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To Mike White



Preface

During the first four decades after completing my Ph.D., I was a ‘card-carrying
control theorist’. Sometime toward the end of this period I became aware that there
was a major revolution taking place in biology, whereby it became pretty easy for
anyone with a sufficiently large budget to generate massive amounts of raw data.
The challenge, I was repeatedly told, was to process these data to identify patterns
and draw valid conclusions. Accordingly I tried to read several books and articles
on bioinformatics and computational biology, but never felt sufficiently enlight-
ened as to what the underlying issues were, or enthused to pursue the subject. After
I moved to the University of Texas at Dallas, I met Professor Michael A. White,
Scientific Director of the Harold Simmons Cancer Center at the famed UT
Southwestern Medical Center, also in Dallas. I can say this was a transformative
event in my life. Mike is a rarity among biologists I have met, someone who is able
to convey a broad picture of biological issues, and also to have an open mind
toward those from alien cultures such as myself. Through intense interactions with
Mike over the past two plus years, I have been able to formulate several statistical
and algorithmic problems that are both interesting and challenging to those with a
systems and control background, as well as useful to cancer biologists. While I
have a long way to go, at least I have commenced on what promises to be a richly
rewarding journey.

Another stroke of luck was Edwin Chong, in his capacity as General Chair of
the 2011 joint Conference on Decision and Control and the European Control
Conference, inviting me to give a plenary lecture. Under normal conditions, the
plenary lecturer just shows up and gives his talk, hands over a copy of the slides,
and that’s that. But since this was a joint CDC-ECC, I had to prepare a proper
journal article. This forced me to channel my meandering thoughts into something
more coherent, and resulted in the tutorial paper [1]. So when Springer-Verlag
asked me to write a brief monograph, it was natural to expand that paper into the
present work, by elaborating on some of the ideas and including subsequent
research. Due to the page limitations, even this work describes only a part of the
research that my students and I are currently carrying out.
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During the two years plus that Mike and I have been talking, I have picked up
enough of the rudiments of cancer biology that I can now, with some confidence,
act as an ambassador of the cancer biology community to the control theory
community. I have not yet had the courage to try it in the other direction.
Nonetheless, for his definitive role in converting me into at least a passable imi-
tation of a computational cancer biologist, I take great pleasure in dedicating this
book to Mike.

I acknowledge with gratitude financial support from the National Science
Foundation Award #1001643, the Cecil & Ida Green Endowment at UT Dallas,
and from the Harold Simmons Comprehensive Cancer Center at UT Southwestern
Medical Center.

Hyderabad and Dallas, September 2012 Mathukumalli Vidyasagar
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Chapter 1
The Role of System Theory in Biology

Abstract In this chapter we introduce the reader to current methods for generating
biological data, including such topics as micro-array (or gene expression) studies,
ChIP-seq studies, siRNAs, and micro-RNAs. Special features of biological data that
necessitate the development of new algorithms are highlighted, such as the lack of
standardization in experimental procedures that lead in turn to broad variability of
the data sets.

Keywords Micro-array · ChIP-seq · siRNA · Micro-RNA

1.1 Introduction

Recent advances in experimental techniques, coupled with a dramatic reduction in
the cost of experimentation, now permit the biology community to generate vast
amounts of raw data at an affordable cost. However, this is only the beginning. It
is necessary to analyze the data, so as to convert raw data into information, and
information into actionable knowledge. This conversion would benefit enormously
by the use of techniques from probability theory and statistics, graph theory, and
machine learning, to mention just a few pertinent areas. However, it is not always
possible to make meaningful contributions to biology by applying ‘off the shelf’ tech-
niques from these areas. Biological data sets have some unique features that require
the development of ab initio solution methodologies. For instance, in many machine
learning problems that occur in engineering, such as recognizing handwritten char-
acters or faces from images, the number of samples is a few orders of magnitude
larger than the number of features. In biological problems however the situation is
exactly the inverse: the number of features is one or two orders of magnitude more
than the number of samples. Because of this fact, traditional theorems in machine
learning that tell us what happens as the number of training samples approaches
infinity are simply irrelevant in a biological context. Similarly, when a large number

M. Vidyasagar, Computational Cancer Biology, SpringerBriefs in Control, 1
Automation and Robotics, DOI: 10.1007/978-1-4471-4751-0_1, © The Author(s) 2012



2 1 The Role of System Theory in Biology

of samples are available of a small number of random variables, it would be pos-
sible to deduce their joint distribution to a high level of accuracy and confidence.
However, when there are relatively few samples of a large number of random vari-
ables, it is not possible to deduce their joint distribution. Instead we must be content
with identifying families of joint distributions that are consistent with the data, but
are by no means uniquely determined by the data. Missing measurements are far
more prevalent in biological data than they are in engineering. Finally, in many ways
the biological community is charging ahead with generating huge amounts of data
even before the underlying measurement technologies have been standardized. As
a result, when different vendors provide ‘probes’ that ostensibly measure the same
quantity, often there is no resemblance whatsoever between the measurements gen-
erated by the various platforms. Even if one were to use the same vendor’s apparatus
consistently, the measured values are still subject to ‘batch effects’, either in the form
of drift or additive and/or multiplicative noise. At present, there are massive public
databases that serve as repositories of various data sets that have been generated by
individual laboratories. However, the data that is deposited into these repositories is
not normalized for platforms, batch effects, and the like. Thus, while it may appear
that there is a great deal of data available, often it is not internally consistent and/or
is of poor quality. These are but a small sample of the unique features of biological
data sets. Thus any algorithms developed to handle biological data must incorporate
provisions for coping with all of these phenomena.

The requirements of understanding these unique features, and appreciating the
kinds of insights that biologists seek to derive from their data, provide a great oppor-
tunity to the engineering community to make a significant impact on biology. This
is especially true of the systems and control community, because biological prob-
lems do not neatly fall into one clearly defined category of mathematics; rather, they
cut across several categories, and it is incumbent on the problem solver to find the
appropriate mathematical model(s) and then to tune the solution to the biologists’
requirements. Since by nature control theory draws upon a wide variety of techniques
from mathematics, it would be natural to apply the ‘systems approach’ to biological
problems.

The interplay between mathematical modeling and experimental biology dates
back several decades, and ‘theoretical biology’ has been a well-accepted discipline
for a very long time, even if the name of the area keeps changing with time. In recent
years, many persons whose primary training was in the systems and control area have
moved into biology and have made many significant contributions, and continue to
do so. This is illustrated by the fact that in recent years there have been two special
issues within the controls community that are devoted to systems biology [1, 2]. It
would be impossible to create a comprehensive description of all these contributions,
and in any case, that is not the objective of this work. Rather, the objective of this
brief monograph is to present a snapshot of one specific research problem in cancer
biology to which methods from probability and statistics may be fruitfully applied.
In that sense, the scope of the work is voluntarily limited.
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Biology is a vast subject and cancer biology is a large part of this vast subject.
Moreover, our understanding of this topic is constantly shifting, and there are very few
‘settled’ theories.1 Hence the choice of the specific topic discussed here is dictated by
the fact that it presents some interesting challenges in probability theory and statistics,
and of course by the author’s personal tastes. The hope is that this monograph would
serve to present the flavor of this subject, and thus motivate interested readers to
explore the literature further.

1.2 Some Facts and Figures About Cancer

Cancer is one of the oldest diseases known to man. A papyrus popularly known as
the ‘Ebers papyrus’, dating to around 1500 BCE, recounts a ‘tumor against the God
Xenus’ and suggests ‘Do thou nothing there against’. A part of the Ebers papyrus is
reproduced in Fig. 1.1.

The currently used cancer-related terms come from both Greek and Latin. In
ancient times, the Greek word ‘karkinos’, meaning ‘crab’, was used to refer to the
crab nebula as well as the associated zodiac sign. Supposedly Hippocrates in c.420
BCE used the word ‘karkinos’ to describe the disease, and ‘karkinoma’ to describe a
cancerous tumor. One can surmise that he was influenced by the crab-like appearance
of a cancerous tumor, with a hard and elevated central core and lines radiating from
the core. Subsequently the name for the disease was changed to the Latin word
‘cancer’ which also meant ‘crab’, while the name for the tumor was transliterated
into the Roman alphabet as ‘carcinoma.’ In recent times, the pronunciation of the
second ‘c’ got ‘mutated’ to the ‘s’ sound instead of the ‘k’ sound.

The web site [5] contains a wealth of statistics about the incidence, survival rates
etc. of cancer, some of which are given below. Today cancer is the second leading
cause of death worldwide, after heart failure, and accounts for roughly 13 % of all
deaths. Contrary to what one may suppose, cancer occupies the second place even in
developing countries. In the USA, about 1.5 million persons will be diagnosed with
cancer in a year, while around 570,000 will die from it.

Over the years, quite substantial success has been realized in the treatment of
some forms of cancer. This can be quantified by using the so-called five-year rela-
tive survival rate (RSR), which is defined as the ratio of the fraction of those with
the disease condition that survive for five years, divided by the same number for the
general population. To illustrate, suppose we start with a cohort of 1,000 persons.
Assuming a mortality rate of 2 % per year for the general population, after five years
roughly 900 of the original population will survive (rounding off the numbers for
illustrative purposes). Now suppose that amongst a cohort of 1,000 persons with a
particular form of cancer, only 360 survive for five years. Then the five-year RSR is
360/900 = 40 %.

1 For a very readable and yet scientifically accurate description of how theories about the onset and
treatment of cancer have evolved over the past hundred years or so, see [3].



4 1 The Role of System Theory in Biology

Fig. 1.1 The Ebers Papyrus [4]

Table 1.1 Relative survival
rates over the years

Primary site 5-year RSR 5-year RSR
1950–1954 1999–2006

All sites 35 69.1
Childhood 20 82.9
Leukemia 10 56.2
Hodgkin lymphoma 30 87.7
Breast 60 91.2
Prostate 43 99.9
Pancreas 1 5.8
Liver 1 13.7
Lung 6 16.8

Table 1.1 shows the RSR for various forms of cancer, in 1954 and in 2006.
The consensus amongst cancer researchers is that, except for childhood cancer,

the vast improvements in RSR in other forms of cancer are mostly an artefact of
earlier detection and not an indication of improved treatment. Also, in some forms of
cancer, such as pancreas, liver, and lung, the RSR figures have remained stubbornly
stuck at very low levels. Not surprisingly, these diseases form a primary focus of
cancer studies.

1.3 Advances in Data Generation

In this section we describe a few of the more widely used methods of generating
experimental data at the molecular level. Molecular data complements clinical data,
which is obtained by studying the outcomes of various therapies given to patients.
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Finding reliable methodologies for predicting clinical outcomes from molecular data
is one of the most widely sought-after goals of computational approaches to cancer
biology.

1.3.1 Genome Sequencing

All living things propagate genetic information through DNA, which stands for
Deoxyribonucleic acid, and is the fundamental building block of life. DNA is made
up of four nucleic acids, which are usually denoted by the initial letter of the base
that they contain, namely: A for Adenine, C for Cytosine, G for Guanine and T for
Thymine. The genome of an organism is just an enumeration of its DNA. For present
purposes, one can think of the genome as just an enormously long string over the
four-symbol alphabet {A, C, G, T}. Thus the genome of an organism is its ‘digital’
description at the most basic level. Genes are the operative part of the DNA that
produce proteins and thus sustain life. When the first ‘complete’ human genome,
consisting of nearly 3.3 billion base pairs2 was published in 2001 [6, 7], the project
cost more than $3 billion and took nearly ten years; on top of that, it was only a
‘draft’ in that its error rate was roughly 2 %. Today there are commercial companies
that promise to sequence a complete human genome at a cost of $5,000 or so per
genome, or sell the equipment to do so. If one is not interested in the entire genome
but only very specific loci where mutations are believed to be more common and/or
impactful, the cost would be even lower. This is an impressive reduction of several
orders of magnitude in both the cost and the time needed. Moreover, the cost and
time continue to decrease at rates comparable to or faster than the fabled Moore’s
law of semiconductors. Because of these technological advances, it is now feasible
to sequence literally tens of thousands of cancer tissues that are available at various
research laboratories. The National Institutes of Health (NIH) has embarked upon
a very ambitious project called TCGA (The Cancer Genome Atlas) whose ultimate
aim is to obtain a comprehensive molecular characterization of every single can-
cerous tissue that is currently available to it, including the exome sequence, DNA
copy number, promoter methylation, as well as expression analysis of messenger
RNA and micro RNA [8].3 By comparing (wherever possible) the DNA sequence of
tumor tissue with the normal tissue of the same individual, it is possible to isolate
many mutations. One of the main challenges in cancer is to distinguish between
mutations that are causal from those that are coincidental.

2 The phrase ‘base pair’ refers to the fact that DNA consists of two strands running in opposite
directions, and that the two strands have ‘reverse complementarity’—A occurs opposite T and C
occurs opposite G.
3 The reader is referred to any standard text on cell biology to gain an understanding of the various
terms used here.
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Fig. 1.2 Microarray experimentation [9, Fig. 1]

1.3.2 Microarray Experiments

In this subsection we briefly describe the basic principles behind a microarray exper-
iment. Much of the material below, including Fig. 1.2, is taken from an excellent
overview [9]. Microarray experiments are a means of simultaneously measuring the
activity level of various genes under common set of specified experimental condi-
tions. The microarray itself is a glass plate consisting of a few hundred cavities,
usually referred to as spots or wells. Each spot or well contains quantities of a differ-
ent DNA fragment. Often the content of each well consists of replicates of a unique
gene, which is why such studies are also often referred to as gene expression studies.
By combining several arrays, it is possible in a single experiment to study the behav-
ior of tens of thousands of genes. If every (or nearly every) gene in a cell is included
in the microarray study, the study is said to be ‘genome-wide’. During the early
days of microarrays, individual laboratories prepared their own arrays, but now it is
almost universally the case that microarrays are either bought ‘off the shelf’ or, if the
spots are to be custom-made, ordered from commercial vendors. Each experiment
determines the difference between the number of RNA molecules corresponding to
a particular gene in two different kinds of cells, for example, normal tissue and
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cancerous tissue; this comparison is carried out for a large number of genes. One of
the experiments (say normal tissue) is referred to as the reference while the other
(say cancerous tissue) is referred to as the test condition.

For the next step, we quote from [9]:

First, RNA is extracted from the cells. Next, RNA molecules in the extract are reverse
transcribed into cDNA by using an enzyme reverse transcriptase and nucleotides labelled
with different fluorescent dyes. For example, cDNA from cells grown in condition A may
be labelled with a red dye and from cells grown in condition B with a green dye. Once the
samples have been differentially labelled, they are allowed to hybridize onto the same glass
slide. At this point, any cDNA sequence in the sample will hybridize to specific spots on the
glass slide containing its complementary sequence. The amount of cDNA bound to a spot
will be directly proportional to the initial number of RNA molecules present for that gene in
both samples. Following the hybridization step, the spots in the hybridized microarray are
excited by a laser and scanned at suitable wavelengths to detect the red and green dyes. The
amount of fluorescence emitted upon excitation corresponds to the amount of bound nucleic
acid. For instance, if cDNA from condition A for a particular gene was in greater abundance
than that from condition B, one would find the spot to be red. If it was the other way, the spot
would be green. If the gene was expressed to the same extent in both conditions, one would
find the spot to be yellow, and if the gene was not expressed in both conditions, the spot
would be black. Thus, what is seen at the end of the experimental stage is an image of the
microarray, in which each spot that corresponds to a gene has an associated fluorescence
value representing the relative expression level of that gene.

In the above explanation, it is clear that the output of the microarray is a ratio between
the number of RNA molecules present in the test and the reference conditions. As
such, it is a nonnegative number. However, greater insight might be obtained by
taking the logarithm and/or subtracting a bias value, in which case the normalized
output can indeed be a negative number.

There are several problems associated with microarray studies as they are currently
carried out. In most microarrays, each gene that is studied is associated with at least
one ‘probe’, but sometimes more than one probe. The association between probes and
gene expression is one of the many challenges in such studies. When the expression
level of the same gene is measured on platforms from two different vendors, often
there is no relationship whatsoever between the outputs of the two platforms. To
elaborate, suppose one were to plot the outputs of the expression level of the same
gene in the same tissue, as measured by two different probes from two platforms,
against each other, across a patient population. Then it is not uncommon for the plot
to resemble random noise. Figure 1.3 shows a plot of the expression levels of the
gene C11orf76 as measured by two different probes from two different vendors, on a
collection of ovarian cancer tissues surgically removed from patients. The raw data
for this plot comes from the TCGA ovarian cancer study [10].4 Each point represents
a pair of values from the same tissue as measured by the two platforms. Evidently
there is no coherence between the two measurements.

Even with two probes for one gene from the same vendor, the correlation between
the outputs across a patient population is not always decisive. We will return to this
topic again in Chap. 4 on future research directions.

4 Plot generated by my student Burook Misganaw.

http://dx.doi.org/10.1007/978-1-4471-4751-0_4
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Fig. 1.3 Scatter plot of
measurements of the gene
C11orf76 from two different
probes

1.3.3 Chromatin Immunoprecipitation and ChIP-seq

Roughly speaking, chromatin immunoprecipitation (ChIP) is an experimental tech-
nique for predicting which parts of DNA in a cell might interact with a particular
protein of interest. This technique is frequently used when the protein of interest
is a transcription factor, that is, a gene that regulates the expression level of other
genes. The ‘pure’ ChIP technique is rife with false positives, and routinely turns up
thousands of possible target genes, most of which are false. In earlier days, the false
positives were trimmed using microarray analysis, thus leading to a method called
ChIP-chip. Nowadays a more accurate technique known as ChIP-seq is used. ChIP-
seq looks for possible binding sites in the vicinity of each of the predicted target
genes for the transcription factor. Obviously this requires very precise sequencing
of the DNA (whence the suffix ‘seq’), but the predicted target genes are more reli-
able than in ChIP-chip. This last step of eliminating false positives is referred to as
‘peak calling’ in the biology literature and is basically a signal processing problem
with biological overtones. This too is perhaps an area where engineers can make a
contribution. See [11] for a tutorial on chromatin immunoprecipitation, [12] for a
tutorial on ChIP-seq, and [13] for one of several existing methods for peak calling.
In fact in our work on reverse engineering a gene interaction network for lung cancer
using gene expression data from cell lines (Sect. 3.6), the peak calling method used
to identify potential downstream target genes is indeed that in [13].

1.3.4 Small Interfering RNAs

When cells reproduce, DNA gets converted to RNA (Ribonucleic acid) which in turn
produces any of the roughly 100,000 proteins that sustain life. Unlike DNA which is
a chemically stable molecule, RNA is somewhat unstable and can be thought of as

http://dx.doi.org/10.1007/978-1-4471-4751-0_3
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an intermediary stage. The conversion of DNA to RNA (transcription) and of RNA
to proteins (translation) is usually referred to as the ‘central dogma’ of biology;
it was enunciated by Crick [14]. siRNA stands for ‘small interfering RNA’ (the
expansion ‘silencing RNA’ is also used). siRNAs are small double-stranded RNA
molecules, just 20–25 nucleotides long, that play a variety of roles in biology. For
our purposes, the most important role is that each siRNA gets involved in the RNAi
(RNA interference) pathway, and interferes with the expression of a specific gene.
The first siRNAs that were discovered were naturally occurring; however, nowadays
it is common to synthesize siRNAs in the laboratory, for targeted silencing of any
gene of one’s choice. Thus, for example, one can take a cancerous cell line that is
kept alive in a laboratory (‘immortalized’), apply a specific siRNA, and see whether
or not the application of the siRNA causes the cell line to die out. If the answer is
‘yes’, then we conclude that the gene which is silenced by that specific siRNA plays
a key role in the survival of the cancerous cell.

1.3.5 Micro-RNAs

Micro-RNAs, the native equivalent of siRNAs, are relatively short RNA molecules,
roughly 20 nucleotides long, that bind to messenger RNA and inhibit some part of
the translation aspect. At present there are about known 1,500 micro-RNAs. As a
gross over-simplification, it can be said that each micro-RNA inhibits the functioning
of more than one gene, while each gene is inhibited by more than one micro-RNA.
This is because, unlike siRNAs, micro-RNAs have only partial complementarity to
the target site. A description of micro-RNAs and their functioning can be found in
[15–18]. An attempt to quantify the impact of each micro-RNA on the functioning
of various genes is found in the program ‘Targetscan’, which is described in [19].

1.4 Role for the Systems and Control Community

In this section we present a broad philosophical discussion of how the systems and
control community can contribute to cancer research. Some specific problems are
discussed in Chap. 4 on future directions.

It is a truism that biology is in many ways far more complex than engineering. In
engineering, one first designs a prototype system that performs satisfactorily, and then
improves the design to be optimal (or nearly so), and finally, replicates the designed
system as accurately as possible. In contrast, in biology, there is no standardization.
Each of the 7 billion humans differ from each other in quite significant ways—clearly
we are not mass-produced from a common template. Even if we focus on specific
components of the human body and try to understand how they work together for a
common purpose, there are difficulties. In designing complex engineering systems,
each subsystem is designed separately, often by a dedicated design team. Then the

http://dx.doi.org/10.1007/978-1-4471-4751-0_4
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subsystems are connected through appropriate isolators that ensure that, even after
the various subsystems are interconnected, each subsystem still behaves as it was
designed to. In contrast, in biology, it is difficult if not impossible to isolate individual
subsystems and analyze their behavior. Even if one could succeed in understanding
how a particular subsystem would behave in isolation, the behavior of the same
subsystem gets altered significantly when it is a part of a larger system. This is one
reason why many drugs that work well in vitro fail in vivo.

