
ideas involved in viewing the macroeconomy as a complex system composed 
of a large number of heterogeneous interacting agents (HIAs). 

In particular, in this chapter we present a simple agent-based model of 
the levered aggregate supply class developed by Greenwald and Stiglitz (1990, 
1993), whose core is the interaction of heterogeneous financially fragile firms 
and a banking sector. In order to grasp the empirical evidence we adopt 
a methodological approach based on agent-based simulations of a system with 
HIAs. In our framework, the origin of business fluctuations can be traced back 
to the ever changing configuration of the network of heterogeneous interacting 
firms. 

Simulations of the model replicate, with a good level of approximation, 
a set of stylized facts, particularly two well known universal laws: i) the distri-
bution of firms' size (measured by the capital stock) is skewed and described 
by a power law; ii) the distribution of the rates of change of aggregate and 
firms' output shows a fat tail double exponential (Laplace) shape. So far, the 
literature has dealt with stylized facts (i) and (ii) as if they were unrelated. 
We have discussed as that power law distribution of firms' size may lays at 
the root of the fat tails distribution of growth rates. 

The model can be extended in a number of ways to take into account, 
among other things, the role of aggregate demand, diflFerent degrees of market 
power on the goods and credit markets, technological change, policy variables, 
learning processes, etc. Our conjecture, however, is that the empirical vali-
dation of more complex models will be due to the basic ingredients already 
present in the benchmark framework: the power law like distribution of firms' 
size and then associated double exponential like distribution of growth rates 
which in turn can be traced back to the changing financial conditions of firms 
and banks. 

Appendix 

In this appendix we briefly describe the assumptions and procedures we fol-
lowed to simulate the model. A simulation is completely described by the 
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parameter values, the initial conditions and the rules to be iterated period 
after period. First of all, we set the parameter values and the initial condi-
tions for state variables needed to start the simulation. There parameters of 
the model are relative to the firm, bank and the entry process. 

For the firm we have: 

— the productivity of capital 0, 
— the parameter of the bankruptcy cost equation c, 
— the firm's equity-loan ratio a, 
— the variable cost parameter g 

For the bank: 

— the mark down on interest rate cj, 
— the weight the bank gives to the capital in allotting the credit supply A. 

For the entry process: 

— the location parameter c?, 
— the sensitivity parameter e, 
— the size parameter TV. 

They are set as follows: 0 = 0.1; c=l;a = 0.08, g = 1.1; uj = 0.002, A = 0.3, 
d = 100, e = 0.1. Â  must be set according to the initial number of firms 
(see below). The first step of the simulation occurs at time t = 1. To perform 
calculations in period 1 for each firm we must set initial conditions for firms' 
capital, the equity base, profit and bad debt. We chose the following values 
Kio = 100, Aio = 20, Lio = 80, TT̂O = 0, Bio = 0. We run simulations for 
several values of initial firms and for different number of iterations. In the 
simulation we report on Sect. 4.6 the initial number of firms was set to 10,000 
and the number of iterations to 1000. Given the initial number of firms, we 
set iV = 180. The main loop is described in the following algorithm. 
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5 Where Do We Go from Here? 

5.1 Instead of a Conclusion 

At the end of this book, it is clear to us that the research carried out so far 
is only a step in a much longer intellectual voyage. We feel the need to pause 
and reflect not only on the distance already covered but also on the direction 
we have to take for future research. For this simple reason, this concluding 
chapter is not a conclusion at all. We want to open a window on the future 
to foresee the shifting ground of research in contemporary macroeconomics 
and position ourselves, our incomplete and as yet probably inadequate set of 
ideas, methods and tools in the debate that will come. 

5.2 Where Are We? 

The research on the role of agents' heterogeneity in shaping microeconomic 
behaviour and macroeconomic performance has been a thriving industry in 
the profession for the last ten years or so.^ The representative agent assump-
tion is still the cornerstone of most of contemporary macroeconomics but the 
awareness of its limitations is spreading well beyond the circle of more or 
less dissenting economists. Also in mainstream macroeconomics, in fact, the 
representative agent is not as eagerly embraced as in the early years of the 
debate on microfoundations in the remote '70s. 

