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Preface

Bioinformatics is today a breadth-wise subject spanning practically every aspect
of the life sciences, from studying DNA sequences, to modeling the structure and
function of proteins, to unraveling the interactions between proteins, and finally to
capturing the relationship with phenotypes of organisms. While there are several ex-
cellent textbooks and monographs covering every aspect of the field, there is a need
to collect together, in one place, the algorithms and methods that form the modern
bioinformatician’s toolkit. The Problem Solving Handbook in Computational Biol-
ogy and Bioinformatics was conceived to fill this need.

In organizing this book, we have consciously chosen those topics that have strong
algorithmic or methodological underpinnings and that are now widely used in a
range of bioinformatics investigations, such as functional genomics, haplotype stud-
ies, and simulation of disease pathways. The intended audience for this book are
practitioners of bioinformatics algorithms. The coverage is not (intended to be) ex-
haustive.

The chapters are written by experts in their respective disciplines and are closely
organized with an introduction to the underlying problem/task/domain, detailed al-
gorithmic descriptions, available software implementations, applications, and ad-
vanced topics. For the benefit of the reader, exercises and references to the literature
for further reading are also provided.

The five sections of the handbook focus on algorithms for sequences, phylo-
genetics, proteins, networks, and biological data management/mining, respectively.
The sequences section begins with an introduction to BLAST—arguably the most
ubiquitous bioinformatics algorithm—by Jian Ma and Louxin Zhang, including a
discussion of its recent incarnations. This is followed by a chapter on practical mul-
tiple sequence alignment algorithms by Tobias Rausch and Knut Reinert. In addition
to the algorithmic details, this chapter presents the historical context surrounding
this domain and how it has influenced the development of methods. The final chap-
ter in this section, by John Spouge, focuses more generally on sequence alignment
statistics, in particular how to assign p-values to alignment scores.

The second section of the handbook addresses the modeling of evolutionary rela-
tionships. The first chapter here, by Paul Marjoram and Paul Joyce, focuses on an in-
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troduction to coalescent theory and its applications, as a framework for evolutionary
analysis. In the second chapter, Laxmi Parida dwelves further into coalescence and
presents a graph-theoretic framework to understand ‘recombinomics.’ Paul Ryvkin
and Li-San Wang then present a chapter on the more specific problem of phyloge-
netic tree reconstruction from sequence information. They cover the broad classes
of algorithms in this domain and their modeling assumptions. These ideas are gen-
eralized in the next chapter on phylogenetic networks by Luay Nakhleh, which
focuses on the modeling of non-treelike evolutionary behaviors. The final chapter
on genome-wide association studies by Paola Sebastiani and Nadia Solovieff helps
make the connection from sequences and phylogeny to phenotypes.

The third section focuses on the multifaceted world of proteins. Proteins are rich
in multiple aspects of biology: structure, function, biochemistry, to name a few
aspects. Our section focuses on two of these aspects. Bonnie Berger and Jérôme
Waldispühl introduce the protein structure prediction problem and the latest devel-
opments on that front. Yang Cao then describes how networks of proteins can be
simulated, specifically using stochastic methods.

The fourth section describes algorithms for networks, as broadly modeled in
bioinformatics. Christopher Lasher, Christopher Poirel, and T. M. Murali introduce
cellular response networks as a mechanism to both integrate diverse sources of data
and to understand how distinct stresses manifest in the cellular state of a cell. Sinan
Erten and Mehmet Koyutürk focus on protein-protein interaction networks and al-
gorithms for identifying modules in them.

The final section is broadly about biological data management and mining. The
first chapter here, by Paola Sebastiani, Jacqui Milton, and Ling Wang, is about the
design and organization of microarray experiments. The second chapter, by Karthik
Devarajan, focuses on matrix decompositions as a specific algorithmic technique
for analyzing many kinds of bioinformatics data sets. The third chapter, by Rachael
Huntley, Emily Dimmer, and Rolf Apweiler, describes the Gene Ontology Resource
and the myriad uses it has come to serve in modern bioinformatics research.

We hope this book will serve as a useful companion to the bioinformatics practi-
tioner. We would like to thank Springer publishing for encouraging us to undertake
this project and providing constant guidance throughout the process. In particular,
Susan Lagerstrom-Fife has been very supportive of this project every step of the
way. Jennifer Maurer helped us organize the various chapters and indexes in a co-
herent manner. Many thanks to the authors for their enthusiastic participation and
responding to our queries on time.

Blacksburg, VA, Lenwood S. Heath
July, 2010 Naren Ramakrishnan
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Part I
Sequences



This first part of the book covers basic algorithms that work with biological se-
quences, from sequence search to multiple sequence alignment.



Modern BLAST Programs

Jian Ma and Louxin Zhang

Abstract The Basic Local Alignment Search Tool (BLAST) is arguably the most
widely used program in bioinformatics. By sacrificing sensitivity for speed, it makes
sequence comparison practical on huge sequence databases currently available. The
original version of BLAST was developed in 1990. Since then it has spawned a
variant of specialized programs. This chapter surveys the development of BLAST
and BLAST-like programs for homology search, discusses alignment statistics that
are used in assessment of reported matches in BLAST, and provides the reader with
guidance to select appropriate programs and set proper parameters to match research
requirements.

1 Introduction

The sequence structures of genes and proteins are conserved in nature. It is com-
mon to observe strong sequence similarity between a protein and its counterpart in
another species that diverged hundreds of millions of years ago. Accordingly, the
best method to identify the function of a new gene or protein is to find its sequence-
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addition to generating local alignments, BLAST also provides statistical assessment
of reported alignments. Because of these powerful features, BLAST is one of the
most widely used bioinformatics tools.

BLAST analysis is often used to identify conserved sequence patterns and to
establish functional or evolutionary relationships among proteins. It finds numerous
applications in molecular biology, evolutionary biology, and drug discovery.

The original version of BLAST [6] was developed by Altschul, Gish, Lipman,
Miller and Myers in 1990. The improved version PSI-BLAST [7] was made avail-
able in 1997. Over the intervening years, the original version has been customized
into a set of specialized programs. These new variants of BLAST handle homol-
ogy searches on different types of databases. They were designed to find gapped
local alignments and to detect weak signals in sequence alignment. Table 3 lists the
popular BLAST programs together with their functions.

The rest of this chapter is divided into seven sections. Section 2 describes the
available BLAST programs and other BLAST-like programs. Sections 3 and 4
present the algorithmic and statistical aspects of BLAST, respectively. Section 5
describes two practical examples of using BLAST. Through these examples, we
examine the biological and statistical information output from BLAST. Section 6
addresses three advanced issues of using BLAST homology search. Section 7 lists
some exercises for the reader to master BLAST programs. Finally, we summarize
the most relevant and useful references on BLAST for further reading in Section 8.

2 Available Implementations

From a user point of view, based on different purposes, a BLAST search generally
involves three important parts: input, database searched against, and a particular
BLAST program.

On NCBI BLAST web site, the available databases can be categorized into pro-
tein databases and nucleotide databases. Frequently used databases are summa-
rized in Table 1 and Table 2. In addition, NCBI also provides specialized BLAST
databases, e.g. genome databases for different species, trace databases, as well as
various databases for model organisms.

Table 1 Main protein sequence databases for BLAST

Database Description

nr Non-redundant collections from GenBank CDS translations,
PDB, SwissProt, PIR, and PRF

month The nr updates in the last 30 days
refseq Protein sequences from the RefSeq project
swissprot SWISS-PROT protein sequence database
pdb Sequences from the 3-dimensional structure records in PDB
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Table 2 Main nucleotide sequence databases for BLAST

Database Description

nr All sequences in GenBank, EMBL, DDBJ, PDB except EST,
STS, GSS, etc.

month The nr updates in the last 30 days
refseq mrna mRNA sequences from the RefSeq Project
refseq genomic Genomic sequences from the RefSeq Project
est EST sequences in GenBank, EMBL, and DDBJ
gss Genome Survey Sequence

A family of BLAST programs have been developed since its original version
was launched in 1990. The difference mainly comes from the input type and the
databases that the input is searched against. For example, BLASTN is useful to
identify an unknown nucleotide sequence or to search homologous genomic se-
quences in different organisms. The major BLAST programs on the NCBI web
site are summarized in Table 3. These programs can be used via a web interface
(http://www.ncbi.nlm.nih.gov/blast) or as stand-alone tools.

Apart from the set of programs on the NCBI BLAST server, there are other
BLAST-like homology search programs and web servers. Table 4 lists a few widely-
used tools. On WU-BLAST server, BLAST programs available on NCBI are also
available, but all the programs were implemented differently. WU-BLAST also in-
cludes other tools developed in Warren Gish’s lab.

FASTA is a sequence similarity search program first developed by Lipman and
Pearson in NCBI. Its sequence format, called the FASTA format, has been widely
adopted for sequence comparison. It uses a multiple-step approach to aligning the
query and target sequences. It first finds runs of ktup or more identities, which are
called word matches. Here ktup is a program parameter used for controlling the
sensitivity and speed of the program. From these identified word matches, it deter-
mines a band in which good alignments likely locate and then calculates the optimal
alignment in the band using the dynamic programming method.

Sequence Search and Alignment by Hashing Algorithm (SSAHA) is developed
to search a large DNA database efficiently. The essential idea is to preprocess the
sequences in a database by breaking them into consecutive k-tuples of k contiguous
bases and then using a hash table to store them. Therefore, searching for a query
sequence in the database is done by obtaining from the hash table the ‘hits’ for each
k-tuple in the query sequence and then performing a sort on the results.

Sim4 employs a BLAST-based approach. It first determines the maximal scoring
gap-free segments and then extends these segments into the adjacent regions greed-
ily. It can be downloaded from Webb Miller’s lab and installed in a standalone work-
station. It can also be run through the web server http://pbil.univ-lyon1.fr/sim4.php.

BLAT is an alignment tool like BLAST, and it is extremely efficient, developed
by Jim Kent. On DNA sequences, BLAT works by keeping an index of an entire
genome, consisting of all non-overlapping 11-mers, which makes BLAT quickly
find sequences of 95% and greater similarity of length 40 bases or more. However,

http://www.ncbi.nlm.nih.gov/blast
http://pbil.univ-lyon1.fr/sim4.php


6 Jian Ma and Louxin Zhang

Table 3 Major BLAST programs on the NCBI web site

Program Description

BLASTN Search a nucleotide sequence against a nucleotide sequence database
BLASTP Search an amino acid sequence against a protein sequence database
BLASTX Search a nucleotide sequence translated in all reading frames against a pro-

tein sequence database
TBLASTN Search a protein sequence against a nucleotide sequence database dynami-

cally translated in all reading frames
TBLASTX Search the six-frame translations of a nucleotide sequence against the six-

frame translations of a nucleotide sequence database
MEGABLAST [29] Find long alignments between very similar sequences more efficiently
PSI-BLAST [7] Find members of a protein family or build a custom position-specific score

matrix
PHI-BLAST [28] Find proteins similar to the query around a given pattern

it is less sensitive to more divergent or short sequence alignments. On protein se-
quences, BLAT uses 4-mers, rapidly finding protein sequences of 80% and greater
similarity to the query of length longer than 20 amino acids. However, it is far less
sensitive than BLAST and PSI-BLAST at NCBI.

3 Algorithm Description

Alignment is a way of arranging two DNA or protein sequences to identify regions
of similarity that are conserved among species. Each aligned sequence appears as a
row within a matrix. Gaps are inserted between the residues of each sequence so that
identical or similar bases in different sequences are aligned in successive positions.
Each gap spans one or more columns within the alignment matrix. The score of
an alignment is calculated by summing the rewarding scores for match columns
that contain the same bases and the penalty scores for gaps and mismatch columns

Table 4 Other BLAST-like programs

Program Description URL Refs

WU-BLAST Washington University BLAST http://blast.wustl.edu/ [17]
FASTA Homology search against Protein or

DNA databases
http://fasta.bioch.virginia.edu/ [26]

SSAHA Fast matching and alignment of DNA
sequences

http://www.sanger.ac.uk/ [24]

Sim4 Homology search of an expressed DNA
sequence (EST, cDNA, mRNA) with a
genomic sequence

http://www.bx.psu.edu/miller lab/ [15]

BLAT BLAST-Like Alignment Tool http://genome.ucsc.edu/ [21]

http://blast.wustl.edu
http://fasta.bioch.virginia.edu
http://www.sanger.ac.uk
http://www.bx.psu.edu/miller
http://genome.ucsc.edu
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that contain different bases. A scoring scheme specifies the scores for matches
and mismatches, which form the scoring matrix, and the scores for gaps, called
the gap cost. There are two types of alignments for sequence comparison. Given a
scoring scheme, calculating a global alignment is a kind of global optimization that
‘forces’ the alignment to span the entire length of two query sequences, whereas
local alignments just identify regions of high similarity within two sequences.

The original version of BLAST finds good ungapped local alignments between
the query and database sequences [6]. Accordingly, it is also called ungapped
BLAST. Database sequences are usually called target sequences. To speed up the
homology search process, BLAST employs a filtration strategy: It first scans the
database for length-w word matches of alignment score at least T between the query
and target sequences and then extends each match in both ends to generate local
alignment (in the sequences) whose alignment score is larger than a threshold S.
The matches are called high-scoring segment pairs (HSPs). BLAST outputs a list of
HSPs together with E-values that measure how frequent such HSPs would occur by
chance.

3.1 Phase 1: Scan the Database for Match Hits

Consider a set of parameters w, T and S. A sequence of length w is called a w-mer.
For a query sequence, a w-mer is called a neighborhood sequence if it forms a match
of alignment score at least T with some w-mer in the query sequence. We illustrate
this concept using a DNA query sequence.

Consider query sequence Q: GCATTGACCC and parameters w = 8,T = 6. Un-
der a simple scoring scheme by which matches and mismatches score 1 and -1 re-
spectively, the neighborhood sequences that match 8-mer GCATTGAC in the query
sequence are all 1-mismatch 8-mers:

.CATTGAC, G.ATTGAC, GC.TTGAC, GCA.TGAC,
GCAT.GAC, GCATT.AC, GCATTG.C, GCATTGA.,

where ’.’ stands for any letter of A, G, C, and T. Similarly, the set of neighborhood
sequences also include the following sequences:

.ATTGACC, C.TTGACC, CA.TGACC, CAT.GACC,
CATT.ACC, CATTG.CC, CATTGA.C, CATTGAC.,
.TTGACCC, A.TGACCC, AT.GACCC, ATT.ACCC,
ATTG.CCC, ATTGA.CC, ATTGAC.C, ATTGACC.,

which match 8-mers CATTGACC or ATTGACCC.
The set of neighborhood sequences is efficiently constructed from the query se-

quence since there are at most 4w neighborhood sequences. Having the set of neigh-
borhood sequences, the next task is to check whether each neighborhood sequence
occurs in the target sequence or not. Such an occurrence of a neighborhood sequence
is called a seed hit. For example, for target sequence
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T : ATAGCATGGACTTGACCCCGGCATTGTCATCG,
the 8-mer GCATTGAC hits T at positions 4 and 21, whereas the 8-mer ATTGACCC
hits T at position 11. Here seed hits are not perfect. In fact, BLAST programs use
perfect hits for DNA sequence search and imperfect hits whose score is higher than
a threshold. All the hits can be identified using an efficient data structure such as
hash table, suffix tree, or suffix array. The reader is referred to the book [12] of
Chao and Zhang for implementation details.

The sensitivity and speed of BLAST search are closely related to the match size
w. When w is large, the BLAST search is fast but has low sensitivity in the sense
that it may miss short homologous sequences. In contrast, when w is small, it is
slower, but has high sensitivity. The w is set by default to 11 and 3 for BLASTN
and BLASTP, respectively. To achieve the optimal balance between sensitivity and
speed, the discontiguous MEGABLAST finds l-mer pairs that match in w discon-
tiguous positions specified by a fixed pattern. Such a pattern is called a spaced seed.
For example, one default spaced seed used for searching non-coding sequences is
111∗1∗11∗∗1∗11∗111. When such a spaced seed is used, two 18-mers match if
they have identical nucleotides in the positions indicated by the 1s: 1, 2, 3, 5, 7, 8,
11, 13, 14, 16, 17, 18. It is first observed by Ma, Tromp, and Li that an optimally
spaced seed significantly improves homology search sensitivity [23].

3.2 Phase 2: Hit extension

In the second phase, ungapped BLAST extends each ‘seed’ hit in both directions to
generate a HSP and outputs this HSP if its alignment score is S or greater. At each
end, the extension includes aligned pairs in successive positions, with corresponding
increments to the alignment score. It continues until the alignment score drops more
than X below the maximum score that has attained up to that position.

It was observed that ungapped BLAST consumes more than 90% of the running
time in hit extension. It was also observed that an HSP usually contains multiple
hits that are close to one another. Accordingly, Gapped BLAST uses double hits to
trigger hit extension to generate high-scoring gapped local alignments. It starts the
extension process only if there are two non-overlapping hits within Dg positions,
where the subscript g indicates that it is a parameter for Gapped BLAST. These
adjacent non-overlapping hits can be detected if all hit positions are maintained.

In Gapped BLAST, gap extension is done by using the dynamic programming
approach. Since the approach takes quadratic time, the extension process is much
slower than ungapped one. Here two more ideas are employed in order to handle
gap extension more efficiently. One idea is only to extend those HSPs that have
alignment score Sg or greater. The threshold Sg is determined in such a way that only
one gap extension is invoked on average in per 50 database sequences. Another idea
for handling the extension is to restrict gapped extension to those positions in which
the optimal local alignment score drops no more than Xg below the maximum local
alignment score attained up to the position.
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4 BLAST Statistics

An important feature of BLAST is that it rank-orders the reported HSPs by E-
values. For a local alignment of score s, an E-value of 10−5 is often used as a cutoff
for BLAST homology search. It means that with a collection of random query se-
quences, only once in a hundred thousand instances would an alignment with that
score or greater occur by chance. The smaller the E-value, the greater the belief that
the aligned sequences are homologous.

The E-values for HSPs in BLAST printout are calculated based on the seminal
work of Karlin and Altschul on the distribution of optimal ungapped local alignment
scores [19]. Both theoretical and empirical studies suggest that the distributions of
optimal local alignment scores with or without gaps are accurately described by an
extreme value distribution.

Assume that we search a query sequence Q against a database. Let lQ be the
length of Q. For each database sequence T , the mean number ET of HSPs with
score s or greater occurring in the comparison of Q and T is

ET = K(lQ − l̄(s))(lT − l̄(s))e−λ s, (1)

where K and λ are constants independent of T and l̄(s) is the length adjustment.
K and λ are the two parameters of the extreme value distribution of optimal local
alignment scores. Their values are efficiently calculated from the letter composition
of the database sequences and the scoring scheme used for the search. The values of
K and λ are listed in the BLAST search printout.

The length adjustment l̄(s) is equal to the mean length of HSPs with score s
or greater. It is used to eliminate the ‘edge’ effect of the fact that optimal local
alignments are unlikely to occur at the end of both query and target sequences. Let N
and M be the numbers of sequences and letters in the database. The current BLASTP
(version 2.2.18) calculates the length adjustment l̄(s) for score s as an integer-valued
approximation to the unique root of the following functional equation

x = α
ln(K(lQ − x)(M−Nx))

λ
+β . (2)

For ungapped alignment, α = λ/H, and β = 0, where H is the relative entropy of
the scoring matrix used for the database search. For gapped alignment, the values
of α and β depend on scoring matrix and affine gap cost. Take BLOSUM62 as an
example. We have that α = 1.90 and β = −29.70 for the affine gap cost in which
the gap opening and extension costs are 11 and 1 respectively.

We define the effective size of the search space as

eff-searchSP = ∑
T∈D

lT −Nl̄(s). (3)

By the linearity property of means, the expected number of high-scoring alignments
with score s or greater found in the entire database is
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E-value = ∑
T∈D

ET = K × (lQ − l̄(s))× eff-searchSP× e−λ s. (4)

When two sequences are aligned, insertions and deletions can break a long align-
ment into several parts. If this is the case, focusing on the single highest-scoring
segment could lose useful information. As an option, one may consider the scores
of the multiple highest-scoring segments.

Assessing multiple highest-scoring segments is more involved than it might first
appear. Suppose, for example, comparison X reports two highest scores 88 and 68,
whereas comparison Y reports 79 and 75. One can say that Y is not better than X,
because its high score is lower than that of X. But neither is X considered better,
because the second high score of X is lower than that of Y. The natural way to rank
all the possible results is to consider the sum of the alignment scores of the HSPs as
suggested by Karlin and Altschul [20]. This sum is now called the Karlin-Altschul
sum statistic.

In earlier versions of BLAST, the Karlin-Altschul sum statistic was only used
for ungapped alignments as an alternative to performing gapped alignment. Now,
it is applied to any HSP. The Karlin-Altschul sum statistics is too involved to be
described here.

Finally, we must warn that formulas for P-value and E-value in BLAST are evolv-
ing. The above calculations are used in the current version of BLAST (version 2.2).
They are different from the calculations used in earlier versions. The length adjust-
ment was calculated as the product of λ and the raw score divided by H in earlier
versions. Accordingly, they might be modified again in the future.

5 Examples

5.1 A BLASTP Search Example

As an example of using BLASTP, we will consider the capsid protein of the West
Nile Virus (WNV)1. This virus mainly infects birds, but occasionally infects humans
through the bite of an infected mosquito. The WNV is a positive-sense, single strand
of RNA, having about 11,000 nucleotides. There are 7 non-structural proteins and 3
structural proteins in the RNA. The capsid protein of the WNV has sequence [10]:

MSKKPGGPGK SRAVNMLKRG MPRVLSLIGL KRAMLSLIDG KGPIRFVLAL LAFFRFTAIA
PTRAVLDRWR GVNKQTAMKH LLSFKKELGT LTSAINRRSS KQKKR

whose GenBank accession id is YP 001527877. We compare this sequence against
the non-redundant GenBank database by using BLASTP available at the NCBI
server with default settings. A BLAST printout contains (a) the information on the
program, (b) a set of local alignments together with the statistical scores, and (c) a
set of parameters used for the statistical analysis. A partial printout from our search
follows:

1 This example first appeared in the article of Casey [11].
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BLASTP 2.2.18+
...

Database: All non-redundant GenBank CDS
translations+PDB+SwissProt+PIR+PRF excluding environmental samples from WGS

projects
7,036,788 sequences; 2,431,208,758 total letters

...

Query= gi|158516889|ref|YP 001527878.1| capsid protein [West Nile virus]
Length=105

...

Alignments

>gb|ABD67759.1| polyprotein precursor [West Nile virus]
Length=3433

Score = 203 bits (517), Expect = 3e-51, Method: Composition-based stats.
Identities = 100/100 (100%), Positives = 100/100 (100%), Gaps = 0/100 (0%)

Query 1 MSKKPGGPGKSRAVNMLKRGMPRVLSLIGLKRAMLSLIDGKGPIRFVLALLAFFRFTAIA 60
MSKKPGGPGKSRAVNMLKRGMPRVLSLIGLKRAMLSLIDGKGPIRFVLALLAFFRFTAIA

Sbjct 1 MSKKPGGPGKSRAVNMLKRGMPRVLSLIGLKRAMLSLIDGKGPIRFVLALLAFFRFTAIA 60

Query 61 PTRAVLDRWRGVNKQTAMKHLLSFKKELGTLTSAINRRSS 100
PTRAVLDRWRGVNKQTAMKHLLSFKKELGTLTSAINRRSS

Sbjct 61 PTRAVLDRWRGVNKQTAMKHLLSFKKELGTLTSAINRRSS 100

...

>gb|ACA28703.1| polyprotein [Japanese encephalitis virus]
Length=3432

Score = 164 bits (414), Expect = 2e-39, Method: Composition-based stats.
Identities = 71/105 (67%), Positives = 90/105 (85%), Gaps = 0/105 (0%)

Query 1 MSKKPGGPGKSRAVNMLKRGMPRVLSLIGLKRAMLSLIDGKGPIRFVLALLAFFRFTAIA 60
M+KKPGGPGK+RA+NMLKRG+PRV L+G+KR ++SL+DG+GP+RFVLAL+ FF+FTA+A

Sbjct 1 MTKKPGGPGKNRAINMLKRGLPRVFPLVGVKRVVMSLLDGRGPVRFVLALITFFKFTALA 60

Query 61 PTRAVLDRWRGVNKQTAMKHLLSFKKELGTLTSAINRRSSKQKKR 105
PT+A+L RWR V K AMKHL SFK+ELGTL A+N+R KQ KR

Sbjct 61 PTKALLGRWRAVEKSVAMKHLTSFKRELGTLIDAVNKRGKKQNKR 105

...

Database: All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF
excluding environmental samples from WGS projects

Posted date: Sep 9, 2008 5:57 PM

Number of letters in database: -1,863,758,534

Number of sequences in database: 7,036,788

Lambda K H
0.324 0.137 0.389

Gapped
Lambda K H

0.267 0.0410 0.140
Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 7036788
...
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Fig. 1 The web page for launching a PSI-BLAST search.

Length of query: 105
Length of database: 2431208758
Length adjustment: 111

...

The second local alignment in the printout shows that the capsid protein of the
WNV has a significant similarity with a domain region of the Japanese encephalitis
virus. Our BLAST search reveals correctly the fact that the Japanese encephalitis
virus and the WNV share similar proteins in their protein coats.

The statistical analysis associated with each alignment in the printout is done as
follows. As shown in the printout, the query sequence has 105 letters; the target
database contains 7,036,788 sequences and 2,431,208,758 letters; and the length
adjustment displayed in the printout is 73. Since the local alignment involving the
Japanese encephalitis virus is gapped, the following values are used in the calcula-
tion of the E-value:

λ = 0.267, K = 0.041.

The raw score of the alignment is 414 and hence its bit score is

λ ×Sraw − ln(K)

ln(2)
=

0.267×414− ln(0.041)

ln(2)
= 164.080851,

which agrees with 164 in the printout [16]. By Equation (4), the E-value is

0.041× (105−73)× (2,431,208,758−7,036,788×73)× e−0.267×414,

which is 2.481035e-39, in agreement with the printout value 2e-39.



Modern BLAST Programs 13

5.2 A PSI-BLAST Search Example

The Position-Specific Iterated (PSI)-BLAST was designed to identify subtle homol-
ogous protein relationships that might be missed by other BLAST programs [7]. It
searches a protein database iteratively. At each iteration step, PSI-BLAST generates
a profile, or a position specific scoring matrix (PSSM), based on a multiple align-
ment of the identified high scoring hits to a given query sequence. The PSSM is cal-
culated by considering position-specific scores for each position in the alignment.
Highly conserved positions receive high scores, whereas weakly conserved posi-
tions receive low scores. The profile is then used to perform subsequent rounds of
BLAST search. The strategy is to use the results of each iteration to refine the profile
progressively. When such a profile is used to search a database, it can often detect
distantly homologous, in structure or function, relationships between proteins.

We illustrate how to operate PSI-BLAST by searching part (the first 300 bp) of
a putative zinc finger protein (XP 656065.1) in Entamoeba histolytica against the
non-redundant protein sequence database as an example. We run the online version
of PSI-BLAST available at http://ncbi.nlm.nih.gov/BLAST. The search is done in
the following steps:

1. Paste the query sequence into the query box of the PSI-BLAST Web page and
choose the searched database. Here, we used the accession id XP 656065.1 of
the putative zinc finger protein (see Figure 5.1).

2. Set the algorithm parameters. If one chooses to use the default parameters, this
step is skipped. In our example, we changed the maximum number of target
sequences from 500 to 1000, the expected threshold from 10 to 4, and the PSI-
BLAST threshold from 0.005 to 0.05.

3. Format to get the results. We ticked the box next to the BLAST button for the
results to be retrieved in a new web page. The hits will be displayed into two
sections. The hits with E-value smaller than the threshold s, 0.05 in our search,
are listed first; those with E-value larger than s but smaller than the expected
threshold, 4 in our case, are listed further down the page. The hits listed in the
first section will be used in forming the profile that will be used in the next
iteration step.

4. Click repeatedly the ‘run PSI-BLAST iteration’ button until the user decides to
stop the search process or the search result cannot be improved. By clicking
the ‘Taxonomy reports’ link on the top of the result window, one can view the
distribution of the hits and decide to stop the search or not.

We obtained three significant hits (shown in Figure 2) in the initial search and
surprisingly nine more significant hits (Figure 3) after the first iteration. The follow-
ing several iterations generated even more significant hits.

PSI-BLAST is a powerful tool. Many important but subtle relationships that pre-
viously were detectable only by structural comparison can now be uncovered by
a simple PSI-BLAST search. However, the user must use it with caution. A false
relationship can easily be amplified by iteration. As a result, different queries that
belong to the same family of proteins can perform differently in searches against

http://ncbi.nlm.nih.gov/BLAST
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Fig. 2 The initial PSI-BLAST search results.

the same database. It is recommenced that the user run PSI-BLAST search with
different query sequences to obtain reliable homology relationships.

6 Advanced Topics

The NCBI web interface provides biologists easy access to BLAST homology
search against different databases. It has a simple search form on which a dozen
default values can be overwritten and displays aligned sequences together with sig-
nificance analysis. But, using BLAST effectively requires knowledge of alignment
statistics and insights on the algorithmic details of the program.

6.1 Scoring Matrices

The statistical significance of HSPs listed in BLAST printout is calculated mainly
based on the internal scoring matrix. For protein sequence comparison, BLOSUM
or PAM matrices are usually used; for DNA sequence comparison, similar but sim-
pler substitution matrices are used. Although these scoring matrices are derived in
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Fig. 3 The result after the first iteration of PSI-BLAST search.

different ways, they take essentially the same log-odds form: the score for aligning
bases a and b is basically the logarithm of the ratio of the probability that a and b
are aligned in homologous sequences to the probability that we expect to observe a
and b aligned in random sequences with the same background letter composition.

The choice of scoring matrix for homology search can have a profound effect
on the search output. Choosing PAM120 will generate one HSP, whereas choosing
BLOSUM62 will generate another. In other words, scoring matrices detect differ-
ent classes of alignments. For example, in searching a protein database containing
10,000,000 letters, the length range of the local alignments that PAM120 can detect
is roughly from 15 to 50 (see [1]). Accordingly, choosing PAM120 may miss short
but strong or long but weak alignments.

To obtain better results, one should choose the proper scoring matrix rather than
just using the default matrix listed on the web interface. In PAM matrix naming sys-
tem, higher numbers denote larger evolutionary distance. Hence, PAM120 is gen-
erally more appropriate than PAM30 for finding remotely-related homologous se-
quences. In contrast, larger numbers in BLOSUM matrices denote higher sequence
similarity and so BLOSUM45 is generally better than BLOSUM62 for studying
sequence relationship among divergent species.
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6.2 Gap Penalties

Another important issue of BLAST search is to choose the gap cost. It is rare for two
gene sequences to align perfectly with one another. Gapped BLAST introduces gaps
between residues to bring up matches in the following positions. The way Gapped
BLAST treats gaps can significantly affect its output. The user is allowed to choose
different costs for gap opening and gap extension in a BLAST web page.

It is observed that optimal local alignments do not usually contain gaps of more
than 1 residues [5] if the gap extension cost is relatively large. Hence, it is not
rewarding to use any gap extension cost that is too close to the gap opening one.

On the other hand, if the gap extension cost is too small, the optimal local align-
ment scores might not follow the extreme value distribution. If this happens, the
statistical analysis done by BLAST will no longer be meaningful.

6.3 Should DNA or Protein Sequence Be Used?

One natural question often asked by a BLAST user is: Should I compare gene se-
quences or the corresponding protein sequences? This can be answered by the fol-
lowing analysis.

Synonymous mutations are nucleotide substitutions that do not result in a change
to the amino acids sequence of a protein. Evolutionary study suggests that there
tend to be approximately 1.5 synonymous point mutations for every nonsynony-
mous point mutation. Because each codon has 3 nucleotides, each protein PAM
translates into roughly 1+1.5

3 ≈ 0.8 PAMs at the DNA level.
The substitution scores in the scoring matrix are implicitly log-odds scores. By

multiplying by a constant factor, a scoring matrix is normalized to the logarithms of
odds-ratios to base 2. The alignment score obtained with such a normalized scoring
matrix is called the bit score and considered as bit information. In the alignment of
two proteins that have diverged by 120 PAMs, each residue carries on average 0.98-
bit information, whereas in the alignment of two DNA sequences that are diverged
at 96 (or 120× 0.8) PAMs, every three residues (a codon) carry only about 0.62-
bit information [27]. Hence, at this evolutionary distance, 37% of the information
available in protein comparison will be lost in DNA sequence comparison.

In a nutshell, protein sequence comparison is generally more sensitive than that
of DNA sequences.
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7 Exercises

Here we list 7 exercises for the reader to gain mastery of BLAST and BLAST-like
programs.

1. Which of the following in the BLAST output provides an estimate of the false
positive rate of the BLAST search: E-value, Score, or Identity?

2. What are the major advantages of Gapped-BLAST over BLASTP?

3. Use one of the BLAST programs to determine the frame shift of the following
sequence.

ATGAGAGTGAAGGAGAAATATCAGCACTTGTGGAGATGGGGCACCATGCTCCTTGGGTTGT
TGATGATCCGTAGTGCTGCAGACCAATTGTGGGTCACAGTCTATTATGGGGTACCTGTGTG
GAAAGAAGCAACCACCACTCCATTTTGTGCATCAGATGCTAAAGCATATGATACAGAGGTA
CATAATGTTTGGGCCACACACGCCTGTGTACCCACAGACCCCAACCCACAAGAAGTAGTAT
TGGCAAATGTGGCAGAAAATTTTAACATGTG

4. Use BLASTP to align protein sequence P23749 and P16235 with different ma-
trices, PAM30, BLOSUM45, and BLOSUM80. Which matrix gives the best align-
ment score?

5. Higher eukaryotic genomes contain large amounts of repetitive DNA. The
most abundant interspersed repeat in the human genome is the Alu element. Alus
tend to occur near genes, within the introns of genes, or in the regions between
genes. In some cases, their presence and absence can fairly accurately show the
intron-exon structure of a gene. Demonstrate this by performing a nucleotide-
nucleotide BLAST search against the Alu database (alu repeats) with the genomic
sequence of the human Von Hippel Lindau syndrome gene (Accession AF010238).
Note that the exons appear in the BLAST graphic as places where the Alu elements
do not align.

6. A PSI-BLAST search is most useful when you want to

1. Extend a database search to find additional proteins,
2. Extend a database search to find additional DNA sequences,
3. Find the mouse ortholog of a human protein, or
4. Use a pattern to extend a protein search.

The human fragile histidine triad protein (FHIT, Accession P49789) is structurally
related to galactose-1-phosphate uridylyltransferases. However, this relationship
is not apparent in an ordinary BLAST search. Perform a protein-protein BLAST
search against the SWISS-PROT database with P49789 and search your results for
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galactose-1-phosphate uridylyltransferases. Now use PSI-BLAST to verify the rela-
tionship between these two protein families.

7. On UCSC Genome Browser (http://genome.ucsc.edu/), find the protein se-
quence for rat leptin. BLAT this sequence against the human genome to find the
human homology. Look for SNPs in the coding region of this gene. Are there any?

8 Further Reading

Here we point out some useful references on the topics covered in this chapter for
the reader to consult. Sequence alignment has been extensively studied by biolo-
gists, computer scientists, and mathematicians in the past four decades. There is a
large body of literature on this subject matter. For general treatment of sequence
alignment, we refer the reader to the survey papers of Batzoglou [9] and Altschul et
al. [3] and the book of Chao and Zhang [12].

For further consultation on how to use BLAST, we refer the reader to the online
tutorial on the BLAST server at NCBI or the book of Korf, Yandell, and Bedell [22].

In 1990, Karlin and Altschul published their seminal work [19] on the distribu-
tion of optimal ungapped local alignment scores. Later, Altschul and Gish [5] and
Pearson [25] investigated empirically the distribution of optimal gapped local align-
ment scores. Karlin-Altschul statistics of local alignment scores are surveyed by
Pearson and Wood in [8] and Karlin in [18] and covered in the books of Chao and
Zhang [12] and Ewens and Grant [14].

For the general theory of scoring matrices, the reader is referred to the papers of
Altschul [1, 2] and Eddy [13]. The information on parameters and formulas used
for statistical analysis in BLAST can be found in the paper [4] of Altschul et al.
and the note (ftp://ftp.ncbi.nlm.nih.gov/blast/documents/developer/scoring.pdf) of
Gertz [16].
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Practical Multiple Sequence Alignment

Tobias Rausch and Knut Reinert

Abstract Multiple sequence alignment as a means of comparing DNA, RNA, or
amino acid sequences is an essential precondition for various analyses, including
structure prediction, modeling binding sites, phylogeny, or function prediction. This
range of applications implies a demand for versatile, flexible, and specialized meth-
ods to compute accurate alignments. This chapter summarizes the key algorithmic
insights gained in the past years to facilitate an easy understanding of the current
multiple sequence alignment literature and to enable the readers to use and apply
current tools in their own research.

1 History of the Problem

The problem of comparing multiple sequences is a long-standing brainteaser of
molecular biology. The research was sparked by a simple insight: Weak and faint bi-
ologically important sequence similarities vanish in a pairwise alignment but stand
out in a multiple sequence alignment (MSA). For the last 20 years, the driving force
behind MSA is the assumption that sequence similarity or sequence conservation
implies structural, evolutionary, or functional correspondence. In other words, bio-
logically important residues or nucleotides are assumed to be less likely to mutate
than unimportant ones. In a MSA, we thus rewrite the sequences in such a way
that conserved residues or nucleotides appear in the same column (see Table 1).
MSA problems are characterized by (1) the number of sequences, (2) the length
of the sequences, (3) the alphabet of the sequences (usually DNA, RNA, or amino
acids), and (4) the relatedness of the sequences. Here, relatedness refers to both
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the divergence of the sequences and whether the sequences are globally or locally
related. Many applications rely on accurate MSAs. The most prominent ones are
phylogeny, functional predictions, domain identification, modeling binding sites,
sequence consensus, and structure prediction (see Table 1 and Figure 1). With the
benefit of hindsight, it is obvious that MSA algorithms and applications mutually
fueled each other. Applications and progress in sequencing technologies created a
continuous demand for new and more efficient alignment algorithms. In return, the
progress in algorithms opened up unforeseen possibilities in terms of applications.
For years, for instance, research has focused on sequence comparisons where the
order of characters in the sequences is preserved. This colinearity condition was
in fact the defining property of an alignment. In recent years, however, with an in-
creasing number of genomic sequences at hand, sequence comparison involves the
identification of the classical alignment operations, namely substitutions, deletions
and insertions and more complex operations such as transpositions, translocations,
duplications and inversions. This chapter is an attempt to capture the essential de-
velopments in the past years, starting from the first programs developed in the late
1980s to the first genome aligners of recent years.

HBA HUMAN .MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF.DLSH
HBB HUMAN MVHLTPEEKSAVTALWGKV..NVDEVGGEALGRLLVVYPWTQRFFESFGDLST
HBA HORSE .MVLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF.DLSH
HBB HORSE .VQLSGEEKAAVLALWDKV..NEEEVGGEALGRLLVVYPWTQRFFDSFGDLSN
MYG PHYCA .MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKT
LGB2 LUPLU MGALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSE

HBA HUMAN .....GSAQVKGHGKKVADALTNAVAHVDD...M..PNALSALSDLHAHKLRVD
HBB HUMAN PDAVMGNPKVKAHGKKVLGAFSDGLAHLDN...L..KGTFATLSELHCDKLHVD
HBA HORSE .....GSAQVKAHGKKVGDALTLAVGHLDD...L..PGALSNLSDLHAHKLRVD
HBB HORSE PGAVMGNPKVKAHGKKVLHSFGEGVHHLDN...L..KGTFAALSELHCDKLHVD
MYG PHYCA EAEMKASEDLKKHGVTVLTALGAILKKKGH...H..EAELKPLAQSHATKHKIP
LGB2 LUPLU VPQ..NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSK.GVA

HBA HUMAN PVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR......
HBB HUMAN PENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH......
HBA HORSE PVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR......
HBB HORSE PENFRLLGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH......
MYG PHYCA IKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
LGB2 LUPLU DAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA...

Table 1 MSA of 6 globin sequences: Human hemoglobin subunit alpha (UniProt accession:
P69905), human hemoglobin subunit beta (P68871), horse hemoglobin subunit alpha (P01958),
horse hemoglobin subunit beta (P02062), sperm whale myoglobin (P02185) and European yellow
lupin leghemoglobin-2 (P02240). The helix secondary structure annotation from UniProt is shown
in bold font.

Throughout the history of MSA, one can distinguish two types of algorithms,
optimal ones and heuristics. The former algorithms compute an optimal alignment
with respect to some scoring function such as the sum of pairs score. The latter algo-
rithms compute an alignment based on some kind of biologically sound procedure



Practical Multiple Sequence Alignment 23

Fig. 1 A 3D model showing the helical domains of myoglobin.

such as progressive alignment. Both classes of algorithms are reviewed in Section 2.
The first optimal methods could align three sequences simultaneously using stan-
dard dynamic programming [32, 56]. A few years later, the program MSA [35, 52]
could align up to eight sequences of average protein length by using a clever bound-
ing technique for the dynamic programming lattice. Time and space was further
reduced using the A∗ algorithm [51, 72] and (partly heuristic) divide and conquer
techniques [73]. Besides bounding techniques for the dynamic programming for-
mulation, other algorithms used an alignment graph or trace graph [43, 77]. This
alignment graph was used in an integer linear programming (ILP) formulation [71]
extended by various branch-and-cut techniques [2, 3, 4].

Computing an optimal alignment for an arbitrary number of sequences is, how-
ever, NP-complete using the sum of pairs score [93]. That is why a vast num-
ber of heuristics has been developed enabling the alignment of more sequences
of greater length. Heuristic methods were difficult to compare in the beginning
but gained enormous leverage with the advent of protein benchmark data sets of
sometimes manually refined MSAs such as BAliBASE [87, 89], PREFAB [24],
OXBENCH [67], SABmark [92] and IRMBASE [85]. For protein alignments, these
benchmarks are the de facto standard for judging the performance of individual
methods. The first heuristic progressive aligner was published in 1987 [27] fol-
lowed by a great variety of other heuristics, most prominently the Clustal series of
programs [38, 47, 88]. More recently, the progressive alignment paradigm has been
extended using approaches outlined in the next section, such as consistency [20, 59],
refinement [24, 41], and segmentation [70, 85]. The increasing number of genomic
sequences stimulated the development of genome aligners or genome comparison
tools in the past 10 years. The MUMmer series of programs [18, 19, 46] remarkably
pioneered this research area, but lately a number of other interesting anchor-based
alignment tools appeared [11, 16].
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2 Algorithm Description

Over the years, numerous research projects have contributed to steady progress in
the area of MSA. Despite such a long history, methods are still far away from be-
ing optimal in a biological sense. The main obstacles are (1) that we still lack a
precise mathematical formulation of such a biologically optimal alignment and (2)
that the problem is already NP-hard if we use a very simplified formulation such as
alignment score maximization. This very question of finding an alignment of max-
imum score has driven the field significantly in the past years and many sequence
based methods, both heuristics and optimal ones, have been developed to solve this
problem. The nuts and bolts of these methods are described in depth in Section 2.1.
Recently, the sequence based methods have been complemented by methods that go
beyond the raw sequence data. These structure based methods use a great variety
of structure prediction methods and databases with structural information. The goal
is either to substantiate a possibly weak signal of sequence similarity or to identify
novel domains where conservation only manifests itself on a structural level. The
basics of these methods are investigated in Section 2.2. The predominant represen-
tation of an alignment is the well-known alignment matrix. An example is shown on
the right in Figure 2. Based upon that matrix, we can formally define the properties
of a multiple alignment of a set S = {S0,S1, . . . ,Sn−1} of n sequences.

• Si ∈ S is a string over the finite ordered alphabet Σ that is Si ∈ Σ ∗. Σ is, for
instance, the DNA or amino acid alphabet. Each string Si is a sequence of letters
si

0si
1 . . .si

|Si−1| of length |Si| where si
u ∈ Σ .

• The alphabet Σ̃ = Σ ∪{−} is the extended alphabet including a gap character
‘−’.

A multiple alignment A of the strings in S is an n× l matrix consisting of n strings
S̃0, S̃1, . . . , S̃n−1 ∈ Σ̃ ∗ such that

• The strings S̃0, S̃1, . . . , S̃n−1 are of length l.
• The string S̃i with gaps removed is equal to Si.
• The matrix entry ai

u in row i and column u is either from the alphabet Σ or equal
to the gap character ’−’: ai

u ∈ Σ̃ ∀ 0 ≤ i < n, 0 ≤ u < l
• No column consists entirely of gap characters. This implies:

max
i=0,...,n−1

|Si| ≤ l ≤ ∑
i=0,...,n−1

|Si|

Alternatively, one can think of an alignment as a path through an n-dimensional
hypercube as shown in Figure 2.



Practical Multiple Sequence Alignment 25

GAA−T
−AAC−
−−ACT

C

A

A

G A A T
A

C
T

Fig. 2 The MSA path in a 3-dimensional lattice corresponding to the alignment shown on the right.

2.1 Sequence based methods

Given a number of different multiple alignments for a set of sequences, we somehow
need a quantitative measure to decide which one is the best. For sequence based
methods the ubiquitously used measure is the sum of pairs multiple alignment score,
which is an extension of the pairwise alignment score to more than 2 sequences. The
score of a multiple alignment is simply the sum over all alignment scores of each
and every possible induced pairwise alignment. This notion can be formalized using
(1) the projection AI of a multiple alignment onto a set of sequences and (2) the
definition of pairwise alignment scores. A pairwise alignment projection is a mere
selection of 2 distinct rows in a given alignment and a subsequent removal of all
columns containing only gaps. For example, the projection A{0,1} of the alignment
in Figure 2 results in the pairwise alignment:

G A A − T

− A A C −

A projection AI for an index set I ⊂ {0, . . . ,n−1} is obtained from A by

1. Selecting row i in A if and only if i ∈ I.
2. Deleting column u in AI if and only if column u contains only gap characters.

This formulation respects the requirement that A{i} = Si. Similarly, one can project
the path through the n-dimensional space onto a subspace as shown in Figure 3.
The most common pairwise scoring function uses linear gap costs. Linear gap costs
penalize a gap of length γ with a cost of g + e · (γ − 1) where g is the constant gap
opening penalty, e is the constant gap extension penalty and g ≤ e with g,e ≤ 0. If
g = e the number of gap openings is irrelevant and such gap costs are called constant
hereafter. Using linear gap costs, the score of a pairwise alignment is
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Score(A{i, j}) = ( ∑
u=0,...,l̃−1

ai
u 6=−; a j

u 6=−

δ (ai
u,a

j
u))+g · #GapOpen + e · #GapExtension

where l̃ is the length of the projected alignment and δ a scoring function or substitu-
tion matrix for all pairs of characters ai

u,a
j
u ∈ Σ . The BLOSUM [37] and PAM [17]

matrices are commonly used substitution matrices for protein alignments. For DNA
alignments, most tools use a simple match / mismatch scoring function. The align-
ment

G A T A T A − − T

− A T G T A C C −
evaluated with linear gap costs (gap opening penalty g = −4, gap extension penalty
e = −1) and a scoring function defined by a match score of δ (x,x) = 4 and a mis-
match score of δ (x,y) = −2 results in a total score of 14 +(−4) ·3 +(−1) ·1 = 1.
Finally, the sum of pairs multiple alignment score SPScore can be simply defined as

SPScore(A) = ∑
0≤i< j<n

Score(A{i, j})

For the sake of completeness, one should note that, besides the sum of pairs
score, other quantitative alignment quality measures are available, most notably the
weighted sum of pairs score, the tree alignment score, and the consensus score [34].
In this chapter, we focus on the well-established sum of pairs score. For the heuris-
tic algorithms, all of these measures became less important with the publication of
reference MSA benchmarks such as BAliBASE [87] but research devoted to exact
algorithms relies on such quantitative measures.

C

A

A

G A A T

GAA−T
−AAC−

Fig. 3 A projection of a 3-dimensional lattice to a 2-dimensional matrix corresponding to the
projection of an alignment of 3 sequences onto a subset of 2 sequences.
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2.1.1 Exact algorithms

The multiple alignment score maximization problem can be solved optimally using
either natural extensions of the dynamic programming algorithm [35, 51, 52, 72, 73]
or exact algorithms based on graph-theoretic models [2, 3, 4, 71].

Dynamic programming

The dynamic programming recursion to compute the optimal pairwise alignment
between sequence S0 = s0

0s0
1 . . .s0

|S0−1| and sequence S1 = s1
0s1

1 . . .s1
|S1−1| is

Mu,v = max






Mu−1,v−1 + δ (s0
u,s

1
v)

Mu−1,v + δ (s0
u,−)

Mu,v−1 + δ (−,s1
v)

where Mu,v is the 2-dimensional dynamic programming matrix and δ is the scoring
function. For a constant gap penalty g = e and the Blosum62 substitution matrix
one could define δ as δ (s0

u,s
1
v) = Blosum62(s0

u,s
1
v) and δ (s0

u,−) = δ (−,s1
v) = e.

The extension to 3 sequences involves two changes. First, a 3-dimensional dynamic

(u, v)

(u−1, v−1, w−1) (u, v−1, w−1)

(u, v, w)

(u−1, v−1, w) (u, v−1, w)

(u, v, w−1)(u−1, v, w−1)

(u−1, v, w)

(u, v−1)(u−1, v−1)

(u−1, v)

A

G

A

A

G
Fig. 4 In each cell of the dynamic programming matrix / cube (2n − 1) predecessor have to be
evaluated where n is the number of sequences.

programming hypercube has to be computed and second, for each entry we have to
evaluate (2n −1) = (23 −1) = 7 predecessors as shown in Figure 4. The recursion
is
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Mu,v,w = max






Mu−1,v−1,w−1 + δ̃ (s0
u,s

1
v ,s

2
w)

Mu,v−1,w−1 + δ̃ (−,s1
v ,s

2
w)

Mu−1,v,w−1 + δ̃ (s0
u,−,s2

w)

Mu−1,v−1,w + δ̃ (s0
u,s

1
v ,−)

Mu,v,w−1 + δ̃ (−,−,s2
w)

Mu−1,v,w + δ̃ (s0
u,−,−)

Mu,v−1,w + δ̃ (−,s1
v ,−)

For the sum of pairs score with constant gap costs, δ̃ can be defined in terms of
δ as δ̃ (a,b,c) = δ (a,b)+ δ (b,c)+ δ (a,c) with a,b,c ∈ Σ̃ and δ (−,−) = 0. This
can be extended to higher dimensions d. As in the pairwise case, the key idea is that
larger alignments are constructed from already computed subsolutions. Any Mu,v,...,z

is the best score of aligning the prefixes s0
0s0

1 . . .s0
u, s1

0s1
1 . . .s1

v , . . ., sn−1
0 sn−1

1 . . .sn−1
z .

In addition, the optimal alignment can be retrieved through the standard traceback
operations extended to the d-dimensional hypercube. Note that it is also possible
to apply Gotoh’s algorithm [31] for linear gap costs to more than two sequences.
Similar to the pairwise case, we then require additional hypercubes for the best
gapped alignment in each dimension. The size of the hypercube is exponential in
the number of sequences O(∏n−1

i=0 |Si|). For each cell of this hypercube, (2n − 1)
predecessor cells have to be evaluated. Thus, the time complexity is O((2n − 1) ·
∏n−1

i=0 |Si|) if and only if the computation of the δ function is constant O(1). This
is roughly O((2ñ)n) where ñ is the average sequence length. Bounding techniques
try to minimize the actually computed hypercube alignment space by using lower
and upper bounds [35, 51, 52, 72] or a combination of an exact algorithm with a
heuristic divide and conquer approach [73].

Graph based models

An alignment can be visualized as an alignment graph of sequence segments as
shown in Figure 5. The alignment edges of this graph represent matches or possible
mismatches. Gaps are implicitly represented by the topology of the graph. For in-
stance, a vertex without any outgoing edge is aligned to gaps in all other sequences.
An alignment graph can be easily converted into an alignment matrix using stan-
dard graph algorithms, namely connected components and topological sort [14]. If
we allow arbitrary alignment edges as shown in Figure 5 an actual alignment can
only realize a subset of the given edges. This subset is called a trace [77]. The graph
can be extended by edge weights that capture some kind of quantitative measure
of alignment quality. A possible measure is, for instance, the pairwise BLOSUM
score of two aligned segments. Given such a problem, the trace problem can be
rephrased as a maximum weight trace problem and also naturally extended to multi-
ple sequences [42, 43]. The graph formulation translates easily into an integer linear
program, giving rise to the possibility of applying techniques from combinatorial
optimization such as branch-and-cut [3, 4]. The alignment graph can be extended
with gap arcs to incorporate positional gap penalties [71]. Recently, a Lagrangian
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approach was proposed to solve the integer linear programming formulation more
efficiently [2].

NGSQYLQF−−
−−SQYLQF−−
−−SQY−−−NG

−−SQYNG−−−
−−SQY−−LQF
NGSQY−−LQF

1:N
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16
16
6 1512

16
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16
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Fig. 5 An alignment graph with arbitrary alignment edges (left), its heaviest trace (middle) and its
conversion to an alignment matrix (right). The graph does not impose an order on adjacent indels
and hence, there is a 1:N relation between alignment graphs and alignment matrices.

2.1.2 Heuristic algorithms

In practice, optimal methods are only practical for a few, relatively short sequences.
Hence, the development of fast and accurate heuristics for MSA problems is a very
active research field. In this chapter, we can only review the most important heuris-
tics, which is first and foremost the progressive alignment strategy [27].

Progressive alignment

A sound multiple alignment of n sequences should induce ( n·(n−1)
2 ) projected

pairwise alignments that are as close as possible to optimal pairwise alignments.
Unfortunately, pairwise alignments may be incompatible as shown in Figure 6.
Progressive alignment resolves these inconsistencies in a greedy manner. The multi-

TGG−−
−GGAT
−−−AT

TAGT
T−GT
TA−T

TAGT
TA−T

−GGAT

−TGG
AT−−

GGAT
−−AT

T−GT
TA−T

TAGT
T−GT

TGG−−

Fig. 6 A set of pairwise alignments that are compatible (left) or incompatible (right).

ple alignment is started from the most similar pair and then gradually, the other less
similar sequences are added to the growing alignment. The intuitive assumption is
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ACGA

CC−A

AC−A

CCA

ACA

AGTA

AG−A

AC−−A

ACG−A

A−GTA

A−G−A

AGAAGTA

ACGA

CCAACA

CC−−A

Merging of

Sequence to

Sequence to
Subalignment

Subalignments

Sequence Alignment

Sequence Alignment
Sequence to

Fig. 7 The progressive alignment greedily builds a final alignment along the guide tree using a
given method to merge subalignments.

that a pairwise alignment of closely related sequences is more to be trusted than an
alignment of distantly related sequences [27]. The method thus requires 2 things.
First, a binary tree, called a guide tree, that indicates when every sequence (a leaf
of the tree) is merged into a growing multiple alignment and second, a means of
aligning already finished subalignments with another sequence or another subalign-
ment. The later situation arises if the progressive alignment is started from multiple
seeding alignments as shown in Figure 7.

The guide tree can be obtained in 2 steps. First, a distance score between all pairs
of sequences is computed, and, second, the phylogenetic tree is reconstructed [28]
using clustering methods such as UPGMA [82] or neighbor-joining [76]. Several
distance measures for two sequences are based upon simple similarity scores. Ex-
amples are the percent identity between two sequences or the fractional number of
common k-mers where a k-mer is a contiguous substring of length k. For large al-
phabets, the percent identity and the number of common k-mers are less applicable,
unless the sequences are closely related or both measures are applied over a com-
pressed alphabet [23]. More precise measures are based upon pairwise global or
local alignment scores [58, 81], which are usually normalized by alignment length.
UPGMA is, besides neighbor-joining, a widely used distance based tree reconstruc-
tion method. The algorithm requires a set of n elements (e.g. sequences) and all
pairwise distances di, j. Initially, each element is in its own group, and, thus, the
sequences are the leaves of the tree. The algorithm proceeds in 4 steps:

1. Select the minimum distance di, j.
2. Create a new group u that joins i and j.
3. Compute the distances dk,u of any group k to the new group u.
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4. Remove i, j from the set of elements and go to 1.

The UPGMA algorithm reconstructs the correct tree only for ultrametric distances.
Such distances imply that all sequences have evolved from a common ancestor at
a constant rate. This assumption is, in general, not true, and, thus, UPGMA is not
used very often in phylogenetic studies. It is, however, widely used in progressive
alignment tools because some authors argue [24] that a reliable evolutionary tree
is not as important as a tree that guarantees that the subalignments with the fewest
differences are merged first. In Step (3) the new distance dk,u, from any group k to
the new group u that joined i and j, can be computed using different methods:

1. Single linkage clustering: dk,u = min(dk,i,dk, j)
2. Complete linkage clustering: dk,u = max(dk,i,dk, j)

3. Average linkage clustering: dk,u =
dk,i+dk, j

2

4. Weighted average linkage clustering: dk,u =
ni·dk,i+n j ·dk, j

ni+n j

In the last method ni and n j are the number of elements in group i and j, respectively.
The neighbor joining method is a different method to reconstruct a tree. It has a
higher time complexity of O(n3), where n is the number of sequences, compared
to O(n2) for the UPGMA algorithm. The guide tree obtained with that method is,
however, regarded as a better evolutionary tree because the neighbor joining method
does not assume a molecular clock. The idea of the method is to start with a star tree
and then to gradually group pairs of sequences so that the overall tree length is
minimized.

Aligning the children of an internal node in the guide tree either involves an
ordinary sequence alignment or an alignment of subalignments. In the latter case,
one possible objective is to optimize the already mentioned sum of pairs multiple
alignment score.

SPScore(A) = ∑
0≤i< j<n

Score(A{i, j})

Using linear gap costs, an optimal merging of subalignments is NP-complete [44,
53]. However, in Kececioglu and Starrett [44], the authors propose an algorithm
that is exact and quite fast in practice. Other methods favor speed over optimality
and use approximations of gap opening counts [45]. More often, however, practi-
cal tools use their own way of merging subalignments with quite distinct objective
functions [26]. These methods are usually subsumed under the generic term profile-
profile alignments. A profile of a multiple alignment A of length l is a |Σ̃ |× l matrix
P, where Pa,u is the frequency of character a ∈ Σ̃ in column u of A.

P 1 2 3 4
A G C T A 0.75 0 0 0.5
A G C C C 0.25 0 1.0 0.25
A − C A G 0 0.75 0 0
C G C A T 0 0 0 0.25

− 0 0.25 0 0

Assuming constant gap costs, a string S = s0s1 · · ·s|S|−1 can be quickly aligned to a
profile with a standard pairwise dynamic programming algorithm. Only the scoring
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function δ has to be adapted.

δNew(sw,u) = ∑
a∈Σ̃

Pa,u ·δ (sw,a)

In this case, δNew scores a column u against a character sw ∈ Σ . The δ function has
to be extended to handle the special case of scoring a gap character against another
gap character.

δ (a,b) =






Blosum62(a,b) if and only if a,b ∈ Σ
e if and only if a = ”− ” or b = ”− ”
0 if and only if a = b = ”− ”

Note that in a projected alignment gap columns are removed and hence, the score
for two aligned gaps is set to 0. For instance, a final string to profile alignment of
the string S = ACCA can be scored as shown below, assuming δ (x,x) = 4,δ (x,y) =
−3,δ (x,−) = δ (−,x) = −2 and δ (−,−) = 0.

P 1 2 − 3 4
A G − C T A 0.75 0 0 0.5
A G − C C C 0.25 0 1.0 0.25
A − − C A G 0 0.75 0 0
C G − C A T 0 0 0 0.25
A − C C A − 0 0.25 1.0 0 0

S A − C C A
δNew 2.25 −1.5 −2 4 0.5

Hence, the score of the full string to the profile alignment is 3.25. Note that non-
linear or constant gap penalties simplify the sum of pairs score of a multiple align-
ment A of length l to

SPScore(A) = ∑
0≤i< j<n

Score(A{i, j}) = ∑
i, j

l−1

∑
u=0

δ (s̃ i
u , s̃ j

u ) =
l−1

∑
u=0

∑
i, j

δ (s̃ i
u , s̃ j

u )

The last equality stems from the independence of the alignment columns using the
δ scoring function with constant gap penalties. Using dynamic programming, the
optimal string to profile alignment can be found in quadratic time O(|Σ̃ | · l · |S|)
where l is the length of the profile, |S| the length of the sequence and |Σ̃ | a small
constant, e.g., 5 for the DNA alphabet or 21 for the amino acid alphabet. Similarly,
a profile-profile alignment can be carried out. The only difference is an extra sum
over the alphabet Σ̃ .

δNew(u,w) = ∑
a∈Σ̃

∑
b∈Σ̃

Pa,u ·Pb,w ·δ (a,b)

Numerous other profile-profile column scoring functions have been published [24,
26, 41].
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In summary, an optimal merging of subalignments with linear gap costs g +
e · (γ − 1) is NP-complete. A merging with g = e remains polynomial because
gap opening counts are irrelevant. In this case, each column can be treated as a
meta-character in an extended alphabet. Given a scoring function for such meta-
characters, the problem is to find an alignment of two strings of meta-characters,
which is clearly solvable with a pairwise dynamic programming algorithm.

Consistency and refinement

The choice of the binary tree and the method to merge subalignments has great
influence on the final alignment. Once a new sequence is added to the growing
alignment all the aligned characters and inserted gaps are fixed (“Once a gap, al-
ways a gap.” [27]). But this is also true for alignment errors: once made they are
preserved and they may even cause new alignment errors in the subsequent pro-
gressive steps. There are two strategies, “consistency” and “refinement”, to handle
alignment errors; one aims to prevent errors and the other one aims to correct er-
rors [94]. The prevention approach tries to substantiate pairwise alignments by mul-
tiple sequence information. That is, it tries to make pairwise alignments consistent
with all the other sequences, and, hence, the name consistency [33, 59]. The refine-
ment approach takes a possibly erroneous alignment, iteratively splits this alignment
into two subalignments and merges these alignments together again. These methods,
thus, iteratively “refine” or “realign” a given alignment. In other publications authors
sometimes use the term “Iterative Alignment” to describe such techniques [66].

Although current algorithms use slightly different means of consistency, the basic
idea is always the same: the confidence of aligning substrings of a pair of sequences
S0 and S1 is greater the more intermediate sequences Si support this alignment. In
other words, the alignments S0 ↔ Si and Si ↔ S1 induce a putative transitive align-
ment S0 ↔ S1 that is either consistent or inconsistent with a precomputed alignment
of S0 and S1. If it is consistent, greater confidence in the alignment of these sub-
strings of S0 and S1 is established, and the scores are somehow increased. In an
alignment graph, this consistency extension or triplet extension corresponds to a
search for three-way cliques (see Figure 8).

The refinement approach [24, 41] splits a full alignment randomly or following a
deterministic order into subalignments and then merges these subalignments using,
for example, profile to profile alignment methods. Random cutting usually halts if
no improvement in alignment score is observed during the last iterations.

Anchor-based alignment

Even the heuristic progressive alignment becomes prohibitively expensive when
aligning genomic DNA sequences. In these cases, any approach involving a full
pairwise dynamic programming is impossible. Nevertheless, genome alignments
or genome comparisons are more important than ever before because of several
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Fig. 8 A possible means of consistency extension: Every supported alignment is increased by the
minimum of the two connecting edges.

vertebrate genomes at hand and thousands of on-going sequencing projects. The
applications are numerous, ranging from the comparison of different assemblies,
annotation tasks, regular elements identification, and phylogenetic studies to ana-
lyzing principal questions addressing mechanisms of genome evolution. Almost all
genome aligners make use of the same strategy: anchor-based alignment or synony-
mously seeded alignment. Anchor-based alignment has three steps: (1) the compu-
tation of small segment matches of high similarity shared by multiple sequences,
(2) the ordering of these segment matches into a collinear chain of non-overlapping
segment matches (the fixed alignment anchors) and (3) closure of gaps between
the anchors. The sole purpose of Step 1 and Step 2 is to abandon a large chunk of
the possible alignment space as shown in Figure 9. Only small indels are allowed
within the anchors and thus, full dynamic programming is only required between
the anchors. Some programs also try to extend anchors first to the left and right
to further reduce the search space. Note that Step 1 does not yet imply colinear-
ity as shown in Figure 9. The initial segment matches can be, for example, maxi-
mal unique or exact matches [46], maximal multiple exact matches [39] or exact or
hashed k-mers [12, 85]. Segment matches are optionally extended, and, finally, the
quality of a segment match is assessed using some weight function. Chaining algo-
rithms [1, 57] can be applied to compute the heaviest (best) collinear chain of these
segment matches. The resulting list of anchors is refined by applying the above pro-
cedure iteratively (e.g. by using a smaller k-mer) or by filling the gaps between the
anchors using more sensitive approaches such as pairwise dynamic programming.
Since genomic rearrangements such as transposition, duplication, or inversion are
rather likely, novel methods try to cover at least some of these operations, for exam-
ple, by computing only local chains [16, 61].

Others

Another option for aligning large sequences is to consider gapless sequence seg-
ments instead of single characters. The segment matches can be derived from pair-
wise alignments, BLAST [5] matches or any other local comparison tool. The local
alignments are usually scored and subdivided into gapless segment matches to sim-
plify the subsequent alignment. The problem with these methods is, however, that
segment matches might overlap and intersect each other. SeqAn::T-Coffee [70] re-
fines the set of segment matches so that all parts of all segment matches can be
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1)

2)

3)

Fig. 9 Anchor-based alignment: (1) computation of initial segment matches, (2) collinear chaining
of non-overlapping segment matches and (3) dynamic programming to close the alignment gaps.

used. In the subsequent progressive alignment, the program makes use of the align-
ment graph introduced in Section 2.1.1 and shown in Figure 5. The DIALIGN series
of programs [55, 84, 85] takes a different approach by leaving the set of segment
matches unchanged. This implies that overlapping segment matches involving the
same pair of sequences must be greedily resolved. The objective function of DI-
ALIGN is to find a consistent, maximum score subset of segment matches.

POA [50] uses partial order graphs to represent multiple sequence alignments.
Each individual sequence is a trivial partial order graph where each character is a
node connected to the subsequent node for the following character. The final partial
order graph is obtained by successively aligning such a trivial graph to the growing
partial order graph MSA. The key idea is that aligned nodes are merged to a new
node whereas the graph bifurcates for unaligned regions. Thus in comparison to
the segment based aligners, POA does not reduce the complexity depending on the
length of the sequences but on the number of sequences.

2.2 Methods using structure and sequence homologs

The improvements in de-novo structure prediction methods and the growth of se-
quence and structural databases opened up new possibilities to extend sequence
based alignment methods. These extended methods tend to deliver more accurate
alignments on standard benchmarks, especially in the twilight zone of highly di-
verged sequences with less than 20% identity. Three combinable techniques are
in common use: homology extension [40, 64, 80, 95], secondary structure predic-
tion [63, 64, 79, 95], and the use of a known 3D structure [60, 65].

Homology extension augments the raw sequence information using database
searches such as PSI-BLAST [6]. Given such a set of retrieved database homologs,
a profile can be built for each input sequence. The profiles can then be readily used
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in progressive alignment, as outlined in Section 2.1.2. The use of profiles turned out
to be beneficial because profiles differentiate between conserved and variable sites.

Predicted or known secondary structures can further improve the alignment qual-
ity because, in most cases, structure is more conserved than sequence information.
Structural elements can be predicted, for instance, with PSIPRED [54] and many
other tools [75]. The pairwise sequence alignment is then carried out under struc-
tural constraints. For instance, one could add a simple secondary structure weight
function to the profile to profile alignment that indicates if the two corresponding
structural elements at a given position match or mismatch.

Similarly, a known 3D structure eases the alignment of highly diverged se-
quences. Methods such as SAP [86] employ a double dynamic programming al-
gorithm to compute a structural alignment. The time complexity is, however, O(ñ4)
where ñ is the average sequence length. Hence, structure based methods are usually
significantly slower than sequence based heuristics. Results are, however, highly ac-
curate because the structural constraints are of great value to build the final sequence
alignment. The consistency-based methods usually employ these constraints during
the consistency extension. That is, the weights of aligned substrings are adapted
depending on intermediate sequences and structural information.

3 Available Implementations

In Table 2, we compile a list of current multiple sequence alignment tools. Given the
plethora of available tools, this list is necessarily incomplete but should include most
of the frequently used programs. Online web servers hosting the different alignment
algorithms are frequently available, except for the genome aligners. Nevertheless,
we restrained ourselves from providing web addresses of these servers because they
tend to change frequently and can be easily found online by searching the name
of the tool and the word ”alignment”. It is hard to recommend a specific tool be-
cause none of them is superior in all cases. For a classical protein alignment of less
than a hundred sequences the most accurate aligners are probably MAFFT, Prob-
Cons, MUSCLE, T-Coffee and SeqAn::T-Coffee. For huge numbers of sequences,
MAFFT and MUSCLE seem to scale the best. For long sequences, the previously
mentioned aligners tend to have memory problems due to the pairwise dynamic
programming, except for MAFFT and if long segments are provided DIALIGN-TX
and SeqAn::T-Coffee. ABA seems to be an interesting choice if there are repeated or
shuffled elements. Genome aligners are still in its infancy but MUMmer is certainly
the most widely used tool for all kinds of genomic analyses.
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Category Name Method Protein / DNA

Sequence-based LASA [2] Lagrangian ILP approach Both
exact MSA [52] Bounded dynamic programming Both

Sequence-based ABA [68] A-Bruijn alignment Both
heuristic AMAP [78] Sequence annealing Both

CLUSTAL W [88] Progressive alignment Both
DIALIGN-T [85] Segment-based alignment Both
DIALIGN-TX [84] Progressive, segment-based Both
Kalign [48] Progressive alignment Both
POA [50] Partial order alignment Protein
MAFFT [41] Progressive with refinement Both
MUSCLE [24] Progressive with refinement Both
ProbCons [20] Progressive with consistency Protein
SeqAn::T-Coffee [70] Progressive, segment-based Both
T-Coffee [59] Progressive with consistency Both

Sequence-based M-Coffee [91] Progressive with consistency Both
meta-alignment SeqAn::T-Coffee [70] Progressive, segment-based Both

Using secondary MUMMALS [63] Progressive with consistency Protein
structure and PRALINE [79] Progressive alignment Protein
database homologs PROMALS [64] Progressive with consistency Protein

SPEM [95] Progressive with consistency Protein
Using 3D structure 3D-Coffee [91] Progressive with consistency Protein

Expresso [7] Progressive with consistency Protein
PROMALS3D [65] Progressive with consistency Protein

Genome aligners M-GCAT [90] Anchor-based alignment DNA
Mauve [16] Anchors, local collinear blocks DNA
MGA [39] Anchor-based, chaining DNA
Mulan [61] Anchor-based alignment DNA
Multi-LAGAN [11] Anchor-based alignment DNA
MUMmer [46] Anchor-based, suffix-tree DNA
TBA [10] Anchor-based alignment DNA

Table 2 Available MSA programs, categorized according to the used information sources (se-
quence / structure), the nature of the algorithm (exact / heuristic) and the ability to align genomic
sequences. The method column highlights only the predominant technique. Thus, a progressive
aligner using refinement might also use some kind of consistency extension.

4 Advanced Topics

This chapter focused on the classical alignment problems and described the pre-
dominant algorithms in detail. This demanded excluding some other topics. Most
importantly, we could not touch some algorithms for finding conserved motifs in
multiple sequences. Even if sequences look completely unrelated, they still might
share a conserved pattern such as a regulatory binding site. This sort of local mul-
tiple sequence alignment problem is addressed in numerous programs such as the
Gibbs Sampler [49] or MEME [8].

Related RNA sequences quite often have low sequence but high structural se-
quence similarity. An RNA sequence folds onto itself and the pairwise interac-
tions induced by such a fold are characteristic for related RNA sequences, e.g. the
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cloverleaf shape of transfer-RNA. Hence, an accurate multiple sequence alignment
of RNA sequences either requires (1) a sequence alignment followed by a folding
step, (2) a de-novo folding followed by an alignment of fixed structures or (3) a
simultaneous sequence-structure alignment. Similar to BAliBASE, RNA alignment
algorithms can be evaluated using BRAliBase [30].

Another special problem occurs in genome assemblies. Genome assemblers usu-
ally follow a three phase methodology: an overlap phase, a layout phase and a
consensus phase. In the consensus phase, the problem is to compute a multi-read
alignment given a large set of reads and their approximate layout positions. That is,
numerous short sequences overlap only a few bases and global relatedness cannot
be assumed. Likewise a local approach is not enough, since all reads must be placed
in a multi-read alignment to retrieve a consensus sequence. Tools from the AMOS
and SeqAn library [21, 69, 83] address this kind of alignment problem.

Finally, we did not address the various alignment formats because Fasta seems
to be the de facto standard. If you do need another format such as MSF, PIR, or
Phylip, it is very likely that there exists already a converter in the EMBOSS [74]
suite of programs. Similarly, we did not mention alignment viewers and editors.
Interesting options are, for instance, Jalview [13] and SEAVIEW [29] or sequence
logo generators [15].

5 Exercises

1. Calculate the sum of pairs score of the following MSA. (a) Assume a match score
of 4, a mismatch score of -3, a gap extension score of -2 and a gap opening score
of -4. (b) Recalculate the sum of pairs score for constant gap costs of -2.

A A T G

A − T G

− − T G

2. The EMBOSS explorer is a graphical user interface to a number of bioinfor-
matics tools from the EMBOSS project (http://emboss.sourceforge.net/). One of
these programs, “fneighbor”, computes a phylogeny from a distance matrix by
neighbor-joining or UPGMA

http://emboss.bioinformatics.nl/cgi-bin/emboss/fneighbor

Use the Phylip distance matrix below to compute a phylogeny using both meth-
ods and compute the tree manually using UPGMA and weighted average linkage
clustering.

http://emboss.sourceforge.net
http://emboss.bioinformatics.nl/cgi-bin/emboss/fneighbor
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6
A 0.0000 0.5000 0.4000 0.7000 0.6000 0.8000
B 0.5000 0.0000 0.7000 1.0000 0.9000 1.1000
C 0.4000 0.7000 0.0000 0.7000 0.6000 0.8000
D 0.7000 1.0000 0.7000 0.0000 0.5000 0.9000
E 0.6000 0.9000 0.6000 0.5000 0.0000 0.8000
F 0.8000 1.1000 0.8000 0.9000 0.8000 0.0000

3. Get the sequences shown in Table 1 from UniProt (http://www.uniprot.org/). Add
other globin sequences and align all of them using different multiple sequence
alignment programs. Compare the alignments using Jalview or any other align-
ment viewer of your choice.