Because of these considerations, it is difficult for control theorists to make an
impact on biology unless they work closely with experimental biologists. In a well-
established subject like aerodynamics (to pick one), the fundamental principles are
known and captured by the Navier-Stokes equation. Thus it is possible for an engineer
to ‘predict’ how an airframe would behave to a very high degree of accuracy before
metal is ever cut. In the author’s view, given that in biology for the most part there
are no foundational principles, and that measurement techniques are rather unreli-
able, control theorists must for the moment settle for a more modest role, namely
‘generating plausible hypotheses’ as opposed to ‘making reliable predictions’. These
plausible hypotheses are then validated or invalidated by experimentation. Learning
is inductive: If a hypothesis is invalidated through experiment, then the model used to
arrive at that hypothesis must be discarded; however, a confirmation of the hypothesis
through experiment can serve only to increase one’s confidence in the model.

In order to describe specific ways in which the controls community can con-
tribute, we give a conceptual description of cancer therapy as it would appear to a
control theorist. Because of the need to explain to a non-specialist readership, over-
simplification is unavoidable, and the reader is cautioned that the description below
is only ‘probably approximately correct’. Those desirous of getting a more accurate
picture should study the biology literature.

In the human body, cells die and are born all the time, and a rough parity is
maintained between the two processes. Occasionally, in response to external stimuli,
one or the other process gains the upper hand for a short period of time, and in a
localized manner. For instance, if one gets a wound, then stem cells in the vicinity
of the skin surrounding the wound proliferate rapidly for the production of new
epidermis. Once the wound is closed, these cells return to a slower rate of replication.
In the process of cell division and DNA replication, errors do occur. However, there is
a fairly robust DNA repair process that corrects the errors made during replication. In
spite of this, it is possible that some mutations that occurred during DNA replication
do not get corrected, but instead get passed on to the next generation and the next after
that; these are called somatic mutations. If these mutated cells replicate at a faster
rate than normal cells, then it is possible (though not inevitable) that eventually
the mutated cells overwhelm the normal cells by grabbing the resources needed for
replication. At this point the cell growth, or tumor, has gone from being benign to
being malignant. If the products of the mutated DNA enter the blood stream, or
the lymph system, then the mutations can then be replicated at locations that are
far-removed from the site of the original mutation; this is known as metastasis.
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One of the complicating factors of cancer is that, in contrast to other diseases, every
manifestation of the disease is in some sense unique.5 Hence some sort of ‘personal
medicine’ is not only desirable but imperative. Fortunately, thanks to all the advances
cited in Sect. 1.3, there is now a tremendous opportunity to make personal medicine a
reality. Specifically, by analyzing the vast amount of molecular and clinical data that
is becoming available, cancer therapists can aspire to provide prognostic information
and a selection of therapies that would most benefit each patient. In doing so, the
following are some typical questions that need to be addressed:

• Given a genome-wide data set from a common experimental condition, is it pos-
sible to construct a context-specific (and genome-wide) gene interaction network
(GIN) that describes how the various genes interact with each other in that partic-
ular experimental setting? Is it possible to validate a part of this network, at least
around some genes (nodes)?

• Given a large number of patients with a particular form of cancer, is it possible to
group them in such a way that the variation of their GINs within each group is a
minimum, while at the same time the variation between groups is maximum?

• Using a combination of machine-learning (or statistical) and experimental meth-
ods, is it possible to predict which treatment regimen is likely to be most effective
for a particular group of patients?

Within this broad framework, the control community can

• Integrate available data in a rational manner that would permit the generation of
all possible hypotheses that are consistent with the data about therapeutic inter-
ventions.

• When the biologists come up with some hypotheses, exclude those hypotheses
that are inconsistent with the data, and rank those that are consistent in terms of
their statistical significance (i.e., compatibility with the available data).

• In a suo motu fashion, generate hypotheses that are suggested by the data, which
the biologists can then validate.

• Recalibrate the statistical models to take into account new data as it becomes
available, especially new data that does not match the predictions of existing
models.

In short, by entering into a partnership with the biologists’ community, the systems
and control community can create a ‘virtuous cycle’ that would benefit both groups.

1.5 Organization of the Monograph

Due to space limitations, in this monograph we focus on one specific tool, namely
the construction of context-specific genome-wide gene interaction networks (GINs)
from expression data. The monograph is organized into four chapters including the

5 One could paraphrase the opening sentence of Leo Tolstoy’s Anna Karenina and say that ‘Normal
cells are all alike; every malignant cell is malignant in its own way’.
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introduction. The contents of the three chapters after this one are briefly described
next.

• Analyzing the statistical significance of labeled data. There are several methods
that are currently used for this purpose, and the aim of this chapter is to gather in
one place the most widely used techniques, and put them in context against each
other.

• Reverse engineering context-specific genome-wide gene interaction networks
(GINs) from expression data. As mentioned above, this is the main new research
contribution of the monograph.

• Directions for new research. In this chapter we sketch some of the problems that
can be tackled using the methods proposed here.

Throughout the monograph, we use a fairly homogenous set of ideas from prob-
ability and statistics, such as Markov chains, graphical models, goodness of fit tests
etc. These should be familiar to most control theorists, so these concepts are just
invoked as needed without further preamble. Those unfamiliar with these concepts
can consult any standard reference.
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Chapter 2
Analyzing Statistical Significance

Abstract In this chapter we review some popular methods for estimating the
statistical significance of various conclusions that can be drawn from experimental
data. These include the χ2-text, the Kolmogorov–Smirnov (K–S) test for goodness
of fit, the ‘student’ t-test for testing the null hypothesis that two sets of data have
the same mean, Significance Analysis for Microarrays (SAM), Pattern Analysis for
Microarrays (PAM) and Gene Set Enhancement Analysis (GSEA).

Keywords Statistical significance tests · χ2-test · Kolmogorov–Smirnov test ·
t-test · SAM · PAM · GSEA

In this chapter we will review some popular methods for estimating the statistical
significance of various conclusions that can be drawn from experimental data. In a
typical biological experiment, n distinct quantities called the ‘features’ are mea-
sured on each of m samples. The features can represent gene expression levels
as measured in a micro-array study, levels of micro-RNA, or other things of this
sort. Usually the true value of the feature is a nonnegative number. However, it
is customary to normalize the data by centering (subtracting a bias term), scaling,
and/or taking a logarithmic transform. Consequently the normalized feature val-
ues can also be negative numbers. The underlying assumption is that each feature
Xi, i = 1, . . . , n is a random variable, and that for each sample index j, the vector
xj ∈ R

n = (xij, i = 1, . . . , n) is a measurement of the collection of random variables
X = (Xi, i = 1, . . . , n). It is further assumed that xj is statistically independent
of xk for all k �= j. However, there is no assumption that the Xi’s themselves are
independent random variables. Indeed determining the interdependence between the
features is one of the key challenges in modeling, and is the subject of Chap. 3.

Thus the data set consists of an array of real numbers {xij}, i = 1, . . . , n,

j = 1, . . . m. Moreover, it is often the case that the data is labeled. Thus the m sam-
ples are grouped into K classes, where class k consists of mk samples (and obviously∑K

k=1 mk = m). Usually there is a biological basis for this grouping. For instance, K
could equal two, and class 1 consists of measurements from tumor tissues of cancer

M. Vidyasagar, Computational Cancer Biology, SpringerBriefs in Control, 13
Automation and Robotics, DOI: 10.1007/978-1-4471-4751-0_2, © The Author(s) 2012
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patients who respond to a specific therapy, while class 2 consists of measurements
from tumor tissues of cancer patients who are not responsive to the same therapy.
Now all n features are measured on a new (m + 1)-st sample, and we would like to
classify this new vector as belonging to one of the K classes. In order to do so, the
type of questions that can be asked are the following:

• Suppose we divide the sample set into two classes consisting of m1 and m2 elements
each, which without loss of generality can be renumbered as M1 = {1, . . . , m1}
and M2 = {m1 + 1, . . . , m1 + m2} where m1 + m2 = m. For a specific feature
(i.e., a specific index i), is it the case that average the expression level of feature
i for class 1 differs at a statistically significant level from that of class 2? This is
the topic of Sect. 2.1. How can this idea be extended to more than two classes?
• In biology it often happens that, in a collection of genes S (referred to as a genomic

machine in Chap. 4), no single gene is over-expressed in class 1 compared to
class 2; however, taken together they are over-expressed. Can this notion be made
mathematically precise and tested? This is the subject of Sects. 2.2 and 2.3.
• Suppose some sort of classifier has been developed, which achieves a statistically

significant separation between the various labeled classes. Now suppose, as before,
that an (m + 1)-st data vector consisting of n expression level measurements
becomes available. Usually such a classifier makes use of all n components of
the data vector. Is it possible to identify a subset of {1, . . . , n} and a reduced-
dimension classifier that more or less reproduces the classification abilities of a
full-dimension classifier that uses all n components of the data? This is the topic
of Sect. 2.4.

2.1 Basic Statistical Tests

In this subsection, we describe two basic tests, namely the t distribution and the
Kolmogorov–Smirnov test for goodness of fit.

2.1.1 The t-Test

The ‘student’ t distribution can be used to test the null hypothesis that the means
of two sets of samples are equal, under the assumption that the variance of the two
sample sets is the same. If the variance of the two sample sets is not the same (or is
not presumed to be the same), then the ‘student’ t-test is replaced by Welch’s t-test.
Strictly speaking the t distribution is derived for the case where the samples follow a
normal distribution. However, it can be shown that the distribution applies to a wide
variety of situations, even without the normality assumption.

http://dx.doi.org/10.1007/978-1-4471-4751-0_4
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Let us begin with the ‘student’ t-test, named after William Seely Gossett, who
first published this test anonymously under the name ‘Student’. Suppose we have
two classes of samples M1,M2, of sizes m1, m2 respectively. Thus the data consists
of x1, . . . , xm1 belonging to the class M1, and xm1+1, . . . , xm1+m2 belonging to the
class M2. Let

x̄i = 1

mi

∑

j∈Mi

xj, i = 1, 2,

denote the means of the two sample classes. Then it is well-known that x̄i is an
unbiased estimate of the true but unknown expected value of the samples in class i.
Next, let us define

S2
i =

1

mi − 1

∑

j∈Mj

(xj − x̄i)
2, i = 1, 2.

Then it is again well-known that S2
i is an unbiased estimate of the variance of the

samples in class i. Since it is being assumed that both classes have the same variance,
these two estimates are ‘pooled’ to obtain an estimate of the variance of the overall
samples, as follows:

S2
P =

(m1 − 1)S2
1 + (m2 − 1)S2

2

m1 + m2 − 2

= 1

m1 + m2 − 2

2∑

i=1

∑

j∈Mj

(xj − x̄i)
2. (2.1)

In other words, the pooled variance is just a weighted average of the two unbiased
variance estimates of each class.

The ‘student’ or Gossett version of the t-test consists of the observation that the
test statistic

dt = x̄1 − x̄2

SP
√

(1/m1)+ (1/m2)
(2.2)

satisfies the t distribution with m1 + m2 − 2 degrees of freedom. Note that as the
number of degrees of freedom approaches infinity, the t distribution approaches the
normal distribution. In practice, the t distribution is virtually indistinguishable from
the normal distribution when the number of degrees of freedom becomes 20 or larger.
Explicit but complicated formulae are available in the literature for the probability
density and cumulative distribution function of the t distribution. Note that this test is
also sometimes referred to as the ‘two-sample’ t-test, because we are comparing two
empirically determined means against each other. The ‘one-sample’ t-test would be
to test whether or the true but unknown mean of a given data set equals a prespecified
number.

In case it is not assumed that the variances of the two samples are equal, then
the student t-test is replaced by Welch’s t-test. In this case, the ‘pooled’ variance
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estimate defined in (2.1) is replaced by

SW =
√

S2
1

m1
+ S2

2

m2
, (2.3)

while the number of degrees of freedom is now given by

dofW = (S2
1/m1 + S2

2/m2)
2

(S2
1/m1)2/(m1 − 1)+ (S2

2/m2)2/(m2 − 1)
.

Note that, in contrast with the student t-test, in the case of Welch’s test the number of
degrees of freedom need not be an integer, in which case it is truncated to the nearest
integer. The Welch t-test consists of the observation that the quantity

dW = x̄1 − x̄2

SW
(2.4)

satisfies the t distribution with �dofW� degrees of freedom.
The t test is applied as follows: Given the two sets of samples, the null hypothesis

is that their means are the same. If the assumption is that the variances of the two
samples are the same, then the test statistic dt is computed from (2.2) for the actual
samples. Using the standard tables, the likelihood that a random variable X with the
t distribution exceeds dt (if dt > 0) or is less than dt (if dt < 0) is computed. If
this likelihood is smaller than some prespecified level δ, then the null hypothesis is
rejected at the level δ. In other words, it can be concluded with confidence 1− δ that
the null hypothesis is false. In case it is not assumed that the variances are the same,
the above procedure is applied with dt replaced by dW .

2.1.2 The Kolmogorov–Smirnov (K–S) Tests

Next we describe the Kolmogorov–Smirnov (K–S) tests for goodness of fit. Suppose
X is a real-valued random variable (r.v.). Then its cumulative distribution function
(cdf), denoted by ΦX(·), is defined by

ΦX(u) = Pr{X ≤ u},

while the complementary distribution function, denoted by Φ̄X(·), is defined by

Φ̄(u) = 1−ΦX(u) = Pr{X > u}.

The cdf of any r.v. has a property usually described as ‘cadlag’, which is an acronym
formed from the French phrase ‘continu à droite, limité à gauche’. In other words,
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the cdf is right-continuous in the sense that

lim
u→u+0

ΦX(u) = ΦX(u0),

and it has left limits in the sense that the limit

lim
u→u−0

ΦX(u) =: Φ−X (u0)

exists and satisfies Φ−X (u0) ≤ ΦX(u0) for all real u0.
Suppose x = {xt}t≥1 are independent samples of X. Based on the first l samples,

we can construct an ‘empirical cdf’ of X, as follows:

Φ̂l(u) := 1

l

l∑

i=1

I{xi≤u}, (2.5)

where I is the indicator function; thus I equals one if the condition stated in the
subscript is true, and equals 0 if the condition stated in the subscript is false. To put
it another way, Φ̂l(u) is just the fraction of the first l samples that are less than or
equal to u. The quantity

Dl := sup
u
|Φ̂l(u)−ΦX(u)|

gives a measure of just how well the empirical cdf approximates the true cdf. The
well-known Glivenko-Cantelli lemma [1, 2], [3, p. 448], [4, p. 20] states that the
stochastic process {Dl} converges almost surely to zero as l→∞.

In the case where the true but unknown cdf ΦX(·) is continuous, the theorems of
Kolmogorov [5] and Smirnov [6] quantify the rate of convergence, thereby leading
to a test for goodness of fit.1 See also [7] for simpler proofs of these two theorems.
Specifically, let us think of Dl as a real-valued random variable, and let ΦDl denote
the cdf of Dl. Then Kolmogorov [5] has shown that, for every fixed u > 0,

ΦDl (u)→ ΦK (u
√

l) as l→∞, Φ̄Dl (u)→ Φ̄K (u
√

l) as l→∞, (2.6)

where ΦK is the Kolmogorov cdf given by

ΦK (u) = 1− 2
∞∑

k=1

(−1)k+1 exp(−2k2u2), (2.7)

Φ̄K (u) = 2
∞∑

k=1

(−1)k+1 exp(−2k2u2). (2.8)

1 Note that the Glivenko-Cantelli lemma does not require ΦX (·) to be continuous.
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and the convergence is in the distributional sense. Recall that a sequence of random
variables {Yl} converges to another random variable Z in the distributional sense if

sup
u
|ΦYl (u)−ΦZ(u)| → 0 as l→∞.

Thus the contribution of Kolmogorov lies in determining the exact limit of the cdf of
the error term Dl. Observe from (2.6) that, no matter how small u is, provided only
that u > 0, the quantity u

√
l→∞ as l→∞, whence Φ̄Dl (u)→ 0 as l→∞.

The Kolmogorov test is used to validate the null hypothesis that a given set of
samples x1, . . . , xl are generated in an i.i.d. fashion from a specified cdf F(·). To
apply the test, we first construct the empirical cdf Φ̂l as in (2.5), and then compute
the goodness of fit statistic

dl = sup
u
|Φ̂l(u)− F(u)|.

Then the null hypothesis is rejected at level δ (that is, with confidence ≥ 1− δ) if

√
ldl > (Φ̄K )−1(δ),

where Φ̄K (u) = 1 − ΦK (u) is the complementary distribution function. This is
called the one-sample K-S test, though strictly speaking it should really be called the
Kolmogorov test.

Smirnov [6] extended the Kolmogorov test to the case where there are two sets of
samples x1, . . . , xl and y1, . . . , ym, possibly of different lengths. The null hypothesis
is that both sets of samples are generated from a common, but unspecified (and
continuous), cdf. To test this hypothesis, we form two empirical cdfs, call them Φ̂l
based on the xi samples, and Ψ̂m based on the yj samples, in analogy with (2.5).
Smirnov’s theorem is that if we define the random variable

Dl,m = sup
u
|Φ̂l(u)− Ψ̂m(u)|

and

n = lm

l + m
=

(
1

l
+ 1

m

)−1

,

then

ΦDl,m(u)→ ΦK (u
√

n) as min{l, m} → ∞, (2.9)

Φ̄Dl,m(u)→ Φ̄K (u
√

n) as min{l, m} → ∞. (2.10)

This is sometimes (erroneously) called the two-sample K-S test. To apply this test,
one first computes the test statistic
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dl,m = sup
u
|Φ̂l(u)− Ψ̂m(u)|.

The null hypothesis, namely that both sets of samples are coming from the same (but
unknown) cdf, is rejected at level δ if

√
lm

l + m
dl,m > (Φ̄K )−1(δ).

Recall that

ΦK (u) = 1− 2
∞∑

k=1

(−1)k+1 exp(−2k2u2),

Φ̄K (u) = 2
∞∑

k=1

(−1)k+1 exp(−2k2u2).

Though the above formulas (2.6) and (2.10) are explicit, it is very difficult to compute
(Φ̄K )−1(δ) for a given number δ. However, if we are willing to forgo a little precision,
a simple estimate can be derived. Observe that Φ̄K (u) is defined by an alternating
series; as a result Φ̄K (u) is bracketed by any two successive partial sums. In particular,
we have that

Φ̄K (u) ≤ 2 exp(−2u2) =: Φ̄M(u), ∀u.

Therefore it follows that

(Φ̄K )−1(δ) ≤ (Φ̄M)−1(δ), ∀δ.

So to apply the one-sample K-S test, we reject the null hypothesis at level δ if

√
ldl > (Φ̄M)−1(δ) ⇐⇒ Φ̄M(

√
ldl) < δ

⇐⇒ 2 exp(−2ld2
l ) < δ

⇐⇒ dl >

[
1

2l
log

2

δ

]1/2

.

Let us define

θM(l, δ) :=
[

1

2l
log

2

δ

]1/2

(2.11)

to be the K-S threshold as a function of the number of samples l and the level δ. With
this notation, the null hypothesis is rejected at level δ if dl exceeds this threshold.
Note that the above threshold is ‘conservative’ because we have replaced the exact
value Φ̄−1

K (δ) by its upper bound Φ̄−1
M (δ). But in return we have a very explicit

formula for the threshold.
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Now we digress briefly to discuss how the above kind of tests can be applied in
more general contexts. As stated, the K-S tests apply strictly to real-valued random
variables, and that too, only when the cdf of the underlying random variables is
continuous. Extending it even to r.v.s assuming values in R

d when d ≥ 2 is not
straight-forward; see [8] for one of the few results in this direction. The objective
of this digression is to point out that, if one were to use recent results in statistical
learning, then K-S-like tests are abundant in quite general settings. A good reference
for the discussion below is [9].

We begin with the observation that the ‘modern’ way to prove the Glivenko-
Cantelli lemma is to apply Vapnik-Chervonenkis, or VC theory, and sketch the main
results of the theory next. Suppose X is some set (which need not be a subset of a
Euclidean space such as R

d), and that P is a probability measure on X. Suppose i.i.d.
samples {xt}t≥1 are generated from X according to the law P. Let A denote some
collection of subsets of X.2 For each set A ∈ A, we compute an empirical probability

P̂l(A) = 1

l

l∑

t=1

I{xi∈A}.

In other words, P̂l(A) is just the fraction of the l samples that belong to the set A.
Finally, in analogy with earlier notation, define

Dl := sup
A∈A
|P̂l(A)− P(A)|.

The collection of sets A has the property of ‘uniform convergence of empirical
means’ if Dl → 0 almost surely as l→∞.

