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IX

This book is devoted to a new and rapidly developing field of science, which I call
here the nonlinear physics of DNA. This is the first monograph on the subject,
where various theoretical and experimental data on the nonlinear properties of DNA
published in different journals on mathematics, physics and biology are gathered,
systematized and analyzed. I will only point out a few reviews which preceded the
book: by Scott [1], Zhou and Zhang [2], Yakushevich [3], and Gaeta and coauthors
[4]. A collection of lectures given by participants at the International workshop in
Les Hauches (France, 1994) [5], and selected sections in the monographs of Davydov
[6] and Yakushevich [7] can also be mentioned.

Three events can be considered as having stimulated the appearance and rapid
development of nonlinear DNA science. The first was the success of nonlinear
mathematics and its application to many physical phenomena [8–10]. The second
was the emergence of new results in studies of the dynamics of biopolymers leading
to an understanding of the important role of the dynamics in the biological func-
tioning of biopolymers [11–13]. The third event was the publication of a series of
works of Davydov, where for the first time the achievements of nonlinear mathe-
matics were applied to biology, and the hypothesis of the occurrence of solitons in
biopolymers (namely, in alpha-helical proteins) was suggested [14].

The study of the nonlinear physics of DNA began in 1980 when Englander et al.
[15] published the article :Nature of the open state in long polynucleotide double
helices: possibility of soliton excitations’. This was the first time the concept of non-
linear conformational excitations (or DNA solitons) imitating the local opening of
base pairs was introduced. In the article the first nonlinear Hamiltonian of DNA
was presented and this gave a powerful impulse for theoretical investigations. A
large group of authors, including Yomosa [16, 17], Takeno and Homma [18, 19],
Krumhansl and coauthors [20, 21], Fedyanin and coauthors [22–24], Yakushevich
[25–27], Zhang [28], Prohofsky [29], Muto and coauthors [30–32], van Zandt [33],
Peyrard [34, 35], Dauxois [36], Gaeta [37, 38], Salerno [39], Bogolubskaya and Bogo-
lubsky [40], Hai [41], Gonzalez and Martin-Landrove [42] made contributions to the
development of this field by improving the model Hamiltonian and its dynamical
parameters, by investigating corresponding nonlinear differential equations and
their soliton-like solutions, by consideration of statistical properties of DNA solitons
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and calculation of corresponding correlation functions. The results obtained by
them formed a theoretical basis for the nonlinear physics of DNA.

The experimental basis of nonlinear DNA physics was formed by the results of
experimental investigations on DNA dynamics and interpretations, some of them in
the framework of the nonlinear concept. The most important results were obtained
by Englander et al. [15] on hydrogen–tritium exchange in DNA, by Webb and Booth
[43], Swicord and coauthors [44–46] on resonant microwave absorption (interpreta-
tions were made by Muto and coauthors [30] and by Zhang [47]), and by Baverstock
and Cundall [48] on neutron scattering by DNA. All these results, however, admitted
alternative interpretations (see the discussion in Ref. [3]), and only after publication
of the work of Selvin et al. [49], where the torsional rigidity of positively and nega-
tively supercoiled DNA was measured, was the reliable experimental basis for theo-
retical predictions given.

Besides theoretical results and experimental data an important contribution to
the formation of the nonlinear physics of DNA was made by numerous applications
where the nonlinear concept was used to explain the dynamical mechanisms of
DNA function such as transitions between different DNA forms [50–52], long-range
effects [53–55], regulation of transcription [56], DNA denaturation [34], protein syn-
thesis (namely, insulin production) [57], and carcinogenesis [58].

Taking into account the interests of a wide range of readers who are mostly physi-
cists, I began the monograph with a brief excursion into molecular biology, and pre-
sented in the first three chapters the main elements of the DNA structure, dynamics
and function.

To enable comparison of linear and nonlinear approximations I have included a
chapter devoted to the linear theory of DNA and described briefly therein the main
results of theoretical and experimental studies in this field.

The nonlinear theory of DNA is presented in the monograph in detail. The main
ideal and non-ideal nonlinear models are described in the framework of the
approach based on the hierarchy of the DNA models. To enable comparison of the
results of theory and of experiment, and especially of experiments on scattering by
DNA, the chapter devoted to the statistics of nonlinear excitations in DNA is also
included. In the final two chapters several examples of interpretations of experimen-
tal data on DNA dynamics and function in terms of the nonlinear concept are pre-
sented.

The material of the book is given in a fairly complete form. However, the reader is
assumed to be familiar with the elements of physical theory, including classical
mechanics and statistical physics.

In this monograph I have tried to give a description of the main theoretical and
experimental data on the nonlinear physics of DNA.

I have tried to organize the material in such a way as to give a complete picture
which is why the chapters on DNA structure, dynamics and functioning are
included. But I should note that because of the very young ¢age¢ of this field of
science, many gaps still remain. As a consequence, some of the chapters which I
think should be traditionally included in monographs on physics are absent. For
example, I could not present any data on nonlinear quantum mechanical properties
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of DNA or on DNA nonlinear electrical properties because these questions have not
been studied at all. One more example is the interaction of DNA with the environ-
ment. I could present here only rather limited information about this because until
now only a few very simple approaches have been proposed.

In spite of the absence of some chapters, I decided, for two reasons, to conserve
the rather general form of the title of the book. First, I am sure that these problems
will be actively developed in the very near future and many gaps will disappear, and
secondly I hope to involve physicists in this very promising field of science.

The most promising directions I think are associated with the study of inhomoge-
neous nonlinear models of DNA, because this will lead to new interesting relations
between the physical nonlinear properties of DNA and its biological functioning.
Another very promising direction is associated with the study of the interaction of
DNA and external fields. Both studies can lead to the discovery of new mechanisms
of regulation of fundamental biological processes such as transcription or replica-
tion. So, in future we shall have a chance to ¢bridge¢ the nonlinear physics of DNA
and medicine.

Many sections of the book are part of a course of lectures delivered to students of
the Physical and Biological Departments of the Moscow State University and Push-
chino State University (Russia). Selected chapters of the book were discussed widely
during my travel with lectures at the Universities of Durham, Loughborough, War-
wick, Surrey (England), at the Ecole Normale Superieure de Lyon (France), at the
Universities of Salerno, Roma, Firenze and the Institute of Health (Italy).

I would like to express my gratitude to my colleagues Kamzolova S.G., Karnau-
khov V.N., Komarov V.M., Sidorova S.G, Kun¢eva L.F. and Mitkovskaya L.I. for their
constant support and help in preparing the manuscript for publication. I would like
also to thank my parents for the warmth and patience they have shown me during
the whole period of writing the monograph.
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I am very much obliged to Dr. Michael Baer, a Senior Publishing Editor of Wiley, for
the invitation to prepare the second edition of my book. This gave me an opportu-
nity to add new interesting results that have been intensively discussed in recent
years [59–65].

In the second edition of the book I have included new data on the distribution of
electrostatic potential around DNA, on charge transfer along the double helix, on
computer modeling propagation of nonlinear conformational waves along the DNA
and the effects of thermal bath, random and real (native) sequence of bases and
asymmetry on the propagation. I have also included a short description of supercoil-
ing DNA as one of the possible types of internal motion in DNA and new impressive
data on single molecule experiments which were the theme of a special workshop of
CECAM in Lyon (France) in 2001 [66].

Moscow, October 2003 Ludmila V. Yakushevich
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The author dedicates this book to the memory of the pioneer in nonlinear biophy-
sics, Professor Alexandr Sergeevich Davydov.

Dedication





1

DNA is one of the most interesting and mysterious biological molecules. It belongs
to the class of biopolymers and has a very important biological function consisting
of the ability to conserve and transfer genetic information. In this book, we shall try
to look at the DNA molecule from the physical point of view, that is we shall con-
sider it as a complex dynamical system consisting of many atoms and having a
quasi-one-dimensional structure with unusual symmetry, many degrees of free-
doms, many types of internal motions, and specific distribution of internal forces.
In this chapter we describe briefly the main features of the DNA structure.

1.1
Chemical Composition and Primary Structure

Deoxyribonucleic acid or DNA is assembled from two linear polymers. The basic
formula of each of the polymers is now well established. It consists of monomeric
units called nucleotides (Figure 1.1). Each nucleotide consists of three components:
sugar (furanose-derivative deoxyribose), heterocyclic (5-carbonic) base and phos-
phate (PO4

–). The bases are of four different types. Two of them, adenine (A) and
guanine (G), are purines, and the other two, thymine (T) and cytosine (C), are pyr-
imidines (Figure 1.2). The sugar is connected by a beta-glycoside bond to one of the
four bases and forms one of four natural nucleosides: adenosine, guanosine, cyti-
dine and thymidine. The nucleotide is formed by phosphorylation of the 3¢- and
5¢-hydroxyl groups of the sugar which is a component of the nucleoside.
Each of the polymers described above (they are often named 0strand’) is characterized

by its polarity (there is a 3¢-end and a 5¢-end) and the polarity-specified sequence of
the bases borne by consecutive deoxyriboses, which is the carrier of the genetic
information. Two strands associate to form DNA, the strands being arranged so that

1. they run parallel to each other but have opposite polarities (Figure 1.3);
2. the bases are inside and connected to one another by weak hydrogen bonds;
3. two bases connected by hydrogen bonds form the base pair and according to

the rule of Chargaff [67] there are only two types of base pairs in DNA: A-T
pairs and G-C pairs (Figure 1.4).

1
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Figure 1.1 A fragment of polynucleotide chain. The direction of
the chain is shown by the arrow.

Figure 1.2 DNA bases: (a) adenine, (b) guanine, (c) thymine
and (d) cytosine.

1 DNA Structure
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Figure 1.3 Two strands of the DNA molecule. Hydrogen bonds
between bases A, T, G and C are shown by dotted lines.

Figure 1.4 Base-pairs: (a) A-T and (b) G-C. Hydrogen atoms
which are substituted in DNA for carbon atoms of sugar rings
are marked by asterisks.

1.1 Chemical Composition and Primary Structure
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Thus, the DNA molecule has a quasi-regular chemical structure. The regular part
(backbone) is formed by regularly alternating sugar and phosphate groups, joined
together in regular, 3¢, 5¢-phosphate-di-ester linkages, and the irregular part (side
groups) is formed by bases bonding to sugar groups and forming a sequence along
the chain. It is this sequence that determines the so-called primary structure of
DNA. The sequence of bases in the polynucleotide chain is unique for every organ-
ism, and changes in the sequence can lead to crucial changes in the properties of
the organisms and in its function.

1.2
Spatial Geometry and Secondary Structure

The way in which two polynucleotide chains are held together, i.e. the principles of
formation of the secondary structure of the DNA molecule, was found by Watson
and Crick [68, 69], Franklin and Gosling [70], and Wilkins et al. [71] in 1953. The
main features of the structure can be formulated briefly in the following way.

1. Two polynucleotide chains are wound around a common axis to produce a
double helix (Figure 1.5).

2. The diameter of the helix is 20 F. The adjacent bases are 3.4 F apart along
the axis and rotated 36G with respect to one another. So, we have 10 nucleo-
tides per one full turn of the helix which corresponds to a length of 3.4 F.

3. Bases are located inside and phosphates and sugars outside the double helix.
4. The two polynucleotide chains are held together by hydrogen bonds between

the bases, as shown schematically in Figure 1.3. The bases are joined togeth-
er in pairs (Figure 1.4), a single base from one chain being hydrogen-bonded
to a single base from the other.

5. Only certain pairs of bases are possible: one member of the pair must be a
purine and the other a pyrimidine (Figure 1.4). Due to specific pairing, poly-
nucleotide chains complement each other.

1 DNA Structure

Figure 1.5 Sketch of double
helix. The sugar–phosphate
backbone is shown by rib-
bons. The bases are shown by
short transverse rods.
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This 0classical’ description of the secondary DNA structure was later added to and
specified [72]. Moreover, several alternative DNA structures have been proposed and
widely discussed [73–76].
In the next two sections we shall consider two important problems which can be

considered as a further development of the theme: the forces stabilizing the second-
ary structure and the polymorphism of DNA.

1.3
Forces Stabilizing the Secondary DNA Structure

To understand the physical properties of the DNA molecule it is very important to
have a clear idea about the distribution of the interactions between the main atomic
groups. The most important interactions are those stabilizing the secondary DNA
structure: the so-called horizontal or hydrogen interactions between bases in pairs,
vertical or stacking interactions between neighbor bases along the DNA axis, and
long-range intra- and inter-backbone forces.

1.3.1
Hydrogen Interactions

In general, hydrogen interactions have the form

X–H ...Y, (1-1)

where the atom of hydrogen H is connected to two electronegative atoms X and Y.
The strength of the bond, and hence its length, depends on the charge of the atoms
X, H, and Y.
In the mean plane of a DNA base pair, protons are exchanged between the NH

donor groups of one base and the N or H acceptors of the other. So, in DNA the
hydrogen bonds are of two types

N–H ... N, (1-2)

and

N–H ... O. (1-3)

The A-T pair contains two hydrogen bonds and the G-C pair contains three hydro-
gen bonds (Figure 1.4). Although, these hydrogen bonds are weak and not highly
directional [77], they contribute to the stability of the Watson–Crick-type pairing, and
hence have a crucial role in coding the genetic information, its transcription and
replication.
Note, however, that in addition to the Watson–Crick pairing described above there

is the Hoogsteen pairing: in the former, the H-bonds involve atoms or groups borne

1.3 Forces Stabilizing the Secondary DNA Structure
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by six-membered rings of the purines only, whereas in the latter, N7 of the five-
membered ring can be an acceptor.
The nature of hydrogen interactions is mainly (~80%) electrostatic. The results of

quantum-chemical calculations show that three types of forces: dispersion, polariza-
tion and electrostatic forces, contribute to them. Calculations of the total energy of
the hydrogen bonds give the following results for an A-T pair [78]

EA-T = 7.00 kcal mol
–1; (1-4)

and for a G-C pair

EG-C = 16.79 kcal mol
–1. (1-5)

Let us now compare these energies with those of covalent bonds. Usually, the en-
ergy of hydrogen bonds is 20 or 30 times weaker than the energy of covalent bonds.
As an example confirming this statement, we present here the energies of the cova-
lent bonds C–C and C–H [79]

EC-C = 83.1 kcal mol
–1; EC-H = 98.8 kcal mol–1; (1-6)

and the energy of the O–H...O bond [80]

EO-H...O = 3–6 kcal mol
–1, (1-7)

so, the difference between them is rather large.
There is also a marked difference in the rigidities of the bonds. To illustrate this,

we can compare the energy, e, which is required to lengthen the bonds by 0.1 F. For
covalent bonds we have [80]

eC-C = 3.25 kcal mol
–1; eC-H = 3.60 kcal mol–1; (1-8)

and for the O–H...O bond we have [80]

eO-H...O = 0.1 kcal mol
–1. (1-9)

So, the covalent bonds are much more rigid. On the other hand, intrabase paired
H-bonds are easily disrupted at physiological temperatures by a variety of chemical
agents and physical parameters at concentrations and values commonly encoun-
tered in a living system.

1.3.2
Stacking Interactions

Stacking interactions are the other type of forces which stabilize the DNA structure
[81, 82]. They hold one base over the next one, and form a stack of bases. According

1 DNA Structure
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to quantum-chemical analysis, stacking interactions are contributed to by dipole–
dipole interactions, p-electron systems, London’s dispersion forces and (in water so-
lutions) hydrophobic forces. These forces result in a complex interaction pattern be-
tween overlapping base pairs, with a minimum energy distance close to 3.4 F in the
normal DNA double helix.
Like H-bonds, base pair stacking depends on temperature, the state of protona-

tion of the bases, the local dielectric constant and other parameters external to the
nucleic acid, summarized as 0environmental’ parameters.
Stacking interactions depend on the sequence of bases [83–87]. The results of

quantum-chemical calculations show that the total energies of stacking interactions
between different types of base pairs are [88]

EC-G = 14.59 kcal mol
–1; ET-A = 6.57 kcal mol

–1;
G-C A-T

EC-G = ET-A = 10.51 kcal mol
–1; EC-G = EA-T = 6.57 kcal mol

–1;
A-T G-C T-A C-G

EA-T = EC-G = 9.81 kcal mol
–1; EG-C = ET-A = 6.78 kcal mol

–1; (1-10)
G-C T-C A-T C-G

ET-A = 9.69 kcal mol
–1; EA-T = ET-A = 5.37 kcal mol

–1;
C-G A-T T-A

EG-C = EC-G = 8.26 kcal mol
–1; EA-T = 3.82 kcal mol

–1.
G-C C-G T-A

So, the stacks with a high concentration of G-C pairs are more stable than those
with a high concentration of A-T pairs. If we now compare the energies of stacking
interactions with those of hydrogen bonds we note that they are of the same order of
value. If we then compare the energies of stacking interactions with those of cova-
lent bonds we note that the stacking interactions are weaker.

1.3.3
Long-range Intra- and Inter-backbone Forces

Long-range intra- and inter-backbone forces depend mainly on the presence of the
phosphate groups. The distance between the phosphates on the two strands is about
20 F, hence their interactions are weak. In contrast, along the same strand, the dis-
tance between phosphates can be about 5 F, meaning that mutual repulsion could
be rather strong. But in its double-helical native form, DNA must be kept in a medi-
um having a minimal ionic strength. The phosphate groups are then shielded by
the counter-ions supplied by the medium. The shielding is very stable; as the NaCl
concentration of the media is changed from 0.5 mM to 0.5 M, the number of Na+

ions shielding the phosphates remains constant, since, on average, 0.88Na+ shield
each phosphate group of the backbones, throughout this ion-concentration range.
Again, environmental parameters in the physiological range can alter the shielding
(type of counter-ion element and valency, pH) and structural transitions of the dou-
ble helix can significantly modify the inter-phosphate distances.

1.3 Forces Stabilizing the Secondary DNA Structure
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1.3.
Electrostatic Field of DNA

The distribution of electrostatic potential around the molecule is an important physi-
cal characteristic of DNA. It is especially important in studies of condensed counter-
ions around DNA [89–93], as well as in studies of DNA–DNA [94, 95] and protein–
DNA [96, 97] interactions. Clustering of positive and negative charges on the macro-
molecule surfaces determines not only their attraction or repulsion but also their
proper orientation and positioning with respect to each other which, in turn, may
trigger mutual conformational fit leading to formation of more extensive contacts.
An ab initio calculation of the electrostatic potential still remains an intractable

problem. For many years even approximate modeling of the electrostatic field
around DNA has been hampered by the difficulty in calculating the electrostatic
potentials for long DNA fragments (> 100 base pairs). However, in recent years a
simple method of calculation of electrostatic potential distribution for long (~ 1000
base pairs) double chains has been proposed [98,99], and investigators have come
close to the solution of the problem of finding the relationship between the nucleo-
tide sequence and the electrostatic potential distribution [100].

1.4
Polymorphism

As we mentioned before, the DNA molecule has a double helix structure. In general,
any helix can be described by the following parameters: (1) the pitch P which is
determined by the formula

P = nh, (1-11)

where n is the number of nucleotides per one turn and h is the distance between
the adjacent nucleotides along the helix axis; (2) the angle of helix rotation which is
determined by the formula

t = 360�/n. (1-12)

In addition, every helix is characterized by the direction of the helix rotation, so
the helixes can be right-handed and left-handed.
The DNA helix described above is right-handed, and its parameters are

n= 10, h= 3.4 F. (1-13)

So, for the helix pitch we have

P = 34 F, (1-14)

1 DNA Structure

4
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and for the angle of helix rotation we have

t = 36G. (1-15)

In addition to the helix parameters described above, the double helix can be char-
acterized by the handedness and the depth of its grooves. Looking down the helix
axis in either direction, in a right (or left)-handed helix each strand winds clockwise
(or counter-clockwise) as it moves away from the observer. The helix has small and
large grooves, found respectively on the side of the base-pair turned towards the
small or large angle made between the two C1–¢N (base) bonds of the base-pair.
The double helix parameters described above are not, however, constant. As was

shown by X-ray data [101, 102] they depend on the ambient relative humidity, the
cation species present and the amount of retained salt. So, one can expect that many
different types (or forms) of the stable DNA double helix structures are possible.
They have been classified into three main families: the B family, with base-pairs
almost perpendicular to the helix axis, a shallow wide groove and a deep small
groove; the A family having a deep large groove, a shallow minor groove and base-
pairs markedly non-perpendicular to the helix axis; and the Z family having a left-
handed helix, in contrast to the right-handed helices of the A and B families. The
structure of the DNA double helix described in the previous section has the B-form
or the B-DNA. It is right-handed. Examples of the stable right-handed B-, A-forms
and left-handed Z-form are shown in Figure 1.6. In addition the C-, D-forms of the
double-strand DNA and the forms consisting of three strands (for example, poly(dA)·
2poly(dT)) are known. Structural parameters of all these forms are described in
detail in Ref. [72]; we note here only that the existence of different DNA forms and
the ability of the molecule to transfer from one form to another when the environ-
mental parameters are changed contribute some of the most important evidence for
the high internal mobility of the DNA molecule.

Figure 1.6 Skeleton drawing of (a) B-, (b) A- and (c) Z-DNA.

1.4 Polymorphism



10

1.5
Tertiary Structure

Above we described the structure of a linear double strand DNA (in solution or in
fiber) which is in a relaxed state. Due to its conformational flexibility, the DNA dou-
ble helix can form various tertiary structures. We describe here two of them. The
first is a supercoil, and the second illustrates how the molecule can be organized in
living organisms.

1.5.1
Superhelicity

When in the relaxed state the DNA molecule is usually inactive or weakly active in
the processes of replication, transcription or recombination. To provide the normal
velocity of the processes, the DNA molecule should be under some stress or, in
other words, it should be in the superhelical state [103–107]. It is known that most
DNAs so far have been observed to form supercoils, at least in one stage of their
biological life cycle. A superhelical state can be created by joining the 3¢- and 5¢-ends
of the molecule and forming a coil, or by simple fixation of the ends, or by restric-
tion of the rotations of the ends. But if we form a coil by using the usual relaxed B-
form DNA we do not obtain a superhelical DNA. To obtain it we need to first slightly
rewind the double helix or unwind it, and only after that form a coil by connecting
the 3¢- and 5¢-ends. In the first case we obtain a so-called positive superhelicity and
in the second case a negative one.
It is assumed that there are two reasons why the superhelicity is required: (1) to

make the conformation needed to pack the DNA molecule or to make it more active,
and (2) for energy accumulation [108].
Mathematical models of superhelical DNA have been developed in the papers of

Frank-Kamenetskii et al. [109–113], Schlick [114] and Benham [115–117].

1.5.2
Structural Organization in Cells

The length of the DNA molecule of different organisms varies from several lm to
several cm. It can be localized in viruses, in procaryote cells and in the nucleus of
eycaryote cells. The sizes of some different DNA molecules are given in Table 1.1. In
human cells there are 46 chromosomes and each of them contains one double-chain
DNA molecule with the length being approximately equal to 4 cm. If we connected
all these DNA molecules with one another, we could obtain a double chain with
length about 2 m. With the help of small proteins named histones, this long double
chain is packed into a nucleus having diameter 0.5 lm. There are four types of his-
tones and they form a globular octamer consisting of eight histones (with two his-
tones of each type). Fragments of DNA molecule with length about 146 base pairs
are wound around this octamer. This structure is called a nucleosoma core. There is
also one additional histon H1 which strengthens the core, and the whole structure is

1 DNA Structure
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called a nucleosome. So, the DNA molecule in a cell looks like a chain of nucleo-
somes connected to one another by fragments of DNA of length 40–100 base pairs.
This structure is called chromatine. The chain of nucleosomes has a solenoidal form
with 3–6 nucleosomes per turn, and this solenoid forms a more condensed and heli-
cal structure which is known as a chromosome. The human chromosomes contain
double-chain DNA with total length about 2 m.

Table 1.1 Sizes of different DNA molecules.

Organism Number of Bases Length (2) Diameter (2)

Viruses:
Polyoma or SV-40
k-phage
T2-phage
Viruses of cow-pox

5.1 R 103

4.86 R 104

1.66 R 105

1.9 R 105

1.7 R 104

1.7 R 105

5.6 R 105

6.5 R 105

20
20
20
20

Bacteria:
Mycoplasma
E.coli

7.6 R 105

4.0 R 106
2.6 R 106

1.36 R 106
20
20

Eukaryotes:
Yeast
Drosophila
Human

1.35 R 107

1.65 R 108

2.9 R 109

4.6 R 107

5.6 R 108

9.9 R 109

20
20
20

1.6
Approximate Models of DNA Structure

As is seen from the previous sections, the structure of the DNA molecule is rather
complex, but in many cases it is sufficient and more convenient to use some simpli-
fied (approximate) versions of the structure. Let us consider in this section the prob-
lem of constructing approximate structural models of DNA.

1.6.1
General Comments

When constructing approximate models it is usually assumed that they must not
include all details of the DNA structure but only the most important (or dominant)
structural properties of DNA. What are these properties?

1. Reading the previous sections one can notice at least two general characteris-
tics of the DNA structure. The first is that the DNA molecule consists of long
chains of atoms. The second is that these chains have nearly regular struc-
ture, that is the DNA molecule has a 0skeleton’ (sugar-phosphate chain) with
an accurately repeating pattern of atoms along the chain. Due to these prop-
erties DNA is to a certain extent similar to the one-dimensional periodical
structure which is known in physics as a quasi-one-dimensional crystal. This

1.6 Approximate Models of DNA Structure
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is why Charles Bunn gave to biomolecules of this type the poetical name:
0crystals of chains of life’ [118].

2. However, in some aspects the DNA molecule is more similar to a polymer
than to a crystal because, in addition to the properties mentioned above,
DNA is not a rigid system, but a flexible one. So, if we want to construct a
more accurate model, we must take into account the flexible nature of DNA,
that is its ability to bend, to twist, to form superstructures and so on.

3. Besides a 0skeleton’ with a regular alteration of atoms or atomic groups, DNA
has elements of irregular structure. So, if we want to improve the model, we
must take into account the irregularity of the base sequence. We can consider
this irregularity as a small disturbance of the regular pattern of the 0skeleton’
and use perturbation theory for the mathematical treatment.

And so on. The list of properties could be continued by inserting more and more
details of the internal structure. When constructing the model we can restrict our-
selves by taking into account only the first property in the list, or the first two proper-
ties, and so on. Thus, many different approximate models may be constructed
describing DNA with different degrees of accuracy. The choice of the approximation
depends on the conditions and the aim of the investigation. For example, if we are
interested in the mobility of the DNA molecule as a whole in the solution, or the
penetration of the molecule through some channel, or the mechanism of forming a
superhelical DNA structure, it is sufficient to consider the DNA molecule as an elas-
tic filament. If, however, we are interested in the problem of protein–DNA recogni-
tion or transcription we need to take into account some more details of the internal
structure such as the helicity or the inhomogeneity due to the sequence of bases.

1.6.2
Hierarchy of Structural Models

To describe different structural models of the DNA molecule it is convenient to use
another approach. In this approach the DNA structural models are arranged in
order of increasing complexity. In this case the models look like the elements of a
hierarchy. Let us describe the main possible levels of the hierarchy.

1. Models of the first level of the hierarchy. The simplest structural model of DNA,
which opens the hierarchy, is prompted by microphotos of the molecule
where the DNA molecule looks like a thin elastic filament (Figure 1.7). So it
can be suggested that the uniform elastic rod with a circular section (Figure
1.8a) can be considered as the simplest structural model of a fragment of
DNA [119].

The discrete analog of the rod-like model consists of a chain of coupled disks (Fig-
ure 1.8b), each disk imitating a very small piece of the DNA molecule, which con-
tains one base pair.

1 DNA Structure
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Figure 1.7 A schematic picture of a thin elastic filament.

Figure 1.8 (a) The model of an elastic rod and (b) its discrete analog.

2. Models of the second level of the hierarchy. Some more complex structural mod-
els of the DNA molecule take into account that the molecule consists of two
polynucleotide chains interacting with one another via hydrogen bonds and
being wound around each other to produce the double helix. In this approx-
imation, the internal structure of the chains is neglected, and each of the
chains is simulated by an elastic uniform rod (in the continuous case) or by a
chain of coupled disks (in the discrete case). So, the complete model consists
of two elastic rods (or two chains of coupled disks) weakly interacting with
one another and wound around each other as shown in Figure 1.9. In the
discrete case each of the disks imitates a very small piece of one of two poly-
nucleotide chains, which contains only one base.

1.6 Approximate Models of DNA Structure



Figure 1.9 (a) A helical double rod-like model and (b) its dis-
crete analog

To simplify calculations, a simpler version of the models described above is widely
used. It consists of two straight uniform elastic rods weakly interacting with one
another (Figure 1.10) and at least the discrete analog of the model has the form of
two straight chains with disks connected to one another by longitudinal and trans-
verse springs [26].

Figure 1.10 (a) A straight double rod-like model and (b) its dis-
crete analog.

3. Models of the third level of the hierarchy. In the structural models of this group
additional details of the internal DNA structure are taken into account. Every
polynucleotide chain is considered here as consisting of mutually rigidly

1 DNA Structure14



bound atomic subgroups: the bases, the sugar rings and the phosphate–car-
bon pieces, with relatively weak, flexible bonds connecting them to each
other [120]. A simple straight version of the model is shown in Figure 1.11.

Figure 1.11 The third-level model of DNA.

4. Models of the fourth level of the hierarchy. The fourth group of the structural
models comprises the so-called lattice models where a finite group of atoms
(named nucleotide) forms a 0unit cell’ quasi-periodically repeating along the
DNA molecule [121]. A simple version of the lattice models is shown in Fig-
ure 1.12.

Figure 1.12 (a) One-dimensional lattice (b) with a unit cell (a
pair of nucleotides) containing A-T base-pair. For simplicity, the
screw symmetry of the model is not shown here.

5. Models of the fifth level of the hierarchy. The fifth group of the structural mod-
els is formed by the most accurate structural models taking into account the
positions of every atom of the molecule (Figure 1.13).

1.6 Approximate Models of DNA Structure 15



Figure 1.13 The most accurate model of the internal DNA
structure.

1.7
Experimental Methods of Studying DNA Structure

To study the DNA molecule structure different mathematical, physical, chemical
and biochemical methods and combinations of them are used. The history of the
discovery of the structure of DNA gives an impressive illustration of this statement.
The main events in the discovery were the following:
The suggestion that DNA exists in the form of thin rather rigid fibers approxi-

mately 20 F in diameter and many thousands of F in length was made after physi-
cal-chemical studies, involving sedimentation diffusion and light-scattering mea-
surements [122,123]. These indirect inferences have been confirmed by electronic
microphotographs [124,125].

1 DNA Structure16



The source of more detailed information about the configuration of atoms within
the fibers was X-ray analysis. In 1951 Furberg published the first data on the crystal
structure of cytidine [126]. His results were obtained by the X-ray method. The maps
of the electron density were calculated at that time by hand. Now there are powerful
computer calculation methods which, together with the spectroscopy data, enable
the structures of different DNA fragments at the atomic level to be obtained.
Further investigations of the DNA structure were continued by Dekker, Michel-

son and Todd who showed by chemical methods that the linear polymer molecule of
DNA consists of nucleotides, connected to one another by 3¢,5¢-phosphodietheric
bonds [127]. Additional information was given in the work of Chargaff and coau-
thors [67] where it was shown that in different DNA molecules the relations A/T and
G/C are equal to 1.
X-ray study of DNA fibers by Austbury [128] showed that the base pairs A-T or

G-C are packed one over another and that the distance between them is equal to
3.4 F. From the data on electrochemical titration Gulland [129] concluded that the
bases in DNA are connected to one another by hydrogen bonds. Finally, additional
X-ray data, obtained by Wilkins [101], showed that DNA has the helical structure
which is able to change its conformation when environmental parameters such as
hydration, temperature, or concentration of certain ions are changed.
All this information was gathered and analyzed by Watson and Crick [68,69]. As a

result they proposed the double helical model of DNA, which explained all previous
experimental data and, in addition, gave a simple explanation of the main features
of DNA function. This discovery gave an impulse to intensive development of bio-
chemistry, molecular biology and genetics. It was honored with the Nobel prize in
1962 and is described in detail in Watson’s book The Double Helix [130].
Besides the methods mentioned above, many other methods, including well

known physical methods such as NMR, infrared, Raman and neutron spectroscopy
are now used to obtain detailed information about the DNA structure, DNA poly-
morphism, the dependence of the structure on the sequence of bases, the surround-
ings and so on. This information is also collected in the databases whose Internet
addresses are described in a special issue of the journal Nucleic Acids Research [131].

1.7 Experimental Methods of Studying DNA Structure 17
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In Chapter 1, when describing the main features of the structure of the DNA mole-
cule, we considered the molecule as being static. This approach has been widely
used in the study of the DNA structure but, in reality, the DNA molecule is usually
immersed in some thermal bath, and its structural elements such as individual
atoms, groups of atoms (bases, sugar rings, phosphates), fragments of the double
chain including several base pairs, are in constant motion, and this motion plays an
important role in the function of the molecule. The thermal bath is not the only
source of the DNA internal mobility. Collisions with molecules of the solution
which surrounds DNA, local interactions with proteins, drugs or with some other
ligands also lead to internal mobility. Thus, it is more correct to consider the DNA
molecule as a dynamical system than as a static one.

In this chapter we describe the main features of the DNA molecule as a dynami-
cal system.

2.1
General Picture of the DNA Internal Mobility

Because the structure of the DNA molecule is rather complex, one can expect that
the general picture of its internal mobility will also be complex. In the first approx-
imation, it can be described, however, by a few simple characteristics: the timescale,
the amplitudes of the internal motions and the energies or frequencies associated
with these motions. So, we can state that :

1. The dynamical events in DNA occur on a timescale ranging from femtose-
conds to at least seconds.

2. The amplitudes of the internal motions can be both small (for example,
small vibrations of individual atoms or atomic groups near their equilibrium
positions with amplitudes no more than 0.1 ) ) and large (for example, large
amplitude motions of the fragments of polynucleotide chains associated with
the local unwinding or opening of the double helix).

3. The frequencies associated with the internal motions are 1–100 cm–1 , much
lower than the frequencies of internal vibrations in isolated small molecules.

2

DNA Dynamics
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Table 2.1 Classification of experimental and theoretical data on the internal DNA mobility.

The Timescale
and the Main
Intervals

Picosecond Nanosecond Microsecond Millisecond Second

The main
types of
internal
motions and
their ampli-
tudes

Short-living
motions and
(s = 10–12 s)
oscillations of
atoms with
amplitudes
A = 10–1 )

Limited
motions;
oscillations of
small groups
of atoms:
sugars, phos-
phates, bases;
bending and
twisting
motions of the
double chain
with amplitudes
A = 5‚7 )

Bending
motions;
winding and
unwinding of
the double
helix; opening
of base pairs

Dissociation
(untwisting)
of the double
helix; change
of superheli-
city; overall
rotation of the
DNA molecule

Motions with
amplitudes
A = 2‚3 lu;
writhing,
isomerization,
division of
bacteria

Energy of
activation
possible;
sources of
energy

E = 0.6
kcal mol–1;
Source:
external ther-
mal reservoir

E = 2‚5
kcal mol–1;
Sources: colli-
sions with hot
molecules of
solution

E = 5‚20
kcal mol–1;
Sources:
change of PH,
increasing
temperature,
action of dena-
turalization
agents

E = 10‚50
kcal mol–1;
Sources: inter-
actions with
proteins and
other ligands

Experimental
methods

NMR, IRS,
Raman
spectroscopy,
X-ray

NMR, EPR,
Raman
spectroscopy,
fluorescence

NMR, EPR,
optical aniso-
tropy reaction,
with form-
aldehyde,
hydrogen
exchange

NMR, hydrogen
exchange,
reaction with
formaldehyde,
quasielastic
scattering of
light, hydro-
dynamical
methods

Theoretical
methods

Harmonic
analysis, lattice
model,
methods of
molecular
dynamics

Harmonic
analysis,
rod-like
model, methods
of molecular
dynamics

Theory of
helix–coil
transition

Methods of
conformational
mechanics,
topological
models
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To describe the picture of the internal DNA mobility in more detail, it is conveni-
ent to classify DNA internal motions according to their forms (types), energies,
amplitudes and characteristic times. Some of the classifications have been proposed
in the works of Fritzsche [132], Keepers and James [133], McClure [134], McCam-
mon and Harvey [13] and Yakushevich [3, 53]. As an example, we present in Table
2.1 one of these classifications proposed in Ref. [53]. It is based on the time charac-
teristics of internal DNA motions. The timescale is divided into several intervals; for
each interval, the main types of internal motions, the main structural elements
involved in these motions, the energies of activation and the amplitudes of the
motions are described. In addition, the main experimental and theoretical methods
for studying the internal motions are given.

If we are interested, however, only in the part of the general picture which is
assumed to be connected with the DNA function, we should restrict ourselves to
consideration of the internal motions which belong to the nanosecond diapason and
its neighborhood. This diapason includes, beside others, the so-called solid-like
motions of sugars, phosphates and bases, which are known to be very important in
many biophysical phenomena: conformational transitions, gene regulation, DNA–
protein recognition, energy transmission, DNA denaturation, and other phenomena
involving energies E of several kcal mol–1 and frequencies m of several cm–1.

In the following sections we shall describe the internal motions which belong to
the nanosecond diapason and its neighborhood. When describing the motions we
shall follow the traditional method used by biologists, which consists in simply list-
ing the motions and their characteristics. However, where possible, and especially in
Section 2.7, we shall use another approach to the problem based on the construction
of models of the internal DNA dynamics.

2.2
Twisting and Bending Motions

Twisting (or torsional) and bending motions belong to the group of motions which
imitate the internal dynamics of the DNA molecule in the so-called elastic rod
approximation. In this approximation the DNA molecule is modeled by a thin, flex-
ible rod of length L, circular cross section of radius b, and uniform elasticity along
the helix axis. The rod is immersed in a viscous fluid at thermal equilibrium (Fig-
ure 2.1). This approach to DNA dynamics has been proposed by Barkley and Zimm
[119] and Allison and Shurr [135], and was developed later in many works devoted
to superhelical DNA (see, for example, Refs. [136,137]).

The model of an elastic rod is well known and studied in physics [138], so we can use
the results obtained there to describe twisting and bending motions. Suppose the rod
imitating a DNA molecule is divided into small elements bounded by adjacent cross sec-
tions. Take a coordinate system for the rod with the z axis along its long axis. We consider
torsional deformations of the rod as its elements twist about the long axis and bending
deformations as they rotate about their transverse axes. In the case of DNA, it is nat-
ural to assume that each of the elements contains only one base pair.

2.2 Twisting and Bending Motions



22

Figure 2.1 The rod immersed in a viscous fluid at thermal
equilibrium.