In order to take heterogeneity seriously in macroeconomic modelling, one 
should start with heterogeneous behavioural rules at the micro level and de-
termine the aggregate (macroeconomic) quantity - such as GDP - by adding 
up the levels of a myriad of individual quantities. Statistical regularities at 
the aggregate level are characterized by emerging properties which do not 
show up at the microscopic level. The evolving macroeconomic features of 
the economy, in turn, feed back on microscopic behaviour in many ways, for 
instance by means of externalities or mean field eff"ects. 

^ The literature on issues pertaining to heterogeneity is growing at a very high 
exponential rate. An early overview of the role of heterogeneity in macro-dynamic 
models of the '90s in Belli Gatti, Gallegati and Kirman (2000). Hommes (2006) 
surveys models with heterogeneous agents focusing mainly on financial markets. 
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T h e increasing availabihty of computa t iona l power has allowed the im-
plementat ion of this bo t tom-up procedure in multi-agent models. Not sur-
prisingly, in the last ten years, the development of Agent Based Modelling 
(ABM) has impressed a formidable boost to research on issues concerning 
heterogeneity.^ Multi-agent modelling is the most straightforward way of 
tackling the heterogeneity issue. In the profession at large, however, there 
is no agreement on the oppor tuni ty of following this methodology. While 
some economists, mainly in the unor thodox camp, eagerly embrace the new 
research strategy, some others, mainly in the mains t ream, are skeptical or 
even dismissal. 

There are at least three reasons for this skepticism: (i) a basic dis trust for 
t h e ou tpu t of computer simulations, which is generally very sensitive to the 
choice of initial conditions and pa ramete r values; (ii) a crit ique of the prevail-
ing research strategy in ABM, whose pillars are adapt ive micro-behavioural 
rules and out-of-equilibrium processes, often considered ad hoc; (iii) t he dif-
ficulty and sometimes the impossibility of th inking in macroeconomic terms, 
i.e. of using macro-variables in the theoret ical framework. 

T h e first type of skepticism is rapidly fading away. After all, also Real 
Business Cycle theory - the benchmark line of thought in neoclassical macro-
economics - produces models t h a t are too complicated to be solved by pen 
and paper and must be simulated. In order t o do so R B C theorists have de-
veloped procedures to calibrate their models which, wi th the passing of t ime 
and the spreading in the profession, have become s tandard tools - we can 
even call t hem protocols - of macroeconomic research. 

As to the behavioural rules at t he micro-level, it is t rue t h a t some of the 
most enthusiastic believers in the economy as a Complex Adaptive System 
have seized the opportuni ty of agent based modelling to propose rules of indi-
vidual behaviour characterized by bounded rat ional i ty in environments char-
acterized by uncertainty, learning and adap ta t ion . In fact, differently from 
mains t ream economics, the ABM approach is par t icular ly suitable to address 
issues of heterogeneity, interaction and complexity.^ Multi-agent models al-
low the comparison of the impact of different behavioural rules of t humb , 
which are often t raced back to bounded rat ional i ty and adapt ive behaviour. 
The re is no reason, however, to assume t h a t this is the only way of modelling 

^ Tesfatsion and Judd (2006) provides a comprehensive survey of the different 
viewpoints from which the exploration of behaviour of individual agents can be 
carried out. 

^ The practice of combining heterogeneity and interactions is at odds with main-
stream macroeconomics which is unable, by construction, to explain non-normal 
distributions, scaling behavior or the occurrence of large aggregate fluctuations as 
a consequence of small idiosyncratic shocks. As Axtell (1999: 41) claims: "given 
the power law character of actual firms' size distribution, it would seem that 
equilibrium theories of the firm [... ] will never be able to grasp this essential 
empirical regularity." 
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individual choices. The multi-agent framework can also accommodate models 
of optimizing behaviour of heterogeneous agents. 

