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The rapid advances in our understanding of the biol-
ogy and treatment of neuroblastoma make it difficult
to keep up to date. The clinical facets of neuroblas-
toma are endlessly fascinating. Its “natural history”
overtly displays the difference between cancer and a
truly extraordinary non-malignant proliferative dis-
ease. An interesting and potentially promising re-
search emphasis is to unravel the difference between
the “good” and “bad” forms of the disease. Our inter-
est in neuroblastoma was kindled by clinical obser-
vations going back many decades. For example, is it
likely that neuroblastoma “metastasizes” from one
adrenal to the other and to the posterior medi-
astinum, or that malignant secondary deposits in
these three unlikely sites will disappear spontaneous-
ly? Our early observations of this phenomenon were
made in the days when there were no effective treat-
ments for neuroblastoma so it was easier willy-nilly
to observe the natural history.

We have seen disease wax and wane over time,
such as skin lesions which became increasingly ma-
ture with each new “crop”; thus, the last one seen at
36 months was diagnosed as a neurofibroma. The re-
sults coming from the screening programs underline
these concepts. They have shown that many more in-
fants actually harbor occult neuroblastoma than are
diagnosed clinically (in the nonscreened cohort pop-
ulation). This establishes that most such foci would
have regressed spontaneously had they not been de-

tected through screening. Observations such as these
suggest that 4S neuroblastoma could teach us more
about what clonal growth implies than clonal growth
teaches us about neuroblastoma.

Obviously neuroblastoma can be a relentless, ma-
lignant disease, and these children need far better
therapies than we now can muster. But the future may
not lie so much in new classes of compounds or even
drug adjuvants. It lies, instead, in the final under-
standing of what makes neuroblastoma mature into
ganglioneuroma or, even more importantly, what
prompts it to disappear spontaneously. Success will
be measured when widespread disease in children
with high-risk neuroblastoma is made to vanish
through molecular genetic manipulations. Then cure
will have achieved its true and very special meaning:
disappearance of a life-threatening malignant dis-
ease without incurring the side effects of currently
available avenues of treatment.
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Professor of Pediatrics, Emeritus at the University of
Pennsylvania, Senior Physician, Children’s Hospital
of Philadelphia, Philadelphia,Pennsylvania

Giulio J. D’Angio
Professor of Radiation Oncology, Radiology and Pe-
diatrics, Emeritus at the University of Pennsylvania,
Philadelphia, Pennsylvania
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This chapter reviews the epidemiology of neuroblas-
toma including the descriptive epidemiology and 
the evidence for an association with environmental
exposures such as parental occupation, medication
use during pregnancy, parental smoking and alcohol
consumption, pregnancy history, and other expo-
sures.

1.1 Descriptive Epidemiology

In the United States neuroblastoma accounts for
7.2% of all cancers among children younger than
15 years of age (SEER 2003). It is the most common
extracranial solid tumor of childhood. Approximate-
ly 650 children are diagnosed with neuroblastoma in
the United States each year (Goodman et al. 1999).

Based upon 1424 incident cases identified by the
Surveillance, Epidemiology, and End Results Pro-
gram of the U.S. National Cancer Institute (NCI) for
1975–2000, the total incidence of neuroblastoma was
10.2 per million children under age 15 years (age-ad-
justed to the 2000 U.S. standard million population;
SEER 2003). The rates were 10.3 per million for males
and 10.1 for females. Rates by race and ethnicity were
10.8 for whites, 8.4 for black children, and 7.5 for chil-
dren of other racial/ethnic groups. The incidence
rates by age category were 19.6 per million for ages
1–4 years, 2.9 for ages 5–9 years, and 0.7 for
10–14 years. Neuroblastoma is the most common
malignancy among infants (61.3 per million). The
incidence rate among infants was slightly higher
among males (62.8) than females (59.8).

Based upon international registry data, the inci-
dence of neuroblastoma is highest among Caucasians
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from North American, Europe, Australia, and Israeli
Jews (Stiller and Parkin 1992). Lower rates were
found for registries in southern and eastern Asia, in-
cluding India and China, and in Latin America. Over-
all, the incidence appeared to be higher for regions or
ethnic groups with a higher standard of living (Stiller
and Parkin 1992). A previous study by SEER data
found no total increase in incidence over time but re-
ported a 3.4% average annual percentage (APC) in-
crease for infants diagnosed between 1973 and 1992
(Gurney et al. 1996). The average annual increase was
twice as high for infant boys as for infant girls. Other
studies in the United States and elsewhere have noted
increases in the incidence of neuroblastoma (Olshan
and Bunin 2000). Improvements in diagnostic proce-
dures, prenatal diagnosis, and possibly screening in
some countries contributed to some of the increase
during the 1970s through the early 1990s; however,
analysis of the most recent SEER data (1973–2000)
showed no significant increase in incidence overall
(annual percentage change=0.3%) or among infants

(APC=0.7%). There is some variability in 5-year rel-
ative survival rates based on age and stage (Table 1.1).
Based upon SEER data for the years 1985–2000 the 
5-year relative survival rate for neuroblastoma was
65%. No overall differences were found by race or
gender. Survival was highest among infants and those
with local or regional disease. Poorer survival was
found for older children and those with distant
metastases disease.

1.2 Risk Factors

The odds ratio provides an estimate of the relative
risk, the risk among those with the exposure relative
to the risk among those without the exposure. The
odds ratio is estimated using exposure data collected
in a case-control study, an efficient study design for a
rare disease such as neuroblastoma. Odds ratios
above the null value of 1.0 (indicating no case-control
differences in the prevalence of a given exposure or
factor) suggest a positive association, whereas odds
ratios below 1.0 suggest that the factor may be asso-
ciated with decreased risk. The assessment of the sta-
tistical associations should also include considera-
tion of study design and analysis issues, such as the
role of chance, confounding variables, and selection
and exposure misclassification bias. Except where
specifically indicated, the majority of epidemiologic
studies have not examined any potential heterogene-
ity in risk among neuroblastoma subgroups defined
by stage, age, or molecular markers.

1.2.1 Pregnancy and Childhood Factors 

Several epidemiologic studies have investigated the
role of reproductive history and birth characteristics
in the etiology of neuroblastoma (See Review by 
Olshan and Bunin 2000). Conflicting results have
been found for risk of neuroblastoma and maternal
history of prior miscarriage, history of one or more
induced abortions (Hamrick et al. 2001; Buck et al.
2001), repeat Cesarean birth and history of vaginal
infection during pregnancy and sexually transmitted
infection (Michalek et al. 1996; Hamrick et al. 2001).
Studies also conflict with regard to the relationship

Table 1.1. Neuroblastoma survival by gender, race, age, and
stage

5-year relative survival rate (%)a

Male 64

Female 65

White 65

Black 60

<1 year old at diagnosis 86

1–4 years at diagnosis 54

5–9 years at diagnosis 44

10–14 years at diagnosis 61

Local and regional stages (all ages) 85

Local and regional stages (<1 year old) 95

Local and regional stages (≥1 year old) 80

Distant metastatic stage (all ages) 48

Distant metastatic stage (<1 year old) 77

Distant metastatic stage (≥1 year old) 34

a Based on SEER (www.seer.cancer.gov) registry data 1985–
2000
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between preterm birth (<37 weeks gestation) and low
birth weight (<2500 g). One study reported that neu-
roblastoma patients were less likely than controls to
have been born preterm (Johnson and Spitz 1985);
however, a trend toward increasing risk with lower
birth weight was observed among term births.Two re-
cent studies have reported positive associations: one
with very preterm birth (<33 weeks odds ratio=1.9;
Hamrick et al. 2001); and preterm birth among pa-
tients with stage-3 or stage-4 neuroblastoma (odds
ratio=3.4; Schuz et al. 2001). Low birth weight and
very low birth weight (<1500 g) have been found to
increase risk in two studies (Johnson and Spitz 1985;
Hamrick et al. 2001). Two studies have reported no
differences in birth weight or gestational age, and no
associations with birth order, maternal age, or parity
have been reported (Hamrick et al. 2001).

A German study reported that a history of tonsil-
lectomy and/or appendectomy increased the risk
threefold for stage-3 or stage-4 neuroblastoma pa-
tients (Schuz et al. 2001). Breastfeeding for more than
6 months was shown to decrease the risk of neuro-
blastoma by 40% in one study (Daniels et al. 2002).

A recent review indicated that some studies have
found a significant excess of birth defects among chil-
dren with neuroblastoma compared directly with
controls or using expected rates (Foulkes et al. 1997).
Associations with defects, including neurofibromato-
sis type 1, Beckwith-Wiedemann syndrome, Hirsch-
sprung’s disease, musculoskeletal and cardiovascular
malformations, Turner’s syndrome, and neurodevel-
opmental abnormalities, have been reported. Some of
these associations were not consistent across studies,
and over- or under-ascertainment could bias the com-
parisons.Molecular studies of familial neuroblastoma
cases have not provided evidence of linkage with the
genes thought to be responsible for Hirschsprung’s
disease or neurofibromatosis (Maris et al. 1997).

1.2.2 Medication Use

Case series reports from Israel, Australia, and Japan
identified a possible relationship with maternal use
of hormones for bleeding, history of miscarriage, and
ovulation induction (see review by Olshan and Bunin
2000). Four case-control studies have examined hor-

mone use before or during pregnancy. Positive asso-
ciations (odds ratio>2.0) have been reported with
maternal use of sex hormones 3 months prior to or
during pregnancy and among women with a history
of miscarriage or stillbirth. Indications for hormone
usage included contraception, vaginal bleeding, and
previous miscarriage. The largest case-control study
(504 cases) found no overall association with infertil-
ity, infertility treatment, and other hormone use,
although an elevated risk (odds ratio=4.4) was found
for Clomid use among male offspring, consistent
with a previous finding (Olshan et al. 1999a). Other
maternal medications used during pregnancy that
have been found in some studies to increase the risk
of neuroblastoma include a group termed “neurally
active” drugs (amphetamines, antidepressants, an-
tipsychotics, muscle relaxants, prescription pain
medications, and tranquilizers), antinauseants, di-
uretics, analgesics, and antibiotics (odds ratio=2.8;
Kramer et al. 1987).

A recent report suggested that maternal multivita-
min use during pregnancy was associated with a
30–40% reduction in the risk of neuroblastoma
(Olshan et al.2002).The analysis was unable to isolate
any specific vitamin that might be responsible for the
association. The finding requires replication in epi-
demiologic studies and possible investigation in lab-
oratory experiments.

1.2.3 Lifestyle Exposures

Although a possible increased risk exists for mother’s
smoking during pregnancy, other studies have failed
to confirm this finding (Olshan and Bunin 2000; Yang
et al.2000).No association with paternal smoking has
been found. A possible association between fetal
alcohol syndrome and neuroblastoma has been re-
ported (Kinney et al. 1980). Case-control studies have
not reported a difference in the proportion of case
and control mothers who reported alcohol consump-
tion during pregnancy; however, daily drinking or
drinking three or more drinks on one occasion was
associated with a nine- and sixfold elevated risk,
respectively (Kramer et al. 1987). Other studies have
not found an association with the amount or fre-
quency of alcohol consumption.
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1.2.4 Parental Occupation 
and Environmental Exposures

Parental occupation, specifically paternal occupa-
tion, has been found to increase the risk of neuro-
blastoma in offspring in several studies (Olshan 
and Bunin 2000; Olshan et al. 1999b; DeRoos et al.
2001a–c). Two of the studies found an association
with fathers employed in electronics-related occupa-
tions including electricians, electric and electronics
workers, electrical equipment assembly, linemen,
utility employees, welders, and electric equipment
salesmen and repairmen. The risk estimates were
relatively large (>2.0) but imprecise. Other paternal
occupations and industries that had an increased risk
included food product packers and warehouse men,
farmers and agricultural workers, rubber processing,
painting, chemistry occupations, tire manufacturing,
rubber/plastics/synthetics industry, service occupa-
tions, packaging and materials handling, and pro-
cessing occupations.

Bunin et al. (1990) reported an increased risk
(odds ratio=2.2) for maternal occupations including
stock girls, textile and food product packers, plastic
product packers, electrical products assembly, and
metal product fabrication workers. Parental occupa-
tional exposures reported to be associated with risk
included dusts, aromatic and aliphatic hydrocarbons,
electromagnetic fields, metal fumes and dusts, ben-
zene, asbestos, and pesticides/herbicides. The studies
did not include direct measurement of occupational
exposures but indirectly inferred the potential expo-
sures using job title and industry.

All the parental occupation studies thus far have a
number of limitations including the lack of a com-
plete occupational history in studies using birth cer-
tificates, broad occupational groupings, crude expo-
sure assessment,and small sample sizes.Nonetheless,
the current epidemiologic evidence suggests that the
risk of several occupations (e.g., electronics-related
jobs) warrants further evaluation.

Two studies have reported associations with self-
reported use of home and garden pesticides (Daniels
et al. 2001; Schuz et al. 2001). One study reported a
twofold increased risk for garden pesticides among
children with stage-3 or stage-4 disease (Schuz et al.

2001). Another study did not find any differences in
risk among subgroups defined by MYCN tumor sta-
tus or stage (Daniels et al. 2001). There have been re-
ports of “clusters” of neuroblastoma cases in commu-
nities in the United States. Environmental factors,
such as proximity to hazardous waste sites, have been
suggested as possibly related to the etiology of these
clusters, but firm evidence to confirm the causality of
these speculative associations has been consistently
lacking.

1.3 Conclusions

Several epidemiologic studies have been conducted
to evaluate potential risk factors for neuroblastoma.
No causal factor(s) has been isolated. Few of the re-
ported associations have been replicated in multiple
studies. Moreover, the studies have suffered from
methodologic limitations such as small sample size
(most studies had fewer than 200 cases), incomplete
exposure data collection, and inadequate control
groups.

Despite these limitations, the previous studies
have provided leads that warrant evaluation in future
studies.Certain pregnancy and birth factors,parental
occupation, and medications deserve more careful
investigation. Besides addressing the methodologic
concerns outlined above, future studies should take
advantage of the developments in molecular epi-
demiology and identification of specific genetic vari-
ation in the human genome. The sharp distinction
between favorable (local reginal-4S) and high-risk
(stage 4 and MCYN-amplified stage 3) groups, as well
as apparent biologic heterogeneity of neuroblas-
toma, should be incorporated directly in future epi-
demiologic studies. Biologic subgroups that repre-
sent different etiologic pathways for neuroblastoma
can refine our ability to detect risk factors operating
in those pathways. Finally, the incorporation of ge-
netic susceptibility factors, such as common poly-
morphisms for genes involved in carcinogen metab-
olism and DNA repair, may help elucidate gene-envi-
ronment interactions that have otherwise gone unde-
tected with only the exposure data.
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2.1 Introduction

Pediatricians are by training the most prevention ori-
ented of all the primary care physicians. Immuniza-
tions for various potentially life-threatening infectious
diseases and early screening for inborn errors of me-
tabolism are two shining examples of childhood dis-
ease prevention.Prior to 1970,no one had attempted to
reduce the morbidity, or more importantly, the mor-
tality, of any childhood cancer through preclinical de-
tection, specifically by mass screening for this disease.
Over the past 30 years there has been much effort put
into better understanding the role of preclinical detec-
tion of neuroblastoma, and potentially lowering mor-
tality from this most challenging of childhood solid
tumors. This chapter addresses various aspects of
screening for neuroblastoma in children.

2.2 The Rationale 
for Neuroblastoma Screening

Neuroblastoma has an incidence of about 10 per mil-
lion children 0–14 per year throughout the developed
world (Young et al. 1986; Bernstein et al. 1992). In
North America neuroblastoma will develop in ap-
proximately one in 7000 children before the age of
5 years, and over 700 cases are expected to be diag-
nosed annually. The incidence of neuroblastoma is
about twice that of phenylketonuria, almost tenfold
higher than that of galactosemia, and slightly less
common than neonatal hypothyroidism (Woods and
Tuchman 1987), all diseases which are mandated by
most neonatal screening programs throughout the U.S.

Neuroblastoma is a fascinating neoplasm because
of several clinical and biologic characteristics. The
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tumor is unique biochemically because it possesses
metabolic pathways for catecholamine synthesis and
metabolism. Homovanillic acid (HVA), the main
metabolite of dopamine, and vanillylmandelic acid
(VMA), the main metabolite of adrenalin and nora-
drenalin, are sensitive and convenient markers of
neuroblastoma since they are excreted in excessive
amounts in a patient’s urine (Hinterberger and
Bartholomew 1969). Homovanillic acid and VMA
have routinely been measured in patients with neu-
roblastoma for the past 30 years,and have been found
to be invaluable aids in both neuroblastoma diagno-
sis and follow-up.

The treatment and outcome of neuroblastoma are
highly age- and stage dependent. Children who are di-
agnosed with early-stage localized disease or under
1 year of age, irrespective of stage, can often be treat-
ed with limited therapy and have excellent survival
(Bernstein et al. 1992; Matthay et al. 1989). In contrast,
children over the age of 1 year who present with ad-
vanced-stage disease have a very poor survival despite
aggressive chemotherapeutic treatment regimens, in-
cluding bone marrow transplantation (Bernstein et al.
1992; Matthay et al. 1989). While some authors have
hypothesized that neuroblastoma presents as at least
two discreet clinical pathologic entities (Woods et al.
1992; Brodeur and Nakagawara 1992), others believe
that malignant progression is a natural transition
from benign-acting neuroblastoma in an infant to ad-
vanced-stage disease in a child. We presently know
that favorable prognosis is strongly associated with
specific tumor cellular characteristics (see Chaps. 4, 5,
and 8) But in the 1980s, in the absence of this molecu-
lar genetic information, it was hypothesized that this
natural transition may be interrupted by early detec-
tion to eradicate preclinical neuroblastomas.

2.3 Early Pioneering Studies Investigating
Neuroblastoma Screening in Japan

The identification of elevated urinary catechola-
mines in infants with neuroblastoma was first made
in 1957 (Mason et al. 1957). Over the next 15 years,
methods for measuring the main urinary metabolic
byproducts of dopamine and epinephrine, HVA, and

VMA were refined. Twenty-four-hour collections
were the rule, and elevated urinary catecholamines
became extremely important in aiding in the diagno-
sis of children with “small round cell tumors” and
subsequent follow-up of catecholamine-secreting
neuroblastomas (Tuchman et al. 1987). A urinary
VMA “spot test” based on the reaction of phenolic
acids with diazotized p-nitroaniline became com-
monplace in pediatric oncology practice (LaBrosse
1968). In the early 1970s, Sawada and colleagues from
the Kyoto Prefectural University of Medicine began
pilot studies which led to implementing a mass
screening program for 6-month-old children in eight
cities and prefectures in Japan using the VMA spot
test on random urine samples (Sawada et al. 1984).
The annual incidence of neuroblastoma in Japan, 8
per million children, was similar to that reported in
the U.S. at the time. Originally, 282,000 infants were
screened by Sawada et al., representing 50–75% of all
births in the areas studied (Sawada et al. 1984). Be-
cause of a positive test or logistic problems with the
initial sample, almost 11,000 infants (3.8%) were
retested. Among 264 infants (1 in 1000) who required
clinical evaluation for neuroblastoma at a medical
center because they had three consecutive positive
urinary tests, 16 cases of neuroblastoma were subse-
quently identified, giving an incidence by screening
of 1 in 17,600 infants. As opposed to the high expect-
ed incidence of metastatic disease at diagnosis, 5 pa-
tients were found with Evans stage-I tumor, 4 with
stage II, 2 with stage III, 5 with stage IV-S, and none
with stage IV. The 16 patients were treated with sur-
gery and limited chemotherapy, 15 of whom were
alive more than 5 years after diagnosis. The only
death occurred 1 month after surgery in a patient
with stage-II disease. Of the original screened cohort,
an additional 6 children were found to have neurob-
lastoma 14–29 months after their urinary spot tests
gave negative results. Hence, the false-negative rate of
the Kyoto screening program was 6 of 22, or 27%,
similar to what one would have expected using a
VMA spot test (Sawada et al. 1984).

This encouraging early trial was reconfirmed by
Sawada in longer-term follow-up of the screened
population (Sawada 1986). Subsequently, many other
screening trials were initiated in Japan, increasingly
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using quantitative assays for measuring both VMA
and HVA. In an important trial from Sapporo City,
Nishi, Takeda and colleagues demonstrated marked-
ly improved survival in children in that city offered
screening compared with neighboring rural areas in
Hokkaido Prefecture, in which no screening was
available (Nishi et al. 1987). Several childhood cancer
experts throughout Europe and North America
called for the institution of neuroblastoma screening
programs on their continents. Many other Japanese
investigators began trials in their own prefectures,
and by 1986, screening for neuroblastoma was man-
dated by law in Japan.

A more careful analysis of the Japanese neuroblas-
toma screening studies revealed many methodologic
limitations (Tuchman et al. 1990). Firstly, there was
no utilization of a population-based cohort of in-
fants: studies were generally performed in prefec-
tures which did not have the ability to guarantee as-
certainment of all neuroblastoma cases occurring in
that region, either detected by screening, or missed
and subsequently clinically found. Secondly, the data
were all based on survival rather than mortality. To
the untrained observer, one would surmise that mor-
tality is the reverse of survival (or “one minus sur-
vival”). In fact, mortality represents the number of
deaths in a given population, and is not affected by
the incidence of a disease in that given population.
This difference from “survival” becomes most impor-
tant in evaluating neuroblastoma screening trials.For
example, as the Japanese increasingly used more sen-
sitive and specific quantitative assays for measuring
VMA and HVA in their trials, there were increasing
data suggesting a rise in neuroblastoma incidence
(Yamamoto et al. 2002). As can be seen graphically in
Fig. 2.1, if one has an incidence in a disease of 1X,
with a survival of 50%, of 100 children, 50% will die.
If one artificially raises the incidence to 2X, or 200 in-
dividuals in this case, and one maintains the same
mortality (50 deaths), there is an artificial increase in
the survival to 75% (150 of 200). Hence, looking at
survival only, when the actual relevant end point is
death rate, can greatly mislead an investigator. In ad-
dition, the early Japanese studies utilized no control
groups other than historical controls; therefore, po-
tential declines in neuroblastoma mortality could

have been attributed to improvements in therapy,
rather than preclinical detection. Finally, without the
utilization of a population-based cohort trial, several
other classic methodologic issues, such as lead time
or length bias, could produce falsely optimistic re-
sults.

2.4 Initial North American 
and European Neuroblastoma Screening Trials

In the context of the potentially exciting results com-
ing out of Japan mixed with the realities of those
studies’ limitations, several groups throughout Eu-
rope and North America began early pilot studies
looking at the potential effectiveness of neuroblas-
toma screening. Small exploratory studies were initi-
ated in Quebec (Scriver et al. 1987), Minnesota
(Tuchman et al. 1989), northern England (Craft et al.
1989), Germany (Schilling et al. 1991), France (Math-
ieu et al. 1996), Austria (Kerbl et al. 1997), and else-
where (Bergeron et al. 1998). Newcastle hosted the
first International Symposium on Neuroblastoma
Screening in 1988, where investigators had the op-
portunity to share logistical challenges and early
results. Several important methodologic aspects of

Figure 2.1

Effect of incidence on survival
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neuroblastoma were revealed. These aspects deserve
some comment, given that they represent challenges
of any population-based screening approaches for
any diseases:

▬ Sample collection. In a series of important studies,
Tuchman and colleagues from Minnesota demon-
strated that measuring spot urines to determine
HVA and VMA were as valid as 24-hour sample
collections, thus obviating long collections for
children in whom neuroblastoma was suspected
clinically (Tuchman et al. 1985). In Japan, urine
was squeezed out of diapers into plastic soy sauce
bottles which held 5–10 ml of urine. North Ameri-
can and European investigators began collecting
urine on diapers blotted against a 10×10 cm piece
of filter paper which, when dried, could be mailed
by regular mail to the screening laboratory for ac-
curate determination of VMA and HVA, with uri-
nary creatinine as the internal standard.

▬ Assays. Multiple laboratory assays for measuring
catecholamines were debated, from the totally
qualitative VMA spot test and the semi-quantita-
tive thin layer chromatographic approach, through
high performance liquid chromatography (HPLC),
ELISA immuno-assays, and ultimately gas chro-
matography/mass spectroscopy (GC-MS) as the
gold standard.

▬ Compliance. No adequate population-based
screening trial can be done without a high compli-

ance rate among the participants. Early studies in
Minnesota (Tuchman et al. 1989), Texas (Ater et al.
1998), and Austria (Kerbl et al. 1997) found com-
pliance rates of returning filter papers by parents
of 6 month olds to be as low as 9 percent, pointing
out the need for a massive public health infra-
structure to support adequate compliance, even
for something as simple as collecting urine from a
diaper. Because of such issues, investigators in
Minnesota joined forces with those in Quebec,
combining clinical trials expertise (Bernstein et al.
1992), an infrastructure already in place for col-
lecting urine in a large majority of 3-week olds, as
part of a urinary metabolic screening program for
various inborn errors of metabolism (Scriver et al.
1987); and a rapid GC-MS assay for VMA and HVA
determination (Tuchman et al. 1983).

▬ Sample sizes. It became rapidly clear that to ade-
quately study neuroblastoma screening, one might
need a trial studying up to a million children or
more to get meaningful results (Esteve et al. 1995).
This sobering reality led to major modifications in
many trials, some of which were abandoned due to
the cost, and others that waited years for adequate
funding before they proceeded.

▬ Case and control ascertainment. In-place state and
country-wide tumor registries collecting inci-
dence and mortality data with greater than
90–95% ascertainment are an important require-
ment for an adequate prevention study.

Table 2.1. Principles to be considered for a cancer screening program (Adapted from Prorok and Connor 1986)

1. The disease should be a “common” serious health problem, with substantial morbidity and mortality

2. The target population should be clearly defined and have a reasonable disease prevalence

3. The target population should be accessible, with reasonable compliance to screening expected

4. The screening test should be acceptable in its performance (sensitivity, specificity) and acceptable to those screened

5. Effective treatment should exist for the disease to be detected by screening

6. There should be a reasonable expectation that patients with positive screening will comply with recommended
work-up, diagnosis, therapy, and follow-up

7. Sufficient resources should be available to perform the screening

8. Develop policies for early recall of patients testing positive and follow-up of those testing negative

9. Quality control procedures to maintain sensitivity and specificity of the screening test should be in place0
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Table 2.1, from Prorok and Connor (1986), lists prin-
ciples to be considered for a cancer screening pro-
gram. One could argue that any childhood disease is
not a “common” serious health problem with sub-
stantial morbidity and mortality, to warrant the ex-
pense of a screening program; however, based on past
precedent and the fact that children represent the
future of the world, should screening of any child-
hood disease lower mortality, implementation would
be seriously considered.

2.5 Follow-up Studies from Japan and Europe

Since 1986, when screening for neuroblastoma in
Japan was mandated by law, compliance with the
Japanese screening program has been much greater
than 80% nationwide (Sawada and Takeda 2000).
Although highly successful in recruiting parents to
participate in this program, such widespread mass
screening also led to less ability to measure the effi-
cacy of this approach, for example, by comparing
mortality from neuroblastoma in a population of-
fered screening versus that not offered screening;
however, subsequent attempts to document screen-
ing efficacy were performed in Japan on relatively
small populations. Investigators in general found no
diminution in the incidence of late-stage disease, an
early marker of potential screening success, in the
incidence of the disease with unfavorable biologic
features, or in mortality (Yamamoto et al. 2002;
Bessho et al. 1991; Yamamoto et la. 1995; Kaneko et al.
1990; Suita et al. 1998).

During the 1990s, as noted above, several smaller
studies were also performed in Europe, usually with-
out controls, with preliminary results suggesting that
screening increased the incidence of the disease
(Mathieu et al. 1996; Bergeron et al. 1998). Ultimately,
only two prospective population-based controlled
trials examining the role of neuroblastoma screening
in reducing mortality from this disease were imple-
mented that had adequate funding to guarantee a
high screening compliance rate; uniform neuroblas-
toma evaluation, staging, treatment, and follow-up;
and optimum ascertainment procedures for deter-
mining incidence and mortality. These were the Que-

bec Neuroblastoma Screening Project (Woods et al.
1996, 2002) and the German Project on Neuroblas-
toma Screening (Schilling et al. 1998, 2002). Both of
these studies deserve special mention, noting simi-
larities and differences.

2.6 Definitive Controlled Trials 
from Quebec and Germany

2.6.1 Studies, Designs, and Logistics

The greatest strength of both the Quebec and Ger-
man trials was that they were prospective, popula-
tion-based controlled studies in which neuroblas-
toma mortality was the definitive end point, rather
than survival (vide supra). Both studies had consid-
ered a randomized trial approach, but “randomized
controlled trials in population-based intervention
studies are not always feasible” (Woods et al. 1999) as
pointed out by the Quebec researchers. To clarify, the
North American group had to decide what they were
actually studying by introducing a new screening
procedure in an infant population.Were they going to
evaluate the screening test itself (urine sampling of
6-month-old babies by parents at home), or were they
going to study the entire public health intervention
which included introducing a new screening test?
They decided that the latter question was much more
relevant to improving scientific knowledge, and that
to achieve a reasonable compliance rate multiple
population-based education methods would be nec-
essary, as noted below. If these measures led to a “halo
effect,” with an increased incidence in the non-
screened population, the study results would have
been viewed with skepticism. There were also practi-
cal matters including the fact that there were no oth-
er infant urinary screening programs in place in
North America with a high compliance rate. Hence,
control populations were picked throughout North
America where no public health interventions were
performed, and where had such been attempted they
would have required millions of dollars in resources
to be successful. These areas included the states of
Minnesota and Florida, the Greater Delaware Valley,
and the Province of Ontario (Woods et al. 1996). Ger-
man investigators faced a similar problem. They im-
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plemented screening in six German states selected on
the basis of the “feasibility of implementing the
screening program” (Schilling et al. 2002).

The Quebec Neuroblastoma Screening Project was
a joint collaboration of 31 investigators throughout
North America. The Quebec trial was designed
specifically to answer the question of whether screen-
ing infants at or before 6 months of age (and the pub-
lic health interventions associated with it) would low-
er mortality from this disease.After appropriate sam-
ple-size estimates were performed, geared at lower-
ing overall mortality by 40%, it was decided to offer
screening to a 5-year birth cohort in the Province be-
ginning 1 May 1989, once NIH funding was secured.
The only screening data available around the world at
that time was for infants screened at 6 months of age
in Japan. Investigators hence decided that they would
screen at the same age, to be able to confirm or refute
results from Japan. It was furthermore decided that
infants would be screened at two ages: once at
3 weeks to take advantage of the urinary screening
infrastructure which had been in place for well over
10 years (Scriver et al. 1987), and again at 6 months of
age with a new public health intervention. Parents
were given a “screening kit” at the birth of their child.
The kit included filter paper collection instructions
and a bilingual consent form with a “passive” in-
formed consent process specifically explained, ap-
proved by an NIH-certified review board. Parents
knew that if they did not want to screen their infants
for either inborn errors or neuroblastoma, they did
not need to return the filter paper. On the other hand,
if they wanted their infants screened for the already-
in-place program for metabolic abnormalities but
not for neuroblastoma, they simply needed to check a
box indicating refusal to participate in the “cancer
test,” mailing the consent form with the filter paper.
Greater than 90% compliance was expected with the
3-week test, as compliance had consistently been
above that level for several years for the metabolic
screen (Scriver et al. 1987). Because the 6-month
screen represented a new public health measure, mul-
tiple mechanisms were put in place to achieve com-
pliance of about 75%. Some of these mechanisms in-
cluded radio/television appearances and public serv-
ice announcements, newspaper and magazine arti-

cles, posters in physicians’ office and health clinics,
information given to parents at birth, notices includ-
ed with the Provincial “subsistence checks” which
generally were mailed to all parents of infants, and
even reminder inserts in diaper boxes.

Initial analyses of filters from both time periods
were done in Sherbrooke utilizing thin-layer chro-
matography. The assays were geared towards the
highest sensitivity and accepted a lower specificity:
all positive filters, representing between 5 and 10% 
of infants screened, were then sent to Minneapolis
where definitive, highly specific GC-MS assays 
were performed on the same sample. If the results
were positive, parents were contacted and a second
sample was requested, which was again studied by
GC-MS. All children with a second positive sample
were referred to one of the four Quebec pediatric
cancer centers for uniform neuroblastoma evaluation
(Table 2.2).

In the German Project on Neuroblastoma Screen-
ing, initial pilot studies examined the feasibility of
performing a screening study in infants at 6 months
of age (Schilling et al. 1991). Subsequently, pilot stud-
ies in Japan were instituted looking at screening at a
later age; and preliminary data were emerging from
Quebec suggesting a greatly increased incidence of
the disease by screening at or earlier than 6 months,
with no evidence of lowering the incidence of ad-
vanced-stage disease (Woods et al. 1996). Investiga-
tors worldwide believed that any reduction of mor-
tality from a screening approach would be poten-
tially heralded by a lower incidence of children 
“destined” to do poorly. Stuttgart and Hamburg 
researchers hypothesized that if neuroblastoma
screening at 6 months of age was not going to lower
mortality, perhaps screening at 1 year would be more
successful, as well as potentially lower the incidence
of disease by not detecting cases which would have
spontaneously regressed before that age. After secur-
ing funding from the German government, screening
was offered to all children at 1 year of age born in six
German states, between 1 July 1994 and 31 October
1999.

German investigators hoped to achieve a compli-
ance of over 70% to insure accurate sample-size esti-
mates geared at lowering mortality. Unfortunately,
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Table 2.2. Comparison of trials. NA not applicable

Characteristic Quebec trial German trial

Screening birth cohort period 1 May 1989 to 30 April 1994 1 July 1994 to 31 October 1999

Location All of Quebec Six German states

Number in cohort offered screening 476,654 2,581,188

Age at screening 3 weeks and 6 months 1 year

Screening compliance 89% at 3 weeks         92% overall 61%
73% at 6 months

Concurrent control cohortsa I. Rest of Canada Remaining ten German states
II. 4 Specific control groups:
Ontario
Minnesota
Florida
Greater Delaware Valley

Number in control cohorts Rest of Canada, 1,509,000 2,117,000
Specific control groups, 2,718,000

Ascertainment procedures for Two independent procedures, both One collaborative procedure,
screened and control cohorts complete with high correlation complete

Screening assays Thin layer chromatography Æ High-performance liquid 
Gas chromatography/mass chromatography
spectroscopy

Number of (+) assays required before 2 2
referral for neuroblastoma evaluation

Type of analysis Entire cohort (8% not screened) Screened sub-cohort only 
(excludes 39% not screened)

Screen (+) requiring neuroblastoma 82 (1/5300 screened) 1754 (1 of 840 screened)
evaluation

False (+) 39 1605
True (+) 43 149
Positive predictive value 52% 8%

Missed by screening (never screened) 66 (3) 55 (NA)
(Excludes 20 patients diagnosed (Excludes unknown number of cases
clinically prior to 3 weeks of age) diagnosed prior to screening)

Total cases 132 204

Standardized incidence ratio (SIR) for 2.0 1.9
neuroblastoma, comparing the study 
to control groups

SIR of advanced stage-3 and stage-4 1.5 1.2
disease ≥1 year

Uniform neuroblastoma staging, Yes Yes
treatment, and follow-up
Deaths:

Total 22 17
Screen detected 0 3
Diagnosed prior to 3 weeks of age 3 NA
Missed by screening 18 14
Not screened 1 NA

⎫
⎬
⎭
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despite major efforts, early compliance in their trial
was low, less than 50%, demonstrating how difficult
obtaining good compliance is. Although the ultimate
compliance rates approached 65%, overall compli-
ance was 61%. The study was approved by a state
ethics committee of the German Medical Associa-
tion. They agreed that parents gave informed consent
by mailing in urine-saturated filter papers for testing.
The parents of each child in the screening area were
offered screening once, at the time of the general
checkup when the child was about 1 year of age
(Schilling et al. 2002). Urine collected was analyzed
for catecholamines by high-performance liquid chro-
matography. Similar to the Quebec trial, if a child had
a positive assay, a second sample was requested. If
that sample was positive, parents were contacted and
asked to bring their child to a center for neuroblas-
toma evaluation. The assay was purposely geared to
be as sensitive as possible, knowing that such an ap-
proach might lead to lower specificity, thus generat-
ing a much larger number of false-positive cases than
in the North American trial; hence, there were some
very interesting and important differences between
this and the Quebec trial (Table 2.2).

Compliance in the Quebec trial closely approxi-
mated that used to calculate sample size estimates,
and further analyses of the Quebec cohort were done
using the entire birth cohorts, i.e., children were in-
cluded whether screened (overall 92%) or not. Be-
cause of the lower than expected compliance rate in
the German trial, many analyses in their definitive

paper were based on results in those individuals only
screened (Schilling et al. 2002), as noted in Table 2.2.
Almost 2.6 million children were born in the six
states during the 5 years of the trial, with 1.5 million
actually undergoing screening. On the other hand,
both trials successfully utilized concurrent control
groups with millions of infants born in those areas.
Quebec investigators used two completely independ-
ent ascertainment procedures for identifying cases,
and more importantly, neuroblastoma deaths. One
procedure utilized resources set up by the pediatric
oncologists in the various study and control areas
noted above, with major input from the North Amer-
ican cooperative groups, the Pediatric Oncology
Group and Children’s Cancer Group. Collectively,
these groups treated 95% of all young children diag-
nosed with cancer in North America (Ross et al.
1996). The second ascertainment approach was per-
formed independently by investigators at the Labora-
tory Center for Disease Control and Statistics Cana-
da, part of Health and Welfare Canada, utilizing the
whole of Canada without Quebec as the control. A
remarkable congruence was found between the two
procedures. In Germany, 10 of its 16 states in whom
infants were not offered screening were used as the
controls and included populations in the former East
Germany. Fortunately, there were excellent childhood
cancer registries in both East and West Germany be-
fore unification. Investigators were highly confident
that these registries would be able to help them as-
certain and follow patients (Schilling et al. 2002). Cas-

Table 2.2. Continued

Characteristic Quebec trial German trial

Cumulative mortality in study 4.8 (0–8 years) 1.3 (1–5 years)
(per 100,000 children)

Cumulative mortality control groups 3.3–5.3 (0–9 years)b 1.2 (1–5 years) 
(per 100,000 children)

Standardized mortality 1.4c 1.1
Ratio for neuroblastoma comparing 
study to control groups

a Two separate ascertainment procedures in Quebec
b Four specific areas in North America
c Versus rest of Canada
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es were identified by the German Childhood Cancer
Registry, “which receives information from all cases
of childhood cancer in Germany, including all neu-
roblastomas. Follow-up of all cases was conducted in
cooperation with the neuroblastoma treatment trial
of the German Society Pediatric Hematology–Oncol-
ogy” (Schilling et al. 2002). That the German ascer-
tainment procedure was near complete was demon-
strated by the fact that only two children diagnosed
with neuroblastoma in Germany over a 5-year period
were lost to follow-up within 5 years.

There were considerable differences in the sample
sizes of the two studies. The much smaller Quebec
trial was able to perform its study with fewer expect-
ed cases and deaths, in large part because it was in-
vestigating mortality from birth rather than from
1 year of age, as in the German study: about one-fifth
of all neuroblastoma deaths occur in the first year of
life. However, their study may have been underpow-
ered (Esteve et al. 1995) had results been less conclu-
sive. The much larger German trial still relied on
sample-size estimates that required a 50% reduction
in mortality to see “significant benefit for the study
population” (Schilling et al. 2002). Finally, both stud-
ies nicely utilized uniform neuroblastoma evalua-
tion, treatment, and follow-up in all study cases and
in many of the control areas.

2.6.2 Studies’ Results

Despite some substantial and interesting differences
between the two trials, overall results were strikingly
similar, and hence very revealing vis-à-vis neuroblas-
toma behavior. Firstly, the Quebec trial nicely con-
firmed reports from smaller studies in Japan that
highly sensitive assays measuring catecholamine
metabolites would markedly raise the incidence of
neuroblastoma in infants screened at 6 months of age
or younger (Woods et al. 1996). The incidence of neu-
roblastoma almost doubled over controls in the Que-
bec birth cohort. The potential for neuroblastomas to
regress had been documented for over 30 years
(d’Angio et al. 1971), but the magnitude of such re-
gressing cases was never appreciated. The Quebec
data suggest that in countries in which there is a very
strong medical surveillance of infants, neuroblas-

toma incidence may rise, as previously noted in stud-
ies from Denmark (Carlsen 1986). The data also sug-
gest that as newer perinatal technologies become
widespread, such as intrauterine ultrasonography,
neuroblastoma incidence will also rise. Furthermore,
initial studies examining the incidence of neuroblas-
toma in children born in Quebec during the 5 years
immediately after screening was discontinued, 1 May
1994 to 30 April 1999, document that there has been a
reduction in cases compared with the screened pop-
ulation, although not to baseline (WGW: personal ob-
servation).

Although many investigators may have predicted
the marked rise in neuroblastoma incidence in Que-
bec, the German results vis-à-vis incidence were
almost “shocking,” they, too, found a doubling of the
neuroblastoma incidence (Table 2.2), all over the age
of 1 year. These data strongly suggest that tumors
destined to regress may be present and excrete cate-
cholamines for a much longer time than neuroblas-
toma researchers previously would have hypothe-
sized.

Both studies documented significant neuroblas-
toma deaths in the study population. In the Quebec
trial, there were 22 deaths, with none in the screened
detected cases (Woods et al. 2002); however, three in-
fants diagnosed prior to screening at 3 weeks of age,
all with extremely high catecholamine levels that
would have been detected by screening, and all with
stage 4-S disease, died. Two of these infants had clas-
sic stage 4-S disease with rapidly expanding liver
masses leading to respiratory compromise, despite
heroic surgical attempts at relief. The third infant,
despite a clinical stage of 4-S, had unfavorable bio-
logic features, including amplified MYCN gene. The
patient responded initially to chemotherapy but
ultimately relapsed and died; otherwise, only one
child in the Quebec population who died was not
screened. In the German trial, investigating only
those individuals who were screened, there were 17
deaths, 14 in children missed by screening, and 3
who died after preclinical detection. Of these three,
“two children died from complications from surgery
(one with stage 2-B disease, and the other with stage
3 disease), and one died from complications of
chemotherapy (for stage 2-B disease)” (Schilling et



Chapter  216 W. G.Woods

al. 2002). Despite no deaths in the screened detected
children in the Quebec trial, in 1 child with stage 2-B
neuroblastoma that was detected by screening at
6 months and who was treated with doxorubicin 
and cyclophosphamide, a secondary leukemia with
an abnormality in chromosome 11q23 subsequently
developed. That child underwent bone marrow
transplantation and is alive but has severe graft-vs-
host disease. An additional child whose disease was
detected by screening is in a persistent vegetative
state as a result of complications of surgery for se-
vere gastrointestinal obstruction and necrosis. The
gastrointestinal problems were attributed to adhe-
sions that resulted from the surgery to remove the
neuroblastoma 7 years previously (Woods et al.
2002).

As an intermediate end point, both studies exam-
ined the incidence of advanced-stage neuroblastoma
(INSS 3–4) in children over 1 year of age. Both
showed, if anything, an increase in that incidence in
the screened groups (Table 2.2). These results sug-
gested that the screening procedure or the public
health interventions instituted as part of the screen-
ing projects actually raised the incidence of ad-
vanced-stage disease in older infants, perhaps
through clinical detection of cases that may have
spontaneously regressed, the “halo effect.” In the

Quebec trial, there was a significant increased inci-
dence in neuroblastoma over 1 year of age (Woods et
al. 1996). In the German trial, even the incidence of
advanced-stage disease over the age of 2 years was
not lowered by the screening procedure (Schilling et
al. 2002).

Finally, and most importantly, cumulative mortal-
ity in the study populations in both the Quebec and
German trials was not reduced compared with ap-
propriate controls. Mortality was higher in the Que-
bec screened cohort than in the German, but includ-
ed a 9-year analysis (Woods et al. 2002). Only prelim-
inary mortality results were presented for the Ger-
man trial, examining cumulative figures between 1
and 5 years of age (Schilling et al. 2002); however, in
examining standardized mortality ratios (SMR) of
neuroblastoma comparing study versus control
groups, neither showed any reduction, with an SMR
of 1.4 in Quebec and 1.1 in Germany (Table 2.2). In
fact, in the Quebec trial, examining the rate of death
due to neuroblastoma compared with the rest of
Canada, as compiled by Statistics Canada, the overall
SMR for Quebec was 1.39, with 95% confidence inter-
vals of 0.85–2.30. Figure 2.2 displays cumulative
deaths in the Quebec population versus the four con-
trol populations whose deaths were ascertained by
study investigators.

Figure 2.2

Cumulative mortality due to
neuroblastoma among children
younger than 8 years of age
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2.7 Biologic, Psychologic, Economic,
and Clinical Aspects 
of Neuroblastoma Screening

2.7.1 Biologic Aspects

Had neuroblastoma screening actually been associat-
ed with a reduction in mortality, one should have
seen children with unfavorable biology detected pre-
clinically with subsequent good outcomes. In gener-
al, this was not the case. Even in early Japanese trials,
virtually all children with neuroblastomas detected
by screening demonstrated favorable biologic fea-
tures, including histology, triploid DNA content, and
lack of MYCN amplification (Kaneko et al. 1990). In
only one international trial, that conducted in Aus-
tria, were any substantial number of patients found
through screening with unfavorable biology (Kerbl et
al. 1997): results from this study are a bit controver-
sial because of various methodologic issues. Prelimi-
nary results from the Quebec trial documented that,
similar to the Japanese uncontrolled studies, virtual-
ly all children detected clinically had favorable bio-
logic features (Brodeur et al. 1998, 2001); however, the
vast majority of children who died after being missed
by screening had unfavorable biologic features; for
example, amplified MYCN oncogene identified in 11
of 19 patients studied (Woods et al. 2002). The Ger-
man project is expected to publish biologic results in
the future.

In summary, the current data overwhelmingly
suggest that patients with favorable biology neuro-
blastoma are able to be successfully detected preclin-
ically; however, those with poor biologic characteris-
tics are missed by screening at 3 weeks, 6 months, and
1 year of age. This suggests that such tumors are ei-
ther in general not present at these ages, or small
enough not to be excreting catecholamines in excess
of normal urinary amounts, with subsequent other
cellular events leading to a great expansion of the
cancer, often with metastatic spread, and clinical
detection at an advanced stage.

2.7.2 Psychologic Aspects

Unfortunately, very few studies have examined the
potential psychological implications of screening in-
fants for neuroblastoma (Bell et al. 1994). Investiga-
tors in the Quebec trial tried unsuccessfully to obtain
funding for what they believed to be an important
secondary aim of their trial. Austrian investigators
fortunately were able to conduct interviews on par-
ents of children who underwent neuroblastoma
screening with negative results (Dobrovoljski et al.
2003). They found that a large portion of parents of
infants who were referred to cancer centers because
of elevated catecholamines and were found not to
have neuroblastomas remained very concerned
about their children, even years later. Hence, the
screening procedure was felt to be very psychologi-
cally stressing with long-term consequences. The
Quebec screening trial was geared toward a very high
specificity, and in the end, less than 1 in 10,000 nor-
mal children were evaluated at medical centers for
neuroblastoma and found not to have the cancer. The
number and percent of such children who falsely
tested positive was a log higher in the German study,
and remains high in Japan today.

2.7.3 Economic Aspects

Very little has been written on the potential cost-
effectiveness of neuroblastoma screening. Because
screening has been found to be ineffective, one could
argue that such studies would by necessity be nega-
tive. The Quebec investigators, however, did prospec-
tively examine cost-effectiveness and the data have
yet to be published; however, preliminary results lead
to a very important and provocative conclusion: over
$8 million USD were spent on the Quebec trial in
funds provided through the peer-review grant mech-
anism of the National Cancer Institute. In addition,
significant resources were provided by the Quebec
Institute of Genetic Medicine for neuroblastoma
screening, including costs associated with setting up
the infrastructure for metabolic screening that en-
abled this study to be done as economically as possi-
ble. The German Trial cost more than $20 million
USD; hence, at first glance these were highly expen-
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sive “negative”studies. But over 4 million children are
born in the U.S. every year, compared with 100,000 in
Quebec. To put in place an effective infrastructure to
screen a large portion of American newborns would
have cost easily hundreds of millions of dollars. As
importantly, such an infrastructure would have cost
tens of millions of dollars to maintain on an annual
basis. As noted above, major pediatric voices clam-
ored for institution of neuroblastoma screening in
the U.S. before definitive trials proving or disproving
its efficacy were performed. Not only did the Quebec
and German trials show that neuroblastoma screen-
ing was ineffective, but ultimately they saved the
American, Canadian, German, and other health care
system billions of dollars over a generation. The eco-
nomic value of well-done research cannot be overes-
timated, even if results obtained are negative.

2.7.4 Clinical Implications

With the determination that a substantial number 
of preclinically detected neuroblastomas undergo
spontaneous regression, it is highly likely that a sub-
stantial amount of favorable-biology neuroblastoma
detected clinically would also spontaneously regress;
hence, the results of the neuroblastoma screening
studies may have practical implications for the care
of infants with clinically detected disease. Yamamoto
and colleagues have now defined criteria for observ-
ing patients with neuroblastomas detected by screen-
ing without incurring any untoward risk. The criteria
include the identification of small masses on radi-
ographic examinations but no invasion of the in-
traspinal canal or infiltration around the great ves-
sels; relatively moderate catecholamines secretions;
and parental consent (Yamamoto et al. 1998). Their
initial results reveal that a substantial proportion of
observed tumors regress, and even those infants that
need subsequent treatment do well. It is therefore
likely that a similar proportion of infants in whom
neuroblastoma is detected clinically at less than
6 months of age can also be observed for potential
regression of the tumor, rather than undergo major
surgery.

2.8 Conclusions

The idea that one could detect childhood cancer pre-
clinically by screening has been and remains an ap-
pealing prospect. In well-performed trials in the only
childhood cancer in which proper studies could be
performed at the end of the twentieth century, neu-
roblastoma screening for elevated urinary cate-
cholamines led to a marked increase in the incidence
of the disease with no reduction in its mortality;
hence, in 2004 using the markers studied, neuroblas-
toma screening has been and should be abandoned
throughout the world: in Japan, screening was finally
halted in March of 2004 (Tsubono et al. 2004). In the
future, there may be better opportunities as more
selective markers for poor-biology neuroblastoma
are discovered that can be utilized as screening tools.
In the meantime, one needs to remember that even
collecting urine from a wet diaper may have horren-
dous long-term consequences, as evidenced by the
outcome of some infants screened in the Quebec,
German, and Japanese trials. Physicians should al-
ways practice the “golden rule” of medicine: primum
non nocere.
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3.1 Introduction

Multiple somatically acquired genetic alterations
have been described in neuroblastoma, but the genet-
ic events that initiate tumorigenesis remain largely
unknown. Like most other human cancers, a small
subset of neuroblastoma cases have an apparent her-
itable genetic etiology. Familial neuroblastoma was
first described in 1945 (Dodge and Brenner 1945),
and multiple pedigrees have been reported in the lit-
erature since that time (Knudson and Strong 1972;
Kushner et al. 1986; Maris and Brodeur 2001). In ad-
dition, there have been several patients with neuro-
blastoma and associated constitutional abnormalities
and/or other conditions reported, suggesting the un-
derlying genetic defect predisposed to the develop-
ment of neuroblastoma.

This chapter reviews the genetics of neuroblas-
toma, emphasizing germline aberrations that predis-
pose to the development of this neoplasm. Somatic
genetic events associated with neuroblastoma patho-
genesis and with clinical phenotype are reviewed in
Chaps. 4 and 5.

3.2 Associated Genetic Conditions

It is likely that any neuroblastoma predisposition
gene will have an essential role in the normal devel-
opment of neural crest-derived tissues. Interestingly,
the coincident occurrence of neuroblastoma in pa-
tients with global disorders of neural crest-derived
cells (i.e., “neurocristopathies”), such as Hirsch-
sprung disease (HD) and/or congenital central hy-
poventilation syndrome (CCHS, Ondine’s curse),
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has been described (Verloes et al. 1993). In addi-
tion, there have been reports of the coexistence of
neuroblastoma and neurofibromatosis type 1, in-
cluding the coincidence of these disorders in familial
neuroblastoma (Maris et al. 1997, 2002). Indeed, ho-
mozygous inactivation of the NF1 gene in primary
neuroblastomas has also been described (Origone 
et al. 2003; Martinsson et al. 1997). These data sug-
gest that the genes implicated in the genesis 
of Hirschsprung disease (RET, EDNRB, EDN3, GDNF,
ECE1, and ZFHX1B), central hypoventilation (RET,
GDNF, EDN3, BDNF, and PHOX2B) and/or NF1 may
be causally involved in the initiation or progression
of human neuroblastoma, especially in the context 
of a neurocristopathy (Table 3.1). A recent study re-
ported a germline mutation in PHOX2B in a patient
with neuroblastoma (Amiel et al. 2003), although 
previous reports have found no evidence for linkage
at the 4p12 PHOX2B locus (Maris et al. 2002). GDNF
and related molecules, neurturin (NRTN), artemin
(ARTN), and persephin (PSPN), signal through a
unique multicomponent receptor system consis-
ting of RET tyrosine kinase and glycosyl-phos-
phatidylinositol-anchored coreceptor (GFRalpha1–4)
(Sariola and Saarma 2003; Takahashi 2001); how-
ever, other than RET and GDNF, mutations in the
genes encoding these ligands and coreceptors have
not yet been implicated in the pathogenesis of HD or
CCHS.

3.3 Constitutional Chromosomal Abnormalities

Discovery of cancer predisposition genes has been
facilitated by the identification of rare patients with
constitutional genomic DNA aberrations. Although
neuroblastoma patients with de novo karyotypic ab-
normalities are rare, detailed analyses of these cases
have been informative. Satge and colleagues recently
reviewed 51 cases of constitutional karyotypic aber-
rations in neuroblastoma patients and confirmed re-
current constitutional deletions at chromosomal re-
gions 1p36, 2p23, 3q, 11q14–23, and 15q (Satge et al.
2003). High-resolution genetic mapping of some of
these deletions has aided in determining the location
of putative neuroblastoma suppressor genes at chro-
mosomes 1p36 and 11q14–23 (White et al. 2001;
Mosse et al. 2003). The three children with constitu-
tional 1p36 interstitial deletions all had profound
neurocognitive deficits and were diagnosed with
neuroblastoma during infancy. The constitutional
deletions overlap the location of a putative 1p36 tu-
mor suppressor gene (see Chaps. 4 and 5), suggesting
that germline absence of a gene within this region
may predispose to the development of neuroblas-
toma. Constitutional balanced translocations have
been identified rarely in neuroblastoma patients, and
no common region is apparent. Whole chromosome
gains or losses are also rare in neuroblastoma pa-

Table 3.1. Candidate regions for neuroblastoma predisposition gene

Regions with evidence Regions of Regions of Regions containing genes
for genetic linkage allelic deletion chromosomal gain mutated in HD, CCHS, and/or NF1

4p16 1p36.2-.3 1q21–32 1p36.1 (ECE1)

16p12–13 3p21-pter 2p24 (MYCN) 2q22 (ZFHX1B)

4p16 7q 4p12 (PHOX2B)

9p21–24 17q23–25 5p12 (GDNF)

11q14–23 10q11 (RET)

14q32 11p13 (BDNF)

16p12–13 13q22 (EDNRB)

18q21 17q11.2 (NF1)

19q13 20q13 (EDN3)
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tients. Interestingly, there appears to be an excess
incidence of neuroblastoma in patients with 45,X
(Turner) syndrome and perhaps trisomy 13, whereas
trisomy 21 (Down syndrome) appears to be associat-
ed with a decreased risk for developing neuroblas-
toma (Satge et al. 2003; Blatt et al. 1997; Satge et al.
1998).

3.4 Hereditary Neuroblastoma

Neuroblastoma, like retinoblastoma and Wilms’ tu-
mor, is an embryonal malignancy that is notable for
both a sporadic and hereditary form of the disease.
Knudson and Strong provided the first genetic hy-
pothesis of neuroblastoma tumorigenesis in 1972. In
a comparison of 29 cases of hereditary neuroblas-
toma (from 13 families) to 504 unselected cases, they
showed that 56% of familial cases were diagnosed at
less than 1 year of age compared with 26% of the
nonfamilial cases. In addition, 23% of the familial
cases had multiple primary tumors documented,
compared with 5% of the nonfamilial cases. Analysis
of the pedigree structures was consistent with an au-
tosomal-dominant mode of inheritance with incom-
plete penetrance that they calculated to be 0.63 (63%
chance carriers will be affected). These data strongly
suggested that the genetics of neuroblastoma initia-
tion are similar to retinoblastoma, and subsequent
studies indicated that, like RB1, a hereditary neuro-
blastoma predisposition gene should be a tumor sup-
pressor. Nevertheless, for many of the reasons listed
below, the genetic etiology of neuroblastoma has
remained elusive over three decades since Knudson
and Strong’s original observations.

Despite the unequivocal data supporting a genetic
hypothesis for the initiation of neuroblastoma tu-
morigenesis, it is relatively uncommon to obtain a
positive family history of the disease for an individ-
ual neuroblastoma patient. Shojaei-Brosseau and col-
leagues recently used an epidemiological approach to
show that only 5 of 426 consecutive neuroblastoma
patients (1.2%) at a single institution had documen-
tation of at least one first- or second-degree relative
with neuroblastoma (Shojaei-Brosseau et al. 2004).
This translates to a relatively high standardized inci-

dence ratio (SIR) of 11.4 (95% confidence interval of
3.7–26.5) for the development of neuroblastoma
among index-case relatives, but the risk to siblings
was estimated at only 0.2%. Patients who present
with multiple primary tumors or congenital neurob-
lastoma are more likely to harbor a germline muta-
tion in a predisposition gene, but in many cases these
may be de novo mutations. Taken together, these data
suggest that heritable neuroblastoma is a rare phe-
nomenon, and the pediatric oncologist should reas-
sure parents of any newly diagnosed patient that the
risk to siblings (particularly in the absence of high-
risk features such as multifocal primary tumors) is
very low.

The vast majority of reported neuroblastoma
pedigrees are small, and large, multiplex, or three-
generation families have been identified only rarely.
Analyses of the published pedigrees in the past three
decades strongly support the original conclusion of
an autosomal-dominant mode of inheritance with
incomplete penetrance.Although some families show
multiple-affected individuals with few unaffected
individuals between generations (obligate carriers),
other families show multiple-affected individuals in
the same generation (i.e., cousins) with no disease
detected in intervening relatives (Maris et al. 2002;
Perri et al. 2002; Lemire et al. 1998). Therefore, it is
very difficult to determine precisely the penetrance
of a mutant hereditary neuroblastoma gene segregat-
ing within a family, and this interfamilial heterogene-
ity may suggest that there is more than one heritable
predisposition gene with different likelihoods of ini-
tiating neuroblastoma tumorigenesis.

Similar to patients with sporadic neuroblastoma,
the clinical course in familial cases is also extremely
variable (intrafamilial heterogeneity), with often
striking contrast in the ages at presentation, disease
stage, biological features of the tumor, and disease
outcome. In addition, there are several reports of
asymptomatic obligate carriers with elevated urinary
catecholamines or in whom clinically occult tumors
have been detected (Maris et al. 1997); therefore, re-
duced penetrance secondary to clinically occult or
spontaneously regressing tumors, on the one hand,
and the lethality of the condition prior to reproduc-
tive age, on the other, may both contribute to the



Chapter  324 J. M. Maris · G. M. Brodeur



Chapter  3 25Genetics

rarity of familial neuroblastoma. These facts have
also contributed to the difficulty in approaching this
disease with classic genetic approaches in order to
isolate genes that predispose to the development of
neuroblastoma when mutated in the germline.

3.5 Genetic Studies of Familial Neuroblastoma

There are two published studies that used classic ge-
netic linkage methods to localize hereditary neuro-
blastoma predisposition genes. In a genome-wide
search for linkage in seven pedigrees with at least two
first-degree relatives affected with neuroblastoma,
convincing evidence was discovered that a hereditary
neuroblastoma predisposition gene (HNB1) is lo-
cated on the distal short arm of chromosome 16
(16p12–13; Fig. 3.1) (Maris et al. 2002). Subsequent
identification of a three-generation family with seven
individuals affected with neuroblastoma appeared to
confirm linkage to 16p with a cumulative LOD score
of 3.7 (Maris et al. 2003). Loss of heterozygosity has
been observed in 13% of sporadic neuroblastomas,
suggesting that somatic inactivation of a 16p tumor
suppressor gene might contribute to neuroblastoma
initiation or progression in at least a subset of non-
familial cases (Furuta et al. 2000). The genomic re-
gion likely to harbor HNB1 remains relatively large
and the positional cloning of this gene is ongoing.

Perri and colleagues studied two families in which
≥ third-degree relatives (cousins) were affected with

neuroblastoma. They showed no evidence for linkage
to 16p (Perri et al. 2002), in agreement with the origi-
nal 16p linkage report in which two families consist-
ing of cousins with neuroblastoma also showed no
evidence of linkage to 16p (Maris et al. 2002). How-
ever, using a candidate-locus approach, they did show
evidence for linkage to the distal short arm of chro-
mosome 4p that overlapped a common region of
hemizygous deletion observed in some primary neu-
roblastomas (Perri et al. 2002). Of note, the seven fam-
ilies linked to 16p showed strong evidence refuting
linkage to 4p (J.M.Maris,unpublished data).Taken to-
gether, these observations support the hypothesis that
at least two hereditary neuroblastoma predisposition
genes exist, and that the penetrance of the two predis-
position genes is different. The literature also strong-
ly suggests that each of the major candidate loci
and/or genes listed in Table 3.1 have been excluded as
harboring a hereditary neuroblastoma predisposition
gene through candidate-locus and/or genome-wide
analyses (Maris et al. 1996, 2002; Tonini et al. 2001).

3.6 Conclusions

The rare neuroblastoma patients with a family histo-
ry of the disease, associated genetic disorder, and/
or constitutional chromosomal abnormality offer
unique insights into the molecular pathogenesis of
this enigmatic tumor. The identification of at least
two putative familial neuroblastoma predisposition
loci supports the assumption that neuroblastoma is a
complex disease genetically, with multiple pathways
to tumor initiation. Although identification of hered-
itary neuroblastoma predisposition genes would be
of immediate benefit to those rare families that show
evidence for predisposition to the disease, it is likely
that the larger impact will be drawn from the insights
these discoveries will provide for neuroblastoma
tumorigenesis in general.
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� Figure 3.1

The pedigrees from seven neuroblastoma families with
evidence for linkage to chromosome bands 16p12–13.
Filled symbols indicate individual affected with neurob-
lastoma, ganglioneuroblastoma, or ganglioneuroma.
Genotyping data are arranged into probable haplo-
types based on minimization of recombination events
for 16p polymorphic markers listed at bottom right and
are displayed for each individual with an available DNA
sample. Gray box indicates common haplotype segre-
gating with disease in each family and shows genetic
homogeneity at 16p. Arrowheads indicate haplotype
lost when LOH was detected in corresponding tumor
specimen
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4.1 Introduction

It a major tenet in cancer research that alterations in
cellular genes lead to the malignant transformation
of normal cells. Two major classes of cancer-related
genes have been identified: (a) oncogenes, which con-
tribute to cancer “dominantly” by positive modula-
tion of cellular growth; and (b) tumor suppressor
genes, which are thought to control normal cellular
growth and differentiation and act in a “recessive”
negative way, contributing to cancer through func-
tional inactivation. Both sporadic and familial genet-
ic factors contribute to the pathogenesis of most
types of cancer and, as reviewed in Chap. 3, a small
subset of neuroblastoma cases have an apparent her-
itable genetic etiology; however, the vast majority of
patients appear to develop neuroblastoma through
spontaneously acquired somatic events rather than
germline aberrations.

This chapter reviews our current understanding of
the somatic genetic events that are associated with
neuroblastoma pathogenesis and with clinical phe-
notype.

4.2 Classical Cytogenetics

In 1965, minute chromatin bodies, now referred to as
double minutes (DMs; Fig. 4.1a), were first discov-
ered in neuroblastoma cells (Cox et al. 1965). Sub-
sequently, another novel chromosome abnormality,
homogenously staining chromosomal region (HSR;
Fig. 4.1b), was identified in human neuroblastoma
cells as well as in antifolate-resistant hamster cells
(Biedler and Spengler 1976); however, the biological
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significance of these cytogenetic aberrations re-
mained unclear for many years. Some investigators
speculated that DMs and HSRs were chromosomal
manifestations of multiplicated drug-resistance genes;
others hypothesized that DMs may inhibit neo-
plas-tic growth (Sandberg et al. 1972), or that loss 
of DMs through fragmentation from an HSR might
be associated with the loss of the malignant pheno-
type of that cell (Balaban-Malenbaum and Gilbert
1977).

The advent of chromosome banding techniques in
1968 led to the unequivocal identification of all hu-
man chromosomes (Caspersson et al. 1968). The first
systematic search for neuroblastoma-associated
chromosomal alterations dates back to 1977, when
Brodeur and co-workers noted the presence of chro-
mosome 1p deletion in a conspicuous number of
neuroblastoma cell lines and primary tumors
(Brodeur et al. 1977). The high incidence of 1p dele-
tions was confirmed in larger studies (Brodeur et al.
1981; Gilbert et al. 1982), and the authors speculated
that this deletion represented the first “hit” in the
two-step genetic sequence of tumor development
proposed by Knudson (Knudsson 1971; Brodeur et al.
1977, 1981; Gilbert et al. 1982).

4.3 Oncogene Expression Profiling

The discovery of retroviral oncogenes (v-onc) and
their cellular homologues (c-onc) in the early 1980s
(Bishop 1982; Varmus 1982) quickly led to the identi-
fication of mutated c-oncs in human cancer cells (Der
et al. 1982; Parada et al. 1982; Santos et al. 1982). In
many types of cancer, these genes were found to be
altered in structure (Groffen et al. 1984; Heisterkamp
et al. 1983) or expression (Dalla-Favera et al. 1982;
Neel et al. 1982) as a result of non-random chromo-
somal translocation. The first mRNA expression ar-
ray (Onco-Array) used v-onc cDNAs spotted on filter
membranes (Schwab et al. 1983b) to which a com-
plex reverse-transcribed, radioactively labeled cDNA
from neuroblastoma cells was hybridized. This prin-
ciple technology was the forerunner of more recent
large-scale expression array platforms (see Chap. 8).
Profiling of neuroblastoma cell lines quickly estab-
lished the strong expression of a c-onc, seemingly the
MYC gene, the cellular homologue of the chicken
retroviral gene (Fig. 4.2).

Subsequent DNA analyses quickly established an
increased DNA copy number of a gene that was not

Figure 4.1 a,b

Cytogenetic manifestations of amplified DNA in human neuroblastoma cells. a Double minutes (DMs). b Homogeneous-
ly staining chromosomal region (HSRs; arrowheads)
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the authentic MYC gene, but rather a close relative,
initially referred to as N-myc (Schwab et al. 1983a;
MYCN is the correct human gene nomenclature). Mol-
ecular cytogenetic analyses identified DMs and HSRs
as the site of amplified MYCN (Schwab et al.1984).En-
hanced expression of the MYCN gene also contributed

to tumorigenic cellular growth (Schwab et al. 1985).
The activities of the MYCN protein, and the clinical
significance of the amplified MYCN gene, have been
the subject of previous reviews (Schwab 1998; Schwab
et al. 2003). Amplified MYCN has been referred to as
the “clinical debut of oncogenes,” and because of the
strong association between MYCN amplification and
poor outcome, determining MYCN status in neurob-
lastoma tumors prior to initiating therapy is now con-
sidered an international clinical standard (Schwab et
al. 2003). Array technology can now probe thousands
of genes. While this technology is still evolving, large-
scale expression profiling of neuroblastoma tumors
has already begun (see Chap. 8; Alaminos et al. 2003;
Berwanger et al. 2002; Fan et al. 2004; Khan et al. 2001;
Mora et al. 2003; Sotiriou et al. 2002).

4.4 “Neuroblastoma Suppressor Genes”
and Loss of Heterozygosity

The concept of tumor suppressor genes evolved from
seminal observations made while studying retino-
blastoma (Knudson 1971). The identification of the
molecular pathway of retinoblastoma development by
successive inactivation of the two RB1 alleles at a gene
locus was seen as a paradigm for tumor suppressor
gene inactivation in other human cancers. Statistical
analyses indicated that a two-hit genetic pathway,
similar to the one identified in retinoblastoma, would
lead to the development of neuroblastoma (Knudson
1971). Furthermore, the consistent 1p deletion detect-
ed in neuroblastoma tumors suggested that loss of a
putative “neuroblastoma suppressor gene” (NSG) on
chromosome 1p may represent the first “hit.” The sec-
ond hit was presumed to be a point mutation – or oth-
er subtle alterations – of the NSG on the other allele
(although the sequence of “hits”can be either way). To
identify the candidate NSG, LOH studies on a large
number of tumors have been performed to define
smallest region of overlapping deletions (SRO).

4.4.1 Chromosome 1p Deletion

Overall, up to 35% of neuroblastomas have LOH of
chromosome 1p (Fong et al. 1989; Maris et al. 2000;

Figure 4.2

Expression profiling of oncogenes in neuroblastoma
cell line Kelly to detect oncogene overexpression.
Oncogene specific DNAs, many as cDNA of retroviral
oncogenes, were spotted on a nitrocellulose filter,
which subsequently was probed with radioactively la-
beled cDNA generated by reverse transcription of total
polyadenylated RNA extracted from the tumor cells.
Under conditions of reduced-stringency hybridization,
a strong signal was seen for MYC which, by DNA analy-
sis, turned out to result from the enhanced expression,
consequent to DNA amplification, of a MYC-relative, the
MYCN gene
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Takayama et al. 1992; Takita et al. 1995). A large
number of molecular analyses in primary tumors
has refined the SRO, mainly detecting LOH with
polymorphic markers mapped to 1p (Caron et al.
2001; Ejeskar et al. 2001; Fong et al. 1989, 1992; Hog-
arty et al. 2000; Maris et al. 2001a; Martinsson et al.
1995; Schwab et al. 1996; Weith et al. 1989; White et al.
1995, 2001). These efforts resulted in an SRO within
1p36 defined proximally by D1S244 and distally by
D1S80 (Fig. 4.3) The low incidence of small inter-
stitial deletions within 1p36 has made it difficult to
further narrow the SRO, a prerequisite for positional
cloning. Furthermore, although several 1p36 re-
arrangements have been identified in neuroblas-
toma cell lines, along with a constitutional trans-
location t(1;17)(p36.31–36.13;q1 1.2–12) in a pa-

tient with multifocal neuroblastoma (Laureys et al.
1990), these chromosomal breakpoints are dispersed
throughout a large genomic region.

Recently, an SRO was refined to a 1 Mb region
within 1p36.3 defined by LOH in a primary tumor
that extends distally from D1S214, and by a constitu-
tional deletion between D1S468 and D1S2826 in a
patient with neuroblastoma (White et al. 2001). Inde-
pendently, a smaller candidate region of approxi-
mately 1 Mb (between D1S2731 and D1S2666) was
mapped to 1p36.3 (Bauer et al. 2001). Both regions
appear to overlap in the vicinity of marker D1S214.
Neuroblastoma cell line NGP has a translocation
t(1;15)(36.2;q24), including a 2-Mb DNA duplication
at 1p36.2 (Amler et al. 1995). Although the proximal
breakpoint defined by the duplication appears to

Figure 4.3

Comparison of 1p smallest region of overlapping deletions (SROs) identified by LOH studies in neuroblastoma. A Schwab
et al. (1996); B Bauer et al. (2001); C Caron et al. (2001); D Martinsson et al. (1997), Ejeskar et al. (2001); E Maris et al. (2001b);
F Hogarty et al. (2000),White et al. (2001). Open boxes at the end of bars represent the first non-deleted marker. Arrows give
the distances between markers defining the SRO B (Bauer et al. 2001) and between markers bounding the consensus re-
gion of deletion. Order of markers is from Bauer et al. (2001) and the UCSC genome browser (http://genome.ucsc.edu)
and was confirmed using the NCBI resource UniSTS (http://www.ncbi.nlm.nih.gov)
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map outside the 1p36.3 SRO, the distal breakpoint,
which maps to between D1S160 and D1S214, proba-
bly lies within the 1-Mb SRO. Several new genes map-
ping near this breakpoint region were identified re-
cently that are currently being further characterized
(Amler et al. 2000; K.O. Henrich et al., submitted). A
homozygous deletion spanning approximately 500 kb
at D1S244 has been reported in two neuroblastoma
cell lines (Ohira et al. 2000); however, this homo-
zygous deletion is localized proximal to the refined
1 Mb SRO, which would make a single tumor sup-
pressor gene within 1p36.3 unlikely. Also, it has not
been established that the two cell lines have been
derived from different patients.

A terminal 1p36 deletion syndrome has been de-
scribed which is associated with mental retardation
and craniofacial features (Shaffer and Heilstedt 2001;
Shapira et al. 1997). The prevalence of this deletion
(1p36.3) is estimated to be 1 in 5000, making it the
most common terminal deletion (Shaffer and Heilst-
edt 2001). The deletion is distal to D1S228, and in
some cases the large deletions include the 1-Mb SRO
within 1p36.3 (Wu et al. 1999). To date, 2 patients with
terminal 1p36.3 deletion syndrome have developed
neuroblastoma (Biegel et al. 1993; White et al. 2001);
however, neuroblastoma has not been detected in 
any of the originally published cases (Wu et al.
1999), suggesting that neuroblastoma is not a com-
mon feature of this syndrome. It remains unclear
whether some rare patients with 1p36.3 deletion syn-
drome may have a predisposition to neuroblastoma
depending on their specific deleted regions, or
whether the two published cases were simply due to
coincidence.

4.4.1.1 One or More “Tumor Suppressor Gene”
Loci in 1p

Several observations suggest that more than one 1p
locus may be affected in neuroblastoma. Outcome
has reported to be poorer in patients with tumors
that have large 1p deletions than patients with short
or interstitial deletions (Takeda et al. 1994). Further-
more, while tumors with large 1p deletions were as-
sociated with adverse prognostic factors, such as
diploidy or tetraploidy, and amplified MYCN, tumors

with small interstitial deletions had DNA content in
the triploid range and a high proportion of tumors
were detected by mass screening. The existence of
two distinct deleted regions was also suggested by
LOH at polymorphic loci in clinically identified neu-
roblastomas (Caron et al. 1995; Schleiermacher et al.
1994). Additional studies have demonstrated that tu-
mors with and without MYCN amplification show
different types of SRO (Cheng et al. 1995; Gehring et
al. 1995; Caron et al. 1993; Fong et al. 1989). In MYCN-
amplified tumors, 1p deletions are very common and
are large, always at least including a region from
1p35–1p36 to telomere. In contrast, 1p deletions oc-
cur in only 15–20% of tumors that lack MYCN ampli-
fication, and the deletions are consistently smaller
and commonly map to 1p36.3; thus, a second tumor
suppressor locus inactivated by the 1p deletions in
MYCN-non-amplified neuroblastomas has been pos-
tulated (Caron et al. 1995; Schleiermacher et al. 1996).
This TSG was suggested to be localized at 1p35–36.1,
just distal to the deletion border of the smallest 1p
deletion found in MYCN-amplified cases (Caron et al.
1995; Spieker et al. 2001). The smallest SRO of the
MYCN single-copy tumors is included into the larger
SRO of MYCN-amplified tumors, implying that a dis-
tal suppressor locus in 1p36.2–3 must also be deleted
in MYCN-amplified tumors.

The genomic complexity of the 1p region and the
large size of its deletions have made it difficult to
identify a neuroblastoma TSG. Although several can-
didate genes have been proposed, none has been
shown to contain tumor-specific mutations, indicat-
ing that alternate mechanisms of TSG inactivation,
such as epigenetic silencing or haploinsufficiency,
may have to be considered. In addition, structural
alterations of chromosome 1 have to be evaluated
together with coincident genetic changes in other
genomic regions, such as amplified MYCN, 17q gain,
and diploidy/triploidy.

4.4.2 Deletion of 11q

Cytogenetic analyses have demonstrated the pres-
ence of 11q deletions in about 15% of neuroblastoma
tumors (Mertens et al. 1997). In LOH studies, 11q loss
has been detected in 5–32% of the tumors (Takeda 
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et al. 1996). Loss of the whole chromosome 11 ap-
pears to be strongly associated with low stage tu-
mors, whereas unbalanced deletion of 11q is pre-
dominantly observed in high-stage tumors without
amplified MYCN (Guo et al. 1999, 2000; Maris et al.
2001b). Deletion events affecting 11q are predomi-
nantly large and terminal. A single region of 2.1 cM
within 11q23.3, flanked by markers D11S1340 and
D11S1299, was deleted in all tumors with 11q LOH
(Guo et al. 1999). Constitutional rearrangements of
11q have been observed in some neuroblastoma 
patients, including a deletion of 11q23-qter, balan-
ced translocations involving 11q21 and 11q22, and 
an inversion of 11q21-q23 (Bown et al. 1993; Hecht 
et al. 1982; Koiffmann et al. 1995). The role of these
constitutional changes is not clear, but it has been
speculated that disruption of one or more 11q genes
may predispose to the development of neuroblas-
toma.

4.4.2.1 Chromosome 11 Deletion 
and 17q Gain

Fluorescence in situ hybridization (FISH) analyses
have demonstrated that, after 1p, chromosome arm
11q is the second most common partner for 17q
translocations (van Roy et al. 1994). Such transloca-
tions, resulting in concurrent loss of distal 11q and
gain of 17q, account for approximately half of the 11q
deletion cases (Vandesompele et al. 2001); thus, LOH
studies assessing the prognostic value of chromo-
some losses must take into account the 17q status of
each individual tumor.

4.4.3 LOH of Additional Chromosomes

Genome-wide surveys at randomly selected loci
have revealed several chromosomal regions with
LOH including. 9p21 (Marshall et al. 1997), 14q32
(Hoshi et al. 2000; Thompson et al. 2001), and others
(Westermann and Schwab 2002). Although numer-
ous investigators have speculated that TSGs may re-
side in these sites, to date, in spite of laborious ef-
forts, not one neuroblastoma TSG has been identi-
fied.

4.4.4 LOH and Tumor Suppressor Genes:
an Evasive Connection or Flawed Hypothesis?

There are several possible explanations for the failure
to identify a neuroblastoma TSG. Firstly, the two-hit
model, in its original form, may not be applicable to
neuroblastoma. In addition, the current logic of uti-
lizing LOH studies to determine the SRO and then
surveying the chromosomally intact homologue for
genes in this region and for mutations may be flawed.
One possibility is that the loss of a single allele by
deletion may be sufficient to produce a biological ef-
fect. Evidence for haploinsufficiency is accumulating
(Goss et al. 2002; Gruber et al. 2002; Kucherlapati et
al. 2002; Spring et al. 2002; Venkatachalam et al. 1998)
for a number of genes, including BLM, Fen1, TP53,
ATM, and others (Table 4.1). It is also possible that
deletion of a single allele, such as in 1p, alone or in
combination with deletion at another genetic locus,
may contribute to tumorigenesis simply by dosage
effect, without any mutational or epigenetic change
of the remaining allele. Evidence is also emerging
that slight gene dosage changes, like segmental dupli-
cations, can contribute to human malignant and non-
malignant disorders (Corvi et al. 1995; Gratacos et al.
2001; Savelyeva et al. 2001). Genetic imbalance for
1p36 (at least 2 copies of chromosome 1 present with
additional 1p36-deleted chromosome 1 copies) may
also be associated with poor prognosis, similar to
that seen in patients with tumors with 1p deletion or
amplified MYCN (Spitz et al. 2002).