4. How many distinct pairwise comparisons can be done for n sequences?
5. Given n sequences, what is the minimum height of a perfectly balanced binary

guide tree? What is the height of a guide tree that never requires a merging of
two subalignments but only sequence to sequence or subalignment to sequence
alignments?

6. Build a multiple sequence alignment of the following sequences using MUSCLE
and MAFFT. Do you get an alignment where all the characters are matched, that
is, all columns contain only one specific DNA nucleotide and possibly gaps? If
this is not the case build such an alignment yourself. Why do the programs fail
to deliver such an alignment?

CTTCGCGTCATCATCACT

CTTGAGTCATCATCACC

TCATCATCACTTGA

TCATCATCACCTCGGA

7. Implement the exact multiple alignment algorithm using dynamic programming
for n DNA sequences. Assume constant gap penalties and the sum of pairs score
with a constant match and mismatch score.

6 Further Reading

A number of review articles cover certain aspects of multiple sequence alignment
in more depth than the preceding chapter. For the following list of topics, we can
point the reader to interesting articles: (1) computational methods for genomic
alignments [9], (2) accurate protein sequence alignments for divergent protein se-
quences [62], (3) evaluation of parameter choices in progressive alignment meth-
ods [94], (4) algorithms for multiple string comparisons [36], and (5) two more
program-centered multiple sequence alignment review articles [25, 66]. Another in-
depth discussion of multiple sequence alignment problems can be found in the book
”Biological sequence analysis” [22]. Besides introducing probabilistic alignment
algorithms, the book provides extensive information on Profile HMMs to repre-

http://www.uniprot.org
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sent sequence families and search databases for new family members. It also covers
stochastic context-free grammars (SCFGs) for RNA structure analysis.
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Sequence Alignment Statistics

John L. Spouge

Abstract This chapter gives some simple, useful techniques for approximating the
p-values of various types of optimal alignment scores. It starts with general tech-
niques: if, e.g., a dynamic programming computation has probabilistically indepen-
dent inputs, its successive states form a Markov chain. Thus, if the states are not too
numerous, a ”Markov computation” yields their distribution. The chapter reviews
the three extreme-value distributions, which are relevant to approximating the dis-
tribution of random maxima, in the same way the normal distribution is relevant
to approximating the distribution of random sums. In general, convergence to an
extreme-value distribution is often painfully slow, so the Poisson approximation for
counting rare and weakly dependent events can be a more flexible tool for approxi-
mating the distribution of maxima. In particular, the extreme-value and Poisson dis-
tributions yield an approximate distribution for the optimal local alignment score of
two random sequences, and a finite-size correction can increase the accuracy of sta-
tistical approximations if the sequences are relatively short. Moreover, the concept
of “islands” permits many statistical approximation problems in local alignment
to be transformed to combinatorial problems. Finally, the ”Independent Diagonals
Approximation” broadens the application of many of the previous methods, and an
”Independent Alignments Approximation” converts many alignment variants into
the combinatorial problem of determining an “effective length”.
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1 Introduction

This chapter gives techniques for approximating p-values of various types of opti-
mal alignment scores. The range of techniques is incredibly varied, so the chapter
mentions most of them only in passing.

Simulations are adequately reviewed elsewhere [22]. They deserve a brief men-
tion here, because extremely small p-values are critical to statistical applications in
bioinformatics. Generally, small p-values can be calculated with numerical trans-
forms [31], combinatorial methods [8, 9], and by specialized simulation tech-
niques [23, 45]. More specifically, in sequence alignment, small p-values are usually
calculated with crude sampling, but occasionally (and usually more effectively) with
importance sampling. Importance sampling uses a biased “trial distribution” to gen-
erate random samples. It then corrects the bias to generate results relevant to the
actual distribution of interest, the “target distribution” [29]. In alignment problems,
hybrid alignment can provide a useful trial distribution [33, 46, 47]. More generally,
if a log-odds statistic is the basis of a statistical test, extremely small p-values can
be estimated by importance sampling from the alternative (non-null) hypothesis, an
area of active statistical research [36, 37, 38].

The present chapter also deliberately avoids tangential statistical topics such as
small sample approximations [13, 14] or more general saddle-point approximations
and asymptotic expansions, which are useful for approximating the distribution of
sums of independent random variates [11]. Bioinformatics in general, and sequence
alignment in particular, typically deal with maxima, not sums.

Hidden Markov Models (HMMs) are very important in sequence alignment, but
the author has little to add to their literature and the many reviews available [18, 34].
The estimation of unknown parameters also falls outside present purview. Thus, the
expectation-maximization (EM) method is useful for fitting HMM parameters by
maximum likelihood [17], but it is not mentioned again.

In bioinformatics, computational speed and storage are often important, so re-
sults are rarely expressed as full probability models. To give an example of the con-
cept of a full probability model, an alignment algorithm finds optimal alignments
by maximizing a score. The resulting alignment is therefore an “unknown parame-
ter” estimated by the optimization; a full probability model would explicitly assign
a probability to each alignment. The method of “centroids” is the cutting edge of a
backlash against the neglect of full probability models in bioinformatics [12, 44].
Having acknowledged the backlash, however, this chapter gives techniques for de-
termining the distribution of optimal alignment statistics and does not consider full
probability models.

The present chapter is broken into sections, as follows. It assumes familiarity
with the basics of pairwise sequence alignment [32, 39] and the manipulation of
position-specific scoring matrices (PSSMs) [42]. Section 2 shows how to compute
the distribution of a dynamic programming state when the computation has proba-
bilistically independent inputs. (More generally, the inputs could be conditional on
the dynamic programming state.) Section 3 describes the basics of extreme-value
distributions, which approximate the distribution of random maxima, just as the
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normal distribution approximates the distribution of random sums. The techniques
of simulating a distribution and curve-fitting its parameters are commonplace, so
Section 3 omits mention of them. Section 4 discusses the Poisson approximation
for counting rare (weakly dependent) events. Section 5 starts to focus specifically
on alignment by giving the relevance of the extreme-value and Poisson distribu-
tions to pairwise local alignment. Section 6 discusses the concept of “islands” in
a local alignment, which permits many statistical approximation problems to be
transformed to combinatorial problems. Section 7 refines some notions about the
finite-size correction, which can be necessary if sequences are not “infinitely long”.
(The finite-size correction is in fact a subdominant term in an asymptotic expan-
sion of local alignment p-values.) Section 8 considers the independent diagonals
approximation, which broadens the application of the methods of Section 2. Finally,
Section 9 gives a technique that converts many alignment variants into the combi-
natorial problem of determining an “effective length”.

Regrettably, this chapter is too short to mention every topic relevant to sequence
alignment, so some appear now as an afterthought. “Algorithmic significance” [30]
is an interesting concept related to Lund’s inequality in renewal theory [6]. Renewal
theory itself is essential to the formal mathematical treatment of sequence align-
ment, but is far too technical to receive appropriate attention in this chapter. Finally,
the Neyman-Pearson Lemma establishes an optimality property of log-odds statis-
tics. It reduces the construction of statistics to the construction of statistical null
and alternative probability distributions [28]. If the lemma were widely appreciated,
it would spare much useless ingenuity in constructing statistics, both in sequence
alignment and elsewhere.

2 Dynamic Programming with Independent Random Inputs

The following defines a dynamic programming computation [10]. Without loss of
generality, it starts in a deterministic state D0, and its progress is determined induc-
tively as follows. At the n-th step, where n = 1,2, . . ., the computation receives an
external input In. A pre-determined update function fn is applied to the current state
Dn−1 and the input In to produce the next state Dn = fn(Dn−1, In).

If the input In has a known distribution when conditioned on Dn−1, then

Pr [Dn = dn] = ∑
dn= fn(dn−1,in)

Pr [Dn−1 = dn−1]Pr [In = in | Dn−1 = dn−1] , (1)

where the sum is over all states dn−1 and inputs in satisfying dn = fn(dn−1, in). In
bioinformatics, the probability models commonly assume that the inputs are inde-
pendent of the current dynamic programming state, so Pr [In = in | Dn−1 = dn−1] =
Pr [In = in], simplifying Equation (1) accordingly.

The sequence {Dn} of random states constitutes a non-homogeneous Markov
chain [6], as a change in notation clarifies. Denote the set of all possible (dynamic
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programming) states by D and all possible inputs by I . Let

p(n)
d,d′ = ∑

{in∈I |d′= fn(d,in)}
Pr [IN = in | Dn−1 = d]

be the sum of the probabilities over all inputs that cause the update to change state
d to state d′. Note that the probability p(n)

d = Pr [Dn = d] of the current state be-

ing d after step n satisfies p(n)
d′ = ∑d∈D p(n)

d,d′ p
(n−1)
d , the familiar matrix multipli-

cation equation for computing probabilities in a non-homogeneous Markov chain.
Essentially, because the matrix multiplication equation can itself be described as
a dynamic programming computation, Equation (1) shows that the distribution of
dynamic programming states can itself be computed with dynamic programming.
In practice of course, the number of states in the original dynamic programming
computation must not be too great.

Sequence alignment statistics frequently involve dynamic programming algo-
rithms and independent letters, so to connect dynamic programming algorithms
with random inputs to the corresponding Markov chains can be quite fruitful. Con-
sider, e.g., the following problem of computing the distribution of a sum of position-
specific scores for a word consisting of independent letters.

Exercise 0.1. Let A1 · · ·Am ∈ Σ m be a sequence of independent random letters cho-
sen from an alphabet Σ with probability Pr [A1 · · ·Am] = p1(A1) · · · pm(Am). Assign
the score Xn(An) to the letter An. Determine the distribution of Sn = ∑n

i=1 Xi(Ai).

In many examples, the position-specific scores Xn(An) for a sequence A1 · · ·Am

of single letters are replaced by scores for letter-pairs Xi(Ai,Bi+k) offset by some
fixed k in two sequences, A1 · · ·Am and B1 · · ·Bn. (The numbers i and k are sub-
ject to appropriate restrictions, omitted here, and similarly below). The alphabet
Σ then consists of letter-pairs (A,B), not letters A. The case of greatest interest is
Xi(Ai,Bi+k) = X(Ai,Bi+k), corresponding to a pairwise letter-score independent of
i. Several exercises below determine the distribution of various quantities associ-
ated with diagonals in a pairwise alignment matrix, e.g., Exercise 0.1 then examines
S j = ∑ j

i=1 X(Ai,Bi+k), the running total of scores on a diagonal of an alignment
matrix.

Solution 0.1. Let S0 = 0 be the initial state, the random input at the n-th step be
An with distribution {pn(An)}, and the update function be Sn = fn(Sn−1,An) =
Sn−1 +Xn(An). In bioinformatics, when the letter frequencies p1(A) = · · · = pm(A)
are independent of the index m, the solution is known as “Staden’s method” [42].

Exercise 0.2. Let A1 · · ·Am ∈ Σ m, Xn(An), and Sn be as in Exercise 0.1. Deter-
mine the distribution of Ŝn = max{Sn − Si | 0 ≤ i ≤ n}. (Note: Ŝn = max{Ŝn−1 +
Xn(An),0}, another exercise for the reader.)

Solution 0.2. Let Ŝ0 = 0 be the initial state, the random input at the n-th step be
An with distribution {pn(An)}, and the update function be Ŝn = fn(Ŝn−1,An) =
max{Ŝn−1 +Xn(An),0}.
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Exercise 0.3. Let A1 · · ·Am ∈ Σ m, Xn(An), and Ŝn be as in Exercise 0.2. Determine
the distribution of M̂n = max{Ŝi | 0 ≤ i ≤ n} [26]. (Hint: let the dynamic program-
ming states be (Ŝn,M̂n). With the distribution of (Ŝn,M̂n) in hand, sum over values
of Ŝn.)

Solution 0.3. Let (Ŝ0,M̂0) = (0,0) be the initial state and the random input at the
n-th step be An with distribution {pn(An)}, and let the update function

(Ŝn,M̂n) = fn((Ŝn−1,M̂n−1),An)

satisfy Ŝn = max{Ŝn−1 +Xn(An),0} and M̂n = max{M̂n−1, Ŝn}.

Exercise 0.3 is a reminder that dynamic programming states can be more than just
numbers. They can be complicated data structures, e.g, vectors. Modern computers
have enough memory and are fast enough to calculate useful distributions for some
two-dimensional random vectors.

3 The Extreme-Value Distributions for Maxima

Most database searches produce many statistical variates {Y1, . . . ,Yn} (e.g., align-
ment scores), with only a few variates worthy of closer examination. Consider the
following idealization of a database search. Let Y ∗

1 ≤ ·· · ≤ Y ∗
n represent the order

statistics corresponding to {Y1, . . . ,Yn}, i.e., they are the same values {Y1, . . . ,Yn}
but in increasing order. Thus, Y ∗

n = max{Y1, . . . ,Yn}is the maximum of {Y1, . . . ,Yn}.
Assume {Y1, . . . ,Yn} have a known joint distribution. What can one say about the
distribution of the maximum Y ∗

n ?
If {Y1, . . . ,Yn} are mutually independent, the distribution satisfies

Pr [Y ∗
n ≤ y] = Pr [Y1 ≤ y] · · ·Pr [Yn ≤ y] .

But what if the variates {Y1, . . . ,Yn} are dependent? Consider the analogy with
the sum Sn = ∑n

i=1 Yi, when the variates {Y1, . . . ,Yn} are independent, identically
distributed random variates. Normalize Sn to the standardized variate Zn = (Sn −
E [Sn])/σ(Sn). (A “standardized variate” has mean 0 and standard deviation 1.) The
Lindeberg-Feller central limit theorem gives hypotheses implying that a standard
Gaussian distribution still approximates the distribution of Zn, even if {Y1, . . . ,Yn}
have different distributions and small dependencies [20].

In bioinformatics, maxima are much more important than sums, so Gaussian
approximations are rarely appropriate (and greatly over-used). By analogy to the
central limit theorem, one can ask, however: Are there two real parameters, a loca-
tion parameter mn and a scaling parameter sn (analogous to E [Sn] and σ(Sn) in the
central limit theorem), so the scaled variates (Y ∗

n −mn)/sn have a limiting distribu-
tion? Based on a lengthy but logically uncomplicated algebraic proof, if {Y1, . . . ,Yn}
are independent and identically distributed variates, (loosely) the classical extreme-
value theorem states: For large n, if η = (Y ∗

n −mn)/sn is not almost constant, it
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approximates one of only three limiting extreme-value distributions (EVDs) [21].
With α > 0 arbitrary, the EVDs are: (Type 1) the Gumbel distribution

Pr [η1 ≤ y] = exp(−e−y);

(Type 2) the Frechét distribution

Pr [η2 ≤ y] = exp(−y−α)

for y > 0, and 0 otherwise; or (Type 3) the Reversed Weibull distribution

Pr [η3 ≤ y] = exp [−(−y)α ]

for y < 0, and 1 otherwise.
Let {Y1, . . . ,Yn} be mutually independent, all with the same distribution as the

variate Y . The right-hand tail of the distribution of Y determines how fast the maxi-
mum Y ∗

n increases with n, determining which of the three EVDs pertains. In bioin-
formatics, the order of importance of the EVD distributions is the Gumbel, the Re-
versed Weibull, and the Frechét. The Gumbel distribution pertains if Y has a normal
or exponential distribution; the Reversed Weibull, if the value of Y is bounded above.

Like the central limit theorem, the EVD approximation often holds, even if the
variates {Y1, . . . ,Yn} have differing distributions and are weakly dependent. Empiri-
cal fits to the parameters mn and sn can then yield appropriate thresholds for statis-
tical significance in the extreme-value distribution. Classical EVD theory therefore
provides practical statistical methods for some database searches.

Consider a database search producing variates {Y1, . . . ,Yn}, where most of the
set outside a few true positives represents unwanted background, and a p-value
is required to flag true positives. Robust regression, which ignores contaminating
outliers, can fit any background distribution, because it can ignore a few true posi-
tives [25]. Thus, an EVD fit with robust regression can sometimes give serviceable
E-values (see Section 4) from empirical results [21]. (It is wise to recall that when
fitting distributional parameters, maximum likelihood generally produces better ap-
proximations than fitting moments.)

Unfortunately, the classical theory of EVDs is not as useful as suggested, because
n is often impractically large before an EVD approximates the distribution of Y ∗

n
closely. Modern EVD theory improves the approximations by emphasizing the rich
combinatoric structure of extreme values, relating them to the Poisson distribution.

4 The Poisson Approximation for Counting Rare Events

If Pr [N = i] = e−λ (λ i/i!), where i = 0,1, . . ., then N has a Poisson distribution with
mean λ . The Poisson distribution derives its importance as an approximation to
the distribution of the count of rare events with at most weak dependences. (The
events need not necessarily have equal probability.) As a memorable example, the
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Poisson distribution made its first appearance in a study by Ladislaus Josephovich
Bortkiewicz (1868–1931), counting Prussian troops kicked by their horses.

In the database search above, consider the rare events [Yi ≥ y], where i = 1, . . . ,n
and y is large. An extreme value Y ∗

n ≥ y means a rare event [Yi ≥ y] occurred. If
{Y1, . . . ,Yn} are only weakly dependent (and not necessarily identically distributed),
the number N counting the events [Yi ≥ y] that occur is approximately Poisson dis-
tributed, where the mean λ = ∑n

i=1 Pr [Yi ≥ y]. The events [Y ∗
n < y] and [N = 0] are

identical, so the Poisson distribution yields Pr [Y ∗
n < y] = Pr [N = 0] ≈ e−λ . Like-

wise, Y ∗
n−1 < y,Y ∗

n−i+1 ≥ y, . . . ,Y ∗
n ≥ y if and only if N = i, since the i largest Y ’s

exceed y if and only if i of the Y ’s exceed y. Thus,

Pr
[
Y ∗

n−1 < y,Y ∗
n−i+1 ≥ y, . . . ,Y ∗

n ≥ y
]
= Pr [N = i] ≈ e−λ λ i/i!,

an approximation that can appear somewhat mysterious when the Poisson context
is not emphasized. Through the Chen-Stein method, modern probability theory can
often bound the error in a Poisson approximation, even when {Y1, . . . ,Yn} are de-
pendent variates [7].

The usage of “E-value” (“E” for “expectation”) in bioinformatics derives from
the Poisson distribution; the expectation λ = E [N] of a Poisson distribution deter-
mines all its probabilities, and hence all relevant p-values. In particular, for small λ ,
Pr [Y ∗

n ≥ y] = Pr [N > 0] ≈ 1− e−λ ≈ λ = E [N]. Thus, for the Poisson distributions
most useful to bioinformatics, where λ is small, p- and E-values are practically the
same. Even if a non-negative integer variate N is not Poisson distributed, however,

Pr [N > 0] =
n

∑
i=1

Pr [N = i] ≤
n

∑
i=1

iPr [N = i] = E [N] , (2)

so a small E-value still implies a small p-value. The term “E-value” should be re-
served for Poisson approximations (because “expectation” or “mean” is perfectly
expressive otherwise), but current usage of “E-value” is regrettably ambiguous.
Even without the Poisson distribution, however, the mean E [N] is often available
when the p-value is not. Equation (2) can provide a practical bound for the p-value.

5 Pairwise Sequence Alignment

A genetic algorithm compares different combinations of subsolutions to find the
optimal solution of a problem. Similarly, biological sequences (e.g., a protein or nu-
cleic acid sequence) combine subsequences to solve evolutionary “problems”. Thus,
a “local alignment”, which compares all subsequences of two sequences [39], is of-
ten more sensitive in determining evolutionary relationships than a “global align-
ment”, which compares entire sequences [32].

Local alignment is therefore more important in database applications than global
alignment [4, 5, 35]. The mathematics and statistics of sequence alignment are re-
lated to path optimization, as follows [32].
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Let A = A0A1 · · ·Am−1 and B = B0B1 · · ·Bn−1 be two sequences drawn from a
finite alphabet Σ , e.g., the amino acid alphabet

{A,C,D,E,F,G,H, I,K,L,M,N,P,Q,R,S,T,V,W,Y}

or the nucleotide alphabet {A,C,G,T}. Let X : Σ ×Σ → R denote a “scoring ma-
trix”, where X(a,b) quantifies some type of similarity between a and b, e.g., the
PAM and BLOSUM scoring matrices quantify the evolutionary similarity between
two amino acids [15, 24]. In practice, X is symmetric, i.e., X(a,b) = X(b,a), and
although unnecessary below, symmetry is assumed for ease of exposition.

The alignment graph Γ of the sequence-pair (A,B) is a directed, weighted lattice
graph in two dimensions, as follows. The vertices v of Γ are non-negative vertices
(i, j) in the two-dimensional integer lattice Z

2. (Below, N = {1,2,3, . . .} denotes the
natural numbers; i, j, k, m, n, and g are integers throughout.) Three sets of directed
edges e come out of each vertex v = (i, j): northward, northeastward, and eastward.
One northeastward edge goes into (i+1, j +1) with weight X(Ai,B j). For each 0 <
g < m−i, one eastward edge goes into (i+g, j) with weight −∆(g)< 0; and for each
0 < g < n− i, one northward edge goes into (i, j +g) with weight −∆(g) < 0. The
deterministic function ∆ : N→ (0,∞) is called the “gap penalty”. Database searches
usually use affine gap penalties ∆(g) = a + bg, more for algorithmic convenience
than for biological relevance.

A directed path π = (v0,e1,v1,e2, . . . ,ek,vk) in Γ is a finite, alternating sequence
of vertices and edges that starts and ends with a vertex. For each i = 1,2, . . . ,k, the
directed edge ei comes out of vertex vi−1 and goes into vertex vi. We say that the
path π starts at v0 and ends at vk.

Denote subsequences of a sequence A by A[i, i′) = AiAi+1 · · ·Ai′−1 for i < i′,
with A[i, i′) = ε if i′ ≤ i (ε is the empty sequence). Every gapped alignment of the
subsequences A[i, i′) and B[ j, j′) corresponds to exactly one directed path that starts
at v0 = (i, j) and ends at vk = (i′, j′). The alignment’s score is the “path weight”
Wπ = ∑k

k′=1 W (ek′).
Define the “global score” Si, j = maxπ Wπ , where the maximum is taken over all

paths π starting at v0 = (0,0) and ending at vk = (i, j). The paths π starting at v0

and ending at vk with weight Wπ = Si, j are “optimal global paths” and correspond
to “optimal global alignments” between the sequences A[0, i) and B[0, j).

Define also the “local score” Ŝi, j := maxπ Wπ , where the maximum is taken over
all paths π ending at vk = (i, j), regardless of their starting point. Define the “local
maximum”

M̂m,n = max
0≤i≤m,0≤ j≤n

Ŝi, j.

The paths π ending at vk = (i, j) with local score Wn = Ŝi, j = M̂m,n are “optimal local
paths” corresponding to the “optimal local alignments” between subsequences of
A = A[0,m) and B = B[0,n). “Ungapped local alignment” is the case where ∆(g) =
∞ identically, because then no optimal local path includes a northward or eastward
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edge, i.e., as the terminology suggests, gaps are absent from optimal ungapped local
alignments.

Now, having developed notation for a particular sequence pair, we introduce ran-
domness. Under the usual “independent letters” model, each letter in the sequences
A and B is chosen independently and randomly from a fixed distribution on the al-
phabet Σ . Under certain conditions, the distribution of the random local maximum
M̂m,n approximates the following distribution, where ρy ≈ K exp(−λy) for large y:

Pr
[
M̂m,n > y

]
≈ 1− exp(−ρymn) ≈ 1− exp(−Kmne−λy), (3)

a Type 1 (Gumbel) EVD with “scale parameter” λ [1, 21]. (Note: the p-value p =
Pr

[
M̂m,n ≥ y

]
≈ 1−exp

(
−Keλ mne−λy

)
, so K in bioinformatics usually denotes the

quantity we call Keλ here; see

http://www.ncbi.nlm.nih.gov/blast/tutorial/Altschul-3.html.

The present definition of K is convenient for our purposes, however.) Because λ
appears in a double exponent, its errors have a much greater practical impact than
errors in K, so as a rule of thumb, in practice λ in Equation (3) must be known
within 1% to 4%; K, within about 10%. In Equation (3), Pr

[
M̂m,n > y

]
≈ Kmne−λy

if Kmne−λy is small. The parameters λ and K in Equation (3) or its approximation
can be fit from simulation, if desired.

As the next section shows, Equation (3) is unsurprising. A mathematical proof of
ρy ≈ K exp(−λy) will require substantial extension to current theory, however.

6 Islands in Local Alignment

“Islands” are a useful concept in local alignment [2, 40, 43]. Consider a maximal
local path π starting at the vertex v0 = (i′, j′) and ending at vk = (i, j) with score
Ŝi, j. If more than one optimal local path to vk exists, invent an arbitrary tie-breaking
rule, e.g., take v0 = (i′, j′) with the smallest i′, and if ties are not yet broken, the
smallest j′. Let us then say that vk belongs to v0, or equivalently, v0 owns vk. In
addition, let the “island with root v0” be the set of all vertices belonging to v0. The
alignment graph Γ is then partitioned into islands: every vertex vk is contained in a
unique island.

Consider now the event
[
M̂m,n > y

]
that the maximum local score exceeds y.

Thus, there exists a vertex on an island with local score exceeding y. Let us call
the corresponding island a “grand island” and its root a “grand root”. Let ρy be
the expected density of grand roots in a large rectangle [0,m]× [0,n]. The expected
number of grand roots is ρymn.

There is reason to believe that (in loose terms) for large m, n, and y, grand roots
are only weakly dependent. Because the grand roots are weakly dependent rare
events, and there are a large number of possible grand roots, the number N of grand
roots in [0,m]× [0,n] is approximately Poisson distributed with mean µ = ρymn. (In

http://www.ncbi.nlm.nih.gov/blast/tutorial/Altschul-3.html
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mathematical terms, the grand roots are almost a “Poisson process” [19]. In fact, (al-
though the corresponding limit theorem requires great mathematical depth to state
precisely) if the expected number of grand islands ρymn is fixed at a constant value,
as m and n grow, the score y grows only like log(mn). Thus, a typical grand island is
a negligible proportion y2/(mn) of the rectangle [0,m]× [0,n], making dependence
of grand islands very unlikely.) Because M̂m,n ≤ y if and only if N = 0 (no grand
islands), Equation (3) is equivalent to Pr [N = 0] ≈ exp(−ρymn).

For large y, the equation ρy ≈ K exp(−λy) can be justified, as follows. If an
island contains a vertex with a score x + y, a maximal path from the root to the
vertex can be broken into two subpaths with scores close to x and y, corresponding
to patching together two independent islands with maximal scores x and y. Thus,
ρx+y ≈ K−1ρxρy, where the extra factor K−1 reflects “patching”. By taking logs, the
only continuous, bounded, non-constant solution to the functional equation ρx+y ≈
K−1ρxρy is ρy = K exp(λy), for some λ > 0.

In gapless alignment, where ∆(g) = ∞ identically, the islands in the alignment
matrix collapse onto diagonals, the lines containing vertices of the form v = (i, j),
where i− j = constant. The theory of random sums then gives analytic expressions
for the constants K and λ [16, 27]. (In the terminology of random sums, island
roots are actually descending ladder indices in a cumulative sum along the diagonal
i− j = constant. [6]) The density A−1 of island roots is known [27]. In addition, the
probability that a root yields an island with score exceeding y is about Ce−λy, where
the theory of random sums yields formulas for C and λ [27]. Thus, the density of
grand roots on any diagonal (or therefore, in [0,m]× [0,n]) is about A−1Ce−λy, i.e.,
ρy ≈ Ke−λy with K = C/A.

The Poisson clumping heuristic, an important general technique in applied prob-
ability due to Aldous, also yields an explanation of why the Gumbel distribution is
relevant to local alignment statistics [1].

7 The Finite-Size Correction in Gapped Local Alignment

The Gumbel distribution is a good approximation in local alignment, if the se-
quences A and B are “infinitely long”. Altschul and Gish introduced the “finite-size
correction” (FSC) to improve on the Gumbel approximation in ungapped align-
ment [3]. In ungapped alignment, the FSC extended the Gumbel-style approxima-
tion down to short sequences (e.g., length 50 or less); in gapped alignment, its use
is a necessity for typical protein sequences (e.g., length 300).

The motivation for the FSC comes from the Poisson process for the grand roots,
mentioned above. At first glance, the Poisson process occurs in an area mn, but in
fact not all grand roots in the area generate a grand island. To build up to a score y,
a grand island requires some length of aligned sequences. Let the random variate Îy

represent the length of A required; and similarly, Ĵy, of B. Because any grand root
within length Îy of the end Am−1 of the sequence A (or Ĵy of the end Bn−1 of the
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sequence B) occurs “too late”, the Poisson process for grand roots really has mean
ρy

(
m− Îy

)(
n− Ĵy

)
, not ρymn.

For large y, the substitution of the approximations Îy ≈ Ĵy ≈ ay + b yield the
original form of the FSC [3]. In fact, recognition of the randomness in Îy and Ĵy

permits a better approximation, because the mean of the Poisson distribution is it-

self an expectation ρyE
[(

m− Îy
)+ (

n− Ĵy
)+

]
(where the symbol x+ = x if x > 0

and 0 otherwise). The constants a and b can be determined from simulations, as can

the expectation E
[(

m− Îy
)+ (

n− Ĵy
)+

]
. Note, however, that the ansatz (i.e., the as-

sumed form) Îy ≈ Ĵy ≈ ay can sometimes yield more accurate FSCs after fitting from
simulation than the ansatz Îy ≈ Ĵy ≈ ay+b, simply because adding unimportant and
unknown parameters to a statistical model (e.g., b) generally reduces the accuracy
of estimates for the important parameters (here, a).

There are other useful approaches to FSCs, such as the addition of a correction
to λ as, e.g., λ +θn−1 if m = n, and then simulating to determine θ [2].

8 The Independent Diagonals Approximation

Consider the following problem. Let X be a PSSM of length m with columns
X0, . . . ,Xm−1. By definition, the PSSM gives any sequence a = a0 · · ·am−1 of length
m a total score ∑m−1

k=0 Xk(ak). (By convention, empty sums are 0, e.g., if m = 0, so
the sequence is empty, the corresponding empty sum is 0.) Now, generate a se-
quence A = A0 · · ·An−1 of length n by choosing its letters independently from the
same distribution. Let S( j)

m = ∑m−1
k=0 Xk(A j+k) be the total score of the subsequence

A[ j, j + m), and let Mn = max j=0,...,n−m S( j)
m . For large y, let us attempt to approxi-

mate the p-value Pr [Mn > y] of the maximum global score Mn of a subsequence in
A.

Because the distribution of each letter Ak is the same, the sums S( j)
m , j = 0, . . . ,n−

m, all have the same distribution as S(0)
m . If they were also independent, the problem

is easily solved, as follows. If we simply assume independence, then our desired
distribution is

Pr [Mn ≤ y] ≈
(

Pr
[
S(0)

m ≤ y
])n−m+1

, (4)

and Exercise 0.1 in Section 2 (Staden’s method [42]) calculates the distribution of
S(0)

m .
Consider the corresponding alignment matrix (best represented with the se-

quence A = A0 · · ·An−1 left of its western edge and the columns X0, . . . ,Xm−1 of
the PSSM under its southern edge). The approximation in Equation (4) is an “in-
dependent diagonals approximation”. Essentially, it assumes that the long diago-
nals of the alignment matrix (i.e., those diagonals with the longest length m) are
independent [26]. In fact, each long diagonal shares many letters with other di-
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agonals, introducing dependencies. The independent diagonals approximation of
Pr [Mn > y] = 1−Pr [Mn ≤ y] usually improves as the threshold y increases (which
is usually what is required in practice).

The EVD and Poisson approximations can both be applied to the problem, but
they are often less accurate than the independent diagonals approximation. The ease
of computation is EVD > Poisson > independent diagonals, but the accuracy of
approximation is often in the opposite order.

Exercise 0.4. Generalize the problem above to a sequence A = A0, . . . ,An−1 with
independent letters drawn from different distributions.

Solution 0.4. We have

Pr [Mn ≤ y] ≈ Pr
[
S(0)

m ≤ y
]
· · ·Pr

[
S(n−m)

m ≤ y
]
,

where Pr
[
S( j)

m ≤ y
]

is computed by Staden’s method [42].

Exercise 0.5. Consider the set-up of Exercise 0.4. Approximate the distribution of
the maximum score of gapless local alignment of A = A0, . . . ,An−1 against the
PSSM X, i.e., the distribution of the maximum M̂n of a subsequence in A scored
against a contiguous subset of columns in the PSSM X.

Solution 0.5. We have

Pr
[
M̂n ≤ y

]
≈ Pr

[
M̂(−m)

m ≤ y
]
· · ·Pr

[
M̂(n)

m ≤ y
]
,

where the maximum local alignment score on each diagonal has the form

M̂( j)
m = max

0≤i≤i′≤m

i′−1

∑
k=i

Xk(A j+k),

so the overall maximum score of gapless local alignment has the form M̂n =

max j=m,...,n M̂( j)
m . (The local alignment includes more diagonals than the global

alignment in Exercise 0.4. To include the extra diagonals without burdening the
notation, adopt the convention that Xk(A j+k) = 0 if j +k < 0 or n ≤ j +k.) Because

M̂( j)
i for each diagonal j = −m, . . . ,n can be computed by dynamic programming

with recursions like those in Exercise 0.2 in Section 2, Exercise 0.2 in Section 2
combined with the independent diagonals approximation gives the solution.

9 The Combinatorial Approximation

Let us consider a generalization of Exercise 0.5 to the sums of local alignment
scores. Instead of just one PSSM X, consider several PSSMs X0, . . . ,Xb−1 of length
m(0), . . . ,m(b−1). (The PSSMs might constitute a “block model,” which models a
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biologically functional sequence by gapless local alignment to a series of “blocks”.)
Generate a sequence A = A0 · · ·An−1 of length n by choosing its letters indepen-
dently from the same distribution. Consider the maximum M̂n = max∑b−1

a=0 M̂a,n,
where each M̂a,n is a maximum score over local alignments whose scores have the
form

Ŝ( j(a))
a,m(a)

=
i′(a)−1

∑
k=i(a)

Xa,k(A j(a)+k),

where 0 ≤ i(a) ≤ i′(a) ≤ m(a). Here, j(a) is the first position of the alignment
of the whole PSSM Xa in the sequence A, from which the subsequence A[ j(a)+
i(a), j(a)+ i′(a)) is chosen. In addition, however, the local alignments contributing
to M̂n are subject to a “combinatorial restriction”; they occur in the sequence A =
A0 · · ·An−1 in the same order as the PSSM order X0, . . . ,Xb−1, i.e., j(a−1)+ i′(a−
1) ≤ j(a)+ i(a), for a = 1, . . . ,b− 1. In M̂n, therefore, the maximum is taken over
all possible local alignments subject to the combinatorial restriction. For large y, the
problem is to approximate the p-value Pr

[
M̂n > y

]
.

For each PSSM Xa, where a = 0, . . . ,b− 1, the corresponding local alignment
yielding M̂a,n has an island root. The combinatorial restriction implies that there are
approximately

(
n
b

)
=

n!
(n−b)!b!

(5)

ways of choosing the letters in the sequence A = A0 · · ·An−1 to correspond to the
island roots. Equation (5) neglects finite-size corrections (which can often be unim-
portant in database retrieval applications).

Now, the distribution of a sum of independent variates is easy to compute (with
dynamic programming again, because a sum can be computed with dynamic pro-
gramming). Thus, we could solve the above generalization of Exercise 0.5 if the
subalignments of X0, . . . ,Xb−1 against the random sequence A = A0 · · ·An−1 were
probabilistically independent. Unfortunately, the combinatorial restriction makes
the subalignments corresponding to M̂a,n, where a = 0, . . . ,b− 1, dependent; they
must be in the correct order. The combinatorial restriction forces them into an ef-
fective length j of random sequence much less than n, but it is believable that, once
restricted, the subalignments are independent. What then is the effective length j?

We need to match the total number jb of possible positions for b independent
island roots to the number of possible positions for b island roots subject to the
combinatorial restriction, i.e.,

jb =

(
n
b

)
, (6)

where the right side has the interpretation after Equation (5). (The idea behind Equa-
tion (6) is explained in greater detail in reference [26].) With the effective length j
in hand, Exercise 0.5 in Section 8 can compute the distributions of variates M̂′

a, j to
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approximate the distributions of the actual M̂a,n, where a = 0, . . . ,b−1, contributing
the maximum M̂n. Under the assumption that M̂′

a, j are independent, the techniques

of Section 2 then compute the distribution of M̂n = ∑b−1
a=0 M̂′

a, j.

Exercise 0.6. Consider the problem above, but replace the local alignments with
global alignments, i.e., consider Mn = max∑b−1

a=0 Ma,n where each Ma,n is a maxi-
mum score over global alignments whose scores have the form

S( j(a))
a,m(a)

=
m(a)−1

∑
k=0

Xa,k(A j(a)+k).

For large y, approximate the p-value Pr [Mn > y].

Solution 0.6. The global alignment consumes a fixed length m0 = ∑b−1
a=0 m(a) of the

sequence A = A0 · · ·An−1. Consider the number of the possible positions for b starts
of alignments to Xa, a = 0, . . . ,b−1, subject to the combinatorial restriction, which
is known to be the right side of Equation (7):

jb =

(
n−m0 +b

b

)
. (7)

The left side has the same interpretation as in Equation (6). Other combinatorial
restrictions lead to similar equations for effective lengths [41]. Sometimes, in prac-
tice, the right sides of equations like Equations (6) and (7) must undergo ad hoc
changes to maintain a sensible interpretation, e.g., n−m0 +b might be replaced by
(n−m0)

+ +b to avoid negative numbers in the combinatorial coefficient.
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Part II
Phylogenetics



This second part of the book collects material about evolutionary relationships in-
cluding phylogenetic trees, networks, and genome wide association studies.



Practical Implications of Coalescent Theory

Paul Marjoram and Paul Joyce

Abstract The coalescent has become perhaps the most widely-used population ge-
netics model. By modeling the ancestry of a sample, rather than the evolution of the
entire population from which the sample is drawn, it provides a computationally ef-
ficient framework for data simulation. Furthermore, from a theoretical perspective,
it provides the under-pinnings for many useful analysis techniques. In this chapter,
we introduce the coalescent, describe some of the problems that it has been used to
address, discuss practical implications that follow from the insight it provides, and
summarize some of the available software.

1 Introduction — What is the coalescent?

In 1982 John Kingman took to heart the advice of Danish philosopher Søren Kierke-
gaard and realized that “Life can only be understood backwards, but it must be
lived forwards.” Applying this perspective to the world of population genetics, and
generalizing an earlier result of Sewall Wright [112], led him to the development of
the coalescent, a mathematical model for the evolution of a sample of individuals
drawn from a larger population [40, 41, 42]. The coalescent has come to play a
fundamental role in our understanding of population genetics and has been at the
heart of a variety of widely-employed analysis methods. For this it also owes a large
debt to Richard Hudson, who arguably wrote the first paper about the coalescent
that the non-specialist could easily understand [33]. In this chapter, we introduce
the coalescent, summarize its implications, and survey its applications.

The central intuition of the coalescent is driven by parallels with pedigree-based
designs. In those studies, the shared ancestries of the sample members, as described
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by the pedigree, are used to inform any subsequent analysis, thereby increasing the
power of that analysis. The coalescent takes this a step further by making the obser-
vation that there is no such thing as unrelated individuals. We are all related to some
degree or other. In a pedigree, the relationship is made explicit. In a population-
based study, the relationships are still present, albeit more distant, but the details of
the pedigree are unknown. However, it remains the case that analyses of such data
are likely to benefit from the presence of a model that describes those relationships.
The coalescent is that model.

The ideas behind the coalescent are simplest to understand in the context of
the original papers, in which it was developed as a model for haploid data. Con-
sequently, while this form is inappropriate for many types of data, it is here that we
begin our description. In Figure 1, we show a population evolving through a number
of (discrete) generations. Arrows point from parent to offspring. We assume that a
sample of individuals are drawn from the present-day population (at the bottom of
the figure), and these are indicated in red. We then trace the ancestry of these indi-
viduals back through time (i.e., up the page) until a most recent common ancestor
(MRCA) is reached. This ancestry, also indicated in red, is modeled by the coales-
cent. The behavior of the ancestry is derived by considering the probability, p2, that
any given pair of individuals share a common ancestor in the previous generation.
This is a function of the population size and the variance, σ2, of the number of off-
spring born to any given parent. More specifically, in the context of the commonly-
used Wright-Fisher model [21, 112], a model in which each generation consists
entirely of offspring of the the previous generation, we have p2 = σ2/(2N), where
2N is the haploid population size. In fact, for mathematical convenience, it is more
common to consider the coalescent evolving on a continuous time-scale, with time
re-scaled so that p2 is exponentially distributed with mean 1. We refer to this as the
coalescent time-scale in what follows.

Although we have introduced the coalescent in the context of the Wright-Fisher
model, it in fact works for a wide variety of models, via a change of time-scale that
depends on σ2. Of course, without mutation, life is boring because all individuals
in the sample will necessarily be the same (since they all descend from the MRCA).
Thus, the key parameter in the basic coalescent is θ = 4Nu, where u is the mutation
rate per individual per generation. This parameter controls the rate at which muta-
tions are added to the tree, but it is important to note the confounding of the mutation
rate and population size. Intuitively speaking, if we double the population size, but
half the mutation rate, behavior of the coalescent, and hence of samples drawn from
such a population, remains unchanged. Mutations are assumed to occur at constant
rate, θ/2 throughout the history of the population. Now, if we consider a situation
in which there are currently k lines of ancestry in the coalescent, we can derive the
key results of the coalescent. First, the time (on the coalescent time-scale) to the
next event (back in time) is exponentially distributed with mean k(k−1)/2+kθ/2.
Second, the probability that this event is a coalescence is (k−1)/(θ +k−1); other-
wise it is a mutation. By starting with k = n, where n is the sample size, and iterating
the Markov process described by these two results until we reach k = 1, we fully
describe the coalescent tree of the sample.
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Fig. 1 An illustration of the ancestry of a sample of 6 individuals drawn from a present-day pop-
ulation. The ancestry is shown in red. The number of ’lines of ancestry’ decreases as we move up
the page, before reaching a MRCA. The process in red is formally described by the coalescent.

Of course, in most applications we need to allow for more complex features,
such as recombination, population structure, selection, and changes in population
size. While we avoid details here, instead referring readers to one of the many more
comprehensive discussions of the coalescent (e.g., [29, 66]), it is instructive to con-
sider the changes induced to the coalescent by the addition of recombination. These
were first described by Hudson [32]. When a recombination event occurs it results
in a bifurcation of the ancestry as we look back in time. The region of the chro-
mosome to the left of the recombination event was inherited from one copy of the
chromosome, while the region to the right was inherited from the other copy. We
illustrate this in Figure 2. This results in the coalescent being described by the rel-
ative probabilities of three events as we look back in time. The time to the next
event is now distributed exponentially with mean k(k− 1)/2 + k(θ + ρ)/2, where
ρ = 4Nr and r is the recombination rate per individual per generation. Furthermore,
that event, when it occurs, is a coalescence with probability (k−1)/(θ +ρ +k−1),
a mutation with probability θ/(θ +ρ +k−1) and (otherwise) a recombination (with
probability ρ/(θ + ρ + k−1)). Once again we note the confounding, this time be-
tween the recombination rate and the population size. As a consequence of this the
coalescent process is now described by a graph rather than a tree. This graph has
become known as the ancestral recombination graph [26], and has an elegant alter-
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native construction given by [110, 111]. As the length of the region being considered
grows, the number of recombination events grows, leading to the graph assuming
unmanageable proportions (see below).

Fig. 2 The action of recombination, and its effects on ancestry. (a) We follow the ancestry of a
chromosomal region indicated in color and note how recombination induces bifurcations in the
ancestry as we move back through time. (b) Note that the ancestry at any specific single position
in the region is still described by a tree. There are a total of 3 trees in this particular example.
(Reprinted from Trends in Genetics 18:83-90, M. Nordborg and S. Tavaré, “Linkage disequilib-
rium: what history has to tell us”. Copyright 2002, with permission from Elsevier)

2 Motivating Problems

2.1 Early Human Evolution

One of the signature early applications of the coalescent was to inference regarding
the early history of humans. The application was natural because, due to techno-
logical limitations, the amount of molecular variation data that was available was
small and therefore required analysis using relatively complicated models, such as
the coalescent. Indeed, several of the earliest data sets consisted of short regions of
mitochondrial DNA (mtDNA) [5, 11, 105, 109] or Y chromosome [9, 27, 38, 108].
Since mtDNA is maternally inherited it is naturally described by the original ver-
sion of the coalescent, with its reliance upon the existence of a single parent for
each individual and its recombination-free nature. Similar logic applies to data from
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the Y chromosome. For example, Cann et al. [5] studied a mtDNA sample of 147
people, drawn from five geographic populations and concluded that they all descend
from one woman, who they christened “Mitochondrial Eve” (mtEve) and who lived
around 200Kyrs ago, likely in Africa. In a complementary analysis, the age of Y
chromosome Adam, the analog of mtEve for the paternal line of ancestry, was in-
ferred from Y chromosome data [12, 27, 93]. In another application, Slatkin and
Hudson used a mtDNA data set due to Di Rienzo and Wilson [11], consisting of just
620 base-pairs, and explored properties of the distribution of pairwise differences
[88]. The number of pairwise differences between any given pair of individuals is
simply defined as the number of sites at which their nucleotides are different. The
distribution of pairwise difference is found by calculating this number for every pair
of individuals in a given sample. Di Rienzo and Wilson had observed that, for most
human populations, this distribution was unimodal and relatively smooth. Slatkin
and Hudson showed that such a distribution was contrary to that which would be
expected for a population of constant-size, but was a consistent signature of popula-
tion growth, a scenario that is distinctly plausible for human populations. It should
be noted that the story can be complicated by the existence of more realistic, and
more complicated features, such as population structure [50], and that some human
populations, particularly those of African origin [11], exhibit pairwise difference
distributions of other shapes, but the application remains interesting for its relation
to the Out of Africa debate. This debate centers around an argument, originally made
from fossil data (e.g., [91]), that the MRCA for all extant humans lived in Africa.
The ability to analyze mitochondrial, and then nuclear DNA, gave new impetus
to this discussion, resulting in the current consensus that the Out of Africa event
occurred 100K-200K years ago. However, the debate continues, particularly with
regards to the likelihood of genetic admixture between the new, human lineage and
existing archaic human populations (e.g., [14, 15, 17, 23, 24, 25, 65, 72, 95]). Of
course, the successes of the HapMap project [99], a multi-country public resource
that seeks to characterize variation in human populations (see www.hapmap.org),
have only accelerated work on these questions. For a review of the current state of
play regarding these and other issues of human ancestry, see [73, 74, 78].

2.2 Association studies

The issue of relating phenotypic to genotypic variation is clearly of prime impor-
tance. Historically, many association methods revolved around marginal tests of re-
lationships between each ‘marker’ and the phenotype. The meaning of ‘marker’ has
changed over time to reflect the march of technology. Most recently, the commonest
form of genotypic data is that of single nucleotide polymorphisms (SNPs) — single
base positions at which more than one type (and usually exactly two) are observed
across a population of interest. However, it is clear that the patterns of variation at
nearby SNPs are related (because of shared ancestry) and this is reflected by the
existence of linkage disequilibrium (LD) between such markers. Thus, understand-

http://www.hapmap.org
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ing the nature and causes of LD, and exploiting such features within an association
study, should help improve power. A parallel can be drawn with pedigree studies,
in which it would clearly be nonsensical not to include the pedigree information
within the analysis. In real populations the ‘pedigree’ is unobserved, but modeling
(or inferring) it in some way would clearly have great potential utility.

A related issue arises when one tests large numbers of such loci. Correlation (as
measured by LD, say) occurs between SNPs positioned near to each other along
the genome. It is exactly this correlation that is modeled by versions of the coales-
cent that include recombination. Because SNPs are not independent, applying the
most popular correction for multiple comparisons, the Bonferroni correction, which
itself assumes independence between tests, will be conservative. The extent of the
conservativeness increases as the extent of LD increases. This has, in part at least,
motivated the concept of ‘effective number of tests’ [8, 68], which can reduce the
severity of a multiple comparisons correction, although the utility of this idea con-
tinues to be the subject of discussion [62, 69, 81].

2.3 Imputation

The issue of data imputation, the inference of the (unobserved) true state of missing
data, is one that is rapidly growing in importance. Modern high-throughput genotyp-
ing technologies, such as the ‘SNP-chips’ of Affymetrix or the bead array technol-
ogy of Illumina, offer fantastic efficiencies of scale but have relatively high missing
data rates. These rates can be as high as 20% [37]. Thus, there is a pressing need for
algorithms than can accurately impute this missing data. Such an approach can be
expected to add power to an association study, for example [49, 83]. A related appli-
cation is that of next-generation sequencing technologies, such as those using poly-
merase colony (so-called ‘polony’ — www.polonator.org), 454 (www.454.com), or
Solexa technologies (www.solexa.com). While such data is in short supply at the
moment, there is little doubt that many future studies will collect such data. These
technologies result in short regions of sequenced data, sometimes overlapping, sep-
arated by gaps in which no sequence data was obtained. Thus, there will be a need to
develop algorithms that can successfully impute that missing data. Note that ‘impu-
tation’ is being used in slightly different ways in these two examples. In the context
of SNP-chips, for example, we wish to infer type at SNPs that have been ‘sequenced’
(i.e., are included on the SNP-chip being used for a particular study) but for which
the genotyping algorithm has not made a call. In the context of next-generation se-
quence data we wish to infer type at sites for which no data has been collected for
that individual.

http://www.polonator.org
http://www.454.com
http://www.solexa.com
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3 Implications of the Coalescent

We now stop to consider what useful insights coalescent theory and modeling have
provided us. We list a series of such implications below.
Implication number one — it’s a model, stupid!
The first thing to note about the coalescent is that it is a model. Therefore it is
wrong. This is not a criticism specifically directed at the coalescent, but rather at
models in general. If the coalescent was completely accurate it would no longer be
a model — it would be reality. The key point about a model is that it should be right
enough to be useful, but wrong enough (i.e., simple enough) to be usable. It must
capture the key features of reality, without the computational complexity inherent in
many of the non-essential details. In the coalescent, the inaccuracies occur because,
as one example, it is a model derived for infinite populations, and real populations
are, rather obviously, finite. However, most populations are large enough that they
behave much like a population of infinite size. Consequently, the coalescent has
proven to be a highly useful tool for the study of all populations.

Implication number two — a sample is enough
There is a beautiful result due to Saunders et al. [82] showing that, in a sample of
size n, drawn from a population of size N, the probability that the MRCA of the sam-
ple is the same as the MRCA of the entire population is n−1

n+1
N+1
N−1 . The striking thing

here is that this probability approaches the value of 1 very quickly, meaning that one
can make accurate inference regarding the MRCA of the population by studying rel-
atively small sample sizes. (For example, a sample of size 50 has a probability of
about 0.96 of having an identical MRCA to that of the population.) It is this result
that enabled early investigators to study samples of human mitochondria and draw
meaningful inferences about mtEve.

Implication number three — but mtDNA is a sample of size 1
The coalescent without recombination is an excellent model for the ancestry of a
sample of mtDNA drawn from a human population. However, it is important to note
that mtDNA, because of the lack of recombination, represents a single realization
of an extremely variable process. We illustrate this in Figure 3, where we show four
randomly sampled coalescent trees. We see how variable independent realizations of
the same coalescent process can be. In reality, of course, this tree will be unobserved
for any given sample, but it follows that implications regarding the mutation rate
(say) drawn from the bottom-left tree would be very different from those drawn
from the bottom-right tree. (Intuitively speaking, since the total length of the latter
tree is longer, we would expect to estimate a higher mutation rate from data resulting
from that tree than for data resulting from the first tree.) Most of the variation in tree
height occurs in the final few lines of the coalescent i.e. the oldest few lines. Indeed,
the average time taken for the last two lines of ancestry to coalesce is higher than
the average height of the rest of the tree! Adding new individuals to the sample tells
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you little about the last few lines of ancestry, because the additional new lines are
likely to coalesce with the existing tree before the last few lines are reached.

Fig. 3 A random sample of four coalescent trees for samples of size 20 (without recombination).
The red line indicates a time corresponding to 2N generations. Note how much the shape of the
tree varies from one realization to another. These trees were drawn using coalator, a program
written by Bernhard Haubold (available at http://guanine.evolbio.mpg.de/coalator/).

These properties provide a principal motivation for wishing to look at nuclear,
rather than mitochondrial (or Y chromosome) DNA. The ancestry of each chromo-
some provides an essentially independent realization of the evolutionary process for
that population. Furthermore, because of the presence of recombination, regions that
are reasonably widely-spaced within a chromosome also provide largely indepen-
dent replicates. By combining analysis across multiple chromosomes, for example,
we can then reduce the variance of our resulting parameter estimates. This is an ap-
proach that has proven to be of some utility in the Out of Africa debate, for example.

Implication number four- correlation matters
The coalescent provides a powerful illustration of why correlation matters. An ex-
cellent example is the distribution of pairwise differences within a sample. The num-
ber of pairwise difference between two haplotypes (short, chromosomal regions in-
herited from a single parent) is defined as the number of sites at which they are not
identical. Under the infinite sites model, a model that assumes each mutation oc-
curs at a unique new site, Fu and Li [22] showed that the probability of observing k

pairwise differences when the mutation rate is θ is given by
( θ

θ+1

)k
/(θ + 1). This

http://guanine.evolbio.mpg.de/coalator
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distribution is, somewhat unintuitively, monotonic decreasing for all θ . An example
is shown in Figure 4.

However, when we look at typical pairwise difference distributions for a sample
of haplotypes simulated using a coalescent model, we see a very different picture.
Four typical realizations are shown in Figure 5. This data was simulated using a
constant-sized population. The bimodality in these figures is caused by the correla-
tion induced by the coalescent. In particular, as is discussed in ‘Implication number
three’, it follows from the fact that typical realizations of the coalescent contain a
relatively long period of time during which there are exactly two lines of ances-
try. Mutations will accumulate along those lines. Pairwise comparisons that involve
two individuals that descend from the same one of these last two lines of ancestry
will have relatively few pairwise differences; comparisons involving two individuals
drawn from opposite sides of the tree will have a greater number of pairwise differ-
ences. The number of individuals that trace their ancestry to each of these last two
lines is in fact uniformly distributed over the range [1,n−1], where n is the sample
size (another example of the surprisingly elegant results that often follow from the
coalescent).

As noted earlier, when pairwise difference distributions are calculated for most
human ethnic groups, they are in fact unimodal, which has been used as evidence of
recent expansion of human populations sizes (e.g., [88]).

Implication number five — size matters
The size of the ancestral recombination graph (ARG), the form of the coalescent
that models recombination [26, 32], rapidly becomes unmanageably large as the
recombination rate increases. This means that the coalescent in its exact form can
only be used to model relatively short genomic regions (e.g., it cannot manage en-
tire chromosomes). This has provoked two responses. The first response is to ap-
proximate the coalescent by modeling a subgraph of the ARG. The subgraph must
be such that the computational burden remains manageable when simulating entire
chromosomes but must also ensure that the behavior of simulated data sets will re-
main essentially indistinguishable from those that would be produced by using the
full ARG. This has now been successfully achieved in [7, 47, 52, 55]. It remains
to be seen whether these simplified versions of the coalescent can form the basis of
more efficient versions of analysis approaches that currently use the coalescent. The
second response to the complexity of the coalescent when modeling long genomic
regions is appropriate when the desire is to simulate data. Historically, before the ap-
pearance of the coalescent, genomic data was simulated using explicit forward-time
models of the biological process of interest. However, the computational complex-
ity of such an approach meant that it could only be applied over very short regions.
But, with the rapid advances in computational hardware over the last few decades,
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Fig. 4 The theoretical distribution for the number of pairwise differences between a pair of indi-
viduals for θ = 10. The x-axis shows the number of pairwise differences, whereas the y-axis shows
the probability of observing that number of pairwise differences.

forward-time simulation has again become practical, even for long regions. Many
such programs have now appeared (see Section 4.1).

Implication number six
There is no implication number six.

Implication number seven — it ain’t all roses
Despite the power and elegance of the coalescent model, it is not without its prob-
lems. Most significant of these is the difficulty of dealing with selection. There
is an elegant pair of papers by Krone and Neuhauser [43, 64] in which a version
of the coalescent is developed for contexts in which selection is present. Further
publications have discussed other specific forms of, or contexts for, selection (e.g.,
[18, 19, 36, 63, 67, 71, 85, 86, 87, 90]). However, the field is currently lacking a
single, unified coalescent framework that can successfully be used for populations
under a variety of forms of selection.

Implication number eight — the coalescent gives insight as to how distantly re-
lated genes are within a species.
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Fig. 5 Four independent realizations of the observed distribution of pairwise differences in samples
of size 50, with θ = 10. Again, the number of pairwise differences is shown on the x-axis, with
frequency being on the y-axis. Note how correlation induces differences, such as multimodality,
from the theoretical distribution shown in Figure 4.

The coalescent provides information on the history of genes within a population or
species; by contrast, phylogenetic analysis studies the relationship between species.
However, the former can also be used to help with the latter. Central to a phylo-
genetic analysis of molecular data is the assumption that all individuals within a
species have coalesced to a common ancestor at a more recent time point than the
time of speciation. If this assumption is met then it does not matter which homolo-
gous DNA sequence region is analyzed to infer the ancestral relationship between
species. The true phylogeny should be consistently preserved regardless of the ge-
netic locus used to infer the ancestry. If there is a discrepancy between the inferred
phylogeny at one locus versus another then that discrepancy can be explained by the
stochastic nature of statistical inference. However, the within species ancestry and
the between species ancestry are not always on different time scales and completely
separable. It is possible that a particular homologous region of DNA used to produce
a phylogeny between species could produce a different phylogeny than another ho-
mologous region, and that the difference is real. One explanation of this phenomena
is called lineage sorting and it occurs when the time to speciation is more recent
than the time to the most recent common ancestor (MRCA) of the gene. This makes
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it appear as though two subpopulations from the same species are more distantly
related than two distinct species.

However, the coalescent model can actually help determine if lineage sorting is
plausible. For example, if based on external evidence (possibly fossil evidence), the
time to speciation is at least v generations into the past, then it is reasonable to ask
how likely is it that a population has not reached a common ancestor by time v.
Converting from generations to the coalescent time scale, define t = v/2N. If T is
the time it takes a population to reach a common ancestor, then

e−t ≤ P(T > t) ≤ 3e−t .

This quick calculation can determine if lineage sorting is a reasonable explanation.
If 3e−t is small, then the coalescent time scale and the phylogenetic time scale are
likely to be different and lineage sorting is likely not to be the appropriate explana-
tion.

When lineage sorting is plausible, then it becomes a central issue for inference of
species phylogeny. This becomes particularly important when considering phyloge-
netic analysis at the genomic level. A coherent likelihood framework for combining
gene trees and determining how each informs the likelihood of a particular species
tree, requires a combination of coalescent and phylogenetic likelihood analysis. A
multitude of papers have investigated this phenomenon using the coalescent frame-
work, e.g., [10, 48, 77].

A related point is that molecular variation data cannot inform you about times
before the time to most recent common ancestor of the sample [97]. The data we see
today is a consequence of the type of the MRCA and interplay of the genealogy, and
mutations that have occurred on that genealogy, since that time. There is no further
information about evolutionary history before the MRCA. Thus another implication
of coalescent theory is that the it provides appropriate insight as to how distantly
related genes are within a species, which can help resolve issues in phylogenetic
analysis.

Implication number nine — robustness means lack of power
A collection of non-recombining homologous DNA sequences from a single popu-
lation may look like a considerable amount of data, but in fact it represents a mul-
tivariate sample of size one. This point was made clear earlier. A rigorous way to
quantify the inferential limitations on the coalescent is to consider the properties
of estimates of the mutation rate parameter θ . Since this is the parameter that dis-
tinguishes one neutral coalescent model from the next, inference on θ can be very
informative with regard to the power of the coalescent to resolve competing hypoth-
esis. An under-appreciated result by Fu and Li [22] produces the optimal variance
of any estimator for θ . No matter how hard one toils to make one’s estimation al-
gorithm use the data most efficiently, one will never get an unbiased estimator for θ
with variance smaller than

θ
∑n−1

j=1 1/(θ + j)
.
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Note that ∑n−1
j=1 1/(θ + j) ≈ ln(θ + n). So as the sample size n becomes large,

the variance of the estimator decreases at a very slow rate. The above is called the
Cramér-Rao lower bound on the variance. It shows that among unbiased estimators
the best one can do is this lower bound.

The estimator is based on the following idealized situation. Suppose that we as-
sume that every mutation that separates all individuals at a particular locus in the
population is revealed, and the full ancestry is resolved. Further assume that the
number of mutations between each coalescent event is observable. Define Yj to be
the number of mutations that occur during the time the sample has j distinct an-
cestors. Therefore, P(Yj = y j) is the probability that y j mutations occur before a
coalescence. This is analogous to flipping an (unfair) coin and asking what is the
probability of getting y j tails before a heads. This produces the well known geomet-
ric distribution given by

P(Yj = y j) =

(
θ

j−1+θ

)y j
(

j−1
j−1+θ

)
.

Because of independence we can write,

f (y2,y3, . . . ,yn;θ) = P(Y2 = y2,Y2 = y3, · · · ,Yn = yn;θ)

=
n

∏
j=2

P(Yj = y j)

=
n

∏
j=2

(
θ

j−1+θ

)y j
(

j−1
j−1+θ

)

For notational convenience we will denote the likelihood by

Ln(θ) = f (Y2,Y3, . . . ,Yn;θ)

Statistical theory guarantees that the variance of any unbiased estimator is bounded

below by −E
(

∂ 2

∂θ 2 logLn

)
, which can be calculated to be

θ
∑n−1

j=1 1/(θ + j)
.

Implication number ten — the answer is probably 2
Finally, on a rather less serious note, we offer the following implication of coales-
cent theory: if you are asked a question involving coalescences and coalescent times,
the answer is likely to be 2. For example:
Question: On the coalescent time-scale, how long on average does it take a popula-
tion to coalesce to a common ancestor?
Question: What is the average length of the external branches in a coalescent? (An
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external branch is defined as a branch that connects directly to a tip of the tree.)
Question: How many ancestral lines are there during the (on average) longest coa-
lescence time?
Question: When coalescence occurs it involves how many individuals?
Question: When there are n individuals in a sample, the rate of coalescence is n
choose what?
Answer: 2.

4 Software Review

4.1 Simulation software

One of the main uses of the coalescent is as a method for efficient simulation of data
sets. As such, it can be used as a tool in power studies, or for evaluating the efficiency
of methods that estimate parameters from genetic data. In this section, we introduce
just some of the software available. We begin with programs that simulate the full
coalescent model. However, as discussed in implication number five, there has been
a recent trend to develop algorithms that approximate the coalescent in order to
improve computational efficiency in contexts that had previously been intractable
(such as for genome-wide data), so we go on to include examples of this trend,
before closing with algorithms that conduct explicit, forward-time simulations of
populations (rather than taking the genealogical perspective of the coalescent). For
a more thorough review of this field, see Excoffier and Heckel [16].

We first list the coalescent-based simulators:

• By far the most popular coalescent simulation software is ms, due to Richard
Hudson [35]. This allows simulation of the coalescent for a variety of dif-
fering demographic scenarios. More recently, the software has been broad-
ened to include recombination and gene conversion hot spots, in the form of
the msHot software of Hellenthal and Stephens [30]. Both are available at
http://home.uchicago.edu/∼rhudson1/source/mksamples.html.

• The SelSim software of Spencer and Coop [90] allows for coalescent-based
simulation of populations experiencing natural selection and recombination.
Available at http://www.stats.ox.ac.uk/mathgen/software.html.

• Users wishing to simulate more complex demographic settings might make use
of SIMCOAL 2.0, a package due to Laval and Excoffier [45], which allows for
arbitrary patterns of migration within complex demographic scenarios. Available
at http://cmpg.unibe.ch/software/simcoal2/.

• The GENOMEPOP software of Cavajal-Rodriguez [6] also allows for complex
demographic scenarios but is aimed at simulating coding regions. It is available
at http://darwin.uvigo.es/.

• In [46], Li and Stephens introduced an urn-model that approximates the coales-
cent. The goal is to produce data that will closely approximate that resulting from

http://home.uchicago.edu/%E2%88%BCrhudson1/source/mksamples.html
http://home.uchicago.edu/%E2%88%BCrhudson1/source/mksamples.html
http://home.uchicago.edu/%E2%88%BCrhudson1/source/mksamples.html
http://www.stats.ox.ac.uk/mathgen/software.html
http://cmpg.unibe.ch/software/simcoal2
http://darwin.uvigo.es
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the coalescent, but at much greater computational efficiency. While no software
is available, this elegant construction has been used to simulate data for power
studies (e.g., [13]), and forms the back-bone for some data imputation schemes
[49, 83].

• Other approximations to the coalescent were introduced by McVean and Cardin
[55] and Marjoram and Wall [52]. An update to the latter program, MACS
[7], allows for a far wider range of demographic scenarios, and is available at
http://hsc.usc.edu/ garykche

We now list a couple of the forward-simulation algorithms:

• simuPOP is a program due to Peng and Kimmel [70] that provides much flexibil-
ity via user-written Python scripts. It is available at http://simupop .sourceforge.

• The FREGENE software of Hoggart et al. [31] uses a re-scaling of population size
to provide extremely efficient forward simulation of large data sets. It is available
at http://www.ebi.ac.uk/projects/BARGEN.

4.2 Parameter Estimation

The coalescent is also widely used as a foundation for model-based analysis, for ex-
ample in parameter estimation. An early approach centered around rejection meth-
ods, where data are simulated under a variety of parameter values and then the pa-
rameter value that generated each particular instance of those data sets is accepted
if the data matches that seen in an observed data set of interest; otherwise the gen-
erating parameter is rejected. Taking a Bayesian perspective, the set of accepted
parameter values then forms an empirical estimate of the posterior distribution of
the parameter conditional on the data. [79]. However, in practical applications the
probability of simulating data identical to the observed data is vanishingly small,
even if the correct parameter value is used. This has provoked a move towards so-
called Approximate Bayesian Computation, in which the requirement for an exact
match is relaxed. There has been widespread interest in this development in recent
years (e.g., [3, 76, 84, 107]), but here, as in most examples discussed in this section,
there is little off-the-shelf software. For most applications users must write their
own code!

A related methodology is that of Markov chain Monte Carlo, Metropolis-Hastings
sampling [28, 56]. Here, at least, there is custom software in the form of the com-
prehensive LAMARC package of Joe Felsenstein’s group [44]. This is available from
http://evolution.gs.washington.edu/lamarc/ and can be used to estimate a variety of
population demographics parameters, such as mutation, recombination and migra-
tion rates. There are also a large number of importance sampling algorithms in ex-
istence, which again estimate a variety of population demographics parameters. A
good example is the GENETREE software of Bob Griffiths (e.g., [2]) which can be
found at http://www.stats.ox.ac.uk/∼griff/software.html.

http://hsc.usc.edu
http://simupop
http://www.ebi.ac.uk/projects/BARGEN
http://evolution.gs.washington.edu/lamarc
http://www.stats.ox.ac.uk/%E2%88%BCgriff/software.html
http://www.stats.ox.ac.uk/%E2%88%BCgriff/software.html
http://www.stats.ox.ac.uk/%E2%88%BCgriff/software.html
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Finally, we would like to recall an old result of Geoff Watterson [106] in which
a simple, but remarkably accurate, moment-based estimate of mutation rate was de-
rived by considering the number of polymorphic sites in the sample. This result
pre-dates the coalescent, but can (retrospectively) be very simply derived from in-
sights given by the coalescent. There is also a range of excellent existing software
packages for estimating the other most popular demographic parameter, the recom-
bination rate, e.g., [1, 20, 34, 46, 54, 89, 104].

4.3 Association Mapping

There is an abundance of association mapping software that does not exploit the
coalescent in any form. We exclude those from discussion in the present context,
except to point out a family of approaches that attempt to avoid the computational
complexity inherent in using the coalescent over anything other than short genomic
regions but instead consider coarser approximations of the ancestry, often via the use
of ideas drawn from cluster analysis. These methods focus on analysis of haplotypes
rather than marginal tests of each SNP. Some examples are [13, 53, 58, 59, 75, 96,
98, 103], resulting in software such as

• TREESCAN [75], available at http://darwin.uvigo.es/software/treescan.html,
• VORONOI [58], available from john.molitor@imperial.ac.uk,
• GENEPBM [60], available from amorris@well.ox.ac.uk, and
• BEAGLE [4], available at http://www.stat.auckland.ac.nz/∼browning/beagle/

beagle.html.

More recently, a variety of methods have appeared in which the ancestry of the
haplotypes is modeled explicitly using the coalescent or an approximation thereof.
Such methods tend to be computationally very intensive but do add power. Examples
include

• COLDMAP [61] — available from amorris@well.ox.ac.uk,
• MARGARITA [57] available at http://www.sanger.ac.uk/Software/analysis/marg-

arita,
• A related effort is the BIM-BAM software [83] which uses an approximation to

the coalescent in an imputation step. Available at http://stephenslab.uchicago.edu/
software.html, and

• The LAMARC software package also contains a coalescent-based association
mapping tool — available at http://evolution.gs.washington.edu/lamarc/

• Most recently, the CAMP software of Kimmel et al. [39] is available at http://
www2.icsi.berkeley.edu/kimmel/software/camp.

For a comprehensive selection of cutting-edge tools for association studies we re-
fer the reader to the “Genome-wide Association Study Software” that was used in
the analysis of the Wellcome Trust Case-Control Consortium Data [100]. This is
available from http://www.stats.ox.ac.uk/∼marchini/software/gwas/gwas.html.

http://darwin.uvigo.es/software/treescan.html
mailto:molitor@imperial.ac.uk
mailto:amorris@well.ox.ac.uk
http://www.stat.auckland.ac.nz/%E2%88%BCbrowning/beagle
http://www.stat.auckland.ac.nz/%E2%88%BCbrowning/beagle
http://www.stat.auckland.ac.nz/%E2%88%BCbrowning/beagle
mailto:amorris@well.ox.ac.uk
http://www.sanger.ac.uk/Software/analysis/marg-arita
http://www.sanger.ac.uk/Software/analysis/marg-arita
http://stephenslab.uchicago.edu
http://evolution.gs.washington.edu/lamarc
http://www2.icsi.berkeley.edu/kimmel/software/camp
http://www2.icsi.berkeley.edu/kimmel/software/camp
http://www.stats.ox.ac.uk/%E2%88%BCmarchini/software/gwas/gwas.html
http://www.stats.ox.ac.uk/%E2%88%BCmarchini/software/gwas/gwas.html
http://www.stats.ox.ac.uk/%E2%88%BCmarchini/software/gwas/gwas.html
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4.4 Imputation

Imputation algorithms fall into two broad classes: those that are based upon a co-
alescent model, or an approximation thereof, and those that are not. In the for-
mer category, we have the IMPUTE package of Marchini et al. [49], available
at http://www.stats.ox.ac.uk/∼marchini/#software. In the latter category, we have
the MACH software package, available at http://www.sph.umich.edu/csg/abecasis/
MaCH/index.html, and the NPUTE software of Roberts et al. [80] which is avail-
able at http://compgen.unc.edu/software. We also note the imputation step within
the BIM-BAM package of [83] and the error detection algorithm EDUT of Toleno
et al. [101]. (It is relatively straightforward to re-cast error detection algorithms as
data imputation algorithms.)

5 Further Reading

For a more formal treatment of the coalescent, we refer readers to the books by
Tavaré and Zeitouni [94] or Wakeley [102]. For a somewhat less formal book-length
treatment, see Hein et al. [29]. Useful article-length reviews of the coalescent can
also be found, e.g., [33, 66, 92]. For a longer discussion of model-based analyses
using the coalescent, see [51].

6 Exercises for the reader

1. In Section 1, we gave a formulation of the coalescent. By considering the ex-
pected time for which the coalescent has k lines, for k = 2,3, . . . ,10, and sum-
ming these terms, derive the mean and variance of the height of the coalescent
for a sample of size 10.

2. Repeat the analysis of Exercise 1 for a sample of size n, showing that the expected
height of the tree can be written as 2[1− 1/n]. Note that the expected height of
the tree never exceeds 2, regardless of sample size.

3. Under the infinite sites model, derive the probability that two individuals are
identical under the coalescent model. Extend this to k individuals. Derive the
probability that a sample of n individuals are identical.

4. In a similar manner to the previous exercise, derive the expected number of muta-
tions that exist between two individuals. Extend this to find the expected number
of mutations in a sample of size n.

5. On page 1 we indicate that the mutation parameter θ = 4Nu reflects a confound-
ing between u, the mutation probability per individual per generation, and the
haploid population size 2N. Why are these parameters confounded? (Hint: con-
sider a pair of individuals in a population with discrete generations and calculate
(a) the probability that the pair coalesce in the previous generation, and (b) the

http://www.stats.ox.ac.uk/%E2%88%BCmarchini/%23software
http://www.stats.ox.ac.uk/%E2%88%BCmarchini/%23software
http://www.stats.ox.ac.uk/%E2%88%BCmarchini/%23software
http://www.sph.umich.edu/csg/abecasis
http://compgen.unc.edu/software
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probability that at least one of them experiences a mutation in the previous gen-
eration.)

6. As discussed on Page 3, the theory for the coalescent is derived by assuming that
the population being modeled is of infinite size. This means that the possibility
of some events can be ignored. What events are these? How would the behavior
of the coalescent change if the theory were derived for a population of finite size?

7. In Implication Number Three, we discuss the fact that the last few lines of the
coalescent explain most of the total variance of the evolutionary process. As an
illustration of this, consider the variance of the tree height. Using the results of
Section 1, derive the variance of the time for which the standard coalescent ( i.e.
without recombination) has k lines, for k = 1,2, . . . ,10, and plot this as a function
of k.