Let j(z,t) be the relative rotation angle of two cross sections, so that ¶j/¶z is the
twist of the rod. The torque at z due to the twist is

M(z) = C ¶j/¶z. (2-1)

where C is the torsional rigidity of the rod. Since the torque changes with z, an ele-
ment of the rod between z and z+dz will have a net torque (dM/dz)dz which turns
it in the fluid. Assuming the torque exerted by the element on the fluid to be propor-
tional to its rate of turning. The equation of motion for twisting is

¶j/¶t = (C/r) ¶2j/¶z2, (2-2)

where r is the frictional coefficient per unit length.
Assuming that the torsional deformations obey Hook’s law, we find the elastic

energy of this twisted rod (or twisted DNA) to be [138]

E
tw ¼ ðC=2Þ

RL

0

(¶2
j/¶2

zÞ2dz (2-3)

Suppose now that the z axis coincides with the center of the undeformed rod, and
consider small bending deflections in a principal plane, which we take to be the xy
plane. Let y(z,t) denote the transverse displacement of the center line away from
equilibrium. The net force per unit length on the rod due to the transverse motion
is

F(z) = -EI ¶4y/¶z4, (2-4)

where EI is the flexural rigidity of the rod (E is the Young’s modulus and I the
moment of inertia).

Assume again Hook’s law deformations, so the elastic energy of the bent rod (or
bent DNA) is [138]

Eb = (EI/2)
RL

0

(¶2y/¶2z)2 dz. (2-5)

A more accurate mathematical description of the torsional and bending motions
and its relation to the description given above is presented in Appendix 1.

2 DNA Dynamics
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2.3
Dynamics of the Bases

To describe the dynamics of the bases, it is convenient to begin with a brief descrip-
tion of the equilibrium state of the bases and then to describe possible motions of
the bases as deviations from their equilibrium positions.

2.3.1
Equilibrium State

The structures of the four DNA bases: adenine, thymine, guanine and cytosine, are
shown in Figure 1.2. Because the deviations of the atoms of the bases from the
plane are small (< 0.1–0.3 )) and not regular, the base structure can be considered
as planar. So, for simplicity, the bases can be shown in figures as rectangular plates
and the pair of bases can be shown as pairs of plates (Figure 2.2). In the general
case, the positions of the plates relative to the helix axis are different for different
DNA conformational forms (see Figure 1.6). But in the first approximation, we can
assume that for B-DNA the plates are perpendicular to the helix axis.

Figure 2.2 Purine and pyrimidine sketched as two rectangular
plates.

2.3.2
Possible Motions of the Bases

A pair of bases is best visualized in the right-handed orthogonal axial set Oxyz,
where O is chosen at the Mcenter’ (close to N1 of the purine) of the pair under con-
sideration (Figure 2.2). Oz is taken along the helix axis, Oy runs from C6 (pyrimi-
dine) to C8 (purine), so that Ox intercepts the H-bonds of the pair.

When considering possible motions of the bases, we shall neglect the intrabase
motions. In this case, a simple plate-like model of the bases can be used and possi-
ble solid-like motions of the plates can be considered.

The flexibility of the H-bonds enables rotational freedom between the bases
(plates) of the pair, which are thus not necessarily coplanar. In Figure 2.3 three pos-
sible intra-pair rotation motions called Mopening’, Mpropeller-twist’ and Mbuckle’ are
shown. The amplitudes of the motions are characterized by the dihedral angles be-

2.3 Dynamics of the Bases
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tween the planes of individual bases (looking down the rotational axis, the angle
being positive if the nearest base is rotated clockwise relative to the farthest one).

Figure 2.3 Intra-pair rotation: (a) opening, (b) propeller twist,
and (c) buckle.

Another group of three intra-pair motions includes translation motions of bases
(plates). They are called Mstagger’, Mstretch’ and Mshear’ (Figure 2.4). Their amplitudes
are characterized by the displacements of the planes from the corresponding equi-
librium positions.

Figure 2.4 Intra-pair translation: (a) stagger, (b) stretch, and
(c) shear.

In addition, the base pair as a whole also has rotational and translational degrees
of freedom. We can consider three rotations of some mean plane of the base pair
around Oz, Oy and Ox (Figure 2.5). They are called Mtwist’, Mroll’ and Mtilt’, respec-
tively. And three translation motions along the axes should also be considered (Fig-
ure 2.6). They are called Mrise’, Mslide’ and Mshift’, respectively.

2 DNA Dynamics
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Figure 2.5 Inter-pair rotation: (a) twist, (b) roll, and (c) tilt.

Figure 2.6 Inter-pair translation: (a) rise, (b) slide, and (c) shift.

It is necessary to note, however, that the bases or base pairs are not free to rotate
or to translate according to the degrees described above as these movements may be
opposed by hindrances. Two hindrances are predominant. The first results from the
presence of nearest-neighbor base pairs, on both sides of the pair under considera-
tion. The propeller twist, for example, can lead to steric clashes with the next base
pairs, as could buckle, roll, tilt, etc. Conversely, however, the degrees of freedom of
each neighboring pair can be instrumental in removing these steric hindrances, and
so on for their next neighbors. Thus the clash can be handled and eased with the
mutual help of a row of base pairs, each modifying its position in accordance with
its degrees of freedom, following rules first proposed by Calladine [139]. The second
hindrance is imposed by the glycosil bond linking the base to the sugar. Although
this bond is covalent, and hence very strong, the glycosil ring to which it is attached
has a rather flexible structure. Hence, the hindrance is rather weak and can be
accommodated within rather large limits, but in this case mainly by intranucleotide
rearrangements.

2.3 Dynamics of the Bases



26

2.4
Dynamics of the Sugar–Phosphate Backbone

Equilibrium State

The backbone equilibrium structure between two consecutive phosphorus atoms is
usually described by six torsional angles: a, b, c, d, n, f (Figure 2.7). The conforma-
tion of the sugar is characterized by four more torsional angles: m0, m1, m2, m3 (which
is identical to d), and m4. In addition, one more important structural parameter is
the torsional angle of the glycosidic bond, v.

Figure 2.7 The rotational angles of the sugar–phosphate back-
bone with thymine attached.

2.4.2
Possible Motions of the Sugar–Phosphate Backbone

When considering the DNA molecule as a dynamical system, we suggest that all
parameters described above can be changed.

The changes in the values of the torsional angles are in general restricted to the
common steric ranges, syn (0O), anti (180O), synclinal (–60O) and anticlinal (–120O).
In DNA, however, not all these ranges may be accessible; for example, the glycosil
torsional angle v is restricted to syn and anti ranges mainly. Furthermore, most of
the motions associated with the changes in the torsional angles are correlated (only
the changes in parameter are independent).

To describe possible changes of the structural parameters of sugars, we should
take into account that the five-membered furanose ring is usually not planar but
Mpuckered’, either in the Menvelope’ form, when four atoms of the ring are appro-
ximately coplanar and the fifth is out of the plane by less than about 0.5 ), or in
the Mtwisted’ form, when two adjacent atoms are displaced on opposite sites of the
plane defined by the other three atoms. Those being displaced on the side of C5¢ are
called Mendo’ and those being displaced on the opposite side are called Mexo’; (Fig-
ure 2.8).

2 DNA Dynamics
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Figure 2.8 Different sugar conformations: (a) initial state (trian-
gle C1¢–O4¢–C4¢ is shaded; (b) C3¢ endo; (c) C2¢ endo; (d) sym-
metrical twist conformation; (e) asymmetrical twist conforma-
tion. In (b), (c), (d) and (e) the plane of triangle C1¢–O4¢–C4¢ is
perpendicular to the figure plane.

The conformational dynamics of sugars is usually described by the pseudo-rota-
tion phase angle P, where

tan P = ((m1 + m4) – (m3 + m0))/3.08 m2; (2-6)

which allows computation of the five torsional angles m0, m1, m2, m3, m4 by

mj = (m0 cos(P + j144O))/cos P, j = 0,1,...4. (2-7)

The case P = 0O corresponds to m2 maximally positive, that is a symmetrically C2¢
exo - C3¢ endo twisted conformation, and the case P = 180O corresponds to the mir-
ror image of the latter. In DNA two ranges are preferred: –1O < P < 34O (C3¢ endo)
and 137O < P < 194O (C2¢ endo).

In Figure 2.9 the variation of the energy of furanose (in nucleosides) with P is
shown. The preferred C3¢ endo and C2¢ endo are separated by a barrier of about
1.5 kcal and the highest barrier found over the whole range of P is about 5.5 kcal.
Transitions between the various conformations are, therefore, easy: the sugar ring is
indeed highly flexible. This flexibility can compensate to some degree the con-
straints imposed on the glycosil bond by the base (or base pair) and the constraints
imposed by the backbone on the C5¢–C4¢–C3¢ link, with minimal expenditure of en-
ergy.

2.4 Dynamics of the Sugar–Phosphate Backbone
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Figure 2.9 Nucleoside free energy difference (DF) as a function
of the pseudorotational angle (P). DF¢ @ 1.5 kcal mol –1; DF¢¢ @
5.5 kcal mol –1.

2.5
Conformational Transitions

As we described in Section 1.4 the DNA double helix can take different conforma-
tional forms. It is widely accepted that transitions between the forms result mainly
from the interplay between the conformational flexibilities of the sugars and the
degrees of freedom corresponding to the base pairs and their mutual positioning.

The most important and widely studied transitions are the so-called BfiA and
BfiZ transitions. Let us describe them briefly.

2.5.1
BfiA Transition

Under physiological conditions DNA has the B-form. The BfiA transitions may
occur in some fragment of the DNA molecule with changes in the external condi-
tions or with protein attachment. The transitions have a relatively small potential
barrier and they are weakly dependent on nucleotide composition [9]. Nevertheless,
there are some special examples of synthetic polynucleotides which cannot transform
from the B-form to the A-form. For example, polynucleotide poly(dA-dG) . poly(dC-dT),
one chain of which consists of purines and the other of pyrimidines, cannot transform
from the B-form to the A-form [72]. In addition, it is known that in the DNA fragment
containing less than 30% G-C base pairs the BfiA transition is rather difficult, and if
the proportion of the G-C pairs increases the transition becomes easier [140].

The main difference between the helixes of A- and B-types consists in the sugar
conformations [72]. So, in B-DNA the sugar rings have C2¢endo conformation and
in the A-form they have C3¢endo conformation. This difference leads to the change
in the distances between the adjacent phosphates and this is the reason why the A-
and B-helixes look very different.

The main changes in the helix parameters are the following:

. The number of nucleotides per one turn changes from nB =10 to nA =11.

. The distance between the adjacent nucleotides changes from hB = 3.38 ) to
hA =2.56 ).
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. The angle of helix rotation changes from tB = 36O to tA = 32.7O.

. The direction of the helix rotation does not change.

From the analysis of the changes in the parameters of the double helix we can
select the internal motions which make the main contribution to the transitions.
These are usually named dominant motions. In BfiA transitions dominant motions
are those leading to the changes in the conformations of the sugar rings. So, to
describe the transition mathematically it is necessary to consider, at the least, one
group of motions associated with the changes in pseudo-rotational phase angle P.

2.5.2
BfiZ Transition

In this transition the right-handed B-DNA transforms to the left-handed Z-DNA.
The changes in the other parameters of the helix are the following:

. The number of nucleotides per one turn changes from nB =10 to nZ =12.

. The distance between the adjacent nucleotides changes from hB = 3.38 ) to
hZ = 3.7 ).

. The angle of helix rotation changes from tB = 36O to tZ = –30O.

As in the previous case, the ability to transform from the B- to the Z-form
depends on the base nucleotide composition. So, polynucleotide poly(dG-dC) .

poly(dG-dC) can transform from the B-form to the Z-form but polynucleotide
poly(dA-dT) . poly(dA-dT) cannot transform in this way.

It is rather difficult to select dominant motions contributing to the BfiZ transi-
tions. However, if we take into account that these motions should make a contribu-
tion to a local separation of the double chain in the range where the transition
begins [52, 141–142], we can suggest that at the least the transverse displacements
of nucleotides are one type of dominant motion which contributes to the transition.

2.6
Motions Associated with Local Strands Separation

The double helix can undergo local, partial or even total strand separations. They
can be obtained in the test tube by adjusting various physical or chemical parame-
ters, such as the temperature or the ionic strength of the buffer.

The double strand described above, is usually referred to as the Mnative’ state of
DNA, and the process of separation is also called Munwinding’, Mopening’, Mmelting’
or Mdenaturation’. Recent single molecule experiments have permitted detailed study
of the mechanical separation of the two strands of DNA sequences [66]. In general,
the process is rather complex and many different types of simpler internal motions
contribute to it. Below we describe briefly two of them.

2.6 Motions Associated with Local Strands Separation
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2.6.1
Base-pair Opening Due to Rotations of Bases

The opening of base pairs is a complex motion leading to the disruption of the H-
bonds joining the bases in pairs. It is usually assumed that the main contribution to
the process of opening is made by rotation motions of bases near the sugar–phos-
phate chains. These motions are shown schematically in Figure 2.3a. Both, the
opening of a single base pair and that of several base pairs which are neighbors and
form a local range are possible. The opening can be monitored experimentally. A
convenient parameter for this is the DNA absorbance in the near ultraviolet (more
precisely between 240 and 280 nm), which increases by some 40% as the double
helix melts, as a consequence of the disruption of stacking interaction between con-
secutive base pairs. The opening can be studied effectively by NMR [143,144] and
hydrogen–tritium exchange methods [145–147].

2.6.2
Transverse Displacements in Strands

Another group of motions which is very important in the process of local separation
is the transverse motions of nucleotides in both chains. To describe these motions it
is convenient to consider a simplified model of the DNA molecule each strand of
which is represented by a set of point masses corresponding to the nucleotides.
Longitudinal displacements of the masses can be neglected because they are not
dominant in the process of separation. In the framework of this model the main
contribution will be made by the transverse motions leading to the stretching of the
bonds connecting bases in pairs (Figure 2.4b).

2.7
Approximate Models of DNA Dynamics

When an investigator is interested in the dynamical mechanisms of some biological
process involving DNA he must use some dynamical model of DNA. It could be a
new model constructed by himself, or it could be a model proposed by some other
investigators. In the first case, when constructing a new model, it is important to
know the main principles of modeling DNA dynamics, and in the second case,
when selecting one of the known models, it is important to know the limitations of
the models used and the relations between them. We shall discuss both cases in this
section.

2.7.1
The Main Principles of Modeling

Because of the complexity of the general picture of the DNA internal dynamics,
mathematical modeling of the dynamics is also rather complex. It requires detailed

2 DNA Dynamics



31

information about physical parameters, such as the coordinates, mass and moment
of inertia of the structural elements, and about interactions between the elements.
In addition, we need to use a very powerful computer to imitate all possible internal
motions. The problem, however, can be simplified if we construct approximate models
which imitate only the internal motions which make the main contribution to the pro-
cess considered. This approach is widely used in studying DNA internal dynamics. Let
us describe briefly the main principles of constructing models in this way [148].

To construct an approximate model, first it is necessary to simplify the general
picture of the DNA internal motions. This can be done by selection of a limited
amount of internal motions which are dominant. Selection can be done in many
ways, and this explains the large variety of the models proposed. Secondly, we need
to describe these motions by mathematical equations. This can be done directly or
through an intermediate stage consisting of finding some physical (very often me-
chanical) analog with the same type of internal motions and interactions. Thirdly,
we need to solve the equations and to interpret their solutions in terms of the pa-
rameters of the DNA internal dynamics. These three stages of modeling DNA
dynamics will be illustrated many times in the following chapters when different
nonlinear models of the internal DNA dynamics will be constructed.

2.7.2
Hierarchy of Dynamical Models

If we do not plan to construct a new dynamical model and want only to choose an
appropriate model from amongst those proposed earlier by some other authors, it is
convenient to use a special approach where each of the models is considered as an
element of a hierarchy. This approach automatically gives us information about pos-
sible restrictions of the models used and about the relations between them.

The hierarchy of dynamical models can be easily constructed in the following
way. Let us assume that the structural models described in Section 1.6.2 are not stat-
ic but dynamic ones. That is, all structural elements of the models are movable.
Because the models have already been arranged in the order of increasing complex-
ity, we obtain automatically the hierarchy of the dynamical models (Table 2.2). Let
us briefly describe it.

The first level of the hierarchy is formed by the rod-like model (and by its discrete
analog) having three types of internal motions: longitudinal and rotational motions
of small elements of the rod bounded by adjacent cross sections, and bending
motions.

The second level is formed by the model consisting of two elastic rods (or by their
discrete analogs) weakly interacting with one another. In the helical version of the
model the rods are assumed to be wound around each other to produce the double
helix. In the straight version the helicity of the model is neglected. In both cases, the
models have six types of internal motions: longitudinal, transverse and rotational
motions in both rods.

The models of the third level take into account that each of the DNA strands con-
sists of three types of atomic groups, sugars, phosphates and bases, and imitate
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1

2

3

4

5

2 DNA Dynamics32



their motions as solid-like motions of the atomic groups weakly interacting with each
other. To calculate how many types of internal motions are described in this model, we
should take into account that, in the extreme case when the connecting bonds between
the groups are absent, every group has six degrees of freedom, and that every chain has
three types of groups. Thus, we obtain 36 degrees of freedom (instead of three for the
first level models and six for the second level models). However, if we take into
account the connecting bonds, the number of degrees of freedom will be decreased.

The models of the fourth level describe internal motions in a Mlattice’ with a unit
cell formed by a finite group of atoms (nucleotide) which periodically repeats along
the DNA. In this approximation we consider all displacements of the nucleotide
atoms but restrict ourselves to consideration of only homopolymer chains.

Finally, the fifth level comprises the most accurate models of the DNA molecule
where all motions of all atoms are taken into account.

Because all internal motions mentioned above can be described by differential
equations, we can obtain a set of mathematical models consisting of three (for the
models of the first level), six (for the models of the second level) or more (for the
third or higher level models) differential equations, these being arranged in the
order of increasing complexity, that is forming the hierarchy.

In conclusion, let us consider one example illustrating how the hierarchy of the
dynamical models can be applied. Assume, that we study the dynamical aspects of
the process of local opening of the double helix. Which model should be chosen?
We could begin with the simplest models of the first level. But these models are not
appropriate because they do not take into account the DNA internal structure at all.
The second level models are more appropriate and they can be used as the first
approximation. The third level models are more accurate and their application per-
mits description of the process in more detail. They can be considered for the sec-
ond approximation, and so on.

2.8
Experimental Methods for Studying DNA Dynamics

There are many different experimental methods for studying DNA internal
dynamics. The most important are Raman scattering [149–152], neutron scattering
[153–155], infrared spectroscopy [156,157], hydrogen–deuterium (–tritium) exchange
[15, 158], microwave absorption [159–161], NMR [162–165], charge-transfer
[166–174] and single molecule [66, 175–178] experiments. In this section we
describe each of them briefly.

2.8.1
Raman Scattering

Methods of inelastic light-scattering on oriented films are known as Raman scatter-
ing and have made a significant contribution to the understanding of the dynamics
of DNA. The low-frequency range of Raman spectra is of much interest because its
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structure depends on internal motions of rigidly bound atomic groups (bases, for
example) weakly connected with one another. The frequencies of most interest are
in the range between 0.003 cm–1 and perhaps 100 cm–1 (1 GHz to 3 THz or time-
scales of 1 ns to ~ 0.3 ps).

There are, however, some difficulties in obtaining and interpreting the spectral
lines. There are also many difficulties in the theoretical calculation of Raman inten-
sities. The predictions vary considerably, even for ’simple¢ molecules like benzene.
Thus, for DNA we can expect that in many cases only qualitative assignments of the
observed data will be possible. An example was given in the works of Urabe and
Tominaga [179] and DeMarco et al. [180] where the softening of a Raman mode near
25 cm–1 in Na-DNA was observed. The softening increased substantially at the rela-
tive humidity where the X-ray fiber diffraction patterns indicate change from A to B
conformation. So, it was concluded that low-lying Raman bands could be related to
the AfiB conformation shift in DNA.

A schematic layout of the experiment is shown in Figure 2.10. Wave vector con-
servation requires that an internal motion, for example, a vibration of small ampli-
tude of an atomic group, which scatters the light through an angle a has a vector k
equal to the change (ki – ks) in the light wave vector.

Referring to Figure 2.10 the magnitude of k (k=|k|) is given by

k= (4pn/kL) sin(a/2); (2-8)

where n is the refractive index of the sample and kL is the laser wavelength. Energy
conservation requires that the scattered light contains components at

w = wL – wf (k); (2-9)

where wf (k) are the eigenvalues of the so-called dynamical matrix of DNA, which
will be discuss in detail in Chapter 4.
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Figure 2.10 Schematic layout of inelastic laser
light scattering experiment. The spectral com-
ponents, wL ( wf(k), are separated by the spec-
trometer and recorded with a repetitive scan by
a signal averaging computer. Here a is the
scattering angle within the sample. k = ki - ks.



Even if k is well defined, these components appear as broadened peaks in the spec-
trum with a width that yields the lifetime of the vibration. The largest value of k is 4p/kL,
so scattering is confined to modes near a zone center. Thus the zone center of longitudi-
nal and torsional acoustic mode shifts determine a speed of sound through V = wf/k.
The bending mode dispersion is quadratic, so the zone center shift is probably too small
to be observed. Optic, resonant and local mode shifts are essentially independent of k.

Usually experimenters work with samples consisting of oriented fibers. In this
case we can expect the lengthwise acoustic modes to be overdamped in solution.
Fibers also allow the conformation to be monitored easily, and in principle, much is
to be gained from knowing the orientation of k with respect to the fiber axis.

2.8.2
Neutron Scattering

Thermal (or slow) neutrons with de Broglie wavelengths between 2 and 20 ) are a
versatile probe of the dynamics of DNA. They have energies between 20 and
0.2 meV, compared to »10 keV for X-ray quanta. Because of this, it is possible with
neutrons to go beyond diffraction and do something that cannot be done with X-
rays: to energy-analyze the intensity recorded at each scattering angle, in addition to
measuring its variation with angle.

The geometry of the scattering problem is shown in Figure 2.11. The direction of
propagation of the scattered neutron with respect to the incident neutron is defined
by the polar angle h and azimuthal angle j. If the flux of incident neutrons, defined
as the number per unit area per unit time, is N, then the number scattered per unit
time into the element of solid angle X = sinh dh dj is

N(dr/dX)dX; (2-10)

where (dr/dX) is the differential cross-section.

Figure 2.11 The geometry of the neutron scattering problem.
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The basic conservation equations governing the interaction between a quantum
of incident radiation and a scattering centre are given by

"x = "(k¢-k†), (momentum) (2-11)

"w¢= E¢-E†, (energy) (2-12)

where "x and "w are the momentum and energy transfers, respectively (" =
Planck’s constant/2p). The initial and final wave vectors and energies are denoted
by k¢, k† and E¢, E†.

Some fraction of radiation is usually scattered elastically. It is the so-called elastic
scattering which is characterized by the relation k¢ = k† (k¢ = |k¢|, k† = |k†|) and pro-
duces x-dependent diffraction patterns related by Fourier transformation to the real-
space structure.

The other fraction of the radiation, however, will be scattered inelastically, i.e. it
will exchange energy with thermal vibrations and other excitations in the sample.
Thus inelastic scattering carries information about internal motions in DNA.

With the exception of spin-echo instruments, all neutron spectrometers provide
data in the form of a double differential cross-section, d2r/dXdE¢. For the simplest
case of a monoatomic assembly of target nuclei this is given by

d2r/dXdE¢~N(k†/k¢)[rinc Sinc(x,w¢) +rcoh Scoh(x,w¢)]; (2-13)

where rinc and rcoh are incoherent and coherent scattering cross-sections, respec-
tively; and Scoh(x,w¢), Sinc(x,w¢) are the dynamical factors of coherent and incoherent
scattering. In Chapters 4 and 7 we shall demonstrate several examples of calculation
of dynamical factors for different DNA models.

In the thermal neutron experiments oriented DNA fibers are usually used [181].
This probe offers the advantage of a dominant incoherent cross-section for hydro-
gens and the simultaneous exploration of a wide range of frequency (w¢) and
momentum (x) space [182].

A major problem is the availability of sufficiently large oriented samples of DNA
in order to exploit the discrimination of atomic displacements by means of the pro-
jection on x. Existing thermal neutron sources require about 1 cm3 DNA in order to
reach the level of statistical significance for signals due to collective excitations with-
in the practical limits of days measuring time. This problem has been partly over-
come by the development and perfection of the wet-spinning method [183]. This
method allows the controlled production of highly oriented (within a few degrees)
thin films (1 to 100 lm) by winding up DNA fibers which are continuously
stretched during precipitation into an aqueous alcohol solution. Films up to
45U275 mm2 have been obtained in this way.
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2.8.3
Infrared Spectroscopy

In order to study the structure of different molecules it is very important to know
the length of the chemical bonds and the angles between them. Most of these data
are obtained by the X-ray method and by the analysis of spectra of microwave
absorption. To study the internal dynamics it is important to know the changes in
the lengths and angles. Under physiological conditions oscillations of the atoms and
atomic groups are accompanied by changes in the bond lengths of about – 0.05 )
and changes in the angles about –5O. Changes in the energies of these oscillations
correspond to the energies of electromagnetic radiation in the infrared range.

The low frequency modes of infrared spectra between 40 and 240 cm–1 are of the
most interest. For example, in the works of Beetz and Ascarelli [184] and Wittlin et
al. [185] the hydration-dependent 45 cm–1 mode was observed. It was assigned to
the complex internal vibration motion, the base pairs vibrating in phase and in
countermotion to the two sugar–phosphate backbones along the helical axis.

2.8.4
Hydrogen–Deuterium (–Tritium) Exchange

Hydrogen–deuterium exchange is a very powerful tool for studying DNA internal
dynamics and, especially, the dynamics of base-pair opening [10–12]. It is based on
the observation that polar hydrogens of DNA bases can exchange with solvent hydro-
gens under conditions in which the DNA is far from any denaturation transition.
High molecular weight DNA, for example, exchanges its hydrogens at 0 OC with a
half-time of 5 min in solvent and salt conditions such that its thermal denaturation
temperature is above 80 OC. Free bases are able to exchange their N-H with solvent
much more rapidly. This behavior has led to the proposal that ordered helices con-
tain small amounts of open states, in which bases are unpaired, and that these open
states mediate the exchange of otherwise inaccessible hydrogen-bonded protons.

The scheme describing the conformationally limited exchange can be written in
the following form

kop

fi kchem

fi2Hclosed ‹
2Hopen

1Hexchanged ; (2-14)
kcl

where kop is the rate constant for conformational opening, kcl is that for the reverse
reaction (closing), and kchem denotes the chemical transfer step. Equation (2.14) is
written here in the form where a deuteron is exchanged for a proton. Since the
exchange of nucleotide hydrogen for deuterium generates a special shift in the ultra-
violet, it appears possible to follow hydrogen–deuterium exchange by a spectral dif-
ference method by using stopped-flow ultraviolet spectrophotometry. As a result,
proton exchange rates can be measured over a broad range of temperatures.
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2.8.5
Microwave Absorption

The method of microwave absorption is one more way of studying biopolymer
dynamics. It was applied to DNA by Webb and Booth [43] and later by Swicord and
Davis [44,45] and Edwards et al. [46]. The existence of longitudinal acoustic reso-
nances in the low-gigahertz region was demonstrated in solutions of monodisperse
DNA of finite length. Interpretation of the observations is, however, a rather com-
plex problem, and many authors have tried to solve it by using rather different dyna-
mical models of DNA including nonlinear ones [30, 47, 160, 186,187]. Their results
are now under discussion.

2.8.6
NMR

Nuclear magnetic resonance (NMR) is a very advantageous technique for studying
the dynamical properties of DNA. In order to understand the mechanism of DNA
opening one has to be familiar with the exchange behavior of nucleotides/nucleo-
sides. These processes are on the NMR timescale. Linewidth measurements of the
imino protons have been studied by NMR [143,144, 147, 188]. In this way, the
exchange rate was obtained. Studies of short fragments with 12, 43 and 69 base
pairs have demonstrated the exchange of imino protons of the AT base pairs by a
single base pair opening mechanism with an opening rate of 15–20 s–1 at 38 OC and
activation energy of 15–17 kcal mol–1. The data fit in very well with the poly(rA) .

poly(rU) results with the activation energy of 15 kcal mol–1 and opening rate 1 s–1.
The chemical shift of the hydrogen-bonded imino protons of nucleic acids is

usually used for measuring the secondary and tertiary structure of nucleic acids.
Broadening or disappearance of these resonances indicates fraying of the ends and/
or melting of the double helix. Fraying is defined as the rapid opening and closing
of base pairs at the end of a helix which results in proton exchange with water. Melt-
ing is an equilibrium process describing the fraction of opened and closed base
pairs. The sequence of melting of different parts of nucleic acids can be followed by
NMR.

The static structure of DNA is reflected in the NMR parameters of chemical shift
(that is the position of the resonance signal on the frequency scale relative to a refer-
ence signal) and coupling constants (describing stereochemical relations between
NMR active nuclei via chemical bonds). In special cases, the nuclear Overhauser
effect (NOE) yields additional information on the through-space interactions of
neighboring nuclei. The dynamical processes, on the other hand, are implied in the
relaxation rates of NMR experiments (or the relaxation times, which are the recipro-
cals of the rates) and in the NOE. Indirectly, the relaxation rate R2 = 1/T2 describing the
spin–spin relaxation is reflected in the linewidth of a conventional NMR spectrum. Gen-
erally, the overall relaxation ratesR1 = 1/T1 (spin–lattice relaxation) andR2 = 1/T2 (spin–
spin relaxation) are the sum of several relaxation processes. Problems arise in selecting
a correct model for the interpretation of a relaxation experiment.
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2.8.7
Charge-transfer Experiments

Electronic excitations and the motion of electronic charges are well known to play a
significant role in a wide range of macromolecules of biological interest [189]. The
double helical DNA has in its core a stacked array of base pairs. The bases possess
an aromatic p-system in contact with those of neighboring residues and these linked
p-systems represent a unique system which could serve as a wire to convey electrons
through the DNA. In spite of this, for a long time many scientists believed that
DNA molecules, like proteins, were insulators and could not facilitate long-range
charge transfer. Others took a middle road and believed that DNA might serve as a
semiconductor, relaying a charge only in certain situations. Only in 1986 to 1987 did
the Barton group at California Institute publish a series of papers in Science
[166–168] reporting that, in the DNA assemblies they constructed, damage could be
promoted at a site some distance away from the site where a radical is injected into
the DNA base pair stack. Barton believed that this damage was promoted through
electron transfer mediated by the DNA double helix. Many other experimental
works on charge transport along the DNA double helix have been published
[169–174]. Various models have been proposed to describe charge transfer and
charge transport along the DNA double helix including the models of simple tunnel-
ing [174, 190], semiconducting energy gap [191–193], polaron hopping [194] and
fluctuation limited transport [195]. None of these models is good enough and the
problem of theoretical modeling of the process still remains unsolved.

2.8.8
Single Molecule Experiments

Single molecule are now becoming almost routine thanks to the remarkable prog-
ress of experimental tools. Investigators are now able to unfold a protein by pulling,
to denaturate DNA by torsion, to measure the elasticity of a single molecule or the
torque of a molecular motor, to investigate the microscopic mechanics of pro-
tein–DNA interactions or the disruption of the double-helix [66]. Micromanipulation
experiments on proteins and on nucleic acids are based on magnetic beads, optical twee-
zers, micro-needles, biomembrane force probes and atomic force spectroscopy. They
allow measurements of forces in the range from the “thermal” (fN) up to the rupture of
covalent bonds (nN), and are based on the control of subnanometer displacements.

Recent single DNA molecule experiments have permitted the detailed study of
the mechanical separation (unzipping ) of the two strands of sequences [196,
175–178]. Experimental results obtained are very impressive, however, their interpre-
tation is not trivial and their analysis requires some confrontation with microscopic
modeling [197–199].

Thus, even from this brief excursion into the world of experimental study of DNA
dynamics we can draw a conclusion about the importance of the correct choice of
model of the internal DNA dynamics for interpretation of the experimental results.
In Chapters 4–7 we shall discuss possible DNA models in detail.
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DNA function is usually considered as a field of molecular biology. For many years
the main aim of investigators dealing with this field was only to explain the func-
tional properties of DNA in terms of its primary structure. But in recent years they
have paid attention to the physical aspects of DNA function.
In this chapter we describe briefly the main elements of the DNA function, which

are necessary to understand the following chapters. We stress the elements where
physical properties, and especially the dynamical properties, play a crucial role.

3.1
Physical Aspects of DNA Function

In Section 1.6 we described some of the physical properties of the DNA molecule.
We mentioned that the DNA molecule is a quasi-one-dimensional and quasi-period-
ical system, and that this property makes it very similar to a model of a one-dimen-
sional crystal, which has been well studied in physics. We stressed also that the
DNA molecule is very flexible and has many internal degrees of freedom. We noted
that the DNA molecule is essentially an inhomogeneous system.
Now, however, when considering physical aspects of DNA function, we need to add

some more details to this description. The first addition concerns the character of the
DNA inhomogeneity.We should stress here thatDNA inhomogeneity differs essentially
from that traditionally considered in simple physicalmodels, where point inhomogene-
ities or the boundary between two homogeneous regions are usually suggested.
DNA inhomogeneity is characterized by the presence of different local regions

(named )sites’ or )blocks’), each having a very specific sequence of bases and a very
specific function. So, any DNA molecule or its fragment can be represented as
divided into different functional regions. As an example, we present in Figure 3.1 a
simple scheme of the DNA fragment containing several functional regions neces-
sary for RNA synthesis and regulation. The fragment contains a promoter region, P,
a coding region, C, several regulatory regions, R1, R2, R3 and a terminator region, T,
which separates two genes, the ith and the (i+1)th. The terminator region is shown
as a cruciform region. Each of the regions plays its own specific role at a definite
stage of the transcription process.

3
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Figure 3.1 A DNA fragment scheme. P, C, T are the promoter,
coding region and terminator respectively; R1, R2, R3 are the reg-
ulatory regions of the ith gene; R1¢, R2¢, etc., are the correspond-
ing regions of the (i+1)th gene.

Another peculiarity is a strong dependence of the functional properties of the
sites on the changes in the site structure. That is, any change in the structure of the
local region considered (for example, change from the A- to the B-form) leads to
change in the interactions of the fragment with proteins or with some other external
molecules, and so leads to changes in the functional properties of the region. So, the
dynamical properties of the local region, which determine its ability to change the
internal structure, are directly connected to the functional properties of the region.

3.2
Intercalation

Interaction of DNA with external molecules occurs in all stages of DNA life. DNA
interacts, in particular, with many drugs, cancerogens, mutants and dyes. Because
the DNA molecule plays an important role in the replication process and protein
biosynthesis, any modification of it caused by interactions with these compounds
has a strong influence on the cell metabolism, decreasing or (in some special cases)
terminating cell growth. These properties are widely applied in medicine.
There are different ways in which the DNA molecule interacts with the com-

pounds. One of them is intercalation of the compound between neighboring base
pairs without any distortion of the pairs.
The first suggestion of the possibility of intercalation was made by Lerman [200]

in 1961. He proposed that the process of intercalation involves the sandwiching of a
drug molecule between two adjacent DNA base pairs (Figure 3.2). According to his
approach the base pairs remain perpendicular to the helix axis, but they are moved
apart to accommodate the drug molecule (of approximately 3.4 E thickness) which
lies in Van der Waals contact with the base pairs above and below. The intimate con-
tact between the p-orbitals of the drug molecule and the base pairs will help to stabi-
lize the complex via hydrophobic and charge-transfer forces. Since the DNA sugar–pho-
sphate chain is virtually fully extended in native DNA, the helix has to unwind in order
to admit the drug. This leads to a local distortion of the helix and the distortion of the
helix at intercalated sites will destroy the long-range regularity of the helix.

3 DNA Function
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Figure 3.2 (a) DNA and three drug molecules; (b) DNA with
three intercalated drug molecules.

The idea of intercalation has been further developed by Fuller and Waring [201]
and by Neville and Davies [202]. Now this mechanism of interaction is widely
accepted and applied not only in pharmacology when studying new drugs, but also,
because dyes can be used, in investigations of DNA structure and function.
Investigations of thermodynamic and kinetic parameters of the intercalation pro-

cess show that this process is not cooperative and that it consists of two stages: (1)
bonding with the periphery of the double helix and (2) intercalation by itself. Investi-
gations show also that the dynamical properties of DNA play a crucial role in under-
standing the mechanism of intercalation. So, for intercalation to occur we need to
move adjacent base pairs apart. It can be suggested that two types of internal
motions are required to achieve this moving apart: the local strengthening and
simultaneous local unwinding of the double helix. These local distortions of the
DNA structure are small but cumulatively they lead to an increase in the length and
rigidity of the DNA.

3.3
DNA–Protein Recognition

Another way in which the DNA molecule interacts with compounds, and especially
with proteins, is often named as recognition. In this case protein molecules interact
very specifically with DNA, namely, they interact only with special DNA regions
(sites) having a definite sequences of bases, which are recognized by them with a
high degree of accuracy.
If we take into account the DNA structure, and the fact that the bases are placed

inside the double helix (Figure 3.3), we naturally come to the following conclusion:
to recognize the region with some special sequence of bases, the process of interac-
tion should be accompanied by a preliminary stage where the double helix is locally
unwound and the bases are open for recognition.
An example of such a specific interaction required at the stage of recognition is

the interaction of the protein RNA-polymerase with the promoter region of DNA.
This interaction is very specific, it occurs at the beginning of the process of tran-
scription, and it is accompanied by local unwinding of the DNA double helix.

3.3 DNA–Protein Recognition
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Figure 3.3 (a) DNA double helix and a protein molecule; (b) local
unwinding of the double helix, which is assumed to be a preliminary
stage required for recognition of the binding site.

3.4
Gene Expression

From the point of view of molecular biology, gene expression appears to be the pri-
mary and most fundamental event of life. Gene expression is the process whereby
the information stored in DNA is transferred and materialized, most often in the
production of proteins. The basic information needed to produce a given protein is
deposited in a DNA gene, the size of the gene being from 150 to 6000 bases. A gene
can be identified and localized genetically or biochemically.
Gene expression of a given gene occurs in two major steps: transcription and

translation.
Transcription is the process whereby the (linear) genetic information is copied

into an auxiliary nucleic acid, the messenger ribonucleic acid (mRNA). mRNA is
produced by enzyme RNA polymerase which can be easily extracted from bacterial
cells and purified in large quantities. In the following, we will refer to RNA polymer-
ase from the bacterium Escherichi coli (E. coli), which has a )diameter’ of about
150 E. Purified RNA polymerase is able to perform transcription in the test tube
with efficiency and fidelity comparable to those it has in vivo.
In general, transcription can be characterized as a complexmultistage process which

proceeds in a system of many components, including DNA, RNA polymerase, regula-
tory proteins, hormones, ions, and water. The simplest scheme of transcription
includes three main stages: initiation, elongation and termination (Figure 3.4).
At the first stage RNA polymerase binds with the promoter region which can be

defined as a point of initiation. When RNA polymerase takes a correct position and
forms several phosphodietheric bonds, the second stage of the process begins. At
this stage a small fragment (subunit r) is released from the RNA polymerase and
the rest of the molecule (core enzyme) moves along the DNA and elongates the
RNA molecule step by step. In the third stage the process finishes and RNA poly-
merase is released from the DNA molecule. A special region of DNA, the termina-
tor, gives a signal to stop the process.