It is also true that ABM is the most straightforward way of treating out-
of-equilibrium dynamic processes.^ There is no reason, however, to assume 
that the dismissal of equilibrium is a necessary ingredient of any AB model. 
Out-of-equilibrium dynamics is one way of configuring a collection of agents' 
choices. Maybe it is also the most reasonable or realistic one. The multi-agent 
framework, however, can also accommodate models of market equilibrium in 
the presence of heterogeneous agents. 

The framework presented in Chap. 4, Sect. 4.5, for instance, is a hybrid 
model First of all, in that model optimizing behaviour (on the part of hetero-
geneous firms which are pursuing the optimal degree of capital accumulation) 
co-exist with non-optimizing behaviour (on the part of the banking system 
which determines the supply of credit on the basis of a prudential rule of 
thumb). Second, in the model equilibrium on the credit market coexist with 
disequilibrium on the goods market. 

Finally, the difficulty of thinking in macroeconomic terms can be eased 
by means of an appropriate aggregation procedure. For instance the stochas-
tic aggregation procedure discussed in Chap. 4, Sect. 4.7, allows to resume 
macroeconomic thinking in a multi-agent framework.^ We claim that this 
aggregation procedure is a feasible alternative to the Representative Agent. 

5.3 A Hybrid Framework 

In our opinion, the capability of a model to reproduce significant stylized facts 
both at the micro and at the macro level is a distinctive feature of a good 
modelling strategy. For instance, as discussed above, empirical data have 
shown that firms size distribution is approximated by a power law (Axtell, 
2001; Gaffeo et a/., 2003) and aggregate and firm's growth rates are often 
approximated by a double exponential (Laplace) distribution (Stanley et a/., 
1996; Bottazzi and Secchi, 2003). 

In this context, since the distribution of firms' size follows, with a certain 
degree of approximation, a power law we expect idiosyncratic shocks to "big 
firms" to be responsible to a non negligible extent of the ensuing turning 
point. In fact small idiosyncratic shocks at firm-level may generate large 
aggregate fiuctuations when firms' size is power law distributed (Gabaix, 
2005). 

The ambitious aim of the model of Sect. 4.5 consists in reproducing the 
empirical evidence by means of a macrodynamic framework in which financial 
factors play a crucial role. For the sake of discussion, let's recapitulate and 
clarify the modelling strategy we adopted. 

^ See Arthur (2006) for a thorough treatment of this point. 
^ For a thorough discussion of the procedure and comparison with other aggrega-

tion procedures see Gallegati et al. (2006). 
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Starting from the assumption, well corroborated by the existing evidence, 
that firms differ from one another according to their financial conditions, 
captured by the equity ratio^ we build a macrodynamic model in three steps. 
First of all we derive a behavioural rule at the microeconomic level for invest-
ment activity in an optimizing framework. We have adopted an optimizing 
perspective precisely to show that a multi-agent framework can accomodate 
optimizing behavior. Following Greenwald and Stiglitz (1993) each firm is as-
sumed to maximize expected profit less expected bankruptcy costs. From the 
optimization we derive individual investment, output and demand for credit 
as a function of the individual equity ratio. 

Second, we model the credit market. The aggregate supply of bank loans 
is determined as a multiple of the aggregate net worth of the banking system. 
The aggregate demand for loans is obtained by summing up the individual 
financial needs. It is worth-noting that we do impose an equilibrium condition 
at the aggregate level for the credit market. Moreover we assume a simple rule 
for the allotment of aggregate credit to firms: in equilibrium, the allocation 
of credit to each and every borrower is determined by the availability of 
collateralizable assets. The single most important outcome of the allocation 
of credit in equilibrium is the determination of the interest rate charged to 
each and every borrower, which ultimately depends - among other things -
by the net worth of the borrower itself and of the banking system. 