Another problem could be genetic heterogeneity
for particular LOH regions among neuroblastoma
subtypes, and thus, the strategy of analyzing the
genes of a consensus region deduced from a larger
number of tumors is flawed. One scenario, hypothet-
ical but in principle suggested earlier (Takeda et al.
1994), could be that one biological or clinical group
(group 1) of tumors results from the inactivation of
one gene, while another clinical group of neuroblas-
tomas (group 2) depends on the inactivation of an-
other gene. Both genes may be in 1p36, but the group-
2 gene may be several megabases away from the
group-I gene. When LOH data are combined from
these two groups, the SRO will be extremely unlikely
to harbor the damaged second allele (Fig. 4.4).
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Table 4.1. Genes and haploinsufficiency in tumorigenesis

Gene Function Reference

AML1/CBFA2 Transcription factor Barton and Nucifora (2000); Song et al. (1999)

Cdh1 Cell-cell adhesion Smits et al. (2000)

Dmpl Cell-cycle control Inoue et al. (2001)

Lkb1 Kinase with unknown target Miyoshi et al. (2002)

NF1 Signal transduction Zhu et al. (2002)

P27Kip1 Cell-cycle control Fero et al. (1998)

Ptch Signal transduction Wetmore et al. (2000)

Pten Signal transduction Kwabi-Addo et al. (2001)

Atm DNA damage response Spring et al. (2002)

Blm DNA repair Goss et al. (2002)

Fenl DNA repair Kucherlapati et al. (2002)

p53 Cellular stress response Ide et al. (2003); Venkatachalam et al. (1998)

H2AX DNA repair Celeste et al. (2003)

Nbn DNA repair Dumon-Jones et al. (2003)

Anx7 DNA repair Srivastava et al. (2003)

Figure 4.4

Genetic heterogeneity of LOH
regions (depicted by black
capped bars) may explain the
failure to find the “neuroblas-
toma suppressor gene.” In case
of genetic heterogeneity, there
could actually be at least two (B,
C), if not more genes involved,
and these might be separated
many megabases from each
other. Combining these LOH re-
gions into a single consensus re-
gion (A) would inevitably initiate
a gene search in a region that is
unlikely to harbor the long-
sought NSG
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According to this hypothesis, there would actually be
two SROs, each harboring a different gene that is
damaged only in tumors of the corresponding group.
As mentioned above, previous studies have indicated
that two, or even more, “neuroblastoma genes” may
reside in chromosome 1p (Caron et al. 2001). The
existence of two separate 1p regions with relevance to
neuroblastoma is also supported by an independent
study that indicated two regions of loss, at 1p36 and
1p22 (Mora et al. 2000).Another study concluded that
there were three regions of loss at 1p36.1–2, 1p36.3,
and 1p32–34, and each was associated with different
neuroblastoma groups (Hiyama et al. 2001).

4.5 Comparative Genomic Hybridization

In CGH, differentially labeled tumor DNA and nor-
mal DNA are competitively hybridized to normal hu-
man metaphase chromosomes (Kallioniemi et al.
1992). This methodology detects quantitative chro-
mosomal changes, such as deletions, duplications or
amplifications on the basis of the ratio of the hy-
bridization of the two differently labeled DNAs. The
advantage of this approach is that the complete set of
quantitative genomic changes can be determined in a
single experiment. Limitations are the low level of
resolution (several Mb) and the fact that absolute
quantitation of the changes is not precise. More re-
cently, array CGH has been performed in an effort to
increase the resolution of this technique. This strate-
gy utilizes an array of DNA targets, and both cDNA
and BAC arrays have been used (Beheshti et al. 2003;
Cowel and Nowak 2003).

Both CGH and array CGH (Cunsolo et al. 2000;
Plantaz et al. 2001; Schleiermacher et al. 2003;
Stallings et al. 2003; Vettenranta et al. 2001) have
largely confirmed previous cytogenetic and LOH
studies revealing a high-frequency of 1p loss, 11p
loss, 2p gain, and 17q gain (Schleiermacher et al.
2004; Brinkschmidt et al. 1997; Lastowska et al. 1997b,
2002; Plantaz et al. 1997; Vandesompele et al. 1998).
The CGH studies have also revealed that about 50%
of neuroblastomas have an additional segment of
17q, indicating that gain of 17q is the most frequent
genetic alteration in neuroblastoma. Gain of 17q ap-

pears more common in advanced-stage tumors, in
tumors from children aged over 1 year, and in tumors
showing 1p loss, amplified MYCN, and diploidy or
tetraploidy. In contrast, triploidy with whole chromo-
some 17 gain is associated more often with neuro-
blastomas showing favorable clinical and genetic fea-
tures (Bown et al. 1999). Amplified MYCN rarely, if
ever, occurs without either 1p deletion or 17q gain or
both, implying that MYCN amplification is a later
event in the sequence of genetic aberrations underly-
ing neuroblastoma progression (Bown et al. 1999).
Although several studies appear to suggest 17q gain
as a powerful prognostic factor (Abel et al. 1999;
Bown et al. 1999, 2001; Caron 1995; Caron et al. 1996;
Lastowska et al. 1997a), a recent study could not con-
firm this association (Spitz et al. 2003).

4.6 Tumor Cell Ploidy

Many neuroblastomas have higher than normal DNA
content or hyperploidy. Kaneko and Knudson have
suggested that in neuroblastoma, aneuploidy may be
a consequence of tetraploidization with subsequent
bipolar, tripolar, or tetrapolar divisions (Kaneko and
Knudson 2000).Supernumerary centrosomes leading
to multipolar divisions have been implicated in both
chromosome missegregation and the generation of
aneuploid cells in various cancer types, including
neuroblastoma (Brinkley 2001). A defect of spindle
formation may cause incomplete segregation during
mitosis; thus, such a defect in a tetraploid cell under-
going a tripolar division could lead to one near-
triploid and one near-pentaploid cell. In fact, in neu-
roblastoma tumors with more than one tumor cell
clone,near-pentaploid tumor cells are often observed
together with near-triploid tumor cells.

Recently, Kaneko and Knudson have developed an
attractive hypothesis explaining the association be-
tween ploidy and neuroblastoma phenotype (Kaneko
and Knudson 2000). This hypothesis is based on the
assumption that both clinically “favorable” triploid
tumors and clinically “unfavorable” diploid tumors
arise through the same genetic event, as suggested
from observations in familial cases (Knudson and
Strong 1972; Kushner et al. 1986). The initiating



Chapter  4 35Molecular Cytogenetics

tumorigenic event may be a mutation in a classical
tumor suppressor gene with recessive effect at cellular
level (Comings 1973; Knudson and Strong 1972).
Tetraploidization and subsequent multipolar division
of a diploid cell heterozygous for a mutation in such a
gene would give rise to diploid and tetraploid daugh-
ter cells with no normal allele and highly malignant
phenotype, or triploid daughter cells with at least one
normal allele and less malignant phenotype.

4.7 Conclusion

Despite many advances in understanding the genet-
ics and developmental molecular pathways, they have
not yet translated into more effective therapy for
high-risk neuroblastoma Nevertheless, the fascinat-
ing multiplicity of its clinical and biological pheno-
types has attracted a growing number of clinical 
and basic scientists. Their combined efforts will in-
evitably resolve the intricate pathways that govern
both progression and spontaneous regression of this
disease. This knowledge should provide the platform
for the development of new diagnostic tools and
novel therapeutic strategies. Until then, we should be
careful and avoid offering simplified suggestions for
a rapid clinical translation.
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5.1 Neural Crest Development 
and Neuroblastoma

Cancer has its own face reflecting the characteristics
of the tissue from which it is derived. This can be
demonstrated by histopathologic examination, by
immunohistochemistry, and/or by in situ hybridiza-
tion. Recent advances in molecular biology and ge-
netics have also revealed that these morphological
distinctions among cancers are associated with dif-
ferences in gene expression profiles within tumor cell
and stromal cell components. Furthermore, the pat-
terns of gene expression unique for each cancer are
dictated by genetic abnormalities which have oc-
curred in progenitors of the specific developmental
lineage. Neuroblastoma originates from the sympa-
thoadrenal lineage, and its biology is closely related
to that of normal sympathetic neurons. In this chap-
ter, the molecular and cellular bases for the genesis
and biology of neuroblastoma are summarized.

5.1.1 Genes of Neural Development 
and Molecular Targets of Neuroblastoma

During neural development, neural crest cells mi-
grate and differentiate into several cell lineages, e.g.,
melanocytes, sensory neurons, enteric ganglion cells,
and sympathetic neurons (Fig. 5.1). The first signal-
ing molecules which trigger crest cells to differentiate
or migrate are bone morphogenetic proteins (BMPs)
and their receptors (Huber et al. 2002). The commit-
ment to differentiate into sympathetic neurons is
associated with the transient expression of (a) basic
helix-loop-helix transcription factors, e.g., MASH1 (a
proneural gene homologous to drosophila achaete-
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scute), HES1, MYCN, HIF1α and HuD, (b) homeobox
genes, e.g., Phox2a and Phox2b, and (c) p73 (a family
member of the tumor suppressor gene p53; Naka-
gawara 2004). Several lines of investigation support
the importance of these genes. MASH1 null mice lack
sympathetic ganglion cells (Guillemot et al. 1993).
Notch signaling, through its intracellular domain
translocation into the nucleus, stimulates the tran-
scriptional activation of the HES1 and HES5 genes
whose products in turn inhibit transcription of the
MASH1 gene (Radtke and Raj 2003). MYCN is indis-
pensable for the normal neural development. It in-
duces Id2 which is a negative regulator of HES1 and
pRb, a retinoblastoma suppressor (Lasorella et al.
2000). p73 knockout mice also show abnormalities in
cell survival in both the nervous and immune sys-
tems (Yang et al. 2000). Gene targeting of HIF2α dis-

turbs the catecholamine metabolism in sympathetic
neurons (Tian et al. 1998). All these genes regulate
each other in an orchestrated manner to drive the
correct differentiation of neural crest cells into sym-
pathetic neurons.

Further downstream, terminal differentiation to
mature sympathetic cells is strongly regulated by the
signaling of neurotrophin family members and their
receptors (Nakagawara 2001, 2004). In addition, oth-
er genetic aberrations associated with neuroblas-
toma have been mapped to specific genomic regions
or genes well known to be important in regulating the
normal development of neurons (Nakagawara 2001,
2004). It seems obvious that a relationship should
exist between the genetic or biological targets of neu-
roblastoma and the key molecules involved in the
normal development of neural crest cells.

Figure 5.1

Neuroblastoma originates from the sympathoadrenal lineage of neural crest. The bone morphogenetic protein (BMP)
signals may be important at the early stage of differentiation of neural crest cells. MASH1 (hASH1) may function as one of
the key transcription factors which define the direction of differentiation to sympathetic neurons. The other important
nuclear factors, e.g., Phox2a, Phox2b, HuD, MYCN, Id2, and p73, may also be involved in the cell-fate determination. Some
of those genes are often upregulated or amplified in aggressive neuroblastomas (Nakagawara 2004). At the stage of ter-
minal differentiation of sympathetic neurons followed by programmed cell death, the signals through neuronal tyrosine
kinase receptors, e.g., Ret, TrkB, TrkC, and TrkA, are necessary sequentially and/or in a form of crosstalk. The many genes
involved in regulation of neuronal terminal differentiation or programmed cell death are often expressed at high levels
in favorable neuroblastomas
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5.1.1.1 Bone Morphogenetic Proteins

Bone morphogenetic proteins (BMPs), members of
the transforming growth factor-β (TGF-β) superfam-
ily, may be the first signal that defines the early phase
of differentiation and migration of neural crest cells
during development (Oppenheim 1991). The ligand-
dependent activation of BMP receptors transduces its
signal into the nucleus through the sequential activa-
tion of Smad signaling molecules by phosphoryla-
tion.Although the role of BMPs in neuroblastoma has
long been elusive, Nakamura et al. (2003) have re-
cently reported that SH-SY5Y and RTBM1 neuroblas-
toma cell lines are responsive to BMP2 leading to
growth arrest and differentiation. Of interest, BMP
treatment also induces the downregulation of p53
family members including p53 and p73, as well as
their target gene,p21WAF1. In contrast,a similar cyclin-
dependent kinase inhibitor, p27KIP1, is markedly in-
duced at the protein level by downregulation of Skp2,
a component of its E3 ubiquitin ligase complex. BMP
is also a direct transcriptional target of retinoic acid
which induces neuroblastoma differentiation (see
Chap. 15; Rodriguez-Leon et al. 1999). The DAN fam-

ily members are inhibitors of BMP, and are also ex-
pressed in neuroblastomas (Enomoto et al.1994).The
DAN gene itself, which is mapped to chromosome
1p36, is a transcriptional target of BMP (Nakamura et
al. 2003; Shinbo et al. 2002), suggesting that the BMP
signaling network may be important in the differen-
tiation and survival of neuroblastoma (Nakamura et
al. 2003). The role of other important signals which
function during neuronal development, including
Sonic Hedgehog (Shh) and Wnt, is less well known in
neuroblastoma. Interestingly, the Shh downstream
signaling molecule, Gli, can transactivate MYCN and
cyclin D1 (Altaba et al. 2004) (Fig. 5.2).

5.1.1.2 MASH1/hASH1

Achaete-Scute homolog-1 (MASH1 in rodents and
hASH1 in humans) is a basic helix-loop-helix tran-
scription factor which plays an important role in the
early development of neural and neuroendocrine
progenitor cells (Ball 2004). Helix-loop-helix proteins
include achaete-scute homologs, E proteins, MYCN,
Math, NeuroD, neurogenin, Id, and HES. Targeted dis-
ruption of MASH1 in mice has led to the absence of

Figure 5.2

Hedgehog-Gli signaling in neu-
ral development and tumorige-
nesis. Sonic hedgehog (Hh) sig-
naling activates Gli transcription
factors which then induce the
target genes important for regu-
lating neural differentiation as
well as neuronal tumorigenesis.
They include MYCN, cyclin D1,
IGF2, and PDGFRα, all of which
are known to be players charac-
terizing neuroblastoma biology.
T bars show inhibitory interac-
tions. Arrows show positive in-
teractions
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sympathetic neurons, suggesting the important role
of MASH1 in sympathetic differentiation (Guillemot
et al. 1993). MASH1 is transiently induced during
neural development to promote neuronal cell differ-
entiation; however,high hASH1 expression persists in
neuroblastoma tumors and cell lines (Soderholm et
al. 1999; Ichimiya et al. 2001). Retinoic acid treatment
decreases the expression of hASH1 and induces neu-
rite extension (Ichimiya et al. 2001). hASH1 also
directly represses the expression of PACE4, a mam-
malian subtilin-like proprotein convertase that acti-
vates TGF-β-related proteins (e.g., BMPs) in neuro-

blastoma cell lines (Yoshida et al. 2001). The Notch
signaling pathway also plays a key role during neu-
ronal development (Axelson 2004). One of the impor-
tant regulators of hASH1 is a basic HLH protein, HES1
(Fig. 5.3). HES1 is regulated, at least in part, by Notch
signaling and is induced at the transcription level.
HES1 directly binds to the promoter of hASH1 and in-
hibits its transcriptional activation. A constitutively
active form of Notch could block neurite extension
during the induced differentiation of human neurob-
lastoma cells, possibly by inhibiting hASH1 through
the induction of HES1 (Radtke and Raj 2003).

5.1.1.3 Phox2a and Phox2b

Phox2a and Phox2b are paired-like homeodomain
transcription factors with complete conservation in
their homeodomain.They are specifically expressed in
noradrenergic neurons and activate the tyrosine hy-
droxylase and dopamine-β-hydroxylase genes (Schnei-
der et al. 1999; Stanke et al. 1999; Ernberger 2000).
While the expression of Phox2a is regulated by
MASH1, Phox2b is not (Lo et al. 1999) (Fig. 5.4). The
genetic disruption of either Phox2a or Phox2b gene
de-monstrated that both genes are essential for the
development of autonomic neural crest derivatives
(Morin et al. 1997; Pattyn et al. 1999). Interestingly,
Trochet et al. (2004) reported that the Phox2b gene was
mutated in a family case of neuroblastoma and in a
neuroblastoma patient with Hirschsprung’s disease.

5.1.1.4 Id

Id proteins generally function as inhibitors of differen-
tiation and as positive regulators of proliferation in
neuronal development (Lavarone and Lasorella 2004).
Id is a protein with the helix-loop-helix domain with-
out a basic region and forms heterodimers with bHLH
proteins, e.g., MASH1 and HES1 to inhibit their trans-
activation function (Massari and Murre 2000). In pedi-
atric cancers, MYC oncoproteins and EWS-Ets fusion
proteins are targeted to induce Id2 which in turn in-
hibits Rb and other target proteins including bHLH
proteins, Ets and Pax. In neuroblastoma, MYCN has
been shown to induce Id2 which stimulates cell prolif-
eration by inhibiting Rb function (Lasorella et al.2000).

Figure 5.3

Notch signaling transactivates gene expression to in-
duce neuronal differentiation. Binding of the ligand
delta to its receptor notch triggers intramembrane pro-
teolytic cleavage by γ-secretase. This results in the re-
lease of the notch intracellular domain (NICD), which
then translocates to the nucleus where it associates
with the CSL family of DNA binding proteins and trans-
activates gene expression. The target genes include
HES1, MATH1, NF-kB, cyclin D1, p21, and neurogenin. HES1
then inhibits transactivation of MASH1 (hASH1)
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5.1.1.5 MYCN

MYCN is a member of the group of MYC-box genes,
and its product is a bHLH protein (Schwab et al.
2003). MYCN is transiently expressed during normal
neural development and defines the direction of neu-
ronal differentiation. MYCN is frequently amplified
in advanced-stage neuroblastoma (Schwab et al.
1983, 1984; Brodeur et al. 1984; Seeger et al. 1985), and
the biology of high-risk neuroblastoma is influenced
by the subsequent overexpression of MYCN oncopro-
tein and its targets including telomerase and those
functioning in ribosome biogenesis and protein syn-
thesis (Mac et al. 2000; Boon et al. 2001).

5.2 Molecular Bases of Differentiation 
and Programmed Cell Death

5.2.1 Molecular Aspect 
of Spontaneous Regression

It is well known that some subsets of neuroblastoma
can regress spontaneously. One of the most impor-
tant hints to understand the mechanism of sponta-
neous regression is age of the patient at the onset of
neuroblastoma. Regression rarely occurs when the
tumor is found in patients over 1 year of age. The dra-
matic regression of the stage 4s tumor after its rapid
growth usually occurs within 6 months after birth;
therefore, it is plausible that epigenetic regulations,
timed with the development of sympathetic neurons,
might also control neuroblastoma regression. It is
well known that massive death of sympathetic neu-
rons is induced during the perinatal period – a
process called developmentally regulated neuronal
programmed cell death following deprivation of tar-

Figure 5.4

Regulatory network controlling
sympathetic neuron develop-
ment. BMP2 and BMP4 are re-
quired for the expression of
MASH1 and Phox2b. HES1 in-
duced by notch signaling in-
hibits expression of MASH1.
MASH1 and Phox2b are geneti-
cally upstream of Phox2a, and
Phox2b is genetically upstream
of Gata3. Expression of tyrosine
hydroxylase (TH) and dopa-
mine-β-hydroxylase (DBH) de-
pends on MASH1, Phox2b, and
Gata3. Cyclic AMP also controls
expression of TH and DBH.
Phox2a and Phox2b may affect
induction or maintenance of
MASH1 expression. MASH1,
Phox2a,and Phox2b regulate the
downstream neurogenic pro-
gram, leading to terminal differ-
entiation of sympathetic neurons
by inducing the genes, e.g., Trks,
NF160, peripherin, and SCG10
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get tissue-derived neurotrophins (Oppenheim 1991).
This same death mechanism appears to be conserved
in primary neuroblastomas found in infants, leading
to the induction of their spontaneous regression
(Nakagawara 1998b).

5.2.2 Neurotrophic Factors and Their Receptors

5.2.2.1 Neurotrophins and Their Receptors 
in Neuroblastoma

The neurotrophin family of growth factors consists 
of nerve growth factor (NGF), brain-derived neu-
rotrophic factor (BDNF), neurotrophin-3 (NT-3), and
neurotrophin-4/5 (NT-4/5; Huang and Reichardt
2003). The corresponding high-affinity neurotrophin
receptors with tyrosine kinase activity have been
identified as TrkA, TrkB, and TrkC (Snider 1994)
(Fig. 5.5 a, b). TrkA is a preferred receptor for NGF,
TrkB for BDNF and NT-4/5, and TrkC for NT-3. All 
of the neurotrophins also bind similarly to a lower-
affinity neurotrophin receptor p75NTR, a member of
the tumor necrosis factor receptor (TNFR)/Fas fami-
ly (Snider 1994). The targeted disruption of neu-
rotrophins and their receptors has demonstrated that
NGF/TrkA signaling supports the survival and differ-
entiation of sympathetic and sensory neurons re-
sponsive to temperature and pain, while BDNF/TrkB,
NT-4/TrkB, and NT-3/TrkC signaling supports those
of sensory neurons responsive to tactile stimuli and
motor and sensory neurons responsive to limb move-
ment and position, respectively (Klein 1994). These
results suggest that neural development and mainte-
nance of the neural network are spatiotemporally
controlled by neurotrophin signaling with or without
some redundancy in both peripheral and central
nervous systems.

In neuroblastoma, high levels of TrkA are ex-
pressed in subsets of tumors with good prognosis,
often showing spontaneous regression (Nakagawara
et al. 1992, 1993; Suzuki et al. 1993; Kogner et al. 1993).
Such tumors usually occur in patients under 1 year of
age, and their DNA ploidy is aneuploid. A very limit-
ed amount of NGF may be supplied from stromal
cells, e.g., Schwannian cells and fibroblasts, which at
least partly regulate the differentiation and pro-

grammed cell death of neuroblastoma cells (Naka-
gawara 1998a). On the other hand, TrkA expression is
strongly downregulated in tumors with aggressive
behavior that usually possess amplification of the
MYCN oncogene and allelic loss of chromosome
1p36 (Nakagawara et al. 1992, 1993). TrkB is preferen-
tially expressed in aggressive neuroblastomas togeth-
er with its preferred ligands BDNF and NT-4/5 which
stimulate in an autocrine/paracrine manner, confer-
ring an enhanced malignant phenotype to the tumor
cells (Nakagawara et al. 1994; Matsumoto et al. 1995).
TrkC is expressed in favorable neuroblastomas at
variable levels (Yamashiro et al. 1996), but its pre-
ferred ligand,NT-3, is nearly undetectable by RT-PCR
in primary neuroblastomas (Nakagawara 1998a);
thus, in regressing neuroblastomas, tumor cells ex-
pressing the TrkA receptor may be dependent on a
limited amount of NGF supplied from stromal cell. In
the presence of NGF the cells mature, whereas they
will die in the absence of this ligand (Nakagawara
1998a,b); however, in clinically aggressive neuroblas-
tomas, the TrkA is downregulated and the down-
stream signaling cascades are disturbed, and these
cells utilize the BDNF or NT-4/TrkB autocrine system
for efficient growth. Neurotrophin signaling may also
regulate tumor metastasis (Matsumoto et al. 1995),
proliferation (Matsumoto et al. 1995), and angiogen-
esis (Canete et al. 2000). The role of p75NTR in neuro-
blastoma is unclear. The p75NTR receptor is expressed
in both neuroblastoma cell lines (Azar et al.1990) and
primary neuroblastomas (Nakagawara et al. 1993).
Interestingly, the expression levels of p75NTR mRNA
are significantly higher in favorable neuroblastomas
(stages 1, 2 and 4s) as compared with the advanced
stage tumors, especially those with MYCN amplifica-
tion (Nakagawara et al. 1993).

5.2.2.2 Neurotrophin Signaling 
in Neuroblastoma

In a rat pheochromocytoma cell line PC12, differen-
tiation signals by NGF may be mediated through the
tyrosine phosphorylation of the Trk receptor and
through the subsequent activation of Shc/Grb2/SOS,
Ras, Raf, MEK, and ERKs, while survival signals in the
same cells may be transduced through the direct
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Figure 5.5 a, b

Neurotrophins and their receptors. a TrkA is a preferred
high-affinity receptor for NGF, TrkB for BDNF, and 
NT-4/5, and TrkC for NT-3. All of the neurotrophins also
bind similarly to a lower affinity neurotrophin receptor
p75NTR. b The structures of neurotrophin family recep-
tors. The extracellular domains of TrkA, TrkB, and TrkC
have high structural similarity.The intracellular domain
of Trks possesses tyrosine kinase activity. TrkB and TrkC
receptors have truncated forms which lack the tyrosine
kinase domain. The low-affinity receptor, p75NTR, has a
short intracellular region containing the death domain,
and belongs to the Fas/TNFR family of the receptors
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activation of PI3-kinase which in turn activates
downstream molecules, e.g.,Akt and Bad (Klesse and
Parada 1999). On the other hand, in normal sympa-
thetic neurons, the activation of PI3-kinase is medi-
ated not by the tyrosine phosphorylation of the re-
ceptor but by the Ras activation which promotes neu-
ronal survival, suggesting that the Trk intracellular
signaling pathway might be deregulated in cancer
cells. This is also the case in neuroblastoma. In the
neuroblastoma cell lines with a single copy of MYCN,
NGF can induce differentiation when exogenous
TrkA is overexpressed (Eggert et al. 2000). In the cell
lines with MYCN amplification, however, the NGF-
stimulated TrkA receptors which were overexpressed
cannot normally activate downstream signaling mol-
ecules, resulting in unresponsiveness to the ligand.
Furthermore, it is surprising that BDNF/TrkB signal-
ing appears to be functioning in the same cells by
promoting survival (Nakagawara et al. 1994; Hishiki
et al. 1998), although the signaling pathway might be
different from that of sympathetic neurons (Klesse
and Parada 1999).

5.2.2.3 GDNF Family Receptors

Neurotrophic factors of the glial cell line-derived
neurotrophic factor (GDNF) family, which include
GDNF, artemin and neurturin, are secreted by neu-
roblastoma cells as well as stromal cells and activate
their receptor complex composed of Ret tyrosine
kinase and the GFRα co-receptors expressed in neu-
roblastoma cells (Hishiki et al. 1998; Ichikawa et al.
2004). In contrast to NGF/TrkA and BDNF/TrkB,
however, the GDNF/Ret/GFRα autocrine system is
functioning in both favorable and unfavorable neu-
roblastomas to enhance the survival and differentia-
tion of tumor cells (Hishiki et al. 1998).

5.2.2.4 Other Factors and Receptors

Neuroblastoma cells express other growth factors
and receptors. Both pleiotrophin (PTN) and midkine
(MK) are factors in the same family with neurotroph-
ic function (Kadomatsu et al. 1990; Li et al. 1990;
Kadomatsu and Muramatsu 2004). PTN is expressed
significantly at high levels in favorable neuroblas-

tomas, while MK is highly expressed in almost all
neuroblastomas with a tendency to be expressed at
high levels in tumors in advanced stages (Naka-
gawara et al. 1995). Neuroblastoma also expresses
many other receptors, e.g., fibroblast growth factor
receptor (FGFR; Schweigerer et al. 1991), insulin-like
growth factor (IGFR; El-Badry et al. 1991), DCC
(deleted in colon cancer) (Reale et al. 1996), and neu-
ronal leucine-rich repeat receptors (NLRRs; Hamano
et al. 2004), as well as a novel plasma membrane
enzyme ECEL1, which is significantly highly ex-
pressed in favorable neuroblastomas (Kawamoto et
al. 2003). The biological significance of these factors
and receptors in neuroblastoma are not currently
known.

5.2.3 Functional Role of p53 Family Genes

Recent lines of evidence suggest that both the p53
tumor suppressor protein and its related protein p73
are involved in the induction of programmed cell
death and growth arrest in neuronal cells (Pozniak et
al. 2000). p73 is a recently identified candidate tumor
suppressor gene mapped to chromosome 1p36.2,
a frequently deleted region in many human cancers
including neuroblastoma and oligodendroglioma
(Ichimiya et al. 1999; Billon et al. 2004). In cultured
neonatal sympathetic neurons, p53 protein levels are
increased in response to NGF withdrawal as well as
p75NTR activation, and it functions downstream of
c-Jun NH2-terminal kinase (JNK) and upstream of
Bax to induce apoptosis (Aloyz et al. 1998) (Fig. 5.6).
Indeed, in p53–/– mice, naturally occurring sympa-
thetic neuron death is inhibited. Pozniak et al. (2000)
have also reported that p73 is primarily present in
developing neurons as ∆Np73, an NH2-terminally
truncated isoform, whose level is decreased when
sympathetic neurons undergo apoptosis after NGF
withdrawal, and that p53 becomes activated to be
pro-apoptotic. In contrast to the truncated form of
p73, full-length p73 has induced neuronal differenti-
ation in a mouse neuroblastoma cell line N1E115
(Laurenzi et al. 2000). These data suggest that the
neuronal apoptosis induced by NGF withdrawal is at
least partly regulated by a reciprocal balance between
levels of pro-apoptotic p53 and anti-apoptotic ∆Np73.
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Figure 5.6

A model of signaling pathway
for survival and death in sympa-
thetic neurons regulated by
NGF. NGF depletion may induce
activation of JNK/p53 pathway
which could be modified by
p73/∆Np73 regulatory system.
p75NTR activation, which sends
signals of both survival and
death, may also regulate down-
stream p53/p73/∆Np73 path-
way

Figure 5.7

A possible signaling pathway
regulating growth, differentia-
tion and survival in neuroblas-
toma cells or sympathetic neu-
rons. The NGF-triggered auto-
phosphorylation of TrkA tyrosine
kinase receptor induces activa-
tion of Ras/MAPK pathway,which
in turn regulates nuclear pRB and
Mdm2. In some poor-outcome
neuroblastomas, p53, which is
shuttling between cytosol and
nucleus, is trapped in the cytosol
by Parc, an anchoring protein of
p53. MYCN induces expression of
Id-2 whose protein product in
turn inhibits pRB.E2F1 negatively
regulated by pRB directly in-
duces expression of p73. p73 is
regulated by ∆Np73 in a negative
autoregulatory manner (Naka-
gawa et al.2002),and ∆Np73 also
inhibits p53
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The importance of p53 and p73 has also been em-
phasized by the important observation that, in cul-
tured neuroblastoma and other cancer cells, p73 di-
rectly transactivates the ∆Np73 gene by binding to its
promoter after treating the cells with genotoxic
reagents, e.g., cisplatin (Nakagawa et al. 2002). The
induced ∆Np73 protein in turn interacts with either
wild-type p53 or TAp73 and inhibits their proapop-
totic function; thus, ∆Np73 can act as an oncogene
and as an inhibitor of wild-type p53 and TAp73. The
presence of this autoinhibitory feedback loop among
p53, TAp73, and ∆Np73 may at least in part explain
why there is no mutation of the p73 gene in cancers.

p53 is associated with TrkA via the proto-oncogene
product c-Abl as an adaptor or bridging molecule,
suggesting that it may also play a role in Trk signaling
(Yano et al. 2000) (Fig. 5.7). The activation of Ras by
NGF stimulation of the TrkA receptor induces p53 nu-
clear translocation and growth arrest in PC12 cells
(Hughes et al. 2000). The c-Ha-Ras gene could be a
target of p53, and protein products induce a positive
feedback loop by activating p14ARF which counteracts
the negative feedback loop mediated by mdm2
(Deguin-Chambon et al. 2000). These observations
strongly suggest that p53 and p73 tumor suppressors
function in neurotrophin signaling and modulate the
growth, differentiation, and apoptosis of neurons.

In neuroblastoma and some other human cancers,
wild type p53 is often localized in the cytoplasm
(Moll et al. 1995). Although the regulatory mecha-
nism of cellular localization of p53 and p73 is still un-
known, activated Ras in NGF/TrkA signaling stimu-
lates the nuclear translocation of p53 and leads to
growth arrest by the induction of p21WAF1 in PC12
cells (Hughes et al. 2000). Furthermore, some frac-
tions of recurrent neuroblastomas and neuroblas-
toma cell lines acquire mutation of the p53 gene
(Tweddle et al. 2001).

5.2.4 Apoptotic Signals in Neuroblastoma

To date, the spontaneous regression of neuroblas-
toma, has occurred only in vivo. Although this makes
the analysis difficult, there are some important re-
ports. An anti-apoptotic protein, Bcl-2, is expressed
in primary neuroblastomas and neuroblastoma cell

lines. The expression levels of Bcl-2 and Bcl-XL are
high in aggressive tumor cells but are low in regress-
ing cells (Ikeda et al. 1995; Ikegaki et al. 1995). Cas-
pase-1 and caspase-3 are expressed at significantly
higher levels in favorable neuroblastomas (Naka-
gawara et al. 1997), and caspase-8 is silenced in ag-
gressive neuroblastomas by the methylation of its
promoter as one of mechanisms (Teitz et al. 2000).
Silencing of caspase-8 is observed in 25–35% of pri-
mary neuroblastomas with a high frequency in more
aggressive tumors (Teitz et al. 2000; Eggert et al. 2001;
van Noesel et al. 2003). Survivin, a member of the
inhibitors of apoptosis protein (IAP), is mapped to
the long arm of chromosome 17. In neuroblastoma,
survivin is highly expressed in high-risk tumors, and
its overexpression inhibits cellular apoptosis (Islam
et al. 2000). Kitanaka et al. (2002) have recently re-
ported an interesting observation that “autophagy”
may be involved in the regression of neuroblastoma
cells.

5.3 Conclusions

Development of neuroblastoma may be triggered 
by a genetic event(s) that leads to chromosome
and/or the genomic DNA abnormalities such as 
amplification of the MYCN gene and deletions or
gains in chromosomal regions including 1p, 11q, and
17q. Together with other epigenetic mechanisms 
of gene activation or gene silencing, they affect gene
and protein expression which in turn deregulate 
cellular signaling. In neuroblastoma the normal 
biology of developing neuronal cells and cancer 
biology appear to overlap. A further understanding
of the mechanisms involved in the transformation 
of progenitors or the stem cells into neuroblasto-
ma with significant cellular heterogeneity may 
provide clues for the development of novel thera-
peutic strategies for this often aggressive lethal dis-
ease.
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6.1 Introduction

Cellular heterogeneity, a hallmark of cancer, probably
accounts for the variability of its clinical presentation
and non-uniform response to treatment. For neuro-
blastoma (NB), this heterogeneity results from the
plasticity of the embryonic neural crest, from which
this tumor originates (Biedler et al. 1997; Brodeur
2003). This chapter briefly reviews the lineages man-
ifested by the developing neural crest and the biology
of the distinct cell types in human NB.

6.2 Neural Crest Differentiation

The neural crest is a transient embryonic cell struc-
ture generated from the neuroectodermal plate upon
closure of the neural tube (Le Douarin and Ziller
1993). Migrating neural crest cells from the trunk re-
gion of the embryo generate neuronal and glial cells
of the peripheral nervous system, neuroendocrine
and sensory ganglion cells, as well as non-neural pig-
ment and smooth muscle-like cells. An important
aspect of neural crest development germane to NB is
that cell division continues along with the progres-
sive restriction of differentiation potential and is
even present in adrenal medullary cells postnatally
(Mascorro and Yates 1989). Thus, two seemingly di-
vergent cellular programs are operating simultane-
ously: proliferation and differentiation.

Excellent studies have highlighted the amazing
pluripotent nature of the neural crest anlage. Detailed
studies using a chick/quail chimera showed that the
local tissue microenvironment plays a pivotal role in
effecting the differentiation lineages (Le Douarin and
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Ziller 1993). More recently, restrictive signaling fac-
tors that promote commitment to particular cell fates
in migratory and postmigratory neural crest precur-
sor cells have been delineated (Lo et al.2002; Hemmati
et al. 2003; Luo et al 2003). For example, achaete–scute
complex (e.g., HASH1) and atonal (ato) homologs
(e.g., neurogenin) are required in vivo for develop-
ment of autonomic and sensory neurons, respectively.
By contrast, melanocytes are generated by Wnt sig-
naling, while TGFb promotes smooth muscle cell de-
velopment. Finally, Notch and neuregulin promote
satellite glial and Schwann cell differentiation.

6.3 Neuroblastoma Cellular Heterogeneity

Many of the cell phenotypes characteristic of the
developing neural crest – neuroblasts, non-neuronal
(Schwann, perineurial, or satellite) cells, and even
melanocytes –are evident in the same NB (Shimada
et al. 1999). Moreover, cellular heterogeneity and ex-
tent of maturation (e.g., stroma-rich and stroma-
poor tumors or high- and low-risk tumors based on
histological grade) correlate with clinical behavior
and are useful for prognostication of the disease (see
Chap. 7; Shimada et al. 1999).

This same cellular heterogeneity is seen in NB cell
lines.Three distinct cellular phenotypic variants have
been described (Rettig et al. 1987; Biedler et al. 1988,
1997): sympathoadrenal (N-type) neuroblasts; large
flattened, substrate-adherent (S-type) cells; and mor-
phologically intermediate (I-type) cells (Fig. 6.1).
Studies over the past 25 years have shown that each
phenotype represents a particular lineage within the
neural crest. The availability of cell lines of the three
cell types has led to an increased understanding of
the differentiation and malignant potentials of each.

6.4 N-type Neuroblastic Cells

In vitro, the predominant neuroblastic (N) cells re-
semble sympathoadrenoblasts – immature neural/
neuroendocrine precursors, with small rounded cell
bodies and neuritic processes that vary widely in
number and length. Cells adhere poorly to the under-

lying substrate but adhere well to each other to form
cell clumps (pseudoganglia), achieving high satura-
tion densities in culture (Rettig et al. 1987; Biedler et
al. 1997; Spengler et al. 1997). Biochemically, they ex-
press proteins for synthesis, binding, and degrada-
tion of norepinephrine and acetylcholine (the two
major neurotransmitters of the peripheral nervous
system), as well as opioid and cholinergic receptors.
They express the neuroectodermal stem cell interme-
diate filament nestin, as well as all three neurofila-
ment proteins and chromogranin A (CgA) and secre-
togranin II (SgII), depending on their degree of dif-
ferentiation (Biedler et al. 1997; Ross et al. 2002;
Thomas 2003). In addition, they express dHAND and
HASH-1, transcription factors that are markers of the
early stages of neural crest development (Jögi et al.
2002).

Another transcription factor associated with NB
and early neuronal development is MYCN (Chap. 4).
Expression of the oncoprotein is associated with in-
creased mitosis and a dedifferentiated state in neu-
roectodermal cells of the CNS. High-level expression
requires a neuroblastic phenotype, as non-neuronal
variants do not express the protein even in the cell
lines with transcriptionally active, amplified MYCN
genes (Spengler et al. 1997).

N-type cells are tumorigenic. They form colonies
in soft agar and tumors in mice, with variable degrees
of malignancy (Spengler et al. 1997); however, too few
MYCN-nonamplified N-type cell lines have been test-
ed to discern a relation between MYCN amplification
status and malignant potential.

Experimental protocols can induce N-type cells 
to differentiate along either a neuronal or a neuro-
endocrine pathway or de-differentiate to an imma-
ture neural crest-like phenotype. Neuronal differenti-
ation following addition of retinoids or cyclic AMP-
elevating agents is characterized by decreases in cell
division and amounts of CgA and MYCN protein and
increases in SgII and neurofilament proteins and in
the number and length of neurites (Ross et al. 2002).
Neuroendocrine differentiation induced by synthetic
glucocorticoids results in cell flattening, increases in
CgA and MYCN levels, and decreases in neurite for-
mation, SgII, and neurofilaments (Ross et al. 2002).
Hypoxia has also been shown to affect neuroblastic
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differentiation. Growth of N-type cells under hypox-
ic conditions causes decreased expression of neu-
ronal/ neuroendocrine-specific genes (e.g., CgA and
neuropeptide Y) and increased expression of genes
present in early neural crest development (c-kit,
Notch-1, and HES-1) – indicators of de-differentia-
tion (Jögi et al. 2002).

6.5 S-type Non-Neural Cells

In addition to neuroblasts, a second, clearly non-neu-
ronal cell type is frequently observed in NB cell lines.
Termed S, for “substrate adherent”, it exhibits contact
inhibition of growth, extensive migration on a sub-
strate, and a limited lifespan in culture. Unlike the
clearly defined neuronal lineage of N cells, the bio-
chemical signature of S-type cells is more variable.
Studies have identified melanocytic properties (ty-
rosinase, melanosomal glycoproteins, and melano-
somes), Schwann or glial cell markers (chondroitin
sulfate proteoglycans and large amounts of laminins
and fibronectin), and/or smooth muscle cell features
(alpha-smooth muscle actin and calponin) (Rettig et
al. 1987; Tsokos et al. 1987; Jessen and Mirsky 1999;

Sugimoto et al. 2000). All of these lineages are consis-
tent with a neural crest origin for the S cell, as devel-
oping crest cells of the trunk give rise to non-neu-
ronal Schwann, glial, melanocytic, and smooth mus-
cle cell components in vivo. The presence of nestin in
these cells is consistent with the S-cell phenotype as a
neuroectodermal precursor of the non-neuronal lin-
eages of the neural crest (Thomas 2003).

S cells differ from N cells in two other aspects.
Firstly, S cells display markers for HLA class-I anti-
gens and b2-microglobulin, which are absent on N-
type cells (Rettig et al. 1987). Secondly, unlike N cells,
S-type cells will not grow in soft agar or form tumors
in nude mice (Biedler et al. 1988; Spengler et al. 1997).

The NB tumors with abundant stroma (stroma-
rich) generally have a better prognosis than stroma-
poor tumors (Ambros and Ambros 1995; Shimada et
al. 1999; Brodeur 2003). The discovery that, in vitro, N
and S cells arise from a common precursor suggested
that, in vivo, stromal cells could be of tumor origin.
One study, using paraffin nonisotopic in situ hy-
bridization, concluded that stromal cells are of
nontumor origin, presumably recruited by the neu-
roblasts in the tumor (Ambros and Ambros 1995).
Subsequent studies, using short-term culture of

Figure 6.1

Phase-contrast photomicrographs of phenotypic cell variants derived from the LA-N-1 (N), SK-N-BE(2) (I), and SMS-KCN
(S) neuroblastoma cell lines (magnification ×500)
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bone marrow tumor cells or laser-capture microdis-
section with bicolor fluorescence in situ hybridiza-
tion, showed that both neuroblasts and Schwann cells
had identical genetic markers – strong evidence that
they arise from a neoplastic precursor (Valent et al.
1999; Mora et al. 2001). This topic is still under de-
bate.

Equally important is the extent of the interaction
between Schwann (or S-type) cells and neuroblastic
(or N-type) cells in the survival/proliferation/differ-
entiation of each phenotype. In early experiments, N
cells co-cultured with S cells were much more differ-
entiated and grew more slowly (B.A. Spengler and J.L.
Biedler, personal communication). Such results are
consistent with studies of developing neurons and
Schwann cells which show that reciprocal contact de-
termines survival and differentiation (Jessen and
Mirsky 1999). Also, conditioned medium from nor-
mal Schwann cells in culture increases NB cell sur-
vival and differentiation (Kwiatkowski et al. 1998)
and contains a potent inhibitor of angiogenesis, thus
providing a mechanistic basis for the benign behav-
ior of stroma-rich tumors (Huang et al. 2000).

6.6 I-type Stem Cells

The I-type cell was initially identified in cultured cell
lines because it appeared “intermediate” in morphol-
ogy between N and S cells. It exhibits morphological
features of both N-type cells (short neurite-like cell
processes and growth to high saturation densities)
and S-type cells (strong adhesion to and extensive
migration over the substrate) (Biedler et al. 1997).
These cells also express proteins of both differen-
tiation pathways – noradrenergic biosynthetic en-
zymes, granins (CgA and SgII), and neurofilament
proteins of neuroblasts as well as S cell proteins
vimentin, EGF receptor, and CD44. Examples of
I-type cells include the cell lines GOTO, NUB-7,
BE(2)-C, SH-IN, and LA-N-2 (Biedler et al. 1988, 1997;
Ross et al. 1995, 2002).

Continuing research indicates that this cell repre-
sents a unique cell type within the NB repertoire. Its
ability to generate daughter cells with the same phe-
notype (self-renewal) and to differentiate bidirection-

ally along either neuroblastic or Schwann/glial path-
ways suggests that it is a neural crest cancer stem cell.

First demonstrated for BE(2)-C cell clones and
subsequently for other I-type cell lines, I-type cells
become neuroblastic when treated for 7–14 days 
with retinoic acid (RA), but differentiate into 
S-type cells following treatment with BUdR (Ross 
et al. 1995). Unlike N (or S) cells, I cells retain the 
ability to convert to two distinctly different cell line-
ages.

The most provocative finding regarding the NB I-
type stem cell is its malignant potential. As a group,
these stem cells are more malignant than neuroblas-
tic variants; they have four- to fivefold higher colony-
forming efficiencies in soft agar than N cells and have
an over sixfold greater capacity to form tumors in
nude mice (Ross et al. 2003; Spengler et al. 1986;
Walton et al. 2004). Moreover, phenotype rather than
MYCN amplification/overexpression determines ma-
lignancy; e.g., NB I-type stem cells lacking MYCN
amplification are more tumorigenic than N-type cells
which contain >150-fold amplified genes. Thus, re-
search to date on cell lines suggests that the 
I-like stem cell could be the truly tumorigenic cell
component of NB tumors.

Malignant stem cells in tumors could exert a sig-
nificant negative effect on prognosis and long-term
survival; however, distinguishing putative stem cells
from those with a neuroblastic phenotype in tumor
sections by routine hematoxylin–eosin analysis is
difficult, if not impossible. To specifically search for 
I-like cells, tumor sections immunostained conjoint-
ly with antibodies specific for N or S cells were 
examined for the presence and frequency of double-
labeled cells (Ross et al. 2003). In preliminary an-
alyses, doubly labeled I-like cells were present in all
tumors (Fig. 6.2). When the tumors were grouped 
as either good risk (typically local regional or 
stage 4s) or poor risk (stages 3 or 4), the frequency 
of I-like cells was significantly higher (~ fivefold) 
in the latter group (B.A. Spengler, personal commu-
nication). The characterization of this previously 
unnoticed NB cell type in cell lines and its potential
role in refractory high-risk tumors may have identi-
fied an important new target for experimental thera-
peutics.
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6.7 Transdifferentiation

Transdifferentiation is the process whereby cells
change from one unique phenotype into another
unique phenotype without going through a develop-
mentally less mature stage (Liu and Rao 2003). This
process has been reported for cells from all three
germ layers and, in particular, for cells of the
hematopoietic and neural systems. However, distin-
guishing de-differentiation/re-differentiation (a two-
stage process involving reversion to a more immature
stage before expression of the novel phenotype) from
transdifferentiation is not easy, especially in hetero-
geneous populations of cells or those where the inter-
mediate cell type is not readily identifiable (Liu and
Rao 2003). In studies with SH-SY5Y (N-type) and SH-
EP (S-type), clones of the SK-N-SH cell line, cells with
morphological and biochemical features of the other
phenotype arose spontaneously and were subcloned
(Ross et al. 1995). Of importance, transdifferentiated
subclones each have a marker chromosome unique to
the clone of origin; therefore, these lines did not arise
by clonal selection of pre-existing variants, as has
been suggested (Cohen et al. 2003), but represent the

conversion to a new cell phenotype. Similar pheno-
typic conversions have been seen for the LA-N-1 and
SK-N-BE(2) cell lines: N-type LA1–55n arose sponta-
neously and was cloned from the S-type LA1–5s as
were S-type LA1–19Bs cells from the N-type
LA1–19n clonal cell line. Likewise, the twice-cloned
BE(2)-M17 cell line gave rise to the BE(2)-M17F 
S-type clone. In all cases, the interconversion/transd-
ifferentiation process occurred spontaneously and
morphological, biochemical, and cytogenetic criteria
were used to confirm the phenotype and cell of ori-
gin. Transdifferentiation is very rare and it is the abil-
ity to select for the different cell types in culture that
has permitted its documentation. Whether the phe-
nomenon observed in NB represents true transdiffer-
entiation or a more complex process involving de-
differentiation followed by differentiation along a
second neural crest pathway has not been resolved.
Nevertheless, the interconversion of N- and S-type
cells in culture would suggest that it may occur in
vivo. The evolution of quiescent S-type cells into
highly proliferative N or I cells mimics the clinical
picture of a rapidly recurrent neuroblastoma follow-
ing a period of clinical remission.

Figure 6.2

Neuroblastoma tumor section
stained conjointly for expression
of S100A6 (an S cell marker; red)
and neurofilament 160 (an N-
cell marker; gray). Examples of 
I-like cells expressing both pro-
teins are indicated by filled
arrows, whereas N cells express-
ing only neurofilament protein
are denoted by open arrows
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6.8 Conclusions

Cellular heterogeneity is a common feature of human
NB tumors and cell lines. Moreover, the different phe-
notypes identified in fresh tumors are similar, if not
identical, to those seen in cell lines; thus, cell lines
may serve as useful surrogates in the investigation of
the biochemical, differentiable, and tumorigenic het-
erogeneity of human NBs. It is clear that the cell vari-
ants differ markedly in growth potential, both in vit-
ro and in vivo. A small amount of experimental data
would also suggest that variants differ in the intrinsic
sensitivities to commonly used chemotherapeutic
agents. It is also clear that “cross-talk” may occur be-
tween cell variants within tumors, further influenc-
ing tumor viability, tumorigenicity, or response to
therapy. The identification of putative stem cells
within tumors and characterization in cell culture
may offer new opportunities for developing strate-
gies for more effective control of NB.
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7.1 Introduction

For almost 140 years physicians have been aware of
the enigmatic tumor in young children called “neu-
roblastoma.” In 1864 Virchow was the first to describe
a child with an abdominal tumor which he designat-
ed as “glioma.” For more than a century the glioma-
tous aspect of neuroblastoma has been neglected, but
it is now vehemently debated whether the stromal
part is neoplastic (Mora et al. 2001) or reactive (Am-
bros et al. 1996) in nature. Marchand disclosed in
1891 the common features of tumors from the sym-
pathetic nervous system and the adrenal medulla. In
1901 Pepper described the prenatal metastases of
an adrenal sarcoma to the liver with ascites, scrotal
edema, anemia, and recurrent fever (Pepper type;
Pepper 1901) which is presently known as stage-
4S neuroblastoma, the prototype of a spontaneously
regressing tumor. Hutchinson observed in 1907 
the characteristic bilateral periocular hematomas
with proptosis of the eyes as symptoms of orbital 
and skeletal metastases of an adrenal tumor
(Hutchinson type; Hutchinson 1907), the prototype
of a progressing, still widely treatment-resistant neu-
roblastoma.

The term neuroblastoma was introduced in 1910
by Wright when he demonstrated that the tumor
originated from embryonal neuroblasts of the sym-
pathetic peripheral nervous system (Wright 1910).
The ability of neuroblastoma for spontaneous matu-
ration into ganglioneuroma was first described in
1927 by Cushing and Wolbach. The detection of cate-
cholamine metabolites as tumor markers was first re-
ported by Mason et al. (1957) in a patient with hyper-
tension, a quite rare feature in this disease. Two years
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later, vanillylmandelic acid (VMA) was identified as
one of the main metabolites and tumor markers
(Greenberg 1957; Stickler et al.1959). In 1971 Evans et
al. proposed the first internationally accepted staging
system (Evans et al. 1971). Schwab and coworkers
(1983) detected MYCN amplification as an important
molecular feature of cell lines and primary tumors
which proved to be a reliable marker for indicating
rapid tumor progression (Seeger et al. 1985) and is
now considered an essential parameter for risk esti-
mation.

This chapter describes the clinical presentation of
children with neuroblastoma and a comprehensive
international perspective of the current criteria that
are used for diagnosis, staging,and risk classification.
The data regarding clinical presentation are derived
from the German experience during the past 24 years.
Greater than 95% of all German neuroblastoma
patients known to the central children’s tumor reg-
istry were enrolled in national trials during this time
period, and only those with the wrong diagnosis were
excluded from analysis; thus, these clinical data can
be considered representative of neuroblastoma in a
Western country.

7.2 Diagnosis

According to international agreement (Brodeur et al.
1993), the diagnosis of neuroblastoma is established
if (a) unequivocal pathologic diagnosis is made from
tumor tissue by light microscopy (with or without
immunohistology, electron microscopy, increased
urine, or serum catecholamine metabolites), or (b)
bone marrow aspirate or trephine biopsy contain un-
equivocal tumor cells (e.g., syncytia or immunocyto-
logically positive clumps of cells) and increased urine
or serum catecholamine metabolites.

A “suspected clinical diagnosis” of neuroblastoma
may be established in emergency situations based on
its radiographic features together with distinctly
elevated catecholamine metabolites and MIBG avidi-
ty. This diagnosis must be considered preliminary
(because these tests do not rule out mature ganglio-
neuroma or pheochromocytoma) and incomplete;
thus, tissue histology should always follow.

In addition to tumor histology and urinary cate-
cholamines, the investigation of tumor tissue for ge-
netic abnormalities can aid in the diagnosis of neu-
roblastoma and provide clinically relevant prognos-
tic information.While certain genetic aberrations are
characteristic of neuroblastoma (deletion of 1p36;
MYCN amplification), specific tumor karyotypic ab-
normalities [e.g. (t11; 22) for Ewing’s sarcoma, (t2;5),
(t8;14) for non-Hodgkin’s lymphoma, t(2;13) for
rhabdomyosarcoma] exclude a diagnosis of neuro-
blastoma.

7.2.1 Diagnostic Tumor Tissue

Due to the considerable heterogeneity that can be
present in neuroblastoma tumors, a single biopsy
may not be representative of the tumor’s histology or
biology. Recently, specific guidelines for pathology
and biology studies have been published (Ambros
and Ambros 2001). It is recommended that at least
two samples, each of 1×1×1 cm size from morpholog-
ically different appearing areas, be examined. For un-
resectable tumors, open biopsies are preferred and, if
possible, two different areas should be biopsied by
the surgeon. If only Tru-Cut biopsies are feasible, due
to the poor general condition of the child, four sam-
ples from different areas are recommended (at least
1 cm long; 0.1 cm thick; needle size 18 G).Fine-needle
aspiration cytology (22-G needle size; at least 105–106

cells) with or without ultrasound guidance do not
provide an assessment of the tissue architecture and
are not recommended but may be sufficient in some
cases for cytological and molecular diagnosis.

To ensure the correct sampling and quick handling
of the tumor tissue, the presence of an experienced
pediatric oncologist in the operation room is highly
recommended. Together with the pathologist, and op-
timally within 20 min from resection, touch prepara-
tions for cytology and fluorescence in situ hybridiza-
tion (FISH) investigations are made before formalin
fixation for the pathological examination. Pieces are
snap frozen for molecular studies (e.g., Southern blot,
PCR) and put in tissue culture medium for classic
cytogenetic investigations and tissue culture studies.
In the case of small specimens, histology with touch
preparations and snap freezing should be priorities.
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7.3 Clinical Presentation

7.3.1 Symptoms

7.3.1.1 Frequent Symptoms

Presenting signs and symptoms of children with neu-
roblastoma reflect both the location of the primary
tumor and the extent of disease. The typical patient
with neuroblastoma is an infant or a toddler. Pain
from abdominal distension or metastases to bone 
is common (30%). Many patients fail to gain weight
or have weight loss (11%). The characteristic bilater-

al periorbital ecchymosis, which is a sign of meta-
static disease, is typically caused by intraorbital
masses.

In contrast, infants with stage 4S commonly pres-
ent with abdominal distension resulting from mas-
sive liver infiltration (Fig. 7.1a) and subcutaneous
nodules (most of them better palpable than visible,
sometimes blueberry appearance; Fig. 7.1b). The
massive hepatomegaly can lead to respiratory dis-
tress, and kidney or bowel function can be impaired
due to obstruction by the tumor. Their medical con-
dition can rapidly deteriorate within hours or days
(Berthold et al. 1990).

Figure 7.1 a,b

a A 6-week old girl with abdom-
inal distension by massive liver
enlargement (lower rim is mar-
ked) and bilateral adrenal pri-
maries. Minimal bone marrow
involvement (<1%), good gen-
eral condition (stage 4S). b Blue-
berry appearance of subcuta-
neous metastases in a newborn
with stage-4S disease
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Patients with localized disease are often asympto-
matic, and in many cases the diagnosis of neuroblas-
toma is made following a radiograph or ultrasound
performed for unrelated reasons. The rate of inciden-
tal diagnosis has varied considerably between coun-
tries, even before screening programs were intro-
duced. In Great Britain 7.7% of the neuroblastoma
patients were diagnosed at visits for routine health
examination or following an investigation of an un-
related condition, compared with 27.1% in Austria
and 33.9% in Germany (Powell et al. 1998).

7.3.1.2 Rare but Characteristic Symptoms

Rare but characteristic symptoms of neuroblastoma
are shown in Table 7.1.

Transverse Myelopathy
Transverse myelopathy can result from growth of a
cervical, intrathoracic, or intraabdominal neuroblas-
toma through neural foramina into the spinal canal.
Approximately half of the patients with dumbbell le-
sions initially present with neurological symptoms
(Katzenstein et al. 2001), but myelopathy may devel-
op soon afterwards, e.g., during surgery; thus, the de-
gree of intraspinal tumor extension should be evalu-
ated by MRI before surgery in order to avoid decom-

pensation of a labile steady state. The neurological
abnormalities associated with these tumors include
motor deficit (>95%), radicular or back pain (54%),
sphincter abnormalities, (34%), and sensory (12%)
deficits (de Bernardi et al. 2001). The frequency of
complete neurological recovery appears to be in-
versely correlated with the severity of the presenting
neurological deficits (Katzenstein et al. 2001). Forty
to 50% of the severely affected surviving children
experience long-term neurological sequelae (Katzen-
stein et al. 2001; de Bernardi et al. 2001). There is a
high likelihood of permanent neurological dysfunc-
tion in patients who experience neurological symp-
toms for more than 1 week prior to the initiation of
treatment. Chemotherapy, radiotherapy, and surgical
decompression with laminectomy have been shown
to result in similar rates of neurological recovery, but
chemotherapy may be associated with fewer long-
term sequelae (Katzenstein et al. 2001; de Bernardi et
al. 2001).

Opsomyoclonus–ataxia syndrome
The opsomyoclonus–ataxia syndrome (Kinsbourne
syndrome) is characterized by rapid, irregular move-
ments of the eyes (“dancing eyes”; may continue dur-
ing sleep) and/or by myoclonus and ataxia of the
limbs (“dancing feet”), the trunk, and the eyelids.

Table 7.1. Rare but characteristic symptoms of neuroblastoma (n=1878, trials NB90/97)

Symptom Pathogenesis Occurrence (%) 5-year survival (%)a

Transverse Dumbbell tumor with intraspinal, 5.4 84±4
myelopathy extradural extension

Treatment-resistant Vasointestinal peptide secretion by the tumor 3.9 55±7
diarrhea

Horner’s syndrome Cervical tumor with involvement 2.4 79±7
of the cervical ganglion

Opsomyoclonus– Unknown (“paraneoplastic”) 1.3 87±8
ataxia syndrome

Hypertension Secretion of pressure active catecholamine 1.3 74±11
metabolites by the tumor or compression 
of the renal artery

a The overall survival ratios reflect the data of the designated group.They have not been balanced according to risk factors such
as age, stage, MYCN amplification, etc.The 5-year overall survival of the entire group was 71±1%
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Many patients experience developmental delays in-
cluding cognitive and motor delays, language
deficits, and behavioral abnormalities (Russo et al.
1997; Rudnick et al. 2001). The pathogenesis is still
unclear, although extensive lymphocytic infiltration
of the tumor tissue (compared with neuroblastoma
patients without opsomyoclonus) (Cooper et al.
2001) and the presence of anti-neuronal antibodies
(Rudnick et al. 2001) suggest that the disorder is
immunologically mediated. Removal of the primary
tumor may not necessarily cure the neurological
manifestation. The pharmacological treatment of the
neurological symptoms includes glucocorticoids
(prednisone or ACTH), high-dose immunoglobulins,
and cytotoxic drugs. Anecdotal reports indicate that
60–80% of the patients respond to treatment, but
long-term neurodevelopmental results are still poor
(60–70% permanent handicaps). The survival rate of
children with opsomyoclonus–ataxia syndrome is
generally favorable, because the majority of them
have localized tumors and present at a young age
(Rudnick et al. 2001) (see Chaps. 11 and 13; Table 7.1).

Horner’s Syndrome
Horner’s syndrome (ptosis, miosis, enophthalmos)
and heterochromia (difference in color between the
two irises) is caused by disturbances of the cervical
sympathetic ganglia which are responsible for nor-
mal eye color and development. An association has
been found with neuroblastoma only and not with
other tumors of the same area (Jaffe et al. 1984) indi-
cating an intimate cooperation between the ganglia
and the neuroblastoma development.

Treatment-Resistant Diarrhea
The association of treatment-resistant diarrhea, hy-
pokalemia, and dehydration with neuroblastoma is
observed in approximately 4% of patients and is
thought to result from overproduction of the vasoin-
testinal peptide (VIP) by maturing neuroblastomas
(El Shafie et al. 1983) or ganglioneuromas. It usually
resolves after surgical removal of the primary tumor.
The use of chemically designed VIP antagonists is
still in the preclinical phase (Lilling et al. 1994).

Hypertension
Hypertension is usually caused by tumor pressure 
on the renal artery with consequent stimulation of
the renin–angiotensin system, rather than by tumor
secretion of vasoactive catecholamine metabolites
(dopamine, epinephrine, norepinephrine). With
chemotherapy hypertension can worsen before it
gets better. If α- and β-blockers or angiotensin-con-
verting-enzyme inhibitors fail to control the blood
pressure and the tumor remains unresectable, one
may consider surgically freeing the renal artery with-
out attempting tumor resection.

7.3.2 Tumor Markers

Neuroblastoma is one of the few pediatric tumors in
which tumor markers have been shown to have a role
in the diagnosis, prognosis, and disease monitoring.
Generally, the frequency of abnormal levels increas-
es with tumor burden (stage) and cell turnover
(Table 7.2). The reference ranges are strongly age-
dependent, with considerably higher values the new-
born period and infancy.

Table 7.2. Stage dependence of abnormal tumor markers in neuroblastoma. HVA homovanillic acid, VMA vanillylmandelic acid,
INSS International Neuroblastoma Staging System

Tumor marker N INSS stage

1–3 4 4S All
% % % %

HVA and/or VMA in urine and/or serum 1280 82 96 93 89

Neuron-specific enolase 1572 57 97 80 75

Lactate dehydrogenase 1809 38 88 45 58

Ferritin 1476 16 53 25 32
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7.3.2.1 Catecholamine Metabolites

Catecholamine metabolites represent the most sensi-
tive and specific tumor markers. While the deter-
mination of vanillylmandelic acid (VMA) and ho-
movanillic acid (HVA) in a clean void urine sample 
is considered essential, the additional value of
dopamine is less clear. The simultaneous measure-
ment of urinary creatinine permits reliable VMA and
HVA estimates in spot urine samples avoiding the un-
comfortable 24-h urine collection. The determina-
tion of VMA, HVA, and dopamine in serum samples
may be useful in some instances, but is 10–15% less
sensitive. The usefulness of catecholamine metabo-
lites as early markers of recurrence may be limited. In
one study only 54% of patients demonstrated abnor-
mal values at the time of recurrence (Simon et al.
2003). Using HPLC or mass spectrometry, the num-
ber of false-positive values is substantially reduced.
False positives (predominantly HVA levels) were ob-
served during a large screening program after mas-
sive apple juice intake, with active neurodermatitis,
and with some congenital neurodevelopmental dis-
orders. The ratio VMA/HVA as an indicator for prog-
nosis has been diminished by the advent of new mo-
lecular markers, while the clinical utility of the dy-
namical response of tumor markers to treatment is
just emerging (Hero et al. 2001).

7.3.2.2 Neuron-Specific Enolase

Neuron-specific enolase (NSE) is synthesized by neu-
roblastoma cells and used as an immunohistoche-
mical marker. Elevated serum levels have been re-
ported in other neuroectodermal tumors such as 
Ewing’s sarcoma, small cell lung cancer, and pheo-
chromocytoma, as well as in acute lymphoblastic
leukemia and non-Hodgkin’s lymphoma (Hann and
Bombardieri 2000). High levels at diagnosis were
associated with poor outcome in several studies 
(cutoff levels 30–100 ng/ml) when corrected for stage
(Zeltzer et al. 1983). Neuron-specific enolase is less
specific for neuroblastoma than the catecholamine
metabolites, but is more prognostic, and similarly
valuable for monitoring recurrent disease (Simon et
al. 2003).

7.3.2.3 Ferritin

Neuroblastoma cell lines and tumors produce and se-
crete ferritin which is biochemically different (glyco-
sylated, electrophoretic characteristics) from that se-
creted by normal cells (Hann and Bombardieri 2000).
Elevated serum ferritin levels have been observed not
only in neuroblastoma but also in Hodgkin’s disease,
leukemia, and breast cancer. While tumor cells from
infants with stage-4 and stage-4S tumors contained
equivalent amounts of ferritin (Hann et al. 1981), the
highest serum levels were only observed in children
with stage-4 disease with poor prognosis (Table 7.2;
Hann et al. 1981). Although ferritin is a robust 
prognostic marker at diagnosis (Hann et al. 1985;
Berthold et al. 1994), it is unsuitable for monitoring
the disease, because it becomes elevated from fre-
quent blood transfusions during chemotherapy;
thus, ferritin appears helpful for estimating the prog-
nosis, but not for diagnosis and monitoring.

7.3.2.4 Lactate Dehydrogenase

Several multivariate analyses demonstrated that ele-
vated serum lactate dehydrogenase (LDH) levels pro-
vide additional prognostic information that is inde-
pendent of stage, age, and other factors (Berthold et al.
1992a, 1994; Shuster et al. 1992; Lau 2002). The majori-
ty of children with localized neuroblastoma have nor-
mal LDH levels at diagnosis, whereas LDH is elevated
in most children with stage-4 disease.Since LDH is not
tumor specific, it is not useful for differential diagno-
sis. Nevertheless, since high levels reflect fast cell
turnover and tumor load (irrespective of primary tu-
mor size), it can be a useful marker for monitoring
high-risk disease. In the absence of modern molecular
markers (e.g., lack of tissue), the LDH level may pro-
vide the best prognostic estimation within the various
stage and age categories (Berthold et al. 1992a, 1994).

7.3.2.5 Other Tumor Markers

Chromogranin A is an acidic protein which is co-
stored and co-released with catecholamines from
storage vesicles. Mean serum chromogranin-A levels
correlated with disease stage and prognosis in chil-
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dren over 1 year of age with stage-3 or stage-4 neu-
roblastoma (Hsiao et al. 1990). Its value as a measure
of the degree of neuroendocrine differentiation has
not yet been thoroughly investigated.

Neuropeptide Y is a 36 amino acid peptide which
is co-localized with catecholamines and may act as
neuromodulator of cardiovascular and neuroen-
docrine function, e.g., of noradrenalin release and
enhancing its effect. High serum levels were detected
in neuroblastomas and pheochromocytomas de-
pending on stage (higher in disseminated disease)
and differentiation (lower in differentiated tumors;
Kogner et al.1993).The additional clinical use of neu-
ropeptide-Y determination in patients with neuro-
blastoma remains to be established.

7.3.3 Primary Tumors

7.3.3.1 Sites of the Primary Tumor

Primary tumors may originate in all sites of sympa-
thetic ganglia or paraganglia; in particular along the
sympathetic paravertebral chain, in the adrenal
medulla, in the organ of Zuckerkandl, and in the gan-
glion stellatum at the seventh cervical vertebral
transverse process. As shown in Table 7.3, adrenal
origin predominates and cervical sites are exception-
al in stage 4S and stage 4. With improved imaging

techniques the number of undetected primaries de-
creased from 5% in the 1980s to 2% in 2000 – 2003. In
localized disease, the incidence of thoracic primaries
is usually higher than that of adrenal origin.

It is still unclear whether the site of the primary
tumor is associated with the biological properties of
the disease. Conspicuously, cervical neuroblastomas
are associated only rarely with distant metastases. In
contrast, in nearly 90% of patients with metastatic
disease the primary site is located in the abdomen.

7.3.4 Metastases

7.3.4.1 Metastatic Sites

Metastases are non-randomly distributed and the
pattern differs distinctly between the mainly pro-
gressive stage 4 and the mainly regressive stage 4S
(Table 7.4). Major metastatic sites in stage-4 disease
include bone marrow, bone, and lymph nodes, while
liver, skin, and bone marrow are common metastatic
sites in stage-4S infants. By definition, infants with
stage-4S disease do not have bone involvement. The
preference of the bony metastases to facial bones, in-
cluding the orbits, may be related to their neural crest
origin (de la Monte et al. 1983).

The site of recurrence may depend on the type of
the preceding treatment. For example, with the infu-

Table 7.3. Primary sites in 1967 patients with neuroblastoma by stage

Primary site INSS stage

1–3 4 4S All
% % % %

Cervical 3.9 0.7 2.6 2.6

Thoracic 19.5 8.4 12.2 14.7

Adrenal 41.4 62.3 63.8 51.3

Abdominal (non-adrenal) 33.2 23.0 17.8 27.9

Combined sites 1.8 2.9 1.0 2.1

Other 0.2 0.1 0 0.2

Undetected 0 2.5 2.6 1.2

Total 100 100 100 100
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sion of autologous stem cells, lung metastases are
now observed. Moreover, with the use of more inten-
sive induction chemotherapy and the monoclonal
anti-GD2 antibody ch14.18 for consolidation, the
number of patients with recurrences in the bone
marrow has decreased (Simon et al. 2004). Thus, the
distribution pattern of metastases after first-line
therapy may vary depending on the therapeutic
modalities used.

7.3.4.2 Bone Marrow Assessment

Because of the uneven distribution of metastases to
the bone marrow, at least two marrow aspirates and
two biopsies (trephines) from the iliac crests are rec-
ommended (Brodeur et al. 1993). Alternatively, four
aspirates from four different sites of the iliac crest or
in infants from the proximal tibial bone are sufficient
to rule out gross marrow involvement. For an ade-
quate biopsy at least 1 cm of marrow (not cartilage,
not bone) is necessary (Brodeur et al. 1993) which

may not be feasible in young infants. The bone mar-
row aspiration consists of three sampling steps per
site:

▬ First aspiration (0.1–0.4 ml) for bone marrow
smears

▬ Second aspiration (2–5 ml, anticoagulated with
heparin) for immunocytology

▬ Third aspiration (2–3 ml, anticoagulated with
EDTA or directly into extraction medium) for PCR
investigations (Ambros and Ambros 2001).

Figure 7.2 demonstrates characteristic syncytia and
immunocytologically positive clumps of cells as re-
quested for the bone marrow diagnosis of neuroblas-
toma. Although consensus on the specific antibodies
for marrow immunocytology has not yet been
reached, commercially available anti-GD2 antibodies
are widely accepted (Ambros and Ambros 2001) since
very few neuroblastomas are GD2 negative. Comple-
mentary markers include the neural cell adhesion
molecule (NCAM, CD56), NSE, chromogranin A, and

Table 7.4. Localization of metastases in patients with neuroblastoma stage 4 and stage 4S at diagnosis and at first recurrence

Disease localization Stage 4 (%) Stage 4S (%)

Initiala First recurrenceb Initialc First recurrenced

Bone marrow 87.3 35.2 61.5 19.2

Bone 66.1 46.6 0.0 15.1

Lymph nodes 18.6 8.9 0.0 7.7

Liver 17.4 7.5 76.0 38.5

Skin 2.8 0 12.5 7.7

Intracranial/cerebral 9.1 19.0 0.0 15.4

Lung/pleura 4.7 3.1 0.0 0

Paratesticular 1.0 0 2.6 11.5

Ovary 0.3 0 0.0 0

Isolated local recurrence 17.0 26.9

Isolated metastatic recurrence 58.1 30.7

Combined local and metastatic 24.9 42.4
recurrence

a Evaluable patients: 725
b Evaluable patients: 358
c Evaluable patients: 192
d Evaluable patients: 26
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tyrosine hydroxylase. It is agreed that patients who
meet the International Neuroblastoma Staging Sys-
tem (INSS) criteria for stages 1 – 3 should not be up-
staged to stage 4 or stage 4S because of the detection
of a few immunocytologically positive cells in the

bone marrow in the absence of morphological evi-
dence of disease by light microscopy (Brodeur et al.
1993).

The amount of marrow involvement in most in-
fants with stage-4S disease is minimal (≤1% tumor

Figure 7.2 a–d

Neuroblastoma cells in bone marrow. a Characteristic clumps of cells (three to several hundred cells) closely adhering to
each other.The cell size approximates two to three red blood cell diameters and appears a little bit larger and more poly-
morphic than hematopoietic blasts. High nucleus/cytoplasm ratio. The round-to-moderately oval nucleus contains fine
grainy chromatin characteristically with small areas of higher density (“pepper-and-salt structure”).Nucleoli are not often
visible.The basophilic cytoplasm is purely confined and the cell margins even invisible in cell clumps.Vacuoles are rarely
seen,and granulation is never seen.Some neuroblastoma cells may demonstrate phagocytosis phenomena (not shown).
b Homer-Wright rosette: typical neuroblastoma cells form a ring of cells around cytoplasmic material (neuropil) in the
center. c Atypical “ALL like” neuroblastoma cells in bone marrow with many single cells of only one 1–2 red blood cell
diameter size, but typical structure of the nucleus and ill-defined, fringed cytoplasm, no or only small clumps. d Small
tumor clump consisting of cells with distinct membrane staining for GD2 (antibody 14G2a). Due to unspecific GD2 stain-
ing to other cell elements (e.g., some megakaryocytes, histocytes phagocytosing neuroblastoma cells), the morphology
of the stained cell must be compatible with a neuroblastoma cell to be regarded as such. (Courtesy of R. Schumacher-
Kuckelkorn, Cologne)
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cells per nucleated marrow cells). An upper limit of
10% has been defined. If this is exceeded, an upstag-
ing from stage 4S to stage 4 is recommended
(Brodeur et al. 1993).

7.3.4.3 Definition of Cortical Bone Metastases

Bone metastases discriminate between stage 4S and
stage 4 and are considered more difficult to treat than
other metastatic sites (Ladenstein et al. 1998); there-
fore, independent methods for defining cortical bone
disease are desirable.

In the case of an MIBG-avid neuroblastoma with-
out any focal distant lesion, no further investigation
is generally necessary. If the primary tumor is MIBG
negative, a technetium bone scan is recommended
(in two-thirds of the cases the primary itself is taking
up the technetium tracer) in order to detect MIBG
negative distant bone metastases.

In lesions with focal MIBG uptake, controversy ex-
ists about the accuracy of MIBG in detecting cortical
bone metastases (Suc et al. 1996). Some investigators
have suggested evaluation of bone lesions by tech-
netium bone scan (highly sensitive), while others rely
on osteosclerotic or osteolytic changes in the plain 
X-ray radiographs (less sensitive).

7.4 Differential Diagnosis

7.4.1 Small Blue Round Cell Tumors

Neuronal differentiating features are present in most
neuroblastomas; therefore, the histological diagnosis
of neuroblastoma is unequivocal in the vast majority
of the patients. In the case of a completely undiffer-
entiated histological pattern, other small blue round
cell tumors need to be ruled out; those include Ew-
ing’s sarcoma and other peripheral neuroectodermal
tumors (PNET), rhabdomyosarcoma (RMS), desmo-
plastic small round cell tumor (DSRCT) and malig-
nant non-Hodgkin’s lymphoma (NHL). These tu-
mors do not excrete elevated catecholamine metabo-
lites and are not MIBG avid (Ewing’s/ PNET tumors
may demonstrate faint MIBG uptake). The locations
of tumors may help to discriminate further [bone in-
volvement in Ewing’s sarcoma, ribs and thoracic wall

in PNETs (Askin tumors), main soft tissue mass in
rhabdomyosarcoma, peritoneal implants in DSRCT,
and frequent lymphoblastic bone marrow infiltration
in NHL]; however, one has to be reminded that
dumbbell tumors with an intrathoracic/intraabdom-
inal spindle mass extending into the intraspinal
space has been described for (extraskeletal) Ewing’s
sarcoma as well as for NHL and for soft tissue sarco-
mas. Immunohistochemistry using a panel of anti-
bodies is necessary to make the correct differential
diagnosis in those cases. The histological diagnosis 
of neuroblastoma in an adult patient presenting 
with catecholamine-negative, MIBG-negative pri-
mary tumor and metastases only to the lung should
raise suspicion. In the near future, the characteristic
differences of gene expression between the small blue
round cell tumors may help further distinguish these
tumor types (Khan et al. 2001). Before small round
blue cell tumor gene chips become readily avail-
able, already established tumor-specific transloca-
tions, such as EWS-FLI1 (t11;22) (q24;q12) in the 
Ewing sarcoma family of tumors, PAX3-FKHR
(t2;13) (q35;q14) in alveolar rhabdomyosarcoma,
the WT1-EWS (t11;22) (p13;q12) in DSRCT, and the
cmyc gene involving translocation (t8;14) (q24;q32)
in Burkitt’s lymphoma, may be helpful for differential
diagnosis.

7.4.2 Adrenal Hemorrhage in the Newborn

The differentiation of necrotic/hemorrhagic neuro-
blastoma from bleeding residues of the adrenal
during the newborn period may be difficult. The
determination of urinary VMA/HVA levels rarely
resolves the differential diagnosis because of the
tumor is generally too small to produce abnormal
marker levels. Since most patients are not in critical
condition and the prognosis is favorable, histological
investigation can be delayed for 1–3 months with
close follow-up of tumor size and structure using ul-
trasonography. The majority of infants can be spared
invasive diagnostic procedures using this wait-and-
see approach. In a series of 53 infants with postnatal
suprarenal masses, 58% were localized neuro-
blastomas with favorable outcome. All other cases
showed spontaneous regression of the lesion 
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(hemorrhage) or had a benign lesion (Sauvat et al.
2002).

7.4.3 Nephroblastoma

The European Wilms’ tumor study has a long and
successful tradition of preoperative chemotherapy
where the initial diagnosis is based on radiological
criteria only. Approximately 2% of 1603 histological-
ly proven neuroblastomas have been pretreated
wrongly according to the Wilms’ tumor protocol
(Hero et al. 2002). The poor outcome of these patients
was related more to their unfavorable biological fea-
tures than to the preoperative Wilms’ chemotherapy.
If the radiological criteria (Wilms’ tumor: intrarenal,
destruction of the renal pelvis; neuroblastoma:
suprarenal, tumor calcifications) are unable to dis-
criminate, careful observation of the tumor response
to preoperative Wilms’ tumor chemotherapy is im-
portant and, if inadequate, a strong indicator for mis-
diagnosis.

7.4.4 Esthesioneuroblastoma 
(Olfactory Neuroblastoma)

Esthesioneuroblastoma, a rare neoplasm of the supe-
rior nasal cavity, is believed to arise from basal pro-
genitors of the olfactory epithelium. It is neither a
neuroblastoma, as the name implies, nor a PNET,
since in situ hybridization and PCR studies have not
confirmed the 11;22 translocation for the majority 
of cases (Dulguerov et al. 2001); thus, esthesio-
neuroblastoma is considered a distinct clinical and
molecular entity not to be confused with neuroblas-
toma.

7.4.5 Ganglioneuroma, Pheochromocytoma,
Paraganglioma, Chemodectoma

These incomplete or complete ganglionic (gan-
glioneuroma) or chromaffin (adrenal pheochromo-
cytoma, extraadrenal paraganglioma) differentiated
tumors may secrete VMA and HVA or different va-
soactive catecholamines [norepinephrine, dopamine
by pheochromocytoma and paraganglioma, although
most do not (ganglioneuroma) (Geoerger et al.

2001)]. The clinical presentation of the ganglioneuro-
ma is similar to neuroblastoma, and many investiga-
tors believe that these tumors represent a mature
variant of neuroblastoma. Pheochromocytoma and
extraadrenal paraganglioma are very rare in child-
hood and present typically with the triad of episodic
headache, sweating, and palpitation as a result of
the release of stored catecholamines from the tumor.
Non-chromaffin paragangliomas (e.g., paragan-
glioma carotis=chemodectoma) arise from parasym-
pathetic ganglia, predominantly in the head and
neck, and present with local mass effects such as
cranial nerve palsies and tinnitus (Dluhy 2002). The
potential differential diagnostic problem is usually
solved by the equivocal histology.

7.5 Clinical and Laboratory Evaluation

7.5.1 Staging

Disease stage is a powerful prognostic factor in neu-
roblastoma (Table 7.5). In 1988 an international stag-
ing proposal was developed, which was further re-
fined in 1993 (Brodeur et al. 1993). The INSS has been
readily accepted worldwide; therefore, other staging
systems that were used to determine extent of disease
in the past, such as the Evans’ staging system, the Pe-
diatric Oncology Group staging system, and the
TMN system, are not discussed in this chapter
(Evans et al. 1971; Castleberry et al. 1994; Ng and
Kingston 1993). The INSS is a surgical-based staging
system (Table 7.6), although modern imaging tools
together with the estimation of an experienced pedi-
atric surgeon is likely to achieve the same stage cate-
gory in almost all cases. The criterion “crossing the
midline” for discriminating between stage 2 and
stage 3 is described as the infiltrative contiguous 
extension beyond the opposite side of the vertebral
bodies. Characteristically, these tumors encompass
large vessels and other vital structures. A tumor 
just overhanging the midline (e.g., large adrenal tu-
mors) would not be sufficient for stage-3 categoriza-
tion.