8. As discussed on Page 3, unimodal distributions of pairwise differences are a
signature of population growth. Population growth typically results in trees that
resemble so-called star phylogenies, (trees in which all lines coalesce at a single
point — the root). Why should such a tree topology result in unimodal pairwise
difference distributions?
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(eds.) Progress in Population Genetics and Human Evolution, IMA Volumes in Mathematics
and its Applications, vol. 87, pp. 100–117. Springer Verlag (1997)

27. Hammer, M.: A recent common ancestry for the human Y chromosome. Nature 378, 376–
378 (1995)

28. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications.
Biometrika 57, 97–109 (1970)

29. Hein, J., Schierup, M.H., Wiuf, C.: Gene Genealogies, Variation and Evolution. Oxford
University Press, Oxford (2005)

30. Hellenthal, G., Stephens, M.: msHOT: Modifying Hudson’s ms simulator to incorporate
crossover and gene conversion hotspots. Bioinformatics 23, 520–521 (2007)

31. Hoggart, C.J., Chadeau-Hyam, M., Clark, T.G., Lampariello, R., Whittaker, J.C., Iorio, M.D.,
Balding, D.J.: Sequence-level population simulations over large genomic regions. Genetics
177, 1725–1731 (2007)

32. Hudson, R.R.: Properties of a neutral allele model with intragenic recombination. Theor.
Popn. Biol. 23, 183–201 (1983)

33. Hudson, R.R.: Gene genealogies and the coalescent process. In: D. Futuyma, J. Antonovics
(eds.) Oxford Surveys in Evolutionary Biology, vol. 7, pp. 1–44. Oxford University Press
(1990)

34. Hudson, R.R.: Two-locus sampling distributions and their application. Genetics 159, 1805–
1817 (2001)

35. Hudson, R.R.: Generating samples under a Wright-Fisher neutral model. Bioinformatics 18,
337–338 (2002)



82 Paul Marjoram and Paul Joyce

36. Hudson, R.R., Kaplan, N.L.: The coalescent process in models with selection and recombi-
nation. Genetics 120, 831–840 (1988)

37. Huentelman, M., Craig, D., Shieh, A., Corneveaux, J.: SNiPer: improved SNP genotype call-
ing for Affymetrix 10K GeneChip microarray data. BMC Genomics 6, 149 (2005)

38. Jobling, M., Tyler-Smith, C.: Fathers and sons: The Y chromosome and human evolution.
Trends in Genetics 11, 449–456 (1995)

39. Kimmel, G., Karp, R., Jordan, M., Halperin, E.: Association mapping and significance esti-
mation via the coalescent. Am. J. Hum. Genet. 83, 675–683 (2008)

40. Kingman, J.F.C.: The coalescent. Stoch. Proc. Applns. 13, 235–248 (1982)
41. Kingman, J.F.C.: Exchangeability and the evolution of large populations. In: G. Koch,

F. Spizzichino (eds.) Exchangeability in probability and statistics, pp. 97–112. North-Holland
Publishing Company (1982)

42. Kingman, J.F.C.: On the genealogy of large populations. J. Appl. Prob. 19A, 27–43 (1982)
43. Krone, S.M., Neuhauser, C.: Ancestral processes with selection. Theor. Popn. Biol. 51, 210–

237 (1997)
44. Kuhner, M.K.: LAMARC 2.0: maximum likelihood and Bayesian estimation of population

parameters. Bioinformatics 22, 768–770 (2006)
45. Laval, G., Excoffier, L.: SIMCOAL 2.0: A program to simulate genomic diversity over large

recombining regions in a subdivided population with a complex history. Bioinformatics 20,
2485–2487 (2004)

46. Li, N., Stephens, M.: Modelling linkage disequilibrium, and identifying recombination
hotspots using SNP data. Genetics 165, 2213–2233 (2003)

47. Liang, L., Zollner, S., Abecasis, G.R.: GENOME: A rapid coalescent-based whole genome
simulator. Bioinformatics 23, 1565–1567 (2007)

48. Liu, L., Pearl, D.: Species trees from gene trees: reconstructing Bayes posterior distributions
of a species phylogeny using estimated gene tree distributions. Mathematical Biosciences
Institute Tech. Report (2006)

49. Marchini, J., Howie, B., Myers, S., McVean, G., Donnelly, P.: A new multipoint method for
genome-wide association studies by imputation of genotypes. Nat Genet 39, 906–913 (2007)

50. Marjoram, P., Donnelly, P.: Pairwise comparison of mitochondrial DNA sequences in sub-
divided populations and implications for early human evolution. Genetics 136, 673–683
(1994)
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Graph Model of Coalescence with
Recombinations

Laxmi Parida

1 Introduction

One of the primary genetic events shaping an autosomal chromosome is recombi-
nation. This is a process that occurs during meiosis, in eukaryotes, that results in
the offsprings having different combinations of (homologous) genes, or chromo-
somal segments, of the two parents. The presence of these recombination events
in the evolutionary history of each chromosome complicates the genetic land-
scape of a population, and understanding the manifestations of these genetic ex-
changes in the chromosome sequences has been a subject of intense curiosity (see
[Hud83, Gri99, HSW05] and citations therein).

The most important mathematical object in this context is the Ancestral Recom-
binations Graph (ARG) introduced by Griffith and Marjoram [GM97]. Utilizing the
assumption of coalescent theory that there is no such thing as unrelated individuals,
ARG, in a similar spirit captures all the historical recombination events that relate
the individuals. The resulting topology of coalescence is a tree and that of ARG is
a general network. If the flow of genetic material is given a direction, say from an-
cestors to descendants, both the structures are acyclic, i.e., without directed cycles
(why?) but only the former is without any undirected cycles as well.

Taking a reconstruction perspective, techniques from phylogenetic tree estima-
tion can be used for coalescent trees, such as the structures based on only mtDNA
or only on non-recombining Y (NRY) chromosomes. However, uncovering the re-
combinational palimpsest of the participating chromosomes is far from straightfor-
ward. One of the approaches has been to study the network as a sort of perturba-
tion of an underlying tree. The effect of recombinations on the traditional phylo-
genetic tree reconstruction [SH00], on combinatorial complexity, in terms of de-
viations and error bounds [WH99b], and on the overall effect on ancestral rela-
tionships [WH99a, WH99b, Gri99, DSL+07] has been studied in literature. The
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other approach has been to explicitly model the recombination events in the phy-
logeny [GBB+07, PMC+08] and the reader is directed to [PJM+09] for algorithmic
approaches to estimate the ARG.

Yet another area that will gain immensely from this understanding is that of pop-
ulation simulation. The evolution of the statistical properties of an ideal population,
with genealogical relationship between sequences in a diploid population, can be
understood through simulations. The underlying ideas of ARG have been used in
simulation algorithms [GSN+02], Schaffner05), with migrations, populations sub-
division and other influencing factors layered in, to simulate human population evo-
lution. Some understanding of the ARG has been applied to the study of genetic
variations in human populations [MJC+09].

Population stratification (or subclustering) is of importance to GWAS (genome-
wide association studies), disease studies, medical informatics and related areas.
Needless to mention, these subtle substructures that exist in the populations can be
unraveled by a having a good understanding of the effect of the genetic exchange
events on genetic composition of populations.

In this chapter we discuss a random graphs framework to study pedigree history
in an ideal population. A graph is a natural outil de choix, since each individual or
unit in a population can be represented by a vertex (v) and the binary parent-child
relationship is naturally captured by an edge (e) in a graph. An ancestor is related
to a descendant by a simple directed path. Again, the edges are introduced at ran-
dom (details in the next section) to reflect generic evolution of populations. The
topological entity of interest in this graph is the graph-theoretic LCA (least com-
mon ancestor) which is also of tremendous interest to population geneticists for at
least two reasons. The first is to naturally cap the structure of variations by a ”root”,
thus defining a finite structure (perhaps with infinite details) for study, analysis and
hypothesis-generation. The second is a somewhat whimsical curiosity about a hy-
pothetical mitochondrial Eve or Y-chromosomal Adam (or Y-chromosomal Aaron)
in the prehistoric past of humans. In any case, we define and study the LCA in the
random graph setting. With some simple derivations and observations, this frame-
work integrates the underlying mathematical objects in pedigree graph, mtDNA or
NRY tree, ARG, HUD etc. used in population genetics literature, into a single uni-
fied random graph framework. The random graphs framework gives an alternative
parametrization of the ARG that does not use the recombination rate ρ and instead
uses a parameter M based on the (estimate of) the number of non-mixing segments
in the extant units. This seems more natural in a setting that attempts to tease apart
the population dynamics from the biology of the units. This framework also gives
a purely topological definition of GMRCA, analogous to MRCA on trees (which
has a purely topological description i.e., it is a root, graph-theoretically speaking,
of a tree). Also, with a natural extension of the ideas from random-graphs it is pos-
sible to design sampling (simulation) algorithms to construct random instances of
ARG/unilinear transmission graph with uniform sampling of the space of ARG in-
stances.
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2 Random Graph Framework: Pedigree Graph

The Wright Fisher Population Model. The ideal population or Wright Fisher
Model assumes three properties of the evolving population: (1) constant size, (2)
non-overlapping generations, and (3) panmictic with random mating and no selec-
tion. While the first two properties appear non-realistic at first glance, these as-
sumptions are reasonable for the purposes of the study of the genetic variations at
the population level. In fact, models with varying population size and/or overlapping
generations can be reparameterized for an equivalent Wright-Fisher Model (see texts
such as [HSW05, JHTS04, B0̈0]). Panmictic means that there is no substructuring
of the population due to mating restrictions caused by mate selection, geography or
any other such factors. Thus the model assumes equal sex ratio and equal fecundity.
Here we discuss a rather straightforward random graph model for studying the evo-

Fig. 1 The first 10 generations of an instance of a relevant pedigree graph GPG(K,N) with K = 4
and N = 8. The solid (blue) dots represent one gender, say males and the hollow (red) dots represent
the other gender (females). Each row is a generation with the direction on edges indicating the
flow of the genetic material and the four extant units are at the bottom row, i.e., row 0. Under the
Wright Fisher Population model there are equal number of males and females in each row and
the two distinct parents, one male and one female from the immediately preceding generation are
randomly chosen.

lution of population over generations. As discussed in an earlier chapter, coalescent
theory works on individuals from the present-day (we call them extant units). This
random graph model uses two parameters: K is the number of extant units and 2N
is the size of the population at each generation.

The random graph is defined as follows. Let V be the set of vertices and E the set
of edges in a directed graph G(V,E). Each vertex v corresponds to an individual or
a unit in the population. The edges denote the flow of genetic material between the
units. The characteristics of these two sets are as follows.

Vertices: The vertex set V is a countably infinite set. We suppose that the vertices
are organized in rows, each of fixed size. Each row represents a generation and is
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numbered as 0,1,2,3, . . .. Row 0 has K vertices and each row > 1 has 2N (N ≥ 1)
vertices, N of which are colored blue and N are colored red, denoting the gender
of the units. The fixed size of 2N per row (or generation) is due to the constant
population size model. The panmictic nature of the WF population dictates that the
number of blue and red vertices be equal.

The vertex set in row 0 has K elements whose color is immaterial: these K nodes
are also called the extant vertices.

The N vertices of each color in each row g can be labeled by a pair (g, j) where
1 ≤ j ≤ N. A graph instance is vertex-labeled if this label is associated with every
vertex v of the graph instance.

Edges: All the edges in E are directed and are only between vertices of adjacent
rows. Also, the direction of the edge is from the vertex at row g+1 to the vertex at
row g. Let (v,u) ∈ E be a directed edge from v to u. The direction indicates the flow
of genetic information and v is called the parent of u and similarly u is the child of
v. When a node u at row g has two incoming edges (v1,u) and (v2,u), then v1 and
v2 (of row g+1) must have different colors.

The parent vertex (vertices) is chosen at random reflecting the panmictic nature
of the WF population. A parent and child are in adjacent rows due to the non-
overlapping generations in the model. However this can be easily relaxed to have
overlapping generations and the essence of each discussion below still holds.

Note that one needs to distinguish between a specific instance or realization
(sometimes called replica in the simulation parlance) of the random graph from the
entity random graph itself which is a probability measure on the space of infinite
directed graphs with a countably infinite set of vertices. An instance of the random
graph is obtained after executing the edge construction procedure as below.

Repeat for each row g: For each vertex u in row i , pick exactly one blue vertex v1

and exactly one red vertex v2 at random from row g+1. The two directed edges
are v1u and v2u.

Then,

1. Every instance of GPG(K,N) is a directed acyclic graph (DAG). This follows from
the fact that no vertex can be an ancestor of itself.

2. An instance of GPG(K,N) corresponds to the entity termed pedigree graph in
literature [SH06].

The number of vertices in row g is denoted by kg. Note that when g = 0, kg = K.
Forbidden structures. Can the pedigree graph be monochromatic? It turns out,

that if the color is not taken into account, then the graph has certain forbidden struc-
tures (see Fig 2). These are topologies where the parents of a set of vertices cannot
be colored satisfying the condition that the two parents of a vertex must be of dif-
ferent colors. Due to the forbidden structures, we retain the colors of the vertices in
the pedigree graph.
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Fig. 2 Can the pedigree graph be monochromatic? Forbidden structure in an instance of the pedi-
gree graph. There exists no consistent assignment of red and blue colors (different genders) to the
parents of the three vertices in the bottom row.

2.1 Least Common Ancestor (LCA)

The vertex set of an instance of the pedigree graph can be trimmed by focussing
only on the flow of genetic information to the extant vertices. This is termed the
relevant pedigree graph. A vertex va is an ancestor of vertex v if there exists a
directed path from va to v. In graph-theoretic terms, it means that any vertex on
the relevant pedigree must be an ancestor of at least one extant vertex. However,
a relevant pedigree graph is also an infinite object. In the rest of the discussion, a
pedigree graph is always a relevant pedigree graph.

A common ancestor va of vertices v1,v2, . . . ,vk is called the least common an-
cestor (LCA) if no descendant of va is also a common ancestor (see texts such as
[CLR90]). In the rest of the paper, an LCA always refers to an LCA of all the K
extant vertices in the pedigree graph.

5

1

2

3

4

Fig. 3 An instance of the pedigree graph GPG(4,3) (i.e., 4 extant vertices and population of size
3 for each gender at every generation) with an infinite number of LCAs. A possible coloring (or
gender assignment) is shown for rows 1 and above; the colors of vertices of row 0 are immaterial.
Only the first six rows are shown, marked from 1 to 5 (bottom row is 0). The LCAs are shown with
an extra concentric ring. Rows 2 or higher: The block-vertices are the two leftmost vertices; the
path-vertices are the two vertices in the right; the LCA-vertex is in the center. The same pattern of
edges can be followed for all rows to define an infinite number of LCAs.
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Why are we interested in the topological entity LCA? It turns out that in popula-
tion genomics, the most common recent ancestor (TMRCA) [JHTS04, HSW05], is
exactly the same as LCA. Hence in the following we study the behavior of LCA in
the pedigree graph.

Note that even though in every instance of the pedigree graph the indegree and
outdegree of every vertex is bounded: indegree by 2 and outdegree by 2N and each
row is bounded by 2N vertices, the number of possible LCA’s might not be finite.
Let Z(K,N) be the random variable denoting the number of LCAs in GPG(K,N).
Then

0 ≤ Z(K,N) ≤ ∞.

Fact 1 1. There exist instances where Z(K,N) attains the value 0.
2. There exist instances where Z(K,N) attains the value ∞.

The reader is directed to [Par09] for the proofs of these statements. However, for
illustrative purposes in Fig 3 we create an instance of the random graph GPG(4,3)
that has an infinite number of LCAs, i.e., with Z(K,N) = ∞. The construction is
as follows. Row 0 has the four extant vertices. The outgoing edges from vertices
in Row 0, 1 and 2 are constructed as shown in the figure. The vertices in row 3
and higher are of three categories: (1) Two vertices of different colors called the
blocked-vertices (two left vertices in the figure); (2) one vertex, called the LCA-
vertex of any color (the middle vertex in the figure); (3) two vertices of the same
color, but different from the color of the LCA-vertex called the path-vertices (two
right vertices in the figure). The edge constructions follow a simple pattern as shown
in the figure. Under this construction, the following can be verified: (1) the instance
of the pedigree graph is valid i.e., the color of the two parents of a node are of
different colors, (2) every LCA-vertex of row 2 and higher is indeed the LCA of all
the extant vertices.
As is common in population genetics, we make the assumption that any ancestor of
an LCA is not of consequence and can be excised from the relevant pedigree graph.

Is the pedigree graph after excising all the ancestors of all the LCAs finite? The
answer to the question of finiteness of the excised pedigree graph with fixed param-
eters K(> 1) and N(> 2) is summarized here:

1. It is possible that an instance of the (excised) pedigree graph is infinite.
2. Further, there are infinitely many such instances.

3 Pedigree Subgraphs

It is perhaps not very surprising to note that a pedigree graph may have multiple
LCAs. However, it is rather surprising to note that even in a finite population model,
the number of LCAs could be infinite (Fact 1). This counter intuitive characteris-
tic of the pedigree graph can be addressed by exploiting the biparental mode and
coupling genetic exchange information with the topology of the pedigree graph.
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Population dynamics vs biology. Usually, a mutation rate θ is associated with a
population and different populations can be Wright Fisher populations with differ-
ent mutation rates. Note that different values of θ do not (and should not) affect the
population dynamics under such population models. Also, θ is not a direct observ-
able: it is inferred from the observed mutations or allele values. In fact mutations,
reflected as allele frequencies, can be even viewed as external markers (say like
Lagrangian markers in fluid dynamics) to study the evolution of the statistical prop-
erties of the ideal population. Ideally, θ does not affect the topology of the unilinear
transmission trees: it only affects the sequences that each unit represents. Since θ is
‘external’ to the population, this additional parameter does not affect the modeling
(or understanding) of the dynamics of the population.

Then, how about the parameter recombination rate ρ in a biparental model?
Analogous to mutations (and other duplication-model genetic events), this should
not affect the population dynamics but only the sequences of the units. Again, it is
(by current biotechnologies) not a direct observable but can be inferred from the
sequences in the population. However, just as in the unilinear transmission model,
the vertices that have no paths to an extant unit is not relevant for the study, so in
the biparental model, vertices that have no genetic material ancestral to any in the
extant units are not of relevance. The definition of the relevant pedigree graph is
now extended to exclude those vertices that do not carry any genetic material to the
extant units (although there may be a path in the graph to an extant vertex). It now
seems more natural to annotate the vertices of the biparental graph with the non-
mixing segments (i.e. a segment that is inherited completely from the mother or the
father but not mixed by the two parents) of genetic materials. Thus instead of ρ , a
more natural parameter seems to be M, the number of nonmixing units in the extant
population. The parameter M models the biparental mode as a natural extension of
the (well-accepted) unilinear transmission mode and ρ continues to be ‘external’ to
the population.

We identify two classes of subgraphs of the pedigree graph GPG(K,N) as our
objects of study (Fig 4 shows the different subgraph models of the pedigree graph):
(1) Unilinear Transmission: A Monochromatic Subgraph GPT(K,N) is induced on
the vertices of one color (either only blue or only red). Thus each vertex has exactly
one parent. The biological interpretation of a monochromatic subgraph is as follows.
The genetic material that is transmitted only through the blue vertices (father) is the
NRY chromosome. Similarly, the genetic material that is transmitted only through
the red vertices (mother) is the mitochondrial DNA. These subgraphs of the pedi-
gree graph actually represent the duplications-only model. Fact 3 has an interesting
consequence: All the genetic material in the extant sequences can be traced back to
a unique vertex in the pedigree graph. Topologically, this vertex is the LCA and is
called the TMRCA (the most recent common ancestor).
(2) Genetic Exchange Model: In this model genetic material is additionally associ-
ated with the vertices. M is an upper bound on the number of non-mixing (or genetic
exchange) segments in the extant units, which is used as an additional parameter. A
Mixed Subgraph GPGE(K,N,M) is induced on some blue and some red vertices. Thus
the vertices have may have either one or two parents. Fact 5 has an interesting con-
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sequence: All the genetic material in the extant sequences can be traced back to a
unique vertex in the pedigree graph. Topologically, this vertex is the LCAA (defined
in Section 6). This is called the GMRCA (the grand most recent common ancestor).

(a) Pedigree Graph

(b) Monochromatic Subgraph (c) Mixed Subgraph

Fig. 4 (a) An instance of a pedigree graph. (b) The Monochromatic Subgraph induced on the blue
nodes (each node has exactly one parent) (b) A Mixed Subgraph induced on a subset of the blue
and the red nodes (each node has one or two parents).

4 Unilinear Transmission: Monochromatic Subgraphs

Mutation events or genetic events such as the ones leading to Short Tandem Re-
peat (STR) polymorphisms are modeled as duplication events or simply non-
recombining events [HSW05, JHTS04]. Hence this is also called the duplications-
only model and each vertex has only one parent. Since we do not model any gender-
specific characteristics, the duplications-only model is equivalent to the monochro-
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matic (all vertices of the same color) model in our general setting. The following is
easily verified.

Fact 2 The monochromatic subgraph is a forest (tree), i.e., the graph has no closed
paths.

Hence the monochromatic subgraph is written as GPT(K,N).

Fact 3 Given an instance of a monochromatic subgraph GPT(K,N):

1. The number of vertices can neither increase with depth nor be zero at any row,
i.e.,

K ≥ k1 ≥ k2 ≥ k3 ≥, ...,(≥ 1).

2. The number of LCAs is at most 1.
3. (kg = 1) ⇔ The vertex at row g is the LCA.

Proof Sketch: 1. This follows from the fact that the graph is a tree. 2. Assume the
contrary that an instance has l > 1 LCAs. Let v1 and v2 be two distinct LCAs. Then
there must exist vertices u1 and u2 (possibly with u1 = u2) where u2 is an extant
vertex and there is a path from v1 to u1, a path from v2 to u1 and a path from u1 to
u2. Further let u1 be such that there is no other vertex u′ with a path from v1 to u′,
v2 to u′ and u′ to u1 (if such is the case then we call u′ as u1). Observe that each
vertex of the monochromatic subgraph has at most one parent. However, u1 must
have at least two parents (each on the two distinct paths to the two LCAs v1 and
v2) contradicting this fact. Hence the assumption must be wrong and the number of
LCAs l ≤ 1. 3. This follows from 2. ¤

5 Genetic Exchange Model: Mixed Subgraph

Given K extant sequences, the most recent common ancestor (MRCA) is a sequence
S from some generation such that the genealogy of every segment (nucleotide) of
every extant sequence can be traced back to S. Further, amongst all such common an-
cestors, S is the most recent one. In population genetics, usually the term MRCA is
used for the duplications-only model, and the term grand MRCA (GMRCA) is used
when the genetic events include rearrangements of the sequence, such as recombi-
nations (see texts such as [HSW05]). In the following we use M, an upper bound on
the number of mixing segments in the extant units, to parameterize a general genetic
exchange model. A Mixed Subgraph GPGE(K,N,M) is defined as follows. For each
instance G of the mixed subgraph:

1. Each vertex in G is annotated with M nonmixing segments and must have genetic
material that flows to at least one of the extant vertices.
This implies that a vertex may have only one parent (if the other parent has no
genetic material flowing to an extant unit).
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2. Each genetic mixing event is equally likely to occur.
This is only a simplifying assumption and in the same spirit as random mating or
panmictic condition of the Wright Fisher population.

1,2,5,6,7

1,2
3,4,5,6,7

1,3 2,4,5.6,7

1,2 3,4,5,6,7

1,2,3

2,3

3,4,5,6,7

3,4

1,2,3,4,5,6,7

1,2,3,4,5,6,7

4,5 6,7

4,6

1,2,3,4,5,6,7

4,5,6,7

3,4,5,6,7

4,5,6,7

1,2

2,5,71

1,2,3

(a) Mixed Subgraph (b) G: Reduced (a) (c) Annotated G

(d) Forest T1 (e) Forest T2 (f) Forest T3

(g) Forest T4 (h) Forest T5 (i) Forest T6 (j) Forest T7

Fig. 5 (a) An instance of a mixed subgraph GGE(4,N,7). (b) For clarity, the chain-paths have been
replaced by a single edge. (c) G with possible annotation of genetic units {1,2,3,4,5,6,7}. (d)-(j)
The 7 distinct trees (forests), induced by each nonmixing unit i, embedded in G. In other words,
G =

⋃7
i=1 Ti.

Genetic Material gm Notation. The genetic material of a unit v is gm(v) and
the flow of the genetic material through an edge e is gm(e). The M nonmixing units
are written as {1,2, . . . ,M}and is associated with each extant vertex v. The genetic
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material may have nonconsecutive segments, say, 2,3, 7, i.e. gm(v) = {2,3,7}. Thus
for all v and e of the subgraph instance

gm(v),gm(e) ⊂ {1, . . . ,M}.

The flow of the genetic material gm(e) through an edge e and the genetic material
gm(v) of a vertex v are not independent and are related by the two rules.

1. Rule 1: Let u be a vertex with d ascendant (incoming) edges ei, i = 1..d (the valid
values of d are 1 or 2).

gm(u) =

{
gm(e1), if d = 1,
gm(e1)

⊔
gm(e2). if d = 2

.

(Note that S = S1
⊔

S2 denotes that S is the disjoint union of S1 and S2, i.e.,
S1 ∩S2 = /0.)

2. Rule 2: Let v be a vertex with d descendant (outgoing) edges ei, i = 1..d.

gm(v) =
d⋃

i=1

gm(ei).

Let m graphs Gi(Vi,Ei) with vertex set Vi and edge st Ei be defined on (labeled)
vertices, 1 ≤ i ≤ m. Then the induced graph on vertices V =

⋃m
i=1 Vi (with edges

E =
⋃m

i=1 Ei) is written as

G = G1 ∪G2 ∪ . . .∪Gm.

Fact 4 Given G, an instance of a mixed subgraph GPGE(K,N,M), the following hold.

1. For each vertex v and each edge e of G,

gm(v),gm(e) 6= /0.

2. Let Vm = {v | m ∈ gm(v)} , for a nonmixing unit 1 ≤ m ≤ M with induced graph
Tm on Vm.

a. Tm is a forest for all 1 ≤ m ≤ M.
b. G = T1 ∪T2 ∪ . . .∪TM.

3. Let the set of vertices at depth g be Vg. The following holds for each depth g.

a. |Vg| ≤ KM.
b. For each nonmixing unit 1 ≤ m ≤ M,

∣∣{v ∈Vg | m ∈ gm(v)}
∣∣ ≤ K.

Proof Sketch: (1) This follows from the definition of the mixed subgraph (each node
must have genetic material that flows to at least one extant vertex). (2a) Assume that
the result is not true: For some m, Tm has a closed path. By the nature of the direction
of the edges in the pedigree graph, then there exists a vertex v with two distinct paths
P1 and P2 to u. Without loss of generality, let the two paths be nonintersecting, except
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at v and u. Clearly, by Rule 1, the two incoming edges e1 and e2 on u cannot be such
that m ∈ gm(e1),gm(e2). This leads to a contradiction and the assumption is false.
(2b) Let the vertex set of G be V and the edge set be E. Then

V1 ∪V2 ∪ . . .∪VM ⊆ V, (by definition of Vm)

V ⊆ V1 ∪V2 ∪ . . .∪VM.

(by (1) each v of G must belong to at lease one of Tm)

Thus

V = V1 ∪V2 ∪ . . .∪VM,

E = E1 ∪E2 ∪ . . .∪EM. (by similar arguments)

Hence the result. (3a) and (3b) In each Tm the number of vertices per row does not
exceed K. Also, each vertex in Tm must be annotated with the genetic element m.
Thus by 2(b), the number of vertices in G cannot exceed KM and the number of
nodes with nonmixing element m cannot exceed K. ¤

An example is shown in Fig 5 of the embedded trees in an instance of a mixed
subgraph. An instance of a graph where each vertex v has genetic material gm(v)
defined is said to be gm-annotated. Note that in a monochromatic subgraph, for any
two distinct vertices v1 and v2, gm(v1) = gm(v2). Thus a monochromatic subgraph
can be considered to be always gm-annotated.

−B

AB CD

C−

−B −DC−

−B−−
−B

−B
A−

Fig. 6 Ancestor without ancestry: Each node is annotated with the genetic material labeled as a
combination of A, B, C, D, or -. The symbol ‘-’ denotes material that is not ancestral to any in the
extant units. The LCA (shown with an extra concentric ring) has no ancestral material although
it is the LCA of the two extant vertices with genetic material AB and CD respectively. Thus this
LCA is an ancestor without any ancestry.

6 Topological definition of GMRCA: Least Common Ancestor
with Ancestry (LCAA)

Conceptually the term LCA is equivalent to MRCA. However, LCA is not equiva-
lent to GMRCA, which additionally is also ancestral to the genetic material in the
extant vertices. This is due to the following fact: If node va is an ancestor of some
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node v in GPG(K,N), then it is possible that not all the genetic material of va is an-
cestral to the genetic material of v. It is also possible that va is ancestral to no genetic
material of v. In the latter case a topological ancestor is not a ‘genetic’ ancestor. For
example see Fig 6. A natural question is if there exists a purely topology-based def-
inition that captures the notion of a GMRCA. We call this the LCA with ancestry or
LCAA, a graph-theory based term for the GMRCA (it is defined in the fact below).
Given G an instance of a mixed subgraph GPGE(K,N,M), by Fact 4, let

G = T1 ∪T2 ∪ . . .∪TM.

Fact 5 1. The following two definitions of LCAA are equivalent:

(a)(population genetics based) the least, or most recent, common ancestor of the
K extant units that is also ancestral to all the genetic material in the K units.

(b)(graph-theory based) the LCA of the LCA’s of T1,T2, . . . ,TM.

2. The number of LCAAs is at most 1.
3. (kg = 1) ⇔ The vertex at row g is the LCAA.

Proof Sketch: We prove the second statement first. 2. Let every genetic unit (say a
nucleotide) be tagged by a two tuple, its position in the chromosome and the label
of extant vertex. Thus assuming there are c nucleotides and K extant units, there are
cK distinct tuples. Next the genetic flow from vertex to vertex through the edges is
marked by the tuples. It is easy to see that a path marked with a specific tuple is a
chain (that does not branch). Thus if vertex v is a GMRCA, then by definition, v is
on all the cK paths. Thus there cannot exist more than one GMRCA since all the
marked paths are chains. 1. Let v′′ be the LCAA by definition (a). Note that in tree,
Tm, 1 ≤ m ≤ M, the LCA of Tm, say vertex vm, is also the LCAA of the extant units,
corresponding to genetic material m. Further let v′ be the LCA of v1,v2, . . . ,vM .
Then, clearly, v′ is a CAA (common ancestor with ancestry) of the K extant units.
Case 1: If v′′ is an ancestor of v′, it contradicts the definition of LCAA and v′ = v′′.
Case 2: If v′ is an ancestor of v′′, it contradicts the definition of LCA of v1,v2, . . . ,vM

and v′ = v′′. Case 3: There is no path between v′ and v′′. Then both are LCAAs but
this contradicts 2. and v′ = v′′. Next, let v′′ be the LCAA by definition (b). Then v′′

is also a CAA of the K extant units. Let v′ be an LCAA. By considering the three
cases as before, we show that v′ = v′′. 3. This follows from 1. and 2. ¤

The most interesting and a fundamental observation is that the mixed subgraph
is indeed the union of M trees (or forests). This provides a possible conduit for
extending the results from coalescent theory to this more general setting.

7 Discussion

One of the consequences of studying recombinational population genomics through
the lens of a random graph model is the observation that GMRCA indeed has
a purely topological definition: it is the LCA of the LCA’s of the M trees of
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GPGE(K,N,M). Thus it is possible to compute the expected depth of a GMRCA us-
ing results from coalescence theory and TMRCA (we leave this as food for thought
for the reader).

Also, the mixed subgraph (or the ARG) is topologically nothing but the union of
M trees. This simple view is very important to understanding how recombinations
shape the autosomal chromosome. This also paves the way for a natural continuity
with coalescent theory and all its implications, making it possible to apply many
results from this theory, such as time to the most recent common ancestor or the
probability of the GMRCA of the sample being that of the population, and so on.
Most importantly, it provides a basis for reconstructability of the ancestral recombi-
nations graph from a set of haplotypes, just as the reconstruction of mtDNA or NRY
trees from mitochondrial or NRY DNA samples.

Finally, this model also opens up the possibility of population sampling algo-
rithms that do not use a recombination “rate” parameter, which is somewhat difficult
to characterize for a population.

It is perhaps not too far-fetched to say that recombinations is nature’s use of com-
binatorics to bring about genetic diversity in populations. And, the combinatorists’
view presented in the chapter, hopefully, will synergize with population geneticists
and statisticians to produce new insights into the rather complicated phenomenon of
genetic exchange shaping populations.

Exercises

1. Construct an instance of GPG(4,3) with no LCA’s.
What is the probability of an instance of GPG(4,3) having no LCA’s? (Hint:
see [Par09] for the definition of a natural probability measure)

2. Construct at least two instances of GPG(4,3) with an infinite number of LCA’s.
Argue that it is possible to construct infinitely many such instances. (Hint: study
the figure below)

5

1

2

3

4

What is the probability of an instance of GPG(4,3) having an infinite LCA’s?
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3. For fixed parameters, K > 1 and N > 2, argue that

a. there are infinite number of instances of GPG(K,N) each with no LCAs.
b. there are infinite number of instances of GPG(K,N) each with an infinite num-

ber of LCAs.

4. Show that the monochromatic subgraph is topologically a forest (tree).
5. Show that for fixed parameters, K > 1 and N ≥ 1, there are infinitely many

monochromatic subgraphs with no LCAs.
6. Consider the Mixed Subgraph of Figure5(a). Is it possible to have an annotation

with 5 genetic elements? Why?
Is it possible to have an annotation with 7 genetic units distinct from the one in
Figure5(c), other than relabelings? Why?

7. Argue the following: The effective value of M for a pedigree graph, with N blue
or red vertices and K extant units, at some depth is:

M = NK−1.

References

[B0̈0] R Bürger. The mathematical theory of selection, recombination, and mutation. New
York, Wiley, 2000.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, Cambridge, Massachusetts, 1990.

[DSL+07] Joanna L. Davies, Frantiek Simank, Rune Lyngs, Thomas Mailund, and Jotun Hein.
On recombination-induced multiple and simultaneous coalescent events. Genetics,
177:2151–2160, December 2007.

[Føl55] Erling Følner. On groups with full Banach mean value. Mathematica Scandinavica, 3:
243254, December 1955.

[GM97] R. C. Griffiths and P. Marjoram. An ancestral recombinations graph. Progress in Pop-
ulation Genetics and Human Evolution (P Donnelly and S Tavare Eds) IMA vols in
Mathematics and its Applications, 87:257–270, 1997.

[Gri99] R. C. Griffiths. The time to the ancestor along sequences with recombination. Theoret-
ical Population Biology, 55(2):137–144, April 1999.

[GSN+02] Stacey B. Gabriel, Stephen F. Schaffner, Huy Nguyen, Jamie M. Moore, Jessica Roy,
Brendan Blumenstiel, John Higgins, Matthew DeFelice, Amy Lochner, Maura Faggart,
Shau Neen Liu-Cordero, Charles Rotimi, Adebowale Adeyemo, Richard Cooper, Ryk
Ward, Eric S. Lander, Mark J. Daly, and David Altshuler. The structure of haplotype
blocks in the human genome. Science, 296(5576):2225 – 2229, 2002.

[GBB+07] Dan Gusfield, Vikas Bansal, Vineet Bafna and Yun S. Song. A decomposition the-
ory for phylogenetic networks and incompatible characters. Journal of Computational
Biology, 14(10): 1247–1272, 2007.

[HSW05] Jotun Hein, Mikkel H. Schierup, and Carsten Wiuf. Gene Genealogies, Variation and
Evolution: A Primer in Coalescent Theory. Oxford Press, 2005.

[Hud83] R. R. Hudson. Properties of a neutral allele model with intragenic recombination. The-
oretical Population Biology, 23(2):183–201, April 1983.

[Hud90] R. R. Hudson. Gene genealogies and the coalescent process. Oxford Surveys in Evo-
lutionary Biology. Oxford University Press, Oxford, 1990.



100 Laxmi Parida

[JHTS04] M.A. Jobling, M. Hurles, and C. Tyler-Smith. Human Evolutionary Genetics: Ori-
gins, Peoples and Disease. Mathematical and Computaional Biology Series. Garland
Publishing, 2004.

[KC64] Motoo Kimura and James F. Crow. The number of alleles that can be maintained in a
finite population. Genetics, 49(4):725–738, 1964.

[Kim69] Motoo Kimura. The number of heterozygous nucleotide sites maintained in a finite
population due to steady flux of mutations. Genetics, 61(4):893–903, 1969.

[Kin82] J. F. C. Kingman. On the genealogy of large populations. Journal of Applied Probabil-
ity, 19A:2743, 1982.
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Phylogenetic Trees From Sequences

Paul Ryvkin and Li-San Wang

Abstract In this chapter, we review important concepts and approaches for phy-
logeny reconstruction from sequence data. We first cover some basic definitions and
properties of phylogenetics, and briefly explain how scientists model sequence evo-
lution and measure sequence divergence. We then discuss three major approaches
for phylogenetic reconstruction: distance-based phylogenetic reconstruction, maxi-
mum parsimony, and maximum likelihood. In the third part of the chapter, we review
how multiple phylogenies are compared by consensus methods and how to assess
confidence using bootstrapping. At the end of the chapter are two sections that list
popular software packages and additional reading.

1 Basics

1.1 Definition

We assume the reader knows the basics in graph theory, for which many good text-
books are available [3, 48]. Recall that an unrooted tree is a connected, undirected,
acyclic graph, and that a rooted tree has in addition a significant node called the
root. A phylogeny T is a tree where the leaves of T , L(T ), are labeled and no inter-
nal node has degree 2 except for the root. As with trees, phylogenies may be rooted
or unrooted. Each leaf of the tree, i.e., each external node, is also called a taxon
(plural form taxa). Any edge in the phylogeny that is incident to a leaf is an external
edge. Internal nodes and edges are defined accordingly, i.e., they are not external.
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A phylogeny reflects the evolutionary history and relationship among taxa. In a
rooted phylogeny, an internal node corresponds to the most recent ancestral species
of all taxa in the subtree rooted by the node: all such taxa are descendants of this
species, and this node corresponds to the state of the most common recent ancestor
from which these species diverged. A complete rooted subtree in a phylogeny is
sometimes called a clade, and the taxa in a clade are called a cluster. It is useful to
think of a rooted phylogeny as a collection of compatible clusters (the concept of
compatibility will be further discussed in Section 1.2). The clusters in a phylogeny
are organized hierarchically by the topology of the phylogeny: for any two distinct
clusters A,B ⊆ L(T ), exactly one of the following relations takes place: A ⊂ B,
B ⊂ A, or A∩B = /0. The first two scenarios imply the relation between their most
recent common ancestors: if A ⊂ B, then the most recent common ancestor of taxa
in A is a descendant of the most recent common ancestor of taxa in B. Moreover,
every phylogeny with the same set of taxa will have the following trivial clusters: the
cluster of all taxa, and the single-taxon clusters, one for each taxon – these clusters
are trivial because they are in every phylogeny and do not provide any information
on the evolutionary relationships.

While a rooted phylogeny details the evolutionary hierarchy by its clusters, an
unrooted phylogeny does so without the ”directionality” information. Instead the
unrooted phylogeny tells which subsets of species are closer evolutionarily than the
other species through bipartitions. Given an unrooted phylogeny, for each edge we
can define a bipartition on the taxa – the two subsets of the bipartition are the taxa
on the two sides of the edge. Again, any bipartition induced by an external edge
is trivial because it has exactly one taxon at one side and is in every phylogeny
with the same taxon set. An unrooted phylogeny can be regarded as a collection of
”compatible” bipartitions, i.e. partitions that can co-exist in a phylogeny.

Clusters and bipartitions are very useful concepts: they carry all the information
that is available in a phylogeny and they allow us to define phylogenies without
explicitly constructing them – this provides great mathematical convenience as the
following examples demonstrate.

1. Two phylogenies are equivalent (or isomorphic in graph theoretical terminology)
if and only if they have the same set of clusters or bipartitions. The proof is
simple: we can identify edges (and nodes, accordingly) shared by the two trees
by matching their induced clusters or bipartitions.

2. A subtree is different from a clade: whereas a clade consists of all descendant
taxa of an ancestral species, a subtree is the result of restricting a rooted phy-
logeny T to a subset of taxa X . The restriction of T to X is the phylogeny T ′

such that L(T ′) = X and the set of clusters of T ′ is the set of unique clusters
obtained by restricting each cluster of T to X (the unrooted version is defined
similarly by replacing clusters with bipartitions). Though one can also define a
subtree by describing an algorithm that computes the subtree, the definition is
more cumbersome due to the many special cases and details the algorithm has to
deal with.

Please refer to Figure 1 for some examples.
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(a) (b) (c)

(((1:6,2:5):3,(3:3,4:6):1):9,((5:8,(6:10,7:3):3):5,8:5):5);
(((1,2),(3,4)),((5,(6,7)),8));

(d)

Fig. 1 An example phylogeny with eight taxa: (a) drawn as a rooted phylogeny, (b) drawn as an
unrooted phylogeny, (c) list of nontrivial bipartitions, (d) its parenthesized representation with and
without edge lengths.

1.2 Combinatorics of phylogenetics; compatibility

We describe some additional properties of phylogenies without proof due to space
limitations.

Let T be an unrooted phylogeny with n taxa. Let L(T ) and N(T ) be the set of
taxa and internal nodes of T , respectively. The number of external edges in T is
|L(T )|, the number of elements in set L(T ), and the number of internal edges in T
is |N(T )|−1.

T is binary, or (fully) resolved, if every internal node has degree 3; moreover,
T is binary if and only if N(T ) = L(T )− 2. An internal node with degree > 3 is
unresolved.

The number of distinct phylogenies with n taxa,

(2n−5)!! = (2n−5)(2n−7) · · ·1,

grows super-exponentially as the number of taxa increases: when n = 4 there are
only 3 different binary phylogenies, but for n = 53 the number becomes 2.75×1080,
which is more than the estimated number of atoms in the whole universe (you will
hear this often if you go to computational phylogenetics seminars). This combi-
natorial explosion means brute-force approaches are intractable and has important
implications for the development of phylogenetic algorithms.
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Not all clusters or bipartitions can coexist in the same phylogeny, i.e., are com-
patible. The following theorem is given by Buneman [4].

Theorem 0.1. Given a set B of nontrivial, distinct bipartitions on taxon set X, the
following two properties are equivalent:

1. (B is setwise compatible) There exists a phylogeny such that its set of nontrivial
bipartitions is B;

2. (B is pairwise compatible) For any two bipartitions {A|A′} and {B|B′} in B,
A′ = X −A, B′ = X −B, exactly one of the following four intersections is empty:
A∩B, A∩B′, A′ ∩B, A′ ∩B′.

1.3 Text representation of a phylogeny

The most common text representation of a phylogeny is the parenthesized format
(commonly referred to as the Newick format [34]). The representation is for a rooted
phylogeny (for unrooted phylogenies, simply root them arbitrarily) and recursive:
(1) each taxon is represented by its label, (2) the representation of each clade in the
phylogeny is the parenthesized list of representations of all its immediate subclades,
separated by commas, (3) the representation usually ends with a semicolon, though
it is straightforward to check if the representation is complete by the balance of
parentheses, and (4) one can optionally add edge lengths by appending each edge
length after the clade right below the edge, separated by a colon. Refer to Figure 1
for an example.

1.4 Operations that change the topology of a phylogeny

The following operations take an unrooted binary phylogeny as input and generate
a new phylogeny by changing its topology. Illustrations are given in Figure 2.

1. A nearest-neighbor-interchange (NNI) operation first picks an internal edge
(x,y). Let the other two nodes adjacent to them be n1,n2, and, n3,n4. Pick one of
n1 or n2, and pick one of n3 or n4; say n1 and n3 are picked. Remove edges (x,n1),
(y,n3) from the phylogeny, and add edges (x,n3) and (y,n1). In other words, we
obtain the new phylogeny by swapping the two clades rooted at n1 and n3.

2. A subtree-pruning-regrafting (SPR) operation picks two edges (x,y), and (u,v).
The edge (u,v) is bisected to create edges (u,w) and (w,v). Pick one of the end
points for edge (x,y), say x. The edge (x,y) is first removed from the phylogeny,
and the edge (w,y) added to the phylogeny. This makes x a degree-2 node, which
has to be suppressed: let the two nodes adjacent to x be a,b; remove edges (x,a)
and (x,b), remove node x, then add edge (a,b). This operation detaches the clade
rooted at y and reattaches it to the edge (u,v).
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3. A tree-bisecting-reconnecting (TBR) operation removes an edge (x,y), then sup-
presses the two degree-2 nodes x and y. This creates two disconnected subtrees;
choose one edge from each of the two trees, say (a,b) and (c,d). Bisect the two
edges by adding nodes u and v, and add edge (u,v) to reconnect the two subtrees.

Note in SPR and TBR, (x,y) and (u,v) do not have to be internal edges, though
the resulting operation might be degenerate; for example, if x is a leaf in a TBR
operation, then one of the two subtrees broken by detaching (x,y) is a single-leaf
tree (x), so u must be x and the operation becomes an SPR operation.

(a) NNI (b) SPR (c) TBR

Fig. 2 Tree-topology changing operations: (a) nearest neighbor interchange (NNI), (b) subtree
pruning regrafting (SPR), (c) tree bisection reconnection (TBR).

We encourage the reader to try some examples, and find out the relationship
between the three operations: NNI is a special case of SPR, which in turn is a special
case of TBR. Let n be the number of taxa in the phylogeny; the number of distinct
NNI, SPR, and TBR operations are O(n), O(n2), and O(n3), respectively (meaning
they are bounded by an, bn2, and cn3 for some constants a,b,c). Moreover, it is
provable that NNI (and as a result SPR, TBR) operations are enough to modify any
one phylogeny to any other. The importance of these operations will be revealed
when we discuss phylogeny reconstruction algorithms.



106 Paul Ryvkin and Li-San Wang

2 Sequence evolution

2.1 Jukes-Cantor model

A popular class of models for sequence evolution is the continuous-time discrete
Markov process. In such models, each position in a sequence or site is considered a
random variable whose state changes with time; in the case of DNA sequences, the
state space corresponds to the nucleotides A,C,G,T. The Jukes-Cantor model[26] is
the simplest of these models. It makes the following assumptions:

1. The sequence at the root of the phylogeny is drawn uniformly from the four
nucleotides.

2. No insertions or deletions take place.
3. Each site evolves independently and identically.
4. For each site, the amount of time between any two consecutive mutation events

follows an exponential distribution.
5. When a mutation takes place, the probability of substituting the current state

(nucleotide) with any of the three other nucleotides is the same (Figure 3).

Note that properties (4) and (5) imply that the stochastic process of sequence substi-
tution is a discrete Markov process, which is a mathematical necessity if the process
satisfies the memoryless property, i.e., the distribution of the outcome only depends
on the current state, but not the past history (many textbooks on Markov Chains dis-
cuss this). Second, we assume each site is independent and identically distributed
(the i.i.d. assumption). Finally, the substitution model has the same distribution re-
gardless of the sequence – it does not depend on the fitness of the current state and
is selectively neutral.

The distribution of the outcome for a particular site after time t and with mutation
rate µ (number of substitutions per unit time per site), can be determined using the
following transition probability matrix:
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The model has symmetry across the four nucleotides – we can permute the nu-
cleotides arbitrarily and still obtain the same matrix. When t = 0, only the diagonal
is nonzero and no mutation has occurred. When t → ∞ every entry in the matrix
becomes 1/4, so the resulting sequence is totally random.

Moreover, the matrix is symmetric (it is equal to its transpose); together with
the fact the starting distribution of the nucleotides is uniform, it is provable that the
stochastic process is equivalent if you reverse the starting sequence and the outcome.
This time-reversible property implies that, no matter how you root the phylogeny,
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the distribution of the sequences at the leaves will always be the same. This is one
reason why researchers focus on unrooted phylogenies. Under time-reversible mod-
els, it is impossible to locate the root without additional information. One common
approach is to add the sequence of an additional species, called an outgroup, that is
known a priori to be evolutionarily more distant than all the input sequences; then
the external edge that is incident to the outgroup can be regarded as where the root
is.

Given a phylogeny with edge lengths and sequence length k, the Jukes-Cantor
model generates the sequence as follows. First the root sequence is determined
by randomly choosing k nucleotides. Proceeding from the root downwards, the se-
quence of each child node can be obtained by applying the above transitional matrix
(with t equal to the edge length; µ is the substitution rate) to each nucleotide in the
parent node.

Fig. 3 Transition graph of the Jukes-Cantor model.

2.2 Distance correction

From the discussion above, the difference between a sequence and its mutated out-
come will be more drastic as the amount of mutation µt increases. As we will see in
the next section, if we can estimate µt correctly between any two input sequences,
we can reconstruct the phylogeny correctly. It turns out that for the Jukes-Cantor
model we can estimate it fairly reliably using the Hamming distance (sometimes
called the p-distance), i.e., the proportion of mismatched sites between two se-
quences.

For simplicity, assume µ = 1 (that is, the time is normalized by the mutation rate
so that t = 1 amounts to one mutation per site on average). The expected Hamming
distance after time t is the probability that the outcome is different from the starting



108 Paul Ryvkin and Li-San Wang

nucleotide:

1− 1
4

(
1+

3
4

e−
4
3 t

)
=

3
4
− 3

4
e−

4
3 t .

As t → ∞, this value becomes 3/4, which is intuitively the expected Hamming dis-
tance between any two random sequences. Setting the above to be equal to the ob-
served Hamming distance h and solving for t gives us the following formula:

t̂ =
3
4

ln
(

1− 4
3

h

)
.

This is the distance correction formula for the Jukes-Cantor model; Please see Fig-
ure 4 for an illustration.

What are the implications of this formula? The randomness and the limited state
space (4 nucleotides) mean that, for many sites, the actual number of mutations
will probably be greater than the observed number of mutations. Remember only
the final result of the evolutionary process is observable, but not the intermediate
states, so in the scenario of mutations like A → G → T only the mutation A → T
is observable, and in A → G → A it seems no mutation ever took place at all! This
phenomenon is negligible when t is small: to a first approximation there is at most
one mutation per site, so the distance correction curve is almost linear. But the sites
are independently and identically distributed observations (i.i.d. replicates); with a
large enough number of sites k, the average behavior (the Hamming distance) will
be sufficiently informative. The variance of the distance estimate t̂ can be shown to
be inversely proportional to

√
k.

The formula does not work when h ≥ 3
4 , and special rules and heuristics have

been suggested to handle this singularity; for example, a very large but finite value
will be used for t̂.

2.3 Other models

It is obvious that the Jukes-Cantor model may be too simple. Many other models
for DNA sequence have been suggested; here we discuss four such models. The
Kimura two-parameter (K2P) model [27] assumes transitions (substitutions between
purines or between pyrimidines, A ↔ G, or C ↔ T ) and transversions (substitutions
from purines to pyrimidines or vice versa) have different rates, but the nucleotide
frequencies in the root sequence are equal. The transition probability matrix is




PAA PAG PAC PAT

PGA PGG PGC PGT

PCA PCG PCC PCT

PTA PT G PTC PT T



 =
1
4





1+at +2bt 1−at 1−bt 1−bt

1−at 1+at +2bt 1−bt 1−bt

1−bt 1−bt 1+at +2bt 1−at

1−bt 1−bt 1−at 1+at +2bt
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Fig. 4 Under the Jukes-Cantor model, scatter plot of the Hamming distance as a function of t
(amount of evolution). The distance correction formula is simply the inverse of the curve (by
flipping the x and y axes).

where at = e−αt and bt = e−β t . The proportion of sites observed with transitions
and transversions is 1

4 (1−at) and 1
2 (1−bt). Let h and h′ be the proportion of sites

having a transition and transversion, respectively. The distance correction formula
can be shown to be

−1
4

(
ln(1−2h′)+2ln(1−h−2h′)

)

The ratio R = α/(2β ), called the transition/transversion ratio , is also estimable.
Note that the Jukes-Cantor model is a special case where α = β . The HKY
(Hasegawa, Kishino and Yano)[22] model, likes the K2P model, assumes transition
and transversion rates are unequal, and in addition assumes that the nucleotide fre-
quencies in the root sequence may be unequal. The general-time-reversible (GTR)
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model is a further extension by assuming the nucleotide frequencies do not have to
be uniform, the transition probability matrix is symmetric (time-reversibility), and
the six pairwise substitution rates (from any nucleotide to any other nucleotide) are
free parameters.

For protein sequences, the evolutionary model will have 20 different states, one
for each amino acid. Some standard transition probability matrices (such as the
PAM [8] matrix) have been established by fitting to experimental data.

All models above assume the sites evolve independently, identically, and neu-
trally, which does not necessarily happen in reality. One common modification is to
introduce rate variation across sites. For example, some chosen sites may be fixed
(i.e. no mutation occurs), and the proportion of these fixed sites is a model param-
eter. Another common modification is to assign scaling factors to the evolutionary
rates for each site, where the scaling factors are usually drawn from a gamma dis-
tribution (with the shape parameter of the gamma distribution as a model parame-
ter) [49]. Intuitively, under this model, each site scales the original phylogeny by its
own rate factor, but the relative ratios between any two edge lengths as well as the
topology are fixed.

3 Distance-based phylogeny reconstruction

Given an unrooted phylogeny T with edge lengths, the distance matrix DT between
taxa can be computed easily: the distance between any two taxa is the sum of the
lengths of edges on the path connecting the two taxa. The distance-based approach
for phylogeny reconstruction reverses this process – given an input distance matrix
D on the set of taxa, our goal is to find a phylogeny with edge lengths such that its
induced distance matrix is most similar to D. In this section we discuss important
concepts, properties, and algorithms for distance-based phylogeny reconstruction.

3.1 Ultrametricity and Additivity

We first define two special types of distance matrices.

1. A distance matrix is ultrametric if D[x,y] ≤ max{D[x,z],D[y,z]} for any three
taxa x,y,z (this is also called the three-point condition).

2. A distance matrix is additive if for any four taxa x,y,u,v, the two larger values of
the following three are equal: {D[x,y]+D[u,v],D[x,u]+D[y,v],D[x,v]+D[y,u]}
(this is also called the four-point condition).

Similarly, a rooted phylogeny with edge lengths is ultrametric if the distance be-
tween the root and any taxon is the same (i.e. the ”height” of the tree is uniform).
An unrooted phylogeny with edge lengths is ultrametric if we can root it (and bisect
an edge and its length into two edges if necessary) so that the resulting rooted phy-
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logeny is ultrametric. We have the following properties (the reader is encouraged to
find the corresponding phylogeny reconstruction algorithms):

Theorem 0.2. 1. [21] A phylogeny is ultrametric if and only if its induced pairwise
distance matrix is ultrametric.

2. [47] Given a distance matrix D, there exists a phylogeny with edge lengths such
that its induced distance matrix equals D if and only if D is additive. Moreover,
the phylogeny is unique if all its edge lengths are strictly greater than 0.

The theorem also implies any ultrametric distance is immediately additive, though
the converse does not hold. Please refer to Figure 5 for some examples.

3.2 Distance-based phylogeny reconstruction algorithms and the
minimum evolution principle

Let T be the true phylogeny for the input set of species, and let the edge lengths
be the amount of evolution (e.g., µt in the Jukes-Cantor model) along the edge.
The additive distance matrix induced by T thus reflects the amount of evolution
between any two species. If we can estimate this amount correctly from sequence
data, then by the property of additivity we can reconstruct the phylogeny correctly.
If the evolutionary rate is constant over the phylogeny (has the molecular clock
property), then the length of each edge will be proportional to the amount of time
and the phylogeny will be ultrametric; otherwise the edge length will be the product
of the evolutionary rate and the amount of time (i.e. an edge will be longer if the
evolutionary rate along it is greater).

The accuracy of additive distance matrix estimation is, of course, limited by
many factors in reality; noise due to the randomness in the evolutionary process,
limited amounts of data, and violations of assumptions in distance estimation are
all contributing factors. Distance correction (see previous section) leads to better
estimates of the actual amount of evolution and is almost always used. When the in-
put distance matrix does not agree with the additive distance matrix induced by the
actual phylogeny, there may not be a phylogeny that induces the input exactly, and
we need a criterion to define how well a phylogeny matches the input. For example,
the least-squares criterion is often used: given a phylogeny T , the distance matrix
closest to input D is DT that minimizes

min
edge lengths for T

∑
x,y∈L(T )

(DT [x,y]−D[x,y])2,

over all ways of assigning edge lengths in T . The least squares criterion determines
the optimal edge lengths for a fixed phylogeny. If we let the length of a phylogeny be
the sum of all edge lengths by the least-squares criterion, the phylogeny with small-
est length corresponds to the scenario that requires the least amount of evolution –
this is called the minimum-evolution criterion.
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(a)

(b)

(c)

Fig. 5 Illustration and examples of distance-based phylogeny reconstruction. (a) A phylogeny with
edge length, and (b) its induced distance matrix between every pair of taxa. (c) An ultrametric tree,
rooted to show the distance from any taxon to the root is identical.

Minimum evolution is an NP-hard problem [7], meaning finding the optimal phy-
logeny is at least as difficult as other NP-complete problems such as the celebrated
Traveling Salesperson Problem, and most likely no efficient algorithm (running time
polynomial in the number of taxa) exists. The following algorithms are often used
as heuristics for minimum evolution.

The UPGMA algorithm [42] is essentially average-linkage hierarchical cluster-
ing: starting with each taxon as a single-leaf tree, the UPGMA algorithm iteratively
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merges two trees that have the smallest pairwise distance between their roots, and
updates the distance between the root of the new tree with other trees. Each itera-
tion reduces the number of trees by one, and the procedure is repeated until only one
tree is left. It can be shown that UPGMA can reconstruct the phylogeny correctly
for ultrametric distance matrices, but not for general additive distance matrices.

Neighbor joining (NJ) [39] is another distance-based phylogeny algorithm that is
widely used 1 and regarded as a gold standard that is often compared to in phylogeny
algorithmic research. Like UPGMA, NJ also iteratively merges taxa until one tree is
left. The difference lies in which two trees are selected for merger and how distances
between trees are updated. Let D[i, j] be the distance between subtrees i and j at the
beginning of a particular iteration with m subtrees. Then

1. Compute the quantity R[i] for each subtree i:

R[i] = ∑
1≤ j≤m, j 6=i

D[i, j].

2. Pick two subtrees x and y such that (m− 2)D[i, j]− R[i]− R[ j] is minimized.
Merge the two subtrees into a new subtree z.

3. The lengths for edges (z,x) and (z,y) are

l[z,x] =
1
2

D[x,y]+
1

2(m−2)
(R(x)−R(y))

l[z,y] = D[x,y]− l[z,x]

4. For the new subtree z, compute D[z,w] for any subtree w other than x or y:

D[z,w] =
1
2
(D[w,x]+D[w,y]−D[x,y]).

The original NJ paper [39] showed how the iterative algorithm can be seen as a
greedy heuristic for the minimum evolution criterion. Moreover, NJ reconstructs
the phylogeny correctly if the input matrix is additive.

A slightly different approach is to introduce perturbations to trees to see if the
tree length can be improved. Since minimum evolution is NP-hard, greedy hill-
climbing heuristics are often used. For example, FastME [9] starts by building the
BioNJ [15] phylogeny, a variant of neighbor joining, then perturbs the phylogeny
via NNI operations to reduce the length of the phylogeny until a local optimum
is reached. FastME is relatively new, but the algorithm is very fast (running time in
practice is proportional to n2 for n taxa, whereas both UPGMA and NJ have running
time proportional to n3), and shows good performance in their simulation study.

1 Cited more than 7000 times in the academic literature [16], it is probably the second most popular
bioinformatics/computational biology algorithm after BLAST.
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4 Maximum parsimony

In this section and the next, we discuss two approaches that, instead of aggregating
the differences between sequences into a single distance matrix, directly utilize the
sequence patterns at individual sites.

Given a phylogeny, we can assign sequences for internal nodes such that the over-
all number of mismatches (mutations) over all edges is minimized; the parsimony
score of the phylogeny is this minimum number of mismatches. The score can be
computed with a dynamic programming algorithm by Fitch [14]. First root the phy-
logeny arbitrarily by bisecting an edge, then compute the score for each site in two
passes.

1. Bottom-up: each internal node x is assigned a set of possible candidate values
S(x) by comparing the candidate sets for its two child nodes x1,x2:
If S(x1)∩S(x2) 6= /0 then S(x) = S(x1)∩S(x2), otherwise S(x) = S(x1)∪S(x2).

2. Arbitrarily choose a letter from S(r) for root r.
3. Top-down: for each internal node x, if the chosen letter for its parent node xp is

in S(x), choose the letter for x. Otherwise choose any letter from S(x).

Please see Figure 6 for an example of the algorithm. For DNA sequences, the run-
ning time is proportional to nm, the size of the input sequence matrix.

Fig. 6 An example of the Fitch algorithm for maximum parsimony. Left: bottom-up stage; letters
in italic are the candidate nucleotides for the internal nodes. Right: top-down stage; chosen let-
ters for internal nodes are in black, and edges with mutations are highlighted as wide lines. The
parsimony score of the phylogeny is 3.

Given a definition for the parsimony score (e.g., as above), the goal of the max-
imum parsimony method is to find the phylogeny (or phylogenies) with the lowest
parsimony score. This can be seen as an instance of the Occam’s razor principle [33]:
if multiple models explain the same observation equally well, the one with fewest
assumptions or has the least complexity (in this case, the parsimony score, which re-
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flects the number of mutations) is preferred. While computing the parsimony score
of a phylogeny is straightforward at least for DNA, finding the best tree turns out to
be difficult: the problem is known to be NP-hard [7]. Only for very small datasets
(with fewer than 12 taxa) is brute force computation feasible, and for larger datasets
hill-climbing heuristics are usually utilized. The starting trees can be random trees,
trees computed by distance-based methods, or trees generated by sequential addition
of taxa (adding taxa such that each additional taxon minimizes the tree’s parsimony
score). We can then use hill-climbing optimization by perturbing the current candi-
date trees to see if the parsimony score is lowered, and update the candidate tree set
accordingly until some local optimum is reached. The three topological operations
(NNI, SPR, TBR) are ideal for perturbing the phylogeny, because it can be proven
that between any two trees that are one TBR apart (or NNI or SPR), the parsimony
score will differ by at most 1 for each site (M. Steel, personal communication).

The parsimony score defined above is time-reversible: no matter how the phy-
logeny is rooted, its parsimony score is exactly the same. This particular parsi-
mony is called Wagner parsimony. There are other kinds of parsimony scores. For
example, one can set weights for different nucleotide or amino acid substitutions
(for amino acid substitutions many standard matrices are available). For presence-
absence (0/1) data, one can also use either Dollo and Camin-Sokal parsimony. Dollo
parsimony assumes that the gain of a particular feature is highly unlikely to occur
twice independently; given that the ancestral state is 0 for each character/site, the
Dollo parsimony score is the number of 1 → 0 (backward) changes when at most
one 0 → 1 (forward) change is allowed. The Camin-Sokal parsimony score is the
number of 0 → 1 (forward) changes when 1 → 0 (backward) changes are disal-
lowed. Both parsimony scores are easy to compute, and both are time-irreversible:
the score of a phylogeny may be different when it is rooted differently.

5 Maximum likelihood

Maximum likelihood is a statistical framework that allows one to directly apply
probabilistic sequence evolution models to phylogeny estimation. While in the
past it was considered too computationally taxing to be practical, its use is now
widespread. It can be thought of as a refinement of parsimony - instead of count-
ing changes along a tree, it evaluates the probability of observing the sequence data
given a particular tree and evolution model. The likelihood of a tree T with edge
lengths t and evolution model θ describing one site is

L(T, t,θ) = P(X |T, t,θ),

where X is the observed state (sequence pattern) of all taxa at the site. The goal is
to find a tree T which maximizes this likelihood over the entire sequence. Although
there is a model defined by θ (Jukes-Cantor, for example) which gives us the proba-
bility of a transition from one state to another, states at internal nodes of the tree are
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unknown. Therefore we must evaluate the likelihood for all possible internal node
states. Felsenstein’s algorithm [11] can be used to recursively compute the likeli-
hood at one site over the state space of nucleotides {A,C,G,T} (or amino acids in
the case of proteins). Let n be the number of taxa with x1, ...,xn being the observed
leaf states at this site and xn+1, ...,x2n−1 the states at internal nodes. The likelihood
can be computed by post-traversal of the tree; for node i with state a and daughter
nodes p and q,

Li(T, t,θ |a) =





D(i,a) if node i is a leaf

[

∑
b∈{A,C,G,T}

P(xp = b|xi = a, tpi,θ)Lp(T, t,θ |b)

]
×

[

∑
c∈{A,C,G,T}

P(xq = c|xi = a, tqi,θ)Lq(T, t,θ |c)
]

otherwise

where

D(i,a) =

{
1 if xi = a
0 otherwise

The likelihood of the entire tree for this site is defined by starting at the root:

L(T, t,θ) = ∑
a∈{A,C,G,T}

πaL2n−1(T, t,θ |a).

Here πa is the frequency of nucleotide a and node 2n−1 is the root. These frequen-
cies are defined by the the evolution model and for some models are free parameters.
Assuming all sites evolve independently, one can compute the likelihood of a tree
over the entirety of a sequence by taking the product of the likelihoods over all sites
i:

L(T, t,θ) =
N

∏
i=1

P(Xi|T, t,θ),

or the sum of the log likelihoods

lnL(T, t,θ) =
N

∑
i=1

lnP(Xi|T, t,θ),

where N is the sequence length. Note that edge lengths t are usually not known, and
must be treated as additional parameters to be optimized. This, combined with the
fact that we must explore the entire tree space to find a tree that satisfies the optimal-
ity criterion, makes the problem intractable. There are several heuristics available
for searching the tree space, however; for example, PhyML [20] employs a com-
mon hill-climbing algorithm. Taking a different approach, NJML [35] starts with a
distance-based-tree, then perturbs the edges shown to be unreliable via bootstrap-
ping while maximizing the likelihood.
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Bayesian inference is a related statistical method which, as a phylogenetic re-
construction approach, is relatively more recent. In general Bayesian inference, an
initial prior distribution of model parameters is suggested, and the parameters are
iteratively adjusted to maximize the probability that the model is correct by taking
into account evidence (observed data). The updated model (posterior distribution of
the parameters) is given by Bayes’ formula:

p(θ |X) =
p(X |θ)p(θ)

p(X)

where p(X |θ) is the likelihood, p(θ) is the prior distribution of the model parame-
ters and p(X) is the marginal probability of observing the data. Since the marginal
probability is integrated over all possible trees and parameter values, the posterior
is difficult to compute exactly. As a result, most implementations resort to sampling
to approximate the posterior distribution, weighting the exploration of samples such
that the algorithm converges on likely candidate models (those with high posterior
probabilities). A popular stochastic sampling method is Markov Chain Monte Carlo
(MCMC) [19, 23, 32], which is used by MrBayes [25]. One notable difference be-
tween Bayesian and ML methods is the need for prior distributions of parameters
in Bayesian inference; there is much debate over what makes a reasonable prior
and under which circumstances. Another difference is that the Bayesian method can
yield a large number of trees which may be summarized by any number of methods.
For example, one may simply selects the tree with the highest posterior probability
averaged over all parameter values (also called the maximum a posteriori (MAP)
criterion [29]). Alternatively, one may combine the trees with high posterior proba-
bilities using consensus methods, for example.

6 Multiple phylogenies: comparison, consensus, and confidence

There are many situations where one may have to compare and summarize multiple
phylogenies, whether they are equally optimal phylogenies from the same algo-
rithm, results of different algorithms on the same dataset, or phylogenies for differ-
ent datasets from overlapping taxon sets. In this section we discuss related problems,
mathematical concepts, and common approaches.

6.1 Distances between trees

If we regard a phylogeny as a collection of bipartitions, a natural comparison be-
tween two phylogenies is to find out which bipartitions are shared and which are
distinct. The Robinson-Foulds distance is the number of bipartitions that are in one
phylogeny but not the other:
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DRF(TA,TB) = |B(TA)∆B(TB)|
= |{b : b ∈ B(TA)−B(TB) or b ∈ B(TB)−B(TA)}|

Here B(TA)∆B(TB) is the symmetric difference set between the sets of bipartitions
for trees A and B. It is straightforward to prove that the distance DRF is a metric: it is
nonnegative, it is zero if and only if the two phylogenies are equal, it is symmetric,
and it satisfies the triangle inequality DRF(TA,TB) ≤ DRF(TA,TC) + DRF(TC,TB)
for any phylogenies TA,TB,TC. Note that the distance is defined for phylogenies
sharing the same set of taxa.

Of course, no single distance measure can capture the complexity that entities
like phylogenies convey. The Robinson-Foulds distance can be misleading in the
rogue-taxon scenario, when a small number of taxa are located at opposing places
in two phylogenies that are otherwise the same (see Figure 8).

Although the RF distance is widely used, there are other types of distance be-
tween phylogenies. One approach is to compute the minimum number of topology-
changing operations (such as NNI, SPR, and TBR) required to change one phy-
logeny to the other. However, it has been shown that computing the NNI, SPR, and
TBR distances are all NP-hard [1, 6, 24].

6.2 Consensus trees

There are many consensus tree methods; here we discuss three methods that are
often employed. The strict consensus of an input set of phylogenies (with the same
taxon set) is the phylogeny such that its every bipartition is in every input phylogeny
(hence the name strict). Algorithmically, we can compute the strict consensus as
follows: pick any input phylogeny, mark every edge whose bipartition is missing in
at least one input phylogeny, and contract it by ”gluing” its two endpoints together.

A relaxation of the strict consensus tree is the p-consensus [31]: it is the phy-
logeny whose bipartitions are in proportion ≥ pN of all the N input phylogenies.
It can be shown that if p > 0.5 (by Buneman’s Theorem) then such a phylogeny
exists and is unique, but this is not necessarily so when p ≤ 0.5. Strict consensus is
simply the case where p = 1. When we require every bipartition in the consensus
to be in > N/2 input trees (i.e., p = (N/2 + 1)/N for even N and p = 1/2 for odd
N), this is called the majority consensus. Computing the p-consensus is somewhat
more complicated, because the consensus may have bipartitions from different in-
put phylogenies, though efficient algorithms exist [2], and there are many programs
available for this task. Also of note is the connection between the Robinson-Foulds
distance and the strict and majority consensus trees: they are all bipartition-based.
For example, it is straightforward that the RF distance between any binary input
phylogeny and the strict consensus is the number of internal edges the input tree
loses to become the strict consensus.

The third type of consensus tree is the maximum agreement subtree (MAST) [13]:
the goal is to find a largest subset of input taxa such that the input phylogenies all
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have the same topology when we restrict them to this subset. An advantage of this
method is that it is robust against the rogue taxon situation. The maximum agree-
ment subtree is not necessarily unique, and in the worst-case scenario the maximum
agreement subtree will still have at least three taxa.

Please see Figure 7 for examples.
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Fig. 7 Consensus trees.(a1)-(a3) the three input trees; (b) table of nontrivial bipartitions; (c) the
strict consensus; (d) the majority consensus; (e) the maximum agreement subtree.
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(a)

(b)

(c)

Fig. 8 A rogue taxon example: (a) and (b) are input trees; only the placement of taxon x disagrees.
The bipartitions of the highlighted edges are affected by x, the RF distance between the two trees
is maximal, and the strict consensus will not have any internal edge as a result. (c) The maximum
agreement subtree, obtained by removing taxon x.

6.3 Bootstrapping

The bootstrapping procedure is adapted from bootstrapping in statistics and is
widely used to report the confidence of bipartitions in phylogenetics literature. As-
suming the sequence matrix is properly aligned (all sites are regarded to evolve
independently and are from the same distribution in the phylogeny reconstruction
procedure), bootstrapping starts by creating B bootstrap datasets (B is usually be-
tween 100 and 1000), each of which is the result of resampling the columns with
replacement. We then apply the same phylogeny reconstruction algorithm on these
bootstrap datasets to obtain B bootstrap phylogenies. For each internal edge of the
phylogeny using the original dataset, the confidence score is the percentage of all
bootstrap trees having the same bipartition as this edge. In [10] it is shown that the
bootstrap scores can be interpreted as the posterior probability of bipartitions with a
uniform prior for the topology of the phylogeny.
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7 Software

For a survey of phylogenetics software, we recommend the online catalog compiled
by Felsenstein2.

The PHYLIP software, written by Joe Felsenstein3, is a free collection of pro-
grams that perform many important tasks in phylogenetics. PHYLIP runs on most
major platforms, and its source codes are available. PAUP [46], written by David
Swofford, is another popular program for phylogenetics. The software is in beta
stage but is functionally complete; though PAUP is not free, it is widely used by re-
searchers as it comes with a programming language interface for scripting, is versa-
tile and computationally very efficient, and is available on many platforms. For read-
ers who are familiar with R [37], the package APE [36] is available. Mesquite [30],
by Wayne Maddison, is written in Java and provides both command-line and graphi-
cal user interface for phylogenetics. The CIPRES (Cyberinfrastructure for Phyloge-
netic Research) project [5] is a five-year NSF-sponsored research on computational
phylogenetics, which culminates in the CIPRES workbench and is available for re-
searchers [38].

There are many special-purpose phylogenetic software packages available. For a
distance-based method, we recommend FastME [9]. The TNT [17] software pack-
age provides highly efficient maximum parsimony computation. RAxML [43] and
PhyML [20] are two popular software packages for maximum likelihood phylogeny
reconstruction. For Bayesian methods (which we covered only briefly), we recom-
mend MrBayes [25]. PAML [50] implements many likelihood-based hypothesis
tests for phylogenetics. Seq-gen [18] is widely-used for generating simulated se-
quence data; for alternatives the readers may try r8s [40] and Rose [44].

8 Further reading

We recommend the following books and chapters for readers looking for in-depth
knowledge on phylogenetics. The book chapter by Hillis and Swofford [45] provides
a good survey on important concepts for phylogenetics and models of sequence
evolution. The book Inferring Phylogenies by Felsenstein [12] is very nicely written
and covers many important topics in phylogenetics; it can be used as a graduate-
level text book or a great desk reference. For more advanced concepts, the book
Phylogenetics written by Steel and Semple [41] is a good reference for readers who
are mathematically oriented and interested in a mathematical treatise on properties
of phylogenetics, and the book Fundamentals of Molecular Evolution by Li and
Graur [28] has in-depth discussion regarding the statistical aspects of molecular
systematics.

