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Preface to the Second Edition 

We have been gratified by the warm reception of our book, by reviewers, 
colleagues, and students alike. Our interest in the subject matter of this book 
has not decreased since its first appearance; on the contrary. The first and 
second editions envelop eight other symmetry-related books in the creation of 
which we have participated: 

I. Hargittai (ed.), Symmetry: Unifying Human Understanding, Pergamon 
Press, New York, 1986. 

I. Hargittai and B. K. Vainshtein (eds.), Crystal Symmetries. Shubnikov 
Centennial Papers, Pergamon Press, Oxford, 1988. 

M. Hargittai and I. Hargittai, Fedezziikf6l a szimmetri6t! (Discover Symme- 
try, in Hungarian), Tank6nyvkiad6, Budapest, 1989. 

I. Hargittai (ed.), Symmetry 2: Unifying Human Understanding, Pergamon 
Press, Oxford, 1989. 

I. Hargittai (ed.), Quasicrystals, Networks, and Molecules of Fivefold Symme- 
try, VCH, New York, 1990. 

I. Hargittai (ed.), Fivefold Symmetry, World Scientific, Singapore, 1992. 
I. Hargittai and C. A. Pickover (eds.), Spiral Symmetry, World Scientific, 

Singapore, 1992. 
I. Hargittai and M. Hargittai, Symmetry: A Unifying Concept, Shelter Publica- 

tions, Bolinas, California, 1994. 

We have also pursued our molecular structure research, and some books 
have appeared related to these activities: 
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I. Hargittai and M. Hargittai (eds.), Stereochemical Applications of Gas-Phase 
Electron Diffraction, Parts A and B, VCH, New York, 1988. 

R. J. Gillespie and I. Hargittai, The VSEPR Model of Molecular Geometry, 
Allyn and Bacon, Boston, 1991. 

A. Domenicano and I. Hargittai (eds.), Accurate Molecular Structures, Oxford 
University Press, Oxford, 1992. 

M. Hargittai and I. Hargittai (eds.), Advances in Molecular Structure Research, 
Vol. 1, JAI Press, Greenwich, Connecticut, 1995. 

For this second edition, we have revised both text and illustrative material. It 
gives us pleasure to acknowledge the kind assistance from several colleagues, 
including Lawrence F. Dahl (University of Wisconsin, Madison), Avitam 
Halevi (Technion, Haifa), Lionel Salem (University of Paris, Orsay), P6ter 
Surj~n (E6tv6s University, Budapest), and Richard Wiegandt (Mathematical 
Research Institute, Budapest). 

We are grateful to Istv~n F~ibri and Judit Szfics for their dedicated technical 
assistance. 

For over a quarter of a century, our research work in structural chemistry has 
been supported by the Hungarian Academy of Sciences. Scientific meetings 
and lecture invitations have taken us to many places, and these travels have 
helped us build up the illustrative material of this book. We have enjoyed the 
friendship and enthusiastic interest of our colleagues all over the world. 

Budapest, Hungary 
Istv(tn and Magdolna Hargittai 



From the Preface to the First Edition 

This book surveys chemistry from the point of view of symmetry. We present 
many examples from chemistry as well as from other fields, in order to 
emphasize the unifying nature of the concepts of symmetry. 

We hope that all those chemists, both academic and industrial, who take 
broader perspectives will benefit from our work. 

We hope that readers will share some of the excitement, aesthetic 
pleasure, and learning that we have experienced during its preparation. In the 
course of our work we have become ever more conscious of the diverse 
manifestations of symmetry in chemistry, and in the world at large. We believe 
that consciousness will also develop in the reader. 

Despite its breadth, our book was not intended to be comprehensive or to 
be a specialized treatise in any specific area. 

We would like especially to note here two classics in the literature of 
symmetry which have strongly influenced us: Weyl's Symmetry and Shubnikov 
and Koptsik's Symmetry in Science and Art. 

Our book has a simple structure. After the introduction (Chapter 1), the 
simplest symmetries are presented using chemical and nonchemical examples 
(Chapter 2). Molecular geometry is then discussed in qualitative terms (Chap- 
ter 3). Group-theoretical methods (Chapter 4) are applied in an introductory 
manner to the symmetries of molecular vibrations (Chapter 5), electronic 
structure (Chapter 6), and chemical reactions (Chapter 7). These chapters are 
followed by a descriptive discussion of space-group symmetries (Chapter 8), 
including the symmetry of crystals (Chapter 9). 

The general perception of symmetry that most people have is sufficient 

vii 
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for reading Chapters 1, 2, 3, 8, and 9. However, in order to appreciate Chapters 
5, 6, and 7, the introduction to group theory given in Chapter 4 is necessary. 
Chapter 4 also deals with antisymmetry. 

We express our thanks to those distinguished colleagues who have read 
one or more chapters and helped us with their criticism and suggestions. They 
include James M. Bobbit (University of Connecticut), Russel A. Bonham 
(Indiana University), Arthur Greenberg (New Jersey Institute of Technology), 
Joel E Liebman (University of Maryland), Alan L. Mackay (University of 
London), Alan P. Marchand (North Texas State University), Kurt Mislow 
(Princeton University), Ian C. Paul (University of Illinois), P6ter Pulay (Uni- 
versity of Arkansas), Robert Schor (University of Connecticut), and Gy6rgy 
Vars~inyi (Budapest Technical University). 

We thank those authors and copyright owners who gave us permission to 
use their illustrations in our book. We made all efforts to identify the sources of 
all illustrative materials and regret if, inadvertently, we missed anything in 
doing so. 

Most of the final version was compiled during our stay at the University of 
Connecticut, 1983-85, and we greatly benefited from the school's creative and 
inspiring atmosphere. We express our gratitude to Dean Julius A. Elias, to IMS 
Director Leonid V. Azaroff, and to our colleagues in the departments of 
Chemistry and Physics. 

We dedicate this book to the memory of J6zsef Poll~k (1901-1973), who 
was the stepfather of one of us (IH). He was an early and decisive influence in 
stimulating the interests which eventually led to the creation of this book. 

Istv~n and Magdolna Hargittai 
Storrs, Connecticut, and Budapest, Hungary 
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Chapter 1 

Introduction 

Fundamental phenomena and laws of nature are related to symmetry, and, 
accordingly, symmetry is one of science's basic concepts. Perhaps it is so 
important in human creations because it is omnipresent in the natural world. 
Symmetry is beautiful, although alone it may not be enough for beauty, and 
absolute perfection may even be irritating. Usefulness and function and 
aesthetic appeal are the origins of symmetry in the worlds of technology and 
the arts. 

Much has been written, for example, about symmetry in B61a Bart6k's 
music [1-1]. It is not known, however, whether Bart6k consciously applied 
symmetry or was simply led intuitively to the golden ratio so often present in 
his music. Another unanswerable question is how these symmetries contribute 
to the appeal of Bart6k's music, and how much of this appeal originates from 
our innate sensitivity to symmetry. Bart6k himself always refused to discuss 
the technicalities of his composing and liked merely to state, "We create after 
Nature." 

Nature abounds in symmetries, and they are present not only in the 
inanimate world but in the living world as well. Curiously, only recently has 
related research intensified, probing into the significance of symmetry in, for 
example, mate selection and other biological actions. A long article titled 
"Why Birds and Bees, Too, Like Good Looks" in the New York Times in 1994 
[1-2] is a sign of growing public interest in symmetry matters. 

The above examples illustrate how we like to consider symmetry in a 
broader sense than how it appears just in geometry. The symmetry concept 
provides a good opportunity to widen our horizons and to bring chemistry 
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closer to other fields of human activities. An interesting aspect of the relation- 
ship of chemistry with other fields was expressed by Vladimir Prclog in his 
Nobel lecture [1-3]: 

Chemistry takes a unique position among the natural sciences for it 
deals not only with material from natural sources but creates the 
major parts of its objects by synthesis. In this respect, as stated 
many years ago by Marcelin Berthelot, chemistry resembles the 
arts: the potential of creativity is terrifying. 

Of course, even the arts are not just for the arts' sake, and chemistry is 
certainly not done just fbr chemistry's sake. However, in addition to creating 
new healing medicines, heat-resistant materials, pesticides, and explosives, 
chemistry is also a playground for the organic chemist to synthesize exotica 
including propellane and cubane, for the inorganic chemist to prepare com- 
pounds with multiple metal-metal bonds, for the stereochemist to model 
chemical reactions after a French parlor trick (cf. Section 2.7.3), and for the 
computational chemist to create undreamed-of molecules and to write exqui- 
sitely detailed scenarios of as yet unknown reactions, using the computer. 
Symmetry considerations play no small role in all these activities. The 
importance of blending fact and fantasy was succinctly expressed by Arthur 
Koestler [1-4}: "Artists treat facts as stimuli for the imagination, while 
scientists use their imagination to coordinate facts." An early illustration of an 
imaginative use of the concept of shape is furnished by C. A. Coulson [1-5], 
citing Lucretius from the first century B.c., who wrote that "atoms with 
smooth surfaces would correspond to pleasant tastes, such as honey; but those 
with rough surfaces would be unpleasant," 

Chemical symmetry has been noted and investigated for centuries in 
crystallography, which is at the border between chemistry and physics. It was 
probably more physics when crystal morphology and other properties of the 
crystal were described, and more chemistry when the inner structure of the 
crystal and the interactions between the building units were considered. Later, 
discussion of molecular vibrations, the selection rules, and other basic princi- 
ples in all kinds of spectroscopy also led to a uniquely important place for the 
concept of symmetry in chemistry with equally important practical implica- 
tions. 

The discovery of the handedness, or chirality, of crystals and then of 
molecules led the symmetry concept nearer to the real chemical laboratory. It 
was still, however, not the chemist, in the classical sense of the profession, who 
was most concerned with symmetry, but the stereochemist, the structural 
chemist, the crystallographer, and the spectroscopist. Symmetry used to be 
considered to lose its significance as soon as molecules entered the most usual 
chemical change, the chemical reaction. Orbital theory and the discovery of 
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the conservation of orbital symmetry have removed this last blindfold. The 
awarding of the 1981 Nobel Prize in chemistry to Fukui [1-6] and Hoffmann 
[1-7] signifies these achievements (Figure 1-1). 

During the past dozen or so years, two important discoveries in molecular 
science and solid-state science have been intimately connected with symmetry. 
One is the C60 buckminsterfullerene molecule [1-8] and the whole emerging 
fullerene chemistry. The other is quasicrystals [1-9]. Buckminsterfullerene 
will be mentioned again in Section 3.7, and the quasicrystals in Section 9.8. 
Some general considerations [1-10], however, are presented here. 

Geometry, and especially physical geometry, was central to Buckminster 
Fuller's (1895-1983) natural philosophy. He was not a chemist, but had a high 
esteem for chemistry, and quoted Avogadro's law (Figure 1-2) to illustrate that 
chemists consider volumes as material domains and not merely as abstractions. 
Fuller (Figure 1-3) recognized the importance of synergy for chemistry and 
gave this explanation for it [1-11]: 

Chemists discovered that they had to recognize synergy because 
they found that every time they tried to isolate one element out of a 
complex or to separate atoms out, or molecules out, of compounds, 
the isolated parts and their separate behaviors never explained the 

~ ~ . .~ 

.~ 

Figure 1-1. Kenichi Fukui (left). Photograph (1992) by Tsuneo Ide. Courtesy of Professor 
Fukui. Roald Hoffmann (right). Photograph (1982) by the authors. 
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Figure 1-2. Avogadro and Aw)gadro's law on Italian stamp. 

associated behaviors at all. It always failed to do so. They had to 
deal with the wholes in order to be able to discover the group 
proclivities as well as integral characteristics of  parts. The chem- 
ists found the Universe already in complex association and working 
very well. Every time they tried to take it apart or separate it out, 
the separate parts were physically divested of their associative 
potentials, so the chemists had to recognize that there were associ- 
ated behaviors of  wholes unpredicted by parts; they found there was 
an old word for i t - - synergy .  

In a different, though not entirely unrelated, context, Avogadro has been 
proposed [1-12] to be the ultimate godfather of  buckminsterfullcrene for he was 

Figure 1-3. R. Buckminster Fuller and his Geodesic Dome, the U.S. Exhibition Hall at the 1967 
Montreal Expo. Photographs (1973) courtesy of Lloyd Kahn, Bolinas, California. The arrow 
indicates a pentagon among the hexagons. 
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the inventor of the whole concept of monoelemental compounds. This proposal 
was made by D. E. H. Jones, who originally brought up the idea of the hollow- 
shell graphite molecule almost 20 years prior to the discovery of buckminster- 
fullerene [1-13]. In a synergistic move, Jones also referred to a biological 
analogy of what would be considered today a model of a giant fullerene 
molecule. A few pentagons are seen interspersed in the generally hexagonal 
pattern of Aulonia hexagona, shown in Figure 1-4 [1-14]. The similarity to 
Fuller's Geodesic Dome at the 1967 Montreal Expo (Figure 1-3) is striking. 
This Geodesic Dome did indeed play an important role in leading the discov- 
erers of buckminsterfullerene, Kroto, Smalley (Figure 1-5), and associates 
[1-8], to the right hypothesis about its molecular structure. Kroto has elo- 
quently described [I-15] how remembering his visit to the Dome, almost two 
decades before, assisted him and his colleagues in arriving at the highly 
symmetrical truncated icosahedral geometry; (see, e.g., Ref. [1-16] and 
Section 2.8 on polyhedra) during the exciting days following the crucial 
experiment. 

Mathematicians have, of course, known for a long time (see, e.g., Ref. 
[1-17]) that one can close a cage having an even number of vertices with any 
number of hexagons (except 1), provided that 12 pentagons are included in the 
network. The truncated icosahedron has 12 pentagons and 20 hexagons, and it 
is one of the semiregular solids of Archimedes (see Section 2.8). Leonardo da 
Vinci (1452-1519) drew a hollow framework of this structure to illustrate the 
book De Divina Proportione by Luca Pacioli (Figure 1-6). All such carbon 
substances whose cage molecules contain 12 pentagons and various numbers of 

Figure 1-4. H~ickel's Aulonia hexagona in D'Arcy W. Thompson, On Growth and Form [1-14]. 
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Figure I-5. H.W. Kroto. Photograph courtesy of Professor Kroto (lefll. R. E. Smallcy anti 
lllOdcls t~f buckminsterfullcrenc. Photograph courtesy o|  Proti-ss¢~r Smallcy Irighl). 
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Figure 1-6. Leonardo da Vinci's lruncaled icosahedron, drawn for Luca Pacioli's De Di~#la 
Prol~ortiom'. 
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hexagons are called fullerenes, of which C60 has the special name buckminster- 
fullerene. 

There is another early and beautiful example of the fullerene-type struc- 
tures. Lion sculptures are common in China as guards in front of important 
buildings [1-18]. They appear in pairs. The female has a baby lion under the left 
paw, and the male has a sphere under the right paw. This sphere is said to 
represent a ball made of strips of silk which was a favorite toy in ancient China. 
The surface of the ball is usually decorated by a regular hexagonal pattern. We 
know, however, that it is not possible to cover the surface of the sphere by a 
regular hexagonal pattern. There are, indeed, considerable chunks of the 
sphere hidden by the lion's paw and the stand itself on which the lion and the 
sphere stand. There is at least one lion sculpture (Figure l-7a) under whose paw 
the sphere is decorated by a hexagonal pattern interspersed by pentagonal 
shapes (Figure 1-7b), not unlike Fuller's Geodesic Dome structure. This 
sculpture stands in front of the Gate of Heavenly Purity in the Forbidden City 
and dates back to the reign of Qian Long (1736-1796) of the Qing dynasty. 

Incidentally, balls made of strips of silk are popular decorations for 
display in Japan. They are called temari, and Figure 1-8 shows one with the 
pattern of the buckminsterfullerene structure [1-19]. 

In conclusion, two theoretical studies are quoted, in which Osawa [1-20] 

Figure 1-7. (a) Gold-plated lion sculpture in front of the Gate of Heavenly Purity (Qianqing- 
men) in the Forbidden City, Beijing. (b) Close-up of the sphere under the lion's paw. Several 
pentagonal shapes are seen interspersed among the hexagonal pattern decorating the surface of the 
sphere. Photographs by the authors. 
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Figure I-8, Japanese tetnari displaying a pattern of truncated icosahedmn [1-19]. Tcmari 
courtesy of Kiyoko Urata. 

and Bochvar and Gal'pern [1-21] described the l~,-symmetric Coo molecule in 
the early 1970s. These predictions, however, were not followed up by experi- 
mental work. The papers, published originally in Japanese and in Russian, had 
gone into oblivion long before the appearance of buckminsterfullerene, though 
they were graciously rediscovered afterward. 

The other important symmetry-related discovery was the quasicrystals. 
Both the truncated icosahedral structure of buckminstcrfullcrcnc and the 
regular but nonperiodic network of the quasicrystals are related to tivetbld 
symmetry. In spite of this intimate connection between them at an intellectual 
level, their stories did not really cross. Thc conceptual linkagc between them is 
provided by Fuller's physical geometry, and this is also what relates them to the 
icosahcdral structure of viruses (see Section 9.5.2). 

The actual experimental discovery of quasicrystals was serendipitous 
[1-9], notwithstanding some previous predictions (scc, e.g., Rcf. [1-22]). It has 
been a rock-solid fundamental dogma of crystallography that fivefold symme- 
try is a noncrystallographic symmetry. We shall return to this question in 
Section 9.3. Suffice it to quote here an illustration of the mosaic covcrage of a 
surface by the first four regular polygons (Figure 1-9) from a beautiful early 
paper on fivefold symmetry [1-23]. There have been many attempts to cover 
the surface with regular pentagons without gaps and overlaps, and some 
examples [1-24-1-26] are shown in Figure 1-10. Then, Penrose [1-27] found 
two elements which, by appropriate matching, could tile the surface with long- 
range pentagonal symmetry though only in a nonperiodic way (Figure 1-11). 
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Figure 1-9. Mosaic coverage of the surface by the equilateral triangle and the regular hexagon, 
the square, and the regular pentagon, after Breder [1-23]. 

This pattern was extended by Alan Mackay (Figure 1-12a) into the third 
dimension, and even a simulated diffraction pattern was produced [1-22] which 
showed tenfoldedness (Figure 1-12b). It was about the same time that Dan 
Shechtman (Figure 1-13a) was experimenting with metallic phases of various 
alloys cooled with different speeds and observed tenfoldedness in an actual 
electron diffraction experiment (Figure 1-13b) for the first time. The discovery 
of quasicrystals has given an added perspective to crystallography and the 
utilization of symmetry considerations. 

The question may also be asked as to whether "chemical symmetry" 
differs from any other kind of symmetry? Symmetries in the various branches 
of the sciences are perhaps characteristically different, and one may ask 
whether they could be hierarchically related. The symmetry in the great 
conservation laws of physics (see, e.g., Ref. [1-28]) is, of course, present in 
any chemical system. The symmetry of molecules and their reactions is part of 
the fabric of biological structure. Left-and-right symmetry is so important for 
living matter that it may be matched only by the importance of "left-and-right" 
symmetry in the world of the elementary particles, including the violation of 
parity, as if a circle is closed, but that is, of course, a gross oversimplification. 

When we stress the importance of symmetry considerations, it is not 
equivalent to declaring that everything must be symmetrical. In particular, 
when the importance of left-and-right symmetry is stressed, it is the relation- 
ship of left and right, rather than their equivalence, that has outstanding 
significance. 

We have already mentioned that symmetry considerations have continued 
their fruitful influence on the progress of contemporary chemistry. This is so 
for contemporary physics as well. It is almost surprising that fundamental 
conclusions with respect to symmetry could be made even in this century. It 
was related by C. N. Yang [1-29] that Dirac considered Einstein's most 
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Figure 1-10. Attempts of pentagonal tiling by, from top to bottom, Dorcr (after Crowe [I 2411, 
Kepler ,:,after Danzer ct al. {1-25]) and Shubnikov (after Mackay [I-26]). 
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Figure 1-11. Penrose tiling. 

important contributions to physics to be "his introduction of the concept that 
space and time are symmetrical." Dirac also had the prescience to write 
already in 1949 [1-30] that "I  do not believe that there is any need for physical 
laws to be invariant under reflections." Yet most physicists were surprised by 
the discovery of the nonconservation of parity in 1957 (cf. Ref. [1-31]). Since 
then, broken symmetries have received increasing attention. The term relates to 
situations in which symmetries that are expected to hold are valid only 
approximately or fail completely [1-32]. The three basic possibilities are 
incomplete symmetry, symmetry broken by circumstances, and spontaneously 
broken symmetry. 