The net worth of the banking system is the crucial vehicle of (indirect) 
interaction into microeconomic behaviour. For instance, a positive feedback 
mechanism is activated by the bankruptcy of a single firm due to the negative 
impact that the non-performing loan (or bad debt) of the bankrupt firm has 
on the net worth of the banking system. The aggregate supply of credit 
shrinks, being a multiple of the bank's net worth, and the interest rates go 
up for each and every borrower. As a consequence of the interest rate hike, 
the most fragile firms may be forced into bankruptcy. In other words indirect 
interaction among firms through the credit market may force vulnerable firms 
to exit the market. This fact may start a chain reaction and lead to an 
avalanche of bankruptcies. 

In order to endogenize the dynamics of the distribution, we focus on the 
law of motion of the individual firm's equity which is a function, among other 
things, of the interest rate. The third step consists in plugging the equilib-
rium value of the interest rate into the individual law of motion. Inasmuch 
as the interest rate depends on the net worth of the banking system, the 
individual net worth turns out to be a function also of the financial con-
ditions of the other firms. In a sense we incorporate a macrofoundation of 
the micro-dynamics. The individual laws of motion are simulated in a multi-
agent setting and macroeconomic aggregates are determined by adding up 
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individual quant i t ies . T h e moments are computed directly from t h e empir-
ical dis t r ibut ion obta ined from simulated data.^ 

In order to describe in the simplest form the modeling s t ra tegy we have 
adopted, let 's wri te the microeconomic behavioural rule as follows 

Xi = (l){fi,ri) , 

where Xi is a choice or control variable (capital in the model of Sect. 4.5) for 
the i- th agent, fi is an indicator of financial robustness (financial condi t ion or 
position; equity or net wor th in our case) of the i-th agent, r^ is en endogenous 
variable per ta in ing to the the i-th agent (the interest ra te in our case) . T h e 
microeconomic behaviour can be ad hoc, adapt ive or optimizing (as in our 
case). 

In the model of Sect. 4.5 in equilibrium^ a t the firm level the interest r a t e 
is determined when the individual financial need matches credit availabil i ty 
for the single borrower. The financial need of the i-th agent if = Xi — fi 
is the difference between the level of the choice variable and the financial 
position. Credit availability If = s{xi)/ie is a share s(x^), of aggregate credi t 
supply /ie, which in t u r n is a multiple of the financial position of t he bank ing 
system e. 

Equaling financial need and credit availability, taking into account t h e 
behavioural rule above and solving for r^ one gets the equilibrium value of t h e 
endogenous variable: r^ = ^ ( / i , A^e). Notice however, t ha t the net wor th of t h e 
banking system depends on aggregate financial condition of the firms e = e{f) 
hence r^ = r{fi, /jLe{f)). Plugging this expression into the behavioural rule one 
gets Xi = (t>{fi,r{fi,e{f))) or, in simpler form 

Xi = HfiJ). (5.1) 

where ^fi = (f)fi + ^ r^ / r , C/ = ^rTeej^ 
Equat ion (5.1) shows the interaction at work through a mean field effect. 

The individual choice variable depends on the individual financial condi t ions 
and on the average or aggregate financial condition. This is the corners tone 
of modeling financial-real interrelations in an heterogeneous set t ing. 

Dynamics is introduced through the law of motion of the individual fi-
nancial condition: f[ = g{fi^Xi^ri)e' = h{e, f) where ' is the uni t t ime ad-
vancement opera tors . Plugging the corresponding expressions for Xi a n d r^ 
into the laws of mot ion one gets mean field effects at work over t ime. 

Let 's apply the aggregation procedure presented in Sect. 4.7. Take a l inear 
approximat ion in Taylor 's series up to the second order t e rm in E{fi) = fxi « 

an+^fifXfi -f) + i/2^#(/)(/i - ff. 

^ As an alternative, one can apply an aggregation procedure to the individual law 
of motion and determine a two dimensional non-linear dynamic system in discrete 
time which describes the evolution over time of the mean and the variance of the 
distribution itself. For an example see Agliari et al. (2000). 
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Summation and averaging yields 

where E{.) is the expectations operator. Notice that by construction 
Eifi - / ) = 0 and E{fi - ff = Vf. Hence 

^«af) + \^ffif)Vf. 