2 http://evolution.genetics.washington.edu/phylip/software.html.
3 http://evolution.gs.washington.edu/phylip.html.

http://evolution.genetics.washington.edu/phylip/software.html
http://evolution.gs.washington.edu/phylip.html
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9 Exercise

The following is an exercise that goes through steps for the reconstruction of a
molecular phylogeny.

1. We will use programs from the PHYLIP software for this exercise. PHYLIP can
be obtained from the PHYLIP website. Installation steps may vary depending on
the operating system you use; please refer to the PHYLIP website for details.

2. Download the exercise dataset from the support website. This is a reformatted
file of the partial 12S rRNA gene sequences from 36 mammals from the EMBL
Nucleotide Sequence Database. Description of the PHYLIP sequence format can
be found at the PHYLIP website Change the input file to input.phy.

3. We will use seqboot to generate 100 bootstrap sequences. PHYLIP has an inter-
active command-line user interface. The program will ask for input files since
the default input file inputfile is missing. Enter input.phy. If the default
output file is found, the program will prompt for how to deal with it; choose R
for replacement. Then a menu will show up; enter the key for each menu item
to make changes. For now we can accept the default settings to generate 100
bootstrap samples. Enter Y to accept, then the program will ask for random seed;
enter any odd integer. The output sequence will be stored in the file ”outfile”.
Change it to input.boot.

4. Use the program dnadist to compute pairwise distances. Use input.boot
when asked for the input file. When the menu shows up, enter M to ask the
program to handle multiple datasets; choose D for dataset (not weight), then en-
ter 100 for 100 bootstrap samples. Enter Y to accept. Change the output file
outfile to input.boot.dist.

5. Use the program neighbor to compute the neighbor joining tree. Set the input file
to input.boot.dist, and enter M to specify 100 datasets. Enter Y to accept.
Change the output file outtree to input.boot.nj; this file contains 100
neighbor joining trees.

6. We will now use the program consense to compute the consensus of the 100
neighbor joining trees. Set the input file to input.boot.nj. The default set-
ting uses the (extended) Majority Consensus; accept the default settings by enter-
ing Y. The consensus tree will be stored in the file outtree, where the length
of each edge is the number of input trees having the corresponding bipartition.
The file outfile has more information, including a text-based tree plot, and a
table of bipartition frequencies. How many internal edges have more than 50%
frequency in the majority consensus?

7. PHYLIP comes with many phylogeny reconstruction programs. Use dnaml and
dnapars to compute the maximum likelihood and maximum parsimony trees.
Maximum likelihood is much slower, so be forewarned.

8. Use treedist to compute the pairwise Robinson-Foulds distance between the
neighbor joining, maximum parsimony, and maximum likelihood bootstrap trees.
Concatenate the tree trees into a single input file (you can either use the ”cat”
command in linux, ”type” command in windows command prompt, or use a text
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editor). Change the Distance Type to Symmetric Difference, and set it to compute
distances between all possible pairs in the file. Which two trees are closer?
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Evolutionary Phylogenetic Networks: Models
and Issues

Luay Nakhleh

Abstract Phylogenetic networks are special graphs that generalize phylogenetic
trees to allow for modeling of non-treelike evolutionary histories. The ability to
sequence multiple genetic markers from a set of organisms and the conflicting evo-
lutionary signals that these markers provide in many cases, have propelled research
and interest in phylogenetic networks to the forefront in computational phylogenet-
ics. Nonetheless, the term ‘phylogenetic network’ has been generically used to refer
to a class of models whose core shared property is tree generalization. Several excel-
lent surveys of the different flavors of phylogenetic networks and methods for their
reconstruction have been written recently. However, unlike these surveys, this chap-
ter focuses specifically on one type of phylogenetic networks, namely evolutionary
phylogenetic networks, which explicitly model reticulate evolutionary events. Fur-
ther, this chapter focuses less on surveying existing tools, and addresses in more
detail issues that are central to the accurate reconstruction of phylogenetic networks.

1 Introduction

In Charles Darwin’s Origin of Species [17], the depiction of an evolutionary history
of species took the shape of a tree. Ever since, trees, in a variety of forms, have
been the mainstream of phylogenetics. Such a tree, also referred to as a phylogeny,
is taken to model the ancestor-descendant evolutionary relationship of a group of
species from their most recent common ancestor. Though appropriate for several
groups of taxa, a phylogenetic tree may be inadequate for other groups. For ex-
ample, evidence shows that bacteria may obtain a large proportion of their genetic
diversity through the acquisition of sequences from distantly related organisms, via
horizontal gene transfer (HGT) [20, 21, 39, 58, 67, 74, 81, 103]. Furthermore, ad-
ditional evidence of widespread HGT in plants has emerged recently [5, 6, 73].
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Interspecific recombination is believed to be ubiquitous among viruses [82, 83], and
hybrid speciation is a major evolutionary mechanism in plants and groups of fish
and frogs [23, 60, 65, 66, 80, 85, 86].

These processes are collectively referred to as reticulate evolutionary events and
occur at different evolutionary scales: the individual, the population, and the species.

1. Reticulation Between Chromosome Pairs: Meiotic Recombination. During
each round of sexual reproduction, the total number of chromosomes must be halved
to produce the gametes. The process is called meiosis, and during one phase of it the
chromosome pairs (sister chromatids) exchange pieces in a precise fashion known
as meiotic recombination. The net result is chromatids that have two or more evolu-
tionary histories on them. Blocks of chromosomes that share a single evolutionary
history are referred to as haplotype blocks.

2. Reticulation Within a Lineage: Sexual Recombination. For sexually reproduc-
ing organisms, there is recombination of nuclear genomes during each bout of re-
production. Each parent contributes half of its original nuclear genome—one sister
chromatid from each chromosome—and each of these chromosomes have them-
selves undergone meiotic recombination during the process of producing the hap-
loid gametes (sex cells). Because different parts of each parent’s contribution to the
genome of the next generation may have a different evolutionary history from that of
the other parent’s contribution, sexual recombination is a form of population-level
reticulation. Organellar genomes (mitochondria and chloroplasts) are usually inher-
ited uniparentally so they do not usually undergo any sort of sexual recombination.

3. Reticulation Among Lineages: Horizontal Gene Transfer and Hybrid Specia-
tion. In horizontal (also called lateral) gene transfer (HGT for short), genetic mate-
rial is transferred from one lineage to another. In an evolutionary scenario involving
horizontal transfer, certain sites (specified by a specific substring within the DNA
sequence of the species into which the horizontally transferred DNA was inserted)
are inherited through horizontal transfer from another species, while all others are
inherited from the parent.

In hybrid speciation, which is a form of horizontal transfer, two lineages recom-
bine to create a new species. The new species may have the same number of chro-
mosomes as its parent (diploid hybridization) or the sum of the numbers of chro-
mosomes of its parents (polyploid hybridization). In a diploid hybridization event,
the hybrid inherits one of the two homologs for each chromosome from each of its
two parents. Since homologs assort at random into the gametes (sex cells), each has
an equal probability of ending up in the hybrid. In polyploid hybridization, both
homologs from both parents are contributed to the hybrid. Prior to the hybridization
event, each site on the homolog has evolved in a tree-like fashion, although due to
meiotic recombination (exchanges between the parental homologs during produc-
tion of the gametes), different strings of sites may have different histories. Thus,
each site in the homologs of the parents of the hybrid evolved in a tree-like fash-
ion on one of the trees contained inside the network representing the hybridization
event.

Looking through a macroevolutionary lens (evolution among lineages), only
reticulate events at the species level fail to be modeled by a tree. However, looking
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through a microevolutionary lens (evolution within a lineage), sexual and meiotic
recombination fail to be modeled by a bifurcating tree. Since phylogenies are usu-
ally constructed at either the population or the species level, meiotic recombination
does not cause a species-level reticulate evolutionary history, but it can confound
species-level inference of reticulation by producing patterns that have the appear-
ance of species-level reticulation (more on this in Section 4).

In effect, when reticulation occurs, two or more independent evolutionary lin-
eages are combined at some level of biological organization, thus resulting in com-
plex evolutionary relationships that cannot be adequately modeled with trees; in-
stead, phylogenetic networks become the appropriate model. Phylogenetic networks
are a special class of graphs that allows for multiple paths between pairs of taxa
in the phylogeny, and as such provide an extension of phylogenetic trees, in which
a unique path exists between any two taxa. Phylogenetic networks come in vari-
ous flavors, and a variety of methods for reconstructing them have been designed
recently. There have been several recent detailed surveys of phylogenetic recon-
struction methods [32, 47, 48, 61, 64, 72], some of which identify their similarities
and differences. Further, Gambette has created an excellent online resource for doc-
umenting all work related to phylogenetic networks [31].

In this chapter, we focus on a specific type of phylogenetic networks, namely
evolutionary phylogenetic networks, which explicitly model reticulate evolutionary
events. Rather than surveying tools and implementations, in this chapter we address
issues that are central to accurate detection of reticulate evolution and reconstruc-
tion of phylogenetic networks. The rest of this chapter is organized as follows. In
Section 2, we define evolutionary phylogenetic networks, discuss their relationships
with trees, and outline the general approach for their reconstruction from gene trees.
In Section 3, we discuss extensions of three popular optimization criteria, maximum
parsimony (MP), maximum compatibility, and maximum likelihood (ML), to the
domain of phylogenetic networks. In Section 4, we address various processes that
result in patterns that resemble those resulting from reticulate evolutionary events
and the need for a framework to distinguish among those processes as a prerequisite
to accurate reconstruction of phylogenetic networks. In Section 5, we provide a set
of exercises for the reader to gain more understanding of the issues surrounding phy-
logenetic networks. We conclude in Section 6 with a list of further reading materials
that provide in-depth details about other aspects of phylogenetic networks.

2 Phylogenetic Networks and the Trees Within

In this work, we focus on evolutionary phylogenetic networks, i.e., networks that
model reticulate evolutionary events explicitly. An important assumption underly-
ing all results in this section as well as Section 3 is that the sole cause of gene
tree incongruence is reticulate evolution and that a phylogenetic network reconciles
gene trees by explicitly modeling reticulate evolutionary events while ignoring dis-
cord processes such as lineage sorting. We discuss the implications of incorporating
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lineage sorting into the framework in Section 4. While much of the literature is on
unrooted, undirected networks (and trees), we focus exclusively in this chapter on
rooted networks (and trees).

Definition 0.1. A phylogenetic X -network, or X -network for short, N is an or-
dered pair (G, f ), where

• G = (V,E) is a directed, acyclic graph (DAG) with V = {r}∪VL∪VT ∪VN , where

– indeg(r) = 0 (r is the root of N);
– ∀v ∈VL, indeg(v) = 1 and outdeg(v) = 0 (VL are the leaves of N);
– ∀v ∈VT , indeg(v) = 1 and outdeg(v) ≥ 2 (VT are the tree-nodes of N); and,
– ∀v ∈VN , indeg(v) = 2 and outdeg(v) = 1 (VN are the network-nodes of N),

and E ⊆V ×V are the network’s edges (we distinguish between network-edges,
edges whose heads are network-nodes, and tree-edges, edges whose heads are
tree-nodes.

• f : VL → X is the leaf-labeling function, which is a bijection from VL to X .

Figure 1(a) shows an example of a phylogenetic X -network. Clearly, Definition 0.1
generalizes that of a phylogenetic X -tree; an X -tree is a phylogenetic network
with VN = /0.

The semantics of network-nodes are context dependent. For example, in phylo-
genetics, a network-node may represent a hybrid speciation event, whereas in evo-
lutionary population genetics it may represent a recombination event. While Defi-
nition 0.1 requires a network-node to have two parents and a single child, this defi-
nition may be relaxed so as to allow for three or more (graph-theoretic) parents and
two or more (graph-theoretic) children, which correspond to in- and out-polytomies,
respectively; e.g., see the discussions in [70, 76].

a dcb

r

h

a dcb

e1 e2

a dcb

e3

e4

(a) N (b) T1 (b) T2

Fig. 1 (a) A phylogenetic X -network, rooted at node r, with a single network-node, h, and with
X = {a,b,c,d}. The trees T1 (b) and T2 (c) are the elements of T (N).
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A fundamental observation that underlies reticulate evolution is that the network
modeling the evolutionary history of a set of organisms contains1 a set of trees, each
of which models the evolutionary histories of certain genomic regions of those or-
ganisms. At the lowest level of “atomicity,” each nucleotide in the genomes of these
organisms has evolved down exactly one of those trees2. The descent of a single
nucleotide in a set of organisms could not have followed two different evolution-
ary histories from the most recent common ancestor of those organisms. Formally,
we can define the set of X -trees contained inside a phylogenetic X -network. Pro-
cedure Induce in Figure 2 yields one of the trees contained inside a phylogenetic
X -network. All trees that can be obtained by applying this procedure to a given
phylogenetic X -network N is denoted by T (N). For the X -network N in Fig-

Induce(N)
Input: Phylogenetic X -network N = (G, f ), where G = (V,E).
Output: Phylogenetic X -tree T = (G′, f ).

1. For each node v ∈VN , remove all but one of the edges incoming into v;
let T = (G′, f ), where G′ = (V ′,E ′), be the resulting tree.

2. While ∃u ∈V ′ such that indeg(u) = outdeg(u) = 1

a. Let u be such a node with {(p,u),(u,c)} ⊆ E ′;
b. V ′ = V ′ −{u}; (* remove a node of indegree and outdegree 1 *)
c. E ′ = E ′ −{(p,u),(u,c)}; (* remove its incident edges *)
d. E ′ = E ′ ∪{(p,c)}; (* connect its parent to its child *)

3. Return T ;

Fig. 2 Procedure Induce for computing a tree in T (N) for a given phylogenetic X -network N.
Observe the random choice of an incoming edge to keep in Step 1. This procedure can be iterated in
a deterministic fashion to produce all trees in T (N) or run non-deterministically a certain number
of times to sample from the trees in T (N).

ure 1(a), the set T (N) = {T1,T2}, where T1 and T2 are the two trees shown in
Figure 1(b) and 1(c), respectively. Notice that |T (N)|= O(bℓ), where b is the max-
imum indegree of a node in N, and ℓ is the number of network-nodes in N. A tighter
bound can be obtained as

|T (N)| ≤ ∏
u∈VN

(indeg(u)). (1)

Given an X -network N and an X -tree T , the problem of deciding whether T ∈
T (N) is NP-complete [53].

1 In this context, the term contain has been used in the literature interchangeably with two other
terms: induce and display.
2 Some argue that a forest, rather than a tree, may be a more appropriate model at this atomic level,
to allow for events such as insertions and deletions.
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Notice that both the Induce procedure and the result on the cardinality of T (N)
do not apply when events such as lineage sorting occur; we discuss this in more
detail in Section 4.

While computing the set T (N) for a given X -network is straightforward, com-
puting an X -network N from a set T of trees is not as straightforward. In fact, this
problem is the holy grail of reticulate evolution. First, observe that for a given set
T of X -trees, there may not exist an X -network N such that T = T (N) (see Ex-
ercise 1); in this case, it is desirable to find an X -network N such that T ⊆ T (N).
A trivial way to obtain such a network N = (G, f ), where G = (V,E), is as follows:

1. V = {vx : x(6= /0) ⊆ X }. In other words, create one node for each non-empty
subset of taxa.

2. E = {(vx,vy) : vx,vy ∈V, y ⊂ x}.

Clearly, N is an X -network3 and T ⊆ T (N). Baroni et al. proposed another “di-
rect” method for constructing a phylogenetic network from a collection of trees [3].
However, while the networks obtained by the method of Baroni et al. are smaller
in size than those obtained by the method described here, both methods result in a
gross overestimation of the extent of reticulation in the evolutionary history.

These observations have been the basis for much work on phylogenetic networks,
particularly those with explicit evolutionary implications. In the case of reconstruct-
ing ancestral recombination graphs (ARGs), the problem has been investigated
from the perspective of reconciling the “evolutionary trees” that model the evo-
lution of single nucleotide polymorphisms, or SNPs. For reconstructing reticulate
evolutionary histories of species, single nucleotides clearly do not provide enough
information, and the atomic unit used in this context is a gene. Hereafter, we refer
to these units, such as SNPs, genes, haplotype blocks, etc., as markers, which are,
in essence, the observed biological data from which the phylogenetic network is
inferred.

Definition 0.2. The Phylogenetic Network Reconstruction (PNR) Problem

Input: A set of markers, M = {M1,M2, . . . ,Mk}, from a set X of organisms
and a criterion Φ .
Output: A phylogenetic X -network N that models the evolution of M and that
is optimal under criterion Φ .

For example, one version of the problem of inferring ancestral recombination graphs
(ARGs) can be formulated as an instance of PNR if one takes M to be the set of
SNPs, and Φ to be the criterion “N contains the minimum number of network-
nodes and every SNP is compatible with at least one tree in T (N).” As another
example, one version of the problem of inferring species evolutionary networks can
be formulated as an instance of PNR if, given a set W = {T1, . . . ,Tk} of trees with
Ti being the gene tree of gene Mi, the criterion Φ is taken to be “N contains the
minimum number of network-nodes and Ti ∈ T (N) for every Ti ∈W .”

3 This construction does not ensure that the leaves have indegree of 1, which is one of the require-
ments in Definition 0.1, but the construction can be extended in a straightforward manner to take
care of this.
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2.1 Combining Trees Into a Network via SPR Operations

One of the most commonly pursued approaches for reconstructing phylogenetic
networks is based on reconciling “gene trees,” under the assumption that incon-
gruities, or disagreements, among these trees are caused by only reticulate evolu-
tionary events, such as horizontal gene transfer or hybrid speciations. In this case,
several methods have been developed for inferring a lower bound on the number
of reticulation events by identifying the minimum number of subtree prune and re-
graft, or SPR, operations required to transform one tree into the other. As the name
indicates, an SPR operation applied to tree T cuts, or prunes, a subtree t of T , yield-
ing a tree T ′, and attaches, or regrafts, it from its root to another branch in T ′ [1];
see Figure 3 for an illustration. The SPR distance between two trees is the minimum

a dcb a dcb

a dcb

Prune the 
subtree (b)

e

Regraft it to
edge e

Fig. 3 An illustration of the subtree prune and regraft, or SPR, operation. The subtree that contains
only the leaf b is pruned from the tree on the left, thus resulting in a forest of two trees, shown in
the middle, and then the subtree is regrafted as a sibling of c, resulting in the tree on the right.
Observe that the SPR distance between the two trees on the left and right is 1, and both trees can
be reconciled in a phylogenetic network with one network-node, as can be seen in Figure 1.

number of SPR moves required to transform one tree into the other. For example,
the SPR distance between the two trees in Figure 1 is 1, since a single SPR move is
required, as illustrated in Figure 3.

The problem of computing the SPR distance between two rooted trees has been
shown to be NP-hard as well as fixed-parameter tractable [7]. Examples of ex-
act algorithms and heuristics for reconciling trees via SPR operations include the
exact algorithm of Bordewich and Semple [7], the exact algorithm of Wu [105],
HorizTrans [38], RIATA-HGT [78], EEEP [4], HorizStory [62], and the method of
Goloboff as implemented in the TNT software package [33]. For the most part, these
methods are aimed at finding the phylogenetic network N with the minimum num-
ber of network-nodes that contains the pair of input trees. For example, the network
N in Figure 1(a) is the only phylogenetic network with a single network-node that
contains both trees T1 and T2 in Figure 1.

There are several limitations with using the SPR distance as a proxy for the
amount of reticulation, as well as with the methods listed above for estimating this
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distance. We discuss some of those here, and discuss the issue of time-consistency
of SPR moves in the next section.

It is worth mentioning that methods that attempt to find minimal sets of SPR
moves to reconcile a pair of trees are in fact attempts at approximating the true
number of reticulation events in the evolutionary history. However, while the SPR
distance provides a lower bound on this number, recent results have shown that the
SPR distance can provide a value that is arbitrarily smaller than the true amount of
reticulation [2, 46].

The tools listed above all assume k = 2 (i.e., they solve the problem for a pair of
trees) and assume that each of the two trees has exactly |X | leaves, each labeled
uniquely by one label from X . In other words, these tools do not solve the problem,
in terms of computing a minimal network, for more than two trees, nor do they
allow for trees with different leaf-sets. Both of these present practical limitations to
the use of the methods in practice, particularly the latter, since, in general, there is
no guarantee that a 1-1 correspondence exists between the leaves of the (species)
phylogenetic network and those of the gene trees.

A very important issue that tools for combining trees into a network must account
for is the potential multiplicity of different, optimal (minimal, in this case) networks.
Than et al. [100] showed that the number of minimal networks that reconcile a
given pair of trees may be exponential in the minimum number of reticulation events
required.

Last but not least, reconstructed gene trees are often non-binary (which mostly
indicates soft polytomies4). The reconciliation problem becomes more complicated
when non-binary trees are concerned. In this case, one objective is to simultane-
ously resolve the trees and infer the minimum number of reticulation events. The
number of resolutions of non-binary tree is exponential in the degree of the nodes,
and hence efficient techniques are required for solving this problem. Than and
Nakhleh [99] provided a heuristic for solving several cases of this problem, which
are implemented in the PhyloNet package [101] as an extension of the RIATA-HGT
method [78].

2.2 Totally-ordered Trees and Time-consistent SPR Operations

In our discussion thus far of the SPR operation and its induced distance, we have
considered only the topologies of a pair of trees. However, when times at the internal
nodes of the species and gene trees are known (in the former case, those times
would indicate the divergence time of the species from their common ancestors, and
in the latter case those times would indicate the times of the coalescence events),

4 In a rooted phylogenetic tree, a polytomy is a node with more than two children. There are
two types of polytomies: a hard polytomy indicates the hypothesis that the speciation event gave
rise to multiple lineages, whereas a soft polytomy indicates the lack of knowledge to resolve a
multifurcating node into a sequence of bifurcating nodes.



Evolutionary Phylogenetic Networks 133

the situation becomes more complicated. Rooted trees in which internal nodes are
totally ordered are called ordered tree [90].

When ordered trees are considered, two crucial issues arise:

1. Topologically identical or similar trees may be very different when branch
lengths are considered (S. Edwards recently labeled such phenomenon “branch
length heterogeneity” [22], though in the different context of lineage sorting),
and

2. certain SPR moves may not be time consistent.

We elaborate on these two issues in a few examples. Consider the two trees in Fig-
ure 4. Topologically, the two trees are identical. However, considering the trees on
the left and right to be the species and gene trees, respectively, the species a and b
diverged at time T2 (similarly for species c and d), while their genes coalesced at
time T1, which is different from T2. This is a scenario of branch length heterogeneity,
and the trees, when viewed as ordered trees, are different.

a b c d a b c d

T1

T2

T3

Fig. 4 Two phylogenetic trees that require no SPR moves to transform into each other, when
only the topologies are considered. However, when times at internal nodes are considered, the two
trees are different, and require a minimum number of two SPR moves, as shown in Figure 5. The
horizontal dashed lines represent times.

In this case, the true SPR distance is not zero, but rather two, as illustrated in
Figure 5.

a b c d

T1

T2

T3

Fig. 5 Two SPR moves required to transform the tree on the left in Figure 4 into the one on the
right, when times at internal nodes are taken into account. The horizontal dashed lines represent
times.

For the second issue, consider the species and gene trees shown in Figure 6 (left
and right, respectively). When their topologies are compared, a single SPR move
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suffices to transform the species tree into the gene tree, as shown in Figure 7. How-
ever, notice that in this scenario, the transfer of the genetic material took place be-
tween two organisms that do not co-exist in time. In other words, this SPR move is
not time consistent.

a b c d a b c d

T1

T2

T3

Fig. 6 Two trees that differ in the placement of b, thus requiring a single SPR move to transform
the tree on the left into the one on the right, as shown in Figure 7(a), when only the topologies of
the trees are considered. However, such a move is not time-consistent since the “donor” (tail of the
HGT edge) and “recipient” (head of the HGT edge) do not co-exist in time. The horizontal dashed
lines represent times.

An important question in this case is whether such an SPR move should be ruled
out in a species/gene tree reconciliation scenario. While the scenario, as drawn in
Figure 7(a), contains a time inconsistent SPR move, this inconsistency may be ex-
plained as an artifact of incomplete taxon sampling, as we now illustrate.

a b c d

T1

T2

T3

a b c d

T1

T2

T3

x

(a) (b)

Fig. 7 (a) The SPR move required for the scenario in Figure 6. This SPR move is not time-
consistent. (b) The SPR move can be viewed as time-consistent if incomplete taxon sampling
occurs; in this case, the horizontal transfer occurred from a taxon x, which is contemporaneous
with b yet was not sampled when the the species and gene trees were reconstructed. The horizontal
dashed lines represent times.

Consider the case in which the horizontal transfer occurred from species x to
species b, where x was a sibling of the clade (c,d) yet was not sampled (or became
extinct after the horizontal transfer event) in the evolutionary analysis. This case is
shown in Figure 7(b). In this scenario, while the SPR moves necessary to transform
the species tree into the gene tree is seemingly time inconsistent, it is in fact a
reflection of incomplete taxon sampling, or even a true biological hypothesis—that
of the extinction of species x. Determining whether a time inconsistent SPR move
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is truly so or is merely a reflection of incomplete taxon sampling (or extinction) is a
very challenging question.

It is important to note, though, that not all time inconsistent SPR moves can
be justified with the incomplete taxon sampling scenario. Consider the species and
gene trees in Figure 8 (left and right, respectively). In this case, a single SPR move,
pruning the clade (b,c) and regrafting it as a sibling of d, would reconcile the two
trees, as shown in Figure 9(a). Clearly, this SPR move is time inconsistent. Unlike
the previous case, incomplete taxon sampling cannot explain the inconsistency in
this scenario, since no matter how we augment the species tree with “phantoms” of
missing taxa, the source and destination of the SPR move cannot be made contem-
poraneous. Instead, a scenario involving two time consistent SPR moves may be the
correct one, as illustrated in Figure 9(b).

a b c d

T2

T3

T4

e a b c d e
T1

Fig. 8 Two trees that differ in the placement of clade (b,c), thus requiring a single SPR move to
transform the tree on the left into the one on the right, as shown in Figure 9(a), when only the
topologies of the trees are considered. However, such a move is not time-consistent since the donor
and recipient do not co-exist in time. The horizontal dashed lines represent times.

a b c d

T2

T3

T4

e
T1

a b c d

T2

T3

T4

e
T1

(a) (b)

Fig. 9 (a) The SPR move required for the scenario in Figure 8. This SPR move is not time-
consistent. (b) A solution of two time-consistent SPR moves that explains the scenario in Figure 8.
The horizontal dashed lines represent times.
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3 Optimization Criteria for Inferring and Evaluating
Phylogenetic Networks

The relationship between a phylogenetic network N and its constituent trees, T (N),
allows for extending sequence-based optimization criteria from phylogenetic trees
to phylogenetic networks. Such extensions are based on the fact that, at the lowest
level of atomicity in genetic inheritance, a nucleotide in the genomes of a set of
species evolves down a single tree, even if the evolutionary history of the species is
best modeled by a network5. This, in essence, is the concept of positional homol-
ogy. In this section, we discuss extensions to the maximum parsimony, maximum
compatibility, and maximum likelihood criteria.

Let T be an X -tree with leaf-set L , and let Σ be an alphabet (e.g., Σ =
{A,C,T,G} for DNA). A function λ : L → Σ is called a state assignment func-
tion for tree T over alphabet Σ . The function λ̂ : V (T ) → Σ is an extension of λ on
T if it agrees with λ on the leaves of T (i.e., if λ̂ (v) = λ (v) for every v ∈ L ). In a
similar way, we define a function λ k : L → Σ k and an extension λ̂ k : V (T ) → Σ k.
The latter function is called a labeling of T , and it denotes the labeling of all nodes of
a tree T with sequences of length k over alphabet Σ . Given a labeling λ̂ k, we denote
by de(λ̂ k) the Hamming distance (or any edit distance) between the two sequences
labeling the two endpoints of edge e ∈ E(T ). We define the state assignment and
labeling functions for an X -network similarly. The difference between the labeling
of a tree and that of a network lies in the interpretation of sequence evolution. Let
(u,v) be an edge in a phylogenetic tree with x = λ̂ k(u) and y = λ̂ k(v). Then, the
state at position i in sequence y is the result of zero or more mutations on the state
at position i in sequence x. In a phylogenetic network, this interpretation is slightly
more involved. Assume edge (u,v) in a phylogenetic network, with x and y defined
as before. If indeg(v) = 1, then the relationship between the states at position i in se-
quences x and y is identical to that in trees. However, if indeg(v) = m, where m > 1,
then the state at position i in sequence y is the result of zero or more mutations
on the state at position i in exactly one of the sequences labeling the m parents of
v. This labeling and interpretation serve as the basis for extending sequence-based
optimization criteria from trees to networks.

3.1 Maximum Parsimony of Phylogenetic Networks

Roughly speaking, the maximum parsimony criterion is a reflection of Occam’s
razor; that is, the best solution is the simplest. In the context of phylogenetics, the
maximum parsimony criterion seeks the tree on a given set of genomic sequences
such that the tree minimizes the overall number of mutations along all edges of the
tree. This is formalized as follows.

5 The same comment in Footnote 2 applies here.
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Definition 0.3. The parsimony length of a phylogenetic tree T with a labeling λ k

is PS(T,λ k) = minλ̂ k∈Λ̂ k [∑e∈E(T ) de(λ̂ k)], where Λ̂ k is the set of all possible exten-
sions of λ k.

We denote by PSi(T,λ k) the parsimony length of tree T with respect to site i. Given
a labeling λ k of a set X of taxa, the maximum parsimony (MP) problem for phy-
logenetic trees amounts to solving

T ∗ = argminT PS(T,λ k), (2)

where T ranges over all X -trees. There is a polynomial time algorithm for comput-
ing the parsimony length of a fixed X -tree [29], while solving the MP problem in
general is NP-hard [18, 30].

In the early 1990’s, Jotun Hein introduced an extension of the maximum par-
simony (MP) criterion to model the evolutionary history of a set of sequences in
the presence of recombination [40, 41]. Recently, Nakhleh and colleagues gave a
mathematical formulation of the MP criterion for phylogenetic networks and de-
vised computationally efficient solutions aimed at reconstructing and evaluating the
quality of phylogenetic networks under the MP criterion [49, 51, 52]. The parsi-
mony length of a phylogenetic network with respect to a set of sequences is defined
as follows.

Definition 0.4. The parsimony length of a phylogenetic network N with a labeling
λ k of the leaves of N is

PS(N,λ k) = ∑
1≤i≤k

[
min

T∈T (N)
PSi(T,λ k)

]
.

Notice that this definition of the parsimony length allows for the rather biologically
unrealistic scenario of switching back and forth between different trees for consec-
utive sites. For example, for k = 10, the definition may lead to the scenario in which
sites 1, 3, 5, 7, and 9 are best fit by tree T ′ and sites 2, 4, 6, 8, and 10 are best fit by
tree T ′′, for two different trees T ′ and T ′′. This was addressed in practice in the se-
quence of papers by Jin et al. by doing the computation on a block-by-block, rather
than site-by-site, basis. Another way to address this issue is to introduce a penalty
for switching among trees. As the parsimony criterion is based on the assumption
of rare events (e.g., [26, 27]), a reticulation event may be best modeled as causing a
penalty of one change (J. Felsenstein, personal communication).

Given a labeling λ k of a set X of taxa, the maximum parsimony (MP) problem
for phylogenetic networks amounts to solving

N∗ = argminNPS(N,λ k), (3)

where N ranges over all X -networks. Unlike the case of trees, the problem of com-
puting the parsimony length of a fixed X -network is NP-hard [49], and the problem
of solving the MP problem for phylogenetic networks is NP-hard as well, as it con-
tains the MP problem for trees as a special case.
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Let N be an X -network, and let N′ be another X -network obtained by adding a
set H of edges to N, where each edge in H is posited between a pair of edges whose
heads are tree-nodes in N. Then, we have

T (N) ⊆ T (N ′).

This result is illustrated in Figure 10.

ba dc fe

h h'

ba dc fe

N N′

Fig. 10 Two X -networks N and N′ such that N′ is obtained by adding an additional edge
to N from edge h to edge h′. We have T (N) = {T1,T2} and T (N′) = {T1,T2,T3,T4}, where
T1 = ((a,(b,c)),(d,(e, f ))), T2 = (((a,b),c),(d,(e, f ))), T3 = ((a,((b,c),d)),(e, f )), and T4 =
(((a,b),(c,d)),(e, f )). Clearly, T (N) ⊆ T (N ′).

From this fact it follows that, for a given labeling λ k of a set X of taxa, we have

PS(N′,λ k) ≤ PS(N,λ k).

This simple observation has a significant implication on the use of the MP crite-
rion for inferring networks, as defined above. It basically implies that adding more
edges to a network “never hurts” under the MP criterion as defined above: the par-
simony length either decreases or stays the same as more edges are added. This in
turn implies that while making networks more “complex” improves their parsimony
lengths, using the MP criterion in this fashion would inevitably result in a gross
over-estimation of the amount of reticulation in the evolutionary history of a data
set. This had led to refining the definition of the MP criterion so that adding edges
to a network is accepted only if the parsimony length is improved beyond a given
threshold [51]. Currently, such a threshold is dataset-specific and is determined by
inspection of the trend of parsimony length decrease as the complexity of networks
is increased. Such an approach has produced very promising results, on both syn-
thetic and biological data sets [51, 98].



Evolutionary Phylogenetic Networks 139

3.2 Character Compatibility of Phylogenetic Networks

Two models of sequence evolution that have been central in population genetics, and
which have been assumed to underlie a special type of phylogenetic networks are
the infinite-allele model and infinite-site model . The infinite-allele model, proposed
by Kimura and Crow [56], assumes that each mutation at a site results in a state that
is different from any preexisting state at that site in the population. The infinite-site
model, proposed by Kimura [55], assumes that the sequences are very long and that
the mutation rate per site is low so that each site mutates at most once. These two
models can be formulated within the parsimony framework. If a site i evolves down
a tree T under the infinite-allele model, and m distinct states are observed at site i
in the leaves of T , then the parsimony length of T with respect to site i is m− 1.
If site i evolves under the infinite-site model, then the parsimony length of T with
respect to site i is either 0 (no mutations occurred at site i) or 1 (exactly one mutation
occurred). In the phylogenetics jargon, a site that evolves down a tree T under either
infinite-allele or infinite site model is said to be compatible with the tree T . A tree
T for which all sites in the sequences labeling its leaves are compatible is called a
perfect phylogeny. Gusfield provided an O(nm) algorithm for determining whether
there exists a perfect phylogeny for a set of n binary sequences, each of length m,
and reconstructing such a perfect phylogeny if it exists [35], thus improving on an
earlier O(nm2) algorithm [24, 68].

Barring any (meiotic) recombination events, the evolutionary history of a se-
quence of sites under the infinite-site model is modeled by a tree. However, when
recombination occurs, the evolutionary histories of sites to the left and right of a
recombination breakpoint follow different paths in their ancestries, thus giving rise
to a phylogenetic network model. The compatibility criterion can be extended to
phylogenetic networks in a fashion similar to that of extending the MP criterion. We
say that a site is compatible with a phylogenetic network N if it is compatible with
at least one of the trees in T (N). Determining if a site is compatible with a phy-
logenetic network is NP-Complete [53]. An ancestral recombination graph [34],
or ARG for short, is a phylogenetic network that models the evolution of a set of
sequences under the infinite-site model, in which:

• each edge is labeled by a set of numbers denoting the sites that mutate along that
edge,

• each node of indegree 2 is labeled by a number denoting the recombination
breakpoint giving rise to that network-node, and

• each site in the sequences is compatible with the network.

Figure 11 shows an ARG modeling the evolutionary history of a set of four se-
quences under the infinite-site model. ARGs have also been referred to as per-
fect phylogenetic networks [102]. Much work has been done on reconstructing
minimal ARGs, i.e., ARGs with the minimum number of nodes of indegree 2 to
model the evolution of a set of binary sequences under the infinite-site model;
e.g., see [36, 37, 91, 92, 93, 94]. Recently, Willson provided a new method for
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c1 c2 c3 c4
a 1 0 0 0
b 1 0 1 1
c 0 1 1 1
d 0 1 0 1

a dcb

1 4

3
3

2
0000

(a) (b)

Fig. 11 (a) A data set of four binary sequences a, b, c, and d. (b) An ARG showing the evolutionary
history of the four sequences from the ancestral sequence 0000 under the infinite-site model. The
solid circle at the node of indegree 2 indicates a recombination event, and the value 3 indicates
that the states of sites 1 and 2 (which are 1 and 0, respectively) were inherited from the left parent,
whereas the states of sites 3 and 4 (which are 1 and 1, respectively) were inherited from the right
parent, thus forming the sequence 1011 at b. The other solid circles indicate mutations, where the
numbers associated with them indicate the site at which each mutation occurred.

reconstructing certain phylogenetic networks from binary sequences when back-
mutations are allowed to occur at network-nodes [104].

While we focused on binary characters in the preceding discussion, perfect phy-
logenetic networks can be defined on multi-state characters as well. Let λ : L → Σ
be a leaf-labeling of a tree T , with Σ ′ ⊆ Σ being the character states that are ob-
served at the leaves of T (not all character states in Σ may be observed at the leaves,
and hence the need for Σ ′). We say that λ is compatible on T if there exists an
extension λ̂ such that

∑
e∈E(T )

de(λ̂ ) = |Σ ′|−1.

We say that λ is compatible with a phylogenetic network N if it is compatible with
at least one of the trees in T (N). Character compatibility on a tree and on a network
can be extended in a straightforward manner to sequences of characters (λ k). Fig-
ure 12(a) shows a tree whose leaves are labeled by sequences of length 2 over the
alphabet Σ = {1,2,3,4}. For the first character (site), we have Σ ′

1 = {1,2,3} and for
the second we have Σ ′

2 = {2,3,4}. The first character is compatible with the tree,
whereas the second is not. When a single reticulation event is added to the tree, as
shown in Figure 12(b), we obtain a perfect phylogenetic network for the sequences
labeling the leaves; see Exercise 5.

Nakhleh et al. proposed multi-state perfect phylogenetic networks6 to model the
evolutionary histories of natural languages in the presence of borrowing [77]. The
Character Compatibility on Phylogenetic Networks Problem is to decide whether a
given phylogenetic network is a perfect phylogenetic network for a set C of char-
acters (alternatively, a leaf-labeling λ k). This problem has been shown to be NP-

6 In [77], network-edges were allowed to be bi-directional.
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1224 341312 34 1224 341312 34

(a) (b)

Fig. 12 (a) A phylogenetic tree leaf-labeled by sequences of length 2 over the alphabet Σ =
{1,2,3,4}. The first character is compatible on the tree, whereas the second is not. (b) A perfect
phylogenetic network obtained from the tree by adding a single reticulation event.

hard [75] even for binary characters. Kanj et al. provided an efficient parameterized
algorithm for the binary case of this problem [54].

3.2.1 Binary Character Compatibility and Combining Trees into a Network

There is an elegant connection between the problem of combining a set of trees into
a network and the problem of inferring a perfect phylogenetic network (with only
uni-directional edges) for a set of binary sequences. Let T = {T1,T2, . . . ,Tm} be a
set of (rooted) X -trees. For each edge e in a tree Ti ∈ T , define a binary site ce

with its states assigned as follows for each x ∈ X :

ce(x) =

{
1, x under e;
0, otherwise.

(4)

The collection C = ∪Ti∈T {ce : e ∈ E(Ti)} is called the character encoding of the
trees in T . If the trees in T contain p distinct edges (two edges are distinct if they
define different clusters of leaves), then C contains p distinct sites, and each taxon
x ∈ X is associated with a binary sequence sx of length p. The main result here is
that if N is a network such that T ⊆T (N) then N is a perfect phylogenetic network
for the set C, which is the character encoding of T .

e1 e2 e3 e4
a 1 0 0 0
b 1 0 1 1
c 0 1 1 1
d 0 1 0 1

Fig. 13 The character encoding of the two trees in Figure 1(b) and 1(c). The resulting matrix is
identical to that of the binary sequences in Figure 11.
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Figure 13 shows the character encoding of the two trees in Figure 1. Indeed,
the sequences in Figure 13 are compatible with the phylogenetic network in Fig-
ure 11, which is identical (in terms of topology) to the phylogenetic network N in
Figure 1(a) that contains the two trees.

3.3 Maximum Likelihood of Phylogenetic Networks

Extending the maximum likelihood (ML) criterion to phylogenetic networks is done
in a similar fashion to that used in the MP criterion, with the additional details about
the probabilistic setting in which to interpret the trees of a network and summarize
the likelihood scores computed on these trees.

Assuming independence among sites, the overall likelihood of a set S of aligned
sequences, given by the labeling function λ k, given a tree topology ψ and a model M
(branch lengths and model of sequence evolution), is the product of the probability
of the labeling of every site i given ψ and M:

L(λ k|ψ,M) =
k

∏
i=1

L(λ k[i]|ψ,M), (5)

where k is the number of sites, and L(λ k[i]|ψ,M) can be defined in two ways:

• For (average) likelihood [95], Lavg, we have:

∑̂
Λ k

[
P(root) · ∏

e∈E(T )

Pe(te)

]
, (6)

where Λ̂ k is the set of all possible extensions of λ k, and Pe(te) denotes the prob-
ability of observing the sequences at the two endpoints of edge e whose branch
length is te.

• For ancestral likelihood [84], Lanc, we have:

max
Λ̂ k

[
P(root) · ∏

e∈E(T )

Pe(te)

]
. (7)

Given a labeling λ k of a set X of taxa, the maximum likelihood (ML) problem for
phylogenetic trees amounts to solving

(ψ∗,M∗) = argmaxψ,ML(λ k|ψ,M), (8)

where ψ ranges over all X -tree topologies, and M ranges over all combinations of
branch lengths and models of sequence evolution. When all elements of this com-
bination are specified, scoring the likelihood can be done in polynomial time using
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Felsenstein’s “pruning” algorithm [28]. Solving the ML problem in general is NP-
hard [16].

Lathrop defined a maximum likelihood criterion for phylogenetic inference of
populations when some of those populations are hybridized (in this context, hy-
bridization corresponds to admixture) [59]. Strimmer and Moulton defined the max-
imum likelihood criterion for splits networks, once their edges are oriented so as to
produce a rooted, directed, acyclic, graph [96]. Jin et al. defined ML criteria for
evolutionary phylogenetic networks [50], which we review here.

Let N be an X -network in which network-nodes have indegree 2 (the results
can be generalized in a straightforward way to networks with nodes whose inde-
gree is higher than 2), and let R = {pi = (ei

l ,e
i
r) : ei

l ,e
i
r ∈ E(N), ei

l = (x,v), ei
r =

(y,v), and x 6= y}, with r = |R|. In other words, R is the set of pairs of edges
where each pair is incident into the same network node. Further, we associate with
each pair pi ∈ R parameter γi ∈ [0,1] which denotes the probability of choosing
the “left” edge ei

l (the probability of choosing the “right” edge ei
r is (1− γi)). These

probabilities are to be estimated from the sequence data, and can be interpreted as
the proportion of sites (of the sequence at a network-node) inherited from one of
the parents [96]. When multiple loci are involved in the analysis, these probabili-
ties can denote the proportion of the genome arising from a particular parent [69];
see Section 4.3. In the case of admixture, these probabilities correspond to the pro-
portion of the population derived from a particular ancestral population [59]. For
example, consider the phylogenetic network N in Figure 14. For this network, we
have R = {p1 = ((u,x),(v,x)), p2 = ((w,y),(z,y))}, parameter γ1 associated with p1

(which denotes the probability of taking edge (u,x) for certain sites in the sequence
at node x), and parameter γ2 associated with p2 (which denotes the probability of
taking edge (w,y) for certain sites in the sequence at node y).

Let T ∈ T (N). A characteristic set of tree T is a set ϕT of size r that contains
exactly one edge from every pair in R such that when all network-edges except for
those in ϕT are removed from network N in Step 1 of procedure Induce in Figure 2,
the procedure yields tree T . For the network N and its induced trees shown in Fig-
ure 14, we have ϕT1 = {(v,x),(z,y)}, ϕT2 = {(u,x),(z,y)}, ϕT3 = {(v,x),(w,y)}, and
ϕT4 = {(u,x),(w,y)}.

Notice that multiple characteristic sets may exist for the same tree T ; in this case,
we denote the set of all characteristic sets by ΦT . Then, the probability of a tree T ,
given network N and leaf-labeling λ k is

P(T |N,λ k) = ∑
ϕT∈ΦT



 ∏
ei

l∈ϕT

γi ∏
e j

r∈ϕT

(1− γ j)



 . (9)

In other words, the probability of inducing a tree T by network N is the product of
the probabilities of all the network-edges used to induce T . The summation in the
formula is to account for cases when there exist multiple ways to induce the tree T .
The probabilities of the four trees in Figure 14 are given in the caption of the figure.
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ba dc fe

x

y

u
v

w

z

!1

!2

N

ba dc fe ba dc fe ba dc fe ba dc fe

T1 T2 T3 T4

Fig. 14 A phylogenetic network (top) and the four trees it induces (bottom). Using Formula (9), we
have P(T1|N) = (1−γ1)(1−γ2), P(T2|N) = γ1(1−γ2), P(T3|N) = (1−γ1)γ2, and P(T4|N) = γ1γ2.

We are now in position to define likelihood criteria for phylogenetic networks.
The likelihood of a phylogenetic network with respect to a set of sequences is de-
fined as follows.

Definition 0.5. The likelihood of a phylogenetic network N with a labeling λ k of
the leaves of N is

L(λ k|N,M) = ∑
T∈T (N)

[
P(T |N,λ k) ·L(λ k|T,MT )

]
, (10)

where M is the model (branch lengths, probabilities γi, and model of sequence evo-
lution), MT is the “restriction” of M to tree T , and L(λ k|N,M) can be either the
average or ancestral likelihood functions.

Given a labeling λ k of a set X of taxa, the maximum likelihood problem for phy-
logenetic networks can be defined so as to solve

(N∗,M∗) = argmaxN,ML(λ k|N,M), (11)

where N ranges over all X -network topologies, and M ranges over all combinations
of branch lengths, probabilities γi, and models of sequence evolution.

Notice that, while the likelihood of a network, as given by Definition 0.5, is
an average of the likelihood of all trees within the networks, we can modify this
definition so that the likelihood of a network is the best over all trees, which is
analogous to the way we defined the parsimony length of a network above. In this
case, we have

L(λ k|N,M) = max
T∈T (N)

[
P(T |N,λ k) ·L(λ k|T,MT )

]
.
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This definition would be more appropriate for inferring ancestral states on a phylo-
genetic network.

Finally, the type of input data further refines the versions of the ML problems, as
outlined in [50]. This results in several formulations of ML criteria for phylogenetic
networks, where these formulations amount to the combinations of tree likelihood
type (ancestral vs. average), tree selection criterion (average vs. maximum), and
input data.

Problem 0.1. (The Tiny ML Problem)

Input: The full model M of an X -network N, and a labeling λ k of the leaves.
Output: The labeling λ̂ k that maximizes the likelihood of the network.

Problem 0.2. (The Small ML Problem)

Input: The topology of a phylogenetic network N and a labeling λ k of the leaves.
Output: The branch lengths, edge probabilities, and labeling λ̂ k that maximize
the likelihood of the network.

Problem 0.3. (The Big ML Problem)

Input: The labeling λ k of a set X of taxa.
Output: A full model M of an X -network N that maximizes L(λ k|N,M).

4 To Network, or Not to Network, That Is the Question

In our discussion thus far, we have made an important assumption: incongruities
and incompatibilities in the data are due to reticulate evolutionary events and there-
fore should be reconciled by using a phylogenetic network. We assumed that gene
trees disagree due to the occurrence of events such as horizontal gene transfer, and
sought a network that reconciles them. In the case of ancestral recombination graphs
and perfect phylogenetic networks, we assumed that if a perfect phylogenetic tree
does not exist for a set of sequences, then that is an indication of the occurrence
of intralocus recombination [45], and hence a network, rather than a tree, is sought
as a model of the evolutionary history. However, this assumption must be inspected
carefully and thoroughly before phylogenetic network reconstruction is attempted.
Several ways exist for explaining the evolution of a data set without invoking retic-
ulate evolutionary events:

• In the analysis of biological data, gene trees are unknown and reconstructed from
sequence data. These reconstructions of the trees may have errors in them, in
the form of wrong edges. When compared to a species tree, these wrong edges
masquerade as true incongruities, triggering the false inference of reticulate evo-
lutionary events, and sometimes they may in fact hide true incongruities, thus
resulting in an underestimation of the amount of reticulation in the data; e.g.,
see [100].
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• As Figure 15(a) shows, a gene tree may disagree with a species tree due to a
combination of duplication and loss events that took place during the evolution
of the gene. In this case, and notwithstanding the incongruities among gene trees,
these trees need be reconciled into a tree, not a network.

a b c d a dcb

1 4

33

2

4

0000

(a) (b)

Fig. 15 (a) A gene tree (solid lines) evolving within the branches of the species tree, where the
gene tree topology is identical to that of T2 in Figure 1(b). The gene tree differs from the species
tree due to multiple gene duplication and loss events. (b) A phylogenetic tree that models the
evolutionary history of the sequences in Figure 11(a) from the ancestral sequence 0000, while
violating the infinite-site model assumptions. In this scenario, sites c3 and c4 mutated twice, yet no
recombination events were invoked.

• As Figure 15(b) shows, the evolution of a set of sequences may be explained by
multiple mutations at a site, rather than inferring putative recombination events.
In this case, the evolutionary history is still a tree, albeit relaxing the infinite-site
model to allow recurrent mutations.

• As Figure 16 shows, a gene tree may differ from the species tree due to lineage
sorting . Informally, lineage sorting happens when two alleles of a gene from two
species fail to coalesce, or “merge” at a common ancestral gene, at the divergence
time of the two species, and instead they coalesce deeper. We elaborate on this
process further below.

Notice that when gene trees disagree with each other, or with the species tree, it
is crucial to determine the cause, or causes, of incongruence first, and then use the
appropriate reconciliation method. What is needed in practice is a unified, proba-
bilistic framework that, given a set of gene trees, determines the causes of incongru-
ence. It has been argued that a combination of techniques from population genetics
and phylogenetics is needed to achieve this goal, particularly to distinguish between
reticulate evolutionary events and lineage sorting as probable causes of incongru-
ence [60]. A natural choice for approaching this issue has been to augment the stan-
dard coalescent theory so as to allow for computing the probabilities of gene trees
assuming the presence of events such as horizontal gene transfer.

In a seminal paper, Maddison proposed a framework for inferring the species tree
such that both mutations at the nucleotide level and incongruence among gene trees
are taken into account [63]. The likelihood of a given species tree, according to [63],
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a b c d

Fig. 16 A gene tree (solid lines) evolving within the branches of the species tree, where the gene
tree topology is identical to that of T2 in Figure 1(b). The gene tree differs from the species tree
due to (incomplete) lineage sorting.

is the product, over all loci, of the probability of obtaining the observed sequences
at the locus:

∏
loci

∑
possible gene trees

[P(sequences|gene tree) ·P(gene tree|species tree)]. (12)

The probability P(gene tree|species tree), when deep coalescence is allowed, can
be calculated using coalescence theory, as we briefly review in Section 4.1. How-
ever, in the most general setting, the species phylogeny may not be a tree. There-
fore, an extension to Maddison’s framework is necessary to account for reticulate
evolutionary events. The ML formulation given in Section 3.3 is similar to Mad-
dison’s proposal, but it explicitly models reticulate evolution and ignores lineage
sorting. What is needed is an extension to the coalescent to allow for calculating
the probability of a gene tree given a species phylogeny assuming any combination
of the three discord processes (lineage sorting, reticulate evolution, and gene dupli-
cation/loss) could be involved. Preliminary work that simultaneously accounts for
lineage sorting and horizontal gene transfer events has been proposed in [100] and
another that simultaneously accounts for lineage sorting and hybrid speciation has
been proposed in [69]; we review these two in Sections 4.2 and 4.3, respectively.

It is worth mentioning that other approaches for distinguishing reticulate evolu-
tion from lineage sorting without explicit modeling of the coalescent process have
been introduced. For example, Sang and Zhong proposed a test statistic for distin-
guishing between lineage sorting and hybridization based on the divergence time
of the two parents of a hybrid [89]. However, Holder et al. showed later that this
statistic fails to reliably distinguish between the two processes [42]. More recently,
Holland et al. proposed to use supernetworks for this task [43].
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4.1 Lineage Sorting and the Coalescent

Lineage sorting occurs because of the random contribution of genetic material from
each individual in a population to the next generation. Some fail to have offspring
while some happen to have multiple offspring. In population genetics, this process
was first modeled by R. A. Fisher and S. Wright, in which each gene of the popu-
lation at a particular generation is chosen independently from the gene pool of the
previous generation, regardless of whether the genes are in the same individual or
in different individuals. Under the Wright-Fisher model, “the coalescent” considers
the process backward in time [44, 57, 97]. That is, the ancestral lineages of genes
of interest are traced from offspring to parents. A coalescent event occurs when two
(or sometimes more) genes “merge” at the same parent, which is called the most
recent common ancestor (MRCA) of the two genes.

The basic process can be treated as follows. Consider a pair of genes at time τ1 in
a randomly mating haploid population. The population size at time τ is denoted by
N(τ). The probability that both genes are from the same parental gene at the previ-
ous generation (time τ1 +1) is 1/N(τ1 +1). Therefore, starting at τ1, the probability
that the coalescence between the pair occurs at τ2 is given by

Prob(τ2) =
1

N(τ2)

τ2−1

∏
τ=τ1+1

(
1− 1

N(τ)

)
. (13)

When N(τ) is constant, the probability density distribution (pdf) of the coalescent
time (i.e., t = τ2 − τ1) is given by a geometric distribution and can be approximated
by an exponential distribution for large N:

Prob(t) =
1
N

e−t/N . (14)

A B C

T

t1

A B C
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t2

A B C

T

t3

(a) (b) (c)

Fig. 17 A species tree on three species A, B, and C. Shown within the branches of the species tree
are the three possible gene tree topologies that may result due to different coalescence histories.
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Under the three-species model (Figure 17), there are three possible types of gene
tree: (AB)C, (AC)B and A(BC). Let Prob[(AB)C], Prob[(AC)B] and Prob[A(BC)]
be the probabilities of the three types of gene tree. These three probabilities are
simply expressed with a continuous time approximation when all populations have
equal and constant population sizes, N, where N is large:

P(t1) = 1− 2
3

e−T/N , (15)

and

P(t2) = P(t3) =
1
3

e−T/N . (16)

Recently, Rosenberg and colleagues showed that the most likely gene tree may be
different from the species tree, when the number of leaves is four or more [19, 88].
It is worth mentioning, however, that when the number of leaves is three, the result
does not apply, since the expression in (15) is greater than the expression in (16) for
all strictly positive, finite values of T and N.

Observe that in the presence of lineage sorting (in addition to reticulate evolu-
tionary events), the number of gene trees given a (species) phylogenetic network is
no longer bounded, as given above by Inequality (1). Rather, the number of pos-
sible gene trees now equals the number of possible rooted trees (with the same
number of leaves as that of the network). For example, let us consider how the tree
(((a,b),c),d) could be one of the gene trees inside the phylogenetic network in Fig-
ure 1(a). To obtain this tree, consider the scenario under which b inherits its gene
from the a lineage, the genes of c and d fail to coalesce before they reach the root
r; instead, c first coalesces with the ancestral gene of a and b, and then the ancestral
copy of all three coalesces with that of d. This scenario is illustrated in Figure 18.

4.2 Augmenting the Coalescent with Horizontal Gene Transfer

We now review the model of [100] for extending the coalescent to allow HGT as a
cause of incongruence. Suppose that each haploid individual in a population with
size N has a lifespan that follows an exponential distribution with mean l. When an
individual dies, another individual randomly chosen from the population replaces it
to keep the population size constant. In other words, one of the N −1 alive lineages
is duplicated to replace the dead one. Under the Moran model, the ancestral lin-
eages of individuals of interest can be traced backward in time, and the coalescent
time between a pair of individuals follows an exponential distribution with mean
lN/2 [25, 87]. While phylogeny-based detection of HGT is usually based on quan-
tifying incongruence between a species and a gene tree, the situation becomes more
complicated when lineage sorting may be a cause of the incongruence as well.

Consider a model with three species, A, B, and C, in which an HGT event occurs
from species B to C, as illustrated in Figure 19. Suppose the MRCA of all three
species has a single copy of a gene x. Let a, b and c be the orthologous genes in
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Fig. 18 Illustration of the combined effect of reticulate evolution and lineage sorting. The tubes
represent a phylogenetic network in which b is a hybrid taxon (the same as the one in Figure 1(a)),
and shown within the tubes is gene tree (((a,b),c),d). Notice that this gene tree cannot be obtained
using the Induce procedure described in Figure 2, and it is not one of the two trees shown in
Figure 1.

A B C

T2

t1

x

T1
Th Tia b c'

c

Fig. 19 A three bacterial species model with an HGT event. A demonstration that a congruent tree
could be observed even with HGT.

the three species, respectively, whose ancestral gene at the MRCA is x. At time
Th, a gene was transferred from species B and was inserted in a genome in species
C at Ti, which is denoted by c′. Since HGT is assumed to be instantaneous at the
scale of evolution, in reality, it is always the case that Ti = Th. However, since these
times are estimated in practice, it may be the case that Th < Ti. For example, if a
gene duplication occurs in lineage b in Figure 19, and one of the two in-paralogs is
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transferred to c, then the estimated time Th would be the duplication time, which is
earlier than the actual time of the HGT events, Ti.

Following the HGT event, c was physically deleted from the genome, so that
each of the three species currently has a single copy of the focal gene. If there is no
lineage sorting, the gene tree should be a(bc′). Since this tree is incongruent with the
species tree, (AB)C, we could consider it as an evidence for HGT. However, lineage
sorting could also produce the incongruence between the gene tree and species tree
without HGT. It is also important to note that lineage sorting, coupled with HGT,
could produce a congruent gene tree, as illustrated in Figure 19. Although b and
c′ have a higher chance to coalesce first, the probability that the first coalescence
occurs between a and b or between a and c′ may not be negligible especially when
T1 −Th is short. The probabilities of the three types of gene tree can be formulated
under this tri-species model with HGT as illustrated in Figure 19. Here, Th could ex-
ceed T1; in such a case it can be considered that HGT occurred before the speciation
between A and B. Assuming that all populations have equal (constant) population
sizes, N, the three probabilities can be obtained modifying (15) and (16):

P[(AB)C] =

{ 1
3 e−(T1−Th)/N , if Th ≤ T1

1− 2
3 e−(Th−T1)/N , if Th > T1

, (17)

P[(AC)B] =

{ 1
3 e−(T1−Th)/N , if Th ≤ T1
1
3 e−(Th−T1)/N , if Th > T1

, (18)

and

P[A(BC)] =

{
1− 2

3 e−(T1−Th)/N , if Th ≤ T1
1
3 e−(Th−T1)/N , if Th > T1

. (19)

4.3 Augmenting the Coalescent with Hybrid Speciation

We now review the model of [69] for extending the coalescent to allow hybrid spe-
ciation as a cause of incongruence, using the scenario depicted in Figure 20 as an
example. The issue at hand is, given a collection of genes whose trees may be incon-
gruent, whether their incongruence due to hybrid speciation or lineage sorting. In the
former case, their reconciliation would result in the phylogenetic network depicted
by the wide bands in Figure 20. However, as the time T between the MRCA of any
two of the species and the MRCA of all three becomes smaller, the probability of
gene tree disagreement due to lineage sorting increases.

Let a, b, and c be three orthologous genes randomly sampled from the three
species A, B, and C, respectively, where B is a hybrid of A and C. The model of
Meng and Kubatko assumes that when a gene b is arbitrarily selected from species
B, then its most recent common ancestor occurs with species A with probability γ
and with species C with probability 1− γ . These two possible trees are t1 and t2,
respectively, discussed in the caption of Figure 20. Once one of these two trees is
selected, the model treats the tree as a species tree and allows the coalescent process
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A B C

T

Fig. 20 A phylogenetic network representing a hybrid speciation event involving species A and
C, and producing species B. The two possible (alternative) species trees are t1 = ((A,B),C) and
t2 = (A,(B,C)).

to operate for that gene.7 Using Equations (15) and (16) above for calculating the
probabilities of gene trees given a species tree, and assuming t1 as a species tree, we
have

P[((A,B),C)] = 1− 2
3 e−T/N ,

P[((A,C),B)] = P[(A,(B,C))] = 1
3 e−T/N .

Assuming t2 as the species tree, we have

P[(A,(B,C))] = 1− 2
3 e−T/N ,

P[((A,C),B)] = P[((A,B),C)] = 1
3 e−T/N .

The question is to determine, given a collection of genes sampled from the genomes
of the three species, whether the evolutionary history of the three species is the phy-
logenetic network in Figure 20, the species tree t1, or the species tree t2. One way of
answering this question is to estimate the probability γ . If γ = 1, then the evolution-
ary history of the three species is the species tree t1. If γ = 0, then the evolutionary
history of the three species is the species tree t2. If 0 < γ < 1, then the evolutionary
history is the phylogenetic network shown in Figure 20, with the proportions of the
genome of B inherited from A and C are γ and (1− γ), respectively.

Meng and Kubatko provided a maximum likelihood estimation of the parameters
γ and T , as well as a Bayesian estimation technique [69]. We briefly review the main
points of the maximum likelihood estimation. Let G = {gt1,gt2, . . . ,gtk} be an i.i.d.
sample of gene trees, where gti is the tree of gene i, sampled so that their topologies
are independent and follow the hybridization model described in Figure 20. The
likelihood function for a given phylogenetic network with a specified location for
the hybrid speciation event (as shown in Figure 20) is given by:

L(γ,T |G ) =
k

∏
i=1

P(gti|γ,T ) =
k

∏
i=1

[γP(gti|t1,T )+(1− γ)P(gti|t2,T )] (20)

7 Notice the similarity between this and the probability of a tree as given by Equation (9).
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Notice that this formula is a special case of Formula (10) (when taken for multi-
ple genes) given in Definition 0.5. Formula (10) is defined for networks with any
number of hybrid speciation events, and the parameter MT in the formula is a gen-
eralization of the pairs (t1,T ) and (t2,T ) in Formula (20), since MT is the model,
which includes the tree topology, its branch lengths, and the model of evolution.

The question now becomes one of estimating the parameters γ and T that max-
imize the likelihood function and determining, based on these (particularly γ),
whether the phylogenetic network or tree is the evolutionary history of the species,
and, if the latter, which of the two (t1 or t2).

5 Exercises

Here we give a set of exercises for the reader to gain a better understanding of
evolutionary phylogenetic networks and issues related to their reconstruction and
evaluation.

1. Show an example of a set T of trees, with |T | = 2, and a minimal network N
that reconciles both trees in T such that T 6= T (N).

2. Figure 11 shows one minimal ARG for the given sequence data set. Draw all
other minimal ARGs.

3. a. Show a phylogenetic network N with |T (N)| = 2k, where k is the number of
network-nodes in N.

b. Show a phylogenetic network N with |T (N)| < 2k, where k is the number of
network-nodes in N.

4. Show two trees, each with nine leaves, whose SPR distance is 3, and for which
the number of minimal phylogenetic networks that reconcile the two trees is 27.
(Hint: Consider trees with three clades, each clade with three leaves, and each
clade requires a single SPR move.)

5. For each of the two characters labeling the leaves of the network N in Fig-
ure 12(b), show a tree in T (N) on which the character is compatible, by also
showing the labeling of internal nodes of the tree.

6. Using the illustration in Figure 18, describe one coalescence scenario for each of
the possible gene trees that are induced by the phylogenetic network in Figure 1
assuming lineage sorting could occur.

6 Further Reading

An excellent resource on phylogenetic networks is Who is Who in Phylogenetic
Networks [31], which, as of the date of writing this manuscript, catalogs 264 publi-
cations and 34 software tools dedicated to phylogenetic networks. There have been
several recent detailed surveys of phylogenetic reconstruction methods [32, 47, 48,
61, 64, 72], some of which identify their similarities and differences.
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Recently, several results have appeared on measures for comparing phyloge-
netic network topologies and quantifying their dissimilarities; we refer the reader
to [3, 8, 9, 10, 11, 14, 15, 70, 76, 79]. Further, some proposals have been made on
representing phylogenetic networks for I/O operations using an extended Newick,
or eNewick, format; e.g., see [12, 13, 71, 101].
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10. Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: Metrics for phylogenetic networks II:
Nodal and triplets metrics. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics (2009)
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Genome Wide Association Studies

Paola Sebastiani and Nadia Solovieff

Abstract The availability of high throughput technology for parallel genotyping has
opened the field of genetics to genome-wide association studies (GWAS). These
studies generate massive amount of genetic data that challenge investigators with
issues related to data management, statistical analysis of large data sets, visualiza-
tion, and annotation of results. We will review the common approach to analysis of
GWAS data and then discuss options to learn more from these data.

1 An overview of population genetics

One of the surprising findings of the Human Genome Project was the discovery that
humans share the same DNA with the exception of about 0.1% of nucleotide bases
[18]. These variations are called single nucleotide polymorphisms (SNPs) and occur
when a single nucleotide (A, T, C, or G) in the genome sequence differs between
individuals. Figure 1 provides an example. Some SNPs in genes are known to cause
“monogenic disease” in which one of the SNP alleles determines a change in the
protein produced by the gene that results in the disease. Sickle cell anemia is a well
known example of a monogenic disease that is caused by a single mutation of the β -
globin gene. The mutation determines a variant of the hemoglobin protein [35], and,
although the disease is severe and affected subjects have a short life expectancy, the
mutation has been maintained in the population because it is associated with resis-
tance to malaria. Sickle cell anemia was the first monogenic disease ever described
and led to Pauling’s theory of molecular disease that opened a new chapter in the
history of medicine [24].
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Fig. 1 Example of a single nucleotide polymorphism (SNP) in which the nucleotide T is replaced
by G in some subjects. The variants T and G are also called the SNP alleles, and the alleles in each
chromosome pairs are called the genotypes.

Our cells contain two copies of each chromosome, and monogenic diseases are
classified as “dominant” or “recessive” based on the number of copies of the mu-
tated alleles that are necessary for the disease to manifest. Disease with a genetic
basis is also classified as autosomal or X-linked according to whether the mutation
is on one of the autosomal chromosomes (1–22) or on the chromosome X. An au-
tosomal dominant disease needs only one mutated allele in one of the chromosome
pairs to manifest, while a recessive disease needs two mutated variants to mani-
fest, and one mutated variant makes a subject simply a carrier of the disease. A
carrier can transmit the mutated variant to the offspring but not the disease, and a
recessive disease can only be transmitted when both parents are carriers. Sickle cell
anemia is an example of a recessive autosomal disease because the mutated gene
is on chromosome 11, and only subjects who carry two copies of the mutation and
are therefore homozygous for the mutation are affected. This classification changes
when the SNP is on chromosome X, so that one single variant can make an individ-
ual a carrier or affected based on gender. Haemophilia and the Duchenne and Becker
forms of muscular dystrophy are known examples of X-linked recessive diseases in
which one mutation on chromosome X in males causes the disease [23, 40].

Over the past decade, about 1,200 disease-causing genes have been identified by
studying well characterized phenotypes — the physical manifestation of the geno-
type or, equivalently, the combination of variants in the chromosome pair — and
using gene mapping techniques [4, 19]. Monogenic diseases are usually rare, while
there are common diseases that have a genetic component shown by familial aggre-
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gation but do not follow the inheritance rules of dominant or recessive disorders.
Examples include many common age-related diseases, such as diabetes [15, 34],
cardiovascular disease [9], and dementia [38], that are presumed to be determined
by the interaction of several genes (epistasis), and their interaction with environmen-
tal factors (gene × environment interaction). These common, complex traits are a
large public health burden and the discovery of genetic profiles that can be used for
both disease risk prediction as well as for the development of treatments and cures
is one of the current priorities. However, the search for the genetic bases of complex
traits faces two major difficulties. The first difficulty is the challenge of discover-
ing a potentially very large number of genetic variants that are associated with the
disease, and their modifications due to exposures to environmental conditions. The
second difficulty is the definition of the correct phenotype to be used in the design
of the study and the analysis of the data. In this chapter, we will focus on the first
challenge. Modeling complex phenotypes is very challenging and there are only a
few successful examples [21, 31, 33].

Fig. 2 Linkage disequilibrium (LD) map of a region of the gene ADARB2. The map was generated
using the program HaploView and genotype data of 18 SNPs from the 30 trios of the HapMap
CEPH and includes annotation of the physical location of the gene of the human genome (chro-
mosome 10, between position 1,340,000 and 1,490,000 bases). The white bar shows the location
of the SNPs. Each square represents the correlation of two SNPs, measured by the correlation
coefficient r2 between the alleles of the two SNPs, and the shades of grey indicate the strength of
the correlation ranging from no correlation (white) to strong correlation (black). The correlation
analysis identifies two blocks of LD highlighted by the black outlines. The blocks are identified
using an algorithm designed by S Gabriel [13].
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2 Genome-Wide Association Studies

In the past, genotyping costs limited the search for disease associated genes to can-
didate genes that were selected based on prior biological knowledge of pathways
related to the phenotype. Genome-wide association studies (GWAS) were recently
made possible by the technology of SNP arrays [14] and provide an unbiased ap-
proach in which hundreds of thousands or even millions of SNPs across the genome
are tested for association with a phenotype. Commercially available SNP arrays al-
low the simultaneous genotyping of hundreds of thousands of SNPs that comprise
a small proportion of the estimated 10 million existing SNPs but provide sufficient
coverage of the variations. For example, the “Human660W-Quad BeadChip ” (Illu-
mina, San Diego, CA) includes more than 660,000 SNPs, providing comprehensive
genomic coverage across multiple populations. This coverage is made possible by
the block structure of the human genome that is due to linkage disequilibrium (LD)
and was described by Gabriel in [13]. LD is the effect of non-random association
of SNPs that results in the inheritance of blocks or “haplotypes” of nearby SNPs
in the same chromosome. This linkage of genetic variants implies that SNPs in the
same haplotypes are mutually informative so that a subset of them is sufficient to tag
blocks of the human genome with high precision [8, 30], and to identify genomic
regions that are associated with disease. Figure 2 shows an example. Based on this
property, commercial SNP arrays contain a careful selection of SNPs that capture
a large proportion of the variations of the human genome. However, a caveat of
this approach is that the majority of these SNPs do not directly affect gene expres-
sion or gene regulation but can only point to regions that need further search and
experimental validation to show the biological relevance. A technical term used to
emphasize this aspect is that these SNPs are markers. The use of commercial SNP
arrays removes the task of choosing SNPs for the study, but the design and analysis
of a GWAS has many challenges that we describe step by step below.

2.1 Study design

Typically, a GWAS uses a case control design. This is a common design in many
epidemiology studies with a dichotomous outcome, for example the presence or
absence of a disease. Subjects are labeled as cases if they have the disease and
controls if they do not [5, 16]. The definition of controls is not always obvious. A
control subject should be free of disease but must also be free of other traits that are
not shared by cases, to avoid confounding. For example, if the phenotype of interest
is known to manifest within a certain age, it is tempting to choose controls that are
much older than the cases to limit the chance that they never develop the phenotype.
This choice for controls would introduce confounding by age, because cases and
controls are different not only by presence/absence of disease but also by age, and
the consequence of this confounding is that the genetic differences between cases
and controls may be related to aging rather than the disease. A common approach
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to avoid confounding is to match controls on variables that are not of interest in the
study, such as exposure to some environmental conditions.

Some investigators have used referent cohort subjects used in other genetic
studies. For example, the first large GWAS published by the Wellcome Trust
Case-Control Consortium used the same pool of 3,000 controls chosen from the
British population to search for genetic modifiers of seven common traits [9].
This strategy is becoming more and more feasible with the increasing availabil-
ity of GWAS data from dbGaP, the database of genotype-phenotype associations
(http://www.ncbi.nlm.nih.gov/gap), and the Illumina control database. However,
this approach can introduce confounding due to population stratification, which oc-
curs when allele frequencies differ between cases and controls because of ancestral
differences [25]. This topic will be described in detail in section 2.6. When the trait
of interest is a quantitative measure, such as blood pressure or fetal hemoglobin con-
centration, it is recommended that subjects included in the study represent sufficient
variability of the trait.

2.2 Quality control

To avoid erroneous findings, one must carefully clean the data prior to analysis.
SNPs and samples with low quality can be identified with a low SNP call rate, de-
fined as the proportion of non-missing genotypes per SNP, and a low individual call
rate, defined as the proportion of non-missing genotypes per subject, respectively
[42]. SNPs and samples with low call rates should be removed from all subsequent
analyses. Processing large numbers of samples can result in sample swaps and er-
rors in sample tracking in the lab. There are 2 tests that can be performed to identify
some of these types of errors. The first involves comparing the gender assignment
in the study database to the gender predicted by the heterozygosity of the SNPs on
chromosome X. Clusters of misclassified subjects can identify batches of samples
that may have flipped or batches of samples with poor DNA quality. The second test
will be discussed in detail in Section 2.3 and involves comparing known familial re-
lations from the study database to the relations inferred from the genetic data. Both
of these analyses can be easily performed by a publicly available software package
PLINK [29], which will be discussed in Section 3.