Recent developments in statistical learning theory, specifically VC theory, con-
sist of associating with each collection of sets A a positive integer d, called the
VC-dimension of A. One of the main results of this theory as described in [9, The-
orem 7.4] states that if d is finite, then the collection does indeed has the uniform
convergence property. Moreover, if Φ̄Dl denotes the complementary df of the random
variable Dl, then it can be stated with confidence 1− δ that

Φ̄Dl (u) ≤ 4

(
2el

d

)d

exp(−lu2/8), (2.12)

where e denotes the base of the natural logarithm. In particular, the collection of semi-
infinite intervals {(−∞, u], u ∈ R} has VC-dimension one, so that for the standard

2 Strictly speaking, we should first define a σ-algebra S of subsets of X and assume that A ⊆ S.
Such details are glossed over here but the treatment in [9] is quite precise.
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K-S setting, we can state with confidence 1− δ that

Φ̄Dl (u) ≤ 8el exp(−lu2/8).

In higher dimensions, say in R
d , the collection of sets

A = {
d∏

i=1

(−∞, ui], ui ∈ R ∀i}

has VC-dimension equal to d, so that (2.12) holds.
To apply this bound in a general setting, suppose P is some probability measure

on X, and that x1, . . . , xl are elements of X. The null hypothesis is that these samples
have been generated as independent samples according to the law P. To test this
hypothesis, choose any collection of subsets A of X with finite VC-dimension d, and
form the test statistic

dl = sup
A∈A
|P(A)− P̂l(A)|.

If it is the case that Φ̄Dl (dl) ≤ δ, then the null hypothesis is rejected the level δ.
Now we don’t know Φ̄Dl (dl) but we do have an upper bound in the form of (2.12).
Let Φ̄VC denote the right side of (2.12). Then we reject the null hypothesis at level
δ if Φ̄VC(dl) ≤ δ. This can be turned into an explicit threshold formula by simple
algebra. It is easy to show that

Φ̄VC(dl) ≤ δ ⇐⇒ dl ≥
[

8

l

(

log
4

δ
+ d log

2el

d

)]1/2

.

Let us denote the right side as a new threshold function, namely

θVC(l, δ; d) :=
[

8

l

(

log
4

δ
+ d log

2el

d

)]1/2

. (2.13)

Then we reject the null hypothesis if dl > θVC(l, δ; d).
If we compare the thresholds from K-S theory and VC theory, we see from (2.11)

and (2.13) that for fixed confidence level δ the K-S threshold is O(l−1/2) whereas
the VC threshold is O(l−1/2 log l). But the VC threshold is far more general. So the
slightly more conservative bound is definitely worthwhile. For fixed sample length
l, both thresholds are O(log(1/δ)) so there is no difference.
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2.2 Significance Analysis for Microarrays

In this subsection we discuss a widely use method called Significance Analysis for
Microarrays (SAM), introduced in [10]. The reader is directed to that paper for
discussion of earlier work in this area.

The problem considered is the following: Suppose as before that we have a gene
expression data set {xij}, i = 1, . . . , n, j = 1, . . . , m, where n is the number of genes
and m is the number of samples. Suppose further that the data is labeled and divided
into two classes. Without loss of generality, suppose the first m1 samples belong to
class 1, and the remaining m2 = m − m1 belong to class 2. We would like to assess
which amongst the n genes show significant variation between the two classes.

As a first-cut, we could treat each of the n genes separately, and for each index i,
construct a two-sample t-test statistic between the samples {xij, j = 1, . . . , m1} and
{xij, j = m1+1, m1+m2}. Specifically, for each index i, let x̄i1, x̄i2 denote the average
values of the samples in the two classes, and the pooled standard deviation Si by

S2
i =

1

m1 + m2 − 2

⎡

⎣
m1∑

j=1

(xij − x̄i1)
2 +

m∑

j=m1+1

(xij − x̄i2)
2

⎤

⎦ .

Now it can happen that some genes exhibit so little variation within each class that
Si is very small, with the consequence that any quantity divided by Si automatically
becomes large. To guard against this possibility, a constant S0 is chosen to be the
same for all indices i, and is added to Si. Next, for each index i, we define the test
statistic

αi0 = x̄i1 − x̄i2

(Si + S0)[(1/m1)+ (1/m2)]1/2 .

By examining the significance of αi0 using the t-distribution and the two-sample
t-test, we might be able to determine whether gene i exhibits a substantial variation
between the two classes.

However, this alone might not give a true picture. It often happens in the case of
biological data that the inherent variation of expression levels changes enormously
from one gene to another. For instance, the expression level of one gene may show
barely 10 % variation across experiments, whereas that of another gene may show
an order of magnitude variation. If we were to apply the K-S test blindly, we would
conclude that the second gene is far more significant than the first one. But this
is potentially misleading. In biology it is often the case that the downstream con-
sequences of variations in gene expression are also widely different for different
genes.

To normalize against this possibility, in [10], the authors introduce an addi-
tional criterion. Given the integers m1, m2, choose an integer k roughly equal to
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0.5 min{m1, m2}. Let π1, . . . ,πL be permutations of {1, . . . , m} into itself such that
precisely k elements from class 1 are shifted to class 2 and vice versa. In the original
paper [10] m1 = m2 = 4 so that k = 2, and there are 62 = 36 such permutations; so
they consider all of them. However, if the integers m1, m2 are sufficiently large, the
number of such permutations will be huge, in which case one chooses, at random,
a prespecified number L of such permutations. For each permutation πl, the first m1
elements are labeled as 1 and the rest are labeled as 2. In other words, the elements
πl(1), . . . ,πl(m1) are given the label 1 while the rest are given the label 2. For each
labeling corresponding to the permutation πl, let us compute a two-sample t-test
statistic, which we may denote by αil. This is done for each of the n genes. Next, let
us define

αE(i) = 1

L

L∑

l=1

αil

to be the value of the test statistic averaged across all L permutations. Let αi0 denote
the test statistic corresponding to the identity permutation, that is, the original label-
ing. For most genes (i.e., for most indices i), the test statistic αi0 corresponding
to the original labeling will not differ much from the averaged value αE(i). Those
genes for which the difference is significant, in either direction, are the genes that
one should examine. To implement this criterion, an absolute constant Δ is chosen,
and only those genes for which |αi0 − αE(i)| ≥ Δ are studied further. One could of
course argue that the threshold should be in terms of the ratio αi0/αE(i) and that too
would be a valid viewpoint. In [10], using this approach only 46 out of an original set
of 6,800 genes are found to be worth examining further—a reduction of more than
two orders of magnitude. What this means is that, for all except these 46 genes, the
test statistic corresponding to the original labeling is not very different from what
would result from a purely random assignment of labels. These short-listed genes are
then examined whether indeed there is substantial variation between the two classes
(which it may be noted is a different question from whether a randomly assigned
label would result in a different value for the test statistic). A gene belonging to this
shorter list is deemed to exhibit significant variation between classes 1 and 2 if

max

{
x̄i1

x̄i2
,

x̄i2

x̄i1

}

> R,

where R is another threshold. This thresholding results in a final set of genes
with two attributes: (i) The test statistic corresponding to the original labeling dif-
fers substantially from that corresponding to a random assignment of labels, and
(ii) there is substantial difference between the mean values of the two classes.
This is the desired list of genes. Note that we could have just as easily compared
| log(x̄i1/x̄i2)| against a threshold. We could also apply the K-S test and choose those
genes for which the difference is statistically significant at a prespecified level.
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2.3 Gene Set Enhancement Analysis

As in the previous subsection, suppose have a gene expression data set {xij},
i = 1, . . . , n, j = 1, . . . , m, where n is the number of genes and m is the num-
ber of samples. Further, the data is labeled and divided into two samples. Suppose
M = {1, . . . , m} and that M1,M2 is a partition of M. Further, suppose |Mi| = mi

for i = 1, 2. For example, the samples in class 1 may come from healthy tissue while
those in class 2 may come from cancerous tissue. In the previous subsection, we
studied the problem of identifying individual genes within the set of n genes that
show statistically significant variation between the two classes. For this purpose, for
each gene i we compared the t-statistic between the two classes against what would
be obtained by randomly assigning labels to the of m samples associated with that
gene. In this section, we carry the discussion to a greater level of generality. Specif-
ically, it can happen in biological experiments that, while no single gene may show
statistically a significant difference between the two classes, a collection of genes
acting in concert may exhibit such statistically significant difference between the two
classes. Accordingly, suppose a subset S of N = {1, . . . , n} is specified beforehand
as a set of genes that we expect might collectively exhibit different expression levels
between the two classes. Note that the set S is specified on the basis of biological
considerations, and not deduced post facto from the data under study. For instance,
S could be one of the ‘genomic machines’ identified through the Netwalk algorithm
of Sect. 4.2.

The discussion below is essentially taken from [11] which describes an algorithm
that those authors call Gene Set Analysis (GSA). In turn [11] builds on an earlier
algorithm called Gene Set Enhancement Analysis (GSEA) from [12]. Along the way,
the authors of [11] also relate their GSA algorithm to several earlier algorithms. In
the interests of conserving space, we do not reference nor discuss all the earlier work,
and the interested reader is directed to the bibliography of [11].

The main idea of the GSA algorithm is the following: In SAM (Significance
Analysis for Microarrays) discussed in Sect. 2.2, for each index i denoting the gene,
we did the following: First we computed the t-statistic of the difference between the
means of the two classes. Then we assigned random labels to the m samples associated
with gene i, ensuring that mi are placed in class i, and for each random labeling, we
computed the same t-statistic. That is fine so far as testing a single gene goes. To test
whether a prespecified set of genes S shows significant difference between the two
classes, it is necessary to perform an additional step, as described next. Let k = |S|.
Then, in addition to permuting the labels of the m columns associated with each
gene in the set N , we should also do the same to a randomly selected set of k genes
from the collection N . In [11], assigning the class labels at random is referred to
as ‘permuation’ while choosing a random set of k genes from N is referred to as
‘randomization’. An additional complication in the randomization step is that, while
the expression levels of k randomly selected genes from N can be thought of as
being uncorrelated, the expression levels of the k genes in the specified set S are
quite likely to be correlated (due to their having a common biological function etc.).

http://dx.doi.org/10.1007/978-1-4471-4751-0_4
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Hence the randomized data will in general have different statistical behavior from
that of the genes in the set S. The GSA algorithm attempts to correct for this feature.

The details of the algorithm are as follows: For each gene i in N , form a two-
sample t-statistic, call it di. Then di is distributed according to the t-distribution with
m − 2 degrees of freedom. The quantity di is transformed into another value zi that
has a normal distribution, by the rule

zi = Φ−1
Nor(Φt,m−2(di)),

where ΦNor denotes the cdf of a normal r.v. and Φt,m−2 denotes the cdf of a
t-distributed r.v. with m−2 degrees of freedom. Note that if the number of samples m
is sufficiently large, then the t-distribution is virtually identical to the normal distri-
bution, so this step can be omitted. Now suppose S : R→ R is a scoring function.3

In [12], the scoring function S(z) equals |z|. For each gene i, let Si be a shorthand for
S(zi). For the gene set S, compute the score

S = 1

k

∑

i∈S
Si. (2.14)

The question under study is: Is the score S sufficiently significant?
Now compute the mean μ0 and standard deviation σ0 of the raw samples in the

familiar manner, namely:

μ0 = 1

n

∑

i∈N
Si,σ

2 = 1

n− 1

∑

i∈N
(Si − μ0)

2.

Next, choose at random several subsets of N of cardinality k, compute the counterpart
of the score S for each such randomly chosen gene set, and compute the mean and
standard deviation of all of these scores (over all the randomly selected sets of
cardinality k). Denote these by μ†,σ† respectively. If all the samples Si within a set
of cardinality k are independent, then we would have μ† = μ0,σ

† = σ/
√

k. But this
need not be the case in general.

Next, choose a large number of permutations π1, . . . ,πL of M into itself. For each
permutation πl, assign the label i to the samples in the image πl(Mi), for i = 1, 2.
This will generate, for each gene i, a test statistic zπl,i and score Sπl,i. Let μP,σP

denote the mean and standard deviation of these nL numbers, where the subscript P
is to remind us of ‘permutation’.

The next step is called ‘restandardization’. For each permutation πl, let Sπl denote
the score resulting from the labeling as per the permutation πl. Then the renormalized
score corresponding to πl is defined as

3 We mostly follow the notation in [11], in which the letter S in various fonts is used to denote
various quantities. The reader is therefore urged to pay careful attention.
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SR,πl = μ† + σ†

σP
(Sπl − μP).

Then a test statistic is given by the quantity

pS = 1

L

L∑

l=1

I{SR,πl >S},

which is the fraction of the restandardized scores that exceed the nominal score S.
Clearly the smaller pS is, the more significant is the score S. In GSEA, the cdf of the
samples {zi, i ∈ S} is compared to the cdf of the samples {zi, i �∈ S}. This more or
less corresponds to the choice s(z) = |z|.

Finally, in [11] another statistic is introduced, known as the max-mean statistic.
Define

(z)+ = max{z, 0}, (z)− = −min{z, 0},

and observe that (z)− is positive if z is negative, somewhat contrary to the usual
convention. Now define

s+ = 1

k

∑

i∈S
(si)+, s− = 1

k

∑

i∈S
(si)−, smax = max{s+, s−}.

2.4 Pattern Analysis for Microarrays

In this subsection we discuss a method for simplifying the application of nearest
neighbor clustering in the context of gene expression studies. This method is known
as Pattern Analysis for Microarrays (PAM) [13]. The similarity of the acronyms
SAM and PAM is not coincidental, because as we shall see, the two approaches have
a lot in common.

As always, suppose we are given a set of gene expression data {xij},
i = 1, . . . , n, j = 1, . . . , m. Suppose further that the set M = {1, . . . , m} of samples
is divided into K classes, which are denoted here as Mk, k = 1, . . . , K . Thus the
collection {M1, . . . ,MK } is a partition of M. Let denote |Mk| by mk . Now suppose
a new data vector y ∈ R

n arrives from a fresh study. We would like to classify y as
belonging to one of the K classes. How should we go about it?

One of the most commonly used method is that of nearest neighbor classification.
As before, let us define the mean values of the expression level of gene i in class k,
and the overall mean value, by

x̄ik := 1

mk

∑

j∈Mk

xij, k = 1, . . . , K,



2.4 Pattern Analysis for Microarrays 27

x̄i = 1

m

K∑

k=1

∑

j∈Mk

xij =
K∑

k=1

mk

m
x̄ik .

Thus x̄k ∈ R
n is the centroid of class k while x ∈ R

n is the overall centroid. To
classify the vector y, we compute the Euclidean distance to each of the K centroids,
and classify it into the class whose centroid is the closest. Applying this classification
method requires the computation of

‖y− x̄k‖2 =
n∑

i=1

(yi − x̄ik)
2 (2.15)

for each k. If, as is often the case, n is of the order of thousands if not tens of thousands,
the above computation can be quite expensive. The objective of PAM is to determine
a subset N1 of N = {1, . . . , n} with |N1| � n such that, if the summation is taken
only over those i ∈ N1, the resulting nearest neighbor classification would be more
or less the same.

The basic idea behind PAM is as follows: In [13], PAM is also referred to as the
‘method of shrunken centroids’. Suppose that for some index i, it is the case that
x̄ik is the same for all values of k. In other words, suppose that the i-th component
of the centroid x̄k is the same for all k. Then it is obvious that the index i can be
dropped from the summation in (2.15) because the term (yi − x̄ik)

2 makes an equal
contribution for all k. So the method of shrunken centroids consists of shrinking the
spread amongst {xi1, . . . , xiK } to zero for as many indices i as possible, by replacing
the true centroid by a synthetic centroid.

In analogy with earlier reasoning, define the pooled within class standard deviation
of gene i by

S2
i =

1

m− k

K∑

k=1

∑

j∈Mk

(xij − x̄ik)
2.

Next, as before, a small constant S0 (independent of i) is added to each Si to avoid
division by very small numbers. Now define a test statistic dik that tests for the null
hypothesis that the data in class k differs significantly from the overall data, namely

dik = x̄ik − x̄i

(Si + S0)[(1/mk)+ (1/m)]1/2 =:
x̄ik − x̄i

lk(Si + S0)
,

where

lk =
[

1

mk
+ 1

m

]1/2

.

Note that it would perhaps be more accurate to compare x̄ik with the ‘leave one out’
mean of all the remaining m−mk entries, as opposed to the overall mean x̄i. But this
would involve considerably more computation with relatively little benefit.
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Now rewrite the above relationship as

x̄ik = x̄i + lk(Si + S0)dik .

If we could somehow justify replacing the actual dik by zero, then it would follow that
x̄ik = x̄i for all k, and we could therefore ignore the i-th term in the summation (2.15).
This is achieved by soft thresholding. Specifically, a fixed constant Δ, independent
of both i and k, is selected, Then we define

d′ik = sign(dik)(|dik | −Δ)+,

where as usual (x)+ = max{x, 0}. An equivalent definition of d′ik is

d′ik =
⎧
⎨

⎩

dik −Δ, if dik > Δ,

dik +Δ, if dik < −Δ,

0, if |dik | ≤ Δ.

Then the centroids are ‘shrunk’ by replacing dik by d′ik , namely

x̄ik = x̄i + lk(si + s0)d
′
ik . (2.16)

Note that if d′ik = 0 for all k for a fixed i, then that term can be dropped from the
summation in (2.15).

The higher the value of Δ, the more thresholds that will be set to zero. At the
same time, the higher the value of Δ, the more the likelihood of misclassification by
the simplified summation. In [13], the constant Δ is chosen through ten-fold cross
validation. The data set is divided vertically (in terms of the index j) into ten more
or less equal-sized data sets. Then 90 % of the data is used as training data and the
remaining 10 % is used to test the resulting reduced-sum classifier; this exercise is
repeated by shifting the testing data through each subset of the data. The constant
Δ is adjusted up or down until the cross-validation produces satisfactory results.
In [13], the original data set consists of expression levels of 2,308 genes, 63 samples,
classified into four forms of cancer. Thus n = 2308, m = 63 and K = 4. By using the
soft thresholding technique, a subset of a mere 43 ‘most useful genes’ are identified
out of the original 2,308—a reduction of about 98 % in the computational burden.
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Chapter 3
Inferring Gene Interaction Networks

Abstract This chapter contains the original research results on the monograph. We
study the problem of reverse-engineering context-specific, genome-wide interac-
tion networks from expression data. Two existing classes of methods, namely those
based on mutual information and those based on Bayesian networks, are described
first. Then a new algorithm, based on the so-called phi-mixing coefficient between
random variables, is introduced. Unlike mutual information, the phi-mixing coef-
ficient provides a directionally sensitive measure of the dependence between two
random variables. The algorithm based on this new approach produces a gene inter-
action network in the form of a directed, strongly connected graph. The approach is
validated on ChIP-seq data around the transcription factor ASCL1 in a lung cancer
network.

Keywords Gene regulatory networks · Gene interaction networks · ARACNE ·
MINDy · CLR · Phixer · ASCL1 · NKX2-1 · PPARG · Lung cancer

3.1 Background

Each cell of a living organism contains a copy of its DNA. Thus in principle each
cell contains all the genes of the organism, and each gene is in principle capable
of producing all the gene products associated with it. It is therefore of vital interest
to understand how precisely all the genes and gene products within a cell interact
with each other. Such a network is referred to in the literature by various phrases,
with ‘gene regulatory network’ (GRN) being among the most popular. For reasons
discussed below, we prefer the phrase ‘gene interaction network’ (GIN). Moreover,
though in principle the same genes are present in every cell, the manner in which
each gene or gene product interacts with other genes or gene products, that is to say
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the GIN, can vary from one organ to another.1 When we study diseased tissues, such
as cancerous tumors, it will again be the case that the interactions within diseased
cells will be different from those within normal cells in the same organ. In short, a
plethora of interaction networks are needed to capture the variety of cells and their
functioning.

By far the most popular representation of such an interaction pattern is a graph
wherein the nodes are the genes and the edges denote the interactions between genes.
The edges can either be directed or undirected, and they can either be weighted or
unweighted. Ideally it would be beneficial to assign not just directionality to the
interactions, but also weights, denoting the strength of the interaction. However, not
all methods will produce graphs that are directed and/or weighted. There is one more
issue. In biology, it can happen that the interaction between two genes is ‘mediated’ by
a third gene. To cater to this possibility, sometimes one includes within the graphical
representation both mediated edges as well as unmediated edges, as shown below.

Unmediated Interaction Mediated Interaction

Such graphical models are referred to in the literature by a variety of names, such
as gene regulatory networks (GRNs), gene interaction networks (GINs), influence
networks, correlation networks, co-expression networks, etc. In the present work,
we prefer the name gene interaction network (GIN) over gene regulatory network
(GRN), because in biology the phrase ‘regulation’ has a very precise meaning. If
we say that gene A ‘regulates’ gene B, we are also expected to say how it does so,
from a chemical and/or biological standpoint. However, as will be evident shortly,
methods based on probabilistic analysis can at best infer the existence of some sort of
interaction, its directionality, and in some cases, its weight. If the interaction of gene
A on gene B is stronger than in the opposite direction, we can reasonably conclude
that gene A has greater impact on the behavior of gene B than in the opposite direction.
But this falls far short of what a biologist would mean by ‘regulation’. For this reason,
throughout we prefer to use the phrase gene interaction network (GIN). However,
the phrase gene regulatory network (GRN) is equally, if not more, popular in the
literature.