Although it was anticipated that the introduction
of new sensitive diagnostic techniques (e.g., of
MIBG scintigraphy and immunocytology or PCR for
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bone marrow evaluation) would enhance the ability
to detect metastatic disease, the absolute number of
stage-4 neuroblastoma per children <14 years of age
in Germany has been remarkably constant over the
past 15 years (Poisson regression for linear yearly
trend of the stage-4 case incidence; per population,
years 1988 – 2002; p=0.92; data courtesy of C. Spix,

Mainz, Germany). Instead, an increase in the inci-
dence of lower stages has been observed. One reason
for this increase is the change of the staging system
from Evans (more stage-3 patients) to INSS (more
stage-1 patients). A second reason is the screening
program that was introduced in Germany from
1995–2000.

Table 7.6. Variation of the relative stage incidence under and over 1 year of age in Japan (J; Ikeda et al. 2002), Germany (G) and
United Kingdom (UK; Pearson and Philipp 2000), and North America (NA)

INSS stage All ages <1 year �1 year

J G UK NA J G UK NA J G UK NA
No. of patients 644 670 1266 1253 485 271 332 450 159 399 934 803

% % % % % % % % % % % %

Stage 1 38 18 5 21 45 26 9 23 16 13 4 19

Stage 2 19 10 12 15 22 13 23 18 7 9 8 13

Stage 3 14 20 17 17 15 19 21 17 9 20 15 17

Stage 4S 6 11 6 6 8 27 22 18 – – – –

Stage 4 23 41 60 41 9 15 25 24 67 58 73 51

Germany: 1 January 1990 to 31 March 1995; with INSS system and before the nationwide screening
UK is based on ENSG data
NA is based on COG data from study ANBL00B1, 1 April 2001 to 30 August 2003 (S.L. Cohn et al., unpublished results)

Table 7.5. International Neuroblastoma Staging System (INSS) (Brodeur et al. 1993)

Stage Definition

Stage 1 Localized tumor confined to the area of origin. Complete gross resection with or without microscopic 
residual disease; identifiable ipsilateral and contralateral lymph node negative for tumor. Adherent lymph 
nodes in direct continuity with and removed with the tumor may be positive for the tumor. A grossly
resected midline tumor without ipsilateral (with: stage 2A) or contralateral (with: stage 2B) lymph node 
involvement is considered stage 1

Stage 2A Unilateral with incomplete gross resection; identifiable ipsilateral and contralateral lymph node negative 
for tumor

Stage 2B Unilateral with complete or incomplete gross resection; with ipsilateral lymph node positive for tumor;
identifiable contralateral lymph node negative for tumor

Stage 3 Tumor infiltrating across midline with or without regional lymph node involvement; or unilateral tumor 
with contralateral lymph node involvement or midline tumor with bilateral lymph node involvement

Stage 4 Dissemination of tumor to distant lymph nodes, bone marrow, liver, or other organs except as defined 
in stage 4S

Stage 4S Localized primary tumor as defined for stage 1 or 2 with dissemination limited to liver, skin, and bone 
marrow (<10% of nucleated marrow cells are tumor cells)
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The INSS classification utilizes surgical resectabil-
ity as one of the criteria for stage determination; thus,
depending on the skills of an individual surgeon, the
radiologically same midline neuroblastoma may be
classified as stage 3 if incompletely resected or stage
1 if completely resected. Discussions of the partici-
pating institutions with the trial office in Germany
demonstrated that the discrimination between stage
2 and stage 3 may also be difficult in selected cases.
Another controversy relates to the stage-4S classifica-
tion. While age over 1 year and the presence of bone
metastasis is uniformly accepted to qualify for stage
4, the size of the primary tumor and the presence of
metastases to sites other than bone marrow (<10%),
liver, and skin are not. Some investigators believe that
large stage-3 tumors and non-regional lymph node
metastases may well be compatible with the biologi-
cal characteristics of stage-4S neuroblastoma.

7.5.2 Biological Types of Neuroblastoma

The biological behavior of histologically identical
neuroblastoma is extremely variable. At least three
biological subtypes are known (Table 7.7).

7.5.2.1 Maturative Subtype

The maturative subtype can be identified only retro-
spectively after maturation to ganglioneuroma, and
represents probably less than 5% of all peripheral
neuroblastic tumors. A model of maturation suggests
that neuroblastoma cells with spontaneous matura-
tion capacity (not induced by cytotoxic agents) attract
and recruit extratumoral Schwann cells that them-
selves inhibit neuroblastic proliferation and promote
maturation (Ambros et al. 1996). So far, parameters
that indicate an ongoing or future maturation process
are lacking, and it is also unclear whether all gan-

Table 7.7. Biological types of neuroblastoma

Type Presentation Adverse mole Course of Treatment Current 
cular marker disease approach outcome

Regressive Multilocular Absent Progression(may Minimal therapy: 80–85%
(stage 4S) be fast!) regression inhibition of rapid survival

tumor growth by “mild”
chemotherapy; biopsy 
(resection)+observation 
only

Unilocular Absent
(stages 1–3)

Progressive Metastatic Present or Progression Maximum therapy: 20–30%
(stage 4) absent polychemotherapy; survival

megatherapy with 
stem cell support;
surgery; radiotherapy;
immunotherapy

Unilocular Present
(stage 1–3)

Maturative Unilocular Absent Maturation No approach because 100% (?)
(stage 1–3) this subtype can be 

identified only 
retrospectively

From Berthold F,Hero B (2000) Neuroblastoma:current drug therapy recommendations as part of the total treatment approach.
Drugs 59:1261–1277



Chapter  776 F. Berthold · T. Simon

glioneuromas evolve from neuroblastoma. Although
some researchers believe that alkylators induce matu-
ration, the majority of investigators feel that
chemotherapy does not play a role in the development
of ganglioneuroma.

7.5.2.2 Regressive Subtype

Four observations suggest the potential of sponta-
neous regression in neuroblastoma:

1. The slow, but continuous disappearance of all tu-
mor lesions in most patients with stage-4S neu-
roblastoma (Pepper type; Pepper 1901; Berthold et
al. 1990; Nickerson et al. 2000)

2. The >90% event-free and overall survival rates in
patients with stage 1 that are treated with surgery
only in spite of residual microscopic tumor
(Brodeur et al. 1993; Berthold et al. 1994; Kushner
et al. 1996)

3. The two- to threefold “overdiagnosis” of patients
with neuroblastoma in areas where screening pro-
grams are performed compared with areas with-
out neuroblastoma screening (Schilling et al. 2002;
Woods et al. 2002) (see Chap. 2).

4. The observation of partial or complete disappear-
ance of stage-2 and stage-3 neuroblastoma without
cytotoxic therapy in particular during, but not lim-
ited to, infancy (Yamamoto et al. 1998; Bert-
hold et al. 1998). The time span from diagnosis  to
the beginning of regression is considerable (1.5–18
months, n=24; Hero et al. 2000) and could be pre-
ceded by a period of progression before regression.

Expression of unfavorable molecular markers, such
as MYCN amplification, 1p and 11q deletion, DNA
diploidy are typically associated with advanced-stage
disease, while the absence of the unfavorable factors
and the presence of triploidy are typically found in
infants with the regressive subtype of neuroblastoma
(Lastowska et al. 2001; Brodeur et al. 1997; Mathew et
al. 2001; Spitz et al. 2002, 2003a,b; Maris et al. 2001;
White et al. 1995; Hallstensson et al. 1997; Vandesom-
pele et al. 1998; Guo et al. 1999; Plantaz et al. 2001;
Bown et al. 1999; Abel et al. 1999; Look et al. 1991;
Ladenstein et al. 2001; Kramer et al. 1997; Combaret
et al. 1996, 1997; Terpe et al. 1994; Norris et al. 1996);
however, the molecular mechanisms underlying the
phenomenon of spontaneous regression remain

Figure 7.3 a,b

Event free survival (EFS) and overall survival (S) in 2779 consecutive patients with neuroblastoma stratified by stage*.
a EFS:Stage 1–3 n=1428,5-year-EFS 79.5 ± 1.1%, Stage 4 n=1077,5-year-EFS 26.4 ± 1.4%,Stage 4S n=274,5-year-EFS 74.8
± 2.7%. b S: Stage 1–3 n=1428, 5-year-OS 88.7 ± 0.9%, Stage 4 n=1077, 5-year-OS 33.3 ± 1.6%, Stage 4S n=274, 5-year-OS
83.7 ± 2.3%.
* 1979–1990 by the Evans’; 1990–2003 by the INSS staging system. The stages I–III (Evans’) and 1–3 (INSS), Stages IVS 

and 4S, IV and 4 have been combined for this analysis
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unclear and objective and reproducible criteria that
discriminate between the regressive and the progres-
sive subtypes have not been identified. To date, the
frequency and profile of regressing stage-2 and stage-
3 tumors in the different age groups remain incom-
pletely defined. This uncertainty may result in the
over-treatment of patients whose tumor would have
regressed without any medical intervention (for de-
tails see Chap. 11).

7.5.2.3 Progressive Subtype

The vast majority of stage-4 tumors and a minor frac-
tion of stages 1,2,3 and 4S neuroblastomas belong to the
progressive subtype. Those patients are currently treat-
ed with all available therapeutic modalities (poly-
chemotherapy including megatherapy with autologous
stem cell transplantation, surgery, radiotherapy, im-
munotherapy, differentiation therapy) to improve the
still poor event-free and overall survival (Figure 7.4;
also see Chap. 11).The time to progression and the sites
of progression depend on the biological profile of indi-
vidual tumors and the type of therapy the patient re-
ceived. A more precise definition of the clinical ex-

tremes (pure regressive/pure progressive subtype) is
probably necessary before the molecular basis for the
slowly progressing neuroblastoma groups is under-
stood.

7.5.3 Prognostic Risk Groups

Recently, a number of risk stratification systems have
been developed for treatment stratification purposes.
Of the vast number of markers that have been investi-
gated for prognostic impact, only a few are clinically
useful to determine risk and treatment strategies.Vir-
tually all classification systems utilize INSS stage, age
at the time of diagnosis, and the status of the MYCN
gene to determine risk. The Children’s Oncology
Group (COG) Risk Group Classification System also
includes tumor histology and DNA ploidy. In Ger-
many the presence of clinically threatening symptoms
and the degree of “resectability”of the primary tumor
are also stratifying parameters.The various factors that
are used to classify patients as low-, intermediate-,
or high risk in different cooperative groups are shown
in Table 7.8. Until a uniform classification system is
established, it will remain difficult to compare results

Figure 7.4 a,b

Event-free survival (EFS) and overall survival (OS) in 951 patients according to risk categories. a EFS: Observation group
n=433, 3-year-EFS 84.5±1.9%, Standard-risk group n=140, 3-year-EFS 74.6±4.3%, High-risk group n=378, 3-year-EFS
39.4±3.0%. b OS: Observation group n=433, 3-year-OS 97.3±0.8%, Standard-risk group n=140, 3-year-OS 91.7±2.6%,
High-risk group n=378, 3-year-OS 60.5±3.0%
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Table 7.8. Synopsis of neuroblastoma risk definitions by major study groups

Study group Risk factor
INSS stage Age (years) MYCN Other

Low-risk neuroblastoma

COGa 1 0–21 Any
2 <1 Any

1–21 =
1–21 ↑ + Shimada histology favorable

4S <1 = + Shimada histology favorable,
DNA index hyperdiploid

GPOH 1 Any =
2–3, 4S <1 = No threatening symptoms
2 (r) >1 = Resectable primary tumor,

no threatening symptoms

E-SIOPb 1 Any Any
2, 3 (r) Any = Resectable primary tumor
4S <1 =
4 modified <1 = metastases not to bone, CNS, lung

Japanc 1, 2, 3, 4S <1 =
1, 2 >1 =

Intermediate-risk neuroblastoma

COGa 3 <1 =
1–21 = + Shimada histology favorable

4 <1 =
4S <1 = + DNA index diploid or Shimada 

histology unfavorable

GPOH 2, 3, 4S <1 = + Threatening symptoms
2 (ur) >1 = + Unresectable primary tumor
3 >1 =

E-SIOPb 2, 3 (ur) Any = Unresectable primary tumor
4 <1 = + metastases to bone, CNS, lung

Japanc 4 <1 =
3 >1 =

High-risk neuroblastoma

COGa 2 1–21 ↑ + Shimada histology unfavorable
3 Any ↑

1–21 = + Shimada histology unfavorable
4S <1 ↑
4 <1 ↑

1–21 Any

GPOH 1, 2, 3, 4S Any ↑
4 Any Any

E-SIOPb 2, 3, 4S Any ↑
4 <1 ↑
4 >1 Any

Japanc Any Any ↑
4 >1 Any

a Courtesy of K. Matthay, San Francisco, Calif.
b Courtesy of B. de Bernardi, Genoa, Italy
c Courtesy of M. Kaneko,Tsukuba, Japan



Chapter  7 79Clinical Presentation

Table 7.9. Incidence of selected potential molecular risk factors in neuroblastoma by stage. FISH fluorescence in situ 
hybridization, CGH comparative genomic hybridization

Risk factor Frequency of unfavorable expression No. of Method Reference
Stage 1–3 4S 4 All patients
% % % %

MYCN amplification (Stages (Stages 
1+2:) 3+4:)

4 8 31 22 3000 Various Brodeur et al. (1997)
16 642 FISH Mathew et al. (2001)

8 11 33 19 179 FISH Spitz et al. (2003a)

Deletion 1p36 23 21 45 32 288 LOH Maris et al. (2001)
26 122 LOH White et al. (1995)

12 7 46 26 196 FISH Spitz et al. (2002)

Deletion 3p26 (Stages 
1–3, 4S:)
14 17 16 58 LOH Hallstensson et al. (1997)

25 36 CGH Vandesompele et al. (1998)
9 0 36 19 182 FISH Spitz et al. (2003a)

Deletion 11q23 43 29 48 44 295 LOH Guo et al. (1999)
28 36 CGH Vandesompele et al. (1998)

43 83 CGH Plantaz et al. (2001)
13 19 48 29 182 FISH Spitz et al. (2003a)

Gain 17q21 (Stages 
1–3, 4S:)
28 85 54 313 CGH, FISH Bown et al. (1999)
52 50 (1/2) 71 60 48 FISH Abel et al. (1999)
55 31 72 61 193 FISH Spitz et al. (2003b)

DNA diploidy 18 29 47 34 298 Flow Look et al. (1991)
cytometry

(Stages
1–3, 4S:)
18 70 37 179 Flow Ladenstein et al. (2001) 

cytometry

Lack of trkA (Stages 
expression 1–3, 4S:)

8 66 35 113 Immuno-
histology Kramer et al. (1997)

12 0 61 31 108 Immuno- Combaret et al. (1997)
histology

Lack of CD44 2 0 45 16 121 Immuno- Combaret et al. (1996)
expression histology

14 0 17 16 129 Immuno- Terpe et al. (1994)
histology

MRP overexpression (Stages (Stages 
1, 2, 4S:) 3, 4:)
21 56 42 60 PCR Norris et al. (1996)
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of risk-based trials conducted in different regions 
of the world.While stage, age, and MYCN are general-
ly accepted as key prognostic variables, a more re-
fined system will have to wait for a better understand-
ing of the biology underlying the diverse clinical
types [regression/maturation/progression (fast/slow-
ly)] underlying. It is also noted that risk factors are
relevant only in the context of their respective treat-
ments, since the latter can dramatically impact sur-
vival and may abolish even MYCN amplification as a
risk factor (Kaneko et al. 2002).

In addition to stage and age, other clinical prognos-
tic parameters include tumor markers (VMA/
HVA; Laug et al. 1978; Berthold et al. 1992b), NSE
(Zeltzer et al. 1983; Garaventa et al. 2002), Ferritin
(Hann et al.1981; Garaventa et al.2002),LDH (Berthold
et al. 1992a, 1994; Shuster et al. 1992; Lau 2002; Gar-
aventa et al. 2002), chromogranin A (Hsiao et al. 1990),
neuropeptide Y (Kogner et al. 1993), primary site and
volume (Cotterill et al. 2000), and metastatic site
(DuBois et al. 1999). An interdependence of the tumor
markers has been demonstrated (Berthold et al. 1992a,
1994; Garaventa et al. 2002). A second set of clinical
prognostic markers consists of response parameters
like MIBG normalization as a consequence of
chemotherapy (Hero et al.2001; Ladenstein et al.1998),
clearing of tumor cell contaminated bone marrow
(Chap. 11), response of tumor markers (Hero et al.
2001),and resectability of the primary tumor (Berthold
et al. 1992a, 1994; Garaventa et al. 2002; von Schweinitz
et al.2002).Furthermore, the histological pattern of the
tumor as defined by the mitosis–karyorrhexis index,
the amount of Schwann cells, the neuroblastic differen-
tiation and age has been used as prognostic parameter
in particular in American trials (Shimada et al. 1984,
1999; Shimada and Roald 2000) (Table 7.8). In other se-
ries, the proliferation rate of neuroblastoma cells alone
was of prognostic impact (Krams et al. 2002).

During the past 20 years a number of specific ge-
netic changes have been found to be associated with
biologic features, e.g., MYCN amplification and 1p36
deletion with the progressive type of neuroblastoma
(Figure 7.5). Genetic investigation has become stan-
dard in most clinical trials, not for diagnostic pur-
poses (Table 7.5) but rather for prognostic informa-
tion (Brodeur et al. 1997; Mathew et al. 2001; Spitz et

al. 2002, 2003a,b; Maris et al. 2001; White et al. 1995;
Hallstensson et al. 1997; Vandesompele et al. 1998;
Guo et al. 1999; Plantaz et al. 2001; Bown et al. 1999;
Abel et al. 1999; Look et al. 1991; Ladenstein et al.
2001; Kramer et al. 1997; Combaret et al. 1996, 1997;
Terpe et al. 1994; Norris et al. 1996) (Table 7.8). Ge-
netic characteristics promise to reflect the natural
course of the disease more directly than derived clin-
ical parameters and present with a yes or no answer.
Table 7.9 summarizes the factors that are believed to
contribute to prognosis estimation. The incidence
rates given for the unfavorable expression of the risk
factors demonstrate that they describe only a fraction
of the patients with unfavorable prognosis. Some fac-
tors are closely associated with each other, e.g.,
MYCN amplification and 1p36 alteration, deletion of
11q23 and 3p26, and loss of expression of trkA and
CD44. Utilizing, for example, MYCN, del 1p, del 11q
and del 3p together, 83% of stage-4 and 30% of stages
1 – 3 and stage-4S patients showed one or more of the
chromosomal changes (Spitz et al. 2003a); however,
the prediction of events of tumor progression in low-
risk patients was possible roughly only in one-half
using all the markers and their combinations listed in
Table 7.9, while a substantial fraction of patients with
chromosomal and/or immunohistological abnor-
malities in their tumors did not experience tumor
progression (unpublished observation). Few of the
listed molecular factors have been found unanimous-
ly to be of prognostic value. Contradictory results
were obtained, for example, for MYCN amplification
[lack of correlation with prognosis for localized
(Cohn et al. 1995) and metastatic (Laug et al. 1978)
neuroblastoma] and for 17q gain (Spitz et al. 2003b)
which is likely to result from different treatment of
the patients and different investigation methods in
the lab. The suggested proposal for a standardized tu-
mor tissue processing and analysis (Ambros and Am-
bros 2001) has been mentioned above. Apart from
standardization issues, modern technologies that
screen myriads of gene expression levels in small tu-
mor biopsies are likely to define in the near future not
only characteristic gene expression profiles (Sauvat
et al. 2002), but also genetic key characteristics that
allow the description of molecular risk categories.
Using the Ewing’s paradigm of seed growing in a soil,
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understanding the genetic characteristics of the tu-
mor (seed) in the context of the host (soil) should
help define the natural history of neuroblastoma
more directly than derived clinical parameters. Fig-
ure 7.4 shows an example of the relationship between

clinical + molecular risk factors and survival. The
observation group (surgery only) comprises 46% 
of all patients, the standard-risk group (four blocs of
chemotherapy) 15%, and the high-risk group (all
modalities) 40%.

Figure 7.5 a–d

Interphase fluorescence in situ hybridization (FISH) studies of chromosomal loci frequently involved in neuroblastoma.
a MYCN amplification (interphase FISH, tumor touch preparation): two red signals demonstrate centromeric regions of
the two chromosome-2 copies. The dispersed green signals indicate multiple copies of the MYCN gene in 2p24. b Dele-
tion in chromosome 1p (chromosomes of cell line IMR5): three chromosomes 1 demonstrate green centromeric signals
(D1Z1), but only one derivative copy shows a red distal (1p36) signal. c Imbalance 11q: the nuclei show three red mark-
ings of chromosome 11 centromere, but only two green signals of the MLL-locus in 11q23. One of the three chromo-
some 11 alleles lost its distal long arm. d Gain 17q: the nucleus has four red dots of the chromosome 17, but ten green
distal chromosome 17 signals (17q21).The distal part is overrepresented. (Courtesy of R. Spitz, Cologne)
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7.5.4 Response Criteria

The evaluation of the tumor response to the treat-
ment is mandatory; however, the correlation be-
tween initial response and long-term outcome is still
weaker in neuroblastoma than prednisone response
in acute lymphoblastic leukemia. The criteria for
defining response (Brodeur et al. 1993) are shown in
Table 7.10. All test results that were abnormal at di-
agnosis need to be reinvestigated after 3–4 months,
after completion of each major therapeutic step
(e.g., at the end of chemotherapy, after surgery).
Most protocols require additional evaluations for
disease response during the treatment period and
following the completion of therapy (Therassa et al.
2000).

Currently, the response status is assessed using
standard radiographic measurements to determine
tumor size and evidence of metastases in addition to
histological evaluation of the bone marrow. Many ef-
forts of refinement are being undertaken such as
PCR-based detection of minimal residual disease 
in the bone marrow (Chap. 11), MYCN-DNA levels 
in serum (Combaret et al. 2002), and antibody-
based scintigraphy (Chap. 14). These studies need
confirmation by other independent groups before
they are adopted for standard response evaluation
reporting.

7.6 Conclusions

Children with neuroblastoma have a wide range of
presenting signs and symptoms. This cancer must be
considered in every child with hepatomegaly, skin
nodules, periorbital ecchymosis, bone pain, Horner’s
syndrome, opsoclonus–myoclonus, and/or trans-
verse myelitis. Neuroblastoma is characterized by a
diversity of clinical behavior, but to a large extent,
outcome can be predicted by the stage of disease, the
age at diagnosis, and the presence or absence of
MYCN amplification. Additional factors, such as tu-
mor pathology, DNA content, genetic abnormalities,
and the presence of clinically threatening symptoms,
have also been found to have prognostic value. Most
countries have developed treatment strategies that
are tailored according to patient risk; however, cur-
rently uniform criteria for risk-group stratification
do not exist. An International Neuroblastoma Risk
Classification System is needed so that treatment
protocols performed in different regions of the world
can be compared and optimal therapeutic strategies
for patients with low-, intermediate-, and high-risk
disease can be identified.

Table 7.10. International neuroblastoma response criteria (INRG) (Brodeur et al. 1993)

Response Primary tumor Metastatic sites

CR No tumor No tumor; catecholamines normal

VGPR Decreased by 90 – 99% No tumor; catecholamines normal; residual 99Tc bone changes allowed

PR Decreased by >50% All measurable sites decreased by >50%. Bones and bone marrow:
no. of positive bone sites decreased by >50%, no more than one positive bone
marrow site allowed

MR No new lesions; >50% reduction of any measurable lesion (primary or metastases) with <50% reduction 
in any other; <25% increase in any existing lesion

NR No new lesions; <50% reduction, and <25% increase in any existing lesion

PD Any new lesion; increase of any measurable lesion by >25%; previous negative marrow positive for tumor
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8.1 Introduction

Peripheral neuroblastic tumors (pNTs), which in-
clude neuroblastoma, ganglioneuroblastoma, and
ganglioneuroma, are common pediatric tumors
(Ross et al. 1996). These tumors are derived from im-
mature sympathetic neuroblasts during embryonic,
fetal, or early postnatal development, and their mor-
phological features appear to recapitulate develop-
mental stages of sympathetic ganglia. Their primary
sites are anatomically related to the embryological
distribution of neural crest cells, and include adrenal
gland and structures of the sympathetic nervous sys-
tem.

For many years pNTs were characterized as “enig-
matic” because of their unexpected clinical behav-
iors, such as involution/spontaneous regression, mat-
uration, or aggressive progression. Because of recent
advances in clinical and basic research, pNTs now are
considered to be biologically heterogeneous, and
their individual molecular properties like account for
their unique clinical behaviors (Brodeur and Maris
2002). Based primarily on their clinical biology, the
International Neuroblastoma Pathology Classifica-
tion (Shimada et al. 1999a,b) was established by
adopting the concept of the original Shimada system
(age-linked evaluation of the morphological features
in this disease). In this chapter, histopathology of the
pNTs is illustrated according to the Classification
along with its biological relevance.

Pathology of Peripheral
Neuroblastic Tumors
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8.2 Historical Overview

Since the beginning of the twentieth century, at-
tempts have been made to deduce prognostic infor-
mation from the histological appearance of the indi-
vidual tumors (Beckwith and Martin 1968; Hughes et
al. 1974; Landau 1911; Mäkinen 1972; Wahl 1914). In
1914 Wahl suggested a sequence of maturation of the
pNTs (Wahl 1914), and in 1968, Beckwith and Martin
proposed a grading system based on the semi-quan-
titative assessment of neuroblastic cytodifferentia-
tion (Beckwith and Martin 1968). In 1974 Hughes
and co-workers proposed their grading system, but at
this time based on non-quantitative assessment of
neuroblastic/ganglionic cytodifferentiation (Hughes
et al. 1974). As summarized in a review article by
Dehner in 1988 (Dehner 1988), however, those at-
tempts could not successfully satisfy the oncologists
dealing with this “enigmatic” disease.

Interestingly, in the first half of the twentieth cen-
tury, it was believed that older patients had a better
prognosis (Landau 1911; Wahl 1914), which was
probably due to the inability to distinguish local-re-
gional from stage-4 metastatic disease. In the second
half of the twentieth century, however, it was clearly
recognized that younger patients (especially diag-
nosed before 1 year of age) had a significantly better
prognosis than older patients (Gross et al. 1959). Fur-
thermore, the majority of tumors in infants with clin-
ically favorable outcome showed no or very limited
morphological evidence of cytodifferentiation. Beck-
with and Martin concluded that “differences in de-
gree of maturation probably did not account for the
more favorable outcome of the neuroblastomas in in-
fancy” (Beckwith and Martin 1968).

In 1984 Shimada and colleagues proposed a classi-
fication system based on a unique concept of age-
linked evaluation of morphological indicators (Shi-
mada et al. 1984). First they made an age-appropriate
framework of the maturational sequence of the pNTs.
The maturational sequence was defined by two mor-
phological indicators, grade of neuroblastic differen-
tiation, and degree of Schwannian stromal develop-
ment. Prior to their study, Schwannian stromal com-
ponent, which is one of the major elements in the nor-

mal ganglionic structure of the sympathetic nervous
system, had never been a subject of serious investiga-
tion in pNTs. According to this classification system,
clinically favorable tumors can be less differentiated
when diagnosed in younger patients, and should have
morphological features of more advanced maturation
in older children (for detailed explanation see
Chap. 4). They also found increased numbers of kary-
orrhectic cells in highly aggressive tumors, and intro-
duced a concept of mitosis–karyorrhexis index.

In 1992 Joshi and co-workers proposed histologi-
cal grading by using mitotic rate (MR: low £10/10
high-power fields, high >10/10 high-power fields)
and calcification (presence or absence; Joshi et al.
1992). In their report they also proposed a risk group-
ing by combining the histological grade and age of
the patient at diagnosis (low risk: patients in all age
groups with tumor having low MR and calcification,
and patients £1 year of age with either low MR or cal-
cification; high risk: patients >1 year of age with ei-
ther low MR or calcification, and patients in all age
group with high MR and no calcification; Joshi et al.
1992). They later published a modified histological
grading by replacement of mitotic rate with MKI
(Joshi et al. 1996).

In 1994 the International Neuroblastoma Patholo-
gy Committee was formed to establish a prognosti-
cally significant and biologically relevant classifica-
tion for international use. The Committee first de-
fined terminology and morphological criteria of
pNTs, and then analyzed and tested mainly those two
classifications proposed by Shimada et al. (1984) and
Joshi et al. (1992, 1996). In 1999, after 5 years of col-
laborative work, the Committee developed the Inter-
national Classification based on the original Shimada
classification with minor modifications (Shimada et
al. 1999a,b).

8.3 Basic Morphology

As proposed by Shimada et al. in their original classi-
fication (Shimada et al. 1984), pNTs are classified into
four basic morphological categories (Shimada et al.
1999a): neuroblastoma (Schwannian stroma-poor);
ganglioneuroblastoma, intermixed (Schwannian stro-
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ma-rich); ganglioneuroma (Schwannian stroma-
dominant); and ganglioneuroblastoma, nodular
(composite, Schwannian stroma-rich/stroma-domi-
nant and stroma-poor). Within each category one or
more subtypes are recognized (see below). The first
three categories and their subtypes are based on mor-
phological changes according to the maturational se-
quence. The Shimada system distinguishes biologi-
cally favorable pNTs with a potential of age-appropri-
ate maturation and biologically unfavorable pNTs
without such a potential (see Chap. 4). In the last cat-
egory, the tumor is composed of clearly distinct mul-
tiple clones, representing different states of matura-
tion or maturational arrest. Among these categories,
ganglioneuroma is not considered a separate entity,
but rather as a fully mature form of tumor constitut-
ing the end of the biological continuum for all the
pNTs, a model which postulates that ganglioneuro-
mas are neuroblastomas at a later time in their devel-
opment.

To date, there is no clear distinction in molecular
characteristics between pNTs with a potential of re-
gression and pNTs with a potential of maturation. In
fact, during the maturational sequence of pNTs, the
vast majority of neuroblastic cells probably die be-
fore or after reaching a certain degree of maturation
(cellular death during the process of tumor matura-
tion, comparable to cellular death seen in the process
of normal organogenesis). By contrast, Schwannian
stroma, once developed and established, are believed
by many to constitute a persistent and dominant
component in pNTs.

8.3.1 Neuroblastoma 
(Schwannian Stroma-poor)

Tumors in this category are composed of neuroblas-
tic cells forming lobules separated by thin fibrovas-
cular septa where Schwann cells (or their precursors)
can (or may) be detected as slender S-100 positive
cells (Shimada et al. 1985). Three subtypes, i.e., un-
differentiated, poorly differentiated, and differentiat-
ing, are distinguished based on different grades of
neuroblastic differentiation. It is noteworthy that in
the original Shimada Classification, there were two
subtypes, undifferentiated (including undifferentiat-

ed and poorly differentiated subtype of the Interna-
tional Classification) and differentiating (same as
differentiating subtype), in this category. On gross
examination, tumors are generally soft in consisten-
cy. Cut surfaces of those in the undifferentiated and
poorly differentiated subtype are often hemorrhagic,
while tumors in the differentiating subtype are usual-
ly tan-yellow, without hemorrhage.

Neuroblastoma, Undifferentiated Subtype (Fig. 8.1a):
In this rare subtype, tumor tissue is composed of un-
differentiated neuroblastic cells without identifiable
neuropil or rosettes. In order to establish the diagno-
sis, supplementary tests, such as immunohistochem-
istry, electron microscopy, and/or molecular/cytoge-
netic analysis, are usually required.

Neuroblastoma, Poorly Differentiated Subtype (Fig.
8.1 b): Diagnosis for tumor in this subtype is rela-
tively easy because of the presence of varying amount
of neuropil and/or rosettes of the Homer-Wright
type. Most of the tumor cells are undifferentiated:
less than 5% of the population has morphological ev-
idence of differentiation (see below).

Neuroblastoma, Differentiating Subtype (Fig. 8.1 c):
Tumor of this subtype usually has abundant neu-
ropil. Five percent or more of the tumor cells are dif-
ferentiating neuroblasts: they are characterized by
synchronous differentiation of the nucleus (enlarged,
eccentrically located with vesicular chromatin pat-
tern, and a single prominent nucleolus), and of the
cytoplasm (eosinophilic/amphophilic with a diame-
ter two or more times larger than the nucleus).

Mitosis–karyorrhexis index (MKI): One of three MKI
classes is assigned to the given neuroblastoma tumor.
Those classes are low MKI (<2% or <100 of 5000 mi-
totic and karyorrhectic cells), intermediate MKI
(2–4% or 100–200 of 5000 mitotic and karyorrhectic
cells), and high MKI (>4% or >200 of 5000 mitotic
and karyorrhectic cells). The MKI is defined by
counting the number of tumor cells in mitosis and in
the process of karyorrhexis (Fig. 8.1d), and should
reflect an average for all tumor sections available.
Karyorrhectic cells show condensed and fragmented
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Figure 8.1 a–f

Histology of peripheral neuroblastic tumors. a Neuroblastoma (Schwannian stroma-poor), undifferentiated subtype.
b Neuroblastoma (Schwannian stroma-poor), poorly differentiated subtype. c Neuroblastoma (Schwannian stroma-
poor), differentiating subtype. d Neuroblastoma (Schwannian stroma-poor) with a high mitosis–karyorrhexis index.
e Ganglioneuroblastoma, intermixed (Schwannian stroma-rich). f Ganglioneuroma (Schwannian stroma-dominant),
maturing subtype.
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nuclear material, usually accompanied by condensed
eosinophilic cytoplasm. Simple hyperchromatic nu-
clei without chromatin fragmentation are not includ-
ed in MKI counting.

8.3.2 Ganglioneuroblastoma,
Intermixed (Schwannian Stroma-rich)

The international classification has stipulated that
tumors having prominent Schwannian stromal de-
velopment occupying more than 50% of the tumor
tissue are upgraded to this category. Tumor histology
is consistent with a transition to the full differentia-
tion/maturation of ganglioneuroma (see below), but
the process is not complete, as evidenced by scattered
“residual” microscopic foci where neuroblastic cells
in various stages of differentiation as well as varying
numbers of maturing ganglion cells are found in the
background of neuropil (Fig. 8.1e).

8.3.3 Ganglioneuroma 
(Schwannian Stroma-dominant)

Tumors are predominantly composed of Schwannian
stroma with individually distributed maturing/ma-
ture ganglion cells. Two subtypes, ganglioneuroma,
maturing, and mature, are included in this category.

Ganglioneuroma, Maturing Subtype (Fig. 8.1 f): Tu-
mor of this subtype was previously named “gan-
glioneuroblastoma, well differentiated” in the origi-
nal Shimada classification. Some of the neuroblastic
components appear to be on their way to fully mature
ganglion cells and have appearances of differentiat-
ing neuroblasts and/or maturing ganglion cells.

Ganglioneuroma, Mature Subtype (Fig. 8.1g): Tumor
in this subtype is composed of fully developed
Schwannian stroma and mature ganglion cells. Those
mature ganglion cells are surrounded by satellite cells.
Mature non-myelinating Schwann cells, the dominat-
ing component of tumor, characteristically form mul-
tiple fascicles covered with perineurial cells.

Tumors categorized as either ganglioneuroblas-
toma, intermixed, or ganglioneuroma have an elastic
consistency, and their cut surfaces are always tan-yel-
low and homogenous with or without fibrous bands.

8.3.4 Ganglioneuroblastoma,
Nodular (Composite, Schwannian Stroma-rich/
Stroma-dominant and Stroma-poor)

Tumor in this category is characterized by the pres-
ence of one or more macroscopic, usually hemor-
rhagic neuroblastomatous nodule(s) (stroma-poor

Figure 8.1 g–h

g Ganglioneuroma (Schwannian stroma-dominant), mature subtype. h Ganglioneuroblastoma, nodular (composite,
Schwannian stroma-rich/stroma-dominant and stroma-poor)
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component) coexisting with ganglioneuroblasto-
ma, intermixed (stroma-rich component) or with 
gang-lioneuroma (stroma-dominant component;
Fig. 8.1h). On microscopic examination, there is typi-
cally abrupt demarcation (pushing border or even
fibrous pseudo-capsular formation) between the neu-
roblastomatous nodule(s) and the stroma-rich or stro-
ma-dominant tumor tissue. Some nodules, however,
are not clearly demarcated but rather have a zone of
neuroblastic infiltration into the adjacent Schwannian
stromal tissue. In rare cases the neuroblastomatous
nodule becomes so large, dominating the tumor tis-
sue, that one can recognize stroma-rich/stroma-dom-
inant area only by light microscopic examination.

Nodular formation is usually considered to be a
feature of the primary tumor, but it may be over-
looked on gross examination; thus, those cases with
ganglioneuroblastoma, intermixed or ganglioneuro-
ma at the primary site and neuroblastoma at the
metastatic site should be classified into this category.

8.4 Prognostic Classification

The International Neuroblastoma Pathology Classifi-
cation (the Shimada system) distinguishes favorable
and unfavorable histology groups (Shimada et al.
1999b). Tumors in the favorable histology group fall
within a conceptual framework of age-linked matu-
rational sequence from poorly differentiated subtype
(<1.5 years of age at diagnosis) to differentiating sub-
type (<5 years of age) of neuroblastoma (Schwann-
ian stroma-poor) to ganglioneuroblastoma, inter-
mixed (Schwannian stroma-rich) to ganglioneuroma
(Schwannian stroma-dominant). The neuroblastoma
tumors in this group should have a low (for those pa-
tients <5 years of age) or an intermediate (for those
<1.5 years of age) MKI. By contrast, tumors in the un-
favorable histology group have immature histologies
for patient’s age and include undifferentiated sub-
type (at any age), poorly differentiated subtype
(≥1.5 years of age), and all subtypes (≥5 years of age)
of the neuroblastoma. Among the neuroblastoma
tumors, those with a high MKI (at any age) or an in-
termediate MKI (≥1.5 years of age) also qualify as
unfavorable histology. Ganglioneuroblastoma, inter-

mixed and ganglioneuroma are classified into a fa-
vorable histology group regardless of the patients’
age, although these tumors are usually diagnosed 
in older children. Ganglioneuroblastoma, nodular
(composite, Schwannian stroma-rich/stroma-domi-
nant and stroma-poor) can be divided into two sub-
sets, favorable and unfavorable, by applying the same
criteria of age-linked histopathological evaluation to
the nodular (neuroblastomatous) component (Peuch-
maur et al. 2003; Umehara et al. 2000).

While arriving at the proposed Classification, the
International Neuroblastoma Pathology Committee
tested other morphological indicators (calcification,
mitotic rate) and classifications (original risk group-
ing by combination of mitotic rate, calcification, and
age (Joshi et al. 1992); modified risk grouping by com-
bination of MKI, calcification, and age (Joshi et al.
1996), and analyzed their prognostic effects (Shimada
et al. 1999b). Although these indicators and classifica-
tions all had prognostic effects by univariate analysis,
calcification and mitotic rate did not add any signifi-
cant prognostic information to the International Neu-
roblastoma Pathology Classification in multivariate
analysis.Furthermore,the Classification could provide
significantly better prognostic information than those
risk groupings. The Committee also examined the age
factor of the Shimada system, and confirmed that the
two cutoff points, i.e., 1.5 and 5 years of age at diagno-
sis, used in the Classification distinguished prognostic
groups most significantly (Shimada et al. 1999b).

8.5 Biological Relevance

In this section, the biological relevance of Interna-
tional Neuroblastoma Pathology Classification (the
Shimada system) is summarized.

8.5.1 Schwannian Development 
in Neuroblastic Tumors

Peripheral neuroblastic tumors consist of two main
cell populations: neuroblastic/ganglionic cells and
Schwann cells. As described above, the International
Neuroblastoma Pathology Classification uses mor-
phological features of both neuroblastic differentia-
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tion and Schwannian stromal development for defin-
ing maturational sequence of the pNTs. Based on em-
bryological interactions between normal neuroblasts
and Schwann cells (Reynolds and Woolf 1993),
some postulate that neoplastic neuroblasts produce
Schwann cell mitogens important for their prolifera-
tion and development (Ambros 2001). Schwann cells,
in return, can secrete anti-proliferative and differen-
tiation-inducing factors crucial to neuronal differen-
tiation.This mutual interaction between neuroblastic
cells and Schwannian stromal cells may explain 
the maturational processes of biologically favorable
pNTs. In biologically unfavorable pNTs, there is gen-
erally less Schwannian component and limited tumor
maturation. The origin of the tumor Schwann cells
remains controversial. One study indicates that both
cell types, i.e., neuroblastic/ganglionic cells and
Schwann cells, arise from the same neoplastic neu-
roblastic clone or precursor cell (Mora et al. 2001);
however, other studies present evidence to support
that the Schwann cells in pNTs are reactive in nature
and probably recruited from surrounding non-neo-
plastic tissue by tumor neuroblastic cells (Ambros et
al. 1996).

8.5.2 Correlation of Histopathology 
with MYCN Amplification and trkA Expression

There is a reproducible correlation between the
molecular event of MYCN amplification and the mor-
phological manifestations in pNTs (Shimada et al.
1995; Goto et al. 2001). Those tumors with amplified
MYCN typically are of the undifferentiated or poorly
differentiated subtype of neuroblastoma (Schwann-
ian stroma-poor) with markedly increased mitotic
(proliferating) and karyorrhectic (apoptotic) activi-
ties (Shimada et al. 1995; Goto et al. 2001), an unfa-
vorable histology group according to the Internation-
al Neuroblastoma Pathology Classification. The pres-
ence of prominent nucleoli in neuroblastic cells of
undifferentiated or poorly differentiated neuroblas-
toma, often associated with unfavorable prognosis
(Ambros et al. 2002), can be an additional hallmark of
MYCN amplification (own unpublished observa-
tions).

The balance appears to favor cellular proliferation
(mitosis) more than cellular death (karyorrhexis) in
a MYCN amplified tumor, which is well known to
have a highly aggressive and rapidly progressive clin-
ical behavior. In light microscopic sections from
MYCN amplified tumors, however, the number of
karyorrhectic cells always exceeds that of mitotic
cells. This may be explained by the fact that the histo-
logically visible stage of mitosis is much shorter than
that of karyorrhexis (Bursch at al. 1991). Our prelim-
inary data show that neuroblastoma tumors with fa-
vorable histology express significantly higher levels
of trkA than those with unfavorable histology (Shi-
mada et al. 2004). Favorable histology neuroblastoma
tumors include both poorly differentiated and differ-
entiating subtypes: although there is no difference in
the level of trkA expression between these two histo-
logical subtypes, tumors of differentiating subtype
are diagnosed in significantly older children (usually
between 1 and 5 years of age) than those of poorly
differentiated subtype (newborn to 1.5 years of age).
This may suggest an in vivo latent period required for
morphological evidence of neuroblastic differentia-
tion among the neuroblastoma tumors in the favor-
able-histology group, and supports the concept of an
age-linked Pathology Classification.

8.5.3 Composite Tumor

The term “composite” implies that the tumor is com-
posed of histologically and, probably biologically,
different clonal populations (Schmidt et al. 1993), a
description possibly applicable to almost 10% of
pNTs. In the International Neuroblastoma Pathology
Classification, this composite form is designated as
ganglioneuroblastoma,nodular (composite,Schwann-
ian stroma-rich/stroma-dominant and stroma-
poor). In this model the neuroblastic nodule(s) rep-
resents the evolution of one or multiple clones, either
because of newly acquired genetic aberrations in late
stage of tumor progression or the persistence of ge-
netically and biologically distinct variants evolving
early in tumor formation. Clinically, two-thirds of
these composite tumors are aggressive (Peuchmaur
et al. 2003; Umehara et al. 2000).
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8.6 Conclusion

Neuroblastic tumors are known to be heterogeneous
and their clinical behaviors are driven by complex
molecular/genetic properties.The International Neu-
roblastoma Pathology Classification exploits a sys-
tem of age-linked evaluation of morphological indi-
cators, to distinguish among tumors with near-iden-
tical histological features but vastly different clinical
behaviors. This classification offers a unique forum
for finding the morphological link between clinical
behavior and tumor genetics of the enigmatic cancer
of childhood.
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9.1 Introduction

Neuroblastomas (NBs) have heterogeneous biologic,
genetic, and morphologic features and are character-
ized by diverse clinical behavior. Although the bio-
logical basis for this diversity is poorly understood,
many molecular features, such as DNA index, onco-
gene amplification, and tumor suppressor gene loss,
have been identified that correlate with clinically rel-
evant aspects of the disease. Because of this strong re-
lationship between biology and clinical phenotype,
molecular classification is playing an increasingly
important role in stratifying therapy for patients
with NB. The identification of tumor-specific molec-
ular alterations and the characterization of critical
pathways regulating tumor growth are likely to fur-
ther refine our ability to diagnose and classify NB,
and may lead to the identification of therapeutic tar-
gets. Completion of a draft sequence of the entire
human genome and the development of miniaturized
high throughput technology for comprehensive ge-
netic analysis now permit the monitoring of every
gene in a single experiment and provide parallel
analysis of the complex coordinated pathways that
contribute to the clinical phenotype of cancers (Ra-
maswamy and Golub 2002). This chapter provides an
overview to comprehensive gene expression profiling
of NB as a means to define the molecular pathology
of this disease.

Molecular Pathology 
of Neuroblastic Tumors 
Based on Genome-wide 
Expression Analysis
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9.2 Clinical Issues

Neuroblastomas are embryonal neoplasms that devel-
op during fetal or early postnatal life from neural
crest-derived cells that are still immature but differ-
entiation restricted (Brodeur and Maris 2002). The
clinical spectrum of NB is fascinating with at least
three distinctly disparate presentations. One subset of
tumors is associated with spontaneous regression of
clinically apparent NB (most stage-4S patients; d’An-
gio et al. 1971). It is yet to be determined whether re-
gressing NBs are persistent embryonic rests, represent
hyperplasia, or are true malignancies. To date, the un-
derlying mechanism(s) that lead to spontaneous tu-
mor regression are not known.Recent studies indicate
that there are genetic prerequisites for the process of
regression to proceed, supporting the premise that
stage-4S NB represents a unique biological entity and
that individual genes and pathways will be identified
that may define this unique subset of tumors (Ambros
et al. 1995; Grosfeld et al. 1993; Mora et al. 2000).

A second category of NB is associated with differ-
entiation and lack of distant metastasis [stages 1 – 3,
herein referred to as local regional (LR) NB]. Inter-
estingly, some LR NB can involve regional lymph
nodes. A subset of these tumors have ganglionic dif-
ferentiation and Schwannian stroma. Most stage-1
and stage-2 LR tumors can be successfully treated with
surgery alone (Alvarado et al. 2000; Perez et al. 2000)
(see Chap. 11). In addition, outcome is favorable for
patients with stage-3 LR tumors that lack high-risk
features following treatment with chemotherapy and
surgery (Matthay et al. 1998) (see Chap. 11), and
favorable outcome has been reported for stage-3 pa-
tients following surgery alone (Kushner et al. 1996).
Nevertheless, some LR tumors are locally aggressive
resulting in repeated recurrences and poor outcome.

Finally, the major clinical subcategory of NB
(~60% of patients) does not undergo spontaneous re-
gression or maturation, but presents as advanced-
stage tumors (stage 4). The hallmark of this disease is
destructive bone metastasis. Although most patients
older than 1 year with stage-4 tumors initially re-
spond to chemotherapy, these patients frequently
recur and become progressively resistant to medical

treatment. It is very rare for stage-4S or LR NB to
progress to stage-4 disease, implying that they are
biologically distinct diseases despite histological and
clinical similarities. In addition, infants with stage-4
NB constitute yet another distinct entity by virtue of
their high curability. Irrespective of these clinical sub-
groups, there is a strong association between clinical-
ly aggressive NB and specific genetic alterations, i.e.,
MYCN amplification, deletions of 1p, gains of 17q, and
a di/tetraploid DNA content (Mora et al. 2000; Look et
al. 1991; Brodeur et al. 1984). These observations sug-
gest that specific genetic alterations are likely to con-
tribute to the clinical behavior of NBs, and that the
clinical subtypes will have disparate molecular pro-
files. Molecular components that correlate with out-
come may also be potential therapeutic targets.

9.3 Technical Aspects 
of Gene Expression Analysis

Given the limitations in our present understanding of
the basic biology of human cancer, many investiga-
tors have turned to the use of high-throughput gene
expression studies to provide a more complete char-
acterization of this disease. The technology underly-
ing comprehensive gene expression analysis is the
culmination of several amazing accomplishments
including sequencing of the entire human genome,
identification of most human protein-encoding se-
quences, development of techniques for the efficient
production, purification and attachment of tens of
thousands of nucleic acid probes to a solid support in
a miniaturized format, and the development of sensi-
tive detection techniques coupled with sophisticated
analytical software. With this degree of complexity it
is not surprising that comprehensive gene expression
studies have many inherent technical and analytical
challenges; however, initial efforts are providing rea-
son for optimism (Ladanyi and Gerald 2003).

9.3.1 Transcript Profiling Methods

Several methods have been used for high-throughput
gene expression analysis; they include sequence analy-
sis of cloned transcripts [differential display, subtrac-
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Figure 9.1

Steps involved in microarray-based gene expression analysis
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tive hybridization, serial analysis of gene expression
(SAGE) and sequencing of expressed sequence tags
(ESTs)], and the use of microarrayed sequence probes
for quantitative hybridization studies. Sequencing-
based techniques can be very quantitative and precise
but are dependent on the depth of sequencing, accu-
rate sequencing, and authentic mapping of sequence
to gene. They are also labor intensive. Microarray-
based hybridization studies involve labeling of tran-
script representations from cells or tissues and hy-
bridization of the labeled target to nucleic acid probes
attached to a solid support in an arrayed pattern
(Fig. 9.1).The bound label is proportional to the quan-
tity of specific transcripts in the original RNA mixture.
The probe arrays are miniaturized such that thou-
sands of individual probes can be attached to a very
small substrate providing high-throughput and exper-
imental efficiency. This technique allows for the effi-
cient analysis of virtually unlimited numbers of genes.

9.3.2 Data Analysis

The analysis of expression data is of primary impor-
tance but beyond the scope of this chapter; however, a
few critical issues are highlighted here (Quackenbush
2001). Most studies are designed to identify important
genes that participate in a critical process or to classi-
fy samples into previously unrecognized biologically
or clinically important subsets. This can be accom-
plished by reducing the expansive data sets using sta-
tistical or metric thresholds to identify genes whose
expression varies significantly between samples of in-
terest.A number of methods can then be used to iden-
tify samples or genes with the desired properties. Un-
supervised algorithms search the data with few user
imposed restrictions in an effort to recognize molecu-
lar substructure and identify previously unrecognized
classes of genes or samples. Supervised methods apply
prior knowledge, such as histology, phenotype, stage
or outcome, and identify genes with statistically sig-
nificant expression differences between groups; how-
ever, because of the large volume of gene expression
data and relatively small number of samples, some as-
sociations are likely due to chance. For this reason it is
imperative that the significance of correlations be es-
tablished by testing independent sample sets.

9.3.3 The Impact of Tissue Heterogeneity 
on Gene Expression Analysis

Neuroblastomas can demonstrate marked intra and
intertumoral heterogeneity primarily due to the
spectrum of differentiation that occurs (see Chap. 8).
This may result in tumor samples with a predomi-
nant primitive neuroblast component and others
with a predominant differentiated ganglionic or
Schwannian cell component. The interpretation of
observed gene expression is therefore dependent on
understanding the complexity of the cellular content.
In heterogeneous samples, gene expression corre-
sponding to very small but biologically significant
components of tumors may not be evident using cur-
rent methods and inter-sample comparisons can be
limited by their lack of consistency in tissue content.
Few reports have addressed these issues, but it is ob-
vious that cell content is a major factor in NB as
shown in the analyses below.

9.4 Gene Expression Analysis of NB

9.4.1 The NB Transcriptome 
and Its Relationship 
to Neural Crest Development

The occurrence of NB in a wide anatomic distribu-
tion that parallels the sympathetic nervous system,
and the spectrum of tumor phenotypes, including
various degrees of differentiation, regression, and
proliferation, are strong evidence that the origin of
this tumor is closely linked to the development of
neural crest-derived sympathogonia. These cells mi-
grate from the neural tube to generate the primordia
of the sympathetic chain along the abdominal aorta.
A subpopulation migrates to the adrenal anlage to
form the chromaffin cells of the medulla. There are
many opportunities during this process for abnor-
malities to contribute to tumorigenesis including loss
of controls on cell proliferation, differentiation, or
apoptosis. A look at the transcriptome specific to NB
reflects this developmental arrest and relationship to
neural crest-derived tissues. In preliminary gene ex-
pression studies of a spectrum of NB, we have identi-
fied genes that are highly expressed in tumors rela-



Chapter  9 101Molecular Pathology of Neuroblastic Tumors 

tive to non-neoplastic tissues (including fetal and
mature brain tissue, spinal cord, bone marrow, liver,
lung, and kidney). Many of the functionally annotat-
ed genes that are highly over-expressed in high-risk
NB are believed to play a role in cell growth, develop-
ment, differentiation, and histogenesis (unpublished
data).A significant number are specifically annotated
as playing a role in neurogenesis (Table 9.1). It is also
interesting that a high proportion (about 38% of the
most strongly differentially expressed genes) of these
NB-specific genes are expected to function in some
aspect of transcription and a significant number
(about 19%) are believed to be part of signaling
pathways. Many of these genes are highly specific for
NB and may enhance our ability for accurate diagno-
sis and identification of therapeutic targets.

From an unsupervised analysis (average linkage
hierarchical clustering) of gene expression in NB, it is
clear that differentiation is a key factor reflected in the
profiles (Fig. 9.2). Cell lines composed of relatively
pure populations of poorly differentiated neuroblastic
cells are relatively distinct and aligned with a subset 
of stroma-poor NB that are similarly composed of
poorly differentiated neuroblasts. Likewise, ganglio-
neuromas and NB containing a large component of
Schwannian cells (stroma-rich) have expression pro-
files that are distinct from stroma-poor tumors.This is
a reflection of the very different expression patterns of
Schwann cells and neuroblasts. Stroma-poor (neuro-
blast-rich) tumors are characterized by a greater level
of expression for genes associated with DNA replica-
tion and cell division, and molecules regulating early

Table 9.1. Genes involved in neurogenesis that are specifically expressed at increased levels in high-risk neuroblastoma rela-
tive to normal tissues

Gene title Gene symbol Chromosomal Gene ontology biological process description 
location (Harris et al. 2004)

Embryonic lethal, ELAVL3 19p13.2 Cell differentiation, neurogenesis
abnormal vision,
Drosophila-like 3 
(Hu antigen C)

Midkine MDK 11p11.2 Cell differentiation, regulation of cell cycle, cell proliferation,
(neurite growth- cell–cell signaling, signal transduction, neurogenesis
promoting factor 2)

Tyrosine TH 11p15.5 Embryogenesis and morphogenesis, neurotransmitter 
hydroxylase biosynthesis, aromatic amino acid family metabolism,

catecholamine biosynthesis, synaptic transmission

Tubulin, alpha 3 TUBA3 12q12–12q14.3 Glia cell differentiation, cell-shape and cell-size control,
neurogenesis

Kallikrein 8 KLK8 19q13.3-q13.4 Neurogenesis
(neuropsin/ovasin)

Fetal Alzheimer FALZ 17q24.3 Neurogenesis
antigen
SMA3 SMA3 5q13 Neurogenesis, carbohydrate metabolism, skeletal development

Platelet-activating PAFAH1B3 19q13.1 Neurogenesis, lipid catabolism
factor acetyl-
hydrolase, isoform 
Ib, gamma subunit 
29 kDa

Paired-like PHOX2B 4p12 Regulation of transcription, DNA dependent, neurogenesis,
homeobox 2b development
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Figure 9.2

Graphic display of a hierarchical cluster analysis of NB gene expression.The dendrogram represents relationship between
samples. Branch length is based on 1 – Pearson’s correlation coefficient between the samples of that branch. Columns are
individual samples and rows represent an individual gene. Sample types are indicated at the top of each column just be-
low the dendrogram. Expression levels are pseudocolored red to indicate transcript levels above the median for that gene
across all samples and green below the median. Color saturation is proportional to the magnitude of expression

Table 9.2. General biological function most commonly assigned to genes correlating with differentiation in neuroblastoma

General biological function Differentially expressed genes Differentially expressed genes 
over-expressed in stroma-poor over-expressed in stroma-rich 
NB (%)a NB (%)a

Cell cycle, DNA replication and repair 33 13

Neurogenesis or neural function 27 7

Development or histogenesis 27 11

Immune or inflammatory response 2 21

Cell adhesion 2 15

Apoptosis 2 8

a Genes may have more than one biological function



Chapter  9 103Molecular Pathology of Neuroblastic Tumors 

stages of neurogenesis (Table 9.2), while Schwannian
stroma-rich tumors displayed over-expression of many
genes associated with the immune response and cell
adhesion. It is unclear at this time which cells in stro-
ma-rich tumors contribute to the expression differ-
ences, but it is likely that many are intrinsic to the
Schwannian component. This data also emphasizes
the need to control for tissue content and differentia-
tion in analysis of NB for correlations with clinical
phenotype.

9.4.2 Gene Expression Associated 
with Clinically Relevant Subtypes of NB

Supervised approaches to data analysis allow the
identification of genes that are differentially ex-
pressed in the biologically and clinically distinct sub-
sets of NB tumors. For example, comparison of stro-
ma-poor stage-4 NB with known bone metastasis to
stroma-poor LR NB that were cured with surgery
alone demonstrated a number of differentially ex-
pressed genes that are known to participate in cell
cycle regulation, DNA replication, mitosis, and cell
division. These genes reflect the striking differences
in cell replication known to exist between these two
groups and most are over-expressed in stage-4 
tumors. Other differentially expressed genes encode
proteins with a wide variety of proposed biologi-
cal functions; however, it is of interest that some 
of the genes over-expressed in LR NB included several
with anti-apoptotic activity (OPTN, TIAF1, PRKCZ)
and some that play a role in neurogenesis
(PAFAH1B1, PMP22; Li et al. 1998; Chang et al. 1998;
Rust et al. 2000; Sweeney et al. 2000; Wulf et al. 1999).

Other studies investigating the gene expression
patterns of individual NB risk groups have recently
been published. Sequence analysis of cDNA libraries
from NB defined as favorable (single-copy MYCN,
high NTRK1 expression) or unfavorable (amplified
MYCN and low NTRK1) revealed a large number 
of genes that were relatively over-expressed in the 
favorable tumors (Ohira et al. 2003), including genes
that are believed to play a role in cell signaling, tran-
scription, protein synthesis, and cell homeostasis.
Few genes were identified that were over-expressed in
unfavorable NB.

Telomerase is a ribonucleoprotein enzyme essen-
tial for the replication of chromosome termini in
most eukaryotes. Activation of telomerase has been
implicated in cell immortalization and cancer cell
pathogenesis and is associated with outcome in NB
(Choi et al. 2000). Comparison of NB with high or low
telomerase activity, using a cDNA array correspon-
ding to genes expressed in the human fetal brain,
identified 63 genes over-expressed in tumors with
high telomerase activity and 46 with low activity
(Hiyama et al. 2003). The over-expressed genes in tu-
mors with high telomerase activity included those in-
volved in cell cycle, apoptosis escape, protein synthe-
sis, and transcription. Those over-expressed in tu-
mors with low-level telomerase included neural
transmitters and several receptors associated with
neural or neuroendocrine function. These genes
again reflect the biology of distinct NB risk groups
with active cell replication in high-risk groups and
increased degrees of neural differentiation in low-
risk tumors.

These preliminary results suggest that clinically
relevant NB subgroups have distinct molecular pro-
files and that characterization of individual mole-
cules will lead to a better understanding of NB biolo-
gy and provide the means for molecular classification
that may be used in conjunction with traditional clin-
ical features for improved patient care. It is intriguing
to speculate that the clinical behavior of a NB may
one day be more accurately predicted by expression
analysis than by the clinical and biological features
that are currently utilized for patient risk stratifica-
tion and treatment.

9.4.3 Molecular Pathology 
of MYCN Amplification

MYCN amplification occurs in about 20% of NB and
is a well-established clinical marker of aggressive dis-
ease used for patient risk stratification.Amplification
leads to high levels of MYCN expression in most cas-
es and is believed to directly contribute to tumor bi-
ology. Although MYCN is a transcriptional regulator,
few specific in vivo targets have been identified and
the mechanisms by which MYCN contributes to ag-
gressive tumor biology are not known (Seeger et al.



Chapter  9104 W. L. Gerald

1985; Ma et al. 1993). Oligonucleotide arrays have
been used to monitor the effects of MYCN on gene
expression in NB through analysis of human tumors
and cell lines (Alaminos et al. 2003). An interesting
finding that has been noted in previous studies
(Nisen et al. 1988; Slavc et al. 1990) is that MYCN
mRNA expression levels did not always coincide with
MYCN gene copy number. This implies that over-ex-
pression of MYCN occurs in some cases of NB with-
out gene amplification and is probably due to alter-
ations in transcriptional regulation. The clinical sig-
nificance of over-expression in the absence of ampli-
fication is uncertain; however, in array studies, tu-
mors with high levels of MYCN expression in the ab-
sence of amplification tend to cluster with amplified
tumors with increased expression, demonstrating a
correlation between level of MYCN and overall gene
expression profile (Alaminos et al. 2003).

Alaminos and co-workers compared the expres-
sion profiles of tumors with and without high levels
of MYCN mRNA using relatively stringent criteria
and found that 222 of 62,839 probe sets identified
genes with significant differential expression (Ala-
minos et al. 2003). Seventy-four probe sets detected
genes that were up regulated and 148 that were down
regulated in tumors with high levels of MYCN RNA.
Some of these were believed to be direct targets of
this oncogene based on altered expression in cell

lines with induced expression of MYCN. The func-
tional aspects of some of these genes included tran-
scriptional regulators (HTATIP, HTATIP2, DDX1,
MI-ER1 and NCYM), oncogenes (NCYM, RAB20),
cell proliferation (CDCA7, CENPE, CDC2L2, PC-
TAIRE2BP), and neural differentiation (HOXC10,
PTN, FMNL, DNER, CLU, GDA, NRCAM, ECEL1 and
SNPH), and correlate well with the lack of differenti-
ation and high mitotic–karyorrhectic index which is
common for MYCN amplified tumors. An expression
map of the region corresponding to NB with high lev-
els of MYCN expression (Fig. 9.3) demonstrated that
MYCN is the only gene consistently expressed in all
NB with 2p amplification and agrees with the find-
ings of others (George et al. 1996; Hiemstra et al.
1994). The significance of over-expression of co-am-
plified genes is unknown.

A separate study investigating the regulation of
gene expression by MYCN in a NB cell line using
SAGE analysis had a very different result (Boon et al.
2001). In that study the majority of genes that were
upregulated by MYCN were associated with ribo-
some assembly and activity. Potential reasons for the
differences between the findings in these studies in-
clude the over-representation of highly expressed
genes in SAGE analysis, the different experimental
systems (cell lines vs tumor samples), and the analyt-
ical methods used to identify differentially expressed

Figure 9.3

Expression of genes near MYCN
in samples showing amplifica-
tion or over-expression of this
gene. Map is derived from the
UCSC genome database (http://
genome.ucsc.edu/cgi-bin/
hgGateway). Gray boxes indicate
expression at least one standard
deviation above the mean for
that gene in tumor samples
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genes. These disparate results emphasize the impor-
tance of technical and analytical factors in high-
throughput molecular studies.

9.4.4 Distinct Molecular Features 
of NB Discovered 
Through Gene Expression Analysis

Gene expression profiling is a powerful technique to
discover previously unrecognized tumor subtypes
and distinct molecular phenotypes. For example, a
search of SAGE libraries for genes related to develop-
ment identified DLK1 as dramatically over-expressed

in some NB cell lines (van Limpt et al. 2000). Further
study suggested that DLK1 over-expression was not
due to amplification or mutation but was associated
with chromaffin differentiation (van Limpt et al.
2003). Data from our own studies suggest that high
levels of DLK1 expression is more common in a sub-
set of high-risk NB (unpublished data).

Analysis of genome-wide expression data for NB
samples based on oligonucleotide arrays revealed a
subset with over-expression of several contiguous
genes located at 12q13–15 (W. Su et al., 2004). Re-
gional over-expression suggests a chromosomal
amplification event and consistently expressed genes

Figure 9.4

A positional gene expression map of 12q13–15 from 56416679 bp to 76539024 bp.Map is derived from the UCSC genome
database (http://genome.ucsc. edu/cgi-bin/hgGateway). Each column is a single NB sample and each row is expression
of an individual gene. Red highlight indicates expression level greater than two standard deviations above the mean.The
five cases with obvious over-expression of this region are in the first five columns on the left. Note that the genes separate
into two distinct regions, 12q13.3 and 12q15
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represent candidate oncogenes. About 5% of NB tu-
mors demonstrate 12q gene over-expression. Posi-
tional expression mapping identified the narrowest
region of overlap containing 21 genes, with 11 genes
over-expressed by all cases. In cases with high levels
of expression for genes at 12q, three- to more that
tenfold increase in 12q gene copy number was detect-
ed by fluorescent in situ hybridization. Amplification
of 12q has been identified in a large variety of other
cancer types. The 12q expressed genes in NB mapped
to a site similar to the complex amplicon reported in
sarcomas and gliomas and identify critical genes 
and pathways affected by 12q gene amplification
(Fig. 9.4). This use of positional gene expression
mapping provides a means to efficiently filter and se-
lect genes within altered chromosomal regions that
are prime candidates to contribute to neoplastic de-
velopment. Importantly, the data described here sug-
gest that gene expression analysis can identify molec-
ular markers that segregate with biological pheno-
type and molecular classification of NB.

9.5 Conclusion

It is clear that comprehensive molecular studies will
have a significant effect on research in cancer biology
and oncology. It is also clear that these techniques
should be used with discretion and common sense to
avoid over interpretation of the large volumes of
data, much of which has yet to be validated. Nonethe-
less, analysis of human tissue samples with a careful-
ly controlled experimental design and rigorous data
analysis could lead to new discoveries in gene-func-
tion relationships that will complement traditional
focused experiments in model systems. Advanced
molecular techniques may provide the tools to better
understand the clinically heterogeneity and complex
biology of NB.Although there are many challenges in
moving complex assays from research laboratories to
practical utility in diagnostic medicine, the signifi-
cant potential for identifying therapeutic targets and
improving treatment for children with high-risk dis-
ease make this a task worth pursuing.
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10.1 Introduction

Primary neuroblastoma (NB) tumors may develop
anywhere along the sympathetic chain or in the adre-
nal medulla. Although the majority of tumors are
found in the retroperitoneum, primary sites in the
posterior mediastinum, pelvis, and neck also occur
but are less common (Abramson 1997). Neuroblas-
tomas are often locally invasive and may encase sur-
rounding vascular structures and extend into local
lymph nodes. More than 50% of children with NB
present with distant disease. Common sites of metas-
tases include bone, bone marrow, liver, skin, and
lymph nodes. Occasionally, patients may also present
with lung and central nervous system metastases.
Treatment strategies are based, in part, on the results
of imaging studies that are used to evaluate the stage
of disease at the time of diagnosis as well as disease
response following therapy. This chapter reviews the
imaging modalities that have been shown to be use-
ful for clinical staging, assessing potential resectabil-
ity, and examining response to therapy.

10.2 Imaging Modalities

10.2.1 Ultrasonography

Ultrasonography is the most commonly performed
screening examination for abdominal and pelvic
problems in pediatric patients. Unlike many other im-
aging studies, sedation is not needed for ultrasonogra-
phy and there is no exposure to ionizing radiation.The
location of the primary tumor, the presence of vascu-
lar encasement, and metastasis to the liver may be de-
tected by ultrasonography. Calcifications are demon-
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strated as focal areas of increased echogenicity, some-
times associated with acoustical shadowing. The aorta
and inferior vena cava are usually anteriorly displaced
by the retroperitoneal mass. Tumor invasion of the liv-
er or kidney can be assessed by visualization of planes
between the mass and the liver or kidney.Doppler may
be used to demonstrate flow in vessels compressed by
tumor; however,evaluation of the full extent of the dis-
ease is not possible with ultrasonography.

10.2.2 Computerized Axial Tomography

Computerized axial tomography (CT; Tables 10.1,
10.2) scans can be performed relatively quickly and tu-
mor calcifications are readily detected (Cohen 1992).
CT of the head and orbits should be performed in any
patient with suspected cranial bone involvement, and
chest CT scans are necessary for evaluating parenchy-
mal lung disease. The presence of bony changes on CT
at diagnosis is diagnostic of metastatic stage-4 NB, To

obtain optimal CT scans of the abdomen, adequate
contrast filling of bowel as well as bolus intravenous
contrast enhancement are required.CT cannot be used

Table 10.1. Technique for computerized axial tomography
radiation dose

Age (years) Effective mA Effective kV

<1 60 80

1–5 60 100

5–10 80 100

10–17 100 100

17–25 120 120

May need more mA if large patient
A CT examination in children should be performed using as 
little radiation as possible. The use of multi-detector scanners
is an advantage in decreasing radiation dose and decreasing
the duration of the examination.

Table 10.2. Preparation for CT scanning: oral contrast; intravenous contrast; and sedation

Oral contrast

0–4 years 4 ml of Gastrografin mixed well with 8 oz of clear fluid

5–12 years 6 ml of Gastrografin mixed well with 12 oz of clear fluid

12–18 years 8 ml of Gastrografin mixed well with 16 oz of clear fluid

> 18 years Adult dose

Note:The clear fluid may be juice or soda of the patient’s choice.

When receiving general anesthesia the oral contrast is given more than 2 h before the scan so that the patient will be
NPO for 2 h before being anesthetized

Intravenous contrast

All patients receive nonionic contrast

Dose 2 ml/kg for chest, abdomen, and pelvis not to exceed 150 ml

Dose for neck, chest, abdomen, and pelvis total  TOTAL 3 ml/kg; split dose 1/3 for neck, 2/3 for chest, abdomen 
and pelvis not to exceed 60 ml for neck and 120 ml for chest, abdomen, and pelvis

Injection rate 1 ml/s

0.8 ml/s for Mediports or Broviacs

Hand injection for small peripheral lines

PICC lines cannot be used for injection

Sedation

General anesthesia is usually necessary for patients under 3 years of age. Exception is made if fast (5–10 min) scanners
are available, where the child may be fed a bottle containing oral contrast material mixed with clear fluid 15–20 min 
before being papoose-immobilized on the scanner table 
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to evaluate bone marrow, and this imaging study is
inadequate for the evaluation of epidural disease
(Fig. 10.1). In young children the lack of intraperi-
toneal fat also makes extent of disease evaluation by
CT suboptimal. Younger children may require general
anesthesia for CT studies, and in these cases distin-
guishing true lung involvement from atelectasis is not
always possible. In addition, CT cannot reliably be
used to evaluate the response of bone disease, as bony
abnormalities may persist for months to years; howev-
er, active bone disease can be accurately diagnosed by
CT if periosteal reaction and soft tissue extension are
seen. Unlike ultrasound, there is radiation exposure
from CT.

Figure 10.1 a–c

Retroperitoneal neuroblastoma with extension of disease. a Contrast-en-
hanced CT demonstrates the top of a partially calcified left adrenal mass 
(arrow). Note left para-aortic node as well as liver metastasis (open arrow).
Note mass in the soft tissues of the left back with extension into the neural
canal (arrowheads). The effect of the epidural component cannot be fully
evaluated on CT. b Coronal T2-weighted MR image demonstrates the T10/11
– T12 left epidural mass compressing the spinal cord with extension into the
adjacent left neural foramen. Note enhancing liver metastasis (arrow).
c Sagittal T2-weighted MR image in the same patient demonstrates thoracic
epidural disease with spinal cord compression. Note marrow involvement in
mid-thoracic vertebral body (arrow)
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10.2.3 Magnetic Resonance Imaging

Many investigators consider magnetic resonance im-
aging (MR; Table 10.3) the imaging modality of
choice in the initial evaluation of NB (Siegel et al.
2002; Sofka et al. 1999). Magnetic resonance has dis-
tinct advantages over CT including (a) the absence of
ionizing radiation, (b) the ability to evaluate neural
foraminal and epidural involvement, and (c) the abil-
ity to detect bone marrow disease. In addition, MR is
ideal for defining the precise extent of skeletal in-

volvement, separating cortical bone from marrow in-
volvement. Furthermore, invasion of the liver, kidney,
and abdominal organs can readily be detected by MR
imaging. This is particularly important in large,
right-sided masses where separation of the mass
from liver or kidney may be difficult by CT. By imag-
ing in multiple planes, MR can usually demonstrate
the relationship of the mass to adjacent organs.
Gadolinium-enhanced scans can provide additional
information in these cases (Kornreich et al. 1991). On
MR neuroblastoma characteristically has prolonged

Table 10.3. Magnetic resonance imaging evaluation of patients with neuroblastoma. Suggested techniques, contrast, scan
sequences, and anatomical sites

Machine specifications

Magnet: 1.5-T unit

Coils: Body coils or phased-array coils are used for most pediatric patients. Head coils are used for neonates and infants

Slice thickness: ranges from 5-mm slice thickness with 0- to 1-mm intersection gaps to 8-mm slice thickness 
with 0- to 2-mm intersection gaps depending on the size of the patient

Contrast

Gadolinium: 0.1 mm/kg

Scan sequences

T1-weighted spin echo or T1-weighted gradient echo (in phase)

T2-weighted fat-suppressed fast spin echo

T1-weighted fat-suppressed spin echo or T1-weighted fat suppressed gradient echo (in phase) after IV injection 
of gadolinium

Evaluation of anatomical sites

Pelvis and femurs to mid-femoral shafts for evaluation of marrow disease and pelvic involvement

Coronal T1-weighted spin-echo or gradient-echo (in phase) sequences

Transverse T2-weighted fat-suppressed fast spin-echo sequences

Chest and abdomen: to evaluate extent of disease

Coronal T1-weighted spin-echo or gradient-echo (in phase) sequence to include the neck for evaluation 
of possible neck nodes as a site for biopsy

Transverse T2-weighted fat-suppressed fast spin-echo sequence

Transverse T1-weighted fat-suppressed spin-echo or gradient-echo (in phase) sequence after injection 
of gadolinium

Coronal T1-weighted fat-suppressed spin-echo or gradient-echo (in phase) sequence after injection of gadolinium

Lumbar spine: to evaluate marrow disease

Sagittal T1-weighted spin-echo sequence

Sagittal T2-weighted fat-suppressed fast spin-echo sequence
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T1 and T2 relaxation times, demonstrating heteroge-
neous low signal on T1 and high signal on T2. Bright
signal in the mass on T1-weighted imaging se-
quences represents hemorrhage. Although calcifica-
tions are not as readily identified on MR as on CT,
they are visualized as areas of signal void. Neverthe-
less, non-visualization of calcifications should not be
a significant deterrent to using MR for the initial
evaluation of NB.

10.2.4 Bone Scan

The bone scan (Table 10.4) has had a long-standing
role for evaluating the entire skeleton for metastatic
NB (Shulkin et al. 1992). In addition, many primary
NBs also accumulate Tc-99m MDP because of their
calcifications. The depiction of osseous lesions de-
pends on the reaction of bone to the presence of tu-
mor within bone. The bone scan provides a major di-
agnostic advantage over skeletal surveys in the as-
sessment of bony NB lesions. Considerable attention
to scan technique and positioning is critical to distin-
guish normal metaphyseal uptake from NB involve-
ment, particularly when these lesions are symmetri-
cal. Since NB frequently localizes in the metaphyseal
region adjacent to the epiphyseal plates, sites of nor-
mally increased uptake of bone seeking tracers,
metastatic involvement may be difficult to appreciate
in these areas of normal high physiological accumu-
lation.

10.2.5 MIBG Scintigraphy

Most NB tumors effectively concentrate tracers de-
signed to image the sympathetic nervous system and
other tracers with avidity for somatostatin receptors.
Meta-iodobenzylguanidine (MIBG) scintigraphy was
developed at University of Michigan in the late 1970s
to image the adrenal medulla (Wieland et al. 1980),
and was later successfully applied to functional imag-
ing of pheochromocytoma (Sisson et al. 1981) and
NB (Treuner et al. 1984; Geatti et al. 1985). MIBG is a
tracer for the type-1 amine uptake and granular stor-
age pathways (APUD: amine precursor uptake and
decarboxylation). Once transported into the NB cell
the majority of MIBG remains within the cytoplasm
(Smets et al. 1989, 1990). In contrast to pheochromo-
cytoma cells where MIBG is actively transported into
catecholamine storage granules by a reserpine-sensi-
tive pump, accumulation of MIBG in NBs depends on
continued reuptake of the effluxed radiotracer. MIBG
is not metabolized by the enzymes which metabolize
catecholamines. Drugs that interfere with uptake of
catecholamines and related compounds may impair
visualization of NBs; these include over-the-counter
non-prescription cough and cold preparations which
contain pseudoephedrine or phenylpropanolamine,
and labetolol, a beta-adrenergic antagonist. Before
injection of the MIBG tracer, parents should be asked
specifically about recent administration of all pre-
scribed and over the counter drugs.

Table 10.4. Technetium-99m bone scintigraphy

Bone scanning principles Scan technique

Image entire body with particular attention to patient Intravenous injection of 25 mCi Tc-99m-MDP/1.73 m2,
position: knees and elbows should be as flat as imaging begun 2–3 h after injection
obtainable to assess peri-articular uptake

Bladder should be empty for adequate visualization Multi-headed gamma camera with low-energy collimator
of the pelvis. In small children this may require bladder preferred
catheterization (if it can be safely done) or delayed 
images after voiding.

Computer acquisition

Single photon emission CT as needed
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Review of 13 publications from eight countries on
MIBG scintigraphy performed on 330 patients (Feine
et al. 1987; Geatti et al. 1985; Heyman et al. 1988; Lum-
broso et al. 1988; Schmiegelow et al. 1989; Shulkin and
Shapiro 1990; Troncone et al. 1990) indicates that the
sensitivity of disease detection is ~87% and the speci-
ficity is ~94%. The positive predictive value is ~98%,
while the negative predictive value is ~70%. The ma-
jority of patients in the reported studies were evaluat-
ed with I-131 MIBG. Both I-131 and I-123 MIBG are
excellent agents for imaging NB. In the United States
both the I-131 and the I-123 labeled forms are com-
mercially available, although I-123 MIBG has gained
wider use in the past few years because of its superior
scintigraphic properties and radiation safety consid-
erations. The images obtained from I-123 MIBG stud-
ies have higher count densities and greater quality,
and the sites of normal uptake are more readily rec-
ognized. In direct comparisons of the two com-
pounds, one study showed that the same number of
lesions were identified by both techniques, while an-
other study suggested that more lesions were identi-
fied with I-123 MIBG scintigraphy (Gelfand 1996;
Simon et al. 1992). High-quality single-photon-
emission CT (SPECT) images can be obtained using I-
123 MIBG. One study indicated that a greater number
of abnormal sites of uptake can be detected by SPECT
than by planar scintigraphy, with better anatomic lo-
calization of the lesions (Ruffini et al. 1996); however,

other investigators did not find more lesions by
SPECT, although an increase in the certainty that sus-
pected abnormalities on planar imaging were indeed
abnormal was reported (Gelfand et al. 1994).

MIBG is highly specific for NB in the usual pedi-
atric context (Leung et al. 1997). The results of MIBG
scintigraphy in 100 children with a variety of child-
hood tumors other than NB studied in five referral
centers in three countries showed a specificity of
>95%. In these studies, solid tumors of childhood,
such as Wilms tumor and soft tissue sarcoma, failed
to concentrate MIBG (0 of 14 and 0 of 15, respective-
ly). The remainder of the patients also had negative
scans except for 1 of 2 with infantile myofibromato-
sis, 1 of 2 with neuroendocrine carcinomas, 1 of 2
pancreatoblastomas, and 1 of 10 primitive neuroec-
todermal tumors; thus, MIBG is only rarely concen-
trated by non-neural crest tumors.