But what is symmetry? We may not be able to answer this question 
satisfactorily, at least not in all its possible aspects. According to the crystal- 
lographer (and symmetrologist) E. S. Fedorov, "Symmetry is the property of 
geometrical figures to repeat their parts, or more precisely, their property of 
coinciding with their original position when in different positions" [1-33]. 
According to the geometer H. S. M. Coxeter [1-34], "When we say that a figure 
is 'symmetrical' we mean that there is a congruent transformation which leaves 
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Figure 1-12. A.L. Mackay. Photograph 119821 by the authors. Simulated "clccmm diffrac- 
tion'" pattern of tv.'o-dimcnsional Pcnrosc tiling, after Mackay [1-22]. Photograph courtesy ~1 
Profess, or Mackay. 

it unchanged as a whole, merely permuting its component  elements."  Fcdo- 
roy's definition is cited here after another symmetrologist  (and crystallogra- 
pher), A. V. Shubnikov [1-331, who added that while symmetry  is a property of  
geometrical figures, obviously, "'material figures" may also have symmetry. 
He further said that only parts which arc in some sense equal among them- 
selves can be repeated and noted the existence of two kinds of  equality, to wit 
congruent  equality and mirror equality. These two equalities arc the subsets 
of the metric equality concept of  M6bius, according to whom "figures are 
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Figure 1-13. D. Shechtman. Photograph (1991) by the authors. Electron diffractitm pattern with 
tenfold symmetry. Photograph courtesy of Professor Shcchtman. 
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equal if the distances between any given points on one figure are equal to the 
distances between the corresponding points on another figure" [I-34]. 

Symmetry also connotes harmony of proportions, however--a rather 
vague notion according to Weyl [1-35]. This very vagueness, at the same time, 
often comes in handy when relating symmetry and chemistry or, generally 
speaking, whenever the symmetry concept is applied to real systems. Mislow 
and Bickart [I-36] published an epistemological note on chirality in which 
much of what they have to say about chirality, as this concept is applied to 
geometrical figures versus real molecules, solvents, and crystals, is true about 
the symmetry concept as well. Mislow and Bickart argue that "it  is unreason- 
able to draw a sharp line between chiral and achiral molecular ensembles: in 
contrast to the crisp classification of geometric figures, one is dealing here with 
a fuzzy borderline distinction, and the qualifying 'operationally' should be 
implicitly or explicitly attached to 'achiral' or 'racemic' whenever one uses 
these terms with reference to observable properties of a macroscopic sample." 
Further, Mislow and Bickart [1-36] state that "when one deals with natural 
phenomena, one enters 'a stage in logic in which we recognize the utility of 
imprecision' [1-37]." The human ability to geometrize nongeometrical phe- 
nomena greatly helps to recognize symmetry even in its "vague" and "fuzzy" 
variations. In accordance with this, Weyl [1-35] referred to DCirer, who 
"considered his canon of the human figure more as a standard from which to 
deviate than as a standard toward which to strive." 

Symmetry in its rigorous sense helps us to decide problems quickly and 
qualitatively. The answers lack detail, however [1-38]. On the other hand, the 
vagueness and fuzziness of the broader interpretation of the symmetry concept 
allow us to talk about degrees of symmetry, to say that something is more 
symmetrical than something else. An absolutist geometrical approach would 
allow us to distinguish only between symmetrical and asymmetrical, possibly 
with dissymmetrical thrown in for good measure. So there must be a range of 
criteria according to which one can decide whether something is symmetrical, 
and to what degree. These criteria may very well change with time. A case in 
point is the question as to whether or not molecules preserve their symmetry 
upon entering a crystal structure or upon the crystal undergoing a phase 
transition. Our notion about structures and symmetries may evolve as more 
accurate data become available (though the structures and symmetries are 
unchanged, of course, by our notions). A whole new approach is developing to 
analyze symmetry properties in terms of a continuous scale rather than of a 
discrete "yes/no" [1-39] and to quantify chirality [1-40]. 

The remarkable phenomenon of statistical symmetry was noted by Loeb 
[1-41]. There are some apparently totally asymmetrical structures in which 
characteristic parameters are, however, subject to certain well-defined con- 
strained patterns when averaged according to some system. 
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Recognizing structural and other kinds of regularities has always been 
important in chemistry. It has been argued, for example, that at the time of the 
first edition of The Nature qf the Chemical Bond [1-42], Linus Pauling had 
access to less than 0.01% of the structural information of 50 years later, yet his 
ideas on structure and bonding have stood the test of time [1-43]. 

The history of periodic tables, following Mendeleev's seminal discovery, 
also demonstrates chemists' never-ending quest for beauty and harmony. 
Dmitri I. Mendeleev was looking for a simple system for presenting the 
elements as he was writing a general chemistry text for his students. The Soviet 
stamp block, issued for the centennial of the periodic table, depicts its earliest 
version (Figure 1-14). Approximately 700 periodic tables were published 
during the tirst one hundred years after lhe original discovery in 1869. E. G. 
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F i g u r e  1-14. Soviet stamp block issued to commemorate the centenary of Mendelee,,'s periodic 
~y stem. 
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Mazurs [1-44] has collected, systematized, and analyzed them in a unique 
study. Classification of all the tables reduced their number to 146 different 
types and subtypes which are described by such terms as "helices, space 
lemniscates, space concentric circles, space squares, spirals, series tables, 
zigzags, parallel lines, step tables, tables symmetrical about a vertical line, 
mirror image tables, tables of one revolution and of one row, tables of planes, 
revolutions, cycles, right side as well as left side electronic configuration 
tables, tables of concentric circles and parallel lines, right side as well as left 
side shell and subshell tables." Figure 1-15 shows the traditional, rectangular- 
shaped table in the form of a wall decoration displayed on the facade of the St. 
Petersburg college building where Mendeleev used to work. The characteristic 
symmetry of this arrangement is periodicity itself. The two tables of Figure 
1-16 were drawn after Mazurs [1-44], one with concentric circles in space, 

Figure 1-15. Mendeleev's periodic system on the facade of the college building where Men- 
deleev used to work. Photograph courtesy of Dr. A. Belyakov, St. Petersburg. 
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representing subshells and period cones stretched vertically; and the other with 
parallel lines in the plane with bilateral symmetry. Figure 1-17 [1-45] is a spiral 
representation of the periodic system (drawn proportionally to the increasing 
mass of the elements, prior to the understanding of the foundation of the system 
in the electronic structure of the elements), and Figure 1-18 is an artistic 
representation of the spiral nature of the system by a chemist sculptor [1-46]. 

The quest for symmetry and harmony has, of course, contributed more 
than mere aesthetics in establishing the periodic table of the elements. Beauty 
and reason blend in it in a natural fashion. C. A. Coulson, theoretical chemist 
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Figure 1-17. Spiral periodic system, after Erdmann [1-45]. Computer graphics constructed by 
Judit Molnar, Budapest. 

and professor of mathematics, concluded his Faraday lecture on symmetry 
[1-5] with the words: 

Man's sense of shape--his  feeling for form-- the  fact that he exists 
in three dimensions--these must have conditioned his mind to 
thinking of structure, and sometimes encouraged him to dream 
dreams about it. I recall that it was Kekul6 himself who said: "Let  
us learn to dream, gentlemen, and then we shall learn the truth." 
Yet we must not carry this policy too far. Symmetry is important, 
but it is not everything. To quote Michael Faraday writing of his 
childhood: "Do not suppose that I was a very deep thinker and was 
marked as a precocious person. I was a lively imaginative person, 
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Figure 1-18. Artistic spiral representation of the periodic system by B. Vizi [ 1-46]. Photograph 
courtesy of Dr. Vizi. Veszpr6m. 

and could believe in the Arabian Nights as easi ly as in the 
Encyclopedia .  But facts were important to me,  and saved me ."  It is 
when symmetry  interprets facts that it serves its purpose: and then 
it delights us because it links our study of  chemistry with another 
world of  the human spir i t - - the  world o f  order, pattern, beauty, 
satisfaction. But facts c o m e  first. Symmetry  encompasses  m u c h - -  
but not quite all! 
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Chapter 2 

Simple and Combined Symmetries 

2.1 BILATERAL SYMMETRY 

The simplest and most common of all symmetries is bilateral symmetry. Yet at 
first sight it does not appear so overwhelmingly important in chemistry as in 
everyday life. The human body has bilateral symmetry, except for the asym- 
metric location of some internal organs. A unique description of the symmetry 
of the human body is given by Thomas Mann in The Magic Mountain [2-1] as 
Hans Castorp is telling about his love to Clawdia Chauchat: 

How bewitching the beauty of a human body, composed not of 
paint or stone, but of living, corruptible matter charged with the 
secret fevers of life and decay! Consider the wonderful symmetry 
of this structure: shoulders and hips and nipples swelling on either 
side of the breast, and ribs arranged in pairs, and the navel centered 
in the belly's softness, and the dark sex between the thighs. 
Consider the shoulder blades moving beneath the silky skin of the 
back, and the backbone in its descent to the paired richness of the 
cool buttocks, and the great branching of vessels and nerves that 
passes from the torso to the arms by way of the arm pits, and how 
the structure of the arms corresponds to that of the legs! 

The bilateral symmetry of the human body is emphasized by the static 
character of many Egyptian sculptures (Figure 2-1). Mobility and dynamism, 
however, do not diminish the impression of bilateralness of the human body 
(Figure 2-2). 
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Figure 2-1. Egyptian sculpture from 2700 me. Photo of Lehnert & Landrock At! Publishers, 
Cairo. Used by permission. 

Already Kepler [2-2] noted in connection with the shape of the animals 
that the 

upper and lower depends on their habitat, which is the surface of 
the e a r t h . . .  The second distinction of front and back is conferred 
on animals to put in practice motions that tend from one place to 
another in a straight line over the surface of the e a r t h . . ,  bodily 
existence entailed the third diameter, of right and left, should be 
added, whereby an animal becomes so to speak doubled. 

The "three diameters" of Kepler suggest a Cartesian coordinate system [2-3]. 
Bilateral symmetry is indeed very common in the animal kingdom. It 

always appears when up and down as well as fi)rward and backward are 
different, whereas leftbound and rightbound motion have the same probability. 
As translational motion along a straight line is the most characteristic for the 
vast majority of animals on Earth, their bilateral symmetry is trivial. This 
symmetry is characterized by a reflection plane, or mirror plane, hence its 
usual label m. 
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Figure 2-2. Mobility does not diminish the perception of bilaterality of the human body: 
swimmer (MTI-Foto Archive, Budapest) and gymnast (photograph by T. Szigeti, Budapest). 
Used by permission. 

Bilateral symmetry is widespread in the animal world (Figure 2-3) and in 
some flowers (Figure 2-4). It may be only accidental for a tree (Figure 2-5a). 
Generally, however, trees as well as other plants have radial, or cylindrical, or 
conical symmetries with respect to the trunk or stem. Although these symme- 
tries are very approximate, they can be recognized without any ambiguity 
(Figure 2-5b). 

Bilateral symmetry, and symmetry in general, often appears in expres- 
sions of religion (see, e.g., Figure 2-6). 

The symmetry plane of the human face is sometimes emphasized by 
artists. Some examples are cited in Figure 2-7. Of course, there are minute 
variations, or even considerable ones, between the left and right sides of the 
human face (see, e.g., Figure 2-8). 

The origin and meaning of the deviations from bilateral symmetry of the 
human face have generated considerable research interest (see, e.g., Ref. 
[2-4]). It may even be that the two sides of our face differ in expressing 
emotions, and one may be more "private" and the other may be more 
"public."  
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Figure 2-3. Animals: Dog, monkey (photographs by the author~), insect ton stamp), and 
butterfly (on stampl. 

Differences between the left and right hemispheres of the brain have been 
the subject of intensive studies, and several monographs have appeared (see, 
e.g., Rcfs. [2-5] and [2-6]). Hemispheric asymmetry has received so much 
attention that recently it was suggested that "the time has come to put the brain 
back together again" [2-6]. 

Bilateral symmetry has outstanding importance in man-made objects. It 
has a functional purpose. The bilateral symmetry of various vehicles, for 
example, is determined by their translational motion. On the other hand, the 
cylindrical symmetry of the Lunar Module is consistent with its function of 
vertical motion with respect to the moon's surface. It has been noted [2-7] that 
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Figure 2-4. Flowers: Orchids from Hawaii. Photographs by the authors. 

the motorcycle with a sidecar may be disappearing because its shape suggests 
circular rather than translational motion. 

Examples of cylindrical symmetry related to the preferential importance 
of the vertical direction are the salt columns in the Dead Sea (Figure 2-9a) as 
well as the stalactites and the stalagmites in caves (Figure 2-9b), both formed of 
calcium carbonate. 

The occurrence of radial type symmetries rather than more restricted ones 
necessitates a spatial freedom in all relevant directions. Thus, for example, the 
copper formation in Figure 2-10a has a tendency to form cylindrically sym- 
metric structures. On the other hand, the solidified iron dendrites obtained 
from iron-copper alloys, after dissolving away the copper, display bilateral 
symmetry in Figure 2-10b. 

Both folk music and music by master composers are rich in various 
symmetries. Figure 2-11 shows two examples with bilateral symmetry. The first 
example (Figure 2-11a) is from a Hungarian folk song entitled Crunchy 
Cherries Are Ripening. The sequence is A, AS/ASv, A, where the upper index 
indicates a 5-note shift to higher frequencies and the lower index v indicates 
some minute variation. Another example (Figure 2-11b) is Unisono No. 6 from 
Bart6k's Microcosmos series, written specifically for children. Figure 2-11b 
illustrates a mirror plane which includes a note. 

The introductory piece of the Microcosmos is depicted in Figure 2-12a. It 
has only approximate bilateral symmetry though the two halves are markedly 
present. When some schoolchildren in their early teens were asked to express 
their impressions in drawing while listening to this piece of music for the first 
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Figu re  2-5. (a) Accidental  bilateral symmet ry ,  Tree near Aveley, Essex.  Photograph used by 
permiss ion  of C. 12 Ballard. (b) Conical  and radial symmet r i e s  of  trees. Photographs  by the 
authors. 
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Figure 2-6. Artistic and religious expressions of bilaterality: Photographs from Venice, Italy, 
and Zagorsk, Russia, by the authors. 

! f f , , i ~ . ~ _  ' "  ~ 
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Figure 2-7. Human face in artistic expression: (a) Henri Matisse, Woman's Portrait. Repro- 
duced by permission from The Hermitage, St. Petersburg; (b) George Buday, Miklds Radn6ti, 
woodcut, 1969. Reproduced by permission of George Buday, R. E; (c) Jen6 Barcsay, Woman's 
Head, 1961. Reproduced by permission of Ms. Barcsay. 
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Figure 2-8. Face expressing distaste [2-4]. Reproduced by permission, copyright (1978) by the 
American Association for the Advancement of Science. (a) Left-side composite; (b) original; 
(c) right-side composite. 

a b 

Figure 2-9. (a) Salt columns in the Dead Sea. Drawing by Ferenc Lantos after a color slide of 
Palphot, Ltd. Herzlia, Israel. (b) Calcium carbonate stalactites and stalagmites in a cave in 
southern Germany. Photographs by the authors. 
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Figure 2-10. (a) Electrolytically deposited copper, magnification × 1000. Courtesy of Dr. 
Maria Kazinets, Ben Gurion University, Beer Sheva. (b) Directionally solidified iron dendrites 
from an iron-copper alloy after the copper has been dissolved away, magnification × 2600. 
Courtesy of Dr. J. Morral, The University of Connecticut. 
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Figure 2-11. (a) Hungarian folk song Crunchy Cherries Are Ripening. (b) Bart6k's Micro- 
cosmos, Unisono No. 6. 
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Figure 2-12. (a) Bartdk's Microcosmos, Unis¢eu~ No. 1. (b) Drawings inspired by the Unisom~ 
No. 1 by students in their early teens, Koml6 Music School. Courtesy of Mf.ria Apagyi. 

t ime,  they invariably produced patterns with bilateral  symmetry.  Two of  the 
drawings are reproduced in Figure 2-12b. 

Changing fi'om M i c r o c o s m o s  to the " m a c r o " c o s m o s ,  a typical  galaxy of  
the universe would display bilateral  s y m m e t r y  if viewed edge-on as shown in 
Figure 2-13. 

Weyl [2-91 calls bilateral  symmet ry  also heraldic symmet ry  as it is so 
common in coats of  arms. Character is t ical ly,  the Hapsburg and the Romanov 
eagles were double-headed  (Figure 2-14), and there are occurrences  of  double 
heads elsewhere as well (Figure 2-15). 

Figure 2-13. Edge-on view of at typical galaxy [2-81. Reproduced by permission ot R. Ja,,trow, 
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Figure 2-14, Double-headed eagles. Photographs by the authors. (a) Vienna; (b) Prague; (c) St. 
Petersburg; (d) Zurich. 

Figure 2-15. Double-headed animals: (a) Bel- 
gian ad in Brussels; (b) Chinese decoration in 
Beijing. Photographs by the authors. 
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2.2 ROTATIONAL SYMMETRY 

Staying with heraldry, the contour of the simple and powerful Oriental 
symbol yin yang of the South Korean coat of arms is shown in Figure 2-16a. It 
has twofold rotational symmetry in that a half rotation about the axis perpen- 
dicular to the midpoint of the drawing brings back the original figure. This 
rotation axis is a symmetry axis. The Taiwanese stamp with two fish, reminis- 
cent of yin yang, in Figure 2-16c and the logo in the recycling ad in Figure 
2-16b both have twofold rotational symmetry. 

The order of a rotation symmetry axis tells us how many times the 
original figure reoccurs during a complete rotation. The elemental angle is the 
smallest angle of rotation by which the original figure can be reproduced. 
Thus, for twofold rotational symmetry, the order of the rotation axis is 
obviously two, and the elemental angle is 180 ° . The corresponding numbers for 
threefold and fourfold rotational symmetries are three and 120 ° and four and 
90 ° , respectively. In Figure 2-17, rotational symmetries are illustrated by 
sculptures of interweaving fish and dolphins. 

Figure 2-18 further illustrates threefold rotational symmetry. Fourfold 
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Figure 2-16. (a) Contour of yin yang. (b) Logo of Reynolds Recycling painted on a track in 
Honolulu, Hawaii. Photograph by the authors. (c) Two fish on a Taiwane,~e stamp. 
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Figure 2-17. Interweaving fish and dolphins; (a) Twofold in Washington, D.C.; (b) Threefold in 
Prague; (c) Fourfold in Linz, Austria. Photographs by the authors. 

rotational symmetries are illustrated in Figure 2-19. This is the symmetry of 
the swastika, an ornament since prehistoric times but also associated with 
Nazism. It is illustrated by John Heartfield's anti-Nazi poster from 1934 (Figure 
2-19a). American quilts provide a wealth of symmetries. Exclusively rotational 
symmetries are generally rare but they can be found, for example, in the so- 
called friendship quilts (Figure 2-19b) which were made by exchanging 
patterns among a circle of friends and were believed to have strength and 
dignity as well as simplicity [2-12]. 

Machinery parts, performing rotational motion only, such as propellers, 
have rotational symmetry only. An example is the four-blade propeller in 
Figure 2-19c. 

It is very rare in the living world to find creatures which have only 
rotational symmetry. An example from the animal world is the jellyfish (Figure 
2-19d [2-7]). Such exclusively rotational symmetry may be a consequence of 
preferential rotational motion in capturing food. 

Fivefold rotational symmetry is displayed by the flowers in Figure 2-20a. 
Other examples of fivefold rotational symmetry in Figure 2-20 are the NASA 
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Figure 2-18. Examples of threefold rotational symmetry: (a) Italian decoration: photograph by 
the authors: (b) Amcrican Indian pottery decoration [2-101; (c) ltalian Iog~ fi)r recycling: 
photograph by the authors. 

logo and the hubcap, while sixfold rotational symmetry characterizcs the Star 
of David and the six-blade windmill in Figure 2-21. 