3 DNA Function
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Figure 3.4 A generalized scheme of the main stages of tran-
scription. At each stage the DNA molecule is shown by two long
vertical lines imitating the DNA strands. Short horizontal lines
between the long vertical lines imitate base pairs.

Translation is the process whereby information stored on mRNA is transferred
into a linear sequence of amino acids. The mRNA produced in the first step (tran-
scription) is functionally divided into three parts. Usually, the 15–30 first bases
(5¢-end) of the mRNA are not translated. They support the assembly of two ribosome
units, each being made of about 50 different proteins, and set the assembly rate.
The final (3¢-end) tens to hundreds of bases are not translated either, and seem to be
involved mainly in setting the life-time of the mRNA, usually of the order of
1–3 min. The middle part is the coding sequence, which bears the information
needed to built the protein. This information is encoded as an ordered, linear array
of the four bases. It is translated into a linear sequence of amino acids via the
genetic code.
Transcription and translation processes are illustrated schematically in Figure 3.5.

Here several RNA polymerase particles are attached to the central DNA strand, each
in the process of synthesizing an mRNA. The picture looks like a Christmas tree,
with DNA as the stem, and the mRNA as branches.

Figure 3.5 A sketch of the transcription–translation process.

3.4 Gene Expression
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From the physical point of view the most interesting elements of the processes
considered are those associated with the formation of an open state (a )bubble’ in
Figure 3.4), with the regulation of the processes at a given gene and with coordina-
tion of the work of many genes. We shall discuss these points in detail in Chapter 9.

3.5
Regulation of Gene Expression

Physical aspects of the regulation of gene expression are usually associated with the
ability to transmit regulatory signals along the DNA molecule. The transmission of
the signals permits one to explain in a very simple way the switching on and/or off
of the work of different sites of a gene and coordination of the work of many genes.
The idea of transmission of regulatory signals came from the results of experi-

mental study of the so-called long-range effects in DNA. To describe these effects,
let us consider a simple system consisting of two protein molecules and one DNA
molecule (Figure 3.6). It is assumed that the first protein molecule can bind (with
good efficiency) to a special range (or site) of the DNA molecule. Let it be called
site 1. It is also assumed that the other protein molecule can bind with another site,
site 2. Numerous experimental data [203–208] show that the first protein bound at
site 1 influences the interaction of the second protein molecule at site 2. The dis-
tance between the sites can reach hundreds or thousands of base pairs. This is the
reason why the effect is named the long-range effect.

Figure 3.6 A schematic representation of the DNA molecule
interacting with two protein molecules. The DNA molecule is
represented by a black band; the sites interacting with proteins
are shaded; protein molecules are represented by small circles.

To explain the effect many alternative models of the action at a long distance have
been proposed [209–211]. Some of them are shown in Figure 3.7. According to the
first model (Figure 3.7a), the DNA molecule forms a loop and, as a result, sites 1
and 2 become neighbors. In the second model (Figure 3.7b), the first protein binds
to site 1 and then moves (or slides) along the DNA molecule to the vicinity of site 2.
The third model (Figure 3.7c) suggests that binding of the first protein molecule to
site 1 helps binding of another protein to the adjacent site, which in turn helps
another protein to bind to the next site and so on. As a result, the protein molecules are
sequentially bound and line up along the DNA double chain. In the fourth model (Fig-
ure 3.7d) it is assumed that binding of the first proteinmolecule to site 1 is accompanied
by a local conformational distortion which then propagates along the double DNA
chain. When reaching site 2 it changes the conformational structure of the site, which,
in turn, changes the binding constants of the secondproteinwith the site.
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The fourth model correlates well with the idea of transmission of regulatory sig-
nals along the DNA molecule. Indeed, we can suggest that conformational perturba-
tions moving along the DNA molecule can act as regulatory signals in some stages
of gene expression. Experimental data obtained in Refs. [207, 212–216] provide
further arguments in favor of the fourth model. The model looks very attractive
because it enables one to relate the dynamical properties of the DNA molecule to its
functional activity.

3.6
Replication

The ability to replicate is one of the most important functional properties of DNA. It
usually starts at a special site of the DNA molecule, continues in both directions
simultaneously with approximately the same velocity and makes copies with a very
high accuracy (one mistake per 109–1010 base pairs).
A simple model of replication was proposed by Watson and Crick. They suggested

that two complementary DNA chains serve as matrices to copy one another. In Fig-
ure 3.8 two DNA chains are shown as a pair of matrices for synthesis of new polynu-
cleotide chains. So, a replication fork has a Y-like structure.

Figure 3.8 Replication fork.

3.6 Replication

Figure 3.7 Models of the action at a long distance:
(a) the model explaining the long-range effect by
the formation of a loop, (b) the /sliding’ model,
(c) the model of sequential binding, and (d) the
model of propagation of conformational perturba-
tion along the DNA molecule.
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In general, replication can be characterized as a many-component and many-
stage process including complex biochemical reactions (the details can be found, for
example, in the book of Straer [217]). From a physical point of view, the most inter-
esting stage of the process is that preceding the synthesis of new polynucleotide
chains. This stage is characterized by a very interesting dynamical behavior. So, it is
suggested that in this stage hydrogen bonds between base pairs are broken, the
chains unwind and separate. The energy required for unwinding and separation
appears as a result of ATP hydrolysis.

3 DNA Function
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Before consideration of the nonlinear theory of DNA it would be useful to discuss
briefly the linear theory of DNA, which can be considered as a first approximation
of the general theoretical description of DNA, the nonlinear theory can be consid-
ered as the next (second) approximation. We begin this chapter with a description of
the mathematical basis of the linear theory, which is formed mainly by mathemati-
cal models of the internal DNA dynamics. Then we illustrate how these models can
be applied to the problem of statistics of linear excitations in DNA and to the scatter-
ing problem. At the end of the chapter we shall discuss briefly the relations between
the linear theory and experiment.

4.1
The Main Mathematical Models

Before we start three small comments should be made. The first concerns the selec-
tion of the models. Mathematical models of internal DNA dynamics considered in
this chapter have been selected in a special way. Namely, from a variety of the dyna-
mical models we chose those which are the linear (first) approximations of the
known nonlinear dynamical models. This makes it possible to compare the results
obtained in the linear (first) and nonlinear (second) approximations.
Secondly a very important point is that the models considered in this chapter are

arranged in order of increasing complexity. So, we begin here with the simplest
model called the rod-like model of DNA. Then we proceed to the models of the sec-
ond and higher levels of the hierarchy.
Thirdly, to simplify the calculations, we also restrict ourselves to ideal and homo-

geneous models, that is we neglect:

1. The interactions of DNA with the environment.
2. The processes of dissipation.
3. The differences between physical characteristics of nitrous bases such as

mass, moment of inertia, interaction forces between them and other struc-
tural elements of DNA. Some elements of non-ideality, however, will be con-
sidered in Chapter 6.

4

Linear Theory of DNA
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4.1.1
Linear Rod-like Model

The uniform elastic rod with circular section is the simplest physical model of DNA.
This model takes into account three types of internal motions: stretching, twisting
and bending. So, we can write the Hamiltonian of the system in the following way:

H = Hs + Ht + Hb + Hs-t + Hs-b + H t-b; (4-1)

where the terms Hs , Ht and Hb describe longitudinal displacements (stretching),
torsional motions (twisting) and bending, respectively; the terms Hs-t, Hs-b and Ht-b

describe interactions between these three types of motions.
To estimate the contribution of each of the terms, we can use the data gathered by

McCommon and Harvey [13], which indicate that the amplitudes and characteristic
times of bending motions differ from those of torsional and longitudinal motions
by one or two orders, the ranges of their values being non-overlapping. So, we can
neglect the terms Hs-b and Ht-b and divide the rest of the Hamiltonian H into two
independent parts:

H = H (1) + H(2); (4-2)

where H(1) = Hs + Ht + Hs-t , andH (2) = Hb.
To derive the explicit form of the Hamiltonian H(1) it is convenient to consider

first the discrete analog of the rod-like model [135, 218] and then pass to the contin-
uous one.

4.1.1.1 Longitudinal and Torsional Dynamics: Discrete Case
Let the discrete analog consist of a chain of coupled disks (Figure 4.1), each disk
having two degrees of freedom: longitudinal and angular (or torsional) displace-
ments. This model is equivalent to the so-called bead–spring model widely used in
polymer science. To apply it to DNA it is assumed that the DNA molecule can be
modeled by an array of (N+1) beads strung out along an axis (3.4 A apart for a Wat-
son–Crick helix), indexed from 0 to N. It is assumed also that the (N+1) beads are
linked by N identical torsional springs, each having an equilibrium rotation such
that at equilibrium a helix results.
In the linear approximation, which is valid when the amplitudes of the internal

motions are small, the terms Hs andHt have the following standard form:

Hs ¼
X

n

M _uu
2
n=2þ Kðunþ1 � unÞ

2
=2

n o

(4-3)

Ht ¼
X

n

I _jj
2
n

n
=2þ kðjnþ1 � jnÞ

2
=2g;
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where un and jn are longitudinal and angular displacements of the nth disk; M and
I are the mass and the moment of inertia of the disk; K and k are the coefficients of
longitudinal and torsional rigidities.

Figure 4.1 A chain of coupled disks.

It now remains only to derive the formula for Hs-t which describes the interaction
between longitudinal and torsional motions of the disks. To obtain Hs-t, we could
use the following standard method, widely used in theoretical physics. Let us sug-
gest that the coefficients K and k are not constant and depend now on the torsional
and longitudinal displacements of the disks:

k fi k{(un+1 – un); (jn+1 – jn)};
(4-4)

K fi K{(un+1 – un); (jn+1 – jn)}.

Then we can expand functions (4-4) in a power series of (un+1 – un) and
(jn+1 – jn):

k = k0 + k1(un+1 – un) + k2(jn+1 – jn) + ...;
(4-5)

K = K0 + K1(u n+1 – un) + K2(jn+1 – jn) + ....

and insert the expansions into the initial Hamiltonian H.
Restricting ourselves to terms of the second order (in this case, the corresponding

equations are linear) we find that H s-t makes only a constant contribution to the
total Hamiltonian H, and we can neglect it. Thus, in the framework of the approach
we could suggest that longitudinal and torsional internal motions are independent.
But it should be noted that sometimes another way of constructing the term Hs-t is
used. Namely, it is simply suggested that Hs-t is a sum (

P

n
) of terms each of them

being proportional to the product (un+1 – un) (jn+1 – jn ). So, in the framework of

4.1 The Main Mathematical Models
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this approach longitudinal and torsional motions are not independent. For simplici-
ty in our further calculations we shall use the first of the approaches. In this case,
the dynamical equations corresponding to HamiltonianH take a very simple form:

M�n= K0 (un+1 – 2un + un–1), (4-6)

Ij€= k0 (jn+1 – 2jn + jn–1). (4-7)

In addition, we shall assume that periodical boundary conditions are fulfilled:

un= un+N; jn= jn+N . (4-8)

Equations (4-6) and (4-7) have simple solutions having the form of plane waves

un= un0 exp{i(qna-wt)};
(4-9)

jn= jn0 exp{i(qna-wt)}.

And inserting Eqs. (4-9) into Eqs. (4-6) and (4-7) we find the frequencies of the
linear waves in DNA

w1 = {2K0 [1-cos(qa)]/M} ;
(4-10)

wt = {2k0 [1-cos(qa)]/I} .

4.1.1.2 Longitudinal and Torsional Dynamics: Continuous Case
Now let us pass from the discrete case to the continuous one, that is from the model
of a chain of disks to that of an elastic rod. From the mathematical point of view this
procedure is valid only if we assume that the solution we are determining consists
of rather smooth functions and that they change slowly at a distance a between two
neighboring disks. In this case, we can pass to the limit afi0 inEqs. (4-6) and (4-7).
To pass to the continuous case, it is convenient to rewrite Eqs. (4-6) and (4-7) in

the form

(M/a)�n= K0 a(un+1 – un)/a
2 – K0 a(un – un–1)/a

2,
(4-11)

(I/a)j€ n= k0 a(jn+1 – jn)/a
2– k0 a(jn – jn–1)/a

2.

If we assume now that a fi 0 the coefficients of the Eq. (4-11) will transform to

M/a fi r; K0 a fi Y;

(4-12)
I/a fi i; k0 a fi C;

4 Linear Theory of DNA
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where i is a moment of inertia per unit of length, r is a linear density; Y is the
Young’s modulus, and C is the torsional rigidity of the rod.
In the continuous limit (a fi 0) the displacements un and jn are transformed in

the following way:

un(t)fi u(na,t)fi u(z,t),
(4-13)

jn(t)fi j(na,t) fi j(z,t)

and the differences

(jn+1 – jn)/a
2 – (jn – j n–1)/a

2,
(4-14)

(un+1 – un)/a
2 – (un – un–1)/a

2,

transform to

uzz, jzz (4-15)

respectively. As a result, instead of the discrete equations (4-11) we obtain two sim-
ple differential equations for longitudinal and torsional internal motions of the elas-
tic rod

ru tt = Yu zz,
(4-16)

ijtt = Cjzz.

Assume that the solutions of equations (4-16) have the form of normal (linear)
plane waves

u= u0 exp{i(qz–w1t)},
(4-17)

j = j0 exp{i(qz–wtt)},

where j0, u0 and w1, wt are the amplitudes and frequencies of longitudinal and tor-
sional waves, respectively. Inserting then Eq. (4-17) into Eq. (4-16) we obtain the fre-
quencies of longitudinal and torsional oscillations in DNA

w1 = (Y/r)
� q,

(4-18)
wt = (C/i)

� q,

where q is the wave vector, the values of which are in the interval

–p/a £ q £ p/a; (4-19)
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which coincides with the first zone of Brillouin for the case of a one-dimensional
crystal. Because the number of disks is equal to N, we obtain N different solutions
corresponding to N different values of q in the Brillouin zone.
These results indicate that there are two acoustic branches in the DNA spectrum.

The first describes longitudinal acoustic oscillations and the second, torsional acous-
tic oscillations. The branches are shown schematically in Figure 4.2.

After differentiation of Eq. (4-18) we find the velocities of the longitudinal and tor-
sional acoustic waves

v1 = ¶w1(q)/¶q = (Y/r)�,

(4-20)
vt = ¶wt(q)/¶q = (C/i)�.

Thus, in the linear approximation the velocities of the torsional and longitudinal
waves are constant and do not depend on the wave vector q. Experimental data on
the velocities of acoustic waves in DNA are gathered in Table 4.1. The data were
used to find the mutual arrangement of the branches of the DNA spectrum in Fig-
ure 4.2.

Table 4.1 Velocities of the torsional (vt) and
longitudinal (vl) waves in DNA.

vt (cm s–1) vl (cm s–1)

1.3a 3.19 ‚ 3.60b

2.11 ‚ 2.2c

1.7 ‚ 4d

a Ref. [47]. b Ref. [219]. c Ref. [220]. d Ref. [221].

4.1.1.3 Bending Motions
To derive the equations for bending motions of an elastic rod, let us assume that the
disks shown in Figure 4.1 can make transverse motions yn in the planes which are
perpendicular to the chain axis. In the continuous approximation (afi 0) we have

4 Linear Theory of DNA

Figure 4.2 Schematic picture of two acoustic branches in the DNA
spectrum. Branch 1 corresponds to the torsional oscillations with fre-
quency wt, and branch 2 corresponds to the longitudinal oscillations
with frequency wl.
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yn(t)fi y(na,t)fi y(z,t). (4-21)

Here y(z,t) is the transverse displacement of the elastic rod from an equilibrium
position. The force which acts on the unit length of the elastic rod due to the dis-
placement is equal to

F(z) = – Byzzzz; (4-22)

where B = IY is the bending rigidity of the rod. Here I is the moment of inertia of
the cross section of the rod relative to the rod axis; Y is Young’s modulus.
The dynamical equation describing the bending internal motions can then be

written in the form

Srÿ = –Yiyzzzz; (4-23)

where S is the area of the rod section; r is the linear density (i.e. mass per rod
length).
Assuming the solution of Eq. (4-23) in the form of a plane wave

y = y0 exp{i(qz–wbt)}; (4-24)

and inserting Eq. (4-24) into Eq. (4-23) we find the frequency of the bending oscil-
lations in DNA

wb= (B/rS)
� q2 . (4-25)

The corresponding branch in the DNA spectrum is shown schematically in Fig-
ure 4.3, and for the velocity of propagation of bending waves we find

vb= 2(B/rS)� q. (4-26)

In contrast to the results obtained in the previous section for longitudinal and
transverse waves, the velocity of the bending waves depends on the wave vector q.

Figure 4.3 Schematic picture of the acoustic branch (3) corre-
sponding to bending oscillations with frequency wb.
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4.1.2
Linear Double Rod-like Model

Let us consider now a more complex mathematical model of DNA which belongs to
the second level of the hierarchy described in Sections 1.6.2 and 2.7.2. In the general
case, the model consists of two elastic chains wound around each other to produce
the double helix. However, in this chapter we restrict ourselves to consideration of a
simpler version of the model where the helicity of the DNA structure is neglected. The
effects of the helicity will be discussed in Chapter 6. As in the previous section, we con-
sider first the discrete version of the model and then pass to the continuous one.

4.1.2.1 Discrete Case
A discrete analog of the model is shown in Figure 1.10b. It consists of two straight
chains of disks connected by longitudinal and transverse springs. It is convenient to
denote by i the number of the chain (i= 1, 2) and by n the number of the disk in the
chain. Every disk in the chain (for example, the nth disk in the ith chain) has three
degrees of freedom. It can move along the chain (longitudinal motion), it can move
perpendicular to the chain (transverse motion), and it can rotate around the chain
(torsional motion). So, in the general case we can write the Hamiltonian H of the
system in the following way:

H ¼
X2

i¼1
fHðiÞl þH

ðiÞ
t þH

ðiÞ
tr þH

ðiÞ
l�t þH

ðiÞ
l�tr þH

ðiÞ
t�trg (4-27)

where the terms H
ðiÞ
l
;H
ðiÞ
t
andH

ðiÞ
tr

describe the contribution of longitudinal, tor-
sional and transverse motions of the disks in the ith chain (i = 1, 2); the terms

H
ðiÞ
l�t
;H
ðiÞ
l�tr

andH
ðiÞ
t�tr describe interactions between the motions of the disks in the

same (ith) chain; the term H(1–2) describes interaction between the chains through
transverse springs

H
ð1�2Þ ¼ H

ð1�2Þ
1�l þH

ð1�2Þ
t�t þH

ð1�2Þ
tr�tr þH

ð1�2Þ
1�t þH

ð1�2Þ
1�tr þH

ð1�2Þ
t�tr : (4-28)

If we suggest that in the first approximation the internal motions of different
types are independent, the terms Hð1�2Þ1�t , Hð1�2Þ1�tr and Hð1�2Þt�tr in the Hamiltonian H
can be neglected.
As regards the terms HðiÞl , HðiÞt andH

ðiÞ
tr , they have a rather standard form

H
ðiÞ
l ¼

X

n;i

M€uu
ðiÞ2
n;i =2þ KðuðiÞnþ1;i � u

ðiÞ
n;iÞ

2
=2

� �

;

H
ðiÞ
t ¼

X

n;i

I€jj
ðiÞ2

n;i =2þ kðjðiÞnþ1;i � j
ðiÞ
n;iÞ

2
=2

� �

; (4-29)

H
ðiÞ
tr ¼

X

n;i

M€yy
ðiÞ2
n;i =2þ bðyðiÞnþ1;i � y

ðiÞ
n;iÞ

2
=2

� �

:
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And the term H(1-2) reduces to the form

H
ð1�2Þ ¼ H

ð1�2Þ
l�l þH

ð1�2Þ
t�t þH

ð1�2Þ
tr�tr (4-30)

where

H
ð1�2Þ
l�l ¼

X

n

aðun;1� un;2Þ
2
=2;

H
ð1�2Þ
t�t ¼

X

n

bðj
n;1�

jn;2Þ
2
=2; (4-31)

H
ð1�2Þ
tr�tr ¼

X

n

cðyn;1� yn;2Þ
2
=2:

Here M and I are the masses and the moments of inertia of the disks; K, k and b
are the coefficients of the longitudinal, torsional and transverse rigidities; a, b and c
are the coefficients of harmonic potentials describing interactions between the disks
which belong to different chains, but have the same index n.
Thus, in the linear approximation, the initial complex Hamiltonian H is divided

into three independent parts

H = HI + HII + HIII; (4-32)

where

H
I ¼

X

n;i

H
ðiÞ
l þH

ð1�2Þ
l�l ;

H
II ¼

X

n;i

H
ðiÞ
t þH

ð1�2Þ
t�t ; (4-33)

H
III ¼

X

n;i

H
ðiÞ
tr þH

ð1�2Þ
tr�tr :

So, in the approximation considered we can study, independently, three different
problems. The first concerns longitudinal internal motions in DNA, the second the
torsional motions and the third the transverse motions.
Let us write the dynamical equations corresponding to these three problems. The

equations imitating longitudinal motions will then have the form

M�n,1 = K(un+1,1 – 2un,1 + un–1,1) + a (un,2 – un,1);
(4-34)

M�n,2 = K(un+1,2 – 2un,2 + un–1,2) + a (un,1 – un,2).
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The equations describing torsional motions are

Ij€n,1 = k(jn+1,1 – 2jn,1 + jn–1,1) + b(jn,2 – jn,1);
(4-35)

Ij€n,2 = k(jn+1,2 – 2jn,2 + jn–1,2) + b(jn,1 – jn,2).

And those describing transverse motions are

Mÿn,1 = b(yn+1,1 – 2yn,1 + yn–1,1) + c(yn,2 – yn,1);
(4-36)

Mÿn,2 = b(yn+1,2 – 2yn,2 + y n-1,2) + c(yn,1 – yn,2).

Assuming the solutions of the equations have the form

u1 = u01 exp{i(qa-wt)}; u2 = u02 exp{i(qa-wt)};

j1 = j01 exp{i(qa-wt)}; j2 = j02 exp{i(qa-wt)}; (4-37)

y1 = y01 exp{i(qa-wt)}; y2 = y02 exp{i(qa-wt)};

and inserting Eq. (4-37) into Eqs. (4-34) and (4-36), we find the dispersion laws for
all of the problems. Then for the frequencies of longitudinal oscillations in DNA we
have

w1
l= {[4Ksin2(qa/2)]/M}�; w2

l= {[4Ksin2(qa/2) + 2a]/M}�. (4-38)

For the frequencies of torsional oscillations we have

w1
t = {[4ksin2(qa/2)]/I}�; w2

t = {[4ksin2(qa/2) + 2b]/I}�. (4-39)

For the frequencies of transverse oscillations we have

w1
tr = {[4b sin2(qa/2)]/M}� ; w2

tr = {[4bsin2(qa/2) + 2c]/M}�. (4-40)

4.1.2.2 Continuous Case
In the continuum approximation Eqs. (4-34) to(4-36) transform to

r�1 = Yu1zz+ a(u2 – u1); r�2 = Yu2zz+ a(u1 – u2); (4-41)

ij€1 = Cj1zz+ b(j2 – j); ij€2 = Cj2zz+ b(j1 – j2); (4-42)

rÿ1 = by1zz+ c(y2 – y1); rÿ2 = by2zz+ c(y1 – y2); (4-43)

where r =M/a, i = I/a.
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Assuming the solutions of the equations have the form of plane waves

u1 = u01 exp{i(qz-wt)}; u2 = u02 exp{i(qz-wt)}; (4-44)

j1 = j01 exp{i(qz-wt)}; j2= j02 exp{i(qz-wt)}; (4-45)

y1 = y01 exp{i(qz-wt)}; y2 = y02 exp{i(qz-wt)}; (4-46)

and inserting Eqs. (4-44) to (4-46) into Eqs. (4-41) to (4-43), we find the frequencies
of longitudinal

w1
l= (Ka2q2/M)� ; w2

l= {(Ka2q2 + 2a)/M}�; (4-47)

torsional

w1
t = (ka2q2/I)� ; w2

t ={(ka2q2 + 2b)/I}�; (4-48)

and transverse oscillations

w1
tr = (ba2q2/M)� ; w2

tr = {(ba2q2 + 2c)/M}� . (4-49)

So, the whole spectrum of DNA in this case consists of six branches: three acous-
tic and three optical ones.
There is a simple relation between formulas (4-47) to (4-49) and (4-38) to(4-41).

Indeed, if we expand the function sin(qa/2) in formulas (4-38) to (4-41)

sin(qa/2) = qa/2 – (qa/2)3 /3! + ... (4-50)

and restrict ourselves to the first term, we easily obtain formulas (4-47) to (4-49).

4.1.3
Linear Models of Higher Levels

Many properties of the models described in the previous two sections are inherent
in the models of higher levels, but mathematical description of them becomes
rather cumbersome. Therefore we do not give here a detailed description of the
models and restrict ourselves to consideration of only the main features of the
dynamics of higher-level models, which differ from those of the first- and the sec-
ond-level models.

4.1.3.1 The Third-Level Models
As we mentioned above, the most accurate approach (five-level model) requires a
complete mathematical description of all motions of all atoms of DNA. But in prac-
tice investigators often use a reduced version of the description, which takes into
account the motions of subunits consisting of mutually rigidly bound atomic groups

4.1 The Main Mathematical Models
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with relatively weak, flexible joints connecting them. This approach corresponds to
the third level of the hierarchy. In this approach the dynamical models take into
account only solid-like motions of the main structural elements such as bases, sugar
rings, nucleotides, nucleosides, phosphate–carbon pieces and so on.
The form of the dynamical equations describing the motions is very similar to

that considered in the previous section, but the number of dynamical equations dif-
fers substantially. In general it depends on the method of selection of the dominant
motions, which in turn depends on the problem considered.
One possible method of selection has been proposed by Saxena et al. [120]. The

corresponding model is shown schematically in Figure 1.11. If we take into account
all possible solid-like motions of the elements shown in the figure the number of
corresponding dynamical equations will be rather large. Indeed every solid-like ele-
ment has six degrees of freedom (three rotational and three translational). Because
the number of elements is equal to 6N, we find that the total number of dynamical
equations can reach 36N for the discrete case and 36 for the continuous one.
Another method of selection appears in the work of Volkov and Kosevich [222],

where, to describe the low-frequency DNA dynamics, the following subunits and
motions were chosen: two types of transverse displacements of nucleotides (yn,i; xn,i),
the torsional displacements of nucleosides (jn,i), and the intranucleoside displace-
ments due to the changes in the conformation of the sugar ring (rn,i) (i = 1, 2). So,
they proposed the model consisting of 8N dynamical equations for the discrete case
and eight dynamical equations for the continuous approximation.
One more example we find in the work of Krumhansl and Alexander [20] where,

to describe the A–B conformational transition, the following subunits and motions
were chosen: the longitudinal displacements of the nucleoside groups (un,i), the
changes in the pseudorotational phase angle describing the changes in the confor-
mational states of the sugar groups (Pn,i), and the angular displacements of the
bases (jn,i) (i = 1, 2). So, in this case, the number of dynamical equations has been
decreased from 8N to 6N for the discrete case and from 8 to 6 for the continuous
case.
Two more examples we find in the works of Zang and Olson [52] and Peyrard and

Bishop [34]. In the first work to describe the B–Z conformational transition only 4N
and 4 (for the discrete and continuous approximations, respectively) were used, and
in the second work to describe the process of DNA denaturation only 2N and 2 ( for
the discrete and continuous approximations, respectively) were found to be suffi-
cient.
In the linear approximation the solutions of all equations discussed above are lin-

ear waves of type (4-44) to (4-46). The frequencies of the waves can be found by
inserting the plane wave solutions into the corresponding dynamical equations. The
DNA spectrum consisting of acoustic and optical branches can be calculated in the
same way as in the previous subsections.

4.1.3.2 The Fourth-level (Lattice) Models
To describe the dynamics of the fourth-level models it is convenient to use the fol-
lowing approach. Let us consider the motions of atoms in DNA as a superposition
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of normal mode oscillations. In the linear approximation, which is valid only for
small amplitudes of the displacements, the normal modes are all independent. This
type of analysis within the harmonic approximation has been applied to DNA by
Prohofsky and coauthors [223–229]. It has led to a successful theoretical explanation
of the experimental data such as speed of longitudinal sound [230] and inelastic scat-
tering neutron data [153–155].
In a normal mode analysis, the assumption is made that the potential energy sur-

face explored by the DNA atoms is quadratic (harmonic approximation). Each indi-
vidual atomic trajectory is then a superposition of contributions from 3N-6 vibra-
tional modes, where N is the number of atoms. If we restrict ourselves to the consid-
eration of homopolymer chains, the dynamics of long lengths of DNA can be
reduced to the motions of atoms within a single base pair [231]. For DNA, each base
pair contains 41 atoms and every atom has 3 degrees of freedom. Therefore, the cor-
responding dynamical force constant matrix D is of rank 123. So, the diagonaliza-
tion of D yields 123 eigenvalues, each being the square of the frequency of oscilla-
tion of a mode, and the eigenvectors describing the amplitudes of the individual
atomic displacements during the oscillations. The resulting phonon dispersion spec-
trum has, in this case, 123 branches.

4.2
Statistics of Linear Excitations

In the previous sections we considered some problems of the dynamical theory of
DNA. We described in detail the main dynamical models, corresponding Hamilto-
nians, dynamical equations and their solutions having the form of normal plane
waves. It should be noted, however, that the general solutions of the equations have
the form of a set of plane waves, so in the general case we need to consider an
assembly of plane waves (or phonons). In this section we describe assemblies of
phonons for different DNA models and discuss the problem of statistics.

4.2.1
Phonons in the Rod-like Model

In the previous section we showed that different types of internal DNA motions
could be considered as independent in the first approximation and the general dyna-
mical problem can be described as consisting of three independent problems: the
dynamics of longitudinal motions, the dynamics of torsional motions and the
dynamics of bending motions. The problems of statistics of the longitudinal, tor-
sional and bending phonons could also be considered approximately as indepen-
dent. For simplicity, we describe here in detail the main features of the statistics of
assembly of torsional phonons. The statistics of the other two assemblies could be
considered similarly.

4.2 Statistics of Linear Excitations



So, let us return to the Hamiltonian Ht , to model Eq. (4-7) imitating DNA tor-
sional dynamics, and to linear wave solutions Eq. (4-9) with frequencies determined
by Eq. (4-10).

4.2.1.1 General Solution of the Model Equations
To find the general solution of Eq. (4-7) it is convenient to make a transformation
from the variables jn(t) to the variables Qq(t) which are usually named the normal
coordinates. For the purpose, let us assume that the angular displacements jn(t)
have the time dependence

jn(t) = jn exp(–iwt). (4-51)

Then Eq. (4-14) becomes

Iw2 jn= –k{jn+1 – 2jn + jn–1}. (4-52)

The set of N linear equations (4-59) has a non-trivial solution if the determinant
of the coefficients vanishes:

det|Iw2 dn,n¢ – An,n¢ | = 0. (4-53)

Here the non-zero coefficients have the form

An,n= 2k,
(4-54)

An,n+1 = An,n–1 = –k,

and the roots of Eq. (4-53) are the so-called normal mode frequencies.
Because of the translation symmetry, it is useful to make the substitution

jn= {j/I
�} exp(iqna); (4-55)

where q is the wave vector, and its values lie within the first Brillouin zone.
The eigenvalue equation for the normal-mode frequencies can then be written

Iw
2
j ¼

X

n�

An;n0 exp½iqðn0 � nÞa
: (4-56)

Taking into account Eq. (4-54) we can rewrite Eq. (4-56) in the form

w2j = {2k(1 – cos qa)/I}j. (4-57)

For each value of q we find one solution for w

w2(q) = 2k(1 – cos qa)/I; (4-58)
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and for each w2(q) there is a corresponding eigenvector j. We shall henceforth write
these as j(q). Thus the eigenvalue equation (4-56) now reads

w2(q) j (q) = A(q) j (q); (4-59)

where A(q) = 2k(1 – cos qa)/I.
As a result we can write the solution of Eq. (4-52) for the angular displacement

jn(t) in the form of expansion

jnðtÞ ¼ ½1=ðNIÞ� 

X

q

jðqÞQqðtÞ expðiqnaÞ; (4-60)

where Qq(t) are normal coordinates mentioned above.

4.2.1.2 Secondary Quantum Representation
Let us consider how the initial HamiltonianHt

Ht = T + V; (4-61)

will change. Here T and V are the kinetic and potential energies having the form

T ¼
X

n

fI _jj
2
n=2g; V ¼

X

n

fkðjnþ1 � jnÞ
2
=2g: (4-62)

Inserting Eq. (4-60) into Eq. (4-61), we can reduce Hamiltonian Ht to the form

Ht ¼ ð1=2Þ
X

q

_QQq

�
_QQ�q þ w

2ðqÞQqQ�q 
: (4-63)

Introducing then impulse Pq = [¶(T–V)/¶Q–q] we can rewrite Hamiltonian (4-63)
in the form

H ¼ ð1=2Þ
X

q

½PqP�q þ w
2
q ðqÞQqQ�q 
: (4-64)

It is convenient to pass to the quantum case by substitution

Qq(t)fi Q̂q(t) = ("/2w(q))
� (b̂q(t) + b̂+–q(t)),

(4-65)
Pq(t)fi P̂q(t) = i("w(q)/2)

� (b̂+q(t) + b̂–q(t)),

where operators of coordinates, Q̂q, and impulses, P̂q, satisfy commutative relations

[Q̂q(t), P̂q¢(t)] = i"dq,q¢, (4-66)

and Bose operators b̂+q, b̂q satisfy commutative relations

[b̂q(t), b̂
+
q¢(t)] = dq,q¢,

(4-67)
[b̂q(t), b̂q¢(t)] = 0.
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Then the Hamiltonian will take the form

ĤHt ¼
X

n

�hwðqÞ fb̂bþq ðtÞ b̂bqðtÞ þ 1=2g (4-68)

and the operator of the angular displacement, ĵjn(t), can be written as

ĵjnðtÞ ¼ ð�h=2NIÞ�
X

q

fjðqÞ=½wðqÞ
�g ðb̂bqðtÞ þ ðb̂b
þ
�qðtÞÞexpðiqnaÞ: (4-69)

4.2.1.3 Correlation Functions
Usually correlation functions are determined as a product of operators written in
the Heisenberg representation, which is averaged over a statistical ensemble:

<Â(t),B̂(t¢)> = Sp{Â(t)B̂(t¢) exp(–Ĥ/kBT)}/Sp{exp(–Ĥ/kBT)}. (4-70)

Here Â and B̂ are the operators. In our case they are equal to b̂q or b̂
+
q. The symbol

of spur (Sp) denotes summation over all diagonal elements of the matrix of the cor-
responding operator. The symbol <...> denotes statistical averaging over the grand
canonical ensemble.
According to Eq. (4-68), in the linear approximation the internal DNA dynamics

is described by a model of ideal Bose gas. This model has been well studied in physics
and the correlation functions <b̂ (t), b̂ (t¢), <b̂+ (t), b̂ (t¢), <b̂ (t), b̂+ (t¢), <b̂+ (t), b̂+ (t¢)>,
are known to be equal to

<b̂q (0), b̂q¢ (t)> = <b̂
+
q (0), b̂

+
q¢(t)> = 0,

<b̂+q (0), b̂q¢(t)> = nq exp [–iw(q)t] dq,q¢, (4-71)

<b̂q (0), b̂
+
q¢ (t)> = (nq + 1) exp [iw(q)t] dq,q¢,

where nq = {exp [hw(q)/kB T] – 1}–1; kB is the Boltzmann constant and T is the abso-
lute temperature. Using Eq. (4-71) we can easily calculate different macroscopic
characteristics of DNA. For example, let us calculate the torsion energy of the DNA
molecule

Et ¼< ĤHt >¼
X

q

�hwðqÞf< b̂b
þ

qðtÞb̂b qðtÞ > þ1=2 ¼
X

q

�hwðqÞ fnq þ 1=2g: (4-72)

4.2.2
Phonons in the Double Rod-like Model

According to the hierarchy described in Sections 1.6 and 2.7, the second level DNA
model consists of two chains of disks interacting with one another by longitudinal
and transverse springs. Each of the disks has three degrees of freedom: longitudinal,
transverse and rotational displacements from its equilibrium position. As in the pre-
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vious section, let us assume that in the first approximation these three types of
motions can be considered as independent and consider as an example one type of
motion, namely, the angular displacements of the disks. It is more convenient to
describe rotations of DNA bases by the angular displacements of pendula instead of
those of disks. This approach has been developed in the work of Englander and
coauthors [15], where the analogy between rotational motions of bases in DNA and
rotational motions of pendula in the mechanical model of Scott [232] was used. The
latter consists of a horizontal chain of pendula placed in a uniform gravitational
field with each pendulum being able to rotate in the xy plane (Figure 4.4). To apply
this approach to the double rod-like model we should slightly modify the mechani-
cal model. We can do this by Uremoving’ the gravitational field and considering two
parallel chains of pendula interacting with one another by longitudinal and trans-
verse springs (Figure 4.5). The pendula then play the role of bases in DNA chains,
the longitudinal springs imitate the sugar-phosphate backbone and the transverse
springs imitate the hydrogen interactions of bases in pairs.

Figure 4.4 The mechanical model of Scott

Figure 4.5 Modified mechanical analog: two chains of coupled
pendula.