MIBG scans may also have prognostic value. A
study by Suc and colleagues (1996) suggested that
children older than 1 year with more than four de-
posits of MIBG avid NB at diagnosis were seven times
less likely to achieve a complete remission after four
courses of chemotherapy. Similar results have been
reported by Perel and co-workers (1999). In addition,
a recent study by Matthay et al. (2003) suggests that
the number of MIBG-positive lesions identified after
four cycles of induction therapy may be predictive of
outcome.

Table 10.5. MIBG imaging

Principles Scan technique

Imaging of entire body SSKI or other iodine solutions to block uptake of free 
radioiodine into the thyroid. Begin the day prior to injection 
and at minimum, 30 min prior to injection

I-123 MIBG produces images of much higher count Intravenous injection of 10 mCi I-123-MIBG/1.73 m2

density than I-131 MIBG. I-123 has less radiation hazard 
and requires less stringent thyroid protection

Bladder should be empty for adequate visualization Whole-body imaging 18–24 h later, low-energy collimator
of the pelvis. In small children this may require bladder 
catheterization (if it can be safely done) or delayed 
images after voiding.

Computer acquisition

Single photon emission CT as needed
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10.2.6 Octreotide Scanning

Many neuroendocrine tumors express somatostatin
receptors, and the currently available In-111DTPA-
pentetreotide (Octreoscan) detects the majority of
NBs and pheochromocytomas; however, this com-
pound appears to be inferior to MIBG for imaging
these tumor types (Lauriero et al. 1995; Manil et al.
1996; Sautter-Bihl et al. 1994).Visualization of NBs in
the abdomen and pelvis can be impaired by the
marked normal hepatic, splenic, renal, and bowel up-
take of this agent. In contrast to specificity of MIBG,
Octreoscan images many types of neuroendocrine
tumors, including carcinoids, islet cell tumors, pitu-
itary adenomas, and medullary carcinoma of the thy-
roid, and non-neuroendocrine tumors, such as lym-
phomas and small cell carcinoma of the lung. Inflam-
matory infiltrates may also show uptake.

10.2.7 Positron Emission Tomography
Scanning

F-18 fluorodeoxyglucose (FDG) is concentrated by
most NBs and pheochromocytomas (Fig. 10.2;
Shulkin et al. 1996; Kushner et al. 2001). Unlike trac-
ers specific for tissues of the adrenergic nervous sys-
tem, FDG uptake does not depend on type-1 cate-
cholamine uptake. Most NBs concentrate FDG and
uptake prior to therapy is often intense, decreasing
with treatment. FDG imaging in NBs is particularly
valuable for monitoring those tumors which do not
concentrate MIBG.

10.2.8 Other Tracers

Gallium-67 is rarely used for imaging of NB. Al-
though nearly 80% sensitivity for detection of the
primary tumor has been reported, gallium imaging
did not visualize skeletal involvement (Garty et al.
1989). Tl-201 has been useful for imaging a variety of
soft tissue tumors, but this tracer localizes poorly in
NB (Howman-Giles et al. 1995). A number of ligands
similar to MIBG have also been used to study sympa-
thetic innervation of the heart as well as to image
neuroendocrine tumors. These include I-123 amino
iodobenzylguanidine (AIBG), F-18 fluorodopamine,

F-18 fluronorepinephrine, F-18 fluorometaraminol,
C-11 hydroxyephedrine (HED), C-11 epinephrine
(EPI), C-11 phenylephrine, and fluoro-metaiodoben-
zylguanidine (FIBG); only three have been investigat-
ed in patients with neuroendocrine tumors (Shulkin
et al. 1986, 1996, 1999). FIBG has been shown to be
concentrated by NB cells in culture (Vaidynathan et
al. 1994b). Benzylguanidine labeled with the alpha
particle emitter Astatine 211 has been proposed as a
potential radiotherapeutic agent (Vaidyanathan et al.
1994a). These derivatives of MIBG rely on the type-1
uptake pathway for entry into the cell.

The I-131 labeled monoclonal antibody 3F8 spe-
cific for ganglioside GD2 has been used for radioim-
munoscintigraphy and radioimmunotherapy of NB.
Because of the abundance of this antigen on neurob-
lastoma (5–10×10–6 molecules per cell), high levels of
radiolabel can be deposited selectively to tumor in-
stead of normal tissues (Miraldi et al. 1986; Yeh et al.
1991). The I-124 labeled form has also been used to

Figure 10.2

A 4-year-old with extensively treated neuroblastoma
under consideration for bone marrow transplant. I-123
MIBG scan (not shown) showed no abnormal uptake.
Left panel: Coronal image from PET-FDG scan shows
large area of markedly increased uptake (arrow). Trans-
verse image from PET-FDG scan (right upper panel)
shows markedly increased uptake (arrow) occupying
most of the abdomen.A CT scan of same area (right low-
er panel) shows the large abdominal mass (arrow) with
mixed attenuation characteristics. The patient soon af-
ter died from progressive disease
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improve tumor dosimetry (Larson et al. 1992). Sever-
al other monoclonal antibodies that may prove to be
useful in imaging NB are under investigation (see
Chap. 14 for a detailed discussion of antibody-based
radioimmunotherapy).

10.3 Disease Evaluation

10.3.1 Primary Site

Primary retroperitoneal NB tumors frequently infil-
trate behind the aorta and IVC (inferior vena cava)
displacing these vessels anteriorly. In addition, tu-
mors commonly encase the aorta, IVC, renal arteries,
renal veins, celiac axis, and superior mesenteric ar-
tery. When compared with CT, MR appears superior
in evaluating vascular displacement and encasement
(Tanabe et al. 1993a, b). Measurement of tumor vol-
ume as a quantitative response to therapy has be-
come important study endpoints, for prognosis and
follow-up. In some therapeutic protocols, the per-
centage of tumor shrinkage as determined by CT
scan or MR imaging is critical to the continuation or
abandonment of specific therapies (Wheatley et al.
1995).

10.3.2 Local Invasion

Extension of disease to lymph nodes adjacent to pri-
mary abdominal NB tumors in the renal hila, porta,
and retroperitoneum is commonly seen. Separation
of the primary tumor from the adjacent involved
nodes is often not possible, regardless of the imaging
modality utilized. Distant nodal disease, particularly
in the neck where they are readily accessible to biop-
sy, should be identified on CT scans or on coronal MR
scans in patients with large unresectable primary tu-
mors, possibly sparing the patient an open biopsy
(Abramson et al. 1996). Mediastinal, hilar, paratra-
cheal, subcarinal, and azygoesophageal adenopathy
can be due to direct extension of large thoraco-
abdominal primary tumors or may represent
metastatic disease.

Direct invasion of abdominal organs, including
liver and kidney, can occasionally be seen. Invasion of
the psoas muscle is not uncommon. Pleural effusions

are uncommon and are typically observed in the
presence of tumor masses that are pleural based or
rib lesions. Epidural involvement may be partially
identified on CT. Magnetic resonance is necessary for
full evaluation of foraminal and epidural tumor ex-
tension and possible cord compression (Sofka et al.
1999; Siegel et al. 1986) (Fig. 10.1).

10.3.3 Distant Metastases

10.3.3.1 Bone Metastases

Bone metastases may be detected by bone scintigra-
phy, MIBG scan, and PET scan. Symmetrical skeletal
involvement is easier to interpret by MIBG than by
bone scan. Furthermore, bone scan can remain ab-
normal for months even after the successful treat-
ment of the tumor, whereas MIBG will not be taken
up by healing bone; however, since bone and bone
marrow are two distinct compartments with dis-
parate prognostic importance (e.g., stage 4 vs stage
4S in infants), caution should be exercised in assign-
ing bony involvement solely on MIBG. False-negative
I-123 MIBG scans for skeletal involvement have been
reported, prompting some investigators to recom-
mend both I-123 MIBG plus bone scans for the eval-
uation of NB (Gordon et al. 1990). In stage-4 patients,
where bony and bone marrow involvement usually go
hand in hand, concordance between MIBG scanning
and bone scanning is generally the rule (Shulkin et al.
1992); however, some studies have indicated that
more skeletal lesions may be evident on MIBG scan
compared with bone scan (Hadj-Djilani et al. 1995).
Bone lesions may also be identified on CT; however,
these lesions persist as abnormalities on CT for years,
even in the face of bone and MIBG scans that have
reverted to normal.

10.3.3.2 Bone-Based, Dural-Based,
Leptomeningeal, and Brain Metastases

Computed tomography scan or MR imaging of skull
metastases shows bony erosion or abnormal bone
signal and soft tissue masses, which may extend into
the soft tissues of the scalp or push through the inner
table of the skull (Egelhoff and Zalles 1996). Dural
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disease, which is common, may be well demonstrated
with either contrast-enhanced CT scan or MR imag-
ing. Once through the dura, these tumors can im-
pinge on the brain parenchyma. Sphenoid bone in-
volvement may extend into the orbits as a soft tissue
mass causing proptosis. Diffuse leptomeningeal dis-
ease may be visualized by CT (Sener 1993) or MRI.
Although MR with gadolinium contrast has high sen-
sitivity in detecting meningeal metastasis, occasion-
ally false-positive results can be seen following gen-
eral anesthesia and lumbar puncture. Intracerebral
metastatic lesions are usually solid (Kramer et al.
2001) and occasionally hemorrhagic (Aronson et al.
1995) (Fig. 10.3) or cystic (Kenny et al. 1995). These
cystic lesions may display contrast-enhancing rims
and be confused with infection or inflammation.

10.3.3.3 Marrow Metastasis

Histological examination is the gold standard for the
diagnosis of marrow metastasis. MIBG is the most
efficient test to estimate the distribution and severity
of bone marrow involvement (Fig. 10.4; Osmana-
gaoglu et al. 1993). Spotty marrow involvement can
be missed by tissue biopsy. In addition, MIBG and
MRI may show bone marrow involvement in areas
not accessible to biopsy.

MRI may show more bone marrow lesions than
MIBG (Corbett et al. 1991).

Figure 10.3 a,b

Intracerebral metastases. a Patient 1. Axial post-contrast CT of the brain reveals a hemorrhagic left posterior frontal brain
metastasis. b Patient 2. Post-contrast axial T1-weighted image of the brain demonstrates a left frontal brain metastasis
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10.4 Prenatally Diagnosed Neuroblastoma

With the advent of routine prenatal ultrasonography,
the diagnosis of fetal (Ho et al. 1993; Toma et al. 1994;
Jennings et al. 1993) or congenital (Granata et al.
2000; Forman et al. 1990) neuroblastoma has become
more common. The tumor may be solid or cystic
(Atkinson et al. 1986; Hamada et al. 1999) and may be
localized (stage 1) or associated with liver metastases
(stage 4S; Toma et al. 1994). Subcutaneous nodules
are frequently present. At birth, these findings can be
confirmed by ultrasonography. In addition to NB, the
differential diagnosis of an adrenal mass detected
prenatally or at birth includes extralobar pulmonary
sequestration (Curtis et al. 1997) and adrenal hemor-
rhage (Strouse et al. 1995; Burbige 1993). Many adre-
nal hemorrhages show shrinkage within 2 weeks af-
ter birth; however, shrinkage of an adrenal hemor-
rhage may sometimes take weeks to months. These
masses therefore may be confused with tumor.On the
other hand, regressing NB in a neonate can also mim-
ic adrenal hemorrhage (Croitoru et al. 1992). In the

absence of large tumor masses and organ compro-
mise, observation rather than surgery is acceptable in
an asymptomatic infant with a small adrenal mass
(see Chap. 11). Follow-up ultrasonography is impor-
tant, especially if there is liver involvement. If clini-
cally indicated, the distinction between NB and adre-
nal hemorrhage can usually be made with MIBG
scintigraphy.

10.5 Stage-4S Neuroblastoma

In the absence of adverse biological factors infants
with stage-4S disease have a high incidence of spon-
taneous regression and an excellent prognosis (see
Chaps. 7 and 10). In stage-4S disease the extent of dis-
ease is initially evaluated with CT or MR of the head,
neck, chest, abdomen and pelvis, and MIBG scintig-
raphy; however, once the diagnosis is made and if
good biology is confirmed, ultrasonography is a use-
ful method of follow-up. The liver may show persist-
ent heterogeneous echo texture, although focal nod-
ules should eventually resolve (Fig. 10.5). If the mass

Figure 10.4

A 3-year-old with widespread neuroblastoma at presentation.Alternating panels of MIBG scan and bone scan.Foci of dis-
ease are much better delineated on the MIBG scan. Top row are anterior views, bottom row are posterior views.The MIBG
scan shows extensive skeletal involvement: there is abnormal uptake in both shoulders (arrows, panels 1 and 2), both
wrists (panels 3 and 4), the proximal femurs (panels 3 and 4), the distal right femurs (panels 5 and 6), both knees (panels
5 and 6), and ankles (panel 5). Ankles are seen on MIBG views only. A large left abdominal mass is seen on MIBG images
(panel 3)
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increases in size or liver lesions progress, patients
should be re-evaluated, and treatment may be indi-
cated. Efforts to limit exposure to repeated ionizing

radiation from follow-up CT examinations and rou-
tine MIBG studies in this group of young infants
should be made.

Figure 15.5 a–e

Stage-4S Neuroblastoma. Baby presented at 3 days of
age. Bone and bone marrow were normal. The patient
received no therapy. a Contrast-enhanced CT scan re-
veals a partially calcified right adrenal mass (arrow) and
a low-attenuation liver metastasis (arrowhead). b Ultra-
sonography at diagnosis reveals a right adrenal mass
(arrowhead) and several hepatic nodules (arrows). c Ul-
trasonography at 6 months of age demonstrates de-
crease in size of the right adrenal mass (arrow). d Ultra-
sonography at 11 months of age shows further
decrease in size of the adrenal mass (arrow). The liver
metastases have resolved. e Ultrasonography at 2 years
3 months shows only a residual hyperechoic area (calci-
fication) in the region of the right adrenal gland (arrow)
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10.6 Evaluation of Disease Response

According to the INSS, disease response should eval-
uated CT/MRI of the primary and metastatic sites,
MR of epidural or CNS involvement, bone scan, and
MIBG scan; however, it must be remembered that oc-
casionally ganglioneuromas are detected by MIBG
scintigraphy. Prior to second-look surgery, a repeat
CT scan of the primary site is important for surgical
planning. In addition to the primary tumor, adjacent
lymph nodes in the thorax, retroperitoneum, and
pelvis should be evaluated. Small lymph nodes are
better identified on CT than MR, and may be too
small to characterize on MIBG scanning.

For patients with intermediate- and high-risk dis-
ease, CT/MRI examinations are typically performed
in conjunction with MIBG scans at 3- to 6-month in-
tervals during treatment and for 1–2 years following
the completion of therapy. Routine scanning after
this time should be continued only for those patients
with persistent abnormalities. Routine follow-up
bone scans do not yield much extra information, un-
less progression is suspected and or local radiation is
planned. Equivocal findings can be further evaluated
with FDG-PET scans (Fig. 10.2).

10.7 Conclusion

Imaging plays a critical role in evaluating the extent
of disease at diagnosis and in assessing response to
therapy. A variety of imaging modalities are avail-
able, and each can provide unique information. Radi-
ation exposure, scanning protocols, and sedation
times are significant factors that should be taken into
account in determining which studies should be
used.Minimizing radiation exposure is of paramount
importance in the follow-up of neonates and young
infants with favorable biology NB. At the present
time, several different imaging studies are needed to
optimally evaluate the primary tumor, and the pres-
ence and location of metastatic disease. New imaging
modalities may improve our ability to evaluate NB
with less risk of radiation exposure.
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11.1 Low-Risk Neuroblastoma

Brian H. Kushner, Susan L. Cohn

11.1.1 Introduction

Low-risk neuroblastoma is defined as disease that is
curable with no or minimal cytotoxic therapy and is
strongly associated with spontaneous regression.Ap-
proximately 40% of neuroblastoma patients have
low-risk disease. According to the Children’s Oncolo-
gy Group (COG) Neuroblastoma Risk-Group Schema
criteria, this category includes patients with com-
pletely resected localized tumors (stage 1), unre-
sectable unilateral tumors (stage 2A), localized tu-
mors with ipsilateral regional lymph node spread
(stage 2B), and infants with unilateral primary tu-
mors with distant disease limited to the bone mar-
row, liver, and skin (stage 4S; see Chap. 7). Numerous
studies have demonstrated excellent survival rates
for infants with favorable biology stage-4S neuroblas-
toma with minimal to no therapy (Guglielmi et al.
1996; Hero et al. 2000; Katzenstein et al. 1998; Nicker-
son et al. 2000; Schleiermacher et al. 2003), and most
patients with INSS stage-1 and stage-2 disease can be

cured with surgery alone (Alvarado et al. 2000; de
Bernardi et al. 1995; Evans et al. 1996; Kushner et al.
1996b; Matthay et al. 1989; Nitschke et al. 1988; Perez
et al. 2000); however, the resectability of local–re-
gional tumors, which is a defining criterion for INSS
stage, is dependent to some extent on subjective fac-
tors such as the surgeon’s experience and the treating
team’s commitment to avoiding cytotoxic therapy.
Prognostic uncertainty also applies to at least two
very rare subtypes currently included in the low-
risk category, namely, stage-1 neuroblastoma with
MYCN amplification (Cohn et al. 1995) and biologi-
cally favorable stage-2 tumors in adolescents (Franks
et al. 1997; Gaspar et al. 2003).

11.1.2 Clinical Presentation

The majority of low-risk neuroblastomas are discov-
ered incidentally. An asymptomatic abdominal neu-
roblastoma may be palpated during a routine physi-
cal examination or revealed in utero by prenatal ul-
trasonography. A posterior mediastinal neuroblas-
toma may be serendipitously seen on a chest film per-
formed in a child with suspected pneumonia. Low-
risk neuroblastomas may also cause signs and symp-
toms that prompt medical investigations. Relatively
common direct mass effects in low-risk cases include
progressive abdominal distention, cervical adenopa-
thy, Horner’s syndrome, and acute paraplegia. Sys-
temic symptoms associated with low-risk cases in-
clude watery diarrhea from vasoactive intestinal pep-
tide release by neuroblasts, tachycardia from exces-
sive catecholamine production, and opsoclonus–my-
oclonus–ataxia, which is thought to result from an
autoimmune phenomenon mediated by antibodies
cross-reacting with antigens on neuroblasts and on
cells in the cerebellum (see Chap. 13).

In contrast to the marked preponderance of ab-
dominal primaries in high-risk disease, up to 50% of
stage-1 and stage-2 neuroblastomas are extraabdom-
inal. Adrenal primaries and liver lesions occur in
80–90% of stage-4S cases, while morphologic evi-
dence of bone marrow involvement is seen in ~35%
of cases and subcutaneous nodules are present in
15% of cases (DuBois et al. 1999).
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11.1.3 Clinical Staging

Aspects of staging worthy of note include the post-
operative presence of microscopic residual disease
with stage 1 and the imprecision of “incomplete gross
excision” for separating stage 2A from stage 1; how-
ever, since all stage-1 and stage-2A neuroblastomas
are grouped into the same low-risk category, the
practical implication of exact stage classification (us-
ing the extent of post-operative disease) for these two
entities is nil. In contrast, risk-group assignment and
major management decisions are dependent on stag-
ing distinctions that have an uncertain biologic basis
in several clinical settings: (a) stage 2A and one sub-
type of stage 3 (intermediate risk) both involve lack
of resectability and gross residual post-operative dis-
ease; (b) stage 2B and one subtype of stage 3 (inter-
mediate risk) both involve regional lymph node
spread with laterality as the sole distinguishing fac-
tor; and (c) widespread disease in infants without os-
seous or extensive bone marrow involvement can be
low-risk stage 4S or intermediate-risk stage 4 de-
pending on the size and resectability of the primary
tumor and the presence or absence of contralateral or
distant nodal involvement.

11.1.4 Biologic Prognostic Markers

The prognostic value of biological markers in low-
risk neuroblastoma is controversial. In part, this is
because few events are observed in this cohort of pa-
tients and few studies have been performed in which
MYCN copy number, DNA index, and histology have
been analyzed in large numbers of patients. Accord-
ing to the current COG Risk-Group Schema, stage-4S
disease is classified as low risk if all three of these bi-
ologic factors are favorable; however, while several
studies have indicated that MYCN amplification and
unfavorable histology are associated with poor out-
come in infants with stage-4S disease (Hachitanda
and Hata 1996; Katzenstein et al. 1998; Shimada et al.
1995), the prognostic impact of diploidy in the ab-
sence of MYCN amplification is not clear. Although
Bourhis et al. found that diploidy correlated with
poor outcome in a small study (Bourhis et al. 1991),
DNA content was not found to be predictive of out-

come in stage-4S infants in other studies (Bowman et
al. 1997; Look et al. 1991).

Currently, stage 1 in all age groups is considered
low risk regardless of biologic markers and the same
holds for infants with stage-2 disease. In older pa-
tients, lack of MYCN amplification is the only biolog-
ic finding needed for classifying stage 2 as low risk.
Large Pediatric Oncology Group (POG) and Chil-
dren’s Cancer Group (CCG) studies have demonstrat-
ed that MYCN amplification occurs in less 5% of
children with INSS stage-1 and stage-2 disease (Al-
varado et al. 2000; Perez et al. 2000). In the series re-
ported by Perez et al. 7 patients had MYCN-amplified
tumors (Perez et al. 2000). Two of 4 patients with
stage-1 disease remain disease free following surgery
alone or treatment with surgery and chemotherapy.
Of the 3 patients with stage-2B disease, 2 have died of
progressive disease. Similarly, MYCN amplification
strongly predicted lower EFS and S rates in the POG
study (Alvarado et al. 2000); however, the 5-year esti-
mated S rate for this group of patients was 64±27%.
Four of 11 patients with MYCN amplification remain
disease free after surgical resection alone, and 4 of
the 7 patients with relapsed disease were successfully
saved with additional therapy. Additional factors are
still needed to distinguish those patients with MYCN
amplification who will achieve long-term remission
with surgery alone from those who will develop re-
current disease.

11.1.5 Treatment

The focus of this chapter is on the subset of patients
with neuroblastoma who can do well without cyto-
toxic therapy and lack clinical characteristics that
connote a poor prognosis, namely, highly locally in-
vasive unresectable primary tumor, cortical bone
metastases, and extensive bone marrow involve-
ment. Osteomedullary involvement is an objective
finding, but resectability is partly dependent on sub-
jective, nonquantifiable factors. An aversion to per-
form major surgery might be strengthened by imag-
ing studies showing extensive disease. Resectability,
however, can only be definitively assessed during
surgery. Low-risk tumors are frequently character-
ized by a firm consistency that makes resection a fea-
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sible option, even if the tumor extends across the
midline. By contrast, primary tumors in patients
with high-risk disease are often impossible to mobi-
lize and resect due to hemorrhagic friability and ad-
hesiveness to neighboring tissues. These disparities
in tumor consistency likely reflect biological differ-
ences. Although low-risk neuroblastomas might po-
tentially be resectable in their entirety, complete re-
sections sometimes entail the risk of significant
morbidity such as brachial plexopathy with a cervi-
cal tumor; thus, a treatment plan that includes
chemotherapy regardless of the extent of tumor re-
section may make it unjustifiable to undertake a dif-
ficult procedure needed to achieve a gross total exci-
sion. Alternatively, a partial resection followed by
chemotherapy or observation alone may be reason-
able, given the very small risk that residual bio-
logically favorable tumor might evolve into lethal
metastatic disease.

11.1.5.1 Localized Tumors 
with No Regional Spread

Since the 1980s, surgery alone has been deemed ade-
quate treatment for the 10% of patients with neurob-
lastoma whose tumors have no nodal or distant
spread and are grossly excised (stage 1). This ap-
proach, even in the presence of microscopic residual
disease, has been accepted because retrospective
studies (Adam and Hochholzer 1981; Castleberry et
al. 1979; Coldman et al. 1980; Hayes et al. 1983; Le
Tourneau et al. 1985; Zucker 1974) and prospective
studies (Berthold et al. 1986; de Bernardi et al. 1987;
Evans et al. 1976, 1984; Kushner et al. 1996b) of pa-
tients with well-circumscribed neuroblastoma have
shown near 100% survival regardless of post-opera-
tive management (Table 11.1.1). For example, in an
early prospective group-wide study in which surgery
alone was used for Evans stage I (equivalent of INSS
stage 1), there was only one (late) death among 26 pa-
tients followed for a minimum of 45 months (Evans et
al. 1984). In another cooperative group study note-
worthy for its large size, prospective design, and use
of staging criteria identical to those of INSS stage 1,

there were only 3 deaths with surgery alone among
101 patients (Nitschke et al. 1988). Subsequent large
prospective group-wide studies in the 1990s con-
firmed that outcome for this subset of patients fol-
lowing surgery alone is excellent (Alvarado et al.
2000; Perez et al. 2000).

Newborns with small adrenal masses constitute a
particularly favorable cohort of patients (Acharya et
al. 1997; Ho et al. 1993; Holgersen et al. 1996; Nishihi-
ra et al. 2000; Sauvat et al. 2002; Saylors et al. 1994; Ya-
mamoto et al. 1998). Recently, trials of expectant ob-
servation have been reported for newborns with ad-
renal masses, and to date, all tumors decreased in size
or resolved spontaneously (Holgersen et al. 1996;
Nishihira et al. 2000; Yamamoto et al. 1998). These ob-
servations suggest that newborns with small or cystic
localized neuroblastomas can be safely observed
with low-risk of progression to advanced-stage dis-
ease. The COG is currently testing this hypothesis in
an ongoing clinical trial in which newborns with
small adrenal masses clinically consistent with stage-
1 neuroblastoma will be treated with close observa-
tion; thus, these infants may be spared surgery and
the risks associated with adrenal resection.Yamamo-
to and co-workers have reported spontaneous regres-
sion of localized tumor in infants diagnosed with
neuroblastoma by screening in Japan, suggesting that
infants with neuroblastoma detected beyond the first
month may also be safely observed (Sauvat et al.2002;
Yamamoto et al. 1998).

Surgical resection alone remains the current rec-
ommended treatment for MYCN-amplified stage-1
disease because occasional patients with this rare en-
tity have become long-term event-free survivors with
little or no therapy (Cohn et al. 1995). In addition,
mild chemotherapy regimens (such as those current-
ly used for intermediate-risk neuroblastoma) are
considered unlikely to be effective for preventing
evolution into advanced-stage (high-risk) disease,
and there is a reluctance to subject a clinically dis-
ease-free infant or child to the aggressive, highly tox-
ic multi-modality therapy that is only partially effec-
tive against advanced-stage disease. Close clinical
monitoring of these patients is warranted.
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11.1.5.2 Regionally Invasive Unilateral
Localized Tumors

Through the early 1990s, chemotherapy and/or ra-
diotherapy were routinely used in patients whose
neuroblastomas involved regional lymph nodes
apart from the main mass and/or in whom gross to-
tal resection of tumor was not achieved (stages 2 or
3). A number of considerations led to a reassessment
of that approach and to the emergence of a minimal
therapy approach:

1. An analysis of published reports suggested that
cytotoxic therapies were having little impact on
cure rates of unselected patients with neuroblas-
toma: most patients ultimately died even after
myeloablative regimens, while the remainder did
well, often with little or no cytotoxic therapy.

2. A limited potential for malignant progression of
non-stage-4 neuroblastoma was indicated in early
studies by the survival with minimal therapy of
many stage 4S patients (Evans et al. 1981; Nicker-
son et al. 1985; Stephenson et al. 1986) and of
patients left with microscopic residual disease af-
ter surgery (stage 1) (Adam and Hochholzer 1981;
Castleberry et al. 1979; Evans et al. 1984; Hayes 
et al. 1983; Nitschke et al. 1988).

3. Conflicting reports on the prognostic value of re-
gional lymph node invasion by neuroblastoma
(Hayes et al. 1983; Le Tourneau et al. 1985; Ninane
et al. 1982; O’Neill et al. 1985; Rosen et al. 1984).
The variable prognosis of extensive but localized
neuroblastomas (Berthold et al. 1986; de Bernardi
et al. 1987; Evans et al. 1984; Hayes et al. 1983;
O’Neill et al. 1985; Rosen et al. 1984; Zucker 1974)
could be accounted for by the inclusion of patients
whose tumors had unfavorable biology (Chaps. 7

Table 11.1.1 Localized neuroblastoma with no regional spread (INSS stage 1): selected series. CT chemotherapy, Cy cyclophos-
phamide, Pepti peptichemio, RT radiotherapy, S surgery, Vcr vincristine

Reference (by chronology) Period of study Clinical stage Treatment Survival

Evans et al. (1976) 1970–1974 Evans stage I S±RT±Cy 27 of 27
Prospective

Evans et al. (1984) 1975–1978 Evans stage I S alone 25 of 26
Prospective

Adam and Hochholzer (1981) 1944–1978 Evans stage I S alone 18 of 18
Retrospective S+RT±CT 18 of 19

Hayes et al. (1983) 1962–1980 Stage I and IIA S alone 15 of 15
Retrospective by St. Jude system S+RT+Cy/Vcr 12 of 12

S+RT 6 of 6

Berthold et al. (1986) 1979–1985 Evans stage I S alone 27 of 27
Prospective

De Bernardi et al. (1987) 1979–1984 Stage I S alone 15 of 17
Prospective by Italian system S+Pepti±RT 19 of 19

Nitschke et al. (1988) 1981–1986 POG stage A S alone 98 of 101
Prospective

Perez et al. (2000) 1989–1995 Evans stage I S alone, plus CT and/ 140 of 141
Prospective or RT in 10% 

of patients

Alvarado et al. (2000) 1990–1997 POG stage A S alone 313 of 323
Prospective (CT in 6 patients)
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and 11) and of patients whose stage-4 disease was
missed because of suboptimal staging studies.

4. There was increasing concern over the late effects
of cytotoxic therapy in patients with long project-
ed survival (Chap. 18). It was becoming clear that
patients with non-stage-4 neuroblastoma who de-
veloped recurrent disease could be saved (Adam
and Hochholzer 1981; Carachi et al. 1983; Castle-
berry et al.1979; McGuire et al.1985; Nitschke et al.
1983).
Taken together, the above observations and uncer-
tainties undermined the logic of treating stage 2
differently from stage 1 or stage 4S.

Approximately 15 years ago, a retrospective CCG
study demonstrated excellent outcome for patients
with Evans stage II (which included a substantial
number of patients with INSS stage 2) disease with-
out systemic therapy (Matthay et al. 1989). In that se-
ries, 75 of 156 patients received no post-operative
therapy while 66 received local radiotherapy and no
systemic therapy. Long-term survival was excellent
independent of the extent of residual disease and
whether the patient received radiation therapy. Sin-
gle-institution studies were also showing excellent
outcome without the routine use of cytotoxic therapy
(Castleberry et al. 1979; Evans et al. 1996; Kushner et
al. 1996a), with one group questioning the efficacy of
adjunctive therapy following partial or complete sur-
gical excision of the primary lesion in [Evans] stage-
I or stage-II neuroblastoma (Castleberry et al. 1979).
Chemotherapy, however, has a role in the initial treat-
ment of patients with stage-2 tumors who present
with spinal cord compromise from a paraspinal mass
or airway compromise from a tumor in the superior
mediastinum. Once such patients are clinically stabi-
lized, which usually occurs with a few cycles of
chemotherapy, successful surgical resection can of-
ten be accomplished after which no further cytotoxic
therapy need be administered.

Biologic findings reinforce arguments against the
use of cytotoxic therapy in localized disease. The
striking differences in chromosomal features of
lethal vs low-risk forms of neuroblastoma constitute
a biologic basis for the radical dichotomy in progno-
sis (see Chaps. 4 and 5). Furthermore, progression of

non-stage-4 tumors with low-risk biologic features
(triploidy, unamplified MYCN) to lethal stage-4 dis-
ease is a rare event. Neuroblastoma screening studies
provide independent evidence that supported the
concept that non-stage-4 neuroblastoma without
MYCN amplification rarely, if ever, evolves into lethal
disease (see Chap. 2).

Local–regional neuroblastoma (stages 1 and 2) is
diagnosed in very small numbers of adolescents/
adults. Unfortunately, the outlook appears to be
much worse in this older cohort of patients com-
pared with younger children with stage-1 and stage-
2 disease (Franks et al. 1997; Gaspar et al. 2003); thus,
this small subset of patients warrants close clinical
monitoring. It is not known why, given identical bio-
logic markers, infants with bone marrow involve-
ment and large tumors in soft tissues (stage 4S) are
readily curable with little or no cytotoxic therapy (see
below), while adolescents/adults, including those
with localized disease, are rarely cured (Franks et al.
1997; Gaspar et al. 2003).

11.1.5.3 Stage 4S

The clinical entity known as stage 4S is unique in its
unusual pattern of involvement (including bulky dis-
tant tumors) combined with a waxing and waning
clinical course regardless of whether surgery, chemo-
therapy, and/or radiotherapy are used (Coldman et
al. 1980; Evans et al. 1981; Guglielmi et al. 1996;
Katzenstein et al. 1998; Nickerson et al. 1985, 2000;
Schleiermacher et al. 2003; Stephenson et al. 1986).
An unequivocal distinction from stage 4 is not always
possible given subjective factors relating to the stage
of the primary tumor (as discussed above) and given
the uncertain significance for involvement of distant
lymph nodes and of atypical soft tissue sites of
disease (e.g., pleura) (Coldman et al. 1980). The pres-
ence of atypical sites is accepted as indicating stage 4
by some investigators but is considered compatible
with stage 4S by others (Hero et al. 2000). It is possi-
ble that some cases of infant stage 4 without metasta-
tic involvement of cortical bone and without MYCN
amplification might exhibit the benign natural histo-
ry of stage 4S, were they not treated with chemother-
apy.
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Biologically favorable (low-risk) stage-4S disease
resolves spontaneously in the preponderance of cas-
es, and surgical resection of primary tumors at diag-
nosis is no longer recommended since these are like-
ly to regress (Guglielmi et al. 1996); however, some
stage-4S tumors with the low-risk prognostic mark-
ers of non-amplified MYCN, hyperdiploidy, and fa-
vorable histopathology, can cause life-threatening
cardiopulmonary compromise and coagulopathies
due to extensive liver involvement. This dire situa-
tion, which is largely confined to the neonatal period
and represents a medical emergency, may abate fol-
lowing treatment with one to two cycles of low-dose
chemotherapy and/or modest doses of radiotherapy
(e.g., 150 cGy/fraction, times three fractions, using
lateral fields in an attempt to spare the kidneys and
spine). Despite persistence of liver lesions, once clin-
ical improvement has occurred, additional cytotoxic
therapy is not needed (and may be more risky than
beneficial), since the residual disease, even if exten-
sive, is likely to regress.

11.1.6 Future Directions

Greater reliance on biologic findings, including some
not currently used in risk-stratification schemas,
combined with less emphasis on precise stage, may
further the decade-long trend towards reduction of
cytotoxic therapy. This may lead to an increased
number of patients currently classified as having in-
termediate-risk disease being managed with surgery
or observation alone, rather than with chemotherapy
or radiotherapy (see the present chapter). Improve-
ments in prognostication are foreseen for the very
small subsets of patients with MYCN-amplified
stage-1 or stage-2 disease and for adolescents with
stage-2 tumor via refinements in biologic characteri-
zation of neuroblastomas.

11.1.7 Conclusion

Most patients with low-risk neuroblastoma are cured
with surgery alone, while a subset of low-risk infants
with small adrenal tumors can be safely observed
without surgery or other treatment. The excellent
outcome is due, in part, to a high incidence of spon-

taneous tumor regression observed with this group
of tumors. The identification of biologic markers
associated with favorable prognosis has facilitated
treatment reduction for ever greater numbers of neu-
roblastoma patients. While gross total resection of a
localized neuroblastoma remains the current treat-
ment recommendation for most patients, it is now
well recognized that such a procedure is not justified
if it entails acute risks such as loss of a major organ
(e.g., kidney) or damage to important nerves (e.g.,
brachial or sacral plexus) as the residual biologically
favorable disease will likely remain stable or even
regress spontaneously. Ongoing biologic studies will
hopefully lead to a refinement in the risk-group
schema as additional factors may identify the rare
patient, currently classified as low risk, who is des-
tined to fail treatment with surgery alone.
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11.2 Intermediate-Risk Neuroblastoma

Brian H. Kushner, Susan L. Cohn

11.2.1 Introduction

Intermediate-risk neuroblastoma is a clinically and
biologically heterogeneous entity. According to the
current Children’s Oncology Group (COG) Neuro-
blastoma Risk Stratification System (see Chap. 7),
this grouping includes infants with INSS stages 3 or 4
tumors that lack MYCN amplification, infants with
stage-4S disease with normal MYCN copy number
and either unfavorable histology or diploidy, and
children >1 year of age with favorable histology
stage-3 tumors that lack MYCN amplification
(Table 11.2.1). Based on these clinical and biologic
criteria, approximately 15% of all patients diagnosed
with neuroblastoma are classified as intermediate
risk (Table 11.2.2). Previous clinical trials have shown
that >85% of these patients can be cured with mod-
erate-dose chemotherapy and surgery (Bowman et
al. 1997; Garaventa et al. 2002; Matthay et al. 1998; Ru-
bie et al. 2001; Schmidt et al. 2000; Strother et al. 1997)
(Table 11.2.2 and Figure 11.2.1); thus, these patients
stand apart from those with high-risk disease, who
have long-term survival rates of <30% even with in-
tensive multi-modality therapy (see the present
chapter), and from children with low-risk neuroblas-
toma, who are usually cured with surgery alone (see
the present chapter).

11.2.2 Clinical Presentation

Intermediate-risk neuroblastomas usually present
with symptoms and signs from mass effects of the
primary tumor or of the metastatic deposits; how-
ever, unsuspected cases of intermediate-risk neuro-
blastomas may be detected during routine physical
examination, by measuring catecholamine levels in
urine (as in neonatal screening programs), or when
imaging studies are performed for other reasons,
e.g., X-ray for suspected pneumonia or antenatal
ultrasonography (Sauvat et al. 2002).
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Figure 11.2.1

Kaplan-Meier analysis of survival
for 431 intermediate-risk neu-
roblastoma patients enrolled on
the Pediatric Oncology Group
Neuroblastoma Biology Study
9047 between 1990 and 1999.
(Survival curve provided by W.
London, COG Statistics and Data
Center. Risk groups were deter-
mined by INSS stage, age, MYCN
status, tumor cell ploidy, and
available histology.)

Table 11.2.1 The Children’s Oncology Group Intermediate-risk Protocol A3961.Treatment is stratified by biology subgrouping

INSS stage Age (days) Biology

Favorable biology

3 0 to <365 MYCN non-amplified, FH,DI>1

3 ≥365 MYCN non-amplified, FH

4 0 to <365 MYCN non-amplified, FH,DI>1

Unfavorable biology

3 0 to <365 MYCN non-amplified, but either DI=1 and/or UH

4 0 to <365 MYCN non-amplified, but either DI=1 and/or UH

4S 0 to <365 MYCN non-amplified, but either UH and any ploidy or FH and DI=1

Table 11.2.2 Estimated accrual and survival according to risk-group. (Data provided by W. London from the COG Statistics and
Data Center)

Risk group Estimated accrual (%)a No. of patients 5-year EFS±SE (n)b 5-year S±SE(n)b

Low 40 413 89.9±2.0 95.7±1.3

Intermediate 16 170 87.6±3.1 92.8±2.4

High 44 458 27.6±2.7 33.5±2.7

Overall 100 1041

a Relative proportions are based on data from POG 9047 for whom risk group was known
b The EFS and S rates are based on all patients from POG 9047 for whom risk group was known
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The primary site in infants and children who have
widespread disease is the retroperitoneum in at least
70–80% of cases, whereas the primary site is extraab-
dominal (mainly thorax and pelvis) in up to 50% of
children with stage-3, favorable biology tumors
(Matthay et al. 1998). Infants with widespread neu-
roblastoma typically come to medical attention be-
cause of abdominal distention from large liver tu-
mors or because of periorbital ecchymoses from
metastatic involvement of cranial bones. Subcuta-
neous tumor nodules are another characteristic,
though less common, presenting sign in infants. The
distribution of distant sites of disease – bone, bone
marrow, liver, skin – differs greatly between infants
and older patients, as evidenced in a large Children’s
Cancer Group (CCG) study of 648 patients (DuBois et
al. 1999). In stage-4S patients (n=81), bone marrow,
liver, and skin were involved in 34.6, 80.2, and 13.6%
of cases, respectively. With stage-4 disease, os-
teomedullary involvement was significantly less fre-
quent in infants (n=133) than in older patients
(n=434): 48.9 vs 68.2% for bone, and 57.1 vs 81.3%
for bone marrow. Conversely, liver involvement with
stage 4 was significantly more common in infants
than in older patients: 53.4 vs 12.9%. Thus, some in-
fants who are classified as having stage 4 by virtue of
large primary tumors may actually have a pattern of
distant disease that more closely resembles stage 4S.

11.2.3 Clinical Staging

As with other cancers, clinical staging of neuroblas-
toma is useful for prognostication and for comparing
results of treatments carried out by different groups.
Staging is a particularly important factor for classify-
ing cases as intermediate risk. The issue is straight-
forward for infants with classic stage 4, which is one
of the most obvious and dramatic clinical pictures in
oncology: a previously well baby becomes irritable
and is found to harbor a large abdominal tumor, size-
able metastatic deposits in bones, and numerous syn-
cytial clumps of tumor cells in bone marrow. Other
major phenotypes within the intermediate-risk cate-
gory, however, are dependent on features of the pri-
mary tumor. For example, tumor resectability is a key
factor in distinguishing stage 3 (intermediate risk)

from stage-1 or stage-2 disease (low risk, no chemo-
therapy). Yet, tumor resectability is hard to determine
by imaging studies and can be influenced by subjective
factors such as a surgeon’s experience and the ac-
ceptance by many oncologists and surgeons of the
necessity to use chemotherapy to shrink a large tumor.

11.2.4 Biologic Prognostic Markers

The absence of cortical bone and extensive bone
marrow metastatic involvement in a young neuro-
blastoma patient should cause a shift in attention to
biologic prognostic markers, including the three cur-
rently used to denote intermediate risk (Table 11.2.1).
MYCN amplification is a particularly reliable predic-
tor of aggressive disease. This chromosomal aberra-
tion is, therefore, not present in any subset of inter-
mediate-risk neuroblastoma; however, the presence
of three to nine copies of this proto-oncogene can
result from whole chromosome gains (i.e., hyper-
diploidy).At the present time the clinical significance
of the gain of MYCN genes by this mechanism
remains unclear.

The role of the Shimada histopathology system in
defining intermediate-risk cases is limited to stage 4S
and to stage 3 in patients more than 1 year old; thus,
unfavorable histopathology places non-MYCN-ampli-
fied stage-4S disease in the intermediate-risk, rather
than the low-risk, category, while favorable histopa-
thology places children with non-MYCN-amplified
stage-3 tumors in the intermediate-risk, rather than
the high-risk, category. The DNA index is relevant to
the intermediate-risk category for non-MYCN-ampli-
fied stage-4S tumors, with diploidy separating inter-
mediate-risk from low-risk disease. Within the inter-
mediate-risk category, histopathology and DNA index
distinguish the favorable vs the unfavorable biology
subsets, with the former treated with fewer cycles of
chemotherapy than the latter in the current COG study.

11.2.5 Treatment

A major aim in the management of intermediate-risk
neuroblastoma is to reduce acute and late toxicity
risks while maintaining the current high rate of cure.
It is noteworthy that while metastatic involvement of
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bones or bone marrow denotes a dismal prognosis
for most children older than 1 year of age with neu-
roblastoma, infants with a similar clinical picture of
neuroblastoma have an excellent outlook with mod-
est doses of chemotherapy. Also worthy of note is the
excellent prognosis when local–regional neuroblas-
toma cannot be entirely excised by surgery or com-
pletely sterilized by radiotherapy, i.e., long-term sur-
vival ensues despite the presence of residual disease.
Neuroblastoma is one of the rare, well-defined onco-
logic entities that regresses or remains quiescent
without further treatment when disease is left behind
after surgery, or when the disease process involves
multiple sites (stage 4S); yet, current group-wide
studies call for additional chemotherapy and/or ra-
diotherapy for residual disease, an approach that
might entail more risk (toxicity) than benefit (antitu-
mor effect).

11.2.5.1 Treatment 
for Stage-3 Neuroblastoma

Through the early 1990s, the uniformly excellent sur-
vival rate of stage-1 and stage-2 patients (95–100%)
stood in marked contrast to the variable survival rates
(50–75%) reported for patients with extensive but
localized neuroblastomas [Evans stage III, Pediatric
Oncology Group (POG) stage C] (Castel et al. 1995;
Castleberry et al. 1991; Garaventa et al. 2002; Haase et
al. 1989; Tsuchida et al. 1992; West et al. 1993). These
patients were, therefore,considered to be at intermedi-
ate risk for poor outcome.At least two major advances
allowed more accurate prognostication for this group
of patients: firstly, clinical staging using both more
sensitive bone marrow studies and improved imaging
modalities eliminated unsuspected cases of high-risk
(stage-4) disease, and, secondly, biologic evaluation of
the tumor cells using the aforementioned chromoso-
mal and histopathologic findings provided insights
into the natural history of a given case.

Infants with stage-3 neuroblastoma lacking MYCN
amplification have survival rates approaching 100%.
In multi-institution studies in North America and
Europe, these patients have been treated with various
combinations of platinum compounds, etoposide,
cyclophosphamide, doxorubicin, and/or vincristine

in modest dosages (Bowman et al. 1997; Garaventa et
al. 2002; Rubie et al. 1998, 2001). In single-institution
studies, these patients have often been initially man-
aged by surgery alone, with no cytotoxic therapy
(Cheung et al. 1997). The overall results favor efforts
to reduce or even to eliminate cytotoxic therapy
entirely in infants with non-MYCN-amplified stage 3.
In the current COG study, infants with stage 3 contin-
ue to receive chemotherapy, but only four cycles if
disease is hyperdiploid vs eight cycles if disease is
diploid, and carboplatin is used, rather than cisplatin,
in an attempt to reduce toxicity.

Older patients with intermediate-risk stage-3 neu-
roblastoma, i.e., no MYCN amplification and favor-
able histopathology, have event-free survival rates ex-
ceeding 90%, similar to infants (Garaventa et al. 2002;
Matthay et al. 1998; Rubie et al. 1998; Strother et al.
1997). The French Society of Pediatric Oncology
achieved this result using alternating cycles of carbo-
platin/etoposide and cyclophosphamide/doxoru-
bicin/vincristine (maximum of three cycles of each
combination), in moderate doses (Rubie et al. 1998).
In a large CCG study, treatment included 9 months of
combined usage of cisplatin, etoposide, cyclophos-
phamide, and doxorubicin (Matthay et al. 1998). In
one large POG study, cycles of high-dose cisplatin/
etoposide alternated with low-dose cyclophos-
phamide/doxorubicin, and in a successor POG study,
patients received cycles of cyclophosphamide, etopo-
side, vincristine, plus either cisplatin or carboplatin
(Strother et al. 1997). In the current COG study, these
patients receive only four cycles of chemotherapy.

11.2.5.2 Treatment 
for Stage-4S Neuroblastoma

Stage 4S neuroblastoma is a well-defined clinical en-
tity that often resolves with minimal or no cytotoxic
therapy, but can be lethal from complications of en-
larging liver tumors or from progression to classic
stage 4 with bone and extensive bone marrow metas-
tases (Berthold and Hero 2000; de Bernardi et al.
1992; DuBois et al. 1999; Evans et al. 1981; Guglielmi
et al. 1996; Hachitanda and Hata 1996; Hero et al.
2000; Martinez et al. 1992; Nickerson et al. 2000;
Strother et al. 1995; Schleiermacher et al. 2003; van
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Noesel et al. 1997). This highly variable natural histo-
ry has complicated management decisions, as has the
risk of major sequelae from cytotoxic therapies in
these very young patients. In published reports, ap-
proximately 50% or more of infants with stage 4S re-
ceived cytotoxic therapy.

Clinical features of possible prognostic import in-
clude age <2–3 months (unfavorable) and skin nod-
ules (favorable). With stage 4S, MYCN amplification 
is an independent marker of poor outcome and
diploidy is considered an adverse risk factor (Bow-
man et al. 1997; Hachitanda and Hata 1996; Katzen-
stein et al. 1998; van Noesel et al. 1997); however, the
significance of diploidy in the absence of MYCN am-
plification has not been systematically studied in this
subset of infants, and the same holds for unfavorable
histopathology. Biologic markers predictive of un-
controllable hepatic enlargement have not, to date,
been found. COG uses the presence of diploidy and
unfavorable histopathology to confer intermediate-
risk status on stage 4S with the implication of a need
for treatment with chemotherapy (up to eight cycles
in the current COG study); however, this approach is
not universally accepted. For example, the German
Society of Pediatric Oncology and Hematology rec-
ommends observation alone in the absence of MYCN
amplification or clinical deterioration (Berthold and
Hero 2000; Hero et al. 2000). For symptomatic he-

patomegaly, low-dose chemotherapy and/or radio-
therapy (e.g., 150 cGy/fraction, times three fractions)
have been used with variable success (see the present
chapter; Schleiermacher et al. 2003).

11.2.5.3 Treatment 
of Infant Stage-4 Neuroblastoma

Cure rates of infants with stage-4 neuroblastoma
have increased from 10 to 50 to >70% (Bowman et al.
1991, 1997; de Bernardi et al. 1992; Paul et al. 1991).
When the small number of infants with MYCN-am-
plified disease are excluded, the cure rates are even
higher: nearly 100% in the recent CCG study
(Fig. 11.2.2) (Schmidt et al. 2000). This change sug-
gests that these patients comprise the one neuroblas-
toma subgroup for whom chemotherapy has clearly
had a major impact on prognosis. The improved out-
look holds even if patients who in retrospect may ac-
tually have had stage-4S disease are excluded from
the analysis. This improvement has been noted with
several different chemotherapy regimens and stands
in marked contrast to the failure of intensive and
myeloablative therapies to have a significant impact
on the long-term prognosis of older patients with
stage-4 neuroblastoma involving bone and bone
marrow. In the current COG study, infants with non-
MYCN-amplified stage 4 are treated with modest-

Figure 11.2.2

Kaplan-Meier event-free sur-
vival (EFS) for infants with stage-
4 neuroblastoma according to
MYCN amplification status treat-
ed on the CCG 3881. (From
Schmidt et al. 2000)
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dose chemotherapy, four cycles if tumor is hyper-
diploid and has favorable histopathology, and eight
cycles if tumor is diploid and/or has unfavorable
histopathology.

11.2.6 Future Directions

Genetic abnormalities and molecular markers not
utilized in the current COG risk-group classification
schema have been shown to have prognostic value
(Maris and Matthay 1999). Prospective studies inves-
tigating the clinical significance of genetic abnormal-
ities, such as deletions of chromosomes 1p, 11q, and
14 q, and gain of chromosome 17q, are ongoing. A
number of investigators are also examining whether
telomerase activity or the expression of neurotrophin
receptors, such as TRK-A, will prove to have prog-
nostic significance, independent of the factors cur-
rently used to define risk. In addition, microarray
studies are being utilized to evaluate the pattern of
gene expression in biologically distinct subsets of
neuroblastoma.These studies may result in modifica-
tions of the risk-group classification system, and may
thereby lead to a further improvement in the current
risk-group-based treatment strategies.

Recently, some of the clinical criteria currently
used in the risk-group schema have been questioned.
For example, although 12 months has heretofore
been a critical maker in defining stage 4S and in esti-
mating risk for stage 4, recent data from a CCG study
suggest that 12- to 18-month-old toddlers with non-
MYCN-amplified stage 4 have estimated 6-year sur-
vival rates of >85% when they are treated with inten-
sive multi-modality therapy (Schmidt et al. 2003).
Similarly, a report from the POG suggests that chil-
dren 12–18 months of age with hyperdiploid, non-
MYCN-amplified stage 4, have an estimated 4-year
event-free survival rate of >90% following intensive
multi-modality therapy (George et al. 2003). These
observations suggest that children 12–18 months of
age with non-MYCN-amplified metastatic neuroblas-
toma, traditionally considered at high risk for treat-
ment failure, may in fact benefit from a reduction of
currently prescribed intensive induction and consol-
idation therapeutic approaches. Patients >12 months
old who are classified as stage 4 by virtue of distant

lymph node involvement, and do not have adverse bi-
ologic prognostic markers, may also warrant re-clas-
sification as intermediate risk rather than high risk.
This informally called stage “4-N” group of patients
may do as well as favorable biology stage 3 or stage 4S
following treatment with chemotherapy and surgery
(Rosen et al. 1985).

Other patients assigned to the intermediate-risk
category may not require any cytotoxic therapy for
cure, and may, therefore, be currently subjected to
toxicities of therapy needlessly. For example, some
infants with stage 4 by virtue of either a large primary
tumor or distant nodal involvement but without bone
or extensive bone marrow invasion may have disease
that is biologically similar to stage 4S. Also, it may be
reasonable to question the validity of using bilateral
regional lymph node involvement as a feature defin-
ing advanced-stage disease and as a finding that
places a patient in the same stage-3 grouping as a pa-
tient with a large tumor that infiltrates and encases
(not just displaces) midline structures. For example,
a midline primary tumor with bilateral inguinal
nodal involvement (stage 3) might actually be more
appropriately managed like a low-risk localized tu-
mor with regional (unilateral) lymph node involve-
ment; however, prospective clinical trials are needed
to test if the high cure rates currently observed in
these subsets of patients will be maintained with a
reduction in therapy.

11.2.7 Conclusion

Intermediate-risk neuroblastoma constitutes a clini-
cally and biologically heterogeneous subset of tu-
mors, which is highly curable with moderate-dose
chemotherapy and surgery; thus, current therapeutic
strategies are aimed at reducing treatment in an ef-
fort to minimize treatment-related toxicities. While
on one hand a subset of patients in this group have
survived with less or even no therapy, some “high-
risk” patients may be safely “down-staged” and man-
aged under the intermediate-risk category (George et
al. 2003; Schmidt et al. 2003). Furthermore, achieve-
ment of complete remission, i.e., elimination of all
evidence of disease, may not be a necessary goal of
treatment in intermediate-risk cases. This possibility
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is based on the limited potential for malignant pro-
gression of low- and intermediate-risk neuroblas-
toma as evidenced by the survival with conservative
management of many patients with non-MYCN-am-
plified stage 4S and of patients with localized tumors
who have gross residual disease following attempted
tumor resection (Evans et al. 1996; Matthay et al.
1989; Nickerson et al. 2000). Prospective evaluation of
these clinical parameters and further analysis of ad-
ditional genetic and molecular prognostic variables
may enhance our ability to identify children at high
vs low risk for disease relapse. Such studies are likely
to lead to a further refinement in the current risk-
group schema, and hopefully will result in treatment
strategies that are optimally tailored for individual
children with neuroblastoma.
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11.3 High-Risk Neuroblastoma

Katherine K. Matthay, Nai-Kong V. Cheung

11.3.1 Treatment Approach 
for High-Risk Disease

The high-risk group in neuroblastoma is comprised
primarily of children (>1 year of age at diagnosis)
with stage-4 disease and stage 3 with tumor MYCN
amplification or unfavorable histopathology. Al-
though there is no worldwide consensus, stage 2 plus
MYCN amplification, or stage-3, stage-4, and stage-4s
infants plus MYCN gene amplification are currently
treated in the COG with high-risk treatment proto-
cols. Recent data suggest that this must be further
qualified, as analysis of the most recent high-risk
study in the Children’s Cancer Group showed that
toddlers between 12 and 18 months of age with stage-
4 MYCN-non-amplified disease have an improved
outcome compared with those >18 months (Schmidt
et al. 2003). Similarly, studies from the Pediatric On-
cology Group demonstrate that hyperdiploidy and
non-amplified MYCN confers a favorable prognosis
in children 12–18 months of age with disseminated
neuroblastoma (George et al. 2003). The 4-year sur-
vival for stage-4 patients >1 year at diagnosis in the
CCG studies from 1978 to 1985 (n=507) near tripled
by 1991–1995 (n=675; p<0.001; Matthay 1997), al-
though the projected cure rate remained <25%. The
most recent phase-III studies indicate that the event-
free survival and overall survival of this group has
now increased a little further, with myeloablative
therapy becoming standard and with more wide-
spread use of treatment of minimal residual disease
(Matthay et al. 1999; Reynolds et al. 2002; Ladenstein
et al. 1998; Grupp et al. 2000; Cheung et al. 2001a;
Villablanca et al. 1998).

Therapy for high-risk neuroblastoma is currently
divided into four phases: intensive induction treat-
ment; primary site local control; high-dose marrow
ablative therapy; and management of minimal resid-
ual disease. The goal of induction therapy is to
achieve maximum reduction of tumor burden, in-
cluding reduction of bone marrow tumor (in vivo
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purging), within a time frame which will minimize
the risk of developing resistant tumor clones and
clinical progression. Surgical resection of primary
tumor, with addition of local radiotherapy either at
the time of resection or later, is essential in prevent-
ing primary site relapse. Subsequently, very high-
dose marrow ablative therapy may be used to try to
overcome residual and potentially resistant tumor,
followed by hematopoietic cell transplant (HCT). The
high relapse rate even after such treatment (Laden-
stein et al. 1998; Matthay et al. 1993); has led to the ap-
proach of using tumor-targeted therapies following
myeloablative treatment, to try to eliminate micro-
scopic resistant clones [minimal residual disease
(MRD)] (Matthay 1999; Cheung et al. 1998a; Ozkay-
nak et al. 1998).

11.3.2 Induction Therapy

The introduction of platinum drugs into the combi-
nation chemotherapy and dose-intensive application
of several agents into the combination chemothera-
py, with better supportive care, may be largely re-
sponsible for improving the remission induction rate
in recent years. The importance of dose-intensity in
neuroblastoma has been contested (Cheung and
Heller 1991; Pinkerton et al. 2000). Although overall
response rate and median survival may be improved
(Cheung and Heller 1991), there is general agreement
that the overall cure rate does not appear to be sub-
stantially changed. The advent of improved surgical
techniques,as well as second-look and delayed-resec-
tion strategies, have also improved the overall re-
sponse status (see 11.4). Induction regimens used in
recent large studies have shown overall response
rates, including complete and partial remission
(CR+PR), ranging from about 60 to 90% at the end of
5–6 months of treatment (Matthay et al. 1999; Castle-
berry et al. 1994; Coze et al. 1997; Kaneko et al. 1999;
Tweddle et al. 2001) (Table 11.3.1). Results from some
of the most recently completed studies have not yet
been published, including that from the ENSG
(1990–1999) using alternating cycles of OPEC and
OJEC, vincristine, cyclophosphamide, etoposide, and
either cisplatin or carboplatin, or the rapid COJEC,
using eight cycles spaced at only 10-day intervals 

of combinations of vincristine, cisplatin, etoposide,
cyclophosphamide, and carboplatin (Tweddle et al.
2001). Results are also pending from the POG study
P9341 using five cycles of alternating high-dose 
pairs of chemotherapy, including cisplatin/etoposide,
cyclophosphamide/doxorubicin/vincristine, ifos-
famide/etoposide, and carboplatin (Grupp et al.
2000).

Some more recently approved single agents have
also been tested in newly diagnosed neuroblastoma,
using the “up-front phase-II window” approach. Fol-
lowing two courses of single-agent therapy prior to
induction treatment, response rates (CR+PR) for
effective agents (>30% response) were easily de-
tectable, including ifosfamide, carboplatin, iproplatin
(Castleberry et al. 1994),, and topotecan (Kretschmar
et al. 1995). Two agents that were less effective in this
setting were epirubicin (Castleberry et al. 1994)and
taxol (Kretschmar et al. 1995). Although there was no
evidence that such a design adversely affected the
subsequent outcome of patients, phase-II windows in
the context of more standard induction regimens
should always be done with careful early stopping
rules. Other novel approaches to enhance induction
therapy include non-myelosuppressive agents inter-
spersed with the chemotherapy, such as anti-GD2
antibody, anti-angiogenic agents, or differentiating
agents (see Chaps. 14–16).

A small subgroup of “ultra-high-risk” patients are
resistant to induction therapy, with up to 10–20% of
children either developing progressive disease or
having less than partial response to induction thera-
py. Several tests to detect such patients early have
been suggested. A study from the Children’s Cancer
Group showed that patients with residual bone mar-
row tumor >0.1% by immunocytology after three
cycles of induction therapy was highly prognostic for
relapse (Seeger et al. 2000). Another technique has
been early response by semi-quantitative scoring of
MIBG scans. Evaluation of 75 stage-4 patients showed
that a relative reduction in MIBG scan score of 0.5
after two cycles of induction therapy predicted a sig-
nificantly higher likelihood of response at the end of
induction and of EFS after myeloablative therapy
(Matthay et al. 2003). Novel approaches need to 
be developed to treat such patients, either incorpo-
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Table 11.3.1 Induction regimens for high-risk neuroblastoma since 1985 (>50 patients). (Modified from Matthay et al.2000). NA
not applicable

Group/reference Year Regimen Number CR+PR (%)

POG 8742 (regimen 1) 1987–1991 Days 1–5, CDDP 40 mg/m2 day–1 111 77
(Castleberry et al. 1994) Days 2–4, VP16 100 mg/m2 day–1

This alternates q 21 days with
days 1–7, CPM PO 150 mg/m2 day–1

Day 8, DOX 35 mg/m2

POG 8742 (regimen 2) 1987–1991 Day 1, CDDP 90 mg/m2 115 68
(Castleberry et al. 1994) Day 2, VP16 100 mg/m2

Days 3–10, CPM 150 mg/m2 day–1 postoperatively
Day 11, DOX 35 mg/m2

Repeat q 21 days

SFOP CADO/PE 1987–1992 Days 1–5, CPM 300 mg/m2 day–1 183 64
(Coze et al. 1997) Days 1 and 5, VCR1.5 mg/m2 day–1

Day 5, DOX 60 mg/m2/d
Alternates q 21 days for two cycles each with
Days 1–5, CDDP 40 mg/m2 day–1

Days 1–5, VP16 100 mg/m2 day–1

Study Group of Japan 1985–1997 Day 1, CPM 1200 mg/m2, VCR 1.5 mg/m2 168 92
(Kaneko et al. 1999) Day 3,THP-ADR 40 mg/m2

Day 5, CDDP 90 mg/m2

Repeat q 28 days × six cycles

CCG-3891 1991–1996 Day 1, CDDP 60/m2 539 78
(Matthay et al. 1999) Day 3, DOX 30 mg/m2

Days 3 and 6, VP16 100 mg/m2 day–1

Days 4 and 5, CPM 900 mg/m2 day–1

Repeat q 28 days × five cycles

POG-9341 1993–1996 Five cycles at 21-day intervals; A, B, C, D, A 150 NA
(Grupp et al. 2000) A: Days 1–5, CDDP 40 mg/m2 day–1

Days 2–4, VP16 100 mg/m2/dose q 12 h
B: Day 1, 8, 15, VCR 1.5 mg/m2

Day 1, 2, CPM 1000 mg/m2

Day 1, DOX 60 mg/m2

C: Day 1–3, VP16 75 mg/m2/dose q 12 h
Day 1–5, IFOS 2000 mg/m2/day–1

D: Day 1, VP16 175 mg/m2

Day 1, CaP 500 mg/m2

N-6, N-7 MSKCC 1990–2002 Five to seven cycles at 21-day intervals; 90 96
(Kushner et al. 2003) A, A, B, A, B, A, B

A: Days 1 and 2, CPM 70 mg/kg day–1

Days 1–3, VCR 0.067 mg/kg day–1

Days 1–3, DOX 25 mg/m2 day–1

B: Days 1–4, CDDP 50 mg/m2 day–1

Days 1–4, VP16 150 mg/m2 day–1

ENSG OPEC/OJEC 1990–1999 Alternating courses of OPEC and OJEC: 130 NA
(Tweddle et al. 2001) VCR 1.5 mg/m2, VP16 200 mg/m2, CPM 600 mg/m2

with either CDDP 80 mg/m2 (OPEC)
or CaP 500 mg/m2 (OJEC)
Alternate to total of seven cycles
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rating new chemotherapeutic agents, targeted radio-
therapy with 131I-anti-GD2 (Cheung and Miraldi
1988) 131I-MIBG (Mastrangelo et al. 2001), or biologic
therapies.

Peripheral blood stem cell harvest can be per-
formed as soon as clearance of circulating tumor
cells and reduction of bone marrow tumor has been
achieved. The optimal timing with respect to mini-
mal residual disease (MRD) has not yet been deter-
mined, but in practice, a harvest after only two to
three cycles has been shown to eliminate circulating
tumor cells (Seeger et al. 2000) and results in tumor-
free peripheral blood stem cells down to a sensitivity
of 1 tumor cell per 100,000 in almost all cases (Kreiss-
man et al. 2000). Quantitative studies suggest that tu-
mor content in the blood is 100-fold less than that of
marrow, and if marrow is negative for tumor by im-
munocytology (<1/106), peripheral blood contami-
nation is generally <1/108 (Faulkner et al. 2000).
While rare tumor cells may continue to be present by
sensitive testing methods, such as immunocytology
and RT-PCR (Burchill et al. 2001; Cheung et al. 2003),
the ability of these rare cells to cause relapse after in-
fusion is unknown. An ongoing randomized Chil-
dren’s Oncology Group study of stem cell purging
with measurement of MRD in stem cell products and
serial samples of peripheral blood and bone marrow
by immunocytology and RT-PCR may help to resolve
this question. Harvesting stem cells earlier in induc-
tion rather than later permits a better collection of

CD34 cells, before stem cells have been depleted by
repeated courses of intensive chemotherapy, but risks
contamination by tumor cells.

11.3.3 Local Control

Surgical resection of the primary tumor or other
bulky soft tissue disease is recommended during or
at completion of chemotherapy induction, in order 
to remove residual viable tumor that presumably
harbors resistant cells or tumor inaccessible to
chemotherapy due to incomplete vascularization and
necrosis. Some data suggest that with intensive in-
duction, the maximum decrease of tumor volume has
occurred after completion of three cycles of therapy
(Wheatley et al. 1995). Although gross total resection
of the tumor in the primary site was previously irrel-
evant when the majority of patients succumbed to
distant relapse, improved survival in the last decade
has revived this debate (Shorter et al. 1995; Mat-
sumaura et al. 1988; La Quaglia et al. 1994). Local–re-
gional recurrence in primary site is a component of
relapse in a large proportion of children with high-
risk neuroblastoma, in rates ranging from 20 to 80%
in reports which often include local radiotherapy 
and myeloablative therapy (Matthay et al. 1993, 1999;
Ikeda et al. 1992; Villablanca et al. 1999). Analysis of
the Children’s Cancer Group experience in the most
recently completed study of high-risk disease showed
that the timing of the resection, whether at diagnosis

Table 11.3.1 Continued

Group/reference Year Regimen Number CR+PR (%)

ENSG COJEC 1990–1999 A: start days 0, 40: 125 NA
Day 1, CaP 750 mg/m2

Days 1 and 2, VP16 175/m2 day–1

Day 1, VCR 1.5 mg/m2

B: start days 10, 30, 50, 70:
Day 1, VCR 1.5 mg/m2

Day 1, CDDP 80 mg/m2

C: start days 20, 60
Day 1, VCR 1.5 mg/m2

Days 1 and 2, VP16 175/m2 day–1

Days 1 and 2, CPM 1050 mg/m2 day–1
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or after induction chemotherapy, did not appear to
affect overall EFS or, interestingly, the extent of surgi-
cal complications and normal organ resection. There
was a slight advantage in EFS among 539 high-risk
patients, for those patients with complete gross re-
section of the primary tumor, although this was not
significant (Adkins et al. 2004). In the context of a
more dose-intensive induction, plus 2100 cGy radia-
tion to the primary site, and post-induction im-
munotherapy, gross total resection was highly signif-
icant in reducing local relapse and prolonging long-
term survival over the span of two decades at Memo-
rial Sloan-Kettering Cancer Center (MSKCC; La
Quaglia et al. 1994).

Good local control is likely the result of more 
complete resection plus effective radiation. Using
2100 cGy hyperfractionated radiation, after intensive
chemotherapy and gross resection, local relapse was
<15% since 1987 at MSKCC (Wolden et al. 2000).
These results were confirmed by a multi-institution
pilot study utilizing myeloablative consolidation
with radiotherapy (21 Gy) administered to the pri-
mary tumor bed after gross total resection (Vill-
ablanca et al. 1999). Analyses of the results with 
and without local radiation from the large coopera-
tive study of high-risk disease in CCG-3891 showed
better local control from the combination of local
radiation (10 Gy) and BMT with TBI (10 Gy), com-
pared with patients treated with local radiotherapy
(10 Gy) and standard dose of chemotherapy, without
the additional 10 Gy of the TBI (Haas-Kogan et al.
2003).A dose effect from the higher dose of radiation
could not be separated from the better results with
myeloablative chemoradiotherapy. Pilot studies have
also been reported using higher focal radiation 
via intra-operative radiotherapy in order to spare
normal organs (Haase et al. 1994; Haas-Kogan et al.
2000).

11.3.4 Consolidation Therapy

Beginning in the 1980s, investigators have tested the
use of consolidation with high-dose myeloablative
therapy supported by hematopoietic cell transplanta-
tion for patients achieving some response to induc-
tion therapy. The observed linear-log relationship be-

tween drug dose and tumor cell cytotoxicity for alky-
lating agents suggested that if drug dose could be in-
creased without dose-limiting extra-medullary toxic-
ity, that log increments in tumor cell killing could be
achieved (Frei et al. 1988; Keshelava et al. 1998). The
ability to restore hematopoiesis with autologous
hematopoietic cells allowed the use of much higher
doses of chemotherapy, while the demonstration that
bone marrow tumor cells could be eliminated using
immunomagnetic purging (Reynolds et al. 1986;
Kemshead et al. 1986) allowed the use of autologous
marrow support in neuroblastoma, a tumor com-
monly metastatic to bone marrow.

Initially, single-arm pilot studies suggested im-
proved outcome, with EFS ranging from 24 to 50%
(Matthay et al. 1993; Philip et al. 1987; Seeger and
Reynolds 1991; Graham-Pole et al. 1991; Dini et al.
1989, 1991) (Table 11.3.2). Caution must be used in
comparing these studies, as patient populations may
differ with respect to stage, EFS varies in whether it is
calculated from time of diagnosis or from time of
transplant, and inclusion in some cases was restrict-
ed to patient in complete remission only.

Several cooperative pediatric groups reported sta-
tistical non-randomized comparisons of early out-
comes for groups of patients treated either with con-
ventional doses of chemotherapy or myeloablative
chemotherapy, total body irradiation, and purged au-
tologous bone marrow transplant, with differing con-
clusions (Stram et al.1996; Shuster et al.1991; Philip et
al. 1991; Hero et al. 1997). Philip et al. compared the
LMCE1 protocol (1983–1988) to the previous Lyon
cooperative study, LMCE (1978–1983), and showed a
difference in 2-year progression-free survival of 39 vs
12% for patients treated with myeloablative therapy
and ABMT vs standard chemotherapy (Philip et al.
1991). A CCG comparison of 167 stage-4 patients
showed a similar improvement, with an EFS of 40%
for the patients treated with ABMT vs 19% for those
continuing for 1 year of chemotherapy (Stram et al.
1996). In contrast,a POG study of 116 patients showed
no significant prognostic benefit of switching in re-
mission from a chemotherapy protocol to a transplant
protocol (Shuster et al. 1991). A smaller study by the
German cooperative group evaluated 39 patients
undergoing megatherapy and myeloablative therapy
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with either allogeneic or autologous bone marrow, all
with a melphalan “backbone,” compared with 49 pa-
tients receiving continued chemotherapy by investi-
gator choice. All were patients who achieved com-
plete or partial remissions. The EFS was significantly
better in the transplanted patients compared with the
chemotherapy group (p=0.005), although the curves
nearly converged by 6 years (Hero et al. 1997).

The first randomized study performed by the
European Neuroblastoma Study Group (ENSG) from
1983 to 1985 suggests a progression-free survival ad-
vantage for myeloablative therapy (Pinkerton 1991);
however, only 50 of 84 patients (59%) were random-
ized, for a variety of reasons ranging from toxic death
to parental or physician preference. Furthermore,

overall survival and EFS advantage diminished great-
ly after the first 2 years.

In 1991 CCG launched a randomized study in the
U.S. comparing high-dose chemoradiotherapy with
purged ABMT to an intensive non-myeloablative
chemotherapy intensification (Matthay et al. 1999).
The results showed a significant improvement in 3-
year EFS for the patients randomly assigned to
ABMT, both by an intent-to-treat analysis and also by
treatment received (Fig. 11.3.1). As in the previous
CCG non-randomized comparison, the highest-risk
patients, those with MYCN-amplified tumors or
those older than 2 years at diagnosis, had the most
significant benefit; however, there was no significant
difference in survival. A follow-up analysis 4 years

Table 11.3.2 Event-free survival for high-risk neuroblastoma in first remission using myeloablative therapy and HCT for stud-
ies of >20 patients. Unless otherwise stated, EFS measured from time of transplantation. (Modified from Matthay and Yamashiro
2000)

Reference Regimen Number Toxic 3-year 
death EFS (%)

Hartmann et al. (1987) BCNU, teniposide, melphalan [total of one (n=15) 33 49
or two (n=18) courses] (2-year EFS)

Pinkerton (1991) Melphalan 24 1 40

Pole et al. (1991) Melphalan,TBI 54 7 32

Stram et al. (1996); Cisplatin, VM-26, Doxorubicin, melphalan,TBI 45 7 42
Seeger et al. (1991) Cisplatin, VP16, melphalan,TBI 54 5 50

Carboplatin, VP16, melphalan,TBI 48 4 41

Philip et al. (1991) Vincristine, melphalan,TBI 62 13 30

Dini et al. (1991) Vincristine, melphalan,TBI 34 1 29

Kushner et al. (1991) Cisplatin, BCNU, melphalan (or thiotepa), VP16 25 6 40

Ohnuma et al. (1995) Etoposide, melphalan or cisplatin, etoposide, 31 3 50
THP-Adriamycin, melphalan, with (n=6) or without TBI

Kamani et al. (1996) VM26(or VP16), thiotepa,TBI 27 4 41

Hero et al. (1997) Melphalan±VP16, vincristine, cisplatin, BCNU 39 7 35

Ladenstein et al. (1998) European Bone Marrow Registry Data 439 60 24 
(5-year EFS)

Kletzel et al. (1998) Cyclophosphamide, thiotepa 51 1 48

Matthay et al. (1999) Carboplatin, VP16, melphalan,TBI 129 12 43

Villablanca et al. (1999) Carboplatin, VP16, melphalan, local radiation 77 4 62

Hartmann et al. (1999) Busulfan, melphalan 116 7 47

Castel et al. (2001) Cyclophosphamide, carboplatin 49 4 33
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later continues to show a significant difference in EFS
(Reynolds et al. 2002). Further follow-up will be re-
quired to see if high-dose therapy with hematopoiet-
ic support has truly made an impact on long-term
cure rate in this disease (Matthay et al. 1999).

At present, pilot studies have led to the approach
currently used in ongoing studies both in Europe and
the U.S. of further increase in chemotherapy dose in-
tensity by eliminating total body irradiation, and in-
stead using higher doses of chemotherapy and local
irradiation, with an EFS of 62% at 3 years (Villablan-
ca et al. 1999). Intensification may also be achieved
using a tandem transplant approach, with two or
three consecutive myeloablative courses (Grupp et al.
2000; Philip et al. 1993; Frappaz et al. 2000; Kletzel et
al. 2002). These studies have demonstrated feasibility
with good engraftment, although toxicity prevented
proceeding to the subsequent myeloablative course
in some cases. Further cooperative randomized stud-
ies are necessary to determine the relative risks and
benefits of the tandem approach.

Allogeneic hematopoietic cell transplant may ob-
viate the possible risk from tumor cell contamination
of autologous peripheral blood stem cells or bone
marrow, but presents other problems, including
graft-vs-host disease, difficulty finding an HLA

match, and much higher toxic death rates in the pre-
viously reported studies.

11.3.5 Therapy of Minimal Residual Disease

Early and late relapse continue to occur at a high rate,
although the newer, dose-intensive induction and
myeloablative therapies have considerably prolonged
survival and improved EFS (Matthay et al. 1999). Re-
lapse is most common in bone and bone marrow, and
sites of hypoxic and microscopic residual disease
(DuBois et al. 1999). For this reason it has become in-
creasingly important to find new approaches to elim-
inate minimal residual disease with agents that will
be tolerable following myeloablative therapy, when
disease is likely to be minimal. This provides the ide-
al window of time to eradicate resistant clones that
are still present using novel therapies not dependent
upon standard cytotoxic mechanisms (see Chaps.
14–16); these include differentiating agents such as
13-cis-retinoic acid (Matthay et al. 1999), fenretinide
(Delia et al. 1993; Maurer et al. 1999; Garaventa et al.
2003; Basniewski et al. 1999), anti-GD2 monoclonal
antibodies (Ozkaynac et al. 2000), immunocytokines
(Lode et al. 1997), genetically engineered vaccines
(Bowman et al. 1998; Davidoff et al. 1999), anti-an-

Figure 11.3.1

Results of CCG-3891, a random-
ized study of myeloablative
chemoradiotherapy with pur-
ged autologous bone marrow
transplantation vs intensive non-
myeloablative therapy. A second
randomization was performed
on all consenting patients com-
pleting the consolidation thera-
py without progression to test
the efficacy of 13-cis-retinoic
acid for minimal residual dis-
ease. (From Matthay et al. 1999).
a Improved EFS with myeloabla-
tive therapy compared with
standard dose chemotherapy.
The difference in EFS for the 379
randomized patients was 34 vs
22% at 3 years (P=0.034).
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giogenic therapy (Stern et al. 2001), small molecule
inhibitors of tyrosine kinase genes (Evans et al. 1999;
Smith et al. 2004), or histone deacetylase inhibitors
(Huang et al. 2002).

11.3.6 Conclusion

High-risk neuroblastoma presents a continuing ther-
apeutic challenge. Progress thus far in combination
chemotherapy, local control, myeloablative consoli-
dation therapy, and treatment with differentiating
agents for microscopic residual disease has improved
the overall prognosis. Although the 3-year event-free
survival for children with stage-4 disease has im-
proved from <10 to >40% in the past two decades,
late relapses continue to be a challenge such that the
overall cure rate for stage-4 patients diagnosed at age
greater than 18 months with neuroblastoma re-
mained less than 25%.

Dose-intensive induction protocols coupled with
gross total resection are expected to achieve near
complete remission (CR or VGPR) rates in excess of
70% of patients. In addition, primary site recurrence
can now be effectively reduced with surgery com-
bined with ~20 Gy hyperfractionated radiation.
Although tumors cannot be detected by histologic
examinations or functional nuclear imaging, MRD
remains the final hurdle. Myeloablative therapy while
prolonging progression-free survival may only have a
small effect on the long-term cure rate. Relapses in
the CNS plus secondary leukemia can be other seri-
ous adverse events. Although their prevalence is
<10% among survivors, these late effects of intensive
chemotherapy and radiation therapy are expected to
surface as patients live longer.

The challenges therefore are multiple. Since treat-
ment induced cancer (e.g., leukemia) is a function of
dose (Le Deley et al. 2003), can CR/VGPR rates be
maintained by reducing dose without sacrificing
dose intensity for subsets of patients? Can new cyto-
toxic drugs be incorporated into induction therapy
for the subset of patients whose tumors are resistant
to standard agents? Should myeloablative therapy be
applied to only those at higher risk for relapse? New
methods to detect MRD suggest that this often per-
sists even when patients are in clinical complete re-

mission, and may predict relapse. Can MRD meas-
urement provide surrogate markers of disease such
that different consolidation strategies can be objec-
tively compared, and earlier treatment intervention
be initiated? Finally, other approaches to eliminate
MRD need to be explored urgently. Novel strategies
to overcome drug resistance and to attack sanctuary
sites of disease are necessary. Such approaches may
include targeted radiotherapy, differentiating agents,
immunologic therapies, agents to inhibit important
transduction pathways, or drugs to inhibit tumor an-
giogenesis and invasion.
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11.4 The Role of Surgery in the Treatment 
of Neuroblastoma

Michael P. La Quaglia

11.4.1 Introduction

The surgeon has a crucial role in the management of
neuroblastoma. Initial diagnosis and assessment of
MYCN amplification, histopathology, DNA index
(ploidy), and other parameters are dependent on
close collaboration between the surgical oncologist,
pediatric oncologist, and pathologist. In particular,
the surgeon must obtain an adequate tumor sample
for both histopathology and molecular studies. Dur-
ing surgical resection of the primary tumor, efforts
should be made to preserve normal organs, such as
the kidney. Furthermore, the surgeon must evaluate
the status of both ipsilateral and contralateral lymph
nodes and accurately describe the extent of primary
tumor resection to ensure accurate assignment of
stage and risk status. Finally, supportive procedures,
including institution of reliable vascular access and
management of treatment-related complications like
typhlitis, bowel obstructions, and others are impor-
tant in the surgical management of neuroblastoma
patients. This chapter describes the role of surgical
intervention in the management of this heteroge-
neous and challenging tumor.