Investigators often remove SNPs with low minor allele frequencies to avoid false
positive findings and SNPs not meeting Hardy Weinberg Equilibrium (HWE) in
the controls. HWE states that both allele and genotype distributions should remain
stable in a population when there are no external perturbations such as emigration
or large number of deaths due, for example, to epidemics [5]. If the allele M of a
SNP has frequency p(M) > 0.5, and the other allele m has frequency 1 − p(M),
HWE states that the genotypes MM, Mm and mm should have frequencies p(M)2,
2p(M)(1− p(M)) and (1− p(M))2. Statistical tests can be used to check that a
SNP genotype distribution follows HWE. However, we advise analyzing all SNPs
regardless of whether or not they are in HWE and then carefully examining the

http://www.ncbi.nlm.nih.gov/gap
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IBD Probabilities
Relative Pair 0 1 2 P(IBD)

MZ Twins 0 0 1 1
Full Sibs 0.25 0.5 0.25 0.5

Parent-Offspring 0 1 0 0.5
Grandparent-Grandchild 0.5 0.5 0 0.25

Half-Sibs 0.5 0.5 0 0.25
Avuncular 0.5 0.5 0 0.25

First Cousin 0.75 0.25 0 0.125
Unrelated 1 0 0 0

Fig. 3 Relation between probabilities of genome-wide alleles shared IBD and relatedness. Column
1 describes the type of relation, columns 2–4 report the genome-wide proportion of alleles shared
by IBD that can be 0 (column 2), 1 (column 3) and 2 (column 4). The last column indicates the
expected probability of alleles shared by IBD for various relations. For example, monozygotic twin
(row one) should share the same DNA and therefore the probability of any two alleles shared IBD
is 1, while siblings will share 0 alleles IBD with probability 1/4, 1 allele IBD with probability 1/2
and 2 alleles IBD with probability 1/4. Unrelated samples sharing 2 alleles with a probability of
1 can point to sample swaps.

validity of these SNPs not in HWE if they are found significantly associated with
the phenotype.

2.3 Discovering hidden relations

Familial relations between pairs of subjects can be quantified by the number of al-
leles shared between subjects identically by descent (IBD). An allele is IBD when
it is the same allele from the same ancestor while an allele is shared identically by
state (IBS) when it is the same allele but not from the same recent ancestor [20].
Using Mendel’s law, we can estimate the probability that two family members share
0,1 or 2 alleles IBD, and Figure 3 provides some examples. These probabilities
can be extended to any degree of relatives and can be estimated using a genome-
wide panel of SNPs. IBD estimation, implemented in PLINK [29], is based on the
number of alleles shared genome wide IBS and is very computationally expensive
when computed on all pairs of subjects but is a valuable quality control measure.
Comparing known familial relations to the estimated probabilities of IBD can help
identify errors in sample tracking or swapped samples. For example, we expect that
a parent-offspring pair will have IBD probabilities approximately equal to 1/2,1/2
and 0 for 0,1 and 2 alleles shared IBD. The IBD analysis can also identify unknown
related individuals. One must remove related individuals prior to the analysis or ap-
propriately account for the family structure in a family based association analysis to
avoid inflating the false positive rate. Additionally, duplicate samples can easily be
identified as sharing 2 alleles IBD with a probability close to 1. Duplicates are not
uncommon when comparing individuals in different studies, for example a discov-
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ery and replication study, of a rare trait since individuals participating in a study are
likely to enroll in multiple studies.

2.4 Single SNP analysis

The common approach to statistical analysis of GWAS data is a single SNP analysis:
a statistical test is conducted to verify, for each SNP, the null hypothesis that there is
no association between the SNP and the phenotype against the alternative hypothesis
that there is an association. The frequentist approach weighs the evidence against
the null hypothesis by the p-value that is defined as the probability of observing a
stronger association than that estimated from the data under the null hypothesis of
no association. If the null hypothesis is true, the p-value should be large because
estimating a strong association by chance is unlikely to happen. Therefore, a small
p-value is taken as evidence against the null hypothesis, and it is the rationale for the
decision rule to reject the null hypothesis when the p-value is smaller than a fixed
significance level [7].

This approach is not error free, because we could observe by chance an extreme
association even when the null hypothesis is true. Rejecting the null hypothesis
when it is true is known as a Type I error, while accepting the null hypothesis when
the alternative hypothesis is true is a Type II error. The power of the test is defined
as the probability of accepting the alternative hypothesis of association when the
alternative hypothesis is true [7].

Type I error: R H0|H0 True

p value: P(R H0|H0 True )

Power: P(R H0|H0 False )

This approach requires a method to estimate the association and a significance level
α to be used as the threshold for the p-value. We consider two cases, based on
whether the phenotype is a continuous or a categorical trait.

The genetic effect of a SNP X on a continuous trait Y can be modeled using a
linear regression model:

E(Y |X1,X2) = β0 +β1X1 +β2X2

where X1 and X2 are variables that take values X1 = 1 when the SNP genotype is Mm
and 0 otherwise, and X2 = 1 when the SNP genotype is mm and 0 otherwise. The re-
gression coefficient β0 represents the average value of the phenotype when the SNP
genotype is MM, while the combinations of coefficients β0 +β1 and β0 +β2 repre-
sent the average values of the phenotype when the SNP genotypes are Mm and mm
respectively. Therefore, β1 is the average change of phenotype between genotypes
Mm and MM, and β2 is the average change of phenotype between genotypes mm
relative to MM. The two parameters represent the genetic effect. As long as one of
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the regression coefficients is statistically different from 0, there is a genotypic asso-
ciation between the SNP and the phenotype, and the significance of the association
can be tested using standard least squares methods when the phenotype follows a
normal distribution [2].

A popular alternative is to represent the three genotypes by the variable X taking
values 0 = MM, 1 = Mm, and 2 = mm and use this variable in linear regression.
This parameterization is known as the additive genetic model [20], and the regres-
sion coefficient of the variable X represents the average change in the trait for each
extra copy of the allele m. The additive model is easy to interpret and therefore most
commonly used. Other parsimonious parameterizations include dominant or reces-
sive models in which genotypes are aggregated in two groups. The dominant model
for the allele M tests the associations of genotypes grouped as MM and Mm versus
mm, while the recessive model for the allele M uses the grouping MM versus Mm
and mm. The former can be implemented by using a simple regression model with
X = 1 if the SNP genotype is mm and 0 otherwise, while the latter parameterization
can use X = 1 when the SNP genotype is either Mm or mm and 0 otherwise [6, 20].
All these parameterizations are more parsimonious but less general than the geno-
typic association and failure to detect association with the additive, or dominant, or
recessive model does not imply lack of any association between the SNP and the
trait [33]. When the trait correlates with other covariates, such as gender, the ge-
netic association can be adjusted for the covariates by adding them to the regression
equation, or by modeling the residuals from the regression model that includes only
the covariates. Adjustment should be done only for covariates that are significantly
associated with the trait to avoid unnecessary loss of power.

When the subjects are grouped as cases and controls, general genotype associ-
ation can be tested using the traditional χ2 test of independence for a 2x3 contin-
gency table [7]. More parsimonious procedures include the Armitage trend test [16],
in which genotypes are recoded to model a linear increase in the odds of the disease
on the logarithmic scale for each different genotype , or associations of dominant
or recessive models in which genotypes are aggregated in two groups as described
above. Allelic association can be tested by recoding the data from genotypes into
alleles [20].

Logistic regression can also be used to model any of these associations [16].
The idea is to model the odds for the disease in the logarithmic scale as the linear
regression function:

log

{
p(Disease|X1,X2)

1− p(Disease|X1,X2))

}
= β0 +β1X1 +β2X2

where the variables code for different genotypes as described earlier. The regression
coefficients have direct interpretation as log-odds ratios for disease. For example,

β1 = log

{
p(Disease|X1 = 1,X2)

1− p(Disease|X1 = 1,X2))

}
− log

{
p(Disease|X1 = 0,X2)

1− p(Disease|X1 = 0,X2))

}
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represents the log-odds ratio for disease in subjects with the genotype Mm rela-
tive to MM. Similarly, β2 represents the log-odds ratio for disease in subjects with
the genotype mm relative to MM. Besides the genetic effects, the regression equa-
tion can include covariates, and it can be extended to include multiple interacting
SNPs as well as gene-environment interactions. The significance of the association
is tested using the likelihood ratio test with large sample approximations [22]. When
the frequency of some genotypes is < 5, the large sample approximation may fail,
and permutation methods should be used.

Bayesian methods are also becoming popular in genetic epidemiology [36]. The
Bayesian approach to hypothesis testing uses the data to update the prior proba-
bilities of the two hypotheses of no association and association into their posterior
probabilities. The decision to reject the null hypothesis is based on an “ad hoc”
threshold on the odds of the posterior probabilities that trades off sensitivity and
specificity. The review in [33] discusses some examples in details. It is important to
emphasize that, in the frequentist approach, the decision to reject the null hypothe-
sis of no association uses a threshold on the p-value to minimize the probability of
the type I error. This procedure does not assess per se whether the null hypothesis
is true or false. In the Bayesian approach, the decision to reject the null hypothesis
is based directly on the probability that the null hypothesis is false, given the data
and only the Bayesian inference allows for a direct assessment of the likelihood of
parameters and hypotheses [2].

The results of the analysis are usually visualized using a Manhattan plot that
displays the log10(p-value) of the tested association. Figure 4 shows an example.
The plot highlights the regions of the genome that are associated with the trait and
informs about the robustness of the associations when clusters of nearby SNP are
simultaneously associated.

2.5 Power and multiple comparisons

Because the number of SNPs analyzed in a GWAS can be as large as several hundred
thousands, if each SNP is tested with a significance level α = 0.05 the probability
of rejecting one of more null hypotheses by chance is very large. This number is the
“family-wise error rate” and can be calculated with the formula

probability(number of Type I error > 0) = (1−α)N ,

where N is the number of hypotheses that are tested [39]. The family-wise error
rate approaches 1 very quickly when α = 0.05 and N is relatively large. An equiv-
alent way of assessing the magnitude of the problem is to consider the fact that the
number of false positive associations that are expected by chance when testing N
null hypotheses — assuming all are true — is α ×N. For example this number is
25,000 when α = 0.05 and N = 500,000. The Bonferroni correction is a conser-
vative solution that limits the number of false positive associations by dividing the
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Fig. 4 Manhattan plot that summarizes the results of a GWAS of fetal hemoglobin in sickle cell
anemia patients. The x-axis reports the SNPs in each chromosome ordered by physical position
on the reference human genome sequence, and the y-axis reports the log10(p-value) of each SNP
association that was tested using the additive model. Different chromosomes are visualized by
alternating color bands. (See online version for color figure). High levels of fetal hemoglobin is
associated with lower rate of vaso-occlusive complications in patients with the disease and the
discovery of genetic modulators of fetal hemoglobin is important for prognostic and therapeutic
reasons. We conducted a GWAS of fetal hemoglobin in more than 1,000 patients with sickle cell
anemia and the Manhattan plot shows a large spike on chromosome 2 that corresponds to a region
containing the gene BCL11A. The cluster of SNPs with high statistical significance suggests the
there may be some functional variant in the region marked by these SNPs that affects changes in
fetal hemoglobin expression.

significance level used in each individual test by the number of tests N, so that α
is replaced by α/N. This solution requires significance levels of the order 10−6 or
smaller to meet genome-wide significance and therefore very large sample sizes are
necessary to have the statistical power to detect small genetic effects. For example,
Wang and colleagues showed that to estimate an allelic odds ratio of 1.5 with 80%
power when the disease allele has a frequency between 0.4 and 0.5, we need a sam-
ple size of 1,000 cases and 1,000 controls. The sample size necessary to detect the
same genetic effect when the disease allele frequency is 10% is 2000 cases and 2000
controls and increases almost exponentially with smaller disease allele frequencies
[37].

The Bonferroni correction is too conservative and controlling the false discovery
rate rather than the overall false positive rate has been proposed as a less conserva-
tive method. The false discovery rate is the proportion of false positive associations
among the associations detected as significant and can be controlled by using a
simple algorithm [3]. Neither the Bonferroni correction nor the false discovery rate
changes the rank of the p-values, but each simply provides additional guidance as
to which associations are most significant across the entire study. The bias of the
frequentist approaches to control the false positive rate (or the false discovery rate)
means that the power of a GWAS can only be increased by increasing the sample
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size. The Bayesian approach offers a different solution and often a gain of power
by using a more sophisticate decision theoretic approach to hypothesis testing. The
review in [33] provides several examples.

Replication of the results from GWAS in at least one independent study is a com-
mon procedure to remove false positive associations [26]. However, the choice of
replication set is very important, and the subjects should be chosen from an indepen-
dent study population, with the same genetic background as the primary study pop-
ulation, the same definition of the phenotype. Furthermore, the replication should
confirm the association of the same SNPs with the same genetic model and show
the same genetic effect. Replication of findings in a population with different genetic
backgrounds can strengthen the evidence of true associations and identify variants
that are robust to different genetic background and environmental exposures. How-
ever, failure to reproduce an association in a genetically different population should
not be taken as evidence of a false positive. Another emerging approach to replica-
tion of GWAS is the use of meta-analysis, which combines the results of different
studies using formal statistical procedures [12].

2.6 Population stratification

Population stratification is a major confounder in GWAS and occurs when the allele
frequencies differ between cases and controls because of ancestral differences rather
than differences due to the phenotype [25]. If the frequency of an allele for a SNP
differs across ethnic groups, and the phenotype also differs with respect to ethnicity,
then a false positive association will be found between the phenotype and the SNP
if one does not appropriately account for ethnicity. This is a classic example of
confounding where ethnicity is associated with both the predictor and the outcome
and thus confounds the relationship between the two variables.

Across the genome, there are many SNPs that differ across ethnic groups, and
thus many of the test statistics from a GWAS will be inflated as can be seen in the
QQ plot of Figure 5. Note that this will only occur if the population substructure
differs with respect to the phenotype. The amount of inflation in the test statistics
is often summarized by the genomic control inflation factor λ that is defined as the
median test statistic divided by the median test statistic assuming no association
for any SNPs [10]. Since one expects only a small percentage, certainly less than
50%, of the SNPs to be associated with the phenotype the median test statistic in
the analysis should be approximately equal to the median test statistic under the
null and thus λ should be approximate equal to 1 and values greater than 1 suggest
inflation.

There are a number of methods to detect and account for population substructure
including genomic control, structured association and principal component analysis.
The method of genomic control advocates dividing each test statistic by the genomic
control inflation factor to reduce the inflation. However, some SNPs exhibit large
differences in allele frequencies across ethnic groups, while other SNPs exhibit no
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Fig. 5 The figure displays what is known as a QQ-plot. The x-axis displays the ordered − log10(p−
values) that are expected when testing N null hypothesis and all are true. The y-axis displays the
ordered − log10(p− values) that are calculated from the GWAS. Typically, the number of true
significant associations is small, and so we expected that the plot of the observed versus expected
p-values aligns with the solid black line. The dotted, darker line displays the results of a GWAS in
the presence of inflation due to population stratification as seen by the values pulling away from
the solid black line and a large genomic control of λ = 1.44. The paler line (red in the online
color figure) displays the results of a GWAS with little to no inflation with a much smaller genomic
control value and with values deviating from the solid black line only in the tail consistent with
real findings.

differences, and thus by dividing all test statistics by the same amount results in a
loss of power.

Structured association is a model-based clustering technique that groups individ-
uals into clusters based on a subset of SNPs. It is advantageous to use SNPs that
are known to be ancestrally informative for the population of interest. The analysis,
implemented in the program STRUCTURE [28], assigns a probability of being in a
particular cluster to each individual.

Principal components analysis (PCA) is one of the most widely used methods in
GWAS since it uses information from a genome wide set of SNPs and because of its
convenient implementation in the software EIGENSOFT [27]. PCA summarizes the
variability of a genome wide set of SNPs by creating principal components which
are linear combinations of all of the SNPs. The first principal component (PC) will
capture the largest amount of variability in the data and each consecutive PC will
capture less and less variability. The top principal components generally capture the
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population substructure due to ethnicity in GWA data. Figure 6 plots the top 2 PCs
from a PCA of a case control study of exceptional longevity in which all subjects are
Caucasian. The pattern observed is typical for a cohort of Caucasians of European
descent and has been observed in a number of different studies [25]. The cluster
in the top left corner contains Ashkenazi Jewish subjects and the line of subjects
spanning from the top right to the bottom middle of the plot represents a cline rang-
ing from northwestern to southeastern Europe. Higher order PCs capture even finer
gradients of population substructure. Based on the PC plot, it is evident that there
are many more controls from southeastern Europe than cases and this imbalance
causes severe inflation in the test statistics with GC value of 1.44 (see QQ plot). To
control for population stratification, investigators often adjust for the top PCs in a
regression model between the phenotype and the SNP and the adjustment generally
reduces the inflation substantially. Alternatively, one can also create clusters from
the top PCs and then match cases and controls within each cluster to balance the
proportions of cases and controls and reduce population stratification bias.

Fig. 6 Plot of PC1 vs PC2 of a case control study of exceptional longevity. Cases are depicted as
darker dots (blue in the online color figure) and cases are depicted as paler dots (red in the online
color figure). The top 2 PCs separate the Ashkenazi Jewish subjects in the top left corner of the
plot. The line formed by subjects from the top right to the bottom middle of the plot represents a
northwestern to southeastern cline across Europe. Although the structure of the cases and controls
is similar there are many more controls from southeastern Europe than cases, which will cause
inflation in the test statistics.
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3 Resources

There are a number of publicly available programs to aid the analysis and inter-
pretation of GWAS and genetic studies in general. The statistical package R has
several tools for analysis of GWASs, and some tools for visualization and anno-
tation of results are available through Bioconductor. PLINK is a free, open-source
whole genome association analysis toolset, which allows the user to perform a wide
range of data management and quality control tasks and a number of basic anal-
yses including IBD estimation, standard association analysis, LD estimation, and
haplotype analysis in a very timely and efficient fashion [29]. The software package
EIGENSOFT includes a module to perform principal component analysis, described
in Section 2.6, and can conveniently accept a number of different file formats includ-
ing the format required by PLINK [27]. IMPUTE is a program for genome wide
imputation that is very accurate and useful to synchronize genotype data collected
with different SNP arrays [41].

Issues of patient confidentiality make it difficult to share genetic data without
appropriate certification and an institutional review board approved protocol. Many
data sets from GWASs are available from dbGAP, the database of genotype and
phenotype. Access to the data has to be approved to qualified applicants in order to
guarantee patients protection. Annotated results from GWASs are maintained at the
Genome Research Institute (http://www.genome.gov/gwastudies/) and a graphical
display of the results mapped on the human genome is available from the HapMap
website (http://www.hapmap.org/karyogram/gwas.html).

4 Advanced Topics

GWASs have rapidly changed the field of genetics and in the last few years have
produced massive amounts of data. The yield of discovery from GWASs has been,
however, modest and several conjectures have been proposed to justify the lack of
results. Possible explanations include the possibility that commercial arrays are not
sufficiently comprehensive and many more variants remain to be discovered using
next generation sequencing approaches [1], and the fact that many GWASs were
not sufficiently powered to identify genetic variants with modest effects [11]. The
stringent thresholds imposed to control the false positive rate reduce the statistical
power of a GWAS even further, and family based studies may be a better alternative
for dissecting the genetic basis of common diseases. We did not discuss statistical
approaches to family based studies in this chapter, and it is important to realize that,
when related people are included in a study, the statistical analysis needs to take
into account the correlation between their genetic backgrounds. A comprehensive
review to this topic is in reference [17].

Another important fact is that the bulk of data produced by GWASs remains
largely unexplored, because of the challenge of mining and modeling massive data
sets. Genetic data can be used for risk prediction modeling, and integration of ge-

http://www.genome.gov/gwastudies
http://www.hapmap.org/karyogram/gwas.html
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netic data with other gene products can speed up the discovery of disease mechanism
and identify targets for further studies. This powerful use of genetic data is how-
ever challenging traditional statistical methods. Models that are suitable to describe
complex systems can be used to describe complex genetic diseases. Of all possi-
ble choices including classification and regression trees, random forests and other
machine learning algorithms, we find Bayesian networks a more flexible method of
analysis for complex genetic disease, and we used this model formalism to build a
risk prediction model of stroke in patients with sickle cell anemia [32]. Adapting
structure learning of Bayesian Networks to GWAS data is a non trivial problem and
substantial work is needed in this area.

5 Exercise

1. Genotype data were collected for a SNP on 1,000 diseased patients and 1,000
healthy patients. The genotype frequencies are displayed below.

AA AG GG Total
Diseased 525 300 175 1000

Not Diseased 640 245 115 1000
1165 545 290 2000

a. What is the frequency of the minor allele in the general population? What
is the frequency of the minor allele in diseased subjects?
b. We are interested in testing the association between disease status and the
SNP using a logistic regression model. Code the SNP genotypes for the addi-
tive, dominant, recessive and genotypic models. Assume that m in this chapter
refers to the minor allele.
c. Compute the odds ratio for the dominant and recessive models. What can
you conclude based on the odds ratios?

2. The allele frequencies for a SNP in the population are p(G) = 0.85 and p(T ) =
0.15. What are the expected genotype counts in a random sample of 1000 indi-
viduals, assuming Hardy Weinberg Equilibrium?

3. If the estimated IBD proportions between 2 people are 0.20,0.55, and 0.25 for
sharing 0,1 and 2 alleles IBD, what is their relation? What if the IBD proportions
are 0.44,0.52, 0.04 for sharing 0,1 and 2 alleles IBD?

4. If we test 350,000 SNPs and implement 0.10 significant level, what is the family-
wise error rate? What is the significance cutoff using a Bonferroni correction?
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Part III
Proteins: Structure, Function, and

Biochemistry



This third part of the book collects algorithms and techniques for understanding
proteins, from the individual level to networks of proteins.



Novel Perspectives on Protein Structure
Prediction

Bonnie Berger, Jérôme Waldispühl

Abstract Our understanding of the protein structure prediction problem is evolv-
ing. Recent experimental insights into the protein folding mechanism suggest that
many polypeptides may adopt multiple conformations. Consequently, modeling and
prediction of an ensemble of configurations is more relevant than the classical ap-
proach that aims to compute a single structure for a given sequence. In this chapter,
we review recent algorithmic advances which enable the application of statistical
mechanics techniques to predicting these structural ensembles. These techniques
overcome the limitations of costly folding simulations and allow a rigorous model
of the conformational landscape. To illustrate the strength and versatility of this
approach, we present applications of these algorithms to various typical protein
structure problems ranging from predicting residue contacts to experimental X-ray
crystallography measures.

1 Introduction

The prediction of a protein’s tertiary structure from its primary structure is one of
the most important problems in computational biology and biochemistry [24, 53]
yet also one of the most difficult [7]. Classical approaches to predicting protein
structure follow the traditional schema, which aims to associate a single structure to
each sequence. While this view of the problem seems supported by the the way that
data have been accumulated over years in databases, the reality of the phenomena as
described by experimentalists can be significantly more complex [4]. For instance,
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some proteins are intrinsically unstructured and characterized by lack of stable ter-
tiary structure [27]. Other proteins such as prions have multiple stable, distinct, and
functionally-related conformations [26, 44, 65]. There is also evidence that some
proteins fold in multiple step processes using intermediate meta-stable structures in
the folding landscape [61, 63]. Thus it is not unlikely for proteins to have alternate
folds.

Beyond these examples, considering the protein structure prediction problem in
a broader context can also radically change our perspective. Indeed, a cell contains
many duplicates of the same protein sequence, which are all folding independently,
potentially into similar but not necessarily identical structures. A molecule is never
frozen forever in a rigid structure. In vivo, a polypeptide is perpetually adapting its
structure, jumping from one stable conformation to another.

All these observations suggest that the protein structure prediction problem needs
to be revisited. Computing a single conformation cannot reflect the diversity of the
folds that a protein may adopt in-vivo. A complete view of the phenomena requires
an embodiment of all these varying aspects of the same molecule in the same com-
prehensive model. We illustrate the differences between classical and modern ap-
proaches in Fig. 1. While the classical approach aims to assign a single structure to
a given protein sequence (Fig. 1(a)), modern techniques aim to compute the ensem-
ble of conformations that a polypeptide can adopt (Fig. 1(b)).

(a) Classical approach (b) Ensemble approach

Fig. 1 Folding approaches. From a sequence, the classical method (a) aims to predict a single na-
tive structure, while the ensemble approach (b) aims to compute a picture of the complete ensemble
of possible structures.

There has been substantial work on characterizing globular protein folding land-
scapes for lattice and non-lattice models – see Levitt and co-workers [55, 28, 29],
Shakhnovich and co-workers [53, 40] and Dill and co-workers [16, 23, 52, 3, 37,
72]. In particular, it has been shown that the native state may be quite different from
the predicted minimum energy conformation; indeed, Zhang and Skolnick [83] have
shown that the native state is often closer to the centroid of the largest cluster of
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low energy conformations obtained by Monte Carlo sampling. Unfortunately, these
studies could not complete a full description of the conformational landscape and
were mostly restricted to computationally expensive folding simulations of single
polypeptides.

In this chapter, we describe recent algorithmic advances that enable efficient
computation of the complete ensemble of structures of a given polypeptide and
prediction of stable conformations. These techniques aim to provide a realistic rep-
resentation of the conformational landscape of a protein that could potentially be
useful to study the folding dynamics of large polypeptides [69].

Seen at the cell level, the dynamic aspect of the system is indiscernible. The
motion of individual molecules cannot be observed but the multiple conformational
states remains visible. According to statistical mechanics principles, at equilibrium,
the molecules achieving a particular fold are perpetually changing but the number
of molecules in a specific state remains constant. Originally conceived for modeling
the behavior of gas [13], the theory has been applied to other areas of computational
biology, including the prediction of RNA secondary structure [50] and the study of
transcription factor binding sites [6, 30, 54, 74].

We describe how statistical mechanical principles can be applied to modeling
and predicting protein structures. As the theory is still progressing and a general
discussion would be too long to conduct in this chapter, we will focus our discus-
sion on the description of the first application of these techniques to a difficult but
important class of proteins, namely the transmembrane β -barrel proteins [77, 75].
The techniques detailed in this chapter have potential to be extended to transmem-
brane α-helix bundles [79], certain β -sheet architectures [1, 11, 51, 21] and other
structures that can be modeled using tree structures [16].

Transmembrane β -barrels (TMBs) constitute an important class of proteins
typically found in the outer membrane of gram-negative bacteria, mitochondria
and chloroplasts. These proteins display a wide variety of functions and are rele-
vant to various aspects of cell metabolism. In particular, outer-membrane proteins
(omps) are used in active ion transport, passive nutrient intake, membrane anchors,
membrane-bound enzymes, and defense against membrane-attack proteins.

Since omps were discovered relatively recently and are difficult to crystallize,
there are currently only about one hundred TMBs in the Protein Data Bank, and
only 20 after the removal of homologous sequences. Some in vitro and in vivo mu-
tation studies of omps [81, 46] have been performed, but, compared with the over-
whelming amount of data on globular proteins, outer membrane proteins remain a
biologically important but technically difficult area of research.

In this chapter, the ensemble of TMB structures of a given polypeptide is char-
acterized by the Boltzmann partition function of the system. This achievement re-
quires us (i) to provide a model of the structures to which we can apply dynamic
programing principles for exploring the full conformational space, and (ii) to design
an energy model which allow us to evaluate the stability of each conformation. From
this quantity we show how to compute the Boltzmann pair probabilities P(i, j) that
residues i, j form an inter-β -strand contact, and rigorously sample conformations
from the Boltzmann low energy ensemble. Additionally, we show how this partition
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function value can be used to estimate statistical mechanical parameters such as en-
semble free energy, average internal energy, and heat capacity. Rigorously defined
stochastic contact maps, sampling, and thermodynamic parameters give us insight
into the folding landscape of outer membrane proteins — an insight that cannot
be gained by methods solely dedicated to the prediction of native state conforma-
tions. This approach also provides a unified framework that allows us to simultane-
ously tackle a wide variety of structural prediction problems that were previously
addressed by independent algorithms. This unified approach achieves a clear gain
in accuracy, circumventing the problem of contradictory predictions encountered
when interpreting the results of multiple, independent algorithms.

This chapter is organized as follows. In Section 2, we describe the combinatorial
model used to represent the TMBs. Then, in Section 3, we introduce the energy
model used to weight the structures, which consists of an extension of the state-of-
the-art BETAWRAP energy model [11, 21] specialized for TMBs [75, 77].

In Section 4, we detail the algorithms used to compute the complete folding land-
scape. These algorithms run in polynomial time and space. These results have been
obtained by taking advantage of the planarity imposed on a TMB by the cell mem-
brane to derive a model that allows the computation of the partition function to be
performed in polynomial time. A related approach was suggested by S. Istrail who
proved that the partition function of an Ising model can be computed in polynomial
time given a 2D lattice [42].

In Section 5, we illustrate the insight provided by these techniques by demon-
strating its effectiveness on a variety of difficult protein prediction problems: (i) how
to perform reliable residue contact predictions; (ii) how to provide a simple and intu-
itive representation of the folding landscape of a given polypeptide using stochastic
contact maps; (iii) how X-ray crystal per-residue B-factors can be predicted with
an accuracy rivaling that of leading specific B-factor prediction algorithms; and (iv)
how Boltzmann-distributed structure sampling can be used to improve the accuracy
of whole structure prediction over classical minimum folding energy approaches. In
addressing this set of challenging structural prediction problems, we wish to under-
score the strength and potential of this approach.

To conclude this chapter, we complete our review of recent protein structure en-
semble analysis tools by addressing a related problem. Once a stable conformation
has been identified, the question of how rigid or flexible the structure is remains.
Thus, we present in Section 6 recent methods enabling efficient sampling of the
local neighborhood of a given conformation.

2 Modeling transmembrane β -barrel structure

This section provides a simple and unambiguous representation of transmembrane
protein structure that enables the design of dynamic programing equations for recur-
sively enumerating all possible TMB structures. Originally, this modeling employed
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multi-tape context-free grammars [79, 75]; however, in this chapter we provide a
more classical description using a graphical representation.

Transmembrane β -barrel (TMB) proteins are embedded in the outer membrane
of Gram-negative bacteria, mitochondria and chloroplasts. The envelop of Gram-
negative bacteria is built with two membranes (inner and outer) separated by a re-
gion called the periplasm. The composition of the bacterial outer membrane differs
from that of the inner membrane by, among other things, the structure of its outer
leaflet which include a complex lipopolysaccharide.

To accurately represent TMBs (in agreement with Schulz’s summary [64]) three
fundamental features of these structures are modeled: (i) the overall shape of the
barrel (the number of TM β -strands and their relative arrangement); (ii) an exact de-
scription of the anti-parallel β -strand pairs which explicitly lists all residue contacts
and their orientation (side-chains exposed toward the membrane or toward the lu-
men), as well as possible strand extensions; and (iii) the inclination of TM β -strands
through the membrane plane. This decomposition of the structure into elementary
units is illustrated in Figure 2.

(a) Full TM β -barrel






(b) Channel (c) β -strand pair

(d) β -strand tilt

Fig. 2 Structure decomposition of transmembrane β -barrel. (a): The global structure of a trans-
membrane β -barrel. (b): Overall shape of the channel. (c): Anti-parallel β -strands. (d): Inclination
of TM β -strands across the membrane plane.

The principle behind this modeling lies in a decomposition of the β -structure
into individual blocks of β -strand pairs. In the case of TMBs, all these pairs are
anti-parallel with the exception of the closing one in case the barrel has an odd
number of strands. (Thus far only one TMB with an odd number of strands has
been found via crystallization [5].) Consequently, the complete structure can be de-
scribed as a sequence of individual β -strand pairs that will be used in Section 4 to
design a dynamic programming algorithm for enumerating all the structures of the
conformational landscape.
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In TMBs, each strand is paired with two others. Graphically, our decomposition
can be seen as follows: Instead of pairing each strand twice, we duplicate all strands
and isolate each β -strand pair (see Fig. 3). Then, the barrel can be described as a
sum of all its strand pairs.

↔
↔ + + + + +

Fig. 3 Graphical decomposition of a transmembrane β -barrel. The strands are duplicated and each
strand pair is isolated. The closing β -strand pair (with dashed lines) can be extracted and repre-
sented exactly as the others.

For TMBs, each strand is coupled with its two sequential neighbors (previous and
next) and all pairings are anti-parallel with the exception of the closing strand pair
that can be parallel if the barrel has an odd number of strands. With no restriction
on generality, we will assume in this chapter that the TMBs have an even number of
strands.

Formally, we define a β -strand pair (i.e. a block as seen in Fig. 3) with a 4-tuple(i1, j1
i2, j2

)
, where i1 and j1 (s.t. i1 < j1) are the indices of the left strand and i2 and

j2 (s.t. i2 < j2) those of the right one (see Fig. 3). The left strand corresponds to
the subsequence [i1, j1], the right strand to [i2, j2], and the loop connecting them
corresponds to the subsequence [ j1 +1, i2 −1].

The length of the TM β -strands may vary. The number of residues in contact is
Lc = min( j1− i1 +1, j2− i2 +1) and the length of the strand extension is Le =

∣∣( j1−
i1)− ( j2 − i2)

∣∣. To avoid invalid configurations, only one strand from each pair can
be extended. In addition, for simplicity of description, we assume that the rightmost
amino acid at index j1 of the left strand is paired with the leftmost residue at index i2
of the right strand. An example of a model freed from this constraint can be found in
[78]. When an extension is done on the left strand, the right strand becomes shorter
and the extension is called a reduction (Fig. 4(a)); when an extension occurs on the
right strand, the latter is elongated and the operation, an extension (Fig. 4(b)).

The set C of residue-residue contacts involved in strand pairing can be defined
as follows: C =

{
( j1 − k, i2 + k)

∣∣0 ≤ k < Lc
}

. The side-chain orientation alternates
strictly around the strand backbone and can be labeled: outwards, that is facing to-
ward the membrane, or inwards, that is facing toward the inside of the barrel, or
channel (which can vary from entirely aqueous to mostly filled). Thus, we distin-
guish the subsets of residue contacts exposed to the same environment by C0 ={
( j1 −2 · k, i2 +2 · k)

∣∣0 ≤ k < ⌊Lc
2 ⌋

}
and C1 =

{
( j1 −1−2 · k, i2 +1+2 · k)

∣∣0 ≤ k
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(a) reduction (b) extension

Fig. 4 (4(b)) Strand reduction: the left strand is elongated. (4(a)) Strand extension: the right strand
is elongated.

< ⌊Lc
2 ⌋

}
. Assuming the location of the closest contact is known, we can also assign

the nature of the milieu (i.e. membrane or channel).
Thus, we integrate these features in each block

(i1, j1
i2, j2

)
by annotating each residue

appropriately. In practice, since residue labels strictly alternate, only the side-chain
orientation of the first residue contact needs to be recorded. Figure 5 illustrates this
modeling, although these details will be omitted when they are not crucial to the
discussion.

↔

↔
Fig. 5 Representation of a TM β -strand pair with extension on right strand. Residues are annotated
by the side-chain orientation. Since the residue labels strictly alternate, only the first side-chain
orientation needs to be indicated in a simplified representation (bottom).

The inclination of strands through the membrane is modeled using the shear
number. This number represents the shift in the sequence of inter-strand residue
contacts between consecutive β -strands, imposed by the inclination of these strands
(cf. Fig. 6). This feature is implemented with the help of strand extension. Indeed,
strictly alternating reductions and extensions to consecutive strand pairs allows us to
obtain the desired configuration. Without loss of generality, and in conjunction with
experimental observations [64], we assume that (i) the N-terminus is located on the
periplasmic side and that (ii) the shear number is positive. It follows that the first
loop (between the first and second TM strand) is on the extra-cellular side. Then we
restrict reductions to occur around periplasmic loops and extensions around extra-
cellular loops. Figure 6 illustrates how to proceed.
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↔
Fig. 6 Representation of strand inclination using shear number. Reductions and extensions alter-
nate around periplasmic loops and extra-cellular loops in order to preserve the coherence of the
orientation. The N-terminus of the protein sequence in the left diagram is at the right extremity.

It is noteworthy that, in principle, a similar representation could be used to in-
clude other classes of β -sheet protein domains as long as their structures follow
similar topological rules. TMBs are well suited to this methodology since the cell
membrane restricts the number of possible structural conformations that can arise,
reducing the complexity of the representation. However, soluble β -barrel proteins
can allow more flexibility in the barrel forming β -sheet and would thus require more
sophisticated rules (such as consecutive strands that are out of sequence order) re-
sulting in an increase in the computational complexity of the method.

3 Energy model

In this section, we describe a simple pseudo-energy model inherited from the state-
of-the-art BETAWRAP energy model [11, 21] and specialized for TMBs [75]. In
practice more refined versions have been designed [77]; however, all these rely on
similar principles.

In the previous section, we defined a TMB as a sum of anti-parallel β -strand
pairs, which are themselves defined as sequences of inter-strand residue contacts.
These long-range interactions stabilize the β -strand pairs and thus the entire β -
barrel. It follows that a reliable scoring function must explicitly integrate the stabi-
lizing effect of these residue contacts.

We describe a simple model where the energy of the whole structure is the sum of
the energies of each inter-strand residue contact found in the barrel. The challenge
is thus to estimate reliable potentials for any pair of residues in contact. Unlike for
RNAs, experimental measures to allow us to directly estimate the binding energies
are not available for TMBs. Nevertheless, it is possible to estimate these potentials
by computing residue contact statistics from known protein structures.

The statistical potentials for all possible amino acid pairs can be obtained by com-
puting the probability of observing amino acid contacts in solved β -sheet structures
with characteristics closely matching those found in TMBs. The classical approach
used in [11, 21, 75, 77] takes a 50% non-redundant set of protein structures (PDB50)
from the PDB [8], and uses STRIDE [31] to identify secondary structure features,
solvent accessibility, and hydrogen bonds. Naturally, all solved structures of TMBs
have to be removed as to not corrupt the testing.
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In order to obtain the best possible estimate of these potentials, Berger and co-
workers [11, 21] introduced a major conceptual advance with the BETAWRAP pro-
gram. Instead of simply counting the occurrences of β -sheet amino acid pairings
in all known proteins, the search is restricted to better match the environment as-
sociated with a given contact. Here, the barrel fold of TMBs is thought to con-
sist of antiparallel, amphipathic β -sheets1, with a hydrophobic environment in the
outer membrane side of the barrel and a hydrophilic environment commonly exist-
ing within. Therefore, the anti-parallel bonded β -strands that exhibit an amphipathic
pattern mimic relatively well the features of TM β -strand pairs, and thus can be used
to count the frequency of pairs of residues. Alternating buried/exposed residues de-
fine amphipathicity. Usually, a buried residue is required to have less than 4% of
the solvent accessible area as when that residue is in an extended G-X-G tripeptide
[17], and an exposed residue is required to have an area greater than 15%.

The amino acid pair frequency counts are then used to estimate the probability
P(X ,Y ) of observing the amino acid pair (X ,Y ). Finer granularity information such
as side-chain rotomers or atomic coordinates are not included in this model, but may
be integrated into a more sophisticated model. Of note, Waldispühl et al. [77], intro-
duce a variant of this model incorporating the notion of stacking pairs of adjacent
pairs of residue contacts, which results in a significant gain of accuracy.

Once this amino acid pairs count is calculated, these frequency counts can be
changed into statistical potentials. Let x,y be the indices of two amino acid that are
in contact, and let M ∈ {0,1} be a variable which represents the type of environment
in which such a contact occurs (which side of the amphipathic sheet). Specifically,
M = 0 (M = 1) when the side-chain orientation is toward the channel interior (mem-
brane). Let E(x,y,M) denote the energy of the contact between amino acids X and
Y at positions x and y, with the environment M.

Pairwise frequencies are transformed into energy potentials using the standard
procedure (taking the negative logarithm — see pp. 223–228 of [18] and [68]
for details). Specifically, if pM(X ,Y ) is Boltzmann distributed, then E(x,y,M) =
−RT log(pM(X ,Y ))−RT log(Zc), where log(Zc) is a statistical re-centering con-
stant that is chosen as a parameter. Further, although RT has no effect when comput-
ing the minimum folding energy structure [75], this is not the case when computing
the partition function for β -barrel structures. For this reason, the current imple-
mentation in the program partiFold (http://partiFold.csail.mit.edu)
[75, 76, 77] allows the user to stipulate an arbitrary Boltzmann constant. The fold-
ing pseudo-energy of the structure is the sum of all contact potentials. Formally, we
have:

E = ∑
(x,y)∈C0

E(x,y,0)+ ∑
(x,y)∈C1

E(x,y,1) (1)

This model does not contain any energy contribution for periplasmic or extra-
cellular loops, although such features can easily be computed and integrated with
similar techniques.

1 The amphipaticity defines a molecule which contains both polar (hydrophilic) and non-polar
(hydrophobic) domains.

http://partiFold.csail.mit.edu
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4 Algorithms

4.1 Computing the partition function

Since a TMB structure can be represented as a sequence of anti-parallel TM β -
strand pairs, given any four indices i1, j1, i2, j2 and the environment M of the clos-
ing TM β -strand pair contact (i.e. “membrane” or “channel”), we can compute the
energy E(i1, j1, i2, j2,M) for the anti-parallel β -strand pairing of sequences [i1, j1]
with [i2, j2]. For all possible values of i1, j1, i2, j2 and M, we store the Boltzmann val-
ues exp

(
−E(i1, j1, i2, j2,M)/RT

)
in the array Qap. Since the length of TM strands,

as well as those of strand extensions are bounded, the array can be filled in time
O(n2), where n is the sequence length.

Qap(i1, j1, i2, j2,M) =
Lc−1

∏
k=0

exp
[
−E(i2 − k, j1 + k,M + k mod 2)

RT

]
(2)

Since the energy function is additive, we can decompose the energy of a TMB as
the sum of the energies associated with each distinct anti-parallel TM β -strand pair.
Let N be the number of TM β -strands of the TMB s and let ik (resp. jk) denote the
index of the leftmost (resp. rightmost) residue of the k-th strand. In order to simplify
the algorithms description, in the following we will omit the parameter M used to
indicate the environment of the first contact of an anti-parallel TM β -strand pair.
Therefore, the energy E(s) of a given TMB structure s can be written as:

E(s) = E(iN , jN , i1, j1)+
N−1

∑
k=1

E(ik, jk, ik+1, jk+1) (3)

The Boltzmann partition function is defined as the sum ∑s e−
E(s)
RT taken over all

the TMB structures s. To compute the partition function, we first introduce a dy-
namic table Qsheet to store the partition function values for β -sheets built from con-
catenating anti-parallel TM β -strand pairs, i.e. TMB without closure. This table can
be dynamically filled using the following recursion:

Qsheet

(
i1, j1
ik, jk

)
= ∑

(ik−1, jk−1)

Qsheet(i1, j1, ik−1, jk−1) ·Qap(ik−1, jk−1, ik, jk) (4)

Once filled, we use this array to compute the partition function Qtmb over all
TMBs. Note that the index k can be used to control the number of strands in the
barrels. This operation consists of adding the contributions of the anti-parallel β -
strand pairs which close the extremities of the β -sheet. For this, we could use the
values stored in the Boltzmann value array Qap; however, in practice, we use a
special array which is better suited to the special rules for this last β -strand pair.2

2 The rules for the closing pair, explicitly described in [75], mainly consist of relaxing some con-
straints, and allowing extensions on both sides of the strand.
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Qtmb = ∑
(i1, j1)

∑
(iN , jN )

Qsheet(i1, j1, iN , jN) ·Qap(iN , jN , i1, j1) (5)

Note that in order to respect the pairwise orientation as well as strand inclination,
the indices i1, j1 and iN , jN are swapped. Finally, it should be mentioned that in com-
puting the partition function, the dynamic programming must ensure an exhaustive
and non-overlapping count of all structures; in particular, the cases treated must be
mutually exclusive, as is clearly the case in our algorithm.

We illustrate these equations and overview the complete procedure in Fig. 7.
First, we initialize the dynamic arrays by computing all possible β -strand pairs
(Fig. 7(a) and Equation 2). Then, we build the β -sheets by concatenating β -strand
pairs (Fig. 7(b) and Equation 4). Finally, we close the TMBs by pairing the first and
last β -strands (Fig. 7(c) and Equation 5)

(a) Initialization: β -strand pair construction (cf. Equation 2).

+

=
(b) Chaining: Extension of β -sheets (cf. Equation 4).

+

=
(c) Closing: add closing β -strand pair (cf. Equation 5).

Fig. 7 Graphical representations of the recursive rules used to enumerate the conformational land-
scape.

Using formulas from classical statistical mechanics, a number of important ther-
modynamic parameters can be computed immediately from the partition function.
These parameters, including ensemble free energy, heat capacity, average internal
energy, etc. (see [22]), lead to a better understanding of the folding landscape. For
example, as shown in [19], the average internal energy of the structures 〈E(s)〉 can
be computed by

〈E(s)〉 = RT 2 · ∂
∂T

logQ(s), (6)
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while the standard deviation can be computed with a similar formula. Such ther-
modynamic parameters provide information on the stability of folds for a given
sequence.

4.2 Computing the residue contact probability

In this section, we address the problem of computing the Boltzmann pair proba-
bilities from the dynamic tables filled when computing the partition function value
Qtmb. First, we need to characterize the anti-parallel β -strand pairs that contain a
given contact.

Proposition 0.1. Let x and y (x < y) be two residues of two distinct consecutive anti-
parallel β -strands, and j1 and i2 (s.t. i1 ≤ x ≤ j1 < i2 ≤ y ≤ j2) the two residues at
the extremities of the connecting loop. Then, residues (x,y) are brought into contact
if and only if i2 + j1 = x+ y.

It follows from this proposition that (x,y) is a valid contact if and only if the
anti-parallel β -strands

(i1, j1
i2, j2

)
verify x+ y = j1 + i2 and i1 ≤ x ≤ j1 < i2 ≤ y ≤ j2.

To evaluate the residue pair probability p(x,y), we must compute the partition
function value over all TMBs Q(x,y) which contain this contact. Such TMBs can be
decomposed into two, three, or four parts, depending on the strand pair where the
contact occurs (i.e. in the the closing strand pair, the first and last pair of the sheet
or in an intermediate one). All these cases are illustrated in Figure 8.

Let
( i, j

i′, j′
)

be an index of a block modeling an anti-parallel TM β -strand pair.

Then, we define Qclose
( i, j

i′, j′
)
, Q f irst

( i, j
i′, j′

)
, Qlast

( i, j
i′, j′

)
and Qinter

( i, j
i′, j′

)
to be the parti-

tion functions over all TMB structures which contain this anti-parallel TM β -strand
pair as, respectively, the pair closing the barrel (Figure 8(a)), the first pair of the
TM β -sheet (Figure 8(b)), the last pair of the TM β -sheet (Figure 8(c)) or any other
intermediate pair (Figure 8(d)). Formally:

Qclose
(

i1, j1
iN , jN

)
= Qsheet

(
i1, j1
iN , jN

)
·Qap

(
iN , jN
i1, j1

)
(7)

Q first
(

i1, j1
i2, j2

)
= ∑

(iN−1, jN−1)

Qap

(
i1, j1
i2, j2

)
·Qsheet

(
i2, j2
iN , jN

)
·Qap

(
iN , jN
i1, j1

)
(8)

Qlast
(

iN−1, jN−1

iN , jN

)
= ∑

(i1, ji)

Qsheet

(
i1, j1

iN−1, jN−1

)
·Qap

(
iN−1, jN−1

iN , jN

)
·Qap

(
iN , jN
i1, j1

)
(9)

Qinter
(

ik, jk
ik+1, jk+1

)
= ∑

(i1 , j1)
(iN , jN )

Qsheet

(
i1, j1
ik, jk

)
·Qap

(
ik, jk

ik+1, jk+1

)
·Qsheet

(
ik+1, jk+1

iN , jN

)
·Qap

(
iN , jN
i1, j1

)

(10)
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Finally, using these functions, the partition function Q(x,y) = ∑S e−
E(S)
RT , where

the sum is over all TMBs that contain the residue contact (x,y), is computed as
follows:

Q(x,y) =
x+y= j+i′

∑
(i, j)

(i′, j′)

(
Qclose

(
i, j

i′, j′

)
+Q f irst

(
i, j

i′, j′

)
+Qlast

(
i, j

i′, j′

)
+Qinter

(
i, j

i′, j′

))

(11)
Finally, the Boltzmann probability p(x,y) of a contact between the residues at

indices x and y can be obtained by computing the value p(x,y) = Q(x,y)
Qtmb

. However,

we note that an extra field counting the number of strands in Qsheet is required to
ensure that the minimal number of strands in a TMB is not violated.

Assuming the length of TM β -strands and loops, as well as the shear number
values, are bounded, the time complexity is O(n3), where n is the length of the
input sequence. When the maximal length of a loop is in O(n), this complexity
should approach O(n4). Similarly, the space complexity can be bounded by O(n2).

4.3 Improved computation of the contact probabilities

The formidable time requirement for a brute force algorithm to compute Equation 10
prevents any immediate efficient application. Indeed, naively applying this equation
to the O(n2) possible residue pairs results in an overall time complexity of O(n5).
In this section, we show how a simple strategy using additional dynamic tables, has
been used to reduce the time complexity by a factor of O(n2).

Two basic observations lead to a natural improvement over a brute force algo-
rithm. First, when the TM β -strand pair that contains the residue contact is not in-
volved, the product of the partition function of two sub-structures is realized over all
possible configurations (i.e. Qu

( i, j
i′, j′

)
· Qv

( i′, j′
i′′, j′′

)
is computed over all possible pairs

of indices (i′, j′)). In equation 10, the pairs of indices (ik, jk) and (ik+1, jk+1) are
used for different residue contacts since the pair (iN , jN) varies. Thus we can pre-
compute the values of Qsheet

(ik+1, jk+1
iN , jN

)
·Qap

(iN , jN
i1, j1

)
over all possible (iN , jN) and store

them in a dynamic table for later retrieval. Given (i1, j1) and (ik+1, jk+1), let Qtail

be the array storing the values ∑(iN , jN) Qsheet

(ik+1, jk+1
iN , jN

)
·Qap

(iN , jN
i1, j1

)
. This table can be

filled in time O(n3). Then, in place of equation 10, we now have equation 12.

Qinter
(

ik, jk
ik+1, jk+1

)
= ∑

(i1,i2)

Qsheet

(
i1, j1
ik, jk

)
·Qap

(
ik, jk

ik+1, jk+1

)
·Qtail

(
ik+1, jk+1

i1, j1

)
(12)
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This improvement cannot be applied to Equations 8 and 9, since there is no re-
dundancy in those cases. The time complexity for computing all possible contact
probabilities p(i, j) is now O(n4). However, further observation allows us to save
an additional factor of O(n) in the time complexity: when a TMB structure is con-
sidered in one of the equations 7, 8, 9 or 10, the TM β -strand pair which contains the
contact (x,y) also involves many other contacts. Hence, instead of using these equa-
tions to compute the values Q(x,y) and p(x,y) separately, we consider each possible
β -strand pair and immediately add its contribution to the partition function. From
these improvements, we now have an algorithm to compute all the contact probabil-
ities of a TMB, which runs in time O(n3).

Although not explicitly mentioned thus far, we should emphasize that we can
also compute the contact probability pM(x,y) for a specific environment M — i.e.
membrane or channel (see Section 3 for an explanation of environment). To do so,
we simply need to duplicate the dynamic tables in order to take into account the
side-chain orientation for extremal TM β -strand pairs.

(a) contact occurs in closing strand pair (b) contact occurs in the first strand pair

(c) contact occurs in the last strand pair (d) contact occurs in an intermediate strand pair

Fig. 8 Decompositions of a transmembrane β -barrel, which allows us to isolate the antiparallel
TM β -strand pair that contains the residue contact. The block that corresponds to this strand pair
is indicated with white β -strands connected with dashed lines. The blocks in gray represent TM
β -sheets (i.e. a sequence of anti-parallel TM β -strands).

4.4 Rigorous sampling of transmembrane β -barrels

In this section, we describe a rigorous sampling algorithm for TMBs. Given an
amino acid sequence ω , it randomly generates, according to the distribution of struc-
tures in the Boltzmann ensemble, low energy TMB structures for ω . By sampling,
we expect to be able to efficiently estimate non-trivial features concerning the en-
semble of potential TMB folds, with the long-term goal of potentially contributing
to drug design engineering.

The sampling algorithm uses the dynamic table filled during the computation of
the partition function. It essentially proceeds in two steps illustrated in Figure 9.
First, the “closing” anti-parallel strand pair is sampled according to the weight of
all TMBs that contain it over all possible TMBs. Then, we sample each anti-parallel
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strand pair of the TM β -sheet from left to right (or alternatively from right to left)
until the last one, according to the weight of that structure over all possible TM β -
sheets. The full procedure is depicted in Figure 9. The correctness of the algorithm
is ensured by construction of the dynamic table in Equations 4 and 5.

Choose first and last TM β-strands (i1, j1) and (i2, j2) of the TMB with probability:

p

(

i1, j1

i2, j2

)

=
Qsheet

(

i1,j1
i2,j2

)

· Qap

(

i2,j2
i1,j1

)

Qtmb

And sample a TM β-sheet
(

i1,j1
i2,j2

)

.

Choose the rightmost anti-parallel TM β-strands
(

i2,j2
i3,j3

)

of the TM β-sheet
(

i1,j1
i3,j3

)

with
probability:

p(
i1,j1
i2,j2
i3,j3

) =
Qsheet

(

i1,j1
i2,j2

)

· Qap

(

i2,j2
i3,j3

)

Qsheet

(

i1,j1
i3,j3

)

And sample a TM β-sheet
(

i1,j1
i2,j2

)

.

OR:

Sample the first anti-parallel TM β-strand
(

i1,j1
i2,j2

)

with probability:

p

(

i1, j1

i2, j2

)

=
Qap

(

i1,j1
i2,j2

)

Qsheet

(

i1,j1
i2,j2

)

And exit procedure.

Fig. 9 Sampling procedure: The first and last TM β -strands of the barrel are sampled (left box).
Then the remaining TM β -sheet is sampled by iteratively sampling the rightmost anti-parallel β
strand of the remaining sequence, until the first β -strand pair of the sheet is sampled.

5 Applications

The algorithms described in the previous section are implemented in the program
partiFold [77]. The partiFold algorithms use the Boltzmann partition function to
predict the ensemble of structural conformations a TMB may assume instead of
predicting a single minimum energy structure. From this ensemble, experimentally
testable TMB properties are computed that describe the folding landscape and sug-
gest new hypotheses. In the following, we illustrate the flexibility of the approach
and show how the method can be used for predicting individual contacts, investi-
gating the conformational landscape and predicting Debye-Waller factors (a X-ray
crystallography measure accounting for the thermal motion of the atom - a.k.a. B-
factors). We finally apply whole structure sampling to demonstrate the benefits of
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ensemble modeling over single structure prediction and the possibilities for struc-
tural exploration provided by these techniques.

5.1 Residue contact prediction

Single contact prediction remains an important concern when reconstructing 3D
models [33, 43, 57]. Several machine-learning methods have been developed for
this task, among them PROFcon [57] and FOLDpro [15] (general predictors), BE-
TApro [14] (specialized for β -structures) and TMBpro [59] (specialized for TMBs)
are among the most reliable. However, it should be noted that, while some of them
can provide stochastic contact map of β -strand interactions, the interaction prob-
abilities are not related to a Boltzmann distribution of conformations, but rather
based on sophisticated neural networks and graph algorithms that aim to predict a
single structure. In addition, their energy models also do not appear to be common
across all proteins, resulting in difficulties to interpret and compare results between
different proteins.

But even conceptually, the ensemble approach is radically different from previ-
ous machine-learning methods. Indeed, while the latter first start by making individ-
ual and unrelated contact predictions and finish by reconstructing a whole structure,
the ensemble method does not dissociate both aspects, since the set of TMB struc-
tures is computed first and the contact probabilities are subsequently evaluated from
the folding energies of these structures.

To test the ensemble method, single contact predictions are made by selecting
all pairwise contacts that have a probability greater than a given threshold pt in the
stochastic contact map, and compare those against the corresponding contacts found
in X-ray crystal structures as annotated by STRIDE [31].

To evaluate the contact predictions, we classically rely on three standard mea-
sures: the sensitivity (or coverage), where

sensitivity =
number of correctly predicted contacts

number of observed contacts
,

the positive predictive value (abbreviated PPV and also known as accuracy), where

PPV =
number of correctly predicted contacts

number of predicted contacts
,

and the F-measure, where

F-measure =
2 · sensitivity · PPV
Sensitivity + PPV

.

To demonstrate how these metrics would apply to this type of contact prediction,
we refer to Figure 10, which depicts the accuracy of contact prediction for the crystal
structure of outer membrane protein X (abbreviated OmpX) [73]. The flatness of
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the curves further indicates a good separation between accurate, highly probable
contacts, and background predictive noise. This type of result could suggest a good
scaffold of likely contacts when constructing a 3D model of an unknown structure.

Fig. 10 Predicting residue contact probabilities in OmpX (1QJ8 [73]). The x-axis represents the
threshold used to select the residue contact predictions. The graph shows the curves of the F-
measure, sensitivity (or coverage) and positive predictive value (or accuracy, abbreviated PPV).

These techniques have proven to provide the state-of-the-art predictions for
TMBs [77]. However, there is still room for improvement. For instance, current
algorithms do not yet model bulges in β -sheets and suffer slightly in performance
where bulges exist.

5.2 Representations of ensembles

The class of predictions enabled by these techniques embody whole-ensemble prop-
erties of a protein. The contact probabilities can be treated all together to represent
and analyze different aspects of the folding properties of a polypeptide.

In Fig. 11, a single structure is chosen (in this case the X-ray structure of OmpX
[73]), and displayed as an unrolled 2D representation of the β -barrel strands and
their adjacent residue contacts. Using the stochastic contact map, residue contact
pairs are then colored to indicate a high (black), a medium (dark gray) or a low (light
gray) probability in the Boltzmann distributed ensemble. From this, substructures
may be analyzed from their relative likelihood of pairing.
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Fig. 11 Contact probabilities mapping to OmpX (1QJ8) X-ray crystal structure [73]. 2D represen-
tation (unrolled β -barrel) showing only those residues involved in β -strands (shown vertically and
successively numbered) and their associated, in-register H-bonding partners. Computed contact
probabilities indicated by color hue (highly probable in black, medium probability in dark gray
and low probability in light gray). The leftmost β -strand is repeated on the right to allow the barrel
to close.

In Fig. 12, the inter-strand residue contact probabilities are merged in the upper
triangle of a single matrix called a stochastic contact map. This reflects the likeli-
hood of two β -strand amino acids pairing in the (estimated) Boltzmann distribution
of conformations, and not one single minimum folding energy structure. This graph-
ical representation provides an intuitive way to depict the variety of structures that
can be found in the conformational landscape. We can also compare with these maps
the contacts of a given structure (in this case, the contact found in the X-ray structure
are plotted in the lower triangle) to estimate its adequacy with the conformational
landscape suggested by the high contact probabilities (gray regions of the stochastic
contact maps).

While the mapping allows analysis of the likelihood of a given structure from
the ensemble perspective, the stochastic contact maps enable us to investigate the
folding landscape and estimate the variety of folds of a given polypeptide.
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Fig. 12 Stochastic contact map for Neisserial Surface Protein A (NspA). Horizontal and vertical
axes represent residue indices in sequence (indices 1 to 155 from left to right and top to bottom),
and points on the map at location (i, j) in the upper triangle represent the probability of contact be-
tween residues i and j (where darker gray implies a higher probability). The X-ray crystal structure
contacts of 1P4T [71] are shown in the lower triangle.

A striking example of the biological relevance of these techniques is shown in
Fig. 13. The stochastic contact map of the Outer Membrane Enzyme PagP protein
is computed. It contains the contacts found on the X-ray crystal structure 1THQ [2]
(in black in the lower triangle), and those of the minimum folding energy structure
(in gray in the lower triangle). Here, we note that (i) it is clear that the native confor-
mation (black, lower triangle) differs radically from the minimum energy structure
(gray, lower triangle), and (ii) the stochastic contact map reveals alternate β -strand
pairs with high probabilities (in gray in the upper triangle).

These discrepancies may be explained through the lens of a recent experimen-
tal study. Indeed, Huysmans et al. [41] showed that the N-terminal α-helix found
in the native structure is essential for the stability of the native β -barrel structure.
If we constrain the corresponding α-helical regions of the contact map to not fold
into a barrel (peach regions in Fig. 13), this prevents the protein from folding as the
minimum free energy structure and thus allows it to adopt one of the other confor-
mations suggested by the stochastic contact map (gray regions in Fig. 13), which
coincides with the native structure (in black in the lower triangle). This example
illustrates how the contact maps can suggest alternate folds.
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Fig. 13 Multiple conformations of PagP proteins. The stochastic contact map (gray regions in the
upper triangle) is compared with the contacts found on the X-ray crystal structure 1THQ [2] (in
black in the lower triangle), and those of the minimum folding energy structure (in gray in the lower
triangle). If we constrain the corresponding α-helical regions of the contact map to not fold into a
barrel (gray stripes), this prevents the protein from folding as the minimum free energy structure
and thus allows it to adopt one of the other conformations suggested by the stochastic contact map
(gray regions in the upper triangle), which coincides with the native structure (in black in the lower
triangle).

5.3 Prediction of residue flexibility

We now show how the contact probabilities can be used to predict per-residue flexi-
bility and entropy. To a first approximation, this flexibility correlates with the Debye-
Waller factor (a.k.a. B-factor) found in X-ray crystal structures [60]. This demon-
strates an important purpose for computing the Boltzmann partition function: to
provide biologically-relevant grounds for the prediction of experimentally testable
macroscopic and microscopic properties.

Predicting residue B-factors is important because it roughly approximates the
local mobility of flexible regions, which might be associated with various biological
processes, such as molecular recognition or catalytic activity [62]. In this context,
flexible regions are strong candidates for loop regions connecting anti-parallel TM
β -strands that extend either into the extracellular or intracellular milieu.

Classical B-factor predictors use machine learning approaches [62]. However, as
is the case for contact predictions (cf. Section 5.1) these techniques do not provide a
comprehensive framework facilitating the understanding of these results in a larger
context. Indeed, previous methods were specifically designed to make only these
predictions, while in ensemble approaches, B-factors are just one of the multiple
characteristics that can be extracted from an ensemble model.

We define the contact probability profile of every amino acid index i in a TM β -
barrel to be Pc(i) = 2−∑n

j=1 pi, j, and compare this against the normalized B-factor.
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Since a residue may be involved in two contacts in a β -sheet, the value of Pc(i) can
range between 0 and 2, where higher values indicate greater flexibility. Similarly,
residues with a positive B-factor are considered flexible or disordered, while others
are considered rigid. In Figure 14, we illustrate this method by comparing the curves
of X-ray B-factors and contact profiles of OmpX (1QJ8) [73] and NspA (1P4T) [71]
proteins.

Fig. 14 Comparison of B-factors and contact probability profiles of OmpX (1QJ8) [73], left, and
NspA (1P4T) [71], right, proteins.

Computing the cross-correlation coefficient between the Pc and B-factor of test
proteins reveals that this method provides state-of-the-art predictions [77]. But the
real purpose of this work actually goes much beyond that. The direct predictions
of experimental measures are of fundamental importance. It enables biologists to
directly compare computational predictions to experimental measures and avoid any
misleading interpretations. These methods also can be efficiently used to tune the
theoretical folding model to fit experimental data.

5.4 Whole structure prediction through Boltzmann sampling

Finally, we show how ensembles of structures can characterize protein structure
better than the minimum folding energy (m.f.e.) structure. We perform stochas-
tic conformational sampling (cf. Section 4.4) to map the landscape defined by the
Boltzmann partition function. This also illustrates how the approach can be used to
rigorously explore the space of all possible TMB structures. By clustering a large
set of full TMB structure predictions, a small distinguishable collection of unique
conformations are exposed.

Waldispühl et al. [77] sampled 1,000 TMB structures and grouped them into
10 clusters according to hierarchical clustering. Similar to prior methods developed
for RNAs [25], for each cluster one can designate a centroid representative confor-
mation that is chosen as the structure with the minimum total distance to all other
structures in the set. To facilitate this clustering, a metric named contact distance
is introduced: dc(S1,S2) = |C1|+ |C2| − 2 · |{C1 ∩C2}|, where C1 and C2 are the
sets of contacts in S1 and S2 (which represents the minimum number of contacts to
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be removed and added to pass from S1 to S2 or vice versa). Other metrics could be
defined but the latter seemed to provide the best results.

The results showed that the centroid of the largest cluster usually provides a
better solution than the minimum folding energy structure [77]. It has also been
found than in some cases a centroid of another cluster provides significantly better
structure predictions. However, the identification of the “best” cluster, as well as the
the robustness of the clusters to the distance used, remains to be investigated.

6 Sampling the local neighborhood of 3D structures

We conclude this chapter by addressing a different but related problem. Instead of
sampling the global folding landscape of a protein sequence of unknown structure,
we aim to sample the local neighborhood of a given 3D structure. In other words,
we seek to estimate the stability of a structure and explore the variations of specific
folds at a precision not achieved by partiFold.

Unlike the methods described in previous sections, we no longer restrict our con-
formational space to TMBs. In the following, we overview the principal aspect of
this approach. In Section 6.1, we introduce a structural modeling approach that suits
the problem well. In Section 6.2, we describe the sampling procedure. Finally, in
Section 6.3, we give an application of this approach.

6.1 Structure modeling

Since we aim to sample in the local neighborhood of a given 3D structure, the size
of the explored conformational landscape is drastically smaller than in previous sec-
tions. Thus, we can afford to use a more detailed description of the structure. Of the
many different representations of protein structure, one that has gained popularity
is that of the torsion angle representation. This representation makes use of the fact
that bond lengths and bond angles show little variation across structures [34], and
hence can be assumed to be fixed (cf. Fig. 15). The flexibility of protein molecules
can thus almost entirely be described by rotation about covalent bonds.

Fig. 15 Torsion angle representation of a polypeptide.
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Such a simplified model has the advantage of not having to enforce regular ge-
ometry constraints. But, at the same time, non-bonded interactions are non-trivial to
calculate in this reduced representation.

6.2 Sampling in the Torsion space

One of the biggest advantages of using this reduced model of a protein is the speed
with which one is able to sample the conformation space. By discretizing the dihe-
dral angle space (i.e. the Ramachandran plot [58], see Fig. 16(a)) and biasing so-
lutions lying within specified regions, one can sample protein conformations in the
neighborhood of a native structure (see Fig. 16(b)). By efficiently exploiting various
algorithms developed in the Inverse Kinematics community, the algorithm Chain-
Tweak [67] was shown to be capable of exploring a much larger conformational
space than previous methods [10, 12, 35, 39, 47, 55, 70].

ChainTweak iteratively perturbs the base conformation using the torsion (a.k.a.
dihedral angle) representation. A sliding window approach is used to successively
move some atoms by 0-2 Å, while keeping all others fixed (see Fig. 17(a)). Inside the
window, loop closure methods are used to generate such perturbations [20, 49, 80].
Moreover, residue specific Phi-Psi angle preferences, given by a Phi-Psi priority
scheme (Fig. 16(b)) inherited from a Ramachandran plot [58] (Fig. 16(a)), can be
used to choose a perturbation. The loop closure problem was informally discussed
by Robert Diamond and M. Levitt and formally defined by Go and Scheraga [32].
The input to such a problem is the relative position of two fixed residues (anchors)
at each end and the goal is to find different possible conformations for a polypeptide
chain of length m joining the fixed ends.

Rather than being closely tied to some search strategy (or an energy function),
ChainTweak is a stand-alone method that can be used by researchers as a black-box,
allowing them to focus on other parts of the search problem (e.g., energy function
design [48]). Unlike classical molecular dynamic simulations, which are constrained
by folding trajectories, it allows an unbiased sampling of the conformational land-
scape in the neighborhood of a given structure.
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(a) Ramachandran plot (b) Phi-Psi priority scheme

Fig. 16 (a) Reference Ramachandran plot and (b) phi-psi priority scheme: (dark gray: highest
priority)>(medium gray: medium priority)>(light gray: lowest priority) [67].

We show in Fig. 17(b) an application of this program and sample ten conforma-
tions from the neighborhood of a 32-residue protein structure (PDB:1CLV, chain I
[56]). Using the LoopClsr [67] algorithm iteratively (Fig. 17(a)) on the backbone
of a protein, we generated conformations in the neighborhood of this structure [1-
4Å] within a few seconds. The size of the neighborhood explored and topology
of the backbone can be constrained depending on the context of the simulations.
ChainTweak is purely geometric in nature and does not inherently depend on any
energy function. This makes it a useful standalone sampling algorithm, which can
then be combined with existing energy functions. Such a methodology completely
eliminates the dependence of sampling on the limitations of the energy function.

(a) Sampling procedure (b) Example output

Fig. 17 (a) Iteratively modifying the backbone of a protein. Sliding window formulation imple-
mented in ChainTweak [67]. (b) Example output from ChainTweak. Ten conformations from the
neighborhood of a 32-residue protein structure (PDB:1CLV, chain I [56]) were sampled and aligned
with the original. The original structure is in black, the others are in gray [67].
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6.3 Structure Determination

Structure prediction and determination are still significant bottlenecks to the goals
of the Structural Genomics initiative [9]. Due to great advances in sequencing tech-
nologies and algorithms for analyzing sequence data, the gap between the number
of genomes known and number of structures known is even increasing. In order
to close this gap, significant advances need to be made in two areas: 1) accurately
and efficiently determine structures from incomplete experimental data [9], and 2)
develop accurate energy functions that can filter out native structures from a set of
decoys. The first problem can be set up as an optimization problem, for which the
sampling algorithm is critical for exploring diverse structures and thus maximizing
the likelihood of the observed data. Furthermore, as we move away from a “static”
picture of a protein to a more dynamic one, the ability to exhaustively sample all
degrees of freedom becomes critical to our understanding of the structure. Chain-
Tweak is ideally suited for such an analysis, as we have demonstrated by model-
ing the heterogeneity in crystal structures solved at medium to low resolutions [38].
More importantly from a biological standpoint, such an analysis potentially provides
a mechanism for understanding the protein structure-function relationship [45].

7 Exercises

1. In Section 4, we add an energy term L (n) to the loop connecting the β -strand
pairs, where n is the number of residues in the loop. Modify the recursive equa-
tions of Section 4 to account for this change.

2. Write a backtracking algorithm for computing the Boltzmann probability of clos-
ing β -strand pairs of length n (i.e. n inter-strand residue contacts).

3. We assume that the sampling algorithm in Section 4 returns the energy E(S)
of the sampled TMB structure S. Let Z be the partition function value. Then,

the Boltzmann probability of a structure S is P(S) = e−E(S)/RT

Z
. Write an iterative

procedure for sampling TMBs until a ratio ρ (0 < ρ ≤ 1) of the folding landscape
has been covered.

4. Write pseudo-code for the ChainTweak algorithm illustrated in Fig. 17(a).

8 Further reading

Many studies provide reliable techniques for sampling structures from sequence.
The popular Rosetta [66] uses multiple sequence alignments to select small protein
backbone fragments that are assembled together using a simulated annealing pro-
cedure. More recently, novel approaches have been proposed for overcoming the
difficulty of designing a reliable energy function required to perform a simulated
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annealing procedure. Indeed, lattice-based techniques [82], HMMs [36], and more
general Conditional Random Fields (CRFs) [84, 85] have been successfully applied
for this purpose. However, it is worth noting that the methods cited here generate
decoys but do not sample from a rigorously defined distribution of structures.

To conclude this chapter, we note that the program partiFold detailed in Section 4
has recently been extended to perform structural ensemble comparisons [78] and
generate accurate sequence alignments of proteins with low sequence identity.
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Stochastic Simulation for Biochemical Systems

Yang Cao

Abstract Biochemical systems are often modeled with ordinary differential equa-
tions that are continuous and deterministic by nature. In recent years, with the devel-
opment of new techniques to collect wet-lab data in a single cell, there are increasing
concerns on the stochastic effect in cellular systems, where the small copy numbers
of some reactant species in the cell may lead to deviations from the predictions of
the deterministic differential equations of classical chemical kinetics. In this chap-
ter, we will review important algorithms for stochastic modeling and simulation of
biochemical systems.

1 History of the Problem

Biochemistry studies the chemical processes in living organisms. Typical areas of
biochemistry include the gene (DNA, RNA) network, protein synthesis, cell mem-
brane transport, and signal transduction. Traditionally, biochemical systems have
been studied with mathematical modeling and simulation, based on ordinary dif-
ferential equations (ODEs) , in which biochemical processes are represented using
Reaction Rate Equations (RREs). The general form of the RREs can be formulated
as

dxi

dt
= fi(x1, · · · ,xn), i = 1, · · · ,n, (1)

where the state variables xi represent the concentrations of involved species, and
functions fi are inferred from various chemical reactions in the system. In typical
RREs, fi’s are generated from mass action kinetics [29], Mechalias-Menton or Hill
equations [37, 31]. Other types of functions have also been used to model biochem-
ical systems, such as the S-system [46, 41, 42, 43] in biochemical systems theory,
a mathematical modeling framework based on ODEs that has been developed since
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the 1960s. With the development of systems biology, there have appeared more and
more successful biochemical models [5, 15, 16] using ODEs. On the other hand, a
model represented by ODEs is naturally continuous and deterministic. This feature
limits its application to certain cellular systems [1, 17, 34] where the molecular pop-
ulations of some important reactant species are small, from one to thousands. Typ-
ically, the concerned systems involve copy numbers of one or two for the number
of genes of a given protein, on the order of tens to hundreds for the corresponding
RNAs and on the order of thousands for regulatory proteins and enzymes. For those
systems, the discreteness and stochasticity may play important roles in the dynamics
of the system. The traditional modeling techniques based on ODEs cannot be used
to describe the discrete and stochastic kinetics. Thus discrete stochastic modeling
and simulation has become a hot area in recent years.

To include discreteness and randomness, the most accurate way to model and
simulate the time evolution of a system of chemically reacting molecules is molec-
ular dynamics (MD) simulation, which tracks the positions and velocities of all
the molecules and the occurrence of all chemical reactions when molecules physi-
cally collide with each other. MD simulation was originally developed in theoretical
physics in the late 1950s [2, 26] and gained popularity in material science, biochem-
istry, and biophysics in the 1970s. But MD simulations are generally too expensive
to be practical except in the case of a relatively small number of molecules and
even then only for very short time scales. To handle this difficulty, in 1970s people
started to consider special cases where the dynamics of biochemical systems can be
approximated by assuming that the reactant molecules are ”well-stirred” such that
their positions become randomized and need not be tracked in detail. When that is
true, the state of the system can be defined simply by the instantaneous molecular
populations of the various chemical species. The chemical reactions can be defined
as events that modify the state of the system following certain biochemical rules,
changing the molecular populations by integer numbers. Based on the well-stirred
assumption, a practical discrete and stochastic modeling and simulation technique
for biochemical systems, now known as the stochastic simulation algorithm (SSA)
or Gillespie algorithm, was proposed by Dan Gillespie in two classical publica-
tions [20, 21]1. Gillespie’s pioneering work was originally proposed for chemically
reacting systems and had been criticized for many years, since there were no prac-
tical chemically reacting systems known at that time that really needed this discrete
stochastic modeling and simulation technique, until in the 1990s, the rapid develop-
ment of biological experiment technologies enabled observations of the dynamics
in a single cell and people’s attentions were drawn to the biochemical models in
cells. In the famous discrete stochastic model [1] of lambda phage affected E. coli
published by Adam Arkin et al. in 1998, Gillespie’s SSA was successfully used
to simulate this discrete stochastic model and demonstrate that the randomness in

1 Interestingly, a mathematically-equivalent simulation algorithm, the BKL method [4], was pro-
posed independently in the 70s, for the Monte Carlo simulation of ising spin systems. Gillespie’s
work focuses more on chemical systems, while the BKL method focuses more on physical systems.
Their similarity was noticed only recently. Here we will discuss these more from the chemical sys-
tems point of view.
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the cell may cause phenotype differences. It was a milestone for the application of
discrete stochastic algorithms in the modeling of cellular systems. After that, Gille-
spie’s SSA has become very popular in research in computational biology and sys-
tems biology. It is widely accepted as a classical modeling and simulation method
in this area.