The order of rotation axes (n) may be 1, 2, 3 . . . . .  up to infinity, ~; thus, 
it may be any integer. The order 1 means that a complete rotation is needed to 
bring back the original figure; thus, there is a total absence of symmetry, which 
means asymmetry. A onefold rotation axis is an identity operator. The other 
extreme is the infinite order. This means that any, even infinitesimally small, 
rotation leads to congruency. Some examples of rotational symmetry with 
increasing order n are shown in Figure 2-22. 

Decorations displaying exclusively rotational symmetry occur often. The 
otherwise widespread symmetry plane in decorations is easily eliminated by 
interweaving the motifs (see, e.g., the Star of David in Figure 2-21). 
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Figure 2-19. Examples of fourfold rotational symmetry: (a) John Heartfield's Blood and Iron, 
anti-Nazi poster from 1934 (cf. Ref. [2-11]), used by permission; (b) decoration of friendship quilt 
[2-12]; (c) four-blade propeller in Budapest; photograph by the authors; (d) jellyfish Aurelia 
insulinda from Ref. [2-7], used by permission. 
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Figure 2-20. Examples of fivefold rotational symmetry: (a) Hawaiian flowers; (b) NASA logo, 
Florida Space Center; (c) hub-cap. Photographs by the authors. 
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Figure 2-21. Examples of sixfold rotational symmetry: (a) Star of David, New York; photo- 
graph by the authors; (b) six-blade windmill. 

a b 

Figure 2-22. Examples of rotational symmetry: (a) Hawaiian flower, n = 7; (b) Hawaiian 
flower, n = 8; Photographs by the authors. (Continued on next page) 
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Figure 2-22. {('ot~tinl,'¢l) {c) sccdpod of the Autograph Tree (lla,aaii), ~t q; id) turbine wheel 
in "D~mdhcim. Nor~<ly, ~ 21. Photographs by the authors. 

2.3 COMBINED SYMMETRIES 

The symmetry  plane and the rotation axis arc symmetry  elements, l]" a 
figure has a symmetry  element, it is symmetrical.  If it has no symmetry  
clement, it is asymmetrical.  Even an asymmetrical figure has a onelbld 
rotation axis. or, actually, an infinity of  onetk)ld rotation axes. 

The application of a symmetry  element is a s~,mmetrv opt'ration. The 
Sylnmctry elements are the s3'mmet 0, operators. The consequence of  a sym- 
metry operation is a ~vmmefrv lr~m,sfi,rmation. Strict definitions rel~r to 
geometrical symmetry  and will serve us as guidelines only. They will be 
lk~llowcd quali{ativcly in our discussion of  primarily nongeometrical symme- 
tries, according to the ideas presented in Chapter 1. 

So far, symmetries with either a symmetry  plane or a rotation axis have 
been discussed. These symmetry  elements may also be combined.  The 
simplest case occurs when {he symmetry  planes include a rotation axis. 

2.3.1 A Rotation Axis with Intersecting Symmetry Planes 

The dot between n and n; in the label n.m indicates that the rotation axis is 
in the symmetry  plane. This combination of a rotation axis and a symmetry  
plane produces further symmetry planes. Their total number will be n as a 
consequence of  the application of  the n-fold rotational symmetry  to the 
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symmetry plane.The complete set of symmetry operations of a figure is its 
symmetry group. 

Figure 2-23 shows two flowers. The periwinkle (Vinca minor) has four- 
fold rotational symmetry and no symmetry plane. The Norwegian tulip has 
threefold rotational symmetry with the axis of rotation in a symmetry plane. 
The threefold rotation axis will, of course, rotate not only the flower but any 
other symmetry element, in this case the symmetry plane, as well. The 120 ° 
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Figure 2-23, (a) Vinca minor and Norwcgian tulip. Photographs by the authors; (b) Stone 
carving along Via Appia Antica in Rome. Photograph by the authors. 
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rotations will generate altogether three symmetry planes, and these planes will 
make an angle of 60" with each other. The lower part of Figure 2-23 shows an 
ancient stone carving along Via Appia Antica in Rome depicting two flowers 
with the same symmetries as the Vinca minor and the Norwegian tulip. 

Some primitive organisms are shown in Figure 2-24, after H~ckel [2-13]. 
They all have fivefold rotation axes, and some of them have intersecting 
(vertical) symmetry planes as well. The symmetry class of  the starfish in the 

Figure 2-24. Starfish and other primitive organisms possessing a fivefold rotational symmetry 
axis, which may or may not have symmetry planes intersecting it. From H/ickcl [2-13]. 
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middle, for example, is 5-m. This starfish consists of ten congruent parts, with 
each pair related by a symmetry plane. The whole starfish is unchanged either 
by 360°/5 = 72 ° rotation around the rotation axis or by mirror reflection 
through the symmetry planes which intersect at an angle of 36 °. Fivefold 
symmetry with fivefold rotation and coinciding mirror reflection is quite 
common among fruits and flowers. On the other hand, this symmetry is 
conspicuously absent in the world of crystals as will be discussed in more 
detail later. 

Examples of n ' m  symmetries are shown in Figure 2-25. It is a much 

C d 

Figure 2-25. Examples of n'm symmetries: n = 3 Hawaiian flower (a); n = 4 Eiffel Tower, 
Paris, from below (b); n = 5, Pentagonal star (c); and Hawaiian flower (d); Photographs by the 
authors. (Continued on next page) 
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[gudapcst (h~. Photo,graphs b)' the authors. 
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favored symmetry for builders of important buildings, as demonstrated by the 
cupolas of churches and state houses, etc. 

2.3.2 A Rotation Axis with Intersecting Symmetry Planes and 
a Perpendicular Symmetry Plane 

The combination of symmetries considered in this section is labeled 
m'n:m, and it is characteristic of highly symmetrical objects. Accordingly, 
their shapes are relatively simple. As seen in Figure 2-26, some fundamental 
shapes have m.n:m symmetries. Examples include the square prism, m'4:m, 
the pentagonal prism, m.5:rn, the trigonal bipyramid, m'3:m, the square 
bipyramid, m.4:m, and the bicone, the cylinder, and the ellipsoid, all having 
m.~:m symmetry. One of the most beautiful and most common examples of 
this symmetry is the m.6:m symmetry of snowflakes. 

2.3.3 Snowflakes 

The magnificent hexagonal symmetry of snow crystals, the virtually 
endless variety of their shapes, and their natural beauty make them outstanding 
examples of symmetry. The fascination in the shape and symmetry of snow- 
flakes goes far beyond the scientific interest in their formation, variety, and 
properties. The morphology of snowflakes is determined by their internal 
structures and the external conditions of their formation. The mechanism of 
snowflake formation has been the subject of considerable research efforts. It is 
well known that the internal hexagonal arrangement of water molecules 

Figure 2-26. Examples of m . n : m  symmetry: prisms, bipyramids, bicone, cylinder, and ellip- 
soid. 
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produced by hydrogen bonds is responsible for the hexagonal symmetry of 
snowflakes. Howcver, this does not explain the countless number of different 
shapes of snowflakes and, furthermore, why even the smallest variations from 
the basic underlying shape of a snowflake are repeated in all six directions. 
Perfection and diversity of shape are illustrated by Figure 2-27. 

As the really puzzling questions concerning snowflakes are related to 
their morphology rather than to their internal structures, these questions will be 
discussed at some length in the present section. The process of solidification of 
fluids into crystals has been simulated using mathematical models. The 
investigation of the relative stability of various shapes is especially rewarding 
[2-15]. These simulations showed that crystals with sharp tips grew rapidly and 
had high stability, while crystals with fat shapes grew slowly and were less 
stable. However, when these slowly growing shapes were slightly perturbed, 
they tended to split into sharp, rapidly growing tips. This observation led to the 
hypothesis of the so-called points of marginal stability. 

According to Langer's marginal stability model [2-15], the snow crystal 
may start with a relatively stable shape. The crystal may, however, be easily 
destabilized by a small perturbation. A rapid process of crystallization from 
the surrounding water vapor ensues. The rapid growth gradually transforms the 
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Figure 2-27. Perfection and diversity uf shape: (a) photomicrograph and sketch from Nakaya 
[2-14]; (b) creation of the great variety of snowflake shapes. From Jean Effel, l .a Crga t ion  du  

M o m t e .  Reproduced by permission; Copyright Mine Jean Eftel and Agence Hoffman. Paris. 
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crystal into another semistable shape. A subsequent perturbation may then 
occur, resulting again in a new direction of growth with a different rate. The 
marginal stability of the snowflake makes the growing crystal very sensitive to 
even slight changes in its microenvironment. 

The uniqueness of snowflakes may be related to the marginal stability. 
The ice starts crystallizing in a fiat sixfold pattern of water crystals so that it is 
growing in six equivalent directions. As the ice is quickly solidifying, latent 
heat is released and flows between the growing six bulges. The released latent 
heat retards the growth in the areas between these bulges. This model accounts 
for the dendritic or treelike growth. Both the minute differences in the 
conditions of two growing crystals and their marginal stability make them 
develop differently: "Something that is almost unstable, will be very suscept- 
ible to changes, and will respond in a large way to a small force" [2-15]. At 
each step of growth, slightly new microenvironmental conditions are encoun- 
tered, causing new variations in the branches. However, it is assumed that each 
of the six branches will encounter exactly the same microenvironmental 
conditions, hence their almost exact likeness. 

The marginal stability model is attractive in its explanation of the great 
variety of snowflake shapes. It is somewhat less convincing in explaining the 
repetitiveness of the minute variations in all six directions since the microenvi- 
ronmental changes may occur also across the snowflakes themselves and not 
only between the spaces assigned to different snowflakes. 

In order to explain the morphological symmetry of the dendritic snow 
crystals, McLachlan [2-16] suggested a mechanism about three decades ago 
which has not yet been seriously challenged. This author posed the very 
question already mentioned above: "How does one branch of the crystal know 
what the other branches are doing during growth?" McLachlan noted that the 
kind of regularity encountered among snowflakes is not uncommon among 
flowers and blossoms or among sea animals, in which hormones and nerves 
coordinate the development of the living organisms. 

McLachlan's explanation [2-16] for the coordination of the growth among 
the six branches of a snow crystal is based on the existence of thermal and 
acoustical standing waves in the crystal. As the snowflake grows by deposition 
of water molecules upon a small nucleus, it undergoes thermal vibrations at 
temperatures between 250 and 273 K. The water molecules strike and bounce 
off the nucleus, and those which stay add to the growth. Branching occurs at 
points with high concentration of water molecules. If the starting ice nucleus 
has the hexagonal shape shown in Figure 2-28a and the conditions favor 
dendritic growth, then the six corners would be receiving more molecules and 
would be releasing more heat of crystallization than the flat portions. The 
dendritic development evolving from this situation is shown in Figure 2-28b. 
The next stage in the development of a snowflake is the production of a new set 
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Figure 2-28, (a)-(f) McLachlan's [2-161 representation of the coordinated growth of the six 
branches of a snowflake based on his standing wave theory. The original photographs w~erc from 
Bentley's collection [2-17]. 

of equally spaced dendritic branches determined by the modes of vibration 
along the spines of the flake. The long spines of Figure 2-28c arc thought to be 
particular molecular arrays which correspond to the ice structure. The mole- 
cules are vibrating, and the energy distribution between the modes of vibration 
is influenced by the boundary conditions. When one of the spines becomes 
"heavily loaded" at some point, then nodes are induced along this spine. 
These nodes will eject dendritic branches that are equally spaced as indicated 
in Figure 2-28d-f.  The question of how the standing waves in one of the six 
branches are coupled with those in the other branches is answered by consider- 
ing the torque about an axis through the intersection point. This torque 
transmits the same frequencies and induces the same nodes in all the branches. 
Thus, McLachlan asserts that the dendritic development is identical in all six 
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branches and is independent of the particular branch in which the change in the 
conditions occurred. 

During the past decade intensive research has continued into the mecha- 
nism of snowflake formation (see, e.g., Refs. [2-18]-[2-22]). This research 
encompasses the broader question of dendritic crystal growth. New ap- 
proaches, such as fractal models, and copious use of computer simulation have 
greatly facilitated these attempts. However, these investigations assume two- 
dimensional dendrites whereas actual ice dendrites have three-dimensional 
patterns. As Furukawa and Shimada [2-21] noted, it cannot be concluded "that 
a full understanding of the pattern formation of ice crystals has been estab- 
lished." It is truly intriguing, in the words of Kobayashi [2-22], "how such 
complex patterns can be formed by systems which seem to be too simple to 
yield them." It is also fascinating how dendritic growth penetrates even 
chemical synthetic work, witnessed by the development of dendrimer chemis- 
tO' of ever-increasing complexity [2-23] and illustrated by Figure 2-29. 

Returning to the snowflakes, an eloquent description of their beauty and 
symmetry is given by Thomas Mann in The Magic Mountain [2-1]: 

Indeed, the little soundless flakes were coming down more quickly 
as he stood. Hans Castorp put out his arm and let some of them to 
rest on his sleeve; he viewed them with the knowing eye of the 
nature-lover. They looked mere shapeless morsels; but he had more 
than once had their like under his good lens, and was aware of the 
exquisite precision of form displayed by these little jewels, insig- 
nia, orders, agraffes--no jeweller, however skilled, could do finer 
more minute work. Yes, he thought, there was a difference, after 
all, between this light, soft, white powder he trod with his skis, that 
weighed down the trees, and covered the open spaces, a difference 
between it and the sand on the beaches at home, to which he had 
likened it. For this powder was not made of tiny grains of stone; but 
of myriads of tiniest drops of water which in freezing had darted 
together in symmetrical variationmparts, then, of the same inor- 
ganic substance which was the source of protoplasm, of plant life, 
of the human body. And among these myriads of enchanting little 
stars, in their hidden splendour that was too small for man's naked 
eye to see, there was not one like unto another and endless 
inventiveness governed the development and unthinkable differen- 
tiation of one and the same basic scheme, the equilateral, equi- 
angular hexagon. Yet each, in itself--this was the uncanny, the 
anti-organic, the life-denying character of them all---each of them 
was absolutely symmetrical, icily regular in form. They were too 
regular, as substance adapted to life never was to this degree--the 
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living principle shuddered at this perfect  precision,  found it 
deathly, the very marrow of d e a t h - - H a n s  Castorp felt he under- 
stood now the reason why the builders of  antiquity purposely and 
secretly introduced minute variation from absolute symmet ry  in 
their columnar  structures, 
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Figure 2-29. Examples of dcndrimer chemistry, after Tomalia and Dursl [2-231. L!sed b? 
permission. Copyright 11993) Springer-Verlag, 
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The coldness and lifelessness of too much symmetry is as beautifully 
expressed by Thomas Mann as the beauty of the hexagonal symmetry of the 
snow crystal. Michael Pol~nyi [2-24] remarked that an environment that was 
perfectly ordered was not a suitable human habitat. Crystallographers Fedorov 
and Bernal simply stated, "Crystallization is death" [2-25]. 

Human interest in snowflakes has a long history. The oldest known 
recorded statement on snowflake forms dates back to the second century B.c. 
and comes from China according to Needham and Lu Gwei-Djen [2-26]. 
"Flowers of plants and trees are generally five-pointed, but those of snow are 
always six-pointed" . . . was stated as early as 135 B.c. Six was a symbolic 
number for water in many classical Chinese writings. The contrast between 
five-pointed plant structures and six-pointed snowflakes became a literary 
commonplace in subsequent centuries. Of several other relevant citations 
collected by Needham and Lu Gwei-Djen [2-26], another is reproduced here, 
from a statement by a physician from 1189: 

The reason why double-kernelled peaches and apricots are harmful 
to people is that the flowers of these trees are properly speaking 
five-petalled yet if they develop with sixfold (symmetry), twinning 
will occur. Plants and trees all have the fivefold pattern; only the 
yellow-berry and snowflake crystals are hexagonal. This is one of 
the principles of Yin and Yang. So if double-kernelled peaches and 
apricots with an (aberrant) sixfold (symmetry) are harmful, it is 
because these trees have lost their standard rule. 

The examination of snowflake shapes and their comparison with other 
shapes has apparently been a great achievement in East Asia. The involvement 
of yin and yang amply demonstrates how much importance was given to these 
studies. As a forerunner of the modern investigations of the correlation 
between snowflake shapes and environmental (i.e., meteorological) condi- 
tions, the following passage from the thirteenth century is cited [2-26]: 

The Yin embracing the Yang gives hail, the Yang embracing the 
Yin gives sleet. When snow gets six-pointedness, it becomes snow 
crystals. When hail gets three-pointedness, it becomes solid. This 
is the sort of difference that arises from Yin and Yang. 

The first known sketches of snowflakes from Europe in the sixteenth 
century did not reflect their hexagonal shape. Johannes Kepler was the first in 
Europe to recognize the hexagonal symmetry of the snowflakes as he described 
it in his Latin tractate entitled The Six-Cornered Snowflake [2-2], published in 
1611. By this time, Kepler had already discovered the first two laws of 
planetary motion and thus found the true celestial geometry when he turned his 
attention to the snowflakes. He considered their perfect form and, for the first 
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time, sought the origin of shape and symmetry in the internal structure. The 
relationship between crystal habit and the internal structure will be discussed 
in the chapter on crystals (Chapter 9). 

Descartes observed and recorded the shapes of snow crystals. Some of his 
sketches from 1635 are reproduced in Figure 2-30, after Nakaya [2-14]. As 
these were the first drawings of hexagonal snowflakes recorded, it was quite an 
achievement that even rare versions such as those composed of a hexagonal 
column with plane crystals developed at both ends could be found among 
them. More such important contributions in this field [2-27], among them 
Hooke's observations using his microscope, occurred in the seventeenth 
century. Branching in snow crystals has also been recorded by several investi- 
gators. Among the later works, Scoresby's observations and sketches are 
especially important [2-28]. Figure 2-31 reproduces some of them. Scoresby, 
who later became an Arctic scientist, made these drawings in his log book in 
1806 at the age of 16 while he was on a voyage with his father to the Greenland 
whale fisheries. A few years after the publication of Scoresby's work (1820), 
the Japanese Doi communicated a series of excellent sketches, some of which 
are reproduced in Figure 2-32. 

There are two fundamental books containing collections of snowflake 
pictures available today as a result of photomicrography. Bentley [2-17] 
devoted his lifetime to taking photomicrographs of snow crystals and collected 
at least 6000 of them. About half of them appeared in his book coauthored with 
Humphreys [2-17]. This most well known book on snowflakes is probably un- 
surpassable. Bentley's photomicrographs have been reproduced innumerable 
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Figure 2-30. Snow crystals by Descartes from 1635 after Nakaya [2-14]. 
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Figure 2-31. Scoresby's sketches of snowflakes from his log book (1806). after Stamp and 
Stamp [2-28]. Reproduced by permission. 

times in various places--sometimes without indicating the source. Some charac- 
teristic examples of snowflakes from this collection are shown in Figure 2-33. 

The other outstanding contribution is Nakaya's [2-14]. He recorded the 
naturally occurring snow crystals, classified them, and investigated their mass, 
speed of fall, electrical properties, frequency of occurrence, and so on. In 
addition, Nakaya and co-workers developed methods of producing snow 



52 Chapter 2 

Figure 2-32° Snow crystals from Sekka Zusetsu of Doi (from 1832), after Nakaya 12-14]. 

crystals artificially. There is a statue (Figure 2-34) on the campus of Hokkaido 
University in Sapporo honoring Nakaya and commemorating the first artificial 
snowflake in 1936. Nakaya and co-workers succeeded in determining the 
conditions of formation of all different types of snowflakes. 

The major part of the general classification of snow cryslals by Nakaya is 
given in Figure 2-35 and "Fable 2-1. The hexagonal plane crystals are the most 
common and the best known. 