The model shown in Figure 4.5 looks like a one-dimensional lattice with two pen-
dula per unit cell. If we introduce the basic vector az= {0; 0; a}, then lattice vector R0

n

can be defined as

R
0
n = naz ; (4-73)
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where a is the distance between neighboring pendula and n is an integer (n =
1,2,...N). The equilibrium positions of the masses of pendula within a unit cell can
be denoted by vectors

d1 = {0 ;l; 0}, d2 = {0; b-l; 0}, (4-74)

where b is the distance between the chains and l is the length of pendula.
The position vector R0

n;j of the jth pendulum mass (j = 1, 2) in the nth unit cell is
now given by

R
0
n;j = R

0
n + dj . (4-75)

Taking into account that every pendulum rotates only in the xy plane, we can
write possible displacements of the masses as

Rn;1 (t) – R
0
n;1 = un,1 = {–l(1–cosjn,1); lsinjn,1; 0},

(4-76)
Rn;2 (t) – R

0
n;2 = un,2 = {l(1–cosjn,2); lsinjn,2; 0},

where jn,j is the angular displacement of the nth pendulum of the jth chain.
The kinetic and potential energies will have then the following forms:

T ¼
X

n

fMu
2
n;1=2þMu

2
n;2=2g; (4-77)

V ¼
X

n

Kjun;1 � un�1;1 j
2
=2þ

X

n

Kjun;2 � un�1;2 j
2
=2þ

X

n

kjun;1 � un;2 j
2
=2;
(4-78)

where M is the mass of a pendulum, K is the rigidity of the longitudinal springs,
and k is the rigidity of the transverse springs.
Inserting Eq. (4-76) into Eqs. (4-77) to (4-78), we obtain the model Hamiltonian

Ht in the form

Ht = T + V =

¼
X

n

Ml
2f _jj

2
n;1 þ _jj

2
n;2=2þ

X

n

X

j

Kl
2ðjn;j � jn�1;jÞ

2
=2þ

þ
X

n

kl
2ðjn;1 � jn;2Þ

2
=2; (4-79)

where the variables jn,j are independent.
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We can now write the equations of motion corresponding to Eq. (4-79)

Ij€n,1 = Kl2(jn+1,1 – 2jn,1 + jn–1,1) – kl2(jn,1 – jn,2),
(4-80)

Ij€n,2 = Kl2(jn+1,2 – 2jn,2 + jn–1,2) – kl2(jn,2 – jn,1).

Here I = Ml2.

4.2.2.1 General Solution of the Model Equations
To find the solutions of the model equations (4-80), let us make a transformation
from the variables jn,j (t) to the variables Qq,g (t) which are usually named the nor-
mal coordinates. For this purpose, let us assume that the angular displacements
jn,j(t) have the time dependence

jn,j (t) = jn,j exp(-iwt). (4-81)

Then Eqs. (4-80) become

Iw2jn,1 = –Kl2(jn+1,1 – 2jn,1 + jn–1,1) + kl2 (jn,1 – jn,2);
(4-82)

Iw2jn,2 = –Kl2(jn+1,2 – 2jn,2 + jn–1,2) + kl2(jn,2 – jn,1).

The set of 2N linear equations (4-82) have a nontrivial solution if the determinant
of the coefficients vanishes:

det |Iw2dn,n¢dj,j¢ – An,n¢;j,j¢| = 0. (4-83)

Here the non-zero coefficients have the forms

An,n;1,1 = An,n;2,2 = 2Kl
2 + kl2,

An,n;1,2 = A n,n;2,1= –kl2, (4-84)

An,n+1;j,j = An,n-1;j,j = –Kl2,

and the roots of Eq. (4-83) are the so-called normal mode frequencies.
Because of the translational symmetry of the lattice considered, it is useful to

make the substitution

jn,j = (jj/I
�) exp(iqR

0
n ) = (jj/I

�) exp(iqna); (4-85)

where q = {qx; qy; qz} = {0; 0; q} is the wave vector, and its values lie within the first
Brillouin zone.
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The eigenvalue equation for the normal-mode frequencies can be written as

Iw
2
jj ¼

X

n0

X

j0

An;n0 ;j;j0 exp½iqðn0 � nÞa
jj0 : (4-86)

Taking into account Eq. (4-84) we can rewrite Eq. (4-86) in the form

w2j1 = {[2Kl
2(1-cosqa) + kl2]/I}j1 – (kl

2/I)j2,
(4-87)

w2j2 = (kl
2/I)j1 + {[2Kl

2(1-cosqa) + kl2]/I}j2.

For each value of q we find two solutions for w2

w
2
1;2 (q) = [2Kl

2(1-cosqa) + kl2 – kl2]/I, (4-88)

and for each w2g(q) (g=1,2) there is a corresponding eigenvector jj. We shall hence-
forth write these as jg

j(q). Thus the eigenvalue equation (4-86) now reads

w
2
g ðqÞjg

j ðqÞ ¼
X

j0
Aj;j0 ðqÞj

g

j0 ðqÞ; (4-89)

with non-zero coefficients Aj,j¢(q)

A1,1(q) = A2,2(q) = [2Kl
2(1-cos qa) + kl2]/I,

(4-90)
A1,2(q) = A 2,1(q) = –kl2/I.

And the eigenvalues jg
j(q) are usually constructed to satisfy

X

g

j
�g
j qð Þjg

j0
qð Þ ¼ dj;j0 ;

(4-91)
X

j

j
�g
j qð Þjg 0

j qð Þ ¼ dg;g 0 :

As a result, we can write the solution of Eq. (4-80) for the angular displacement
jn,j(t) in the form of the expansion

jn;jðtÞ ¼ ½1=ðNIÞ� 

X

q

X

g

j
g

j ðqÞQq;g ðtÞexpðiqnaÞ; (4-92)

where Qq,g(t) are the normal coordinates mentioned above.

4.2.2.2 Secondary Quantum Representation
Inserting Eq. (4-92) into Eqs. (4-79) and taking into account Eqs. (4-91) we can
reduce the Hamiltonian (4-79) to the sum of independent harmonic oscillators
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Ht ¼ ð1=2Þ
X

q

X

g

½ _QQq;g
_QQ�q;g þ w

2
g ðqÞQq;g Q�q;g 
 (4-93)

Introducing then impulse Pq,g = [¶(T-V)/¶Q-q,g], we can rewrite the Hamiltonian
(4-93) in the form

Ht ¼ ð1=2Þ
X

q

X

g

½Pq;g P�q;g þ w
2
g ðqÞQq;g Q�q;g 
 (4-94)

Let us pass now to the quantum case by substitution

Qq,g(t)fi Q̂q,g(t) = ("/2wg(q))
� (b̂–q,g(t) + b̂+–q,g(t)),

(4-95)
Pq,g(t)fi P̂q,g(t) = i("w g(q)/2)

� (b̂+–q,g(t) – b̂–q,g(t)),

where operators of coordinates, Q̂q,g(t), and impulses, P̂q,g(t), satisfy the commuta-
tive relations

[Q̂q,g(t), P̂q¢,g¢(t)] = i" dq,q¢dg,g¢; (4-96)

and Bose operators b̂þ�q;g (t), b̂q;g satisfy the commutative relations

[b̂q,g(t), b̂
þ
q0 ;g 0 (t)] = dq,q¢ dg,g¢,

(4-97)
[b̂q,g(t), b̂q0 ;g 0 (t)] = 0.

Then the model Hamiltonian takes the form

ĤHt ¼
X

q

X

g

�hwg ðqÞfb̂b
þ
q;g ðtÞb̂bq;g ðtÞ þ 1=2g; (4-98)

and the operator of the angular displacement can be written as

ĵjn;jðtÞ ¼ ð�h=2NIÞ�
X

q

X

g

fjg

j ðqÞ=½wg ðqÞ

�gðb̂bq;g ðtÞ þ b̂b

þ
�q;g ðtÞÞexpðiqnaÞ ¼

¼ ð�h=2NIÞ�
X

q

X

g

ðwg ðqÞÞ
��fjg

j ðqÞb̂bq;g expðiqnaÞ;þj
g�
j ðqÞb̂b

þ
q;g expð�iqnaÞg;

(4-99)

where it was taken into account that w�g (q) = wg(–q) and jg�
j (q) = jg

j (–q).
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4.2.2.3 Correlation Functions
It follows from Eq. (4-98) that in the linear approximation the internal DNA
dynamics is described by a model of ideal Bose gas. Correlation functions for this
model are

<b̂q,g(0), b̂q¢,g¢(t) > = <b̂+q,g(0), b̂
+
q¢,g¢(t) > = 0,

<b̂+q,g(0), b̂q¢,g¢(t) > = nq,g exp[–iwg(q)t] dq,q¢ dg,g¢, (4-100)

<b̂q,g(0), b̂
+
q¢,g¢(t) > = (nq,g + 1) exp[iwg(q)t] dq,q¢ dg,g¢,

where nq,g = {exp["wg(q)/kT]–1}
–1. Using these formulas we can calculate different

microscopic characteristics of the DNA. For example, the torsion energy will have
the form

Et ¼< ĤHt >¼
X

q

X

g

�hwg ðqÞf< b̂b
þ
q;g ðtÞb̂bq;g ðtÞ > þ1=2g

¼
X

q

X

g

�hwg ðqÞfnq;g þ 1=2g:
(4-101)

4.2.3
Phonons in the Higher-level Models

The approach described above can be easily expanded to a more complex model of
DNA (the third- or the fourth-level models). If we restrict ourselves to the homoge-
neous case, we can consider the higher-level models as lattices containing several or
several dozens of atoms in the cell. The general forms of the corresponding Hamil-
tonians and dynamical equations are very similar to Eq. (4-79) and Eqs. (4-80),
respectively. But the index j takes the values

j = 1,2, ... m;

where m is the total number of atoms in the lattice cell.
Instead of 2N linear equations (4-82) we shall obtain mN equations, and the roots

of the corresponding dispersion equation will determine the normal mode frequen-
cies. As a result, for each value of the wave vector q we shall obtain m solutions for
w2(q), and for each w2(q) there will be a corresponding eigenvector jj (j = 1.2, ... m).
Following the algorithm described above we can obtain the Hamiltonian Ĥt in a

form similar to Eq. (4-98), the operator of angular displacement ĵjn,j in a form simi-
lar to Eq. (4-99), correlation functions of the type of Eqs. (4-100) and at least the aver-
age energy <Ĥt> in a form similar to Eq. (4-101).
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4.3
Scattering Problem

Now let us apply the results obtained in the previous sections to the scattering prob-
lem. As an example let us consider the problem of scattering slow (thermal) neu-
trons by DNA. In Section 2.8 we described the main features of the method of neu-
tron scattering. Here we shall present the algorithm for the calculation of the double
differential cross-section.
As a model of the internal DNA dynamics let us take the double rod-like model

described in detail in Section 4.1.2. According to the model, the DNA molecule can
be considered as a lattice formed by two chains of pendula imitating DNA bases.
First let us consider a perfect lattice, that is let us assume that each pendulum is at
the equilibrium position. For simplicity we suggest also that the threads of the pen-
dula are transparent for neutrons and only the masses take part in the scattering
process. If we consider now the masses as Unuclei’, a standard theory of neutron
scattering by a rigid array of nuclei can be applied.
Interaction of the incident neutron having mass m and coordinate r with a

nucleus having mass M and coordinate R0
n;j can be described by the Fermi pseudo-

potential [233]:

Vn,j = (2p"2Bn,j/m) d(r–R
0
n;j ), (4-102)

where Bn,j is the scattering length. So, the interaction of the incident neutron with a
rigid array of 2N nuclei is described by the potential

V ¼ ð2p�h
2
=mÞ

X

n

X

j

Bn;jdðr � R
0
n;jÞ: (4-103)

If we allow nuclei to undergo small displacements from their equilibrium posi-
tions, the coordinates of the nuclei will take the form

Rn,j(t) = R
0
n;j + un,j(t), (4-104)

where the displacements un,j(t) are determined by Eq. (4-76). Inserting Eq. (4-104)
into Eq. (4-103) we obtain the generalized expression for the potential V

V ¼ ð2p�h
2
=mÞ

X

n

X

j

Bn;jdðr � R
0
n;j � un;jÞ: (4-105)

Then the master formula for the partial differential cross-section takes the form
[233]

¶r/¶X¶E†=2N(k†/k¢) B2 Scoh(x,w¢) + 2N(k†/k¢) (B2 � B
2
) Sincoh(x,w¢), (4-106)
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where k¢=|k¢|, k†= |k†|, and k¢ and k† are the wave-vectors of the incident and scattered
neutrons, respectively; ... denotes averaging over all spins and isotopes; Scoh(x,w¢)
and Sincoh (x,w¢) are the dynamical factors of coherent and incoherent scattering

S
cohðx;w0 Þ ¼ ð4p�hNÞ�1

ðþ1

�1

dt expð�iw0 tÞ
X

n;n0

X

j;j0
< expð�ixR

0
n;jð0ÞÞ; expðixRn0 j0 ðtÞÞ >;

(4-107)

S
incohðx;w0 Þ ¼ ð4p�hNÞ�1

ðþ1

�1

dt expð�iw0 tÞ
X

n

X

j

< expð�ixR
0
n;jð0ÞÞ; expðixRn;jðtÞÞ >;

Here w¢ = (E¢ – E†)/", and E¢ = "2k¢2/2m and E† = "2k†2/2m are the energies of the
neutron before and after scattering; x = k¢– k†; <...> denotes averaging over the posi-
tions of the nuclei (or pendulum masses imitating nitrous bases).

4.3.1
Scattering by 8Frozen’ DNA

If the temperature is rather low, we can assume

un,j(t)=0. (4-108)

Inserting Eqs. (4-108) and (4-107) into Eqn. (4-106) we find

¶r/¶X¶E†=2N(k†/k¢) B2 Sfrcoh (x,w¢) + 2N(k†/k¢) (B
2 � B

2
) S

incoh
fr (x,w¢),

where

S
coh
fr ðx;w

0 Þ ¼ ð1=4p�hNÞ
X

n

X

n0

X

j

X

j0
exp½�ixðR0

n;j � R
0
n0;j0Þ


ðþ1

�1

dt expð�iw0 tÞ ¼

¼ ð1=2Ngf
X

n

X

n0
exp½�ixðR0

n;j � R
0
n0;j0Þ
gf

X

j

X

j0
exp½�ixðdj � dj0 Þ
gdð�hw

0 Þ ¼

¼ ½ð1þ cosxyhÞ=N
j
X

n

expð�ixnaÞj2dðE0 � E
00 Þ ¼

¼ ½2ð1þ cosxyhÞ=a
 dðE
0 � E

00 Þ
X

sz

dðxz � szÞ; (4-109)

S
incoh
fr ðx;w0 Þ ¼ ð1=4p�hNÞ

X

n

X

j

ðþ1

�1

dt expð�iw0 tÞ ¼ dðE0 � E
00 Þ; (4-110)
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where h= b-2l, and it is equivalent to the length of the H-bonds between the bases in
pairs in DNA; xy is the y-projection of the vector x; s = {0; 0; 2pt¢/a} is a vector of the
reciprocal lattice, and t¢ is an integer.
Then the cross-section takes the form

(dr/dX)fr = (dr/dX)fr
coh + (dr/dX)fr

incoh, (4-111)

where the coherent cross-section is

ðdr=dXÞcoh
fr
¼ ð4pNB

2
=aÞð1þ cosxyhÞ

X

sz

dðxz � szÞ; (4-112)

and the incoherent cross-section is

(dr/dX)
incoh
fr = 2N(B

2 � B
2Þ: (4-113)

Equation (4-112) describes coherent scattering with sharp peaks of intensity of
scattered neutrons as determined by the condition

xz = sz ; (4-114)

and Eq. (4-113) describes an incoherent scattering which does not depend on the
angle of scattering and looks like a simple background.

4.3.2
Elastic Scattering

Let us allow nuclei to undergo small displacements from their equilibrium positions
and consider the contribution of elastic scattering of neutrons by DNA. For the pur-
pose, we can use Eq. (4-106) and extract there the terms which are independent of
time t. This can be easily done if we rewrite the correlation functions in Eq. (4-107)
in the following form

<exp(–ixR
0
n;j (0)), exp(ixR

0
n0;j0(t)> =

= <exp(–ixR
0
n;j (0)), exp(ixR

0
n0;j0(¥)> +{<exp(–ixR

0
n;j (0)), exp(ixR

0
n0;j0(t)> –

– <exp(–ixR
0
n;j (0)), exp(ixR

0
n0;j0(¥)>}. (4-115)

and keep only the first term which is responsible for the elastic scattering. The term
can be rewritten then in the following way

<exp(–ixR
0
n;j (0)), exp(ixR

0
n0;j0(¥)> = <exp(–iRx

0
n;j (0)> <exp(ixR

0
n0;j0(¥)> =

= exp(–ixR
0
n;j )exp(ixR

0
n0;j0) <exp(–ixufi

n,j)> <exp(ixufi
n0;j0 )> =
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= exp(–2Wx,j)|exp(ixR
0
n;j )|

2 ; (4-116)

where exp(–2Wx,j) = <exp(-ixun,j )> is the well known Debye–Waller factor.
Inserting Eq. (4-116) into Eq. (4-107) and assuming for simplicity thatWx,1 =Wx,2

=Wx we obtain

S
coh
el ðx‚w0 Þ ¼ expð�2Wx Þ½2pð1þ cosxyhÞ=a


X

sz

dðE0 � E
00 Þdðxz � szÞ;

(4-117)
S
incoh
el (x,w¢) = exp(–2Wx)d(E¢-E†).

So, the result is

(dr/dX)el = (dr/dX)
coh
el + (dr/dX)

incoh
el , (4-118)

where the coherent cross-section is

ðdr=dXÞcoh
el
¼ expð�2Wx Þ ð4pNB

2
=aÞð1þ cosxyhÞ

X

sz

dðxz � szÞ; (4-119)

and the incoherent cross-section is

(dr/dX)
incoh
el = exp(–2Wx)2N (B

2 � B
2
). (4-120)

Equationss (4-118) – (4-120) are very similar to Eqs. (4-111) – (4-113) and differ
from them only by the factor exp(–2Wx). The presence of the factor means that the
general diffraction picture (sharp peaks against a slight background) will be changed
a little due to the weak angular dependence of the Debye–Waller factor.

4.3.3
Inelastic Scattering

In the calculations of the inelastic scattering let us restrict ourselves to the so-called
one-phonon approximation [233]. According to the approximation the dynamical fac-
tors of the coherent and incoherent inelastic scattering Eq. (4-107) take the form

S
coh
inelðx;w

0 Þ ¼ ½expð�2Wx Þ=4p�hN

X

n

X

n0

X

j

X

j0
exp½�ixðRn;j � Rn0j0Þ


ðþ1

�1

dt½expð�iw0 tÞ
 < xun;jð0Þ; xun0;j0 ðtÞ > (4-121)

S
incoh
inel ðx;w

0 Þ ¼ ½expð�2Wx Þ=4p�hN

X

n

X

j

ðþ1

�1

d½expð�iw0 tÞ
 < xun;jð0Þ; xun;jðtÞ > :
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We need now to calculate the correlation functions <xun,j(0), xun¢j¢(t)>. After
inserting Eq. (4-76) into Eq. (4-11) we have

<xun,j(0), xun¢,j¢(t)>=

=<xx[-l(1 – cosjn,j(0))] + xyl sinjn,j(0), xx[-l(1 – cosjn¢,j¢(t))] + xyl sinjn¢,j¢(t)> =

= xx
2l2 <(1 – cosjn,j(0), (1 – cosjn¢,j¢(t))> – xyxxl

2 <sinjn,j(0), (1 – cosjn¢,j¢(t))> –

– xxxyl
2 <(1 – cosjn,j(0)), sinjn¢,j(t)> + xy

2l2 <sinjn,j(0), sinjn¢,j¢(t)>. (4-122)

In the harmonic approximation Eq. (4-122) can be rewritten in the form

<xun,j(0), xun¢,j¢(t)> = xy
2l2 <jn,j(0), jn¢,j¢(t)>. (4-123)

Inserting then Eq. (4-99) into Eq.(4-123) we obtain

<xun,j(0), xun¢,j¢(t)> =

¼ ðx2y l2�h=2NIÞ
X

q

X

q0

X

g

X

g 0
fjg

j ðqÞj
g 0

j0 ðq0 Þ=½wg ðqÞwg 0 ðq0
ˆ
AÞ
� < ðb̂bq;g ð0ÞÞþ

+ b̂–q,g(0)), (b̂q¢,g¢(t) + b̂+–q¢,g¢(t))> exp(iqna) exp(iq¢n¢a). (4-124)

Let us take into account that the model Hamiltonian (4-98) describes the ideal
Bose gas and that the correlation functions in this case are

<b̂q,g(0), b̂q¢,g¢(t)> = <b̂+q,g(0), b̂
+
q¢,g¢(t)> = 0,

<b̂+q,g(0), b̂q¢,g¢(t)> = nq,g exp[–iwg(q)t] dq,q¢ dg,g¢, (4-125)

<b̂q,g(0), b̂
+
q¢,g¢(t)> = (nq,g + 1) exp[iwg (q)t] dq,q¢ dg,g¢,

where nq,g = {exp["wg(q)/kBT] – 1}
–1; kB is the Boltzmann constant and T is the abso-

lute temperature. Inserting then Eq. (4-125) into Eq. (4-124) we obtain the correla-
tion functions

<xun,j(0), xun¢,j¢(t)> =
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j ðqÞj
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½exp½�iqðn� n0 Þa
g: (4-126)
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And finally, for Scohinel (x,w¢),
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exp[–iwg(q)t] exp[–iq(n-n¢)a]}. (4-127)

If we take into account the relations

ð1=2pÞ
ðþ1

�1

dt expðixtÞ ¼ dðxÞ;

d(x)/a = d(ax), (a>0), (4-128)

d(–x) = d(x),

Eq. (4-127) can be rewritten in the form
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j (q)j
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j0 (q) nq,g exp[–iq(n – n¢)a] d(wg(q) + w¢)}. (4-129)

If we take then into account that

ð1=NÞ
X

n

X

n0
exp½�iðxz � qÞðn� n0 Þa
 ¼ ð2p=aÞdðxz � q� szÞ; (4-130)

we can reduce Eq. (4-129) to
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+ "w¢)}. (4-131)
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So, the dynamical factor (4-131) is the sum of two terms. The first, which contains
d(xz – q – sz) d("w g(q) – "w¢) represents a scattering process in which one phonon
is created and the second term containing d(xz + q – sz) d ("w g(q) + "w¢) represents
a process in which one phonon is annihilated. The delta functions associated with
the scattering process represent conservation of energy and momentum

"w¢ = ("2k¢2 – "2k†2)/2m= – "wg(q), (4-132)

xz = k¢z – k†z = 2 t¢/a – q. (4-133)

The upper symbol (plus) in Eqs. (4-132) and (4-133) corresponds to the process of
scattering accompanied by creation of one phonon, and the lower symbol (minus)
corresponds to the process of scattering accompanied by the annihilation of one
phonon. Due to conditions (4-132) and(4-133) for a given scattering angle only pho-
nons of a particular q and wg(q) can give scattering. This makes it possible to deter-
mine the DNA phonon spectrum, w g(q), as a function of q.
The dynamical factor of the incoherent inelastic scattering can be calculated from

Eq. (4-127) if we take there n= n¢ and j = j¢
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Notice, that Eq. (4-134) contains delta functions to ensure energy conservation,
but there are no momentum conservation conditions.
If we use now Eq. (4-106) and (4-131) – (4-133), we obtain the final result for the

inelastic cross-section
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4.4
Linear Theory and Experiment

Modeling DNA as an assembly of linear waves (phonons) is a widely used approach
in DNA science. Below we illustrate applications of the approach to interpretation of
experimental data. Some of the data admit, however, alternative interpretation based
on the representation of DNA as an assembly of nonlinear waves (solitons). This
possibility will be discussed in detail in Chapter 8.

4.4.1
Fluorescence Depolarization

In fluorescence depolarization measurements, the incident light pulse preferentially
excites molecules whose absorption dipoles are parallel to the electric field of the
light, causing an initial polarization of fluorescence. The polarization of emitted
light decays with time as the excited molecules undergo rotatory Brownian motions.
This decay process is usually represented by the emission anisotropy.
Dyes such as ethidium bind to DNA by intercalation between two base pairs. The

transition dipole moments of ethidium lie in the plane of the dye. It is the reorienta-
tion of the fluorescent dye, embedded in DNA with its transition dipoles parallel to
the bases, that is monitored in the fluorescence depolarization experiments. Assum-
ing that the dye is closely attached to DNA, Barkley and Zimm [119] suggested that
the dye reports rotatory Brownian motions of the helix. Assuming also that the rota-
tions are rapid compared to the reorientations of the axis, they suggested that tor-
sional motions in DNA account for most of the rotational diffusion observed on the
nanosecond time-scale of the experiment.
To derive the rotational diffusion equation in normal coordinates Barkley and

Zimm [119] used the linear dynamical equations for torsional internal motions of
type (4-7) and their solutions. As a result they obtained the time distribution func-
tion of the angular orientation of a fluorescent probe, embedded in the DNA double
chain, and calculated the emission anisotropy.
The predicted decay law was compared with experimental data [234]. It was found

that the decay of the anisotropy arises primarily from twisting of the DNA helix,
with a small contribution from bending.

4.4.2
Low-frequency Spectra: Neutron Scattering, Infrared scattering, Raman Scattering,
Speed of Sound

As we mentioned above, the motions of atoms in DNA can be analyzed as a super-
position of normal-mode oscillations. In the linear approximation, which is valid
only for small amplitudes of the displacements, the behavior of the superimposed
normal modes is all independent. This type of analysis within the harmonic approx-
imation has been applied to DNA by Prohofsky and coauthors [223–230]. This appli-
cation has led to a successful theoretical explanation of the experimental data such
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as the speed of longitudinal sound [231] and inelastic neutron scattering data
[153–155]. The results of calculations performed in the linear approximation repro-
duce very well the Raman peak and the improved shifts observed upon the confor-
mational transitions [235–237], and explain the low-frequency DNA spectrum
[238–241], microwave absorption [159–161], infrared absorption [156–157] and NMR
experimental data [242–248].
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In the previous chapter we considered the linear (or harmonic) approximation of the
DNA theory. This is valid when the amplitudes of the internal motions in DNA are
small. If the amplitudes are large the nonlinear (or anharmonic) effects should be
taken into account. In Chapter 2 we described several examples of large-amplitude
internal motions. Conformational transitions, denaturation processes, the formation
of opening states in DNA–protein recognition processes and the formation of open-
ing states in the first stage of the process of transcription are only some of the best-
known examples of large-amplitude motions.
In this chapter we present several nonlinear models which form the basis of the non-

linear theory of DNA and describe the main principles of constructing the models.

5.1
Nonlinear Mathematical Modeling: General Principles and Restrictions

In Chapter 2 we discussed the main principles of constructing DNA dynamical
models. They are rather general and valid for both linear and nonlinear cases. So,
we can state that the algorithm for constructing nonlinear models of DNA dynamics
should include the following elements:

1. Selection of the main (dominant) motions.
2. Construction of the nonlinear differential equations imitating the motions.
3. Finding solutions to the equations.
4. Interpretation of the solutions.

In practice, however, after selection of dominant motions investigators often use
an additional stage: they find a mechanical analog with the same types of internal
motions and interactions. This additional stage permits simplification of the proce-
dure of constructing the equations.
Let us illustrate the approach by two simple examples. But first we should note

that, as in the previous chapter, we shall restrict ourselves to consideration of ideal
models which are elements of the hierarchy described in Sections 1.6 and 2.7. In
other words, we shall not take into account the influence of the environment, dissi-
pative effects, inhomogeneity of the DNA structure and others. Conditions under
which this approach becomes incorrect will be discussed in the next chapter.

5
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Example 1

This example concerns the modeling of the DNA open states dynamics. The main
stages of the algorithm of constructing the nonlinear models are the following:

1. Selection. Because the main contribution to the opening process is made by
rotational motions of bases it is natural to suggest that just these motions can be
selected as dominant ones. For simplicity, we can limit ourselves by consideration of
rotational motions of bases in one of the two DNA strands and consider the other
strand only as a source of some stabilizing potential field.
2. Mechanical analog and equations. The mechanical analog for rotational motions

of DNA bases was found by Englander et al. [15]: they proposed the use of a simple
mechanical system consisting of a chain of coupled pendula, each of the pendula
being able to rotate in the plane perpendicular to the chain axis (Figure 4.4). Such a
system was constructed earlier by Scott [232] to demonstrate the propagation of non-
linear waves.

Rotational motion of the nth pendulum is described by the equation

ml2€jjn= Kl2(jn+1 – 2jn + jn–1) – mglsinjn, (5-1)

where jn(t) is the angular displacement of the nth pendulum; K is the rigidity of the
horizontal thread; l and m are the length and mass of the pendulum, respectively; g
is the gravitational field constant. If we assume that the solutions we are interested
in are fairly smooth functions, Eq. (5-1) can be rewritten in the continuous approx-
imation

Ijtt = Kl2a2jzz – mglsinj, (5-2)

where I = ml2. After renormalization Eq. (5-2) takes the form

jZZ – jTT = sinj; (5-3)

where Z = (mg/Kl2)�z; T = (g/l)�t. Thus, the rotational motions of pendula in the
model of Scott are described by the well-known sine-Gordon equation.

3. Solutions and their interpretation. Taking into account the analogy between (i)
the rotational motions of bases in one of the DNA strands and rotational motions of
pendula, (ii) the field formed by the second DNA strand and the gravitational field,
(iii) the elasticity of the sugar–phosphate chain of the first strand and that of the
horizontal thread of the mechanical model, Englander et al. [15] suggested that, in
the first approximation, the dynamics of rotational motions of bases in DNA can
also be described by the sine-Gordon equation and that the soliton-like solutions of
the equation, having the form of kinks and antikinks,

jkink, antikink(Z,T) = 4 arctan{exp– [(1-v2)–�(Z–vT–Z0)]} (5-4)
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describe the DNA opening states (Figure 5.1). Here v is the soliton velocity and Z0 is
a constant.

Figure 5.1 (a) Schematic picture of kink-solution of the sine-
Gordon equation; (b) DNA open state corresponding to the
solution.

We should add that besides kink- (antikink-) solutions the sine-Gordon equation
has the phonon solutions

jph(Z,T) = Aq exp[i(qZ – wqT)], wq =(1 + q2)� (5-5)

and the breather solutions

jB(Z,T) = 4 arctan{asinh/ch[ca(Z–vT–Z0)]}, (5-6)

where h= cX(T–vZ) + h0; c= (1–v2 )–1; a2 = (1 – X2)/X2 ; 0< X <1; X is the intrinsic
frequency of a breather; v is the velocity; Z0, h0 are free parameters (the initial loca-
tion and the phase). But the role of these two types of solutions in DNA dynamics
and functioning is not clear at present.

Example 2

In this example, we again consider the DNA open states dynamics but in a more
accurate way. In this case, the main stages of the algorithm are the following.

1. Selection. To make the model more accurate, we take into account the rotational
motions of bases in both DNA strands.
2.Mechanical analog and equations. To find the Fmechanical’ analog we can modify

the model of Scott by removing Fgravitational’ field and by adding the second chain

5.1 Nonlinear Mathematical Modeling: General Principles and Restrictions
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of coupled pendula interacting with the first one by additional transverse springs
(Figure 4.5).

The differential equation imitating rotational motions of the nth pendulum in the
first chain then takes the form [26]

I€jjn,1= Kl2(jn+1,1 – 2jn,1 + jn–1,1) – kl2[2sinjn,1 – sin(jn,1 + jn,2)] (5-7)

and the form of the equation imitating rotational motions of the nth pendulum in
the second chain is

I€jjn,2 = Kl2(jn+1,2 – 2jn,2 + jn–1,2) – kl2[2sinjn,2 – sin(jn,2 + jn,1)]. (5-8)

In the continuum limit Eqs. (5-7) and (5-8) reduce to

Ij1tt = Kl2a2j1zz – kl2{2sinj1 – sin(j1 + j2)}, (5-9)

Ij2tt = Kl
2a2j2zz – kl2{2sinj2 – sin(j2 + j1)}. (5-10)

3. Solutions. Equations (5-9) and (5-10) have at least two groups of particular soli-
ton-like solutions. The first one satisfies the condition j1 = j2, and the second the
condition j1 = –j2. In the first case we have two pair solutions: kink–kink, and anti-
kink–antikink solutions formed by kink and antikink solutions of the double sine-
Gordon equation [249]

Ijtt = Kl2a2jzz – kl2{2sinj – sin2j}. (5-11)

In the second case we have analogous pairs formed, however, by kink and anti-
kink solutions of the sine-Gordon equation

Ijtt = Kl2a2jzz – kl22sinj. (5-12)

4. Interpretation. Solutions of Eq. (5-12) describe the dynamics of DNA open states
but more accurately.

The two nonlinear models presented above as examples could be considered as
the elements of the hierarchy of nonlinear models [250]. Such a hierarchy can be
easily constructed in the same way as was done in the previous chapter. In the fol-
lowing sections of this chapter we shall describe the main nonlinear models of dif-
ferent levels of the hierarchy.

5 Nonlinear Theory of DNA: Ideal Dynamical Models
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5.2
Nonlinear Rod-like Models

Let us consider again the uniform elastic rod with circular section. This model takes
into account three types of internal DNA motions: stretching, twisting and bending
ones. As was shown in Chapter 4 the Hamiltonian of the model system has the
form

H = Hs + Ht + Hb + Hs-t + Hs-b + Ht-b, (5-13)

where the terms Hs, Ht and Hb describe longitudinal displacements (stretching),
torsional motions (twisting) and bending motions in the elastic rod; the terms Hs-t,
Hs-b and Ht-b describe interactions between these motions. Taking into account the
linear dynamical equations which we obtained in Section 4.2, the expected general
form of the nonlinear equations corresponding to this Hamiltonian is

rutt = Yuzz + nonlinear term + Us-t + Us-b; (5-14)

ijtt = Cjzz + nonlinear term + Ut-s + Ut-b; (5-15)

Srytt =-YIyzz + nonlinear term + Yb-s + Yb-t; (5-16)

where Us-t, Us-b, Ut-s, Ut-b, Yb-s and Yb-t are the terms describing interactions be-
tween internal motions in DNA.
The problem of deriving the form of all terms of Eqs. (5-14) – (5-16) has not been

solved yet. Only a few simple models which could be considered as particular cases
of the general problem have been investigated. Muto et al. [251], Christiansen et al.
[252] and Ichikawa et al. [253] each developed such a model.

5.2.1
The Rod-like Model of Muto

To describe the model of Muto let us return again to the discrete version of the
model of the elastic rod, and consider a one-dimensional lattice with lattice constant
a and N lattice points (disks) (Figure 1.8b). Let us suggest that the longitudinal dis-
placements of disks from their equilibrium positions are given by u1, u2, ... un, and
the potential of the springs connecting the disks is described by the formula of Toda

V(un+1 – un) = (A/B) exp[–B(un+1 – un)] + A(un+1 – un), (5-17)

where A and B are arbitrary parameters, n= 1,2, ... N.
Then the corresponding dynamical equations take the form

m;n= V¢(un+1 – un) + V¢(un – un–1), n= 1,2, ... N. (5-18)

5.2 Nonlinear Rod-like Models
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To pass then to the continuum approximation, let us use the formula

lim
a!0

{T(fn+1) – 2T(fn) + T(fn–1)} = [1 – (a
2/12)(¶2/¶z2)]–1 a2(¶2/¶z2)T(f); (5-19)

obtained by Collins [254], Rosenau [255] and Hyman [256]. Here T is the nonlinear
function of fn(t). In the continuum approximation na fi z; fn(t) fi f(z,t), and
Eq. (5-18) reduces to

(r/A)utt = buzz – (b
2/2)(u2)zz + (ra2/12A)uzztt; (5-20)

where r = m/a, b = aB. Equation (5-20), obtained by Muto and coauthors, can be
considered as a particular case of the more general Eq. (5-14) where only longitudi-
nal motions are taken into account. Equation (5-20) has the form of the improved
Boussinesq equation [257, 258], and in the soliton limit it has the compressional
solitary-wave solution [252]

u(z,t) = –(3/b )(v2–1) sech2 {[3/(v2–1)]�/va}{z-v(bA/r)�t-z0] (5-21)

which travels with velocity v(bA/r)�(|v| > 1). The maximum amplitude is 3(v2 –1)/b
and the width of the solitary wave is inversely proportional to [3/(v2 –1)]�/va (z0 is
the position of the solitary wave at time t = 0).

5.2.2
The Model of Christiansen

In 1990 Christiansen and coauthors suggested an improved model where the disks
are permitted to move not only longitudinally but also transversely [252].
In the improved model it is assumed that longitudinal and transverse dis-

placements of disks from their equilibrium positions are given by u1, u2, ..., uN and
y1, y2, ..., yN, respectively. The elongation (or compression) of the spring connecting
the nth and the (n+1)th disks is given by

rn= [(a + un+1 – un)
2 + (yn+1 – yn)

2]� – l. (5-22)

And the Toda potential imitating interactions between disks has the form

V(rn) = (A/B)[exp(–Brn) –1] + Arn;

where A and B are constants.
The Hamiltonian of the model can now be written in the form

H ¼
XN

n¼1
½mð _uu2n þ _yy

2
nÞ þ VðrnÞ�; (5-23)

and the dynamical equations corresponding to the Hamiltonian are
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m;n= – V¢(rn) ¶rn/¶un – V¢(rn–1) ¶rn–1/¶un;
(5-24)

m€yyn= – V¢(rn) ¶rn/¶yn – V¢(rn–1) ¶rn–1/¶yn.

In the continuum limit and in the first approximation the dynamical equations
reduce to two decoupled equations

(r/A)utt = buzz – (b
2/2)(u2)zz + (ra2/12A)uzztt, (5-25)

(r/A)ytt = (r/A)(a
2/12)yzztt; (5-26)

where r=m/a, b=aB. The solitary wave solution of Eq. (5-25) has a form similar to
Eq. (5-21).

5.2.3
The Rod-like Model of Ichikawa

The model of Ichikawa et al. [253] was developed to study anharmonic effects in the
bending dynamics of a beam. If we use the approach based on the hierarchy, we can
consider this model as the first-level model of DNA. So, we can apply the results
obtained by Ichikawa and coauthors to DNA.
According to Ichikawa the equations of motion of the small element AB illustrat-

ed in Figure 5.2 can be written as

rS¶2y/¶t2 = ¶S/¶x,
(5-27)

¶M/¶x + P¶y/¶x + S = 0,

where r is the density of the material, S is the cross-sectional area, S is the stress
resultant parallel to the y axis, and P is the end-thrust parallel to the x axis. S and P
are assumed to be constant. For bending moment M we have the following relation
[259]

M = EI/R = EI(¶2y/¶x2)/{1 + (¶y/¶x)2}3/2, (5-28)

where E is the Young’s modulus, I the moment of inertia and R represents the
radius of curvature of bending beam. Combining Eqs. (5-27) and (5-28) we obtain
the nonlinear partial differential equation

rS¶2y/t2+ P(2y/x2)y + EI2{[2y/x2]/[1 +(y/x)2]3/2}/x2= 0, (5-29)

which describes the bending dynamics of the beam.

5.2 Nonlinear Rod-like Models
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Figure 5.2 Transverse displacement of elastic rod.

Dynamical Eq. (5-29) can be considered as a particular case of the more general
Eq. (5-16) describing the bending dynamics of DNA. It can be reduced to the form

¶2Y/¶T2 – ¶2Y/¶X2 + 2ed2{[1 + (¶Y/¶X)2]3/2 ¶2Y/¶X2}/X2= 0, (5-30)

where the dimensionless variables X,Y and T are defined as x = A�X, y = A�Y,
t = (A�/k)T, and the parameters are defined as k = (r/rA)�, e = EI/2r A, r = –P.
Restricting our interests to propagation of the nonlinear deformation wave along
DNA, we can introduce the stretched coordinates

n= X + T,
(5-31)

s = T.