11.4.2 History

In 1953 Robert E. Gross noted for neuroblastoma in
infancy and childhood that “extensive and radical
surgery has a definite place under certain circum-
stances and can lead to permanent cure” (Gross
1953). In 1955 C. Everett Koop described the positive
effect of tumor de-bulking on outcome in a book he
authored entitled, “Neuroblastoma in Childhood.
Survival after Major Surgical Insult to the Tumor”
(Koop et al. 1955). These were among the first publi-
cations in which a role for surgical resection in neu-
roblastoma was reported. In 1968 Koop analyzed the
impact of surgical interventions depending on
whether the tumor was resectable, non-resectable, or
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Table 11.4.1 High-risk neuroblastoma: review of the surgical literature

Positive effect of primary site resection Little or no effect of surgical resection
Reference Number/stages Reference Number/stages

Koop and Schnaufer (1975) X/1–4 Kiely (1993) 80/3,4

Rosen et al. (1984) 136/1–4 Losty et al. (1993) 57/1–4

Le Tourneau et al. (1985) 130/1–4 Shorter et al. (1995) 79/1–4

Carlsen et al. (1986) 253/1–4 Kaneko et al. (1997) 14/4

Moss et al. (1987) 21/4 Kaneko et al. (1998) 36/1–4, 4s

Matsumara et al. (1988) 320/4 Castel et al. (2002) 98/4

Haase et al. (1989) 58/3 Von Schweinitz et al. (2002) 878/4
(surgery effective only in 
MYCN amplified disease)

Hata et al. (1990) 76/1–4 Olgun et al. (2003) 1–4, 4 s

Nakadate et al. (1990) 25/4

Haase et al. (1991) 118/2–4

Shamberger et al. (1991) 60/3, 4

Philip et al. (1991) 62/4

Tsuchida et al. (1992) 121/3, 4

Berthold et al. (1992) 308/4

La Quaglia et al. (1992) 70; 4

Chamberlain et al. (1995) 24/4

De Cou et al. (1995) 99/4

Strother et al. (1995) 88/4

Yokoyama et al. (1995) 8/4

Mugishima et al. (1995) 36/4

Powis et al. (1996) 202/3

Matthay et al. (1998)

Kaneko et al. (1999) 157/3, 4

Kawa et al. (1999) 66/3, 4, 4s (all MYCN amplified

Wolden et al. (2000) 47/4

Castel et al. (2002) 72/3, 4

Tsuchida et al. (2002) 66/3, 4, 4s

Kuroda et al. (2003) 33/3, 4

La Quaglia et al. (2004)

Adkins et al. (2004)
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metastatic (Koop 1968a), essentially an early attempt
to define risk status. During the 1960s workers in
both Japan and Europe also described their experi-
ence with neuroblastoma resection (Kasai and
Watanabe 1968; Menjyo 1968; Schenga 1969; Zittel
and Wuttke 1969). With the introduction of adjuvant
chemotherapy in 1965 (James et al. 1965), plus major
advances in pediatric imaging, surgery, anesthesia,
blood banking, and critical care (Harrison et al.
1974; Hollmann and Lampert 1975; Stephen 1977;
Tsunooka 1972), and the establishment of the pedi-
atric oncology cooperative groups in the 1970s, mul-
ti-institution data became available and the number
of surgical reports on neuroblastoma has steadily in-
creased. Retrospective studies from the Children’s
Cancer Study Group (CCSG) on the role of surgery in
disseminated neuroblastoma and localized neuro-
blastomas were published in 1983 and 1985, respec-
tively (O’Neill et al. 1985; Sitarz et al. 1983). In 1988
investigators from the Pediatric Oncology Group
(POG) published a prospective study (Nitschke et al.
1988) showing that certain localized neuroblastomas
could be effectively treated with surgery alone de-
spite regional nodal involvement. Furthermore, the
authors noted that overall survival was excellent,
even in patients who developed relapses; however,
comparisons between cooperative group experiences
were hampered by lack of a uniform staging system.
This was remedied by the establishment of the Inter-
national Neuroblastoma Staging System (INSS) in
1988 and its revision in 1993 (Brodeur et al. 1988,
1993).

During the 1980s and early 1990s controversy
arose as to the efficacy of primary tumor resection in
patients with advanced-stage disease. Table 11.4.1
compares surgical reports supporting surgical resec-
tion of the primary tumor in high-risk neuroblas-
toma with those that do not. Despite doubts as to the
feasibility, safety, and efficacy of surgical resection in
high-risk neuroblastoma, the present consensus in
the Children’s Oncology Group (COG), and European
and Japanese cooperative groups is that an aggressive
resection of loco-regional disease should be attempt-
ed. Surgery has an even more important role in low-
and intermediate-risk disease.

11.4.3 Staging

Staging systems for pediatric solid tumors have tra-
ditionally placed great weight on surgical removal of
the primary tumor and regional nodal involvement
(Evans et al. 1976a) The present INSS was devised as
a synthesis of the previous systems (Kiely 1993; Evans
et al. 1990). This staging system has been adopted by
the Children’s Oncology Group USA (COG), as well as
cooperative groups in Europe and Japan. It is worth-
while to review each staging system to illustrate the
impact of surgery on stage and consequently risk
status and treatment.

11.4.3.1 Stage 1

The classification of a stage-1 tumor is dependent not
only on primary tumor resection, but also on micro-
scopic evaluation of regional nodes. It is imperative
that the surgeon seek and biopsy lymph nodes in the
main draining lymphatic echelons at the time of pri-
mary tumor removal. For adrenal primaries the ipsi-
lateral peri-caval nodes on the right, or peri-aortic
nodes on the left, should be sampled. The surgeon
should also evaluate interaortocaval lymph nodes
located in the space between the abdominal aorta
and inferior vena cava, as well as those located either
supra-renally or infra-renally, or both. In assessing
these nodes, the surgeon should separate the aorta
and vena cava and visualize the spine posteriorly.
Finally, an assessment of contralateral lymph nodes
and those at the base of the mesentery should be per-
formed. For a right-sided adrenal primary, examina-
tion and biopsy of the contralateral peri-aortic nodes
should be done. Conversely, contralateral peri-caval
lymph nodes should be sampled for left-sided pri-
maries. If these nodes cannot be identified, the sur-
geon must comment on this in the operative note
documenting that they were actively sought.

For thoracic primaries, peri-aortic nodes on the
left and peri-azygous nodes on the right should be
assessed, and any abnormal nodes running along the
intercostals vessels should be excised. It is helpful to
biopsy normal-appearing nodes in these regions
when feasible. In the case of pelvic primaries the
lymph nodes running along the iliac vessels should
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be sampled as well as those in the lower peri-aortic
and peri-caval regions. The level II–IV jugulo-digas-
tric lymph nodes are sampled with cervical primar-
ies(Figs. 11.4.1–11.4.3).

11.4.3.2 Stage 2

The criteria for stage 2 focus on the extent of primary
tumor resection and on the microscopic assessment
of ipsilateral lymph nodes. The contralateral region is
explored and identifiable lymph nodes are sampled.
If thorough review of pre-operative imaging and in-
traoperative exploration fails to identify contralater-
al lymph nodes, then this should be documented in
the operative note.

11.4.3.3 Stage 3

Stage-3 disease crosses the midline and is usually as-
sociated with encasement of the great vessels. In the
abdomen, the aorta and/or vena cava, as well as the
celiac axis, superior mesenteric artery, and renal 
arteries, may be involved. In the mediastinum en-
casement of the thoracic aorta or azygous vein can
occur. Vascular encasement prevents or complicates
gross total resection; however, on occasion, tumors
that appear to be stage 3 by imaging studies obtained
pre-operatively can at times be completely resected
(gross total resection), thus down-staging the pati-
ent to stage 1, thereby improving prognosis and elim-
inating the need for further therapy. The ability 
for tumor surgery to change risk classification,
should not be underestimated. Haase et al. (1989) 
reported an improved survival in Evans stage-III 

Figure 11.4.1

Resection of a cervical neurob-
lastoma. A transverse neck inci-
sion followed by dissection of
the carotid sheath contents was
done. Division of the tumor over
blood vessels is a characteristic
of neuroblastoma surgery
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patients who underwent gross total resection. A sim-
ilar finding was noted by Matthay et al. (1998).

11.4.3.4 Stage 4

In the past, the role of surgery in stage-4 disease was
limited. Presently, besides playing a key role in estab-
lishing the diagnosis, the surgical oncologist can
ensure the procurement of adequate tissue for assess-

ing relevant biologic parameters, even in cases where
the diagnosis can be made solely based on urinary
catecholamines plus bone marrow studies. It is rec-
ommended that at least 1 cm3 of viable tumor tissue
be obtained at initial biopsy, although this volume re-
quirement is likely to be substantially reduced with
future refinements in various molecular techniques.
Foremost among biological parameters is determina-
tion of the MYCN proto-oncogene copy number. Tu-

Figure 11.4.2

The approach for posterior me-
diastinal tumors. A muscle-spar-
ing technique can be used for
small lesions. Infiltration through
spinal foramina may require
foraminotomy.
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Figure 14.4.3 a

a A thoracoabdominal 
approach.
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mor tissue is also needed for histologic classification
and tumor cell ploidy analysis (Joshi et al. 1992; Joshi
et al. 1996; Shimada et al. 1984; Bowman et al. 1997).
Unfortunately, outcome for patients with high-risk
stage-4 neuroblastoma remains poor, with overall
long-term survival rates <30% (Olgun et al. 2003;
Frappaz et al. 2002). Progress in this disease will re-
quire basic investigations requiring fresh or fresh
frozen tissues. The surgeon should make every effort
to obtain extra tissue that can be used for these pur-
poses. The role of gross total resection in stage-4 neu-
roblastoma remains controversial and is dealt with
later in the section on high-risk tumors.

11.4.4 Risk Status and Surgical Intervention

Neuroblastoma patients are presently classified as
low, intermediate, or high risk by clinical and biolog-
ical criteria (see Chap. 7). The neuroblastoma com-
mittee of the COG recommends complete tumor re-
moval in each risk group when feasible. In the final

analysis, a decision to attempt complete tumor resec-
tion must be dependent on the consulting surgeon in
collaboration with the attending pediatric oncolo-
gists and after careful review of the clinical situation
as well as imaging studies. It is strongly recommend-
ed that these patients be reviewed at a tumor board
or treatment planning conference with oncologists,
diagnostic radiologists, and surgeons in attendance.
Some of these resections may be technically difficult
and the surgeon should not hesitate to obtain consul-
tation from experienced colleagues if he or she is
unsure as to the appropriate course. Web-based re-
sources including clinical guidelines for neuroblas-
toma surgery based on the risk-dependent COG pro-
tocol are available through both the COG and Amer-
ican Pediatric Surgical Association (APSA) websites.
In addition, the surgical principal investigator as-
signed to a specific COG neuroblastoma therapeutic
protocols can be contacted through the COG web-
site. The timing of definitive resection is based on
risk status.

Figure 11.4.3 b

b Transection of a tumor mass
that circumferentially encases
the renal vessels. This maneuver
is often necessary in neuroblas-
toma resection.
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11.4.4.1 Low-Risk Patients

The present COG low-risk protocol prescribes sur-
gery alone as treatment for low-risk tumors (see the
present chapter). The goal is complete primary
tumor removal, accurate staging by biopsy of non-
adherent nodes, and adequate tissue sampling for
biologic studies. The reported overall survivals in
low-risk disease are >90% with almost all patients
receiving only surgery (de Bernardi et al. 1995; Kush-
ner et al. 1996b; Evans et al. 1996).

11.4.4.2 Intermediate Risk

The goals of surgery for patients with intermediate-
risk disease are to establish the diagnosis, to resect as
much of the primary tumor as is safely possible, to
accurately stage the disease through sampling of
non-adherent lymph nodes and previously unsus-
pected metastatic sites, and to obtain an adequate
amount of tissue for diagnostic studies. In the cur-
rent COG intermediate-risk clinical trial, patients
with unresectable intermediate-risk tumors are
treated with chemotherapy (see the present chapter).
Using COG guidelines, resection may be performed
at diagnosis and/or after the fourth and eight cycles.
Cooperative group data is pending, but in single-
institution studies surgery alone has been an effec-
tive treatment of loco-regional disease with inter-
mediate-risk characteristics (Cheung et al. 1997;
Kushner et al. 1996a). Since adjuvant chemotherapy 
is recommended only for patients with unresectable
tumors, it can be avoided if the tumor can be re-
moved.

11.4.4.3 High Risk

The goal of surgery in high-risk tumors is an initial
diagnostic biopsy to obtain an adequate amount of
tissue for biologic studies (1 cm3; see the present
chapter). Complete resection of the primary tumor is
usually done after neoadjuvant chemotherapy and is
the current COG recommendation. Following chemo-
therapy, imaging studies (computerized tomography
or magnetic resonance imaging) are obtained prior to
surgery and post-operatively to assess the extent of

resection. Some studies suggest that the completeness
of resection will have a major impact on local recur-
rence and ultimate survival (La Quaglia et al. 1994,
2004; Tokiwa et al. 2003). These operations are typi-
cally difficult even in the best of hands, and require
careful presurgical planning and consultation among
colleagues with appropriate expertise. In patients
with progressive disease, surgery is generally not
recommended.

11.4.4.3.1 Gross Total Resection
Neuroblastomas are infiltrative tumors that usually
involve the retroperitoneum or mediastinum. Except
for small adrenal primaries, none can be resected
with a negative microscopic margin as is done with
epithelial tumors and some sarcomas; however, in
some cases all grossly visible and palpable disease in
the primary site and regional lymphatics can be 
removed leading to the term “gross total resection.”
The microscopic margin is always assumed to be pos-
itive. It is noteworthy that all high-risk patients are
also treated with radiation therapy. There are no
studies that dissect the individual role of radiation 
vs surgery in the local control of neuroblastoma;
however, radiation therapy alone is generally unable
to induce a complete remission in soft tissue sites 
of gross tumor involvement in advanced-stage neu-
roblastoma. In general, patients receive both moda-
lities and any analysis should account for this colin-
earity.

11.4.4.3.2 Rationale for Gross Total Resection 
in High-Risk Patients
High-risk patients often have extensive primary tu-
mors as well as large metastatic deposits in regional
lymph nodes and/or in bone and bone marrow. In
view of this, many pediatric surgeons have rightly
questioned the efficacy and safety of primary tumor
resection and regional lymphadenectomy. Table
11.4.1 lists reports that refer to the role of surgery in
neuroblastoma, including patients with high-risk
disease. None of these reports are prospective and
only a few define resection by criteria other than the
operative report. Overall, the majority of studies sup-
port a role for gross total resection in the treatment of
high-risk neuroblastoma. Most authors have ana-
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lyzed the effect of primary tumor resection on sur-
vival.An equally important measure of the efficacy of
gross total resection is its effect on local tumor pro-
gression.

11.4.4.3.3 Local Control
Most high-risk patients have significant amounts of
metastatic disease not amenable to surgical treat-
ment except in unusual circumstances (e.g., epidural
disease, isolated bony metastases). A more appropri-
ate measure of the efficacy of gross total resection is
its effect on local tumor progression. Local control
rates of >80% have been reported with a combina-
tion of gross total resection and local–regional irra-
diation to approximately 2000 cGy (La Quaglia et al.
1994; Kushner et al. 2001; Kuroda et al. 2000; Tokiwa
et al. 2003). A recent report focusing directly on the
issue of local progression confirmed that this could
be minimized with gross total resection (La Quaglia
et al. 2004). This contrasts with a 30% local recur-
rence rate in patients undergoing incomplete resec-
tion (Hans-Kogan et al. 2003) (Table 11.4.2). In sum-
mary, the available data supports use of gross total
resection of the primary site and regional lymphatics
in high-risk neuroblastoma.

11.4.5 Surgical Complications and Mortality

In high-risk patients, neuroblastomas tend to involve
and/or encase major vascular and neural structures in
their sites of origin or surrounding nodal echelons.Ma-
jor surgical complications following neuroblastoma re-
section are listed by organ system in Table 11.4.3; most
serious among them are massive hemorrhage, major
vascular injury, and respiratory failure requiring me-
chanical ventilation after major surgery. Cervical and
upper mediastinal resections are often associated with
a permanent post-operative Horner’s syndrome. Exci-
sion of epidural tumors or those heavily involving
spinal foramina can result in paralysis (Shimada et al.
1995).Nephrectomy or renal infarction may occur with
removal of retroperitoneal neuroblastomas (Sham-
berger et al. 1998) (Table 11.4.4).An increased frequen-
cy of complications, including foot drop, can occur af-
ter removal of pelvic tumors despite their overall good
prognosis (Cruccetti et al. 2000). Operative death is
quite rare despite massive resections. In high-risk neu-
roblastoma, complications following resection of the
primary tumor are reduced by giving neoadjuvant
chemotherapy (Shamberger et al. 1991) that reduces
tumor volume (La Quaglia 2001; Medary et al. 1996).
Typically with dose-intensive induction, surgery for
high-risk neuroblastoma can be done after the admin-
istration of three to five cycles of chemotherapy.

Table 11.4.2 Local control

Reference Number Local progression Probability of primary site relapse
or recurrence with in with gross total resection (%)
complete resection (%)

La Quaglia et al. (1994) 70 61 (19 of 31) 6 at 5 yearsa

Wolden et al. (2000) 47 25 (1 of 4) 16 at 5 yearsa

Kushner et al. (2001) 99 43 (3 of 7) 3.3±3.0 at 12 monthsa

5.7±4.4 at 24 months
7.2±5.5 at 36 months

Castel et al. (2002) 98 19 (3 of 16) 15

Haas-Kogan et al. (2003) 539 26±15 20±18a,b

La Quaglia et al. (2004) 141 55 5a

a Primary site radiation given
b Autologous bone marrow transplant
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11.4.6 Surgical Technique

It is almost never possible to obtain a clear microscop-
ic margin; thus, dissection generally proceeds along
the pseudocapsule of the tumor. Sectioning of the
tumor overlying vital structures or its partial removal
allows better visualization in order to achieve a gross
total resection. The use of titanium surgical clips can
improve hemostasis and lymphostasis while marking
involved areas for subsequent radiotherapy (Tokiwa 
et al. 2003; Ikeda et al. 1998; Weiser et al. 2003).

11.4.6.1 Initial Biopsy

Initial tumor biopsy is extremely important in deter-
mining biologic aggressiveness, as discussed previ-
ously. The surgeon should obtain at least 1 cm3 of
viable tumor tissue, or more if possible. Often the
mass is enclosed by a pseudocapsule which can be
exploited for hemostasis. The capsule is opened and
multiple biopsies are taken. Hemostatic agents can
then be used to pack the capsule. Central line place-
ment and staging bone marrow aspirations and biop-
sies can be conveniently done at the same time.

Table 11.4.3 Surgical complications

System Complications

Vascular Arterial or venous laceration:
primary repair

Arterial laceration: graft
Renovascular hypertension
Lymphatic ascites

Genitourinary Nephrectomy
Renal infarction (arterial or venous 

occlusion or thrombosis)
Ureteral transection or fibrosis
Neurogenic bladder
Bladder perforation
Urinary tract infection

Gastrointestinal Intussusception
Chronic diarrhea
Gastric atony
Motility disorders

Nervous Spinal cord injury with paralysis
Horner’s syndrome
Recurrent nerve injury
Brachial or lumbosacral plexus injury
Sensory loss

Table 11.4.4 Complication rates

Reference Number Complication Nephrectomies/ Operative 
rate (%) renal infarction (n) mortality

Shamberger et al. (1991) 42 19 3 0

La Quaglia et al. (1994) 70 27 4 0

Cruccetti et al. (2000) 17a 35b

Von Schweinitz et al. (2002) 2112 19 2.3% 0.9%

Castel et al. (2002) 76 12 5 1.3%

Tokiwa et al. (2003) 47 15 3 0

La Quaglia et al. (2004) 141 8 5 0

a All pelvic tumors
b This was a series of pelvic tumors and complications included permanent sciatic nerve injury, urinary and fecal incontinence,

neuropathic bladder, and leg weakness or L4–S1 nerve root injury
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11.4.6.2 Cervical Lesions

Extension of the tumor into the thoracic inlet must be
determined prior to surgery as the exposure is much
different for these tumors. Most pure cervical lesions
have favorable histologic characteristics, a good
pseudocapsule, and occur in patients <1 year of age
at diagnosis.Very large lesions may require partial or
complete division of the sternocleidomastoid mus-
cle. Grossly involved jugulodigastric lymph nodes
should be removed in a systematic way using a mod-
ified neck-dissection technique. Parents should be
forewarned that removal of cervical lesions almost
always results in Horner’s syndrome.

11.4.6.3 Cervico-Thoracic Lesions

Tumors that are primary to the neck or chest may ex-
tend into and through the thoracic inlet. The best
surgical exposure for lesions in this area is a cervico-
thoracic incision. The neck is exposed as outlined in
Fig. 11.4.1 and the sternum is then divided either
completely, or down to the fourth interspace and then
extended laterally. Nerve stimulation is useful when
dissecting close to the brachial plexus.

11.4.6.4 Mediastinal Tumors

Figure 11.4.2 illustrates the approach for posterior
mediastinal primary tumors that do not involve the
thoracic inlet. A muscle-sparing approach is often
feasible for tumors that are not large. Access to the
ipsilateral upper extremity allows nerve stimulation
of the T1 nerve root of the brachial plexus which may
dip down into the thoracic cavity. Injury to the sym-
pathetic fibers near the stellate ganglion may result in
postoperative Horner’s syndrome. The recurrent and
phrenic nerves are also at risk.

11.4.6.5 Lesions in the Upper Abdomen 
and Retroperitoneum

Adrenal primaries often involve regional lymph
nodes in the ipsilateral para-aortic or pericaval
chains as well as interaortocaval lymph nodes. In-
deed, the primary tumor bulk may actually be con-

fluent, enlarged nodal metastases rather than exten-
sion from the primary tumor. As a consequence of
this retroperitoneal origin with lymphatic infiltra-
tion, the great vessels may be partially or completely
encased but not invaded by tumor.Adequate vascular
control and retroperitoneal exposure is best obtained
using an ipsilateral thoraco-abdominal incision ex-
cept for very small lesions with minimal regional
nodal involvement. A midline extension may be nec-
essary for lesions extending into the lower abdomen.
On the left side the spleen and tail of the pancreas are
rotated medially to expose the supra-celiac aorta. The
celiac axis is the first major vessel identified followed
by the superior mesenteric artery about 1 cm below.
The left lateral surface of the aorta is cleared to the
origin of the left renal artery which can then be fol-
lowed toward the renal hilus. When a vessel is en-
cased, division of tumor tissue over a clamp is neces-
sary. Vascular injury is possible when the aorta and
visceral vessels are cleared. Small side vessels can be
controlled with finger pressure and the placement of
fine monofilament sutures that approximate the ad-
ventitia or superficial media. If the aortic wall is
weakened or there is a larger injury, the aorta should
be clamped or compressed both proximally and dis-
tally. Supra-celiac aortic clamping is usually well tol-
erated for short periods of time and the aortic pres-
sure must be reduced before sutures are placed or the
vessel may tear. Monofilament sutures with reinforc-
ing Dacron pledgets should be used and larger tears
may require a patch angioplasty. These maneuvers
are rarely required but may be lifesaving.

A right-sided thoraco-abdominal exposure is fo-
cused on control of the supra-and infra-renal vena
cava. The cava is identified just below the liver and
dissection proceeds along its right lateral wall. It is
usually best to identify the right renal vein and then
move superiorly. The Trendelenburg position may
reduce the pressure in the vena cava as well as the
chance of air embolism.

11.4.6.6 Pelvic Tumors

Pelvic tumors usually have favorable biologic charac-
teristics but are complicated by encasement of iliac
vessels or infiltration of the lumbosacral plexus. A
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low midline incision down to the pubic symphysis
gives good exposure and allows control of the distal
aorta and vena cava. Both lower extremities should
be prepped into the field and covered with clear plas-
tic so that nerve stimulation may be done. The ipsi-
lateral internal iliac vessels, if encased, may be ligated
and resected. Foot drop is a common complication
after resection of large pelvic lesions and should be
discussed with the family pre-operatively. One study
reported a 35% rate of permanent neurologic in-
juries after pelvic neuroblastoma resection. Also,
incomplete resection does not preclude long-term
remission (Shamberger et al. 1998).

11.4.7 Conclusion

As part of the worldwide effort to reduce toxicity of
neuroblastoma treatment while improving overall
survival, the role of surgery continues to evolve. The
necessity, timing, and the extent of tumor resection
should be critically evaluated. Although much
progress has been made, surgical intervention is still
required to establish the stage, and therefore risk sta-
tus, of most neuroblastoma patients. A reduction in
therapeutic intensity is now possible in intermediate-
risk neuroblastoma as surgery assumes a larger role.
For specific neuroblastomas diagnosed in the pre- or
neonatal period, elimination of primary tumor sur-
gery is being prospectively evaluated by the COG.
Finally, as systemic therapy is being refined, local
control and possibly survival in high-risk tumors

Figure 14.4.4

A lower mid-line incision gives
good exposure for resection of
pelvic neuroblastomas. Proximal
identification of the iliac vessels
and ureters is facilitated. Resec-
tion of pelvic tumors is associat-
ed with a high rate of perma-
nent nerve injury and nerve
stimulation should be done with
these dissections.
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have been correlated with gross total resection. The
pediatric surgeon’s input will continue to be a vital
component of the disease management team effort.
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11.5 Radiation Therapy

Suzanne L.Wolden, Daphne A. Haas-Kogan

11.5.1 Background

Precise delineation of the role of radiotherapy in 
the treatment of neuroblastoma is hampered by the
paucity of studies that evaluate radiation in a
prospective, randomized fashion. Data from decades-
old retrospective studies are currently used to guide
radiation practices. Nevertheless, new studies, al-
though preliminary, may provide insights into the
optimal use of radiation therapy in a risk-based
treatment approach of this disease.

Historically, radiation therapy was administered
to the vast majority of neuroblastoma patients, with
the exception of stage-I tumors (Evans 1980). The
dose of radiation ranged from 10 to 45 Gy according
to patient age rather than stage of disease (Evans et al.
1984). During that era in which patients with early-
stage disease received radiation, two studies exam-
ined the radiation dose of neuroblastoma (Jacobson
et al. 1983, 1984). Doses below 20 Gy were deemed
sufficient to achieve local control; however, the ma-
jority of patients included in both studies would like-
ly not receive radiation therapy today. Nonetheless,
the adequacy of <20 Gy dose was widely adopted for
all stages of disease; thus, this dose of radiation that
has become the gold standard for high-risk disease
was derived from patients now known not to require
radiation.

11.5.2 Radiation Approach According 
to Risk Stratification

11.5.2.1 Low- and Intermediate-Risk Disease

The standard of care for irradiation in neuroblas-
toma began to evolve in the 1980s, when studies indi-
cated that patients with early-stage disease did not
benefit from post-operative radiation to the primary
site. In the 1970s and 1980s two large randomized tri-
als focused on localized and regional disease, and
although neither study examined radiation in a

prospective manner, mounting evidence suggested
that adjuvant radiation therapy did not influence sur-
vival of patients with stage-2 neuroblastoma (Evans
et al. 1976, 1984; Matthay et al. 1989).

The CCG recently reported on the outcome of
Evans stage 1–2 neuroblastoma treated with surgery
as primary therapy. Chemotherapy and radiation
were reserved for progressive or recurrent disease or
local disease-related symptoms such as spinal cord
compression or respiratory distress. The event-free
survival (EFS) and overall survival (OS) rates were 93
and 99%, respectively, for stage-1 patients, and 81
and 98%, respectively, for stage-2 patients. Addition-
al therapy (radiation, surgery, and/or chemotherapy)
was needed in only 10% of stage-1 patients and 20%
of stage-2 patients (Perez et al. 2000).

Based on these results, the current standard of care
is to reserve radiation therapy only for those low-risk
patients whose disease is not adequately controlled
with surgery and chemotherapy. In the current COG
protocol for low-risk neuroblastoma (#P9641), a dose
of 21 Gy is recommended for stage-1 and stage-2 pa-
tients who require radiotherapy.

11.5.2.2 Intermediate-Risk Disease

Intermediate-risk patients are defined as infants with
stage-4 disease without MYCN amplification, favor-
able biology stage 3, or INSS 4s with unfavorable his-
tology or DNA index. Three-year survival rates for
this group of patients are 75–98% and recent studies
have focused on minimizing treatment-related side
effects while maintaining high event-free and overall
survival rates. The current approach to intermediate-
risk patients consists of four to eight cycles of stan-
dard doses of chemotherapy and primary tumor re-
section.

Studies that have addressed the use of radiation
for intermediate-risk disease combine INSS 2B and 3
patients and use various outdated staging systems
precluding conclusive recommendation regarding
when and how to incorporate radiation into the treat-
ment of intermediate-risk patients (Evans et al. 1980;
Rosen et al. 1984; McGuire et al. 1985; de Bernardi et
al. 1987; West et al. 1993). For patients residing in the
more favorable portion of the intermediate-risk
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group, radiation therapy is not indicated in their ini-
tial management. Matthay et al. reviewed the Chil-
dren’s Cancer Study Group (CCSG) experience of
stage-2 disease from 1978 to 1985 and found excellent
5-year progression-free survival (PFS) and OS rates of
90 and 96%, respectively. Germane to the current dis-
cussion is the finding that radiation therapy did not
influence clinical outcome. Six-year survival was 98%
for those treated initially with surgery alone com-
pared with 95% for those receiving radiation and/or
chemotherapy (Matthay et al. 1989); thus, intermedi-
ate-risk patients with stage-2B disease do not require
routine radiation as part of their initial treatment.

The role of radiation therapy is better established
for a subgroup of patients with stage-3 disease. Older
studies,before the era of biologic staging,reported an
advantage to radiotherapy in patients with Evans
stage 3 and/or with positive lymph nodes (POG stage
C) neuroblastoma. In a small series, Koop and John-
son found that postoperative irradiation improved
survival, since 6 of 7 who were irradiated were alive
compared with only 1 of 9 patients who did not re-
ceive postoperative radiation (Koop and Johnson
1971). A randomized trial addressed the role of radi-
ation in patients with unresectable non-metastatic
disease. Stage-C patients older than 1 year were ran-
domized to receive postoperative chemotherapy or
chemotherapy plus regional RT (24–30 Gy, 1.6–2.0
fractions). Of those receiving chemotherapy alone,
45% achieved complete remissions and 31% were
disease free at a median of 35 months. For patients re-
ceiving radiation in addition to chemotherapy, 67%
achieved complete remission and 58% remained dis-
ease free at a median of 23 months (Castleberry et al.
1991). Conclusions drawn from this study should be
applied to current management with great caution
since neuroblastoma treatment now utilizes a differ-
ent staging system, biologic tumor characteristics,
and more intensive chemotherapy regimens. Incor-
poration of biologic factors (hyperdiploidy, favorable
histology, absence of MYCN amplification) in the
management of stage-3 patients suggests that radia-
tion is not essential (Matthay et al.1998).Survival and
local control for patients with amplified MYCN are
lacking and the role of more aggressive irradiation in
such patients is a testable question.

In the most recent COG study for intermediate-
risk patients (COG Protocol A3961), including those
with INSS 3 with favorable biology and infant with
INSS 4, surgery provides diagnostic material at diag-
nosis and maximal safe resection of the primary tu-
mor after chemotherapy. The duration of chemother-
apy, consisting of cyclophosphamide, doxorubicin,
carboplatin, and etoposide, is based on the biologic
risk factors. Radiation therapy is indicated for pa-
tients with clinical deterioration despite chemother-
apy and surgery or those with persistent tumor after
chemotherapy and second-look surgery.

11.5.2.3 Stage-4S Disease

A unique use of radiation therapy is for infants with
stage-4S disease who have respiratory distress or
compression of abdominal viscera from massive liv-
er involvement (Paulino et al. 2002). A very low dose
of radiation, three fractions of 1.5 Gy each, is ex-
tremely effective in reversing these life-threatening
problems without a significant risk of long-term
complications. While radiation may not be necessary
immediately, it is advisable to consult a radiation on-
cologist as soon as possible because the child’s condi-
tion can deteriorate rapidly and emergency treat-
ment may be warranted. These infants can be treated
without anesthesia or simulation because a papoose
provides adequate immobilization and a clinical set-
up is generally possible for their palpable livers.
Complex shielding is not necessary or appropriate
because the liver generally fills the entire abdomen
and the dose is low.

11.5.2.4 High-Risk Disease

Although reports in the 1980s and early 1990s sug-
gested a benefit to radiation in patients with more
advanced disease, the applicability of such conclu-
sions to modern treatment has been confounded by
evolving staging systems and risk groups that take
into account modern molecular and genetic tumor
features, introduction of myeloablative chemothera-
py, and other changes in the approach to neuroblas-
toma. Nonetheless, for patients with advanced-stage
disease, studies indicated a potential advantage to
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radiation delivered to the primary site (Castleberry
et al. 1991; Halperin 1996). Currently, COG recom-
mends that patients with high-risk disease receive ra-
diation to the primary disease site regardless of the
extent of surgical resection, as well as to sites of
metastatic disease that display persistent 131I-meta-
iodobenzylguanidine (MIBG) avidity on the pre-
stem cell transplant scans.

Several contemporary studies have examined rela-
tively uniform cohorts of patients and have used
modern indications for radiation therapy. Such re-
sults strongly support the administration of radia-
tion to the primary site in high-risk disease. These
single-institution and small consortium studies have
reported excellent local control rates after treatment
regimens that consist of induction chemotherapy, de-
layed primary surgery with attempted resection of
primary and bulky metastatic lesions, external beam
radiation to the primary tumor site, and persistent
metastatic areas, with or without myeloablative
chemotherapy and infusion of stem cells. Such a
series of patients with stage-4 neuroblastoma re-
ceived 1.5 Gy twice a day to 21 Gy to the pre-chemo-
therapy, pre-surgery primary tumor volume and 
regional lymph nodes and had an actuarial locore-
gional control rate of 84% at 5 years (Wolden et al.
2000).

An update of this single-institution experience re-
ported a 10.1% probability of primary-site failure
among 99 patients, most of whom (92 patients) had
no evidence of disease in the primary site at the time
of irradiation (Kushner et al. 2001). Among seven pa-
tients with disease at the primary site at the time of
irradiation, three had disease that recurred locally. A
similar treatment regimen was used by the German
multicenter neuroblastoma trial in which 14 of 26 pa-
tients with advanced disease had disease that re-
lapsed, four of which (29%) included the primary
sites (Kremens et al. 1994). Similar regimens have re-
sulted in decreased local relapse rates, ranging from 0
to 17% (Ikeda et al. 1992; Sibley et al. 1995; Villablan-
ca et al. 1999).

Such favorable local-control rates notwithstand-
ing, direct comparisons between these results and
those of large multi-institutional studies are limited
by the considerably higher rate of complete total re-

sections and the various chemotherapy regimens
used in single-institution and small consortium
studies. A case in point is the largest, modern multi-
institutional trial carried out by the Children’s Can-
cer Group (CCG). This randomized study (CCG-
3891) showed superior clinical outcomes for patients
with high-risk neuroblastoma who were treated with
myeloablative chemotherapy and total body irradia-
tion (TBI) with transplantation of purged autologous
bone marrow, followed by treatment with 13-cis-
retinoic acid. External-beam radiation therapy
(EBRT) was prescribed for all patients with gross
residual disease after induction chemotherapy and
surgery. Patients randomly assigned to the transplan-
tation arm received additional TBI as a component of
the ablative regimen (Matthay et al. 1999).

In CCG 3891, relapse at the primary disease site
was a major component of unsuccessful treatment.
Among 539 patients, 349 had recurrences, including
31 with isolated locoregional relapses, 148 with si-
multaneous local and distant recurrences, and 150
with distant relapses. At 5 years the estimated locore-
gional recurrence rate was 51±5% among patients
who received continuation chemotherapy compared
with 33±7% among patients who received transplan-
tation. The difference in local relapses between the
continuation chemotherapy and autologous bone
marrow transplantation groups was most pro-
nounced in patients with MYCN-amplified tumors.
Among patients with MYCN amplification the esti-
mated 5-year local recurrence rate was 70±10% for
those who received continuation chemotherapy com-
pared with 25±15% for patients who received autol-
ogous bone marrow transplantation (Haas-Kogan et
al. 2003).

The high rate of local recurrence in CCG 3891
prompted an examination of whether addition of
EBRT improved local control rates. Although this
question could not be answered directly by this study
because EBRT was not randomly assigned, several
conclusions emerge from the analyses. For patients
who received 10 Gy of EBRT to the primary, the addi-
tion of 10 Gy of TBI and autologous bone marrow
transplantation decreased local recurrence com-
pared with continuation chemotherapy. The benefit
for radiotherapy is particularly evident when sys-
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temic treatment is optimized with myeloablative
therapy and 13-cis-retinoic acid. The data further
suggest a dose-response relationship with local
EBRT, although the optimal dosage to primary tumor
sites has not been established (Haas-Kogan et al.
2003). For patients with high-risk neuroblastoma
COG recommends EBRT to the primary tumor site in
the context of a myeloablative regimen that does not
include TBI. Radiotherapy is best administered fol-
lowing myeloablative chemotherapy and resection,
when the volume of disease is minimal. This elimi-
nates the potential problem of acute toxicity from ra-
diotherapy interfering with optimal administration
of systemic therapy.

According to the current COG A3973 high-risk
study, the tumor volume measured prior to surgical
resection should be treated with a minimum dose of
21.6 in 1.8 Gy daily fractions. It is anticipated that this
dose will be adequate for local control in patients
with a complete surgical resection; however, poor

local control rates are observed with this dose or ra-
diation in patients with subtotal resection. Prospec-
tive studies should, therefore, be developed to test
whether this subset of patients may benefit from a
higher radiation dose.

11.5.3 Radiation Techniques

11.5.3.1 General Technical Considerations

Over the past decade,dramatic technological advances
have revolutionized radiation planning and delivery.
Three-dimensional CT scan simulation and treatment
planning have allowed physicians to better target areas
at risk while sparing healthy tissues. Further advance-
ments, including proton beam, radiosurgery, intraop-
erative radiation therapy (IORT),and intensity-modu-
lated radiation therapy (IMRT), have given physicians
multiple options for highly conformal therapy (Swift
2002). Magnetic resonance imaging (MRI) and posi-

Figure 11.5.1

Example of a radiotherapy por-
tal for an adrenal primary tumor
following chemotherapy and
gross total resection. The field
encompasses the tumor bed
and para-aortic lymph nodes.
The treatment field is outlined in
red and the kidneys are in green.
It is necessary to spare at least
one-third of each kidney (prefer-
ably more) to maintain renal
function. Each patient’s field is
individualized based on three-
dimensional outlines of the tar-
get on a planning CT scan.
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tron emission tomography (PET) scans can be fused
with treatment planning computed tomography (CT)
scans to aid in defining disease sites in challenging cas-
es (Hevezi 2003; Krasin et al. 2004).

The radiation technique employed depends upon
the site being treated, the planned dose, patient age,
and whether there has been prior radiation. Most
commonly, patients with high-risk disease receive a
relatively low dose of 21 Gy to the primary site, often
in the adrenal gland. Based on patterns of failure, it is
important in these cases to cover the para-aortic
lymph nodes (Wolden et al. 2000). CT planning is
imperative to precisely delineate the target region as
well as normal tissues including the kidneys and
liver. Simple anterior and posterior beams, as demon-
strated in Fig. 11.5.1, are often the best solution, but
IMRT may be helpful if standard techniques would
not provide adequate sparing of critical organs.

Bone metastases are also often best treated with
simple opposed beams; however, more sophisticated
approaches are needed when treating sites in the
head and neck because of the complex anatomy and
critical structures. For instance, IMRT may be useful
for metastatic disease in the paranasal sinuses
(Fig. 11.5.2). For high-risk patients with diffuse
metastases throughout the calvarium, orbits, and
skull base, we have employed a relative “brain-spar-
ing” radiation technique that allows treatment of
bones without full exposure of the brain in young
children (Fig. 11.5.3). Photons are used to treat 
the outer skull, posterior orbits, and skull base.
These fields are matched to low-energy elec-
tron beams to treat the lateral skull. Electron beams
do not penetrate very deeply beyond the bone,
and therefore much of the brain is spared (Hall 
2000).

Figure 11.5.2

Combined photon and electron
treatment for diffuse skull
metastases.The photon field can
be seen around the periphery of
the skull, including the skull
base. This field is deeply pene-
trating. The electron fields (e-)
are in the middle, treating the
lateral skull superficially. This al-
lows radiation to the entire bony
calvarium and skull base with
relative sparing of the brain.
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Radiation is also an important modality for pallia-
tion of patients with progressive neuroblastoma. It is
extremely effective for relief of bone pain and neuro-
logic deficits. The appropriate fractionation regimens
for palliative therapy depend upon the site of treat-
ment and anticipated survival of the patient. For a
high-functioning child, 15 fractions of 2 Gy each may
be used while for a patient with end-stage disease, a
single fraction of 7 Gy may be considered. IMRT is
very useful if a specific site requires a second course of
salvage radiation therapy. Parenchymal brain metas-
tases have become an increasing site of isolated failure
in high-risk patients (see the present chapter). Inves-
tigators at MSKCC have found that even solitary brain
metastases are associated with a very high rates of
leptomeningeal dissemination, suggesting that pro-
phylactic craniospinal radiation therapy may have
clinical utility for patients who develop brain metas-
tases (S.L. Wolden, personal communication).

Neuroblastoma is common in very young chil-
dren, necessitating the frequent use of anesthesia for
radiation treatments. In this case, propofol is safe and
well tolerated, even for twice-daily treatments. With
proper immobilization devices and input from par-
ents and child-life specialists, some very young chil-
dren can be coached to receive treatment without

anesthesia; however, the precision of our current ra-
diation techniques requires a great deal of coopera-
tion and lack of motion.

11.5.3.2 Intraoperative Radiation Therapy

Radiation for neuroblastoma in most commonly ad-
ministered to patients with high-risk disease. Multi-
institution studies report significant local recurrence
rates of 20% even after myeloablative multimodality
treatment and aggressive gross total surgical resec-
tions. Furthermore, patients with high-risk disease
frequently present with large abdominal primary tu-
mors, abutting or invading many dose-limiting nor-
mal tissues. External beam radiation to these tumors
often requires treatment of a large volume of normal
tissue, including bowel, liver, kidney, bony structures,
and spinal cord. Radiation therapy to neuroblastoma
occurring at other primary sites, including the thorax
and pelvis, similarly exposes normal tissues to the
risk of long-term side effects. Long-term toxicities
associated with EBRT are particularly severe in chil-
dren (Meadows 1989; Hawkins 1990; Donaldson 1993)
(see Chapter 18). Furthermore, EBRT may decrease
renal function, resulting in diminished tolerance to
high-dose chemotherapy with stem cell transplant.

Figure 11.5.3

Intensity-modulated radiation
therapy (IMRT plan) for a solitary
but extensive skull metastasis.
The percentage of the prescrip-
tion radiation dose is represent-
ed by the colored “isodose”lines.
This technique maximizes spar-
ing of adjacent critical struc-
tures.
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Although EBRT plays a key role in the treatment of
neuroblastoma, several institutions have explored
IORT as an effective radiation modality that may
minimize acute and long-term side effects. In con-
trast to EBRT, IORT allows treatment of high-risk ar-
eas at the time of primary resection. Critical struc-
tures can be directly visualized and manipulated at
the time of surgery, allowing their exclusion from the
radiation field provided they are at low risk for mi-
croscopic disease. A high radiation dose can thus be
delivered to residual tumor and areas at high-risk for
microscopic disease, while minimizing the radiation
dose to nearby normal tissues. Most reports on the
use of IORT focus on adult patients. IORT in these
studies is generally used for tumors with a high
propensity for local failure, such as colorectal, stom-
ach, and bladder cancer (Abe and Takahashi 1981;
Matsumoto et al. 1981; Abe and Shibamoto 1996;
Hanks and Lanciano 1996; Kim et al. 1997). Many of
these studies have shown improved loco-regional
control when compared with standard therapy (Abe
and Takahashi 1981; Matsumoto et al. 1981; Abe and
Shibamoto 1996; Hanks and Lanciano 1996; Kim et
al. 1997). A small number of studies have established
the potential for IORT as a treatment modality in pe-
diatric patients, including patients with neuroblas-
toma (Haase et al. 1994; Aitken et al. 1995; Leavey et
al. 1997; Merchant et al. 1998; Nag et al. 1999). IORT in
these studies was extremely well tolerated and may
have improved local disease control.

A recent update from the University of California,
San Francisco reported on a cohort of 28 consecutive
patients treated with IORT for newly diagnosed high-
risk neuroblastoma. With follow-up ranging from 19
to 200 months (median 45 months), none of the 20
patients who had gross total resections experienced
local recurrences. In contrast, three of eight patients
who had subtotal resections recurred locally, despite
the addition of 20 Gy of EBRT to the primary site
post-operatively (DeWitt et al. 2003).

IORT at the time of primary resection achieves ex-
cellent local control in patients with high-risk neu-
roblastoma and is well tolerated. Compared with his-
torical outcome data, IORT achieves comparable con-
trol and survival rates while avoiding the use of sys-
tematic EBRT.Additional therapy with EBRT may not

be warranted in high-risk patients treated with IORT
who have undergone successful gross total resection
of their primary tumor, although more conclusive
evidence requires larger patient numbers and longer
follow-up. Higher local failure rates in high-risk neu-
roblastoma patients after subtotal resection of their
primary tumors and multiple positive lymph nodes
suggest that additional therapy with EBRT may be
warranted.

11.5.4 Side Effects of Radiation

Side effects of radiation therapy depend on the site of
treatment and radiation dose. Acute and long-term
side effects as well as tumor response may also be en-
hanced by concurrent use of radiosensitizing chemo-
therapy. Prior exposure to highly sensitizing chemo-
therapy may increase radiation toxicity and radiation
recall effects are well described with subsequent use
of these agents. The most highly sensitizing agents
are doxorubicin and dactinomycin; these are general-
ly contraindicated during radiation therapy. Other
mild sensitizers include cisplatin, topotecan, and
irinotecan, which are usually safe to give during ra-
diotherapy. Little work has been done to attempt to
exploit these synergistic relationships in neuroblas-
toma. Research in this area would be appropriate,
especially for patients with unfavorable predictors of
local control such as high-risk patients with gross
residual disease or MYCN amplification.

Abdominal therapy is often associated with nau-
sea and anti-emetics are recommended. Diarrhea
and cramping are less common acute effects. When
large amounts of bone marrow are treated, blood
counts may drop and these should be monitored dur-
ing therapy.

Long-term sequelae of radiation are important
factors to consider when designing treatment for
young children and counseling parents (see
Chap. 18). The highest risk of growth abnormalities
is in very young children (Paulino et al. 2002).
Although the anticipated effect on growth for most
patients treated with fractionated doses of 21 Gy and
less is negligible, when multiple vertebral bodies or
growth centers of long bones are treated, a percent-
age of patients may experience impaired growth
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(Roebuck 1999). Radiation doses >25 Gy are expect-
ed to cause bone growth arrest, and in young chil-
dren, may cause significant abnormalities in skeletal
development (Roebuck 1999). Growth centers of
bones should be shielded whenever possible. It is also
important to irradiate vertebral bodies symmetrical-
ly in order to prevent radiation-induced scoliosis.

Organ dysfunction may result from radiation ex-
posure if tolerance doses are exceeded (see Chap. 18).
Standard whole-organ tolerance doses are as follows:
heart 15 Gy; lungs 15 Gy; kidneys 18 Gy; liver 30 Gy;
bowel 30 Gy; ovaries 10 Gy; and testes 2 Gy. These
doses are only general guidelines. Young children
who are heavily pretreated with chemotherapy or
who have had surgery may experience organ dys-
function at lower doses. Neurocognitive dysfunction
and endocrine abnormalities as a result of brain irra-
diation are dependent upon the child’s age, radiation
dose, and volume of brain exposed. These issues are
important to consider when treating skull and orbital
lesions. Cataracts are common side effects of radio-
therapy and thus doses to the lens should be mini-
mized when treating the orbit. Most children will not
have permanent alopecia after doses of 21 Gy or less,
but a small percentage may have permanent thin-
ning. Doses exceeding 21 Gy do pose the risk of per-
manent epilation in the radiotherapy portal.

Reliable risk estimates of second malignancies fol-
lowing radiotherapy for neuroblastoma are not avail-
able. One may extrapolate from a large body of liter-
ature in pediatric Hodgkin’s disease survivors and
assume that children who are cured after receiving
radiation for neuroblastoma will develop an excess
number of cancers 10–20 years later (Wolden et al.
1998). Common radiation-related malignancies in-
clude breast cancer, sarcomas, lymphomas, and other
solid tumors. Data from Hodgkin’s disease survivors
also indicate that patients receiving thoracic radio-
therapy likely have a higher risk of cardiac disease as
adults; thus, long-term survivors of neuroblastoma
will require lifelong screening for late sequelae of
radiation therapy.

11.5.5 Conclusion

The role of radiation therapy in the treatment of neu-
roblastoma continues to evolve. Past investigations
have taught us that the majority of patients with low-
risk and intermediate-risk disease do well without
radiation therapy. There are several important excep-
tions where the option of radiotherapy must be con-
sidered, such as infants with stage-4S disease requir-
ing rapid reversal of respiratory or gastrointestinal
compromise.

Conversely, the majority of patients with high-risk
disease do benefit from the addition of radiation
therapy to the combined modality treatment para-
digm. Cooperative group- and single-institution
experiences indicate that this group of patients have
excellent local control when the primary site is man-
aged with complete surgical resection followed by
approximately 21 Gy; however, this dose of radiation
does not appear to be adequate if complete resection
is not achieved. Going forward, more aggressive
attempts at surgical resection or higher radiation
doses must be investigated.

Radiation therapy is an indispensable tool in the
management of neuroblastoma metastases, either as
part of initial therapy or as palliation. Techniques
and fractionation schedules can be tailored to the
clinical situation of each individual patient. New
technologies that allow highly conformal therapy are
often applicable to patients with neuroblastoma;
however, survivors must be monitored well into
adulthood for potential late effects of therapy.
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11.6 Stem Cell Transplantation

Stephan A. Grupp

11.6.1 Introduction

The role of autologous stem cell transplantation
(ASCT) as consolidation therapy for malignancies
has been debated, both in the pediatric as well as the
adult setting. General design criteria include: (a) a
chemo-responsive tumor type, typically with a good
initial response to induction therapy, but a poor long-
term (i.e., 3- or 5-year) outcome; (b) a conditioning
(pre-transplant chemotherapy) regimen that may be
dose-escalated safely past marrow tolerance; (c)
conditioning agents not utilized in the induction
chemotherapy; and (d) optimal supportive care, es-
pecially as regards stem cell source and processing
techniques. The use of this treatment option, espe-
cially in the era of peripheral blood stem cell (PBSC)
collection, has special challenges when applied to
young patients with neuroblastoma where the medi-
an age at diagnosis is 3. Finally, although the vast ma-
jority of transplant procedures for patients with NB
now utilize autologous PBSC as the stem cell source,
allogeneic transplant has been advocated by some in-
vestigators, so we briefly explore this issue as well.

The primary source of hematopoietic stem and
progenitor cells for use in autologous and allogeneic
transplantation has been, until recently, bone mar-
row. Over the past decade, there has been an increas-
ing use of peripheral blood containing mobilized
stem and progenitor cells for transplantation
(Table 11.6.1; Kessinger et al. 1986). This product is
variously referred to as peripheral blood stem cells,
peripheral blood progenitor cells, or given the short-
hand designation “stem cells.” Although each cell
source used for hematopoietic transplantation con-
tains stem cells, when the term “stem cells” is used
without a qualifier, it is usually referring to PBSC.
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11.6.2 Autologous Transplant 
in Neuroblastoma

Commonly referred to as autologous transplant, the
use of the patient’s own stem cells to support recov-
ery from high-dose chemotherapy is more properly
referred to as high-dose chemotherapy with stem cell
rescue (HDC/SCR). The HDC regimen used to pre-
pare the patient is usually myeloablative, meaning
that no bone marrow recovery is possible without
SCR. There are also submyeloablative HDC regimens,
in which the SCR is used to speed recovery, decrease
toxicity, and decrease treatment interval without be-
ing absolutely required for engraftment (Kletzel et al.
2002; Kreissman et al. 1997).

Compared with autologous marrow, PBSC pro-
vides faster hematopoietic recovery from HDC re-
sulting in lower infection risk, shorter duration of
mucositis and hospital stay, and lower transfusion
requirement, especially of platelets. The use of PBSC,
along with other advances in prophylaxis and sup-
portive care, has decreased the treatment-related
mortality (TRM) rate in autologous transplant to
<5% in many studies. As a result, the use of autolo-
gous marrow to support HDC/SCR has very limited
indication.

There are several well-established indications for
autologous HDC/SCR. In recurrent Hodgkin’s dis-
ease, 70% relapse again after successfully achieving a
second complete remission (CR). Using HDC/SCR in
second CR increases EFS to approximately 40–60%
(Lazarus et al. 2001). Another established indication
for HDC/SCR is high-risk NB. A number of single-

arm or retrospective studies suggested that autolo-
gous bone marrow transplant might improve EFS
(Matthay et al. 1998). A large EBMT retrospective
analysis of 1070 HDC/SCR for NB noted overall 49%
survival at 2 years. Some relapses were as late as
7 years from transplant, although most events oc-
curred within the first 18 months. Forty-eight of
the 1070 procedures were performed after relapse,
with no survivors among those undergoing a sec-
ond HDC/SCR procedure (Philip et al. 1997). In
Table 11.6.2, EFS rates at or around 3 years from sev-
eral major studies are summarized.

11.6.2.1 Children’s Cancer Group 3891

The Children’s Cancer Group (CCG) 3891 study has
provided the largest phase III experience in NB to
date. This study employed a 2×2 factorial design.
Patients were randomized to consolidation with
HDC/SCR vs continuation chemotherapy after in-
duction. Bone marrow purged using immunomag-
netic method (see 11.6.3.6) was the stem cell source
for HDC/SCR. After completion of consolidation,
patients in both groups were randomized to 13-cis
retinoic acid or no further therapy (Matthay et al.
1999). Patients randomized to HDC/SCR +13-cis
retinoic acid showed improved EFS compared with
those treated with conventional chemotherapy with-
out 13-cis retinoic acid. Note that the survival curves
(Chap. 15, Fig. 15.5.) start at the time of the second
randomization (after HDC/SCR), and not at diagno-
sis. This study also highlighted the challenges of a
2×2 design and a complex treatment plan: of 579

Table 11.6.1 Cellular characteristics of various stem-cell sources. PBSC peripheral blood stem cell

Stem-cell source Bone marrow PBSC G-CSF primed Umbilical 
bone marrow cord blood

Stem-cell content ++ ++ ++ +

Progenitor-cell content ++ ++++ +++ +

T-cell content + ++++ + +/Functionally immature

Risk of tumor cell contam- +++ + +++ Not applicable
ination in autologous 
transplant
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eligible patients, 379 underwent the first randomiza-
tion and 258 patients participated in the second ran-
domization, leaving approximately 50 patients in
each of the four treatment groups.

11.6.2.2 Experimental HDC/SCR

The HDC/SCR concept has been extended using the
more rapid recovery and lower tumor burden afford-
ed by PBSC in studies which use sequential cycles of
HDC/SCR. The approach is called tandem transplant
and allows for greater dose intensification in the con-
solidation phase. This approach was initially tried us-
ing bone marrow as a stem cell source, and encoun-
tered a 24% rate of TRM (Philip et al. 1993); however,
the switch to PBSC has allowed more rapid recovery
from HDC/SCR, and several groups have tested tan-
dem HDC/SCR supported by PBSC (Grupp et al.
2000b; Kletzel et al. 2002). The largest of these studies
was conducted over 6 years at four cooperating insti-
tutions (see Fig. 11.6.1 for the schema and an EFS
curve as of the most recent update). Important char-
acteristics of the study included early collection of
PBSC (generally after the third cycle of induction),

use of CD34 selection of PBSC as a purging method,
and two fully myeloablative consolidation regimens
(carboplatin/etoposide/cyclophosphamide and mel-
phalan/ TBI). The 3-year EFS rate from diagnosis 
in this sequentially treated group of 91 patients was
56% (see Fig. 11.6.1; Grupp et al. 2000b; S. Grupp,
unpublished data). The TRM was 6%, including one
death from EBV lymphoproliferative disease (EBV–
LPD). EBV–LPD is a very uncommon complication 
of autologous HDC/SCR and three cases total were
observed among 91 patients, suggesting that the
combination of CD34 selection and tandem trans-
plant is more immunosuppressive than HDC/SCR us-
ing unpurged PBSC (Kanold et al. 2000; Powell et al.
2004). A similar study was conducted by Kletzel 
et al., using three HDC/SCR regimens in sequence
(Fig. 11.6.2; Table 11.6.2; M. Kletzel, unpublished
data). Among 26 patients in the published report, 19
completed HDC/SCR #2, 17 went on to HDC/SCR #3,
and one late TRM was observed. Eight of the patients
received at least one course of anti-GD2 monoclonal
antibody following induction chemotherapy and sur-
gery. The EFS in this group of patients at 3 years was
57%.

Table 11.6.2 Results from large studies of HDC/SCR in high-risk neuroblastoma. C carboplatin, E etoposide, M melphalan,
Ctx cyclophosphamide, T thiotepa, TBI total body irradiation

Group Number Study type EFS from EFS (%) Myeloablative 
regimen(s)

EBMT 1070 Retrospective Transplant 2 years, 49 Various
5 years, 33

CCG 3891 539 Phase III Estimated 3.7 years, 38 CEM/TBI
from diagnosis

Grupp et al. 91 Phase II Diagnosis 3 years, 56 #1 CECtx
#2 melphalan/TBI

Kletzel et al. 25 Phase II Diagnosis 3 years, 57 #1 CE

#2 CE

#3 TCtx

Villablanca et al. 73 Phase II Transplant 3 years, 49a CEM

Study populations differed significantly in these five studies.The EBMT analysis included allogeneic transplants and transplants
after relapse.Villablanca et al. included only stage 4 >1 year in the group presented
a Unpublished data



Chapter  11176 S. A. Grupp

Figure 11.6.1

Top panel. Schema of the
CHOP/DFCI tandem transplant
study. Bottom panel. Event-free
survival (EFS) from diagnosis.
C carboplatin, E etoposide, Cis
cisplatin, I ifosfamide, VCR vin-
cristine, Adr adriamycin, CTX cy-
clophosphamide, TBI total body
irradiation

Figure 11.6.2

Event-free survival (EFS) from di-
agnosis on the Chicago “triple
tandem” transplant study. OS
overall survival

Indroduction

Cis/E VCR/Adr/CTX VCR/Adr/CTXI/E C/E

collect
stem cells

surgery

infuse
stem cells

infuse
stem cells

XRT

High dose therapy with stem cell rescue

Biologic Therapy

Ctx/E/C Melphalan/TBI

13-cis retinoic acid
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Two other experimental approaches to transplan-
tation are worthy of mention. Combining therapeutic
doses of [131I-m]IBG with high-dose chemotherapy
showed preliminary evidence of efficacy in high-risk
patients (Klingebiel et al. 1998; Yanik et al. 2002). An-
other experimental approach to NB transplant is the
use of allogeneic transplant. A graft-vs-tumor effect,
thought to accompany the graft-vs-host response,has
been demonstrated in leukemias, especially chronic
myelogenous leukemia. This effect has not convinc-
ingly been demonstrated in the setting of solid tu-
mors (Srinivasan et al. 2004). Retrospective analyses
of conventional allogeneic BMT for NB have failed to
show any benefit over standard therapy (Matthay et
al. 1994; Philip et al. 1997). With the advent of non-
myeloablative transplant regimens, the interest in
allogeneic transplant in NB has been revived, with
the hope that reduced intensity will reduce TRM in
order to detect a therapeutic benefit. At this point,
there are no data to justify this approach in children
undergoing their primary treatment for high-risk
NB.

11.6.3 PBSC Collection

There are a variety of techniques to mobilize more
stem and progenitor cells circulating in the peripher-
al blood. Apheresis separates specific blood compo-
nents from a patient continuously by centrifugation.
Any component can be targeted for relatively specific
removal – plasma, red cells, platelets, or white cells.
After venous blood is collected and processed
through the apheresis device, the nontargeted com-
ponents are returned to the patient.

11.6.3.1 Vascular Access

To allow continuous blood processing for PBSC col-
lection two ports of vascular access are necessary. In
adults this requires two antecubital lines. In 5–10% of
adults and most children, percutaneous antecubital
large-bore access is not possible and a pheresis
catheter is used instead. A veno-arterial approach,
utilizing an arterial line to draw blood and a conven-

tional venous catheter to return it to the patient, has
also been described (Takaue et al. 1995). Although
there are many configurations, a pheresis catheter is
generally a two-lumen catheter with offset proximal
and distal ports and side holes along the tip of the
catheter. This offset configuration minimizes mixing
of processed and unprocessed blood and maximizes
the efficiency of the collection. Since apheresis ma-
chines can draw 70 cc per min, conventional Broviac-
type catheters can be difficult for patients <35 kg, be-
cause the lumen collapses under the negative pres-
sure used to draw blood at 2 ml/kg min–1. A pheresis
catheter is designed to allow faster draw rates using a
combination of larger lumen size, shorter catheter
length, and stiffer walls.

Pheresis catheters are available both for tempo-
rary and tunneled insertion. Small patients (approx.
10–30 kg) may require an 8 F cuffed tunneled phere-
sis catheter (MedComp). Smaller patients may re-
quire femoral line placement. The concern in smaller
patients is threefold: (a) the risk of partial or com-
plete vessel occlusion with the catheter; (b) the risk of
vessel erosion and perforation, which may be greater
with stiffer catheters in small vessels (Welch et al.
1997); and (c) the difficulty in placing an offset
catheter in a short vessel where, if the proximal port
is in adequate position, the distal port may be too far
advanced. Femoral catheters are short, allowing
faster collect rates for a given diameter; however, a
patient with a percutaneous nontunneled femoral
catheter cannot walk, necessitating admission to the
hospital for what is otherwise an outpatient proce-
dure. Also, the perceived risk of complication (espe-
cially infection) with a femoral catheter is higher
(Merrer et al. 2001). For both of these reasons,
femoral catheters are generally only placed tem-
porarily, except in unusual circumstances (Chow et
al. 2001).Another approach used at some institutions
is to place a single lumen 7F Broviac-type central
venous catheter on the opposite side of the patient’s
existing double lumen catheter. The single lumen line
is then used as the draw line and the smaller double
lumen catheter is used as the return line.
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11.6.3.2 Collection

Even in a mobilized patient, the number of stem cells
circulating in the entire blood volume may be inade-
quate to provide engraftment; thus, processing of
multiple blood volumes, often over more than 1 day,
is required for some patients (Rowley et al. 2001).
This is typical for patients who have been extensively
pre-treated with chemotherapy. The minimum re-
quired for most patients is one large-volume leuka-
pheresis (LVL), which represents approximately 20 l
in an adult or three to four blood volumes in a child.
This volume is a typical goal for a single apheresis
session, although some physicians will pherese for a
total of six or more blood volumes.

There are two issues in PBSC collection that re-
quire special consideration in children. First is the is-
sue of priming. Even using devices that minimize ex-
tracorporeal volume, smaller children require prim-
ing of the apheresis machine with red cells. This pre-
vents unacceptable dilutional anemia. Second is the
issue of anticoagulation. In older patients, anticoagu-
lation required for the apheresis procedure is accom-
plished using ACD. Although rapidly reversible, ACD
creates a higher risk of symptomatic hypocalcemia in
young patients. These patients are managed with a
combination of ACD and heparin to achieve anti-
coagulation, or receive a calcium infusion in the
apheresis return line.

11.6.3.3 Techniques for Stem Cell Mobilization

Large increases in the number of circulating stem
and progenitor cells occur during recovery from
myelosuppressive chemotherapy, typically when the
absolute neutrophil count (ANC) has reached 1000/ml
and rapidly rising. The exact point of maximal stem
cell mobilization is difficult to predict and highly
patient dependent (see 11.6.3.4). Commonly, cyclo-
phosphamide (a total dose of 4 g/m2 over 2 days) has
been used. Multiple-drug regimens as part of the
primary treatment can also be used to induce a nadir
after which PBSC collection is possible. Because of
the concern that the DNA damage may occur in
hematopoietic stem cells, and hence increased risk of
secondary (treatment-related) leukemia, topoiso-

merase inhibitors (e.g., etoposide) are often not used
to induce the nadir. In one study, use of PBSC collect-
ed after etoposide resulted in a 7- to 12-fold relative
risk of secondary leukemia (Krishnan et al. 2000),
with other studies also demonstrating an increased
risk attributable more to the prior chemotherapy
than to the preparative regimen used for the stem cell
transplant (Kollmannsberger et al. 1998). This effect,
together with the observation that multiple cycles 
of chemotherapy reduce yields of PBSC collection
(Jerjis et al. 2000), argue that PBSC should be collect-
ed as early in treatment as possible, but after suffi-
cient therapy (usually two to three cycles of chemo-
therapy) to clear circulating tumor (Faulkner et al.
2000; Moss et al. 1990).

The use of chemotherapy to mobilize PBSC may
not be possible or desirable in every patient, has a
risk of toxicity during the nadir, and is clearly not ap-
propriate for normal allogeneic donors in whom the
chemotherapy has no potential benefit. An alterna-
tive approach of using hematopoietic growth factors
(HGF) is in widespread use. Donors are placed on a
daily regimen of HGF injections, followed by initia-
tion of PBSC collection on day 4–5 of treatment. The
HGF treatment continues until the apheresis is com-
plete. There are several choices of HGF doses and reg-
imens (Table 11.6.3). Filgrastim (rhuG-CSF) is the
most common HGF used for this purpose. Doses
given vary widely. There is a modest dose-response
effect between 2 and 16 mg/kg of G-CSF. Although
doses as high as 24 mg/kg day–1 have been used for
mobilization, there is little evidence that these very
high doses are more efficacious and they have the
disadvantage of greater cost and higher incidence of
side effects, especially bone pain.

Sargramostim (rhuGM-CSF) is an alternative.
Comparisons of G-CSF and GM-CSF as single agents
reveal either no significant advantage of one HGF
over the other in terms of PBSC collection efficiency
or extent of progenitor cell mobilization (Gazitt
2002), or a modest advantage for G-CSF (Weaver et al.
2001). Laboratory studies have suggested that PBSC
collected after G-CSF mobilization may have a polar-
ization in T-cell response toward the more suppres-
sive T-helper lymphocyte type 2 (Th2) response
(Sloand et al. 2000). This may have a theoretical
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advantage for (a) recovery of cellular immunity after
SCT, and (b) the risk of graft-vs-host disease after
allogeneic SCT. The combination of G-CSF and GM-
CSF may be superior to either alone, although one
pediatric study failed to show an advantage for the
combination.

The one setting in which the combination of G-
CSF plus GM-CSF may be superior is when a patient
has had inadequate numbers of stem cells collected
over several aphereses. In these so-called poor mobi-
lizers, combination HGF regimens may improve the
likelihood that adequate PBSC can be collected (Stiff
1999). Other HGF have been tested as PBSC mobiliz-
ers, including stem cell factor and thrombopoietin,
but there is no evidence to suggest superiority in
terms of clinical outcome during transplant over the
standard use of G-CSF, even when higher numbers of
CD34+ cells are collected. On the other hand, collec-
tion of higher numbers of CD34+ cells has the poten-
tial to reduce the number of LVL a donor must un-
dergo, which is a benefit in terms of cost, conven-
ience, and potential donor exposure, especially in
children. Balanced against this is the high cost of
HGF, and the fact that adding a second HGF doubles
this cost. In patients who are receiving myelosup-
pressive chemotherapy, HGF such as filgrastim are
often used to improve recovery. The concurrent use
of chemotherapy and an HGF improve PBSC mobi-
lization as well (Knudsen et al. 1996; Levine and Box-
er 2002), although a randomized trial did not show
this improved mobilization to have an impact on

survival or engraftment (Narayanasami et al. 2001).
Thus, any patient receiving chemotherapy after
which PBSC collection is planned should be placed
on an HGF, even if similar courses during the treat-
ment are not supported by an HGF.

11.6.3.4 Target Dose for PBSC Infusion

When bone marrow is collected, most operators tar-
get a final volume, or more commonly, a volume and
a nucleated cell dose. Because of the high variability
in stem and progenitor cell content in PBSC, a more
direct assay is needed to assure that adequate num-
bers for reliable engraftment have been collected.
There is no well-established assay for human stem
cells, although stem cell activity is likely to be 
found in a portion of cells that are detected by the
long-term culture initiating cell assay or the SCID
mouse repopulating cell assay.Progenitor cell content
can be assessed by the colony-forming unit granulo-
cyte/monocyte (CFU-GM) assay. The presence of
2–10×104 CFU-GM/kg of recipient weight is predic-
tive of engraftment, but the assay is laborious, expen-
sive, and difficult to standardize. It also takes 14 days
to complete, making it useless to assess PBSC collec-
tions in real time. For all these reasons, most centers
have moved away from CFU-GM assays.

A major advance in the use of PBSC was the recog-
nition that most (although not all) (Goodell et al.
1997) of the cells in the hematopoietic stem- and pro-
genitor cell compartment bear the antigen CD34,
regardless of lineage. Enumeration of CD34+ cells
allows for more accurate assessment of engraftment
potential provided by a given number of mononu-
clear cells. There is a threshold for reliable engraft-
ment and a rough correlation between number of
CD34+ cells above this threshold and engraftment
(Table 11.6.4). The threshold for reliable engraftment
is generally thought to be 1×106 CD34+ cells/kg
(Shpall et al. 1998). Below this threshold, the likeli-
hood of delayed engraftment of neutrophils and es-
pecially platelets increases (Weaver et al. 1997).
Increasing the minimum acceptable number to
2–2.5×106 CD34+ cells/kg decreases this likelihood
somewhat further, and this is the threshold that most
transplant centers attempt to achieve. Some authors

Table 11.6.3 Regimens for PBSC mobilization

Cyclophosphamide 2000 mg/m2 day–1 over 2 days,
followed by G-CSF 5 mg/kg day–1 SQ from day 3 
to the end of pheresis

G-CSF 5 mg/kg day–1 SQ for 3–4 days, followed 
by pheresis on days 4–5 and subsequently

GM-CSF 250 mg/m2 day–1 SQ for 3–4 days, followed 
by pheresis on days 4–5 and subsequently

Combination of G-CSF 5–10 mg/kg day–1 (SQ in AM) 
and GM-CSF 250 mg/m2 day–1 (SQ in PM) for 4 days,
pheresis starting on day 5

Other chemotherapy/HGF combinations
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have advocated a goal (rather than a minimum) of
5 to up to 15×106 CD34+ cells/kg (Stiff 1999). This
higher goal is unrealistic in a number of patients,
especially patients who have been treated with multi-
ple cycles of chemotherapy prior to collection, and
has the potential to significantly increase the cost and
length of apheresis.

CD34+ cells in the bone marrow can range from 1
to 4%, while CD34+ cells in mobilized pheresis prod-
ucts can range from 0.1% (in a poor mobilizer) to
>1%. The assay for CD34+ cells is a flow cytometric
assay (Sutherland et al. 1996; Trischmann et al. 1993),
and this technique is inherently inaccurate at low
percentages. This means that the number of CD34+
cells based on a measured frequency of 0.1% could
easily be off by twofold in either the direction of
more or fewer cells, and this must be borne in mind
when assessing when to stop apheresis in patients
with poor collections. In collections that have under-
gone CD34 selection (see 11.6.3.5), the CD34 purity is
generally >60% and these determinations are ex-
tremely accurate. Another consideration is that low
CD34 PBSC collections often may have a higher gran-
ulocyte content, which can complicate freezing/thaw-
ing and therefore have an impact on yield of cells
actually infused after storage.

There are many different approaches to determin-
ing when a donor will be most successfully pheresed
for the highest number of PBSC. The goals are to get
adequate numbers of PSBC as defined above, prefer-
ably in a single collection procedure. When HGF regi-
mens alone are used, timing is simple: the donor is
pheresed on either the fourth or fifth day of HGF ad-
ministration. After chemotherapy, the point at which

the best collection can be obtained in more difficult to
predict. Peripheral WBC count is a poor predictor of
stem cell mobilization (Yu et al. 1999). There is some
theoretical concern for donor safety and possible hy-
perleukocytosis at WBC counts of more than 70×109/l,
and some advocate G-CSF dose reductions for donors
whose WBC reaches this level. Many centers use some
variation on the following algorithm: 1–3 days after
the rising ANC reaches 1000, at a point where there is
some evidence of platelet recovery, stem cell collection
begins. Rather than using a rising neutrophil count to
trigger apheresis, some centers with access to rapid-
turnaround, quantitative (or “absolute”) CD34+ cell
counts use the rise in peripheral CD34+ cells to time
initiation of collection.Detection of <5 CD34+ cells/ml
of blood is highly predictive of poor PBSC collection,
whereas >10–20 CD34+ cells/ml correlates well with
the likelihood of collecting >2.5×106 CD34 cell/kg in a
single LVL procedure (Yu et al. 1999).

11.6.3.5 Processing and Storage of PBSC

Most PBSC products collected to support transplant
procedures are autologous and must be cryopre-
served for later use. In the allogeneic setting, prod-
ucts can be collected prior to starting pretransplant
conditioning in the recipient or they can be collected
on the day of intended infusion. In addition to cryop-
reservation, other processing options exist, depend-
ing on the purpose for which the PBSC will be used.
Specific engineering of the graft is possible to remove
or expand desired cell populations

After collection, the PBSC product is taken to the
stem cell processing lab. This is where procedures to

Table 11.6.4 Choosing doses of PBSC for stem-cell transplantation

Dose level CD34+ cells/kg Notes
of recipient weight

Minimum 1 × 106 At this dose, there is a risk of prolonged neutropenia 
and extended platelet transfusion requirements

Optimum 2–2.5 × 106 Threshold dose for many centers

Ideal 5 × 106 There is a limited dose-response effect at doses >2.5 × 106 cells,
and this target may increase number of phereses needed and cost
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ensure quality of the product take place, including
determination of CD34+ cell content (see 11.6.3.4),
viability determinations, mononuclear cell counts,
and confirmation of sterility. Stem cell practice has
attracted more regulatory attention recently. The
Foundation for the Accreditation of Cell Therapy has
been established to provide uniform standards for
collection and processing of stem cell products, as
well as the clinical care of both donors and recipients
(Rowley 2002). The various procedures involved in
stem cell processing have also attracted more scruti-
ny from the Food and Drug Administration. Options
for stem cell processing include (a) depletion of
granulocytes by density gradient centrifugation
(Rowley et al. 1990), (b) depletion of potential tumor
cells by a direct purging technique or CD34 selection
(Civin et al. 1990), and (c) depletion of T cells in an
allogeneic product to decrease the risk of graft-vs-
host disease. Many of the stem cell processing steps
described here and below, with the notable exception
of CD34 selection, were developed using marrow
products and all are made somewhat more compli-
cated by the considerably higher number of cells
found in PBSC compared with bone marrow.

11.6.3.6 Tumor Cell Purging

All of these processing procedures either depend on
negative selection (removal of the cell type that is un-
wanted) or positive selection (selection of stem/pro-
genitor cells, leaving all other cells behind). CD34 se-
lection is the primary positive selection technique
available to stem cell labs. CD34 is a cellular antigen
that is expressed on stem cells, as well as progenitor
cells of all hematopoietic lineages. Automated
processes that select the CD34+ cell population
(Strauss et al. 1991) away from the 99% of PBSC that
are irrelevant for engraftment are available, and one
of these technologies, the Isolex 300i device, is FDA
approved. An alternative device, the Miltenyi Clini-
MACS device (Schumm et al. 1999), is approved in
Europe and may soon become available in the United
States. In general, CD34 selection will result in a
product that is 60–95% CD34+, removing more than
99% of T cells (Beelen et al. 2000) and tumor cells
(Donovan et al. 2000; Klein et al. 2001; Mohr et al.

2001), providing that the tumor cells do not express
the CD34 antigen. Hematopoietic tumors, such as
acute leukemias, often express CD34 and are there-
fore not depleted by CD34 selection. CD34 selection
has been used to purge stem cell products in patients
with NB, but concerns have been raised that some NB
cells or cell lines may express CD34 or express surface
epitopes that cross-react with monoclonal antibodies
(MoAbs) that recognize CD34 (Hafer et al. 1999; Voigt
et al. 1997). Our data have not confirmed expression
of CD34 on NB (Donovan et al. 2000), and we and
others have shown purging of NB cells from PBSC
products in the clinical setting (Kanold et al. 2000).
These data suggest that CD34 selection may be a
purging alternative for PBSC products obtained from
NB patients.

Negative selection procedures, by contrast, are tu-
mor- or cell-type specific. For example, many tech-
niques have been developed to negatively select T
cells or T-cell subsets away from stem and progenitor
cells in bone marrow and PBSC (see Ho and Soiffer
2002 for a recent review). These include: (a) a variety
of monoclonal antibodies directed against T cells;
(b) counterflow centrifugal elutriation (Wagner et al.
1990), which separates out lymphocytes based on
physical characteristics; (c) sheep red blood cell
rosetting (Reisner et al. 1981); and (d) immunomag-
netic removal of T cells. Some of these procedures
allow for more specific graft engineering by remov-
ing specific T-cell subsets such as CD8+ T cells or T
cells expressing activation markers such as CD25 or
CD69 (Fehse et al. 2000).

It is also possible to deplete tumor cells using specif-
ic anti-tumor monoclonal antibodies, relying on com-
plement (Stein et al. 1988) plus cell-mediated cyto-
toxicity (Cheung et al. 2002), or more often an im-
munomagnetic depletion method (Reynolds et al.
1986). This approach has been proven to purge tumor
cells from stem cell products collected from patients
with B-cell lymphomas (Freedman et al. 1999). That
tumor-contaminating stem cell products may con-
tribute to relapse was shown in gene-marking studies
in NB patients undergoing autologous bone marrow
transplant. In these studies, a bone marrow aliquot was
transfected with a marker gene and infused after trans-
plant. Tumor cells at sites of relapse were found to con-
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tain the marker gene,suggesting that clonogenic tumor
had been infused with the graft (Rill et al. 1994). In fol-
licular lymphoma, inability to detect tumor cells in the
stem cell product after purging is associated with im-
proved outcome after autologous transplant (Freed-
man et al. 1999), but no study has shown that purging
itself improves outcome. To study this question, the
Children’s Oncology Group (COG) is conducting a ran-
domized comparison (COG A3973) of purged vs un-
purged PBSC given in support of HDC/SCR in NB.
Compared with bone marrow, PBSC from a patient re-
ceiving HDC/SCR for a malignancy are less likely to
contain tumor cells (Ladetto et al.2002; Moss et al.1990;
Faulkner et al. 1998) and have a lower content of tumor
cells if any are present, and are therefore more likely to
be purged successfully of tumor cells (Faulkner et al.
1998, 2000; Ladetto et al. 2001).

11.6.3.7 Storage

After processing, PBSC are then cryopreserved for
later infusion. Controlled-rate freezing with temper-
ature curve monitoring is typically used. Products
are stored in the vapor phase of liquid nitrogen until
they are required for infusion. Usually the storage
period is weeks to months, but stem cell products
have provided adequate engraftment when infused
8–10 years after cryopreservation (Attarian et al.
1996).After thawing, PBSC again are checked for via-
bility. Granulocytes do not survive cryopreservation,
so loss of this cell fraction from the collection is
expected. In order to allow cells to survive freezing
and thawing, they are placed in a medium containing
7.5–10% dimethyl sulfoxide. Stem and progenitor
cells lose viability over time in this medium (Rowley
and Anderson 1993), so it is important to infuse the
cells immediately after thawing.