Nakaya made important contributions to observing not only the perfect or 
near perfect symmetries of the snow crystals but also distortions from hexago- 
nal symmetry. Of course, the atomic arrangement is always hexagonal, but the 
morphology or crystal habit may be less than perfectly regular hexagonal. 
Nakaya called such crystals malformed and stated that these asymmetric 
crystals may be more common than the symmetric ones. Of course, the 
question of sym~netry is a matter of degree. Even the snowflakes which are 
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Figure 2-33. Snowflake photomicrographs by Bentley, after Bentley and Humphreys [2-17]. 
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Figure  2-34. Statue, commcm()rating the production of the lirst artiticial snowflake by Nakaya, 
ou the campus of Hokkaido UnivcrsiLv, Sapporo, Japan. Photograph by the authors, 
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Figure 2-35. Fr(~nl Nakaya's g,,:neral t:las,,,ilication of snow crystals [2-141. 
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Table  2-1. Part of  Nakaya's  General  Classification of  Snow Crysta ls  '~ 

Main groups Subgroups Types 

Needle (N) 1. Simple a. Elementary needle 
b. Bundle of needles 

2. Combination 
Columnar (C) 1. Simple 

Plane (P) 

Column/plane 
combinations (CP) 

Columnar with extended 
side planes (S) 

Irregular snow particles (I) 

2, Combination 

1. Regular, developed in 
plane 

2. Irregular number of 
branches 

3. Twelve branches 

4. Malformed 
5. Spatial assemblage of 

plane branches 
1. Column with plane at 

both ends 
2. Bullets with plates 

3. Irregular 

1. Ice 
2. Rimed 
3. Miscellaneous 

a. Pyramid 
b. Bullet 
c. Hexagonal 
a, Bullets 
b. Columns 
a. Simple plate 
b. Branches in sector form 
c. Plate with simple extensions 
d. Broad branches 
e. Simple stellar form 
f. Ordinary dendritic form 
g. Fernlike 
h. Stellar form with plates at ends 
i. Plate with dendritic extensions 
a. Three-branched 
b. Four-branched 
c. Others 
a. Fernlike 
b. Broad branches 

Many varieties 
a. Spatial hexagonal 
b. Radiating 
a. Column with plates 
b~ Column with dendrites 
a. Bullets with plates 
b. Bullets with dendrites 

"After Nakaya [2-14]; cf. Figure 2-35. 
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considered to bc the most symmetrical may reveal slight differences in their 
branches when examined closely. 

2.4 INVERSION 

What is the symmetry of the 1,2-dibromo-l,2-dichloroethane molecule, 
as shown in Figure 2-36? There is obviously no symmetry plane and no 
rotation axis. However, any two atoms of the same kind arc related by a line 
connccting them and going through the midpoint of the central bond. This 
midpoint is the only symmetry element of this molecule, and it is called the 
symmetry center or im,ersion point. The application of this symmetry element 
interchanges the atoms, or more generally, any two points located at the same 
distance from the center along the line going through the center. This inter- 
change is called inversion. The notation of inversion symmetry is i. 

An inversion may also be represented as the consecutive application of 
two simple symmetry elements, namely, a twofold rotation and mirror reflcc- 

Br CI 
I '~ 
~ , / /  

Cl Br 

CI ~ Br CI 

/°' ,__ ~ - _  - ~ " ~ - - ~ -  ~,, / l -~ / 
Ct Br CI 

8,r C~ H, ~. Cl B,,r Cl 
~ , . ~  ~ 8r b_~ 

/ , -  i--~ -~r / I"~ 
CI Br CI H CI Br 

Figure  2-36. The 1,2-dibromo-l,2-dichloroethane molecule. Its center of  symmetry is the 
midpoint of the C - C  bond. An inversion is equivalent to the consecutive application of a twofold 
rotation axis and a reflection. 
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tion, or vice versa. For the molecule of Figure 2-36, this could be described, 
for example, in the following way: (a) rotate the molecule by 180 ° about the 
C-C bond as the rotation axis and (b) apply a symmetry plane perpendicular to 
and bisecting the C-C bond; or (a) apply a twofold rotation axis perpendicular 
to the CICCCI plane and going through the midpoint of the C-C bond and then 
(b) apply a mirror plane coinciding with the CICCC1 plane. These operations 
are indicated in Figure 2-36, and in both examples the results are invariant to 
the order in which the two operations are performed. 

The parallelepiped of Figure 2-37 is a typical example of an object 
possessing a center of symmetry. Each apex, edge, and face has its correspond- 
ing one through the inversion center. If there is any direction of a line or a 
segment of a face, the symmetry center will invert that direction, and the 
counterpart line or face is obtained. 

The sphere is a highly symmetrical object which possesses a center of 
symmetry. Conjugate locations on the surface of a sphere are related by an 
inversion through the center of symmetry. The geographical consequences of such 
an inversion are emphasized in a newspaper article on New Zealand by James 
Reston in his "Letter from Wellington. Search for End of the Rainbow" [2-29]: 

Nothing is quite the same here. Summer is from December to 
March. It is warmer in the North Island and colder in the South 
Island. The people drive on the left rather than on the right. Even 
the sky is different--dark blue velvet with stars of the Southern 
Cross--and the fish love the hooks 

Madrid, Spain, corresponds approximately to Wellington, New Zealand, by 
inversion. 

The notation of the symmetry center or inversion center is ] while the 
corresponding combined application of twofold rotation and mirror reflection 
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F igure  2-37. Parallelepiped: Illustration of  an object with a center of symmetry. 
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may also be considered to bc just one symmetry transformation. The symmetry 
clement is called a mirror-rotation symmetry axis of th.e second_ or.der, or 
twofold mirror-rotation symmetry axis, and it is labeled 2. Thus 1 =- 2. 

The twotbld mirror-rotation axis is the simplest among the mirror-rotation 
axes. The object shown in Figure 2-38a has a fourfold mirror-rotation axis. It 
was prepared from a square shape with an obliquely inscribed square. The 
emerging corners are bent alternately up and down. The object obtained in this 
way has a twofold rotation axis perpendicular to the square plane and intersect- 
ing its midpoint. Moreover, a 90 ° rotation about the rotation axis plus a 
reflection through the square planc also brings the object into coincidence with 
itself. This combined operation is determined by a fourfold mirror-rotation 
axis, labeled ~. Generally speaking, a 2n-fold mirror-rotation axis consists 
of the lbllowing operations: a rotation by (360/2n) ° and a rellection through the 
plane perpcnd_icular to the rotation axis. Another example, a sixfold mirror- 
rotation axis, 6, is shown in Figure 2-38b. It should be noted that only mirror- 
rotation axes with an even order (2n) can be present in the objects shown in 
Figure 2-38. 

The symmetry of the snowflake involves this type of mirror-rotation axis. 
The snowflake obviously has a center of symmetry, The symmetry class m.6:m 
contains a center ot" symmetry at the intersection of the sixfold rotation axis and 
the perpendicular symmetry' plane. In general, for all m'n:m symmetry classes 

with n even, the point of intersection of the n-fold rotation axis and the 
perpendicular symmetry plane is also a center of symmetry. When n is odd in 
an m-n:ni symmetry class, however, there is no center of synmletry preselll. 

Figure -.?-38. [a) Example of [burlbld mirror-rolation symmetry. Ibl Example of ~ixlbld mirror 
rotation s.vmmCtry. 
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2.5 SINGULAR POINT AND TRANSLATIONAL SYMMETRY 

The midpoint of a square is unique, there is no other point equivalent to it 
(Figure 2-39). It is called a singular point. A corner of the same square is not 
singular. The symmetry transformations of the square reproduce it, and there 
are altogether four equivalent corner points of the square. An arbitrarily chosen 
point in a square will have seven other equivalent points because of the 
symmetry transformations of the square. Altogether there will be eight equiva- 
lent points. However, if the chosen point coincides with one of the corners of 
the square, there will only be four equivalent points. The same argument 
applies if the point happens to be on one of the symmetry axes of the square. 
The multiplicity of a corner point of the square or any point on a symmetry axis 
is two. The product of the number of equivalent points and multiplicity is 
constant (viz., eight for the square). Finally, if the chosen point coincides with 
the midpoint of the square, the number of equivalent points will be one, and the 
multiplicity will be eight. 

In an asymmetric figure, each point is singular and the multiplicity of 
each point is one. 

The symmetry classes characterizing figures or objects which have at 
least one singular point are called point groups. The center of the circular 
pattern of the pavement in Figure 2-40a is a singular point. Another pattern is 
displayed by the pavement in Figure 2-40b, consisting of identical arcs. If it is 
supposed that this pavement is a fragment of an infinitely large one, there is no 
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Figure 2-39. The singular point and the multiplicity of points of a square. 
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F i g u r e  2-40. Italian pavements: (at The system of concentric circles has point-group symmc  
try: (b) the pattern of arcs. if extended to mlinity, has space-group symmetry. Photographs by the 
authors. 

Table  2-2. Dimensional i ly  (m) and Periodicity (n) 

of  S y m m e l r y  Groups  GII' after Engelhardt"  

Pcriodici'ty 

Dimensionality 

n = 0 ,  n = I, n = 2,  n = 3, 

no peri~Micily periodicity m periodicity in tmriodicity in 
one direction two directions three directions 

m O, dimensionless (;II 

m = I. (me-dimensional (;ill GII 
m - 2. two-dmmnsional G,~ G~ G~ 
.z = 3. three-dimensional (;i~ (;a~ (;~ 

"Reference [2-30], 
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Figure 2-41. Dimensionality and periodicity in point groups and space groups. This figure is 
consistent with Table 2-2. 

singular point in it. Assuming an infinite extent for this pavement pattern is 
natural because of its periodicity. The absence of a singular point leads to 
regularity expressed in infinite repetition, which characterizes translational 
symmetry. This kind of symmetry precludes the presence of singular points 
though it does not preclude the presence of a singular line or plane. The 
symmetry classes characterizing entities with translational symmetry are 
called space groups. One-dimensional space groups describe the symmetries 
involving infinite repetition or periodicity in one direction, two-dimensional 
space groups those involving periodicity in two directions, and three- 
dimensional space groups those involving periodicity in all three directions. 
Table 2-2 and Figure 2-41 summarize the possible cases in terms of dimen- 
sionality and periodicity. The nomenclature is somewhat inconsistent but has 
some relationship to Abbott's classic Flatland [2-31]. 

2.6  P O L A R I T Y  

A line is polar if its two directions can be distinguished, and a plane is 
polar if its two surfaces are not equivalent. This defnition of polarity has, of 
course, nothing to do with charge separation. A polar line has a "head" and a 
"tail ,"  and a polar plane has a "front"  and a "back."  A vertical line on the 
surface of the Earth is polar with respect to gravity, and a sheet of paper with 
one of its sides painted is polar with respect to its color. 

An axis is polar if its two ends are not brought into coincidence by the 
symmetry transformations of the symmetry group of its figure. An analogous 
definition applies to the two sides of a polar plane. 
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If a symmetry group includes a center of symmetry, polarity is excluded. 
It has already been seen (of., e.g., Figure 2-37) that in a centrosymmetric 
ligure a directed line or segment of a face changes direction by reversion. In the 
case of the absence of a center of symmelry, there will be a~ least one directed 
line or ['ace which is not accompanied by parallel counle~arts  rcverscd in 
direction. 

The significance of polar axes can be demonstrated, fl~r example, in 
crystal morphology. Curtin and Paul [2-321 have summarized the chemical 
consequences of the polar axis in organic crystal chemistry. A Dw examples 
x~'ill be mentioned here lbllowing Curtin and Paul. Figure 2-42a shows two 
ccntrosymmetric acetanilide crystals. The faces occur in parallel pairs in both 
habits. On the other hand, the p-chloroacetanilide crystal shown in Figure 
2-42b is noncentrosymmetric, and some of the faces occur without parallel 
ones at the opposite end of the crystal. This crystal has a polar axis parallel 
to its hmg direction. 

The morphological symmetry diflErences between the acetanilide and 
/>chloroacctanilidc crystals originate from their internal structures. The acel- 

Figure 2-42. Crystals from Groth's Chemisc/le Kti,~'ta/lo~,r~q~hie [2-33l: (a) Cenm~ymmetric 
rhombic hipyramidal acetanilide; (b~ noncenlrosymmctric rhombic pyramidal p-chloro- 
acetanilide. 
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anilide molecules appear in pairs, and the two molecules in each pair are 
related by an inversion center (Figure 2-43). On the other hand, the p-chloro- 
acetanilide molecules are all aligned in one direction. The molecular arrange- 
ments in the crystal are shown in Figures 2-44a and b. 

Even very simple structures may form polar crystals. For example, in a 
polar crystal composed of diatomic molecules AB, the molecular axis will be 
oriented more along the polar direction of the crystal than perpendicular to it. 
Furthermore, as there is an A B A B . . .  array in the crystal, it is required that 
the spacings between the atom A and the two adjacent atoms B be unequal in 
order to have a polar axis present: 

A B A B A B . . .  

Curtin and Paul characterized this situation from the point of view of a 
submicroscopic traveler proceeding along this array of atoms. The observer is 
able to determine the direction of travel thanks to the difference in spacings. 
The distance is always longer from atom B to atom A and shorter from atom A 
to the next atom B in one direction whereas the reverse is true in the opposite 
direction. 

It is not required that a molecule possess a large dipole moment in order to 
be suitable for building polar crystal habits. Curtin and Paul cite the nearly 
"nonpolar" 1-tert-butyl-4-methylbenzene molecule, which crystallizes in a 
polar habit with one end of the crystal being formed by the methyl groups and 
the other end by the tert-butyl groups. It is not fully understood why some 
classes of substances prefer to form polar crystals while others with similar 
potentials do not. Aromatic compounds with certain functional groups (e.g., 
an amino group) more often form polar crystals than do such compounds with 
other groups (e.g., carboxyl group). Meta-disubstituted benzene derivatives 
crystallize more often in a polar habit than do ortho and para derivatives. 
Sometimes, the molecular polar axis is oriented almost perpendicular to the 
crystal polar axis, and only a small component of the molecular polarity 
contributes to the crystal polarity 

Crystal polarity may have important consequences for the chemical 

Figure 2-43. Two acetanilide molecules related by inversion. 
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Figure 2-44. (a) The centrosymmetric arrangement of acetanilide molecules in the crystal, 
resulting in a centrosymmctric crystal habit. Reprinted with permission from Ref. [2-32]. 
Copyright (1981) Americal Chemical Society; (b) The head-to-tail alignment of p-acetanilide 
molecules in the crystal, resulting in the occurrence ofz polar axis in the crystal habit. Reprinted 
with permission from Ref. 12-32]. Copyright 11981) American Chemical Society. 

behavior. In solid/gas reactions, for example,  crystal polari ty may be a source 
of considerable anisotropy. 

There are also important  physical properties characterizing polar crystals,  
such as pyroelectricity and piezoelectricity and others [2-34]. The primitive 
cell of  a pyroelectric crystal possesses a dipole moment .  The separation of the 
centers of  the positive and negative charges changes upon heating. In this 
process the two charges migrate to the two ends of  the polar axis. Piezoelec- 
tricity is the separation of the positive and negative charges upon expansion/ 
compress ion of the crystal.  Both pyroelectricity and piezoelectricity have 
practical uses. 
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2.7 C H I R A L I T Y  

There are many objects, both animate and inanimate, which have no 
symmetry planes but which occur in pairs related by a symmetry plane and 
whose mirror images cannot be superposed. Figure 2-45 shows a building 
decoration, a detail from Bach's The Art of the Fugue, a pair of molecules, and a 
pair of crystals. The simplest chiral molecules are those in which a carbon atom 
is surrounded by four different l igands--atoms or groups of a toms--at  the 
vertices of a tetrahedron. All the naturally occurring amino acids are chiral, 
except glycine. 
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Figure 2-45. Illustrations of chiral pairs: (a) Decorations whose motifs (of fourfold rotational 
symmetry) are each other's mirror images; photographs by the authors; Co) J. S. Bach, Die Kunst 
der Fuge, Contrapunctus XVIll, detail; (c) glyceraldehyde molecules; (d) quartz crystals. 
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W. H. Thomson ,  Lord Kelvin,  wrote [2-351: "I call any geometrical  
figure or group of  points 'chiral," and say it has chirality, if its image in a plane 
mirror, ideally realized, cannot be brought into coincidence  with itself." He 
called t'or~ns of  the same sense h o m o c h i r a l  and forms of the opposite sense 
h e t e r o c h i r a l .  The most c o m m o n  example  of  a hctcrochiral form is hands. 
Indeed, the word chirality itself c o m e s  from the Greek word for hand. Figures 
2-46 and 2-47 show some hetcrochiral and homochiral  pairs of  hands. 

A chiral object and its mirror i~nage are enantiomorphous,  and they arc 

~"; '~z 
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Figure 2-46. Hcterochiral pairs of hands: (a) Tombstone in the Jewish cemetery, Prague; 
photograph by the authors; Ib) Albrecht Dfirer's Praying Hands on the cover of the German 
magazine Der Spiey, el, June 15, I992: reproduced by permission: (c) Buddha in T¢~ky~); 
photograph by the authors; (d) United Nations stamp. IContinued on ne.rt page) 
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Figure 2-46. (Continued) (e) heterochiral pair of hands and models of a heterochiral pair of 
amino acid molecules [2-36]; reproduced by permission from R. N. BraceweI1. 
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Figure 2-47. Homochiral pairs of hands: (a) Cover of the German magazine Der Spiegel, May 
18, 1992; reproduced by permission; (b) U.S. stamp; (c) logo with SOS distress sign at a Swiss 
railway station; photograph by the authors. 



68 C h a p t e r  2 

Figure 2-48. 
aulhors .  

.'~, ~. 

Louis Pasteur's bust in front of the Pasteur Institute, Paris. Photograph by' the 

each other's cnantiomorphs. Louis Pasteur (Figure 2-48) first suggested that 
molecules can be chiral. In his famous experiment in 1848, he recrystallized a 
salt of  tartaric acid and obtained two kinds of  small crystals which were mirror 
images of  each other, as shown by Pasteur's models in Figure 2-49. The two 
kinds of  crystals had the same chemical composit ion but differed in their 
optical activity. One was levo-active (L), and the other was dextro-active (t)). 
Since the true absolute configuration of  molecules could not be determined at 
the time, an arbitrary convention was applied, which, luckily, proved to 
coincide with reality. If  a molecule or a crystal is chiral, it is necessarily 
optically active. The converse is, however, not true. There are, in fact 

Figure 2-49. Pasteur's models of enantio,neric crystals in the Pasteur Institute, Paris. Photo- 
graphs by the authors. 
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nonenantiomorphous symmetry classes of crystals which may exhibit optical 
activity. 

Whyte [2-37] extended the definition of chirality as follows: "Three- 
dimensional forms (point arrangements, structures, displacements, and other 
processes) which possess non-superposable mirror images are called 'chiral ' ."  
A chiral process consists of successive states, all of which are chiral. The two 
main classes of chiral forms are screws and skews. Screws may be conical or 
cylindrical and are ordered with respect to a line. Examples of the latter are the 
left-handed and right-handed helices in Figure 2-50. The skews, on the other 
hand, are ordered around their center. Examples are chiral molecules having 
point-group symmetry. 

From the point of view of molecules, or crystals, left and right are 
intrinsically equivalent. An interesting overview of the left/right problem in 
science has been given by Gardner [2-39]. Distinguishing between left and 
right has also considerable social, political, and psychological connotations. 
For example, left-handedness in children is viewed with varying degrees of 
tolerance in different parts of the world. Figure 2-51a shows a classroom at the 
University of Connecticut with different (homochiral and heterochiral) chairs 

Figure 2-50. Left-handed and right-handed 
helix decorations from Zagorsk, Russia [2-38]. 
Photograph by the authors. 
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Figure 2-51. ('lassroonl~ with hclcrochiral and homochiral chairs: (a) Chairs tbr boZh the righl- 
handcd .mI  lclt-h:audcd sludcnts~ (hi Older ,.:h~irs. all for-righbhandcd sttldcnts o1113. [~hoto 
graphs by the ztuthor>. 

to accommodate both the right-handed and the left-handed students. Older 
classrooms at the same university have chairs for the right-handed only(Figure 
2-51b). 