Retaining up to the first order of e, which measures the relative size of bending
stiffness over tensile along DNA, we can reduce Eq. (5-30) to

¶(¶Y/¶n)/¶s + ¶2/{[¶2Y/¶n2]/[1+(¶Y/¶n)2]3/2}/¶n= 0. (5-32)

Equation (5-32) has been shown to be integrable by the inverse scattering trans-
formation [260]. Indeed, introducing the variable g defined as

g = n – v, v > 0 (5-33)

and carrying out the integration twice, we obtain

vY – {1 + (¶Y/¶g)2}3/2 ¶2Y/¶g2= 0. (5-34)
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This equation is known to be the equation which determines the shape of the sur-
face of a fluid in a gravitational field and bounded on one side by a vertical wall
[261]. The localized solitary solution of the equation is determined by the expression

– v�(g – g0) = – sech
–1 |v�Y/2| + 2(1 – vY2/4)�. (5-35)

The solution is illustrated in Figure 5.3. We can interpret it as a local deformation
moving along the DNA.

Figure 5.3 The solution of Ichikawa’s model. Reproduced with
permission from Ref. [253].

5.3
Nonlinear Double Rod-like Models

Let us consider now the model consisting of two elastic chains weakly interacting
with one another (Figure 1.9a). A discrete analog of the model is shown in Figure
1.9b. It consists of two straight chains of disks connected by longitudinal and trans-
verse springs. We assume that every disk in a chain can (i) move along the chain
(longitudinal motions), (ii) move perpendicular to the chain (transverse motions),
and (iii) rotate around the chain (torsional motions).

5.3.1
General Case: Hamiltonian

As we could expect the general form of the Hamiltonian, consisting of several terms

H ¼
X2

i¼1
fHðiÞl þH

ðiÞ
t þH

ðiÞ
tr þH

ðiÞ
l-t þH

ðiÞ
l-tr þH

ðiÞ
t-trg þH

ð1-2Þ
; (5-36)

coincides with Eq. (4-27) except that each of the terms contains, besides harmonic
(quadratic) terms, terms of higher order (anharmonic terms). The terms HðiÞl , H

ðiÞ
t

and HðiÞtr of Eq. (5-36) describe the contribution of longitudinal, torsional and trans-
verse motions of the disks in the ith chain (i = 1, 2); the terms HðiÞl-t , H

ðiÞ
l-tr and HðiÞt-tr

describe interactions between the motions of the disks in the same (ith) chain; the
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term Hð1-2Þ describes the interaction between the chains through transverse springs,
and it has a form very similar to Eq. (4-28):

H
ð1-2Þ ¼ H

ð1-2Þ
l-l þH

ð1-2Þ
t-t þH

ð1-2Þ
tr-tr þH

ð1-2Þ
l-t þH

ð1-2Þ
l-tr þH

ð1-2Þ
t-tr . (5-37)

5.3.2
General Case: Dynamical Equations

Let us write the dynamical equations corresponding to the Hamiltonian (5-36). We
can do this easily if we take into account the form of the equations written in the
first (linear) approximation. So, the general form of the equations imitating longitu-
dinal motions is

M;n,1 = K
l
1 (un+1,1 – 2un,1 – un–1,1) + nonlinear terms + coupling terms,

(5-38)
M;n,2 = K

l
2 (un+1,2 – 2un,2 – un–1,2) + nonlinear terms + coupling terms.

The equations describing torsional motions are

I€jjn,1 = K
t
1 l
2(jn+1,1 – 2jn,1 – jn-1,1) + nonlinear terms + coupling terms,

(5-39)
I€jjn,2 = K

t
2 l
2(jn+1,2 – 2jn,2 – jn-1,2) + nonlinear terms + coupling terms.

And those describing transverse motions are

Mÿn,1= Kb(yn+1,1 – 2yn,1 – yn–1,1) + nonlinear terms + coupling terms,
(5-40)

Mÿn,2= Kb(yn+1,2 – 2yn,2 – yn–1,2) + nonlinear terms + coupling terms.

Here un,i, jn,i and yn,i are longitudinal, angular and transverse displacements,
respectively;M and I are the masses and the moments of inertia of the disks; K l

i and
K t
i are the longitudinal and torsional rigidities of the ith chain (i= 1, 2) and Kb is the
rigidity of the transverse springs between the chains.
The explicit form of the nonlinear terms and coupling terms of Eqs. (5-38) –

(5-40) has not been found yet, and nobody has tried to construct them and to con-
sider the problem in the general case. Only a few simplified approaches to the prob-
lem have been proposed. One was presented in the works of Yomosa [16, 17], Takeno
and Homma [18, 19], Fedyanin and coauthors [23, 24], Zhang [28] and Yakushevich
[26]. We shall call the corresponding approximate model the Y-model. Another ver-
sion was developed by Peyrard and Bishop [34, 262]. One more interesting version
was proposed by Muto and coauthors [32]. And other versions were proposed by
Christiansen and coauthors [258], by Zhang [47], by Xiao and coauthors [263], by
Zhang and Collins [264], by Barbi and coauthors [265, 266], and Campa [267]. Below
we describe the main models in detail.
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5.3.3
The Y-model

The Y-model can be considered on the one hand as an improved version of Englan-
der’s model described in Section 5.1, and on the other hand as a particular case of
the general problem Eq. (5-38) – (5-40). The improvement consists in taking into
account the rotational motions of the bases in both polynucleotide chains of the
DNA molecule, while in Englander’s model the rotational motions of the bases of
only one of two polynucleotide chains were taken into account, and the other chain
played the role of the source of some potential field which was an analog of the grav-
itational field in the mechanical model of Scott. This improvement leads to the
appearance of two coupled nonlinear equations [26]

I€jj1 = K
t
1a
2l2j1

zz
+ Kbl2[2sinj1 – sin(j1+ j2)],

(5-41)
I€jj2 =K

t
2 a

2l2j2
zz
+ Kbl2 [2sinj2 – sin(j2 + j1)]

instead of one equation of type (5-2). Let us illustrate how Eq. (5-41) can be obtained.
It is convenient to begin with a discrete version of the double rod-like model shown
in Figure 1.9b and then pass to the continuous approximation.

5.3.3.1 Discrete Case
The discrete analog of the Y-model consists of two chains of disks connected by long-
itudinal and transverse springs. The Hamiltonian of such a model has the form

H = T + V(1) + V(2), (5-42)

where T is the kinetic energy of torsional vibrations of the disks, and V(1) is the
potential energy of the longitudinal springs and V(2) is the potential energy of the
transverse ones. For Twe have

T ¼
X

i;n

Ii _jj
2

i;n
=2: (5-43)

Here i and n are the numbers of the chains and disks, respectively, ( i= 1, 2; n= 1,
2,... N), ji,n is the angle of rotation of the nth disk of the ith chain; and Ii is the
moment of inertia of the disks of the ith chain. For V(1) we have

V
ð1Þ ¼

X

i;n

K
1
i D l

2
i;n;nþ1=2; (5-44)

where K l
i is the rigidity of the longitudinal springs of the ith chain, and D l

i;n;nþ1 is the
stretching of the longitudinal spring between the nth and (n+1)th disks in the ith chain

D l i;n;nþ1 = l [1-cos(ji,n – ji,n+1)]. (5-45)

Here l is the radius of the disks.
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In Section 1.3, when describing the main interactions in DNA, we showed that
hydrogen interactions between bases in pairs are much weaker than the usual
chemical interactions. So, we can assume that in our model longitudinal springs
imitating chemical bonds in sugar–phosphate chains are more rigid than transverse
springs imitating hydrogen bonds. As a result, we can conclude that the linear
approximation is quite correct when modeling V(1), but the nonlinear approximation
should be used when modeling V(2).
In the linear approximation the potential energy of the longitudinal springs V(1)

then transforms to

V
ð1Þ ¼

X

i;n

K
t
i l
2ðji;nþ1 
 ji;nÞ

2
=2: (5-46)

For V(2) we assume the form

V
ð2Þ ¼

X

n

K
bðD l Þ2=2; (5-47)

where Kb is the rigidity of the transverse springs, and D l n is the stretching of the
nth transverse spring due to rotations of the disks (see Figure 5.4)

Dl n ¼ ½ð2l þ l 0 
 lcosj1;n 
 lcosj2;nÞ
2 þ ðlsinj1;n 
 lsinj2;nÞ

2 �� 
 l 0 : (5-48)

Here l 0 is the length of the transverse spring in the equilibrium state.

Figure 5.4 Cross-section of a pair of disks.

The dynamical equations associated with the HamiltonianH are

I1€jj1,n= K
t
1 l
2(j1,n+1 + j1,n–1 – 2j1,n) – Kb(Dl n/l n)[(2l

2 + l l 0)sinj1,n –

– l2sin(j1,n + j2,n)], (5-49)
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I2€jj2,n= K
t
2 l
2(j2,n+1 + j2,n– 1 - 2j2,n) – Kb(Dl n/l n)[(2l

2 + l l )sinj2,n –

– l2sin(j2,n + j1,n)]; (5-50)

where l n = l 0 + Dl n .

5.3.3.2 Continuous Case
Now we can pass to the continuous limit by (1) substituting ji(z,t) for ji,n(t) and

(2) expanding ji,n–1(t) by the Taylor series up to ji
zz
,

ji,n–1(t) @ ji(z,t) – jiz(z,t) + (1/2)ji
zz
(z,t) a2– ... (5-51)

As a result, Eqs. (5-47) –(5-50) take the form

I1€jj1 = K
t
1 l
2a2j1zz – Kb(Dl/l )[(2l2 + l l 0 )sinj1 – l2sin(j1 + j2)],

(5-52)
I2€jj2 = K

t
2 l
2a2j2zz – Kb(Dl/l )[(2l2 + l l 0 )sinj2 – l2sin(j2 + j1)],

where a is the distance between the nearest disks in the chains. For DNA in the B-
conformation a is approximately equal to 3.4 Q.
The nonlinear Eq. (5-52) is rather complex because the coefficient Dl/l is a func-

tion of variables j1 and j2

Dl/l = 1 – l 0 [(2l + l 0 - lcosj1 – lcosj2)
2 + (lsinj1 – lsinj2)

2]� (5-53)

The equations can however be simplified if we assume that the distance between
the disks in pairs is negligibly small (l 0<< l). Putting l 0 = 0, we finally obtain
Eq. (5-41). The approximate Hamiltonian associated with Eq. (5-41) has the form

H =
R
dz{I1 _jj

2
1/2 + I2 _jj

2
2/2 +K

t
1a
2l2j

2
1zz/2 + K

t
2a
2l2j

2
2zz/2 – Kbl2[2cosj1 +

+ 2cosj2 – cos(j1+j2)]} + const. (5-54)

5.3.3.3 Linear Approximation
The solutions of Eqs. (5-41) can be easily obtained in the linear approximation. In
this case, Eqs. (5-41) take the form

I1€jj1 = K
t
1 l
2a2j1zz – Kbl2(j1 – j2) = 0,

(5-55)
I2€jj2 = K

t
2 l
2a2j1zz – Kbl2(j2 – j1) = 0.
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Assuming that the solutions have the form of plane waves,

j1 = j01 exp[i(qz – wt)],
(5-56)

j2 = j02 exp[i(qz – wt)],

and inserting Eq. (5-56) into Eq. (5-55), we find the dispersion law

(Q1 – I1w
2)(Q2 – I2w

2) – Kb
2
l4= 0; (5-57)

where Qi = Kb2a2l2q2 + Kbl2, (i = 1, 2), q is the wave vector, w is the frequency, and
j01, j02 are the amplitudes. Finally from Eq. (5-57) we find the values of the fre-
quencies

w21,2(q) = {I1Q2 + I2Q1 + [(I1Q2 – I2Q1)
2 – 4I1I2Kb

2
k2l4]�}/2I1I2. (5-58)

In the Fsymmetrical’ case, when I1= I2 = I, Kt
1 =K

t
2 = Kt, the frequencies are

w
2
1 = Kta2l2q2/I, w

2
2 = (K

ta2l2q2 + 2Kbl2)/I. (5-59)

This result correlates well with Eqs. (4-48) obtained in the previous chapter. So,
we can conclude that the torsional vibrations with frequency w1 are of the acoustic
type ( i.e. lim

q!0
w1 = 0) and those with frequency w2 are of the optical type (i.e. lim

q!0
w2

= (2Kbl2/I)� = 0) (Figure 5.5).

The same picture can be found in the general case. Indeed, if we insert q = 0 into
Eqs. (5-58), we obtain

w
2
1 (q = 0) = 0; w

2
2 (q = 0) = Kbl2(I1 + I2)/I1I2. (5-60)

Eqs. (5-60) show that the vibrational spectrum of the model considered consists
of two branches: acoustic and optical. Let us now compare this result with the result
of calculations of the frequency of the torsional oscillations obtained in the frame-
work of a rod-like model (see Section 4.2). In that case only the acoustic branch in
the DNA spectrum was obtained. So, we can conclude that the appearance of the
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Figure 5.5 Two branches of the DNA torsional vibrations calculated in
the framework of the linear approximation of the Yomosa model.



second (optical) branch in the DNA spectrum can be explained by the double-strand
character of the Y-model.

5.3.3.4 The First Integral
The general solution of Eqs. (5-41) has not been found yet but the first integral can
be easily obtained by the following algorithm:

1. Let us assume that the solution of Eqs. (5-41) has the form of running waves:

j1 = j1(z-vt), j2 = j2(z-vt), (5-61)

where v is the velocity of the waves.

2. Insert Eq. (5-61) into Eq. (5-41):

W
2
1j1† – Kbl2[2sinj1 – sin(j1 + j2)] = 0,

(5-62)
W

2
2j1† – Kbl2[2sinj2 – sin(j1 + j2)] = 0.

Here

W
2
1 = Iiv

2 – K
t
i a
2l2; ji†= d2ji/dn2; n= z-vt; i= 1, 2.

3. Multiply the first of Eqs. (5-62) by j1¢ and the second by j2¢.
4. Sum the results.
5. Integrate the expression obtained.

As a result we obtain the first integral in the form

W
2
1j1¢

2/2 + W
2
2j2¢

2/2 – Kbl2[2cosj1 + 2cosj2 – cos(j1 + j2)] = const. (5-63)

Expression (5-63) can be interpreted as an energy conservation law.

5.3.3.5 Kink-like Solutions Found by Newton’s Method
To solve Eqs. (5-41) by Newton’s method, let us assume that their solutions have

the form of Eq.(5-61) and rewrite the corresponding Eqs. (5-63) in the following way:

d2j1/dn2 + a1{2sinj1 – sin(j1 + j2)} = 0,
(5-64)

d2j2/dn2 + a2{2sinj2 – sin(j1 + j2)} = 0,

wherea1=K
bl2/W2

1 ;a2=K
bl2/W2

2 . For simplicity we shall assume below thata1 @a2 =a.
Equations (5-64) can be interpreted as those describing torsional oscillations of

two coupled nonlinear pendula. In the framework of this mechanical model the vari-
able n plays the role of Ftime’ and the variables j1 and j2 the role of angular dis-
placements of the pendula from their equilibrium positions.
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One more interpretation of Eqs. (5-64) can be proposed. If we suggest that the
variable n is the Ftime’ and the fields j1 and j2 are Fcoordinates’, then Eqs. (5-64)
can be considered as an ordinary Newton’s law which describes two-dimensional
motion of a mechanical particle under the action of some potential V(j1, j2).
Indeed, it is easy to rewrite Eqs. (5-64) in the form of Newton’s law:

d2ji/dn2= – dV(j1, j2)/dji; i = 1, 2; (5-65)

with the potential function V(j1, j2) determined by

V(j1, j2) = 2a(cosj1 + cosj2) – acos(j1 + j2) + C. (5-66)

Here C is an arbitrary constant. It is convenient to choose the constant C so that
the function V is nonpositive and equal to zero at the points of the absolute maxi-
mum. Then the potential V takes the form

V(j1, j2) = a[1 – cos(j1 + j2)] – 2a(1 – cosj1) – 2a(1 – cosj2). (5-67)

For a correct statement of the Fmechanical’ problem, Newton’s equations (5-65)
should be supplemented with boundary conditions. These conditions can be found
from the requirement that the energy density of a solitary wave e(z,t) must be local-
ized in space. Since we use variable n instead of z and t, the requirement can be
formulated in the following way: e(n ) must be a limited function at some interval
on the axis and tend to zero when n fi – ¥. From this it follows that

dj1/dn fi 0, dj2/dn fi 0, (5-68)

V(j1,j2)fi 0, (5-69)

when n fi – ¥.
Designating the points of the maximum of the potential function V(j1,j2) by

pairs of Fcoordinates’ {g1,n; g2,m} and using condition (5-69), we find that

j1 fi g1,n; j2 fi g2,m; (5-70)

when n fi – ¥.
Expressions (5-68) and (5-70) completely determine the boundary conditions for

the Fmechanical’ problem.
Integration of Newton’s equations (5-65) supplemented with potential (5-67) and

boundary conditions (5-68), (5-70) is a rather difficult problem. Nobody has suc-
ceeded in finding the general solutions. However, some particular solutions can be
found by using the method of trajectories [268]. Let us illustrate this method.
First, we should model the function G(j1, j2) which determines the so-called

equation of trajectories

G(j1, j2) = 0. (5-71)
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Taking into account the form of the potential (5-67), it is natural to assume that
the function G is a linear combination of the functions cosj1 and cosj2. Then Eq.
(5-71) transforms to

G(j1, j2) = A cosj1 + B cosj2 = 0; (5-72)

where A and B are arbitrary constants.
Let us consider here a more simple variant of Eq. (5-71). Namely, let us assume

that A + B = 0. Then, instead of Eq. (5-72) we have

cosj1 = cosj2, (5-73)

whence we find two families of trajectories

j
ð1Þ
1 = j2 – 2n, n= 0, 1, 2,...,

(5-74)
j
ð2Þ
2 = j1 – 2m, m= 0, 1, 2,... .

The mechanical trajectories obtained are shown in Figure 5.6. Filled circles desig-
nate the Fcoordinates’ of the maxima of the potential function V.

Figure 5.6 Mechanical trajectories.

Let us assume now that at n = –¥ the mechanical particle analog is at point A.
Then it can continue its movement along one of four trajectories (AB1, AB2, AB3 or
AB4) to reach one of the nearest points of maxima at n= +¥. At the same time the
functions j1 and j2 will change from zero (when n = –¥) to 2p or –2p (when n =
+¥). So, we can conclude that Eqs. (5-65) have at least four pairs of kink- (antikink-)
like solutions. They are shown in Figure 5.7. The full lines show the asymptotic be-
havior of the solutions when n fi – ¥. The dashed lines show conventionally the
behavior of the solutions in the vicinity of the point n = 0. The exact behavior near
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the zero point can be found from Eqs. (5-64) supplemented by additional require-
ments: j1 = j2 or j1 = –j2. In the first case, Eqs. (5-64) transform to the double
sine-Gordon equation

d2j/dn2 + 2asinj – asin2j = 0, j1 = j2 = j. (5-75)

In the second case, Eqs. (5-64) transform to the ordinary sine-Gordon equation

d2j/dn2 + 2asinj= 0, j1 = – j2 = j. (5-76)

Both Eqs. (5-75) and (5-76) have kink- (antikink-) like solutions (see, for example,
Refs. [8, 249]) of the type shown in Figure 5.7.

Figure 5.7 Soliton-like solutions corresponding to trajectories
(a) AB1, (b) AB2, (c) AB3 and (d) AB4.

Let us now try to interpret these solutions. If we again use a simple schematic
picture of the DNA molecule consisting of two long lines imitating sugar–phosphate
chains and short transverse lines imitating bases, four types of local distortions cor-
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responding to the four solutions shown in Figure 5.7 can be easily drawn (see Figure
5.8), and they do look like local open states moving along the DNA molecule.

Figure 5.8 Four types of conformational distortion in DNA,
which correspond to trajectories (a) AB1, (b) AB2, (c) AB3 and
(d) AB4.

These results have been obtained, however, only for a particular case when two
assumptions (5-72) and (5-73) were made. In the general case application of the
method of trajectories becomes rather complex and nobody has succeeded in find-
ing new types of solutions by this method.

5.3.3.6 Kink-like Solutions Found by the Method of Hereman
Nonlinear Eqs. (5-41) can be solved by the direct algebraic method described in

detail in the works of Hereman and coauthors [269–271]. This method is based on
the search for solutions of nonlinear differential equations in the form of infinite
series of exponential functions with real exponents. It is suggested that these expo-
nents are the solutions of corresponding linearized differential equations. The coef-
ficients in the expansions are found from recurrent relations and the infinite series
obtained are summed to obtain solutions of the initial nonlinear differential equa-
tions in a closed form.
A significant limitation of this method is the requirement that the nonlinear

equations should contain only strictly polynomial terms. Equations (5-41) do not
meet this requirement: they contain three transcendent terms sinj1, sinj2 and
sin(j1 + j2). We shall show below that this difficulty can be easily overcome.
First let us rewrite Eqs. (5-41) in a more convenient form

j1TT – j1ZZ + 2sinj1 – sin(j1 + j2) = 0,
(5-77)

j2TT – j2ZZ + 2sinj2 – sin(j1 + j2) = 0,

where the new variables Z and T are determined by the formulas

Z = az; T = bt; (5-78)

where a = (Kb/Kt)�/a, b = (Kb/I)�l. To overcome the limitation described above, let
us expand the transcendental terms into the following series
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sinj1 = j1 – j
3
1/3! + j

5
1/5! – ...,

sinj2 = j2 – j
3
2/3! + j

5
1/5! – ..., (5-79)

sin(j1 + j2) = (j1 + j2) – (j1 + j2)
3/3! + (j1 + j2)

5/5! – ...

Inserting expansions (5-79) into Eq. (5-77) yields

j1TT 
 j1ZZ þ
X1

n¼0
ð
1Þn ½2j2nþ11 
 ðj1 þ j2Þ

2nþ1
=ð2nþ 1Þ!� ¼ 0;

(5-80)

j2TT 
 j2ZZ þ
X1

n¼0
ð
1Þn ½2j2nþ12 
 ðj1 þ j2Þ

2nþ1
=ð2nþ 1Þ!� ¼ 0:

All terms in Eq. (5-80) are strictly polynomial, and, therefore, the Hereman meth-
od can be applied. The only difficulty which still remains is the presence of an infi-
nitely large number of terms in the equations. However, we shall show below that
this is not a serious difficulty because, at the final stage, all expansions can be easily
summed, and the final results will be obtained in a closed form.
Following the procedure suggested by Hereman, let us transform the partial dif-

ferential Eqs. (5-80) to ordinary differential equations by going over to the coordinate
system

n= Z – vT; (5-81)

which moves at some constant velocity v. Equations (5-80) then become

ðv2 
 1Þj1nn
þ
X1

n¼0
ð
1Þn ½2j2nþ11 
 ðj1 þ j2Þ

2nþ1
=ð2nþ 1Þ!� ¼ 0;

(5-82)

ðv2 
 1Þj2nn
þ
X1

n¼0
ð
1Þn ½2j2nþ12 
 ðj1 þ j2Þ

2nþ1
=ð2nþ 1Þ!� ¼ 0:

Then we assume that the solutions of Eqs. (5-82) can be represented as expan-
sions in terms of exponential functions g(n) = exp(–qn)

j1 ¼
X1

n¼1
an g

n
; j2 ¼

X1

n¼1
bn g

n
; (5-83)

where the value of q is an arbitrary constant. It is required that the exponential func-
tion g(n) is the solution of the linear part of Eq. (5-82), which has the form
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(v2 – 1)j1nn + (j1 – j2) = 0;
(5-84)

(v2 – 1)j2nn + (j1 – j2) = 0.

Inserting exponential function g(n) into Eq. (5-84) yields the possible values of q

q
2ð1
 v

2Þ ¼ 0
2

n
(5-85)

In the general case we should consider all possible values of q. For simplicity,
however, we consider here only one case when q is real and positive:

q = [2/(1 – v2)]� , v2 < 1. (5-86)

Inserting expansions (5-83) with the values of q determined by Eq. (5-86) into
Eq. (5-82) we obtain the following recurrent relations:

2ð1
 n
2Þan 
 ðan þ bnÞ þ ð1=3!Þ

Xn
1

m¼2

Xm
1

l¼1
½ðal þ bl Þðam
lþ

þbm
l Þðan
m þ bn
m Þ 
 2alam
l an
m � 
 ð1=5!Þ
Xn
1

p¼4

Xp
1

q¼3

Xq
1

m¼2

Xm
1

l¼1
½ðalþ

þbl Þðam
l þ bm
l Þðaq
m þ bq
m Þðap
q þ bp
qÞðan
p þ bn
pÞ



2alam
l aq
map
qan
p � þ ð1=7!Þ
Xn
1

r¼6

Xr
1

s¼5

Xs
1

p¼4

Xp
1

q¼3

Xq
1

m¼2

Xm
1

l¼1
½ðalþ

þbl Þðam
l þ bm
l Þðaq
m þ bq
m Þðap
q þ bp
qÞðas
p þ bs
pÞðar
sþ

þbr
sÞðan
r þ bn
r Þ 
 2alam
l aq
map
qas
par
san
r � ¼ 0;
(5-87)

2ð1
 n
2Þbn 
 ðan þ bnÞ þ ð1=3!Þ

Xn
1

m¼2

Xm
1

l¼1
½ðal þ bl Þðam
lþ

þbm
l Þðan
m þ bn
m Þ 
 2bl bm
l bn
m � 
 ð1=5!Þ
Xn
1

p¼4

Xp
1

q¼3

Xq
1

m¼2

Xm
1

l¼1
½ðalþ

þbl Þðam
l þ bm
l Þðaq
m þ bq
m Þðap
q þ bp
qÞðan
p þ bn
pÞ
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2bl bm
l bq
mbp
qbn
p � þ ð1=7!Þ
Xn
1

r¼6

Xr
1

s¼5

Xs
1

p¼4

Xp
1

q¼3

Xq
1

m¼2

Xm
1

l¼1
½ðalþ

þbl Þðam
l þ bm
l Þðaq
m þ bq
m Þðap
q þ bp
qÞðas
p þ bs
pÞðar
sþ

þbr
sÞðan
r þ bn
r Þ 
 2bl bm
l bq
mbp
qbs
pbr
s bn
r � ¼ 0:

To solve Eqs (5-87) and to find the general structure of the coefficients an and bn,
let us compute step by step the first several coefficients. This yields

n= 1, a1 + b1 = 0, where a1 has an arbitrary value;

n= 2, a2= b2 = 0;

n= 3, a3 + b3 = 0, where a3 = –a
3
1/2

4 T 3;

n= 4, a4 = b4 = 0; (5-88)

n= 5, a5+ b5 = 0, where a5 = a
5
1/2

8 T 5;

n= 6, a6 = b6 = 0;

n= 7, a7 + b7 = 0, where a7 = –a
7
1/2

12 T 7.

Formulas (5-88) allow us to recognize the general structures for the coefficients
an and bn

a2m+1= – b2m+1 = (–1)
ma

2mþ1
1 /24m(2m+1).

(5-89)
a2m= b2m= 0; m= 1, 2, ...

Inserting Eq. (5-89) into Eq. (5-83) yields

j1 ¼ 
j2 ¼
X1

m¼1

1ð Þm ½a2mþ11 =2

4m ð2m þ 1Þ�exp½
ð2m þ 1Þq�: (5-90)

Sum (5-90) can be calculated by, first, differentiating Eq. (5-90):

j
1n
¼ 
j

2n
¼ 
4aqg

X

m¼1
ð
1Þm ða2g2Þm ¼ 4aqg=ð1þ a

2
g
2Þ; (5-91)

where a = a1/4, and, next, integrating the equation obtained. The integration of
Eq. (5-91) gives the solutions of Eq. (5-82) in the form
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j1(n) = – j2(n) = �j1ndn= 4arctan[aexp(qn)] = 4arctan[expq(n – n0)]; (5-92)

where n0 = – ln a/q.
Since the expansion (5-91) is convergent under the condition ag < 1, formulas

(5-92) seem to be valid only in the region n > n0. However, Hereman and coauthors
noticed, that formulas (5-91) can be expanded in a convergent power series in 1/ag if
ag < 1 (that is in the region n < n0). Moreover, they proved that the left- and right-
hand limits for n fi n0 coincide. So, it can be concluded that formula (5-92) is valid
over the whole region – ¥ < n < + ¥.
Expression (5-92) transformed to the initial coordinates Z and T takes the form

j1(Z,T) = – j2(Z,T) = 4 arctan{exp[2/(1–v
2)]� (Z–vT–Z0)}. (5-93)

One of the functions in Eq. (5-93) coincides with the kink-like solution (5-4), the
other is a reflection onto the negative plane. The only difference between Eq. (5-93)
and Eq. (5-4) is the multiplier 2 in the square brackets, which in turn is explained by
the multiplier 2 before sinj and sinj in the initial Eqs. (5-77). So, now we can easily
draw a schematic picture of the functions (5-93) (see Figure 5.9), and the local distor-
tion corresponding to the solution is shown in Figure 5.10. This solution coincides
with one of the solutions found in the previous section by the method of Newton. It
corresponds to the trajectory AB4 and is shown schematically in Figure 5.7d.

Figure 5.9 Solution of the equations (5-77) found by the meth-
od of Hereman.

Figure 5.10 Conformational distortion corresponding to the so-
lution (5-93).

5.3.4
The Model of Peyrard and Bishop

In contrast to the Y model, in the model of Bishop and Peyrard [34, 262] it is
assumed that the main contribution to the process of local opening of base pairs (or
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local melting of the double helix) is made by the stretching of the hydrogen bonds.
This is why, instead of rotation motions of bases, the model includes another two
types of internal motions, namely, the displacements (y1,n and y2,n) of the bases
from their equilibrium positions along the direction of the hydrogen bonds that con-
nect the two bases in a pair. The potential V for the hydrogen bonds is modeled by a
Morse potential and a harmonic coupling due to the stacking is assumed between
neighboring bases. So, the Hamiltonian for the model is

H ¼
X

n

fmð _yy21;n þ _yy
2
2;nÞ=2þ k½ðy1;n 
 y1;n
1Þ

2 þ ðy2;n 
 y2;n
1Þ
2 �=2þ Vðy1;n 
 y2;nÞg

(5-94)
with

V(y1,n – y2,n) = D{exp[–A(y1,n – y2,n)] –1}
2.

As in the previous model the inhomogeneities due to the base sequence and the
asymmetry of the two strands are neglected. Therefore, a common mass m is used
for the bases and the same coupling constant k along each strand is assumed. The
Morse potential V(y1,n – y2,n-1) is an average potential representing the two or three
bonds which connect the two bases in a pair.
It is more convenient to describe the motion of two strands in terms of the variables

x1,n= (y1,n + y2,n)/2
�;

(5-95)
x2,n= (y1,n – y2,n)/2

�;

which represent the in-phase and out-of-phase motions, respectively. The out-of-
phase displacements x2,n stretch the hydrogen bonds.
Hamiltonian (5-94) then takes the form

H = H(x1) + H(x2), (5-96)

where

Hðx1Þ ¼
X

n

fm _xx
2
1;n=2þ kðx1;n 
 x1;n
1Þ

2
=2g; (5-97)

Hðx2Þ ¼
X

n

fm _xx
2
2;n=2þ kðx2;n 
 x2;n
1Þ

2
=2þ D½expð
A2�

x2;nÞ 
 1�
2g: (5-98)

The dynamical equations derived from the Hamiltonian are

m¶2x1,n/¶t2 – k(x1,n+1 + x1,n-1 – 2x1,n) = 0; (5-99)

m¶2x2,n/¶t2 – k(x2,n+1 + x2,n-1 – 2x2,n) – 2
3/2DA{exp(–2�Ax2,n)[exp(–2

�Ax2,n) – 1]}= 0.

(5-100)
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The first of the equations describes usual linear waves (phonons), the second
describes the nonlinear waves (breathers). Equation (5-100) can be expanded in the
continuum limit for small values of x as

m¶2x/¶t2 – ka2¶2x/¶z2 + 2DA2x – 3DA3x2 + (7/3)DA4x3 = 0; (5-101)

where a is the distance between two base pairs; A = A(2)�. The solution of
Eq. (5-101) was obtained in Ref. [271] via a multiple-scale expansion

x = E[F1 (Z,T) exp(iwt) + c.c.] + E2[F0 (Z,T) + F2 (Z,T) exp(2iwt) + c.c.];

where Z = Ez; T = Et; the functions F0 and F2 are expressed in terms of F1 as F0 =
3A|F1|

2 and F2= – AF1
2/2, and the function F1 is a solution of the nonlinear SchrV-

dinger equation

i¶F1/¶s + (c02/2w)¶2F1/¶Z2 + 2wA2|F1|2F1= 0, (5-102)

with s = ET; c0
2= ka2/m and w= 2DA2/m.

Equation (5-102) has soliton solutions which are interpreted as local distortions
moving along the DNA molecule.

5.3.5
The Double Rod-like Model of Muto

To investigate the process of DNA denaturation, Muto et al. [32] suggested a simple
model imitating two polynucleotide strands which are linked together through the
hydrogen bonds. As in the previous two cases, to simplify the calculations the helical
structure of DNA is neglected, and instead of the double helix, two parallel strands,
each being a spring and mass system (Figure 5.11), are considered. Each mass rep-
resents a single base. The longitudinal springs connecting masses of the same
strand represent the van der Waals potential between adjacent base pairs. The trans-
verse springs represent the hydrogen bonds that connect bases in pairs. A homoge-
neous DNA is assumed, therefore each particle has mass m.
For each base pair, the model includes four degrees of freedom, u1,n, y1,n and u2,n,

y2,n, for the two strands, respectively. The u1,n = u1,n(t) and u2,n = u2,n(t), n = 1, 2,...N
denote the longitudinal displacements, i.e., the displacements of the bases from
their equilibrium positions along the direction of the phosphodiester bridge that
connects two bases of the same strand. The y1,n= y1,n(t) and y2,n= y2,n(t), n= 1, 2,...N
denote the transverse displacements, i.e., the displacements of the bases from their
equilibrium positions along the direction of the hydrogen bonds that connect the
two bases of the base pair.
The Toda potential which models the phosphodiester bridge has the form

V(rn) = (A/B) exp(–Brn) + Arn; (5-103)
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Figure 5.11 Schematic plot of the model of Muto. The two iden-
tical anharmonic Toda chains are connected by a Lennard-Jones
potential representing the H-bonds between the two strands.

where rn denotes the relative displacements, and A and B are positive parameters.
So, the anharmonic potentials for the first and the second strands are given by

Vi(ki,n – ai) = A/B exp[–B(ki,n – ai)] + A(ki,n – di), i = 1, 2. (5-104)

Here ki,n denotes the distance between the nth and the (n+1)th base in the ith
strand, and its expression is given by

ki,n= [(di + ui,n+1 – ui,n)
2+ (yi,n+1 – yi,n)

2]� . (5-105)

The Lennard-Jones potential which models hydrogen bonds is given by

V (sn – dt + dh) = 4E{[r/(sn – dt – dh)]
12 – [r/(sn – dt – dh)]

6}; (5-106)

where e and r are the parameters; sn – dt – dh is the length of the hydrogen bond
between the two bases in the nth pair; and sn denotes the distance between two
bases of the two strands

sn= [(dt + y2,n – y1,n)
2+ (u2,n – u1,n)

2]� . (5-107)

Moreover, dt, is the equilibrium distance between the bases in a pair, namely the
diameter of the helix (dt = 20 Q), and dh is the equilibrium length of the hydrogen
bond.
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The Hamiltonian of the model is given then by

H ¼
XN

n¼1

X2

i¼1
fMð _uui;nÞ

2
=2þMð _yyi;nÞ

2
=2g þ Viðki;n 
 aiÞ þ ðsn 
 dt þ dhÞg: (5-108)

Equations corresponding to the Hamiltonian were solved, however, only numeri-
cally and soliton-like solutions imitating open states were found [32].

5.3.6
The Model of Barbi

The model of Maria Barbi et al. [265, 266] takes into account the topological con-
straints related to the helicoidal structure of the molecule and provides an extension
of the approach of Peyrard and Bishop [34, 262] towards a more realistic description
of DNA dynamics.
The model consists of a sugar ring and its connected base which is treated simply

as a point mass (without distinction between the different base types); the phosphate
backbone between two base pairs is modeled as an elastic rod. The additional twist
motion is introduced by allowing the two bases in each pair to move in the base pair
plane instead of constraining them on a line. For convenience a polar coordinate
system is chosen. The model does not attempt to describe the acoustic motions of
the molecule since only the stretching of the base pair distance is considered. This
amounts to fixing the center of mass of the base pair, i.e. the two bases in a pair are
constrained to move symmetrically with respect to the axis of the molecule. Then, to
describe the stretching of a base pair and the variation of the helicoidal twist, two
degrees of freedom per base pair: the coordinates rn and jn of one of the two bases
with respect to a fixed reference frame, are used.
As in the model of Peyrard and Bishop [34, 262], a Morse potential describes the

hydrogen bonds linking bases in a pair with an equilibrium distance R0.
A proper choice of the coupling between radial and angular variables has to repro-

duce the equilibrium helicoidal structure. In DNA, the latter originates from the
competition between the hydrophobic effect (that tends to eliminate water from the
core of the molecule by bringing the neighboring base pair planes closer) and the
rigidity of the two strands (that separates the external ends of the base pairs by
essentially a fixed length related to the phosphate length).
The final Hamiltonian then takes the form

H ¼
X

n

fmð_rr2n þ r
2
n _jj

2
nÞ=2
Dfexp½
aðrn 
 R0Þ� 
 1g

2þ

þ
X

n

Kf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
2 þ r

2
n
1 þ r

2
n 
 2rn
1 rncosðjn 
 jn
1Þ

q

 Lg2þ

(5-109)þ
X

n

G0ðjn
1 þ jnþ1 
 2jnÞ
2
;
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where m is the base mass, D and a are the depth and width of the Morse potential
well, K is the backbone elastic constant, G0 is the backbone curvature constant and L
is determined by

L ¼
X

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
2 þ 4R20sin

2 ½ðjn 
 jn
1Þ=2�:
q

(5-110)

Dynamical equations corresponding to Hamiltonian (5-109) have a small ampli-
tude envelope solution made of a breather in radial variables combined with a kink
in the angular variables. Just this solution was interpreted as that describing local
opening of the hydrogen bonds and formation of denaturation bubbles.