11.6.4 Conclusion

At this point, an accepted treatment for high-risk NB
includes multi-cycle induction, early collection of
PBSC, testing of the PBSC product for evidence of NB
contamination, as complete a surgical resection as can
be accomplished without organ sacrifice, HDC/SCR
(without clear evidence of one conditioning regimen

being superior to another), and local radiotherapy ei-
ther before or after HDC/SCR followed by treatment
with 13-cis retinoic acid. The ongoing COG phase-III
trial will help answer the question of whether purging
of PBSC will improve the outcome of high-risk NB pa-
tients. To determine if intensifying consolidation will
further enhance the outcome of high-risk NB patients,
a randomized study of single vs tandem cycles of
HDC/SCR is under development within the COG.
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11.7 Minimal Residual Disease Measurement

Irene Y. Cheung, Peter F. Ambros

11.7.1 Introduction

Patients with high-risk NB who are in clinical remis-
sion after completing induction chemotherapy are
often left with minimal residual disease (MRD), i.e.,
the presence of microscopic levels of tumor cells not
detectable by conventional clinicopathologic meth-
ods. MRD in high-risk patients is likely to contribute
to the patient’s eventual relapse and death. It stands
to reason that accurate determination of MRD is
crucial in the overall clinical management of NB
patients. The bone marrow (BM), a frequent site of
tumor recurrence, must be monitored for MRD.
Peripheral blood (PB) is another reservoir of MRD,
and sampling by venipuncture is less invasive and
better tolerated by most patients.

The current multi-modality treatment for high-risk
patients includes dose-intensive induction chemo-
therapy, tumor resection, local radiation, autologous
stem cell harvest with or without purging, megathera-
py with stem cell rescue, as well as biologic and/or dif-
ferentiation therapy to eradicate MRD. Although
methods to detect MRD are fully capable and useful
for measuring large tumor loads, their clinical utility is
most evident after the first three to five cycles of in-
duction therapy, when residual NB are no longer de-
tectable by conventional means. By serving as a surro-
gate end point, the “kinetics”of tumor response can be
better defined by examining BM and PB during suc-
cessive cycles of chemotherapy. MRD can also be used
to evaluate the efficacy of various marrow/stem cell
purging techniques,and to identify the optimal time to
harvest stem cells. Despite positive selection of CD34+
cells from PB stem cells, substantial contaminating
tumor cells remain (Moss et al. 1994; Lode et al. 1997).
As therapy for NB becomes more effective, being able
to quantify tumor cells during follow-up will help
define the quality of remission. It is conceivable that
patients in solid remission, without evidence of MRD,
may be spared further cytotoxic therapy and treat-
ment-related leukemia. Adjuvant therapy, be it mye-
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loablative therapy with autologous BM/stem cell res-
cue (Matthay et al. 1999; Pole et al. 1991; Ladenstein et
al. 1998), or biologic therapy such as immunothera-
py/differentiation therapy (Matthay et al. 1999; N.K.
Cheung et al. 1998; Kushner et al. 2001; Yu et al. 1998),
is typically applied at the time of clinical remission.
An objective evaluation of the efficacy of these dis-
tinct adjuvant strategies is only possible when stan-
dardized protocols and quality-controlled detection
techniques are used (Ambros and Ambros 2001). Ul-
timately, the rational choice of adjuvant therapies
may become individualized depending on the MRD
profile. To date, no treatment decision has been based
solely on the detection of MRD.

11.7.2 Techniques in the Detection 
of Tumor Cells in the Hematopoietic System

11.7.2.1 Histology/Cytology

According to the International Neuroblastoma Staging
System and International Neuroblastoma Response
Criteria (Brodeur et al. 1993), BM studies evaluated by
histologic or cytomorphologic examinations of biopsy
specimens and of aspirates from bilateral anterior and
bilateral posterior iliac crests are part of the extent-of-
disease evaluation. It is also important to perform both
biopsy and aspirate at different sites to achieve the
highest detection sensitivity (Aronica et al. 1998); how-
ever, the sensitivity of tumor detection is relatively low,
and thus the true prevalence of BM disease can be
grossly underestimated (Cheung et al. 1997; Mehes et
al.2003).Nevertheless,histology and cytology are often
used as the gold standard against which new detection
techniques are measured (Cheung et al. 1998).

11.7.3 Detection Methods for MRD

Numerous diverse techniques have been developed
to detect and in some assays to quantify MRD in NB,
because there may be an advantage to know the
amount of residual tumor cells over simply establish-
ing its presence. Optimal MRD assays must have
superior sensitivity and specificity. The sensitivity of
MRD detection methods is influenced by the source
of tissue being analyzed and is limited by the number
of cells available to be assayed. Moreover, the hetero-
geneity of tumor cell populations can result in some
residual disease escaping detection.

11.7.3.1 Immunocytology/
Immunohistochemistry

In this cell surface antigen detection technique,
mononuclear cells isolated from marrow aspirates
and heparinized PB are incubated with a single or a
panel of murine monoclonal antibodies directed
against NB surface antigens. Monoclonal antibodies
specific for the NB surface disialoganglioside GD2
are commonly used because this antigen is expressed
homogeneously on NB cell surface in high density
(Wu et al. 1986). The antibody of choice must have
high affinity for tumor cells, with little or no cross re-
activity to normal hematopoietic cells. Some exam-
ples of anti-GD2 monoclonal antibodies that have ex-
cellent specificity include 3F8 (Cheung et al. 1997;
Faulkner et al. 1998), 14.18 (Mehes et al. 2001), 3A7
(Saarinen et al. 1996), and HSAN1.2 (Smith and
Reynolds 1987). Its usual detection limit of 1 tumor
cell in 105 normal hematopoietic cells may be im-
proved to 1 in 106 or even lower by the use of a com-

Table 11.7.1 Techniques in the detection of minimal residual disease (MRD)

Method of detection Sample source Archived Samples Turn-around time Sensitivity

Cytology BM Aspirate (BMA) Yes Hours 10–3

Histology BM Biopsy Yes 2 days 10–3

Immunocytology BMA, PB No 1 day 10–5

Immunocytology/FISH BMA, PB No 2–3 days 10–5 to 10–6

RT-PCR BMA, PB Yes Hours to 1 day 10–6 to 10–7
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bined immunofluorescence and genetic approach
(Mehes et al. 2001) and to 1 in 107–108 by the use of
immuno-magnetic sorting (Faulkner et al. 2000).

One important advantage of this method is the
possibility to quantify the exact number of tumor
cells in a specimen. It can exploit a mixture of mono-
clonal antibodies of different specificities (Moss et al.
1991). More importantly, it allows the genetic confir-
mation of malignant features of individual cells, and
provides insights into the biologic make up of dis-
seminated tumor cells (DTCs); however, this assay re-
quires freshly collected samples which must be
processed right away. The technique is also labor in-
tensive because it requires counting and analyzing
cells under the microscope.

11.7.3.2 Automatic Immunofluorescence
Detection Techniques

The recent development of a fully automated micro-
scopic device allows for the objective screening and
quantitation of DTCs, as well as their immunologic
and genetic analyses (Mehes et al. 2001a, 2003; Am-
bros et al. 2001; Ambros and Mehes 2002). The un-
equivocal identification of the true nature (malignant
vs benign) of DTC can be achieved by a sequential
fluorescence in situ hybridization (FISH) of the im-
munologically positive cells (Fig. 11.7.1). Further-
more, the visualization of different antibodies on the
same cell can provide vital information on a tumor’s
aggressiveness. There is a fundamental difference be-
tween detecting a proliferative tumor cell vs an apop-
totic cell (Mehes et al. 2001b).

Figure 11.7.1 a,b

a Bone marrow cells from a neuroblastoma patient stained with FITC labeled GD2 antibody. b The same cells as in a were
subsequently analyzed by fluorescence in situ hybridization using a MYCN-specific probe (FITC) and a chromosome-2
specific probe (TRITC). All three GD2 positive cells showed MYCN amplification.
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11.7.3.3 Reverse Transcription-Polymerase
Chain Reaction

In molecular methods to detect MRD, total RNA is
first isolated from mononuclear cells. mRNA is re-
verse-transcribed to cDNA, then amplified by PCR
using target gene-specific primers. In some assays,
nested PCR is carried out, i.e., an aliquot of the PCR
product is subjected to a second PCR reaction,
although carryover contamination is a concern. The
target gene is identified by the presence or absence of
a band of the appropriate molecular size after sepa-
ration by agarose gel electrophoresis of the PCR
product. In some cases, the presence of a gene tran-
script is further verified using Southern blot, as well
as DNA sequencing.

11.7.3.3.1 Real-Time Quantitative RT-PCR
The emergency of real-time quantitative PCR (qRT-
PCR) technology permits not just the identification
of a target gene, but also its transcript level (Heid et
al. 1996; Gibson et al. 1996). Such a development has
broadened the potentials in MRD monitoring.With a
wide linear dynamic range, superior sensitivity and
accuracy, real-time RT-PCR allows good intra-assay
and inter-assay reproducibility. Additional attrac-
tions include high throughput capacity, speed, and
elimination of lengthy post-PCR handling steps, pre-
venting potential carryover contamination. Two ma-
jor technical variables that need to be addressed are
the selection of a reference gene against which the
test samples can be normalized, and how to discrim-
inate a positive from a negative result.

11.7.3.3.2 Molecular Targets
Several molecular targets have been studied exten-
sively in the detection of residual NB cells in the BM
and PB. Specificity is determined by the absence of
gene expression when a series of normal BM and PB
is evaluated. Sensitivity experiments are carried out
by spiking varying concentration of tumor cells from
a NB cell line to normal mononuclear cells,and assess
the limit of detection. Depending on the specific gene
expression of the cell line, sensitivity can reach as
high as 1/107. Tyrosine hydroxylase (TH, tyrosine 3-
monoxygenase), being the first and rate-limiting en-

zyme in the biosynthesis of catecholamine, is a logi-
cal choice since most NBs secrete catecholamines.
Detection of occult NB cells by RT-PCR of TH mRNA
was first reported in BM by Naito et al. (1991), and by
Burchill et al. (1994) in PB. Recently, several real-time
RT-PCR assays for TH transcript have also been de-
veloped (Träger et al. 2003; Tchirkov et al. 2003).

Another useful molecular target is the transcript
of GD2/GM2 synthase (b1,4-N-acetylgalactosaminyl-
transferase). It is the key enzyme required for the
synthesis of GD2 (Furukawa et al. 1996), an antigen
ubiquitously expressed on NB. Its utility as a molecu-
lar marker in the detection of NB cells in the BM was
first reported by Cheung et al. (Cheung and Cheung
2001; Lo Piccolo et al. 2001). A highly sensitive and
specific quantitative RT-PCR assay which measures
GD2 synthase mRNA was developed with transcript
levels correlating well with the number of NB cells as
measured by immunocytology (Cheung and Cheung
2001).

The cancer testis antigen GAGE belongs to a fami-
ly of genes which encode distinct tumor-associated
peptides recognizable by autologous cytolytic T lym-
phocytes when presented by HLA class-I molecules
(Van den Eynde et al. 1995). It is expressed in human
tumors of different histologic types including NB, but
is silent in normal adult tissues except for placenta
and testis (De Backer et al. 1999). GAGE was demon-
strated to be a potentially useful MRD marker of NB
(Cheung and Cheung 1997; Cheung et al. 2000) and
melanoma (Cheung et al. 1999).

11.7.3.3.3 Perspectives on Molecular Detection
Molecular-based MRD assays can be hampered by
the inherent pitfalls of DNA amplification. False-pos-
itive findings may result from “tumor-specific” genes
which are occasionally transcribed even in normal
tissues. Illegitimate transcription, i.e., the transcrip-
tion of any gene in any cell type, and pseudogenes,
which lack intronic sequences resulting in PCR prod-
ucts indistinguishable from those generated from the
mRNA, also pose concerns. False-negative results in
molecular assays can be due to degraded RNA, tumor
cell heterogeneity, the presence of inhibitors, techni-
cal errors, sampling problem, as well as down-regula-
tion of the target gene.
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11.7.4 Clinical Relevance of MRD

The ultimate utility of MRD detection is to determine
the clinical significance of occult tumor cells in rela-
tions to patient relapse, survival, and even cure, using
progression-free and overall survival as the clinical
end points. Prognostic impact of MRD needs to fac-
tor in the genetic profile of the tumor. For example,
NB patients with stage-4s disease are well known to

have marrow disease, and yet they predictably have
favorable outcome. This suggests that the presence of
marrow disease may not necessarily be clinically rel-
evant to all NB stages. In fact, a Children’s Cancer
Group study with 374 patients reported no statisti-
cally significant difference between stage-1 and
stage-2 patients who had immunocytology-positive
vs immunocytology-negative marrow disease at di-
agnosis (Perez et al. 2000). Interestingly, in a compa-

Table 11.7.2 MRD detection with prognostic significance in survival (p<0.05)

Study Number Sample Time from Survival Detection Reference
of Patients diagnosis method

CCG-3891 242 BM 12 weeks from PFS Immunocytology Seeger et al. (2000)
diagnosis (after 
three cycles 
of chemo)

195 BM BM harvest PFS Immunocytology Seeger et al. (2000)

France 22 BM ~3 months from OS TH qRT-PCR Tchirkov et al.
diagnosis (after (2003)
three cycles 
of chemo)

21 PBSC PBSC harvest OS TH qRT-PCR Tchirkov et al. (2003)

Japan 21 BM 4 months from PFS TH RT-PCR Fukuda et al. (2001)
diagnosis

MSKCC-N7 31 BM Before 3F8a OS GD2 synthase Cheung et al. (2002)
purging qRT-PCR

Germany 24 PBSC PBSC graft PFSc Immunocytology Handgretinger et al.
(2003)

MSKCC-N7 45 BM Before 131I-3F8 PFS, OS GD2 synthase Cheung et al. (2003a)
and 3F8a qRT-PCR

MSKCC-9418 74 BM Before third cycle PFS GD2 synthase Cheung et al.
of 3F8a+GM-CSF qRT-PCR (2003b)
(1.8 months from 
protocol entry)

UKCCSG- 112 PB Off therapy in PFS TH RT-PCR Burchill et al. (2001)
NB9305 clinical remissionb

MSKCC-N6, N7 44 BM 24 months PFS, OS GAGE RT-PCR Cheung et al. (2000)
from diagnosis

MSKCC-N6, N7 44 BM 24 months PFS, OS GD2 synthase Cheung and Cheung 
from diagnosis qRT-PCR (2001)

a 3F8 is a murine anti-GD2 monoclonal antibody
b Off therapy defined as after surgery and/or PBSC transplant
c Favorable survival with increased tumor cell contamination
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rable patient group, a false-positive rate of >30% was
found after genetic verification of the immunologi-
cally positive DTCs (Mehes et al. 2001). Indeed, an
unambiguous identification and quantification of
MRD must be a requisite for MRD monitoring. For
patients with stage-4 NB undergoing multi-modality
treatment, the clinical significance of MRD is highly
dependent on when the sampling is being carried
out.

Several research groups have reported that among
stage-4 NB patients older than 1 year at diagnosis,
MRD during and after therapy had a statistically sig-
nificant impact on patient survival (Table 11.7.2).
Some studies have further underscored the adverse
effect of the presence of NB cells in BM and PB at di-
agnosis on clinical outcome (Seeger et al. 2000;
Burchill et al. 2001). The implication of this conclu-
sion is that emphasis must be placed on improved
therapeutic strategies. It is not surprising to find the
presence of MRD at the end of therapy to have prog-
nostic importance, as demonstrated by the MSKCC
and UKCCSG studies (Cheung and Cheung 2001;
Cheung et al. 2000; Burchill et al. 2001). More relevant
to the clinical management of NB is likely the impact
of MRD during and after induction (Seeger et al.
2000; Fukuda et al. 2001). In BM/PBSC harvest, an ad-
verse effect on survival was demonstrated with ≥100
tumor cells per 105 nucleated BM detected by im-
munocytology (Seeger et al. 2000), >500 TH tran-
scripts in PBSC by qRT-PCR (Tchirkov et al. 2003),
and >5 GD2 synthase transcript units in prepurged
BM by qRT-PCR (Cheung et al. 2002). In contrast,
Handgretinger et al. reported that patients with
CD34+ PBSC grafts containing >2000 tumor cells as
measured by immunocytology using chimeric anti-
GD2 antibody ch14.18 had a lower risk of relapse
than patients with fewer contaminating tumor cells
(Handgretinger et al. 2003). It was suggested that a
threshold number of tumor cells would elicit an anti-
tumor immune response after autologous transplant,

although false positivity remains a possibility. With
the advent of novel post-induction therapies, MRD
serves as a sensitive surrogate response marker in
comparing the efficacy of different adjuvant thera-
pies. The presence of positive GD2 synthase tran-
script in patients who did not achieve CR/VGPR be-
fore the onset of radioimmunotherapy had a higher
risk of relapse and death (Cheung et al. 2003a). For
patients undergoing another adjuvant therapy with a
combination of anti-GD2 antibody 3F8 and GM-CSF,
early molecular response was found to have prognos-
tic impact on progression-free survival (Cheung et al.
2003b). The ability to identify a subset of patients
who are unlikely to benefit from this adjuvant thera-
py and are at a great risk of relapse may provide the
rationale for a more timely application of alternative
treatment options.

11.7.5 Future Directions

Tumor heterogeneity as well as the occult nature of
MRD often lead to failure in detection when only a
single method is used; thus, optimal MRD surveil-
lance should utilize multiple independent tech-
niques, such as the inclusion of both immunologic
and molecular based assays, as well as serial sam-
plings over time. However, time, cost, and quality-
control issues need to be considered. Potential NB
targets identified by gene expression arrays will like-
ly enhance detection sensitivity and specificity. The
NB research thus far has implicated that, among se-
lected groups of stage-4 NB patients, the presence of
minimal residual tumor cells in the BM and PB at
specific phases of the multi-modality treatment
scheme is likely to portend an adverse survival out-
come; however, to fully understand the role of MRD
in the overall management of high-risk NB, a large
multi-center prospective study with uniformly treat-
ed patients using quality-controlled detection tech-
niques is warranted.
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12.1 Introduction

This chapter addresses the challenges of treating
patients with high-risk neuroblastoma who have
failed front-line therapy. Partially resected, incom-
pletely responding, or locally recurrent low-risk neu-
roblastomas can usually be successful treated with
little or no cytotoxic therapy (see Chap. 11.1). By con-
trast, despite aggressive multi-modality treatment,
including dose-intensive and myeloablative chemo-
therapy, high-risk neuroblastoma eventually pro-
gresses and eventually proves lethal in more than
70% of cases (see Chap. 11.3). The prognosis of
recurrent intermediate-risk disease is also guarded.
This chapter focuses on resistant disease that por-
tends a lethal outcome.

Relapse and recurrence are synonymous and refer
to disease that re-emerges after complete or very
good partial remission (CR/VGPR) has been
achieved. Refractory disease indicates neuroblas-
toma that is stable or possibly reduced but still evi-
dent in macroscopic amounts after several months of
adequate therapy, i.e., disease that responds incom-
pletely to treatment. Resistant neuroblastoma en-
compasses both relapsed and refractory disease.
In the International Neuroblastoma Response Crite-
ria (INRC), refractory disease can be partial re-
sponse, minor response, or no response, while re-
lapsed/recurrent disease is progressive disease (PD).
Persistence of metastases is particularly ominous 
after multiple cycles of intensive chemotherapy,
whereas a partial response of the primary tumor may
often be rendered CR or VGPR with surgery and 
radiotherapy. Progressive disease is also present
when refractory disease spreads to a new site or 

Treatment of Relapsed and
Refractory Neuroblastoma

Chapter  12 193

Katherine K. Matthay, Brian H. Kushner



Chapter  12194 K. K. Matthay · B. H. Kushner

when the volume of a refractory or residual lesion in-
creases more than 25% (Brodeur et al. 1993).

If refractory disease could be detected at diagnosis
or very early in induction, then such patients might
be treated with novel approaches. Early detection of
primary refractory disease is now possible via use of
metaiodobenzylguanidine (MIBG) scintigraphy dur-
ing the induction period as a semi-quantitative re-
sponse measure (Matthay et al. 2003a; Ladenstein et
al. 1998). Measurement of tumor cells in both blood
and bone marrow by immunocytology and by the
possibly more sensitive technique of reverse tran-
scriptase-polymerase chain reaction may also be a
means of early detection of refractory disease (Che-
ung et al. 2003; Burchill et al. 2001; Seeger et al. 2000)
(see Chap. 11.7). In addition, genome-wide screening
may lead to the identification of favorable vs unfavor-
able genetic patterns, which may, in the future, be
used to distinguish resistant cases and stratify treat-
ment at diagnosis (Keshelava et al. 2001; Takita et al.
2004; Hiyama et al. 2004).

Depending on the biology of the tumor, resistance
to standard therapy is evident in 10–15% of children,
resulting in disease that responds incompletely (pri-
mary refractory disease) to induction or initially 
responds but then recurs and progresses rapidly.
More frequently, the typical patient with high-risk
neuroblastoma will achieve remission, but suffer a 
relapse later, commonly within 2 years after myeloab-
lative therapy with hematopoietic stem-cell support
(Matthay et al. 1999). The approach to therapy of
relapse in such patients should assume systemic 
dissemination. It is rare that even an isolated recur-
rence will be successfully treated with only local 
control measures. Bone and bone marrow are by 
far the most frequent sites of relapse (DuBois et al.
1999; Matthay et al. 1993b). Metastases in sites 
that are rarely involved at diagnosis, such as the cen-
tral nervous system (CNS) and lungs, have been re-
ported in up to 8% of relapsed patients (DuBois et al.
1999; Matthay et al. 2003b; Kramer et al. 2001).
Regrowth of disease in the primary site has occurred
in 10–20% of cases without and up to 50% of cases
with distant disease. The incidence of local recur-

rence may decrease with dose-intensive chemothera-
py, total resection, and adequate radiotherapy to the
primary tumor bed plus regional nodal groups
(Wolden et al. 2000; Haas-Kogan et al. 2002; Ikeda et
al. 1992).

Mechanisms of tumor resistance are manifold,
ranging from anatomic factors, such as sanctuary
sites (CNS and testes), hypoxic conditions (bone or
poorly perfused primary tumor), host factors (drug
pharmacokinetics), and molecular features of the tu-
mor cells. Examples of molecular changes include
emergence of MRP1 and p-glycoprotein-mediated
multi-drug resistance (Norris et al. 1996; Blanc et al.
2003; Manohar et al. 2004), altered DNA repair, de-
creased ability to undergo apoptosis because of p53
mutation (Keshelava et al. 2001; Tweddle et al. 2001,
2003), over-expression of Bcl-2 or Bcl-XL Dole et al.
1994; Dole et al. 1995), and detoxification of alkyla-
tors via various enzymes that conjugate xenobiotics
to glutathione (Tew 1994).

Relapse may also result from occult tumor cells
admixed with autologous hematopoietic stem cells
infused after myeloablative therapy. Support for this
possibility comes from (a) the report that after infu-
sion of unpurged autologous bone marrow marked
with transduced neomycin-resistance gene, tumor
cells in the recurrent neuroblastoma in all three cas-
es showed the genetic marker (Rill et al. 1994), and
(b) the occasional reports after autologous bone mar-
row transplantation of miliary metastases to the lung,
a site at risk from infusion of tumor cells through a
central venous catheter (Watts and Mroczek-Musul-
man 1996)and reports that circulating neuroblas-
toma cells in blood are clonogenic (Moss et al. 1994).
The current Children’s Oncology Group (COG) pro-
tocol for high-risk neuroblastoma is investigating the
importance of tumor-free stem cells via a random-
ized study of ex vivo purging.

Herein we discuss the ever-expanding repertoire
of cytotoxic agents (chemotherapy), tumor-targeted
agents, and differentiating agents available for resist-
ant neuroblastoma, and suggest how these therapies
might best be integrated in an overall treatment plan
for different subsets of resistant disease.
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12.2 Treatment Strategies for Resistant Disease

The appropriate approach to the patient with recur-
rent or resistant neuroblastoma depends on the goals
of the therapy. Although in previous studies the me-
dian survival for patients who relapsed after mye-
loablative therapy and bone marrow transplantation
was only 3 months, with current multimodality ap-
proaches and judicious use of established as well as
investigational agents, the survival can be prolonged
for years (Kushner et al. 2002), and cure may be a pos-
sibility in some settings. Whether the goal is symp-
tom palliation, prolongation of life, or complete re-
mission depends on the timing and nature of the re-
lapse, the prior therapy, and the tumor biology. Gen-
eral considerations in the choice of therapy include
the use of agents with a different mechanism of ac-
tion than those tried previously; tailoring therapy to
sites of recurrence (e.g., agents with CNS penetra-
tion); the availability of stem cells for use with myelo-
suppressive or myeloablative agents (including 
131I-MIBG); and organ status (e.g., impaired renal
function from prior cisplatin and/or ifosfamide;
Table 12.1).

12.2.1 Primary Refractory Disease

Management of disease that responds incompletely
to induction therapy has evolved considerably since
the 1980s, which can be considered the beginning of
the modern era of combination chemotherapy and
myeloablative treatments for neuroblastoma. Early
enthusiasm for use of myeloablative chemoradio-
therapy for primary refractory neuroblastoma has

waned due to the failure to achieve cure. In retro-
spect, the unsatisfactory results are not surprising,
given the presence of a large residual tumor burden
comprised of neuroblasts that have survived multiple
cycles of combination chemotherapy, and given that
the myeloablative regimens usually consist of agents
identical to, or in the same drug categories as, those
already used in the induction. The addition of total
body irradiation does not appear to improve chances
for cure, nor does the use of allogeneic stem cells.
Myeloablative chemotherapy is ineffective against
grossly visible residual soft tissue disease (incom-
pletely resected primary tumor), and the same holds
for local radiotherapy (Ladenstein et al. 1993, 1998).

Current treatment strategies for primary refracto-
ry disease can apply novel therapies that hold out the
possibility of cure. These therapies include either
prolongation of induction therapy with intensifica-
tion of dose if there has been some response to treat-
ment, or else adding chemotherapeutic agents that
differ in their mechanism of action from those used
in induction, biologic response modifiers, or targeted
radiotherapy; thus, when standard induction regi-
mens using alkylating agents (cyclophosphamide,
ifosfamide), platinum compounds (cisplatin, carbo-
platin), and topoisomerase-II inhibitors (etoposide,
doxorubicin) fail to achieve CR/VGPR, further cy-
toreduction is a good possibility by combining the
topoisomerase-I inhibitor topotecan with one or two
other agents. If there is a satisfactory response, then
consideration can be given to myeloablative consoli-
dation, followed by treatments for minimal residual
disease such as local radiotherapy and the biologic
response modifiers, 13-cis-retinoic acid and anti-
GD2 antibodies. For morphologically detectable

Table 12.1. Treatment approaches for different types of relapse (MIBG 131I-metaiodobenzylguanidine, MRD multiply relapsed
disease)

Disease status Treatment approach

Primary refractory Novel chemotherapy, MIBG+myeloablative therapy, MRD therapy

Early relapse Novel chemotherapy, then targeted therapy, myeloablative therapy, MRD therapy

Late relapse Standard combination chemotherapy, surgery, radiotherapy or MIBG, and novel MRD therapy

Multiple relapse Low-toxicity oral chemotherapy or outpatient-targeted therapy
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residual bone marrow disease, the use of 13-cis-
retinoic acid and anti-GD2 antibodies can achieve
CR/VGPR or even cure in a minority of patients, and
some of the other biologic response modifiers may
prove useful in the future (see Chaps. 14–17); how-
ever, for gross residual disease, approaches such as
targeted radiotherapy with 131I-MIBG or novel cyto-
toxic agents may be more appropriate for cytoreduc-
tion.

12.2.2 Early Relapse

The development of new disease during induction,
although uncommon with the regimens currently in
wide use, portends early death since a durable major
response to different chemotherapy or to non-
chemotherapeutic measures is unusual. The chance
for cure is only slightly better when relapse occurs in
the 6- to 12-month period after stem-cell rescue. In
this situation, management is similar to that of pri-
mary refractory disease (see above), except that there
is no role for (repeat) myeloablative therapy and or-
gan toxicity may limit chemotherapeutic options.
Poor bone marrow reserve post-transplant can be an
obstacle to aggressive retrieval therapy, but this prob-
lem has lessened considerably with the excellent
hematologic recovery that follows use of abundant
peripheral blood stem cells (for the initial stem-cell
rescue) or with the availability of previously collect-
ed stem cells for use with the retrieval program.

12.2.3 Late Relapse

Disease recurrence more than 1 year off therapy is
usually responsive to retrieval chemotherapy. Thus,
major disease regressions can be expected, even with
use of the similar agents or regimens that comprised
induction following the initial diagnosis; however,
different consolidation measures are required to offer
any chance for long-term control, which is still very
limited in patients who have already received mye-
loablative therapy. For patients who achieve a second
complete remission, there is a potential role for the
same repertoire of treatments for minimal residual
disease mentioned above, including retinoids, anti-
GD2 antibodies, and local radiotherapy.

12.2.4 Multiply Relapsed Disease

Cure of multiply relapsed high-risk neuroblasto-
ma is virtually unheard of; hence, quality of life 
becomes a predominant concern and toxic treat-
ments should be avoided. Reasonable chemothera-
peutic options include use of topotecan (i.v. or p.o.),
irinotecan, etoposide (i.v. or p.o.), or temozolomide,
singly or with other agents such as cyclophos-
phamide, carboplatin, temozolomide, and/or vin-
cristine – all at relatively mild dosages. Widely avail-
able cytostatic agents that warrant consideration in
this setting may include retinoids, Gleevec, and
thalidomide. Phase-I therapies that have expec-
ted low toxicity and may be available on an outpa-
tient basis may be reasonable. Local radiotherapy
and low-dose 131I-MIBG are useful for palliation of
pain or for preventative treatment of heavily in-
volved sites (especially skeletal) likely to become
symptomatic.

12.3 Cytotoxic Chemotherapeutic Agents

Agents that may attack resistant neuroblastoma with
novel mechanisms to overcome resistance may be 
divided into cytotoxic chemotherapeutic agents 
vs those that are targeted to either tumor-specific 
receptors or biochemical and genetic pathways that
are relatively tumor specific. The cytotoxic agents
may either be drugs already approved for other 
cancer indications, or else still under IND, which 
implies less certain future availability, depending 
on the overall marketability. In developing a new
agent for use in a relatively rare tumor, such as 
neuroblastoma, it is important to establish efficacy
using appropriate tumor models (Houghton et al.
2002). The section below discusses each of these 
approaches, both for agents that have undergone
early clinical trials and those with preclinical data
supporting ongoing trials (Table 12.2). In general,
efficacy of these agents was based on small phase-I
and phase-II clinical studies. Typically, there was
substantial heterogeneity in the patient popula-
tions, including time from diagnosis and extent 
of relapse, as such response rates cannot be easily
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compared among these agents. Most would agree
that cytotoxic therapy is necessary for large bulky re-
currences, while cytostatic or biologic therapy may
be most optimally applied when there is small tumor
load.

12.3.1 Alkylating 
and DNA Cross-Linking Agents

12.3.1.1 Ifosfamide and Cyclophosphamide

Initial approaches to treatment of resistant or recur-
rent neuroblastoma in the previous decade concen-
trated on use of more intensive combination therapy
or use of newer platinum or alkylating agents. Neu-
roblastoma was proven to be responsive to ifosfamide
alone (Castleberry et al. 1994; Pratt 1992; Kellie et al.
1988), and then to combinations of ifosfamide with
etoposide (Watts 1992; Kung et al. 1993) or with car-
boplatin with or without etoposide (Goorin et al.
1995; Alvarado et al. 1997) or with continuous infu-
sion doxorubicin, cisplatin, and etoposide (Campbell
et al. 1993; Fernandez et al. 2000). These studies re-
sulted in the incorporation of ifosfamide subsequent-
ly into multiple induction regimens (Pinkerton et al.
1990; Olgun et al. 2003; Grupp et al. 2000). Since ex-
posure to alkylating agents at high doses is now wide-
ly used in both induction and consolidation regi-
mens for neuroblastoma, and since many patients
may already have impairment of renal function due
to surgery and prior cisplatin, ifosfamide may be cur-
rently less useful than cyclophosphamide as a treat-
ment of relapse.

12.3.1.2 Melphalan Combined 
with Buthionine Sulfoximine

Since therapy for neuroblastoma relies heavily upon
alkylating agents and acquired alkylator resistance
likely contributes to recurrent disease, drugs that im-
prove response to alkylating agents may be useful in
resistant disease. Glutathione (GSH) is a ubiquitous,
intracellular thiol containing tri-peptide that, along
with its associated enzymes, plays a critical role in
cell growth and metabolism, by maintaining the re-
dox potential of the intracellular environment (Tew
1994; Stokes et al. 2000). Buthionine sulfoximine
(BSO), a selective inhibitor of g-glutamylcysteine
synthetase (g-GCS), the rate-limiting enzyme in GSH
synthesis, can enhance alkylator anti-tumor efficacy
in a variety of solid tumors. In vitro data have shown
BSO to have significant single-agent cytotoxicity
against neuroblastoma (Anderson et al. 1997, 1999).
Pre-treatment of neuroblastoma cell lines with only
10 mM BSO for 24 h synergistically enhanced the
cytotoxicity of 10 mM melphalan by 1–2 logs of cell
kill (Anderson et al. 1997). Promising results have
been found in adult trials for ovarian cancer, small
cell lung cancer, and melanoma, using continuous in-
fusion of BSO and non-myeloablative doses of mel-
phalan, with myelosuppression as the main toxicity
(Bailey et al. 1997; O’Dwyer et al. 1992;Yao et al. 1993).

A pilot study of BSO (3 g/m2 bolus followed by a
72-h continuous infusion (CI) of 0.75–1.0 gm/m2 h–1)
and L-PAM (15 mg/m2 bolus at hour 48 of BSO infu-
sion) was carried out in 32 patients with recurrent
neuroblastoma (Anderson et al. 1998). Of 31 evalu-

Table 12.2. New agents with potential in neuroblastoma (HDAC histone deacetylase inhibitors)

Cytotoxic Apoptotic Immunologic Anti- Retinoids Targeted 
pathway angiogenic radiotherapy

Topoisomerase HDAC inhibitors Antibodies Thalidomide Fenretinide 131I-MIBG
inhibitors

Alkylators Demethylating Cytokines Antibodies Other retinoids 131I-anti-GD2
agents

Cross-linkers Tyrosine kinase Vaccines Small molecules
inhibitors
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able patients, there were 7 partial responses (PR), 2
minor responses (MR), 9 stable disease (SD), and 13
patients with progressive disease (PD). Nearly all pa-
tients experienced grade-3 leukopenia and thrombo-
cytopenia, plus grade-2 nausea. There were two toxic
deaths on study secondary to renal and CNS toxicity.
At autopsy, both children had evidence of mid-brain
edema and eosinophilic necrosis of the pons. Other
patients on study showed no consistent pattern of
impending renal/neurologic toxicity (Anderson et al.
1998). A phase-I study of BSO with melphalan is un-
derway in the New Approaches to Neuroblastoma
Therapy (NANT) consortium (N9902), which in-
creases the melphalan to myeloablative doses with
peripheral blood stem-cell support, while holding the
BSO infusion constant, with close monitoring for
possible renal or neurologic toxicity.

12.3.1.3 Platinum Compounds

Newer platinum derivatives with differing toxicity
profiles have also been tested. Initially, carboplatin
was tested in an attempt to reduce the nephrotoxicity
of cisplatin and in the hope of non-cross-resistance.
The drug showed excellent activity in phase-I and
phase-II trials (Ettinger et al. 1994), in newly diag-
nosed patients in a phase-II window study (Castle-
berry et al. 1994), and in combination with etoposide
(Frappaz et al. 1992). A recent phase-II trial com-
bined cisplatin with carboplatin in relapsed patients,
and showed a 42% response rate (Frappaz et al.
1998). Since myelosuppression is a prominent toxici-
ty of carboplatin, several trials were then done incor-
porating high-dose carboplatin into regimens utiliz-
ing hematopoietic stem-cell infusion (Matthay et al.
1999; Kreissman et al. 1997; Park et al. 2000). Ipro-
platin produced a 67% response rate in newly diag-
nosed patients in a phase-II window (Castleberry et
al. 1994). Current protocols are open to test oxali-
platin, a derivative with decreased nephrotoxicity,
which showed activity in neuroblastoma in preclini-
cal testing,and is apparently non-cross-resistant with
cisplatin and carboplatin (Riccardi et al. 1999;
Bleiberg 1998).

12.3.1.4 Temozolomide

Temozolomide, an imidazotetrazine prodrug, is an
alkylating agent that mediates its cytotoxic effects via
O(6)-methylguanine adducts in DNA and their
recognition and processing by the post-replication
mismatch repair system. Temozolomide is similar to
dacarbazine (DTIC) in that they share the same ac-
tive metabolite; however, activation of the parent
drug is spontaneous with temozolomide and not de-
pendent on enzymatic activity, as is the case with
dacarbazine. Temozolomide has excellent oral
bioavailability with a single-agent MTD of 200–
215 mg/m2 day–1 when given to pediatric patients on
a 5-day schedule in 28-day cycles, with the dose-lim-
iting toxicity being neutropenia and thrombocytope-
nia. Temozolomide readily crosses the blood-brain
barrier, and has been proven to be active against a va-
riety of brain tumors. Adult phase-II trials have
shown response rates as high as 35–50% using temo-
zolomide for recurrent high-grade glioma (Yung et
al. 1999), leading to FDA approval for this indication.
In addition to activity against brain tumors, temo-
zolomide also appears to have modest activity
against mouse models of non-CNS solid tumors, in-
cluding neuroblastoma (Middlemas et al. 2000;
Houghton et al. 2000). In a phase-II study recently re-
ported in abstract form, 27 pediatric patients with re-
fractory non-CNS solid tumors were treated with
temozolomide 215 mg/m2 day–1 in 5-day courses. Al-
though no objective imaging responses were ob-
served, two isolated bone marrow responses were
noted in 13 evaluable neuroblastoma patients, of
whom 10 (77%) had stable disease lasting a median
of 7 months (Donfrancesco et al. 2004).

In addition to the single-agent activity, the combi-
nation of temozolomide and irinotecan is attractive
because of non-overlapping toxicities and the sig-
nificant therapeutic synergy demonstrated by
Houghton et al. (2000) in preclinical experiments.
The combination of sub-therapeutic doses of each
drug resulted in complete responses in four different
xenograft models of neuroblastoma. The proposed
mechanism of synergy is temozolomide-induced
methylation causing localization and enhancement
of topoisomerase I-DNA cleavage complexes, allow-
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ing irinotecan to more effectively stabilize the DNA-
enzyme complex and cause cytotoxicity after colli-
sion with the advancing replication fork (Pourquier
et al. 2001). Interestingly, the synergy seen in the
mouse models appeared to be partly independent of
the DNA repair phenotype of tumor tissue, including
p53 status (Houghton et al. 2000). This observation is
important in light of the frequency of acquired p53
mutations in neuroblastoma cell lines established at
the time of relapse (Keshelava et al. 2000a). A recent
phase-I study of the combination of intravenous
irinotecan and temozolomide in pediatric solid
tumors established the MTD as temozolomide
100 mg/m2 day–1 daily for 5 days the first week, with
irinotecan, 10 mg/m2 day–1 daily for 5 days × 2 con-
secutive weeks. Future studies may incorporate oral
rather than intravenous irinotecan, and use an oral
antibiotic to prevent the usual irinotecan-induced
diarrhea (Takasuna et al. 1996; Cosetti et al. 2002;
Furman et al. 2003).

12.3.1.5 Tirapazamine

Tirapazamine (TPZ), a benzotriazine di-N-oxide
anti-cancer drug activated to a toxic free radical un-
der hypoxic conditions, is the first drug of this class
to enter clinical testing (Brown 1998). In preclinical
models it has been shown to extend the activity of
traditional cytotoxic chemotherapy, presumably by
selective killing of the hypoxic fraction of tumor cells
(Dorie and Brown 1993). It has been shown to be safe
and effective when combined with cisplatin in adults
with NSCLC, although patients receiving the combi-
nation experienced significantly more nausea and
vomiting (Olgun et al. 2003). A pediatric phase-I trial
of the tirapazamine/cyclophosphamide combination
was just completed in POG (Yung et al. 1999).
The MTD for tirapazamine when combined with
1.5 g/m2 of cyclophosphamide was 325 mg/m2. The
DLT was reversible ototoxicity. There were 2 children
who experienced grade-3 reversible ototoxicity at
420 mg/m2. There were three responses (two in neu-
roblastoma and one in rhabdomyosarcoma; Aquino
et al. 2004).

12.3.2 Topoisomerase Inhibitors

Topoisomerase-I and topoisomerase-II inhibitors
were the next chemotherapy class to be investigated
for treatment of relapsed and newly diagnosed neu-
roblastoma. Etoposide, a topoisomerase-II inhibitor,
as detailed above, has been incorporated into relapse
and primary treatment regimens for the past two
decades, and is quite effective incorporated into
regimens for newly diagnosed neuroblastoma (see
Chap. 11). Unfortunately, a significant proportion of
cell lines obtained from patients after relapse have
demonstrated resistance to this agent, even when cell
lines from the same patient obtained at diagnosis
were sensitive. Furthermore, cross-resistance with
other topoisomerase inhibitors, the camptothecins
topotecan and irinotecan, was demonstrated in these
cell lines (Keshelava et al. 2000b). Nonetheless, up to
10–15% of children with relapsed neuroblastoma
could achieve disease stabilization or partial remis-
sion with chronic administration of oral etoposide
(Davidson et al. 1997; Kushner et al. 1999; Ng et al.
2000; Schiavetti et al. 2001). Camptothecin is a natu-
rally occurring cytotoxic alkaloid that targets topoi-
somerase I, a nuclear enzyme that reduces the tor-
sional stress of supercoiled DNA during the replica-
tion, recombination, transcription, and repair of
DNA. Topotecan and irinotecan are synthetic ana-
logues developed for parenteral administration of
the active lactone form of the compound (Garcia-
Carbonero and Supko 2002).

12.3.2.1 Irinotecan

Other camptothecins under investigation include
irinotecan, a prodrug that undergoes enzymatic con-
version to the biologically active metabolite 7-ethyl-
10-hydroxy-camptothecin (Garcia-Carbonero and
Supko 2002). Irinotecan has shown efficacy in pre-
clinical studies (Thompson et al. 1997; Komuro et al.
1994; Vassal et al. 1996; Shitara et al. 2003) and pro-
duced responses in refractory neuroblastoma (Shi-
tara et al. 2003; Furman et al. 1999). Whereas the pre-
dominant toxicity of topotecan is myelosuppression,
that of irinotecan is diarrhea (Furman et al. 1999;
Rowinsky and Verweij 1997). It is usually adminis-
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tered intravenously, but trials of oral irinotecan are
currently underway. As mentioned above, laboratory
studies in neuroblastoma cell lines suggest that lines
which are resistant to either etoposide or topotecan
are also likely to be resistant to irinotecan (Keshelava
et al. 2000b), although another study showed that
irinotecan was effective in a xenograft model of neu-
roblastoma that was resistant to etoposide (Vassal et
al. 1996). This drug has also been extensively studied
in adult tumors, both alone and in combination with
other chemotherapy. It has not yet been shown in hu-
man studies of neuroblastoma whether it is non-
cross-resistant or in any way more advantageous than
topotecan. Other camptothecin analogues are in
various stages of clinical development, including 
9-aminocamptothecin, 9-nitrocamptothecin, 7-(4-
methylpiperazinomethylene)-10,11-ethylenedioxy-
20(S)-camptothecin, exatecan mesylate, and karen-
itecin (Garcia-Carbonero and Supko 2002).

12.3.2.2 Topotecan

Multiple phase-I and phase-II single-agent studies
have tested topotecan in neuroblastoma, using either
a continuous 72-h infusion regimen (Pratt et al. 1994;
Blaney et al. 1998) or a daily 1-h infusion for 5 days
(Tubergen et al. 1996; Kretschmar et al. 1995;
Nitschke et al. 1998; Langler et al. 2002). Responses
were reported with both schedules in the phase-I
studies, but in the phase-II studies there were no re-
sponses with the 72-h continuous infusion, though
the response rate was significant in both relapsed pa-
tients (10–20%) and in a phase-II window using the
5-day schedule in newly diagnosed patients (37%).
Oral topotecan has also been tested with some mod-
est responses (Garcia-Carbonero and Supko 2002;
Kramer et al. 2003; Zamboni et al. 1999). Topotecan in
combination regimens with other agents active in
neuroblastoma, such as cyclophosphamide, cisplatin,
and etoposide, have been reported. A phase-I study 
of topotecan with cyclophosphamide showed that 
the maximum tolerated dose of topotecan was
0.75 mg/m2 day–1 when given with a daily dose of
250 mg/m2 day–1 of cyclophosphamide for 5 days
(Saylors et al. 1998).A phase-II window study showed
a significant response rate in newly diagnosed pa-

tients, and the results are pending for a recently com-
pleted randomized study (P9462) in the Children’s
Oncology Group in relapse patients, comparing
topotecan alone at 2 mg/m2 day–1 to the combined
regimen of cyclophosphamide with topotecan
(Frantz et al. 2004). Preclinical studies suggest that
other cytotoxic agents, such as vincristine (Thomp-
son et al. 1999) or MGI114 (iludin; Weitman et al.
2000), might provide synergistic cytotoxicity with
topotecan. A few studies have investigated high-dose
regimens incorporating topotecan with thiotepa and
carboplatin using stem-cell support, but the dose of
topotecan could not be substantially escalated in this
regimen beyond standard dose due to mucositis
(Park et al. 2000; Kushner et al. 2001). It is possible
that further escalation of topotecan in combinations
with other agents with less extra-hematopoietic toxi-
city, such as cyclophosphamide, may be possible with
autologous stem-cell support.

12.3.2.3 Pyrazoloacridine

Pyrazoloacridine (PZA), a DNA intercalator, is a ra-
tionally synthesized acridine derivative that has been
shown to have a broad spectrum of activity against
tumor cells in vitro and in vivo (Jackson et al. 1990;
LoRusso et al. 1990; Sebolt et al. 1987). Pyrazoloacri-
dine binds nucleic acids (preferentially ribonucleic
acid) and inhibits the activity of topoisomerase I and
II, causing DNA fragmentation, and thus DNA strand
breaks. It is effective against cells in a hypoxic envi-
ronment as well as the normal oxygen environment,
and it is equally effective in cycling and non-cycling
cells (Cole 1990; Adjei et al. 1998). It has the further
advantage of activity in cells that over-express P-gly-
coprotein or MRP, as well as in cells that have lost
topoisomerase I or II (Cole 1990; Adjei et al. 1998; Se-
bolt et al. 1989). Preclinical data suggest that pro-
longed exposure to PZA may increase cytotoxicity
(Grem et al. 1996). A recent in vitro study of resistant
neuroblastoma cell lines showed that PZA effectively
induced cytotoxicity in multi-drug-resistant neuro-
blastoma cell lines, as well as in drug-resistant p53
non-functional neuroblastoma cell lines. Pyra-
zoloacridine sensitivity could be shown even under
hypoxic conditions, but only with PZA exposure
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times that exceeded those tested in previous clinical
trials. The in vitro data demonstrated that PZA cyto-
toxicity is dose- and time dependent (Keshelava et al.
2003). Phase-I and phase-II clinical studies have been
conducted, mostly using a short infusion schedule of
<6 h, with hematologic toxicity as the main compli-
cation. Despite occasional reports of responses, the
overall results in pediatric phase-II trials have been
disappointing and failed to confirm the anti-cancer
activity found in preclinical models (Berg et al. 2000).
A possible explanation is that adequate PZA dose lev-
els in humans were not achieved (Berg et al. 1998;
LoRusso et al. 1995; Rowinsky et al. 1995). In children
and young adults where 640 mg/m2 of PZA was ad-
ministered as a 1- or 24-h infusion (Berg et al. 1998),
myelosuppression was the dose-limiting toxicity, in
contrast to neurotoxicity in the adults.

12.3.2.4 Rebeccamycin

Indolocarbazoles are another group of topoiso-
merase-I inhibitors, of which rebeccamycin, a natu-
rally occurring anti-tumor antibiotic, derived from
an actinomycete. In addition to their action on DNA,
rebeccamycin analogues may inhibit the SR kinase
activity of topoisomerase I and therefore constitute a
unique family of topoisomerase-I poisons quite dif-
ferent from the well-known camptothecins (Prud-
homme 2000). In vitro studies support activity in
neuroblastoma (Weitman et al. 1998; Marminon et al.
2003). Dose-limiting toxicity in both adults and chil-
dren in phase-I studies was myelosuppression
(Dowlati et al. 2001; Langevin et al. 2003). A phase-II
study in pediatric solid tumors is currently ongoing
at MSKCC and in the COG.

12.4 Tumor-Targeted Biologic Agents

12.4.1 Retinoids

For information on tumor-targeted biologic agents,
including retinoids, see Chap. 15.

12.4.2 Tyrosine Kinase Inhibitors

c-kit has been shown to be expressed in some neu-
roblastoma cell lines, preferentially those with MYCN
amplification, and therefore growth inhibitory activ-
ity of Gleevec has been demonstrated, both in vitro
(Vitali et al. 2003) and in xenograft models (Beppu et
al. 2004), leading to testing in pediatric phase-II stud-
ies. Another tyrosine kinase inhibitor in clinical test-
ing is CEP-701, a selective inhibitor of several cell-
surface receptor-linked tyrosine kinases, with high-
est affinity and specificity for the Trk receptors. The
BDNF/TrkB signaling pathway is a key autocrine sur-
vival mechanism for neuroblastomas in patients with
high-risk disease, where TrkB is over-expressed
(Suzuki et al. 1993; Nakagawara et al. 1994). CEP-701
has high oral bioavailability and potently inhibits all
three Trk tyrosine kinases with IC50 values of
3±1 nM (George et al. 1999). CEP-701 also inhibits
VEGFR and PDGFR kinase activity, and inhibits the
hematopoietic receptor, FLT-3, but has little inhibito-
ry activity against other receptor tyrosine kinases
(e.g., EGFR kinase). Targeted inhibition of this path-
way has been proven efficacious in preclinical models
of human neuroblastoma (Ho et al. 2002; Evans et al.
1999). Ongoing clinical trials of CEP-701 in adult pa-
tients with refractory acute myeloid leukemia have
shown the drug to be relatively well tolerated, an
MTD of 60 mg twice daily has been defined, and bio-
logic and clinical activity has been shown (Smith et
al. 2004). A phase-I trial in children with refractory
neuroblastoma is ongoing in NANT.

12.4.3 Modulators of Apoptotic Pathway 
and Angiogenesis

Resistance of tumors to treatment with cytotoxic
drugs, irradiation, or immunotherapy may be due to
disrupted apoptosis programs.

12.4.3.1 Anti-Angiogenic Agents

Preclinical data have been published supporting the
importance of angiogenesis and invasion in progres-
sion and prognosis of neuroblastoma (see Chap. 16).
An initial report on 50 human tumor samples pro-
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vided data that increased tumor vascularity correlat-
ed with a poorer prognosis (Meitar et al. 1996),
though this was contradicted by a later Spanish re-
port (Canete et al. 2000). High-risk neuroblastomas
over-express the avb integrin, an endothelial trans-
membrane receptor for neovascular proliferation,
which can be blocked with a monoclonal antibody,
vitaxin, or an RGD peptide, resulting in increased ce-
ramide production and endothelial cell death (Erdre-
ich-Epstein et al. 2000). Phase-I trials of both the
monoclonal antibody and the peptide, cilengitide,
have shown promise in adult cancers (Eskens et al.
2003; Tucker 2003). Matrix metalloproteinases, MMP-
2, and MMP-9, have a key role in invasion and metas-
tasis, and are over-expressed in the stroma of high-
risk neuroblastoma (Sugiura et al. 1998; Ara et al.
1998; Bjornland et al. 2001). In vivo xenograft studies
in neuroblastoma have shown that inhibitors of
MMPs can decrease angiogenesis and prolong sur-
vival (Chantrain et al. 2004). A number of inhibitors
are currently in clinical testing, with a few positive re-
sults in adult cancers (Ramnath and Creaven 2004).
Thalidomide is another agent with antiangiogenic
actions in neuroblastoma (Kerbel et al. 2000; Kaicker
et al. 2003) currently in clinical cancer trials (Fine et
al. 2000, 2003). To date, no large-scale trial of anti-an-
giogenic or anti-invasion agents has been accom-
plished in neuroblastoma, although as some of these
agents become available and have completed phase-I
testing in adults, they will be appropriate for further
trials in children.

12.4.3.2 Arsenic Trioxide

Multiple in vitro studies suggest activity of arsenic
trioxide against neuroblastoma cell lines, through ac-
tivation of apoptosis, and possible by differentiation
and other mechanisms (Akao et al. 1999; Karlsson et
al. 2004; Ora et al. 2000; Carre et al. 2002; Wang 2001).
Clinical trials have shown good activity in acute
promyelocytic leukemia, and are ongoing in neuro-
blastoma.

12.4.3.3 Demethylating Agents

Caspase-8 expression acts as a key determinant of sen-
sitivity for apoptosis induced by death-inducing lig-
ands or cytotoxic drugs. Caspase 8 has been shown to
be preferentially silenced in neuroblastoma (Teitz et al.
2000). In tumor cell lines resistant to TRAIL,anti-CD95
or TNF-alpha,caspase-8 protein and mRNA expression
was decreased or absent without caspase-8 gene loss.
Methylation-specific PCR revealed hypermethylation
of caspase-8 regulatory sequences in cells with im-
paired caspase-8 expression. Treatment with the
demethylation agent 5-Aza-2’-deoxycytidine (decita-
bine) reversed hypermethylation of caspase-8 resulting
in restoration of caspase-8 expression and recruitment
and activation of caspase-8 for drug-induced apoptosis
(Fulda et al. 2001; Eggert et al. 2001). The use of a
demethylating agent in combination with chemothera-
py is being tested in a phase-I trial in the COG.

12.4.3.4 Histone Deacetylase Inhibitors

A dynamic equilibrium of histone acetyltransferase
and histone deacetylase (HDAC) controls the level of
acetylated histones in nuclear chromatin. By induc-
ing acetylation of the nuclear histones H3 and H4,
HDAC inhibitors (HDACI) alter chromatin structure,
affecting transcription of several genes, and resulting
in growth arrest, differentiation, and apoptosis of tu-
mor cells (Kuo and Allis 1998). Deregulation of his-
tone acetylation has been implicated in the develop-
ment of several types of cancer. Genes that encode
HAT enzymes are translocated, amplified, over-ex-
pressed, and/or mutated in various cancers. Two
closely related HATs, CBP and p300, are altered in
some tumors by either mutation or translocation. A
number of new compounds have been developed
which inhibit HDAC activity. The best-known exam-
ples of this class of agents are the butyrates; however,
the butyrates have a short plasma half-life and it is
difficult to achieve therapeutic concentrations of bu-
tyrates in the plasma. Other compounds that have
been developed more recently include depsipeptide
(FK-228; Furumai et al. 2002), CBHA, suberoylanilide
hydroxamic acid (SAHA),oxamflatin,depudecin,and
MS-275 (Yoshida et al. 2001; Marks et al. 2004).
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12.5 Immunologic Therapy

12.5.1 Anti-GD2

Multiple approaches are currently under investiga-
tion in phase-I, phase-II, and phase-III studies based
on antibody targeting of the GD2 ganglioside ex-
pressed in >95% of neuroblastoma (see Chap. 14).
Treatment with either murine or chimeric anti-GD2
antibody, with or without cytokines, or conjugated to
iodine-131, has shown promise for minimal residual
and bone marrow disease in refractory and newly di-
agnosed patients, with responses in phase-I and
phase-II studies of 10–20% (Frost et al. 1997; Utten-
reuther-Fischer et al. 1995; Handgretinger et al. 1995;
Hank et al. 1994; Cheung et al. 1987, 1989; Saleh et al.
1992; Yu et al. 1997; Ozkaynak et al. 1998).A phase-III
randomized trial is currently underway in the COG
for treatment of minimal residual disease following
myeloablative therapy. Current trials in refractory
disease are testing the humanized anti-GD2, Hu14.18,
covalently linked to interleukin-2 (IL-2; immunocy-
tokine), or use with an immunologic enhancer such
as glucan (Cheung and Modak 2002). An anti-idio-
type vaccine to anti-GD2, using the monoclonal anti-
body 1A7 with adjuvant, has completed phase-I test-
ing in neuroblastoma, with evidence of immunologic
response.

12.5.2 Interleukins

Interleukin-2 is the most extensively investigated cy-
tokine in clinical use at present. Interleukin-2 en-
hances the proliferation, cytokine production, and
cytolytic activity of T and NK/LAK cell populations,
various aspects of monocyte/macrophage function
and global measures of immune responsiveness in
vivo (Hladik et al. 1994; Foa et al. 1992; Higashi et al.
1991; Verstovsek et al. 1995; Nishimura et al. 1992;
Cox et al. 1992). IL-2 has demonstrated anti-tumor
activity in neuroblastoma (Lode et al. 1997) and may
also have synergy when used in combination with
IFN-g to treat murine tumors, including neuroblas-
toma (Sigal et al. 1991). A total of 15 studies have re-
ported on the use of IL-2 to treat pediatric patients
with solid tumors, including over 100 patients with

neuroblastoma (Frost et al. 1997; Negrier et al. 1991;
Pardo et al. 1996;Valteau-Couanet et al. 1995; Bauer et
al. 1995; Chien and Hsieh 1990; Nasr et al. 1989; Pais
et al. 1992; Favrot et al. 1990; Truitt et al. 1992; Ribeiro
et al. 1993; Roper et al. 1992; Toren et al. 2000; Pession
et al. 1998). The majority of these early studies evalu-
ated the use of chronic, intermittent dosing of IL-2
delivered as an intravenous bolus over periods rang-
ing from 15 min to 2 h. Fever, vascular leak, and hy-
potension are common side effects, seen more fre-
quently at the higher intravenous dosing schedules.

IL-2 alone has had little activity in relapsed bulky
disease in any solid tumor other than renal cell carci-
noma (Bauer et al. 1995), and has therefore been
more extensively tested in the post-transplant set-
ting. For relapsed disease, IL-2 may be more effective
in combination with other immunotherapeutic
agents, such as the anti-GD2 antibody or other cy-
tokines. Recent preclinical evidence suggests that in
combination, IL-12 with IL-2 may possess potent im-
munomodulatory and anti-tumor activity that ex-
ceeds the effect of either agent alone. IL-12 and IL-2
reciprocally upregulate the expression of their re-
spective receptors (Bacon et al. 1995; Desai et al. 1992;
Yanagida et al. 1994) and can greatly enhance T
and/or NK cell proliferation, cytokine production,
and cytolytic function. Systemic administration of
IL-12 in combination with intermittent, weekly doses
of IL-2 (pulse IL-2) is not only well tolerated, but can
induce rapid and complete regression of established
primary and/or metastatic tumor in several murine
models (Wigginton et al. 1996, 2001a,b). Several re-
ports have also demonstrated that IL-12 gene therapy
administered alone or in conjunction with tumor-
targeted IL-2 possesses anti-tumor activity in trans-
plantable murine neuroblastoma tumor models
(Lode et al. 1999; Davidoff et al. 1999). Based on pre-
clinical data of the combination therapy in murine
neuroblastoma models and the adult human trial
data, a phase-I dose escalation trial of IL-12 com-
bined with IL-2 is now underway in the NANT con-
sortium.



Chapter  12204 K. K. Matthay · B. H. Kushner

12.5.3 Vaccines

Preclinical and clinical trials are in progress to try to
further enhance the specificity and efficacy of cyto-
kines by using autologous tumor cells transfected
with cytokines such as IL-2 (Bowman et al. 1998a,b),
IL-12, GM-CSF, interferon gamma (Bausero et al.
1996; Yoshida et al. 1999), or lymphotactin as vaccines
to stimulate the host immune response to the neu-
roblastoma. Other vaccine approaches include the
use of DNA vaccines (Pertl et al. 2003), or dendritic
cell vaccines (Chen et al. 2003).

12.6 131I-Metaiodobenzylguanidine

131I-Metaiodobenzylguanidine (MIBG) is a guanethi-
dine derivative that is structurally similar to norepi-
nephrine, and therefore concentrates in the neurose-
cretory granules of catecholamine-secreting cells.
Radiolabeled MIBG provides very sensitive and spe-
cific visualization of primary and metastatic neurob-
lastoma by scintigraphy (Shulkin and Shapiro 1998).
In an attempt to deliver higher doses of tumor-spe-
cific radiotherapy and avoid normal organ toxicity,
iodine-131 MIBG therapy has been used in pilot tri-
als since the mid 1980s, with more than 500 children
reported in the literature. Initially, it was shown to in-
duce 30–40% response rate in highly refractory re-
lapsed patients, without significant non-hematologic
toxicity (Klingebiel et al. 1991; Matthay et al. 1998;
Voute et al. 1991). At low and moderate doses, up to
12 mCi/kg of 131I-MIBG, the main toxicity has been
thrombocytopenia, usually self-limited. Phase-I dose
escalation studies showed that higher doses, up to
18 mCi/kg, could be administered with bone marrow
or peripheral blood stem-cell support to mitigate the
neutropenia and thrombocytopenia, but without
clinical organ toxicity, excepting a 10–15% incidence
of hypothyroidism due to uptake of some free iodide
by the thyroid gland (Matthay et al. 1998; Lashford et

al. 1992). There are a few reports of patients with sec-
ondary leukemia developing after MIBG therapy, but
the estimated risk of this problem at 5 years post-
therapy is only 4%, lower than with some chemother-
apy regimens (Garaventa et al. 2003; Weiss et al.
2003). Despite a number of clinical studies world-
wide, dose response to 131I-MIBG has not been firmly
established. Recent studies are investigating the use
of low dose 131I-MIBG at diagnosis prior to surgical
resection (Troncone et al. 1995), or in combination
with standard (Mastrangelo et al. 2001)or high-dose
myeloablative chemotherapy (Yanik et al. 2002;
Klingebiel et al. 1998). New phase-I studies are cur-
rently open in the NANT to test the use of double in-
fusion of 131I-MIBG with stem-cell support or further
combination with myeloablative chemotherapy and
stem cells. Further investigations are required to de-
termine the optimal timing and use of this targeted
approach.

12.7 Conclusion

Refractory and relapsed neuroblastoma is very diffi-
cult to eradicate, due to multiple mechanisms of drug
resistance. Above all, compassion and consideration
for quality of life must be incorporated into the ther-
apeutic goals for the child with refractory neuroblas-
toma. Currently established therapies include only a
few chemotherapeutic and targeted agents, and of
these, only the chemotherapy agents are commercial-
ly available. Future success depends on rational pre-
clinical in vitro and in vivo testing of new agents and
combinations in panels of appropriate neuroblas-
toma cell lines and tumors, followed by careful clini-
cal trials. Judicious selection of trials depending on
the type of relapse, and willing cooperation of pa-
tients and parents after careful explanation of the
goals of the study are essential to improve survival in
this disease.
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13.1 Introduction

An estimated two-thirds of all cancer patients devel-
op some type of neurologic problem during the
course of their illness (Tasdemiroglu et al. 1998), and
up to 15% develop a serious neurologic complication
(Posner 1995). Such complications in patients with
neuroblastoma can be caused directly by involve-
ment of metastatic tumor, indirectly by treatment, or
by a paraneoplastic syndrome. Early diagnosis and
intervention may prevent long-term neurologic se-
quelae in some patients.

13.2 Epidural Neuroblastoma

Neuroblastoma is the most common malignancy to
cause spinal cord or nerve root compression in chil-
dren (Conrad et al. 1992; de Bernardi et al. 2001) and
may be a complication of loco-regional or metastatic
disease. Extension into neural foramina and/or the
spinal canal occurs in 10–15% of cases (Plantaz et al.
1996; Massad et al. 1985). Cord compression may
manifest as radicular pain (back, neck, leg), weakness
or gait disturbance, subacute or acute paraplegia,
bowel or bladder dysfunction, sensory abnormali-
ties, or scoliosis, although one-quarter of children
with documented epidural disease are asymptomatic
at presentation (Sandberg et al. 2003). Prompt resolu-
tion of spinal cord compression may prevent the de-
velopment of permanent neurologic impairment.
Several studies have indicated that the rate of neuro-
logic recovery is related to both the severity and du-
ration of neurologic symptoms at the time of diagno-
sis (Plantaz et al. 1996; Hoover et al. 1999; Plantaz et
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al. 1993; Gutierrez et al. 1983; Katzenstein et al. 2001).
In addition, the prognosis for recovery in children
appears to be better than that in adults, and children
who develop paraparesis slowly are more apt to re-
cover than when the deficit evolves rapidly (Antunes
2000). Current therapeutic strategies to relieve spinal
cord compression include surgical resection with or
without laminectomy, chemotherapy, and radiation
therapy; however, because each of these treatment
modalities has inherent short- and long-term associ-
ated morbidities the optimal initial treatment ap-
proach for cord decompression remains unknown.

Most reports of epidural involvement in neuro-
blastoma have retrospectively reviewed small num-
bers of patients over many years, with most pre-dat-
ing MRI availability and current chemotherapy pro-
tocols (Table 13.1). Furthermore, while improvement
or resolution of neurologic deficits are often de-
scribed following initial treatment, most studies fo-
cus on survival data alone, and not on the long-term
sequelae. In general, patients with symptomatic
spinal cord compromise whose diagnosis has not yet
been determined require surgery to obtain an ade-
quate specimen for histologic and biologic studies. In
patients with known high-risk neuroblastoma and
metastatic epidural tumor with spinal cord compres-
sion, chemotherapy alone often prevents neurologic
deterioration (Sandberg et al. 2003; Hayes et al. 1989).
Katzenstein et al. (2001) reported complete neurolog-
ic recovery following treatment in 6 of 15 severely
affected patients, and 2 of 5 patients with moderate
deficits, and 17 of 22 patients with paresis alone. In
this Pediatric Oncology Group (POG) study a higher
incidence of spinal deformities was found among
children with intraspinal neuroblastoma who had
undergone laminectomy compared with those man-
aged without laminectomy. The rate of neurologic
recovery was similar for patients treated with
chemotherapy compared with those managed with
laminectomy, and the authors concluded that
laminectomy should be reserved for patients who
demonstrate progressive neurologic deterioration
after the initiation of chemotherapy. Radiation alone
(7.5–30 Gy) or in combination with laminectomy has
also been used to rapidly reduce cord compression
(Punt et al. 1980). Patients treated with this approach
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are also at high risk for subsequent development of
spinal deformity. The incidence of spinal deformity
after multilevel laminectomy is related to age and to
the spinal level of the laminectomy (Plantaz et al.
1996). In a recent review of 76 patients with sympto-
matic spinal cord compression patients from the Ital-
ian Cooperative Group for Neuroblastoma (ICGNB),
de Bernardi et al. (2001) found scoliosis to be the
most common late effect, affecting 31% of surviving
patients. This was more frequently observed in pa-
tients treated with laminectomy or radiotherapy
compared with those treated with chemotherapy
alone. In a review of 46 patients with epidural tumor
at Memorial Sloan-Kettering Cancer Center, 70% of
high-risk patients treated initially with chemothera-
py alone improved or remained stable (Sandberg et
al. 2003). In this series, 11 of 15 patients with low-risk
neuroblastoma were initially treated with decom-
pressive surgery and all remained stable or improved
neurologically (Sandberg et al. 2003); however, spinal
deformities occurred in 2 of 16 patients (12.5%) who
did not undergo laminectomy and in 9 of 30 (30.0%)
who did. Low-risk neuroblastoma patients with
spinal cord compression may be offered surgery only,
but the risk of scoliosis needs to be weighed against
those of cytotoxic chemotherapy.

13.3 Metastatic Disease 
to the Central Nervous System

Central nervous system (CNS) neuroblastoma, in-
volving brain parenchyma or leptomeninges at the
time of diagnosis in all published series is rare. This
must be distinguished from dural or bone based
metastases without invasion into the parenchyma. In
a review of 251 patients with metastatic neuroblas-
toma treated at Memorial Sloan-Kettering Cancer,
no patient had brain parenchymal or leptomeningeal
disease at the time of diagnosis (Kramer et al. 2001).
Although CNS neuroblastoma may result from direct
extension of spread of neuroblasts from bone or bone
marrow, the cerebrospinal fluid (CSF) appears an
equally efficient route of neuraxis dissemination
(Banerjee et al. 1995). Autopsy findings suggest that
the tumor may penetrate the spinal meninges and

disseminate through the CSF. In patients with no
obvious breakdown of the blood-brain barrier, lep-
tomeningeal neuroblastoma is presumed to occur by
hematogenous spread. As treatment for high-risk
neuroblastoma has become more intensive, the pat-
tern of disease relapse has changed and the neuraxis
appears to be an important sanctuary site (Kramer et
al. 2001). The incidence of CNS relapse in large series
ranges from 1 to 16% (Kramer et al. 2001; Blatt et al.
1997; Shaw 1992; Kellie et al. 1991; Rohrlich et al.
1989), with the median time to CNS relapse from ini-
tial diagnosis ranging from 13 to 20 months.

The CNS is increasingly recognized as an isolated
site of relapse in patients with no evidence of recur-
rent systemic disease. No consistent prognostic mark-
er predicts which patients are at risk for development
of CNS disease (Table 13.2). In two large series, diag-
nostic lumbar punctures in patients with known
bone marrow disease was associated with relapsed
disease in the CNS (Kramer et al. 2001; Matthay et al.
2003), raising the possibility that this procedure may
enhance the ability of circulating or epidural micro-
scopic tumor cells to seed the craniospinal axis.

Patients with CNS disease may present with al-
tered mental status, headache, seizures, paresthesias,
dysarthria, visual disturbance, vomiting, or ataxia;
thus, any new cerebral neurologic symptom should
provoke a search for brain metastases (Lassman and
DeAngelis 2003). The brain should also be evaluated
for disease in the presence of an unexplained rise in
urine catecholamines (Kramer et al. 2001). The diag-
nosis is made by radiographic imaging studies, most
commonly CT or MRI. Cerebrospinal fluid cytology
is positive in approximately one-third of the patients
with disease detected by CT or MRI (Kramer et al.
2001).

By the time neuraxis metastases are clinically evi-
dent, limited palliative options exist. The median sur-
vival from the time of CNS disease detection in most
series is 4–14 months (Kramer et al. 2001; Shaw 1992;
Kellie et al. 1991; Rohrlich et al. 1989). Corticosteroids
often provide a dramatic, albeit temporary, benefit
from brain metastases associated with vasogenic
edema (Lassman and DeAngelis 2003). Surgery for
solitary metastases and radiotherapy are used for
palliation. Stereotactic radiosurgery for small, single
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metastases (<4 cm diameter) appears to have a 
better control rate than whole-brain radiotherapy
(Flickinger 2001).New techniques including preoper-
ative functional imaging, image-guided neuro-
surgery, intraoperative ultrasound, and cortical map-
ping have improved the success of aggressive surgical
resection, and lowered the associated surgical mor-
bidity and mortality (Weinberg et al. 2001).Although
systemic chemotherapeutic agents currently used for
relapsed neuroblastoma are generally unable to ade-
quately cross the blood-brain barrier, aggressive
multi-modality treatments may result in a longer me-
dian survival for some patients. Unlike the beneficial
effect of prophylactic CNS treatment in survival for
patients with leukemia and small cell lung cancer
(Vines et al. 2003), the rarity of CNS neuroblastoma
makes prophylactic treatment difficult to justify;
however, molecular detection of tumor-associated
gene products by reverse transcriptase-polymerase
chain reaction (RT-PCR) may identify patients at risk
for leptomeningeal disease. Ongoing studies are in-
vestigating whether the CSF measurements of GD2
synthase, a key enzyme involved in the regulatory ex-
pression of complex gangliosides at the cell surface of
neuroectodermal-derived tumor cells, including
neuroblastoma, has clinical utility as it appears to
have in the blood and bone marrow of neuroblas-
toma patients (LoPiccolo et al. 2001; Cheung and
Cheung 2001). In addition, novel tumor-selective ra-
dioimmunotherapeutic strategies may have potential
in inhibiting leptomeningeal tumor growth (Berg-
man et al. 1999; Kramer et al. 2000; Bigner et al. 1998).
Intraventricular administration of 131-I-3F8 target-

ing disialoganglioside GD2 achieves a favorable cere-
brospinal to blood ratio and may have clinical utility
in the treatment of patients with GD2-positive lep-
tomeningeal cancers (Kramer et al. 2000).

13.4 Opsoclonus–Myoclonus

Opsoclonus–myoclonus syndrome (OMS), also called
Kinsbourne syndrome, dancing eyes syndrome, and
myoclonic encephalopathy, is a rare neurobehavioral
paraneoplastic disorder found in <4% of patients
with neuroblastomas (Rudnick et al. 2001a; Gambini
et al. 2003). The true incidence of OMS is unknown,
with mild cases often being misdiagnosed (Everson
and Cole 1956). Peak age of onset is 18–24 months,
but the disease does appear across the age spectrum
(Pranzatelli 2000). Children from all races, major
socioeconomic groups, and geographic regions are
affected (Pranzatelli 1992); males and females are
affected equally. Opsoclonus and myoclonus are obli-
gate features of the disease, but ataxia and other ab-
normalities are common. Tumors are often histolog-
ically more mature, less aggressive, have favorable
biology, and are associated with excellent rates of
survival (Gambini et al. 2003). Most tumors are occult
and may require repeated investigations for detec-
tion. Tumor removal is usually not therapeutic; in-
deed, some children worsen after surgery.

The clinical course is associated with a prodromal
phase marked by extreme irritability, inconsolability,
sleeplessness. During the acute neurological phase,
the child suffers from incoordination and falling,

Table 13.2. Statistically significant prognostic factors predicting the development of central nervous system (CNS) metastases
in patients with neuroblastoma

Reference No. of CNS events/patients Prognostic factor(s) identified

Kramer et al. (2001) 11 of 251 patients Lumbar punctures performed at diagnosis
with metastatic disease (4.4%) Elevated serum LDH (>1500 U/ml)

Matthay et al. (2003) 23 of 434 patients Lumbar punctures performed at diagnosis
with metastatic disease (5.2%) MYCN amplification

DuBois SG et al. (1999) 17 of 549 patients MYCN amplification
with metastatic disease (3.1%)
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with progressive neurological deterioration, inability
to sit or stand, slurred speech rage attacks, hypotonia,
head tilt, Horner’s syndrome, deep tendon reflex ab-
normalities, or seizures. The chronic phase is associ-
ated with variable impaired cognitive function, IQ
loss (Papero et al. 1995), attention deficit disorder
with or without hyperactivity, obsessive compulsive
disorder, mood and conduct disorders (Koh et al.
1994), speech articulation and fluency problems,
ataxia (Mitchell et al. 2002), ocular flutter, and stra-
bismus. Children with moderate and severe symp-
toms at the onset of OMS will not improve on their
own and require immunotherapy. The “wait and
watch” approach in this group following tumor resec-
tion is ill-advised (Blaes 2002).

13.4.1 Immunology

Opsoclonus–myoclonus syndrome is a putative au-
toimmune disorder, a “friendly fire” attack of the
immune system on the brain (Pranzatelli 2000). On-
coneural antigens have not been identified. Tumors
from children with OMS are more highly infiltrated
with lymphocytes than those from non-OMS counter-
parts (Martin and Beckwitz 1968); both B cells and T
cells congregate in immune nodules (Cooper et al.
2001) and are recruited to the CNS (Pranzatelli 2000).
B-cell and T-cell expansion correlates with neurolog-
ical severity. Histopathologically, inflammatory cells,
cerebellar vermian atrophy (Pranzatelli et al. 2002a),
and cerebellar cell loss (Hayward et al. 2001) are
sometimes identified (Clerico et al. 1993). Non-motor
functions of the cerebellum, particularly language ac-
quisition, are well accepted (Lieberman 2002); howev-
er, the anatomic substrate of opsoclonus appears to be
the brain stem, with mesencephalic and pontine ocu-
lar gaze centers containing the burst and omnipause
cells that control saccadic eye movements (Fuchs et al.
1985). Also, the seat of myoclonus can be wide-rang-
ing within the CNS, the nucleus gigantocellularis
reticularis in the caudal medulla, is the closest to a
“myoclonus center” (Pranzatelli 1992). A diffuse neu-
ral network originating in the cerebellum with brain
stem and frontal connections may become dysfunc-
tional. Purkinje neurons, the main cerebellar outflow
to deep cerebellar nuclei, may play a crucial role.

13.4.2 Pharmacology

Several different neurotransmitters, such as sero-
tonin, g-aminobutyric acid (GABA), and glycine,
have been implicated in myoclonus; however, my-
oclonus and other neurologic features of OMS are
unlikely to be due to single neurotransmitters.
Steroids (adrenocorticotrophic hormone and pred-
nisone appear to be most effective in restoring neu-
rological function but have multiple trophic effects
on brain (Pranzatelli 1994). Antiepileptic drugs and
an array of neuroceptor-active drugs are not effective
in treating myoclonus or opsoclonus (Pranzatelli
1992). A subgroup of children with OMS has low CSF
concentrations of the serotonin metabolite 5-hydrox-
yindoleacetic acid (5-HIAA) and the dopamine
metabolite homovanillic acid (HVA), but treatment
with ACTH may further lower 5-HIAA (Pranzatelli et
al. 1998a). It has been speculated that serotonin re-
ceptors which are found in neuroblastoma (Pranza-
telli 1992), may be one target of immunologic injury.
Mood problems and obsessive-compulsive disorders
in OMS could relate to serotonin also; however, neu-
roblastoma is replete with other neurotransmitter re-
ceptors as well. The level of free choline in the CSF
has not been found to be different in OMS patients
than in controls (Pranzatelli et al. 1998b).

13.4.3 Laboratory Testing

There is no confirmatory laboratory test. Finding
serum antibodies is helpful (Fisher et al. 1994), but
children with OMS are usually seronegative by com-
mercial testing for the paraneoplastic autoantibodies
described in adults (Pranzatelli et al. 2002b). Low-
serum titers of anti-Hu antibodies occur as often in
neuroblastoma without OMS (Antunes et al. 2000)
and do not correlate with neurologic outcome (Rud-
nick et al. 2001a). Autoantibodies to post-synaptic
densities or other unidentified brain antigens can 
be seen on Western blots, and both IgG and IgM 
antineurofilament antibodies have been reported 
in OMS (Connolly et al. 1997); however, these anti-
bodies are not specific and are also found in widely
divergent disorders (Bataller et al. 2003; Stubbs et al.
2003).
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13.4.4 Treatment

Treatment strategies are still being optimized, al-
though early intervention may not necessarily alter
the clinical course (Rudnick et al. 2001a; Mitchell et
al. 2002) (Table 13.3). Early treatment guided by CSF
lymphocyte immunophenotyping as performed at
the National Pediatric Myoclonus Center (Pranzatelli
et al. 1998a, 2002b) may improve outcome. In that
approach, an attempt is made to achieve fast and
complete neurologic remission using immunologic

markers as surrogates for disease monitoring. Chil-
dren with OMS may require long-term therapy.