With more and more applications of the SSA, it finally attracts more computa-
tional scientists to make further development. Different implementation strategies
and approximation algorithms were proposed in the past ten years. For the imple-
mentation of SSA, following the original direct method (DM) and the first reaction
method (FRM) proposed by Dan Gillespie [20, 21] in 1976 and 1977, the next re-
action method (NRM) [18] was proposed in 2000. The optimized direct method
(ODM) [13] was proposed in 2004 and the sorted direct method (SDM) [35] was
proposed in 2006. For all these implementation strategies, the efficiency gains over
the original DM in computation time are usually less than 20%, which are still con-
sidered very slow for many applications. This low efficiency comes from the algo-
rithm itself. As the SSA is a procedure simulating every reaction event individually,
the computational cost is inevitably high. Thus approximation methods have been
developed. The first approximation method, called the tau-leaping method [23], was
proposed by Dan Gillespie in 2001. Following that, new tau-leaping methods, such
as the binomial tau-leaping method [14, 45], implicit tau-leaping method [40] and
trapezoidal tau-leaping method [7] have been proposed. The efficient implementa-
tion of the tau-leaping method have also been discussed [10, 12, 24]. More and more
robust and efficient stochastic simulation algorithms are still under research.

2 Algorithm Description

2.1 Problem Definition and the Chemical Master Equation

Consider a system of N molecular species {S1, . . ., SN} interacting through M el-
emental chemical reaction channels {R1, . . . ,RM}. We assume that the system is
confined to a constant volume Ω and is well-stirred, or, in other words, is in thermal
(but not chemical) equilibrium at a constant temperature. Under these assumptions,
the state of the system can be represented by the populations of the species involved.
We denote these populations by X(t)≡ (X1(t), . . . ,XN(t)), where Xi(t) is the number
of molecules of species Si in the system at time t. The well-stirred condition is cru-
cial. When this condition is broken, the spatial information of each species becomes
important and the population information for the species will not be enough alone
to determine the system dynamics. In cases where the well-stirred condition does
not hold, the required simulation techniques will be different from what we discuss
in this chapter. The so-called elemental reactions only include monomolecular and
bimolecular reactions. Generalizations can be made to include more complicated
reaction types such as the commonly used Michaelis-Menten reaction [8, 11, 38].
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We note that modeling these higher-order reaction types using discrete stochastic
methods are still under research and are not addressed in this chapter.

For a well-stirred system, each reaction channel R j can be characterized by a
propensity function a j and a state change vector ν j ≡ (ν1 j, . . . ,νN j). The propensity
function is defined by the statement:

a j(x)dt ≡ the probability, given X(t) = x, that one R j reaction will occur
in the next infinitesimal time interval [t, t +dt).

All state change vectors ν j form a matrix ν , which is also known as the stoichio-
metric matrix. νi j, the element in the stoichiometric matrix ν , is the change in the
molecular population Si induced by one reaction R j. The propensity function a j(x)
reflects the fundamental characteristics of the stochastic chemical kinetics. Its value
depends on the populations of the reactant populations and a reaction propensity
rate constant c j, which is defined so that

c jdt ≡ the probability that a randomly chosen combination of R j reactant
molecules will react in the next infinitesimal time dt.

Then a j is the product of c j and the number of all possible combinations of R j

reactant molecules.
The following are three simple examples of basic reactions and their propensity

functions and state change vectors.

For S1
c1−→ S2, a j(x) = c1x1, and ν j = (−1,1,0, · · · ,0). (2)

For S1 +S2
c1−→ S3, a j(x) = c1x1x2, and ν j = (−1,−1,1,0, · · · ,0). (3)

For S1 +S1
c1−→ S2, a j(x) =

c1

2
x1(x1 −1), and ν j = (−2,1,0, · · · ,0). (4)

It is easy to see that the form of the propensity function is similar to the mass ac-
tion terms in deterministic RREs. The value of c j is similar to its counterpart, the
reaction rate constant k j in the RREs. And indeed there is a connection between
c j and k j depending on the reaction type. For a monomolecular reaction such as in
the example of equation (2), c1 = k1. For a bimolecular reaction between different
species such as in (3), c1 = k1

AΩ , where A is Avogadro’s number and Ω is the con-
stant volume. For a bimolecular reaction between the same species, the forms of the
propensity function and the reaction rate function have a slight difference, but when
x1 is large the difference will be negligibly small and we will have c1 ≈ 2k1

AΩ .
Once the propensity functions and stoichiometric matrix are determined, the dy-

namics of the system obeys the chemical master equation (CME):

∂P(x, t|x0, t0)
∂ t

=
M

∑
j=1

[a j(x−ν j)P(x−ν j, t|x0, t0)−a j(x)P(x, t|x0, t0)], (5)
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where P(x, t|x0, t0) denotes the probability that X(t) will be x given that X(t0) = x0.
In principle, the CME completely determines the dynamics of P(x, t|x0, t0). But the
CME is essentially an ODE whose dimension is given by the number of all possible
combinations of states of x. Consider the example of a small reaction network of
5 species and assume that the population of each species is in the range from 0 to
99. The dimension of the corresponding CME will then be 1005 = 1010. As the
number of species increases, the dimension of the corresponding CME increases
exponentially. The rapidly increasing dimension presents a great challenge for the
numerical solution of CMEs. This challenge is known as the ”curse of dimension”. It
is easy to see that the CME is both theoretically and computationally intractable for
all but the simplest models. In recent years, there has been some interesting research
[36, 47] trying to reduce the dimension of the CME or to provide an approximate
numerical solution of the CME. Progress has been made but so far these methods
still can only be applied practically to simple models.

2.2 The Stochastic Simulation Algorithm (SSA)

Another way to study the dynamics of a chemically reacting system is to construct
realizations of X(t) through numerical simulation. In numerical simulation, the key
is not to directly compute the probabilities P(x, t|x0, t0) but to generate a single
trajectory (a realization) that the system may undergo. The most important simu-
lation method in this direction is Gillespie’s stochastic simulation algorithm (SSA)
[20, 21]. Instead of following the time evolution of the probabilities, the SSA gen-
erates a trajectory of the system step by step. In each step, the SSA starts from a
current state x(t) = x and asks two questions:

• When will the next reaction occur? We denote this time interval by τ .
• When the next reaction occurs, which reaction will it be? We denote the chosen

reaction by the index j.

To answer the above questions, one needs to study the joint probability density
function p(τ, j|x, t), which is defined by

p(τ, j|x, t)dt = the probability, given X(t) = x, that the next reaction will
occur in the infinitesimal time interval [t + τ, t + τ +dt),
and will be an R jreaction.

(6)

It can be derived [20, 21] that

p(τ, j|x, t) = a j(x)exp(−a0(x)τ), (7)

where a0(x)≡ ∑M
j=1 a j(x). Equation (7) is the theoretical foundation for the SSA. It

implies that the time τ to the next occurring reaction is an exponentially distributed
random variable with mean 1/a0(x), and that the index j of that reaction is the
integer random variable with point probability a j(x)/a0(x). To advance the system
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from state x at time t, the SSA generates two uniform random numbers r1 and r2

over the unit interval, and then takes the time of the next reaction to be t + τ where

τ =
1

a0(x)
ln

(
1
r1

)
, (8)

and the index for the next reaction to be the smallest integer j satisfying

j

∑
j′=1

a j′(x) > r2a0(x). (9)

The system state is then updated according to X(t + τ) = x+ν j, and this process is
repeated until the simulation final time or until some other terminating condition is
reached.

2.3 The Tau-Leaping Method

The tau-leaping method (Gillespie, 2001) was designed to speed up a stochastic
simulation by leaping over many reactions in one time step. This idea is illustrated
in Figure 1. The tau-leaping method makes the leap by answering the following

Fig. 1 The comparison between the SSA and the tau-leaping method. The tau-leaping method
leaps over many reactions in one time step.

question: How many times will each reaction channel fire in the next specified time
interval τ? More precisely, let

Kj(τ;x, t) , the number of times, given X(t) = x, that reaction channel R j will
fire in the time interval [t, t + τ) ( j = 1, . . . ,M).

(10)
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For arbitrary values of τ it will be about as difficult to compute Kj(τ;x, t) as to solve
the CME. The tau-leaping method chooses a small τ value to satisfy the following
Leap Condition: For the current state x, require τ to be small enough that the
change in the state during [t, t + τ) will be so small that no propensity function will
suffer an appreciable change in its value. Under the Leap Condition, a good approx-
imation to Kj(τ;x, t) will be provided by P(a j(x),τ), the Poisson random variable
with mean (and variance) a j(x)τ . So if X(t) = x and we choose τ to satisfy the
Leap Condition, we can update the state to time t + τ according to the approximate
formula

X(t + τ)
.
= x+

M

∑
j=1

ν jP(a j(x)τ), (11)

where P(a j(x)τ), for each j = 1, ...,M, denotes an independent sample of the Pois-
son random variable with mean and variance a j(x)τ . This computational procedure
is the tau-leaping approximation.

The tau-leaping method makes a natural connection between the SSA and the
deterministic RREs. When τ is chosen very small such that in every time step there
is at most one reaction occurring, the tau-leaping method reduces to a linear approx-
imation of the SSA. When τ is allowed to be large such that

a j(x)τ ≫ 1, for all j = 1, . . . ,M, (12)

the Poisson random number P(a j(x)τ) can be approximated by the Normal random
number with mean and variance a j(x)τ , denoted by N(a j(x)τ,a j(x)τ). Then the for-
mula (11) reduces to the forward Euler method for the chemical Langevin equation
(CLE) (Gillespie, 2001). Moreover, when the values a j(x)τ , for all j = 1, ...,M, are
even larger, the standard deviation is then negligible compared to the mean value.
The Poisson random number P(a j(x)τ) can then be simply replaced by its mean
value a j(x)τ . Then the equation (11) becomes

X(t + τ)
.
= x+

M

∑
j=1

ν ja j(x)τ, (13)

which is the forward Euler method for the corresponding RREs. Note that here the
merger of the tau-leaping method into the forward Euler method is seamless. One
does not need to check the condition (12) for all j’s. The idea of using the normal
random number or just the mean value to approximate the Poisson random number
can be applied for any individual j. This procedure can be wrapped in a Poisson
random number approximation procedure. Choose two threshold values: M1, for
which the Poisson random number P(M1) can be safely approximated by a normal
random number N(M1,M1), and M2, for which P(M2) can be safely approximated
by M2.
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3 Available Implementations

There have been different implementations for the SSA and the tau-leaping methods.
In this section, we introduce a straightforward implementation of the SSA called the
direct method (DM). Other implementation strategies can be found in Section 5. The
focus is on the more complicated implementation of the tau-leaping method.

The SSA can be simply implemented as in the following algorithm.

The DM implementation of SSA

Starting from initial condition t = t0 and x = x0,

1. With x(t) = x, calculate all a j(x) and a0(x).
2. If a0(x) = 0, terminate the simulation. Otherwise generate two uniform random

numbers r1 and r2. Calculate τ and j according to (8) and (9) respectively.
3. Update the system by t = t + τ and x = x+ν j.
4. If t reaches the end time, stop. Otherwise, go to step 1.

The implementation of the tau-leaping method is much more complicated. Any
implementation of the tau-leaping method has to solve two important problems:

• Avoid negative populations. Negative populations resulting from the original tau-
leaping method have been observed in the simulation of certain systems in which
some consumed reactant species are present in small numbers.

• Dynamically select τ values. The key point here is to make sure that the Leap
Condition is satisfied and the simulation is still efficient.

3.1 Avoid Negative Populations

The negative population problem arises often from multiple reaction channels con-
suming the same reactant. We made an observation [10] that most negative popula-
tions were related to species with a low population. Based on this observation, an
adaptive hybrid SSA/tau-leaping implementation strategy was proposed [10], which
seems to resolve the negativity problem satisfactorily.

Since negative populations typically arise from multiple firings of reactions that
are only a few reaction events away from consuming all the molecules of one of
their reactants, the hybrid SSA/tau-leaping strategy defines these reaction channels
as the critical reactions. The hybrid strategy introduces a second control parameter
nc, a positive integer that is usually set somewhere between 2 and 20. Any reaction
channel with a positive propensity function that is currently within nc firings of ex-
hausting one of its reactants is classified as a critical reaction. The hybrid strategy
chooses τ in such a way that no more than one firing of all the critical reactions
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can occur during the leap. Essentially, the algorithm simulates the critical reactions
using an adapted (and thus not quite exact) version of the SSA, and the remaining
non-critical reactions using the tau-leaping method. Since no more than one firing
of a critical reaction can occur during a leap, the probability of producing a negative
population is reduced to nearly zero. On those rare occasions when a negative popu-
lation does arise (from firings of some non-critical reaction), that step can simply be
rejected and repeated with τ reduced by half, or else the simulation can be started
over using a larger value for nc.

There are still some important implementation details. First, how do we decide
whether or not a reaction is critical with the parameter nc? This is done by first
estimating for each reaction R j with a j(x) > 0 the maximum number of times L j

that R j can fire before exhausting one of its reactants [45, 14]:

L j = min
i∈[1,N]; νi j<0

[
xi

|νi j|

]
. (14)

Here the minimum is taken over only those index values i for which νi j < 0, and
the brackets denote “greatest-integer-in”. After L j is calculated, it is compared with
nc. If L j < nc, R j is considered as a critical reaction and should be simulated by the
SSA part. Otherwise, R j is noncritical and can be simulated by the tau-leaping part.

The next step is to decide how to implement the SSA part and the tau-leaping
part together. To solve this problem, in every simulation step we first generate a
τ ′ from a τ-selection procedure and a τ ′′ from the SSA part. If τ ′ is even smaller
than a few fold of the expected stepsize of a pure SSA method, 1

a0(x) , we will stick
with the pure SSA method. Otherwise, we use the tau-leaping method to simulate
the non-critical reactions and the SSA method to simulate the critical reactions. The
real simulation timestep τ is chosen to be the smaller value between τ ′ and τ ′′. If
τ ′′ is smaller, the critical reaction fires. Otherwise, no critical reaction should fire
before τ . In both cases, the numbers of noncritical reaction firings are calculated
using the Poisson tau-leaping method. The τ ′′ for the SSA part can simply follow
the SSA procedure limited to only critical reactions. The τ ′ for the tau-leaping part
will be discussed below.

3.2 The Tau-Selection Formula

The simulation formula for the tau-leaping method is quite simple. The key point
is how to select the τ value so that the Leap Condition is satisfied. There have
been several tau-selection formulae proposed in the literature. Gillespie [23] origi-
nally proposed that the Leap Condition could be considered satisfied if the expected
change in each propensity function a j(x) during the leap were bounded by εa0(x),
where ε is an error control parameter (0 < ε ≪ 1). Later, this condition is refined
by Gillespie and Petzold [24]. Denoting the change in propensity function a j from
time t to time t + τ , given X(t) = x, by ∆τ a j(x), the requirement by the two papers
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[23, 24] can be stated as

|∆τ a j(x)| ≤ εa0(x), j = 1, . . . ,M. (15)

Although this formula does indeed limit the changes in the propensities during a
leap as required, it does not fully accomplish the task with a proper scaling. The
Leap Condition requires that every propensity function remains “practically con-
stant” during a τ time period, since that is what allows the number of reaction events
R j during τ to be accurately approximated by a statistically independent Poisson
random variable with mean a j(x)τ . If a j(x) for reaction channel R j happens to be
very small compared to ak(x) for reaction channel Rk, a j(x) will then be much
smaller than a0(x). The condition (15) may allow a large relative change in a j(x),
and that could result in simulation inaccuracies. To allow the formula for the Leap
Condition to reflect the relative scales, we can change the condition (15) by

|∆τ a j(x)| ≤ εa j(x), j = 1, . . . ,M. (16)

Although this formula is an improvement to the condition (15), its calculation
needs the Jacobian function of the propensity functions, which could be very time-
consuming, especially if both M and N are large. A new τ-selection formula [12]
was then proposed to avoid this computational burden. Here we introduce a simpli-
fied version of this new formula.

The underlying strategy of this new τ-selection procedure is to bound the relative
changes in the molecular populations by a specified value ε (0 < ε ≪ 1). Let

∆τ Xi ≡ ∆τ Xi(x) , Xi(t + τ)− xi, given X(t) = x. (17)

Instead of basing the τ-selection on condition (16), we base it on the condition

∆τ Xi ≤ max{εxi,1}, ∀i ∈ Irs, (18)

where Irs denotes the set of indices of all reactant species (so i∈ Irs if and only if xi is
an argument of at least one propensity function). Condition (18) evidently requires
the relative change in Xi to be bounded by ε , except that Xi will never be required
to change by an amount less than 1. From the tau-leaping formula, we see that the
quantity defined in (17) will essentially be given by

∆τ Xi =
M

∑
j=1

νi jP(a j(x)τ), ∀i ∈ Irs. (19)

Since the Poisson random variables (or the corresponding approximations)
P(a j(x)τ) on the right-hand side of Eq.(19) are statistically independent and have
means and variances a j(x)τ , the mean and variance of that linear combination can
be straightforwardly computed:
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〈∆τ Xi〉 =
M

∑
j=1

νi j[a j(x)τ], ∀i ∈ Irs, (20a)

var{∆τ Xi} =
M

∑
j=1

ν2
i j[a j(x)τ], ∀i ∈ Irs. (20b)

Using the same reasoning that was used in deriving the Gillespie-Petzold τ-selection
procedure [24], we may consider the bound (18) on ∆τ Xi to be “substantially satis-
fied” if it is simultaneously satisfied by the absolute mean and the standard deviation
of ∆τ Xi:

|〈∆τ Xi〉| ≤ max{εxi,1},
√

var{∆τ Xi} ≤ max{εxi,1}, ∀i ∈ Irs. (21)

Substituting formulas (20) into conditions (21), we obtain the following bounds on
τ:

τ ≤ max{εixi,1}
|∑M

j=1 νi ja j(x)|
, τ ≤ max{εxi,1}2

∑M
j=1 ν2

i ja j(x)
, ∀i ∈ Irs. (22)

µ̂i(x) ,
M

∑
j=1

νi ja j(x), ∀i ∈ Irs, (23a)

σ̂2
i (x) ,

M

∑
j=1

ν2
i ja j(x), ∀i ∈ Irs, (23b)

where Irs is the set of indices of all reactant species, and then taking

τ = min
i∈Irs

{
max{εxi,1}

|µ̂i(x)| ,
max{εxi,1}2

σ̂2
i (x)

}
. (24)

The τ-selection procedure of formulas (23) and (24) is simpler to program and
faster to execute than the τ-selection procedure of those formulas in [23, 24]. Par-
ticularly, the required number of computational operations increases quadratically
with the number of reaction channels in the old formulas, but only linearly with the
number of species in the new formulas. Since τ-selection has to be performed prior
to every tau-leap, using these new formulas leads to substantially faster simulations
when the system has many reaction channels and species.

The formulas (23) and (24) are for the original tau-leaping method. In order to
apply them to the hybrid SSA/tau-leaping method, they need a little modification.
The calculation should not be extended to critical reactions since they are handled
by the adapted SSA part. Thus we let Jncr denote the set of indices of the non-critical
reactions. If Jncr is empty (i.e., there are no non-critical reactions), we simply take
τ ′ = ∞ (practically this can be a large stepsize, for example the whole simulation
time interval). Otherwise, the µ̂i and σ̂i are calculated with the following formula:

µ̂i(x) , ∑
j∈Jncr

νi ja j(x), ∀i ∈ Irs, (25a)
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σ̂2
i (x) , ∑

j∈Jncr

ν2
i ja j(x), ∀i ∈ Irs. (25b)

The formula of τ ′ remains the same as τ in (24) but the calculation of µ̂ and σ̂ are
replaced by (25). Notice that the difference between (23) and (25) is that in (25)
only non-critical reactions are considered, while in (23) all reactions are included.

The full description of the hybrid SSA/Tau-leaping strategy is given as follows.
The Hybrid SSA/Tau-Leaping Method

1. In state x at time t, identify the currently critical reactions. We calculate L j ac-
cording to the formula (14). Any reaction R j with a j(x) > 0 is deemed critical
if L j < nc. Otherwise, it is non-critical. (We normally take nc = 10 as a practical
value.)

2. Let Jncr denote the set of indices of the non-critical reactions. If Jncr is empty,
we take τ ′ = ∞ (or the final simulation time). Otherwise, with a value chosen
for ε (we normally take ε = 0.03), compute a candidate time leap τ ′ from the
τ-selection formula (24) and (25). Thus τ ′ tentatively estimates the time to the
next non-critical reaction.

3. If τ ′ is less than some small multiple (which we usually take to be 10) of 1/a0(x),
abandon tau-leaping temporarily, execute some modest number (which we usu-
ally take to be 100) of single-reaction SSA steps, and return to step 1. Otherwise,
proceed to step 4.

4. Compute the sum ac
0(x) of the propensity functions of all the critical reactions.

Generate a second candidate time leap τ ′′ as a sample of the exponential random
variable with mean 1/ac

0(x). As thus computed, τ ′′ tentatively estimates the time
to the next critical reaction.

5. Take the actual time leap τ to be the smaller of τ ′ and τ ′′, and set the number of
firings k j of each reaction R j accordingly:

a. If τ ′ < τ ′′, take τ = τ ′. For all critical reactions R j set k j = 0 (no critical re-
actions will occur during this leap). For all non-critical reactions R j, generate
k j as a sample of the Poisson random variable with mean a j(x)τ .

b. If τ ′′ ≤ τ ′, take τ = τ ′′. Generate jc as a sample of the integer random variable
with point probabilities a j(x)/ac

0(x), where j runs over the index values of the
critical reactions only. (The value of jc identifies the next critical reaction, the
only critical reaction that will occur in this leap.) Set k jc = 1, and for all other
critical reactions R j set k j = 0. For all the non-critical reactions R j, generate
k j as a sample of the Poisson random variable with mean a j(x)τ .

6. If there is a negative component in x + ∑ j k jν j, reduce τ ′ by half, and return to
step 3. Otherwise, leap by replacing t ← t + τ and x ← x + ∑ j k jν j; then return
to step 1, or else stop.
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3.3 StochKit: a Stochastic Simulation ToolKit

The above hybrid method has been fully implemented in the package STOCHKIT

[33], a software toolkit for discrete stochastic and multiscale simulation of chemi-
cally reacting systems. STOCHKIT is an efficient, extensible stochastic simulation
toolkit developed in C++ that aims to make state of the art stochastic simulation
algorithms accessible to biologists and chemists, while remaining open to extension
via new stochastic and multiscale algorithms. STOCHKIT consists of a suite of soft-
ware applications for stochastic simulation. The STOCHKIT core implements the
simulation algorithms. Additional tools are provided for the convenience of simu-
lation and analysis. A typical simulation process of STOCHKIT is shown in Figure
2.

Fig. 2 Simulation Process of STOCHKIT.

A more detailed introduction to STOCHKIT is given in Reference [33]. The
STOCHKIT package is freely available for download at www.engr.ucsb.edu/∼cse.
The User’s Guide is also available from that link.

4 Examples

To demonstrate the application of the SSA and the hybrid SSA/tau-leaping method,
we apply both methods to the Schlögl model [22] and the LacZ/LacY model [30,
45]. Simulation files for both models are available in the STOCHKIT package.

http://www.engr.ucsb.edu/%E2%88%BCcse
http://www.engr.ucsb.edu/%E2%88%BCcse
http://www.engr.ucsb.edu/%E2%88%BCcse
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4.1 The Schlögl Model

This model is famous for its bistable steady-state distribution. The reactions are

B1 +2X
c1
⇋
c2

3X ,

B2
c3
⇋
c4

X ,
(26)

where B1 and B2 denote buffered species whose respective molecular populations N1

and N2 are assumed to remain essentially constant over the time interval of interest.
There is only one time-varying species, X ; the state change vectors are ν1 = ν3 = 1,
ν2 = ν4 = −1; and the propensity functions are

a1(x) = c1
2 N1x(x−1),

a2(x) = c2
6 x(x−1)(x−2),

a3(x) = c3N2,
a4(x) = c4x.

(27)

For some values of the parameters this model has two stable states, and that is the
case for the parameter values we have chosen here:

c1 = 3×10−7, c2 = 10−4, c3 = 10−3, c4 = 3.5,
N1 = 1×105, N2 = 2×105.

(28)

We made ensembles of 105 simulation runs from the initial state X(0) = 250 to time
t = 4 using the SSA and the hybrid SSA/tau-leaping method, the latter for a range of
ε-values. Fig. 3 shows the histogram distance or “error” between the SSA ensemble
and the tau-leaping ensembles as a function of ε . We can see that the errors increase
roughly linearly with ε .

4.2 The LacZ/LacY Model

This model was first proposed by Kierzek [30] and later used for an efficiency test
in [45]. This model has 22 reactions, 19 species, and an extremely multiscale nature.
A detailed description of this model is omitted here. Interested readers can refer to
the two references above and a list of the reaction channels and reaction rates of this
model are given in Table 1. It was reported in [45] that negative populations were ob-
served many times in their simulation using the original tau-leaping method. In our
numerical experiments for this model on a 1.4Ghz Pentium IV Linux workstation, a
single simulation from t = 0 to t = 2100 by SSA took 3,359 seconds CPU time. With
an error tolerance of ε = 0.03, a single simulation by the hybrid SSA/tau-leaping
method took 113.77 seconds CPU time with no negative population observed during
the simulation.



Stochastic Simulation for Biochemical Systems 223

0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Epsilon

H
is

to
gr

am
 S

im
ul

at
io

n 
E

rr
or

Histogram Error vs Error Tolerance Plot for the Schlogl Model

Fig. 3 Plot of histogram distance errors corresponding to different ε values for the Schlögl model.
Histogram distance errors are measured by 105 samples generated from the SSA method and the
hybrid SSA/tau-leaping method using different τ-selection formulas.

Since a single SSA simulation from t = 0 to t = 2100 took about an hour on our
computer, obtaining a large number of SSA samples posed a challenge. We ran the
SSA from time t = 0 to time t = 1000 to obtain an “initial” state; then we made 105

SSA runs from time t = 1000 to time t = 1001 (which required about 3.5 hours of
computer time) and histogrammed the resulting populations. Finally, we made the
same number of the SSA/tau-leaping runs over the same time interval for a range of
values for ε . Fig. 4 shows the plot of histogram distance or “error” as a function of
ε . We note again that the error increases roughly linearly with ε .

5 Advanced Topics

5.1 Different Implementation Strategies for SSA

Although the SSA is quite simple, due to its importance, there are several different
implementation strategies proposed in the literature for the SSA. They are the direct
method (DM) [21], the first reaction method (FRM) [21], the next reaction method
(NRM) [18], the optimized direct method (ODM) [13], the sorted direct method
(SDM) [35], and the Logarithmic Direct Method (LDM) [32].
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Reaction channel Reaction rate
R1 PLac+RNAP −→ PLacRNAP 0.17
R2 PLacRNAP −→ PLac+RNAP 10
R3 PLacRNAP −→ TrLacZ1 1
R4 TrLacZ1 −→ RbsLacZ+PLac+TrLacZ2 1
R5 TrLacZ2 −→ TrLacY1 0.015
R6 TrLacY1 −→ RbsLacY+TrLacY2 1
R7 TrLacY2 −→ RNAP 0.36
R8 Ribosome+RbsLacZ −→ RbsRibosomeLacZ 0.17
R9 Ribosome+RbsLacY −→ RbsRibosomeLacY 0.17
R10 RbsRibosomeLacZ −→ Ribosome+RbsLacZ 0.45
R11 RbsRibosomeLacY −→ Ribosome+RbsLacY 0.45
R12 RbsRibosomeLacZ −→ TrRbsLacZ+RbsLacZ 0.4
R13 RbsRibosomeLacY −→ TrRbsLacY+RbsLacY 0.4
R14 TrRbsLacZ −→ LacZ 0.015
R15 TrRbsLacY −→ LacY 0.036
R16 LacZ −→ dgrLacZ 6.42×10−5

R17 LacY −→ dgrLacY 6.42×10−5

R18 RbsLacZ −→ dgrRbsLacZ 0.3
R19 RbsLacY −→ dgrRbsLacY 0.3
R20 LacZ+lactose −→ LacZlactose 9.52×10−5

R21 LacZlactose −→ product+LacZ 431
R22 LacY −→ lactose+LacY 14

Table 1 A full list of reaction channels and deterministic reaction rates for the LacY/LacZ model.

The First Reaction Method is theoretically equivalent to the Direct Method but is
quite different in the implementation details. The FRM generates a potential reaction
time for each reaction and chooses the ”first” reaction channel that has the earliest
firing time to occur. In the FRM implementation, one generates M uniform random
numbers r1, . . . ,rM in every step and calculates a time τk for each reaction channel
Rk by

τk =
1

a j(x)
ln

(
1
rk

)
. (29)

Then τ and j are given by

τ = min1≤k≤M τk,
j = the index for the smallest τk

(30)

It can be proved that the τ and j generated from (30) follow the same distributions
as in (8) and (9). Thus the DM and the FRM are statistically equivalent. However,
in every step the FRM generates M τk values but uses only one of them. Thus the
FRM is much less efficient than the DM.

Gibson and Bruck [18] have made remarkable progress improving the implemen-
tation efficiency of the FRM. Their method is the Next Reaction Method (NRM).
The NRM uses a dependent graph to record the influence of each reaction channel
on the other reaction channels. It records the absolute time t + τk as the expected
firing time for the Rk reaction. If the firing of one reaction channel does not change
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Histogram Error vs Error Tolerance Plot for the LacZ/LacY Model

Fig. 4 Plot of histogram distance errors corresponding to different ε values for the LacZ/LacY
model. Histogram distance errors are measured between the population distributions of LacZlac-
tose in 105 runs of the SSA and the hybrid SSA/tau-leaping method using different τ-selection
formulas.

the propensity of another reaction channel, the expected firing time for the latter
reaction remains the same. In this way the NRM avoids unnecessary updates of the
propensity function and expected firing time. For a reaction channel Rk whose re-
actants have been changed by the firing reaction, the NRM uses a cleverly designed
formula to reuse the uniform random number rk generated in the previous step. As
a result, in every step there is only one uniform random number generated. The
NRM turns out to be much more efficient than the FRM. However, using a detailed
numerical analysis, it has been shown [13] that the NRM still has a higher compu-
tational cost than the Direct Method except for simple systems where the reactions
are almost totally independent of each other.

To decrease the computational cost the Optimized Direct Method (ODM) [13]
adopts the dependent graph to avoid the unnecessary recalculation of propensity
functions and rearranges the indices of the reaction channels so that the more fre-
quent reaction channels are always indexed before the less frequent ones. With these
two improvements over the DM, the ODM becomes one of the most efficient SSA
implementation strategies currently in use.

The re-index technique of the ODM requires one or a few sample runs using the
SSA to collect the necessary information. This is not convenient in many applica-
tions. In order to dynamically adjust the indices of the reaction channels, the Sorted
Direct Method (SDM) was proposed [35]. In the SDM, a bubble-up sorting method
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was applied to the indices of reaction channels. In the simulation, every time one
reaction occurs, its reaction index decreases by one so that in the next step it is
found more quickly. Then, after a certain initial simulation time, the index list will
be sorted close to the optimal one. The SDM is a little less efficient than the ODM
but its adaptive feature makes it a good strategy, particular in simulation of oscilla-
tion systems where a fast reaction in one time period may become slow in another
time period. In that case, the dynamic indexing of this method is very useful.

Recently the Logarithmic Direct Method (LDM) was proposed [32], which ap-
plies a binary search method to the direct method. When the number of reaction
channels, M, is large, the LDM can complete the search for the index j within
O(log(M)) time. Thus the LDM has advantages for large biochemical systems.

5.2 Multiscale Problems and Advanced Algorithms

Multiscale behavior appears in a wide range of problems. The multiscale problem in
biochemical simulation has two aspects. The first is the timescale. Some reactions
are much faster than others. Often the fast reactions quickly reach a stable state and
the dynamics of the system are driven by the slow reactions. The SSA simulates
every reaction and thus puts a great deal of effort into the more frequently occur-
ring fast reactions, even though they do not contribute much to the dynamics and
stochasticity of the system. This multiscale problem in time is known in the deter-
ministic regime as stiffness [6]. Second, the populations of different species are of
widely different magnitude. Some species are present with a large population while
other species have very few copies in a cell. Species with a small population should
be modeled by a discrete stochastic process, whereas species with a large population
can be efficiently modeled by a deterministic ordinary differential equation (ODE).
SSA treats all of the species as discrete stochastic processes. Overall, the SSA is not
an efficient algorithm to solve a multiscale problem.

The tau-leaping method works better when the populations of all species are
moderate (hundreds or thousands) or even larger, if the system is not stiff. The cur-
rent challenge in research on the tau-leaping method is how to handle stiffness.
While implicit tau-leaping methods [7, 40] have been proposed for stiff problems,
the implementation details for the implicit tau-leaping methods are still under re-
search. The current implementation is not as adaptive as the implementation of
explicit methods. The large error in the variance of fast variables caused by the
implicit methods, known as the damping effect [40], is still a challenge for implicit
methods. Meanwhile, practical error estimation and control for tau-leaping methods
still remain as an open question. There have been some initial progress in this direc-
tion. The recently developed tau-selection formula [12] gave a priori error control
mechanism for the explicit tau-leaping method, while the a posteriori error control
mechanism has been given by David Anderson [3].

Another big group of multiscale methods is the partition-based hybrid methods.
The general idea is to partition the whole system into a deterministic part and a
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stochastic part. Naturally numerical methods for ODEs are applied to the deter-
ministic part, and SSA is applied to the stochastic part. Many different methods
[8, 11, 28, 27, 25, 38, 44] in this group have been proposed and the major differ-
ences among them are focused on the partition criteria and implementation details.

6 Exercises

1. Write down the Chemical Master Equation for the Schlögl model (26).
2. The Lotka-Volterra system consists of three reaction channels and two species:

S1
c1→ S1 +S1,

S1 +S2
c2−→ S2 +S2,

S2
c3→ Decayed.

(31)

with rate constants: c1 = 10, c2 = 0.01, c3 = 10 and initial conditions x1(0) =
x2(0) = 1000. Write down the reaction rate equations and simulate the equation
in matlab. Run an SSA simulation using STOCHKIT and compare the result with
the reaction rate equation result.

3. Consider a set of chemical reactions given below

S1
c1→ Decayed

S1 +S1
c3
⇋
c2

S2

S2
c4→ S3.

(32)

a. Write down the propensity functions and stoichiometric matrix.
b. Write an SSA code to simulate this system from t = 0 to t = 10 with the

following parameters:

c1 = 1, c2 = 0.002, c3 = 0.5, c4 = 0.04,

and initial state x1(0) = 10,000, x2(0) = x3(0) = 0.
c. Use your SSA code to simulate the same system with the same initial state

from t = 0 to t = 2 with a different set of parameters:

c1 = 1, c2 = 10, c3 = 1000, c4 = 0.1,

Pay special attention to the difference in computational time and the number
of reactions for each reaction channel.

d. (Advanced) This example is a test problem in STOCHKIT. Try it with the tau-
leaping method in STOCHKIT for the two parameter sets given in b) and c).
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You will find that for the parameter set in c), the tau-leaping method is even
slower than the SSA. That is the effect of stiffness.

7 Further Reading

It is always worthwhile to read Gillespie’s three milestone papers [20, 21, 23] and
his book [22]. Interested readers can also find a detailed review of stochastic chem-
ical kinetics by Dan Gillespie in [19]. For a detailed introduction to molecular dy-
namics simulation, readers will find Haile’s book [26] very useful. For people who
are looking for interesting research topics, there are plenty of challenges on the
implementation strategies of SSA [35, 13, 18, 32], the efficient implementation of
tau-leaping methods [10, 12], the implicit tau-leaping methods[7, 40, 39] and the
SSA method for multiscale problems [8, 9, 11, 28, 27, 25, 38, 44].
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Part IV
Networks



This fourth part of the book broadens our study of biological networks into cellular
response networks and modules hidden in interaction networks.



Cellular Response Networks

Christopher D. Lasher, Christopher L. Poirel, and T. M. Murali

Abstract Complex networks of interactions between genes, proteins, and other
molecules choreograph cellular processes. The interactions that are active in the cell
change over time, both as a natural outcome of the cell’s natural life cycle and in
response to external signals. The set of active interactions, called the response net-
work, are likely to be significantly different between a normally-functioning cell and
a diseased cell. The wide availability of DNA microarray data and experimentally-
determined interaction networks has made it possible to automatically compute re-
sponse networks. This chapter surveys algorithms that have been developed to com-
pute response networks.

1 History of the Problem

Genes carry genetic information that is used to synthesize essential components
of the living cell. These components are called gene products, typically RNA
molecules or proteins. Coordinated interactions among gene products comprise and
control many fundamental cellular processes such as the formation of protein com-
plexes, the metabolism of food by biochemical pathways, and signaling pathways
triggered by external signals. Gene products also control and modulate the synthe-
sis and activity of other gene products. These interactions constitute an intricate
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network that dynamically changes in response to a myriad of cues. Therefore, dis-
covering response networks, the set of molecular interactions that are active in a
given cellular context, and understanding how normal response networks may be
perturbed in a disease are fundamental biological questions [12].

Gene expression is the process by which a gene is first transcribed to messen-
ger RNA (mRNA). The expression level of a gene is the number of copies of its
mRNA that are present in a cell. DNA microarrays have allowed biologists to si-
multaneously measure the average expression level of each gene in a set of cells.
DNA microarrays offer a powerful experimental platform to study diverse contexts,
since they capture a snapshot of the activity of all genes in the cells in the sample.
However, DNA microarrays measure levels of the nodes (genes) and do not di-
rectly provide any information on the edges (interactions). Data regarding edges are
available from datasets of physical and functional interactions between genes and
proteins that are now widely available. Integrated analysis of gene expression data
and protein-protein interaction (PPI) networks is emerging as a powerful technique
for computing response networks. This chapter surveys several algorithms that are
available to perform this type of analysis.

We stress that this type of analysis is distinct from methods that find modules in
PPI networks alone (see next chapter). Such analysis is usually performed on protein
interaction networks integrated from a variety of different experimental sources and
public repositories. However, an experiment that reports an interaction often does
not yield information on the conditions under which that interaction takes place in
the cell. In many situations, the experimental context in which an interaction hap-
pens is lost when the interaction is recorded in a database. In other cases, the context
may simply not be apparent. For instance, an interaction between two human pro-
teins may be detected by a yeast 2-hybrid experiment [6]. Since such an experiment
is performed in Saccharomyces cerevisiae (baker’s yeast), it simply cannot produce
any information on when the detected interaction may take place in a human cell.
As a consequence, protein interaction networks typically represent the universe of
interactions that take place in multiple, different contexts within the cell. Integrat-
ing them with measurements of molecular levels, such as DNA microarray data, is
necessary for computing response networks.

2 Algorithm Descriptions

We divide response network algorithms into two broad classes, depending on the
design of the experiment used to collect DNA microarray data:

1. A very common experimental design partitions the set of samples into two sub-
sets, with one subset corresponding to an experimental treatment and another
subset corresponding to a control. Numerous methods have been developed to
assess to what degree each gene is differentially expressed when comparing the
treatment to the control. Using a hypothesis testing framework, for each gene g,
these methods yield a p-value 0 ≤ pg ≤ 1 representing the statistical significance



Cellular Response Networks 235

of the difference between the two sets of expression levels of the gene. These
p-values form the starting point of response network computations. We call such
datasets treatment-control data and examine these methods in Section 2.1.

2. Another common experimental design yields a gene expression dataset consist-
ing of measurements from multiple samples under a particular experimental con-
dition; the samples can correspond to multiple time-points after exposing cells
to a particular treatment or stimulus or to multiple patients diagnosed with a
particular disease. The complete gene expression data is part of the input to an
algorithm to compute response networks. Analysis of such datasets usually starts
by computing co-expression or similarity values for gene pairs. We discuss co-
expression-based techniques in Section 2.2.

2.1 Detecting Response Networks from Treatment-Control Data

Experiments for analyzing gene expression often produce treatment-control data.
The treatment samples offer measurements of the expression of different genes un-
der a certain experimental condition or phenotype (e.g., after a gene knock-out or
for a specific disease). The control samples measure gene expression without the
influence of the experimental condition (e.g., wild-type cells or normal cells).

We discuss three algorithms that integrate this type of gene expression data with
molecular interaction networks. The ActiveModules algorithm of Ideker et al. [11]
and the algorithm of Dittrich et al. [4] are methods to estimate the differential ex-
pression of each node in the protein-protein interaction network and subsequently
find high-scoring subnetworks, i.e., subgraphs that have large differential expres-
sion in total. The DEGAS algorithm of Ulitsky and Shamir [28] uses a different
approach: for each gene, the method computes a separate p-value in every sample
in the treatment. After combining this expression data with a protein-protein inter-
action network, the algorithm searches for a minimally connected subnetwork of
genes that respond to the experimental condition for at least some specified number
of samples in the treatment.

The inputs to the algorithms discussed in this section are an undirected protein-
protein interaction network G = (V,E) and two sets of gene expression data VT =
{gT | g ∈V}, where T is the set of samples in the treatment and gT : T → R denotes
the expression values of gene g in each of the samples in T , and VC = {gC | g ∈V},
where C is the set of samples in the control and we define gC analogously to gT .
Informally, the goal of these methods is to compute the connected subgraph of G
such that the genes in the subgraph show the most differential expression between
the samples in T and the samples in C.
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The ActiveModules Algorithm

Ideker et al. [11] introduce the ActiveModules algorithm for computing highly-
perturbed response networks from treatment-control data. For each gene g in G,
they compute a p-value pg based on the expression values gT and gC of that gene
in the treatment samples and the control samples. Many tools are available to cal-
culate such p-values [5]. For instance, a simple approach is to apply the t-test to gT

and gC. In general, the p-value represents the statistical significance of the observed
difference between the expression levels of a gene in T and in C. A smaller p-value
indicates a more statistically significant difference. Ideker et al. [11] convert each
value pg to a z-score zg using the inverse normal cumulative distribution function
evaluated at 1− pg, i.e., zg = Φ−1(1− pg), where Φ is the cumulative normal dis-
tribution function. This transformation converts small p-values to large z-scores.
Consequently, connected subnetworks composed of genes with high z-scores are
desirable.

The authors do not simply discard genes with low z-scores. Instead, they develop
a method for scoring any subgraph of G based on the z-scores of all the genes in
the subgraph. For a subgraph A of G on a k-node set B, define the Liptak-Stouffer
z-score zA as

zA =
∑g∈B zg√

k
.

Clearly if A is a subgraph of genes with high z-scores, then it will have a large ag-
gregate Liptak-Stouffer z-score and may possess some biological significance. The
final step in scoring a subgraph lies in determining whether or not zA is statistically
significant. Ideker et al. [11] compute the statistical significance empirically: they
compute the aggregate Liptak-Stouffer z-scores for multiple subgraphs induced by
k randomly selected genes, and estimate the mean µk and standard deviation σk of
these random subgraphs of size k. They define the corrected subgraph score sA as
follows,

sA =
zA −µk

σk
.

This transformation adjusts the z-score zA so that a randomly-selected subgraph on k
nodes will have a corrected subgraph score with mean 0 and standard deviation 1.

With a function to score subgraphs in hand, the authors proceed to discover
highly-scoring subgraphs. They demonstrate that a similar problem is NP-complete
(we describe this problem in more detail in Section 2.1, page 238). Thus, it is un-
likely that an efficient (polynomial time) algorithm exists that computes the sub-
graph that maximizes sA. Ideker et al. [11] resort to simulated annealing [16], a
heuristic method often used to solve computationally intractable combinatorial op-
timization problems. The following algorithm demonstrates the simulated annealing
technique. The algorithm has three user-determined parameters: n, the number of it-
erations, a starting temperature Ts and an ending temperature Te < Ts.

1: Label each node in V either ‘in’ or ‘out’ with equal probability, and let I be the
set of all nodes labeled ‘in’.
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2: Compute sI .
3: T ← Ts

4: for i = 1 . . .n do
5: s ← sI .
6: Select a node v ∈V uniformly at random and switch its label.
7: Compute sI .
8: if sI > s then
9: Keep the new label for v.

10: else
11: Keep the new label for v with probability e(sI−s)/T

12: T ← T × (Te
Ts

)
1
n

13: Return the subgraph of G induced by I.
The variable T represents a temperature that decreases geometrically with each

iteration, by a factor of (Te/Ts)
1/n. The algorithm always accepts a modification that

increases the corrected subgraph score. However, when sI < s, the algorithm accepts
the change with a probability 0 < p = e(sI−s)/T < 1. For a fixed value of T , the closer
sI is to s, the closer p is to 1. For a fixed value of sI − s, the probability p decreases
as T decreases, indicating that the algorithm is more liberal in earlier iterations,
being more likely to keep changes that lower the corrected score. Since the returned
graph induced by I is not guaranteed to be connected, the authors simply take the
highest-scoring connected component as the result. Note that this approach will not
necessarily find the optimal solution, but operates under the belief that high-scoring
networks are likely to have some biological significance.

The Algorithm of Dittrich et al.

Dittrich et al. [4] build on the Ideker et al. [11] approach by developing a new scor-
ing function and a different method for discovering high-scoring subgraphs. First,
they follow Pounds and Morris [23] to model the distribution of p-values over all
genes in V as a mixture of noise and signal components. Let B(a,b) denote the beta
distribution, where a and b are the two parameters that define the shape of the beta
distribution function. The probability density function of B(a,b) is

f (x) =
Γ (a+b)

Γ (a)Γ (b)
xa−1(1− x)b−1,

where Γ (x) =
∫ ∞

0 tx−1e−xdt is the gamma function. Dittrich et al. assume that the
signal component of the distribution of p-values has a B(a,1) distribution, i.e., given
that a p-value x is generated by the signal component, its probability distribution
function is axa−1. Similarly, they assume that if a p-value is generated by the noise
component, then the p-value is B(1,1) or uniformly distributed on (0,1). Therefore,
if λ (respectively, 1−λ ) is the probability that a p-value is generated by the noise
(respectively, signal) component of the mixture, then the probability distribution
function for a p-value x can be rewritten as
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f (x|a,λ ) = λ +(1−λ )axa−1, 0 < x ≤ 1;0 < λ < 1.

where λ and a are mixture and shape parameters, respectively. Given the p-values
PV = {pv|v ∈V}, define the likelihood of these values as

L (λ ,a;Pv) = ∏
v∈V

(
λ +(1−λ )apa−1

v

)
.

The authors use numerical optimization methods to estimate the mixture and shape
parameters [λ ∗,a∗] = argmaxλ ,aL (λ ,a;PV ) that maximize the likelihood of the p-
values.

The ultimate goal of this approach is to develop a scoring function that associates
a p-value arising primarily from the signal component with a positive score and a p-
value generated by background noise with a negative score. The following scoring
function captures this property:

sx = log
axa−1

aτa−1 = (a−1)(log(x)− log(τ)) ,

where τ is a p-value threshold that yields a user-specified false discovery rate1 (see
Pounds and Morris [23] for details). A p-value is deemed significant when it is
smaller than τ , thus the corresponding node is assigned a positive score. Conversely,
if a p-value is larger than τ , the corresponding node is assigned a negative score.
Dittrich et al. define the score sA for a subgraph A as

sA = ∑
g∈A

spg ,

that is, sA is simply the sum of the scores for each of the nodes in A. Dittrich
et al. aim to compute the subgraph of G with the largest score. This problem is
known as the maximum-weight connected subgraph (MWCS) problem: given a
graph G = (V,E) and node weight wv ∈ R for each v ∈V , the MWCS problem asks
for the connected subgraph G′ = (V ′,E ′) of G that maximizes wG′ = ∑v∈V ′ wv. The
MWCS problem has been proven to be NP-complete [11]. Notice that the MWCS
problem is trivial if all weights are positive, since the entire graph G would clearly
be the optimal solution.

Dittrich et al. convert an instance of the MWCS problem into an instance of the
prize-collecting Steiner tree (PCST) problem. While the PCST problem is also NP-
complete, Ljubić et al. [19] provide an elegant algorithm based on formulating the
PCST problem as an integer linear program (ILP). They propose a branch-and-cut
heuristic to solve this ILP. The algorithm does not have a running time that is poly-
nomial in the size of the input. However, Dittrich et al. show that this approach finds
provably-optimal solutions in a reasonable amount of time for biologically-relevant
network sizes.

1 The false discovery rate is the ratio of false positives (values incorrectly identified to be signifi-
cant) and the total number of values deemed to be significant.
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The DEGAS algorithm

Ulitsky and Shamir [28] develop the DEGAS2 algorithm for identifying disease-
related pathways within the cell. In contrast to the algorithms discussed previously
in this section, they calculate multiple p-values for each gene, one for each sample in
T . The main goal of the algorithm is to discover subgraphs containing several genes
that are differentially expressed in multiple samples in T . The authors call such
subgraphs dysregulated pathways (DPs). The process is two-fold. First, discover
minimal connected subgraphs that have at least k differentially-expressed genes,
where k is a parameter to the algorithm. Second, they find those minimal connected
subgraphs that are statistically significant.

Recall that T is the set of n treatment samples. Associate with each node v ∈V a
set of treatment samples Sv ⊆ T in which v is differentially expressed (in comparison
to the expression of v in the control samples C). For every node v ∈ V , Ulitsky
and Shamir compute the set Sv by (i) estimating a p-value in each sample t ∈ T
that represents the differential expression of g in t, (ii) applying a user-specified
cutoff on the p-values, and (iii) including a treatment sample t in Sv if the p-value
is below the cutoff. The authors construct a bipartite graph B = (V,T,EB), where
EB = {(t,v)|t ∈ Sv}. The graph B is simply a bipartition between genes and samples,
with an edge between gene v and sample t when t ∈ Sv. Now define a subset C ⊆V
of genes to be a connected (k, l)-cover CC(k, l) if the following two conditions hold:

1. C induces a connected subgraph in G.
2. There exists a set of n− l treatment samples T ′ ⊆ T such that for every sample

t ′ ∈ T ′, |N(t ′)∩C| ≥ k, where N(t ′) is the set of genes that are adjacent to t ′ in
the graph B.

The second property of a connected (k, l)-cover C states at least k genes in C are dif-
ferentially expressed in all but l samples in T . This notion ties together a connected
subgraph of G with a set of treatment samples, in each of which a sufficiently large
number of genes in the subgraph are perturbed. By not requiring all genes in C to
be perturbed in all samples in T ′, a connected (k, l)-cover is able to accommodate
inter-sample variation and noise.

Given integers k and l, the minimum connected (k, l)-cover problem MCC(k, l) is
to find the connected (k, l)-cover with the fewest number of nodes. Since discover-
ing minimal connected subgraphs is NP-hard, Ulitsky et al. develop approaches that
offer provably good results. They propose Covering Using Shortest Paths (CUSP),
an algorithm which provides a k(n− l)-approximation for MCC(k, l). Define the
distance between two nodes d(u,v) as the minimum number of edges in any path
connecting u and v in G. The algorithm proceeds in four major steps:

1. Find the k shortest paths from each node r ∈ V to each sample u ∈ T . More
specifically, for each node r ∈V , for each sample u ∈ T , and for each 1 ≤ i ≤ k,
let P[r,u]i be the ith closest node to r in G that is a neighbor of u, and let D[r,u]i =
d(r,P[r,u]i). Compute D[r,u]i and P[r,u]i for 1 ≤ i ≤ k.

2 This name for the algorithm appears only in the software implementation; see Table 1.
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2. Find a set of n− l samples in T for which the k shortest paths from r are not very
long. Specifically, compute Sr, the set of n− l samples in T that have the smallest
values for m[r,u] = maxq{D[r,u]q,1 ≤ q ≤ k}. In other words, compute m[r,u] for
each sample u ∈ T and include the n− l samples that have the smallest values of
m[r,u] in the set Sr.

3. Extract the shortest paths between r and the samples in Sr, i.e., compute Xr, the
union of the paths to the nodes in G that neighbor the samples in Sr. The authors
claim that Xr is a CC(k, l) in G. Indeed, it induces a connected component in G.
Furthermore, each of the n− l samples in Sr ⊆ T is covered once for each P[r,u]i
where 1 ≤ i ≤ k.

4. Output the smallest Xr, i.e., return the CC(k, l) instance X = argminv∈V |Xv|,
which is designated to be a DP.

To assess the statistical significance of the DP returned by the CUSP algorithm,
the authors generate multiple random networks with the same number of nodes as
G, using degree preserving randomization [20]. They apply the CUSP algorithm on
the original graph B with different values of k. They also run the CUSP algorithm
on each random network with different values of k, and compute a distribution of
DP sizes for each value of k. The p-value of each DP computed in B is the fraction
of DPs with a larger size computed in the random graphs. They return the most
statistically-significant DP computed from the original network that corresponds to
this k.

Notice that the CUSP algorithm computes only one DP. In practice, we want
to return multiple DPs and test each of them for statistical significance, since any
significant DP may be biologically interesting. The authors describe a method for
discovering multiple DPs. Suppose X is the first DP returned by the CUSP algo-
rithm. For each node v ∈ X remove all edges adjacent to v from EB in the graph B
and call the resulting graph B′. Then run CUSP on B′ to produce a new DP. Continue
this procedure until CUSP no longer returns a statistically significant DP.

2.2 Co-Expression-Based Methods for Detecting Response
Networks

Gene expression data sets with many samples per condition or phenotype, or with
samples from many conditions or phenotypes, afford the opportunity to calculate co-
expression, or similarity values for gene pairs. These datasets give rise to another
class of algorithms that use similarity values to detect response networks. We dis-
cuss four different approaches to integrating expression and network data in order
to determine response networks. The first approach, by Hanisch et al. [10], simulta-
neously uses gene expression similarity and distances in the PPI network, and then
clusters genes after combining these distances. The second approach, by Murali and
Rivera [22], overlays expression-based similarities on the edges of the PPI network
as edge weights, and then detects heavy subgraphs in the weighted network. The
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final pair of closely-related approaches, by Ulitsky and Shamir [29, 30], indirectly
leverage the PPI network to constrain the actions for refining sets of similarly ex-
pressed genes.

The algorithms discussed in this section use as inputs one undirected protein-
protein or protein-reaction interaction network G = (V,E) and one gene expression
dataset VS = {gS | g ∈V}, where S is the set of samples and gS : S → R denotes the
expression values of gene g in the samples S. Informally, these methods strive to
compute a connected subgraph of G such that the genes in the subgraph show the
most similar expression across the samples in S.

The Algorithm of Hanisch et al.

Hanisch et al. [10] present an algorithm that clusters genes using distances between
their expression profiles in combination with distances between their gene prod-
ucts in a PPI network. They begin by converting curated metabolic pathways from
KEGG [14] into a bipartite graph G = (V,E) with biological molecules (e.g., en-
zymes and metabolites) as one set of nodes and reactions as the other set. Edges in G
connect molecules to reactions in which they participate. In order to emphasize the
relationships between the biological molecules, and to disfavor paths through ubiq-
uitous molecules which take part in many reactions (e.g., ATP), each edge e receives
a weight we equal to the degree of the incident biological molecule. The distance
dnet(u,v) between two nodes u and v in this bipartite graph is the minimum sum of all
edge weights along some path connecting the two nodes. Hanisch et al. then calcu-
late the distance in expression dexp(g,h) for all pairs of genes g and h, as 1−c(g,h),
where c(g,h) is the Pearson’s correlation coefficient between gS and hS.

After mapping genes in the gene expression data to the enzymes they code for
in G, the authors combine the computed distances dexp and dnet into a joint distance
∆(u,v) as follows:

∆(u,v) = 1− λexp(u,v)+λnet(u,v)
2

,

where the logistic regression function λΨ (u,v), Ψ ∈ {exp, net}, is

λΨ (u,v) =
1

1+ e−sΦ (δΦ (u,v)−νΦ )
.

User defined parameters sΦ and νΦ control the shape of the logistic curve, giving
the slope of the curve and the point at which the curve reaches 1

2 , respectively.
Hanisch et al. set the values of these parameters empirically.

Finally, Hanisch et al. use agglomerative hierarchical clustering to partition the
genes into a user-defined number of groups. This aspect distinguishes their algo-
rithms from the others presented below, which do not require pre-defining the num-
ber of computed response networks. To assist with choosing an appropriate number
of clusters, Hanisch et al. plot silhouette values [24], which measure the separation
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and tightness of clusters, for different cut points, and heuristically select appropriate
points. As a final observation, although this algorithm does not directly compute re-
sponse networks, by taking distances in the bipartite graph into account, it indirectly
discovers those metabolic pathways perturbed in an experiment.

The ActiveNetworks Algorithm

The ActiveNetworks algorithm presented by Murali and Rivera [22] projects co-
expression values as edge weights onto an interaction network and casts the problem
of finding response networks as one of finding dense subgraphs within the weighted
interaction network. First, they remove all genes with little variation in expression
and their incident edges from G. Next, they compute the weight we of each edge
e = (g,h) in E as the absolute value of Pearson’s correlation coefficient of gS and hS.
Murali and Rivera then assess the statistical significance of the weight of each edge
in the PPI network using a permutation test and remove edges with insignificant
weights from G.

Given a subgraph H = (V ′,E ′) of G, they define its density as

wH =
∑e∈E ′ we

|V ′| ,

i.e., the total weight of the edges in H divided by the number of nodes in H. Com-
puting the subgraph of maximum density can be solved in polynomial time [7] or by
using linear programming [2]. In practice, Murali and Rivera use a greedy algorithm
that guarantees a 2-approximation, i.e., the subgraph computed by the algorithm has
density at least half as much as that of the most dense subgraph in G. Define the
weight of a node to be the total weight of the edges incident on it. The algorithm
repeatedly deletes the node of smallest weight till G becomes empty. It reports the
most dense subgraph encountered during this process. Murali and Rivera embed this
algorithm in a heuristic to find all “dense pockets” in G: apply the greedy algorithm
to G, delete the edges of the computed subgraph from G, and repeat this process,
until the density of G falls below its initial density. They return the union of all dense
subgraphs computed as the response network. See Section 4 for an application of
this method to data for S. cerevisiae.

The MATISSE and CEZANNE Algorithms

Ulitsky and Shamir [29] present an algorithm called MATISSE that seeks to find sets
of genes (called modules) with high expression similarity, but with the additional
constraints that (i) each set must induce a connected subgraph in the interaction
network, and (ii) no gene appears in more than one set. In the context of this chapter,
we consider the union of these modules to comprise a response network.
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Ulitsky and Shamir begin by computing a likelihood ratio for each pair of genes
from their similarity (measured as the value of Pearson’s correlation coefficient):
this likelihood ratio compares the probability that such similarity would be observed
under the assumption that the two genes respond to the experiment versus the as-
sumption the two genes have no relation. Large positive values of the logarithm of
the likelihood ratio indicate greater support for the hypothesis that the two genes
have related expression patterns and respond to the experimental condition. Con-
versely, large negative values of the logarithm indicate greater support that the two
genes have unrelated expression patterns.

Ulitsky and Shamir then construct a complete similarity graph X = (V,E,w),
where the set V of nodes is the set of all genes, the set E of edges consists of all
pairs of genes, and w : E → R is a function specifying the log-likelihood for every
edge in E. Given a set V ′ of genes, they define the score sV ′ of this set of genes as
the sum of the log-likelihoods of all pairs of genes in V ′; they define the score for
a set of gene sets as the sum of the scores for all gene sets in the set. They address
the problem of finding multiple disjoint gene sets in X such that each set of genes
induces a connected subgraph in the interaction network G, and the total score of
the gene sets is as large as possible. The MATISSE algorithm finds these subgraphs
in three stages: identification of small subgraph “seeds”, improving subgraphs from
the seeds, and, finally, identifying statistically significant subgraphs.

To detect seeds, Ulitsky and Shamir settle on a “best-neighbors” heuristic that
operates as follows. First, rank all nodes in X by the sum of their edge weights.
Next, take the subgraph induced by the top ranked node and all the nodes connected
to it in X by edges with positive weight as a seed. Remove this subgraph from X .
Repeat the process with the next remaining highest-ranked node until X is empty.

They proceed to simultaneously refine all seeds using a greedy algorithm. At
each step, they add a node to a module, remove a node from a module, reassign
a node from one module to another, or merge two modules. They proceed with an
action if it increases the overall score and maintains the connectivity of the subgraph
induced by each module in G. This procedure terminates when no action meets these
criteria.

In the final stage, the algorithm reports modules that are statistically significant.
The authors use the following approach that is standard in the literature. Given a
module, sample sets of genes of the same size from X , and compute the score of
each set of genes. Next, compute the rank of the module’s score among the scores
of these random gene sets, and set the statistical significance of the module to be its
score’s rank divided by the number of sampled gene sets.

Ulitsky and Shamir further extend this algorithm to accommodate the situation
when each edge in G has a weight that indicates the probability that it is an inter-
action that does take place in the cell [30].3 They restate their objective as one of
finding disjoint modules of strongly co-expressed genes in X that have a high prob-
ability of connectedness in G. More formally, given a user-specified probability q,

3 Numerous methods have been developed to assess such confidence values. See Suthram
et al. [26] for a comparison of such methods.



244 Lasher, Poirel, and Murali

the algorithm detects subsets of genes which induce node-disjoint modules in X that
are q-connected in G, i.e., have a probability of connectedness of at least q.

For each edge e ∈ E, let pe denote the probability that e is a true interaction.
The authors assign a confidence value − log(1− pe) to the edge e. Let GU be the
subgraph of G induced by the set of genes U ⊆V . Consider any cut of GU , i.e., a set
of edges in GU that partition U into two non-empty subsets. The weight of this cut
is the sum of the confidence values of the edges in this cut. With these definitions,
a subset U of genes is q-connected if, for each possible cut in GU , the weight of
the cut is at least − log(1− q). (Note that log(1− q) represents the probability the
subgraph is not connected.) Formally, a subset U is q-connected if, for all W ⊂U

∑
e=(x,y),x∈W,y∈U−W

− log(1− pe) ≥− log(1−q).

To determine if a subset is q-connected, it is sufficient to check if the weight of the
minimum cut in GU exceeds − log(1−q).

The steps for identifying disjoint modules that are q-connected closely follow
those of MATISSE: seed identification, module optimization, and filtering for sig-
nificant modules. CEZANNE starts with the modules computed by MATISSE; re-
call that MATISSE does not take edge weights into account. The authors identify
q-connected seeds by recursively splitting the modules into smaller subgraphs along
the minimum cut, until the weight of the cut is at least − log(1−q). The computa-
tions required to refine these seeds must satisfy the constraint that any modification
must preserve q-connectedness (as opposed to connectivity). Ulitsky and Shamir
employ several heuristics for performing the optimizations within acceptable run-
ning times; we refer the reader to their paper for details. Finally, Ulitsky and Shamir
report only statistically-significant modules as follows: they create an empirical dis-
tribution of 100 scores by shuffling each gene’s expression values among the sam-
ples, applying the CEZANNE algorithm, and recording the highest similarity score
for each run. They assess the p-value for a module by ranking it within this distri-
bution of similarity scores for randomized gene expression data.

3 Available Implementations

Table 1 summarizes the algorithms discussed in this chapter. We provide the
name of the software package containing an implementation of each algorithm
and a reference to available source code. In the column titled “Description”, the
phrase “Treatment-control data” refers to algorithms discussed in Section 2.1, “co-
expression based” refers to algorithms discussed in Section 2.2, and “Comparing
response networks” refers to the algorithms that we discuss below in Section 5.
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Table 1 Implementations of algorithms to compute response networks.

Software Algorithm Description

http://www.cytoscape.org/tut/modules.complexes.php

Cytoscape Plugin ActiveModules [11] Treatment-control data

https://www.mi.fu-berlin.de/w/LiSA/Heinz

LiSA Dittrich et al. [4] Treatment-control data

http://acgt.cs.tau.ac.il/matisse

MATTISE DEGAS [28] Treatment-control data
MATISSE [29] Co-expression based
CEZANNE [30] Co-expression based
Hanisch et al. [10] Co-expression based

http://bioinformatics.cs.vt.edu/∼murali/software/network-lego

NetworkLego ActiveNetworks [22] Co-expression based
Network Legos [22] Comparing response networks

Source code is available upon request from Liu et al. [18].

GNEA GNEA [18] Comparing response networks

4 Examples

In this section, we showcase the application of two co-expression-based methods
for computing response networks to different stresses applied to S. cerevisiae.

Application of ActiveNetworks to amino acid starvation

In unpublished work, we applied the ActiveNetworks algorithm to a time-course
of DNA microarray data collected upon amino acid starvation [9] and an inter-
action network integrated by Kelley and Ideker from multiple sources [15]. This
network contains 15,429 protein-protein interactions from the Database of Inter-
acting Proteins (DIP) [25], 5869 protein-DNA interactions (between transcription
factors and their target genes) [17], and 6,306 metabolic interactions (interaction be-
tween proteins that operate on at least one common metabolite) based on the KEGG
database [14]. As a negative control, this network included 4,812 genetic interac-
tions [27]. Since genetically interacting genes are unlikely to be co-expressed, such
interactions should not appear in a response network. Overall, this network contains
32,416 (27,604 physical and 4,812 genetic) interactions between 5601 proteins.

Figure 1 displays a layout of the computed response network. At the center of this
network are two transcription factors PHD1 and GCN4. PHD1 is a transcriptional
activator that enhances pseudohyphal growth, a pattern of cell growth that occurs
in conditions of nitrogen limitation and an abundant fermentable carbon source.
GNC4 is a transcriptional activator of amino acid biosynthetic genes in response to

http://www.cytoscape.org/tut/modules.complexes.php
https://www.mi.fu-berlin.de/w/LiSA/Heinz
http://acgt.cs.tau.ac.il/matisse
http://bioinformatics.cs.vt.edu/%E2%88%BCmurali/software/network-lego
http://bioinformatics.cs.vt.edu/%E2%88%BCmurali/software/network-lego
http://bioinformatics.cs.vt.edu/%E2%88%BCmurali/software/network-lego


246 Lasher, Poirel, and Murali

S
D
H
1

Y
L
R
1
6
4
W

C
O
R
1

R
IP
1

U
G
A
2

L
S
C
1

Q
C
R
1
0

L
S
C
2

S
D
H
2

IM
E
1

C
IN
5

P
H
D
1

N
R
G
1

Y
N
L
0
9
2
WY
A
P
6

M
G
A
1

G
P
M
1

T
D
H
2

T
D
H
3

T
D
H
1

A
D
H
5

P
D
C
5A
D
H
1

P
D
C
1

P
H
O
1
1

A
D
H
3

G
C
N
4

G
L
T
1

G
L
N
1

C
P
A
1

C
P
A
2

A
D
E
6

A
D
E
4

G
L
N
4

S
IT
4

G
U
A
1

M
S
N
2

G
ID
8

H
S
P
1
0
4

Y
K
L
0
4
4
W

M
S
N
4

C
Y
B
2

P
Y
C
1

P
Y
K
2

C
O
X
5
B

A
L
T
1

U
R
A
8

E
L
P
2

IK
I1

E
L
P
3

K
T
I1
2

T
K
L
1

P
R
S
1P
U
S
1

P
R
S
5

P
P
T
1

P
M
T
4

C
K
A
2

C
T
T
1

P
R
S
3

P
R
S
4

Fig. 1 Response networks in S. cerevisiae following amino acid starvation showing interactions
between transcription factors and their target genes (solid arrows), PPIs (dotted), and metabolite-
based interactions (dashed).
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amino acid starvation. The Gene Ontology (GO) [1] biological processes enriched
in this network include purine ribonucleoside salvage, electron transport, glucose
catabolism, carboxylic acid metabolism and gluconeogenesis, pointing to the intri-
cate network of transciptional regulatory interactions, protein complexes, signaling
circuits, and metabolic pathways activated in response to the stress. The response
network included only two genetic interactions (not displayed in Figure 1), indicat-
ing that genetically interacting gene pairs are not highly co-expressed in this gene
expression data set.

Application of CEZANNE to DNA damage response

To detect response networks of Saccharomyces cerevisiae (yeast) under conditions
inducing DNA damage, Ulitsky and Shamir obtained expression data from Gasch
et al. [8] and a PPI network with confidence values derived from previous work by
Collins et al. [3]. Ulitsky and Shamir applied and compared the CEZANNE [30],
MATISSE [29], and Hanisch co-clustering [10] algorithms, as well as methods that
used only expression data and not the interaction network.

CEZANNE identified a total of 14 significant response networks covering 471 of
the 6167 genes in the interaction network, ranging in size from 3 to 346 genes. All
response networks were enriched for at least one term in the “biological process”
category, and 11 were enriched in at least one term in the “molecular function” cat-
egory. The largest response network featured many proteins associated with riboso-
mal biosynthesis; as a whole, the module experienced down-regulation in response
to DNA damage. The other modules include enrichment for genes with annotations
related to function in the ribosome, proteasome, and mitochondrion. CEZANNE
was able to detect both modules not detected by the other methods as well as more
specific and precise modules, as assessed by F-tests. Such modules included genes
correlated in the literature to cell response to stress but not previously detected by
the other methods.

5 Advanced Topics: Comparing Response Networks

At times, researchers wish to identify similarities and differences between multi-
ple response networks. These approaches are motivated by the desire to compare
the cell’s response to different conditions. Noting that Ideker et al. [11] extend their
ActiveModules algorithm (Section 2.1) to incorporate expression profiles for mul-
tiple experimental conditions, we discuss two other algorithms capable of handling
multiple response networks, namely, Gene Network Enrichment Analysis (GNEA)
and Network Legos. With the availability of public repositories such as the National
Center for Biotechnology Information’s Gene Expression Omnibus that now contain
thousands of gene expression datasets, we expect many novel methods for analyzing
and comparing response networks to appear in the future.
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5.1 Gene Network Enrichment Analysis

Motivated by the question of whether genes responsible for insulin production and
uptake appeared frequently in response networks computed from contrasts of dia-
betic and non-diabetic patients, Liu et al. [18] develop a method for detecting en-
richment of gene sets4 across a collection of response networks, which they call
gene network enrichment analysis (GNEA) . For each gene set F , they compute the
significance of its enrichment in each response network using the one-sided version
of Fisher’s exact test and tally the number of response networks cF for which the
gene set has a statistically significant enrichment (p-value at most some user-defined
threshold). To empirically determine the significance of cF , Liu et al. construct a
distribution of counts from 10,000 random gene sets of the same size as F : the p-
value of cF is the fraction of random gene sets whose counts are larger than cF .
Finally, they report all gene sets with highly significant counts.

5.2 Network Legos

Murali and Rivera [22] introduce the concept of network legos as a means for ex-
plicitly representing similarities and differences between response networks. They
treat a response network simply as a set of edges. Given a collection A of response
networks, each of which is a subgraph of an undirected interaction network G, they
first define the notion of a block as a triple (H,P,N ), where H is a subgraph of G,
P and N are disjoint subsets of A , and P 6= /0 such that

H =

( ⋂

P∈P

P

)⋂( ⋂

N∈N

(G−N)

)
,

where “∩,” “−,” and “∪” respectively denote the intersection, difference, and union
of the edge sets of two graphs and

1. Pis maximal, i.e., there is no response network P ∈ A −P such that H ⊆ P,
and

2. N is maximal, i.e., there is no response network N ∈ A −N such that H ∩N =
/0.

In other words, they form H by taking the intersection of all the response networks
in P and removing any edge that appears in any of the response networks in N .
Informally, H represents the cellular response that is common to all the experimental
conditions whose response networks are members of the “positive” set P . It also
does not incorporate any aspect of the cellular response captured in the “negative”
set N .

4 In this context, a gene set is simply a set of genes that perform the same function or have been
grouped together based on some common attribute.
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Murali and Rivera reduce the problem of computing all blocks to that of com-
puting all closed biclusters in an appropriately defined binary matrix represent-
ing presence and absence of interactions in each response network. They use the
CHARM algorithm for this purpose [31]. To estimate σH , the statistical signifi-
cance of an observed block (H,P,N ), Murali and Rivera construct a set of blocks
RH = {(H ′,P ′,N ′)}, composed from random selections of response networks P ′

and N ′, where |P| = |P ′| and |N | = |N ′|. They set σH to be the fraction of
blocks in RH whose subgraph has at least as many interactions as H.

Next, Murali and Rivera define a natural partial order between blocks: Given two
distinct blocks (H1,P1,N1) and (H2,P2,N2), they say that H1 ≺ H2 if

1. P1 ⊆ P2 and N1 ⊆ N2 or
2. P1 ⊆ N2 and N1 ⊆ P2.

Finally, Murali and Rivera define a network lego to be a block (H,P,N ) such that
σH < σH ′ , for every H ′ where H ≺ H ′ or H ′ ≺ H. In other words, (H,P,N ) is a
network lego if it is more statistically significant than blocks formed by combining
any subset of Pand N or by combining any superset of Pand N . They output all
the blocks that satisfy this condition as the set of network legos.

6 Exercises

1. Let z1,z2, . . . ,zk be k independent normally distributed variables. The random
variable ∑k

i=1 zi follows a Gaussian distribution. What are its mean and variance?
Use these values to justify the score used by Ideker et al. in the ActiveModules
algorithm.

2. In the ActiveModules algorithm, suppose we drop the requirement that the com-
puted subnetwork be connected. Show that the optimal network can be computed
in O(|V | log |V |)) time. What is the disadvantage of not requiring that the output
subnetwork be connected? Could the result be highly disconnected? What is the
biological relevance of such a network?