2.7.1 Asymmetry and Dissymmetry 

Symmetry operations of the first kind and of the second kind are 
sometimes distinguished in the literature (cf. Ref. [2-40]). Operations of the 
first kind arc sometimes also called even-numbered operations. For example. 
the identity operation is equivalent to two consecutive reflections from a 
symmetry plane. It is an even-numbered operation, an opcration of lhc first 
kind. Simple rotations are also opcrations of the first kind. Mirror rotation 
reads to figures consisting of right-handed and left-handed components and 
therelbrc is an operation of the second kind. Simple reflection is also an 
operation of the second kind as it may be considered as a mirror rotation about 
a onelbId axis. A simple rellcction is related to lhc existence of two enan- 
tiomorphic components in a figure. Figure 2-52 illustrates these distinctions by 
a series of simple sketches after Shubnikov [2-40]. In accordance with the 
above description, chiralit,,,' is sometimes dcfincd as thc absence of symmetry 
elements of the second kind. 

Sometimes, the terms asymmetry, dissymmetry, and antisymmctry are 
confused in the literature although the scientific meaning of these terms is in 
complete conformity with the etymology of these words. Asymmetry means 
the complete absence of symmetry, dissymmetry means the derangement of sym- 
metry, and antisymmetry means the symmetry of opposites (see Section 4.6). 
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+ + 

Figure 2-52. Examples of symmetry operations of the first kind (a) and of the second kind (b), 
after Shubnikov [2-40]. 

Pasteur used "dissymmetry" for the first time as he designated the absence of 
elements of symmetry of the second kind in a figure. Accordingly, dissymme- 
try did not exclude elements of symmetry of the first kind. Pierre Curie 
suggested an even broader application of this term. He called a crystal 
dissymmetric in the case of the absence of those elements of symmetry upon 
which depends the existence of one or another physical property in that crystal. 
In Pierre Curie's original words [2-41], "Dissymmetry creates the phenome- 
non."  Namely a phenomenon exists and is observable due to dissymmetry, 
i.e., due to the absence of some symmetry elements from the system. Finally, 
Shubnikov [2-40] called dissymmetry the falling out of one or another element 
of symmetry from a given group. He argued that to speak of the absence of 
elements of symmetry makes sense only when these symmetry elements are 
present in some other structures. 

Thus, from the point of view of chirality any asymmetric figure is chiral, 
but asymmetry is not a necessary condition for chirality. All dissymmetric fig- 
ures are also chiral if dissymmetry means the absence of symmetry elements of 
the second kind. In this sense, dissymmetry is synonymous with chirality. 

An assembly of molecules may be achiral for one of two reasons. Either 
all the molecules present are achiral or the two kinds of enantiomorphs are 
present in equal amounts. Chemical reactions between achiral molecules lead 
to achiral products. Either all product molecules will be achiral or the two kinds 
of chiral molecules will be produced in equal amounts. Chiral crystals may 
sometimes be obtained from achiral solutions. When this happens, the two 
enantiomorphs will be obtained in (roughly) equal numbers, as was observed 
by Pasteur. Quartz crystals are an inorganic example of chirality (Figure 
2-45d). Roughly equal numbers of left-handed and right-handed crystals are 
obtained from the achiral silica melt. 
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Incidentally, Pierre Curie's teachings on symmetry are probably not so 
widely known as they should be, considering their fundamental and general 
importance. The !~ct that his works on symmetry were characterized by 
extreme brevity may have contributed to this. Marie Curie and Aleksei V. 
Shubnikov [2:42, 2-43] have considerably facilitated the dissemination of 
Curie's teachings. Our discussion also relies on their works. There is also a 
critical and fascinating discussion of Pierre Curie's symmetry teachings by 
Stewart and Golubitsky [2-44]. 

Pierre Curie's above-quoted statement concerning the role of dissymme- 
try in "creating" a phenomenon is part of a broader formulation. It states that 
in every phenomenon there may be elements of symmetry compatible with, 
though not required by, its existence. What is necessary is that certain elements 
of symmetry shaii not exist, in other words, it is the absence of certain 
symmetry elements that is a necessary condition for the phenomenon to exist. 

Another important statement of Pierre Curie's is that when several 
ptienomena are superposed in the same system, the dissymmetries are added 
together. As a result, only those symmetry elements which were common to 
each phenomenon will be characteristic of the system. 

Finally, concerning the symmetry relationships of causes and effects, 
Marie Curie [2-42] formulated the following principles from Pierre Curie's 
teachings. (1) "'wfien certain causes produce certain effects, the elements of 
symmetry in the causes ought to reappear in the effects produced": (2) "When 
certain effects reveal a certain dissymmetry, this dissymmetry should be 
apparent in the causes which have given them birth"" however, (13) "The 
converse of these two statements does not h o l d . . .  [and] the effects produced 
can be more symmetrical than their causes." 

2.7.2 Relevance to Origin of Life 

The situation with respect to living organisms is unique. Living organ- 
isms contain a large number of chiral constituents, but only l~-amino acids are 
present in proteins and only t)-nucleotides are present in nucleic acids. This 
happens in spite of the fact that the energy of both enantiomorphs is equal and 
their formation has equal probability in an achiral environment. However, only 
one of the two occurs in nature, and the particular enantiomorphs involved in 
life processes are the same in humans, animals, plants, and microorganisms. 
The origin of this phenomenon is a great puzzle which, according to Prelog 
[2-45], may be regarded as a problem of molecular theology. 

This problem has long fascinated those interested in the molecular basis 
of the origin of life (e.g., Refs. [2-46], [2-47]). There are in fact two questions. 
One is why do all the amino acids in a protein have the same L-configuration, or 
why do all the components of a nucleic acid. that is, all its nucleotides, have the 
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same D-configuration? The other question, the more intriguing one, is why 
does that particular configuration happen to be L for the amino acids and why 
does it happen to be D for nucleotides in all living organisms? This second 
question seems to be impossible to answer satisfactorily at the present time. 

According to Prelog [2-45], a possible explanation is that the creation of 
living matter was an extremely improbable event, which occurred only once. 
We may then suppose that if there are living forms similar to ours on a distant 
planet, their molecular structures may be the mirror images of the correspond- 
ing molecular structures on the earth. We know of no structural reason at the 
molecular level for living organisms to prefer one type of chirality. (There may 
be reasons at the atomic nuclear level. The violation of parity at the nuclear 
level has already been referred to in Chapter 1.) Of course, once the selection is 
made, the consequences of this selection must be examined in relation to the 
first question. The fact remains, however, that chirality is intimately associated 
with life. This means that at least dissymmetry and possibly asymmetry are 
basic characteristics of living matter. 

Although Pasteur believed that there is a sharp gap between vital and 
nonliving processes, he attributed the asymmetry of living matter to the 
asymmetry of the structure of the universe and not to a vital force. Pasteur 
himself wrote that he was inclined to think that life, as it appears to us, must be 
a product of the dissymmetry of the universe (see Ref. [2-48]). 

Concerning the first question, Orgel [2-46] suggests that we compare the 
structure of DNA to a spiral staircase. The regular DNA right-handed double 
helix is composed of D-nucleotides. On the other hand, if a DNA double helix 
were synthesized from L-nucleotides, it would be left-handed. These two 
helices can be visualized as right-handed and left-handed spiral staircases, 
respectively. Both structures can perform useful functions. A DNA double 
helix containing both D- and L-nucleotides, however, could not form a truly 
helical structure at all since its handedness would be changing. Just consider 
the analogous spiral staircase that Orgel suggested as shown in Figure 2-53. 

If each component of a complex system is replaced by its mirror image, 
the mirror image of the original system is obtained. However, if only s o m e  

components of the complex system are replaced by their mirror images, a 
chaotic system emerges. Chemical systems that are perfect mirror images of 
each other behave identically, whereas systems in which only some, but not 
all, components have been replaced by their mirror images have quite different 
chemical properties. If, for example, a naturally occurring enzyme made up of 
L-amino acids synthesizes a D-nucleotide, then the corresponding artificial 
enzyme obtained from D-amino acids would synthesize the L-nucleotide. On 
the other hand, a corresponding polypeptide containing both D- and L-amino 
acids would probably lack the enzymic activity. 

Recently, the first enzymatically active D-protein has been synthesized 
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Figure 2-53. A spiral staircase which change~ its chirality [2-46]. Reproduced by permission 
from I_, Fi. Orgcl. 

[2-49]. There are many potential applications, both therapeutic and nonthera- 
peutic, that may open up with such progress I2-501. It has been known t~r 
some time that the two enantiomers of drugs and pesticides may have vastly 
different responses in a living organism. Natural products extracted from 
plants and animals are enantiomerically pure while the synthesized ones are 
obtained in a 1:1 ratio of the enantiomers. In some cases, the twin of the one 
exerting the beneficial action is harmless. In other cases, howevea the drug 
molecule has an "'evil twin" [2-51]. A tragic example was the thalidomide 
case, in Europe, in which the right-handed ~nolecule was a sedative and the 
left-handed one caused birth defects. Other examples include one enantiomer 
of ethambutol fighting tuberculosis with its evil twin causing blindness, and 
one enantiomer of naproxen reducing arthritic inflammation with its evil ~win 
poisoning the liver. Bitter and sweet asparagine are represented by structural 
formulas in Figure 2-54. 

Ibuprofen is a lucky case in which the twin of the enantiomer that provides 
the curing is converted to the beneficial version by the body. 
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Figure 2-54. Bitter and sweet asparagine represented by structural formulas [2-52]. 

Even when the twin is harmless, it represents waste and a potential 
pollutant. Thus, a lot of efforts are directed toward producing enantiotnerically 
pure drugs and pesticides. The techniques of asymmetric synthesis (see, e.g., 
Rcfs. [2-53] and [2-54]), based on the strategy of employing chiral catalysts 
(see, e.g., Ref. [2-55]), are used to this end. One of the fascinating possibilities 
is to produce sweets from chiral sugars of the enantiomer that would not be 
capable of contributing to obesity yet would retain the taste of the other 
enantiomer. Chiral separation and purity is an increasingly important question. 
Worldwide sales of enantiopure drugs topped $35 billion in 1993 and are 
expected to reach about $40 billion in 1997 [2-56]. There is a rapidly growing 
literature on the subject, with even special journals exclusively dedicated to 
this topic. Production of enantiomerically pure substances has also become a 
topic in investment reports and the daily press. 

2.7.3 La coupe du roi 

Among the many chemical processes in which chirality/achirality rela- 
tionships may be important are the fragmentation of some molecules and the 
reverse process of the association of molecular fragments. Such fragmentation 
and association can be considered generally and not just for molecules. The 
usual cases are those in which an achiral object is bisected into achiral or 
heterochiral halves. On the other hand, if an achiral object can be bisected into 
two homochiral halves, it cannot be bisected into two heterochiral ones. A 
relatively simple case is the tessellation of planar achiral figures into achiral, 
heterochiral, and homochiral segments. Some examples are shown in Figure 
2-55. For a detailed discussion, see Ref. [2-7]. 

Anet et al. [2-57] have cited a French parlor trick called la coupe du ro i - -  
or the royal section--in which an apple is bisected into two homochiral halves, 
as shown in Figure 2-56. An apple can be easily bisected into two achiral 
halves. On the other hand, it is impossible to bisect an apple into two 
heterochiral halves. Two heterochiral halves, however, can be obtained from 
two apples, both cut into two homochiral halves in the opposite sense (see 
Figure 2-56). 
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Figure 2-55. Dissection of planar achiral tigures inlo achiral (a), heterochiral (b), and homo- 
chiral segments (c): some examples. 
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Figure  2-56. The French parlor trick la coupe du roi, after Anet et al. [2-57]. An apple can be 
cut into two homochiral halves in two ways which are enantiomorphous to each other. An apple 
cannot be cut into two heterochiral halves. Two heterochiral halves originating from two different 
apples cannot be combined into one apple. 

In la coupe du roi, two vertical half cuts are made through the apple--one 
from the top to the equator, and another, perpendicularly, from the bottom to the 
equator. In addition, two nonadjacent quarter cuts are made along the equator. 
If all this is properly done, the apple should separate into two homochiral 
halves as seen in Figure 2-56. 

The first chemical analog of la coupe du roi was demonstrated by Cin- 
quini et al. [2-58] by bisecting the achiral molecule c i s -3 ,7-d imethy l - l ,5 -  
cyclooctanedione into homochiral halves, viz., 2-methyl-l,4-butanediol. The 
reaction sequence is depicted in Figure 2-57 after Cinquini et al. [2-58], who 
painstakingly documented the analogy with the pomaceous model. Only exam- 
ples of the reverse coupe du roi had been known prior to the work of Cinquini et 
al. Thus, Anet et al. [2-57] had reported the synthesis of chiral 4-(bromo- 
methyl)-6-(mercaptomethyl) [2.2]metacyclophane. They then showed that two 
homochiral molecules can be combined to form an achiral dimer as shown in 
and illustrated by Figure 2-58. 
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Figure  2-58. Reverse coupe du roi and the formation of a dimer from two homochiral 4-(bromo- 
methyl)-6-(mercaptomethyl)[2.2]metacyclophane molecules. After Anet et al. [2-57]. Used by 
permission. Copyright (1983) American Chemical Society. 

2.8 POLYHEDRA 

"A convex polyhedron is said to be regular if its faces are regular and 
equal, while its vertices are all surrounded alike" [2-59]. A polyhedron is 
convex if every dihedral angle is less than 180 ° . The dihedral angle is the angle 
formed by two polygons joined along a common edge. 

There are only five regular convex polyhedra, a very small number 
indeed. The regular convex polyhedra are called Platonic solids because they 
constituted an important part of Plato's natural philosophy. They are the 
tetrahedron, cube (hexahedron), octahedron, dodecahedron, and icosahedron. 
The faces are regular polygons, either regular triangles, regular pentagons, or 
squares. 

A regular polygon has equal interior angles and equal sides. Figure 2-59 
presents a regular triangle, a regular quadrangle (i.e., a square), a regular 
pentagon, and so on. The circle is obtained in the limit as the number of sides 
approaches infinity. The regular polygons have an n-fold rotational symmetry 
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Figure 2-59. Regular polygons. 

axis perpendicular to their plane and going through their midpoint. Here n is 
1. 2, 3 . . . .  up to infinity for the circle. 

The five regular polyhedra are shown in Figure 2-60. Their characteristic 
parameters are given in Table 2-3. Figure 2-61 reproduces an East German 
stamp with Euler and his equation, V - E + F = 2, where V, E, and F are the 
number of vertices, edges, and faces. The equation is valid for polyhedra 
having any kind of polygonal faces. According to Weyl [2-9], the existence of 

+ 

Figure 2-60. The live Platonic solids. 
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Table 2-3. Characteristics of the Regular Polyhedra 

81 

Polygon Number Vertex Number Number 
Name of faces figure of vertices of edges 

Tetrahedron 3 4 3 4 6 
Cube 4 6 3 8 12 
Octahedron 3 8 4 6 12 
Dodecahedron 5 12 3 20 30 
Icosahedron 3 20 5 12 30 

the tetrahedron, cube, and octahedron is a fairly trivial geometric fact. On the 
other hand, he considered the discovery of the regular dodecahedron and the 
regular icosahedron "one of the most beautiful and singular discoveries made 
in the whole history of mathematics." However, to ask who first constructed 
the regular polyhedra is, according to Coxeter [2-59], like asking who first used 
fire. 

Many primitive organisms have the shape of the pentagonal dodeca- 
hedron. As will be seen later, it is not possible to have crystal structures having 
this symmetry. Belov [2-60] suggested that the pentagonal symmetry of 
primitive organisms represents their defense against crystallization. Several 
radiolarians of different shapes from H~ickel's book [2-13] are shown in Figure 
2-62. Artistic representations of regular polyhedra are shown in Figure 2-63. 

Figure 2-64 shows Kepler and his planetary model based on the regular 
solids [2-61]. According to this model, the greatest distance of one planet from 
the sun stands in a fixed ratio to the least distance of the next outer planet from 
the sun. There are five ratios describing the distances of the six planets that 
were known to Kepler. A regular solid can be interposed between two adjacent 
planets so that the inner planet, when at its greatest distance from the sun, lays 

Figure 2-61. Euler and his equation e - k + f = 2, corresponding to V - E + F = 2, where the 
German e (Ecke), k (Kante), and f (Flache) correspond to vertex (V), edge (E), and face (F), 
respectively. 
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Figure 2-62. Radiolarians from H/ickel',, book [2-131. 

on the inscribed sphere of the solid, while the outer planet, when at its least 
distance, lays on the circumscribed sphere. 

Arthur Koestier m Tt~e Sleep~,,all,ers 12-621 called this planetary model "'a 
false inspiration, a supreme hoax of the Socratic daimon . . . .  "'. However. the 
planetary model, which is also a densest packing model, probably reprcscnts 
Kepler's best attcmpt at attaining a unifcd view of his work both in astronomy 
and in what we call today crystallography. 

. .  

There are excellent monographs on regular figures, two of which arc 
c~pccially notcw~rthy [2-59, 2-63]. The Platonic solids have very high 
symmetries and one especially important common characteristic. None of the 
rotational symmciry axes of the regular polyhedra is unique, but each axis is 
associated with several axes equivalent to itself. The five regular solids can be 
classifed into three sym hetty classes: 
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Figure 2-63, Artistic representations of regular polyhedra: (a) Sculpture in the garden of ]'el 
Aviv University; photograph by the authors; (b) pentagonal dodecahedron by Horst Janssen, 
ChriStalI-Knecht (crystal slave); reproduced by permission; (c) Leonardo da Vinci's dodeca- 
hedron drawn for Luca Pacioli's De Divina Proportione; (d) sculpture by Victor Vasarely in Pdcs, 
Hungary; photograph by the authors. 
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Figure 2-64. Johannes Kepler on a Hungarian 
on the regular solids [2-61]. 

stamp and a detail of his planetary .,nt:,del based 

"Fetrahedmn 3/2-m = 3,'a 

Cube and octahedron 3,'~4-m = 6/4 

Dodecahedron and icosahedron 3/5-m = 3/~} 

It _is equivalent to describe the symmetry  class of  the tetrahedron as 3/'2.m or 

3,,'4. The skew line between two axes means that they are not orthogonal.  The 
symbol 3/2 'm denotes a threefold axis and a twolbld axis which are not 
perpendicular and a symmetry  plane which includes these axes. These three 
symmetry  elements are indicated in Figure 2-65. The symmetry  class 3/2.m is 
equivalent to a combination of  a threefold axis and a fourfold mirror-rotation 
axis. In both cases the threefold axes connect one of  the vertices of  the 
tetrahedron with the midpoint of  the opposite face. The fourlbld mirror- 
rotation axes coincide with the twotbld axes. The presence of  the fourfold 
mirror-rotation axis is easily seen if the tetrahedron is rotated by a quarter 
rotation about a twofold axis and is then reflected by a symmetry plane 
perpendicular to this axis. The symmetry  operations chosen as basic will then 
generate the remaining symmetry  elements. Thus, the two descriptions are 
equivalent. 
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Figure 2-65. Characteristic symmetry elements of the Platonic solids. 

Characteristic symmetry elements of the cube are shown in Figure 2-65. 
Three different symmetry planes go through the center of the cube parallel to 
its faces. Furthermore, six symmetry planes connect the opposite edges and 
also diagonally bisect the faces. The fourfold rotation axes connect the 
midpoints of opposite faces. The sixfold mirror-rotation axes coincide with 
threefold rotation axes. They connect opposite vertices and are located along 
the body diagonals. The symbol g/4 does not directly indicate the symmetry 
planes connecting the midpoints of opposite edges, the twofold rotation axes, 
or the center of symmetry. These latter elements are generated by the others. 
The presence of a center of symmetry is well seen by the fact that each face and 
edge of the cube has its parallel counterpart. The tetrahedron, on the other 
hand, has no center of symmetry. 

The octahedron is in the same symmetry class as the cube. The antiparal- 
lel character of the octahedron faces is especially conspicuous. As seen in 
Figure 2-65, the fourfold symmetry axes go through the vertices, the threefold 
axes go through the face midpoints, and the twofold axes go through the edge 
midpoints. 

The pentagonal dodecahedron and the icosahedron are in the same 
symmetry class. The fivefold, threefold, and twofold rotation axes intersect the 
midpoints of faces, the vertices, and the edges of the dodecahedron, respec- 
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(ivcly (Figure 2-65). On the other hand, the corresponding axes intersect the 
xcrticcs and the midpoints of faces and edges of lhc icosahedron (Figurc 2-65 ). 