13.4.4.1 Neuromodulation

ACTH, which binds to CNS melanocortin receptors
(Wilberg et al. 2000), and steroids, can induce a neu-
rologic remission (Pranzatelli 1996) A high-dose pro-
tocol is quite efficacious (Pranzatelli et al. 1998b).
Relapse on withdrawal from ACTH or steroids is com-
mon unless other immunotherapies have been in-

Table 13.3. Therapeutic approaches to (opsoclonus–myoclonus syndrome) OMS

Agent Pros Cons

Biologic factors
ACTH (corticotropin) Most potent agent for inducing neurologic Must be given by injection; steroid side effects

remission

IVIG Immunomodulation; decreases infections Flu-like post-infusion symptoms; potential 
blood product risks that can trigger relapses

Rituximab Selective against B cells Low risk of allergic reaction to murine 
component; long-term effects unknown

Drugs
Corticosteroids May be appropriate for mild cases; ease of Cushingoid side effects; ineffective in many 

administration; well known drug profile cases

Azathioprine Immunosuppressant; easy to use and well Takes several months to see effect
tolerated; drug levels can be monitored

Mycophenolate Newer inhibitor of lymphocyte proliferation; Long-term effects unknown
may be more effective than azathioprine

Cyclophosphamide Useful treatment for neuroblastoma; Dose-dependent reproductive side effects;
well-known drug profile not effective in some OMS

6-Mercaptopurine Established role as “steroid sparer” in other No data in OMS
disorders; low toxicity; ease of administration

Methotrexate A useful immunotherapy in some chronic No data in OMS
autoimmune neurologic disorders;
well-known drug profile

Pheresis
Plasmapheresis Therapy directed at autoantibodies Technically not feasible in infants and toddlers;

may cause antibody rebound; should not be 
used as monotherapy; limited data

Immunoadsorption More effective at removing antibody load Expensive; technical expertise required;
limited data

Leukocytopheresis Allows selective removal of lymphocyte No data in OMS
populations

Treatments from different classes or within the same class may be combined
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stituted. Symptomatic treatment with neuropsycho-
trophic drugs for ADD, rage attacks, and sleep distur-
bance is usually required for severe OMS and can be
used in combination with immunotherapy. A study
from the Pediatric Oncology Group (Russo et al. 1997)
suggests that chemotherapy may decrease the likeli-
hood of long-term neurologic deficits, while another
recent report from the Children’s Cancer Group (Rud-
nick et al. 2001b) noted that children with more ad-
vanced stage disease had better outcomes with regard
to late neurologic sequelae. Based on these series, the
Children’s Oncology Group is designing a prospective
protocol for OMS patients whereby all patients will
receive steroids and chemotherapy and treatment
with gammaglobulin will be randomized.

13.4.4.2 Adjunctive Therapy

Neuropsychological testing and IQ monitoring
should be performed in all children with neuroblas-
toma and OMS. Supportive treatment includes speech
therapy, early intervention programs, and contact
with normal healthy children of the same age and
physical therapy.

13.4.4.3 Precautions

Immunizations are considered hazardous in OMS be-
cause it activates T cells, which are already acti-vated
(Pranzatelli et al. 2002). Caution is taken to avoid live-
virus immunizations and groupings of multiple vac-
cines. Children exposed to varicella while on im-
munotherapy should be treated accordingly. It is not-
ed that sedatives, such as midazolam, fentanyl, chlo-
ral hydrate, or diphenhydramine may cause paradox-
ical excitation, and sometimes worsen symptoms
(Tate et al. 1994). Intravenous propofol is often a
short-acting efficacious alternative.

13.5 Treatment-Related Neurologic
Complications

All multi-modality treatments for neuroblastoma
can be complicated by a number of potential acute
and chronic neurologic complications that may war-
rant immediate attention or long-term therapy; these
include metabolic abnormalities (Antunes 2000),
CNS changes and peripheral neuropathies (Reddy
and Witek 2003; Yu et al. 1998; Cheung et al. 2001),
infectious complications resulting in brain abscesses,
meningitis, or encephalitis (Tasdemiroglu and
Patchell 1997), or vascular events as a consequence of
surgery, radiation therapy, or chemotherapy. The
reader is referred to Chap. 18 on quality of life and
late effects for further references.

13.6 Conclusions

The management of patients with neuroblastoma
mandates an understanding of the unique biology,
anatomic distribution, and the signs and symptoms
that can ensue. The tumor, its treatment, and the host
response to the tumor can result in a myriad of neu-
rologic complications, both acute and long term. Iso-
lated CNS relapses are increasingly recognized as a
complication of metastatic neuroblastoma occurring
in the first 1–2 years after diagnosis. Because of the
poor reversibility of neuronal damage, early detec-
tion and intervention of neurologic complications
using an interdisciplinary approach are critical in
minimizing late sequelae, implementing effective
palliation, and maximizing quality of life. Clearly,
treatment decisions must be based on the patient’s
age and long-term prognosis.
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14.1 Introduction:
The Case for Immunotherapy

Although proposed as a potential therapy for cancer
over a century ago, immunological-based strategies
have only become a reality in the past two decades.
Both the innate and adaptive immune responses are
believed to play key roles in tumor surveillance
(Diefenbach and Raulet 2002). While innate immuni-
ty relies on phagocytes, natural killer (NK) cells, nat-
ural antibodies, and complement proteins, adaptive
immunity recruits antigen-presenting cells (APC),
T cells and B cells (Janeway et al. 2001).As a primeval
system of defense, innate immunity depends on
invariant receptors recognizing common features of
tumor cells, although it has no immunological mem-
ory and can often be evaded. The ability to recognize
tumors specifically and to prevent their regrowth be-
comes more efficient with the emergence of adaptive
immunity. This property of specificity is based on
clonal selection of lymphocytes bearing antigen re-
ceptors. A broad range of effector cells, cytokines,
chemokines, antibodies, and their recombinant
products have been tested in passive immunotherapy
in pre-clinical and clinical settings. In addition, tu-
mors and tumor-derived products can be rendered
highly effective in stimulating an active immune
response.

Like most metastatic solid tumors, stage-4 neuro-
blastomas (NB) diagnosed after 18 month of age are
often incurable with standard multi-modality thera-
py. Many of these patients achieve near-complete re-
missions, only to succumb to tumor recurrence with-
in 4 years from diagnosis. Most pre-clinical models
testing various forms of immunotherapy document
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the greatest efficacy when immunotherapy is applied
at the time of small tumor load; thus, application of
immunotherapeutic interventions for patients with
high-risk NB is likely to be most effective if utilized at
the time of minimal residual disease.

14.2 The Immunobiology of Neuroblastoma

To recognize human NB, antibodies, T-cell receptors,
and receptors of the innate immune system (e.g., NK,
NKT, and g/d+T cells) (Jameson et al. 2003) have been
explored. Antigens recognized by antibodies on NB

are summarized in Table 14.1. Several antigen sys-
tems recognized by cytotoxic T lymphocytes (CTLS)
have also been demonstrated in NB; these include
cancer–testes antigens [MAGE (Ishida et al. 1996;
Cheung et al. 1998),5 GAGE (Cheung and Cheung
1997), NY-Eso-1 (Soling et al. 1999)], MYCN onco-
gene (Sarkar and Nuchtern 2000), kinase (ALK; Pas-
soni et al. 2002), and others. The activation of anti-
gen-specific T lymphocytes is a multi-step process
requiring antigen-specific triggering of the T-cell
receptor (TCR) complex on the T cell, and additional
signaling via the costimulatory molecules CD28 that
interact with CD80 (B7–1/BB1) and CD86 (B7–2/B70)

Table 14.1. Neuroblastoma antigens recognized by antibodies

Biochemical nature
Antigen Target antigen Antibody forms Immunoconjugates

GD2 Ganglioside Human: OFA-1-2 (Tai et al. 1984)
Humanized: KM8138 (Nakamura et al. 2001)
Chimeric: ch14.18 (Yu et al. 1998) IL-2 (Hank et al. 1996) 

KM1138 (Nakamura et al. 2001) GM-CSF (Batova et al. 1999)
Mouse: 3F8 (Cheung et al. 1987) 131I (Cheung et al. 1986, 2001b) 

14.G2a (Yu et al. 1997) 124I (Larson et al. 1991) 
BW625 (Berthold et al. 1989) 225Ac (Miederer et al. 2004)
AI (Kawashima et al. 1988)

ScFv (Moutel et al. 1997; Tur et al. 2001a) scFv-CIR (Krause et al. 1998;
Rossig et al. 2001; Cheung et al. 2003c) 
scFv-PE-toxin (Tur et al. 2001b)

GD3 Ganglioside Humanized: KM8871 (Nakamura et al. 2001)
Chimeric: KM871 (Nakamura et al. 2001; I-131 (Scott et al. 2001)

Scott et al. 2001)
Mouse: R24 (Houghton et al. 1985)

GM2 Ganglioside Humanized: KM8969 (Nakamura et al. 2001)
Chimeric: KM966 (Nakamura et al. 2001)

NCAM Glycoprotein Humanized: HuN901 (Roguska et al. 1996) Maytansinoid (Tassone et al. 2004)
(CD56) Mouse: UJ13A (Lashford et al. 1987), I-131 (Goldman et al. 1984) 

N901 (McGarry et al. 1988) blocked-Ricin (Lynch et al. 1997)
CC-1065 (Chari et al. 1995)

L1-CAM Glycoprotein Chimeric: chCE7 (Amstutz et al. 1993) I-131 (Hoefnagel et al. 2003) 
Cu-64 (Novak-Hofer et al. 2003) 
Cu-67 (Carrel et al. 1997)

Mouse: CE7 (Schonmann et al. 1986)
ScFv (Carrel et a. 1997)

GP58 Glycoprotein Mouse: 8H9 (Modak et al. 2001) scFv-Fc (Cheung et al. 2002) 
scFc-CIR (Cheung et al. 2003c)

GP95 Glycoprotein Mouse: BW575 (Berthold et al. 1989)

NB-p260 Protein Natural IgM (Ollert et al. 1996)
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ligands on the APCs, plus CD40-CD154 (CD40L) in-
teractions. Adhesion molecules, such as leukocyte
function antigen (LFA)-1, LFA-3, and intercellular ad-
hesion molecule (ICAM)-1, are also important in the
initial binding of CTLs to APC and to tumor targets.
The CTLs must receive the appropriate help before
expansion can occur. Antigen-specific T-helper cells
with T-helper 1 (TH1) activity must be coactivated by
the APCs. Th1 cells release Th1 cytokines, such as
interferon (IFN)-g and interleukin (IL)-12, which are
also necessary for CTL activation, and interleukin-2
(IL-2), which is necessary for CTL expansion (Che-
ung and Rooney 2002). A tumor cell that induces the
secretion of T-helper 2 (TH2) cytokines, such as IL-4
and IL-10, may promote antibody instead of CTL
responses.

Because of the propensity for NB to undergo
“spontaneous regression,” many have implicated an
endogenous anti-NB immune response. The recent
discovery of a natural IgM anti-NB antibody in chil-
dren suggests that innate immunity may have a
potential role in surveillance against this tumor
(Ollert et al. 1996). Besides IgM, lymphocytes of the
innate immune system (NK, NKT, g/d-T cells) (Jame-
son et al. 2003) interact with tumors through unique
activation and inhibitory receptors. The NK cells can
lyse human NB in vitro and inhibit xenograft growth
(Colucci et al. 2003; Cheung and Modak 2002). Spe-

cific ligands on tumor cells trigger activating or in-
hibitory receptors on NK cells (Schilbach et al. 2000).
The NKT cells bear NK markers (CD161, CD122) and
are thymus dependent, expressing CD3 plus TCR
(Kronenberg and Gapin 2002). They recognize 
a-galactosyl-ceramide as well as ganglioside GD3
presented on CD1d, a nonclassical major histocom-
patibility (MHC) molecule (Wu et al. 2003). These
NKT cells are effective anti-tumor vehicles in preclin-
ical cellular targeting strategies (Metelitsa et al. 2001;
Smyth et al. 2002). Human gdT cells isolated from
PBL and expanded with IL-2 in vitro also mediate
effective cytotoxicity against NB cells (Schilbach et al.
2000; Carding and Egan 2002).

14.3 How Neuroblastoma Escapes 
the Innate and Adaptive Immune Systems

Neuroblastoma employs a variety of tactics to evade
the immune system (Table 14.2). It downregulates
“immune-activating” while overexpressing “im-
mune-inhibitory” receptors. By repressing the ex-
pression of class-I and class-II MHC (Lampson et al.
1983) as well as CD1d (Metelitsa et al. 2001), they
interfere with both the afferent and efferent arms of
adaptive immune response. In addition, NB cells can
avoid immune recognition and destruction by releas-

Table 14.2. Neuroblastoma can evade the immune system

Immune function Modulated Ags Escape mechanism used by NB

Adaptive immunity
T cells ØMHC Class I Øb2m, ØTAP1, ØTAP2, ØLMP2, ØLMP7*

ØAdhesion ØICAM2, ØICAM3, ØLFA3

Innate immunity
NK cells ØActivation ØMICA (cytoplasmic), ØMICB (cytoplasmic) (Raffaghello et al. 2004)

≠Inhibition Soluble MICA (Doubrovina et al. 2003; Raffaghello et al. 2004)
NKT cells ØActivation ØCD1d
Complement ≠Inhibition CD46, ≠CD59

ØInhibition ØCD55

Inhibition of immune cells
Lymphocytes ≠Apoptosis ≠GD1a, ≠FasL, ≠GD2
APC ØFunction ≠GD2

* N.K. Cheung and W. Gerald, microarray gene expression analysis of human NB, unpublished results
LMP low molecular weight protein, TAP transporter-associated protein
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ing the ganglioside GD1a which is directly toxic to
human lymphocytes while uncoupling cell signaling
through the NFkB pathway (Shen and Ladisch 2002),
as well as disialoganglioside GD2 which interferes
with T-cell (Li et al. 1995) and APC functions (Shurin
et al. 2001; Heitger and Ladisch 1996). Furthermore,
some NB cells have been shown to express FAS-
ligand (Fas-L) (Shurin et al. 1998), which may act as a
death signal causing apoptosis of effector cells, such
as T cells or NK cells, which themselves express the
surface Fas death receptor (Takamizawa et al. 2000;
Li et al. 2002). On the other hand, when confronted
with antibodies, despite their low levels of CD55
(decay accelerating factor), some neuroblastomas
cells have increased CD59 (homologous restriction
factor) and sufficient CD46 (membrane cofactor pro-
tein) expression to render them resistant to terminal
complement pathways (see 14.4.1). Effective in vivo
immunotherapy must circumvent these protective
mechanisms of NB in order to ultimately maximize
clinical benefit.

14.4 Humoral Immunotherapy

With the introduction of the hybridoma technique in
1975 by Koehler and Milstein (Koehler and Milstein
1975), and the more recent emergence of recombi-
nant technology, monoclonal antibodies have trans-
formed the original “serum therapy” concept of Emil
Behring and Shibasaburo Kitasato into a pharmaceu-
tical industry. Monoclonal antibodies (MAb) have
generated excitement on many frontiers and will like-
ly play an important role in the future of cancer med-
icine.

14.4.1 Effector Mechanisms of MAb

Anti-tumor MAb can carry out highly effective tu-
moricidal functions both in vitro and in vivo; these
include signaling through receptor binding, antibody-
dependent cell-mediated cytotoxicity (ADCC), and
complement-mediated cytotoxicity (CMC) (Cheung
2004). MAb vary in their ability to induce down-
stream effects. For example, MAb 3F8 is unique
among anti-GD2 antibodies in its ability to induce

apoptosis among EL4 murine lymphoma cells (Tom-
linson et al., unpublished results). MAb can also
block receptor functions (e.g., EGF-R) (Mendelsohn
2003), and vascular endothelial growth factor recep-
tor (VEGF-R) (Prewett et al. 1999) by interfering with
binding of the natural ligands.

There are three types of IgG Fc receptors (FcgR):
FcgRI (CD64); FcgRII (CD32); and low-affinity 
FcgRIII (CD16; Ravetch and Bolland 2001). Most 
FcgRs are of the activating type except for the inhibito-
ry receptor FcgRIIB. Recent correlation of FcgRIIIA
polymorphism with clinical response to rituximab
suggests that IgG affinity for Fc receptor can influence
anti-tumor response in patients (Cartron et al. 2002;
Kimberly et al. 2002). Neuroblastoma cells are effec-
tively killed by NK lymphocytes, granulocytes, and ac-
tivated monocytes in vitro in the presence of specific
MAb. Chimeric hIgG1 specific for GD2 (ch14.18) fused
to GM-CSF depends on FcgRII in neutrophil ADCC
(Metelitsa et al. 2002). In contrast, 3F8 (murine IgG3
specific for GD2) utilizes both FcgRII and FcgRIII for
ADCC (Kushner and Cheung 1992). In addition to
FcR, adhesion molecules including CR3 (CD11b/Cd18)
(Metelitsa et al. 2002; Kushner and Cheung 1992;
Ottonello et al. 1999) and CD66b (Ottonello et al. 1999)
for neutrophils,and LFA-1 (CD11a/CD18) for lympho-
cytes (Edwards et al. 1992), are important in modulat-
ing tumor cytotoxicity. When their expression is in-
creased by granulocyte macrophage colony stimulat-
ing factor (GM-CSF) or IFN-g, granulocyte ADCC can
be enhanced (Metelitsa et al. 2002; Kushner and Che-
ung 1989; Vaickus et al. 1990; Masucci et al. 1990). Sim-
ilarly, IL-2 can increase lymphocyte ADCC (Munn and
Cheung 1987; Sondel and Hank 1997). Furthermore,
since both GM-CSF and IL-2 expand the effector cell
pools, they have potential clinical benefits in tumor
therapy when combined with MAb (Fig. 14.1).

Most NB cell lines are sensitive to CMC; how-
ever, some are resistant to complement because of
anti-complement surface proteins, including CD55 
(Cheung et al. 1988; Gorter and Meri 1999), CD59
(Gorter and Meri 1999; Cheng et al. 2000b) and CD46
(Gorter and Meri 1999). The effect of complement
activation extends beyond direct tumor lysis. C3b
deposited on tumor cells is rapidly cleaved by plasma
protease factor I to iC3b. Through CR3 (Mac-1 
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or alphaMbeta2-integrin), and CR4 (CD11c/CD18,
alphaXbeta2-integrin) receptors on leukocytes, tumor
cells are opsonized (Ross et al. 1999). C3a and C5a,
byproducts of complement activation, are potent
mediators of inflammation (Hugli 1978) and are
chemotactic for phagocytic leukocytes, drawing
them to the tumor sites. C5a can also induce second-
ary cytokines to increase vascular permeability for
both MAb and effector cells.

14.4.2 Clinical Application of MAb

14.4.2.1 Naked MAb

Among the ganglioside antigens, GD2 is particularly
relevant for the treatment of NB. Neuroblastoma cells
express GD2 at high density, with relatively little het-
erogeneity within tumors or among patients (Schulz
et al. 1984; Kramer et al. 1998). GD2 is not lost from
the cell surface when bound to antibodies. In normal
serum, GD2 is found in low concentrations typically
bound to lipoproteins. This may explain why circu-

Figure 14.1

Effector mechanisms of monoclonal antibodies. ADEPT antibody directed enzyme prodrug therapy; ADCC antibody-
dependent cell-mediated cytotoxicity, CMC complement mediated cytotoxicity, MAb monoclonal antibody, scFv single-
chain Fv fragment. (From Cheung 2004; Carter 2001).
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Table 14.3. Use of MAb for clinical diagnosis and therapy of neuroblastomaa

Radiolabeled antibody for imaging Sensitivity

131I-UJ13Aa (Goldman et al. 1984) 89%
131I-3F8 (Miraldi et al. 1986;Yeh et al. 1991) 90%
131I-14.G2a (Podoloff et al. 1991) 85%
99mTc-BW575 (Smolarz et al. 1989) 90%
131I-CE7 (Carrel et al. 1997) –

Radiolabeled antibody for therapy Overall responseb BM CRb

131I-UJ13A (Kemshead et al. 1985) – 1/4
131I-3F8 (Larson et al. 2000) 2/10 2/10
131I-3F8 (IT) (Kramer et al. 2000b) –c –

Naked antibody for therapyd Cytokine Total dose Overall Response BM Bone Masses
mg/m2

N CR/VGPR PR CR CR/PR CR/PR

Phase I

3F8 (Cheung et al. 1987) – 5–100 8 0 1 1/8e 1/8 0/4

14.G2a (Huang et al. 1992) – 25–200 15 1 0 2/8 0/12 0/11

14.G2a (Handgretinger et al. 1992) – 100–400 6 2 2 – – –

14.G2a (Murray et al. 1994) – 50–200 5 0 2 – – –

ch14.18 (Yu et al. 1998) – 10–200 9 0 1 3/7 0/9 1/8

ch14.18 (Handgretinger et al. 1995) – 150–250 9 2 2 – – –

14.G2a (Frost et al. 1997) IL-2 +/– GMCSF 10–100 31 0 1 – – 1/1

Phase II

3F8 (Cheung et al. 1998c) – 50 16 1 0 3/8 2/7 0/8

3F8 (Kushner et al. 2001) GM-CSF 100f 43g 11 – 31/42 – –

ch14.18 (Simon et al. 2004) – 100 166 – – Ømarrow relapse,
≠survival, but no effect
on event-free survival

ch14.18 (Yu et al. 1997) GM-CSF 200 27 1 3 5/13 0/9 0/7

a Antibodies were injected intravenously unless otherwise stated. IT = intrathecal
b BM CR was proportion of patients clearing marrow disease. Overall response = CR + PR, unless otherwise stated
c 1 radiographic and 2 CSF cytologic responses from the first 12 patients
d I=phase I, II=phase II
e No. of responses/no. of evaluable patients with neuroblastoma
f Patients without HAMA after 400 mg/m2 (4 cycles of 10 days/cycle, 10 mg/m2 day) were treated q1–2 months (100 mg/m2/

cycle) until 24 months from the first day of enrollment on the protocol
g Only patients with evaluable disease (primary resistance to induction or secondary resistance to retrieval therapy) were

included in this analysis
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lating GD2 in most patients has not interfered with
antibody targeting which typically achieved high
percent injected dose per gram (%ID/g) with high tu-
mor-to-normal-tissue ratio, and unusually low liver
and spleen uptake in patient studies (Yeh et al. 1991;
Larson et al. 2000).

Clinical Trials
The first IgG anti-GD2 MAb to undergo clinical test-
ing was 3F8 (murine IgG3; Table 14.3; Cheung et al.
1987, 1998a), followed subsequently by 14.G2a
(murine IgG2a; Handgretinger et al. 1992; Frost et al.
1997). and a chimeric form ch14.18 (Yu et al. 1998). In
clinical trials (Yu et al. 1998; Handgretinger et al.
1995; Ozkaynak et al. 2000), ch14.18 had a more pro-
longed serum half-life and lower immunogenicity
compared with its mouse counterpart. Most of the
responses noted in phase I and II clinical trials of
unconjugated anti-GD2 MAbs involved metastatic
disease in bone marrow, with less certain effects on
bulky tumors. The predominant toxicity was pain,
attributed to cross-reactivity of antibodies with pe-
ripheral pain fibers (Lammie et al. 1993; Xiao et al.
1997; Yuki et al. 1997). Other side effects included
tachycardia, hypotension, fever, anaphylactoid reac-
tions, nausea, vomiting, diarrhea, and transient neu-
ropathy. Most side effects were dose dependent,
rarely noted at dosages of <10 mg/m2 (14G.2a or
ch14.18) or <1 mg/m2 (3F8), and compatible with
outpatient treatment. Over a 15-year period, more
than 350 patients with NB have been treated with
>10,000 infusions of 3F8 at Memorial Sloan-Ketter-
ing Cancer Center. There was no treatment-associat-
ed mortality. Similarly, the COG (and its component
organizations) have been administering 14.G2a or
ch14.18 anti-GD2 MAb since 1989 with good safety
record. Patients have been followed for up to 15 years.
No long-term neurological complications have been
noted. The clinical development of anti-GD2 MAb
was partly hindered by its pain side effects which
have precluded dose escalation.

Although the anti-tumor effect of anti-GD2 MAb
was modest, response of microscopic marrow disease
was more consistent (Cheung et al. 1998b, 2001a,
2003a,b; Kushner et al. 2001). An association of
human anti-mouse antibody (HAMA) response and
favorable patient outcome, plus the induction of

anti-idiotypic Ab2 and anti-idiotypic Ab3/antibodies
through the idiotype network, implicate the potential
role of the host immune response in maintaining
clinical remission (Cheung et al. 1994, 2000). In a
recent update of 98 patients with stage-4 NB newly
diagnosed after 18 month of age, who received anti-
GD2 MAb 3F8 as part of their combined modality
therapy at MSKCC, the induction of a HAMA re-
sponse and a lower number of tumor cells in the
diagnostic bone marrow were the most significant
independent prognostic variables for both progres-
sion-free and overall survival (N.-K.V. Cheung et al.,
unpublished results).

14.4.2.2 Antibody in Combination 
with Cytokines

While cytokines can induce proliferation and activa-
tion of effector cells, in the absence of cytophilic
MAb, they lack tumor selectivity. Antibody-depend-
ent cellular cytotoxicity (ADCC) is greatly augment-
ed in vitro by cytokines (Kushner and Cheung 1989;
Munn and Cheung 1987; Hank et al. 1990; Barker and
Reisfeld 1993). Clinical trials of anti-NB antibody
combined with GM-CSF (Ozkaynak et al. 2000; Kush-
ner et al. 2001) or combined with IL-2 (Sondel and
Hank 1997; Frost et al. 1997) have shown modest anti-
tumor effects. While large tumor masses rarely re-
sponded to these combinations, microscopic marrow
disease showed consistent response in over 50% of
patients whether measured by conventional histol-
ogy (Kushner et al. 2001) or by RT-PCR (Cheung et al.
2003b). In addition, response may translate into im-
proved survival (Cheung et al. 1998a, 2003b). To
prospectively evaluate the clinical efficacy of anti-
body in combination with cytokine therapy, ch14.18
is being tested in combination with GM-CSF and 
IL-2 following autologous stem-cell transplant in a
phase-III U.S. Children’s Oncology Group (COG) ran-
domized trial (A. Yu et al., unpublished results).

14.4.2.3 Antibody Immunoconjugates

The clinical utility of naked MAb has been limited by
both host (number and activity of effector cells, FcR
polymorphism, and interference by inhibitory FcR)
and tumor factors (antigen heterogeneity and com-
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plement regulatory proteins). While the CMC and
ADCC functions of naked MAb (Fig. 14.1) can be
improved by altering the Fc protein structure or by
modifying Fc-glycosylation, substantial gains in the
clinical potentials of MAb can be achieved using
immunoconjugates (Cheung 2004) (Fig. 14.1); these
include (a) radioimmunoconjugates to deliver b- 
and a- emitters (Goldenberg 2003), (b) immunocyto-
kines to deliver cytokines to tumor sites while mini-
mizing systemic toxicities (Davis and Gillies 2003),
(c) immunotoxins (Pastan 2003), (d) immunolipo-
somes to deliver drugs or toxins (Allen et al. 2002),
and (e) bispecific MAb (pretargeted to tumor or by 
ex vivo arming) to direct cells or ligands selectively to
tumor (van Spriel et al. 2000).

Radioimmunoconjugates 
MAb have the potential to target and ablate tumors in
radioimmunotherapy (RIT) (Cheung 2004; Golden-
berg 2003). In preclinical models, ablation of estab-
lished xenografts is possible (Cheung et al. 1986),
although radiation damage to the marrow remains
dose limiting. Unlike naked antibodies, the bystander
effect of RIT from cross-firing of the radioisotopes
accounts for most of the toxicities of radioimmuno-
conjugates, hence limiting their efficacy. Most clinical
applications of RIT utilize b-emitting radioimmuno-
conjugates. b-particles have a relatively long range
(0.8–5 mm) and low linear energy transfer (approxi-
mately 0.2 keV/mm), resulting in radiation to both
antigen-negative tumors as well as innocent by-
standers; thus, b-emitters (131I or 90Y) can treat bulky
diseases effectively but are not optimal for the killing
of single cells or micrometastasis. Because of its 
g-emission, 131I also permits dosimetry studies, al-
though it also poses a radio-hazard at high treatment
doses, necessitating patient isolation. 131I is also
dehalogenated in vivo with potential to damage the
thyroid gland. 90Y is a pure b-emitter; its lack of
g-emissions allows outpatient treatment. However,
90Y, which is a pure b-emitter, requires more extensive
chemical modification of the MAb than 131I and is
deposited in bone when dissociated from the com-
plex. Alpha particles are helium nuclei. When com-
pared with b-particles, they have a shorter range
(50–80 mm) and a higher linear energy transfer (ap-

proximately 100 keV/mm) (McDevitt et al. 1998). As
few as one or two a-particles can destroy a target cell.
RIT using a-emitters should result in less nonspecif-
ic toxicity to normal bystanders as well as more effi-
cient single cell killing,an ideal setting for controlling
minimal residual disease. Alpha-particle-emitting
isotopes, such as astatine-211 and bismuth-213, have
been tested in clinical trials with minimal ex-
tramedullary toxicities (Zalutsky and Vaidyanathan
2000; Jurcic et al. 2002).

UJ13A (anti-NCAM) was the first antibody to un-
dergo clinical testing for radioimaging and radio-
immunotherapy (Lashford et al. 1987). 131I-3F8 (anti-
GD2, 6–28 mCi/kg) achieved responses in both soft
tissue masses and bone marrow (Larson et al. 2000).
The use of myeloablative 131I-3F8 (20 mCi/kg) to con-
solidate remission was tested in patients (>1 year of
age) newly diagnosed with stage-4 NB (Cheung et al.
2001a). Extramedullary toxicities were limited to
hypothyroidism, which occurred despite aggressive
thyroid protection using potassium iodide, liothyro-
nine (T3), and potassium perchlorate. 131I-MAb was
also tested in RIT of leptomeningeal cancers in chil-
dren by intraventricular administration (Lashford 
et al. 1988; Kramer et al. 2000). Estimated radiation
doses of 14.9–56 cGy/mCi to the cerebrospinal fluid
were achieved with 131I-3F8, with less than 2 cGy/mCi
to blood and other organs outside the CNS (Kramer
et al. 2000).

Multistep Targeting (MST). In order to improve tu-
mor uptake and reduce systemic toxicity, a multistep
procedure which pretargets the antibody before the
binding of the cytotoxic ligand to the tumor has 
been successfully employed (Cheung 2004; Golden-
berg 2003; Boerman et al. 2003; Goldenberg et al.
2003; Paganelli et al. 2001; Cremonesi et al. 1999; Che-
ung et al. 2004) (Fig. 14.1). In the first step, an anti-
body-streptavidin conjugate or fusion protein is al-
lowed to localize to tumors in vivo, and any excess is
cleared from the blood.A small radiolabeled biotiny-
lated ligand is then injected intravenously. By virtue
of the high-affinity interaction, the ligand penetrates
tissues rapidly and is strongly taken up by the anti-
body conjugate at the tumor site. Because of the short
transit time of the toxic ligand (radionuclide or tox-
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in), a substantial improvement in the therapeutic
ratio is achievable without sacrificing the percent in-
jected dose per gram in tumor. Neuroblastoma is
uniquely suitable for MST because of its abundance
of surface ganglioside GD2. Anti-GD2 5F11-single-
chain Fv-fragment (scFv)-streptavidin is a homote-
tramer with improved avidity and highly favorable
tumor-to-nontumor ratios in MST, achieving >50%
improvement in radiation dose ratio of tumor to
blood. In addition, because biotinylated polypeptides
can achieve selective tumor targeting when MST is
applied, a large repertoire of agents can potentially be
explored for targeting to NB (Cheung et al. 2004).

Immunocytokines
Cell-mediated cytotoxicity can be highly effective
against tumors in vitro and in animal models. Im-
munocytokines (Davis and Gillies 2003; Lode and
Reisfeld 2000) have shown remarkable success in ac-
tivating and redirecting effectors to human tumors.
The majority of these studies have focused on NK,
NKT, T cells (Davis and Gillies 2003), and granulo-
cytes (Metelitsa et al. 2002). They are active in ADCC
in vitro activating effector cells appropriately through
their cytokine receptors. In vivo administration of
the ch14.18-IL-2 fusion protein induces long-term
anti-tumor immunity (Davis and Gillies 2003; Lode
and Reisfeld 2000), and provides greater protection
against localized or metastatic murine neuroblas-
tomas than does treatment consisting of the identical
amounts of ch14.18 antibody and IL-2 given as sepa-
rate molecules (Lode et al. 1997). Following initial
successes with IL-2 and GM-CSF immunocytokines,
constructs containing other cytokines have also been
tested with encouraging results (Davis and Gillies
2003); these include IL-12, tumor necrosis factor
(TNF)-a, and lymphotoxin. Clinical testing of the hu-
manized form of this immunocytokine hu14.18-IL-2
is underway in adults with melanoma and children
with NB (King et al. 2002). Immune activation was
evidenced by increased serum IL-2 receptor levels,
lymphocytosis, and induction of an antibody re-
sponse against the hu14.18-IL-2. Clinical efficacy is
yet to be established.

Immunotoxins
Ribosome inactivating toxins can be potent cancer
drugs. One major limitation is the lack of tumor se-
lectivity (Reiter 2001). Two-chain toxins [e.g., ricin
and diphtheria toxin (DT)] utilize their B-chain for
cell binding and their A chain for inhibition of protein
synthesis, while other toxins [Pseudomonas exotoxin
(PE), Pokeweed antiviral protein (PAP), gelonin] have
a built-in cell attachment site. When conjugated to
MAb, they become immunotoxins. In recombinant
toxins (e.g., PE40, PE38, or diphtheria toxin DAB486),
the cell-binding domains are replaced by scFv. Anti-
GD2 monoclonal MAb have been conjugated to dif-
ferent toxins: ricin toxin A chain (Wargalla and Reis-
feld 1989; Manzke et al. 2001), DT (Thomas et al.
2002), PE (Fur et al. 2001a), and gelonin (Mujoo et al.
1991). A common toxicity is the vascular leak syn-
drome, characterized by fluid overload, dyspnea, and
sensory-motor neuropathies. Other natural com-
pound toxins have also been explored as immunocon-
jugates including cobra venom factor (Juhl et al. 1997)
and staphylococcal enterotoxin A (SEA; Holzer et al.
1995). Anti-GD2 immunoliposomes have also been
explored in vitro for delivering adriamycin (Ohta et
al. 1993) and fenretinide (Raffaghello et al. 2003).

Cellular Immunoconjugates (Bispecific Antibodies)
Tumor-selective MAb can be rendered cytophilic by
conjugation with MAb specific for trigger molecules
on T lymphocytes, NK cells, and granulocytes. These
molecules include CD3 (Manzke et al. 2001), CD28
(Bauer et al.1999),Fc receptors (CD64,CD16) (Michon
et al. 1995a,b), and FcaRI (CD89) (van Spriel et al.
2000). While one binding site of the bispecific anti-
body (van Priel et al. 2000; Friedrich et al. 2002; Schef-
fold et al. 2002) engages effector cells, the other bind-
ing site determines tumor specificity. Since serum
IgG competes for FcR, MAb made to recognize the
FcR outside its Fc-binding site have been developed
to circumvent this concern. Although bispecific MAb
have potential in targeting small ligands (e.g., in
MST), their clinical application in cellular immuno-
conjugates has been complicated by the generalized
cytokine release from leukocytes and the inherent
limitations of trafficking of effector cells into tumors
(Friedrich et al. 2002).
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Alternative Targets for Anticancer Antibodies
Besides the ability to block receptors from interaction
with their natural ligand, MAb can inhibit receptor
dimerization or receptor interaction with co-receptors
(Agus et al. 2002). While most of the MAb targeting
effort has been focused on individual tumor cells,
alternative strategies directed at tumor neovasculature
(Halin and Neri 2001) or tumor stroma (Hofheinz et
al. 2003) are promising approaches. MAb can be made
to neutralize the angiogenic factor VEGF (e.g., beva-
cizumab, Avastin) (Presta et al. 1997), or to block the
VEGF-R2/KDR (e.g., IMC-1C11, chimeric anti-KDR;
see Chap. 16) (Zhu et al. 2003; Posey et al. 2003). Target-
ing tumor vasculature may have significant advan-
tages over direct tumor targeting, in that endothelial
cells, unlike tumor cells, are less likely to acquire re-
sistance.Another angiogenesis target is aVb3 integrin
which initiates endothelial proliferation, migration,
and matrix remodeling. Based on the preclinical anti-
tumor activity of MAb specific for aVb3 (Gutheil et al.
2000), and the involvement of aVb3 in NB (Lode et al.
1999), the chimeric IgG1 (MEDI-522) currently in clin-
ical trial may have potential in treating NB.

14.4.3 Humoral Vaccines

14.4.3.1 Ganglioside-KLH Vaccines

Most antigens are able to induce antibodies only with
the help of T cells. Other antigens induce immunity
without T-cell help, but the antibody response is gen-
erally restricted to IgM class, and without persistent
antigen, it is usually short-lived with weak memory.
The antibody response to tolerated antigens resembles
that to T-independent antigens. Many tumor antigens
(e.g., carbohydrates or glycolipids) are believed to lack
helper T-cell epitopes and thus often behave as tolero-
gens or poor immunogens. To enhance immunogenic-
ity of carbohydrate antigens (GM2, GD2, and GD3),
covalent attachment to carrier proteins (e.g., keyhole
limpet hemocyanin) has been highly successful, espe-
cially when used in conjunction with adjuvants (e.g.,
saponin QS-21) that activate antigen-presenting cells
(e.g., macrophages) and T lymphocytes (Ragupathi et
al.2003).An alternative to using natural gangliosides is
the employment of peptide mimics which can induce

strong anti-ganglioside antibody responses in preclin-
ical models (Tsao et al. 2002).

14.4.3.2 Anti-Idiotype Vaccine

Anti-idiotypic (Ab2) antibodies are potential tumor
antigen surrogates (Kennedy et al. 1987). Ab2 can in-
duce anti-anti-idiotypic antibodies (Ab3) that cross-
react with the original target tumor antigen. As tu-
mor vaccines, Ab2 antibodies have advantages over
native antigens (e.g., carbohydrates) because they
induce better T-cell help and stronger antibody re-
sponse. Since they can be easily manufactured, and
modified by genetic engineering, they are preferable
to difficult chemical synthesis (e.g., complex carbo-
hydrates). Anti-GD2 anti-idiotypic vaccines have
been used successfully in tumor models (Cheung et
al. 1993; Sen et al. 1998; Zeytin et al. 2000) and are
being evaluated in patients with NB and melanoma
(Foon et al. 2000; Batova et al. 2002).

14.5 Cellular Immunotherapy

14.5.1 Activation of NK and NKT Cells

The observed spontaneous tumor regressions seen 
in episodes of sepsis prompted Coley to test bacterial
toxins as a form of immunotherapy. While occasion-
al anti-tumor effects were observed using Bacillus
Calmette Guerin in the early 1970s, this “non-specific
immune activation” strategy has evolved into the
application of highly purified recombinant human
cytokines such as IFN-g (Evans et al. 1989), and IL-2
(Handgretinger et al. 1987). As single agents, their
anti-tumor effect was modest whether they were
used alone (Bauer et al. 1995), or in combination with
autologous stem cell transplantation (Favrot et al.
1990; Toren et al. 2000; Bonig et al. 2000; Pession et al.
1998; Marti et al. 1995), despite evidence of immune
activation (increase in NK cells, CD8+ cells, and sol-
uble IL-2-Ra) (Vlk et al. 2000). Other NK and NKT-
activating cytokines explored in NB therapy include 
IL-12 (Shimizu et al. 2001), IL-15 (Satoh et al. 1998),
and IL-18 (Heuer et al. 1999), as single agents or in
combination with IL-2 in murine models (Wigginton
and Wiltrout 2002). Dendritic cells have also been
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used to activate NK cells via CD40 (Valteau-Couanet
et al. 2002; Turner et al. 2001). Galactosyl-ceramide is
a potent stimulator of NKT cells with potential for
clinical applications (Wu et al. 2003; Metelitsa et al.
2001; Smyth et al. 2002). Alternatively, NK/NKT cells
can also be gene modified with scFv chimeric im-
mune receptor (CIR) to be redirected to human tu-
mors (Koehne et al. 2003).

14.5.2 Activation of MHC-Restricted T Cells

Pre-clinical research, particularly in murine models,
has identified four conceptually distinct strategies for
inducing T cells capable to destroy tumors in vivo
through MHC-restricted recognition by ab+ T-cell
receptors expressed by the majority of T cells. They
include the following:

1. Administration of systemic or locally injected im-
munostimulants to tumor-bearing animals to ef-
fectively expand already activated endogenous tu-
mor-reactive T cells.

2. In vivo administration of a tumor vaccine, either
purified or crude/complex, containing antigenic
components of the tumor itself,designed to induce
and expand endogenous tumor-reactive T cells to
mediate tumor selective destruction.

3. In vitro activation, selection, manipulation, and/or
expansion to generate a population of tumor-reac-
tive autologous T cells able to mediate anti-tumor
destruction in vivo upon adoptive transfer.

4. Infusion of allogeneic T cells, either directly ob-
tained ex vivo, or potentially modified in vitro, to
induce a “graft-vs-tumor” response which takes
advantage of genetic or physiological differences
between the tumor-bearing host and the healthy
allogeneic lymphocyte donor.

14.5.3 Pre-clinical and Clinical Testing 
of T-cell Based Therapy in Neuroblastoma

14.5.3.1 Immunostimulants

In vivo administration of systemic IL-2 and IL-12 can
result in anti-tumor effects against syngeneic NB tu-
mors and is mediated, at least in part, through CD8+

T cells (Wigginton and Wiltrout 2002; Siapati et al.
2003). Similarly, Flt-3L is a cytokine known to acti-
vate APC directly. It can induce NK cell expansion
and enhance APC function to provide better specific
activation of T cells. Mice bearing weakly immuno-
genic NB can develop anti-tumor responses follow-
ing 10–17 consecutive days of Flt-3L treatment. Fol-
lowing tumor eradication, these animals demon-
strate protective T-cell-mediated immunity to tumor
re-challenge (Neal et al. 2003). The specific antigens
recognized by T cells in these tumor models have not
been characterized.

Effective endogenous T-cell expansion and immu-
nization can be induced by direct injection of im-
mune stimulants such as IL-2, GM-CSF, CpG (Sandler
et al. 2003), or B7 (Todo et al. 2001) directly into sites
of tumor. While this cytokine injection approach for
activating T cells has been demonstrated in murine
models for other tumors, it has not yet been evaluat-
ed for patients with NB. The administration of fusion
proteins consisting of monoclonal antibodies linked
to cytokines (IL-2 or GM-CSF) may target cytokines
to tumor sites and be alternatives to direct intratu-
mor injection of immune stimulants (Davis and
Gillies 2003).

14.5.3.2 Tumor Vaccines

Detailed analyses of more common tumors have
identified immunodominant peptides recognized 
by either antibodies (SEREX) (Scanlan et al. 2002) or
cytotoxic T lymphocytes (van der Bruggen et al.
2002).When combined with adjuvants, these purified
proteins or peptides can be presented on APC in vitro
or in vivo as vaccines to T cells. Alternatively, direct
transfer of DNA coding for the immuno-dominant
peptide or protein has also been successful (Pertl et
al. 2003). While these approaches are underway for
treatment of melanomas and carcinomas, they have
not yet been pursued for NB. An alternative vaccine
approach utilized whole tumor cells to provide a
“cocktail” of antigenic targets. Pre-clinical analyses
have utilized vaccines comprised of autologous or
allogeneic tumor cells. Crude cell lysates have been
superseded by in vitro expanded dendritic cells that
have been “pulsed” with crude cell lysates. As APCs,
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these pulsed dendritic cells activate T-cells in vivo. In
children with NB this approach is safe (Geiger et al.
2001). Although NB-specific T cells were stimulated,
no anti-tumor effect was observed.

Immunization with tumor cells genetically modi-
fied to express immuno-stimulatory proteins (e.g.,
IL-1 and TNF [Coze et al. 2001], Fas [Shimizu et al.
1999], IL-2 [Bowman et al. 1998], IL-12 [Yoshida et al.
1999; Davidoff et al. 1999; Pertl et al. 2001], GM-CSF
[Yoshida et al. 1999], MHC class II [Hock et al. 1995],
B7 [Enomoto et al. 1997]) are effective strategies in
murine models. CD8+ tumor-specific T cells, induced
by these vaccines, specifically and effectively recog-
nize the non-transfected parental tumor cells, both in
vitro as well as in vivo, demonstrating protective
immunity against subsequent tumor challenge. This
approach was tested in patients with NB where a vac-
cine of allogeneic NB cells transfected with IL-2 and
lymphotactin was used (Haight et al. 2000; Brenner et
al. 2000). While lymphotactin acts to attract lympho-
cytes to the site where it is released, IL-2 induces ex-
pansion of those T cells stimulated by the irradiated
allogeneic tumor cells (Brenner et al. 2000; Rousseau
et a. 2003). Immunization with up to 107 transfected
cells per kilogram body weight subcutaneously at
weekly intervals was well tolerated. Following this
immunization strategy, lymphocytes from the pe-
ripheral blood of immunized patients showed a spe-
cific in vitro immune reactivity against the immuniz-
ing tumor cell line, documenting the efficacy of in
vivo immunization by this approach. Most patients
generated antibody responses that showed specific
reactivity against the immunizing line, confirming
the efficacy of immunization. Three of 21 patients
showed major responses (1 PR and 2CR). Additional
phase-II testing is in progress.

14.5.3.3 Adoptive Therapy Using Autologous
Cytotoxic Lymphocytes

In vitro expansion of tumor-reactive T cells, followed
by their in vivo re-infusion, is an effective approach
in several murine models; however, this approach re-
mains complex for clinical translation, particularly in
smaller pediatric patients where obtaining adequate
numbers of autologous T cells for in vitro expansion

remains somewhat problematic. This method does
allow in vitro manipulation of the T cells prior to
their re-infusion. One manipulation is to use bispe-
cific antibodies (see section 14.4.2.3) to target T cells
more efficiently. Although successful in preclinical
models, clinical efficacy has been difficult to achieve
partly because of insufficient cell dose, inefficient
homing, and poor survival in vivo. Another develop-
ment is to transfect these T cells with cell surface Fab
or scFv chimerized with cytoplasmic activation (e.g.,
CD3z or g chain) or survival (CD28) proteins. While
the antibody fragment provides tumor recognition,
the signaling domains activate downstream path-
ways for optimal T-cell activation (Cheung et al. 2003;
Rossig et al. 2001). Since these genetically modified T-
cells are not restricted by MHC and can be expanded
in vitro, they are potentially useful for adoptive ther-
apy of NB (Cheung et al. 2003; Rossig et al. 2001). An
alternative approach grafts the Fab recognition com-
ponents of the tumor-reactive antibody directly to
the TCR alpha and beta receptors to enable signal
transmission directly through the intact TCR. Both of
these approaches have shown success in pre-clinical
models and scFv-CIR directed to least three antigen
systems [L1CAM; (Jensen et al., unpublished data);
GD2 (Rossig et al. 2001); gp58 (Cheung et al. 2003)]
are under investigation in NB.

14.5.3.4 Adoptive Therapy Using Allogeneic
Lymphocytes

Infusion of allogeneic immune cells, although effec-
tive in certain hematopoietic malignancies, has not
been tested extensively for NB. In contrast to the 
advantage of allogeneic BMT over autologous BMT
for several hematopoietic malignancies, several stud-
ies have shown equivalent or inferior progression-
free survival probabilities in NB patients receiving 
allografts when compared with those receiving auto-
grafts (Philip et al. 1997; Matthay et al. 1994; Evans 
et al. 1994). In addition, patients receiving the allo-
geneic transplants appeared to have more peri-trans-
plant toxicities. With recent improvements in sup-
portive care and GVH prophylaxis, further clinical
testing of graft-vs-tumor effect is being considered
for NB.
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14.6 Conclusions

In vivo destruction of NB cells by T-cell recognition,
antibody-facilitated recognition, or recognition via
cells of the innate immune system have proven effec-
tive in pre-clinical murine models. Anti-tumor bene-
fit is likely to be maximized when applied at the time
of minimal tumor burden. Unfortunately, to achieve a
minimal disease state, intensely immunosuppressive
chemotherapy and radiotherapy are often required,
which predictably compromise the patient’s immune
competence. As such, immunotherapeutic interven-
tions for NB during or immediately after induction
therapy may not be able to rely on the host’s endoge-
nous immune repertoire. Passive immunotherapy,
whether antibodies or adoptive cell therapy, is likely
to be necessary during this initial immune recovery
period. Following immune recovery, active im-
munotherapy may stand a better chance to be suc-
cessful. Finally, to overcome immune resistance,
multiple immune interventions may need to be com-
bined.
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15.1 Introduction

The clinical behavior as well as the associated
histopathologic features of neuroblastomas (NB)
have long suggested that tumorigenesis of this pedi-
atric cancer is, at least in part, related to defects in 
the process of cellular differentiation. Primary and
metastatic NBs consist of different cell types, and the
cells commonly have different stages of differentia-
tion. The histologically more mature forms of NB,
ganglioneuroblastoma and ganglioneuroma, corre-
spond to the normal differentiation patterns seen in
the developing sympathetic nervous system. More-
over, the histologic classification of NB into subsets
based on the extent of differentiation, the presence of
stroma or Schwannian tissue, and the degree of mi-
totic/karyorrhectic cells when combined with age is
highly predictive of outcome (Shimada et al. 1984).

15.1.1 Neural Crest Development

The neural crest is a transient embryonal structure
that arises at the interface between the non-neural
and neural ectoderm or neural plate. As the neural
plate invaginates and the folds approximate to form
the neural tube, inductive influences from the under-
lying mesoderm and the overlying non-neural ecto-
derm stimulate the dorsal aspect of the developing
neural tube to form the neural crest cells. Cells mi-
grate laterally from the neural tube to form or con-
tribute to a variety of cell types including:

1. Neuronal cells; the sensory ganglia of several cra-
nial nerves, spinal ganglia and ganglion of the
autonomic nervous system
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2. Supportive cells of the nervous system; glial, of the
peripheral ganglion; Schwann cells of the periph-
eral nerves, and meninges of the anterior brain

3. Pigmented cells; except pigmented retina
4. Endocrine and paraedocrine cells; adreno-

medullary cells, calcitonin-producing cells and
type-I cells of the carotid body

5. Mesectodermal derivatives; visceral and facial
skeleton; walls of the large arteries derived from
the aortic arches, connective tissue of thymus and
parathyroid glands, and dermis of the neck and
facial regions (Le Dourain and Kalcheim 1999)

The fate or specialization of neural crest cells de-
pends on their rostro-caudal location along the neu-
ral tube; however, in vitro and in vivo studies indicate
that neural crest cells retain a high degree of plastici-
ty even after they migrate from the neural tube. In-
terestingly, these are also features that mark highly
malignant NB cells.

15.1.2 NB as a Neural Crest Derivative

Neuroblastomas frequently express both tyrosine hy-
droxylase (TH) and dopamine-b-hydroxylase (DbH),
enzymes involved in the synthesis of the cate-
cholamines.Not only are catecholamines characteris-
tic of sympathetic neurons, but migrating neural
crest cells are also catecholaminergic (Smith and
Fauquet 1984). Tyrosine hydroxylase and DbH pro-
vided the earliest molecular markers that distin-
guished NB from other small round blue cell tumors
such as Askin’s tumor, Ewing’s sarcomas, and periph-
eral neuroectodermal tumors, which express high
levels of choline acetyltransferase (Thiele et al. 1988).
Tyrosine hydroxylase and DbH expression are asso-
ciated with the secretion of catecholamines and their
metabolites (VMH and HVA) into the urine, provid-
ing diagnostic (Lopez-Ibor and Schwartz 1985) and
screening markers (see Chap. 2) for NB.

Clinically, NBs present in a number of different
anatomic locations most frequently reflecting the
sites of sympathetic nervous system tissues. These
sites include postganglionic neuronal precursors that
are found in paravertebral ganglia of the sympathet-
ic trunk, pre-aortic ganglia in the plexus around the

branches of the abdominal aorta, and in the
medullary and/or ganglionic cells of the adrenal
gland (Jaffe 1976). During fetal development, sites of
sympathetic nervous system tissue also include neu-
roendocrine structures with rests of neuroblasts in
the adrenal gland and paraganglia adjacent to the
sympathetic ganglia.

15.1.3 NB and Adrenal Medullary
Development

During development of human adrenal medullary
chromaffin tissue, cells express TH, chromogranin A
(CgA), and neuropeptide Y (NPY) within the first
10 weeks of gestation (Cooper et al. 1990). By
26 weeks of gestation, cells co-express delta (a ligand
for the notch receptor) but lose NPY expression until
after birth when they express b2-microglobulin, the
light chain receptor of the major histocompatibility
complex, and re-express NPY. A second population 
of fetal ganglionic neuroblasts develops in the
medullary region that expresses HNK-1 but not TH,
CgA, or delta (Cooper et al. 1990). The NB cell lines
also express these patterns of gene expression indi-
cating that some NB tumors may arise from tumori-
genic events occurring at different stages of adrenal
medullary cell development (Cooper et al. 1990). Fur-
thermore, NB tumor tissue express patterns of chro-
maffin-related genes that correlate with the patterns
of gene expression observed during maturation of
adrenal medullary chromaffin tissues (Cohen et al.
1990; Cooper et al. 1992).

In vitro studies showed that NB cell lines treated
with compounds that raised intracellular cAMP lev-
els stimulated a more neuroendocrine pattern of
gene expression, while signal transduction pathways
regulated by retinoid receptors stimulated more neu-
ronal gene expression patterns (Gaetano et al. 1991).
Oxygen deprivation, as would occur in a necrotic area
may cause a hypoxic response and induction of the
transcription factor HIF1a. In vitro, the induction of
HIF1a leads to decreased expression of more mature
neuronal and neuroendocrine markers such as NPY,
CgA, and TH, and increased expression of growth
factors such as VEGF, IGF-2, and a bHLH transcrip-
tion factor inhibitor of differentiation, Id–2. These
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genes are more highly expressed in immature neural
crest cells (Jogi et al. 2002), and VEGF (Eggert et al.
2000) is expressed in more immature and aggressive
NBs, suggesting that the underlying biologic features
of tumor cells are influenced not only by genetic
events involved in tumorigenesis but also by their en-
vironment.

15.1.4 Neural Crest Gene Expression 
During Development

More recently in animal studies, a number of genes,
including slug, AP-2, HNK-1, and Krox-20,distinguish
the earliest neural crest cells from other neighboring
epithelial and mesoderm derivatives in normal or ge-
netically modified chicks, frogs, zebrafish, and mice.
Many of these genes encode proteins that are thought
to regulate gene transcription and neural crest cell
determination. These genes are regulated in part 
by signals induced by bone morphogenic protein
(BMP2/4) or Wnts. The BMPs are members of the
TGFb signaling path that utilize serine/threonine
kinase receptors to transmit extracellular signals to
the cytoplasm where a series of intracellular signal-
ing intermediaries (SMADs) relay signals to the nu-
cleus and regulate gene expression. Activation of the
Wnt signal transduction path stabilizes the cytoplas-
mic protein b-catenin enabling its translocation into
the nucleus and activation of neural crest markers
(Wu et al. 2003). The BMP alone and in combination
with retinoids have been found to induce differentia-
tion of NB tumor cells and control their growth (Y.
Nakamura et al. 2003; Sumantran et al. 2003).

15.1.5 MYCN in Neural Crest Development

As described in Chap. 4, MYCN amplification con-
tributes to the clinically aggressive behavior of NB
tumors (Seeger et al. 1985). MYCN has also been
shown to play an important role in the development
of sympathetic neurons. Deletion of the MYCN gene
in animal models leads to a reduction in the number
of mature neurons in the dorsal root and sympathet-
ic ganglia (Sawai et al. 1993; Stanton et al. 1992). In
addition, MYCN can stimulate post-mitotic sympa-
thetic neurons to re-enter the cell cycle and enhance

their survival (Wartiovaara et al. 2002). In avian em-
bryos, migrating neural crest cells express MYCN.
After cessation of the major wave of neural crest cell
migration, MYCN expression is heterogeneous in the
dorsal root and sympathetic ganglia, being more
highly expressed in the nucleus of neuronal cells and
decreased in Schwann and glial cells. In explants of
neural crest cells in vitro, expression of MYCN stim-
ulates an increase in differentiated neural crest cells
without affecting proliferation. Implantation of
MYCN-transduced neural crest cells in vivo leads to a
massive migration of cells into the sympathetic gan-
glia and an increase in differentiated cells; thus,
MYCN functions at an early phase of neural crest de-
velopment increasing their migratory potential and a
later phase promoting their neural differentiation
(Wakamatsu et al. 1997).

15.2 Neurotrophins in Neural Crest
Development

Neurogenesis in the sympathetic ganglia is governed
by precursor proliferation, followed by a period of
apoptosis as neuroblasts that fail to innervate their
target tissues die, while others complete functional
maturation. Upon innervation of their target tissues,
neuroblast survival is mediated by growth/survival
factors called neurotrophins (NTs). Neurotrophins
exist as precursor proteins (proNTs) that are pro-
cessed to mature NT proteins. The NT family of
secreted growth factors include nerve growth factor
(NGF), brain-derived neurotrophic factor (BDNF),
NT-3, and NT-4/5 that bind to their cognate tyrosine
kinase receptors TrkA, TrkB, and TrkC (Fig. 15.1).
Neurotrophins bind and facilitate dimerization of
Trk receptors, activating their intrinsic tyrosine
kinase activities that initiate a kinase cascade that
transmits signals to the nucleus to regulate genes
important in neural survival and growth (Teng and
Hempstead 2004). Both proNTs and mature NTs bind
to the p75 receptor, which has limited homology to
death receptor transmembrane proteins (Fig. 15.1).
Recent evidence indicates that proNT interacts solely
with p75 and in association with an accessory re-
ceptor, sortilin, is a potent death signal (Nykjaer et al.
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2004). The NT/Trk (Kaplan and Miller 2000), p75 and
the membrane bound kinase receptors of glial-de-
rived neurotrophic factors (GDNF/RET), play impor-
tant roles in the development of the peripheral nerv-
ous system.

The majority of migrating neural crest cells ex-
press TrkC and p75 and may be mitotically active or
post-mitotic. A fraction of these also co-express
TrkA. In the adrenal gland. The BDNF is expressed in
the adrenal cortex during embryogenesis but is re-
stricted to the interface of the adrenal cortex and
medulla in the adult. Another TrkB ligand, NT-4, is
highly expressed in the adrenal medulla. The majori-
ty of neuronal cells in the medulla express TrkA and
p75 but not TrkB, although TrkB is restricted to a
small number of ganglion cells. Under certain condi-
tions NT-4 activates TrkA and may serve as a physio-
logic ligand for TrkA expressing chromaffin cells;
however the neurons of the intermediolateral column
of the spinal cord express TrkB and BDNF and inner-
vate adrenal medullary chromaffin cells (Schober et
al. 1999).

15.2.1 TrkA and NB

In NBs the expression of the neurotrophin receptors,
Trks, have prognostic significance (see Chap. 5). TrkA
and/or TrkC are more highly expressed in primary
NBs tumors from patients who have a good progno-
sis (Nakagawara et al. 1993;Yamashiro et al. 1997),
while expression of p145TrkB and its ligand BDNF is
more highly expressed in primary NBs from patients
with an unfavorable prognosis (Nakagawara et al.
1994). In NB cell lines engineered to express high lev-
els of TrkA, activation with nerve growth factor
(NGF) can decrease MYCN levels (Matsushima and
Bogenmann 1993; Woo et al. 2004) by mediating sig-
nals transduced through the MAP kinase pathway
(Woo et al. 2004). In NB cell lines, interferon gamma
(Lucarelli et al. 1995), and to a lesser extent retinoids
(Kaplan and Miller 2000), induce TrkA, suggesting
that the levels of TrkA may be amenable to regulation
in clinically aggressive NBs.

Figure 15.1

The cognate receptors for neurotrophins (NGF, BDNF,
NT-3, and NT4/5). The p75 or nerve growth factor re-
ceptor (NGFR) binds all pre-processed (i.e., pro-NGF)
and processed neurotrophins with equal affinity. p75
shares homology with the death receptor family of sig-
naling receptors and this receptor may transmit either
death-inducing or survival signals depending on cell
type and context. Different neurotrophins interact se-
lectively with distinct members of the Trk family of ty-
rosine kinase receptors. The structure of the Trk recep-
tors contains several distinct protein motifs. The filled
circles represent cysteine-rich regions separated by a fi-
bronectin type-III repeat.The open circles to the right of
the line contain Ig-like loops and the sphere-filled rec-
tangle on the intracellular portion of the receptor con-
tains the catalytic tyrosine kinase domain which is acti-
vated upon interaction of the extracellular portion of
the receptor with the cognate ligand. Activation of the
tyrosine kinase leads to activation of other signaling
paths including the MAPK path, the PLCg path, and the
PI-3 kinase paths that ultimately transmit signals to the
nucleus regulating gene transcription and ultimately
affecting cell survival, growth, and differentiation.
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15.2.2 TrkB and NB

Activation of TrkB by its ligand BDNF has been
shown to promote survival, alter sensitivity to
chemotherapeutic drugs, and stimulate invasiveness
– all properties of highly malignant tumors cells
(Matsumoto et al. 1995) (see Chap. 5). An interesting
aspect of the clinical behavior of poor prognosis NBs
is that even though they are initially sensitive to
chemotherapeutic agents, they often ultimately be-
come resistant. The basis of this chemoresistance is
probably multi-factorial being influenced by tradi-
tional chemoresistance factors such as the level of ex-
pression of drug efflux pumps such as MRP (Norris et
al.1996) and mutations in TP53 (Keshelava et al.2001;
Tweddle et al. 2001). In addition, the level of expres-
sion of BDNF and its receptor TrkB may also con-
tribute to the escape of NB cells from the effects of
cytotoxic chemotherapy. Drug-resistant NB cell lines
have increased levels of expression of BDNF and the
levels of BDNF increase as the cells become progres-
sively resistant to higher concentrations of cytotoxic
drugs (Scala et al. 1996). Additionally, both the con-
centration of BDNF and the level of expression of
TrkB have been shown to diminish the sensitivity of
cells to drugs typically used in the therapy of NB
(Jaboin et al. 2002). Recent studies have identified two
targets of the TrkB pathway amenable to drug devel-
opment. A drug targeting Trk tyrosine kinases (CEP-
701) is in clinical trials and has shown preclinical
efficacy against NB mouse xenografts (Evans et al.
1999). Furthermore, a number of compounds target-
ing the PI-3-kinase pathway and its downstream tar-
gets are in pre-clinical development. Such agents 
may enhance the toxicity of chemotherapeutic agents
against aggressive NB.

15.3 Differentiation

Neuroblastoma cell lines are comprised of at least
three morphologically distinct phenotypes: neuro-
blastic cells (N-type); non-neuronal substrate-ad-
herent cells (S-type), and cells with an intermediate
phenotype (I type), with distinct morphologic, bio-
chemical, and tumorigenic properties (see Chap. 8).

I-type cells can be induced to differentiate into N-
type or S-type cells under selective culture condi-
tions. Cytotoxic chemotherapeutic regimens can
also induce NB maturation (McLaughlin and Urich
1977; Raaf et al. 1982). These observations led to sub-
sequent studies aimed at evaluating induction of dif-
ferentiation as a therapeutic strategy. A variety of
chemicals and biologic response modifiers, includ-
ing retinoids, histone-deacetylase inhibitors, agents
that raise intracellular calcium levels, activators of
protein kinase C, neurotrophins, and cytokines, have
been shown to suppress tumorigenicity, control
growth, and induce NB differentiation of NB cell
lines.

15.3.1 Retinoids

Vitamin A or retinol primarily from the diet plays a
critical role in normal neural crest development. The
metabolism and storage of retinol is mediated by a
number of binding proteins and enzymes. Intracellu-
lar retinol is metabolized to all-trans retinoic acid
(ATRA).All-trans retinoic acid is a major mediator of
the effects of vitamin A via activation of a number of
RAR and RXR nuclear receptors that heterodimerize
and regulate gene transcription (see below). Expo-
sure of human neuroblastoma cell lines to supra-
physiologic doses (micromolar) of ATRA caused a
reduction of cell growth and induction of neurite ex-
tension and differentiation that was ultrastructurally,
biochemically, and electro-physiologically similar to
normal neural cells (Fig. 15.2; Sidell 1982; Abemayor
and Sidell 1989).

The ATRA treatment of NB cells was accompanied
by a decrease in the expression (Thiele et al. 1985)
and transcription (Thiele and Israel 1988) of the
MYCN gene. The decrease in MYCN expression pre-
ceded the ATRA-induced G1 arrest and evidence of
morphologic differentiation (Thiele et al. 1985), and
the MYCN over-expression blocked differentiation
(Peverali et al. 1996). All-trans retinoic acid induced
decreases in MYCN levels and increases in the cy-
clin-dependent kinase inhibitor p27 which may me-
diate the G1 arrest of NB cell cycle (Matsuo and
Thiele 1998; M. Nakamura et al. 2003). Pulse therapy
with retinoic acid showed a sustained arrest of tu-
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mor cell proliferation in NB cell lines, suggesting
that high-dose pulse retinoid therapy (as opposed to
the more traditional low-dose continuous retinoid
therapy) might be effective in vivo (Reynolds et al.
1991).

15.3.2 Retinoic Acid Receptors

The differentiation and growth arrest of malignant
cells produced by retinoic acid are likely mediated by
one or more of the two families of retinoic acid
receptors (RAR or RXR): RAR a, b, g; and RXR a, b,
g (Linney 1992); all belong to the steroid/thyroid
hormone family of transcription factors and possess
discrete DNA-binding and retinoic acid-binding do-

mains. As depicted in Fig. 15.3, retinoic acid binds to
the RA receptors, causing conformational changes
that promote binding to specific cis-acting DNA se-
quences, which regulate transcription of certain tar-
get genes (Reynolds and Lemons 2001). A study of
the RAR and RXR families of RA receptors in NB
showed that they were expressed in most NB cell
lines and primary tumors (Li et al. 1994). While RAR
b was only expressed in 4 of 14 MYCN amplified 
cell lines, it could be induced by ATRA in most of
these cell lines (Li et al. 1994). There was no correla-
tion between resistance to ATRA and the level of
RAR or RXR expression; however, higher expression
of RARb has been associated with good outcome in
NB and RARb over-expression by transfection in-

Figure 15.2

Morphologic appearance of SMS-KCNR cells cultured in
control solvent or 5-mM all-trans retinoic acid for indi-
cated days
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creases the responsiveness of some NB cell lines to
RA (Cheung et al. 1998). Furthermore, RARb selec-
tive agonists mediate growth inhibitory signals in
NB cell lines (Giannini et al. 1997); thus, while alter-
ations in RAR or RXR do not appear to be a major 
resistance mechanism, higher levels of expression 
of these receptors may enhance sensitivity to re-
tinoids.

15.4 13-cis-Retinoic Acid

In the mid-1980s the only retinoid available for clini-
cal use was 13-cis-retinoic acid (13-cis-RA), which
induced differentiation in promyelocytic leukemia,
and produced objective clinical responses in promye-
locytic leukemia, myelodysplastic syndrome, cuta-
neous T-cell lymphoma (mycosis fungoides), and ad-
vanced squamous carcinoma of the skin (Reynolds
and Lemons 2001). Although 13-cis-RA has limited

Figure 15.3 a,b

The mechanism of action of retinoids is mediated via zinc-finger transcriptional regulators which function as het-
erodimers to regulate promoter activity of certain target genes.The RAR and RXR proteins bind to specific direct repeat
DNA sequences (AGGTCA are separated by either two or five nucleotides) in gene promoters, known as retinoic acid re-
sponse elements, or RARE. a In the absence of ligand, the RAR/RXR heterodimers interact with nuclear co-repressors in-
cluding N-CoR and SMRT, which in turn bind to a common adapter protein mSin3 which complexes to proteins with his-
tone deacetylase activity to repress transcription. b Retinoic acid binds to the RAR portion of the complex causing a
conformational change in the RAR and RXR proteins which releases the co-repressor complex and facilitates binding of
9-cis-RA to the RXR protein (the latter enhances the activation response).The transcriptional co-regulator CBP/p300 then
binds to the receptor complex and recruits the coactivator protein ACTR, which contains histone acetyltransferase activ-
ity, and promotes transcription (Reynolds and Lemons 2001)
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activity against established and progressing solid tu-
mors, it was effective as a single agent in preventing
second tumors in patients with head and neck carci-
noma and preventing skin cancers in those with
xeroderma pigmentosum.

Anecdotal trials of 13-cis-RA in NB showed re-
sponses of mass disease and marrow metastases, in-
cluding a complete response with a 2-year remission
in one patient (Reynolds et al. 1991). In a Children’s
Cancer Group (CCG) phase-II trial of single daily
100 mg/m2 day–1 of oral 13-cis-RA, 2 of 28 patients
with refractory NB showed response (Finklestein et
al. 1992). At this dose of 13-cis-RA, subsequent phar-
macokinetic studies (Villablanca et al. 1995; Khan et
al. 1996) demonstrated that drug levels obtained were
below the 5- to 10-mM effective levels (Reynolds et al.
1994). The major toxicities of 13-cis-RA at the
100 mg/m2 day–1 dose were dryness of skin, dryness
of mucous membranes, cheilitis, fissured lips, con-
junctivitis, and hypertriglyceridemia.

15.4.1 High-Dose, Pulse, 13-cis-RA

For 13-cis-RA to be active in NB, effective drug levels
(5–10 mM) have to be achieved. A 10-day exposure to
10-mM ATRA produced prolonged arrest of NB cell
proliferation in vitro (Reynolds et al. 1991). Sustained
growth arrest and down-regulation of MYCN expres-
sion in vitro were achieved with sequential -week
courses of 5 mM 13-cis-RA (Reynolds et al. 1994).

In a phase-I trial of intermittent 13-cis-RA (divid-
ed quarterly 12 h daily for 2 weeks alternating with
2 weeks of mucocutaneous recovery for up to 12 cours-
es) in post-BMT patients, MTD was 160 mg/m2 day–1

with dose-limiting toxicity being hypercalcemia
(Villablanca et al. 1995). Peak plasma 13-cis-RA level
at MTD was 7.4±3 mM and trough was 4.0±2.8 mM
(Villablanca et al. 1995; Khan et al. 1996). Four com-
plete responses were observed in marrow metastases
and two had prolonged remission past 2 years (Vill-
ablanca et al. 1995). The latter observation suggested
that high-dose, pulse 13-cis-RA might delay or pre-
vent tumor recurrence if given in a setting of mini-
mal residual disease after completion of myeloabla-
tive therapy.

15.4.2 13-cis-RA vs All Trans-Retinoic Acid

All-trans retinoic acid (ATRA) was used in treating
acute promyelocytic leukemia (APL) with excellent
results and little toxicity (Warrell et al. 1991). Al-
though 13-cis-RA has never been compared directly
with ATRA in APL, most investigators felt that ATRA
was superior. The ATRA was more effective then 
13-cis-RA against APL cells in vitro when tested at
0.1–1 mM (Chomienne et al. 1990), a dose range
achieved at 45 mg/m2 day–1 in patients (Smith et al.
1992a). Dose escalation beyond 60 mg/m2 in children
was limited by pseudotumor cerebri, and ATRA rap-
idly induces an increase in its own metabolism, such
that peak levels and drug half-life significantly de-
crease after a few days of therapy (Smith et al. 1992b).
In contrast, drug levels obtained in the post-BMT
phase-I trial of 13-cis-RA were considerably higher
(4–7 mM) (Villablanca et al. 1995; Khan et al. 1996)
The differences in pharmacokinetic properties of 13-
cis-RA and ATRA are summarized in Fig. 15.4.

Because of minimal binding of 13-cis-RA to
retinoic acid receptors, it was previously assumed
that 13-cis-RA would be less potent then ATRA; how-
ever, at clinically achievable drug levels, 13-cis-RA
was superior to ATRA in inducing morphological dif-
ferentiation and growth arrest of NB cell lines. In ad-
dition, 13-cis-RA caused down-regulation of MYCN
gene expression (Reynolds et al. 1994). These data,
and the documentation of anti-NB activity for 13-cis-
RA in patients (Villablanca et al. 1995; Reynolds et al.
1991; Matthay et al. 1999), suggests that either 13-cis-
RA acts via mechanisms that are independent of
retinoic acid receptors, or that (more likely) 13-cis-
RA serves as a pro-drug for ATRA, resulting in deliv-
ery of higher levels of ATRA inside tumor cells then
are achievable in vivo with direct ATRA treatment.

15.4.3 Post-Consolidation 13-cis-RA Therapy
for High-Risk NB

The efficacy of treating high-risk patients with 13-
cis-RA was analyzed in a randomized phase-III trial
(Matthay et al. 1999). In CCG-3891, patients received
an induction chemotherapy regimen using cyclo-
phosphamide, doxorubicin, cisplatin, and etoposide,
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during which marrow harvest and purging, and sur-
gical resection, were accomplished. Patients were ini-
tially randomized to either myeloablative therapy
employing melphalan, carboplatin, etoposide, and to-
tal body irradiation, or to three cycles of intensive
non-myeloablative therapy utilizing cisplatin, etopo-
side, doxorubicin, and ifosfamide/mesna. A second
randomization assigned patients who completed ei-
ther myeloablative or non-myeloablative consolida-
tion therapy to either no further therapy or to receive
13-cis-RA at 160 mg/m2 day–1 (divided as bid) for
2 weeks each month over a 6-month period. Patients
who had documented active tumor by biopsy at the
end of consolidation were non-randomly assigned to
receive 13-cis-RA. There were 130 patients who were
randomized to receive 13-cis-RA, while 128 patients
were randomized to no further therapy. Thirty-seven
patients were non-randomly assigned to 13-cis-RA
for proven residual tumor and 24 patients refused the

second randomization, 4 of whom chose to receive
13-cis-RA. The first randomization showed that
ABMT achieved a significantly higher 3-year event-
free survival (EFS) from time of first randomization
of 34±4% compared with 22±4% for those random-
ized to consolidation chemotherapy (P=0.034; see
Chap. 12). As shown in Fig. 15.5a, the 3-year EFS (in-
tent-to-treat analysis) from the time of second ran-
domization for patients randomized to 13-cis-RA
was 46±6%, significantly better than the 3-year EFS
of 29±5% for those randomized to no further thera-
py (P=0.027). The positive benefit of 13-cis-RA for
those patients with minimal residual disease was not
seen for children who were non-randomly assigned
to 13-cis-retinoic acid for histologically proven resid-
ual disease, as this latter group showed a 3-year EFS
of 12±6%. Although the study was not statistically
powered to compare the four treatment groups, treat-
ment with 13-cis-RA appeared to be beneficial both

Figure 15.4

Structures of 13-cis-retinoic acid and all-trans-retinoic acid and a summary of the pharmacokinetic properties of these
two retinoids in pediatric patients (Villablanca et al. 1995; Khan et al. 1996; Smith et al. 1992a,b)
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for patients who received either ABMT or non-mye-
loablative chemotherapy. As shown in Fig. 15.5b,
there appeared to be a higher 3-year EFS from time of
second randomization in patients undergoing both
randomizations for those randomized to both ABMT
and 13-cis-RA (55±10%), compared with ABMT
alone (41±10%; P=0.28). The 3-year EFS for chemo-
therapy and 13-cis-RA was 33±7%, compared with
chemotherapy alone (19±7%; P=0.17).

In 1989 the European NB Study Group (ENSG) ini-
tiated a randomized trial of 13-cis-RA vs no further
therapy in children with advanced NB who achieved
remission after high-dose therapy (Kohler et al.
2000). Patients randomized to 13-cis-RA on the ENSG

study were given a single daily dose of 0.75 mg/kg
(22.5 mg/m2 day–1 continuously for 4 years or until
relapse). Approximately 175 children were entered
into the study with 88 patients randomized to receive
13-cis-RA (3-year event-free survival=37%) and 87
patients randomized to placebo (3-year event-free
survival=42%); thus, in contrast to the CCG study, no
advantage in event-free survival was shown in this
trial for children randomized to receive low-dose,
continuous 13-cis-RA. These results emphasize the
importance of utilizing adequate dose levels and op-
timal dosing schedules to achieve pharmacologically
efficacious drug levels when employing retinoids as
anti-cancer agents.

Figure 15.5 a,b

Event-free survival for CCG-3891
showing the second randomiza-
tion between13-cis-RA vs no fur-
ther therapy (a), and the four
groups created by the quasi-fac-
torial design (b). The latter
curves are limited to only those
patients completing both ran-
domizations. All curves are
shown from time of randomiza-
tion (Matthay et al. 1999)
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15.5 Fenretinide

N-(4-hydroxyphenyl) retinamide or fenretinide (4-
HPR is a synthetic retinoid; Fig. 15.6) inhibits NB
growth in vitro at 1–10 mM (Ponzoni et al. 1995) and
was highly active against retinoic-acid resistant NB
lines at 5–10 mM (Reynolds et al. 2000). In contrast to
13-cis-RA and ATRA, 4-HPR does not induce matu-
rational changes, but is cytotoxic, causing both apop-
tosis and necrosis (Maurer et al. 1999). Toxicity of
4-HPR in chemoprevention clinical trials has been
minimal. The major clinical toxicity of 4-HPR is de-
creased night vision, due to decreased plasma retinol
levels. No hematologic toxicity has been reported
(Reynolds and Lemons 2001). In pediatrics, fenre-
tinide has been well tolerated (Garaventa et al. 2003),
and the MTD of oral 4-HPR given for 7 days every
3 weeks is 2475 mg/m2 day–1, which achieved 4-HPR
plasma levels of 6–10 mM (Villablanca et al. 2002).

4-HPR has been shown to achieve multi-log cyto-
toxicity in NB cell lines resistant to ATRA and 13-cis-
RA (Reynolds et al. 2000). Resistance to 13-cis-RA in
NB cell lines appears to involve selection for in-
creased expression of MYCN or c-myc, and such
retinoic acid-resistant NB cell lines are collaterally
hypersensitive to 4-HPR; thus, pre-clinical data sug-
gest that sequential use of 13-cis-RA, followed by 4-
HPR, could be an effective approach to treating min-
imal residual disease in NB patients after myeloabla-
tive therapy.

The mechanisms by which 4-HPR achieves anti-
tumor cytotoxicity are not completely understood.
One mechanism by which 4-HPR stimulates apopto-
sis is the induction of reactive oxygen species in NB
cells (Maurer et al. 1999; Lovat et al. 2003a). Other
possible mechanisms include induction of lipo-oxy-
genase, the stress-induced transcription factor
GADD153 (Lovat et al. 2002; Corazzari et al. 2003),
and Bak, a pro-apoptotic member of the bcl-2 family
(Lovat et al. 2003b).

A major portion of fenretinide cytotoxicity for NB
cell lines at high concentrations (~ 5–10 mM) is via
non-apoptotic mechanisms (Maurer et al. 1999). Fen-
retinide stimulated large increases of ceramide in NB
cell lines, which may account for its non-apoptotic

cytotoxicity (Reynolds et al. 2004). Agents that
modulate ceramide metabolism can increase the
anti-tumor activity of 4-HPR. Drugs that inhibit glu-
cosylceramide synthase/1-O-acylceramide synthase
or sphingosine kinase, or safingol (L-threo-dihy-
drosphingosine), which modulate ceramide metabo-
lism and/or action, can significantly increase 4-HPR
anti-tumor activity with minimal toxicity to normal
fibroblasts or bone marrow myeloid progenitors
(CFU-GM; Maurer et al. 2000). Fenretinide has also
been shown to inhibit NB-induced angiogenesis (Ri-
batti et al. 2001), and the anti-angiogenic activity of
4-HPR may be in part mediated via ceramide (Erd-
reich-Epstein et al. 2002). The latter data suggest that
4-HPR alone or in combination with ceramide mod-

Figure 15.6

Structure of the cytotoxic retinoid N-(4-hydroxyphenyl)
retinamide=fenretinide (4-HPR) and a summary of its
properties
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ulators may achieve anti-tumor activity in vivo by
both direct effects against tumor and anti-angiogen-
esis.

One limitation with fenretinide is the need for
large administered doses to achieve effective drug
levels. Although the currently available oral capsular
dose form of 4-HPR is poorly bioavailable and diffi-
cult to administer to small children, a phase-II study
of the 4-HPR oral capsule formulation in recurrent
NB is ongoing in the Children’s Oncology Group
(COG). Pre-clinical studies have been reported with a
liposome formulation of 4-HPR targeted to NB via an
anti-GD2 monoclonal antibody looks promising
(Raffaghello et al. 2003). New oral and intravenous
formulations of fenretinide have been developed via
the NCI RAID program and these are entering clini-
cal trials in 2004 (www.nant.org). These new formu-
lations are likely more bioavailable, and will enable
the administration of 4-HPR to small children.