3. Consider the following modification to the ActiveNetworks algorithm: given a
subgraph H = (V ′,E ′) of G, define its density as

wH =
2∑e∈E ′ we

|V |(|V |−1)
,

i.e., the total weight of the edges in E ′ divided by the number of possible edges
in H. With this new definition, how easy or difficult is it to compute the subgraph
that has the largest density, over all subgraphs of G?

4. Assessing the statistical significance of a response network is a theme that ap-
pears repeatedly in this chapter. Summarize all the methods presented for com-
puting statistical significance and compare and contrast them, with a focus on the
different null hypotheses assumed by each method.
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5. In the Network Lego algorithm, the definition of a block (H,P,N ) does not
require that H be connected. It is easy to add this requirement to the definition.
What are the implications of this modification on the rest of the approach (the
definition of the partial order and network legos, the computation of blocks, and
the assessment of statistical significance)?

7 Outlook and Further Reading

The algorithms discussed in this chapter have integrated gene expression data with
networks of physical interactions between proteins. They make the assumption that
the expression level of a gene can be used as a surrogate for the expression or the
activity of the protein produced by the gene. This assumption is simplistic, since a
single gene may code for multiple proteins due to alternate splicing, and because
post-transcriptional and post-translation modifications play a major role in regu-
lating protein levels and activity. Nevertheless, this assumption is very useful in
practice, since gene expression does play a major role in controlling physiological
process and because DNA microarrays are the most widely-available experimental
technology for genome-wide measurement of gene expression. As technologies that
measure protein levels and activity (e.g., protein arrays) mature, we anticipate that
the next generation of response network algorithms will directly integrate protein
data with protein interaction networks.

Sharan and Ideker surveyed numerous methods that study protein interaction net-
works in the context of diseases [12]. Their review provides numerous entry points
into the literature on response networks and related topics. There are many ap-
proaches to integrate gene expression data with interaction networks and other types
of functional genomics data with the goal of finding gene modules. Such general-
purpose data integration techniques have been reviewed by Joyce and Palsson [13].
For a more general survey of analyses of interaction networks, especially on con-
nections to theoretical computer science, the reader can consult Murali and Aluru’s
survey [21].
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Identification of Modules in Protein-Protein
Interaction Networks

Sinan Erten and Mehmet Koyutürk

Abstract In biological systems, most processes are carried out through orchestra-
tion of multiple interacting molecules. These interactions are often abstracted using
network models. A key feature of cellular networks is their modularity, which con-
tributes significantly to the robustness, as well as adaptability of biological systems.
Therefore, modularization of cellular networks is likely to be useful in obtaining
insights into the working principles of cellular systems, as well as building tractable
models of cellular organization and dynamics. A common, high-throughput source
of data on molecular interactions is in the form of physical interactions between
proteins, which are organized into protein-protein interaction (PPI) networks. This
chapter provides an overview on identification and analysis of functional modules
in PPI networks, which has been an active area of research in the last decade.

Proteins that make up a functional module tend to interact with each other and
form a densely connected subgraph in a PPI network. Motivated by this observation,
module identification is often formulated as a problem of partitioning a PPI network
into dense subgraphs, which is also known as graph clustering. This chapter be-
gins with a brief introduction to the module identification problem in PPI networks.
Then, graph theoretical measures of modularity such as density, clustering coeffi-
cient and edge connectivity are introduced. Algorithmic approaches for identifying
modules are then presented in a systematic manner. These clustering approaches are
broadly categorized as (i) Bottom-up (ii) Top-down (iii) Iterative Improvement and
(iv) Flow Based methods. Subsequently, a sample application of modularization,
namely, predicting the function of uncharacterized proteins, is briefly discussed.
More advanced methods to identify functional modules often integrate other data
sources such as gene expression data with PPI data or use multiple networks to find
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conserved regions in the networks. After an overview on these advanced methods,
some exercises are presented to the reader.

1 History of the Problem

For years in the earlier century, the study of biological systems focused on under-
standing behaviour of single molecules [21]. Although this molecular approach had
great impact, it does not adequately reflect what really is going on inside the cell.
With recent advances in biotechnology, availability of high throughput biological
data enables investigation of biological processes from a systems perspective. Bio-
logical processes are often orchestrated through interaction of multiple molecules.
Considered together, these interactions form complex biological networks that un-
derlie cellular organization [37]. Computational analyses of the structure of these
networks provide significant insights into the mechanisms that drive complex bio-
logical systems [27].

In this chapter, we focus on protein-protein interaction (PPI) networks that
model physical interactions and functional associations between proteins. These
interactions are captured via a variety of experimental and computational meth-
ods [6, 23, 36]. PPI networks are often abstracted by graph models, in which the
proteins are represented by nodes and the interactions (often physical) among them
are represented by undirected edges. This abstraction enables application of graph
theoretical approaches to the analysis of cellular organization.

One of the most common applications of PPI network analysis is the identifica-
tion of functional modules. Functional modules are generally defined as groups of
proteins with a distinct biological function [43]. For example, a protein complex is
a macromolecular machine formed by multiple interacting proteins to perform spe-
cific functions (e.g., RNA polymerase I consists of 8 to 14 protein subunits and it is
responsible for the transcription of ribosomal RNA from DNA in eukaryotic cells).
Proteins within a module tend to interact with each other, whereas they are some-
what isolated from the rest of the network [43]. Consequently, such modular groups
of proteins usually induce densely connected subgraphs in a PPI network [21].
Identification and analysis of these modules renders the study of complex biological
systems tractable, and provides significant insights into the essential characteristics
of these systems, including robustness, adaptability, and efficiency [21].

The problem of network-based module identification is studied extensively in
recent years and various computational approaches are developed to tackle various
challenges, including the following:

• Protein interaction data is not reliable. The interactions captured by high-through-
put experiments provide only a generic and static representation of cellular dy-
namics, and there are a large number of unknown interactions, as well as false
positives [17].
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• It is not straightforward to unambiguously formulate mathematical properties
(e.g. size, density) of a group of interacting proteins to qualify it as a biologically
meaningful functional module.

• Functional modules are not rigid structures that have specific functions. Pro-
teins may dynamically form different modules in different contexts [47]. Con-
sequently, the methods should ideally be able to identify overlapping modules.

In the following sections, we discuss how different approaches tackle these chal-
lenges to deliver efficient and effective algorithms for network based module iden-
tification. First, we discuss several algorithmic approaches to identify functional
modules in PPI networks and introduce various modularity measures. Next, we pro-
vide a list of some of the publicly available software solutions for network-based
module identification. Subsequently, in the Examples section, we illustrate the use
of identified functional modules. We then overview several advanced methodolo-
gies that combine other sources of information with PPI network data to enhance
identification of functional modules. Next, we present a few practical exercises to
deepen the readers’ understanding about this subject. Finally, in the Further Reading
section, we mention several other resources for interested readers who would like to
broaden their knowledge in this area.

2 Algorithm Description

As discussed in the previous section, proteins that make up a functional module tend
to interact with each other and form a densely connected subgraph, which is some-
what isolated from the rest of the network. Motivated by this observation, module
identification is often formulated as a problem of partitioning a PPI network into
dense subgraphs, which is also known as graph clustering. Many existing graph
clustering methods are applied to the analysis of PPI networks, with a view to ad-
dressing the domain-specific challenges discussed in the previous section.

In this section, we first discuss various graph theoretical measures for assessing
the modularity of a group of proteins. Next, we briefly go through several algorith-
mic approaches that tackle module identification problem based on these measures.
Finally, we provide an overview of some methods for further refinement of identi-
fied modules, which usually make use of other sources of information such as known
protein complexes.

2.1 Graph Theoretical Measures of Modularity

What qualifies a set of proteins as a functional module in a PPI network? Different
measures are developed to provide a quantitative answer to this question. Here, we
review some extensively used measures.
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A PPI network, denoted by the undirected graph G = (V,E), consists of a set V
of proteins and a set E of interactions connecting pairs of these proteins, i.e., an
edge viv j ∈ E represents an interaction between proteins vi and v j. In graph theory,
a clique in an undirected graph is defined as a set of vertices, such that any pair of
vertices in this set are connected with an edge. In the context of PPI networks, a
clique is obviously a good candidate for being interpreted as a functional module,
since it is maximally connected. However, it is not realistic to assume that all pro-
teins in a functional module interact with each other; for example, a protein complex
may indeed contain proteins that do not physically interact with each other, but are
rather held together by another protein in the complex. Furthermore, due to the large
amount of false positives and missing interactions, as well as the variability of the
way experimental data is interpreted (e.g., spoke vs. matrix model [7]), searching
for a perfect clique in a PPI network would not be realistic. Consequently, several
measures are developed to assess the cliquishness of a subgraph.

For a single protein, clustering coefficient is defined to measure how close the
neighborhood structure of that protein is to a clique [48]. In mathematical terms,
clustering coefficient ci for a node i is defined as ci = 2ei/Mi(Mi − 1) where ei is
the total number of edges among the neighbours of node i and Mi is the number of
immediate neighbours of node i. A node in a perfect clique structure therefore has a
clustering coefficient of 1.

However, since many proteins may be involved in more than one module, they
often have many interacting partners that do not interact with each other. Conse-
quently, the clustering properties of these proteins may not be adequately captured
by clustering coefficient (it will be close to 0 for proteins that are involved in many
modules). Therefore, another metric, core-clustering coefficient , is defined, which
is very similar to clustering coefficient, but is more flexible especially in capturing
modules that involve hub-like proteins [8]. In order to define core-clustering co-
efficient formally, we first introduce another term, k-core . A k-core of a graph is
simply a subgraph, in which all vertices have degree at least k. Consequently, the
core-clustering coefficient of a protein i is defined as the density of the k-core with
largest k of the immediate neighbourhood of i.

From the perspective of a set of proteins (as opposed to a single protein), the
equivalent of clustering coefficient is density, which is another metric that is widely
used as a measure of modularity of a subgraph. Density of a set of proteins is
defined as the fraction of the number of interactions present in the induced sub-
graph to the maximum possible number of interactions that can potentially occur in
that module. In mathematical terms, density d of a set N of proteins is defined as
dN = 2eN/|N|(|N| − 1) where eN is the total number of interactions in the set and
|N| is the number of proteins in the set.

Furthermore, to measure how likely a protein belongs to a given module, one can
use the connectivity of that protein to the proteins in the module. Cluster property ,
kiN of a protein i with respect to a cluster N is calculated as kiN = eiN/dN |N| where
eiN is the total number of edges between protein i and the proteins in N, dN is the
density of N, and |N| is the total number of nodes in N [2]. This measure quantifies



Identification of Modules in Protein-Protein Interaction Networks 257

(a) (b) (c)

Fig. 1 Illustration of common measures of modularity in a PPI network. Each figure shows a
sample subgraph of a larger network. The edges with missing incident nodes show the interactions
of the proteins in these subgraphs with other proteins in the network. The clustering coefficient of
the red vertex in each subgraph is (a) 1 (b) 2/3 (c) 0. The density of each subgraph is (a) 1 (b)
5/6 (c) 3/6. Edge-connectivity of each subgraphs is (a) 3 (Highly Connected) (b) 2 (Not Highly
Connected) (C) 1 (Not Highly Connected) .

the relative connectivity of protein i to the proteins in N with respect to the average
connectivity of these proteins to each other.

Another measure of modularity of a subgraph is edge connectivity , which is de-
fined as the minimum number of interactions to be removed in order to disconnect
the subgraph. A set of proteins is referred to as highly connected if the edge con-
nectivity is greater than half of the number of proteins in the set [20]. The concept
of high connectivity is defined to reflect the idea that a subgraph can be highly con-
nected if, for each protein in this subgraph, the number of proteins that it interacts
with is larger than those it does not interact with.

Note that, many functionally associated proteins interact with each other through
indirect paths as well [13]. Consequently, besides evaluating the connectivity of a
set of proteins in terms of their direct interactions, it is also useful to assess the
reliability of paths connecting these proteins. For example the reliability of path
between a single protein and a set of proteins in a module can be used to estimate
the probability of that protein being a member of that module [5, 9]. The reliability
of a path is a measure that depends on the reliability of interactions that make up that
path, which indeed depends on the strength of the evidence that those interactions
exist in vivo. Here, the reliability of an interaction is generally scored using various
statistical techniques to reflect the strength of various sources of evidence on the
existence of the interaction [15].

A major problem associated with these modularity measures is that they are
rather arbitrary, i.e., they are not directly associated with a quantitative model of
underlying modular process. However, assessment of the significance of these mea-
sures with respect to a reference statistical model may provide a statistical basis for
the potential biological relevance of a module. Commonly, statistical significance
is assessed by generating many random graphs from the source PPI network by
preserving the node degrees to obtain a background distribution for the module’s
topological characteristics (e.g., density, edge connectivity) [22, 35, 43]. This can
be achieved by repeatedly switching the incident nodes of random pairs of edges. If
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the structure of a candidate module is observed frequently in these random graphs,
this may be an indicator that the structure is likely to occur by chance and there-
fore it may not reflect any biological insight. On the other hand, candidate mod-
ular structures that happen to occur very rarely in random graphs are more likely
to have a biological meaning. However, assessment of statistical significance via
Monte Carlo simulations is often computationally expensive. Alternatively, one can
explicitly formulate statistical significance of a module and use this measure directly
as an objective criterion for the module identification algorithms [33].

2.2 Algorithms for the Identification of Network Modules

Here we present different approaches for searching PPI networks to identify sub-
graphs that are (locally) optimal in terms of the modularity measures discussed
above.

2.2.1 Bottom-Up Clustering

This type of algorithms usually start with a set of seed proteins and grow clusters
around them based on a variety of methods in a bottom-up manner. Whenever a
cluster reaches a certain threshold for a modularity measure, that cluster is qualified
as a functional module. Due to their greedy nature, these algorithms are generally
quite efficient, often with time complexity linear in the number of interactions in the
network. However, they are also more likely to lack global awareness, because of
the greedy choices they make at each step of the search process.

One typical example for this approach is MCODE [8] . MCODE first assigns
a weight to each node that is correlated to the core-clustering coefficient of the
corresponding node. Then, it initiates a module composed of the protein with largest
weight and iterates by adding proteins that interact with the module and have weight
above some threshold in a depth first manner, until there are no unassigned nodes
left. The premise here is that connected nodes with high clustering coefficients are
likely to be parts of the same module.

Another bottom-up clustering method is proposed in [2]. Similar to MCODE,
this algorithm also starts with a seed protein that makes up its own module, and
grows it gradually by adding the neighbours to the cluster as long as the density of
the cluster and the added node’s cluster property are above a certain threshold value.
Whenever there are no more neighbours left that may be added to the cluster, that
cluster is removed from the network and whole process starts again, until all nodes
are assigned to a cluster.
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2.2.2 Top-Down Clustering

This type of algorithms start with the whole network in hand, and recursively par-
tition it to the clusters, until each cluster reaches to a certain value for a defined
property. While these algorithms provide more globally aware solutions by making
decisions based on global network properties, they are computationally more expen-
sive since they solve global optimization problems at each step of the algorithm.

One typical example for this type of algorithms is HCS (Highly Connected Sub-
graphs) [20]. The recursive step of the algorithm proceeds as follows: the network
is partitioned into two disconnected regions by removing the minimum number of
edges possible ( a problem known as min-cut partitioning [1]). Subsequently, each
subgraph is checked to be highly connected, and partitioned recursively if they are
not. The recursion stops whenever a subgraph that is highly connected is found.
Consequently, each final subgraph (at the leaves of recursion tree) is guaranteed to
be at least half as dense as a clique of the same size, by the definition of a highly
connected graph.

An important problem with the application of HCS to PPI networks is the follow-
ing. Due to the nature of the PPI networks (most proteins have low degree), repeated
solution of the min-cut problem tends to produce many clusters containing only a
single node, which obviously do not represent a significant functional module. A
statistically motivated module identification algorithm, SIDES [33], alleviates this
problem of HCS by using ratio-cut instead of min-cut. Ratio-cut is the ratio of the
min-cut to the size of the smaller partition to be created. In this way, more balanced
partitions are favored which reduces the number of singleton clusters (clusters with
a single node) created.

2.2.3 Iterative Improvement

We have covered two algorithmic approaches so far. One starts with single seed pro-
teins and grows clusters around them, and the other starts with the whole network
and partitions it recursively until “good” clusters are found. Some methods instead
start with an initial set of clusters and work to improve the modularity of these clus-
ters by making changes in the assignments of proteins into modules. Initial clusters
may be assigned randomly, or they may be chosen based on biological information
that is available a priori.

One such method, RNSC [28] starts with partitioning the whole network to ran-
domly assigned clusters and improves these clusters by changing the cluster assign-
ments of the nodes based on a cost function, which is very similar to the density
measure described in the previous section. Basically, a move (i.e., change of a clus-
ter assignment) takes place if it improves the modularity of the partition based on
this cost function. Similarly, the method proposed in [5] starts with initial cluster
assignments that typically depend on known protein complexes. For each cluster,
the rest of the proteins are ranked based on a probability value that represent how
likely they will be a member of that cluster. This probability is estimated based on
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Fig. 2 A sample run of the HCS algorithm. Having an edge connectivity 2 which is smaller than
half of the number of nodes, the initial graph is not highly connected. It is partitioned into two
subgraphs and each partition is checked to be highly connected. Dashed lines correspond to min-
cut edges between the two parts identified by the min-cut algorithm. The process continues until
all partitions are highly connected. SIDES implements a similar algorithm, in which min-cut is
replaced with ratio-cut and the high connectivity criterion is replaced by statistical significance of
subgraph density.

the reliability of the paths between the query protein and proteins that make up the
cluster. A similar approach is used in SEEDY [9]. SEEDY adds new proteins to the
given seed modules if the reliability of the most reliable path from the candidate
protein to the seed cluster is above a certain threshold.

2.2.4 Flow-Based Clustering

Information flow based approaches are often utilized in the analysis of biological
networks [44] and they also find application in module identification. A well known
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flow based algorithm is MCL [18], which clusters the graphs based on random
walks. MCL is based on the intuition that a random walk that starts from a node
in a module is unlikely to leave that cluster without visiting most of the nodes in
the module. After simulating a large number of random walks on a network, regions
with high flow are most likely to be dense subgraphs and vice versa. One other al-
gorithm for graph clustering based on network flow is proposed in [12]. Prior to
applying this method, each edge is assigned a reliability score in the protein inter-
action network, by utilizing the semantic similarity and semantic interactivity of the
nodes. The most informative proteins are selected based on the weighted degree of
the node, which is the sum of the weights of all edges from this node to its imme-
diate neighbours. In the flow simulation stage, flow starts with the most informative
proteins and the influence of these proteins on others are calculated based on the
weights of the edges. The intuition behind this algorithm is that, more reliable inter-
actions carry more influence of a protein to its interacting partners. If the influence
of a protein on another one is high, they are likely to be in the same functional
module.

2.3 Refining Identified Modules

The module identification algorithms covered so far assess the modularity of a sub-
graph using topological measures such as density, clustering coefficient, etc. To ad-
dress domain-specific challenges and enhance the biological relevance of identified
modules, after this clustering process, identified modules may go through a post-
processing stage, where they are extended [8], merged [12] or filtered [8, 28] using
various strategies. As mentioned previously, due to the existence of multi-functional
proteins, functional modules often overlap with each other. Traditional partitioning-
based clustering algorithms (e.g., bottom-up,top-down) are not suited to identifying
overlapping modules [47]. In order to have more realistic functional modules, clus-
ters are generally extended through a post processing phase. One way to achieve
this is to extend a cluster by adding the neighbours of the border proteins to it
as long as the used modularity measure is satisfied [8]. One helpful resource for
refining identified modules is the already available information on known protein
complexes. Identified modules may be compared to protein complexes in terms of
density, size and other topological metrics and be modified (or filtered out) accord-
ingly to achieve final modules as similar as possible to known protein complexes in
terms of these measures [28].

3 Available Implementations

The implementations of some of the algorithms explained in the previous section
are summarized in Table 1.
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Table 1 Publicly available implementations of major module identification algorithms.

Name Algorithm Platform

MCODE [8] Bottom-Up Java
http://baderlab.org/Software/MCODE
SIDES [33] Top-Down C, Java
http://vorlon.case.edu/∼mxk331/sides/
UVCLUSTER [3] Iterative C
http://www.uv.es/genomica/UVCLUSTER/
MCL [18] Flow Based C
http://www.micans.org/mcl/source
COMPLEXPANDER [5] Iterative online
http://llama.med.harvard.edu/cgi/Complexpander/Complexpander.pl
SEEDY [9] Iterative Perl
available upon request
SPC [45] Superparamagnetic Clustering C++
http://mips.gsf.de/proj/spc
NETWORKBLAST [25] Network Alignment Java
http://www.cs.tau.ac.il/∼bnet/networkblast.htm
MAWISH [32] Network Alignment C
http://vorlon.case.edu/∼mxk331/mawish/
MULE [31] Graph Mining C
http://vorlon.case.edu/∼mxk331/mule/

4 Examples

In this section, we illustrate the practical uses of identified modules in PPI networks
for generating novel biological knowledge. Clustering a PPI network and exploring
the topological measures of obtained clusters are not always sufficient to identify
realistic functional modules. Scientists often make use of curated data that provides
direct information on the function of individual molecules, which in turn can be
used to assess the functional coherence of modules.

Many proteins are already assigned some known functions. A valuable resource
that provides large scale information on molecular function is the publicly available
Gene Ontology Database [4]. These annotations are often used to calculate the sta-
tistical significance of the enrichment of a particular function in identified functional
modules [14, 3, 10, 47]. In other words, functional annotations of proteins that make
up a module can be evaluated in terms of their functional coherence (or homogene-
ity), as well as coverage of a specific function. This process can be summarized as
follows: for each GO term, the ratio of the proteins in a module that are annotated
with this term is found. This ratio is compared with the ratio of the proteins anno-
tated with that particular GO term in the whole network. Statistical models based on
hypergeometric distribution are used to estimate the significance of the term in that
module. If there exists any GO terms that are significantly enriched in a module,
that module can be classified as functionally significant [10].

http://baderlab.org/Software/MCODE
http://vorlon.case.edu/%E2%88%BCmxk331/sides
http://vorlon.case.edu/%E2%88%BCmxk331/sides
http://vorlon.case.edu/%E2%88%BCmxk331/sides
http://www.uv.es/genomica/UVCLUSTER
http://www.micans.org/mcl/source
http://llama.med.harvard.edu/cgi/Complexpander/Complexpander.pl
http://mips.gsf.de/proj/spc
http://www.cs.tau.ac.il/%E2%88%BCbnet/networkblast.htm
http://www.cs.tau.ac.il/%E2%88%BCbnet/networkblast.htm
http://www.cs.tau.ac.il/%E2%88%BCbnet/networkblast.htm
http://vorlon.case.edu/%E2%88%BCmxk331/mawish
http://vorlon.case.edu/%E2%88%BCmxk331/mawish
http://vorlon.case.edu/%E2%88%BCmxk331/mawish
http://vorlon.case.edu/%E2%88%BCmxk331/mule
http://vorlon.case.edu/%E2%88%BCmxk331/mule
http://vorlon.case.edu/%E2%88%BCmxk331/mule
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Predicting unknown functional annotations of proteins is an important problem.
Many approaches are proposed so far that make use of identified functional modules
for this task. The general idea is to find significantly enriched functional annotations
in a module and annotate all proteins in that module with those functions. Although
these methods are usually shown to be effective in function prediction, they are
based on the assumption that interacting proteins tend to share functions, which
may be an oversimplification (e.g., most of the metabolic enzymes perform their
functions without any collaborators [41]).

5 Advanced Topics

Since different data sources capture different aspects of biological processes, inte-
gration of different ’omic datasets prove invaluable in discovering novel biological
information. In this section, we overview various methods that integrate network
information with other sources of biological data to identify functional modules.

5.1 Using Gene Expression and Protein Interaction Data Together

PPI data provides a generic and static picture of cellular organization in that
it does not capture the temporal and spatial specificity of interactions between
biomolecules. On the other hand, genome-scale measurements of mRNA expression
via DNA microarrays [42] provide useful information on the expression of genes
in a particular context (e.g., after introduction of a ligand, phase of cell cycle, dis-
ease). This information may be used in conjunction with molecular interaction data
to investigate the dynamics of functional modules, in terms of the availability of the
interacting molecules in the cell in specific conditions. Indeed, it is shown that pro-
teins that have correlated expression profiles across a range of natural/experimental
conditions have more tendency to interact with each other. Expression levels of pro-
teins that are identified to be in the same functional module are also shown to be
significantly correlated [24, 46]. This co-expression is especially apparent among
elements of permanent protein complexes, while being somewhat weak for tran-
sient interactions. Transient interactions occur between proteins that come together
in only certain cellular states to undertake a biomolecular function. Based on these
observations an algorithm [34] is developed to identify groups of proteins with (i)
high connectivity in PPI networks and (ii) significant correlation of gene expression.
This algorithm is shown to perform better in terms of capturing biologically relevant
functional modules when compared to using these data sources separately.
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5.2 Using Network Alignment

Availability of interaction data for multiple species can also be utilized to enhance
the identification of functional modules, through identification of conserved sub-
graphs across multiple networks , a problem also known as network alignment. The
intuition here is that, conserved regions in PPI networks often correspond to bio-
logically functional subgraphs [26, 29]. Since the mapping of orthologs between
different species (networks) is not one-to-one, these algorithms generally construct
a Cartesian-product graph, in which each node represents a group of orthologs, one
from each species [30, 39, 40]. Subsequently, by assigning weights to edges based
on their conservation (e.g., based on maximum likelihood [40] or match score-
mismatch penalty [30], these algorithms reduce the problem into one of finding
dense subgraphs in the product graph.

Since the size of such a product graph grows exponentially with the number of
networks, these algorithms do not scale well to large number of networks. This
problem is alleviated by summarizing PPI networks through contraction of nodes
that correspond to ortholog proteins and using dedicated frequent subgraph mining
algorithms on the resulting uniquely-labeled graphs [32]. Furthermore, by formu-
lating multiple graph alignment problem as one of assigning nodes into equivalence
classes, the complexity of the problem can be rendered linear in the number of net-
works [19].

6 Exercises

1. Find the core-clustering coefficient of the red vertices in each graph given in
Figure 1. Compare this value to the clustering coefficient of those vertices. Which
of these two metrics do you think is more appropriate to be used as a modularity
measure of vertices in a PPI network?

2. Provide an example to illustrate that the density of a subgraph is not necessarily
proportional to its edge connectivity. Namely, give two subgraphs, S1 and S2,
such that dS1 < dS2 , while cS1 < cS2 , where dS and cS denote the density and edge
connectivity of subgraph S, respectively.

3. Apply SIDES algorithm to partition the graph given in Figure 2. Is there a dif-
ference in the resulting partitions when using HCS or SIDES? If not, give an
example graph for which these methods will partition differently.

4. Explain how the HCS algorithm guarantees that final partitions will at least be as
half dense as a clique of the same size.
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7 Further Reading

This chapter provides a broad overview of existing approaches to the problem of
module identification in PPI networks. For details on any particular method, we rec-
ommend the reader to consult the corresponding references. [38] provides a compre-
hensive overview on characterization of biological processes through comparative
analysis of biological networks. Furthermore, [41] provides a comprehensive review
of protein function prediction through application of various module identification
techniques and use of the identified modules to predict unknown functions of pro-
teins. Finally, [11] is a review that compares various clustering algorithms on PPI
networks in terms of robustness, sensitivity and performance.
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Part V
Biological Data Management and Mining



This final part of the book covers miscellaneous topics pertaining to biological data
management and mining.



Designing Microarray Experiments

Paola Sebastiani, Jacqui Milton, and Ling Wang

Abstract Gene expression microarrays have become an important exploratory tool
in many screening experiments that aim to discover the genes that change expres-
sion in two or more biological conditions and can be used to build molecular profiles
for both diagnostic and prognostic use. The still very high costs of microarrays and
the difficulty in generating the biological samples are critical issues of microarray-
based screening experiments, and the experimental design plays a crucial role in
how informative an experiment is going to be. In this chapter, we describe some of
the major issues related to the design of either randomized control trials or obser-
vational studies and discuss the choice of powerful sample sizes, the selection of
informative experimental conditions, and experimental strategies that can minimize
confounding. We conclude with a discussion of some of the open problems in the
design and analysis of microarray experiments that need further research.

1 Designed experiments versus observational studies

Since the work of Fisher in the 1920’s, randomization has been viewed as a neces-
sary ingredient of experimental design, and the randomized control trial has been
considered the ideal experimental framework that can lead to causal inference [2].
By randomization, that is, the random allocation of experimental subjects to any of
the “controlled” biological conditions that need to be tested, the investigator can re-
move the effect of those exogenous variables that are not explicitly included in the
experiment and can therefore ensure that only the differences in biological condi-
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tions are responsible for changes in the outcome. Randomization is often unusable
in studies with human subjects because of ethical reasons or it is simply impracti-
cable, and observational studies in which the experimenter has no control over the
assignment of subjects to treatments are to be used instead [21].

Fig. 1 Randomized control trials versus observational studies. The panel on the left illustrates
a randomized control trial in which experimental subjects are randomly allocated to one of two
exposure groups and then followed. At the end of the experiment, the number of diseased subjects
in each of the two groups can be attributed to the exposure because the randomization makes the
effect of confounders unlikely. The panel on the right illustrates a prospective study in which the
study subjects have known exposure at the time of entering the study and, after the follow up, the
number of diseased subjects can be used to estimate the effect of the exposure on the disease risk.
The lack of randomization, however, does not exclude that other unmeasured variables may be
associated with the exposure and contribute to the disease risk. For example, smoking in the past
was more frequent in male subjects and an observational study that does not control for gender
may lead to confounding between smoking and gender predisposition on the disease outcome.

As an example, suppose that an investigator wishes to discover the molecular pro-
file of a certain type of human cancer after 20 years of exposure to active smoking.
If the study design is a randomized control trial, the investigator would randomly
allocate experimental subjects to one of the two groups — smoker or non smoker
— and after 20 years exposure collect biological samples for the expression pro-
filing experiment. Because the harm of smoking is well established, the experiment
would not be considered ethical. An alternative solution is to use data from an obser-
vational study in which subjects either exposed to smoking or not can be followed
prospectively to discover those who develop cancer in either group, and biological
specimens can be collected and analyzed. See Figure 1 for a schematic.

Cohort studies that have been conducted for many years, such as the Framingham
Heart Study [35], are the best approximation to a randomized control trial if the risk
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factors are carefully measured when subjects enter the study and are longitudinally
monitored. The study design allows for estimation of the disease risk as a function
of the exposure but precludes causal inference because of the lack of randomization
[21]. Prospective studies however are expensive and time consuming, and a cheaper
alternative is to use a case control study in which experimental subjects are chosen
based on disease status (either ‘case’ if affected or ‘control’ if disease free) and
the exposure to risk factors is observed retrospectively and is therefore the random
outcome of the study [37]. An even simpler solution is a retrospective study in which
only the total number of subjects is controlled and both disease status and exposure
are random outcomes. Neither a case/control design nor a retrospective design can
protect from confounding — that is the indistinguishable effect of two variables on
the outcome of a study — and may lead to spurious associations but techniques
such as matching can help reduce these defects [21]. Matching cases and controls
by the levels of possible confounders should remove sources of confounding. For
example, if gender is a possible confounder of the effect of smoking on cancer
because of gender-specific detoxifying genes, then matching cases and disease free
controls by gender will remove the confounding effect of gender [21]. Matching
however restricts the generalizabilty of the results, so some care must be taken to
avoid over-matching [8].

To design either an experiment or an observational study investigators need to
answer some important questions. First, it is important to list carefully the hypothe-
ses that one wishes to test, and have a clear analysis plan to ensure that the study
design will be informative and allow for the planned analysis. For example, if the
effect of two or more experimental factors or covariates are to be tested, it is im-
portant to design the study to make sure that all the effects of interest are estimable.
The analysis plan may consist of using multi-way ANOVA to estimate the main ef-
fects as well as interaction effects of the factors on the outcome, and the estimable
interaction effects are determined by the number of combined factor levels that are
tested. The choice of experimental groups is also necessary in the design of an ob-
servational study, to make sure that the effects of covariates are not confounded with
each other. The main intuition here is to allow for sufficient variation of either ex-
perimental factor levels or groups of exposure to make sure that their combined joint
effects are observed: for example the experimental design that changes one-factor-
at-a-time allows only for the estimation of main effects, whereas a factorial design
will usually allow for the estimation of important, if not all, interaction terms. Figure
2 shows some examples. There is substantial literature about the design of factorial
experiments that can be used to choose the optimal combination of experimental
conditions subject to a fixed number of experimental runs and observations, and we
refer to [6] for a comprehensive description of the topic.

In the remainder of this chapter, we will look at the design of microarray experi-
ments that have been used to discovery genes that have differential expression across
two or more biological conditions and to build models for molecular classification.
We will also examine some of the issues related to the execution of microarray ex-
periments that can introduce systematic bias.
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Fig. 2 Example of different experimental designs. In each graph, each node represents an exper-
imental run in which a combination of factor levels is tested. The one-at-a-time design (top left)
examines the output of 4 different runs: in the first two runs the factor A levels (A1 and A2) are
changed while factor B is not controlled. In the 3rd and 4th runs, factor B levels are changed while
factor A is not controlled. This design provides no information about the interaction of the two
factors. The 22 factorial experiments (top right) also uses 4 runs, however, each run tests one of
the possible 4 combinations of the two level factors, (A1,B1), (A1,B2), (A2,B1), (A2,B2), and the
design allows the estimation of the main effects of the two factors and their interaction. The 23

factorial experiments (bottom left) uses 8 runs to test the effect of every possible combination of
factor levels on the output. This design allows the estimation of the 3 main effects, the 3 2-way
interaction effects, as well as the full 3-way interaction effect of the three factors. This is a fully
informative experiment that becomes quickly impracticable when the number of factors to be tested
increases. There are several methods to choose fractions of the full factorial design that require a
smaller number of experimental runs and will allow estimation of the effects of interest. Examples
are orthogonal fractions of full factorial experiments. The schematic in the bottom right picture
shows an example.

2 Discovery of Differentially Expressed Genes

A typical microarray experiment produces the expression level of thousands of
genes in two or more biological conditions with the goal to identify those genes
that change expression level between two or more conditions. The collection of
gene expression levels that are measured in one biological condition is called the
expression profile and this is often measured multiple times because of technical
and biological variability that are difficult to control. Repeated measurements of
the same biological condition may be pure replications when the target hybridized
to the microarrays is made of mRNA extracted from the same cells or biological
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replications when the target hybridized to the microarrays is made of mRNA ex-
tracted from different cells. In a cancer genomics experiment with cells extracted
from human subjects, for example, the replications are often biological because of
the substantial variability between subjects. In this section, we will mainly focus on
biological replications and will return to the issue of pure replications in Section 4.

We will use the notation yk ji to describe a normalized gene expression level,
where the index k specifies gene k in the microarray, k = 1, . . . , p, the index i de-
notes sample i measured in condition j, and the index j represents one of c biologi-
cal conditions. We denote by n j the number of samples measured in condition j, so
that i = 1, . . . ,n j and ∑ j n j = n is the overall sample size. We term the collection of
expression levels measured for a gene across different conditions its expression pro-
file, and we use the term sample molecular profile (or simply sample) to denote the
expression level of all the genes measured with one microarray in a particular con-
dition. Formally, the expression profile of a gene k in condition j will be described
by the vector yk j = {yk j1, . . . ,yk jn j}, the overall expression profile of the same gene
across all conditions will be the vector yk = {yk11, . . . ,yk1n1 , . . . ,ykc1ykcnc}, and sam-
ple i profile of condition j will be the vector y ji = {y1 ji, . . . ,yp ji}.

We suppose the aim of the experiment is to discover the genes with differential
expression in two or more conditions, so that the main design questions are (1) the
choice of the biological conditions to be tested and (2) the number of samples to be
measured per condition. Because the cost of a microarray experiment is still sub-
stantial, often the investigator needs to trade off the number of conditions c and the
number of samples per condition n j, subject to the constraint that the overall sample
size n is fixed to be small. Therefore, the choice of c and n cannot be disentangled.
To begin with, let us assume that there are only two biological conditions of interest,
so that the problem is to choose the number of observations n j per condition. We
use this assumption to show how statisticians determine the minimum number of
samples n j that are necessary to achieve specific properties and use the results to
suggest experimental designs for more complex studies in which also the number of
conditions is to be chosen.

The common solution is to frame the search for differentially expressed genes
as a series of independent hypothesis testing problems: for each gene the null hy-
pothesis that the gene has the same expression level in the two conditions is tested
against the alternative hypothesis that the gene changes expression level from one
condition to the other. The frequentist approach to hypothesis testing weights the
evidence against the null hypothesis by the p-value that, in this particular context,
would be defined as the probability of observing a change of expression at least as
extreme as that seen in the data under the null hypothesis of no differential expres-
sion. Although not impossible, this event is unlikely to happen if the null hypothesis
is true and so a small p-value is taken as evidence that the null hypothesis is false
and the alternative hypothesis is true. The probability to reject the null hypothesis
when true is known as the type I error while the statistical power is the probability
to accept the alternative hypothesis when true. The sample size is usually chosen
to guarantee a certain level of power of the hypothesis testing procedure when the
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probability of the type I error is bounded to 5% or less. This upper bound on the
p-value is called the significance level of the test.

It is important to consider that statistical power is a property of the analysis
method and not only of the data. Therefore, different analysis strategies will re-
quire different sample sizes. One simple rule of thumb is that the more naive the
statistical analysis, the larger the sample size required to achieve a desirable power.
Often power calculations are based on the normal approximation of the t-statistic
that is commonly used for identifying the genes with different expression in two
biological conditions j = 1,2:

tk =
ȳk1 − ȳk2

SE(ȳk1 − ȳk2)
,

where ȳk j is the mean expression level of gene k in condition j, and the standard
error of the sample mean difference, SE(ȳk1 − ȳk2), is computed assuming different
variances in the two conditions. Typically the common variance is unknown, but the
choice of sample size is based on a formula that assumes known variance [44]. The
formula shows that the overall sample size that is necessary to achieve a statistical
power (1−β ) when the objective is to detect a difference δ between the expression
level of a gene in two conditions is

n = 4
σ(zα/2 + zβ )2

δ 2 .

In the formula, zα/2 and zβ are the α/2 and β quantiles of the standard normal dis-
tribution — say Z — so that P(Z ≤ zα/2) = α/2 and P(Z ≤ zβ ) = β . The standard
deviation in both conditions is known to be approximately σ , and the significance
level of the test is α . The overall sample size is to be equally split between the condi-
tions. Assuming the underlying conditions are true, this formula guarantees a power
(1−β ) to detect a difference in expression for one particular gene, and its derivation
can be found for example in [44]. To apply this formula to microarray experiments,
the investigator needs to choose an average value of δ that adequately describes
changes in expression that have to be estimated across all genes and the same vari-
ability in gene expression data. It is convenient to work in a log base 2, so that a
one-unit change in the log intensity corresponds to a two-fold change. For example,
if σ = 0.5,δ = 2 and α = 0.0005, then we need approximately 20 samples, 10 for
each condition, to achieve 80% power (β = 0.20). The closed-form formula makes
the sample size estimation a very easy task. Nevertheless, there are several tools on
the web that can be used for this calculation and that help to correct the significance
level α for multiple comparisons using simple Bonferroni corrections (see for ex-
ample http://bioinformatics.mdanderson.org/MicroarraySampleSize). More sophis-
ticated approaches are based on false discovery rate rather than false positive rate
[31].

The Biometric Research Branch at the National Cancer Institute (NCI) has pub-
lished a series of methods for sample size estimation for high dimensional microar-
ray studies that extend this approach to include multifactorial experiments [12]. Al-
though these sample size estimations make simplistic assumptions that can impact

http://bioinformatics.mdanderson.org/MicroarraySampleSize
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sensitivity and specificity and the resulting sample size tends to be more conserva-
tive, they are helpful to suggest reasonable designs of microarray experiments.

A serious limitation of the approach based on the standard t-test or the general
linear models is that the gene expression data have a type of variability that may
make the assumption of normality inadequate even after a log-transformation of the
data [38]. To address this issue at least in the simple case of two sample compar-
ison, authors have suggested some forms of penalization for the denominator of
the t-statistic. For example, Golub et al. [18] suggested replacing the standard error
SE(ȳk1 − ȳk2) by the quantity

sS2Nk =
sk1√

n1
+

sk2√
n2

,

where sk j is the sample standard deviation of the gene expression in condition j.
The ratio |ȳk1 − ȳk2|/sS2Nk is termed the signal-to-noise ratio and, although lacking
a theoretical derivation, it performs very well and has been used in a variety of
applications. Other forms of penalization are justified by the fact that the standard
error may be very small for genes with small expression values, thus inflating the
value of the t-statistic. Based on this intuition, Tusher et al. [47] suggested to adjust
the standard error by a + SE(ȳk1 − ȳk2) where the constant a — called the fudge
factor — is chosen to minimize the coefficient of variation of the t-statistic of all the
genes. Efron [16] suggested to replace a by the 90th percentile of the standard error
of all the genes.

These variants of the t-test statistics have the limitation that their statistical dis-
tribution no longer follows a Student’s t distribution and the choice of the threshold
to select the genes with a statistically significant change of expression needs to be
based on either asymptotic approximations or permutation tests. The main idea of
permutation tests is to compute the value of a statistic from the data in which the
sample labels that represent the conditions are randomly reshuffled. By repeating
this process a large number of times, it is possible to construct the empirical distri-
bution of the statistic under the null hypothesis of no differential expression. From
this distribution one can select a gene specific threshold to reject the null hypothesis
with a particular significance. Authors have also developed algorithms for multiple
comparison adjusted p-values [15].

Distribution free methods tend to be widely used in practice, but they often re-
quire a large sample size to detect the genes with different expression and a small
false positive rate [56]. Some authors have suggested making distribution assump-
tions on the gene expression data, and the most popular choice is to assume that gene
expression data follow a lognormal distribution [3, 20]. Another stream of work fo-
cuses on the estimation of the fold change of expression, that is, the ratio of the sam-
ple means assuming Gamma distribution for the gene expression data [10, 29]. We
have shown that these distributional assumptions are often inadequate to describe
gene expression data and proposed a Bayesian procedure based on model averaging
that limits the false positive rate without reducing the power. Briefly, the method
analyzes the differential expression by assuming both lognormal and gamma distri-
butions, and then the results are averaged using weights that depend on the proba-
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bility of each of the two models given the data. The method is implemented in the
program BADGE and it is described in [39] and [40]. We showed that with a sam-
ple size of approximately 15 samples per conditions the method has more than 85%
power to detect a wide range of fold changes with a negligible false positive rate.
Figure 3 shows some empirical power curves.

Fig. 3 Power of BADGE for different sample sizes. The green line shows the approximate power
of BADGE to detect genes that change expression by at least 2.5 fold as a function of the sample
size. The red and black lines show the power curve to detect genes that change expression by at
least 2 fold (red) and 1.5 fold (black). The flat line in gray is the estimated False Discovery Rate of
BADGE. In all simulations, we use 0.95 as threshold on the posterior probability of a fold change of
expression exceeding 1, to detect genes with differential expression. The power curves show that to
achieve a power of 0.8 to detect minimally a two-fold difference in expression patterns of genes with
a false positive rate below 1%, BADGE needs about 15 samples. The same sample size provides a
power of 0.9 to detect a 2.5 fold difference. The power curves were generated by simulating 1,000
gene expression profiles with a fold change of at least 1.5, using a variety of parameter values
generated from distributions that were built using results of previous experiments. For each set of
parameters we computed the probability of differential expression and then we estimated the power
by the empirical true detection rate.

Fifteen samples per condition seems to be the minimum requirement for power-
ful microarray experiments, and a good heuristic to design informative microarray
experiments is to limit the number of biological conditions to n/15 if n is the overall
sample size. When this number of conditions is smaller than the overall number of
combinations of factor levels, orthogonal fractions of full factorial experiments can
be used to select a subset of design trials to run.

The situation is more complicated when the experiment aims at discovering
genes with specific temporal expression profiles. Common temporal gene expres-
sion studies consist of a number of unevenly spaced observations that are often
replicated to average out biological and sample variability. Due to the high cost
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of microarray experiments, replication of the same time point experiments is of-
ten chosen at the price of a reduced sampling frequency. The sampling frequency
is important to capture the essential dynamics of the data generation process and
increases the power to identify biologically interesting genes. We compared two
different sampling schemes to uncover genes with similar expression profiles in
model selection in [53]. Both schemes have the same number of observations, but
one scheme consists of a number of time points without replication, and the other
scheme uses replications of a subsets of these time points. The results from our
simulation studies suggest that the replicated design increases the power of several
model selection criteria to identify true underlying gene expression patterns such
as linear, quadratic, and cubic compared to non-replicated gene expression design.
The gain of power is substantial when the patterns are less distinct. However, the
performance of non-replicated design is comparable to or better than the replicated
designs when the underlying patterns are moderately or highly distinct. The results
of this investigation were based on the assumption that the overall number of mi-
croarray experiments is fixed in advance, and the task is to decide how to trade off
sampling frequency with replications. Other investigators have proposed sequential
strategies to the design of temporal experiments when the objective of the analysis
is to identify subsets of genes with similar temporal profiles using hierarchical clus-
tering [51]. The design of microarray experiments in which the temporal expression
profiles are observed in several biological conditions is an open question [50].

3 Building prognostic models

Gene expression data have been used very successfully to define new disease sub-
classes [18] and to build models for molecular classification of tumor types and
prediction of disease outcome [48, 49]. A success story is Mammaprint, a prog-
nostic product for predicting breast cancer recurrence developed in the Netherlands
(http://usa.agendia.com/en/mammaprint.html). Mammaprint uses microarray tech-
nology to compute the risk of breast cancer recurrence by measuring a signature
based on the expression level of 70 genes. The tool was developed through a se-
ries of studies for identification, classification, and validation of gene expressions
molecular profiles [48, 49].

The planning and design of such studies is quite complex and requires care-
ful considerations of many different aspects. The most important steps in build-
ing prognostic models are the development and validation of classifiers based on
gene expression levels. Typically, such classifiers group clinical samples/subjects
into several subgroups based on a probabilistic measure and the grouping is used to
define a classification rule that maps the expression profile to the outcome. Then the
performance of the classification rule needs to be carefully validated, preferably on
another independent population. In designing such a study, sample size estimation
is necessary to guarantee a sufficient prediction accuracy [42]. Mukherjee et al. [26]
developed a procedure based on a learning curve to estimate the sample size needed

http://usa.agendia.com/en/mammaprint.html
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to build a molecular classification model. Their approach was based on the idea of
using cross validation to assess the classification accuracy and permutation tests to
estimate the significance of the classifier. Dobbin and Simon provide formulas for
sample size when the objective is to identify molecular profiles that distinguish two
biological conditions [11]. These formulas essentially use the same sample size cal-
culations given earlier. Here, we will focus on reviewing the sample size estimation
when the objective is class prediction in a follow-up study. Let γk be the standard
deviation for the log2 expression data for gene k, and let h be the hazard ratio asso-
ciated with a one-unit change of the log intensity, the number of samples required
is given by

n =
(zα/2 + zβ )2

(γk ln[h])2

Since the log intensities are in log base 2, a one-unit change in the log ratio or log
intensity corresponds to a two-fold change. For example, if γk = 0.5,h = 2,α =
0.0005,β = 0.05 then we need 219 samples.

When building a good classifier that can predict the disease status using the ex-
pression profile of a set of genes, usually the number of genes is small compared to
the tens of thousands of genes being assayed. For this purpose, it is a good strategy
to divide the task into a two-step process: finding the small number of genes to use
in the classifier and building the prognostic model. Dobbin and Simon [12] explain
that, in this two-step process, one needs to estimate the sample size needed to en-
sure a high expected probability of correct classification instead of a high power.
They proposed an algorithm for calculating sample size in order to optimize the
probability of correct classification for the classifier, and offered a web-based tool
for such computation. This method considers the scenario of having two disease
states, and uses three input parameters: standardized fold change, total number of
genes assayed and disease prevalence in the population. Figure 4 shows a snapshot
of the web page. Dobbin et al. [13] illustrates this method in a more applied, clinical
context.

After a classifier (prognostic model) is developed, its performance should be
evaluated. This evaluation should avoid using the same data that were used to de-
velop the classifier. One can use cross-validation or split sample methods, but ideally
a data set obtained from an independent population should be used to demonstrate
that the classifier can deliver a good discrimination.

While the class predication ability of microarray data leads to the hope of better
prognosis and “individualized medicine”, there are still several hurdles to overcome.
For instance, the planning and execution of the development of such prognostic tools
is very complex, and there are many pitfalls that one needs to be cautious about [43].
Another aspect lies in the microarray technology itself. The high-throughput capa-
bility is coupled with the loss of sensitivity, compared to PCR technology. Finally,
many other aspects, including tissue biopsy handling, can complicate the applica-
tion in clinical use. This is one of the reasons that although the prognostic tool
Mammaprint has been approved by the US Food and Drug Agency (FDA), it has not
yet received endorsement from the American Society of Clinical Oncology [19].
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Fig. 4 Screen shot of the NCI web page that offers sample size calculation for developing classi-
fiers from microarray data.

4 Running the experiment

In the previous sections, we examined issues related to the design of microarray ex-
periments and focused attention on the choice of the conditions to be tested and the
number of microarray experiments to be run for each trial. There are other sources
of systematic variation that can affect microarray experiments and are related to
variability of the technology, for example print tip effects, spatial patterns on the ar-
rays, and known bias due to the fluorescent dye used to label the target mRNA that
is hybridized to the array [38]. The process of normalization is used to remove some
of this variation by forcing the distribution of the data to have the same median [54].
Normalization is conducted by fitting polynomial or loess regression and can intro-
duce other sources of variation. Thus it is important that the systematic variation
removed by normalization is greater than variation introduced by the normalization
process. Popular methods include linear normalization, nonlinear regression, cyclic
loess, contrast based method, and quantile normalization and were evaluated in [5]
and [36]. Linear normalization assumes that the intensities between two or more ar-
rays are linearly related so that the multiplication of a scaling factor is used to make
the mean expression of all arrays the same. If the relationship between the arrays is
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nonlinear, other regression models can be used to map each array to a baseline array.
Schadt et al. [36] illustrated a method in which a set of rank invariant probes was
used to fit a nonlinear regression relation. The quantile normalization method makes
the distribution of probe intensities for each array the same. The general principle
behind this method is that a quantile-quantile plot that shows the distribution of two
different probe intensities with the same distribution will be a straight diagonal line.
Thus, each probe intensity distribution is transformed to be aligned to the baseline.

Fig. 5 Example of dye bias. Each box plot displays the normalized log-expression values of 8,448
cDNA probes processed with a two-channel cDNA (data from the package Bioconductor). The ex-
periment was carried out using zebra fish to study the effect of mutations in the BMP2 gene on
early development in vertebrates. Swirl is a point mutant in the BMP2 gene that affects the dor-
sal/ventral body axis and the goal of the experiment was to identify genes with altered expression in
the swirl mutant compared to wild-types. Two sets of dye-swap experiments were performed, for a
total of four replicate hybridizations. In experiments 1 and 3 (labeled swirl.1.spot and swirl.3.spot)
the target cDNA from the swirl mutant was labeled using the Cy3 dye while the target cDNA
wild-type mutant was labeled using the Cy5 dye. In experiments 2 and 4 (labeled swirl.2.spot and
swirl.4.spot) the dye assignment was reversed. The box plots show that, in the experiments 1 and 3,
the expression of the control mRNA is less intense than the expression of the target mRNA, because
the median expression values are negative. On the other hand, the expression of the control mRNA
in the experiments 2 and 4 are more intense than the expression of the target mRNA as shown by
the positive median values.

Normalization was originally introduced to correct the dye bias of cDNA arrays
in which the target and control mRNA are labeled with the Cy3 and Cy5 dyes that
are known to be one more intense than the other [54]. Dye bias can easily be seen
when two identical mRNA samples are labeled with different dyes and hybridized to
the array [32], and Figure 5 shows an example. It has been argued that dye bias is a
negligible part of the variation [25]. However, if inferences are made for individual
genes, this can easily become a substantial source of bias. One can either try to avoid
dye bias during the experiment or the analysis phase of the study. Normalization
techniques can be introduced to remove bias during the analysis phase. A better
solution is to remove bias with the experimental design and the dye swap experiment
has been proposed to address this issue [55].



Designing Microarray Experiments 283

In a dye swap experiment, each hybridization is performed twice with the dye
assignment reversed in the second experiment. This is also known as a “double
reference” design which is highly effective but very expensive. The rationale of this
design is that by replicating each hybridization twice, with a reversed assignment of
the dye, the systematic bias cancels out and the analyst has to consider only random
sources of variability rather than systematic sources of error. This effect is clearly
shown in Figure 5, where the replication of the hybridizations 1 and 2 (labeled
swirl.1.spot and swirl.2.spot) should remove the effect of bias. To handle dye bias
during the analysis phase of the study, the following model was proposed

yk jid = µ +Ai +Dd +Vj + εki +ρk jid

where yk jid is the log ratio of the target to control intensity ratio for the ith replicate
in which the target is labeled with the dye d, Ai is the array effects for the ith array,
Dd is the dye effect for d = 1,2, Vj is the effect of condition j, εki is the random
effect of the kth gene, and ρk jid is the error term. This model was described in [23]
to analyze the data correctly when they are generated using a dye swap experiment.

In addition to normalization and dye swap experiments, there are other tech-
niques that can be used to minimize the systematic variation that results from per-
forming a microarray experiment. Experience shows that microarray data are prone
to influence by technical artifacts so randomization is important to avoid bias [23].
Arrays should be randomly chosen for each planned hybridization in case there is a
systematic variation in the order in which the arrays were printed. With two-channel
arrays, if one is not performing a dye swap experiment, randomization of dye as-
signments should be used to control for dye bias. Another important issue is whether
microarray experiments should be replicated. We briefly touched this topic in Sec-
tion 2 and in the context of designing temporal experiments and now we consider it
more in details. It has been argued that replication is essential to estimate technical
variability [25], and there are several ways in which this can be done. For example,
replication can be performed by using more than one spot of the same cDNA probe
on each slide. However, when creating these replicates it is important to note that
adjacent spots can never be considered full replicates. The printing, hybridization,
and scanning conditions will be shared by adjacent spots which creates a lack of
independence. Duplicate spots should be well spaced apart. Alternatively, one can
replicate the whole array hybridization and it has been estimated that three replicates
of each hybridization should be conducted [25].

We wish to emphasize that technical replicates are different from biological repli-
cates that involve hybridizations with mRNA from different biological samples. Bi-
ological replicates allow for estimation of between subjects variability, while techni-
cal replicates can be used to estimate the “pure error” that is due to the measurement
instrument. Historically, this difference goes back to the theory of factorial design
and the emphasis put on replication of a full factorial design to gain degrees of free-
dom to estimate the pure error, versus the use of different design points that can be
used to estimate the lack of fit of a statistical model [6]. Consider an experiment
with output y ji at replication i of condition j, and suppose that a model is fitted to
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this data (for example a linear regression model) and denote by ŷ ji the value esti-
mated for y ji. The distinction between pure error and lack of fit is derived from the
decomposition of the residual sum of squares:

RSS = ∑
ji

(y ji − ŷ ji)
2

that is an overall distance between observed and fitted values. The RSS can be de-
composed into the sum of

Pure error = ∑
ji

(y ji − ȳ j∗)
2

and

Lack of Fit = ∑
ji

(ŷ ji − ȳ j∗)
2

where ȳ j∗ is the average of observations in condition j. The pure error term can only
be estimated when observations are replicated and provides the correct estimate of
the error variance. The lack of fit term describes the departure of the fitted model
from the means per condition that represent the best fit [6]. In principle, replication is
needed only to estimate pure error, and therefore given the high cost of microarray
experiments, it seems unnecessary to replicate each measurement three times as
suggested for example in [25], and only replication of a few “crucial” experimental
trials should be performed. For example, in the context of temporal experiments,
replication of the baseline observations seems to be crucial to obtain good estimates
of the reference values that will be used for normalization of the observations. The
identification of a few crucial points to replicate during the course of microarray
experiments is an important issue that needs further investigations. Work done in
the area of response surface, see for example [7], could suggest valuable and more
affordable design of microarray experiments.

There are practical considerations that often limit the number of samples that
can be amplified and hybridized at the same time, including the amount of mRNA
to be extracted and pre-processed, costs, and time. Thus at times it may be neces-
sary to perform runs of a microarray experiment over the course of several days or
months. This approach can introduce a form of systematic bias known as batch ef-
fects [22]. For each created batch, different conditions including the reagents used
or the time of day could have an effect on the results making different batches not
directly comparable [14]. Often, scientists will want to combine these batches to
increase the sample size and consequently increase the power of their study. How-
ever, it is inappropriate to combine data sets without first adjusting for batch effects.
Several methods have been suggested to adjust for batch effects. The best method to
use depends on the researcher’s particular study design. Benito et al. [4] and Alter
et al. [1] have each proposed methods to adjust for batch effects, but they require
many samples (>25) and may remove real biological variation. Johnson et al. [22]
proposed an Empirical Bayes method that is robust for adjusting for batch effects
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in data with small batch sizes. The Empirical Bayes method borrows information
across genes and experimental conditions to calculate better estimates and create
more stable inferences.

Batch effects can also be controlled through a randomized block design. Arrays
can be considered experimental blocks with two dye colors used to compare two
categories of a factor. Blocking is the arranging of experimental units (in this case,
arrays) into groups (blocks) that are similar to one another. Blocking can be used to
reduce or eliminate the contribution to experimental error. The objective is to create
homogeneous blocks and allow the factor of interest to vary. Thus by blocking, we
create batches that are homogeneous and eliminate or minimizing batch effects. See
Figure 6 for an example.

Fig. 6 Example of a randomized block design with two experimental factors, with levels A1,A2
and B1,B2. The four design trials are allocated into two blocks in such a way that none of the two
factors is confounded with the block allocation. In this case, the randomized block design is based
on a Latin square.

5 Advanced topics and further reading

With the ability to observe genome-wide expression in a target cell, microarray tech-
nology has opened new research avenues and the opportunities for ambitious ex-
periments never thought before. When the first microarray experiments made their
appearance in the scientific world, Eric Lander stated the following:

The challenge is no longer in the expression arrays themselves, but in developing experi-
mental designs to exploit the full power of a global perspective. The issues are both technical
and conceptual. [24]

After almost 10 years of microarray experiments, this is still very much the case,
and well designed experiments continue to be very important, because the costs of



286 Paola Sebastiani, Jacqui Milton, and Ling Wang

microarray experiments are prohibitive for many laboratories. Optimal experimen-
tal design should play a crucial role, and there are many areas of research that need
substantial development [27]. Many microarray experiments are conducted to dis-
cover new disease taxonomies and use cluster analysis as the analytic tool for the
discovery process. With the exception of a few manuscripts [52], there are no gen-
eral guidelines about the optimal design of microarray experiments when the goal
is cluster analysis for the discovery of either new sets of functionally similar genes
or new disease taxonomies. In principle, one could use simulations to estimate the
effect of different sample sizes on the power of different clustering algorithms to
discover the true grouping of the data. We used a similar procedure to evaluate the
accuracy of the “Bayesian clustering by dynamics” algorithm that we introduced
in [33] to cluster time series. More extensive evaluations would provide valuable
insight about the proper design of microarray experiments for class discovery. We
conjecture that one can use prior information about the expected number of clus-
ters to design experiments that allows for the discovery of reproducible results. The
Bayesian framework should prove to be valuable to this endeavor.

By providing snapshots of the whole genome in action, microarray data can be
used to try dissecting biological systems. In the past few years there have been sev-
eral attempts to integrate data from microarray experiments using different types
of network models, including scale-free networks [34], relevance networks [9],
Boolean networks [41], and Bayesian networks [17]. Designing an experiment when
the goal of the study is knowledge discovery using networks is a difficult problem
and few results are available. Active learning has been suggested as a way to reduce
the number of observations and experimental trials that are necessary to achieve a
specific power to induce a Bayesian network from data [45]. Designs of informa-
tive temporal experiments to induce Dynamic Bayesian networks of gene expres-
sion data are presented in [30]. The review article by Needham et al. [28] contains
some suggestive examples about the effect of sample size on the power to induce
Bayesian networks from gene expression data. Trinh et al. [46] examine the effect
of sample size on the power of standard algorithms for learning Bayesian networks
classifiers with gene expression data. Their work suggests that at least 50 samples
per condition are necessary to achieve sufficient accuracy. This is an important topic
that needs further investigation and even simple exploratory studies based on well
designed simulations could produce useful insights.

6 Exercise

1. A microarray experiment is conducted to identify genes with differential expres-
sion between endothelium cells of 30 healthy donors and 30 patients with sickle
cell anemia. Comments on these four proposed designs:
a) The 30 healthy donors comprise 20 males and 10 females. The sickle cell
anemia patients comprise 10 males and 20 females.
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b) The age range of the 30 healthy donors is 45 to 70 years. The age range of the
sickle cell anemia patients is 15 to 50 years.
c) Both healthy donors and sickle cell anemia patients comprise 15 males and 15
females. Both the ages of sickle cell anemia patients and healthy donors range
between 15 and 50 years.
d) The sickle cell anemia patients comprise 15 males and 15 females, with age
ranging between 15 and 50 years. Each healthy donor was chosen to match gen-
der and age of a sickle cell anemia patient.

2. Design a microarray experiment that can detect genes that change expression
by more than 2 folds between two conditions, with at least 70% power and 5%
significance in each test.

3. The family wise error rate is the probability of making one or more type I error
when testing a set of N hypotheses. Compute the family wise error rate in testing
100 hypotheses, each with a significance level of 5%.

4. Compute the expected number of type I error in testing 100 hypotheses, when
each hypothesis is tested with a significance level of 5%; and 1%.

5. The Bonferroni correction attempts to limit the number of type I errors in multi-
ple testing by reducing the individual significance of each test so that the overall
number of expected false positive associations is fixed. Compute the significance
level of each individual test that is sufficient to guarantee that the family wise
error rate is 5%.

6. Suppose you need to run an experiment comparing 8 microarray samples of nor-
mal lung cells and 8 microarray samples of lung cancer cells. Only 8 microarrays
can be run in any given day, and there is a known day effect due to different tech-
nicians in charge of running the experiment. What is the best way to conduct the
experiment that avoid confounding between biological condition and day effect?
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Matrix and Tensor Decompositions

Karthik Devarajan

Abstract Advances in high-throughput technologies such as gene and protein ex-
pression microarrays in the past decade have made it possible to simultaneously
measure the expression levels of thousands of transcripts. This has resulted in large
amounts of biological data requiring analysis and interpretation. Many methods for
handling such large-scale data have been proposed in the literature. For example,
consider a p× n gene expression matrix V consisting of observations on p genes
from n samples representing different experimental conditions, phenotypes or time
points. One could be interested in identifying clusters of genes with similar expres-
sion profiles across sub-groups of samples. Typically, this is accomplished via a
decomposition of V into two or more matrices where each factored matrix has a
distinct physical interpretation. Matrix decompositions have been successfully uti-
lized in a variety of applications in computational biology such as molecular pattern
discovery, class comparison, class prediction, functional characterization of genes,
cross-platform and cross-species analysis, and biomedical informatics. In this chap-
ter, we focus on available and commonly utilized methods for such matrix decom-
positions as well as survey other potentially useful methods for analyzing high-
dimensional data.

1 Introduction

The past decade has witnessed a tremendous surge in high-throughput technologies
that has resulted in large-scale biological data in the form of expression profiles of
thousands of genes and proteins. Oftentimes, these studies involve only a handful
of tissue samples and the number of observations (samples or data points) far ex-
ceeds the number of variables (genes or expression measurements). A primary goal
of a high-throughput study such as gene expression microarrays is molecular pat-
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tern discovery. The emphasis is on the identification of clusters of genes that are
associated with sub-groups of samples based on their expression profiles. Analyses
of genome-wide expression patterns provide unique insights into the structure of
genetic networks and into biological processes not yet understood at the molecu-
lar level. Dimensionality reduction and visualization are fundamental to effectively
analyzing and interpreting the large-scale data in this setting. An unsupervised ap-
proach is appropriate when there is no a priori knowledge of the expected gene
expression patterns for a given set of genes or for any phenotype or experimental
condition.

In this chapter, we motivate some well known matrix decompositions within the
framework of unsupervised clustering (i.e., clustering samples or genes) based on
gene expression microarrays. Gene expression data from a set of microarray experi-
ments is typically presented as a matrix in which the rows correspond to expression
levels of genes, the columns to samples (which may represent distinct tissues, ex-
periments or time points) and each entry to the expression level of a given gene in a
given sample. For gene expression studies, the number of genes p is typically in the
thousands, the number of samples n, is typically less than one hundred and the gene
expression matrix V is of size p×n, whose rows contain the expression levels of p
genes in the n samples.

In order to facilitate ease of presentation, we focus on this specific application.
However, the applicability of our methods remains broad since it is straightforward
to extend this interpretation to other problems in computational biology involving
large-scale data. First, we describe several well-known methods for decomposing
high-dimensional data matrices arising in computational biology and bioinformat-
ics. We then discuss and illustrate the properties of the various methods through a
real-life example. We provide a unified representation of some well-known decom-
positions, as well as an interpretation of the factored matrices.

The remainder of the chapter is organized as follows. Using the unsupervised
clustering framework, we describe non-negative matrix factorization and singular
value decomposition in Sections 2 and 3, respectively. In addition, we discuss com-
putational issues, implementation as well as variants of these methods in these sec-
tions. Section 4 describes the Bayesian decomposition and other matrix decom-
position methods potentially applicable in large-scale biological data analysis. In
Section 5, we compare and contrast these methods, and discuss some of their key
properties. Section 6 outlines various methods for tensor decompositions, their ap-
plications as well as available computational tools. Finally in Section 7, we provide
some concluding remarks. Section 8 contains some exercises covering many of the
topics discussed.

2 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) was introduced in its current formula-
tion by Lee and Seung [72, 73] as an unsupervised, parts-based learning paradigm,
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in which a nonnegative matrix V is decomposed into two nonnegative matrices
V ∼ WH by a multiplicative updates algorithm. Their applications included text
mining and facial pattern recognition. NMF has gained widespread recognition in
recent years and has been used in a variety of areas including image processing
and facial pattern recognition [14, 23, 35, 43, 44, 45, 71, 76, 99, 100, 104, 123],
natural language processing such as in text mining and document clustering (see
[22, 96, 106] and references therein), sparse coding [55, 56, 57, 71, 80], informa-
tion retrieval [119, 125], speech recognition [11, 24, 89, 112], video summarization
[25] and Internet research [81, 82] and computational biology. For a thorough re-
view of its applications within the domain of computational biology, the interested
reader is referred to Devarajan [32].

NMF has proved to be a very useful tool for dimensionality reduction while
still providing a meaningful interpretation of the factored matrices. Given the p×
n gene expression matrix V defined earlier, NMF finds a pre-specified number of
metagenes, each defined as a nonnegative linear combination of the p genes. This
is accomplished via a decomposition of V into two nonnegative matrices, V ∼WH,
where W has size p× k, with each of k columns defining a metagene and where
H has size k × n, with each of n columns representing the metagene expression
pattern of the corresponding sample. The rank k of the factorization represents the
number of latent factors in the decomposition (in our case, this corresponds to the
number of clusters). It is generally chosen such that (n + p)k < np, i.e., a number
less than min(n, p). The entry wia in the matrix W is the coefficient of gene i in
metagene a and the entry ha j in the matrix H is the expression level of metagene
a in the sample j. There is also a dual view of the decomposition V ∼ WH, which
defines metasamples (rather than metagenes) and clusters the genes (rather than the
samples) according to the entries of W .

The factorization in NMF is not unique, unlike methods like singular value de-
composition which will be discussed later. The first step in obtaining an approximate
factorization for V is to define cost functions that measure the distance (in some
sense) between the observed matrix V and the product of the factored matrices WH.
Various metrics have been proposed and utilized for NMF in the literature. Typically,
these metrics are derived from Kullback-Leibler (KL) divergence or a generaliza-
tion of it based on an assumed likelihood [12, 31, 32, 72, 73]. One commonly used
metric is Euclidean distance ||V −WH||2 which can be derived as KL divergence
between V and WH based on the Gaussian likelihood [27, 29, 31] (Exercise 1).
Devarajan & Ebrahimi [28] introduced Renyi’s divergence for NMF based on the
Poisson likelihood of generating V from WH. For applications in image analysis
involving count data, Renyi’s divergence can be derived based on reconstruction of
an image represented by V from WH by the addition of Poisson noise, i.e.,

V = WH + ε (1)

where ε is a Poisson random variable. Renyi’s divergence is indexed by a parameter
α(α 6= 1) and represents a continuum of distance measures that can be utilized for
NMF, based on the choice of this parameter. It is given by
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Rα(V ||WH) =
1

α −1 ∑
i, j

[
V α

i j (WH)1−α
i j −αVi j − (1−α)(WH)i j

]
. (2)

Various well-known distance measures arise from Renyi’s divergence as special
cases [27, 28, 29, 31]. For example, in the limiting case α → 1, we obtain KL
divergence given by

KL(V ||WH) = ∑
i, j

[
Vi j log

Vi j

(WH)i j
−Vi j +(WH)i j

]
. (3)

Thus, we obtain the original formulation of Lee & Seung [73] based on (1) above
(Exercise 2). Renyi’s divergence is also applicable to other problems involving count
data such as text mining and document clustering as well as in molecular pattern dis-
covery where it provides a good approximation to gene expression profiles. Hence
this generalization unifies various competing models into a unique framework for
molecular pattern discovery using NMF [27, 28, 29, 30, 31, 32].

2.1 Convergence of the Algorithm

Once a metric is chosen, our goal is to minimize the distance measure such as in (2)
or (3). Multiplicative update rules for W and H based on random initial values have
been derived based on the EM algorithm. Specific details of the algorithm, its vari-
ants and their implementation can be found elsewhere [22, 31, 55, 57, 72, 76, 80].
These rules are applied simultaneously to W and H and guarantee convergence of
the algorithm to a local minimum. However, the algorithm may not converge to the
same solution on each run due to the stochastic nature of initial conditions. This
requires that it be run multiple times, each based on a different random initialization
for W and H. The gain in computational time due to the matrix representation of
the NMF update rules is offset in part by the non-negativity constraints. These con-
straints require an algorithmically more complex implementation relative to meth-
ods such as singular value decomposition.

2.2 Model Selection

Model selection refers to the choice of the number of metagenes k. In the clustering
context, we are interested in grouping the n samples into k clusters, where k is the
pre-specified rank of the factorization. Despite its computational complexity, the
stochastic nature of the NMF algorithm has proved to be rather useful in evaluating
the consistency and robustness of its performance. It has been effectively utilized to
assess whether a given rank k provides a biologically meaningful decomposition of
the data. Studies have shown that 50-200 NMF runs are usually sufficient to provide
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stability to the clustering [12, 31]. A commonly used method for combining the
information from multiple runs is consensus clustering [88]. In this approach, the
class membership for each sample is determined based on the highest metagene
expression profile [12, 31]. It quantifies the stability of the discovered clusters and
can also be utilized to assess the sensitivity of a stochastic method like NMF to
random initial conditions. Model selection procedures that quantify the robustness
of the factorization via consensus clustering have been developed and applied to
NMF [12, 29, 31]. For instance, Brunet et al. [12] propose a method for choosing
the number of clusters k based on the cophenetic correlation coefficient. However,
other approaches to handling the information across multiple runs are also possible
[29, 66, 88].

2.3 Implementation

The implementation of the steps in any model selection procedure is computa-
tionally very intensive for any real large-scale biological data set. However, the
stochastic nature of the algorithm enables each of these steps to be run indepen-
dently and simultaneously. These steps can be repeated for multiple random initial
conditions for W and H and the information from the independent runs combined
via consensus clustering. Thus the NMF algorithm lends itself easily to a paral-
lel implementation that would greatly increase speed and efficiency. Devarajan &
Wang [30] outlined such a parallel implementation of this algorithm on a Message-
Passing Interface/C++ platform (http://www-unix.mcs.anl.gov/mpi/mpich2/) using
high-performance computing clusters. There have been other efforts to optimize the
implementation of this algorithm. Lin [78] provides a tool based on nonnegative
least squares using projected gradients. Okun & Priisalu [91] have reported faster
convergence of the algorithm when feature scaling is applied to the original p× n
data matrix V .

Brunet et al. [12] provide a MATLAB implementation for NMF based on KL
divergence and consensus clustering. Their code is available for download at the
Cancer Genomics page of MIT Broad Institute (http://www.broadinstitute.org/cgi-
bin/cancer). Pascual-Montano et al. [93] provide an analytical tool called bio-NMF
for simultaneous clustering of genes and samples. For more details, the interested
reader is referred to http://www.dacya.ucm.es/apascual/bioNMF/. Lin’s projected
gradients approach [78] is available as MATLAB and Python implementations and
can be downloaded at http://www.csie.ntu.edu.tw/∼cjlin/nmf/index.html.

3 Singular Value Decomposition

Singular Value Decomposition (SVD) is also known as the Karhunen-Loeve trans-
form in machine learning, and as principal component analysis (PCA), the Hotelling

http://www-unix.mcs.anl.gov/mpi/mpich2
http://www.broadinstitute.org/cgi-bin/cancer
http://www.broadinstitute.org/cgi-bin/cancer
http://www.broadinstitute.org/cgi-bin/cancer
http://www.dacya.ucm.es/apascual/bioNMF
http://www.csie.ntu.edu.tw/%E2%88%BCcjlin/nmf/index.html
http://www.csie.ntu.edu.tw/%E2%88%BCcjlin/nmf/index.html
http://www.csie.ntu.edu.tw/%E2%88%BCcjlin/nmf/index.html
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transform and the empirical orthogonal function method in statistics. However, for
clarity in our discussion here, we will make a slight distinction between SVD and
PCA.

SVD is a linear decomposition of the p×n gene expression matrix V into matri-
ces W , H and D such that

V ′ = WDH ′ (4)

where W has size n× k, H ′ has size k× p and D is a non-negative, diagonal matrix
of size k×k where k = min(p,n). In our case, n << p and hence we will take k = n.
Each column of W represents a linear combination of the expression profiles of the
genes showing the largest variance across the samples, and is termed an eigengene.
Similarly, each row of H ′ represents a linear combination of the expression pro-
files of the samples showing the largest variance across the genes, and is termed an
eigensample. The eigengenes and eigensamples represent the left and right singular
vectors, respectively, in the decomposition [117]. Alter [4] is credited with coining
the terms eigengene and eigenarray. However, we use the term eigensample instead
of eigenarray to generalize applicability. We note that the formulation of SVD pre-
sented here is based on V ′ rather than V (as in [4]); however, it has an equivalent
interpretation due to the symmetry underlying the SVD.