Figure 3.1 shows a small gene interaction network in mouse embryonic stem
cells [1]. In this GIN, there are several nodes that have no incoming edges, and other
nodes that have no outgoing edges. As a consequence, this graph is not strongly
connected. Recall that a directed graph is said to be strongly connected if there
exists a directed path between every pair of nodes. In reality, we would expect that
any GIN would in fact be strongly connected, because it is highly implausible that
there are some genes that are simply ‘dangling’. On the other hand, if we think of

1 Hereafter we shall avoid the unwieldy phrase ‘genes or gene products’ and shall instead say
just ‘genes’. However, proteins are also encompassed in the phrase ‘gene products’, and protein
interaction networks (PINs) are therefore subsumed by the phrase GINs introduced a little later.
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Fig. 3.1 A small GIN in mouse embryonic stem cells [1]

the above GIN, not as a complete entity, but as a subgraph of a much larger GIN,
then it would be perfectly acceptable for the subgraph not to be strongly connected.

Usually small networks such as those in Fig. 3.1 are constructed by combining the
outcomes of several painstaking experiments, each experiment (or set of experiments)
designed to confirm the existence of one edge. As a consequence, one can accept with
high confidence that all edges in a GIN constructed in this manner do exist in reality.
However, human DNA contains about 22,000 genes. Consequently any ‘genome-
wide’ GIN that includes all genes must of necessity contain millions of edges. It is
simply infeasible to undertake enough experiments to infer the existence of so many
edges, and one is forced to look for alternative approaches for reverse-engineering
genome-wide GINs.

There are several existing databases of gene or protein interaction networks, either
in the public domain or available from commercial vendors; see for example [2–6].
Invariably these networks are created by combining several individual networks such
as the one in Fig. 3.1, reported in different publications in the literature. Indeed, it is
common, especially for commercial vendors, to use text-mining or natural language
processing (NLP) techniques to ‘read’ the scientific literature, thereby extract indi-
vidual relationships between genes in the form of edges in the graph, and combine
them into one or more large networks. The main shortcoming of this approach is that
networks created in this fashion are not context-specific. Small networks of the type
shown in Fig. 3.1, or individual edges reported in the literature, are derived under very
specific experimental conditions. Combining these individual edges in a willy-nilly
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fashion while not keeping track of the underlying experimental conditions can lead
to networks that are misleading and potentially erroneous.

Another shortcoming of existing databases of large networks is that, while they
contain an impressive number of nodes and edges, they are still not genome-wide. The
largest existing networks cover fewer than half of the known genes and/or proteins,
and the number of interactions is at best in the 100,000 s. The statistics on GINs
cited in Fig. 2 of [7] justify this statement. This means that large parts of the genomic
landscape are un- or under-explored.

Given that cancer is a very complex disease, it would be advantageous to be able
to reverse-engineer, in an automated fashion, context-specific, genome-wide GINs on
the basis of data that embraces all (or at least most) genes in the genome, with the
data being derived under a common experimental setting. Methods for doing so are
the topic of this chapter.

One can divide GIN models into two classes: static and dynamic. Dynamic GIN
models usually consist of a system of ordinary differential equations (ODEs). See
[8] and the references therein for exemplars of such an approach. Obviously, in order
to generate such models, the experimental data must itself be temporally labeled.
However, ‘temporal’ gene expression data is in reality a collection of ostensibly
identical experiments terminated in a staggered fashion at different points of time. In
the author’s opinion, such data is often not reliable enough to permit the construction
of accurate temporal models, unless the models are particularly simple. For this
reason, the discussion in this work is focused on static GINs, where all quantities are
in the steady-state.

The problem of inferring a GIN is that of reconstructing (or at least making a
good model of) the GIN from experimental data, most commonly gene expression
data. One of the main motivations for inferring GINs from data is very nicely spelled
out in the perspective paper [9]:

In the end, a good model of biological networks should be able to predict the behavior of the
network under different conditions and perturbations and, ideally, even help us to engineer
a desired response. For example, where in the molecular network of a tumor should we
perturb with drug to reduce tumor proliferation or metastasis? Such a global understanding
of networks can have transformative value, allowing biologists to dissect out the pathways
that go awry in disease and then identify optimal therapeutic strategies for controlling them.

The paper [9] presents a set of three ‘principles’ and six ‘strategies’ for developing
network models in cancer. The paper is well worth reading in its entirety. However,
we note that Principle 1 is ‘Molecular influences generate statistical relations in
data’, while Strategy 3 is ‘Statistical identification of dysregulated genes and their
regulators’. Given the scope of the present work, the discussion below is guided by
these two observations.

A complete GIN is usually extremely complicated, with possibly tens of thousands
of nodes, and millions of edges, often resembling a ‘spider’s web’. Figure 3.2 shows
a part of the GIN corresponding to B lymphocytes, showing all the nearest neighbors
of the proto-oncogene MYC, together with some (not all) of the neighbors of the
neighbors of MYC; the figure corresponds to [10, Fig. 4] . We shall return to this
example later.
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Fig. 3.2 The MYC Subnetwork [10, Fig. 4]

GINs have some very typical ‘small world’ features. For instance, simple arith-
metic shows that with tens of thousands of nodes and millions of edges, the average
connectivity of each node is in the double digit range. In reality however, the vast
majority of nodes have connectivities in the single or low double-digit range, while
a few nodes act as hubs and have connectivities in the high hundreds and possibly in
the low thousands.

The problem at hand therefore is the reconstruction of a GIN on the basis of
gene expression data, some (or most) of which could come from a public source
such as the Gene Expression Omnibus (GEO) [11] or The Cancer Genome Atlas
(TCGA) [12]. The main difference between GEO and TCGA is that the latter data
sets are generated by large teams of researchers that work in concert, and are therefore
more standardized than those in GEO, which is a repository for data sets associated
with published papers. Even when the data has been painstakingly generated by
personnel in some laboratory, the data is then immediately placed in GEO or another
such publicly accessible source, so that the results can be verified by other research
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groups. Whether in TCGA or GEO, the data would contain expression levels of
various gene products, obtained across multiple cell lines by various research teams
(and all the lack of standardization that implies).2 The data can be analyzed to study
multiple genes or gene products in one cell line (lateral study), the same set of genes
or gene products across multiple cell lines (longitudinal study), or both. In such
studies, the number of gene products is often in the tens of thousands. However, the
number of distinct cell lines rarely exceeds a few dozen, or a few hundred if one is
extremely fortunate. Thus any statistical methodology must address this mismatch
in dimension.

Another important aspect of the problem is that one rarely uses the ‘raw’ data
coming out of experiments. As mentioned earlier, since biological experiments are
not reproducible, every experiment includes some ‘control’ genes whose expression
levels should be constant across experiments. Then the raw data from the various sets
of experiments is normalized in such a way that the expression levels of the control
genes is the same in all experiments. And then all the data is aggregated. Once this is
done, the data for the remaining genes is ‘smoothened’ by centering, rescaling, linear
to logarithmic transformation etc. The key point to note here is that each of these
transformation is one-to-one and therefore invertible. Often the transformation is also
monotone, in that it preserves the linear ordering of real numbers. The smoothened
data then forms the input to the inference problem described next. It would therefore
be highly desirable if the proposed solution to the inference problem is invariant
under monotone transformations of the data. Indeed the new algorithm proposed
here does have this property.

3.2 Problem Formulations

With that lengthy introduction, we are now ready to state formally the problems to be
studied. In order to use statistical methods, we can think of the expression levels of
the various genes or gene products as random variables X1, . . . , Xn, and the available
data as consisting of samples xij, i = 1, . . . , n, j = 1, . . . , m. Ideally, we would like
to compute the joint distribution function of the n random variables on the basis of
the available data. However, the number of random variables n is far larger than the
number of samples m and is likely to remain so for the foreseeable future. Thus, in
any reasonable statistical sense, it is clearly impossible to infer the joint distribu-
tion of all n random variables, unless one imposes some assumptions on the nature
of the joint distribution. The two specific techniques described below, namely the
information-based approach and the Bayesian network approach, are distinguished
by the assumptions they impose. It must be emphasized that the assumptions are
imposed not so much because they are justified by biological realism, and more
because they facilitate statistical analysis. In this sense, neither approach is fully

2 Note that the data for a single cell line could itself be a compendium of data obtained through
multiple experiments carried out at different times.
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satisfactory. For this reason, after the review of existing methods, we present a new
method that addresses some of the deficiencies of existing methods.

Irrespective of the assumptions made and the techniques used, given that the
number of samples is much smaller than the number of random variables, the ultimate
objective of statistical methods for inferring GINs must be restricted to unearthing
dependences amongst various random variables. To put it another way, since the aim
of finding a very precise formula for the joint distribution of the n random variables
is unattainable because n� m, we must settle for determining whether one random
variable Xi is influenced by another Xk . Let us now attempt to make precise this
notion of ‘being influenced’. At a very basic level, one could say that Xi is influenced
by Xk if the two random variables Xi and Xk are not independent. But this is a very
crude definition, so let us attempt to refine it. Suppose Xi is indeed influenced by Xk
in the sense that Xi and Xk are not independent. The next level question one can ask
is whether the influence is direct or indirect. In other words, is it the case that

Pr{Xi|Xj, j �= i} = Pr{Xi|Xj, j �= i, j �= k}?

The above equation means that the conditional distribution of Xi given all other
random variables Xj, j �= i, is exactly the same as the conditional distribution of Xi

given all random variables Xj other than Xk . For future use, we redefine notation and
restate the above equation. Let N denote the finite set {1, . . . , n}, and let us use the
shorthand N \ i instead of the more precise N \ {i}. Then the question to which we
seek a yes or no answer can be stated as

Pr{Xi|XN \i} = Pr{Xi|XN \i,k}? (3.1)

If the above equation holds, then it means that, while Xk does indeed influence Xi,
the influence is indirect.

The question can be made even more explicit by using the notion of conditional
independence, defined next.

Definition 3.1. Suppose X, Y , Z are random variables assuming values in finite sets
A, B, C respectively. Then X and Z are conditionally independent given Y , denoted
by (X ⊥ Z)|Y , if the following property holds: For all i ∈ A, j ∈ B, k ∈ C, it is the
case that

Pr{X = i&Z = k|Y = j} = Pr{X = i|Y = j} · Pr{Z = k|Y = j}. (3.2)

If (3.2) holds, then it is easy to verify that, for all S ⊆ A, j ∈ B, U ⊆ C, it is the case
that

Pr{X ∈ S&Z ∈ U|Y = j} = Pr{X ∈ S|Y = j} · Pr{Z ∈ U|Y = j}. (3.3)

However, in general (3.2) does not imply that, for all S ⊆ A, T ⊆ B, U ⊆ C,
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Pr{X ∈ S&Z ∈ U|Y ∈ T} = Pr{X ∈ S| ∈ Y ∈ T} · Pr{Z ∈ U|Y ∈ T}. (3.4)

If (3.4) is true, then by choosing T = B, we can conclude from (3.2) that

Pr{X ∈ S&Z ∈ U} = Pr{X ∈ S} · Pr{Z ∈ U},

i.e. that X and Z are independent random variables. Conversely, if X and Z are
independent, then clearly (3.4) is true. Note that conditional independence is a weaker
property than independence.

Our immediate objective is to recast the desired relationship (3.1) in terms of
conditional independence. The next theorem provides a way of doing so.

Theorem 3.1. X, Z are conditionally independent given Y if and only if, for all
i ∈ A, j ∈ B, k ∈ C, it is the case that

Pr{X = i|Z = k&Y = j} = Pr{X = i|Y = j}. (3.5)

Proof. In the interests of simplicity, we will write Pr{X|ZY} for Pr{X = i|Z =
k&Y = j}, and so on. Then by the definition of conditional probability, we have that

Pr{XZY} = Pr{X|ZY}Pr{Z|Y}Pr{Y}. (3.6)

However, if (X ⊥ Z)|Y , then it follows from (3.2) that

Pr{XZY} = Pr{XZ|Y}Pr{Y}
= Pr{X|Y}Pr{Z|Y}Pr{Y}. (3.7)

Comparing the right sides of (3.6) and (3.7) shows that (3.5) must be true. The proof
in the other direction consists simply of reversing the above argument. �

In view of Theorem 3.1, it is evident that (3.1) can be restated in terms of condi-
tional independence. Specifically

Pr{Xi|Xj, j �= i} = Pr{Xi|Xj, j �= i, j �= k} ⇐⇒ (Xi ⊥ Xk)|XN \i,k . (3.8)

The above equation can be interpreted in terms of the GIN associated with the
variables Xi, i ∈ N . If there is no edge of the form (i, k) or (k, i) in the GIN, then the
removal of all nodes other than i and k would cause the graph to be disconnected;
therefore (3.8) holds. Taking the contrapositive shows that if (3.8) does not hold,
then the GIN must contain at least one of the two edges of the form (i, k) or (k, i).
However, verifying (3.8) for all XN \i,k is impractical. So we settle for a simplified
version of this condition. Given the data set, for each triplet (i, j, k) ∈ N 3 of pairwise
distinct indices, let us determine whether or not it is true that (Xi ⊥ Xk)|Xj. If indeed
it is the case that (Xi ⊥ Xk)|Xj, then every path from i to k and vice versa must pass
through j. In particular, there is no edge of the form (i, k) or (k, i) in the GIN. Taking
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the contrapositive shows that if (Xi �⊥ Xk)|Xj, then there is at least one path from i
to k or vice versa that does not pass through j. Using the Occam’s razor principle,
namely using the simplest possible explanation, we would conclude that GIN must
contain at least one of the two edges of the form (i, k) or (k, i). Notice however that
the last conclusion is not a mathematical certainty, but rather a plausibility argument
based on the Occam’s razor principle.

3.3 Methods Based on Mutual Information

One way to approach the issue of whether Xj influences Xi is to compute their mutual
information. Let us switch notation and suppose that X, Y are random variables
assuming values in finite sets A, B respectively. Let μ,ν,θ denote the distribution
of X, the distribution of Y , and the joint distribution of X and Y , respectively. Then
the quantity

H(X) = H(μ) = −
∑

i∈A
μi logμi

is called the Shannon entropy of X or μ. Note that we make no distinction between
the entropy of a probability distribution μ and the entropy of a random variable X
having the probability distribution μ. Next,

I(X, Y) = H(X)+ H(Y)− H(X, Y)

is called the mutual information between X and Y . An equivalent formula is

I(X, Y) =
∑

i∈A

∑

j∈B
θij log

θij

μiνj
.

Note that mutual information is symmetric: I(X, Y) = I(Y , X). Also, I(X, Y) = 0
if and only if X, Y are independent random variables. Finally, if f : A → A

′, g :
B→ B

′ are one-to-one and onto maps then I(f (X), g(Y)) = I(X, Y). Thus in partic-
ular, monotone maps of random variables leave the entropy and mutual information
invariant.

One of the first attempts to use mutual information to construct GINs is in [13],
which introduces ‘influence networks.’ In this approach, given m samples each for n
random variables X1 through Xn, one first computes the pairwise mutual information
I(Xi, Xj) for all i, j, j �= i, that is, n(n− 1)/2 pairwise mutual informations. Then Xi

and Xj are said to influence each other if the computed I(Xi, Xj) exceeds a certain
threshold. Note that, since mutual information is symmetric, in case I(Xi, Xj) does
exceed the threshold, all one can say is that Xj influences Xi, or vice versa, or perhaps
both. In other words, it is not possible to infer any ‘directionality’ to the influence
if one uses mutual information (or for that matter any other symmetric quantity) to
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infer dependence. Another detail is note is that in fact one cannot compute the ‘true’
mutual information because one does not know the true joint distributions of Xi, Xj.
Instead, one has to compute an ‘empirical’ approximation to I(Xi, Xj) on the basis of
the samples. In [13], this is done by grouping the observed expression levels into ten
histograms, thus effectively quantizing each random variable into one of ten values.
Presumably the number of bins was chosen to be ten because in [13] because they had
79 samples. In cases where the number of samples is smaller, one would obviously
have to use fewer bins.

The major drawback of the influence networks approach proposed in [13] is that
it is not able to discriminate between direct and indirect influence. As a result, the
influence network constructed using mutual information is overly dense, because it
fails to have an edge between nodes i and j if and only if Xi and Xj are independent
(or if one uses empirically computed estimates for the mutual information and a
threshold, nearly independent). To get more meaningful results, it is necessary to
prune this first-cut influence network by deleting an edge between nodes i and j if
the influence is indirect, that is, if (3.1) holds.

To achieve this objective, an algorithm called ARACNE is proposed in [14]. The
basis of this algorithm is the assumption that the joint probability distribution of all
n variables factors into a product of terms involving at most two variables at a time.
This special feature makes it possible to invoke a bound known as the data processing
inequality to prune the first-cut influence network.

Now we describe the ARACNE algorithm.3 To make the ideas clear, let us suppose
that the random variable Xi assumes values in a finite alphabet Ai, which can depend
on i. Define A = ∏n

i=1 Ai, and let x denote the n-tuple (x1, . . . , xn) ∈ A. Similarly
let X denote (X1, . . . , Xn). Then the joint distribution of all n random variables is the
function φ : A→ [0, 1] defined by

φ(x) = Pr{X = x}. (3.9)

Now let N = {1, . . . , n}, and let

D = {(i, j) : 1 ≤ i < j ≤ n}.

Then the assumption that underlies the ARACNE algorithm is that the function φ
has the form

φ(x) = 1

Z

∏

i∈N
ψi(xi) ·

∏

(i,j)∈D
φij(xi, xj), (3.10)

where

Z =
∑

x∈A

⎡

⎣
∏

i∈N
ψi(xi) ·

∏

(i,j)∈D
φij(xi, xj)

⎤

⎦

3 Note that language used here is not identical to that in [14] but is mathematically equivalent.
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is a normalizing constant. Note that in the statistical mechanics terminology employed
in [14], the quantity logφ(·) is called the ‘Hamitonian,’ and the assumption is that
the Hamiltonian is the sum of terms involving only individual xi, or pairs (xi, xj), but
no higher order terms.

Suppose we associate an undirected graph with the distribution in (3.10) by insert-
ing an edge4 between nodes i and j if the function φij is not identically zero. In the
worst case, if every such function is not identically zero, we would wind up with a
complete graph with n nodes, where every node is connected to every other node.
This is clearly not desirable. So the authors of [14] set out to find a simpler repre-
sentation of the data than a complete graph. In doing so, they build upon the work
of [15], where the objective is to find the best possible approximation to a given
probability distribution φ(·) (not necessarily of the form (3.10)) in terms of a distri-
bution of the form (3.10) where φij �≡ 0 for exactly n− 1 pairs. The criterion used to
define ‘best possible’ is the relative entropy or the Kullback-Leibler divergence [16,
p. 19]. Specifically, if φ is the original distribution and θ is its approximation, then
the quantity to be minimized is

H(φ‖θ) =
∑

x

φ(x) log
φ(x)

θ(x)
.

This problem has a very elegant solution, as shown in [15]. Starting with the given
distributionφ, first compute all n(n−1)/2 pairwise mutual informations I(Xi, Xj), j �=
i. Then sort them in decreasing order. Suppose I(Xi1, Xi2) is the largest; then place
an edge between nodes i1 and i2. Suppose I(Xi3 , Xi4) is the next largest. Then create
an edge between nodes i3 and i4. In general, at step k, suppose I(Xi2k−1 , Xi2k ) is
the k-th largest mutual information. Then create an edge between nodes i2k−1 and
i2k , unless doing so would create a loop; in the latter case, go on to the next largest
mutual information. Do this precisely n− 1 times. The result is an undirected graph
with n nodes, n− 1 edges, and no cycles—in other words, a tree.

The authors of [14] build upon this approach by invoking the following result.
If Xi, Xk are conditionally independent given Xj, then the so-called ‘data processing
inequality’ [16, p. 35] states that

I(Xi, Xk) ≤ min{I(Xi, Xj), I(Xj, Xk)}. (3.11)

Accordingly, the ARACNE algorithm initially constructs an influence network as in
[13]. Then for each triplet (i, j, k) of pairwise distinct indices, the three quantities
I(Xi, Xj), I(Xi, Xk), I(Xj, Xk) are compared; the smallest among the three is deemed
to arise from an indirect interaction, and the corresponding edge is deleted.

From the above description, it is easy to deduce the following fact: A network
produced by the ARACNE algorithm will never contain a complete subgraph with
three nodes. In other words, if there exist edges between nodes i and j, and between
nodes j and k, then there will never be an edge between nodes i and k. From the

4 Note that since the graph is undirected, it is not necessary to specify the direction.
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standpoint of biology, this means that if gene i influences (or is influenced by) two
other genes j and k, then perforce genes j and k must be conditionally independent
given the activity level of gene i.

Note that the network that results from applying the ARACNE algorithm does not
depend on where we start the pruning. To illustrate, consider a very simple-minded
network with four nodes as shown below.