5.3.7
The Model of Campa

Campa [267] extended the model of Barbi [265, 266] to include the case of heteroge-
neous chains, in order to get closer to a description of real DNA. He also suggested
that (1) the bases can move only in planes perpendicular to the helix axis; (2) the
center of the mass of the base pair is held fixed, and (3) the two complementary
bases move symmetrically with respect to the axis of the molecule. So, for each base
pair, there are only two degrees of freedom: rn is the distance between each comple-
mentary base in the nth base pair and the helix axis; hn is the angle that the line
joining the two complementary bases make with a given direction in the planes
where the bases move.
The difference is that in the model of Campa the Morse potential representing the

interaction between complementary bases has two possible depths, one for A-T base
pairs and one for G-C base pairs. And the potential energy will have the following form

V ¼
X

n

fDnfexp½
aðrn 
 R0Þ� 
 1g
2

þ
X

n

ð1=2ÞfCðrnþ1 
 rnÞ
2 þ KðLnþ1;n 
 L0Þ2g; (5-111)

where h is the fixed distance between neighboring base planes, R0 is the equilibrium
value of rn, Ln+1 is the distance between neighboring bases on the same strand

Lnþ1;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
2 þ r

2
nþ1 þ r

2
n 
 2rnþ1 rncosðDhnÞ

q
; (5-112)

L0 is the same function computed for rn+1 = rn = R0 and Dhn = h0 = p/5. So, the
equilibrium configuration is that with rn = R0 and Dhn = h0 for each n, which gives
the system its helicoidal structure.
The first two terms in Eq. (5-111) are the same as in the model of Peyrard and

Bishop [34, 262], and there can be two different values for Dn: DA-T for A-T base pairs
and DG-C for G-C base pairs. The last term in Eq. (5-111) describes a restoring force
that acts when the distance L between neighboring bases on the same strand is dif-
ferent from L0.
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The model described above has been applied to study the process of local uncou-
pling of the double helix. It was shown analytically that, under some uncoiling, the
system exhibits a stable equilibrium configuration in which there is a small region,
of about 20 base pairs, where the hydrogen bond between complementary bases is
completely disrupted, allowing access to the genetic code. Then, through MD simu-
lations, it was found that these open regions can travel along the DNA chain, also
when both thermal noise and heterogeneity are present.

5.4
Nonlinear Models of Higher Levels

To describe the nonlinear internal DNA dynamics more accurately we should use
models of the third and higher levels. But, even models of the third levels are too
complex to deal with. So, to investigate them we restrict ourselves to consideration
of only a limited amount of dominant motions.
The form of the nonlinear dynamical equations describing the motions and the

total amount of them depend substantially on the method of selection of the subu-
nits and motions.
Here we describe briefly two examples of the model dynamical equations. The

first was proposed by Krumhansl and Alexander [20], the other by Volkov [54].

5.4.1
The Model of Krumhansl and Alexander

To describe the A–B conformational transition in DNA, Krumhansl and Alexander
selected the following subunits and motions: the longitudinal displacements of the
nucleoside groups (ui,n), the changes in pseudorotational phase angle describing the
changes in the conformational states of the sugar groups (Pi,n), and the angular displace-
ments of the bases (ji,n) (i= 1, 2). So, the total Hamiltonian has the following form:

H = H0 + Hint. (5-113)

The first term in Eq. (5-113) consists of three terms:

H0 = H01 + H02 + H03. (5-114)

Let us discuss each of them. The term H01 takes the form

H01 ¼
X

n

X2

i¼1
fM _PP

2
i;n=2
 AP

2
i;n=2þ BP

4
i;n=4þ ð
1Þ

i
CPi;n þ KðPi;nþ1 
 Pi;nÞ

2
=2g:

(5-115)

It contains (i) the kinetic energy of the sugars with effective mass M; (ii) the local
potential energy of the deoxyribose as a function of the pseudorotational phase angle
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(the parameters A and B are uncertain but a slightly asymmetric double-well is com-
monly accepted [273]) and a local field giving rise to asymmetry (this is characterized
by the parameter C); (iii) interaction between adjacent sugars expressing the (ener-
getic) favorability of uniform conformation of the sugars (this is characterized by
the parameter K).
The term H02 takes the form

H02 ¼
X

n

X2

i¼1
fMN _uu

2
i;n=2þ kN ðui;nþ1 
 ui;nÞ

2
=2g: (5-116)

This contains the kinetic and potential energy associated with the motions of
nucleotides parallel to the helix axis.
The term H03 takes the form

H03 ¼
X

n

X2

i¼1
fMB

X

n

X2

i¼1
a
2
=2þ kBa

2ðji;nþ1 
 ji;nÞ
2
=2 (5-117)

This contains kinetic and potential energy associated with the angular motions of
the bases
The second term in Eq. (5-113) Hint describes the coupling between different

types of motions

Hint ¼
X

n

X2

i¼1
fX0ðPi;nþ1 
 Pi;nÞðui;nþ1 
 ui;nÞ þ X2ðji;nþ1 
 ji;nÞðPi;nþ1 
 Pi:nÞgþ

þ
X

n

X1fPnþ1;1ðunþ1;1 
 un;1Þ þ Pnþ1;2ðunþ1;2 
 unþ2;2Þg: (5-118)

Dynamical equations corresponding to the Hamiltonian (5-113) are

– M¶2P1,n /¶t2= – C – AP1,n + BP
3
1;n + K(2P1,n – P1,n–1 – P1,n+1) + X0(2u1,n – u1,n–1 –

– u1,n+1) + X1(u1,n – u1,n–1) + X2(2j1,n – j1,n–1 – j1,n+1),

– M¶2P2,n/¶t2 = C – AP2,n + BP
3
2;n + K(2P2,n – P2,n–1 – P2,n+1) + X0(2u2,n – u2,n–1 –

– u2,n+1) + X1(u2,n – u2,n–1) + X2(2j2,n – j2,n–1 – j2,n+1),

– MN¶2u1,n/¶t2 = kN(2u1,n – u1,n–1 – u1,n+1) + X0(2P1,n – P1,n–1 – P1,n+1) +

+ X1(P1,n – P1,n+1),

– MN¶2u2,n/¶t2 = kB(2u2,n – u2,n–1 – u2,n+1) + X0(2P2,n – P2,n–1 – P2,n+1) +

+ X1(P2,n – P2,n–1),
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– MBa
2¶2j1,n/¶t2 = kBa

2(2j1,n – j1,n–1 – j1,n+1) + X2(2P1,n – P1,n–1 – P1,n+1),

– MBa
2¶2j2,n/¶t2 = kBa

2(2j2,n – j2,n–1 – j2,n+1) + X2(2P2,n – P2,n–1 – P2,n+1).

(5-119)

For the nonlinear wave solutions with length, d >> the spacing of the base pairs
and for which P, u and j are smoothly varying, we can go to the continuum limit:

– M¶2Pi/¶t2 = (–1)iC – AP
3
i – K¶2Pi/¶z2 – X0¶2ui/¶z2 + X1¶ui/¶z – X2¶2ji/¶z2,

– MN¶2ui/¶t2 = – kN¶2ui/¶z2 – X0¶2Pi/¶z2 + X1¶Pi/¶z, (5-120)

– MBa
2¶2ji/¶t2 = – kBa

2¶2ji/¶z2 – X2¶2Pi/¶z2, i= 1, 2.

Suggesting solutions in the form of travelling waves

Pi = Pi(z – vt), ui = ui(z – vt), ji= ji(z – vt); i = 1, 2; (5-121)

we obtain

K2¶Pi/¶z2 = (–1)iC – APi + BP
3
i – X1u

0
i /(kN – MNv

2),

(kN – MNv
2)¶ui/¶z = – X0¶Pi/¶z + (–1)i[X1Pi + u

0
i ], (5-122)

a2(kB – MBv
2)¶ji/¶z = – X2¶ji/¶z,

where K = [K – Mv2 – X20/(kN – MNv
2) – X22/a

2(kB – MBv
2)]; u0i (i = 1,2) are constants; A

= [A + X21/(kN – MNv
2)].

The first of the three Eqs. (5-121) has the form of the well known SchrVdinger
equation which has, among others, the soliton-like solution of the type

Pi = Pitanh[(z – vt)/d], (5-123)

where Pi = – (A/B)�, d2 = 2K=A.
The solutions of the other two equations are then

¶ui/¶z = – [X0Pi/d(kN – MNv
2)] sech2[(z – vt)/d] +

+ (–1)i/(kN – MNv
2 ){X1Pitanh[(z – vt)/d] + u

0
i }, (5-124)

¶ji/¶z = – [X2Pi/da
2(kB – MBv

2)] sech2[(z – vt)/d], i = 1, 2. (5-125)

Solutions (5-123) –(5-125) are shown schematically in Figure 5.12. They can be
interpreted as follows: (1) the pucker P goes from say a C2¢ endo to a C3¢ endo as
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one traverses the kink; (2) in the same region the two chains are strained, particular-
ly in the vicinity of the center of the kink; (3) the inter-base-pair angles are decreased
within the kink.

Figure 5.12 Sketch of soliton like solutions of the model of
Krumhansl and Alexander. Reproduced with permission from
Ref. [20].

5.4.2
The Model of Volkov

To describe conformational transitions in DNA, Volkov [54] suggested a model
including two groups of internal motions. The first consists of the motions asso-
ciated with the conformational changes inside the monomer link of the double-
stranded chain. The second involves changes in position of the nucleotide link as a
whole. It is suggested that the intralink changes are related to the transition of a
monomer link into another conformational state through a potential barrier, and the
conformational changes of the second type are simple deviations from equilibrium
positions.
The simplest model which takes into account these specific features of conforma-

tional transitions in DNA is the two-component model, where one component
describes displacements inside the monomer link (r), and the other describes the
monomer as a whole (s). As a definition, it is suggested that r describes the relative
transverse displacements of the base pairs in the direction of the double helix
grooves, and s describes the torsion of a polynucleotide chain.
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The Hamiltonian of this two-component system is

H ¼
X

n

½I _ss
2
n þm _rr

2
n þ g0ðsn 
 sn
1Þ

2 þ f0ðrn 
 rn
1Þ
2 þUðrnÞ þ kFðrnÞðsnþ1 
 sn
1Þ�=2;

(5-126)

Here the summation is over all the monomers in the chain (index n); m is the
reduced mass of a nucleotide link

m= mbpmbb/(mbp + mbb); (5-127)

where mbp is the mass of a base pair; mbb is the mass of a backbone piece; (mbp+mbb)
is the mass of a nucleotide link; I is the moment of inertia of a nucleotide link with
respect to the double helix; g0 and f0 are the force constants of interactions along the
chain (coordinate z); k is the force constant of interaction of the subsystems r and s,
U is the double well potential energy of a conformational transition in a monomer
link (Figure 5.13)

U (r) = e0 + e1(r/a) + e(1 – r2/a2)2, (5-128)

and F(r) characterizes the structural relations between the subsystems and the
mutual alignment of motions in both components

F(r) = (r
2
0 – r2)/a2; (5-129)

where r is defined by the condition

H(–r0) = 0, (5-130)

and e, e0 and e1 are the parameters that define the form of the two-well potential
shown in Figure 5.13.

Figure 5.13 The form of the potential function of a conforma-
tional transition of a monomer link in the model of Volkov.

In the continuum approximation the Hamiltonian H takes the form

H =
R
dz{I[ _ss

2 þ s
2
1 (¶s/¶z2] +ma2[ _uu2 + s

2
2 (¶u/¶z)2] +U(u) + 2Ik0F(u)¶s/¶z}/2h; (5-131)
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where u(z,t) = r(z,t)/a; s21 = g0h
2/I; s22 = f0h

2/m; k0 = kh/I; h is the distance between
the monomers along the chain. The corresponding equations of motion then have
the form

€ss = s
2
1 (¶s2/¶z2) + k0(¶F/¶u)(¶u/¶z);

(5-132)
; = s

2
2 (¶2u/¶z2) – (¶U/du)/2ma2 – k0I(¶F/¶u)(¶s/¶z)/ma2.

And the soliton solutions of the equations found by Volkov are

s = sv cth[q(z – vt – z0)]/{1 – R2cth2[q(z – vt – z0)]}; (5-133)

u= u0 – b – 2b/{R2 cth2[q(z – vt – z0)] – 1}; (5-134)

where sv = k0b(2s0 + ab)/q(s20 
 v2), R2 = (2u0 + b)/(2u0 – b); b = [2(u20 – 1)/(b – 1)]
�; q =

– p�c–�; p = u20(2b – 3) + 1; c = ma2(v2 – s22)/e; b = k20 _II/e(s21 – v2); u0 is defined by the
condition: ¶ u/¶(z-vt) = 0 at u= u0.
The solution of Eq. (5-133) has a kink-type form and the solution of Eq. (5-134) is

a bell-shaped function of z–vt (Figure 5.14). Both solutions were obtained by Volkov
and interpreted as those describing the transmission of local transitions of the A–B
type along the DNA double chain.

Figure 5.14 Soliton solutions of the model of Volkov.
Reproduced with permission from Ref. [54].
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In the previous chapter we discussed in detail ideal nonlinear DNA models where
the effects of the environment and inhomogeneity were not taken into account. In
the ideal models considered we also did not take into account the helicity and asym-
metry of the internal DNA structure. All these effects can be omitted in the first
approximation of the theory, but they become important when we try to apply theo-
retical results to explain experimental data on the DNA dynamics and function.

In this chapter we describe the main approaches and results on studying the
effects.

6.1
Effects of Environment

In the general case, the modeling of the DNA–environment interaction is a rather
complex problem, but here we shall discuss only a simple case when the interaction
of DNA with the environment can be reduced to two effects: the effect of dissipation
and the effect of external fields [25]. We shall also assume that the DNA–environ-
ment interaction leads to small perturbations of the solutions of the ideal model
dynamical equations. In this case a linear perturbation technique can be used. To
simplify the calculations, we suggest that the unperturbed (or ideal) model equation
is a simple sine-Gordon equation

Ijtt = Kl2a2jzz – v0sinj, (6-1)

as proposed by Englander et al. [15] and described in detail in Section 5.1. Here
j(z,t) are the angular displacements of DNA bases from their equilibrium positions;
I is the moment of inertia of the bases; K is the torsional rigidity; l is the distance
from the centers of mass of the bases to the nearest sugar–phosphate chain; a is the
distance between the neighboring base pairs; v0 is the parameter characterizing
hydrogen interactions between the bases in the pairs.

6
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6.1.1
General Approach

It is more convenient to rewrite Eq. (6-1) in the continuum approximation

jtt – C0
2jzz + w0

2sinj= 0; (6-2)

where C0
2 = Kl2a2/I; w0

2 = v0/I. This procedure is correct if the solutions we are
interested in change rather slowly and smoothly along the DNA. In particular, this
can be achieved if 2d = 2al(K/v0)� >> a, where d is the parameter specifying the size
of the sine-Gordon soliton.

Let us assume now that the interaction with the environment leads to the appear-
ance of two additional terms in Eq. (6-2). The first term describing the effect of dis-
sipation has the form

bjt. (6-3)

Here b = damping parameter/I. The second additional term has the form

f0(z,t). (6-4)

Here f0 = external @force’/I. The first term is called the damping or viscous term, the
second, the external driving term.

The problem considered then takes the form

jtt – C0
2jzz + bjt + w0

2sin j= f0(z,t). (6-5)

It is assumed here that the additional terms are small

bjt ~ e, f0 ~ e, e <<1. (6-6)

According to the linear perturbation theory, Eq. (6-5) can be treated by assuming
a solution of the form

j(z,t) = j0(z,t) + w(z,t), (6-7)

where j0(z,t) is the solution of the unperturbed Eq. (6-2), and w ~ e. For the defini-
tion, let us suggest that j0(z,t) has the form of the kink solution

j0(z,t)=4 arctan{exp[(z-vt)c/d]}, (6-8)

where c = (1 – v2/C0
2)–�, d = C0/w0.

Inserting Eq. (6-7) into Eq. (6-5) and linearizing the result in a small quantity e
we find the following equation for w(z,t)
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wtt – C0
2wzz + bjt

0 + [w0
2 cosj0] = f0(z,t). (6-9)

Taking into account that the @potential’ [w0
2 cosj0] in Eq. (6-9) is the function of

the variable c(z-vt)/d, we can introduce new variables

z = c(z-vt); t = c(t – vz/C0
2). (6-10)

Eqs. (6-10) describe a transformation, called the Lorentz transformation, to a new
moving system of coordinates. In this system the functions occurred in Eq. (6-9)
and their derivatives take the form

w(z, t) fi w(z, t), f0(z, t) fi f
0
(z, t),

j0(z, t) fi j
0
(z),

wt fi w
z

zt + w
t

tt = c(w
t

– vw
z
), jt

0 fi – cvj
0
z, (6-11)

wz fi c(w
z

– vw
t

/C0
2), wtt fi c2(w

tt
– 2vw

tz
+ v2w

zz
),

wzz fi c2(w
zz

– 2vw
zt

/C0
2 + v2w

tt
/C0

4).

Inserting Eq. (6-11) into Eq. (6-9), we obtain the equation for wðz; tÞ:

w
tt

– C0
2w

zz
+ [w0

2 cosj
0
(z)]w = f

0
(z, t) + bcvj

0
z. (6-12)

The solution of Eq. (6-12) can be found by the following algorithm.
To begin with, let us consider the homogeneous equation

w
tt

– C0
2w

zz
+ [w0

2 cosj0 (z)]w = 0; (6-13)

and suggest that the solution of the equation has the form

jhom(z, t) = exp(iWt) f(z). (6-14)

Then by inserting Eq. (6-14) into Eq. (6-13) we obtain the linear SchrIdinger equa-
tion

– C0
2fzz + [w0

2 cosj
0
(z)]f = W2f; (6-15)

the solutions of which are ([274, 275]):

1. One bound state which is characterized by the eigenvalue Wb and the eigen-
function f b(z)

Wb
2= 0; f b(z) = (2/d)sech(z/d); (6-16)
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2. The continuum spectrum which is characterized by an ensemble of the
eigenvalues Wk and the eigenfunctions f k(z)

Wk
2=C0

2k2 + w0
2; f k(z) = (C0/2pWk)[k + (i/d) th(z/d)] exp(ikz). (6-17)

Because the functions f b(z), f k(z) are the eigenfunctions of the self-adjoint opera-
tor D̂

D̂ = – C0
2(d2 /dz2) + [w0

2 cosj
0
(z)], (6-18)

we can state that they form the complete orthonormal basis in the space of functions
of the variable z. The condition of orthogonality is provided by the equations

ðþ1

�1

f
bðzÞf bðzÞdz ¼ 8=d;

ðþ1

�1

f
kðzÞf bðzÞdz ¼ 0; (6-19)

ðþ1

�1

f
�kðzÞf k

0

ðzÞdz ¼ dðk� k
0 Þ;

and the condition of the completeness is provided by the equation

ðþ1

�1

f
�kðz0 Þf kðzÞdkþ ðd=8Þf bðz0 Þf bðzÞ ¼ dðz0� zÞ; (6-20)

Let us return now to the initial inhomogeneous Eq. (6-12) and expand its solution
(w(z, t)) in the basic functions f b, f k

wðz; tÞ ¼ ðd=8ÞjbðtÞf bðzÞ þ
ðþ1

�1

j
kðtÞf kðzÞdk: (6-21)

Let us expand also the function f 0(z, t) in the same way:

f
0
ðz; tÞ ¼ ðd=8ÞqbðtÞf bðzÞ þ

ðþ1

�1

q
kðtÞf kðzÞdk; (6-22)
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and suggest that

j
0

z
= fb(z). (6-23)

Here the coefficients qb(t), qk(t) are determined by

qi(t) = P
R

f
0

(z, t) f i(z)dz; i = b, k. (6-24)

The validity of Eq. (6-23) can be easily checked by differentiation of Eq. (6-2) and
by comparison of the result obtained with Eq. (6-15). Equations determining the
coefficients ji(t) (i = b, k) can be found in the following way.

Let us (i) insert Eqs. (6-21) – (6-23) into Eq. (6-12), (ii) multiply the result by f b(z)
and (iii) integrate over the variable z. As a result we obtain the equation

j
b
tt = qb(t) + 8v/d. (6-25)

By the same method we can obtain the equation determining the coefficient
jk(t). Indeed, let us (i) insert Eq. (6-21) – (6-23) into Eq. (6-12), (ii) multiply the
result by f k(z) and (iii) integrate over the variable z. As a result we obtain the equa-
tion

j
k
tt + Wk

2jk = qk(t). (6-26)

Equations (6-25), (6-26) supplemented by Eq. (6-24) complete the solution of the
problem. Inserting the solutions of Eqs. (6-25) and (6-26) into Eq. (6-21) one can
find the unknown function w(z, t). And finally after returning to the old variables

z = c(z + vt); t = c(t + vz/C0
2); (6-27)

the function w(z,t) can be found.
To understand the physical sense of the results obtained, let us look again at the

resulting Eq. (6-21). It consists of two terms. The first term, d/8jb(t)f b(z), is called
the soliton component. It can be shown that this term describes the movement of
the center of soliton mass. Indeed, let us return to the beginning of the previous
section and suggest that small perturbations caused by the DNA–environment inter-
action lead to two types of changes in the behavior of the sine-Gordon kink. The first
is the change in the velocity of the soliton, and the second is the change in the form
of the solitary wave. Let us assume that these changes have an additive character
and consider separately the problem of changing the velocity of the soliton when the
form remains unchanged. That is, let us consider the case when

w(z, t) = j
0
(z – [v0 + Dv(t)]t); (6-28)

where v0 is the initial velocity of the soliton, and Dv(t) is the change in the velocity.
Initially the soliton is assumed to be at rest (in the system of coordinates {z, t},
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which is moving with velocity v). If we now expand the function w(z, t) in a Taylor
series and take into account Eq. (6-23) we obtain

w(z, t) = j(z) + (¶j0
/¶z)(–Dvt) + ... =

= j
0
(z) + f b(z)(–Dvt)+ ... (6-29)

Comparing Eqs. (6-29) and (6-21), we find that in the first approximation the
change in the soliton velocity, Dv, is determined by the formula

Dv = – (d/8)j
b
t (t). (6-30)

So, the soliton component of Eq. (6-21) does describe the movement of the center
of mass of the soliton.

The second term in Eq. (6-21) is called the radiation component. It determines (in
the main) the change in the form of the solitary wave due to perturbations. This
term could be considered in the same way. For simplicity, however, we shall restrict
ourselves to the first term associated with the change in the velocity of the soliton.

6.1.2
Particular Examples

To illustrate applications of the algorithm, let us consider briefly several simple mod-
els of the DNA–environment interactions. From the mathematical point of view the
models are completely determined by the form of the function f0.

Example 1

Let us consider the simplest case when the function f0 is a constant. It is assumed
also that this constant has a negative value, –J0. In other words, it is assumed that
there is a constant energy pumping. We can show that this pumping can be a good
counterweight to the energy loss due to the effect of dissipation.

To calculate the change in the velocity of the soliton we should use Eq. (6-24) with
f0 = –J0. Then we have

qbðtÞ ¼
ðþ1

�1

f0 f
bðzÞdz ¼ �2pJ0 : (6-31)

Inserting Eq. (6-31) into Eq. (6-25) and integrating the result we obtain

j
b
t = (8bcv/d – 2pJ0)t + C; (6-32)
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where C is a constant determined by the initial condition of the problem. If we
assume the initial condition to be in the form

j
b
t (t = 0) = 0; (6-33)

we obtain C = 0. Inserting Eq. (6-32) into Eq. (6-30) we find

v = (J0pd/4 – bcv)t. (6-34)

So, it follows from this that the movement of a soliton under the action of a small
constant moment of force is uniformly accelerated, and the movement under the
action of dissipation is uniformly decelerated. There is a critical value of J0

J0
crit = 4bcv/pd, (6-35)

when the action of dissipation and the action of the constant force are in balance.
This result points to a similarity in the behavior of the soliton and of aclassical parti-
cle.

Example 2

Consider the case when the time period of the action of the external field is much
less than the time period of propagation of the soliton (or the soliton lifetime). Let
us assume also that the action of external force is localized in the region of the
DNA, the size of the region being much less than the distance of propagation of the
solitary wave. In this case the function f0 can be modeled in the following way:

f0 = – J0 d(z – z0)d(t – t0). (6-36)

To calculate the corresponding change in the soliton velocity, let us rewrite the
function f0 in the coordinates z, t

f0 fi f 0 = – J0 d(c(z + vt) – z0) d(c(t + vz/C0
2) – t0) (6-37)

and insert Eq. (6-37) into Eq. (6-24). As a result, we obtain

qb(t) = – J0 cf b((z0 – cvt0)/c)d(t – t0). (6-38)

Inserting Eq. (6-38) into Eq. (6-25) and integrating the result we find

j
b
t = 8bcvt/d + C, (6-39)
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where C is a constant. If we now take the initial conditions in the form of Eq. (6-33)
the constant becomes equal to zero, and the final result obtained by using Eq. (6-30)
takes the following form:

Dv @ – bcvt. (6-40)

This means that the soliton is decelerating.

Other Examples

There are many other possible ways of modeling the function f0. For example, we
could consider intermediate cases such as

f0 = – J0 d(z – z0) or f0 = – J0 d(t – t0). (6-41)

We could consider a periodical (in time t or/and in the variable z) model of the
external field as was done by Zhang [47] when studying the problem of microwave
absorption in DNA. Finally, we could consider a random model function F

f0 = F(z,t); (6-42)

with the statistical averaging

<F(z,t)> = 0;
(6-43)

<F(z,t);F(z¢, t¢)> = const d(z – z¢)d(t – t¢).

This model is useful when we study random collisions of small molecules of the
solution with the DNA molecule. A very similar model has been proposed by Muto
et al. [32] to imitate the interaction of DNA with a thermal reservoir.

All these examples can be analyzed step by step in accordance with the algorithm
described above.

6.1.3
DNA in a Thermal Bath

To model DNA in a thermal bath the random model function F described at the end
of the previous section and the method of perturbation described can be used.
Another interesting approach based on the methods of computer simulation has
been recently proposed in Refs. [267, 276].

In the first work [267] published by Campa the traveling of a bubble (or open
state) in the double chain consisting of 2500 base pairs, with fixed boundary condi-
tions was studied. The bubble was formed by imposing a partial unwinding at one
end of the chain. The chain was initially in a thermal bath at 300 K, and both homo-
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geneous and heterogeneous chains were studied. As a result, it was shown that in
both cases the bubble can travel further than 1000 base pairs.

In the second work [276] published by Yakushevich et al. kink-type solitons imitat-
ing bubbles moving along the double chain were simulated. To model a thermalized
chain the authors used the Langevin equations with the Hamiltonian of the Y
model. The results of the simulations showed a rather high stability of the solitons.

6.2
Effects of Inhomogeneity

As follows from Chapters 1 and 3 the DNA molecule has an inhomogeneous struc-
ture, and this property plays an important role in the function of the molecule. Let
us discuss possible inhomogeneous models of the nonlinear DNA dynamics. It is
convenient to begin with the ideal nonlinear models described in the previous chap-
ter and to suggest that the parameters of the dynamical equations such as base
masses, moments of inertia, coefficients characterizing interactions, are dependent
on the base positions.

For example, if we take as a basis the discrete version of the model of Englander the
new dynamical equations describing the inhomogeneous case will have the form

In€jj= Kn l2(jn+1 – 2jn + jn–1) – v0n sinjn, n= 1, 2,...N; (6-44)

which is very similar to the form of Eq. (5-1). The only difference is that the coeffi-
cients I, K, v0 are now dependent on the index n. A very similar approach was used
in the work of Hasakado and Wadati [277] to obtain the inhomogeneous version of
the discrete model of Peyrard and Bishop. The same method can also be used to
obtain continuous inhomogeneous equations. For this purpose, it is enough to sub-
stitute constant parameters of corresponding dynamical equations for functions
depending on the variable z, z axis being parallel to the DNA axis.

So, there is not a problem in obtaining inhomogeneous nonlinear equations, but
there is a problem in solving them. In the general case, nonlinear differential equa-
tions describing inhomogeneous DNA are too complex to be solved by analytical
methods, and a computer technique should be used to solve them. But for a few
simple models of the DNA inhomogeneity, such as the boundary between two differ-
ent homogeneous regions (blocks) or the local homogeneous region inside another
inhomogeneous region, the solution of the problem can be found analytically [25].

In this chapter we discuss both, simple and complex cases.

6.2.1
Boundary

Let us assume that inhomogeneity has the form of a boundary between two homoge-
neous regions as shown in Figure 6.1a. It may be, for example, the boundary between
the region consisting of A-T base pairs and the region consisting of G-C base pairs

6.2 Effects of Inhomogeneity
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...AAAAAAAAAAAAAAAGGGGGGGGGGGGGGG...

...TTTTTTTTTTTTTTTCCCCCCCCCCCCCCC...

Such a sequence does not exist in living organisms but can be synthesized artifi-
cially. This sequence can also be considered as a first approximation to a real
sequence of bases in the DNA fragments, one part of which contains mainly A-T
base pairs and the other part mainly G-C base pairs.

Figure 6.1 (a) Boundary between two blocks and (b) the model
function k(z) describing this inhomogeneity.

Let us assume for simplicity that the basic ideal model of the internal DNA
dynamics is described by Eq. (6-2). Now we should modify it to take into account the
inhomogeneity having the form of a boundary. As we mentioned before, the most
general method of taking into account any inhomogeneity consists in substitution
of the constant parameters of Eq. (6-2) for functions depending on the variable z:

C0 fi C0(z); w0 fi w0(z). (6-45)

To simplify the calculations, we shall consider here the case where only one of
two parameters, namely w0, is substituted for a function of z. This means that we
neglect the differences in mass and moments of inertia of the bases and take into
account only the difference in the interactions between the bases in the pairs. Then
the perturbed problem takes the form

jtt – C0
2jzz + w0

2sinj + k(z) sinj= 0, (6-46)

where k(z) = w0
2(z) – w0

2. For the case considered, the function k(z) can be modeled
in the following way

k(z) = k0 H (z – z0); (6-47)

where k0 is a constant that can be positive or negative depending on the situation;
H(z – z0) is a step Heavyside function:

H (z – z0) =
0; z < z0 ;
1; z 	 z0 :

�

(6-48)
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The model function (6-47) describes the boundary between two regions, which is
placed at the point z0. A schematic picture of the function k(z) for the case k0 > 0 is
shown in Figure 6.1b. The picture corresponds to the case where the region which
is placed on the left of the boundary is saturated by A-T base pairs and the other
region on the right is saturated by G-C base pairs.

To find the change in the velocity of solitary wave, let us use the method of pertur-
bation described in the previous section. So, we suggest that the solution has a form
analogous to Eq. (6-7). Applying step by step the algorithm described above we find
that the solution can be presented in the form of an expansion of type (6-22) with
the coefficients of the expansion determined by the equations

j
b
tt = gb(t); (6-49)

j
k
tt + Wk

2jk = gk(t); (6-50)

where the functions gi(t) (i = b, k) have the form

gi(t) = – P
R

k[c(z + vt)]sinj0(z)f i(z)dz. (6-51)

Equations (6-49) – (6-51) together with Eq. (6-22) give a complete solution of the
problem. Indeed, if we rewrite Eqs. (6-47) in coordinates z, t and insert the resulting
expression into Eq. (6-51) we find

gb(t) = 2k0/{ch2[(vt – z0/c)/d]}. (6-52)

Then from Eq. (6-49) and Eq. (6-52) we find the equation for the coefficient jb

j
b
tt = 2k0/ch2[(vt – z0/c)/d]. (6-53)

After integration of (6-53) we find

j
b
t = (2k0d/v) th[(vt – z0/c)/d] + C. (6-54)

Assuming that

j
b
t (t = – ¥) = 0; (6-55)

we obtain that C = 2k0d/v. Then in accordance with Eq. (6-30) we finally obtain the
change of the velocity of the soliton

Dv = – (k0d2/4v){1 + th[(vt – z0/c)/d]}. (6-56)

This result shows that when crossing the boundary of two homogeneous regions
the velocity of the soliton wave increases or decreases depending on the sign (+ or –)
of k0. For example, in the case shown in Figure 6.1 (k0>0), the velocity of the soliton
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moving from left to right, decreases. This dynamical behavior of the solitary wave
has been recently confirmed by computer simulations [276]

6.2.2
Local Region

The results obtained can be easily extended to the case where we have some special
region of finite length, for example, a G-C block against an A-T background

...AAAAAAAAAAGGGGGGGGGGAAAAAAAAAA...

...TTTTTTTTTTCCCCCCCCCCTTTTTTTTTT...

This problem differs from the previous one only in the existence of two bound-
aries (instead of one); the first is placed at point z = – a and the second at point z = a
(Figure 6.2). Hence, the model function k(z) is equal to

k(z) = k0[H (z – a) – H (z + a)]. (6-57)

Figure 6.2 (a) A-T double chain containing the G-C block of
finite length L= 2a and (b) the model function k(z) describing
this inhomogeneity.

To find the change in the velocity of the solitary wave due to inhomogeneity, hav-
ing the form of the local region, let us suggest again that the solution of the corre-
sponding perturbed equation

jtt – C0
2jzz + w0

2sinj + k(z)sinj= 0, (6-58)

is of a form analogous to Eq. (6-7). Now applying the perturbation technique step by step
we find that the solution has the form of expansion of Eq. (6-21) and the equations
determining the coefficients of the expansion are similar to Eqs. (6-49) and (6-50).

After integration of one of the equations, which determines the coefficient jb(t)
we obtain

j
b
t = (2k0d/v) {th[(vt – a/c)/d] – th[(vt + a/c)/d]}. (6-59)

In this equation the initial condition

j
b
t (t = –¥) = 0 (6-60)

6 Nonlinear Theory of DNA: Non-ideal Models



127

has been taken into account.
Then in accordance with Eq. (6-30) we obtain the change in velocity of the soliton

Dv = – (k0d2/4v){th[(vt – a/c)/d] – th[(vt + a/c)/d]}. (6-61)

This result shows that when c0> 0 the soliton decelerates when passing through
the first (left) boundary and accelerates when passing through the second (right)
one.

We can estimate the minimal value of the velocity of the solitary wave (vmin),
which is necessary to surmount the energy barrier (k0 > 0) (Figure 6.2) or the trap
potential well (k0 < 0) (Figure 6.3) and to continue the movement. For the purpose
let us introduce the parameter DE which is equal to the barrier height (or to the well
depth) and write the condition of passage in the form

Ekin ‡ DE; (6-62)

where Ekin is the kinetic energy of the sine-Gordon soliton determined by the for-
mula

Ekin = E0(c – 1). (6-63)

Here E0 is the rest energy of the soliton. From Eqs. (6-62) and (6-63) we find the
unknown condition for the velocity

v2 > vmin
2 = 2C0

2DE/E0. (6-64)

Figure 6.3 (a) G-C double chain containing the A-T block of
finite length L= 2a and (b) the model function k(z) describing
this inhomogeneity.

6.2.3
Sequence of Bases

A more complex model of inhomogeneity having the form of a random sequence of
bases has been considered recently in Refs. [267, 276], and the model imitating real
(or natural) sequences of bases was studied in the series of works of Salerno [39,
278–280]. For computer calculations Salerno used the model equations

I €ww = Kl2(wn+1 – 2wn + wn–1) – Vn sinwn = 0, n= 1, 2,...N, (6-65)
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which are very similar to Eq. (5-1) but have the coefficients Vn depending on the
positions of the bases.

Equations (6-65) can be derived in the following way. First of all let us write the
system of two discrete equations describing the torsional DNA dynamics in the
frameworks of the second level of the hierarchy

In,1€jjn,1 = Kn,1l2(jn+1,1 – 2jn,1 + jn–1,1) – Vn,1 sin(jn,1 + jn,2),
(6-66)

In,2€jjn,2 = Kn,2l2(jn+1,2 – 2jn,2 + jn–1,2) – Vn,2 sin(jn,2 + jn,1).

Here jn,i(t) is the rotational angle of the nth base of the ith chain (i = 1, 2). Sug-
gesting (for simplicity) that the moments of inertia of the DNA bases are approxi-
mately equal and the coefficients of the rigidities are constant we can then easily
obtain Eq. (6-65) for the angle sum wn = jn,1 + jn,2. Thus in the model of Salerno
the sequence of bases is taken into account only due to the dependence of the coeffi-
cient Vn on the base positions. This coefficient characterizes hydrogen interactions
between bases in pairs. Because there are only two possibilities: two hydrogen bonds
are involved in the formation of an A-T base pair and three hydrogen bonds are
involved in the formation of a G-C base pair, the coefficient Vn can be written in the
form

Vn = bkn, (6-67)

where kn = 2 for A-T base pairs, and kn = 3 for G-C base pairs.
In numerical calculations of Eq. (6-65) Salerno used an initial condition in the

form of the ideal sine-Gordon equation. To model inhomogeneity, the specific base
sequence which corresponds to T7A1 DNA promoter was taken. As a result, it was
found that the soliton passing through the inhomogeneous DNA fragment can (i)
remain static or (ii) make small oscillations or (iii) move along the DNA.

The difference in the dynamical behavior of the initially static solitary wave can be
used as a criterion for identification of dynamically active sites in the DNA molecule.
The sites found in this way could be considered as biologically active regions. If this
is so, the approach developed by Salerno could be used as a new method of testing
and interpreting the DNA code.

6.3
Effects of Helicity

In all the nonlinear models considered above, the helicity of the DNA structure has
not been taken into account. This approach was used in order to simplify the calcu-
lations but there are many problems where the helical geometry of DNA is impor-
tant. Problems of scattering light and neutrons by DNA are the best known of these.
In both problems the initial flow of particles (photons or neutrons) which are mov-
ing parallel to some line (for example, parallel to the z axis) is sensitive to the inter-
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nal geometry of the sample. So, one can expect that the results of scattering will be
different for nonhelical and helical DNA models. To find the difference we should
know how to construct helical DNA models and how to use them for scattering
problems.

In this section we discuss one method taking into account the helical structure of
DNA. It was proposed and developed in the works of Gaeta [4, 37, 38] and Dauxois
[281]. In the next chapter, when considering the problem of neutron scattering by
DNA, we shall describe one more method developed in the work of Fedyanin and
Yakushevich [22].

As an example, let us take the Y-model which is nonhelical and then let us show
how it can be improved to take into account the effects of the helicity. The Hamilto-
nian of the Y-model, which has been discussed in detail in Section 5.3.3.2, has the
form

HY =
R

dz{I1 _jj
2
1/2 + I2 _jj

2
2 /2 + K1

ta2l2j/2 + K2a2l2j/2 – Kb l2[2cosj1 + 2cosj2 –

– cos(j1+ j2)]} + const. (6-68)

Here ji is the angular displacement of bases in the ith chain; I is the moment of
inertia; Kt, Kb are the coefficients of longitudinal and transverse rigidity, respec-
tively.