Consequently, the live regular polyhedra exhibit a dual relationship as 
regards (l~eir faces and vertex tigures. The tetrahedron is self-dual (Table 2-3). 

If the definition of regnlar polyhcdra is nol reslrictcd to convex fignrcs, 
their nunlbcr rises fronl live Io nine. The additional four arc depicled in Figurc 
2-(~(~ (for more inlbrnmdon, scc, c.g., Rcfs. [2-59] and 12-63]-[2-66]). They 
arc called by d~e common name of regular star polyhedra. One of them, viz., 
the great stcllated dodecahedron, is illustrated by the decoration at the top of 
the Sacristy of St. Peter's Basilica in Vatican City, and another, the small 
~tcllatcd dodecahedron, by an ordinary lamp in Figure 2-67. 

Thc sphere dcscrvcs special mention. It is one of the simplcsl possiblc 
figtucs and, accordingly, one with high anti complicated symmetry. It has an 
mlinite number of rotation axes with infinite order. All of them coincide with 
body diagonals going through the midpoint of the sphere. The midpoint, which 
is also a singular point, is the center of symmetry of the sphere. The following 
symmetry elements may be chosen as basic ones: two infinite order rotation 
axcs which arc not perpendicular plus one symmetry planc. Therefore, the 
symmetry class of the sphere is ~ / ~ ' m .  Concerning the symmetry ot the 
sphcrc, Kcpcs [2-67] quotes Copcrnicus: 

The spherical is the form of all tk)rms most pcrlEct, having nccd of 
no articulation: and the spherical is the tk~rm of greatest volumetric 
capacity, best able to contain and circumscribe all else: and all the 
separated parts of the w o r l d ~ I  mean the sun, the moon, and the 
s t a r s ~ a r e  observed to have spherical form; and all things tend 1o 
limit themselves under this t b r m ~ a s  appears in drops of walcr and 
other liquids whenever of themselves they tend to limit themselves. 

a b c d 

Figure 2-66. The timr regular slar polyhedra: la) Small ",tcllated dodecahedron: (b) the grca! 
dodecahedron: Ic) great stcllalcd dodecahedron; Id) the grea! icosahedron. From H. M. Cundy 
and A. [~ Rolle!t [2 641 Used by permission of ()xIi~rd [!ni,.crsitv Press. 
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Figure 2-67. Examples of star polyhedra: (a) Great stellated dodecahedron as decoration at the 
top of the Sacristy of St. Peter's Basilica, Vatican City; (b) small stellated dodecahedron as a lamp 
in an Italian home, Bologna. Photographs by the authors. 

So no one may doubt that the spherical is the form of the world, the 
divine body. 

Artistic appearances of spheres are shown in Figure 2-68. 
In addition to the regular polyhedra, there are various families of poly- 

hedra with decreased degrees of regularity [2-59, 2-63-2-66]. The so-called 
semiregular or Archimedean polyhedra are similar to the Platonic polyhedra in 
that all their faces are regular and all their vertices are congruent. However, the 
polygons of their faces are not all of the same kind. The thirteen semiregular 
polyhcdra are listed in Table 2-4, and some of them are also shown in Figure 
2-69. Table 2-4 also enumerates their rotation axes. 

The simplest semiregular polyhedra are obtained by symmetrically shav- 
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Figure 2-(}8. Artistic expressions of the sphere: (a) In front of the World Trade Center, New 
York; (b) sculpture by J.-B. Carpeaux in Paris. Photographs by the authors. 

Table 2-4. The Thirteen Semiregular Polyhedra 

No. Name 

Number of Number of rotation axes 

Faces Vertices Edges 2-fold 3-fold 4-fold 5-fold 

1 Truncated t e t r a h e d r o n  '~ 8 

2 Truncated cube a 14 
3 Truncated octahedron" 14 
4 Cuboctahedron b 14 
5 Truncated cuboctahedron 26 
6 Rhombicubo~tahedron 26 
7 Snub cube 38 
8 Truncated dodecahedron" 32 
9 Icosidodecahedron b 32 

10 Truncated icosahedron ~ 32 
11 Truncated icosidodecahedron 62 
12 Rhombicosidodecahedron 62 
13 Snub dodecahedron 92 

12 18 3 4 0 o 
24 36 6 4 3 0 
24 36 6 4 3 0 
12 24 6 4 3 0 
48 72 6 4 3 0 
24 48 6 4 3 0 
24 60 6 4 3 0 
60 90 15 10 0 6 
30 60 15 10 0 6 
60 90 15 10 0 6 

120 180 15 10 0 6 
60 120 15 10 0 6 
60 150 15 10 0 6 

~Truncated regular polyhedron. 
bQuasiregular polyhedron. 
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Figure 2-69. Some of the semiregular polyhedra: the so-called truncated regular polyhedra and 
quasiregular polyhedra. 

ing off  the corners of the regular solids. They are the truncated regular 
polyhedra and are marked with a superscript a in Table 2-4. One of them is the 
truncated icosahedron, the shape of the buckminsterfullerene molecule. Two 
semiregular polyhedra are classified as so-called quasiregular polyhedra. They 
have two kinds of faces, and each face of one kind is entirely surrounded by 
faces of the other kind. They are marked with a superscript b in Table 2-4. All 
these seven semiregular polyhedra are shown in Figure 2-69. The remaining 
six semiregular polyhedra may be derived from the other semiregular poly- 
hedra. The structures of zeolites, aluminosilicates, are rich in polyhedral 
shapes, including the channels and cavities they form (see, e.g., Ref. [2-68]). 
One of the most common zeolites is sodalite, Na6[A16Si6024].2NaC1, whose 
name refers to its sodium content. The sodalite unit itself is represented by a 
truncated octahedron in Figure 2-70a, where the line drawing ignores the 
oxygen atoms and each line represents T . . . T (T = A1, Si). The three 
remaining models of Figure 2-70 (b, c, and d) represent different modes of 
linkages between the sodalite units. It is especially interesting to see the 
different cavities formed by different modes of linkage [2-69]. Some other 
examples of semiregular polyhedra are shown in Figure 2-71. 

The prisms and antiprisms are also important polyhedron families. A 
prism has two congruent and parallel faces, and they are joined by a set of 
parallelograms. An antiprism also has two congruent and parallel faces, but 
they are joined by a set of triangles. There is an infinite number of prisms and 
antiprisms, and some of them are shown in Figure 2-72. A prism or an anti- 
prism is semiregular if all its faces are regular polygons. A cube can be consid- 
ered a square prism, and an octahedron can be considered a triangular antiprism. 

There are additional polyhedra which are important in discussing molecu- 
lar geometries and crystal structures. 



a 

b c d 

Figure 2-70. Zeolite structures: the shape and various modes of linkage of the sodalite units, 
after Beagley and Titiloye [2-69]. Reproduced by permission. The line drawings ignore the 
oxygen atoms and represent T . . . T (T = AI, Si); (a) Sodalite unit; (b) and (c) sodalitc units 
linked through doublc 4-rings; (d) Sodalitc units linkcd through doublc 6-rings. In this model 
double lines represent T . . .  T. 

a b c 

Figure 2-71. Examples of semiregular polyhedra: (a) Truncated octahcdron in a Tel Aviv 
playground; (b) truncated icosahedron as a lamp in an Italian home, Bologna; (c) cuboctahedron 
as a top decoration of a garden lantern in Kyoto, Japan. Photographs by the authors. 
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Figure 2-72, Prisms and antiprisms. 
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Chapter 3 

Molecules: Shape and Geometry 

A molecule is not simply a collection of its constituent atoms. It is kept together 
by interactions among these atoms. Thus, for some purposes it is better to 
consider the molecule as consisting of the nuclei of its constituent atoms and its 
electron density distribution. Generally, it is the geometry and symmetry of the 
arrangement of the atomic nuclei that is considered to be the geometry and 
symmetry of the molecule itself. 

Molecules are finite figures with at least one singular point in their 
symmetry description. Thus, point groups are applicable to them. There is no 
inherent limitation on the available symmetries for molecules. On the other 
hand, severe restrictions apply to the symmetries of crystals, as will be seen 
later (Section 9.3). In fact, molecules occupy a more fundamental level in the 
hierarchy of structures than do crystals. Many crystals themselves are built 
from molecules (see, Section 9.6). 

Molecules in the gas phase are considered to be free. They are so far apart 
that they are unperturbed by interactions with other molecules. On the other 
hand, intermolecular interactions may occur between the molecules in con- 
densed phases, i.e., in liquids, melts, amorphous solids, or crystals. In the 
present discussion, all molecules will be assumed to be unperturbed by their 
environment, regardless of the phase or state of matter in which they exist. 

Molecules are never motionless. They are performing vibrations all the 
time. In addition, gaseous molecules, and also molecules in liquids, are 
performing rotational and translational motion as well. Molecular vibrations 
constitute relative displacements of the atomic nuclei with respect to their 
equilibrium positions and occur in all phases, including the crystalline state, 
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and even at the lowest possible temperatures. The magnitude of molecular 
vibrations is relatively large, amounting to several percent of the internuclear 
distances. Typically, there are about 1012 to 1014 vibrations per second. 

Symmetry considerations are fundamental in any description of molecu- 
lar vibrations, as will be seen later in detail (Chapter 5). First, however, we will 
discuss the molecular symmetries, ignoring entirely the motion of the mole- 
cules. Various molecular symmetries will be illustrated by examples from 
outside chemistry. A simple model will also be discussed to gain some insight 
into the origins of the various shapes and symmetries in the world of molecules. 
Our considerations will be restricted, however, to relatively simple and thus 
rather symmetrical systems. The importance and consequences of intra- 
molecular motion involving relatively large amplitudes will be commented 
upon in the final section of this chapter. 

3.1 FORMULAS, ISOMERS 

The empirical formula of a chemical compound expresses its composi- 
tion. For example, C2H402 indicates that the molecule consists of two carbon, 
four hydrogen, and two oxygen atoms. This formulation, however, provides no 
information on the order in which these atoms are linked. This empirical 
formula may correspond to methyl formate (3-1), acetic acid (3-2), and 
glycolaldehyde (3-3). Only the structural formulas for these compounds, 
shown below, distinguish among them. This is called structural isomerism. 

HCOOCH 3 CH3COOH HCOCH2OH 

~ H H 0 0 H 
/ \ # '% I 

C--O--C--H H--C--C C--C--O--H 
/ \ / \ / / 

H H H O- -H  H H 

3-1 3-2 3-3 

Although these molecules, as a whole, are not symmetric, some of their 
component parts may be symmetrical. They possess what is called local 
symmetry. Similar atomic groups in different molecules often have similar 
geometries, and thus similar local symmetries. The structural formulas reveal 
considerable information about these local symmetries, or at least their sim- 
ilarities and differences in various molecules. The above simplified structural 
formulas are especially useful in this respect. This approach is widely applica- 
ble in organic chemistry, where relatively few kinds of atoms build an 
enormous number of different molecules. A far greater diversity of structural 
peculiarities is characteristic for inorganic compounds. 
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The symbol for the carbon atom occurs twice in all three simplified 
structural formulas above, a fact that indicates differences in the structural 
positions of these carbon atoms. The same argument applies to the oxygen 
atoms. On the other hand, three hydrogens are equivalent in both methyl 
formate and acetic acid, with the fourth being different in the two molecules. 
There are three different types of hydrogen positions in glycolaldehyde. 

Molecules with the same formula but in which the distances between 
corresponding atoms are not all the same are called structural isomers (Figure 
3-1). They are of two types. If their atomic connectivities are the same, they are 
diastereomers, and if their atomic connectivities are different, they are consti- 
tutional isomers. Some diastereomers can become superimposable by rotation 
about a bond, and they are called rotational isomers. Depending on the 
magnitude of the barrier to rotation, geometrical isomers (high barrier) and 
conformers (low barrier) are distinguished. 

Identical molecules have the same formula, the same atomic connectivity, 
and the same distances between corresponding atoms. In addition, they are 

/ 
Interatomic distances 

all the same 
/ \ 

HOMOMERS ENANTIOMERS 
identical not superimposable 

molecules mirror images 
superimposable 

ISOMERS 

have the same formula 
\ 

Interatomic distances 
not all the same 

I 
STRUCTURAL ISOMERS 

/ \ 
connectivities connectivities 

the same different 

I I 
DIASTEREOMERS CONSTITUTIONAL 

/ ISOMERS 

Superimposable by rotation 
about a bond 

I 
ROTATIONAL 

ISOMERS 

GEOMETRICAL ISOMERS 

/ \ 
Barrier Barrier 

to rotation to rotation 
high low 

I I 
CONFORMERS 

Figure 3-1. The hierarchy of isomers. 
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superimposable (homomers). Enantiomers have the same formula, the same 
atomic connectivity, and the same distances between corresponding atoms, but 
they are not superimposable; instead, they are mirror images of each other (cf. 
Section 2.7 on chirality). 

3.2 ROTATIONAL ISOMERISM 

The four-atom chain is the simplest system for which rotational isomerism 
is possible. It is shown in Figure 3-2. Rotational isomers, or conformers, are 
various forms of the same molecule related by rotation around a bond as axis. 
The various rotational forms of a molecule are described by the same empirical 
formula and by the same structural formula. Only the relative positions of the 
two bonds (or groups of atoms) at the two ends of the rotation axis are changed. 
The molecular point groups for various rotational isomers may be entirely 
different. 

Rotational isomers can be conveniently represented by so-called projec- 
tion formulas in which the two bonds (or groups of atoms) at the two ends are 
projected onto a plane which is perpendicular to the central bond. This plane is 
denoted by a circle whose center coincides with the projection of the rotation 
axis. The bonds in front of this plane are drawn as originating from the center. 
The bonds behind this plane, i.e., the bonds from the other end of the rotation 
axis, are drawn as originating from the perimeter of the circle. 

The drawings by Degas End of the Arabesque and Seated Dancer 
Adjusting Her Shoes may be looked at as illustrations of the staggered and 
eclipsed conformations of A2B-BC 2 molecules. They are shown in Figure 
3-3a. Their projection-like representations are given in Figure 3-3b, while the 
conformers of the molecules are depicted in Figure 3-3c. Degas' drawings are 
also helpful in understanding the representation for the rotational isomers 
described above. The projections in Figure 3-3 represent views along the B-B 
bond, i.e., the dancer's body. The plane bisecting the B-B bond is shown 
by the circle, and it corresponds to the danccr's skirt. The dancer's arms and 

Figure 3-2. Rotational isomerism of a four-atom chain. 
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a 

@ 
A 

C 

Figure 3-3. Illustration for the projectional representation of rotational isomers [3-1]. (a) Left: 
A drawing after Degas' End of the Arabesque by Ferenc Lantos. Right: A drawing after Degas' 
Seated Dancer Adjusting Her Shoes by Ferenc Lantos. Full-color reproductions of the original 
drawings are available in editions of Degas' work. The original drawings are in the Louvre, 
MusEe de l'Impressionisme, Paris, and in the Hermitage, St. Petersburg, respectively. (b) Con- 
tour drawings of the dancers. (c) Staggered and eclipsed rotational isomers of the AzBBC ~ 
molecule by Newman projections representing view along the B-B bond. 
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legs refer to the bonds B-A and B-C, respectively. Incidentally, the bouquet in 
the right hand of the dancer in the staggered conformation may be viewed as a 
different substituent. 

Two important cases in rotational isomerism may be distinguished by 
considering the nature of the central bond. When it is a double bond, rotation of 
one form into another is hindered by a very high potential barrier. This barrier 
may be so high that the two rotational isomers will be stable enough to make 
their physical separation possible. An example is 1,2-dichloroethylene (3-4). 

H H C[ H \ / ~ / 
C ~ C  C ~ C  

/ \ / \ 
C~ Ct H C{ 

cis trans 

3-4 

The symmetry of the cis isomer is characterized by two mutually 
perpendicular mirror planes generating also a twofold rotational axis. This 
symmetry class is labeled mm. An equivalent notation is C2~., as will be seen in 
the next section. The trans isomer has one twofold rotation axis with a 
perpendicular symmetry plane. Its symmetry class is 2/m (C2h). 

Rotational isomerism relative to a single bond is illustrated by ethane and 
1,2-dichloroethane in Figure 3-4. During a complete rotation of one methyl 

0 60 I20 I1~0 24~ 300 360 

~ ec.ps~ ,f(o) 
D~, 

stagg~re~ 

D~e 

V(~) 

0 f~ ~20 ~0  2 ~  300 36O 

e c ~ c ~  
~ ' lO~ed slag~red 

C~ C~ C~ b 

Figure 3-4. Potential energy functions for rotation about a single bond; ~p is the angle of 
rotation. (a) Ethane, H3C--CH 3. There are two different symmetrical forms. Both the staggered 
form with D3a symmetry and the eclipsed form with D3h symmetry occur three times in a 
complete rotational circuit. (b) 1,2-Dichloroethane, CIH~C-CH2CI. There is no other symmetri- 
cal form in the region between the two symmetrical staggered forms shown. Only partial 
eclipsing can occur here because of insufficient symmetry (cf. Ref. [3-2]). The eclipsed form with 
C2, ' symmetry and the staggered form with C2h symmetry occur once, while the staggered form 
with C., symmetry occurs twice in a complete rotational circuit. 
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group around the C-C bond relative to the other methyl group, the ethane 
molecule appears three times in the stable staggered form and three times in the 
unstable eclipsed form. As all the hydrogen atoms of one methyl group are 
equivalent, the three energy minima are equivalent, and so are the three energy 
maxima, as seen in Figure 3-4a. The situation becomes more complicated 
when the three ligands bonded to the carbon atoms are not the same. This is 
seen for 1,2-dichloroethane in Figure 3-4b. There are three highly symmetrical 
forms. Of these, two are staggered, with C2h and Cz symmetry, respectively. 
The third is an eclipsed form with C2v symmetry. This form has CI/CI and H/H 
eclipsing. There is no other fully eclipsed form because of insufficient 
symmetry [3-2]. 

Figure 3-4 shows only the symmetrical conformers by projection for- 
mulas. The symmetrical forms always belong to extreme energies, either 
minima or maxima. The barriers to internal rotation in the potential energy 
functions depicted in Figure 3-4 are about 10 kJ/mol. Typical barriers for 
systems where the double bonds would be considered to be the "rotational 
axis" may be as much as 30 times greater than those for systems with single 
bonds. 

3.3 SYMMETRY NOTATIONS 

So far, the so-called International or Hermann-Mauguin symmetry nota- 
tions have been used in the descriptions in this text. Another, older system by 
Schoenflies is generally used, however, to describe the molecular point-group 
symmetries. This notation has been given in parentheses in the preceding 
section. The Schoenflies notation has the advantage of succinct expression for 
even complicated symmetry classes combining various symmetry elements. 
The two systems are compiled in Table 3-1 (see, e.g., Ref. [3-3]) for a selected 
set of symmetry classes. The set includes all point-group symmetries in the 
world of crystals, which are restricted to 32 classes. The reasons for and 
significance of these restrictions will be discussed later in the chapter on 
crystals (Section 9.3). There are no restrictions on the point-group symmetries 
for individual molecules, and a few additional, so-called limiting, classes are 
also listed in Table 3-1. 

The Schoenflies notation for rotation axes is C n, and for mirror-rotation 
axes the notation is $2,, where n is the order of the rotation. The symbol i refers 
to the center of symmetry (cf. Section 2.4). Symmetry planes are labeled ~r; ~r~. 
is a vertical plane, which always coincides with the rotation axis with an order 
of two or higher, and ~r h is a horizontal plane, which is always perpendicular to 
the rotation axis when it has an order of two or higher. 