X1

X2

X3

X4

Suppose that
I(X1, X3) ≤ min{I(X1, X2), I(X2, X3)}.

In accordance with the algorithm, the link from X1 to X3 is discarded (and thus shown
as a dashed line). Now suppose in addition that

I(X3, X4) ≤ min{I(X1, X3), I(X1, X4)}.

Then the edge from X3 to X4 is also deleted. It is easy to verify that if we had examined
the triplets in the opposite order we would still end with the same final graph.

The ARACNE algorithm has been applied to the problem of reverse-engineering
regulatory networks of human B cells in [10]. A total of 336 gene expression pro-
files for 9,563 genes were used. Only about 6,000 genes had sufficient variation in
expression levels to permit the computation of mutual information. To illustrate the
network that results from applying the algorithm, the authors depict how it looks in the
vicinity of the proto-oncogene MYC.5 The ARACNE algorithm showed that MYC
had 56 nearest neighbors, and these 56 neighbors had 2,007 other genes that were
not neighbors of MYC. Thus at a distance of two steps, MYC contained more than
2,000 of the roughly 6,000 genes in the network. The overall network had about
129,000 interactions (edges), or about 20 per node on average. However, just 5 % of
the 6,000 nodes accounted for 50,000 edges, or about 40 % of the total, thus demon-
strating the ‘small world’ nature of the GIN that results from the algorithm. Figure 3.2
shows the 56 neighbors and another 444 most significant second neighbors of MYC.

Thus far the methods described generate GINs with only unmediated edges. To
construct GINs with mediated edges, one follows the same approach as in ARACNE,
except that instead of using the mutual information I(Xi, Xj), one uses the conditional

5 Medterms [17] defines a proto-oncogene as “A normal gene which, when altered by mutation,
becomes an oncogene that can contribute to cancer,” and an oncogene as “A gene that played a
normal role in the cell as a proto-oncogene and that has been altered by mutation and now may
contribute to the growth of a tumor.”
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mutual information I(Xi|Xl, Xj|Xl). Since the conditional mutual information also
satisfies a data processing inequality of the form (3.11), the same reasoning can
be applied to prune an initially overly dense network. This algorithm, based on
conditional mutual information, is referred to as MINDy and is proposed in [18]. An
essentially similar algorithm is proposed in [19].

In either ARACNE or MINDy, it is obvious that the most time-consuming step
is the computation of all pairwise mutual informations. In [14], the authors take the
given samples, and then fit them with a two-dimensional Gausian kernel for each pair
of random variables. Then a copula transform is applied so that the sample space is
the unit square, and the marginal probability distribution of each random variable is
the uniform distribution.6 In [22], a window-based approach is presented for com-
puting pairwise mutual information that is claimed to result in roughly an order of
magnitude reduction in the computational effort. For instance, for the B lymphocyte
network studied in [10], the original ARACNE computation is claimed to take 142 h
of computation, while the method proposed in [22] is claimed to take only 23 h.7

Finally, in a very recent paper [23], the authors bin the samples into just three bins
irrespective of how many samples there are, and propose a highly efficient parallel
architecture for computing the pairwise mutual informations. While the proposed
architecture is very innovative, it appears to the present author that quantizing the
expression values into just three bins could result in misleading conclusions, because
the gene expression level is essentially a real-valued random variable. Just to look
ahead, in Sect. 3.6 we propose a new algorithm based on computing the so-called
φ-mixing coefficient between two random variables. Unlike the mutual information,
we present a closed-form formula for the φ-mixing coefficient between two random
variables, so that its implementation is extremely efficient, even on a garden variety
desktop workstation.

3.4 Methods Based on Bayesian Networks

In this section we discuss the Bayesian network-based approach to inferring GINs.
Bayesian networks have been used in artificial intelligence for many decades, and [24]
is the classic reference for that particular application domain. The Bayesian approach
to inferring GINs appears to have been pioneered in [25]. This was followed up by
other work [26] and a survey is given in [27].

As before, the problem is to infer the joint distribution of n random variables
X1, . . . , Xn, based on m independent samples of each random variable. For any set
of random variables, it is possible to write their joint distribution as a product of
conditional distributions. For two variables X1, X2, we can write

Pr{X1, X2} = Pr{X1} · Pr{X2|X1},

6 The notion of a copula was introduced in [20]. See [21] for an excellent introduction to the topic.
7 It is interesting to note that in a preprint version of [22], their method is claimed to take only 1.6 h.
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and we can also write

Pr{X1, X2} = Pr{X2} · Pr{X1|X2}.

If there are n random variables X1, . . . , Xn, then we can write

Pr{XN } =
n∏

i=1

Pr{Xi|Xj, 1 ≤ j ≤ i − 1},

where XN denotes (X1, . . . , Xn). More generally, let π be any permutation on
{1, . . . , n}. Then we can also write

Pr{XN } =
n∏

i=1

Pr{Xπ(i)|Xπ(1),...,π(i−1)}. (3.12)

Since the above expression is valid for every permutation π, we should choose to
order the variables in such a way that the various conditional probabilities become
as simple as possible. In essence, this is the basic idea behind Bayesian networks.

Suppose now that G is an acyclic directed graph with n vertices. Note the total
contrast with the assumptions in methods based on mutual information. In that setting,
G is an undirected graph, so that edges can be thought of as being bidirectional. In
the present setting, not only are edges unidirectional, but no cycles are permitted. In
other words, both the situations shown below are ruled out in the Bayesian network
paradigm.

A B

A B Cmany

nodes

Let us think of an edge (i, j) as being from node i to node j, and let E denote the
set of edges in G. Since the graph is assumed to be acyclic, with each node i we can
unambiguously associate its ancestor set A(i) and its successor set S(i) defined by

A(i) = {k : (k, i) ∈ E}, S(i) = {j : (i, j) ∈ E}. (3.13)

Since the graph is both directed as well as acyclic, it is obvious that A(i) and/or S(i)
may be empty for some indices i. In some circles, a node i is referred to as a ‘source’
if A(i) is empty, and as a ‘sink’ if S(i) is empty. Recall the notation Xi ⊥ Xj if Xi

and Xj are independent, and the notation (Xi ⊥ Xj)|Xk if Xi and Xj are conditionally
independent given Xk .

Definition 3.2. A set of random variables X1, . . . , Xn is said to be a Bayesian
network with respect to a directed acyclic graph G if
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(Xi ⊥ Xj)|XA(i), ∀j �∈ S(i). (3.14)

In words, a set of random variables X1, . . . , Xn is a Bayesian network with respect
to G if, for a fixed index i, the associated r.v. Xi is conditionally independent of Xj

for all nonsuccessors j, given the values of Xk for all ancestors k of i. It is easy to
see that if the set of random variables X1, . . . , Xn forms a Bayesian network with
respect to the directed acyclic graph G, then the joint probability distribution factors
as follows:

Pr{XN } =
n∏

i=1

Pr{Xi|XA(i)}, (3.15)

where the conditional probability of Xi is taken to be the unconditional probability
if the set A(i) is empty. Compare (3.15) with (3.12).

The formula (3.15) demonstrates one of the main attractions of the Bayesian
network model. For each source node i, the unconditional probability of Xi can be
computed directly from the data. (It is obvious that if i, j are both source nodes,
then Xi ⊥ Xj.) Then, using (3.15), the conditional probability computation of any
intermediate Xi can be propagated along the graph. This is the feature that makes
Bayesian networks so popular in AI circles. In an AI application, the underlying
graph G is posited a priori on the basis of expert opinion or prior knowledge. In
the context of inferring GRNs, the graph itself is unknown, and the objective of the
exercise is to determine ‘the best possible fit’ to the observed data. The paper [25]
contains a detailed discussion of this problem, as does the tutorial [28]; So for present
purposes we content ourselves with just a quick overview.

The problem of modeling a set of expression data using a Bayesian network can
be divided into two questions. First, what is the graph G that is used to model the data
(i.e., the dependence structure among the random variables)? Second, once the graph
G has been chosen, how can one find the best possible fit to the expression data by
a suitable choice of the various conditional probabilities in (3.15)? In answering the
second question, one again needs to make a distinction between parametric models,
where the various conditional probabilities are specified as known functions of an
unknown parameter θ ∈ Θ where Θ is specified ahead of time, and nonparamet-
ric models in which case no such form is assumed. Strictly speaking, the classical
Bayesian paradigm applies to the use of parametric models with the dependence
structure specified beforehand. In such a case, it is assumed that the parameter θ has
a known prior distribution, and that the data set, call it D, is generated using some
unknown probability distribution. Then the parameter θ is chosen so as to maximize
the posterior probability Pr{θ|D}. The Bayesian approach consists of observing that

Pr{θ|D} = Pr{D|θ} · Pr{θ}
Pr{D} .

Hence
log Pr{θ|D} = log Pr{D|θ} + log Pr{θ} − log Pr{D}.
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In the above equation, Pr{D} can be treated as a constant, since it does not depend
on θ. In principle, the same approach can also be extended to answer the first question
as well, namely the choice of the directed graph G that is used to model the data.
However, since the number of possible directed acyclic graphs in n nodes increases
far too quickly with n, this approach may not be feasible, unless one restricts attention
to a very small subset of all possible directed acyclic graphs on n nodes.

3.5 A Unified Interpretation

The two approaches described above can be put into some sort of common framework.
Suppose X1, . . . , Xn are random variables assuming values in finite sets A1, . . ., An

respectively. Let XN denote (X1, . . . , Xn), and let A denote
∏n

i=1 Ai. Finally, let
x ∈ A denote a value that XN can assume, and let, as before,

φ(x) = Pr{XN = x}

denote the joint probability distribution. Then one can ask two specific questions:
First, if φ(x) has certain product form, does this imply any kind of dependence
structure on the random variables? Second, and conversely, if the random variables
have some kind of dependence structure, does this imply that the joint distribution
has a specific form? It turns out that the first question is very easy to answer, while
the second one is more difficult.

Accordingly, suppose first that G is a graph with n nodes. For the moment we
neither assume that the graph is symmetric nor that it is acyclic. It is a directed
graph (unlike in ARACNE) and may contain cycles (unlike in the case of Bayesian
networks). Let N denote {1, . . . , n}, the set of nodes in the graph, and suppose
C1, . . . , Ck are subsets of N that together cover N . In other words,

k⋃

l=1

Cl = N .

Besides the covering property, no other assumptions are made about the nature of
the Cl. For each Cl, define

XCl = (Xj, j ∈ Cl), ACl =
∏

j∈Cl

Aj.

The possible value xCl ∈ ACl is defined analogously. Next, define

D(i) =
⋃
{Cl : i ∈ Cl}, T(i) = D(i) \ {i}.
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Thus D(i) consists of the union of all Cl that contain i. Note that, due to the covering
property of the sets Cl , there is at least one Cl that contains i, whence D(i) is nonempty
and contains i. Thus T(i) is well-defined, though it could be empty. With these
definitions, the following result ensues.

Theorem 3.2. Suppose there exist functions φl, l = 1, . . . , k such that

φ(x) = 1

Z

k∏

l=1

φl(xCl ), (3.16)

where

Z =
∑

x∈A

k∏

l=1

φl(xCl )

is a normalizing constant. Then

Pr{Xi|XN \i} = Pr{Xi|XT(i)}. (3.17)

An equivalent way of stating the theorem, which makes it resemble the definition
of a Bayesian network is this: Suppose the joint distribution φ(x) can be factored as
in Theorem 3.2. Then

(Xi ⊥ Xj)|XT(i) ∀j �∈ N \ D(i). (3.18)

Proof. From the definition of conditional probability, it follows that

Pr{Xi = xi|XN \i = xN \i} = Pr{XN = x}
Pr{XN \i = xN \i} .

Substituting from (3.16) leads to

Pr{XN = x} = 1

Z

k∏

l=1

φl(xCl ) =
∏

i �∈Cl

φl(xCl )
1

Z

∏

i∈Cl

φl(xCl ).

Similarly

Pr{XN \i = xN \i} = 1

Z

∑

xi∈Ai

k∏

l=1

φl(xCl ) =
∏

i �∈Cl

φl(xCl )
∑

xi∈Ai

1

Z

∏

i∈Cl

φl(xCl ).

Note that the term
∏

i �∈Cl
φl(xCl ) is common to both expressions. So
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Pr{Xi = xi|XN \i = xN \i} = Pr{XN = x}
Pr{XN \i = xN \i}

= (1/Z)
∏

i∈Cl
φl(xCl )

(1/Z)
∑

xi∈Ai

∏
i∈Cl

φl(xCl )
.

Note that XN \D(i) does not appear in either the numerator or the denominator. Hence
we can sum over all xN \D(i) and the ratio would be unchanged. In other words,

Pr{Xi = xi|XN \i} =
(1/Z)

∑
xN \D(i)

∏
i �∈Cl

φl(xCl )
∏

i∈Cl
φl(xCl )

(1/Z)
∑

xN \D(i)

∑
xi∈Ai

∏
i �∈Cl

φl(xCl )
∏

i∈Cl
φl(xCl )

= Pr{XD(i) = xD(i)}
Pr{XT(i) = xT(i)}

= Pr{Xi = xi|XT(i) = xT(i)}.

This is the desired conclusion. �

With suitable conventions, both the Bayesian network and the undirected graph
can be put into the above dependence structure. However, the converse of the above
theorem is false in general. Even if (3.17) holds, it does not readily follow that
the joint distribution factors in the form (3.16). To obtain a proper converse, we
introduce the notion of a Markov random field and present the Hammersley-Clifford
theorem. Suppose as before that X1, . . . , Xn are random variables assuming values in
their respective finite alphabets (which need not be the same). Next, in contrast with
Theorem 3.2, assume that G is an undirected graph with n nodes. For each node i,
let N(i) denote the set of neighbors of i; thus N(i) consists of all nodes j such that
there is an edge between nodes i and j.

Definition 3.3. A set of random variables X1, . . . , Xn is said to be a Markov random
field with respect to a graph G with n nodes if

Pr{Xi|XN \i} = Pr{Xi|XN(i)}, ∀i. (3.19)

In words, a set of random variables X1, . . . , Xn is a Markov random field with
respect to G if and only if the conditional distribution of each random variable Xi

depends only on its neighbors Xk, k ∈ N(i). Note that (3.17) reduces to (3.19) if we
define T(i) = N(i).

A closely related notion is that of a Gibbs distribution. To define this notion, let
us recall that a clique of an undirected graph is a maximal completely connected
subgraph.

Definition 3.4. Suppose X1, . . . , Xn are random variables and that G is an undirected
graph with n nodes. Let C1, . . . , Ck denote the cliques of G. Then the random variables
X1, . . . , Xn are said to have a Gibbs distribution with respect to the graph G if their
joint distribution φ satisfies
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Fig. 3.3 Illustration of the
Hammersley-Clifford theorem
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φ(x) =
k∏

l=1

φl(xCl ). (3.20)

In words, the random variables X1, . . . , Xn have a Gibbs distribution with respect
to G if the joint distribution of all n variables factors as a product of simpler joint
distributions, one for each clique of G.

A fundamental result known as the Hammersley-Clifford theorem connects the
two concepts (Fig. 3.3).

Theorem 3.3. Suppose the joint distribution φ(x) of a set of random variables is
strictly positive for all x. Then they form a Markov random field if and only if the
joint distribution is a Gibbs distribution.

Though this theorem is credited to Hammersley and Clifford, their original man-
uscript is somewhat inaccessible. A proof of this theorem can be found in [29] as
well as several textbooks. Note that the proof in one direction is easy: If the joint
distribution is Gibbs, then the random variables form a Markov random field, and
one does not require the assumption that the joint distribution is positive in order to
prove this. Indeed, this is captured in Theorem 3.2. Therefore the real import of the
theorem is in the opposite direction. To prove it in this direction, the strict positivity
of the joint distribution is an essential requirement.

Example 3.1. As an illustration of the application of the Hammersley-Clifford
theorem, consider the network shown in Fig. 3.1. In this network there are three
cliques, namely

C1 = {1, 2, 3, 4}, C2 = {4, 5}, C3 = {5, 6, 7, 8}.

Accordingly, a set of random variables {X1, . . . , X8} is a Markov random field with
respect to this graph if and only if the joint distribution of all eight variables factors
into a product of the form

φ(x1, . . . , x8) =
∏

φ1(x1, x2, x3, x4)φ2(x4, x5)φ3(x5, x6, x7, x8).
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3.6 A New Algorithm Based on the Phi-Mixing Coefficient

The ARACNE algorithm discussed in Sect. 3.3 begins with a complete but undi-
rected graph, and then prunes it via two steps. First, any pair of nodes for which the
corresponding mutual information is smaller than a certain threshold is eliminated;
this is the approach of [13]. Then further pruning of the remaining edges takes place
using the data processing inequality (3.11). This suggests that, in order to infer gene
interaction networks where the edges are both directed and weighted, the broad con-
tours of the ARACNE algorithm can be retained, but the mutual information should
be replaced by another quantity that both provides a directed measure of depen-
dence between random variables and also satisfies an analog of the data processing
inequality. In this section, it is shown that such a measure is provided by the so-called
φ-mixing coefficient between random variables. The section is organized as follows.
First, the φ-mixing coefficient is defined, and the details of computing it are dis-
cussed. Then it is shown that the φ-mixing coefficient satisfies an analog of the data
processing inequality. With these two steps in place, the new algorithm is described.
Finally, a case study in reverse-engineering a lung cancer GIN is presented.

3.6.1 The Phi-Mixing Coefficient: Definition and Computation

The notion of mixing originated in an attempt to establish the law of large numbers
for stationary stochastic processes that are not i.i.d. Three notions of mixing are
popularly used, namely α-mixing, β-mixing, and φ-mixing. General definitions of
the α-, β- and φ-mixing coefficients of a stationary stochastic process can be found,
among other places, in [30, pp. 34–35]. In reality, it is possible to define mixing
coefficients between a pair of random variables, instead of for a stochastic process.
This is the approach adopted in [31], which is an excellent (though terse) reference
for mixing properties and inequalities. In the present work, we shall be interested
only in the φ-mixing coefficient. This notion was introduced by Ibragimov [32].

Definition 3.5. Suppose X and Y are random variables assuming values in finite
sets A = {1, . . . , n} and B = {1, . . . , m} respectively. Then the φ-mixing coefficient
φ(X|Y) is defined as

φ(X|Y) := max
S⊆A,Y⊆B

|Pr{X ∈ S|Y ∈ T} − Pr{X ∈ S}|. (3.21)

Thus φ(X|Y) is the maximum difference between the conditional and uncondi-
tional probabilities of an event involving only X, conditioned over an event involving
only Y . It is evident that φ(X|Y) measures the degree of interdependence between
X and Y . Thus, unlike with mutual information, if φ(X|Y) < φ(W |Z), then it can
indeed be said that X depends less on Y than W does on Z .
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It is easy to show that the φ-mixing coefficient has the following properties:

1. φ(X|Y) ∈ [0, 1].
2. In general, φ(X|Y) �= φ(Y |X). Thus the φ-mixing coefficient gives directional

information.
3. X and Y are independent random variables if and only if φ(X|Y) = 0, or equiva-

lently φ(Y |X) = 0.
4. The φ-mixing coefficient is invariant under any one-to-one transformation of the

data. Thus if f : A→ C, g : B→ D are one-to-one and onto maps, then

φ(X|Y) = φ(f (X)|g(Y)).

In particular, if A, B are subsets of R, and f , g : R→ R are monotonic functions,
then once again the above equation holds. This is a very useful when dealing with
transformed, as opposed to raw, data.

Next we discuss some methods for either estimating or computing exactly the
φ-mixing coefficient between two discrete random variables. For each integer n, let
Sn denote the n-dimensional simplex. Thus

Sn := {v ∈ R
n : vi ≥ 0 ∀i,

n∑

i=1

vi = 1}.

If A = {a1, . . . , an} and μ ∈ Sn, then μ defines a measure Pμ on the set A accord-
ing to

Pμ(S) =
n∑

i=1

μiIS(ai),

where IS(·) denotes the indicator function of S. To avoid more notation, we will write
μ(S) instead of the more precise Pμ(S).

Now suppose A, B denotes sets of cardinality n, m respectively, and that μ ∈ Sn,

ν ∈ Sm are the marginal distributions of random variables X, Y assuming values in
A, B respectively. Then the distribution ψ ∈ Snm defined by ψij = μiνj is called
the product distribution on A× B. It is the distribution that the pair (X, Y) would
have if X, Y were independent. In the other direction, if θ ∈ Snm is a distribution on
A×B, representing the joint distribution of (X, Y), then θA ∈ Sn,θB ∈ Sm defined
respectively by

(θA)i :=
m∑

j=1

θij, (θB)j :=
n∑

i=1

θij

are called the marginal distributions of θ on A and B respectively. These are the
distributions of X by itself and of Y by itself, respectively. With this notation, the
definition of the φ-mixing coefficient can be stated equivalently as follows:
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φ(X|Y) := max
S⊆A,T⊆B

∣
∣
∣
∣
θ(S × T)

ν(T)
− μ(S)

∣
∣
∣
∣ . (3.22)

If we use (3.21) directly to compute φ(X|Y), then it would be necessary to enu-
merate all possible subsets of A, B, which would involve 2n+m operations. It is now
shown that there exist readily computable upper and lower bounds forφ(X|Y). More-
over, in the special case where ν is the uniform distribution, it is possible to arrive
at an exact value for φ(X|Y). For this purpose we recall the definition of the matrix
induced norm. Let us define ψ = μ × μ to be the product distribution of the two
marginals, and define

λij := θij − ψij,Λ := [λij] ∈ [−1, 1]n×m.