15.6 Conclusions

Neuroblastoma tumorigenesis is related in part to
defects in cellular differentiation. A number of
agents, including 13-cis-RA, are capable of inducing
NB differentiation in vitro, and a phase-III trial has
definitively shown the clinical benefit of high-dose
pulse 13-cis-RA following consolidation therapy;
however, there are still tumors that do not respond to
13-cis-RA, even at the time of minimal residual dis-
ease, and additional therapies in the post-myeloabla-
tive period are clearly needed. Pre-clinical studies
have shown that cytotoxic retinoid fenretinide (4-
HPR) can achieve multi-log cell kills against NB cell
lines resistant to 13-cis-RA, especially when com-
bined with modulators of ceramide metabolism. A
challenge with 4-HPR is that the current oral (cap-
sule) formulation is poorly bioavailable and is not
suitable for administration to young children. New
formulations are currently in development. Random-
ized clinical trials are needed to determine if incor-
porating new approaches to treating minimal resid-
ual disease in high-risk NB patients, such as use of
4-HPR±ceramide modulators, can improve event-
free survival.
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16.1 Introduction

It is widely accepted that solid tumors must acquire a
new blood supply in order to grow beyond a few mil-
limeters in size (Folkman 2002). This concept has
stimulated much interest in identifying factors that
promote or impede angiogenesis. Proangiogenic
cytokines that appear to play a role in human cancer
progression include the vascular endothelial growth
factor (VEGF) family, fibroblast growth factor (FGF)
family, interleukin-8 (IL-8), and platelet-derived
growth factor (PDGF) family. Numerous endogenous
inhibitors of angiogenesis have also been identified,
including thrombospondin-1, angiostatin, and endo-
statin. It has also been increasingly recognized that
genes implicated in malignant transformation, such
as the p53 tumor suppressor or the MYCN oncogene,
may play an important role in the regulation of an-
giogenesis (Hatzi et al. 2000; Yu et al. 2002). The mul-
tiplicity of these factors and their potential interac-
tions, emphasizes the complexity of the regulation of
angiogenesis. Patterns of new vessel growth vary in
different tumor types, and vary even in tumors of the
same type but of different clinical stage or histologic
grade. For example,VEGF blockade appears to be less
effective in suppressing growth of experimental neu-
roblastoma tumors than in parallel models of Wilms’
tumor (Kim et al. 2001). In addition, expression of
angiogenic factors is increased in neuroblastomas of
advanced clinical stage; thus, investigating the specif-
ic mechanisms by which neuroblastoma tumors ac-
quire a new blood supply may lead to the identifica-
tion of potential new targets for treatment of this ma-
lignancy.

Angiogenesis
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16.2 Vascularity in Neuroblastoma

Folkman and colleagues were among the first to sug-
gest that the intensity of intratumoral angiogenesis
correlates with tumor grade and aggressiveness
(Brem et al. 1972). Although the majority of pub-
lished studies have shown a positive correlation be-
tween intratumoral microvessel density and progno-
sis in solid tumors (Hasan et al. 2002), the prognos-
tic role of angiogenesis in neuroblastoma is unclear.
Meitar et al. initially reported in a study of 50 pri-
mary tumors that high tumor vascularity strongly
correlated with widely disseminated disease, MYCN
amplification, unfavorable histology, and poor sur-
vival (Meitar et al. 1996). Ribatti et al. found similar
results in a smaller series of patients, with increased
microvessel density associated with advanced-stage
tumors (Ribatti et al. 2001). In further support,
Erdreich-Epstein and co-workers (2000) have re-
cently demonstrated a significant association be-
tween high-risk neuroblastoma and high levels of
expression of the integrins avb3 and avb5, which are
markers of active angiogenesis. In contrast, Canete et
al. (2000) in a study of 69 neuroblastoma patients
found no correlation of vascular parameters with the
prognostic factors of age, stage, histology, TrkA, or
MYCN amplification or with overall survival. The
conflicting results most likely reflect differences in
techniques used to measure vessel number, a diffi-
culty encountered in reconciling the results of stud-
ies of other solid tumors such as breast cancer
(Hasan et al. 2002). Interestingly, all three studies are
in concordance, i.e., infants with stage-4S disease
have higher levels of vascularity than any of the oth-
er stages. The increased vascularity in stage 4S is
consistent with the rapid rate of tumor growth in a
subset of these patients with widely disseminated
disease.

16.3 Expression of Proangiogenic Factors

The ability of neuroblastoma to produce proangio-
genic factors was first described by Folkman in 1971,
who isolated a “tumor angiogenic factor” from ex-
tracts of human neuroblastoma, Wilms’ tumor, and
hepatoblastoma (Folkman et al. 1971). The tumor
extracts caused the formation of new blood vessels in
the subcutaneous fascia of rats within 48 h. Since this
time, expression of numerous proangiogenic factors,
such as VEGF, PDGF, FGF, and angiopoietins, has
been found in neuroblastoma.

16.3.1 VEGF and VEGF Receptors

Among the proangiogenic factors VEGF-A has been
the best characterized. VEGF-A is a potent mitogen
for endothelial cells and can elicit a pronounced an-
giogenic response in vivo. VEGF-A is also a survival
factor for endothelial cells both in vitro and in vivo
(Ferrara 2001; Leung et al. 1989). There are numerous
isoforms of VEGF-A that are generated by alternative
exon splicing that include VEGF-A121, VEGF-A165,
VEGF-A189, and VEGF-A206 (Clauss 2000; Ferrara
2001). In addition to the different VEGF-A isoforms,
there is a family of VEGF-related angiogenic growth
factors VEGF-B, VEGF-C, VEGF-D, VEGF-E, and
placental growth factor (PlGF; Clauss 2000; Ferrara
2001). The precise function of many of these VEGF-
related ligands is currently not known or ambiguous.

VEGF-A is nearly ubiquitously expressed by both
neuroblastoma primary tumors and cell lines, with
the predominate isoform VEGF-A165 (Eggert et al.
2000; Fakhari et al. 2002; Komuro et al. 2001; Meister
et al. 1999; Ribatti et al. 1998; Rossler et al. 1999). High
expression of VEGF-A has been shown to significant-
ly correlate with advanced stage in several studies
(Eggert et al. 2000; Fakhari et al. 2002; Komuro et al.
2001). Elevated serum levels of VEGF-A have also
been observed in patients with stage-III tumors
(Fakhari et al. 2002). Eggert and co-workers reported
that the level of expression of other proangiogenic
factors including VEGF-B, VEGF-C, bFGF, angiopoi-
etin-2, transforming growth factor-a (TGF-a), and
PDGF-A, was significantly higher in stage-3 and
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stage-4 neuroblastomas compared to stage-1, stage-2,
or stage-4S tumors (Eggert et al. 2000). In this study,
high levels of PDGF-A expression was also signifi-
cantly associated with decreased survival; however,
no correlation between VEGF-C or bFGF and stage
was seen in a series of tumors analyzed by Komuro
and colleagues (2001). In addition, while Fakhari et
al. were able to show correlations between high levels
of VEGF-A, VEGF-B and VEGF-C mRNA and ad-
vanced stage by real-time RT-PCR, only VEGF-A was
detectable in tumor material by Western blotting
(Fakhari et al. 2002). These observations suggest that
VEGF-A is the major ligand of the VEGF family reg-
ulating angiogenesis in neuroblastoma. The role of
the other VEGF ligands remains to be elucidated.

VEGF family members bind with differential
affinity to three signaling VEGF receptors, VEGFR-1
(Flt-1), VEGFR-2 (flk-1/KDR), and VEGFR-3 (FLT4).
VEGF binds to both VEGFR-1 and VEGFR-2, while
PlGF and VEGF-B bind exclusively to VEGFR-1.
VEGF-C and VEGF-D bind to VEGFR-2 and VEGFR-
3, and are mitogens for both vascular and lymphatic
endothelial cells. VEGFR-2 appears to be the princi-
pal receptor on endothelial cells by which VEGF ex-
erts its angiogenic effects (Ferrara 2001). The role of
VEGFR-1 is more complex. This receptor may act not
only as a ligand-binding molecule but also aid in the
recruitment of bone marrow-derived endothelial
precursor cells to newly formed tumor vasculature
(Lyden et al. 2001), and in promoting metastases by
induction of metalloprotease MMP9 (Hiratsuka et al.
2002). VEGF isoforms that have a heparin-binding
site can also bind to the semaphorin receptors neu-
ropilin-1 and neuropilin-2 (Neufeld et al. 2002). Their
exact role in angiogenesis is not clear, but neuropilins
may modulate binding to VEGFR-2 and subsequent
bioactivity (Soker et al. 1998). Recently, expression of
neuropilin-1 and neuropilin-2 has been detected in
vascular endothelial cells of primary neuroblastoma
tumors, but their function remains to be determined
(Fakhari et al. 2002).

Expression of VEGFR-2 and to a lesser degree
VEGFR-1 in primary tumors has been reported in
several studies, consistent with the importance of
VEGFR-2 in vascular endothelium (Fakhari et al.
2002; Fukuzawa et al. 2002; Langer et al. 2000; Meister

et al. 1999); however, the expression of VEGFR-2 in
neuroblastoma tumor cells remains unresolved.
VEGFR-2 was detected by RT-PCR in either none
(Rossler et al. 1999), few (Langer et al. 2000), or all
(Meister et al. 1999) of the neuroblastoma cell lines
tested. In four cell lines in which VEGFR-2 was ex-
pressed, neutralizing antibody to VEGF did not result
in inhibition of proliferation of neuroblastoma cells
(Meister et al.1999). In primary tumors,VEGFR-2 has
been detected in tumor cells by immunohistochem-
istry and in situ hybridization (Fukuzawa et al. 2002);
however, VEGFR-2 could not be detected in Western
blot analysis of tumor lysates suggesting either a lim-
ited expression of VEGFR-2 (e.g., in the vasculature)
or a very low/minimal expression in the tumor cells.

16.3.2 Matrix Metalloproteinases

The matrix metalloproteinases (MMPs) are a family
of endopeptidases that play a key role in maintaining
the balance between deposition and degradation of
extracellular matrix. Activity of MMP-2 and MMP-9
is associated with tumor progression and metastasis
in many cancers, presumably facilitating the invasion
of tumor cells and sprouting of new vasculature
(Overall and Lopez-Otin 2002). Consistent with these
functions, inhibitors of MMPs have been shown to
suppress both tumor invasion and angiogenesis. In
neuroblastoma, an association between increased
levels of MMP-2 (gelatinase A) and MMP-9 (gelati-
nase B) in patients with advanced stage has been
reported (Ribatti et al. 2001; Sugiura et al. 1998). In
addition, decreased expression of the tissue inhibitor
metalloproteinase TIMP-2, a specific inhibitor of
MMP-2 and MMP-9, has been significantly related to
advanced disease (Ara et al. 1998). Lastly, Sakakibara
et al. have demonstrated that higher ratios of gelati-
nase activation resulting from high expression of
membrane-type matrix metalloproteinase-1 (MT-
MMP-1) is associated with stage-IV disease and
unfavorable outcome (Sakakibara et al. 1999).
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16.4 Expression of Angiogenesis Inhibitors

Tumor angiogenesis is regulated by the balance of
angiogenesis stimulators and inhibitors produced by
tumor cells, the surrounding stoma, and host cells
(Bergers and Benjamin 2003). Neuroblastomas are
biologically heterogeneous tumors that consist of
two main cell populations: neuroblastic/ganglionic
cells and Schwann cells. Regulation of angiogenesis
by Schwann cells is suggested by the finding that
Schwannian stroma rich/stroma dominant tumors
are associated with decreased tumor vascularity
(Meitar et al. 1996). Further evidence suggests that
Schwann cells can influence angiogenesis by produc-
ing inhibitors that can induce endothelial cell apop-
tosis and inhibit angiogenesis in vivo (Huang et al.
2000).

16.4.1 Pigment Epithelium-Derived Factor

One of the factors isolated from Schwann cells is the
endogenous angiogenesis inhibitor, pigment epithe-
lium-derived factor (PEDF) (Crawford et al. 2001).
PEDF can inhibit angiogenesis both in vitro and in
vivo, promote growth and survival of Schwann cells,
and induce tumor cell differentiation; thus, PEDF
may regulate neuroblastoma growth by inhibiting
new blood vessel growth and by supporting the sur-
vival of differentiated cell types.

16.4.2 Secreted Protein Acidic 
and Rich in Cysteine

Recently, another angiogenic inhibitor was isolated
from Schwann cell-conditioned media, identified as
secreted protein acidic and rich in cysteine (SPARC)
(Chlenski et al. 2002). SPARC, also known as osteo-
nectin, BM-40, and 43 K protein, is a highly conserved
calcium-binding glycoprotein that plays a modulato-
ry role in cell-matrix interactions and appears to con-
tribute to vascular morphogenesis (Brekken and
Sage 2001). SPARC is generally considered an antian-
giogenic protein because it blocks VEGF- and FGF-2-
induced proliferation of endothelial cells and can in-

hibit PDGF activity on stromal cells (Brekken and
Sage 2001).

SPARC expression is inversely correlated with the
degree of malignant progression in neuroblastoma
tumors (Chlenski et al. 2002). In favorable histology
Schwannian stroma-rich/stroma-dominant tumors,
SPARC was detected in Schwann cells as well as dif-
ferentiating neuroblast/ganglion cells. In contrast,
minimal to no staining for SPARC was observed in
Schwannian stroma-poor tumors. SPARC was critical
for the anti-angiogenic phenotype of cultured
Schwann cells, as the addition of anti-SPARC neutral-
izing antibodies largely reversed the anti-angiogenic
activity of Schwann cell-conditioned media. Further-
more, at concentrations found in Schwann cell-con-
ditioned media, purified SPARC inhibited angiogen-
esis and impaired neuroblastoma tumor growth in
vivo.

16.4.3 Thrombospondin-1

Thrombospondin-1 (TSP-1), a well-characterized
endogenous inhibitor of angiogenesis, was initially
isolated as a constituent of extracellular matrix, and
shown to interact with wild-type p53 to regulate
angiogenesis (Dameron et al. 1994). More recently,
TSP-1 has been shown to modulate mobilization of
VEGF directly (Rodriguez-Manzaneque et al. 2001).
A number of workers have reported that TSP-1 plays
an important role in the differentiation of neurob-
lasts induced by retinoic acid treatment (Castle et al.
1992; Pijuan-Thompson et al. 1999). Castle and 
co-workers reported a rapid induction of TSP-1 
when cultured human neuroblastoma cells were
treated with retinoic acid (Castle et al. 1992).
Furthermore, differentiation was partially prevented
by anti-TSP-1 antibody. Because TSP-1 is a negative
regulator of VEGF, these findings suggest that dif-
ferentiation of neuroblasts may be linked to a de-
crease in proangiogenic signaling. The recent devel-
opment of TSP-1 mimetic peptides with anti-angio-
genic activity is therefore intriguing (Reiher et al.
2002) as such agents may promote neuroblastoma
differentiation and inhibit VEGF-stimulated angio-
genesis.
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16.5 Regulation of Angiogenesis by MYCN

MYCN amplification is a poor prognostic factor in
children with neuroblastoma, and is associated with
advanced tumor stage and metastasis. MYCN appears
to play a significant role in neuroblastoma angiogen-
esis. Amplification of MYCN has been shown to cor-
relate with mean vascular density (Meitar et al. 1996),
and the expression of PDGF (but not with VEGF-A)
(Eggert et al. 2000).Angiogenic activity of biopsy sam-
ples was significantly higher in those with MYCN-
amplified tumors when tested in a chick embryo
chorioallantoic membrane assay (Ribatti et al. 2002).
It remains unclear if MYCN directly upregulates
cytokines that promote neovascular development.

MYCN may also decrease the expression of en-
dogenous inhibitors of angiogenesis. In cultured
neuroblastoma cells MYCN causes decreased expres-
sion of interleukin-6 (IL-6), leukemia inhibitory fac-
tor, and activin A (Breit et al. 2000; Hatzi et al. 2000,
2002a,b). Over-expression of IL-6 in neuroblastoma
xenografts results in decreased tumor angiogenesis
and growth inhibition (Hatzi et al. 2002b); thus, cur-
rent evidence suggests that MYCN promotes angio-
genesis in neuroblastoma at least in part by decreas-
ing expression of genes that normally function to
restrain new blood vessel growth.

16.6 Preclinical Testing 
of Antiangiogenic Agents

16.6.1 VEGF Blockade

Inhibition of VEGF has recently been shown to be
effective in clinical trials of some human cancers
(Glade-Bender et al. 2003). VEGF blockade has also
shown efficacy in preclinical models of human neu-
roblastoma, using agents that target the ligand or its
VEGFR2 receptor (Davidoff et al. 2001b; Klement et
al. 2000; Rowe et al. 2000). More recent reports
demonstrate that neuroblastoma tumors may co-opt
host vasculature early in development (Kim et al.
2002a). Partial blockade of VEGF may prolong co-op-
tion, which presumably contributes to tumor per-
fusion and supports continued, although reduced,

tumor growth. Use of very high-affinity VEGF-bind-
ing molecules, such as the recently described novel
fusion construct VEGF-Trap, can cause regression of
such co-opted vessels (Holash et al. 2002; Kim et al.
2002a); thus, selection of optimal VEGF blocking
strategies for testing in patients with neuroblastoma
may require selection of agents based on specific bio-
chemical and pharmacologic properties.

16.6.2 TNP-470

One of the first anti-angiogenic molecules proposed
was TNP-470 (AGM-1470), an analog of fumagillin, a
naturally secreted antibiotic of the fungus Aspergillus
fumigatus fresenius (Ingber et al. 1990), identified by
its ability to inhibit endothelial proliferation in vitro.
Subsequently, its TNP-470 analog was shown to in-
hibit tumor growth in multiple xenograft models (In-
gber et al. 1990; Kurebayashi et al. 1994; Kusaka et al.
1991; Yamaoka et al. 1993a,b). Based on these experi-
ments, TNP-470 aroused much interest as a potential
anti-angiogenic agent; however, testing in preclinical
models of neuroblastoma has demonstrated relative-
ly modest anti-tumor effects (Katzenstein et al. 1999;
Nagabuchi et al. 1997; Shusterman et al. 2001). Some
investigators indicate that TNP-470 is most effective
when small neuroblastoma tumors are treated
(Katzenstein et al. 1999; Shusterman et al. 2001), sug-
gesting that this agent may be more effective in the
setting of minimal residual disease.

16.6.3 Endostatin

Endostatin,a peptide fragment of collagen XVIII,was
initially purified from a hemangioendothelioma
based on its ability to inhibit endothelial prolifera-
tion in vitro and tumor growth in vivo (O’Reilly et al.
1997). Endostatin appears to act by disrupting en-
dothelial interactions with anchoring proteins in
extracellular matrix (Dixelius et al. 2002; Kim et al.
2000; Rehn et al. 2001). Another report suggests that
endostatin may also directly block VEGFR2 signaling
(Kim et al. 2002b). Despite these findings, activity of
endostatin in murine models of neuroblastoma has
not been consistently demonstrated, with groups de-
tecting either modest or no effect on tumor growth



vessel growth (Fig. 16.1). Conversely, the more be-
nign nature of ganglioneuroblastomas and other rel-
atively indolent, differentiated tumors may reflect the
influence of secreted angiogenesis inhibitors. Such
factors may be elaborated by Schwann cells in the tu-
mor stroma, or possibly by tumor cells that have un-
dergone further differentiation.

Preclinical studies suggest that neuroblastoma
may be susceptible to certain anti-angiogenic strate-
gies. For example, blockade of VEGF in neuroblas-
toma has shown consistent effectiveness between ex-
perimental models and investigators. In addition,
this approach has recently been shown to have effica-
cy in clinical trials of adult human cancers (Glade-
Bender et al. 2003); however, even the most promising
reports suggest that neuroblastoma may be able to
partially evade anti-VEGF agents by co-opting host

(Davidoff et al. 2001a; Jouanneau et al. 2001; Kuroiwa
et al. 2001). Davidoff and colleagues report enhance-
ment of a modest anti-tumor effect of endostatin in
experimental neuroblastoma by combination of this
agent with an immunomodulatory strategy (Davidoff
et al. 2001a).

16.7 Conclusions

Investigations of angiogenesis in neuroblastoma to
date reflect the complexity that results from the com-
bined influences of genetic and epigenetic factors on
tumor vessel formation.Tumors that are clinically ag-
gressive may express higher levels of proangiogenic
cytokines, while concurrently expressing decreased
levels of factors that function to restrain new blood
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Figure 16.1

Model of angiogenesis in neuroblastoma.Tumor cells produce both proangiogenic factors and inhibitors of angiogene-
sis. The relative expression of these factors may depend on the differentiation status of the tumor cells. More differenti-
ated tumors may express more angiogenesis inhibitors. Schwann cells produce not only inhibitors of angiogenesis, but
also factors, e.g., neurotrophins (NTs) and pigment epithelium-derived factor (PEDF), that promote differentiation of neu-
roblastoma tumor cells. VEGF vascular endothelial growth factor, PDGF platelet-derived growth factor, SPARC secreted
protein acidic and rich in cysteine, FGF fibroblast growth factor, TGF transforming growth factor, MMP metalloprotease,
TSP thrombospondin, TIMP tissue inhibitor metalloproteinase
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vessels (Kim et al. 2002a). Understanding such events
will require further dissection of the unique interac-
tions between neuroblastoma cells and developing
vasculature. Such studies are essential if patients with
advanced neuroblastoma are to benefit from this area
of investigation.
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17.1 Introduction

Although the treatment outcome for children with
advanced-stage neuroblastoma has improved, 5-year
event-free survival in most studies is less than 30%
(Castel et al. 2001). In a few studies (e.g., Kaneko et al.
2002) survival reaching 34% for patients with MYCN
amplification (more than ten copies) receiving inten-
sified regimens of cytotoxic agents has been report-
ed. While the survival rate is significantly increased
over that of less intensive regimens, two-thirds of
high-risk patients with MYCN amplification suc-
cumb to their disease. Furthermore, the survival of
patients with advanced disease without MYCN am-
plification (less than ten copies) is not much greater
(Kaneko et al. 2002); thus, there is still a need to
develop more effective, less toxic therapies that 
will boost survival probability for these children
(Brodeur 2002; Tsuchida et al. 2003).

This chapter focuses on the potential of preclinical
animal model systems in development of new thera-
pies. Each model has both limitations and uses; the
art is to recognize the model attributes and not to ex-
trapolate results beyond the true useful range for that
model, i.e., each type of model has a functional use
and it is likely that no one class of model will be use-
ful for all applications. For example, syngeneic ani-
mal tumor models may have particular value in de-
velopment of active immunity approaches, whereas
heterotransplant models, such as human tumors in
immune-deficient mice, have a more restricted appli-
cation.

Cytotoxic therapies still play the major role in neu-
roblastoma treatment inducing high complete re-
sponse rates even in a subset of patients with stage-4
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MYCN amplified disease (Castel and Canete 2004;
Donfrancesco et al. 2004). Bone marrow or peripher-
al blood stem cell transplants appear to have some
value increasing relapse-free survival, at least in
some studies (Goldsby and Matthay 2004; Imaizumi
et al. 2001; Valteau-Couanet et al. 2000; Matthay et al.
1999). Differentiation agents and immunotherapies
may also increase survival in patients having a com-
plete or good partial response during induction ther-
apy. It is against this background that we consider the
use of preclinical models with particular emphasis
on contemporary approaches to therapy with novel
cytotoxic agents,“molecularly targeted” agents, anti-
angiogenic agents, and immunotherapy approaches
to treating neuroblastoma.

17.2 Heterotransplant Models

17.2.1 Cytotoxic Agents

Human tumors heterografted into immune-deficient
mice have provided the major models for drug 
identification and development over the past two
decades.While such models are often criticized as be-
ing inadequate, or for failing to predict responsive-
ness of human cancers, specifically adult malignan-
cies of epithelial origin (Johnson et al. 2001), the ex-
perience with models of childhood cancer has been
more positive (Peterson and Houghton 2004). In part
this may be because tumors such as neuroblastoma
are more chemoresponsive; hence, it may be easier to
assess response in the clinical situation. For example,
the identification of topotecan and irinotecan, DNA
topoisomerase-I poisons, as being highly active in
preclinical models of rhabdomyosarcoma and neu-
roblastoma has translated accurately in clinical
phase-II trials (Furman et al. 1999; Houghton et al.
1992, 1996, 2002; Santana et al. 2003; Thompson et al.
1997). Similarly, drugs known to be active against
clinical neuroblastoma are identified in these models
(Houghton et al. 2002; Tsuchida et al. 1984). Yet de-
spite numerous neuroblastoma xenografts propagat-
ed either as subcutaneous implants or as disseminat-
ed disease following parenteral inoculation of cells,
relatively few therapeutic studies have been reported.
One exception is the work of Tsuchida and colleagues

(1984), who have characterized the chemosensitivity
of subcutaneously propagated neuroblastoma xeno-
grafts in athymic nude mice. Consistent with clinical
experience, cisplatin and cyclophosphamide were
identified as most active in this panel of tumors. One
advantage of the xenograft system, compared with
syngeneic models, is that tumors can be established
from patients either at diagnosis or relapse. Identifi-
cation of novel agents that retain activity against
chemorefractory disease is of particular interest. The
biological characteristics and treatment status at the
time of tumor establishment for a panel of neuro-
blastoma xenografts is shown in Table 17.1. The
chemosensitivity profile of these neuroblastoma
xenografts is shown in Table 17.2. Notably, the camp-
tothecin analog topotecan demonstrated good activ-
ity against several of these tumors derived from re-
lapsed samples within the panel, although tumors
established at diagnosis were more sensitive to
topotecan. Recent clinical results in Japan with
irinotecan, another camptothecin analog, and in
phase-I and phase-II trials at St. Jude (Furman et al.
1999; Santana et al.2003), indicate that irinotecan and
topotecan have significant activity against neuroblas-
toma. The DNA methylating agent temozolomide
also showed promising activity in both diagnosis and
relapse models.Sensitivity to temozolomide has been
associated with cells that have functional DNA mis-
match repair (MMR), and low levels of the DNA
repair protein O6 methylguanine DNA methyltrans-
ferase (MGMT). Determination of whether the
MMR/MGMT status of xenografts accurately repre-
sents the patient tissue may be important in translat-
ing these preclinical results (Middlemas et al. 2000;
Wagner et al. 2002).

These data suggest that neuroblastoma xenografts
respond to known and experimental drugs in a man-
ner similar to that in patients; at least to cytotoxic
agents. The potential pitfalls of translating these re-
sults have been reviewed recently (Kirstein et al. 2001;
Peterson and Houghton 2004). Clearly there are ex-
amples of agents that demonstrate very significant
activity in such models but fail to fulfill such promise
in clinical trials. Retrospective analysis shows that in
many instances this disconnect is a consequence of
differential host sensitivity: if the mouse is hyper-tol-
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Table 17.1. Characteristics of neuroblastoma xenografts

Tumor designation Clinical stage MYCN Status/treatment Doubling time (days)

NB-1382 Local–regional Amplified Relapsea 11

NB-1643 Stage 4 Amplified Diagnosis 18

NB-1691 Stage 4 Amplified Relapseb 7

NB-1771 Stage 4 Amplified Diagnosis 15

NB-EB Stage 4 Not amplified Relapsec 5

NB-SD Stage 4 Amplified Relapsec 7

a Vincristine, etoposide, cytoxan, cisplatin, carboplatin
b Cytarabine, daunorubicin, 6-TG, etoposide, 5-azacytidine
c Cytoxan, doxorubicin, cisplatin, etoposide

Table 17.2. Chemosensitivity of neuroblastoma xenografts

Agent Tumor line
NB-1382 NB-1643 NB-1691 NB-1771 NB-EB NB-SD

Vincristine ++++ ++ – + – –

Topotecan ++++++ +++++ +++ ++++++ +++++ +++

Temozolomide ++++++ ++++++ + ++++++ ++++ +++

CPT-11 ++++ +++++ ++ ++++ ++++++ ++++++

MG1-114 ++++++ +++++ ++++ ++++? ++++ +

VP-16 +++ +++(+) ++(+) + ++ +/–

CDDP + + ND ND – +/–

Carboplatin + ND +(+) ND ND +(+)

Cytoxan ++ ++++ + + – +/–

Doxorubicin ++ + – – ++

BMS247550 ++++++ ++++ ++

ZD1839 ++ – – –

SU6668 ++ ++ +

Tumor response:
– No growth inhibition
± Transient response, inhibition <Td2 (=mean time for tumor volume to double)
+ Growth inhibition ≥Td2

++ Growth inhibition ≥2×Td2

+++ Growth inhibition ≥3×Td2

++++ Growth inhibition ≥3 Td2+volume regression ≥50%
+++++ Complete regression with subsequent growth
++++++ Complete regression with no regrowth of any tumors during the period of observation (≥84 days)
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erant to a drug, relative to human, then the mouse
models will overpredict activity (Leggas et al. 2002).
If the converse holds, then the mouse models may fail
to identify potentially useful agents for clinical dis-
ease; thus, it is critical to determine whether drug
doses inducing tumor regressions in the models
achieve systemic exposures that are relevant to clini-
cal exposures at tolerated doses (Boland et al. 1999;
Zamboni et al. 1998). In most instances drug phar-
macokinetic data are available from phase-I trials in
adult patients prior to initiating pediatric clinical tri-
als; hence, these comparisons can be used to priori-
tize or de-emphasize development of a specific agent
in pediatric trials.

17.2.2 Signal Transduction Inhibitors

Perhaps a greater challenge will be identifying agents
that are targeted to components of signaling path-
ways that regulate proliferation and survival. To be of
value such models must accurately mimic the cellular
metabolic characteristics of the clinical disease, i.e.,
unless the pathways accurately recapitulate the func-
tion in clinical cancer, the models may have limited
value in identifying active agents, or in accurately
defining the activity of drug combinations. In an at-
tempt to characterize current preclinical models the
Cancer Treatment Evaluation Program at the Nation-
al Cancer Institute has initiated a Project (POPPTAP
– Pediatric Oncology Preclinical Tissue Array Pro-
ject) to molecularly characterize preclinical models
by expression profiling and proteomics profiling. The
goal of this project is to determine whether expres-
sion profiles of xenografts is similar to that of the
respective tumor type in children (i.e., do neuroblas-
toma xenograft samples cluster with clinical neuro-
blastoma?). The proteomics component will establish
tissue arrays that will allow definition of pathways
that are activated, and it is anticipated that such data
may allow new target identification. This raises a
question as to whether orthotopic models will have to
be used to accurately recapitulate gene expression
profiles found in clinical tumors. (Khanna et al. 2002)
have suggested that human neuroblastoma ortho-
topically grown in the adrenal gland of Beige-SCID
mice demonstrates more relevant tumor biology in-

cluding an angiogenic phenotype and enhanced dis-
tant metastases compared with heterotopic (subcuta-
neous) tumors and tumors at different sites were as-
sociated with differences in expression of angiogene-
sis-associated genes. A similar analysis has not been
undertaken with other models of disseminated neu-
roblastoma, where cells are injected intravenously or
into the heart. Although there are many reports of
such specialized models (Gilbert et al. 1988; Martinez
et al. 1996; Turner et al. 1990), they tend to be labor
intensive and few therapeutic studies have been re-
ported (Thompson et al. 2001). A similar concern
over the site of tumor growth exists when one con-
siders evaluation of novel signaling inhibitors. For
example, the indolocarbazole CEP-751 inhibits Trk
receptors expressed on neuroblastoma and medul-
loblastoma cells. Interestingly, whereas treatment
significantly inhibited growth of IMR-5, NBL-S, and
CHP-134 when therapy was started against palpable
tumor, it was less effective in a setting of preclinical
disease where treatment started 4–6 days after inocu-
lation of cells (Evans et al. 1999). Whether such dif-
ferences reflect expression levels of the receptor is
unknown. In other studies it was shown that CEP-751
had greater inhibitory activity against clones of SY5Y
neuroblastoma engineered to express TrkB (Evans et
al. 2001), suggesting some specificity of the antitu-
mor activity, although clearly there are other targets
for CEP-751 other than Trk receptors. That certain
kinase inhibitors may have promiscuous activities,
however, is demonstrated by the synergistic activity
of the ErbB1 inhibitor gefitinib (Iressa, ZD1839)
when combined with the topoisomerase-I poison
irinotecan (Stewart et al. 2004) against both neuro-
blastoma and other xenografts that do not express
detectable levels of ErbB-family receptors. In this
case the enhanced activity of irinotecan appears 
to be due to potent inhibition of an ABC transporter
(ABCG2/BCRP) that confers cellular resistance to
SN-38, the active metabolite of irinotecan (Wierdl et
al. 2003). Similarly, imatinib mesylate, an inhibitor of
c-KIT, PDGFR, and BCR-ABL, potently inhibits the
ABCG2 transporter, reversing resistance to topotecan
in vitro (Houghton et al. 2004). It will be important to
compare gene expression profiles for micrometas-
tases growing in different organs to determine
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whether tumor site may ultimately determine the ef-
fectiveness of particular signaling inhibitors, adding
yet another level of complexity to developing novel
therapies for these tumors.

17.2.3 Angiogenesis Inhibitors

Tumor vascularity is highly correlated with outcome.
The role for anti-angiogenic, and in vivo angiogenic,
activity of neuroblastoma correlates with MYCN
oncogene overexpression (Ribatti et al. 2002). Conse-
quently, anti-angiogenic agents have been extensive-
ly investigated in neuroblastoma xenograft models.
Results have been variable. In the study by Katzen-
stein et al. (1999) initiating therapy with TNP-470 be-
fore tumors were clinically evident resulted in 53% of
mice being tumor free at 12 weeks. When tumors
were staged (<400 mm3) drug treatment significantly
retarded growth of NBL-W-N neuroblastomas,
whereas treatment had no effect when tumors were
larger (>400 mm3) at the start of treatment. Similar
results were obtained with CHP-134 xenografts
(Shusterman et al. 2000, 2001). Other studies (Kim et
al. 2002) demonstrated that blockade of VEGF using
anti-human VEGF(165) RNA-based fluoropyrimi-
dine aptamer, a monoclonal anti-human VEGF anti-
body and a VEGFR-1 and VEGFR-2 decoy receptor
(VEGF-Trap), inhibited growth NGP-GFP neuroblas-
tomas. Of these the VEGF-Trap approach gave the
greatest tumor inhibition; however, in the presence of
prolonged inhibition of VEGF function tumors per-
sisted in cooption of blood vessels. This may explain
why experimental neuroblastoma may be less sensi-
tive to inhibiting VEGF than another model of Wilms’
tumor. Recombinant human and murine endostatin
has been evaluated against TNB9 and SKNAS neu-
roblastoma models, respectively (Jouanneau et al.
2001; Kuroiwa et al. 2001). Both studies initiated ther-
apy when tumors were relatively small, but neither
study showed a significant inhibition of tumor
growth. Similarly, the VEGFR-2 receptor inhibitor
SU6668 demonstrated little activity against several
neuroblastoma xenografts (Table 17.2). In contrast,
another VEGFR-2 inhibitor SU5416 did inhibit
growth of SH-SY5Y tumors by 65% (Backman et al.
2002). A novel approach to controlling angiogenesis

through inhibition of hypoxia-inducible factor 1a
(HIF-1a) has been tested in various xenograft mod-
els including neuroblastoma (Yeo et al. 2003). YC-1,
an inhibitor of HIF-1a significantly retarded growth
of SK-N-MC PNET xenografts and decreased vascu-
larization. These diverse results reported with differ-
ent anti-angiogenic agents raises the question of how
best to evaluate anti-angiogenic agents in mice; in-
deed, what constitutes the best model systems?
Should orthotopic models be prioritized for these
studies, or should established tumors be de-bulked
by chemotherapy prior to starting the antiangiogenic
treatment? These “secondary” screening models
would more readily mimic a clinical situation; how-
ever,one still has a hybrid model in which it is murine
endothelial elements that are targeted in a human tu-
mor. A more extensive evaluation of anti-angiogenic
therapies in a panel of subcutaneous or orthotopic
neuroblastoma models is required to address these
issues.

17.2.4 Viral-Based Therapies

Adenoviral vectors have been used to deliver angio-
statin, an internal fragment of plasminogen contain-
ing the first four kringle structures fused to human
serum albumin (K3-HAS) (Joseph et al. 2003). Mice
bearing IGR-N835 neuroblastomas were adminis-
tered 5×109 PFU (plaque forming units) by intra-
venous injection when tumors were either early
stage, established, or at a state of minimal residual
disease. No delay in tumor growth in animals treated
with AdK3-HAS was observed compared with con-
trol empty virus. K3-HAS was found to be expressed
at high levels; hence, it would appear that this
approach may not be successful. Instead, IGR-N835
tumors were found to secrete high concentrations of
VEGF suggesting that targeting this ligand or its
receptor system may be more useful.

A novel approach to treatment of neuroblastoma
has been to administer the avian paramyxovirus
Newcastle disease virus either by direct intratumoral
injection or by intraperitoneal injection (Phuangsab
et al. 2001). After a single intraperitoneal injection of
5×109 PFU complete regression of IMR-32 neuroblas-
tomas was observed in 9 of 12 mice without recur-
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rence for 3–9 months. In half of those mice where
tumor recurred complete response was achieved with
three additional courses of treatment. Viral-depend-
ent enzyme prodrug therapy (VDEPT) has also been
used to selectively purge neuroblastoma-contami-
nated human or murine bone marrow. Adenovirus
encoding a carboxylesterase that efficiently activates
the DNA topoisomerase-I poison irinotecan (CPT-
11) was used to selectively activate drug in NB-1691
neuroblastoma cells. Purged marrows were bioas-
sayed by injecting cells into SCID mice. Interestingly,
marrows having up to 10% tumor cells were success-
fully purged, as determined by loss of detection of
neuroblastoma markers tyrosine hydroxylase and
MYCN, and failure to establish disease in mice (Wag-
ner et al. 2002).

17.2.5 Immunotherapy 
and Radioimmunotherapy

Heterotransplant models have also been used to
probe the role of antibodies and antibody-conjugates
in the treatment of neuroblastoma for both subcuta-
neous (Cheung et al. 1986; Cheung and Modak 2002),
leptomeningeal (Bergman et al. 1999) as well as
metastatic models (Raffaghello et al. 2003). Several
promising strategies are being tested in the clinic.

17.3 Transgenic Models

The transgenic neuroblastoma model (Weiss et al.
1997), in which the human MYCN gene is expressed
in neuroectodermal cells under control of the tyro-
sine hydroxylase promoter, represents a novel syn-
geneic model of human disease. Because overexpres-
sion of the human MYCN oncogene in murine neu-
roblastoma models is one of the relatively few genet-
ic mutations associated with NB tumorigenesis, it is a
potential target for manipulation by investigational
therapies. The consequences of amplified human
MYCN expression in the preclinical setting are of
particular importance because a recapitulation of
histological and pathological aspects of clinical dis-
ease has been shown (Hackett et al. 2003; Weiss et al.
1997). Even though these studies suggest that numer-

ous other genetic characteristics of clinical neuro-
blastoma are also present in mice expressing a hu-
man MYCN oncogene, this particular characteristic
(human MYCN overexpression) is the only one asso-
ciated consistently with enhanced tumorigenesis
both in the preclinical and clinical settings (Hackett
et al. 2003; Weiss et al. 2000). The mechanism by
which human MYCN overexpression contributes to
the pathogenesis of neuroblastoma is not completely
understood but likely involves an alteration in poten-
tial for malignancy via gene expression regulation
[e.g., MYCN regulates the expression of the genes
that encode the multidrug resistance associated pro-
tein 1 (MRP1) and ornithine decarboxylase (ODC)
and possibly expression of the type-1 insulin-like
growth factor receptor]. Whatever the mechanism, it
seems logical that inhibiting expression of the onco-
gene would ultimately limit the cell proliferation abil-
ities of the tumor. In fact, Burkhart et al. (2003) found
that inhibition of the human MYCN oncogene in vivo
through antisense oligonucleotide administration
was associated with decreases in tumor incidence as
well as tumor mass. The results appeared to be di-
rectly due to human MYCN inhibition since expres-
sion/activity of the closely related MYC gene family
was unaffected. Furthermore, because expression of
the gene is virtually absent from adult tissues (re-
stricted to stages of embryogenesis), antisense inhi-
bition of the human MYCN oncogene would likely be
void of serious adverse events. This study not only
stresses the significance of the role of human MYCN
in neuroblastoma, but also highlights its importance
as a potential target for future antisense therapies
(Burkhart et al. 2003). It is noteworthy that novel
therapies, such as targeted oligonucleotide adminis-
tration, are not without limitation. Applicability in
vivo is impaired by significant instability; oligonu-
cleotides in general are highly sensitive to cellular
nuclease degradation. Brignole et al. (2003) suggest
that lipid encapsulation of the oligonucleotides prior
to administration improves stability and enhances
antitumor response. Such a formulation showed
good cell binding and relatively desirable tumor cell
specificity; however, although antisense, or inhibito-
ry, RNA approaches appear useful in vitro, they face
significant hurdles before achieving acceptance as
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therapeutic modalities for treatment of systemic dis-
ease. Instead, at this time they serve as reagents for
proof of principle studies in the transgenic mouse
models.

17.4 Syngeneic Models

Syngeneic models of neuroblastoma, most frequent-
ly derived from the C1300 tumor, have been used to
probe the role of immunotherapy. This tumor arose
spontaneously in the spinal cord region of a strain-A
mouse (Ishizu et al. 1994; Ziegler et al. 1997) and as a
subcutaneous implant shows local invasion but rarely
metastasizes. A variant of C-1300, TBJ, grows more
rapidly and metastasizes extensively, and C-1300 cells
inoculated into a subcutaneously translocated spleen
gives rise to hepatic metastases. Against C-1300 tu-
mors both rIFN-g and rIL-2 prolong tumor latency,
and enhance tumor lysis in vitro by natural killer
cells. The variant neuro-2a tumor has also been used
to evaluate the role of expressing both B-7-1 costim-
ulator and IFN-g. This resulted in upregulation of
expression of class-1 MHC and a CD8-positive T-cell
response that effectively induced tumor rejection
(Katsanis et al. 1996). A variant of C-1300, NX31T28,
engineered to express GD2 ganglioside has been used
to evaluate biodistribution and activity of a novel fu-
sion protein consisting of mouse chimeric anti-GD2
antibody ch14.18 fused to IL-2 (Lode et al. 1999). This
fusion protein, but not the antibody alone or IL-2
plus antibody, was effective in suppressing develop-
ment of bone marrow and liver disease. The same
group showed that CD8+ T cells genetically engi-
neered to produce a single chain IL-12 fusion protein
significantly protect syngeneic A/J mice from dis-
seminated neuroblastoma growth (to bone marrow
and liver) (Lode et al. 1998a). Local release of cyto-
kines in the tumor microenvironment is the mecha-
nism thought to be responsible for inhibition of
malignant growth and thus successful therapy. The
NX31T28 model engineered to express IL-12 has also
been used to induce CD8 positive-dependent protec-
tive immunity, prevented growth of wild-type cells,
and eradicated established disease. The same model
as been used to evaluate anti-GD2 antibody conjugat-

ed to the cytotoxic antibiotic calicheamycin q1
1 (Lode

et al. 1998b). Other approaches evaluated in syngene-
ic models include immunotherapy with a modified
DNA vaccine where mice were immunized with a ty-
rosine hydroxylase-based DNA vaccine enhanced
with the posttranscriptional regulatory acting RNA
element derived from the woodchuck hepatitis virus
in combination with an antibody-cytokine fusion
protein ch14.18-IL-2.This DNA vaccine was delivered
using attenuated Salmonella typhimurium and ad-
ministered by oral gavage (Pertl et al. 2003). This
facultative intracellular parasite that colonizes the
liver has been shown to accumulate within extrahep-
atic malignancies (Soto et al. 2004). Other researchers
have investigated the use of IL-12 or IL-2 plus IL-18
transduced dendritic cells as vaccines for neuroblas-
toma treatment (Redlinger et al. 2003a,b), the effect
of cytokine expression on neuroblastoma growth
(Siapati et al. 2003), and alteration in tumors recur-
rent after suboptimal dosing of a humanized IL-2 im-
munocytokine targeted to the GD2-ganglioside. The
antitumor effect of retinoic acid on the susceptibility
of neuroblastoma to CTL-mediated killing has re-
cently been reported to act through stabilization of
MHC class-1 complexes, and independently of IFN-g
or TNF-a (Vertuani et al. 2003).

17.5 Conclusion

There is now an increasing selection of animal mod-
els in which to evaluate experimental therapy of neu-
roblastoma. No one model fits all. Instead, a specific
model may have a restricted but valuable role. As yet,
there is limited data on the role of the transgenic
MYCN model in developmental therapeutics, but un-
doubtedly this will emerge; however, retrospective
analysis of why the significant efficacy of cytotoxic or
other agents in mice fail to translate into clinical
responses suggests that direct translation from any
murine model to humans needs considerable caution
irrespective of the tumor model being used. Despite
the limitations, clearly these models are useful in
identifying novel approaches to neuroblastoma treat-
ment.
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18.1 Introduction

Neuroblastoma is a cancer with heterogeneous clini-
cal manifestations and behaviors. Localized tumors
can usually be cured by surgical resection alone
(Kushner et al. 1996b; Perez et al. 2000; Brodeur and
Maris 2002). At the other end of the spectrum, ag-
gressive metastatic tumors frequently progress de-
spite intensive chemoradiotherapy (Brodeur and
Maris 2002). The overall prognosis of high-risk neu-
roblastoma patients remains poor, with an overall
survival rate of less than 30% at 5 years (Brodeur and
Maris 2002); however, with the use of high-dose
chemotherapy regimens, plus new drugs, such as cis-
retinoic acid, and new modalities of treatment, such
as targeted immunotherapy, a subset of patients with
high-risk disease achieve and maintain a complete
remission (Kushner et al. 1994; Cheung et al. 1998;
Matthay et al. 1999; Cheung et al. 2001). Survivors of
high-risk neuroblastoma, therefore, face the long-
term consequences of intensive multimodality thera-
py given, often, at a young age.

Only a limited number of studies have assessed
the long-term clinical late effects that are specific to
survivors of neuroblastoma. The data are particular-
ly scanty on those who have been treated for high-
risk disease (Willi et al. 1992; Olshan et al. 1993;
Kaste et al. 1998; Kushner et al. 1998; Hovi et al. 1999;
Nève et al. 1999; Barr et al. 2000; Koyle et al. 2001;
Hölttä et al. 2002; Van Santen et al. 2002; Weiss et al.
2003).

In this chapter we review the major and most fre-
quent late complications observed in low/intermedi-
ate-risk and high-risk neuroblastoma survivors.
Since the radiation fields and the chemotherapeutic
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agents adopted in neuroblastoma treatment proto-
cols are commonly used to treat other pediatric can-
cers, published data on late effects in these cancer
survivors are highly relevant for children with neu-
roblastoma. Additionally, we discuss the late effects
observed in a cohort of 65 neuroblastoma survivors,
predominantly survivors treated for high-risk dis-
ease, who are followed in the Long-Term Follow-Up
Clinic at Memorial Sloan Kettering Cancer Center
(MSKCC).

18.2 Long-Term Complications 
for Low- and Intermediate-Risk 
Neuroblastoma Survivors

Recent studies in neuroblastoma have allowed for 
the development of a risk-stratification system for
treatment, based on clinical and biological factors
(Brodeur 2003). Low-risk patients have localized tu-
mors with favorable biological features and can be
cured by surgical removal of the primary tumor
(Matthay et al. 1989; Kushner et al. 1996b; Perez et al.
2000). The intermediate-risk group includes mainly
patients with locally invasive tumors with favorable
biological features. The current management of these
patients is conservative and for most patients overag-
gressive initial surgery is not preferred (Cruccetti et
al. 2000). Instead, moderate-dose chemotherapy is
used to render the primary tumor resectable at sec-
ond-look surgery (Matthay et al. 1998). External radi-
ation therapy is more controversial (Kushner et al.
1996a; Matthay et al. 1998).

In previous decades, these two groups of patients
were more heavily treated with combinations of rad-
ical surgery, radiation therapy, and chemotherapy
(Brodeur and Maris 2002). A few studies discuss the
late effects in these survivors who were treated be-
tween 1950 and 1990 (Meadows et al. 1975; Mayfield
et al. 1981; Pastore et al. 1982; Kajanti 1983; Pastore et
al. 1987; Paulino et al. 2002). The most common long-
term complications reported were musculoskeletal
and neurological problems.

18.2.1 Musculoskeletal

Musculoskeletal effects include scoliosis, kyphosis,
hypoplasia, and fibrosis of bone and soft tissues, as
well as slipped capital femoral epiphysis (Mayfield 
et al. 1981; Pastore et al. 1982; Kajanti 1983). Most 
of the patients who develop scoliosis have been
treated with moderate to high doses of orthovoltage
radiation therapy (1500–5000 cGy) and received
asymmetric irradiation of the spine. Some patients
were also irradiated under 6 months of age, while
others underwent laminectomy for epidural disease
(Mayfield et al. 1981; Pastore et al. 1982; Kajanti
1983).

18.2.2 Neurological

Neurological problems include paresthesias, mild 
to severe paresis, paraplegia, and neurogenic blad-
der (Pastore et al. 1982; Pastore et al. 1987). These
complications are related to the disease itself (in-
traspinal tumors) and/or to surgery. Surgical com-
plications in neuroblastoma are reported in 5–25%
of these cases, especially when aggressive resections
of thoracic or abdominal tumors were attempted
(Azizkhan et al. 1985; Nitschke et al. 1988; Cruccetti
et al. 2000). The incidence of intraspinal tumors is
higher in children with local–regional disease than
in patients with widely disseminated neuroblastoma
(Katzenstein et al. 2001, De Bernardi et al. 2001, Plan-
taz et al. 1996). Neurological recovery correlates in-
versely with the severity of the presenting neurolog-
ical deficits (Hoover et al. 1999; De Bernardi et al.
2001; Katzenstein et al. 2001). Recent studies suggest
that chemotherapy is as effective as laminectomy
and radiation therapy for the treatment of spinal
cord compression and is associated with less long-
term skeletal sequelae than the two other modalities
(Plantaz et al. 1996; Hoover et al. 1999; Katzenstein et
al. 2001).
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18.3 Long-Term Complications for Survivors 
of High-Risk Neuroblastoma

High-risk neuroblastoma survivors commonly de-
velop long-term complications due primarily to the
intensive multimodality therapy they receive. We re-
cently reviewed the data of a cohort of neuroblas-
toma survivors followed at our Long Term Follow-Up
Clinic at MSKCC. Since 1991, 65 neuroblastoma sur-
vivors have been seen. The clinical and treatment
data on these patients are summarized in Table 18.1.
The majority of these individuals were treated for
high-risk disease. Long-term complications were
noted in 58 of the 65 (89%) patients, and 40 (62%)
experienced more than one complication. Sixteen of
these 65 patients (25%) had more than three compli-
cations. The more frequent late effects observed are
listed in Table 18.2. The late effects that can arise fol-
lowing successful therapy for high-risk neuroblas-

toma, as well as the specific risk factors associated
with these adverse outcomes, are discussed by organ
systems in the next section.

18.3.1 Audiological

The ototoxicity of platinum compounds is well de-
scribed and is more common with cisplatin (CDDP)
than with carboplatin (Piel et al. 1974; Schell et al.
1989; Skinner et al. 1990). Platinum compounds are
key components of the chemotherapeutic regimens
for high-risk neuroblastoma, and many protocols in-
cluded dose-intensive cisplatin or carboplatin (Kush-
ner et al.1994; Matthay et al.1999; Cheung et al.2001).
The overall incidence of cisplatin-induced hearing
loss in the pediatric cancer population, including
neuroblastoma patients, ranges from 20 to 80%
(Schell et al. 1989; Skinner et al. 1990; Weatherly et al.
1991; Parsons et al. 1998; Simon et al. 2002). The hear-
ing loss is more pronounced in the high-frequency

Table 18.1. Clinical and treatment characteristics of neuroblastoma survivors followed in the Long-Term Follow-Up Clinic at
MSKCC (n=65). ABMT Autologous bone marrow transplantation, TBI total-body irradiation

Characteristic No. of patients Percentage

Gender
Male 33 51
Female 32 49

Stage of neuroblastoma
Stage 2 1 1.5
Stage 3 10 15
Stage 4 53 82
Stage 4S 1 1.5

Median age at diagnosis 3.8 years (range 0.07–23.5 years)

Median follow-up 7.3 years (range 1.9–25.5 years)

Treatment
Surgery 65 100
Chemotherapy 64 98
Radiation therapy 56 86
ABMT 35 54
TBI 5 8a

Immunotherapy (anti-GD2 monoclonal antibody 3F8) 38 58

Radioimmunotherapy (anti-GD2 monoclonal antibody 131I-3F8) 19 29b

a Five of 35 patients who underwent ABMT received TBI (14%)
b Nineteen of 38 patients who received immunotherapy received radioimmunotherapy (50%)
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range, but speech frequencies can also be affected
(Schell et al. 1989; Parsons et al. 1998). It is usually
irreversible, but some patients experience partial re-
covery (Skinner et al. 1990). Risk factors for cisplatin-
induced hearing loss include cumulative dose higher
than 360 mg/m2, young age at treatment, previous or
concomitant cranial or head and neck irradiation,
abnormal renal function, and use of other ototoxic
drugs (e.g., aminoglycosides, loop diuretics) (Schell
et al. 1989; Weatherly et al. 1991; Parsons et al. 1998).
Hearing loss at a young age has a significant impact
on the acquisition of speech and contributes to a less-
ened quality of life in survivors of advanced neuro-
blastoma (Barr et al. 2000). Early audiological inter-
ventions, such as hearing aids and speech and lan-
guage therapy, are therefore mandatory to minimize
the impact of the hearing loss. The use of chemopro-
tective agents, such as amifostine for platinum-in-
duced ototoxicity, warrants further investigation
(Cronin et al. 2000; Fulda et al. 2001).

In our cohort, 55% (36 of 65) of survivors have
hearing loss: 10 patients (16% of the cohort) experi-

ence losses at high frequencies (500–2000 Hz) and 26
patients (40% of the cohort) at speech frequencies
(500–2000 Hz). These results are in accordance with
other studies showing that young age at treatment
and high doses of platinum compounds are major
risk factors for the development of hearing loss.

18.3.2 Endocrine

18.3.2.1 Thyroid Function

Primary hypothyroidism is a common late effect ob-
served in cancer survivors who received head and
neck radiation (Kaplan et al. 1983; Halperin et al.
1999). The occurrence of thyroid dysfunction is relat-
ed, primarily, to the dose of radiotherapy adminis-
tered but is also influenced by the age and gender of
the patient and the time elapsed since the end of
treatment (Sklar et al. 2000).

A higher incidence of clinically significant hy-
pothyroidism is observed above radiation doses of
2000 cGy (Kaplan et al. 1983; Constine et al. 1984).

Table 18.2. Frequencies of late effects observed in neuroblastoma survivors followed in the Long-Term Follow-up Clinic at
MSKCC (n=65)

Late effect No. of patients Percentage

Hearing loss 36 55

Ovarian failure 12 38a

Primary hypothyroidism 15 23

Musculoskeletal problems 10 15

Dental problems 8 12

Visual problems 8 12

Neurological deficits 7 11

Pulmonary dysfunction 7 11

Neurocognitive problems 6 9

Renal dysfunction 6 9

Gastrointestinal problems 6 9

Growth hormone deficiency 6 9

Second malignant neoplasm 4 6

Hepatitis C 4 6

a n=32 female patients
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Current radiotherapy doses used for local control in
high-risk neuroblastoma patients with thoracic or
cervical tumors are often in this range (Halperin et al.
1999; Kushner et al. 2001). Patients who received to-
tal-body irradiation (TBI) are also at risk for hy-
pothyroidism (Ogilvy-Stuart et al. 1992). The radia-
tion-related risk persists more than 25 years after
treatment (Hancock et al. 1991; Sklar et al. 2000). The
addition of chemotherapy to radiation therapy does
not seem to increase the risk of hypothyroidism (Van
Santen et al. 2003).

Many cases of subclinical primary hypothy-
roidism have been described in neuroblastoma pa-
tients following the administration of 131I-metaiodo-
benzylguanidine (131 I-MIBG; Garaventa et al. 1991;
Picco et al. 1993; Picco et al. 1995; Van Santen et al.
2002). The reported incidence is 50–80% despite thy-
roid protection with high doses of potassium iodide
before, during, and after the 131I-MIBG (Picco et al.
1995; Van Santen et al. 2002). Optimal prophylaxis
against the thyroidal damage induced by radio-iodi-
nated substances is still unknown (Van Santen et al.
2002).

In our cohort, 23% of the patients developed pri-
mary hypothyroidism. Of these patients, 66%
received 131I-3F8 antibody (despite protection with
potassium iodide and thyroid hormone suppression)
and 33% received chest/mantle external-beam radia-
tion therapy.

18.3.2.2 Reproductive Endocrine Function

Ovarian Dysfunction

Both chemotherapy and radiation therapy can in-
duce ovarian dysfunction, which can be either tran-
sient or permanent. In the pre-pubertal state, ovaries
are more resistant to chemotherapy-induced damage
than in the post-pubertal individual (Rivkees and
Crawford 1988; Halperin et al. 1999). Among all the
chemotherapeutic agents, alkylating agents, includ-
ing cyclophosphamide, ifosfamide, busulfan, BCNU,
and CCNU, have most consistently caused ovarian
damage. High doses of these agents are very toxic
even to young ovaries (Thibaud et al. 1998; Sklar
1999). Patients who have undergone allogenic or
autologous bone marrow transplant with high-dose

alkylator therapy (e.g., busulfan, melphalan, or
thiotepa) are at particularly high risk of developing
ovarian failure (Thibaud et al. 1998; Sklar 1999). Fur-
thermore, even if female patients recover ovarian
function after treatment is completed, a significant
proportion of these patients are at risk of experienc-
ing premature menopause in the future (Byrne et al.
1992).

Radiation-induced ovarian failure is also common
in female cancer survivors. As with chemotherapy,
pre-pubertal ovaries seem to be more resistant to
damage from irradiation than post-pubertal ovaries.
Radiation doses above 1000–2000 cGy can, however,
cause irreversible ovarian damage in young girls
(Stillman et al. 1981; Wallace et al. 1989a); therefore,
young females who receive abdominal, pelvic, or
spinal irradiation for tumors such as neuroblastoma
have a high risk of ovarian failure (Shalet et al. 1976;
Stillman et al. 1981; Wallace et al. 1989a; Wallace et al.
1989b). Moreover, we can extrapolate that the con-
comitant use of intensive chemotherapy in neurob-
lastoma definitely increases the risk of ovarian failure
and premature menopause. Patients who received
TBI are also at significant risk of developing irre-
versible ovarian failure (Sklar 1995a). The use of
more conformal radiation techniques, shielding of
the ovaries, or oophoropexy are strategies used to
lessen the occurrence of this complication (Halperin
et al. 1999). Female patients who receive abdominal
irradiation are also at increased risk for spontaneous
abortion, preterm labor, and the delivery of low-
birth-weight infants once they reach childbearing age
(Li et al. 1987).

In our cohort, 12 of 32 patients (38%) developed
ovarian dysfunction, which was transient in 3 of the
patients. All 12 patients had received cyclophos-
phamide and 75% had also been treated with ab-
dominal irradiation.

Testicular Dysfunction
Male germ cells are very vulnerable to both radiation
and chemotherapy (Aubier et al. 1989; Halperin et al.
1999). Alkylating agents (cyclophosphamide, ni-
trosoureas) are very toxic to the germinal epithelium
(the sperm-producing cells). This effect is more fre-
quent and more severe at higher doses (Aubier et al.
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1989; Sklar 1999). The prepubertal state is not always
protective (Aubier et al. 1989). Recovery of spermato-
genesis has been reported, but the toxicity is often
permanent (Halperin et al. 1999; Sklar 1999). The
clinical hallmarks of germ-cell damage include re-
duced testicular volume and an elevated plasma FSH
level.

Leydig cell failure with androgen insufficiency has
also been described but is seen infrequently and 
only following high-dose irradiation (>2000 cGy) 
administered directly to the testicles (Sklar 1999).
Compensated Leydig cell dysfunction (i.e., normal
testosterone combined with elevated LH levels) is
common after chemotherapy with alkylating agents
and lower-dose radiation therapy. The patients are
usually asymptomatic and usually progress normally
through puberty (Sklar 1999).

18.3.2.3 Growth

Three studies assessed the growth of high-risk neu-
roblastoma patients after autologous bone marrow
transplantation (Willi et al. 1992; Olshan et al. 1993;
Hovi et al. 1999).When TBI is used as part of the con-
ditioning regimen, the impact on growth can be sig-
nificant (Hovi et al. 1999). The majority of patients
who do not receive TBI have a better growth velocity
(Olshan et al. 1993; Hovi et al. 1999). Impaired growth
could be partially explained by radiation to the spine
or the abdomen at a young age. The growth impair-
ment results primarily in a loss in the sitting height,
resulting in disproportionate short stature (Willi et
al. 1992; Sklar 1995b; Hovi et al. 1999). Other reasons
for poor growth include poor nutrition and hypothy-
roidism (Sklar 1995b; Hovi et al. 1999). Growth hor-
mone (GH) deficiency has been described in high-
risk neuroblastoma patients who received TBI (Ol-
shan et al. 1993; Hovi et al. 1999). Cranial irradiation
was common in this group of patients (Olshan et al.
1993). All the patients had a modest response to GH
therapy suggesting a state of relative GH resistance
(Olshan et al. 1993; Hovi et al. 1999).

In our cohort, 6 patients (9%) had GH deficiency.
Three patients received TBI and five received cranial
irradiation.

18.3.3 Musculoskeletal Complications 
and Neurological Deficits

Survivors of high-risk neuroblastoma face the same
neurological and musculoskeletal complications as
patients treated for low-risk disease in the past (May-
field et al. 1981; Pastore et al. 1987; Paulino et al. 2002).
Risk factors include intraspinal neuroblastoma,
laminectomy, spinal irradiation, and overaggressive
surgery (Pastore et al. 1987; Cruccetti et al. 2000; De
Bernardi et al. 2001; Katzenstein et al. 2001; Paulino et
al. 2002).

18.3.4 Dental

Dental abnormalities are common in childhood can-
cer survivors.Both chemotherapy and radiation ther-
apy can disrupt normal odontogenesis, especially in
patients younger than 5 years (Sonis et al.1990).Head
and neck irradiation has been shown to increase den-
tal injury (Sonis et al. 1990; Hölttä et al. 2002; Estilo et
al. 2003). Two studies focused on the dental problems
observed in neuroblastoma patients. In a cohort of 52
patients, Kaste et al. (1998) reported an incidence of
71% dental abnormalities including microdontia
(38%), excessive caries (29%), root stunting, hypo-
dontia, and enamel hypoplasia. Hölttä et al. (2002)
studied a group of high-risk neuroblastoma patients
treated with autologous stem-cell transplantation.
Among patients who received TBI as a part of the
conditioning regimen, dental abnormalities were
more severe than those receiving non-TBI regimens.
These results suggest that intensive treatment at a
young age can affect teeth development, resulting in
severe malocclusion, as well as other long-term
dentofacial problems. Close attention to oral hygiene
and regular dental care are, therefore, mandatory in
all neuroblastoma survivors.

18.3.5 Pulmonary

Pulmonary complications in cancer survivors can be
related to chemotherapy and radiation therapy.
Chemotherapy agents most commonly associated
with late pulmonary toxicity include bleomycin,
nitrosoureas, cyclophosphamide, melphalan, and
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busulfan (Mäkipernaa et al. 1989; Nenadov Beck et al.
1995; Nève et al. 1999).A recent study from the Child-
hood Cancer Survivor Study (CCSS) showed that cis-
platin was associated with an increased risk of lung
fibrosis in pediatric cancer survivors (Mertens et al.
2002).

In the same study, chest irradiation was associated
with a 3.5% cumulative incidence of lung fibrosis at
20 years after diagnosis (Mertens et al. 2002). Three
studies reported on the long-term pulmonary seque-
lae in neuroblastoma patients (Mäkipernaa et al.
1989; Nenadov Beck et al. 1995; Nève et al. 1999). The
most common pulmonary function test (PFT) abnor-
mality reported was restrictive ventilatory defect
with decreased lung volumes (Mäkipernaa et al. 1989;
Nenadov Beck et al. 1995; Nève et al. 1999). More PFT
defects were observed in patients younger than
3 years at diagnosis and those with spinal deformi-
ties. TBI was not associated with a significant deteri-
oration in pulmonary function, except in patients
treated at a very young age (Nève et al. 1999).

18.3.6 Cardiac

Late cardiac toxicity in childhood cancer survivors is
most commonly caused by prior administration of
anthracycline (e.g., doxorubicin and daunorubicin).
These drugs are associated with the late development
of a cardiomyopathy that can result in congestive
heart failure and arrhythmias. This complication can
appear insidiously, without prior symptoms, and at
any time during the post-cancer treatment period
(Steinherz et al. 1991; Steinherz et al. 1995). Risk
factors include cumulative anthracycline dose
≥300 mg/m2, age younger than 5 years at treatment,
female gender, exposure to mediastinal irradiation,
TBI, and combined administration of cyclophos-
phamide (Lipshultz et al. 1991; Steinherz et al. 1991;
Steinherz et al. 1995; Lipshultz et al. 1995; Gupta et al.
2003). In one study done at MSKCC among survivors
of leukemia and solid tumors, at a median of 7 years
after completion of anthracycline therapy (median
dose, 450 mg/m2), the incidence of abnormal cardiac
function on an echocardiogram was 23% (Steinherz
et al. 1991). A recent study from the same group
showed a decrease in cardiac function in 20% of the

patients who had received bolus anthracycline (me-
dian dose 385 mg/m2) compared with 11% of pa-
tients who had received it via infusion (median dose
345 mg/m2) at a mean of 7 years after the end of ther-
apy; however, this difference was not statistically sig-
nificant (Gupta et al. 2003).

Some conditions, such as isometric exercise, preg-
nancy, labor, and delivery, and viral infections have
been reported to precipitate cardiac decompensation
following therapy with anthracyclines (Lipshultz et
al. 1995). Close follow-up and monitoring of cardiac
function is essential for patients who received an-
thracyclines with or without chest irradiation during
their cancer treatment.

18.3.7 Renal

Many chemotherapeutic agents are associated with
the development of acute and chronic renal dysfunc-
tion. Cisplatin, ifosfamide, and carboplatin are 
the most nephrotoxic drugs. Cisplatin induces renal
magnesium and potassium wasting, which can 
lead to severe hypomagnesemia and hypocalcemia
(Goren 2003). Cumulative cisplatin dose over
200 mg/m2 and concomitant administration of other
nephrotoxic agents (e.g., aminoglycoside antibiotics)
are risk factors for therapy-induced nephrotoxicity
(Goren 2003). Ifosfamide has been associated with
the development of Fanconi’s syndrome (proximal
tubular acidosis, hypophosphatemia, glucosuria, and
aminoaciduria) that can lead to hypophosphatemic
rickets. Glomerular impairment is also described
with ifosfamide (Loebstein and Koren 1998; Skinner
2003). A cumulative ifosfamide dose ≥60 g/m2 is the
most significant risk factor for the development and
the severity of the nephrotoxicity (Loebstein and
Koren 1998).

18.3.8 Neurocognitive

Only a small number of studies have focused on the
neurocognitive impact of the intensive therapy that
received high-risk neuroblastoma patients (Kelaghan
et al. 1988; Simms et al. 1988; Kramer et al. 1992;
Phipps et al. 1995; Mitby et al. 2003; Notteghem et al.
2003). Risk factors for neurocognitive impairment
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include age less than 3 years, high-dose chemothera-
py with autologous bone marrow transplantation,
and cranial radiation (Phipps et al. 2000). The impact
of TBI on the neurocognitive impairment remains
controversial (Simms et al. 1988; Kramer et al. 1992;
Phipps et al.1995; Phipps et al.2000).Notteghem et al.
(2003) recently reviewed the neuropsychological out-
comes of 46 high-risk neuroblastoma patients with a
mean follow-up of 9.1 years. Survivors of neuroblas-
toma had an overall performance and skills in the
normal range; however, patients who were younger
than 3 years when they received the treatment had
more visuospatial difficulties and a worse visual
memory. Furthermore, hearing loss due to cisplatin
was associated with defects in verbal performance
(Notteghem et al. 2003).

A recent CCSS study evaluated the educational
achievement of a large cohort of childhood cancer
survivors. Compared with normal siblings, neurob-
lastoma survivors were significantly more likely to
use special education services because of lower tests
scores, and were significantly less likely to complete
high school (odds ratio 1.7); however, when the neu-
roblastoma survivors received special education
services, risk estimates approximated those of the
sibling population. In the same study, age at diagno-
sis under 6 years and cranial radiation were associat-
ed independently with the use of special education
services among all the survivors (Mitby et al. 2003).
In contrast, another study reported a similar educa-
tional achievement between survivors of neuroblas-
toma and siblings (Kelaghan et al. 1988).

18.3.9 Subsequent Malignant Neoplasms

Second malignancy is an unfortunate consequence of
childhood cancer treatment. The cumulative estimat-
ed incidence of subsequent malignant neoplasms
(SMNs) 20 years after a diagnosis of childhood can-
cer is 3.2% (Neglia et al. 2001). For neuroblastoma
survivors, the relative risk of developing an SMN has
been reported as 6.59 when compared with the
general population, with a cumulative incidence at
20 years of 1.87% (Neglia et al. 2001). This latter esti-
mate is derived from a historical cohort that includes
a large number of survivors treated for low/interme-

diate-risk disease and may not reflect the true risk for
patients who are treated with more intensive contem-
porary regimens.

The most common secondary malignancies re-
ported after neuroblastoma are myelodysplasia/
leukemia, thyroid neoplasm, soft tissue sarcomas,
and osteosarcomas (Shah et al. 1983; Meadows et al.
1985; de Vathaire et al. 1989; Tucker et al. 1991; Kush-
ner et al. 1998; Tabone et al. 1999; Schiavetti et al.
2001; Acharya et al. 2003; Garaventa et al. 2003; Le
Deley et al. 2003; Weiss et al. 2003). Treatment-related
myelodysplasia/leukemia has been well described.
The most common chemotherapeutic agents associ-
ated with this complication are topoisomerase-II in-
hibitors (etoposide, doxorubicin) and alkylating
agents. The two classes of drugs are associated with
specific and different cytogenetic abnormalities
(Kushner et al. 1998; Le Deley et al. 2003). Among
neuroblastoma survivors treated at MSKCC, Kushner
et al. (1998) found a 3-year cumulative incidence of
secondary myelodysplasia/leukemia of 7%; there-
fore, current intensive treatment for high-risk neu-
roblastoma is associated with a significant risk for
treatment-related acute myeloid leukemia and war-
rants that these patients be monitored closely.

Secondary thyroid neoplasms are also common in
neuroblastoma survivors due to chest and spinal ir-
radiation at a young age (Tucker et al. 1991; Le Deley
et al. 2003).

Recently, two studies reported on the risk of SMN
(leukemia and solid tumors) with the administration
of 131I-MIBG (Garaventa et al. 2003; Weiss et al. 2003).
In one of these studies, the cumulative risk of devel-
oping a second cancer was 20% within 15 years of
receiving 131I-MIBG (Garaventa et al. 2003).

18.4 Health-Related Quality of Life

Beyond survival and long-term late effects, health-re-
lated quality of life (HRQOL) is increasingly being
appreciated as an important outcome measure for
evaluating treatment effects in clinical research
(Spilker 1996; Staquet 1998; Drotar 1998; Joyce 1999).
Health-related quality of life is a subjective term, but
it reflects the understanding that health is not only
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the absence of disease, but also a complex function of
psychological, social, physical, and functional well-
being. The very few HRQOL studies conducted on
childhood cancer survivors to date have usually been
limited to proxy reports from clinicians or parents,
without considering the child’s own perspective on
his or her functioning and well-being. Practically no
published HRQOL-related studies are specific to neu-
roblastoma survivors. One exception was a study 
of health status conducted by Barr and colleagues
(2000) using health utility indexes. They sent ques-
tionnaires to parents of children who survived either
Wilms’ tumor (n=52) or advanced neuroblastoma
(n=26), and compared scores related to health attrib-
utes and functional capacity. Children surviving
high-risk neuroblastoma had a greater overall bur-
den of morbidity, and a significantly higher likeli-
hood of sensory deficits, specifically in speech and
hearing, than did children surviving Wilms’ tumor. In
one measure representing constructs for memory
and problem-solving skills, both groups showed indi-
cations of cognitive morbidity (Barr 2000). Psycho-
logical adjustment and psychosocial functioning
among long-term neuroblastoma survivors has yet to
be addressed in the clinical literature, although a
cross-sectional study on HRQOL and family impact
from the cancer experience is currently being con-
ducted through the Children’s Oncology Group. This
study compares outcomes across neuroblastoma
treatment regimens. Results from that study should
be available soon.

18.5 Conclusion

Late effects of treatment are common among neu-
roblastoma survivors, mostly in high-risk patients.
These complications are important and must be
identified and treated early in order to minimize the
impact on quality of life of the survivors. The new
treatment paradigms for low- and intermediate-risk
patients will probably result in a decrease in treat-
ment-related morbidity. However, for high-risk pa-
tients, the intensification of therapy for these patients
treated at a very young age can have severe late ef-
fects; therefore, close follow-up of these patients after

completion of the therapy is strongly recommended.
More specifically, ovarian function of female patients
should be followed closely. All high-risk patients
treated with platinum compounds should be
screened for hearing loss, and early audiological in-
terventions, such as hearing aids and speech and lan-
guage therapy, should be implemented as needed. In
addition, neurocognitive development should be
monitored with serial psychometric testing and pa-
tients should be screened for subsequent malignant
neoplasms. Because long-term survivors of high-risk
neuroblastoma can have complex medical problems
with multi-organ dysfunction, these children are op-
timally cared for by physicians familiar with the late
effects of intensive chemotherapy and radiation. New
therapeutic strategies for high-risk neuroblastoma
that will lead to higher rates of survival as well as en-
hanced quality of life are desperately needed.
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A hallmark of neuroblastoma (NB) is heterogeneity,
with a wide spectrum of clinical behavior which
varies according to age at diagnosis, the stage of dis-
ease, and tumor biology (Brodeur 2003). This hetero-
geneity is most evident in the numerous transforma-
tion-linked genetic changes identified in cell lines
and tumors. Some of these aberrations are predictive
of treatment response and outcome (see Chap. 4).
Nevertheless, it is increasingly clear that despite such
tissue heterogeneity, the clinical biology of NB is gen-
erally predictable. By and large, patients with stage-
4S and local–regional tumors are curable with mini-
mal or no therapy, whereas children with distant
metastatic disease pose an enormous clinical chal-
lenge. Only small subsets of patients have elusive risk
identities at diagnosis. Modern treatments stratify-
ing patients according to both clinical and biological
factors are now the standard (see Chap. 7). At the
present time, because of disparities in classification
and treatment approaches, it remains difficult to
compare the results of clinical trials conducted in dif-
ferent regions of the world; however, efforts are cur-
rently underway to develop an International NB Risk
Group (INRG) System.

All of the current risk grouping systems utilize age
at diagnosis (£vs >1 year), INSS stage, and tumor
MYCN status. The COG Risk Classification System
also includes tumor histology and ploidy, whereas
other cooperative groups have incorporated the pat-
tern of metastatic disease, tumor resectability, and
the presence or absence of threatening symptoms
(see Chaps. 7 and 11). As currently defined, each of
the risk-classification systems has limitations. Small
subsets of patients classified as low- or intermediate
risk at diagnosis have acted clinically as aggressive
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disease, whereas other children, currently classified
as high risk, have favorable outcomes and may not
require the dose-intensive therapeutic approach
presently prescribed. Some genetic abnormalities
and molecular markers not utilized in the current
classification schemas may help refine the definition
of risk groups (see Chap. 4–5), and prospective stud-
ies investigating their clinical significance are ongo-
ing. In addition, new techniques, such as comprehen-
sive gene expression profiling, are being utilized to
molecularly classify NB tumors (see Chap. 9). These
studies are likely to lead to a refinement of the cur-
rent risk-group classification systems and an im-
provement in risk-group based treatment strategies.

Although substantial progress has been made in
the treatment approach toward patients with low-
and intermediate-risk NB, the cure rate for metastat-
ic NB in children remains unsatisfactory. As de-
scribed in Chap. 11, most low-risk patients are suc-
cessfully treated with surgery alone, and some infants
do not require any treatment because their tumors
have a high frequency of spontaneous regression
(Chap. 2). Even for infants with stage 4 NB, >90%
long-term survival is typical if the tumor MCYN
oncogene is not amplified. Similarly, among patients
with intermediate-risk tumors, >90% survival is ex-
pected following moderate-dose chemotherapy and
surgery. In contrast, outcome remains poor for chil-
dren older than 1 year with metastatic NB, with or
without MYCN amplification, and during the past
decade there has been only a modest improvement in
cure. This small gain is due to intensification of in-
duction chemotherapy, megatherapy consolidation,
biological/immunological therapy and improved
supportive care. Several clinical trials, including the
large prospective randomized CCG-3891 study which
demonstrated superior outcome for patients ran-
domized to myeloablative therapy and bone marrow
transplant vs chemotherapy during consolidation
(Matthay et al. 1999), support the hypothesis that
dose intensification is an important component to
achieve successful treatment of metastatic NB (Che-
ung and Heller 1991).Whether intensification is most
beneficial during induction or during consolidation
remains controversial. Although promising results
have also been observed in recent pilot studies test-

ing tandem cycles of high-dose therapy plus stem-
cell rescue (Grupp et al. 2000; Kletzel et al. 2002)
(Chap. 11), further dose escalation is likely to be un-
acceptable. In addition, despite achieving complete
clinical remission, the majority of children with high-
risk disease will relapse due to drug-resistant resid-
ual disease. Eradication of refractory microscopic
disease remains the most significant challenge in the
treatment of metastatic NB. The paradigm of “more 
is better” should be questioned and additional high-
risk trials testing biological and targeted agents need
to be designed (Chap. 11).

Recently, the differentiation agent 13-cis retinoic
acid was shown to be clinically effective when ad-
ministered in the setting of minimal residual disease
in the randomized CCG 3891 clinical trial (Matthay et
al. 1999) (reviewed in Chap. 15). This seminal study
demonstrated that a biological agent was capable of
impacting outcome in high-risk NB. The COG is cur-
rently conducting a randomized prospective study
comparing the efficacy of anti-GD2 ch14.18 antibody
plus cytokines and 13-cis retinoic acid vs 13-cis
retinoic acid alone in the setting of minimal residual
disease. Clinical trials have also been developed in
Europe to test immunotherapy in high-risk NB, and a
single-arm study investigating the efficacy of the
anti-GD2 antibody 3F8 plus GM-CSF, is ongoing at
Memorial Sloan-Kettering Cancer Center. Additional
phase-I and phase-II studies are testing other target-
ed therapies (see Chap. 12). As outlined in Chaps.
14–17, preliminary studies suggest that several im-
munotherapeutic molecules, new retinoids, anti-an-
giogenic agents, and other experimental therapeutics
have activity against refractory disease.

As reviewed in Chap. 18, a variety of acute and late
complications from NB and its treatment may occur;
these include late effects of chemotherapy, radiation
therapy, and surgery. High-risk patients are at great-
est risk because of the intensive multi-modality treat-
ment strategies that are currently utilized. Reliable
identification of the subset of patients currently clas-
sified as high risk who do not require intensive ther-
apy would significantly decrease long-term morbidi-
ty and treatment-related mortality for these very
young patients. For example, data from both the POG
and CCG indicate that toddlers 12–18 months of age
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with favorable biology stage-4 tumors may not re-
quire the current intensive high-risk treatment regi-
men to be cured (Schmidt et al. 2003; George et al.
2003); however, ultimate improvements in survival
and reductions of late effects may require more tar-
geted therapies. Research aimed at discovering new
genes and pathways critical to NB tumorigenesis and
drug resistance should be prioritized. It is hoped that
these biologically based treatment approaches will
prove to be more effective and less toxic than the cur-
rent regimens.

We have learned important lessons from NB. The
clinical biology of stage-4S and local-regional NB,
when combined with the findings of the screening
study (Chap. 2), have challenged accepted oncologi-
cal principles. If clinical progression from local re-
gional small NB to metastatic disease does not gener-
ally occur, adjuvant cytotoxic therapy is probably not
necessary for the majority of these patients. On the
other hand, despite general sensitivity of NB to
chemotherapy, curing minimal residual metastasis
remains difficult. Research focused on its measure-
ment, control, or eradication should be emphasized.
Most important of all, with the growing list of prom-
ising therapies, efforts devoted to their timely and ef-
fective integration into an overall curative strategy
should have high priority.
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