The aggregate or macroeconomic (choice) variable depends not only on the 
mean but also on the variance (and higher moments) of the distribution of 
financial conditions. Hence the shape and evolution of the distribution of 
financial conditions is important for macroeconomic performance. 

Equation (5.1) can emerge in many different context. Here is a simple ex-
ample. Assume the behavioural rule is Xi = (/>{/{, T). Applying the aggregation 
procedure presented in Sect. 4.7 one gets 

x»<t>if,r) + \4>ffif,r)Vf. 

The demand for credit (in the aggregate) is l^ = x — f. The supply is l^ = fie. 
When demand and supply are in equilibrium, the interest rate (uniform across 
firms) is r = r{f,Vf,e). The net worth of the banking system, however, is 
a function of aggregate financial conditions of firms. Hence Xi = ^(/i , / , Vf) 
which is a variant of (5.1). 

5.4 Where Do We Go from Here? 

The model presented in the previous chapter and recapitulated in simpli-
fied form in the previous section is no more than a first step in the direc-
tion we want to follow. Our aim is to produce generative macroeconomics J 
Macroeconomics, in fact, should have microfoundations: we do not agree 
with a purely holistic approach to macro-modeling. The appropriate micro-
foundations, however, must take into account heterogeneity and interaction. 
Moreover microeconomic behaviour should be not be modeled in isolation 
because it is deeply affected by the macroeconomic scenario. The impact of 
macroeconomic developments on microscopic choice may be mediated by an 
equilibrium configuration of one or more markets as shown in the previous 
section. However, this is not necessarily the rule. Macroeconomic externali-
ties and mean field effects can affect microeconomic behaviour also directly. 
In other words, a good research strategy is based on an explicit consideration 
of a two-way causation link between micro-behaviour and macro-variables. 

^ We borrow this expression from the idea of a generative social science. See Arthur 
(2006) 
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ABM is a great leap forward in the effort to equip the profession with the 
appropriate tools to deal with heterogeneity and interaction in macroecono-
mics. As we have seen above, ABM does not necessarily imply the dismissal 
of optimization and equilibrium. We can move beyond the borders of our hy-
brid framework, however in two directions: (i) assumptions can and should be 
more realistic, i.e. agents' actions and market processes in the model should 
mimic real ones; (ii) the model should be complete, i.e. consider goods, labour 
and financial markets and their interrelations. 

As to realism, we start from the assumption that agents do their best to 
survive and possibly gain a satisfying level of consumption (in the case of 
households) or profit (in the case of firms) in a market environment in which 
uncertainty is pervasive. In this context, transaction costs are relevant and 
market processes and institutions are designed - or emerge spontaneously -
as a way of saving on these costs. Moreover, a certain degree of market power 
on the part of firms is a necessary part of the picture. The microeconomic 
behaviour of agents on markets, therefore, can be described as a process of 
adaptation to a difficult market environment in a complex economy. In a nut-
shell, we must model the way in which production, pricing, capital accumula-
tion and financing occur by means of procurement processes (Tesfatsion and 
Judd, 2006) and is dictated by the need to carry out procurement processes. 

The main building blocks of a framework consistent with the modelling 
assumptions spelled out above are the following. In each period, each firm 
hires labour and invest to produce consumption goods. The firm basically 
knows only a limited neighbourhood of the initial condition (the status quo) 
on the "demand curve" for its products. The desired scale of production and 
sale price, therefore, are constrained by expected demand. Demand expecta-
tions change over time by means of an adaptive mechanism: expectations -
and therefore output and price - are revised upward (downward) if a firm 
experienced excess demand (supply) in the previous period. The degree of 
expectation revision maybe stochastic. 

The interactions in the goods market should be described by a search and 
matching process between the firm, which sells the final output, and house-
holds. Prices (and wages) are posted by firms and discovered by households 
under a thick veil of ignorance. In this market environment, the Walrasian 
auctioneer is conspicuous for his absence. 