For indices i and j, let λi,λj denote respectively the i-th row and j-th column of the
matrix Λ. The quantity

‖Λ‖i1 := max
1≤j≤m

n∑

i=1

|λij| = max
1≤j≤m

‖λj‖1

is called the �1-induced matrix norm of Λ. It is well-known that

‖Λ‖i1 = max‖v‖1≤1
‖Λv‖1 = max

v �=0

‖Λv‖1
‖v‖1 .

With this notation we are ready to state the main results of this section.

Theorem 3.4. We have that

0.5‖Λ‖i1
maxj νj

≤ φ(X|Y) ≤ 0.5‖Λ‖i1
minj νj

. (3.23)

In particular, if ν is the uniform distribution on B, then

φ(X|Y) = 0.5m‖Λ‖i1. (3.24)

Proof. The first step is to get rid of the absolute value sign in the definition of the
φ-mixing coefficient, by showing that

φ(X|Y) = max
S⊆A,T⊆B

[
θ(S × T)

ν(T)
− μ(S)

]

. (3.25)

For this purpose, define

Rφ :=
{
θ(S × T)

ν(T)
− μ(S), S ⊆ A, T ⊆ B

}

.
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Then Rφ is a subset of the real line consisting of at most 2n+m elements. Now it
is claimed that the set Rφ is symmetric; that is, x ∈ Rφ implies that −x ∈ Rφ. If
this claim can be established, then (3.25) follows readily. So suppose x ∈ Rφ, and
choose S ⊆ A, T ⊆ B such that

θ(S × T)

μ(T)
− ν(S) = x, or θ(S × T)− μ(S)ν(T) = xν(T).

Let Sc denote the complement of S in A. Then, using the facts that

μ(Sc) = 1− μ(S),

θ(Sc × T) = θ(A× T)− θ(S × T) = ν(T)− θ(S × T),

it is easy to verify that

θ(Sc × T)− μ(Sc)ν(T) = −xν(T).

So Rφ is symmetric and (3.25) follows.
To facilitate the proof the theorem, we introduce a map from the power set of A

into {0, 1}n. For a subset S ⊆ A, we define h(S) ∈ {0, 1}n by

hi(S) =
{

1, if ai ∈ S,

0, if ai �∈ S.

The map h : 2B → {0, 1}m is defined analogously. With these definitions, it is
obvious that, for S ⊆ A, T ⊆ B, we have

μ(S) = [h(S)]tμ = μth(S),ν(T) = [h(T)]tν = ν th(T),

θ(S × T) = [h(S)]tΘh(T),

where Θ = [θij]. By replacing h(S) and h(T) by arbitrary binary vectors a ∈ {0, 1}n,
b ∈ {0, 1}m, it readily follows from (3.25) that

φ(X|Y) = max
a∈{0,1}n,b∈{0,1}m

atΛb
ν tb

. (3.26)

Next, it is clear that

max
a∈{0,1}n,b∈{0,1}m

atΛb
ν tb

= max
b∈{0,1}m max

a∈{0,1}n
atΛb
ν tb

.

Now rewrite
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atΛb
ν tb

=
n∑

i=1

ai
λib
ν tb

.

Therefore, for a fixed b ∈ {0, 1}m, the inner maximum is achieved by the choice

ai =
{

1, if (λib)/(ν tb) ≥ 0,

0, if (λib)/(ν tb) < 0.
,

and

max
a∈{0,1}n

atΛb
ν tb

=
n∑

i=1

(
λib
ν tb

)

+
.

As a result, we have now an alternate formula for φ(X|Y), namely

φ(X|Y) = max
b∈{0,1}m

n∑

i=1

(
λib
ν tb

)

+
. (3.27)

Next, let e denote a column vector consisting of all ones, with the subscript
denoting its dimension, and observe that

μt = et
nΘ = et

nΨ ⇒ et
nΛ = 0n, similarlyΛem = 0m.

Therefore, for any vector v ∈ R
m, it follows that

et
nΛv = 0 ⇒

n∑

i=1

λiv = 0

⇒
n∑

i=1

(λiv)+ +
n∑

i=1

(λiv)− = 0

⇒
n∑

i=1

(λiv)+ = −
n∑

i=1

(λiv)−

⇒
n∑

i=1

(λiv)+ = 0.5
n∑

i=1

|λiv| = 0.5‖Λv‖1. (3.28)

So in particular it follows that

n∑

i=1

(
λib
ν tb

)

+
= 0.5

‖Λb‖1
ν tb

.

To prove the lower bound in (3.23), choose an index j0 such that ‖λj0‖1 = ‖Λ‖i1,
and choose b0 ∈ {0, 1}m such that bj0 = 1 and bj = 0 for all j �= j0. Then
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n∑

i=1

(
λib0

νb0

)

+
= 1

νj0

n∑

i=1

(λi,j0)+ =
0.5

νj0

n∑

i=1

|λi,j0 | =
0.5‖Λ‖i1

νj0

≥ 0.5‖Λ‖i1
maxj νj

.

To prove the upper bound in (3.23), note that for all b ∈ {0, 1}m, we have

n∑

i=1

(λib)+
ν tb

= 0.5
n∑

i=1

|λib|
ν tb
= 0.5

‖Λb‖1
ν tb

.

Now we change the variable of optimization from b to v := Diag(ν)b, and use the
fact that induced matrix norm ‖ · ‖i1 is submultiplicative. This leads to

φ(X|Y) = 0.5 max
b∈{0,1}m

‖Λb‖1
νb

≤ 0.5 max
b∈Rm

‖Λb‖1
|νb|

= 0.5 max
v∈Rm

‖Λ[Diag(ν)]−1v‖1
‖v‖1 = 0.5‖Λ[Diag(ν)]−1‖i1

≤ 0.5‖Λ‖i1 · ‖[Diag(ν)]−1‖i1 = 0.5‖Λ‖i1
minj νj

.

Finally, if ν is the uniform distribution, then minj νj = maxj νj = 1/m. So the two
inequalities in (3.23) become equalities. �

3.6.2 Data Processing Inequality for the Phi-Mixing Coefficient

In this section we state and prove an analog of the data processing inequality (3.11)
for the φ-mixing coefficient.

Theorem 3.5. Suppose (X ⊥ Z)|Y. Then

φ(X|Z) ≤ min{φ(X|Y),φ(Y |Z)}, (3.29)

φ(Z|X) ≤ min{φ(Z|Y),φ(Y |X)}. (3.30)

Proof. We begin by restating (3.27) in terms of subsets of B. Recall from (3.27) that

φ(X|Y) = max
b∈{0,1}m

n∑

i=1

(
λib
ν tb

)

+
.

Again, recall that Λ = Θ−Ψ , so that λi = θi−μiν
t . Therefore the above equation

becomes
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φ(X|Y) = max
b∈{0,1}m

n∑

i=1

(
θib
ν tb
− μi

)

+
.

This formula can be restated in terms of probabilities, as follows:

φ(X|Y) = max
T⊆B

n∑

i=1

[Pr{X = i|Y ∈ T} − Pr{X = i}]+. (3.31)

Suppose (X ⊥ Z)|Y . Since the φ-mixing coefficient is not symmetric, it is
necessary to prove two distinct inequalities, namely: (i) φ(X|Z) ≤ φ(X|Y), and
(ii) φ(X|Z) ≤ φ(Y |Z).

Proof that φ(X|Z) ≤ φ(X|Y): For S ⊆ A, define

rφ(S) := max
T⊆B

Pr{X ∈ S|Y ∈ T},

and observe that
φ(X|Y) = max

S⊆A

[rφ(S)− μ(S)].

For a given S ⊆ A, choose T∗ = T∗(S) ⊆ B such that

Pr{X ∈ S|Y ∈ T∗} = rφ(S).

Suppose U ⊆ C is arbitrary. Then

Pr{X ∈ S&Z ∈ U} =
m∑

j=1

Pr{X ∈ S&Y = j&Z ∈ U}

=
m∑

j=1

Pr{X ∈ S|Y = j}Pr{Z ∈ U|Y = j}Pr{Y = j}

=
m∑

j=1

Pr{X ∈ S|Y = j}Pr{Z ∈ U&Y = j}

≤ rφ(S)

m∑

j=1

Pr{Z ∈ U&Y = j}

= rφ(S) Pr{Z ∈ U}.

Dividing both sides by Pr{Z ∈ U} leads to

Pr{X ∈ S|Z ∈ U} ≤ rφ(S),

Pr{X ∈ S|Z ∈ U} − μ(S) ≤ rφ(S)− μ(S) ≤ φ(X|Y).
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Proof that φ(X|Z) ≤ φ(Y |Z): Let us define

c(S, U) := Pr{X ∈ S|Z ∈ U} − μ(S),

and reason as follows:

c(S, U) = Pr{X ∈ S|Z ∈ U} − Pr{X ∈ S}

=
m∑

j=1

[Pr{X ∈ S&Y = j|Z ∈ U} − Pr{X ∈ S&Y = j}]

=
m∑

j=1

[Pr{X ∈ S|Y = j&Z ∈ U}Pr{Y = j|Z ∈ U} − Pr{X ∈ S|Y = j}Pr{Y = j}]

=
m∑

j=1

Pr{X ∈ S|Y = j}[Pr{Y = j|Z ∈ U} − Pr{Y = j}]

≤
m∑

j=1

Pr{X ∈ S|Y = j}[Pr{Y = j|Z ∈ U} − Pr{Y = j}]+

≤
m∑

j=1

[Pr{Y = j|Z ∈ U} − Pr{Y = j}]+

≤ max
U⊆C

m∑

j=1

[Pr{Y = j&Z ∈ U} − Pr{Y = j}]+

= φ(Y |Z).

Since the right side is independent of both S and U, the desired conclusion
follows. �

3.6.3 A New Algorithm for Inferring GINs

In this section we present a detailed description of our new algorithm for inferring
gene interaction networks from expression data. Since it is based on computing the
φ-mixing coefficient between each pair of genes, the algorithm is referred to as the
φ-xer algorithm. Recall that there are n genes and m samples of each gene, and
the objective of the exercise is to infer whether or not (Xi ⊥ Xk)|Xj for each pairwise
distinct triplet (i, j, k). We begin with the theory behind the algorithm in the case
where we know the exact value of the coefficient φ(Xi|Xj) for each pair of indices i, j.
Then we discuss how the algorithm can be implemented in practice, taking account
the fact that we can only estimate the coefficient based on a finite number of samples.

So let us begin by assuming (somewhat unrealistically) that exact values are
available for all n(n − 1) coefficients φ(Xi|Xj) for each pair of indices i, j, i �= j.
Then we proceed as follows: Start with a complete graph of n nodes, where there is a
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directed edge between every pair of distinct nodes (n(n− 1) edges). For each triplet
i, j, k of pairwise distinct indices, check whether the DPI-like inequality

φ(Xi|Xk) ≤ min{φ(Xi|Xj),φ(Xj|Xk)} (3.32)

holds. If so, discard the edge from node k to node i, but retain a ‘phantom’ edge for
future comparison purposes.

This step is referred to as ‘pruning’. Note that the pruning operation can at best
replace a direct path of length one (i.e. an edge) by an indirect path of length two.
However, one or both of those edges could be ‘phantom’ edges that have been pruned
in an earlier step. In such a case, there would still exist another path between the
two nodes of the phantom edge, though possibly consisting of phantom edges. The
argument can be repeated until all phantom edges if any are replaced by real edges
(i.e., those that have survived the pruning). Hence the graph that results from the
pruning operation is still strongly connected. Also, since any discarded edges are
still retained for the purposes of future comparisons, it is clear that the order in which
the triplets are processed does not affect the final answer. Note that the complexity
of this operation is cubic in n.

At this stage, one can ask whether the graph resulting from the pruning operation
has any significance. It is now shown, by invoking the Occam’s razor principle (giving
the simplest possible explanation), that the graph resulting from pruning is a minimal
graph consistent with the data set. For this purpose, we define a partial ordering on
the set of directed graphs with n nodes whereby G1 ≤ G2 if G1 is a subgraph of G2,
ignoring weights of the edges. For a given triplet i, j, k, it is obvious that (Xi ⊥ Xk)|Xj

if and only if every directed path from node i to node k passes through node j, and
also every directed path from node k to node i passes through node j. Now, it follows
from the DPI that if (Xi ⊥ Xk)|Xj, then (3.32) holds. Taking the contrapositive shows
that if (3.32) is false, then (Xi �⊥ Xk)|Xj. Consequently, if (3.32) is false, then there
must exist a path from node i to node k that does not pass through node j. Given
the sequential nature of the pruning algorithm, when (3.32) is checked for a specific
triplet (i, j, k), there already exist edges from node i to node j and from node j to
node k; that is, there exists a path of length two from node i to node k. Now, if
(3.32) is false, then there must exist another path from node i to node k that does not
pass through node j. It is of course possible that this path consists of many edges.
However, by the Occam’s razor principle, the simplest explanation would be that
there is a shorter path of length one, i.e. a directed edge from node k to node i.

What has been shown is that, under the Occam’s razor principle, the graph that
results from pruning is minimal in the following sense. First, it is consistent with
the φ-mixing coefficients, and second, any other graph that is ‘less than’ this graph
in the partial ordering defined above would not be consistent with the φ-mixing
coefficients. Thus, if any edges are removed from the graph that results from applying
the pruning step, then some other edges would have to be added in order for the
graph to be consistent with the φ-mixing coefficients. Note that we are obliged to say
a and not the minimal graph, because there might not be a unique minimal graph.
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Nevertheless, it is obvious that the application of the algorithm will result in a unique
graph, irrespective of the order in which all the triplets (i, j, k) are examined.

Now that the basic theory is in place, it is possible to present an algorithm for
reverse-engineering a GIN from experimental expression data. The main issue here
is that we do not know the ‘true’ coefficient φ(Xi|Xj) exactly. Even if we were to
discretize the random variables by binning and then use (3.23), the resulting quantity
would still only be an approximation of φ(Xi|Xj) and not the exact value. Moreover, a
direct application of (3.21) would be too expensive computationally. These are some
of the considerations that enter into the implementation described below. Recall that
there are n genes and m samples of each.

Binning the expression values of each gene: Choose an integer k such that
k ≤ �(m/3)1/2�. For each index i, divide the total range of Xi into k bins that
correspond to ‘percentiles’. Note that percentile binning is also referred to as ‘data-
dependent partitioning’ in [33]. For each pair of indices i, j, and each sample label l,
assign the sample pair (xil, xjl) to its associated bin. The discretization ensures that
each random variable Xi assumes one of just k values (corresponding to the bins). The
choice of k ensures that on average there will be at least three entries in each of the k2

bins of the joint random variable (Xi, Xj) for each pair (i, j). The choice of percentile
discretization (as opposed to, for example, uniformly gridding the range), ensures
that the marginal distribution of each Xi is nearly equal to the uniform distribution
on k labels, and allows us to use the estimates (3.23). If m is an exact multiple
of k then each marginal distribution would indeed be the uniform distribution, and
we would have an exact value of the φ-mixing coefficient between the discretized
random variables. But in general m might not be an exact multiple of k. Percentile
binning also ensures that the joint distribution of the discretized pairs (Xi, Xj) remains
invariant under any monotonic transformation of the data. It is important to note here
that the invariance property holds even if different monotone transformations are
applied to different expression variables.

Estimating the φ-mixing coefficient: After binning, for each pair of indices i, j,
we determine the associated joint distribution of the discretized random variables,
which will be a k × k matrix. For each pair of indices i, j, we use (3.23) to com-
pute an interval [φl(Xi|Xj),φu(Xi|Xj)] that contains the true value φ(Xi|Xj). Define
φa(Xi|Xj) = [φl(Xi|Xj)+ φu(Xi|Xj)]/2 to be the midpoint of this bounding interval.
Note that we are being a bit imprecise since Xi now represents the discretized and not
the original (continuous) expression value. However, in the interests of notational
simplicity, we ignore this distinction. The complexity of this operation is quadratic
in n, the total number of genes.

Pruning: As before, start with a complete graph on n nodes, and then apply the data
processing inequality to do the pruning, for each triplet (i, j, k). Since we have only
empirically determined values of the mixing coefficient, there are several possible
ways of interpreting the data processing inequality. At this stage three different ways
of implementing the pruning operation were examined.
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1. Eliminate the edge from node j to node i if

φu(Xi|Xk) ≤ min{φl(Xi|Xj),φl(Xj|Xk)}. (3.33)

2. Eliminate the edge from node j to node i if

φu(Xi|Xk) ≤ min{φa(Xi|Xj),φa(Xj|Xk)}. (3.34)

3. Eliminate the edge from node j to node i if

φa(Xi|Xk) ≤ min{φa(Xi|Xj),φa(Xj|Xk)}. (3.35)

Since it is always the case that

φl(Xi|Xj) ≤ φa(Xi|Xj) ≤ φu(Xi|Xj),

it is easy to see that any edge that gets pruned out under Rule 1 also gets pruned out
under Rule 2, but Rule 2 could also prune out other edges that survive Rule 1. Similar
remarks apply to Rule 2 vis-à-vis Rule 3. Thus if let G1,G2,G3 denote the graphs
produced by applying Rule 1, Rule 2, and Rule 3 to the same data set, then it is easy
to see that G3 is a subgraph of G2, which is in turn a subgraph of G1. Based on several
numerical experiments, we finally opted to use Rule 2, but with ‘thresholding’ as
explained next.

Thresholding: We have constructed several genome-wide networks from expres-
sion data, as detailed in the next section. Our numerical experiments have shown that
after the pruning step described above, the GINs that result are characterized by the
property that the mean value of all the edge weights is noticeably higher than the
median. This means that there are relatively far more edges with low weights than
edges with high weights, but the high-weight edges have significantly higher weights.
One of the main reasons for reverse-engineering GINs is to identify ‘hubs’, that is,
genes that are connected to many other genes. Again, the GINs that result from the
pruning step do not show sufficient variation between the largest node-degree and
the smallest node-degree. In ‘validating’ the reverse-engineered GIN, it is highly
desirable to eliminate all of these low-weight edges, while still ensuring that the
graph remains strongly connected. Several numerical experiments have suggested
the following strategy: After the pruning step, compute the mean μ and standard
deviation σ of the weights of all edges. Then eliminate all edges whose weights are
below μ. If the thresholded graph is strongly connected, then keep it; otherwise lower
the threshold to μ−σ, or use no threshold at all. Thus far, in our various experiments,
in about half of the cases the threshold of μ has resulted in a strongly connected net-
work, while in one case even the higher threshold of μ+σ has resulted in a strongly
connected network. Interestingly, the highest degree nodes in the pruned network
still remain the highest degree nodes in the pruned and thresholded network. The
numerical examples in later sections make this point clear.
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Table 3.1 Lung cancer networks pruned using rule 2

No. No. of No. of No. of edges and SCCs under
genes samples various thresholds
(n) (m) 0 μ SCCs

1. 19,579 148 3,853,936 1,791,624 1
2. 19,579 108 4,474,834 2,283,114† 2
3. 19,579 29 2,548,501 940,785† 6

3.6.4 A Case Study: A Lung Cancer GIN

Using the algorithm presented here, we have reverse-engineered several GINs. Due
to space and time limitations, we are reporting here only the three GINs obtained
from lung cancer cell line data. We have also constructed three different GINs from
ovarian cancer tumor tissue data, and three different GINs from melanoma, of which
two are based on data from tumor tissues and one is based on data from cell lines.
The broad conclusions given below apply to those GINs as well.

The three lung cancer GINs are based on gene expression data from lung cancer
cell lines from the laboratory of Prof. John Minna and were provided to us by his
student, Alex Augustyn. There were 148 cell lines in all, consisting of 108 non-small
cell lung cancer (NSCLC), 11 neuro-endocrine non-small cell lung cancer (NE-
NSCLC), and 29 small-cell lung cancer (SCLC). Network 1 is based on combining
the data from all these lines, whence the number of samples is 148. Network 2 is
based on the NSCLC samples alone, while Network 3 is based on the SCLC samples
alone. The objective of this exercise, in the long run, can be explained briefly as
follows: SCLC is often associated with smoking, and patients with SCLC have very
poor prognosis. In contrast, NSCLC is found in persons who have never smoked nor
been exposed to smoking, but the prognosis of patients with NSCLC is significantly
better than for those with SCLC. On the other hand, there is a variety of NSCLC,
namely NE-NSCLC, for which the prognosis is as poor as for SCLC patients. Thus
eventually we would like to be able to understand why this is so. This issue is revisited
again in Chap. 4.