Point-group symmetries not listed in Table 3-1 may easily be assigned the 
appropriate Schoenflies notation by analogy. Thus, for example, C5, ,, Csh, 
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Table 3-1. Symmetry Notations of the Crystallographic 
and a Few Limiting Groups 

Hermann-Mauguin Schoenflies Hermann-Mauguin Schoenflies 

Crystallographic groups 
1 C I ~m D3a 

"[ C j ~ C 3~ , 
m C~ 6 C 6 

2 C~. 6/m C6~ 

2/ m C ~ ~m 2 D 3h 

mm C2~, 6ram C6~, 

222 Dz 622 D 6 
mmm D 2h 6/mmm D 6~ 
4 C~ 23 T 

~ S 4 m~ r~ 
4/m C4h ~3m T u 
4ram C~, 432 O 

~2m D ~  m3m 0 h 
422 D a Limiting groups 
4tmmm D4h ~ C~ 
3 C~ ~2 D .  
~ S~ ~,'m C~ 
3m C~, ~mm C ,=, 

32 D 3 ~/mm D~h 

C 7, C 8, etc., can be established. Such symmetries may well occur among real 
molecules. 

3.4 ESTABLISHING THE MOLECULAR POINT GROUP 

Figure 3-5 shows a possible scheme for establishing the molecular point 
group (cf. Refs. [3-41 and [3-5]). The symmetry of  most molecules may be 
reliably established by this scheme. 

First, an examination is carried out to ascertain whether the molecule 
belongs to some "special" group. If the molecule is linear, it may have a 
perpendicular symmetry plane (D~h) or it may not have one (C~,,). Very high 
symmetries are easy to recognize. Each of  the groups T, T h, T a, O, and O h has 
four threefold rotation axes. Both icosahedral 1 and I h groups require ten 
threefold rotation axes and six fivefold rotation axes. The molecules belonging 
to these groups have a central tetrahedron, octahedron, cube, or icosahedron. 

If the molecule does not belong to one of these "special" groups, a 
systematic approach is followed. Firstly, the possible presence of rotation axes 
in the molecule is checked. If there is no rotation axis, then it is determined 
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Special group "~ 

NO I YES 
i . Cn ax~s? 

NO J YES 
d~? only -£;n axis? Td 

.o I Z. 
I J c, s,. 

C~ Ci OO'v? ] ~ 

I 
~ c~, 

(in'or? 
NO[YES 

muttiple d~E S 

1 
C=v O=~ 

Figure 3-5. Scheme for establishing the molecular point groups (of. Refs. [3-4] and [3-5]). 

whether there is a symmetry plane (C,). In the absence of rotational axes and 
mirror planes, there may only be a center of symmetry (Ci), or there may be no 
symmetry element at all (C~). If the molecule has rotation axes, it may have a 
mirror-rotation axis with even-number order ($2,) coinciding with the rotation 
axis. For S 4, there will be a coinciding C2; for S6, a coinciding C3; and for S s, 
both C 2 and C 4. 

In any case the search is for the highest order C, axis. Then it is 
ascertained whether there are n C 2 axes present perpendicular to the C, axis. If 
such C 2 axes are present, then there is D symmetry. If in addition to D 
symmetry there is a o" n plane, the point group is D,h, while if there are n 
symmetry planes (o- a) bisecting the twofold axes, the point group is D,, a. If 
there are no symmetry planes in a molecule with D symmetry, the point group 
is D,,. 

Finally, if no C2 axes perpendicular to C~ are present, then the lowest 
symmetry will be C~; when a perpendicular symmetry plane is present, the 
point group will be C,, h, and when there are n coinciding symmetry planes, it 
will be Cn,.. 

3.5 EXAMPLES 

In this section, actual molecular structures are shown for the various point 
groups along with occasional examples from outside chemistry. The Schoen- 
flies notation is used and the characteristic symmetry elements are enumerated. 
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C t. There are no symmetry elements except the onefold rotation axis, or 
identity, of course. C~ symmetry is a s y m m e t r y .  Some examples are shown in 
Figure 3-6. 

C 2, C 3, C 4, C~, C 6 . . . . .  C n. One twofold, threefold, fourfold, fivefold, 
and sixfold rotation axis, respectively, and this series can be continued by 
analogy. C,~ has one n-fold rotation axis. Examples: Figure 3-7. 

C i. Center of symmetry. Example: Figure 3-8. 
C~. One symmetry plane. Examples: Figure 3-9. 
S 4. One fourfold mirror-rotation axis. Example: Figure 3-10a. 
S 6. One sixfold mirror-rotation axis, which is, of course, equivalent to one 

threefold rotation axis plus a center of symmetry. Example: Figure 3-10b. 
C2h , C3h . . . . .  Cnh. One twofold, threefold . . . . .  n-fold rotation axis with 

a symmetry plane perpendicular to it. Examples: Figure 3-11. 
C2v. Two perpendicular symmetry planes whose crossing line is a twofold 

rotation axis. Examples: Figure 3-12a. 
C3~.. One threefold rotation axis with three symmetry planes which 

include the rotation axis. The angle is 60 ° between two symmetry planes. 
Examples: Figure 3-12b. 

C4v. One fourfold rotation axis with four symmetry planes which include 
the rotation axis. The four planes are grouped in two nonequivalent pairs. One 
pair is rotated relative to the other pair by 45 ° . The angle between the two 
planes within each pair is 90 °. Examples: Figure 3-12c. 

C5,., C6~. . . . . .  C~. This series can be continued by analogy. When n is 
even, there are two sets of symmetry planes. One set is rotated relative to the 
other set by (180/n) °. The angle between the planes within each set is (360/n) °. 

H Cl 

/ 
" \ c / r  c. 
1",, / \'-,. 

Cl Br H H 

0 

Figure 3-6. Examples with C~ symmetry: no symmetry elements except the onefold rotation 
axis (C I symmetry is asymmetry). 
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[ CI ,? 

~ s ~  ~ ~  • ~ - -  

~/CI / /  

0% 
H ~ C~-,,,~ n/, CH 2 

~0 / ~ "  

• H__C~~__~ ~ 
[3l-rotone 

b 

@ 
Iz.l-r otone [S}-rolone 16}-rotone d e 

Figure 3-7. Some logos and molecules illustrating C, symmetries. (a) C 2. Logos of Security 
First National Bank, California (left) and United Banks of Colorado (right). (b) C 3. Logos of 
Pittsburgh National Bank (left) and Woolmark (right). (c) C 4. Logo of Chase Manhattan Bank. (d) 
C s. Logo of First American National Bank, Tennessee. (e) C 6. Logo of Crocker Bank. Logos are 
from Ref. [3-6]. 
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Figure 3-8. Example with C,. symmetry. 
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H 

,4 ~ c l ' ~ s ~  o .,. 
H~,c -s 7 c, B, "H 

H- B -  B-H 
H2C S C9H9 I '%H #" ~ 

H H 

Figure 3-9. Examples with C~ symmetry. The pictures show the tail of a whale, off Plymouth. 
Massachusetts, a leaf, and the Flatiron building in New York City. Photographs by the authors. 
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7 0  0...~ 
1-13C ~ S i  / CH 3 
mc,~/~o/cm 

Figure 3-10. 

b [(c H~)zCHI3CC[CHICH 2)213 

Examples with mirror-rotation axes. (a) S 4 symmelry. (b) S 6 symmetry. 

/H 
0 X / 0  F>..~}~.F 

0 
H / N ~ / # '  o 

N ~ N  
/ 

b c d 

Figure 3-11. Examples with rotation axis and perpendicular symmetry plane. (a) C2~ , symme- 
try. (b) C3h symmetry. The molecule bicyclo[3.3.3]undecane is also called "manxane. "" It has C3h 
symmetry indeed. The Isle of Man coin shows a one-sided rosette whose symmetry is only C 3. (c) 
C4~ , symmetry. (d) C6h symmetry. 
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Figure 3-12. Examples with rotation axis and symmetry planes containing the rotation axis. 
(a) C2,, symmetry. The examples include a sculpture in Paris; photograph by the authors. (b) C3~, 
symmetry. (c) C4,. symmetry. The examples include an Indian stamp. (Continued on next page) 
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e 

Figure 3-12. 
symmetry. 

l[n 

H-CI H-B-S H-C=C-C=C-CI 

; 2 
(Continued) (d) Cs~ symmetry. The examples include a cotton plant. (e) C® v 

When n is odd, the angle between the symmetry planes is (180/n) °. Examples: 
Figure 3-12d. 

C= v. One infinite-fold rotation axis with an infinite number of  symmetry 
planes which include the rotation axis. Examples: Figure 3-12e. 

D 2. Three mutually perpendicular twofold rotation axes. Example: Figure 
3-13a. 

D 3. One threefold rotation axis and three twofold rotation axes perpen- 
dicular to the threefold axis. The twofold axes are at 120 °, so the minimum 
angle between two such axes is 60 °. Examples: Figure 3-13b. 

D 4. One fourfold rotation axis and four twofold rotation axes which are 
perpendicular to the fourfold axis. The four axes are grouped in two none- 
quivalent pairs. One pair is rotated relative to the other pair by 45 ° . The angle 
between the two axes within each pair is 90 ° . 

D 5, D 6, D 7 . . . . .  D n. This series can be continued by analogy. It is 
characterized by one n-fold rotation axis and n twofold rotation axes perpen- 
dicular to the n-fold axis. 

D2a. Three mutually perpendicular twofold rotation axes and two symme- 
try planes. The planes include one of the three rotation axes and bisect the 
angle between the other two. Examples: Figure 3-14a. 

D3d. One threefold rotation axis with three twofold rotation axes perpen- 
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+~s~one 
I r a n s - t r a n s - t r a n s  

perhydro-triphenylene 

Figure 3-13. Examples with D. symmetries. (a) D 2. (b) D3. 

dicular to it and three symmetry planes. The angle between the twofold axes is 
60 ° . The symmetry planes include the threefold axis and bisect the angles 
between the twofold axes. Examples: Figure 3-14b. 

D 4d , D5d , D6d , DTd . . . . .  D nd. One fourfold rotation axis with four twofold 
rotation axes perpendicular to it and four symmetry planes. The angle between 
the twofold axes is 45 ° . The symmetry planes include the fourfold axis and 
bisect the angles between the twofold axes. The series can be continued by 
analogy. Examples: Figures 3-14c and 3-14d. 

Deh. Three mutually perpendicular symmetry planes. Their three cross- 
ing lines are three twofold rotation axes, and their crossing point is a center of 
symmetry. Examples: Figure 3-15a. 

D3h. One threefold rotation axis, three symmetry planes (at 60 °) which 
contain the threefold axis, and another symmetry plane perpendicular to the 
threefold axis. Examples: Figure 3-15b. 

D4h. One fourfold axis, one symmetry plane perpendicular to it, and four 
symmetry planes which include the fourfold axis. The four planes make two 
pairs. One pair is rotated relative to the other pair by 45 ° . The two planes in 
each pair are perpendicular to each other. Examples: Figure 3-15c. 

Dsh. One fivefold rotation axis, one symmetry plane perpendicular to it, 
and five symmetry planes which include the fivefoid rotation axis. The angle 
between the adjacent five planes is 36 °. Examples: Figure 3-15d. 

D6h. One sixfold rotation axis, one symmetry plane perpendicular to it, 
and six symmetry planes which include the sixfold axis. The six planes are 
grouped in two sets. One set is rotated relative to the other set by 30". The angle 
between the planes within each set is 60 °. Examples: Figure 3-15e. 

D,,,~. The series can be continued by analogy. There will be one n-fold 
rotation axis, one symmetry plane perpendicular to it, and n symmetry planes 
which include the n-fold axis. When n is even, there are two sets of symmetry 
planes. One set is rotated relative to the other set by (180/n) °. The angle 
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0 d ~--~-~,~ 
Figure 3-14. Examples with Dnd symmetries. (a) D2d. The examples include a sculpturc in 
Honolulu, Hawaii; photograph by the authors. (b) D3d. The drawing of the radiolarian is from Rcf. 
[3-7]. (c) D4a. The drawing of thc plant is from Ref. [3-7]. (d) Dsc i. 
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Figure 3-15. 

O=C=O H-H H-C-=C-C-=C-H 

a / 
Examples with Dnh symmetries. (a) D~h. (b) D3h. (c) D4h. (d) Dsh. (e) D6h. The 

examples include a snowflake on a British stamp. (f) D~h. 
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between the planes within each set is (360/n) °. When n is odd, the angle 
between the symmetry planes is (180/n) °. 

D~h. One z-fold axis and a symmetry plane perpendicular to it. Of 
course, there are also an infinite number of symmetry planes which include the 
o*-fold rotation axis. Examples: Figure 3-15f. 

T. Three mutually perpendicular twofold rotation axes and four threefold 
rotation axes. The threefold axes all go through a vertex of a tetrahedron and 
the midpoint of the opposite face center. The twofold axes connect the 
midpoints of opposite edges of this tetrahedron. Examples: Figure 3-16a. 

T d. In addition to the symmetry elements of symmetry T, there are six 
symmetry planes, each pair of them being mutually perpendicular. All of these 
symmetry planes contain two threefold axes. Examples: Figure 3-16b. 

T h. In addition to the symmetry elements of symmetry T, there is a center 
of symmetry which introduces also three symmetry planes perpendicular to 
the twofold axes. Example: Figure 3-16c. 

O h. Three mutually perpendicular fourfold rotation axes and four three- 
fold rotation axes, which are tilted with respect to the fourfold axes in a uniform 
manner, and a center of symmetry. Examples: Figure 3-17. 

I h. The most characteristic feature of this point group is the presence of 
six fivefold rotation axes. Examples: Figure 3-18. 

iilCH3)3 iF3 
(CHa)a Si" ~Si~si{cH:}}:~ F3P'~Pt~pF 3 

(CH3)3Si F~P 
As CI ~ 

Figure 3-16. Examples with T (a), T d (b), and (c) T h symmetry. 
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Figure 3-17. Examples with O h symmetry. The sculpture, in Seoul, shows a chemist holding an 
octahedral molecular structure and is by Eui Soon Choi: photograph by the authors. 

~ ~  -~- 
;~ -  ~ , 

&~k-:~-?-._\~ 

a ~ 

~\~: ~ ......... ,,, 

Figure 3-18. Examples with I h symmetry: (a) The regular icosahedral boron skeleton of the 
2 -  B~.~H~.~ ion; (b) truncated icosahedral structure of buckminsterfullerene, Ca), and of a climber 

in Sapporo, Japan. Photograph by the authors. 



Molecules: Shape and Geometry 115 

3.6 CONSEQUENCES OF SUBSTITUTION 

A tetrahedral A X  4 molecule, for example, methane, CH 4, has the point 
group of the regular tetrahedron, T a. Gradual substitution of the X ligands by B 
ligands leads to less symmetrical tetrahedral configurations (Figure 3-19a), 
until complete substitution is accomplished. 

If each consecutive substitution introduces a new kind of ligand, then the 
symmetry will continue to decrease. This is shown for the tetrahedral case in 
Figure 3-19b. As the sites of all X ligands are equivalent in each of these con- 
figurations, the symmetry changes accompanying the substitution are deter- 
mined a pr ior i .  

Let us consider now an octahedral AX 6 molecule, for example, sulfur 
hexafluoride, SF~,, which has the symmetry of the regular octahedron, O,~. 
Substitution of an X ligand by a B ligand results in an AXsB molecule whose 
symmetry is again determined a pr ior i  to be C4, ,. The substitution of a second 
X ligand by another ligand B may lead to alternative structures as the sites of 
the five X ligands after the first substitution are no longer equivalent. The 
symmetry variations in this substitution process are illustrated in Figure 3-20. 
A yet larger variety is obtained if each consecutive substitution introduces a 
new kind of ligand. 

Another example among fundamental structures is the benzene geometry, 
D6h. Gradual substitution of an increasing number of hydrogens by ligands X 
results in the symmetry variations illustrated in Figure 3-21. As regards the 

x B B B B 

x x x x B 

T d C3v C2v C3v Td 

x B B B 

X X X X 

b T d C3v C$ C 1 

Figure 3-19. Substitution in a tetrahedral AX 4 molecule: (a) Gradual substitution of the ligands 
X by ligands B; (b) substitution of the ligands X by different ligands. 
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Figure 3-20. Gradual substitution of the ligands X in an octahedral AX 6 molecule by ligands B. 

molecular point group, the monosubstituted and the pentasubstituted deriva- 
tives are equivalent. All derivatives can be grouped in such pairs with each of 
the trisubstituted benzenes constituting a pair by itself. Again, only the 
simplest case is considered here, with one kind of ligand used in all substituted 
positions. The decrease in the symmetry of the molecular point group for the 
substituted derivatives occurs because of the presence of the substituent 
ligands. It does not presuppose a change in the hexagonal symmetry of the 
benzene ring itself. Modern structure analyses have determined, however, that 
an appreciable deformation of the ring from regularity may also take place, 
depending on the nature of the substituents. The largest deformation usually 
occurs at the so-called ipso angle adjacent to the substituent. According to the 
general observation, electronegative substituents tend to compress the ring 
while electropositive substituents elongate it [3-8]. 

Complex formation usually implies the association of molecules or other 
species which may also exist separately in chemically nonextreme conditions. 
Complex formation often has important consequences on the shapes and 
symmetries of the constituent molecules [3-9]. The H3N.A1CI 3 donor- 
acceptor complex [3-9], for example, has a triangular antiprismatic shape with 
C3~, symmetry as seen in Figure 3-22. The symmetry of the donor part (NH3) 
remains unchanged in the complex, and the geometrical changes are relatively 
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Figure 3-22. The uncomplexed ammonia and aluminum trichloride molecules and the triangu- 
lar antiprismatic shape of the H3N'AICI 3 donor-acceptor complex. 
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small. On the other hand, there are more drastic geometrical changes in the 
acceptor part (AICI 3) due to loss of coplanarity of the four atoms, and this 
results in a reduction in the point group. However, the structural change in the 
acceptor part may also be viewed as if the complex formation completes the 
tetrahedral configuration around the central atoms in the component molecules. 
The nitrogen configuration may be considered to be tetrahedral already in 
ammonia, with the lone pair of electrons being the fourth ligand. For alumi- 
num, it is indeed the complexation that makes the tetrahedral configuration 
complete. Coordination molecules often demonstrate the utility of polyhedra in 
describing molecular shapes, symmetries, and geometries. Of course, such 
description may be useful for many other classes of compounds as well. 

3.7 POLYHEDRAL MOLECULAR GEOMETRIES 

In the Preface to the third edition of his Regular Polytopes [3-10], the great 
geometer H. S. M. Coxeter called attention to the icosahedral structure of a 
boron compound in which twelve boron atoms are arranged like the vertices of 
an icosahedron. It had been widely believed that there would be no inanimate 
occurrence of an icosahedron, or of a regular dodecahedron either. 

In 1982 the synthesis and properties of a new polycyclic C20H?0 hydro- 
carbon, dodecahedrane, were reported [3-11]. The 20 carbon atoms of this 
molecule are arranged like the vertices of a regular dodecahedron. When in the 
early sixties Schultz [3-12] discussed the topology of the polyhedrane and 
prismane molecules (vide infra), at that time it was in terms of a geometrical 
diversion rather than true-life chemistry. Since then it has become real 
chemistry. 

It should be reemphasized that the above high-symmetry examples refer 
to isolated molecules and not to crystal structures. Crystallography has, of 
course, been one of the main domains where the importance of polyhedra has 
been long recognized, together with some limitations which forbid the occur- 
rence of regular pentagonal figures in crystals. Polyhedra are not less impor- 
tant in the world of molecules, where the limitations existing in crystals do not 
apply. 

In the first edition of Regular Polytopes [3-10], Coxeter stated, "'the chief 
reason for studying regular polyhedra is still the same as in the times of the 
Pythagoreans, namely, that their symmetrical shapes appeal to one's artistic 
sense." The success of modern molecular chemistry does not diminish the 
validity of this statement. On the contrary. There is no doubt that aesthetic 
appeal has much contributed to the rapid development of what could be termed 
polyhedral chemistry. One of the pioneers in the area of polyhedral borane 
chemistry, Earl Muetterties, movingly described [3-13] his attraction to the 
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chemistry of boron hydrides, comparing it to Escher's devotion to periodic 
drawings [3-14]. Muetterties' words are quoted here*: 

When I retrace my early attraction to boron hydride chemistry, 
Escher's poetic introspections strike a familiar note. As a student 
intrigued by early descriptions of the extraordinary hydrides, I had 
not the prescience to see the future synthesis developments nor did 
I have then a scientific appreciation of symmetry, symmetry opera- 
tions, and group theory. Nevertheless, some inner force also 
seemed to drive me but in the direction of boron hydride chemistry. 
In my initial synthesis efforts, I was not the master of these 
molecules; they seemed to have destinies unperturbed by my then 
amateurish tactics. Later as the developments in polyhedral borane 
chemistry were evident on the horizon, I found my general outlook 
changed in a characteristic fashion. For example, my doodling, an 
inevitable activity of mine during meetings, changed from charac- 
ters of nondescript form to polyhedra, fused polyhedra and graphs. 