The household and the firms are picked at random from a distribution 
and prices and quantities are discovered in firms' stores. The household sorts 
the prices and the corresponding stores in ascending order (from the lowest 
to the highest price) and spends all her wealth in goods of the firms with the 
lowest price. If a firm has not all the quantity the household wants to buy, 
she spends the remaining wealth in the firms with the second lowest price 
and so on. The wealth leftover after a certain number of visits is saved for the 
future. The entire procedure is repeated until every household with a positive 
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wealth has been drawn. At the end of the buying-selhng process, firms have 
received orders and implemented sales. 

Wages and vacancies are posted by firms and discovered by house-
holds/workers. The wage rate off'ered by the firm changes over time by means 
of an adaptive mechanism: the firm revises the wage rate upward if the search 
for labour was not successful - that is if not all posted vacancies were filled -
in the previous period. It is revised downward in the opposite case. The degree 
of wage rate revision maybe stochastic. The worker adjusts her reservation 
wage taking into account both the employment status and price inflation in 
the previous period. 

The matching process which determines employment and wages goes as 
follows. A a firm and a worker are drawn at random from a discrete distribu-
tion. The firm hires the worker if and only if it has still an open vacancy and 
the worker's reservation wage is less or equal to the wage bid. If the worker 
is not hired by firm, another firm is drawn and a new iteration starts. If the 
worker is not hired at end of a certain number of iterations, then he stays 
unemployed in the period and earns zero income. 

In this context, firms are profit seeking agents but not necessarily profit 
maximizers. The attempt to escape bankruptcy and survive is top ranking in 
the agenda of the adaptive firm. Therefore the issue of financial vulnerability 
is crucial over the entire lifecycle of the firm. 

The firm is endowed with a certain initial level of net worth. External 
financing basically coincides with credit extended by banks. Employment 
and production plans are implemented if the firm has enough funds to finance 
them. Assuming that all the profits are retained within the firm, the equity 
base evolves over time according adding realized profits to the net worth 
inherited from the past. If a firm ends up with a negative net worth, it exits 
the market and is replaced by a new entrant firm. 

Procurement processes on the credit market may be modelled as a search 
and matching process similar to the ones presented above for the goods and 
labour markets. Interest rates and bank loans are posted by banks and dis-
covered by firms. The interest rate off̂ ered by the bank changes over time by 
means of an adaptive mechanism: the bank revises the interest rate downward 
if the search for a borrower was not successful - that is if not all posted bank 
loans were filled. It is revised upward in the opposite case. The degree of in-
terest rate revision maybe stochastic or depend on the financial condition of 
the prospective borrower. In this context the process of liquidity creation and 
distribution itself can be modelled as a procurement process on the interbank 
market in which banks and the central bank interact. 

Alternatively, one can think of a centralized credit market in which banks 
act as a system with respect to a decentralized and fragmented corporate sec-
tor. The interest rate charged by the banking system maybe uniform across 
firms or differentiated from firm to firm. In both cases, the financial condi-
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tions of firms are an important determinant of the interest rate poHcy of the 
banking system. 

Once empirically corroborated, the complex adaptive system described so 
far can be put to work to derive insights on the working of policy moves. It 
would be interesting, for instance, to assess the ways in which a change in 
the interest rate controlled by the central bank affects the interbank market 
and trickles down to the economy at large, showing up indirectly in sequence 
in the procurement processes of the financial, goods and labour markets. 
A different transmission mechanism of policy moves could be envisaged for 
fiscal policy and industrial policy. 

As the reader can realize at the end of the wish list of modelling choices 
for future research presented in this section, the distance covered so far and 
succinctly described in the present book, is relatively short. We are on a tra-
jectory in the transitional dynamics towards a new and exciting description 
of the economy. The destination seems far away and - more important - not 
absolutely clear in advance: we are still groping towards a more convincing 
description of the economy we want to explore. 

The only consoling consideration we can think of is that we are not ardent 
believer in the existence of a unique steady state, let alone global stability. 
Regardless of the precise contours of the final destination and the distance 
to be covered, moving forward is the only really important thing. 
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