The raw statistics of the various networks obtained using Rule 2 for pruning are
given in Table 3.1. Statistics for the number of edges that remain after thresholding the
resulting network with the threshold μ, as well as the number of strongly connected
components (SCCs) are also given. Note that the network with no threshold is always
strongly connected so the number of SCCs is always one in that case, and is therefore
not displayed. The superscript † indicates that the resulting thresholded network is
not strongly connected, i.e. that the threshold is too high.

It can be seen that the networks resulting from pruning using Rule 2 and then
thresholding at the level of μ are either strongly connected, or else have a very
small number of SCCs, meaning that ‘for all practical purposes’ they are strongly
connected. If we use Rule 1 for pruning, the resulting networks contain far too

http://dx.doi.org/10.1007/978-3-642-34079-6_4
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many edges to be of any use, whereas if we use Rule 3 for pruning, the networks
tend to become disconnected into a large number of SCCs at a threshold of μ. For
this reason, we have chosen to use Rule 2 for pruning and a threshold of μ for all
future analyses.

From these networks, a few general features of our algorithm emerge.

• Recall that the algorithm begins with a complete directed graph on n nodes; there-
fore the initial number of edges is n(n − 1) ≈ n2. Applying the pruning step
retains the strong connectivity property, as pointed out earlier. In all of the cases
studied here, the pruning step eliminates 99 % or more of these edges. Therefore
the algorithm is quite efficient in terms of finding a very small GIN consistent with
the data.
• Though the network contains a very small number of edges in comparison to the

theoretical maximum of n(n − 1)/2, the networks are nevertheless very shallow,
in the sense that from any one gene, it is possible to reach every other gene in
three or fewer hops. This is a limitation of the modeling methodology, because
it strives for a logically minimal representation of the data, whereas there is no
reason to suppose that ‘real’ biological networks are in fact so economical. In
other words, it appears that metabolic pathways that consist of several steps in
biology are captured by just one edge in the GIN representation. This raises the
question of ‘harmonizing’ the expression data (which is context-specific) with
prior knowledge in the form of known pathways. This problem is discussed in
Sect. 4.2.
• It can be seen that in two out of three cases, the network thresholded with the

mean edge weight μ has fewer than half of the edges in the pruned network, while
in the case of the third, this is nearly so. This implies that the mean of the edge
weights of the post-pruning network is higher than the median, or equivalently,
the pruned network (before thresholding) has a large number of low-weight edges
and relatively fewer high-weight edges.

Now we study the ‘power law’ nature of the degree distributions GIN No. 1, for
lung cancer, with the threshold set equal to μ. Note that the validation step discussed
subsequently is based on this network.

It is widely believed by biologists that real GINs consist of a few master regulators
that control many hundreds of other genes. It is also proposed by some authors that
biological GINs show a power law behavior. Specifically, let d denote an integer
corresponding to the degree of a node. (For each node, the phrases in-degree, out-
degree and total degree are self-explanatory.) Let n(d) denote the number of nodes
in the GIN that have degree d. Then the belief is that n(d) asymptotically looks like
d−α for some indexα. We wished to examine whether this is indeed true for Network
No. 1.

It turns out that the total degrees of various nodes does not show much vari-
ation; the maximum is 1,735 for ATCAY and the minimum degree is 64. Simi-
larly, the in-degree also does not show much variation, ranging from 411 to 34. In
contrast, the out-degree, that is to say, the number of downstream neighbors of a
gene, varies from a high of 1,626 to a low of 1, which is the theoretical minimum.

http://dx.doi.org/10.1007/978-1-4471-4751-0_4


3.6 A New Algorithm Based on the Phi-Mixing Coefficient 63

Fig. 3.4 Plot of degree versus number of nodes all degrees

(Note that if any node had in- or out-degree of zero, then the network would not be
strongly connected.) For this reason, we studied the distribution of n(d) as a function
of the out-degree d, and plotted this on a log-log scale. To avoid the graph becoming
too jerky, we ‘binned’ the degree d into bins of width five. That is to say, we computed
the number of nodes with degrees between 1 and 5, and then between 6 and 10, and so
on. The graph for the entire range of degrees is not particularly informative and does
not show any power law behavior. However, we observed that when the node degree
is between 100 and 300, the graph did seem to show a linear relationship (between
log d and log n(d)). Therefore we zoomed in on the plot for degrees lying between
100 and 300, and this time we could observe a fairly clear power law behavior with
exponent of −6.88 (Fig. 3.4).

It is virtually impossible to validate an entire GIN since there is no known and
confirmed ‘absolute truth’ against which predictions can be confirmed. Existing
examples of GINs such as [2–5] are often obtained by combining small interac-
tion networks from a variety of sources. The difficulty with this approach is that
the context in which these small interaction networks are determined need not be
the same across all of them. Hence combining these small individual networks into
one large patchwork network cannot be justified biologically, and the resulting net-
work cannot be accepted as reflecting ‘reality’. It must be emphasized that the entire
raison d’être of our algorithm is to embrace the entire genome (or as much of it as
is covered by the data) to produce a context-specific, genome-wide network. Hence
it would be inappropriate to compare the reverse-engineered networks with the net-
works available in public domain databases. In any case, even the largest networks
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Fig. 3.5 Plot of degree versus number of nodes degrees between 100 and 300

obtained in this (somewhat dubious) manner still cover only about half of the 22,000
or so human genes; see [5]. In contrast, the networks that we have reverse-engineered
routinely combine all genes studied in the experiment, of the order of 20,000, as seen
from the previous section (Fig. 3.5).

This therefore raises the question of just how such reverse-engineered networks
are to be validated. After considerable thought, we chose to use evidence from so-
called ChIP-seq tests for a few transcription factors. A transcription factor is a special
kind of gene that is involved in regulating the transcription of other genes.8 ChIP-
seq stands for ‘chromatin immuno-precipitation sequencing’. A good introduction
to ChIP-seq for non-biologists can be found at [35]. The basic idea is that a tran-
scription factor is immuno-precipitated with the entire genome. As a result, several
DNA fragments bind to the transcription factor. After these fragments are isolated
through other experimental techniques, the fragments are then sequenced. In prin-
ciple each DNA fragment represents one or more genes that are regulated by the
transcription factor. However, the raw experimental technique is rife with false posi-
tives and produces literally thousands of genes as being potentially regulated by the
transcription factor under study. Further analysis is needed to weed out these false
positives, and thus produce a realistic set of potential downstream target genes. For
one of the transcription factors studied here, namely ASCL1, our collaborators (Prof.
Jane Johnson and Mr. Mark Borromeo) used an algorithm called GREAT (Genomic
Regions Enhancement of Annotations Tool) [36] to eliminate most of these false

8 Recall that the ‘central dogma’ of biology, as enunciated by Francis Crick [34] states that DNA
is converted to RNA (transcription) which is then converted to protein(s) (translation).
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positives, and produce a set of potential target genes. For the other two transcrip-
tion factors studied here, namely PPARG and NKX2-1, the laboratory of Prof. Ralf
Kittler, specifically Dr. Rahul Kollipara, produced a set of potential target genes for
each transcription factor using a different peak-calling routine.

As mentioned above, applying GREAT or another similar algorithm to the raw
ChIP-seq data results in a set of potential downstream target genes of the transcrip-
tion factor under study. This list of genes can then be compared with the down-
stream neighbors of the same transcription factor in the reverse-engineered GIN. It
is also reasonable to consider all first-order neighbors of the transcription factor,
both up-stream as well as down-stream, and to compare this list against the set of
predicted target genes produced by ChIP-seq analysis.9 The inclusion of both up-
stream as well as down-stream neighbors can be justified on the basis that biological
networks are full of local feedback loops, whence even up-stream neighbors of a
transcription factor can be viewed as being potentially ‘regulated’ by that transcrip-
tion factor. In any case, as can be seen below, the results of the validation are not
affected very much if we were to consider only first-order downstream neighbors of
each transcription factor.

The validation now consists of seeing whether the set of first-order neighbors is
‘enriched’ for ChIP-seq genes. Let k denote the number of ChIP-seq genes of the
transcription factor under study, and as before let n denote the total number of genes
in the study. Then the probability that a randomly selected gene is a ChIP-seq gene
is p = k/(n− 1). If the transcription factor has s neighbors out of which l are ChIP-
seq genes, then there is enrichment only if l/s > p. To compute the likelihood of
this observation occurring purely due to chance, we use a simple binomial model.
Moreover, since all l neighbors are distinct, the hypergeometric distribution is the
correct one to use. Therefore the likelihood that the enrichment is purely due to
chance is given by the Matlab command

L = 1− hygecdf(l − 1, n− 1, k, s).

This number L is the so-called P-value that biologists use to determine whether the
observed outcome is due purely to chance.

As mentioned above, we obtained ChIP-seq data for three transcription fac-
tors in lung cancer tissues, namely: ASCL1, PPARG, and NKX2-1. In biology, a
likelihood (P-value) less than 0.05 is considered significant, and in all cases the
computed likelihood is comparable to this threshold. Table 3.2 shows the relative
likelihood that a randomly chosen gene is a ChIP gene for each of these transcription
factors.

Table 3.3 shows the enrichment of ChIP genes amongst the first-order downstream
neighbors, and amongst all neighbors, for these three transcription factors. In this
table, an entry of zero for the likelihood means that the number is smaller than
machine zero.

9 In the interests of brevity, these are referred to, somewhat inaccurately, as ‘ChIP-seq genes’.
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Table 3.2 Number of potential target genes for various transcription factors

Item ASCL1 PPARG NKX2-1

Total no. of genes 19,579 19,579 19,579
Total no. of ChIP genes 226 221 684
Prob. of being a ChIP gene 0.0115 0.0113 0.0349

Table 3.3 Enrichment of neighbors for ChIP genes

Gene name Up-neigh. ChIP genes Ld Tot. neigh. ChIP genes Lt

ASCL1 690 84 0 766 87 0
PPARG 84 3 0.0696 208 5 0.0872
NKX2-1 114 6 0.2089 244 14 0.0481

3.7 Evaluation and Validation of Competing Approaches

Given that the computational biology literature is full of various approaches for
reverse-engineering GINs, there is a lot of interest in assessing the relative perfor-
mance of all the competing approaches. In the area of protein structure prediction
based on the primary structure (i.e., the sequence of amino acids that constitute the
protein), there is a well-established biennial competition known as CASP (Critical
Assessment of Structure Prediction). In this competition, the organizers first deter-
mine the 3-D structure of a protein using x-ray crystallography or some other method,
but do not share it with the community at large. Instead the community is challenged
to ‘predict’ the structure, and the ones who come closest to the true structure are
recognized as such. Perhaps drawing inspiration from this, the research community
working in the area of inferring GINs has a competition called DREAM (Dialog
for Reverse Engineering Assessment and Methods). In the personal opinion of the
author, the DREAM competition lacks the authenticity of the CASP competition,
simply because in CASP there is an unambiguous, objective truth that everyone is
striving to find, and against which any and all predictions can be compared. This is
definitely not the case in DREAM. Rather, in the case of DREAM, synthetic data
is generated using some model or combination of models. It should be clear that,
given two algorithms, one can always generate data sets on which one algorithm
outperforms the other, and other data sets on which the performance is reversed.
Until and unless our knowledge of GINs proceeds to a stage where at least a few
GINs are completely identified to constitute ‘the truth’ (as in CASP and protein
structures), there is a danger that such competitions actually serve to confuse rather
than to clarify. Again, this is the author’s personal opinion.
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Chapter 4
Some Research Directions

Abstract In this final chapter, three different directions for future research are
sketched. The first problem is that of harmonizing prior knowledge about gene inter-
action networks that is scattered throughout the literature with the output of the phixer
algorithm. This is formulated as a problem in graph theory, and possible approaches
are indicated. The second problem is to identify ‘genomic machines’, that is, sets of
genes that are connected by edges that are all over-expressed, or all under-expressed,
in a common context. This problem is formulated as one of computing (or at least
approximating) the stationary distribution of a large Markov chain, where the states
correspond to individual genes. The last problem is to separate causal mutations
(drivers of cancer) from coincidental mutations (passengers in cancer). It is surmised
that a seven-dimensional vector known as the developmental gene expression profile
plays a role in discriminating between drivers and passengers. Preliminary evidence
from colorectal cancer is examined, and it is suggested that further studies should
be carried out using recently published comprehensive analysis of colorectal cancer.

Keywords Personal medicine · Markov chains · Stationary distributions · Causal
mutations · Coincidental mutations · CAN genes

The manner of working of the biology community is to generate and then validate very
specific and focused hypotheses, and use the validated hypotheses to build up ‘the big
picture’. For instance, methods such as the φ-xer algorithm presented in the previous
chapter will be appreciated by biologists only if they lead to some explicit hypotheses
that can then be tested in a laboratory. This inductive bottom-up approach to learning
the truth contrasts sharply with the deductive top-down approach of mathematicians
and mathematically minded engineers. With this point in mind, in the present chapter
we discuss how the context-specific and genome-wide GINs generated by the φ-xer
algorithm can be ‘queried’ so as to generate hypotheses. In particular, we discuss
how such networks can potentially be used to carry out a ‘process-level’ annotation
of a network, to complement the ‘gene-level’ annotation that arises from gene-centric
experiments such as ChIP-seq.

M. Vidyasagar, Computational Cancer Biology, SpringerBriefs in Control, 69
Automation and Robotics, DOI: 10.1007/978-1-4471-4751-0_4, © The Author(s) 2012
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4.1 Harmonizing Prior Knowledge with Phixer Output GIN

As was pointed out in Sect. 3.6, the networks produced by the φ-xer algorithm are
very efficient in terms of using fewer than 1 % of all the possible edges in order
to produce a logically minimal GIN that is consistent with the computed φ-mixing
coefficients. That is the good part. The bad part is that the networks are invariably
‘shallow’, in the sense that from key transcription factors it is possible to reach all
genes in three or fewer hops. It is widely believed that actual biological pathways are
far longer than this. The disparity can be explained by the observation that the φ-xer
algorithm compresses several biological pathways into a single logical pathway (i.e.,
an edge). On the other hand, without some sort of prior constraints, the algorithm
cannot by itself produce longer paths.

At present there are several examples of GINs both in the public domain and in
the realm of commercial products; see for example [1–4]. These networks of often
obtained by combining small interaction networks from a variety of sources. As a
result, any network that is a compendium of this kind lacks context. On the other
hand, one could adopt the viewpoint that every edge in such a network represents a
‘real’ interaction in some context of the other, though perhaps not in the context of
interest. The question therefore arises: How is it possible to ‘harmonize’ the prior
information contained in such GINs with the output φ-xer?

One possible approach is the following: Suppose we have available a network,
representing ‘the universe of all known interactions, whatever be the context’. Let
us denote this graph as Gp where the subscript indicates ‘prior’. Existing networks
in the literature are definitely unweighted, and some of the edges can be undirected
as well. In such a case, we would replace an undirected edge by two directed edges.
Next we construct a network using the φ-xer algorithm, call if Gφ. In such a situa-
tion, every edge in Gφ represents a context-specific interaction, though it is possible
that the interaction is actually a compression of a longer pathway, whereas every
edge in Gp represents an interaction that is potentially present. By taking the inter-
section of both graphs, and assigning to each edge in the resulting graph its weight
from Gφ, we arrive at what might be called a ‘context-specific scaffold’, denoted
by Gc. One characteristic of the prior GINs represented by Gp is that they do not
often cover all genes, and even for the genes that are covered, there is not always a
path between every pair of genes; in other words, Gp may not be strongly connected.
Since Gc is a subgraph of Gp, in general Gc will also fail to be strongly connected.
So a ‘global’ question that one can ask is the following: What is the minimum set
of edges that can be added to Gc so as to make it strongly connected? In answering
this question, it appears reasonable to add edges in order of decreasing weight in the
graph Gφ, because a higher weight edge connotes a stronger interaction between the
genes. So in principle we can sort the edges of Gφ by weight, and add them in order of
decreasing weight until a strongly connected graph results. In fact one can go further.
If the initial graph Gc is not strongly connected, then it has a unique decomposition
into strongly connected components (modulo certain permutation of labels); see [5].
So new edges from Gφ should be added in order of decreasing weight but only if

http://dx.doi.org/10.1007/978-1-4471-4751-0_3
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adding each edge results in reducing the number of connected components. In this
way one will arrive at a network that will be far more sparse, and thus far deeper,
than the network Gφ. Of course, it is not clear whether such a network would be
biologically meaningful. By undertaking a few case studies, and asking biologists
to vet the graphs produced in this manner, we should be able to understand whether
this approach is sensible, and/or to fine-tune the approach further.

The above ‘global’ question of trying to find a somewhat realistic representation
of all possible pathways is in general not of interest to biologists. They are far
more interested in ‘local’ questions such as the following: Suppose A and B are two
genes of interest, but there is no path between them in the context-specific scaffold
graph Gc. What is the minimum number of edges from Gφ that must be added so as
to create a path? If there are multiple solutions to this question, which one is more
realistic from a biological standpoint? There are at least two possible approaches.
First, if there are two paths between genes A and B after Gc is augmented with
edges from Gφ, a pathway with more ‘original’ edges from Gp and fewer ‘synthetic’
edges from Gφ might be considered to be more realistic. Second, if the first criterion
does not result in a decision, one can compute the minimum weight of all edges along
a path, and call that a ‘figure of merit’ associated with that path. Recall from the data-
processing inequality that the overall φ-mixing coefficient between the starting and
end nodes (genes) of a path cannot be larger than the minimum of all edge weights.
Thus, if there are two paths between genes A and B, we would choose the path
for which the minimum edge weight is larger. However, preliminary computational
experiments indicate that answering this ‘local’ question is not any simpler (in terms
of the computational complexity) than answering the global question of making Gc

strongly connected by adding edges from Gφ in order of decreasing weight. Again,
some case studies need to be undertaken to get a clearer understanding of how this
approach would work in practice.

4.2 Identification of Genomic Machines

As pointed out earlier, cancer is a highly individualized disease. It is not merely that
mutations in some part of the DNA cause cancer. It is also the case that mutations
in other parts of the DNA have a huge impact on the responsiveness to a therapeutic
regimen. Identifying which mutations cause/have caused cancer, which mutations
may affect the efficacy of therapy, and tailoring the therapy appropriately, is the
essence of personal medicine.

Out of the dozens of known instances, we cite just one by way of illustration [6].
The drug cetuximab is a monoclonal antibody directed against the epidermal growth
factor receptor (EGFR), one of the more popular gene targets for cancer therapy.
This drug is widely used as a therapy for advanced colorectal cancer, often after
other forms of chemotherapy have failed. In the paper [6], the authors analyzed 394
samples of colorectal cancer to see whether they contained a mutation of the gene
KRAS, which is often found to be mutated in various forms of cancer. Amongst the
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samples tested, 42.3 % had at least one mutation in KRAS, while the rest were ‘wild
type’, meaning that the gene is not mutated. To paraphrase the findings of [6],

• Amongst the patients who were given best supportive care alone (i.e., no cetux-
imab), there was no significant difference between the survival of patients who
had a KRAS mutation and those who did not.
• Amongst patients with wild-type KRAS tumors there was substantial improvement

after treatment with cetuximab.
• Amongst patients with a KRAS mutation, there was no significant benefit to treat-

ment with cetuximab.

To put it another way, a KRAS mutation does not affect survival prospects of a
colorectal cancer patient who is left untreated. However, if a patient has a KRAS
mutation, then cetuximab therapy is of no benefit, whereas a patient without a KRAS
mutation derives significant benefit from a cetuximab treatment.

In the paper cited, the authors had a very specific hypothesis in mind, namely that
KRAS mutations affected the response to cetuximab treatment. However, often the
role of the computational biologists is to generate such hypotheses using the available
data. This would entail examining the data at hand to examine not just one mutation
(in this case KRAS) but multiple mutations, and assessing the significance of each
possible combination of mutations. It is easy to see that if one examines k genes then
there are 2k possible states of mutations to be examined. With 400 patients (a large
number in such studies), if one wishes to have an average of, say, 10 samples per
state, then it is possible to examine at most k = �log2(400/10)� = 5 different genes
at a time. When one undertakes very large studies involving siRNA knockdowns for
example, it is not uncommon to have just a handful of samples, often in the single
digits.

Therefore the emphasis in this section is on methods to identify ‘genomic
machines’, that is, sets of genes that act in concert so as to achieve a specific func-
tion. Specifically, the situation studied is the following: First, suppose that a context-
specific gene interaction network (GIN) has been constructed from expression data.
Now suppose a specific perturbation is introduced, and the expression levels are
measured again. The perturbation can be in the form of applying a drug, or knocking
down one gene or set of genes by applying one or more siRNAs or a micro-RNA. By
studying the alterations in the expression levels of individual genes, it is possible to
say which genes are up-regulated (have their expression levels increased) and which
genes are down-regulated by the perturbation. But this ‘gene-centric’ approach can-
not uncover mechanisms whereby several genes, each of which show only relatively
small changes in their expression levels, act together to produce a significant overall
effect. Now one can ask: What does ‘working together’ mean? The word ‘together’
suggests adjacency in a biological pathway, and in the absence of detailed knowl-
edge of such pathways, adjacency in the reverse-engineered GIN. In this section
we modify an algorithm called ‘Netwalk’ from [7], and show how Netwalk can be
combined with the φ-xer algorithm.