It is more convenient for discussion to deal with the discrete version of the hamil-
tonian HY

H
Y ¼

X

n

X2

i¼1

fI _jj
2

i;n
=2þ K

t
l
2ðj

i;nþ1 � j
i;n
Þ2=2g þ

X

n

K
b
l
2 ½2cosj1;nþ

+ 2cos j2,n – cos(j1,n+ j2,n)]. (6-69)

One of the peculiarities of the DNA helical structure is that some of the nucleo-
tides which are far apart in the polynucleotide chain can be close enough in space to
be connected by hydrogen-bonded water filaments. To take into account these fila-
ments, we must include an additional term describing coupling between the nth
nucleotide on one strand and the (n+h)th nucleotide on the other (h = 4). Let us
assume that the coupling term has the following simple form

H
h ¼

X

n

K
h

d
2 ½ðj

1;nþh
� j2;nÞ

2
=2þ ðj

2;nþh
� j1;nÞ

2
=2; (6-70)

where Kh is the elastic constant characterizing the coupling and d is the distance in
space between the nth and (n+h)th nucleotides.

So, the total Hamiltonian of the helical Y-model is

HtQt = H
Y

+ Hh. (6-71)
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The corresponding dynamical equations written in the continuum approximation
will then have the form [4]

I€jj1 = Kta2l2j1zz – Kbl2[2sinj1 – sin(j1 + j2)] + Khd2[2(j2 – j1)+ w2j1zz],
(6-72)

I€jj2 = Kta2l2j2zz – Kbl2[2sinj2 – sin(j2 + j1)] + Khd2[2(j1 – j2)+ w2j2zz],

where w is the length of a half-wind of the helix in the z coordinate (that is along the
double helix).

The solutions of the equations can be easily found in two particular cases: (1)
when j1(z,t) = – j2(z,t) and (2) when j1(z,t) = j2(z,t). In the first case instead of
Eq. (6-72) we obtain

I€jj = (Kta2l2 + Khd2w2)jzz – 2Kbl2sinj – 4Khd2j; (6-73)

where j � j1= – j2. Equation (6-73) can be easily transformed to a simple sine-
Gordon equation

(Kta2l2 + Khd2w2)jzz – 2Kbl2sinj= 0; (6-74)

by the following transformation

j = exp{i2d(Kh/I1/2)j}. (6-75)

In the second case we obtain the double sine-Gordon equation:

I€jj = (Kta2l2 + Khd2w2)jzz – Kbl2(2sinj – sin2j); (6-76)

where j � j1 = j2.
Both the sine-Gordon equation and the double sine-Gordon equation have kink-

like soliton solutions. But if we now compare Eqs. (6-73) and (6-76) with Eqs. (5-11)
and (5-12) obtained for the nonhelical model we find two things which make them
different: (1) the coefficients in the first terms of the right-hand sides of Eqs. (6-73)
and (6-76) are renormalized and (2) in the first of the equations we obtained the
additional term 4Kbd2j.

6.4
Effects of Asymmetry

In the nonlinear models described above, the difference in mass of the bases in
pairs has been neglected, and symmetry between two strands relative to the general
DNA axis has been assumed. This assumption is widely used to simplify calcula-
tions. However, even in homogeneous DNA the difference in mass of adenine and
thymine in A-T base pairs and of guanine and cytosine in G-C base pairs is rather
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substantial (see Appendix 2). The difference was first considered in Ref. [276]. It was
shown that the absence of symmetry led to the appearance of new interesting soliton
solutions which were obtained numerically with the help of the variation technique
[282]. The model Hamiltonian used had the following form:

Hh = Th + Vh
|| + Vh

?; (6-77)

where the kinetic energy (T h), the energy of the interactions along the chains (Vh
||)

and the energy of the interactions between bases in pairs (Vh
?) were determined by

T
h ¼

X

n

fðm1r
2
1 =2Þðdjn;1=dtÞ2 þ ðm2r

2
2 =2Þðdjn;2=dtÞ2g; (6-78)

V
h
jj ¼

X

n

fK1r
2
1 ½1� cosðjn;1 � jn�1;1Þ þ K2r

2
2 ½1� cosðjn;2 � jn�1;2Þg; (6-79)

V
h
? ¼

X

n

k1�2fr1ðr1 þ r2Þð1� cosjn;1Þ þ r2ðr1 þ r2Þð1� cosjn;2Þ�

– r1r2[1 – cos(jn,1 – jn,2)]}. (6-80)

Here jn,i is the angular displacement of the nth base of the ith chain from its
equilibrium position; ri is the distance between the center of mass of the ith base
and the nearest sugar–phosphate chain; a is the distance between neighboring bases
along the chains; mi is the mass of the bases of the ith chain; Ki is the coupling con-
stant along the sugar–phosphate chain; k1–2 is the force constant that characterizes
interactions between bases in pairs; n= 1, 2, ... N; i = 1, 2.

The Hamiltonian (6-77) can be considered as a generalized version of the Y-model
(6-69), which takes into account the difference in mass of the bases in the pairs as
well as the difference in the distance between the center of the base masses and the
nearest sugar–phosphate chain. We can call it the asymmetrical Y-model.

Dynamical equations corresponding to the Hamiltonian (6-77) can then be writ-
ten in the following form:

m1r1
2(d2jn,1/dt2) = K1r1

2[sin(jn–1,1 – jn,1) – sin(jn,1 – jn+1,1)] –

– k1–2[r1(r1 + r2)sinjn,1 – r2r1sin(jn,1 – jn,2)], (6-81)

m2r2
2(d2jn,2/dt2) = K2r2

2[sin(jn–1,2 – jn,2) - sin(jn,2 – jn+1,2)] –

– k1-2 [r2(r1 + r2)sinjn,2 – r2r1sin(jn,2 – jn,1)]. (6-82)

Investigations of the problem (6-81) – (6-82) show that contrary to the case of the
simple Y-model with the solution shown in Figure 5.9, the asymmetry Y-model has
three types of soliton solutions with different topological charges (q) (Figure 6.4).
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Figure 6-4 The view of three types of soliton solutions of the
problem (6-81) – (6-82) with different topological charges (a)
q = (1,0), (b) q = (0,1) and (c) q = (1,1). Continuos lines corre-
spond to angular displacements by the first component jn,1,
dotted lines – to displacements by the second component jn,2.
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In the dynamical models described in the previous chapter it was assumed that only
one nonlinear excitation (soliton) was excited, the possibility of exciting two or more
nonlinear excitations, their collisions and interactions were not considered. But
DNA is a rather long molecule, and we can expect that several nonlinear excitations
can be excited simultaneously. In this case, we should consider an ensemble of soli-
tons and discuss their statistics. The latter becomes very important when we try to
interpret experimental data on scattering (neutrons or light) by DNA or the data on
DNA denaturation.

In this section we shall describe briefly two possible approaches to the problem of
DNA soliton statistics. The first, based on the transfer operator method, was devel-
oped by Peyrard, Bishop and Dauxois [34, 283]. We shall call this approach the PBD
approach. The second, based on the ideal gas approximation, was proposed by
Fedyanin and Yakushevich [7, 22].

7.1
PBD Approach

The method of transfer operators was developed by Krumhansl and Schrieffer [284]
for the statistical mechanics of the j4 field. Peyrard and coworkers [34, 283] applied
it to describe the statistical mechanics of solitons in DNA.

To illustrate the method, let us take as a basis the model of Peyrard and Bishop
which was described in detail in Section 5.3.4. The Hamiltonian of the model con-
sists of two decoupled terms

H = H(x1) + H(x2). (7-1)

The term H(x1) describes a harmonic lattice for the variable x1

Hðx1Þ ¼
X

n

fm _xx
2
1;n=2þ kðx1;n � x1;n�1Þ

2
=2g; (7-2)

and the term H(x2) contains nonlinear terms for the variable x2

7
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Hðx2Þ ¼
X

n

fm _xx
2
2;n=2þ kðx2;n � x2;n�1Þ

2
=2g þD½expð�A2

1=2 x2;nÞ � 1	2g (7-3)

Let us consider now the statistical mechanics of the subsystem described by the
Hamiltonian H(x2). This part of the total Hamiltonian H describes stretching inter-
nal motions, and is very important in the process of DNA denaturation. For simplic-
ity, in further calculations we shall omit the index 2.

For a chain containing N units with nearest neighbor coupling and periodic
boundary conditions, the classical partition function, given in terms of the Hamilto-
nian (7-3), can be expressed as

Z ¼
ðþ1

�1

YN

n¼1

dxdp expfHðxÞ=kBTg ¼ ZpZx ; (7-4)

where

Z ¼
ðþ1

�1

YN

n¼1

dp expf�
X

n

½p2
=2m	=kBTg; p ¼ m _xx; (7-5)

Z ¼
ðþ1

�1

YN

n¼1

dp expf�Vðxm ; xn�1ÞkBTg; (7-6)

Vðxn ; xn�1Þ ¼
X

n

fkðxn � xn�1Þ
2
=2þ D½expð�A2

1=2 xnÞ � 1	2g: (7-7)

The momentum part Zp is readily integrated to give the usual kinetic factor for N
particles

Zp= (2pmkBT)N/2. (7-8)

The potential part Zx can be evaluated exactly in the thermodynamical limit of a
large system (N fi ¥) using the eigenvalues and eigenfuctions of the transfer inte-
gral operator [284–286]

Ð
dxn–1{exp[–V(xn;xn–1)/kBT]}Ui(xn–1) = {exp[–ei/kBT]}Ui(xn). (7-9)

Here Ui are the distribution functions for the field amplitude x, which are not
only useful for computing Zx, but also for computing expectation values of various
quantities. The result of the calculations is

Zx = exp(–Ne0/kBT), (7-10)

where e0 is the lowest eigenvalue of the operator.
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The free energy of the model F can be computed then as

F = –kBTlnZ = –(NkBT/2) ln(2pmkBT) + Ne0; (7-11)

the specific heat Cv is equal to

Cv= –T(¶2F/¶T2), (7-12)

and finally the mean stretching <x> of the hydrogen bonds, which gives the mea-
sure of the extent of the denaturation of the DNA molecule, can be calculated from

<x> = <xn> =

XN

i¼1

{<Ui(x)|x|Ui(x)>Ui exp[–Nei/kBT]}

= = <U0(x)|x|U0(x)> =
R

U0
2(x)xdx;

XN

i¼1

{<Ui(x)|Ui(x)> exp[–Nei/kBT]} (7-13)

where it was taken into account that in the limit of large N the result will be domi-
nated by the lowest eigenvalue e0 associated with the normalized eigenfunction
U0(x). A schematic picture of the temperature behavior of the calculated mean
stretching of hydrogen bonds <x> is shown in Figure 7.1.

Figure 7.1 Schematic picture of the temperature behavior of
the mean stretching of the hydrogen bonds in DNA. Reproduced
with permission from Ref. [4].

This result has been successfully applied to the problem of DNA denaturation.
We shall discuss this application in Chapter 9.

7.1 PBD Approach
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7.2
Ideal Gas Approximation

In this section we describe another approach to the problem of DNA soliton statis-
tics, based on the similarity between the main dynamical properties of solitons and
those of ordinary classical particles [7, 22].

For simplicity, let us assume, that internal DNA dynamics is modeled by the sine-
Gordon equation:

jZZ – jTT = sin j (7-14)

having soliton solutions of kink type

j(Z,T) = 4 arctg{exp–[(1 – v2)–1/2(Z–vT–Z0)]}. (7-15)

The corresponding Hamiltonian has the form

H ¼
ðþ1

�1

½ðj2
T þ j

2
Z Þ=2þ ð1� cosjÞ	dZ: (7-16)

Inserting Eq. (7-15) into Eq. (7-16) we can calculate the energy of the DNA soliton

Es = 8(1 – v2)–1/2. (7-17)

In the Hnonrelativistic’ limit when the velocity of the soliton v is small, Eq. (7-17)
takes the form

Es = 8(1 + v2/2). (7-18)

This result can be interpreted as a sum of the kinetic energy

T = 8v2/2; (7-19)

and the potential energy

V = 8. (7-20)

So, in this approximation we can ascribe mass m0 = 8 and the velocity v to the
nonrelativistic DNA soliton and consider it as an ordinary classical material particle.
In the relativistic case the soliton of the sine-Gordon equation can be characterized
by mass m= m0c, impulse p = 8cv and energy Es = E0c. Here m0 is the mass of the
soliton at rest (m0 = 8), E0 is the energy of the soliton at rest (E0 = 8), c = (1 – v2)–1/2.

All these data lead us towards a model of the ensemble of solitons in the form of
ordinary classical systems consisting of Ns interacting material particles which have
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mass, impulses and energies of solitons. To simplify the problem we can make
some more assumptions. We can suggest that the number of particles Ns is not
large and the ensemble of solitons can be described as an ¢ideal gas¢. To obtain dif-
ferent macroscopic characteristics of the system, we can now use the results of clas-
sical statistical physics known for the model of an ideal gas of Ns material particles.

Taking into account that Ns is not a fixed number, let us write the large statistical
sum in the form

X1

Ns¼0

X1

Ns¼0
N(T,L,l) = exp(Ns/kBT)ZNs = (1/Ns!)[exp(l/kBT)z0]

Ns =

= exp{exp(l/kBT)z0}; (7-21)

where

z0 = (1/2p)
LÐ

0

dZ
Ð

dP exp(–Es/kBT) = (L/2p)
Ð

dP exp(–Es/kBT). (7-22)

With the help of N we can calculate various equilibrium characteristics of the
model system, namely the thermodynamical potential G, the density of the solitons
ns, the capacity CL and others. For illustration, let us give here a scheme for the cal-
culation of the density of the solitons.

First, let us calculate the quantity z0

z0 = (L/2p)
Ð

dP exp(–Es/kBT) = (8L/p) K1(8/kBT), (7-23)

where K1(x) is McDonald’s function. Inserting Eq. (7-18) into Eq. (7-21), we find the
large statistical sum

N = exp[(exp(l/kBT) (8L/p) K1(8/kBT)]. (7-24)

Let us then use the formulas of classical statistical physics, according to which
the density of particles is determined by the equation

ns = –L
–1¶G/¶l|l=0; (7-25)

where G is the thermodynamic potential. The latter is in turn determined by the
equation

G = –kBT lnN. (7-26)

Inserting Eqs. (7-24) and (7-26) into Eq.(7-25) we finally obtain

ns = (8/p) K1(8/kBT). (7-27)

7.2 Ideal Gas Approximation
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At Hlow’ temperature (T << 8/kB) Eq. (7-27) simplifies to

ns @ 2(kBT/p)1/2 exp(–8/kBT). (7-28)

Finally, to calculate the correlation functions <...> we again should take into
account that (i) the behavior of DNA solitons is very like that of normal material
particles and (ii) the number of particles is small. In this case, we can use as a first
approximation the model of an ideal gas and rewrite correlation functions <...>
which are averaged over the ensemble of solitons in the following form:

<...> = Ns <...>1; (7-29)

where Ns is the average number of particles, and the brackets <...>1 denote aver-
aging over the states of an individual soliton

<...>1 = {
LÐ

0

dZ
Ð

dP (...) exp(–Es/kBT)}/{
LÐ

0

dZ
Ð

dP exp(–Es/kBT)}. (7-30)

7.3
The Scattering Problem and Nonlinear Mathematical Models

Let us now discuss how the approach described in the previous section can be
applied to the scattering problem. As an example, let us consider the scattering of
neutrons, as we did in Section 4.3. It should be noted, however, that the resulting
formula for the dynamical factor is rather general and can be applied to any scatter-
ing problem. As an example, we shall demonstrate how the resulting formula can
be applied to the light scattering problem.

Let us begin with Eq. (4-106) and the expressions for the dynamical factors of
coherent and incoherent scattering (4-107) which are rather general and valid for
both the linear and nonlinear cases. To calculate inelastic coherent scattering , we
shall use the one-phonon approximation, as we did in Section 4.3. So, the resulting
formula for the dynamical factor has the form

X

n

X

n0
Scoh (x, w¢) = (2p"N)–1 exp(–2Wx) {exp[–x(R

0
n – R

0
n0 Þ

ðþ1

�1

dt exp(w0t) < xun (t), xun¢ (0) >. (7-31)

It is very similar to Eq. (4-121).
We can expect, however, that the results of calculations of the correlation func-

tions < xun(t), xun,(0) > obtained for the nonlinear case will differ from those

7 Nonlinear Theory of DNA: Statistics of Nonlinear Excitations



139

obtained in Chapter 4 for the linear case. We can also expect that the results will be
different for different dynamical models.

In this section we present the results of calculations of the dynamical factors of
neutron scattering obtained for three models: the simple sine-Gordon model pro-
posed by Englander, the helical version of the sine-Gordon model and the Y-model.

7.3.1
The Simple Sine-Gordon Model

The sine-Gordon model of the internal DNA dynamics has been described in detail
in Section 5.1, and the corresponding dynamical equation written in dimensionless
form has been discussed again in the previous section (see Eq. (7-14)).

To make the interpretation of the results easier let us return to the initial variables
z, t. Then instead of Eq. (7-14) we shall deal with the equation of type (6-1) (or (6-2))
and the corresponding kink-like solution can be written in the following form

j(z,t) = 4 tan–1{exp[(c/d)(z – vt – z0)]}, (7-32)

where c = (1 – v0
2/C) –1/2; d = al(K/v0)

1/2.
Let us illustrate now how to calculate the inelastic component of coherent scatter-

ing which is of most interest in the study of nonlinear DNA dynamics. The general
expression for the dynamical factor of inelastic coherent scattering is determined by
Eq. (4-121) which can be transformed, however, to a simpler form Eq. (7-31)
because, in the case of the sine-Gordon model, the index j can be omitted.

To calculate the dynamical factor we should know the expression for the vector un
describing displacements of DNA bases from their equilibrium positions. This
expression can be easily found if we take into account the analogy between DNA
and the mechanical analog of the sine-Gordon system. In this case, the base dis-
placements are equivalent to the displacements of pendula and have the form

un= {–l(1 – cos jn); lsin jn; 0}, (7-33)

where jn(t) is the angular displacement of the nth pendulum and l is its length.
Then the formula for the dynamical factor of inelastic coherent scattering takes the
form

Scoh (x, w¢) = S^ (x, w¢) + Si(x, w¢), (7-34)

where longitudinal and transverse components are determined by formulas

7.3 The Scattering Problem and Nonlinear Mathematical Models
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X

n

X

n0
Si(x, w¢) = (l2xx

2/2p"N) exp(–2Wx) exp[–ixza(n – n¢)])

ðþ1

�1

dt exp(iw0t) < (1 – cosjn(t)), (1 – cosjn,(0))>; (7-35)

X

n

X

n0
S^(x, w¢) = (l2xy

2/2p"N) exp(–2Wx) exp[–ixza(n – n¢)])

ðþ1

�1

dt exp(iw0t) < sinjn(t), sinjn,(0)>;

In the continuum limit Eq. (7-35) can be transformed to

ðþ1

�1

dz
ðþ1

�1

dz 0
ðþ1

�1

dtSi(x, w¢) = (l2xx
2/2p"N) exp(–2Wx) {exp[–ix

z
(z – z¢)]

exp(iw¢t) <(1 - cosj(z,t)), (1 – cosj(z¢,0))>};
(7-36)

ðþ1

�1

dz
ðþ1

�1

dz 0
ðþ1

�1

dtS^(x, w¢) = (l2xy
2/2p"N) exp(–2Wx) {exp[–ix

z
(z – z¢)]

exp(iw¢t) < sinj(z,t), sinj(z¢,0)>};

Now let us use the ideal gas approximation where it is assumed that

<...>1 @ Ns <...>. (7-37)

Here Ns is the average number. For Ns we shall take the value estimated by Cur-
rie et al. [286]

Ns = (2Na/d)(E0/2pkBT) exp(–E0/kBT). (7-38)

For <...>1 we shall take the formula

< ::: >1¼ f2M0C0K1ðE0=kBTÞg
�1

ðþ1

�1

dpzð:::Þ expðEs=kBTÞ; (7-39)

where K1 is the McDonald function.
Inserting Eqs. (7-32) and (7-38) into Eq. (7-36) and taking into account Eqs. (7-39)

and (7-34) we find the final expression for the dynamical factor of inelastic scatter-
ing
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Scoh(x, w¢) = {2l2adc0(E0/2kBT)1/2/"C0xzK1(E0/kBT)} exp(–2Wx)

exp(–E0/kBT) {xx
2[(pxzd/c0)/sh(pxzd/2c0)]

2 +

+ xy
2[(pxzd/c0)/ch(pxzd/2c0)]

2} exp(-E0c0/kBT); (7-40)

where c0 = (1–w¢2/xz2C0
2)1/2.

The result (7-40) was obtained for the general (or Hrelativistic’) case. For low tem-
perature (T<<E0/kB) and small velocities ((w¢/xz) << C0) Eq. (7-40) can be reduced to
a simpler form

Scoh (x, w¢) = {4l2adE0/"C0xzkBT} exp(–2Wx)

exp(–E0/kBT) {xx
2[(pxzd/c0)/sh(pxz d/2c0)]

2 +

+ xy
2[(pxzd/c0)/ch(pxzd/2c0)]

2} exp(–M0w¢02/2xz
2kBT). (7-41)

Note, that both the temperature corresponding to normal physiological condi-
tions, and room temperature belong to the range of so-called Hlow’ temperatures,
that is the condition T<<(E0/kB) is valid. Indeed, if we use the values E0 = 6 kcal -
mol–1, given in Ref. [15] and kB = 1.38 N 10–23 J K–1 then (E0/kB) = 3 N 103 K. The
last value exceeds room temperature by an order of magnitude. The second condi-
tion, (w¢/xz) << C0 , means that Eq. (7-41) is valid for soliton waves moving in DNA
with velocities which are much less than the velocity of an acoustic wave, C0, (C0 =
2 N 103 m s–1 [231]).

In conclusion, let us show that Eq. (7-40) and (7-41) can be used in some other
scattering problems. For example, let us consider the problem of scattering of infra-
red light by DNA. In the works of Komarov, Fisher and Pecora [287, 288] it was
shown that the spectral density of scattering light I (x, w¢) is determined by

X

n

X

n0
I (x, w¢) = (I0a2w¢sinc/2pc4r2) {exp[–x(R

0
n – R

0
n0 )

ðþ1

�1

dt exp(iw0t) < exp(xun(t),exp(xun¢(0)) > (7-42)

where a is the polarizability of the bases; w¢ is the difference between the frequen-
cies of the incident and scattered light; c is the velocity of light; r is the distance
between the scattering system and the point of observation; the angle c and the
intensity of incident light I0 are determined by

cosc = (E0r/E0r), I0 = c|E0|2 / 2p, (7-43)

7.3 The Scattering Problem and Nonlinear Mathematical Models
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where E0 is the vector of the amplitude of the wave of the incident light; the rest of
the notation has the same meaning as in Eqs. (4-106) and (4-107). Comparing Eqs.
(7-43) and (4-107) we find

I(x, w¢) = (I0 a2w¢4"Nsin2c/c4r2) Scoh (x, w¢), (7-44)

where Scoh (x, w¢) is determined in the general case by Eq. (4-107), in the one-pho-
non approximation by Eq. (4-121), and, finally, in the case of the sine-Gordon model
by Eqs. (7-40) or (7-41).

7.3.2
Helical Sine-Gordon Model

Now let us see how the results obtained in the previous section will be changed if
we take into account the helical character of the DNA structure. Instead of a simple
sine-Gordon model consisting of a straight horizontal chain of pendula which oscil-
late in the gravitational field of the Earth (see Figure 7.2a) we should consider now
something like a chain of pendula which is wound around an axis to form a helix
(Figure 7.2b). In the helical model the hanging points are on the helix and the pivots
of the pendula are directed towards the axis. So, the neighboring pendula are twisted
relative to one another by the angle j0 = 36P, and the direction of the ¢gravitational¢
field induced by the second chain changes from one pendulum to another by the
angle j0 = 36P.

Figure 7.2 "Mechanical’ models of DNA: (a) the linear model
and (b) the helical model.

For simplicity let us neglect the changes in the Hamiltonian and those in the
dynamical equations due to helicity. Then, in the calculations of the dynamical fac-
tor of neutron scattering we can use a kink-like solution of the type of Eq. (7-32). Let
us take into account, however, that the vectors Rn, R0

n , u
n

in Eqs. (4-121) or (7-31) are
substantially changed. Indeed, these vectors are now determined by:

R
0
n = {(R – OO¢)cos(2pn/10); –(R – OO¢)sin(2pn/10); nl},

Rn= {(Rcosjn – OO¢)cos(2pn/10) + Rsinjnsin(2pn/10); –(Rcosjn –
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– OO¢)sin(2pn/10) + Rsinjncos(2pn/10); nl}, (7-45)

un= Rn – R
0
n = {Rcos(2pn/10)(cosjn – 1) + Rsin(2pn/10)sinjn;

– Rsin(2pn/10)(cosjn – 1) + Rcos(2pn/10)sinjn; 0},

where OO¢ is the radius of the helix. Inserting the components of the vectors (7-45)
into Eq. (7-31) and following step by step the scheme of calculation described in the
previous section, we find the final formula for the dynamical factor:

Scoh (x, w¢) = {l2ad(E0/2kBT)1/2/"C0xzK1 (E0/kBT)} exp(–2Wx)

exp(–E0/kBT) (xx
2 + xy

2){F+(xz – 2p/10a) + F–(xz – 2p/10a)}; (7-46)

where the notations

F–(n) = {[pdn(1 – w¢2/C0
2n2)]/sh[pdn(1 – w¢2/C0

2n)/2] –

– [pdn(1 – w¢2/C0
2n2)]/ch[pdn(1 – w¢2/C0

2n2)/2]}(1/n)(1 – w¢2/C0
2n2)–1/2

exp[(-E0/kBT)(1 - w¢2/C0
2n2)–1/2] (7-47)

are used.
For low temperatures and small velocities Eq. (7-46) transforms to

Scoh (x, w¢) = {l2adE0/"C0 pkBT} exp(–2Wx)(xx
2 + xy

2){ f+(xz + 2p/10a) +

+ f–(xz – 2p/10a)}, (7-48)

where

f–(n) = [pdn/sh(pdn/2) – pdn/ch(pdn/2)](1/n) exp(–E0/kBT) exp(–M0w¢2/2kBTn2).
(7-49)

7.3.3
The Y-model

The Y-model was described in detail in Section 5.3. It consists of two parallel chains
of pendula interacting with one another by longitudinal and transverse springs (Fig-
ure 4.5). The pendula play the role of bases in DNA chains, the longitudinal springs
imitate the sugar–phosphate backbone and the transverse springs imitate the hydro-
gen interactions of bases in pairs.

The model shown in Figure 4.5 looks like a one-dimensional lattice with two pen-
dula per unit cell. The lattice vector R0

n is defined as

7.3 The Scattering Problem and Nonlinear Mathematical Models
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R
0
n = na; (7-50)

where a = {0; 0; a}. The equilibrium positions of the two pendula masses within a
unit cell can be denoted by vectors

d1 = {0; l; 0}, d2 = {0; b-l; 0}, (7-51)

where b is the distance between the chains and l is the length of the pendula.
The position vector R0

n;j of the jth pendulum mass (j = 1, 2) in the nth unit cell is
now given by

R
0
n;j = R

0
n + dj. (7-52)

Taking into account that every pendulum rotates only in the xy plane, we can
write possible displacements of the masses as

Rn;1 (t) – R
0
n;1 = un;1 (t) = {–l(1-cosjn,1); lsinjn,1; 0},

(7-53)

Rn;2 (t) – R
0
n;2 = un;2 (t) = {l(1-cosjn,2); lsinjn,2; 0},

where jn,j is the angular displacement of the nth pendulum of the jth chain.
To calculate the dynamical factor of inelastic neutron scattering we should insert

Eq. (7-53) into Eq. (4-121). The correlation function which is a part of Eq. (4-121)
then takes the form

< xun,j, xun¢,j¢ > =

= xx
2l2<(1 – cosjn,j(0), (1 – cosjn¢,j¢(t))> – xxxyl

2<(1 – cosjn,j(0)), sinjn¢,j¢(t) > –

– xyxxl
2<sinjn,j(0), (1 – cosjn¢,j¢(t))> + xy

2l2<sinjn,j(0), sinjn¢,j¢(t) >. (7-54)

Because of this we can rewrite the dynamical factor (4-121) in the following form:

S
coh
inelðx;w0Þ ¼ S

coh
xx ðx;w0Þ � Scoh

xy ðx;w0Þ � Scoh
yx ðx;w0Þ þ Scoh

yy ðx;w0Þ; (7-55)

where

X

n

X

n0

X

j

X

j0
S

coh
xx (x, w¢) = [exp(–2Wx)/4p"N] exp[–ix(R

0
n;j – R

0
n¢,j¢)]

ðþ1

�1

dt [exp(–iw0t)] xx
2l2 < (1– cosjn,j(0)), (1 – cosjn¢,j¢(t))>, (7-56)
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X

n

X

n0

X

j

X

j0
S

coh
xy (x, w¢) = [exp(–2Wx)/4p"N] exp[–ix(R

0
n;j – R

0
n¢,j¢)]

ðþ1

�1

dt [exp(–iw0t)] xxxyl
2 < (1– cosjn,j(0)), sinjn¢,j¢(t))>, (7-57)

X

n

X

n0

X

j

X

j0
S

coh
yx (x, w¢) = [exp(–2Wx)/4p"N] exp[–ix(R

0
n;j – R

0
n¢,j¢)]

ðþ1

�1

dt [exp(–iw0t)] xyxxl
2 < sinjn,j(0), (1 – cosjn¢,j¢(t))>, (7-58)

X

n

X

n0

X

j

X

j0
S

coh
yy (x, w¢) = [exp(–2Wx)/4p"N] exp[–ix(R

0
n;j – R

0
n¢,j¢)]

ðþ1

�1

dt [exp(–iw0t)] yx
2l2 < sinjn,j(0), sinjn¢,j¢(t))>, (7-59)

Now let us pass to the continuum approximation

afi 0, Nfi ¥

nafi z, (7-60)

jn,j(t) = jj(na,t) fi jj(z,t),

X

n

! ð1=aÞ
ðþ1

�1

dz;

and rewrite the components of the dynamical factor in this approximation

S
coh
xx (x, w¢) = [exp(–2Wx)xx

2l2/4p"Na2]

ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz0
X

j

X

j0
exp½�ixðR0

j ðzÞ � R
0
j0 ðz0 ÞÞ	½expð�iw0tÞ	

<(1-cosjj(z,0)), (1-cosjj¢(z¢,t))> = 2[exp(–2Wx)xx
2l2(1 + cosxyh)/p"Na2]

ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz0 exp½�ixzðz� z0 Þ	expð�iw0 tÞ

<sech2[(c/d)(z – z0)], sech2[(c/d)(z¢– z0 – vt)]>}, (7-61)

7.3 The Scattering Problem and Nonlinear Mathematical Models



S
coh
xy (x, w¢) = [exp(–2Wx)xxxyl

2/4p"Na2]

ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz0
X

j

X

j0
exp½�ixðR0

j ðzÞ � R
0
j0 ðz0 ÞÞ	½expð�iw0tÞ	

<(1-cosjj(z,0)), (sinjj¢(z¢,t))> = –2i[exp(–2Wx)xxxyl
2sinxyh)/p"Na2]

ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz0 fexp½�ixzðz� z0 Þ	expð�iw0 tÞ < sech
2 ½ðc=dÞðz� z0Þ	;

sh[(c/d)(z¢ – z0) – vt] sech2[(c/d)(z¢– z0 – vt)]>}, (7-62)

S
coh
yx (x, w¢) = [exp(–2Wx)xyxxl

2/4p"Na2]

ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz0
X

j

X

j0
exp½�ixðR0

j ðzÞ � R
0
j0 ðz0 ÞÞ	½expð�iw0tÞ	

<(sinjj(z,0)), (1-cosjj¢(z¢,t))> = 2i[exp(–2Wx)xxxyl
2(sinxyh)/p"Na2]

ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz0 fexp½�ixzðz� z0 Þ	expð�iw0 tÞ < sh½ðc=dÞðz� z0 	 sech
2 ½c=dÞðz� z0Þ	;

sech2[(c/d)(z¢ – z0 – vt)]>}, (7-63)

S
coh
yy (x, w¢) = [exp(–2Wx)xy

2l2/4p"Na2]

ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz0
X

j

X

j0
exp½�ixðR0

j ðzÞ � R
0
j0 ðz0 ÞÞ	½expð�iw0tÞ	

<(sinjj(z,0)), (sinjj¢(z¢,t))> = 2[exp(–2Wx)xy
2l2(1 – cosxyh)/p"Na2]

ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz0 fexp½�ixzðz� z0 Þ	expð�iw0 tÞ < sh½ðc=dÞðz� z0 Þ	 sech
2 ½ðc=dÞðz� z0 Þ	;

sh[(c/d)(z¢ – z0 – vt)] sech2[(c/d)(z¢– z0 – vt)]>}. (7-64)
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To calculate the correlation functions <...>, let us again use the ideal gas approxi-
mation:

<...> = Ns <...>
1
. (7-65)

Here Ns is the average number of solitons

Ns = (2aN/d)(E0/2pkBT)1/2 exp(–E0/kBT); (7-66)

and <...>1 is the averaging over the states of one isolated soliton

<:::>1 ¼ f
ðþ1

�1

dpz

ðþL

�L

dz0 ð:::Þexp½�E0=kBT 	g=f
ðþ1

�1

dpz

ðþL

�L

dz0 exp½�E0c=kBT 	 ¼

¼ fC0=½2E0NaK1ðE0=kBTÞ	Þg
ðþ1

�1

dpz

ðþL

�L

dz0 ð:::Þ exp½�E0=kBT 	; (7-67)

where K1(x) is a Macdonald function.
If we insert Eqs. (7-65) –(7-67) into Eqs. (7-61) –(7-64), we obtain

S
coh
xx (x, w¢) = exp(-2Wx)[xx

2l2(1 + cosxyh)C0Ns/p"N2a3E0K1(E0/kBT)]

ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz
0
ðþ1

�1

dpz

ðþL

�L

dz0 fexp½�ixzðz� z
0 Þ	expð�iw

0
tÞexpð�E0 c=kBTÞ

sech2[(c/d)(z – z0)] sech2[(c/d)(z¢ – z0 – vt)]} =

¼ B
ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz
0
ðþ1

�1

dpz

ðþL

�L

dz0 fexp½�ixzðz� z
0 Þ	expð�iw

0
tÞexpð�E0 c=kBTÞ

sech2[c(z – z0)/d] sech2[c(z¢ – z0 – vt)]}  BI(x ); (7-68)

where

B = exp(–2Wx)[2xx
2l2C0(1 + cosxyh)/p"Na2d(2pkBTE0)

1/2

K1(E0/kBT)] exp(– E0/kBT); (7-69)
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IðxzÞ ¼
ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz
0
ðþ1

�1

dpz

ðþL

�L

dz0 exp½�ixzðz� z
0 Þ	expð�iw

0
tÞ

exp(– E0/kBT) {sech2[c(z – z0)/d] sech2[c(z¢ – z0 – vt)]}. (7-70)

If we take into account that

ðþ1

�1

dz expð�ixzzÞ sech½cðz� z0Þ=d	 ¼ ðd=cÞ expð�ixzz0Þðpdxz=cÞ=shðpdxz=2cÞ

(7-71)

and

ðþ1

�1

dz
0

expðixzz
0 Þ sech

2 ½cðz0 � z0 � vtÞ=d	 ¼ ðd=cÞ expðixzðz0 þ vtÞ	

(pdxz/c)/sh(pdxz/2c);
(7-72)

we obtain

IðxzÞ ¼ ðd=cÞ2
ðþ1

�1

dt
ðþ1

�1

dpz

ðþL

�L

dz0 expð�iw
0
tÞ expðixzvtÞexpð�E0c=kBTÞ

(pdxz/c)2/sh2(pdxz/2c ). (7-73)

Let us take into account also that

ðþ1

�1

dt exp½�iðw0 � xzvÞt	 ¼ ð2p=xÞdðv� w0 =xzÞ (7-74)

and

ðþL

�L

dz0 ¼ Na: (7-75)
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Then we obtain

IðxzÞ ¼ ð2pNad
2
=xzÞ

ðþ1

�1

dpzdðv� w0 =xzÞc
�2ðpdxz=cÞ2=sh2ðpdx=2cÞ

expð�E0=kBTÞ ¼ ð2pNad
2
=xzÞ

ðþ1

�1

dv Mc
3
dðv� w0 =xzÞc

�2

(pdxz/c)2/sh2(pdxz/2c) exp(– E0/kBT) =

= (2pNad2Mc0/xz) [(pdxz/c0)/sh2(pdxz/2c0)] exp(– E0c/kBT), (7-76)

where we used the following relations

pz = Mvc; dpz = d(Mvc) = Mc dv + Mv dc = Mc3 dv. (7-77)

The final result for the component Scoh
xx will have the form

S
coh
xx (x, w¢) = Axx2(1 + cosxyh) (pdxz/c0)

2/sh2(pdxz/2c0); (7-78)

where

A= {4l2dc0(E0/2pkBT)/"C0axzK1(E0/kBT)} exp(–2Wx) exp(– E0/kBT)

exp(– E0c0/kBT); c0 = (1 – v0
2/C0

2)–1/2, v0 = w¢/xz. (7-79)

We can calculate the other three components Scoh
xy (x, w¢), Scoh

yx (x, w¢), in the same
way. As a result, we obtain

S
coh
xy (x, w¢) = exp(–2Wx)[xxxyl

2(– i)C0Ns sin(xyh)/p"N2a3E0K1(E0/kBT)]

ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz
0
ðþ1

�1

dpz

ðþL

�L

dz0 fexp½�ixzðz� z
0 Þ	 expð�iw

0
tÞ expð�E0c=kBTÞ

sech2[(c/d)(z – z0)] sh[(c/d)(z¢ – z0 – vt)] sech2[(c/d)(z¢ – z0 – vt)]} =

= Axxxy(– isinxyh) (pdxz/c0)
2/[sh(pdxz/2c0) ch(pdxz/2c0)], (7-80)
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S
coh
yx (x, w¢) = exp(–2Wx)[xyxxl

2(+ i)C0Ns sin(xyh)/p"N2a3E0K1(E0/kBT)]

ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz
0
ðþ1

�1

dpz

ðþL

�L

dz0 fexp½�ixzðz� z
0 Þ	 expð�iw

0
tÞ expð�E0c=kBTÞ

sh[(c/d)(z – z0)] sech2[(c/d)(z¢ – z0)] sech2[(c/d)(z¢ – z0 – vt)]} =

= Axyxx(– isinxyh) (pdxz/c0)
2/[sh(pdxz/2c0) ch(pdxz/2c0)], (7-81)

S
coh
yy (x, w¢) = exp(–2Wx)[xy

2l2(1 – cosxyh)C0Ns/p"N2a3E0K1(E0/kBT)]

ðþ1

�1

dt
ðþ1

�1

dz
ðþ1

�1

dz
0
ðþ1

�1

dpz

ðþL

�L

dz0 fexp½�ixzðz� z
0 Þ	 expð�iw

0
tÞ expð�E0c=kBTÞ

sh[(c/d)(z – z0)] sech2[(c/d)(z – z0)] sh[(c/d)(z¢ – z0 – vt)]

sech2 [(c/d)(z¢ – z0 – vt)]} = Axy2 (1 – cosxyh) (pdxz/c0)
2/ch2(pdxz/2c0). (7-82)

And the final formula for coherent inelastic scattering, which is determined by a
sum of four components (see Eq. (7-55)) then has the form

S
coh
inelðx;w

ˆ
AÞ = {[4l2c0d exp(– 2Wx) (E0/2pkBT)1/2]/["C0axzK1(E0/kBT)

exp(– E0/kBT) exp(– E0c/kBT) {X2(1 + cos xyh) – 2XYsinxyh +

+ Y2(1 – cosxyh)}; (7-83)

where X = xx(pdxz/c0)/sh(pdxz/2c0); Y = xy(pdxz/c0)/ch(pdxz/2c0).
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In this chapter we describe experimental data which have been interpreted in terms of
nonlinear theory. To be impartial, we present both the arguments in favor of interpreta-
tion of experimental data in the framework of the nonlinear concept and those against.
In addition, we describe new approaches in the experimental study of nonlinear DNA
properties, whichmay be able to resolve the contradiction between these two positions.