Unlike NMF, this decomposition is unique in that the eigengenes and eigensam-
ples are unique, orthogonal superpositions of genes and samples based on the gene
expression matrix V . The matrices W and H are both orthogonal such that

W ′W = H ′H = I (5)

where I is the identity matrix. The entries of the matrix D are given by

di j =
√

λ iδi j, i, j = 1, ...,n (6)

where δi j = 1 if i = j and zero otherwise, i.e., the ith eigengene is expressed only
in the corresponding ith eigensample with magnitude

√
λ i and this expression level

indicates its relative significance. This relative significance is given by

ψi =
λi

∑n
i=1 λi

, i = 1, ...,n (7)

The λis represent the ordered eigenvalues such that λ1 ≥ λ2 ≥ ... ≥ λn.
The expression of each eigengene does not depend on the expression levels of

other eigengenes. In addition, the expression of each eigengene is also decorrelated
from the other eigengenes [4]. These statements hold good in the case of eigenar-
rays as well. Alter et al. utilize these features of the decomposition and outline an
approach for filtering the expression matrix V that circumvents the need to remove
individual genes or samples within a data set. They suggest filtering out those eigen-
genes and the corresponding eigenarrays that may potentially represent noise simply
by letting λi = 0 in D and reconstructing the matrix V using (4) above.
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In terms of reducing the dimensionality of the data, PCA seeks to find a small
number of orthogonal linear combinations or principal components (PC) that ex-
plain most of the variation in the data. This is achieved via the SVD of the gene
expression matrix V ′ given by (4). In the least squares sense, PCA is the most opti-
mal linear dimension reduction method. Let us assume that V has been standardized
so that the covariance matrix does not depend on the scale of the expression mea-
surements. The first PC p1 is the linear combination with the largest variance. It is
obtained by solving the following equation

h1 = argmax||h=1||Var(V ′h) (8)

such that p1 = V ′h1 and h represents a column of H. The second PC p2 is the linear
combination with the second largest variance and orthogonal to the first PC and so
forth. Typically, the first few PCs explain most of the variation in the data and are
usually sufficient. Using (4) and (5), it is easy to see that V ′H =WD. The columns of
V ′H are the PCs and they are ordered based on decreasing variance. An interesting
property of SVD is that the total variation is equal to the sum of the eigenvalues of
the p× p covariance matrix given by

Σ =
1
n

VV ′ = HD2H ′

where D2 is a diagonal matrix of the ordered eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn (Exer-
cise 3). The columns of H are the eigenvectors of Σ and are known as the principal
component directions of V ′ [37, 49, 108].

PCA is a second-order method due to its dependence on the covariance matrix
of the data. The PCs are uncorrelated and have variances equal to the eigenvalues
of Σ . Therefore, ∑n

i=1 λi = trace(Σ) = ∑n
i=1 Var(pi) and the relative significance ψi

in (7) above can be re-written as ψi =
λi

trace(Σ)
. ψi gives the cumulative proportion

of the variance explained by the first i PCs. A plot of ψi vs. i facilitates the choice
of the appropriate number of PCs that are required to be kept in order to explain a
given proportion of the total variation. Such a plot is known as a scree plot and a
search for an elbow in the plot reveals the number of PCs that explain most of the
variation.

Another useful exploratory tool is to graphically represent the correlations of
the PCs with the genes. For example, consider the first two PCs, p1 and p2 that
typically explain most of the variance. One could plot the correlations of the first
PC with each gene against the correlation of the second PC with each gene. Alter
et al. [4] recommend such an approach. The distance of each gene from the origin
could be interpreted as its amplitude of expression in the subspace spanned by the
two PCs. In addition, the angular distance of each gene from the x-axis could be
interpreted as its phase in the transition between the expression patterns defined by
p1 and p2.
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3.1 Implementation

SVD is readily implemented in practically every available software package for sta-
tistical data analysis. Typically, tools for visualizing the principal components in two
and three dimensions are also available. Some examples include, but are not limited
to, the following: the open-source statistical language and environment R (www.r-
project.org) and commercially available packages such as SAS (www.sas.com),
Splus (www.insightful.com), STATA (www.stata.com), SPSS (www.spss.com), and
MATLAB (www.mathworks.com).

3.2 Non-negative Sparse PCA

Zass & Shashua [126] described a non-negative, sparse variant of PCA (NSPCA)
which creates PCs that maximize the variance as in regular PCA except that the
PCs themselves are restricted to be non-negative. The imposition of non-negativity
constraints facilitates a sparse representation just as in NMF, thus resulting in factors
with a physical interpretation. An interesting outcome of imposing non-negativity
constraints in PCA is that the resulting PCs are disjoint and each co-ordinate is
non-zero in at most one PC. Each PC can then be viewed as a part. In addition
to the non-negativity constraints, explicit sparseness constraints are also imposed
where the desired amount of sparseness can be controlled with the choice of a tuning
parameter. This approach thus compensates for two important shortcomings of PCA,
namely lack of sparseness and non-negativity while still maintaining its maximal
variance property.

In many applications, some amount of overlap among the parts is desirable. The
authors [126] relax the disjointness of the PCs, thus allowing for some overlap
among them. Using the same formulation as in section 3 above, we add appropriate
constraints to incorporate non-negativity and sparseness to equation (8) as well as
relax the disjointness to obtain the following objective function for NSPCA.

max
H

1
2
||V ′H||2 − α

4
||I −H ′H||2 −β ||H||L0

,H ≥ 0

The first term in the above expression is equivalent to the objective function in reg-
ular PCA (see equation (8) above), the second term is an orthonormality distance
measure that represents the degree of overlap among PCs (i.e., it relaxes the disjoint-
ness of the PCs), and the last term represents explicit sparseness constraints. The
orthonormality distance ||I −H ′H||2 is non-negative and it is zero if and only if H
is orthonormal. The parameter α > 0 provides a tradeoff between reconstruction of
the data matrix V and orthonormality and the parameter β > 0 controls the amount
of additional sparseness required. Typically, this sparseness is imposed via the the
L0 norm by minimizing the number of non-zero elements in H. However, other con-
straints such as one based on the L1 norm are also possible. Zass & Shashua [126]

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.sas.com
http://www.insightful.com
http://www.stata.com
http://www.spss.com
http://www.mathworks.com
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also provide an algorithm for maximizing this objective function and computing the
corresponding non-negative, sparse PCs. Besides this method, there are other sparse
variants of PCA that have been proposed. A brief discussion on topic is provided in
[126].

4 Other Matrix Decompositions

There are several other matrix decomposition methods that abound in the litera-
ture. A thorough survey of various methods, including variants not discussed in this
chapter, is presented in Fodor [37]. These include principal factor analysis, max-
imum likelihood factor analysis, projection pursuit, non-linear independent com-
ponent analysis, random projections, principal curves and non-linear PCA. In this
section, we outline some less commonly used methods that are variants of NMF or
PCA. In particular, we cover Bayesian decomposition, factor analysis and indepen-
dent component analysis briefly.

4.1 Bayesian Decomposition

Bayesian Decomposition (BD) was originally proposed by Ochs et al. [90] for spec-
troscopic analysis and later adapted for gene expression microarrays [86]. In BD,
the p×n expression matrix V is decomposed into two matrices V ∼WH where W
has size p× k and H has size k× n. The matrices W and H are referred to as the
distribution and pattern matrices, respectively. Each row of the distribution matrix
W represents the amplitude of each pattern within the corresponding gene (row of
V ), with each column of W being associated with a single pattern. Similarly, each
row of the pattern matrix H represents the patterns that show the average behav-
ior of the co-expressed genes across the samples. The rank k of the decomposition
denotes the number of latent factors and is a number less than min(n, p). In BD,
this corresponds to the number of patterns and represents the appropriate number
of basis vectors (rows of H) required to reconstruct the matrix V from the product
WH.

Mathematically, the decomposition in BD can be expressed as

V = WH + ε (9)

where the gene expression matrix V is reconstructed based on the product WH by
the addition of Gaussian noise. This is somewhat similar to the NMF formulation
based on Euclidean distance but without the non-negativity constraints. Other dis-
tributions could also be used in the decomposition (9) above; however, the standard
formulation of BD incorporates normally distributed errors (BD). The decompo-
sition in (9) is not unique and a reasonable approximation to the distribution and
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pattern matrices, W and H respectively, are obtained via a Bayesian Markov Chain
Monte Carlo (MCMC) procedure [70].

One of the attractive features of BD is its ability to capture the co-expression of
a single gene in multiple groups that results in the identification of overlapping co-
expression groups. The basis vectors in W and H are non-orthogonal and potentially
represent the co-expression response due to different pathways or at different time
points. Since many biological processes have overlapping transcriptional response
profiles across experimental conditions (such as time points, phenotype etc.), BD
is suitable for identifying such non-orthogonal patterns. For time-course gene ex-
pression data, for instance, these basis vectors represent time curves associated with
a physical process. These processes could be progression through the cell cycle or
activation or de-activation of a pathway due to a specific treatment.

Using Bayes’ theorem on the decomposition V ∼WH, we obtain

P(W,H|V ) ∝ P(V |W,H)P(W,H) (10)

Here, P(V |W,H) is the likelihood of the data, P(W,H) is the prior probability of
the model and P(W,H|V ) is the posterior probability of the model given the data.
The prior incorporates biological knowledge and specifies the probability of the
model independent of the data. Starting with a suitable prior distribution in (9) and
a pre-specified number of patterns k, the algorithm utilizes simulated annealing and
iterates until convergence while updating W and H. Encoding the prior distribution
and sampling from the posterior are done using a Bayesian MCMC approach im-
plemented as a Gibbs sampler [70]. As with any Bayesian approach, encoding the
prior distribution is an important first step in the process outlined above. In BD,
prior encoding is used to incorporate prior biological knowledge in a number of
different ways. Examples include the incorporation of class associations [69, 87]
or co-regulation information from transcription factor databases [70] and encoding
for non-negativity of expression measurements [70]. An important consideration
in BD, as in other matrix decomposition methods, is the choice of the appropriate
number of patterns k that adequately represents the data V . Moloshok et al. [86] and
Kossenkov et al. [70] outline data driven approaches for selecting the number of
patterns for a given data set.

4.2 Factor Analysis

Factor Analysis (FA) is a linear decomposition method based on second-order statis-
tics similar to PCA. The fundamental assumption in FA is that the measured vari-
ables depend on a set of unknown and possibly unmeasurable common factors that
contribute to the observed data. Assuming that the gene expression matrix V has
been standardized so that the covariance matrix is scale-independent, the decompo-
sition in FA is given by

v = Λ f+u (11)
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where v is p-dimensional vector representing each column of the matrix V , Λ is a
p× k matrix of constants, f is a k× 1 matrix of random common factors and u is
a p× 1 matrix of specific factors [37]. Here k denotes the number of factors. The
factors are assumed to be uncorrelated and the common factors are standardized to
have zero mean and unit variance. We can re-write (11) as

vi =
k

∑
j=1

λi j f j +ui, i = 1,2, ..., p (12)

where λi j is the i jth element of Λ , vi is the ith element of v, f j is the jth element of
f and ui is the ith element of u. Then,

Var(vi) = σii =
k

∑
j=1

λ 2
i j +ψii (13)

where the first and second terms denote the contributions of the common and spe-
cific factors to the total variance. Each term within the sum on the right hand side
measures the magnitude of dependence of vi on the common factor f j. An impor-
tant interpretation of the decomposition in (12) is that if several components of the
vector v have high loadings λi j on a given factor f j, these variables are deemed
to measure the same unobservable quantity and considered redundant. The k-factor
model is scale independent unlike SVD and also holds for orthogonal rotation of
factors (Exercise 4). Factor analysis is implemented in standard statistical software
packages such as SAS, SPSS and STATA, among others.

4.3 Independent Component Analysis

Independent Component Analysis (ICA) is a higher-order method that seeks lin-
ear projections that are not orthogonal to each other necessarily but are statistically
independent. Statistical independence between components is a much stronger as-
sumption than uncorrelatedness and requires higher-order statistics. This contrasts
with PCA which requires only second-order statistics and orthogonal components.
Independence implies uncorrelatedness except in the case of the normal distribution
when they are equivalent, implying independent PCs. The independence require-
ment suggests that ICA may be appropriate for data that are not normally distributed
such as those from gene expression microarrays. However, this method may not be
suitable for analyzing large-scale genomic data due to strong correlations that are
typically known to exist between clusters of genes and sub-groups of samples. In
other words, identification of independent groups of genes may not be practically
possible.

A survey of ICA can be found in [61], and advances in theory and applications
are detailed in [42, 59, 74, 101]. Details on implementation of ICA and available
software can be found in [15, 60, 105].
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5 Comparison of the Methods

In this section, we compare and contrast the various matrix decomposition methods
outlined above. We give particular attention to the most commonly used methods,
NMF and SVD, and some of its variants. We provide an interpretation of the de-
composition itself as well as the nonnegativity and orthogonality constraints.

5.1 Interpretation of the Decomposition

In the NMF representation, a single metagene expression pattern influences multiple
samples. The metagenes provide a summary of the behavior of genes across the sam-
ples while the metagene expression patterns provide a summary of the behavior of
samples across the genes (see Exercise 5) [32]. The metagene coefficient wia quanti-
fies the influence of the ath metagene expression pattern ha j on the gene expression
of the ith sample, represented by the corresponding column of the gene expression
matrix V . For a pre-specified rank k factorization, the relative magnitude of the non-
zero entries in each of the k metagenes reflects the importance of the corresponding
genes, and the expression pattern of each metagene across the n samples (repre-
sented by each row of H) reflects the importance of the corresponding latent factor.
When a matrix whose columns represent data points in multi-dimensional space is
decomposed, parts manifest as subsets of the data dimensions that take on values in
a coordinated fashion [102]. This is generally relevant to any matrix decomposition,
however, in NMF, there is strong evidence suggesting that the metagenes and the
metagene expression patterns have a sparse, parts-based representation of the gene
expression data [12, 16, 27, 31, 32, 40, 65, 66, 73, 93, 94, 95], potentially identi-
fying local hidden variables or clusters. This is evidently due to the imposition of
non-negativity constraints [32, 73, 126], which will be discussed further in the next
section.

For clustering samples whose expression profiles are specified by columns of
V , the parts identify homogeneous clusters and are represented by the expression
patterns of metagenes across samples (or the rows of H). Moreover, genes with cor-
responding non-zero metagene coefficients represent groups that are co-expressed in
samples. These parts provide a reduced representation of the original data, and their
co-activation can be viewed as that corresponding to co-regulation or co-expression
of groups of genes [32]. This interpretation of the metagene coefficients and their
expression profiles across samples in NMF is similar to that in BD where the cor-
responding entities, the distribution and patterns matrices, are also non-orthogonal
and represent the co-expression response due to different pathways or time points.
In BD, each row of H can be viewed as measuring change across a set of pathways,
indicating the strength of a transduced signal measured by the transcriptional re-
sponse; and each column of W denotes the relative level of expression of genes to
the associated pathways.
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In text mining and document clustering, the matrix V is a summary of a corpus of
documents where columns represent documents and contain word frequencies from
these documents. Chagoyen et al. [22] discuss a novel application of NMF where
existing information about the genes (or proteins) in a study can be used to establish
putative relationships among subsets of these genes (or proteins) that characterize a
subset of the data. In principle, we would like to identify subsets of semantic cat-
egories and cluster the documents based on their association with these categories.
This is achieved via NMF by extracting literature profiles from a document corpus
linked to large sets of genes using common semantic features extracted from the
corpus. Genes are then represented as additive linear combinations of the semantic
features which can be further used for studying their functional associations. The
different semantic categories represent the parts in this application and the Poisson
framework using the various metrics outlined in section 2 provides a solid statistical
approach for modeling in this context.

Next, we interpret the decompositions in NMF and SVD using a real-life exam-
ple. We make use of the leukemia microarray data available at the Cancer Genomics
website of MIT Broad Institute (web link provided in section 2.3). This is one of
the widely used publicly available data sets and has become a benchmark in the
development, testing and illustration of methods for large-scale biological data. It
consists of 5000 gene expression measurements each from 38 bone marrow sam-
ples from acute myelogenous leukemia (AML) and acute lymphoblastic leukemia
(ALL). There are 27 ALL samples consisting of 19 B type and 8 T type, and 11
AML samples. In previous work, we used this data to demonstrate the factorization
in NMF [32]. Here, we use it for further illustration and comparison of NMF and
SVD. We applied a rank k = 3 factorization of the 5000 × 38 gene expression matrix
using NMF based on KL divergence (equation (3)). Let w1, w2 and w3 represent the
three metagenes (columns of W ) and let h1, h2 and h2 represent the corresponding
metagene expression profiles (rows of H). For the purpose of illustration, we use the
factored matrices based on a single run of the algorithm. We also applied standard
PCA to this gene expression matrix and computed the PCs.

The sparseness of the metagenes is clearly demonstrated by their box plots shown
in Fig. 1(a). Each circle in this figure represents a gene. Of the 5000 genes in this
data, the number of genes whose metagene coefficients exceed 10 are 38, 67 and
77, and correspond, respectively, to the metagenes w1, w2 and w3. These genes may
potentially behave in a strongly correlated fashion in a subset of the samples and
this is determined by their metagene expression profiles across the 38 samples. We
graphically illustrate this relationship between the metagenes and the gene expres-
sion profile for each sample by plotting their Pearson correlations. Panels (a)-(c) of
Fig. 2 display these correlations for the three metagenes, plotted against the sample
labels. Alternatively, one could plot these correlations for a given metagene with that
of another metagene (shown in Fig. 2(d) for the first two metagenes). In this figure,
“T”, “B” and “M” denote an ALL-T, ALL-B and AML sample, respectively. The
correlation between the gene expression profiles of samples and the first metagene
shows a separation between ALL-T sub-type and the remainder of the samples. The
second metagene, on the other hand, is able to distinguish between the two major



304 Karthik Devarajan

1
2

3

0102030405060

1(
a)

: M
et

ag
en

e

1
2

3

−0.4−0.20.00.2

(b
): 

PC

Fig. 1 Box plot of metagene projections.

classes. The combined effect of the first and second metagenes is seen in Fig. 2(d)
where all three classes are separated. In these plots, the correlations themselves are
not as important as identifying groups of samples showing similar correlations with
the metagene of interest.

On the other hand, the distributed representation provided by PCA is seen in the
box plots of the first three PCs shown in Fig. 1(b). It is evident from this figure
that identifying potentially significant genes based on the PC profiles alone is not
straightforward. In the case of PCA, plots analogous to those shown in Fig. 2 can
be obtained by using the PCs (data not shown). We noted earlier in this section
that the expression pattern of each metagene across the 38 samples reflected the
importance of the corresponding class represented by it. This is demonstrated by
a plot of the expression profiles for the first two metagenes shown in Fig. 3(a)-
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Fig. 2 Pairwise correlations between gene expression profiles of metagenes.

(b). The expression profile of the first metagene clearly distinguishes the ALL-T
samples from the others while the expression profile of the second metagene shows
the separation between the ALL and AML samples. These results are consistent
with those observed in Fig. 2(a)-(b). The corresponding plots in the case of PCA
are those based on the PCs and displayed in panels (c)-(d) of Fig. 3. The first PC
(panel (c)) is neither able to provide a good separation between the ALL and AML
classes nor between the two ALL sub-types, while the second PC is able to separate
the two major classes. However, the third PC was able to delineate the three classes
(data not shown). It is important to note that phenotypes are known in this data set
and samples have been plotted by phenotype for illustration. Nevertheless, for any
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Fig. 3 Expression profiles of metagenes.

real data set with unknown phenotype, these plots are a useful tool for illustrating
the underlying relationships between samples.

5.2 Interpretation of Constraints

In their seminal work, Lee & Seung [73] argued that the nonnegativity constraints in
NMF are compatible with the intuitive notion of combining parts to form a whole,
i.e., they provide a parts-based local representation of the data. They demonstrate
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this property using an example from facial pattern recognition. This unique property
of NMF contrasts with a holistic representation of the data provided by a method
such as vector quantization (VQ) and the distributed representation provided by
PCA [73]. A parts-based model not only provides an efficient representation of the
data but can potentially aid in the discovery of causal structure within it and in learn-
ing relationships between the parts [102]. The nonnegativity constraints in NMF re-
sult in a reconstruction of the original data by the addition of parts (metagenes and
metagene expression profiles) while in SVD, it is a superposition of the orthogonal
components with arbitrary signs (eigengenes and eigensamples) that lack intuitive
meaning and physical interpretation. In many real-life applications, negative coeffi-
cients may contradict physical reality. In image analysis, for example, the pixels in
a grey scale image with negative intensities cannot be meaningfully interpreted. Ar-
guably, NMF provides a more intuitive interpretation of the data compared to SVD.
However, it is inapplicable when the original data contains negative values. The ba-
sic principles underlying variations such as NSPCA and BD (outlined in sections
3.2 and 4.1, respectively) relax some of the restrictions imposed by NMF and SVD
and offer flexible alternatives to these methods. NSPCA, for instance, can handle
data that are not necessarily non-negative unlike NMF but still retains some of the
useful features of NMF such as sparseness. As in section 4.1, we note that prior
encoding in BD can be used to incorporate prior biological knowledge in a variety
of ways and this includes encoding for non-negativity of expression measurements
[70].

For gene expression data, one could interpret the nonnegative coefficients in each
metagene as the relative contribution of genes, unlike PCA and VQ. This is clearly
demonstrated in the example described in the previous section where a rank k = 3
factorization showed that only a small proportion of the genes corresponding to
the three metagenes significantly contributed towards separation of the three classes
(Figures 1(a) and 2). The identification of these small subsets of potentially active
genes is possible only due to the nonnegativity constraints which is a requirement
for such a parts-based representation. Such an interpretation would be virtually im-
possible with SVD where the eigengenes and eigensamples are orthogonal and can
contain positive or negative coefficients (see Figure 1(b)). The perception of the
whole is simply an additive linear combination of its parts represented in the meta-
genes and metagene expression profiles.

In their development of NSPCA, Zass & Shashua [126] observe that the addition
of non-negativity alone ensures some sparseness of the PCs by inducing disjointness
where each co-ordinate is non-zero in at most one PC. As noted in [32], the non-
negativity constraints may be a necessary condition for a parts-based representation
but they may not be sufficient to achieve sparseness. There is also some evidence
that points to a parts-based but holistic (rather than local) representation produced
by NMF [55, 56, 57, 76]. Thus, it may be desirable to explicitly enforce sparseness
on the metagenes and the metagene expression patterns. This is similar to NSPCA
in principle, and several variants of NMF imposing explicit sparseness constraints
on the entries of H or W or both have appeared in the literature over the last several
years [40, 55, 56, 57, 65, 76, 77, 80]. As in NSPCA, explicit sparseness is imposed



308 Karthik Devarajan

by including an appropriate penalty term to the objective function of choice. A brief
discussion of this topic including relevant literature and applications can be found
in section 4.3 of [32].

Another important consideration is the orthogonality constraint that is so fun-
damental to PCA. In NMF, orthogonality of metagenes and metagene expression
profiles may not be achievable in practice due to the nonnegativity constraints. This
lack of orthogonality in NMF has been shown to be superior to SVD and other di-
mension reduction methods (see [106] and references therein). However, enforcing
sparseness constraints decreases the overlap between metagenes as well as between
metagene expression profiles. It facilitates the detection of sharp boundaries be-
tween different classes, and results in localized, disjoint groups of samples or genes
[32]. Li et al. [75] have explicitly imposed orthogonality constraints and developed
a variant of NMF with applicability in spectroscopy. However, non-orthogonality
of the basis vectors can be extremely useful in gene expression studies since de-
pendence among the gene expression profiles typically present in such studies can
be captured by overlapping vectors. This property makes methods like NMF, BD
and NSPCA particularly well-suited for the analysis of large-scale biological data
where it is essential to capture relationships underlying inter-connected biological
pathways or processes.

6 Tensor Decompositions

A tensor is a multi-dimensional or N-way array where N is the order of the tensor.
The order N of a tensor is the number of dimensions and is also referred to as ways
or modes. For example, a first-order tensor is a vector, a second-order tensor is a
matrix and tensors with N ≥ 3 are considered to be higher-order tensors. Some ten-
sor decompositions are higher-order extensions of the well-known matrix version
of SVD [68] while others are higher-order extensions of the matrix version of NMF
[68]. Decompositions based on higher-order tensors possess an interesting unique-
ness property that contrasts many matrix decompositions. Interpretation of the factor
matrices arising from tensor decompositions is an important consideration but this
may not always be possible. However, by imposing appropriate constraints on the
model similar to those in the matrix versions of SVD and NMF, distinct interpreta-
tions of the factor matrices is possible.

In this section, we provide a summary of various methods in this area, their appli-
cations and related computational tools. For a thorough review, the interested reader
is referred to [68].
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6.1 Methods

Tensor decomposition was first introduced in 1927 by Hitchcock [53, 54] in which
a tensor was expressed as a sum of a finite number of rank-one tensors. Later in
1944, Cattell [20, 21] proposed the concept of multiple axes for the analyses of
high-dimensional data and parallel proportional analysis. However, the concept of
tensor decomposition did not become popular until the 1960s when methods such as
Canonical Decomposition (CANDECOMP) [19] and Parallel Factors (PARAFAC)
[47] were introduced for applications in psychometrics. Decompositions based on
these two methods factorize a tensor into a sum of rank-one tensors, and are also
unique under weaker conditions compared to well-known matrix decompositions
such as SVD. Another widely applied tensor decomposition method is the Tucker
Decomposition (TD) [120]. TD is a form of higher-order PCA in which a tensor is
decomposed into the product of a core tensor and a matrix along each mode. Unlike
CANDECOMP and PARAFAC, this decomposition is not unique.

In addition to these methods, there are various other approaches to tensor decom-
positions that have appeared in the literature. For example, Individual Differences in
Scaling (INDSCAL) is a special case of CANDECOMP and PARAFAC for three-
way tensors that are symmetric in two modes [19]. Similarly, Canonical Decomposi-
tion with Linear Constraints (CANDELINC) is an extension of CANDECOMP and
PARAFAC that imposes linear constraints on one or more of the factor matrices [18].
PARAFAC2 is another variant of CANDECOMP and PARAFAC that can be applied
to a collection of matrices with the same number of columns but with different num-
bers of rows. In that sense, PARAFAC2 is not strictly a tensor decomposition. A dis-
tinct advantage of this method is that it can approximate data in a regular three-way
tensor with fewer constraints that the standard CANDECOMP and PARAFAC ap-
proach. Another family of tensor decompositions is Decomposition into Directional
Components (DEDICOM) [48] that is applicable for skew-symmetric data and data
measured over time. A method that combines CANDECOMP and PARAFAC and
is also a generalization of DEDICOM is PARATUCK2 [46] that considers the in-
teractions between two different sets of objects. For example, the transition from
one object to another is accounted for in this analysis. Such a consideration is not
possible in standard factor analysis involving matrices. For more details, see [68]
and references cited therein. There are also several higher-order extensions of NMF
known broadly as non-negative tensor factorizations (NTF). These are comprised of
non-negative versions of CANDECOMP and PARAFAC as well the non-negative
Tucker decomposition (NNT).

6.2 Applications

Decompositions of higher-order tensors have found applications in a variety of areas
such as signal processing, chemometrics, data mining, neuroscience, computer vi-
sion and numerical analysis. Despite their usefulness for high-dimensional data, the
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potential of tensor decompositions is yet to be fully realized in the areas of bioinfor-
matics and computational biology. CANDECOMP and PARAFAC are also known
as the Topographic Components Model in neuroscience [85] where these methods
have found a variety of applications in brain imaging, analyses of functional mag-
netic resonance imaging data, electro-encephelogram (EEG) spectra and of epileptic
seizures [83, 84]. Other areas of applications include chemometrics [6], image anal-
ysis [5, 98, 39, 10], signal processing and telecommunications [26, 109, 110, 111]
and in data mining such as Internet research [2, 3] and text mining [8]. TD has found
applications in chemical analysis, psychometrics, signal processing, image analysis,
computer vision, video analysis, Internet research, text mining, handwriting analysis
and environmental modeling [68]. CANDELINC, PARATUCK2 and PARAFAC2
have been used to handle multicollinearity in chemometrics data. PARAFAC2 has
also been used in clustering documents across multiple languages. DEDICOM
has been successfully applied to model data on email communications over time.
Higher-order extensions of NMF such as NTF and NNT have found applications in
image analysis, audio analysis and the analysis of EEG data [36, 50, 107, 124].

6.3 Implementation

Computational tools for tensor decompositions include high-level programming en-
vironments such as MATLAB, Mathematica and Maple as well as FORTRAN and
C++ libraries. In particular, MATLAB provides a variety of tools for tensor manip-
ulation and decomposition. The base package supports element-wise manipulation
of tensors, and toolboxes such as N-way, CuBatch, PLS and Tensor provide algo-
rithms for computing various tensor decompositions, handling missing data as well
as non-negativity and orthogonality constraints. The PLS toolbox provides various
multi-dimensional models for data analysis and is well-suited for applications in
chemometrics. The Multilinear Engine [92] is a FORTRAN library that supports
CANDECOMP, PARAFAC and PARAFAC2, among others. The HUJI Tensor Li-
brary [126] and the Boost Multidimensional Array Library [41] are C++ libraries of
classes for expressing tensors. These libraries support various operations involving
tensors and sparse tensors except tensor multiplication.

7 Concluding Remarks

In this chapter, we have described several methods for matrix decompositions that
are useful for a variety of applications in computational biology and bioinformatics.
Even though we focused on dimensionality reduction and unsupervised clustering
of gene expression data for the purpose of illustration, the extension of the meth-
ods to other applications is straightforward. For instance, methods such as principal
components regression [49], supervised principal components [9, 117] and partial
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least squares [49] incorporate PCA within the supervised learning framework where
one is interested in identifying genes that are correlated with an outcome variable
such as patient response to a drug or survival time. There is a wealth of literature
in the area of supervised learning (please see [49] and references cited therein).
The application of NMF to other problems in computational biology has been sur-
veyed in [32]. Methods such as NMF and NSPCA demand greater applicability in
large-scale biological data analysis due to their sparse, parts-based representation
and nicer interpretability. The concept of matrix decomposition methods extends
to the multi-dimensional setting in which tensors are higher-dimensional analogues
of matrices and represent data in higher dimensions. Tensor decompositions have
gained popularity recently, both in terms of methodological development as well as
applications [68]. However, tensor decompositions are still in their fledgling state in
the area of bioinformatics and their potential is yet to be realized.

8 Exercises

1. Consider the matrices V , W and H described in Section 1. Using the Kullback-
Leibler divergence between two probability density (or mass) functions f and g
given by

KL( f : g) =

∫

ℜ
log

(
f (x)
g(x)

)
dF(x), (14)

show that the divergence between V and WH based on the Gaussian likelihood
(assuming equal variance) is equivalent to the Euclidean norm ||V −WH||2.
2. Using (14) above, derive the quantity in equation (3) based on the Poisson likeli-
hood of generating V from the product WH.
3. Show that the total variation explained by the principal components in SVD is

equal to the sum of the eigenvalues of the covariance matrix Σ =
1
n

VV ′.

4. In factor analysis, show that the k-factor model is scale independent and holds for
orthogonal rotation of factors.
5. Graphically illustrate that the representation in NMF ensures that a single meta-
gene expression pattern influences multiple samples.
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Practical Applications of the Gene Ontology
Resource

Rachael P. Huntley, Emily C. Dimmer, and Rolf Apweiler

Abstract The Gene Ontology (GO) is a controlled vocabulary that represents
knowledge about the functional attributes of gene products in a structured manner
and can be used in both computational and human analyses. This vocabulary has
been used by diverse curation groups to associate functional information to individ-
ual gene products in the form of annotations. GO has proven an invaluable resource
for evaluating and interpreting the biological significance of large data sets, enabling
researchers to create hypotheses to direct their future research. This chapter provides
an overview of the Gene Ontology, how it can be used, and tips on getting the most
out of GO analyses.

1 Introduction

With the advent of the sequencing age and advances in high-throughput experimen-
tal methodologies, there has been an explosion in the amount of data obtained from
biological research. Researchers must now be able to manage, manipulate, and in-
terpret large data sets, and the Gene Ontology resource has proven an invaluable aid
for helping researchers achieve this.

Traditionally, the naming of biological concepts has been inconsistent, with bi-
ologists from different communities producing both multiple names for identical
concepts and identical names for multiple concepts. Depending on what field of bi-
ology you work in, you may interpret the meaning of ‘bud’ in many different ways;
an anatomist may think of a tooth bud, a botanist would contemplate leaf or flower
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buds, and a yeast geneticist would see a yeast cell budding to form a new cell.
Although a human can make use of the context of such descriptions, this is not pos-
sible in computational analyses. The GO Consortium (GOC, No. 1 in Table 1) was
founded in 1998 to tackle the problem of describing functional information. The
founding members of FlyBase, the Berkeley Drosophila Genome Project, the Sac-
charomyces Genome Database and the Mouse Genome Database stated their goal
as being “to produce a structured, precisely defined, common, controlled vocabu-
lary for describing the roles of genes and gene products in any organism” [2]. Since
then, the Consortium has grown to include 16 databases covering a diverse range of
species and as of September 2008, the GO consisted of over 25,000 terms.

The GO has three hierarchies of terms: molecular function terms describe the
biochemical activity of a gene product; biological process terms describe a series of
functions ending in a biological objective; and cellular component terms describe
where in the cell a gene product is located. Figure 1 illustrates part of the Biological
Process ontology and the relationships between the terms.

Fig. 1 A section of the Biological Process ontology. Lines between boxes indicate the relationships
between the terms as described in the key.

2 GO Annotations

The GOC annotation groups also create associations (known as ‘annotations’) be-
tween gene/gene product identifiers and GO terms. An annotation is a specific as-
sociation between a GO term identifier and sequence identifier and has a distinct
evidence source which supports the association. A single well-characterised gene
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product can be annotated to multiple GO terms at different levels of the three GO
hierarchies.

Annotations can be created either computationally or manually — both meth-
ods are strictly controlled to produce high-quality GO annotation and both require
highly trained biologists and software engineers [7]. Currently, there are 20 anno-
tation groups providing manual and electronic annotation to over 160,000 different
taxonomic groups.

At present, two main methods for producing electronic annotation are applied by
GOC groups. The first is the mapping of appropriate terms from external vocabu-
laries to equivalent GO terms producing ‘translation tables’, which are then applied
to database entries annotated with the external vocabulary generating electronic an-
notations for GO. Examples of this include: Enzyme Commission numbers to GO,
Swiss-Prot Keywords to GO and InterPro to GO. The latter example alone provides
64% of UniProtKnowledgeBase (UniProtKB) proteins with at least one electronic
GO annotation (as of September 2008). The second electronic method involves the
projection of manually assigned GO terms from proteins in one species to the orthol-
ogous proteins in other species, for example the projection of annotations between
proteins from species in the Ensembl Compara ortholog set.

Electronic annotation is essential to providing annotation to the rapidly increas-
ing numbers of proteins being identified but is particularly useful for organisms
which have not been extensively studied on an experimental level, as annotations
may be transferred to them from model organism species based on sequence sim-
ilarity, thus providing functional information about the novel proteome. Electronic
annotations are distinguished from manual annotations by their ‘IEA’ (Inferred from
Electronic Annotation) evidence code.

The Gene Ontology Annotation (GOA) group is the principal provider of elec-
tronic GO annotations to the GOC. For a more detailed description of each of the
electronic annotation methods performed by the GOA group, please see the GOA
web site (No. 2 in Table 1).

Although electronic annotation provides fast, large-scale assignment of less de-
tailed GO terms — as of September 2008, 98.5% of the GO annotations in UniPro-
tKB were produced using electronic methods — there is also a need for highly de-
tailed functional information about gene products, and this is why manual curation
is necessary.

Manual curation is a very expensive and time-consuming process involving
highly trained curators reading published experimental literature to find evidence
for protein function and location. The resulting annotation is both more detailed
and more accurate than any computational method could achieve. An example of
this is the annotation associated with the human APOA4 protein (Figure 2). The
InterPro2GO electronic mapping has predicted the term ‘lipid transport’ whereas a
curator who has studied the scientific literature for APOA4 has assigned the more
specific GO term‘reverse cholesterol transport’ which is a child term of ‘lipid trans-
port’.

There are, at present, 20 annotation groups contributing manual annotation to
the GO Consortium covering almost 950 taxonomic groups. Depending on the re-
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Fig. 2 GO annotations associated with human APOA4 protein. Box A indicates the less specific
term predicted by the InterPro2GO electronic mapping and box B indicates the more specific term
chosen by the curator.

sources of each group, some species may have more comprehensive annotation than
others. For example, the Mouse Genome Informatics (MGI) database has provided
over 55,000 manual annotations to mouse genes, whereas there are only just over
1,400 manual annotations for pig, a species that does not have a dedicated annota-
tion group. Manual curation also allows the addition of extra information into an
annotation such as experimental evidence codes and qualifiers, which are explained
in the next sections.

2.1 Evidence codes

An important component of a GO annotation is the evidence code selected to de-
scribe the type of support that exists for an association between a GO term and a
gene/protein identifier. There are currently 17 evidence codes applied by curators,
which fall into three main groups: annotations based on published experimental data
(such as an enzyme assay, e.g. Inferred by Direct Assay, IDA); non-experimental
statements provided by an author or inferred by a curator (for instance inferring
a nuclear localisation for an in vitro-characterised transcription factor, e.g. Non-
traceable Author Statement, NAS); and finally evidence from computational predic-
tions (Inferred by Electronic Annotation, IEA) (No. 3 in Table 1).

Evidence codes are useful for evaluating the sources of information that were
available for a particular annotation set. When analysing data sets, users should be
aware that, for less well-annotated genomes such as chicken, bovine, or even human,
they may need to use both electronic and manual annotation sets to ensure that their
sequences of interest are sufficiently populated with annotation data, whereas for
well-annotated genomes such as yeast, a user could choose to include only manually
created annotations.



324 Rachael P. Huntley, Emily C. Dimmer, and Rolf Apweiler

2.2 Qualifiers

An optional addition to a manual annotation is a qualifier. These provide extra in-
formation on the relationship between a protein and its associated GO term (No. 4
in Table 1). Three qualifiers are currently available: ‘co-localizes with’ (to indicate
a transient or peripheral association of the protein with an organelle or complex);
‘contributes to’ (where a function of a protein complex is facilitated, but not directly
carried out by one of its subunits); and ‘NOT’ (to indicate conflicting published data,
or where in contrast to previous assumptions, a protein is not found to have a par-
ticular activity, location, or process involvement).

It is vital that users are aware of such qualifiers, for although they are rarely used
they can change the meaning of the associated annotation considerably. Most im-
portantly the ‘NOT’ qualifier produces the most drastic change in the interpretation
of an annotation, and users of large data sets are advised to ensure ‘NOT’ annota-
tions are appropriately considered in their analysis (see Section 6 ‘The effective use
of GO for large-scale analyses’).

3 Viewing the GO and its annotations

3.1 Browsing the GO

Several web-based tools are freely available to search, browse, and view the GO
hierarchy and annotations. The official GOC browser, AmiGO (No. 5 in Table 1),
enables users to search and browse both GO terms and the manual GO annotation
supplied by all the GO Consortium members. There are also browsers developed by
individual annotation groups such as MGI’s GO browser, which displays annotation
to mouse proteins and the QuickGO browser, produced by the GOA group at the
European Bioinformatics Institute (EBI) (No. 6 in Table 1).

QuickGO allows users to both a) search individual proteins or groups of proteins
and view all the associated manual and electronic annotation and b) search indi-
vidual or multiple GO terms and view all the associated proteins — the annotation
sets can be further filtered in a variety of ways, including by taxonomic group, evi-
dence code, and GO term identifier, among others, to create a customised subset of
annotations, which can then be downloaded.

Each GO browser has unique features, so it is worth comparing a few to find
one which suits your requirements. A list of GO browsers is supplied on the GO
Consortium web site (No. 7 in Table 1).
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3.2 Bulk retrieval of GO annotations

In addition to viewing single or small groups of annotations, users can also down-
load entire sets of annotations produced by the individual GOC annotation groups.
The GO Consortium supplies GO annotations in 15 column tab-delimited ‘gene as-
sociation files’. All the information required for a complete GO term-gene product
association is contained in one row of the file and includes information such as the
identifier of the sequence annotated, the GO term identifier, evidence code, and the
reference used (Table 2).

Table 2 Format of the Gene Association File.

Column Name Description

1 Database The database from which the Object ID is drawn.
2 Object ID A unique identifier in the database for the sequence being annotated.
3 Object Symbol A gene symbol or ORF name where possible.
4 Qualifier Flags that modify the interpretation of an annotation, e.g. ‘NOT’, ‘con-

tributes to’, ‘co-localizes with’.
5 GO ID The GO identifier for the term attributed to the Object ID.
6 Reference The source cited as an authority for the attribution of the GO ID to the

Object ID, e.g. PubMed ID or a database record.
7 Evidence A code indicating the type of evidence that supports the GO annotation.
8 With or From Required only for some evidence codes, values can include database

gene ID, sequence ID or GO ID.
9 Aspect One of P (Biological Process), F (Molecular Function) or C (Cellular

Component) to match the specific GO ID used in column 5.
10 Object Name Name of gene or gene product.
11 Object Synonym Any synonym of a gene or gene product.
12 Object Type The entity that is being annotated, e.g. protein, gene.
13 Taxon ID The ID of the species or strain encoding the gene product. In certain

cases, such as in annotations describing interactions between organ-
isms, two taxon IDs can be piped together.

14 Date The date on which the annotation was made.
15 Source DB The database group which has created the annotation.

The files are stored by the GO Consortium in a publicly available central reposi-
tory (No. 8 in Table 1). It is important to note that the member databases annotate to
a variety of gene or protein identifiers, so depending on what identifiers are required
by the user, a mapping between identifiers may need to be performed (see Exercise
2 in Section 7 for an example of how to map identifiers).

Gene association files can also be downloaded directly from member database
web sites, which can sometimes contain different groupings of annotations. Exam-
ples include: the 914 proteomes gene association files from the GOA web site (No.
9 in Table 1), species-specific files produced for all species whose genomes have
been fully sequenced, is publicly available and has more than 25% GO annotation
coverage (these are much smaller in size than the multi-species UniProtKB gene as-
sociation file and so easier to work with); the gene association file produced by the
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GOA group in collaboration with the British Heart Foundation-funded Cardiovas-
cular Gene Ontology Annotation Initiative (BHF-UCL), which contains GO anno-
tations to human proteins implicated in cardiovascular development or disease; and
the TAIR gene association file, which contains annotations to Arabidopsis thaliana
gene identifiers.

Alternatively, the GO database can be directly queried using the GO Online SQL
Environment (GOOSE) (No. 10 in Table 1).

4 Use of GO in the literature

From the most simplistic study of an individual protein’s function to the more in-
volved analysis of microarray data or interaction network predictions, GO has been
used in many and varied ways by the scientific community. Some examples of stud-
ies that have used GO data in their analyses are summarised below.

4.1 Microarray/Proteomics studies

One of the most common uses of GO is to analyse results of microarray and pro-
teomic studies. Here users can start to form biological hypotheses by determining
whether genes/proteins with similar expression patterns are also annotated to the
same types of GO terms, which could indicate that a particular cellular process
has been activated. Numerous examples of this type of study exist in the literature,
including one by Wertheim et al., [22] in which a microarray experiment was per-
formed to follow changes in gene expression after a parasitoid attack in Drosophila.
Among the genes that were differentially expressed there were a significant num-
ber that had GO annotation to defense or immune responses, response to bacteria
and proteolytic processes, however there were also a large number of differentially
expressed genes that had not previously been associated with defense responses,
suggesting a different set of genes are involved in the parasitic response compared
to the well-studied antimicrobial responses.

4.2 Functional characterisation of gene products

With a goal of determining the functions of siRNA targets from C. elegans, Asikain-
en et al. [3] looked for GO terms that were enriched in the target genes. The genes
were grouped according to the length of their siRNA, i.e. 18- to 22-mers, 23-mers
and 24- to 26-mers. The authors found that the different lengths of siRNA were
enriched with different types of GO terms: the targets of the 18- to 22-mers were
involved in embryonic development; the 23-mer targets were associated with post-
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embryonic development; and the targets of the 24- to 26-mers were involved in
phosphorus metabolism or protein modification.

4.3 Biomarker discovery

The Gene Ontology has also proved useful in finding markers for disease that could
potentially become targets for therapy. Gorter et al. [15] studied a rat model for tem-
poral lobe epilepsy and used GO data to determine which terms were enriched in the
genes that were differentially expressed during the three phases of epileptogenesis.
Genes involved in many different processes were found to display significant expres-
sion changes, such as stress response, apoptosis and synaptic transmission, although
terms associated with the immune response provided the most significant change.
This study was used to help the authors identify possible targets for antiepileptic
drugs.

4.4 Functional overview of proteomes/genomes using GO slims

Lin et al. [18] compared functional classification of singleton genes and paralogous
families in rice and Arabidopsis using plant GO slim categories (see Section 5.2.1
for more information on GO slims). They found enrichment of 12 GO slim cate-
gories including DNA binding, transcription factor activity and hydrolase activity in
rice paralogous family proteins but a substantial reduction in five categories includ-
ing receptor activity, kinase activity and carbohydrate binding. A similar result was
found between Arabidopsis singleton and paralogous genes. They concluded that
while some paralogous protein families have conserved functions others have been
subject to evolutionary pressure causing functional divergence.

4.5 Interactome studies

Brown and Jurisica [5] studied the conservation of interaction networks between
human and yeast using ‘Interologs’ which describe the process of mapping the in-
teractome of one organism to another, such that when orthologous proteins exist
in two species the interactions between proteins in one species can be inferred in
the other species. The authors created a database of orthologs among six organisms
and used these to map the interactomes between species. They noted that protein
complexes are preferentially conserved compared to more transient interactions and
went on to use GO to determine the functional category of interacting proteins. In-
teractions were transferred from humans to yeast, and the coatomer complex was
studied as an example. Using protein binding data mapped from the human inter-
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action network, the yeast protein GCS1 was suggested to be involved in retrograde
transport because of its, so far unreported, physical interaction with the transport
and sensing protein COPA and also the COPB-interacting protein, ERD2.

4.6 Validation of purification techniques

Scientists have also found the GO resource useful for evaluating the results from
certain experimental techniques, e.g., for purification of proteins from a particular
cell organelle. By seeing what gene products are in their purified fractions and what
GO cellular component annotations they are associated with, they can determine
whether or not the technique was effective. An example of this is Cao et al. [8]
who developed a two-phase partition method for purification of rat liver plasma
membrane proteins. They found that 67% of the purified proteins had been annotated
as integral membrane or membrane-associated proteins, and that a low proportion
of proteins had been annotated to mitochondrion and endoplasmic reticulum, the
main contaminating compartments, suggesting they had obtained a highly purified
fraction of membrane proteins.

5 Popular methods for supplementing and grouping GO
annotations

As we have seen, GO data has proven to be useful in many different studies from the
literature. This section will explore in detail two common uses of GO; how to obtain
functional information for gene products that have not been extensively studied and,
secondly, how to get a broad overview of the functional information associated with
a set of gene products using GO slims.

5.1 Functional prediction of uncharacterised sequences

One of the strengths of GO is that terms are defined so that they are species-neutral,
therefore the GO annotation for an experimentally well-studied species can be trans-
ferred to species for which little data is available. Several tools are available for au-
tomatically transferring GO annotations between species that exploit either phylo-
genetic data (SIFTER [14], GOAnno [9]), signal or transit peptide patterns (SignalP
[4]), TargetP [13]), or simple sequence similarity (Blast2GO [10]). In addition, the
EBI-based InterProScan tool [19] (No. 11 in Table 1) provides predictions of GO
terms by allowing users to query protein sequences (genomic sequences can also be
queried in local installations of InterProScan) against the protein family database
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InterPro. Results provide both a list of protein domains found in the query sequence
and the GO terms associated with particular InterPro domains.

An example of an InterProScan query is illustrated in Figure 3 using a GAF
modulated sigma54 specific transcriptional regulator from the proteobacterium
Burkholderia phymatum (UniProtKB accession number: B2JN45). The protein se-
quence of interest is pasted into the query box on the InterProScan home page and
the job submitted (Figure 3a). The results are displayed in ‘Picture View’ by de-
fault, which illustrates the InterPro domains predicted to be present in the query
sequence. The ‘Table View’ (Figure 3b) lists those domains together with the GO
terms to which they have been associated. The results suggest the B. phymatum
sequence may act to modulate transcription.

5.2 Using GO slims for summarising functional data

5.2.1 GO slims

It is the relationships between terms that make the GO so useful for summarising
results from large data sets (see Figure 1). Terms linked in the ontology by a rela-
tionship must obey the ‘true path rule’: if a term used in an annotation describes an
attribute of the gene product, then all of the parent terms through to the top-level of
the hierarchy must also be able to describe that gene product.

Although there are currently over 25,000 terms, users can select a number of
high-level terms and ‘map up’ the annotations that have been made to more descrip-
tive, descendant terms. This is a useful way of providing a broad overview of the on-
tology content without the detail of the specific, more refined terms. Many tools that
analyse GO terms use this feature of the ontology to interactively determine which
ancestor term provides the most significant relationship with the selected subset of
terms. Such term subsets, or GO slims, are especially useful for summarising the
results of GO annotation of a genome or list of genes from a microarray experiment
when broad classification of gene product function is required.

Although several pre-defined GO slims are available, such as the GO Consortium
generic slim or the species-specific slims from the TAIR (plant) and SGD (yeast)
groups (all available on the GOC web site (No. 12 in table 1)), many users need to
create their own GO slim to answer specific biological questions. Slims can be made
especially for an individual species or to particular areas of the ontologies. When the
slim is applied you will find that multiple annotations for one gene product can map
up to a single GO slim term if they are in the same path up to that term but also one
annotation can map up to multiple slim terms. This is because of the way the GO is
constructed; there can be multiple relationships between different terms so often a
GO term can have more than one path up to the root nodes (‘Molecular Function’,
‘Biological Process’, ‘Cellular Component’), if this path up the GO passes through
several terms selected for a slim then an annotation to the GO term could map to
several slim terms. However, if a parent term to the first slim term encountered in
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(a)

(b)

Fig. 3 (a) The B. phymatum sequence entered into the InterProScan query box. (b) Results from
an InterPro scan query, showing a list of InterPro domains predicted to be present in the query
sequence and the GO terms which have been associated to any of the domains (only two of the six
resulting domains are shown for clarity). From these results we can deduce that the B. phymatum
sequence may act to modulate transcription.
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the path also exists in the slim ontology then the parent will be discarded and the
more specific term kept. It is worth noting that as GO is often modified by editors,
old GO slim subsets may need to be checked to ensure they are not out of date with
the current ontology.

5.2.2 Use of QuickGO for making GO slims

A number of tools are now available which enable users to create their own GO slim
sets and map annotations up to these terms. Tools include the AmiGO GO slimmer,
the SGD GO slim mapper, the ‘map2slim’ Perl script, and QuickGO. (No’s 13, 14,
15 and 6 in Table 1). The QuickGO browser allows users to both define their own
sets of GO terms for use as a GO slim or use/modify one of the pre-defined slims.
Once users have developed their slim, they can map up annotations for a list of gene
products that may have been obtained from, for example, a microarray or proteomics
study.

An example of the latter is illustrated in Figures4 and 5 using a list of cardiovas-
cular-associated proteins to which we wanted slimmed-up annotation. The example
uses the GO slim provided by the GOA group, consisting of 64 terms, which is one
of the slims that can be selected directly from the QuickGO home page (Figure4a).
There are multiple ways to use a subset of GO terms (Figure4b), but this example
will demonstrate their use as a GO slim to produce an overview of annotation to a
list of proteins. Selecting ‘Use these terms as a GO slim’ will present the user with
a view of the QuickGO annotation table, where the selected slim terms have been
used to categorise all proteins in the GOA database. The proteins that are mapped to
the slim can be further restricted by adding a list of accession numbers in the Filter
ID field (box ‘A’ in Figure 5a). There are also options for filtering annotations by
Evidence Code or by Taxonomic Identifier. The percentage and count of proteins
associated with each of the slim GO terms can be viewed in the GO ID statistics
field (box ‘B’ in Figure 5a). A useful way of showing the distribution of GO terms
among the selected set of proteins is by pie chart as illustrated in Figure 5b. This
figure shows the distribution of Biological Process terms for the cardiovascular-
associated proteins where we can see that a significant proportion of these proteins
are involved in regulation of biological processes.

5.2.3 Using GO slims for proteome comparison

GO slims are also useful for comparing proteomes, as illustrated in Figure 6 for
the Drosophila and Anopheles proteomes. We can see that the two proteomes are
fairly similar regarding the biological processes that they are involved in, except
the Drosophila proteome has more proteins involved in developmental processes.
When comparing such proteomes, users need to take into consideration the types of
annotation that the proteomes have, in this example 99% of Anopheles GO anno-
tation has been predicted by electronic methods whereas Drosophila has a greater
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(a)

(b)

Fig. 4 Using GO slims in QuickGO (a) QuickGO home page showing the starting point for using
GO slims. Clicking on the GOA slim in the QuickGO home page (indicated by a black arrow) will
bring the user to the ‘GO slim’ page, where users can modify and view the structure of their slim.
(b) GO slim page in QuickGO showing the terms in the chosen slim and the options for associating
annotations to them (black box).
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(a)

(b)

Fig. 5 Results of slimming annotations in QuickGO (a) Annotation page in QuickGO showing
slimmed up annotations. From this page the user can edit the list of proteins used in the GO slim
(box ‘A’) as well as view statistics for the number and percentage of proteins associated with each
GO ID (box ‘B’). (b) Pie charts can be constructed using the GO ID statistics from QuickGO, this
example shows the distribution of Biological Process terms for cardiovascular-associated proteins.
A significant proportion of these proteins are involved in regulation of biological processes.
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proportion of manual annotations; this may well account for the different annotation
subsets being displayed by the GO slim.

Fig. 6 Categorisation of Biological Process GO terms for Drosophila and Anopheles proteomes.

6 The effective use of GO for large-scale analyses

6.1 Functional Analysis of Large Datasets

One of the most effective ways of analysing large data sets obtained from high-
throughput experiments is by using analysis tools that have been developed specif-
ically for this purpose. These allow users to query GO annotation data with lists of
gene, protein or probe identifiers. There exists a plethora of tools to assist biologists
with these analyses, all offering different functionalities and features. A list of some
of the tools available can be found on the GO Consortium tools web site (No. 7 of
Table 1). A quick overview of four of these tools, Blast2GO [10], FatiGO [1], The
Ontologizer [21], and Onto-Express [16] have been compiled with the assistance
of the tool developers in the online supplementary material of Dimmer et al., [11],
which is a useful starting point for scientists wishing to familiarise themselves with
such tools.

For reviews on available GO annotation tools and how to use GO annotations,
see references [17] and [20].
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6.2 Key considerations for large-scale analysis

There are a number of aspects of GO that should be considered before embarking on
an analysis of your data set to ensure that you get the most reliable and meaningful
results possible. Table 3 describes these considerations when analysing your set of
genes or proteins with GO data.

7 Exercises

7.1 Exercise 1

This exercise will familiarise you with searching and browsing the Gene Ontology
by using one of the available GO browsers. There is a list of GO browsers on the
GO Consortium web site (No. 7 in Table 1). AmiGO (No. 5 in Table 1) is the official
GO Consortium browser and QuickGO (No. 6 in Table 1) is the browser developed
by the EBI.

The following exercise can be performed using any GO browser, but they all
differ slightly in how they display the GO data (for example as of September 2008,
AmiGO does not display electronic annotation) and data filtering options may vary
between browsers.

1. In your chosen browser, search for the GO term ‘Immune response’.

Q. How many child terms does the term ‘Immune response’ have?

2. View the annotations associated with this term.

3. Filter the annotations to view only Drosophila melanogaster (Taxon ID:7227)
annotations.

Q. How many annotations exist to Drosophila melanogaster proteins?

Q. Which evidence codes have been most frequently applied in annotations to
these terms?

4. Filter the evidence codes to view only the manual annotations made using the
experimental evidence code ‘IDA’ (Inferred from Direct Assay).

Q. How many annotations have been made to D. melanogaster gene products
using the IDA code?

Q. Which databases have made these annotations?

5. Now look at the annotations made directly to ‘Immune response’, i.e. not to
any of it’s child terms.
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Q. How many annotations are now available?

7.2 Exercise 2

You have a list of gene product identifiers with which you want to carry out a term
enrichment analysis, however, the analysis tool you want to use does not accept the
identifiers you have, so you need to map them to another identifier type.

This exercise will explain how to convert Entrez Gene IDs to UniProtKB ac-
cession numbers and Exercise 3 will cover how to perform term enrichment on the
resulting list of accession numbers. There are a number of ID mapping services
available, for example UniProtKB (No. 16 in Table 1) provides one as does PICR
(No. 17 in Table 1). For a list of further services, please see the ‘ID mapping’ article
in the August 2008 edition of the GO newsletter (No.18 in Table 1). This exercise
will use the UniProtKB ID mapper.

1. Go to the UniProtKB web site, click on the tab entitled ‘ID mapping’ and paste
the following list of Entrez Gene IDs into the query box:

27040, 7454, 7535, 7126, 54900, 8542, 665, 8741

2. In the ‘From’ drop-down menu select ‘Entrez Gene (Gene ID)’ and in the ‘To’
drop-down menu select ‘UniProtKB AC’ and click on ‘Map’.

Note, for several Gene IDs there may be more than one UniProtKB AC returned.
The duplicates are generally unreviewed entries from the UniProtKB/TrEMBL
database so will only be found in term enrichment tools if they include electronic
(IEA) annotations in their analyses.

3. Use the link to download the target list as a text file.

7.3 Exercise 3

This exercise will demonstrate how to do term enrichment analysis on the list of
UniProtKB accession numbers obtained from Exercise 2. There are several analysis
tools which are capable of term enrichment and a list of these is on the GO Consor-
tium web site (No. 7 in Table 1). The AmiGO term enrichment tool will be used for
this exercise (No. 19 in Table 1).
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1. Open the AmiGO term enrichment tool and paste in the target list you saved
in Exercise 2.

2. Select the database filter ‘UniProtKB’, by default the tool will use the same
database as a background set so there is no need to select one. Click on ‘Submit
Query’.

Q. What Biological Process terms are most commonly associated with your list
of proteins?

3. In AmiGO you can choose to see your results in graphical form by clicking on
the ‘visualize tool’ link near the top of the page. The more significant the GO term
is, the darker the shading in the box.

8 Further Reading

More on annotation methods can be found in [6].
Available GO analysis tools and use of GO annotations are reviewed in [17, 20].
More information about the Cardiovascular Gene Ontology Annotation Initiative

can be found on the web site (No. 20 in Table 1).
If you are interested in the GO project and would like to receive public announce-

ments related to the project you can join the GO Friends mailing list (No. 21 in
Table 1).

If you have any questions or comments about GOA or our resources, please use
our feedback form (No. 22 in Table 1).
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GAMMA DISTRIBUTION 277
GAMMA DISTRIBUTION 110

SHAPE PARAMETER 110
GAP COST 7

EXTENSION 16
OPENING 16

GENE ASSOCIATION FILES 325
GENE DUPLICATION AND LOSS 146
GENE EXPRESSION 234
GENE NETWORK ENRICHMENT ANALYSIS

248

GENE ONTOLOGY 319
GENE ONTOLOGY (GO) 247
GENE ONTOLOGY ANNOTATION (GOA)

GROUP 321, 322, 324, 325, 331,
338

GENOME ALIGNMENT 34
GENOME-WIDE ASSOCIATION STUDY 162
GENOMIC CONTROL 169
GENOTYPE 160
GILLESPIE ALGORITHM see SSA
GO ANALYSIS, EXAMPLES OF 326–328,

331, 334, 337
GO ANNOTATIONS 320, 321, 325, 335
GO CONSORTIUM 320, 321
GO DATA ANALYSIS TOOLS 321, 328,

334, 337, 338
CORRECTION FACTORS 336
EVIDENCE CODES 336
NOT QUALIFIER 336

GO FRIENDS MAILING LIST 338
GO ONLINE SQL ENVIRONMENT (GOOSE)

321, 326
GO SLIMS 321, 327, 329, 331
GRAPH

ACYCLIC 101
CONNECTED 101
UNDIRECTED 101

GTR MODEL 109
GUIDE TREE 30

H

HAMMING DISTANCE 107, 108
HAPLOTYPE 70
HAPLOTYPE BLOCK 126
HAPMAP 67
HARDY WEINBERG EQUILIBRIUM 163
HCS 259
HEURISTIC MULTIPLE ALIGNMENT

ALGORITHMS 29
HEURISTICS 108, 116
HIERARCHICAL CLUSTERING 112
HIGH-SCORING SEGMENT PAIRS (HSPS) 7
HIGHLY CONNECTED GRAPH 257
HILL-CLIMBING HEURISTIC 113, 115, 116
HISTORY OF MULTIPLE ALIGNMENT 21
HKY MODEL 109
HOMOLOGY EXTENSION 35
HORIZONTAL GENE TRANSFER 125
HYBRID SSA/TAU-LEAPING METHOD 220
HYBRID SPECIATION 126
HYDROPHILIC 186
HYDROPHOBIC 186
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IDENTICALLY-BY-DESCENT 164
IDENTIFIER MAPPING 321, 325, 337
IMPUTATION 68, 79
INCOMPLETE TAXON SAMPLING 134
INDEPENDENT AND IDENTICALLY

DISTRIBUTED 106, 108, 110, 120
INFINITE SITES MODEL 70
INFINITE-ALLELE MODEL 138
INFINITE-SITE MODEL 138
INTEGER LINEAR PROGRAMMING 238
INTERPRO TO GO 322
INTERPROSCAN 321, 328
INTRACTABLE 103, 116
ISOMORPHIC 102

J

JUKES-CANTOR MODEL 106–109
DISTANCE CORRECTION CURVE 109
DISTANCE CORRECTION FORMULA 108
TRANSITION GRAPH 107
TRANSITION PROBABILITY MATRIX 106

K

K-CORE 256
KARLIN-ALTSCHUL SUM STATISTIC 10
KEGG 241, 245
KIMURA TWO PARAMETER MODEL

DISTANCE CORRECTION FORMULA 109
KIMURA TWO-PARAMETER MODEL 108,

109
TRANSITION PROBABILITY MATRIX 108

L

LACK OF FIT 284
LACZ/LACY MODEL 222, 224
LATTICE MODEL 179
LEAP CONDITION 215
LEAST SQUARES 166
LEAST-SQUARES CRITERION 111
LEAVES 101
LENGTH ADJUSTMENT 9
LIKELIHOOD 115–117

OF A TREE 116
LINEAGE SORTING 74
LINEAGE SORTING 145
LINEAR GAP COSTS 25
LINEAR PROGRAMMING 242
LINEAR REGRESSION 165
LINKAGE DISEQUILIBRIUM 162

LINKAGE DISEQUILIBRIUM (LD) 67
LIPTAK-STOUFFER 236
LOG LIKELIHOOD 116
LOGISTIC REGRESSION 166, 241
LOGNORMAL DISTRIBUTION 277

M

MANUAL GO ANNOTATION 322
MAP CRITERION 117
MARKER 78
MARKOV CHAIN MONTE CARLO 117
MARKOV CHAIN MONTE CARLO 77
MARKOV PROCESS 106
MATISSE 242, 247
MAXIMUM AGREEMENT SUBTREE

118–120
MAXIMUM LIKELIHOOD 115, 117
MAXIMUM LIKELIHOOD (ML) 142
MAXIMUM PARSIMONY 114
MAXIMUM PARSIMONY (MP) 136
MAXIMUM-WEIGHT CONNECTED SUBGRAPH

238
MCL 261
MCODE 258
MD 210
MEMORYLESS 106
MERGING OF SUBALIGNMENTS 31
MESQUITE 121
MINIMUM CONNECTED (k, l)-COVER 239
MINIMUM CUT 244
MINIMUM EVOLUTION

HEURISTICS 112, 113
MINIMUM-EVOLUTION CRITERION 111
MITOCHONDRIAL DNA 66
MITOCHONDRIAL EVE 67
MODELING 182, 200
MODULE 242
MOLECULAR CLASSIFICATION 279
MOLECULAR CLOCK 111
MOLECULAR DYNAMICS see MD
MOLECULAR FUNCTION ONTOLOGY 320,

325, 329
MOLECULAR PROFILE 275
MOST RECENT COMMON ANCESTOR 64
MOST RECENT COMMON ANCESTOR 102
MOTIF FINDING 37
MRBAYES 117, 121
MULTI-READ ALIGNMENT 38
MULTIPLE ALIGNMENT DEFINITION 24
MULTIPLE ALIGNMENT TOOLS 36
MULTIPLE COMPARISON 276
MULTIPLE CONFORMATIONS 195
MULTIPLE SEQUENCE ALIGNMENT 21
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MUTATION RATE 107
MUTATIONS 106–108, 110, 114, 115

N

NATIVE CONFORMATION 179
NATIVE STRUCTURE 195
NEAREST-NEIGHBOR-INTERCHANGE (NNI)

104, 105, 113, 115
NEIGHBOR JOINING 113

RUNNING TIME OF 113
NEIGHBOR-JOINING 30
NETWORK LEGO 248
NEUTRAL 106, 110
NEWICK 153
NEWICK FORMAT 104
NEXT-GENERATION SEQUENCING 68
NJML 116
NODE

BINARY 103
EXTERNAL 101
FULLY RESOLVED 103
INTERNAL 101–103, 114
UNRESOLVED 103

NORMALIZATION 281
NOT QUALIFIER 324, 336
NP-COMPLETE 112, 236, 238
NP-HARD 112, 113, 115, 118
NUCLEOTIDE FREQUENCIES 108–110
NUCLEOTIDE FREQUENCY 116

O

OBSERVATIONAL STUDY 272
OCCAM’S RAZOR 114
ODES 209
OPTIMAL MULTIPLE ALIGNMENT 27
ORDERED TREES 132
ORTHOLOGY-BASED PROJECTION OF GO

TERMS 322
OUT OF AFRICA 67
OUTGROUP 107

P

P-DISTANCE see HAMMING DISTANCE

P-VALUE 275
PAIRWISE DIFFERENCE DISTRIBUTION 70
PAIRWISE DIFFERENCES 67
PAM MATRICES 14, 15

PAM120 15
PAM30 15, 17

PAM MATRIX 110
PAML 121

PARAMETER 110, 117
PARAMETER ESTIMATION 77
PARAMETERS 110, 116
PARSIMONY 115

CAMIN-SOKAL 115
DOLLO 115
WAGNER 115

PARSIMONY SCORE 114, 115
PARTIAL ORDER ALIGNMENT 35
PARTITION FUNCTION 179, 188
PAUP 121
PERFECT PHYLOGENETIC NETWORK 139
PERFECT PHYLOGENY 139
PHENOTYPE 160
PHI-PSI ANGLES 200
PHYLIP 121
PHYLOGENETIC NETWORK 125
PHYLOGENETIC NETWORK DISSIMILARITY

153
PHYLOGENETICS 101
PHYLOGENIES

COMBINATORICS OF 103
DISTANCE BETWEEN 117
EQUIVALENCE 102
SUMMARIZING 117
TOPOLOGICAL DISTANCE BETWEEN

118
PHYLOGENY 101–104, 107, 110, 125

BINARY 103, 104
ROOTED 102–104, 110, 111
TEXT REPRESENTATION OF 104
ULTRAMETRIC 111, 112
UNROOTED 102–104, 107, 110

PHYML 116, 121
PLINK 163
POINT MUTATION

NONSYNONYMOUS 16
SYNONYMOUS 16

POISSON RANDOM NUMBER 215
POPULATION STRATIFICATION 163
POSITIONAL HOMOLOGY 136
POSITIVE PREDICTIVE VALUE 194
POSTERIOR DISTRIBUTION 117
POSTERIOR PROBABILITY 120
POWER 165, 275
PRINCIPAL COMPONENT ANALYSIS 170
PRIOR DISTRIBUTION 117

UNIFORM 120
PRIZE-COLLECTING STEINER TREE 238
PROBABILITY DENSITY FUNCTION 213
PROFILE ALIGNMENT 31
PROGRESSIVE ALIGNMENT 29
PROPENSITY FUNCTION 212
PROSPECTIVE STUDY 273
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PROTEIN BENCHMARKS 23
PROTEIN COMPLEX 254, 256
PROTEIN CRYSTAL STRUCTURE 193, 203
PROTEIN EVOLUTION MODELS 110
PROTEIN STRUCTURE 179, 182
PROTEIN STRUCTURE 179
PROTEIN-PROTEIN INTERACTION NETWORK

235, 240
PURE REPLICATION 274
PURINE 108
PYRIMIDINE 108

Q

QUALIFIERS 321, 324, 325
QUICKGO 321, 324, 331, 335

R

R 121
R8S 121
RAMACHANDRAN PLOT 201
RANDOM VARIABLE 106
RANDOMIZATION 271
RANDOMIZED BLOCK DESIGN 285
RATE VARIATION 110
RAXML 121
REACTION PROPENSITY RATE CONSTANT

212
REACTION RATE CONSTANT 212
RECESSIVE 160
RECOMBINATION 65
RECOMBINATION 125, 139
RECURSIVE EQUATION 188
REFINEMENT 33
REJECTION METHODS 77
RESIDUE CONTACT 184, 186, 190,

193–195
RESIDUE FLEXIBILITY 198
RESPONSE NETWORK 234, 242
RETICULATE 126
RNA ALIGNMENT 37
RNSC 259
ROBINSON-FOULDS DISTANCE 117, 118,

120
ROGUE-TAXON SCENARIO 118–120
ROOT 101, 104
ROSE 121
RRE 209, 215

S

S-SYSTEM 209
SAMPLING 179, 192, 193, 199–201, 203

SCALING FACTOR 110
SCHLÖGL MODEL 222
SCORING MATRIX 7
SCORING SCHEME 7
SEED HIT 7
SEEDED ALIGNMENT 34
SEEDY 260
SEGMENT BASED MULTIPLE ALIGNMENT

34
SENSITIVITY 194
SEQ-GEN 121
SEQUENCE ALIGNMENT 203
SEQUENCE BASED MULTIPLE ALIGNMENT

25
SEQUENCE EVOLUTION 106
SEQUENCE PATTERN 115
SHEAR NUMBER 185
SIDE-CHAIN 184
SIGNIFICANCE LEVEL 276
SIM4 6
SIMULATED ANNEALING 236
SIMULATION SOFTWARE 76
SINGLE NUCLEOTIDE POLYMORPHISM

130, 159
SINGLE NUCLEOTIDE POLYMORPHISM

(SNP) 67
SNPS 159
SPACED SEED 8
SPECIES-SPECIFIC GENE ASSOCIATION FILES

325
SPLITS NETWORK 142
SSA 210, 211, 213, 216

DIRECT METHOD 211, 216, 223
FIRST REACTION METHOD 211, 223,

224
LOGARITHMIC DIRECT METHOD 223,

226
NEXT REACTION METHOD 211, 223,

224
OPTIMIZED DIRECT METHOD 211, 223,

225
SORTED DIRECT METHOD 211, 223,

225
SSAHA 6
STABILITY 195
STAR PHYLOGENY 80
STATE CHANGE VECTOR 212
STATE SPACE 106, 116
STATISTICAL MECHANICS 179
STATISTICAL POTENTIAL 186
STOCHASTIC BACKTRACKING 192
STOCHASTIC CONTACT MAP 195
STOCHASTIC PROCESS 106
STOCHASTIC SAMPLING 117
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STOCHKIT 220
STOICHIOMETRIC MATRIX 212
STRING TO PROFILE ALIGNMENT 31
STRUCTURE BASED MULTIPLE ALIGNMENT

35
STRUCTURE PREDICTION 179, 193, 199,

203
SUBSTITUTION 16

MATRICES 14
SCORE 16

SUBSTITUTION RATE 110
SUBTREE 102, 105
SUBTREE PRUNE AND REGRAFT 131
SUBTREE-PRUNING-REGRAFTING (SPR)

104, 105, 115
SUM OF PAIRS SCORE 25
SUPERNETWORKS 147
SYMMETRIC 110

T

TAU-LEAPING 211, 214, 216, 217
BINOMIAL TAU-LEAPING 211
IMPLICIT TAU-LEAPING 211, 226
NEGATIVE POPULATION 216
TAU-SELECTION FORMULA 217–219
TRAPEZOIDAL TAU-LEAPING 211

TAXA 101, 102
TAXON 101–104
TEMPORAL PROFILES 278
TERM ENRICHMENT 321, 326, 327, 334,

337
THREE-POINT CONDITION 110
TIME-REVERSIBLE 106, 107, 110
TNT 121
TOPOLOGY 102, 110

OPERATIONS ON 104, 105, 115, 118
TORSION ANGLE 200
TRACE PROBLEM 28
TRANSITION 108, 109

TRANSITION PROBABILITY MATRIX

106–108, 110
SYMMETRY 106

TRANSITION/TRANSVERSION RATIO 109
TRANSMEMBRANE β -BARREL 179, 182
TRANSMEMBRANE PROTEIN 179
TRANSVERSION 108, 109
TRAVELING SALESPERSON PROBLEM 112
TREATMENT-CONTROL DATA 235
TREE 101

ROOTED 101
UNROOTED 101

TREE RECONSTRUCTION 30
TREE-BISECTING-RECONNECTING (TBR)

105, 115
TRIANGLE INEQUALITY 118
TRUE PATH RULE 329
TYPE I ERROR 165
TYPE I ERROR 275
TYPE II ERROR 165

U

ULTRAMETRIC 110–112
UNIFORM RANDOM NUMBER 214
UNIPROTKNOWLEDGEBASE (UNIPROTKB)

321, 322, 337
UNIVERSAL NETWORK 234
UPGMA 30
UPGMA ALGORITHM 112, 113

RUNNING TIME OF 113

W

WRIGHT-FISHER MODEL 64

Y

Y CHROMOSOME ADAM 67
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