Suppose G is a strongly connected directed graph that comes out of the φ-xer
algorithm. The effect of perturbations is modeled by constructing a random walk on
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the nodes of G. Let n denote the number of nodes in G and let N := {1, l . . . , n}. To
describe the random walk or Markov process {Xt} on N , it is necessary to specify
the transition probability pij defined as

pij = Pr{Xt+1 = j|Xt = i}, ∀i, j ∈ N .

The matrix P is row-stochastic in the sense that Pen = en, where e denotes
a column vector of all 1’s, and the subscript denotes its dimension. To specify
the matrix P, it is assumed that with each node i ∈ N there is an associated
‘weight’ wi. For example, if the graph G has been generated from expression data of
the form {xij, i ∈ N , j = 1, . . . , m}, then it is possible to take

wi = 1

m

m∑

j=1

xij,

that is, the average expression level of gene i. In the absence of any other reason, it
is also permissible to take all weights to be equal. Then the transition probability pij

is defined as

pij =
{

wj/si if j ∈ S(i),
0 if j �∈ S(i)

,

where S(i) denotes the set of successor nodes of i in G, and

si =
∑

j∈S(i)

wj.

The interpretation is that the probability of moving from node i to node j is pro-
portional to the weight of node j, and the division by si serves to normalize the
transitional probabilities so that they add up to one. It is easy to verify that the
matrix P is row-stochastic.

The above reasoning is reminiscent of the page rank algorithm [8]. In the original
page rank algorithm, the ‘raw’ probability defined above is modified by replacing P
by the matrix

P← (1− q)P + q

n
eneT

n =: P(m).

In the case of persons browsing the Internet, the rank one correction is justified by
the fact that people will often jump from the current web page to another page that is
not directly connected to the current page, with some small probability q. Moreover,
when they do jump, they are likely to jump to all other nodes with equal probability.
This is why the rank one matrix has the special form eneT

n . In the case of the Netwalk
algorithm of [7], there is a similar rank one correction term, to cater to the fact that
the initial graph G in that paper begin may not be strongly connected, and the rank
one correction is supposed to model undetected interactions. However, in the present
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case, the graph G that comes out of the φ-xer algorithm is guaranteed to be strongly
connected, so this correction term is not needed.

Once the matrix P is defined as above, one computes the stationary distribution π
such that π = πP. Note that, since the graph G is strongly connected, the matrix P
is irreducible, and therefore has a unique stationary distribution. One also computes
the ‘flow’ along each edge given by

μij = πipij = Pr{(Xt, Xt+1) = (i, j)}.

In the Markov chain literature, the vector μ is referred to as the doublet frequency.
The next step is to see which edges are seen to be more active as a result of the

perturbation. The effect of the perturbation can be modeled by a new weight vector
v = [vi, i ∈ N ]. The new weights can be, for example, the expression levels of all
genes after the perturbation. Let P(p) denote the state transition matrix of the Markov
chain that results from replacing the original weight vector w by v, and let π(p),μ(p)

denote the associated stationary distribution and flow vectors. Then a ‘figure of merit’
rij is defined for each edge as

rij = log
μ

(p)

ij

μij
. (4.1)

Thus rij > 0 if the flow along an edge is increased as a consequence of the perturbation
experiment. So we can speak of individual edges as being ‘up-regulated’ or ‘down-
regulated’ as a consequence of the perturbation. Finally, we can use the figure of
merit to identify genomic machines, as follows: If there is a set of genes such that
there is a pathway amongst them consisting of only up-regulated edges, or only
down-regulated edges, then that set of genes can be said to constitute a genomic
machine.

One of the advantages of the above approach is that it can be used even without any
perturbations, to compare a set of data to the consensus. Suppose, as often happens,
that one has a very small number of cell lines, all belonging to the same form of
cancer, and that gene expression studies have been carried out all of these. Then the
available data consists of a set of weights {wl

i, i = 1, . . . , n, l = 1, . . . , k}, where
n is the number of nodes in the graph, which is typically 20,000–30,000 genes or
gene products, and k is the number of cell lines, often of the order of a dozen or
so. The first step is to average the expression data among all cell lines to arrive at a
‘consensus’ set of weights for the overall expression study. This set of weights can be
used to compute an associated set of flows μij. Then for each index l corresponding
to a particular cell line, one can construct the flows μl

ij using the associated weight

vector {wl
i}. By constructing the figure of merit rij as in (4.1), one can further carry

out a longitudinal study within the cell line population.
From the above description, it is clear that the most time-consuming step in the

identification of genomic machines is the computation of the stationary distribution
π and the doublet frequency vector μ for several graphs, all of them having the
same topology but different sets of weights for the nodes. In the original version of
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the page rank algorithm, the stationary distribution π is computed using the ‘power
method.’ Since the modified matrix P(m) has all positive entries, the Perron theorem
implies that [P(m)]l → enπ as l → ∞. In other words, [P(m)]l converges to a rank
one matrix, whose rows are all equal. Consequently, for every probability vector v,
the iterated product vFl converges to π (since ven = 1). In the present case, the
matrix P corresponds to a strongly connected graph G and is therefore irreducible. If
in addition P is also acylic, meaning that the greatest common divisor of the lengths
of all cycles in G is one, then it will again be the case that Pl → enπ as l → ∞.
Therefore it is once again possible to compute π using the power method.

In the case of the worldwide web, n is around eight billion and growing rapidly,
so a direct implementation of the power method is not always practicable. The com-
puter science community has developed various parallel algorithms for doing this
computation. In contrast, in [9] a randomized approach is proposed for computingπ.
The method in [9] actually pays a lot of attention to things like ensuring synchrony
of updating, communication costs etc., but we ignore these factors here. Instead we
point out that, unlike in the case of the page rank algorithm and the worldwide web,
the precise values of the components of π and μ are not directly relevant in biology.
Rather the question of interest is whether the figure of merit rij defined in (4.1) is
positive or negative for a particular edge. Once the sign of rij is determined, its mag-
nitude is not necessarily of interest. Therefore a very germane problem in a biological
context is the development of randomized algorithms for approximate computation
of the stationary distribution and doublet frequency. The computation should be suf-
ficiently accurate to determine the sign of the figure of merit for each edge (and
whether its absolute value exceeds some threshold). But more is not needed, because
the objects of ultimate interest are paths cycles where the edges all have the same
sign, as explained earlier.

4.3 Separating Drivers from Passengers

As mentioned earlier, at present there is a massive public effort known as TCGA
(The Cancer Genome Atlas) directed at extracting all relevant molecular information
from every available cancerous tumor. The initial pilot studies focused on lung, brain
and ovarian cancers, but recently a study of colon and rectal cancer has also been
published [10]. In earlier discussions, we have focused almost exclusively on the
expression levels of various genes, and used that as a way to construct context-
specific networks. However, TCGA also includes much other information that could
be exploited in modeling, such as copy number variation, methylation, and mutations.
Mutations in specific genes lead to disruptions in the associated regulatory networks,
often referred to as ‘lesions’. Sequencing of tumorous tissues has thrown up and will
continue to throw up a bewildering variety of mutations, some of which cause cancer
(referred to as ‘drivers’ or ‘causal mutations’) while other mutations are caused
by cancer (referred to as ‘passengers’ or ‘coincidental mutations’). Various studies
conducted thus far show that the frequency with which a particular gene is found to be



76 4 Some Research Directions

mutated in cancerous tissue is not sufficient to distinguish the drivers of cancers from
the passengers. Some additional indications need to be used to discriminate further
amongst mutated genes. One possibility is to take all genes whose mutation rates are
above a relatively low threshold, say 1 % of all samples tested, and by superimposing
them against a context-specific genomic network, see whether there is a ‘genomic
machine’ consisting of one or more pathways amongst a subset of these genes.
Another possibility is to use the so-called developmental gene expression profile as a
guide to discriminating between drivers and passengers. The objective of this section
is to elaborate on this latter possibility.

We begin as usual with some background. The paper [11] presents a ‘landscape’
of human breast and colorectal cancer by identifying every gene that has been found
in a mutated state in 11 tumor tissues of colorectal and cancer and 11 tumor tissues
of breast cancer. This paper builds on an earlier work, Sjöblom et al. [12], in which
13,023 genes in 11 breast and 11 colorectal cancer tissues are analyzed. In [11],
A total of 18,191 genes analyzed, out of which 1,718 were found to have at least one
nonsilent mutation in either a breast or a colorectal cancer.1 Amongst these, a total
of 280 genes were identified as ‘CAN-genes’, that is, potentially drivers of cancer, if
they had ‘harbored at least one nonsynonymous mutation in both the Discovery and
Validation Screens and if the total number of mutations per nucleotide sequenced
exceeded a minimum threshold’ [11].

It is in principle possible to carry out a very large number of experiments to test
whether specific lesions are causal or not. However, in order to be definitive, it is
not enough to study individual lesions—one would also have to study all possible
combinations of lesions. Even if one were to focus only on the 280 CAN-genes, there
would be roughly 40,000 pairs of genes, and roughly 3.6 million triplets of genes,
and so on.

It is clearly impractical to carry out so many experiments. It would be preferable
to have some additional indications so as to prioritize the experiments roughly in
proportion to their likelihood of success. One way to achieve this is to begin with
a handful of experiments where the outcomes are known, some genes being likely
tumor-suppressors (‘hits’) while others are not likely to be so (‘misses’). Then some
form of pattern recognition or machine learning algorithms can be used to discrim-
inate between the known successes (‘hits’) and known failures (‘misses’). In the
last step, this discriminating function can then be extrapoloated to all CAN-genes
(or perhaps to an even larger set of genes). It must be emphasized that statistical or
pattern recognition methods are not a substitute for actual experimental verification.
However, by providing a high degree of separation between known hits and known
misses, such methods can assist in prioritizing future experiments by increasing the
likelihood of success.

Now we introduce the so-called developmental gene expression profile, and justify
why it may possibly have a role in distinguishing between drivers and passengers.
Development can be divided into seven stages, namely embroyd body, blastocyst,

1 A nonsilent mutation is a mutation that causes a change in the amino acid sequence (primary
structure) of the protein(s) produced by a gene.
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fetus, neonate, infant, juvenile, and adult. The database Unigene [13] provides, for
more than 100,000 genes as well as ESTs,2 their frequency of occurrence within the
tissues tested at each of the seven developmental stages. The Unigene database is far
more comprehensive than earlier efforts by individual research teams to determine
this type of information; see [14] for an example of this type of effort. For instance,
it has been known for some time that various genes belonging to the so-called RAS
family play an important role in cancer; see [15]. Out of the genes in this family, let
us focus on KRAS and HRAS for now. Their Unigene entries are as follows, in parts
per million:

Gene EB B F N I J A
KRAS 169 80 60 0 0 54 77
HRAS 28 16 19 0 0 0 24

Since the entries are in parts per million, it is clear that these genes are not prevalent
in any developmental stage. This raises the question as to how statistically significant
the zero entries are. However, a discussion of that topic would take us too far afield.

Our hypothesis is that the developmental gene expression profile can be used
to discriminate between drivers and passengers. This hypothesis is the outcome of
putting together the results of a very interesting series of biological experiments.
Specifically, in [16] it is shown that KRAS is essential for the development of the
mouse embryo—if the KRAS gene is knocked out, then the embryo does not survive.
However, as shown in [17], if the KRAS gene is not knocked out, but is instead
replaced by HRAS in the KRAS locus, then the resulting HRAS-knocked in mouse
embryo develops normally. Following along these lines, when HRAS was put into
the KRAS locus and lung cancer was induced in these mice, the HRAS in the KRAS
locus was found to be mutated, whereas the HRAS in the HRAS locus was not
mutated [18]. Since HRAS and KRAS express themselves at different stages of the
development of a mouse embryo, this observation suggests a possible relationship
between the expression profile of a gene as a function of developmental stage on the
one hand, and its role as a causal factor in cancer on the other hand.

To validate our hypothesis, we used another database called COSMIC (Catalogue
of Somatic Mutations in Cancer) [19], that gives the observed mutation frequency of
various genes in various forms of cancer. Again, COSMIC is a repository of mutation
data discovered by research teams all around the world, as in [20] for example. In
spite of this, since testing is expensive, not all of the roughly 30,000 known genes
have been tested for mutations in all available tissues. At the moment (though of
course this number keeps changing with time, albeit rather slowly), a total of 4,105
genes have been tested for mutations in any one of five forms of cancer, namely:
breast, kidney, large intestine (colon), lung, and pancreas. Therefore the remaining
genes were deemed not to have sufficient mutation data to permit the drawing of

2 ESTs (Expressed Sequence Tags) are parts of genes that were sequenced and catalogued before
whole genome sequencing became commonplace.
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meaningful conclusions. Out of these 4,105 genes from COSMIC, 3,672 had entries
in Unigene. These 3,672 seven-dimensional developmental gene expression profiles
were clustered using the popular k-means algorithm [21]. In this approach, the given
data vectors x1, . . . , xn ∈ R

7 where n = 3672 are clustered into k classes (k to be
specified by the user) in such a way that the vectors in each class are closer to the
centroid of its own class than to the centroids of all other classes. In symbols, if
x̄1, . . . , x̄k denote the centroids of the clusters, and N1, . . . ,Nk denote the classes
themselves, then

‖xi − x̄k‖ ≤ ‖xi − x̄j‖, ∀j �= k, ∀i ∈ Nk .

Computing the optimal clusters is an NP-hard problem, so most often one uses some
randomized algorithm. Also, the clusters themselves will be different depending on
which norm is used. We have found that we get better segregation if we use the
�1-norm than with the �2-norm.

Once the clusters are formed, the next step is to test whether any of these clusters is
‘enriched’ with known cancer drivers, compared to the remaining clusters. For deter-
mining this, it is necessary that at least a few of these 3,672 genes should be labeled,
so that the problem is one of supervised learning. Fortunately, a recently completed
work [22] provides a good starting point. In that paper, the authors began with the
280 CAN-genes identified by [11, 12], and identified 151 of these CAN-genes for
testing in an experimental test bed that roughly approximates the environment in
the colon.3 Each of these 151 genes was individually suppressed, and the effect was
observed. If the suppression of the gene resulting in cell proliferation, then the gene
was labeled as a ‘hit’ and was presumed to play some role in colorectal cancer (CRC).
If on the other hand the suppression of the gene did not result in cell proliferation,
then the gene was labeled as a ‘miss’. Out of the 151 genes tested, 65 turned out to
be hits while the remaining 86 were labeled as misses. As a point of comparison,
400 randomly chosen genes were also tested in the same way, and only 4 were hits.
Thus the fact that 65 out of 151 CAN-genes, roughly 45 %, are hits is clearly not due
to chance, because out of the randomly chosen genes only 1 % were hits.

At this stage it should be pointed out that there can in fact be some ambiguity
in the miss label. Even if the suppression of a particular gene did not result in cell
proliferation, it is nevertheless possible that, under a different set of experimental
conditions, the gene might have turned out to be a hit. From the standpoint of machine
learning, this can be thought of as a problem of learning and extrapolating from
labeled data, in which a positive label is 100 % accurate, whereas a negative label
is treated as being inaccurate with some small probability. Learning with randomly
mislabeled samples is a standard problem, and some results on this problem can be
found in [23].

With the aid of these labeled genes, we then tested to see whether any of the
clusters obtained by k-means was in fact enriched. Out of the 151 CAN genes tested,

3 As can be imagined, this is a gross over-simplification, and the interested reader is advised to read
the original paper for further details.
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only 143 had entries in Unigene, so these were the labeled genes out of the 3,672
genes that were clustered. When we chose k = 4, the following clusters resulted.

No Hits Misses Total
C1 27 47 1,807
C2 10 4 217
C3 15 16 1,016
C4 12 12 632
Total 64 79 3,672

From these results, it is apparent that Cluster No. 2 is significantly enriched for
hits. The statistical significance of this was computed in two different ways. First,
the null hypothesis was that the hits and misses are uniformly distributed into the
four clusters, with 74, 14, 31, and 24 elements respectively, and the likelihood of
there being 10 hits and 4 misses in Cluster No. 2 was computed under the assumption
that the two were distributed independently. Second, the null hypothesis was that the
hits are uniformly distributed into the four clusters with 1,807, 217, 2,016, and 632
elements, and the likelihood of there being 10 hits out of 217 elements in Cluster No.
2 was tested. In both tests, the null hypothesis was rejected at a 1 % level. In other
words, we could assert with confidence greater than 99 % that the enrichment of hits
in Cluster 2 is not due to chance. It is therefore plausible to conclude that several of
the 217 genes in Cluster No. 2 might play a significant role in colorectal cancer.

The above clustering analysis was carried out on just 3,672 genes, because we
made use of the COSMIC database for mutations in colorectal cancer. COSMIC is
a compendium of results reported voluntarily by various research teams around the
world. Therefore, in COSMIC, the majority of genes are not even tested for mutations
in colorectal cancer. In contrast, the TCGA team has recently published a thorough
analysis of colorectal cancer that includes, among other things, mutation data on a
great many genes [10]. Therefore it becomes feasible to repeat the above clustering
analysis on all genes that have been tested for mutations in [10], and for which
developmental expression profiles exist in the Unigene database; this number would
be significantly larger than 3,672. Naturally, this would result in a different set of
clusters, comprising far more genes. If it were to turn out that one of those (updated)
clusters is similarly enhanced by hits as reported in [22], then we could make a
prediction that the genes in that cluster play a significant role in colorectal cancer.
At that point, further progress would depend on finding a biologist collaborator who
would be willing to invest the effort to verify the predictions. Another direction for
future research would be to take the gene expression profiles reported in [10] to
reverse-engineer a GIN that is specific to colorectal cancer, overlay the mutation
data on top of this GIN, and see whether it is possible to identify, not just individual
genes, but collections of genes (genomic machines) that play a role in colorectal
cancer.



80 4 Some Research Directions

References

1. Intact: http://www.ebi.ac.uk/intact/
2. Mint: http://mint.bio.uniroma2.it/mint/welcome.do
3. Biogrid: http://thebiogrid.org/
4. String: http://thebiogrid.org/
5. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160

(1972)
6. Karapetis, C.S., et al.: K-ras mutations and benefit from cetuximabin advanced colorectal

cancer. N. Engl. J. Med. 359(17), 1757–1765 (2008)
7. Komurov, K., White, M.A., Ram, P.T.: Use of data-biased random walkson graphs for the

retrieval of context-specific networks from genomic data. PLoS Comput. Biol. 6(8), e1000889
(2010)

8. Brin, S., Page, L.: The anatomy of a large-scale hypertextual websearch engine. Comput. Netw.
ISDN Syst. 30(10), 107–117 (1998)

9. Ishii, H., Tempo, R.: Distributed randomized algorithms for the pagerank computation. IEEE
Trans. Autom. Control 55(9), 1897–2002 (2010)

10. The Cancer Genome Atlas Network: Comprehensive molecular characterization of human
colon and rectal cancer. Nature 487, 330–337 (2012)

11. Wood, L.D., et al.: The genomic landscapes of human breast and colorectal cancers. Science
318, 1108–1113 (2007)

12. Sjöblom, T., et al.: The consensus coding sequences of human breast and colorectal cancers.
Science 314, 268–274 (2006)

13. Unigene: http://www.ncbi.nlm.nih.gov/unigene
14. Son, C.G., et al.: Database of mrna gene expression profiles of multiple human organs. Genome

Res. 15, 443–450 (2005)
15. Bos, J.L.: ras oncogenes in human cancer: a review. Cancer Res. 49(17), 4682–4689 (1989)
16. Koera, K., et al.: K-ras is essential for the development of the mouse embryo. Oncogene 15(10),

1151–1159 (1997)
17. Potenza, N., et al.: Replacement of k-ras with h-ras supports normal embryonic development-

despite inducing cardiovascular pathology in adult mice. EMBO Rep. 6(5), 432–437 (2005)
18. To, M.D., et al.: Kras regulatory elements and exon 4a determine mutation specificity in lung

cancer. Nat. Genet. 40(10), 1240–1244 (2008)
19. COSMIC: http://www.sanger.ac.uk/genetics/cgp/cosmic
20. Greenman, C., et al.: Patterns of somatic mutation in human cancer genomes. Nature 132,

153–158 (2007)
21. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations.

In: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp.
281–297. University of California Press, Berkeley (1967)

22. Eskiocak, U., et al.: Functional parsing of driver mutations in the colorectal cancer genome
reveals numerous suppressors of anchorage-independent growth. Cancer Res. 71, 4359–4365
(2011)

23. Vidyasagar, M.: Learning and Generalization: With Applications to Neural Networks and
Control Systems. Springer, London (2003)

http://www.ebi.ac.uk/intact/
http://mint.bio.uniroma2.it/mint/welcome.do
http://thebiogrid.org/
http://thebiogrid.org/
http://www.ncbi.nlm.nih.gov/unigene
http://www.sanger.ac.uk/genetics/cgp/cosmic

	Computational Cancer Biology
	Preface
	Contents
	Editors’ Bios
	1 The Role of System Theory in Biology
	2 Analyzing Statistical Significance
	3 Inferring Gene Interaction Networks
	4 Some Research Directions