8.1
Hydrogen–Tritium (or Hydrogen–Deuterium) Exchange

Hydrogen–tritium (or hydrogen–deuterium) exchange is widely used to study inter-
nal DNA dynamics [145–147]. (A simple scheme for the exchange was described in
detail in Section 2.8). The method is especially effective in studying the dynamics of
open states. As we mentioned above, the formation of an open state (or base-pair
opening) is a complex process which includes different types of simpler internal
motions, and some of the motions can have large amplitudes. So, one can expect
that opening of bases is one example where the nonlinear properties of the DNA
molecule should be actively displayed.
Indeed, from analysis of the data on hydrogen–tritium exchange, Englander et al.

[15] came to the conclusion that open states with low energies and slow opening and
closing rates can be interpreted as structural deformations formed by several adja-
cent unpaired base pairs (Figure 8.1). They assumed a mobile character for the
deformations, that is a capability to diffuse along the double helix. It was suggested
also that the movement of the deformations can be modeled mathematically as a
propagation of solitary waves which are the kink- and antikink-like solutions:

jkink(Z,T) = 4 arctg{exp–[(1–v2)–1/2(Z – vT – Z0)]}; (8-1)
antikink

of the sine-Gordon equation

jZZ – jTT = sinj; (8-2)

described in Section 5.1.

8

Experimental Tests of DNA Nonlinearity



152

Figure 8.1 Diagram of a mobile defect within DNA.

These suggestions have been widely discussed and criticized by some theoreti-
cians and experimenters. The criticism of theoreticians was directed towards the
oversimplicity of model Eq. (8-2). As a result, many improvements of the initial
model have been proposed [16–26], most of which were described in Chapter 5.
The criticism of experimenters, and especially, the arguments of Frank-Kame-

netskii [289, 290], were based on the statement that the value of the probability of
base-pair opening which was taken from the data of Mandal et al. [147] and used
later by Englander et al. [15], is incorrect. Indeed, according to the data of Mandal et
al. [147] the probability is rather high (about 10–2), but according to the data of
Frank-Kamenetskii [289, 290] (and also of Gueron et al. [291]) the probability of base
opening is only about 10–5. The latter result is considered by opponents as an argu-
ment in favor of another suggestion according to which only single unpaired base
pairs can occur. To be impartial, we should state that the question still remains
open, and some other additional experimental investigations are required to clarify
it.
An idea very close to that of Englander and coauthors, was proposed indepen-

dently by Fernandez [234] who considered the proton exchange activity of RNA. He
suggested that RNA provides a better study case than its counterpart, DNA, and
showed that the proton exchange catalytic activity of RNA may serve as a probe for
solitons.

8.2
Resonant Microwave Absorption

One more useful tool in research on the nonlinear properties of biomolecules is the
study of the interaction of the molecule with microwaves. A simple scheme of the
microwave experiment is shown in Figure 8.2.
The most impressive example of the application of this method is the investiga-

tion of resonant microwave absorption (in the range of several gigahertz) by aqueous
solutions containing DNA.
Experimental evidence of resonant microwave absorption in DNA was first

reported by Webb and Booth [43] and later by Swicord and Davis [44, 45]. Although
their results are still controversial [160, 293–295], they stimulated theoreticians
to study the problem. As a result, many different approaches have been pro-
posed. Some were based on the linear (harmonic) model of the internal DNA
dynamics [161, 186,187], and others were based on the nonlinear concept [30, 47,
251].
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Figure 8.2 A simple scheme of the experiment on microwave
absorption by an aqueous solution containing DNA.

The first nonlinear mathematical model of the interaction of DNA with an exter-
nal microwave field was proposed by Muto et al. [30, 251]. As the basis they used the
ideal rod-like model of internal DNA dynamics

utt = C
2uzz – (e/C

2)uzztt + d(uz
2)z, (8-3)

which describes longitudinal displacements (u(z,t)) in DNA. An equation of the type
of Eq. (8-3) was considered in Section 5.2. To imitate the conditions of the micro-
wave experiment, Muto et al. added two additional terms imitating the effects of dis-
sipation:

-Atu (8-4)

and the effects of interaction with the external (microwave) field

F(z) cosXt. (8-5)

The resulting equation, which is known as the Ostrovskii–Sutin equation, has the
following form:

utt = C
2uzz – (e/C

2)uzztt + d(uz
2)z – Aut+ F(z) cosXt. (8-6)

Here u(z,t) is the longitudinal displacement, C is the sound wave velocity, and e,
d are the dispersive and anharmonic parameters, respectively.
Using a special numerical procedure Muto et al. [30] calculated the absorption

spectrum and compared it with the spectrum calculated earlier by Van Zandt [186]
in the framework of the linear approximation. The results obtained were in close
agreement only for the fourth peak (the third overtone). The most marked differ-
ences were observed for the first (fundamental) peak, namely, in the nonlinear
approximation, the resonance peak exhibited a multicomponent character (fine

8.2 Resonant Microwave Absorption
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structure) and the linewidth of the peak was not simply related to the damping con-
stant as in the case of the linear approximation. The difference between the spectra
can be explained by the presence of the nonlinear term d(uz

2)z in Eq. (8-6).
The approach of Muto et al. was improved by Zhang [47]. He considered a rod-

like model of DNA (as did Muto et al.), but he took into account both longitudinal
and torsional degrees of freedom. As a result, instead of an equation of the type of
Eq. (8-3) he proposed two coupled equations:

utt = C
2uzz – (e/C

2)uzztt + d(uz
2)z + v1(jz

2)z + v2(jzu z)z,
(8-7)

jtt = v
2jzz – w0

2j + sv2(uz
2)z + 4sv1(jzuz)z,

where u(z,t), j(z,t) are the longitudinal and rotational displacements, respectively; C
and v are the torsional and longitudinal acoustic velocities; e and d are the dispersive
and anharmonic parameters; w0 and s are the frequency parameter and the para-
meter for dimensional transform; v1 and v2 are the coupling parameters.
To consider the microwave absorption by aqueous solutions containing DNA,

Zhang added four terms to Eq. (7-8) (two damping terms and two driving terms)
and solved the resulting system of two nonlinear coupled equations by the method
of perturbation.
As a result, he obtained that (i) the resonant absorption of microwave energy is

possible for both longitudinal and torsional modes, (ii) the resonance frequencies
are in the region of gigahertz and subterahertz, (iii) for both modes so-called subhar-
monic resonances are possible.
However, these theoretical predictions have not yet been checked by experimenters.

8.3
Scattering of Neutrons and Light

There have been a few attempts to explain the neutron scattering by DNA in terms
of solitons. We describe here two of them by Fedyanin and Yakushevich [3, 7, 22]
and Baverstock and Cundall [48, 296, 297].

8.3.1
Interpretation of Fedyanin and Yakushevich

Fedyanin and Yakushevich [3, 7, 22] made some predictions of the results of the
scattering of thermal neutrons by DNA solitons. To describe them, let us return
again to Section 2.8, where the general characteristics of the neutron scattering
method and basic conservation equations governing the interaction between inci-
dent radiation and scattering centers (DNA bases) were presented.
As we mentioned there, most of the spectrometers in current use work with

unpolarized neutrons and produce data in the form of a partial differential cross-
section d2r/dXdE¢ which gives the intensity of neutrons with energies between E¢

8 Experimental Tests of DNA Nonlinearity
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and E¢+dE¢ scattered into a solid angle element dX. Below we shall use the results
of the calculations of the partial differential cross-section, and especially the contri-
bution of inelastic coherent scattering obtained in Section 7.3.
First let us consider a simple sine-Gordon model of the internal DNA dynamics

(Figure 7.2a). Let us write the formula for the dynamical factor of inelastic coherent
scattering obtained in Section 7.3

Scoh (x, w¢) = {2l2adc0(E0/2pkBT)
1/2/"C0xzK1(E0/kBT)} exp(–2Wx)

exp(–E0/kBT){xx
2[(pxzd/c0)/sh(pxzd/2c0)]

2 +

+ xy
2[(pxzd/c0)/ch(pxzd/2c0)]

2} exp(–E0c0/kBT),
(8-8)

where c0 = (1–w¢2/xz2C02)–1/2.

In the case of low temperature (T<<E0/kB) and small velocities ((w¢/xz) << C0)
instead of Eq. (8-8) we have

Scoh (x, w¢) = {4l2adE0/"C0xzpkBT} exp(–2Wx)

exp(–E0/kBT) {xx
2[(pxzd/c0)/sh(pxzd/2c0)]

2 +

+ xy
2[(pxzd/c0)/ch(pxzd/2c0)]

2} exp(–M0w¢02/2xz2kBT). (8-9)

From Eq.(8-9) we can predict the existence of the central peak in the scattering
spectrum, and that the parameters of the peak such as the integral intensity I

I =
R
Scoh (x, w¢) dw¢ = A(x){kBT}–1/2 exp(E0/kBT); (8-10)

and the width Dw

Dw= B(x){kBT}
1/2; (8-11)

depend on the temperature T and the wave vector x. Note that the coefficients A(x)
and B(x) do not depend on the temperature. They are determined by

A(x) = {4(2)1/2R2ad/"(pE0)
1/2} exp(–2Wx) {xx

2[(pxzd)/sh(pxzd/2)]
2 +

+ xy
2[(pxzd)/ch(pxzd/2)]

2}, (8-12)

B(x) = xz/M0
1/2. (8-13)

The dependence of the parameters I and Dw on temperature is shown schemati-
cally in Figure 8.3. With increasing temperature, the intensity of the central peak
increases exponentially and the width increases in proportion to the root of T. The
behavior of the parameters of the central peak predicted by theory could be checked
experimentally.
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Figure 8.3 Temperature dependence of (a) the integral intensity
I and (b) the line width Dw of the central peak.

Now let us consider how these results change if, instead of a simple sine-Gordon
model, we take the helical sine-Gordon model described in Section 6.3 and shown
in Figure 7.2b.
According to the calculations in Section 7.3, the dynamical factor of neutron scat-

tering by the helical sine-Gordon model has the form

Scoh (x, w¢) = {l2ad(E0/2pkBT)1/2/"C0xzK1(E0/kBT)} exp(–2Wx)

exp(–E0/kBT) (xz + xy){F+(xz – 2p/10a) + F–(xz – 2p/10a)}, (8-14)

where the notations

F–(n) = {[pdn(1 – w¢2/C02n2)]/sh[pdn((1 – w¢2/C02n2)/2] –

–[pdn(1 – w¢2/C02n2)]/ch[pdn(1 – w¢2/C02n2)/2]} (1/n) (1 – w¢2/C02n2)–1/2

exp[(–E0/kBT) (1 – w¢2/C02n2)–1/2] (8-15)

are used.
For low temperatures and small velocities we have

Scoh (x, w¢) = (l2adE0/"C0 pkBT) exp(–2Wx) (xx
2 + xy

2){ f+(xz + 2p/10a) +

+ f–(xz – 2p/10a)}, (8-16)

where

f–(n) = [pdn/sh(pdn/2) – pdn/ch(pdn/2)]2 (1/n)

exp(–E0/kBT) exp(–M0w¢2/2kBTn2). (8-17)
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From Eq. (8-17) we can predict the splitting of the central peak (according to
the variable xz) into two components, shifted towards each other by 4p/10a @ 1 M–1

(Figure 8.4). This prediction could also be checked experimentally.

Figure 8.4 A scheme of splitting of the central peak due to the
helicity of the DNA structure.

To improve the calculations presented here, we should use a more accurate model
of the internal DNA dynamics. In this way new interesting predictions on the behav-
ior of the central peak of the neutron scattering spectrum of DNA could be
obtained.

8.3.2
Interpretation of Cundall and Baverstock

Baverstock and Cundall [48, 296, 297] used the soliton concept to interpret the
experimental data on the scattering of fast neutrons by DNA. We should note that
the interaction of the fast (high-energy) neutrons with DNA differs substantially
from the interaction of thermal (low-energy) neutrons described in Section 2.8. The
main difference is that the fast neutron scattering is accompanied by the formation
of radical anions. Studying the yield of the radicals is one of the powerful methods
of obtaining information about DNA internal dynamics.
In 1986 Arroyo et al. [298] investigated the radical yield dependence on the direc-

tion of irradiation of oriented fibers of DNA. Their results showed that the radical
anions of thymine were formed in roughly equal amounts to the guanine anions
when the neutron flux was perpendicular to the axes of the DNA molecules. When
the flux was parallel to the DNA axes a protonated form of thymine anions domi-
nated, and overall radical yields were lower by a factor of three in the parallel sam-
ple.
These results were interpreted by Miller et al. [299]. They assumed that there is a

large asymmetry in the thermal conductivity of oriented films. With the help of the
track structure model for protons it was shown that irradiation by the protons paral-
lel to the axes of the DNA molecule results both in the formation of the thymine
anion and, from the same particle, further energy deposits of the vibrational excita-
tions. Some of these may migrate to the sites of thymine anions and result in suffi-
cient thermal stimulation of the thymine to promote protonation. Where the proton
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direction is perpendicular to the axes of the DNA molecules such migration will be
impeded by the low intra-molecular thermal conductivity.
This idea was developed by Baverstock and Cundal [296,297]. Taking into account

that the deposition of ionizing energy into condensed media is a highly nonlinear
process they suggested that it can give rise to soliton-like species and that this
enables energy to be transferred without loss over long distances (Miller et al. pre-
dicted transfer distances of up to 0.2 lm). This interpretation cannot, however, be
checked experimentally.

8.4
Fluorescence Depolarization

Fluorescence depolarization is widely used for measurements of the torsional con-
stants of biopolymers. In 1992 Selvin et al. [49] used this method for measurements
of the torsional rigidity of positively, relaxed and negatively supercoiled DNA. For
the purpose they used time correlated single photon counting (TCSPC) of interca-
lated ethidium bromide. The measurements were made over a wide range of super-
helical density with a time-resolution of 75 ps extending from 0.75 ns, the range in
which DNA twisting motions dominate the fluorescence depolarization signal.
The main result of the measurements was rather unusual: the torsional rigidity of

the DNA molecule was not a constant, as had usually been suggested in good agree-
ment with the linear mathematical models of DNA. Selvin and coauthors found
that at physiological ionic strength (175 mM), the torsional rigidity increases mono-
tonically from 1.76 O 10–19 erg cm for the most positively supercoiled DNA, to
2.28 O 10–19 erg cm for the most negatively supercoiled DNA. At low ionic strength
(7.5 mM) the torsional constant rapidly increases from positively supercoiled
(1.91 O 10–19 erg cm) to relaxed DNA (2.42 O 10–19 erg cm), and then levels off at
negative superhelical densities (@ 2.3 O 10–19 erg cm).
From these data Selvin and coauthors concluded that the DNA molecule is not a

linear system, and that a more accurate mathematical model of the internal DNA
dynamics should consist of coupled nonlinear torsional springs. According to their
estimations the anharmonic term in the model Hamiltonian should be approxi-
mately 15% for twist fluctuations at room temperature.
These results appear to be quite reliable evidence for the nonlinear nature of inter-

nal DNA dynamics.

8 Experimental Tests of DNA Nonlinearity
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An important and traditional problem of DNA science is to relate the DNA func-
tional properties to its structural and dynamical properties.

In this chapter we try to consider the relation between DNA function and non-
linear dynamics, by describing several examples where the mechanisms of confor-
mational transitions, of long-range effects, of regulation of transcription process and
of DNA denaturation are explained in terms of the nonlinear concept.

9.1
Nonlinear Mechanism of Conformational Transitions

An interesting application of the nonlinear theory is associated with the interpreta-
tion of the mechanism of transitions between different conformational forms of the
DNA molecule. The relation between the phenomenon and nonlinear theory was
first noticed and reported in 1982 at the workshop in Gysinge [300]. Then this
approach was developed by many other authors [20, 21, 28, 50, 52, 54, 142, 301].

To describe the approach, let us return to Figure 1.6, where three of the main
DNA forms: A-DNA, B-DNA and Z-DNA, are shown. Each of the forms is character-
ized by a group of parameters including the helix sense (right-handed or left-
handed), the number of residues per turn, the diameter, the helix pitch, the tilting
of the base pairs relative to the helix axis, the displacement of the base pairs away
from the helix axis, the pucker of the furanose rings and others.

As an example, let us consider the transition between the A- and B-forms of the
DNA molecule, which can occur due to the change in temperature, of pH, hydration
or some other parameters. The transition is easily visualized by X-ray diffraction
studies of DNA fibers: if the fibers, for example, are allowed to dry, they produce an
A-type diffraction pattern, and if the fibers remain hydrated, the pattern is a B-type.
A schematic picture of A–B transition is shown in Figure 9.1a where one region of
the DNA molecule is shown in the A-form, and the other in the B-form. The process
of transition is shown there as a movement (from the left to the right) of the bound-
ary between two regions. So, this process is very similar to that of phase transition
in physical systems. It is well known, however, that, in physics, the transition pro-
cesses of this type are successfully described by kink and antikink solutions of corre-

9
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sponding nonlinear dynamical equations. So, we can expect that the movement of
the boundary between two DNA regions is also described by soliton-like solutions of
kink (or antikink) type.

Figure 9.1 A schematic picture of (a) Afi B transition; (b)
kink-like solution describing the movement of the boundary be-
tween two regions: A and B.

This suggestion is confirmed by theoretical results. Indeed, let us return to the
Section 5.4 where the model of Volkov [54] consisting of two nonlinear differential
equations

utt = s2uzz - AUu + BFusz,
(9-1)

stt = s
2
1szz + CFuuz.

was discussed. The first of the equations describes displacements inside the mono-
mer link (the variable u) and the other describes the displacement of the monomer
as a whole (the variable s). Here U(u) is the potential energy of the conformational
transition in a monomer link, and has the form of a double well (Figure 5.13); F(u)
is the function which characterizes the structural relations between subsystems:
F(u)= (u2

0
� u

2
); A, B, s, s1, C and u0 are constant parameters of the system.

One of the exact solutions of Eq. (9-1) having the form of a kink is shown sche-
matically in Figure 9.1b. This solution can be interpreted as a moving boundary be-
tween two regions, one of them having the A-form and the other having the B-form.

9.2
Nonlinear Conformational Waves and Long-range Effects

During the 1970s and 1980s a great deal of experimental work was done on long-
range effects [249, 206–208, 302]. The most impressive results came from the experi-
ments where special regions of DNA molecule (enhancers) were discovered.

A simple scheme illustrating these effects has been described in Section 3.5. The
scheme consists of two protein molecules and one DNA molecule (Figure 3.6). It is

9 Nonlinearity and Function
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assumed that these proteins interact specifically with DNA sites, namely, the first
protein molecule can bind to site 1 and the other protein molecule can bind to site 2.
The effect is that the binding of the first protein with site 1 influences the binding of
the second protein molecule with site 2, although the distance between the sites can
reach hundreds or thousands (as in the case of enhancers) of base pairs.

Among different explanations of the effect there is one which is of most interest.
According to it the effect of the binding of the first protein molecule to site 1 is
accompanied by a local distortion of the DNA conformation, which can propagate
along the double DNA chain. When reaching site 2 it changes the conformational
structure of the site which, in turn, changes the binding constants of the second pro-
tein with the site. This mechanism can be easily interpreted in terms of nonlinear
dynamics. Indeed, formation of the local distortion can be interpreted as an excita-
tion of the nonlinear wave (or soliton) and propagation of the distortion along the
double helix, as transmission of the nonlinear wave along the DNA.

To describe this phenomenon mathematically, we need to have some information
about the distortion. For example, if we know that the binding of some protein mol-
ecule with site 1 is accompanied by a substantial change in the DNA twist in the
vicinity of site 1, we can use (as a first approximation) the model of Englander:

Ijtt = Kl2a2jzz – v0sinj; (9-2)

or (as a second approximation) the Y-model

Ij1tt = Kl2a2j1zz – kl2{2sin j1 – sin(j1 + j2)},
(9-3)

Ij2tt = Kl2a2j2zz – kl2{2sin j2 – sin(j2 + j1)}.

If we know that the binding of some other protein molecule with site 1 is accom-
panied by the separation of the DNA strands. we can use the model of Peyrard and
Bishop:

mx1tt – ka21zz = 0;
(9-4)

mx2tt – ka2x2zz + 2DA2 x – 3DA3 x2 + (7/3)DA4 x3 = 0.

Parameters of Eqs. (9-3), (9-4) are described in Sections 5.1 and 5.3.

To model the long-range effect more correctly we need to know much more
details about the DNA–protein interaction and to try to construct mathematically a
model which takes them all into account. Such ideas were developed in the works of
Ladik and coauthors [58, 303]. To explain the long-range effects of carcinogens, they
assumed that the binding of carcinogen to DNA leads to strong distortion of the
DNA structure (Figure 9.2), and that after the removal of carcinogen, the system
will not relax immediately and conformational distortion caused by the binding can
travel through large distances along the DNA double helix. Mathematically a distor-

9.2 Nonlinear Conformational Waves and Long-range Effects
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tion of such a type is described by a solitary wave. It was suggested that the propa-
gating soliton along the DNA molecule causes long-range interference with the
DNA–protein interaction, and in this way possibly it can initiate the activation of
oncogene.

Figure 9.2 A scheme of (a) undisturbed and (b) disturbed
DNA. The distortion angle hn+1 measures the deviation of the
(n+1)th nucleotide base from its original position;Wn+1 is the
deviation of the base from the equilibrium value of rotation
around the helix axis (36( in B-DNA).

We discussed one more example of the explanation of the long-range effects in
terms of the nonlinear conception in Section 8.3 when describing the interpretation
of the results on neutron scattering by DNA proposed by Baverstock and Cundall.

9.3
Nonlinear Mechanism of Regulation of Transcription

The general characteristics of the transcription have been described in Section 3.4. A
scheme shown in Figure 3.4 illustrates the main stages of the process.

In this section we interpret the stages in terms of the nonlinear concept, as pro-
posed by Polozov and Yakushevich [55, 56].

According to their approach let us consider an essentially heterogeneous model
of a fragment of the DNA molecule, which contains the main functional regions
necessary for RNA synthesis and regulation: a promoter, P, a coding region, C, sev-
eral regulatory regions, R1, R2, R3 and a terminator, T. A scheme of the fragment is
shown in Figure 3.1.

Usually the transcription process starts with the binding of RNA-polymerase to a
promoter, P. Experimental data indicate that the binding of RNA-polymerase to a
promoter is accompanied by a considerable local distortion of the DNA conforma-
tion which can propagate along the DNA double helix [304–308]. These events can
be interpreted in terms of nonlinear dynamics as excitation and propagation of a
nonlinear conformational wave or soliton.

9 Nonlinearity and Function
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When passing through the coding region, C, the distortion will change the confor-
mation of the region. Support for this comes from the experiments [309–311] which
indicate that the interaction of RNA-polymerase with promoter P causes structural
alterations in the coding region C. These alterations may give rise to changes in the
matrix properties of DNA, which, in turn, will change the rate of RNA synthesis at
the stage of elongation. In the framework of the nonlinear dynamics the distortion
can be considered as a soliton and the movement of the distortion can be considered
as a propagation of a soliton of kink-type. A simple example of this is where the soli-
tary wave imitates the moving boundary between two regions (A and B) having dif-
ferent conformations.

Having passed through the C-region, the distortion reaches the terminator, T,
which separates two genes, the ith and (i+1)th. Experimental data indicate that the
T-region has often has a rather heterogeneous structure [312–314]. For example, the
terminator is shown in Figure 3.1 as a cruciform region. If we interpret the distor-
tion as a soliton we lead to the problem of passing the soliton through the local inho-
mogeneity region. A simple case of the problem was considered in Section 6.2.
Applying the results obtained there we can conclude that the passage of the soliton
through this region may result in a complete absorption of the soliton, or the soliton
will surmount the T-region, with the velocity and profile being substantially
changed. The first case corresponds to a termination and the second to a preparation
for switching on the next gene transcription.

The propagation of local distortion (or soliton in terms of nonlinear dynamics)
through the regulatory regions R1¢, R2¢ (or R1, R2, R3) is accompanied by changes in
the conformation of the regions, and hence in the binding constants of regulatory
proteins within these regions. As a consequence, the distribution of ligands
throughout the regions will change, which is known to be of crucial importance to
the regulation of DNA activity.

In addition, we should add that in all cases described above, when considering
the possible role of solitons in the different stages of the transcription process we
restricted ourselves to the case where then transcription process occurs in the vicini-
ty of only one gene. However, we could make a more general assumption and sug-
gest that the nonlinear solitary waves moving along the DNA molecule are also a
suitable model for the regulation and coordination of simultaneous transcription of
many genes.

9.4
Direction of Transcription Process

From numerous biological experiments it is well known that the directions of tran-
scription processes are different not only for DNA molecules of different living
organisms but also for different promoter regions of the same DNA molecule. For
some promoters the transcription process preferably develops in the upstream direc-
tion, for others in the downstream direction. There are also promoters which do not
have a preferred direction of transcription.

9.4 Direction of Transcription Process
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Explanation of these phenomena has been given by Salerno [39, 278–280]. Let us
return to Section 6.3. The nonlinear model proposed by Salerno consists of a set of
nonlinear discrete equations

Icn= Kl2(cn+1 – 2cn + cn–1) – Vn sincn= 0, n= 1, 2,..., N; (9-5)

where cn= jn,1 – jn,2; and jn,1, jn,2 are the rotational angles of the nth bases of the
first and second polynucleotide chains, respectively; I is the moment of inertia of the
individual bases; K is the backbone spring constant; Vn is a parameter modeling the
strength of hydrogen bonds between complementary bases. Through the coefficient
Vn the specific base sequence information is included: Vn is double (Vn = 2b) for the
adenine-thymine (A-T) base pair and triple (Vn = 3b) for the guanine-cytosine (G-C)
base pair.

In the particular case where the parameter Vn is uniform, that is Vn = v0, and in
the continuum limit Eq. (9-2) reduces to the well-known sine-Gordon equation

Ictt = Kl2a2czz – v0 sin c, (9-6)

having an exact kink-like solution

c(z,t) = 4tan–1{exp[(z - vt - z0)(c/d]}; (9-7)

where d = la(K/v0)
1/2.

Equations (9-5) have been studied numerically, and a kink-like solution Eq. (9-7)
was used as an initial condition. As a result, it was found that an initially static soli-
ton can (i) remain static (ii) oscillate, or (iii) move along the DNA molecule in one of
two possible directions: upstream or downstream. Which of these three events hap-
pens depends on the sequence of bases in the DNA fragment. In case (iii) when the
soliton moves, the problem of the direction of the movement (or the problem of
direction of transcription) arises. Salerno suggested that the direction depends on
the sequence of bases near the starting point. To check the suggestion, he took the
sequence (S) of 168 bases corresponding to T7A1 DNA promoter:

TTGTCTTTATTAATACAACTCACTATAAGGAGAGACAACTTAAAGA

#50 )

GACTTAAAAGATTAATTTAAAATTTATCAAAAAGAGTATTGACTTA

(–1)##(+1)

AACTCTAACCTATAGGATACTTACAGCCATCGAGAGGGACACGGC

( # 140

GAATAGCCATCCCAATCGACAACCGGGGTCAA (9-8)

9 Nonlinearity and Function



165

and constructed with its help a longer sequence of 1000 base pairs according to the
rule

S(1,5) + 9S(1,50) + S(51,140) + 16S(140,168) + S(162,168), (9-9)

where the symbol kS(i,j) denotes the subsequence of S going from the ith base pair
to the jth base pair k times. The longer chain permitted the use of safe reflexive
boundary conditions in the numerical simulation.

As a result, it was found that when the soliton was initially placed outside the pro-
moter the soliton remained static. When the soliton was placed inside the promoter
region the solitary wave began to move to the left end of the chain. This result is in
good agreement with the known data on the functional properties of the T7A1 pro-
moter. Moreover, this result shows the existence of a dynamically Mactive’ region in-
side the promoter region.

So, the approach of Salerno gives us a new effective tool for indication of dynami-
cally active regions in DNA. Moreover, we could expect that these regions corre-
spond to functionally active regions. If our suggestion is confirmed, scientists will
obtain one more new method of analyzing and interpreting the DNA code.

9.5
Nonlinear Model of DNA Denaturation

The nonlinear model for thermal denaturation of the DNA molecule was been pro-
posed by Peyrard and Bishop [34, 262]. It was based on the assumption that local
DNA denaturation is due to the breaking of the hydrogen bond and the separation
of DNA strands (Figure 9.3). To model hydrogen bonds Peyrard and Bishop used
the Morse potential Vn. And to model the internal DNA dynamics they assumed
that each base pair has only two degrees of freedom (un and vn) which correspond to
the displacements of bases from their equilibrium positions along the direction of
the hydrogen bonds (Figure 9.4). So, the Hamiltonian of the model has the form

H ¼
X

n

n
mðu2n þ v

2
nÞ=2þ k½ðun � un�1Þ

2 þ ðvn � vn�1Þ
2 
=2þ Vn

o

,

(9-10)

with

Vn= D{exp[–A(un – vn)] – 1}
2, (9-11)

where m is a common mass for the bases; k is a coupling constant; D and A are
parameters of the system. Strand separation is described then by the variable xn

xn= (un – vn)/2
1/2. (9-12)
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This variable represents the out-of-phase displacement which stretches the hydro-
gen bonds. The dynamical equation for the variable xn (see Eq. (5-99) and its soliton-
like solutions has been discussed in Section 5.3.

Figure 9.3 Schematic picture of DNA denaturation due to local
strand separation. Hydrogen bonds are shown by dotted lines.

Figure 9.4 Displacements (un, vn) of the bases in the model of
Peyrard and Bishop.

9 Nonlinearity and Function
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To apply these solutions to the problem of DNA denaturation we should admit,
however, the possibility of excitation of more than one soliton imitating local dena-
turation and suggest that the amount of solitons will increase with the increasing of
temperature. So, the study of the denaturation process is closely connected with the
problem of the statistics of solitons in DNA. We can now use the results on soliton
statistics described in Section 7.1 where the method of calculation of the average
value <x> was given. These calculations were made by Peyrard and Bishop and their
results showed that <x> rapidly increased in the vicinity of a particular temperature
which was a characteristic of DNA denaturation, as observed for instance by measur-
ing its absorbance of ultraviolet light at 260 nm [315].

Note, however, that calculations of <x> indicate at which temperature the dena-
turation occurs, but do not indicate how it occurs. To answer this question let us
return again to the model Hamiltonian (9-10) and write the corresponding dynami-
cal equation

m xntt – k(xn+1 + xn–1 – 2xn) – 2
3/2DAexp(–21/2Axn)[exp(-2

1/2Axn – 1] = 0. (9-13)

To simplify the problem let us expand Eq. (9-13) for small xn as

m xntt – k(xn+1 + xn–1 – 2xn) – 4DA2xn – 6D2
1/2A3x2n + 28DA4x3n/3 = 0. (9-14)

The solution of this equation can be found by a multiple-scale expansion [272] as
was done in Section 5.3. Indeed, the multiple-scale expansion of this type yields a
nonlinear SchrQdinger equation for F1 similar to Eq. (5-102)

iF1s + PF1ZZ + Q|F1|
2F1 = 0. (9-15)

The solitary waves resulting from this equation are breathing modes. Their statis-
tics were studied by Lebowitz, et al. [316], who showed that the nonlinear system
described by Eq. (9-15) could develop singularities in a finite time, and these singu-
larities might be responsible for the nucleation of DNA denaturation.

9.5 Nonlinear Model of DNA Denaturation
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Appendix 1:
Mathematical Description of Torsional and Bending Motions

The torsional motions are associated with the changes in the twist angle j. In the
general case this angle is determined in the following way. Let r(s) (0 £ s £ L) be a
smooth and simple (i.e. without intersection) curve of length L. We associate at each
point on this curve a smoothly varying unit vector u(s) perpendicular to r(s) (Figure
A.1). The set {r(s), u(s)} is called a strip or $ribbon’. On each point of a ribbon we
have a naturally moving frame {t, u, v}, where t(s) = r¢(s) is the tangential vector and
v is defined by v= t � u.

Figure A.1 Elastic rod. The axis curve r(s) and normal unit vec-
tor u(s) in the direction to one strand form a ribbon.

Let us introduce a rotational vector X = j1t + j2u + j3v by differentiating this
moving frame, i.e., u(s)

t ¢ = X + t, u¢= X + u and v¢= X + v. (A1-1)
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Then j1 is called the $twist’ of the ribbon. The total twist number is defined by

Twfr; ug ¼ ð1=2pÞ
ðL

0

j1ðsÞ ds: (A1-2)

In a particular case where u(s) is taken to be the principal normal, j1 is the tor-
sion s of the curve. So, twisting motions are those which lead to changes in the twist
angle j1 from some equilibrium (stable) value. The energy associated with these
motions takes the form

E
twðr; uÞ ¼ ð1=2pÞ

ðL

0

½Cðj1 � j
ð0Þ
1 Þ

2 � ds; (A1-3)

where C is the torsional elastic constant of the rod and ðj1 � jð0Þ1 Þ is the amount by
which the local twist density deviates from its unstressed value.

Now let us assume that r(s) is the center axis of the complementary double
strands of a DNA molecule. We regard u as a directional vector perpendicular to r
which indicates the position of one strand. For B-DNA the equilibrium value of the
twist is known to be jð0Þ1 = 2p/3.4 nm. A typical values of C is estimated to be

C = 2.04 + 10–28 J m; (A1-4)

in a dilute solution of NaCl with concentration less than 5 mM [119].
The bending of the rod can be described by the curvature of the axis. Bending

motions lead to changes in the curvature. Let k(s) = |F†(s)| be the amount by which
the local curvature of the DNA axis deviates from its unstressed value. Then the en-
ergy associated with the motions is given by

E
bðr; uÞ ¼ ð1=2Þ

ðL

0

½Bk
2 � ds; (A1-5)

where a typical value of the bending elastic constant, B, is estimated to be

B = 2.7 + 10–28 J m, (A1-6)

in dilute salt solution of NaCl concentration less than 5mM [119].
If we describe the double strand by a homogeneous elastic rod of radius d, the

constants C and B may be related to the Young’s modulus E and the rigidity l of the
imaginary elastic body through the relations B = pd4E/4 and C= pd4l/2, where d is
the radius of the covering rod (d ~ 1 nm for DNA in the natural state).
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Appendix 2:
Structural and Dynamical Properties of DNA

Radius (l) of DNA Helix

()) Ref.

10 22
12.5 119, 317

Distance (a) between Base Pairs

())

3.4

Mass of a Base Pair
(g/N, where N is the Avogadro constant)

Ref.

A-T base pair 614 238
G-C base pair 615 238

Moment of Inertia of a Base Pair

(10–37 g cm) Ref.

5 318
34 54

Velocity of Sound in DNA (for propagation
perpendicular to the fiber axis)

(km s–1) Ref.

dry DNA 3.38 321
A-DNA 2.22 231
A-DNA 3.25 221
B-DNA 3.50 221
B-DNA 1.89 231
wet DNA 1.69 231
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Velocity of Sound in DNA (for propagation along
the fiber axis)

(km s–1) Ref.

A-DNA 3.19 219
B-DNA 3.50 219

Velocity of Torsional Waves

(km s–1) Ref.

1.3 47
1.85 153, 154

Force Constant (K) for Torsion Motions
(discrete case)

(10–11 erg) Ref.

0.2–2 22
5.2 319
0.42 318
1.43–3.4 320, 321

Force constant (C = Ka) for torsion motions
(continuous case)

(10–19 erg cm) Ref.

0.4 – 4.0 119, 320, 322, 323
0.4 – 14.0 324
0.4 – 1.4 326
0.6 – 1.4 319
0.6 – 4.4 318, 326 – 329
0.6 – 1.1 325
0.64 – 4.14 119
1.29 320
1.3 142, 317
1.43 321
2.4 330
3.1 331
5.9 325, 332
13 333
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Force Constant for Roll Motions

(10–12 erg rad–2) Ref.

7.554 334

Force Constant for Tilt Motions

(10–12 erg rad–2) Ref.

7.554 334

Force Constant for Rise Motions

(10–14 erg )–2) Ref.

8.284 334

Force Constant for Bending Motions

(10–19 erg cm) Ref.

2.63 119

Force Constant (k) for Hydrogen Bond Stretching

(mdyn )–1) Ref.

single bond 0.13 335 – 337
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Parameters of Homogeneous Dynamical Model of DNA Ref. [338]

mA (mass of adenine) 226.13 + 10–27 kg

mT (mass of thymine) 211.04 + 10–27 kg

mG (mass of guanine) 252.92 + 10–27 kg

mC (mass of cytosine) 18592 + 10–27 kg

rA (distance between the center of mass of adenine and
sugar –phosphate chain)

5.8 L

rT (distance between the center of mass of thymine and
sugar –phosphate chain)

4.8 L

rG (distance between the center of mass of guanine and
sugar –phosphate chain)

5.7 L

rC (distance between the center of mass of cytosine and
sugar –phosphate chain)

4.7 L

IA (moment of inertia of adenine) 7607.03 · 10–47 m2 kg

IT (moment of inertia of thymine) 4862.28 · 10–47 m2 kg

IG (moment of inertia of guanine) 8217.44 · 10–47 m2 kg

IC (moment of inertia of cytosine) 4106.93 · 10–47 m2 kg

eH (energy required to break one hydrogen bond) 5 kcal mol–1

eAT (energy required to break hydrogen bonds in AT base pair) 10 kcal mol–1 @ 41.868 kJ mol–1

eGC (energy required to break hydrogen bonds in GC base pair) 15 kcal mol–1 @ 62.802 kJ mol–1

kA-T (force constant that characterizes interactions between
bases in AT base pairs)

0.062 N m–1

kG-C (force constant that characterizes interactions between
bases in GC base pairs)

0.096 N m–1

wAT (frequency of torsional oscillations of bases in
homogeneous ATchain)

0.75 + 1012 s–1

wGC (frequency of torsional oscillations of bases in
homogeneous GC chain)

0.94 + 1012 s–1
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