I (and others, my own discoveries were not unique nor were 
they the first) was profoundly impressed by the ubiquitous charac- 
ter of the three-center relationship in bonding (e.g., the boranes) 
and nonbonding situations. I found a singular uniformity in geo- 
metric relationships throughout organic, inorganic, and organo- 
metallic chemistry: The favored geometry in coordination com- 
pounds, boron hydrides, and metal clusters is the polyhedron that 
has al! faces equilateral or near equilateral triangles . . . 

The polyhedral description of molecular geometries is, of course, generally 
applicable as these geometries are spatial constructions. To emphasize that 
even planar or linear molecules are also included, the term polytopal could be 
used rather than polyhedral. The real utility of the polyhedral description is for 
molecules possessing a certain amount of symmetry. Because of this and also 
because of the introductory character of our discussion, only molecules with 
relatively high symmetries will be mentioned. 

The polyhedral description may be useful for widely different systems. 
Thus, for example, both the tetraarsene, ms4, and the methane, CH4, mole- 
cules have tetrahedral shapes (Figure 3-23) and T d symmetry. However, there is 
an important difference in their structures. In the As 4 molecule all the four 
constituent nuclei are located at the vertices of a regular tetrahedron, and all the 
edges of this tetrahedron are chemical bonds between the As atoms. In the 
methane molecule, there is a central carbon atom, and four chemical bonds are 

*From Ref. [3-13], p. 98. The passage is quoted with permission from Academic Press. 
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Figure 3-23. The molecular shapes of As,~ and CH 4. 

directed from it to the four vertices of  a regular tetrahedron, where the four 
protons are located. The edges are not chemical bonds. 

The As 4 and CH 4 molecules are clear-cut examples of  the two distinctly 
different arrangements. However, these distinctions are not always so unam- 
biguous. An interesting example is the structure of  zirconium borohydride,  
Zr(BH,~)4. Two independent studies [3-15, 3-16] described its structure by the 
same polyhedral configuration, while they differed in the assignment of  the 
chemical bonds (Figure 3-24). The most  important difference between the two 
interpretations concerns the linkage between the central zirconium atom and 
the four boron atoms situated at the four vertices of  a regular tetrahedron. 
According to one interpretation [3-15], there are four Z r -B  bonds in the 

\ ~ i  z~ 

,~.) ~ 

b s, H 

Figure 3-24. The molecular configuration of zirconium borohydride, Zr(BH,~)4, in two inter- 
pretations but described by the same polyhedral shape. (a) According to one interpretation [3-15], 
the zirconium atom is directly bonded to the four tetrahedrally arranged boron atoms. (b) 
According to another interpretation [3-16], the zirconium and the tetrahedrally arranged boron 
atoms are not bonded directly. Their linkage is established by four times three hydrogen bridges. 
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Figure 3-25. (a) Buckminsterfullerene, "the roundest, most symmetrical large molecule found 
so far" [3-19]. (b) A few members of the fullerene family. 

tetrahedral arrangement. On the other hand, according to the other interpreta- 
tion [3-16], there is no direct Zr-B bond, but each boron atom is linked to the 
zirconium atom by three hydrogen bridges. Zirconium borohydride is one of 
the interesting metal borohydrides whose molecular geometries have pre- 
sented a challenge to the structural chemist [3-9]. 

Polyhedral molecular geometries have made even the mass media re- 
cently with the discovery of buckminsterfullerene [3-17], C60 (Figure 3-25), 
and especially with the whole new chemistry of the fullerenes (see, e.g., Ref. 
[3-18]).* Buckminsterfullerene was named "Molecule of the Year" in the 
December 20, 1991, issue of Science magazine [3-19] while it was only the first 
runner-up the previous year [3-20]. Although even a runner-up status is of the 
highest prestige, in 1990 even the structural formula was drawn erroneously 
(cf. Ref. [3-21]), and buckminsterfullerene was referred to as a "distant 
cousin" of diamond [3-20]. By December, 1991, all this had changed, and the 
Science editorial [3-22] stated, 

Part of the exhilaration of the fullerenes is the shock that an old 
reliable friend, the carbon atom, has for all these years been hiding 
a secret life-style. We were all familiar with the charming ver- 
satility of carbon, the backbone of organic chemistry, and its 

*There is also a whole new journal devoted to this new class of compounds, Fullerene Science and 
Technology (T. Braun, ed.), Marcel Dekker, New York. 
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infinite variation in aromatic and aliphatic chemistry, but when you 
got it naked, we believed it existed in two well-known forms, 
diamond and graphite. The finding that it could exist in a shock- 
ingly new structure unleashes tantalizing new experinaental and 
theoretical ideas. 

Then it added something that certainly carried a flavor of the broadest possible 
implications: 

Perhaps the least surprising might be that improving life through 
science is a path that would see all the citizens of the world holding 
hands like carbon atoms in C6o and like them, welcoming any 
newcomer, no matter how different his or her skills or challenges. 

Figure 3-25 shows a series of fullerenes, the C20 molecule being the smallest 
fullerene molecule. 

3.7.1 Boron Hydride Cages 

The boron hydrides are one of most beautiful classes of polyhedral 
compounds. Its representatives range from the simplest to the most compli- 
cated systems. Our description here is purely phenomenological. Only in 
passing is reference made to the relationship between the characteristic 
polyhedral cage arrangements of the boron hydrides and the peculiarities of 
multicenter bonding (see, e.g., Refs. [3-23-3-26]). 

All laces of the boron hydride polyhedra are equilateral or nearly equi- 
lateral triangles. Those boron hydrides that have a complete polyhedral shape 
are called closo boranes (the Greek closo meaning closed). One of the most 
symmetrical, and, accordingly, most stable, polyhedral boranes is the 
BI2H~22- ion. Its regular icosahedrai configuration is shown in Figure 3-26a. 
The structural systematics of BnHn 2- closo boranes and related C2Bn_2H n 
closo carboranes are presented in Table 3-2, after Muetterties [3-13]. In 
carboranes some of the boron sites are taken by carbon atoms. 

Another structural class of the boron hydrides is the so-called quasi-closo 
boranes. They are related to the closo boranes by removing a framework atom 
from the latter and adding in its stead a pair of electrons. Thus, one of the 
polyhedron framework sites is taken by an electron pair. 

There are boron hydrides in which one or more of the polyhedral sites is 
truly removed. Figure 3-26b shows the systematics of borane polyhedral 
fragments as obtained from closo boranes, after Williams [3-27] and Rudolph 
[3-24]. All the faces of the polyhedral skeletons are triangular, and thus the 
polyhedra may be termed deltahedra and the derived fragments deltahedral. 
The starting deltahedra are the tetrahedron, the trigonal bipyramid, the octa- 
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Figure 3-26. (a) The regular icosahedral boron skeleton of BI2HI22 . (b) Closo, nido, and 
arachno boranes. The genetic relationships are indicated by diagnoal lines. After Williams [3-27] 
and Rudolph [3-24]. Reprinted with permission from Ref. [3-24]. Copyright (1976) American 
Chemical Society. 

hedron, the pentagonal bipyramid, the bisdisphenoid, the symmetrically tri- 
capped trigonal prism, the bicapped square antiprism, the octadecahedron, and 
the icosahedron. The geometrical systematics have been recently updated [3-28]. 

A nido (nestlike) boron hydride is derived from a closo borane by the 
removal of one skeleton atom. If the starting closo borane is not a regular 
polyhedron, then the atom removed is the one at a vertex with the highest 
connectivity. An arachno (weblike) boron hydride is derived from a closo 
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Table 3-2. Structural Systematics of 
B,,H,, 2- closo Boranes and C2B~_2H,, closo Carboranes a 

Polyhedron and point group Borane Dicarbaborane 

Tetrahedron, T d (B,~CI4)b - -  
Trigonal bipyramid, D3h - -  C2B3H 5 
Octahedron, O h B6H6 2 C2B,~H 6 
Pentagonal bipyramid, Dsh BTH7 2 C2BsH 7 
Dodecahedron (triangulated). D~ BsH8 2- C2B6H ~ 
Tricapped trigonal prism, Dr, BgH9 2- C2B7H 9 
Bicapped square antiprism, D4u B~oH~o 2- C2BsH~o 
Octadecahedron, Cz,. B ~ IHl l 2 C2BqHI I 

lcosahedron. I h B~2Ht2 ~ C2BIoH~ 

"After Muetterties [3-13]. 
t'B.~H4 not known. 

borane by the removal of two adjacent skeleton atoms. If the starting closo 
borane is not a regular polyhedron, then, again, one of the two atoms removed 
is at a vertex with the highest connectivity. Complete nido and arachno 
structures are shown in Figure 3-27 together with the starting boranes [3-13]. 
The fragmented structures are completed by a number of bridging and terminal 
hydrogens. The above examples are, of course, from among the simplest 
boranes and their derivatives. 

3.7.2 Polycyclic Hydrocarbons 
Some fundamental polyhedral shapes are found among polycyclic hydro- 

carbons. The bond arrangements around the carbon atoms in such configura- 
tions may be far from the energetically most advantageous, causing strain in 
these structures [3-29]. The strain may be so large as to render particular 
arrangements too unstable to exist under any reasonable conditions. On the 
other hand, the fundamental character of these shapes and their high symmetry 
and aesthetic appeal make them an attractive and challenging "playground" to 
the organic chemist [3-30]. Incidentally, these substances have also great 
practical importance as they are building blocks for such natural products as 
steroids, alkaloids, vitamins, carbohydrides, and antibiotics. 

Tetrahedrane, (CH) 4, would be the simplest regular polyhedral polycyclic 
hydrocarbon (Figure 3-28a). However, since it has such a high strain energy 
and provides easy access to attacking reagents, its preparation may not be 
possible. Its derivative, tetra-tert-butyltetrahedrane (Figure 3-28b), however, 
has been prepared [3-31]. This compound is amazingly stable, perhaps 
because the substituents help "clasp" the molecule together. 

The next Platonic solid is the cube, and the corresponding polycyclic 
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Figure 3-27, Examples of closo/nido and closo/arachno structural relationships: (a) closo-B6H62- 
and nido-BsHg: (b) closO-BTH72- and arachno-BsHll. After Muetterties [3-13], 

hydrocarbon, cubane, (CH) 8 (Figure 3-28c), has been known for some time 
[3-32]. The strain energy of the C--C bonds in cubane is among the highest 
known. It is unstable thermodynamically but stable kinetically, like a "rock" 
[3-33]. The preparation of dodecahedrane, (CH)20 (Figure 3-28d), by Paquette 
and co-workers [3-11] followed a prediction almost two decades before, by 
Schultz [3-12], concerning possible hydrocarbon polyhedranes: 

Dodecahedrane is the one substance of the series with almost ideal 
geometry, physically the molecule is practically a miniature ball 
bearing! One would expect the substance to have a low viscosity, a 
high melting point but low boiling point, high thermal stability, a 
very simple infrared spectrum and perhaps an aromatic-like p.m.r. 
spectrum. Chemically one might expect a relatively easy (for an 
aliphatic hydrocarbon) removal of a tertiary proton from the 
molecule, for the negative charge thus deposited on the molecule 
could be accommodated on any one of the twenty completely 
equivalent carbon atoms, the carbanion being stabilized by a 
"rolling charge" effect that delocalizes the extra electron. 

Incidentally, the simplest fullerene is dodecahedrene, C20. 
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Figure 3-28. Polybedrane molecules. (a) Tetrahedrane, (CH)4. It has very high strain energy 
and has not (yet?) been prepared. (b) Tetra-tert-butyltetrahedrane, {C[C(CH3)3]}4, [3-31]. (c) 
Cubane, (CH) 8, [3-32]. (d) Dodecahedrane, (CH)20, [3-11]. (e) C6oH6o [3-34], not yet prepared. 
(Continued on next page) 
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Figure 3-28. (Continued) (f) Triprismane, C6H 6, pentaprismanc, CmH m, and hexaprismane, 
C~2H~2 (not yet prepared). 

In the (CH), convex polyhedral hydrocarbon series, each carbon atom is 
bonded to three other carbon atoms. The fourth bond is directed externally to a 
hydrogen atom. Around the all-carbon polyhedron, there is thus a similar 
polyhedron whose vertices are protons. The edges of the all-carbon polyhedron 
are carbon-carbon chemical bonds, while the edges of the larger all-proton 
polyhedron do not correspond to any chemical bonds. This kind of arrange- 
ment of the polycyclic hydrocarbons is not possible for the remaining two 
Platonic solids. There are four bonds meeting at the vertices of the octahedron 
and five at the vertices of the icosahedron. For similar reasons, only 7 of the 13 
Archimedean polyhedra can be considered in the (CH), polyhedral series. 
One of them is "fuzzyball," or C6oH60 , a predicted form of fully hydrogenated 
buckminsterfullerene (Figure 3-28e) [3-34]. Table 3-3 presents some charac- 
teristics of the polyhedranes, after Schultz [3-12]. It also indicates which of the 
hydrocarbon polyhedranes have already been synthesized, as of 1994. 

Thc cubane molecule may also be considered and called tetraprismane 
(cf. Figs. 2-72 and 3-28c). It may be described as composed of eight identical 
methine units arranged at the corners of a regular tetragonal prism with O h 
symmetry and bound into two parallel four-membered rings conjoined by four 
four-membered rings. Triprismane, (CH)6 [3-35] has D3h symmetry and 
pentaprismane, (CH) m [3-36], has Dsh symmetry. Triprismane, penta- 
prismane, and hexaprismane, C~2H~2 (not yet prepared), are shown in Figure 
3-28f. The quest for a synthesis of pentaprismane is a long story with a happy 
ending [3-36]. Hexaprismane, (CH)~2, which is the face-to-face dimer of 
benzene, has not yet been prepared. Table 3-4 presents some characteristic 
geometric information on the hydrocarbon prismane molecules, after Schultz 
[3-12]. The description of the general n-prismane is that it is composed of 2n 
identical methine units arranged at the corners of a regular prism with Dnh 
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Table 3-3. Characterization of Polyhedrane Molecules ~ 

Name Formula 

Geometry and 
number of faces Face 

(all regular) angles 
Has been 

prepared? t' 

Tetrahedrane" (CH) 4 

Cubane d (CH) s 

Dodecahedrane e (CH)2o 

Truncated tetrahedrane (CH)t2 

Truncated octahedrane (CH)24 

Truncated cubane (CH)24 

Truncated cuboctahedrane (CH)as 

Truncated icosahedrane f (CH)~0 

Truncated dodecahedrane (CH)6o 

Truncated icosidodecahedrane (CH),2 o 

Triangle, 4 60 ° No 

Square, 6 90 ° Yes 

Pentagon, 12 108 ° Yes 

Triangle, 4 60 ° No 
Hexagon, 4 

Square, 6 90 ° No 
Hexagon, 8 120 ° 

Triangle, 8 60 ° No 
Octagon, 6 135 ° 

Square, 12 90 ° No 
Hexagon, 8 120 ° 
Octagon, 6 135 ° 

Pentagon, 12 108 ° No 
Hexagon, 20 120 ° 

Triangle, 20 60 ° No 
Decagon, 12 144 ° 

Square, 30 90 ° No 
Hexagon, 20 120 ° 
Decagon, 12 144 ° 

~After Schuhz [3-12]. 
hAs of 1994. 
"Figure 3-28a. 
dFigure 3-28c. 
'Figure 3-28d. 
/Figure 3-28e. 

symmetry and bound into two parallel n-membered rings conjoined by n four- 
membered rings. 

Incidentally, the regular prisms and the regular antiprisms are also 
semiregular, i.e., Archimedean, solids. Moreover, the second prism, in its 
most symmetrical configuration, is a regular solid, the cube; and the first 
antiprism, in its most symmetrical configuration, is also a regular solid, the 
octahedron. 

Only a few highly symmetrical structures have been mentioned above. 
The varieties become virtually endless if one reaches beyond the most symmet- 
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Table 3-4, Characterization of  Prismane Molecules a 

129 

Geometry and Face Has been 
Name Formula number of faces angles prepared~ 

Tripismane C6H 6 Triangle, 2 60 ° Yes 
Square, 3 90 ° 

Tetrapismane (cubane) CsH s Square, 6 90 ° Yes 

Pentaprismane C~0H~o Pentagon, 2 108 ° Yes 
Square, 5 90 ° 

Hexaprismane C~2H12 Hexagon, 2 120 ° No 
Square, 6 90 ° 

Heptaprismane C~4HIa Heptagon, 2 128°3~, ' No 
Square, 7 90 ° 

n-Prismane C2~H2, n-gon, 2 - - "  

Square, n 90 ° 

"After Schultz [3-12]. 
'~As of 1994. 
~Approaches 180 ° as n increases. 

rical convex polyhedral shapes. For example, the number of possible isomers is 
5,291 for the tetracyclic structures of the C12H~8 hydrocarbons with 12 skeletal 
carbon atoms [3-27]. Of all these geometric possibilities, however, only a few 
are stable [3-37]. One is iceane, shown in Figure 3-29 [3-38]. The molecule 
may be visualized as two chair cyclohexanes connected to each other by three 
axial bonds. Alternatively, the molecule may be viewed as consisting of three 
fused boat cyclohexanes. The trivial name iceane had been proposed for this 
molecule by Fieser [3-39] almost a decade before its preparation [3-38]. As 
Fieser was considering the arrangement of the water molecules in the ice 
crystal (Figure 3-29), he noticed three vertical hexagons with boat conforma- 
tions. The emerging horizontal (H20)6 units possess three equatorial hydrogen 
atoms and three equatorial hydrogen bonds available for horizontal building. 
Fieser [3-39] further noted that this structure "suggests the possible existence 
of a hydrocarbon of analogous conformation of the formula C12H~8, which 
might be named 'iceane.' The model indicates a stable strain-free structure 
analogous to adamantane and twistane. 'Iceane' thus presents a challenging 
target for synthesis." Within a decade the challenge was met [3-38]. 

There is a close relationship between the adamantane, cI0nl6, molecule 
and the diamond crystal. The Greek work adamant means diamond and 
diamond has been termed the "infinite adamantylogue to adamantane" [3-40]. 
While iceane has D3h symmetry, adamantane has T d. This high symmetry can 
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Figure 3-29. Ice crystal structure and the iceane hydrocarbon molecule, after Fieser [3-39] and 
Cupas and Hodakowski [3-38], respectively. 

be clearly seen when the configuration of adamantane is described by four 
imaginary cubes packed one inside the other, two of which are shown in Figure 
3-30a [3-41]. The Czechoslovakian stamp in Figure 3-30a pays tribute to the 
discovery of adamantane [3-42]. Similar structures are found among inorganic 
compounds where, by analogy to adamantane, (CH)4(CH2) 6, the general 
formula is AnB 6. Here A may be, e.g., P, As, Sb, PO, or PN [3-43], as 
illustrated in Figure 3-30b. 

Adamantane molecules may be imagined to join at vertices, at edges, or 
even at faces. Examples are shown in Figure 3-31; most of them, however, have 
not yet been synthesized (for references, see Ref. [3-29]). 

3.7.3 Structures with Central Atom 

Adamantane is sometimes regarded as the cage analog of methane while 
diamantane and triamantane are regarded as the analogs of ethane and 
propane. Methane has, of course, a tetrahedral structure with the point group 
of the regular tetrahedron, T a. Important structures may be derived by joining 
two tetrahedra, or, for example, two octahedra, at a common vertex, edge, or 
face as shown in Figure 3-32. Ethane, H3C-CH 3, ethylene, H2C--CH 2, and 
acetylene, HC:-CH, may be derived formally from joined tetrahedra in such a 
way. The analogy with the joining tetrahedra is even more obvious in some 
metal halide structures with halogen bridges [3-48]. Thus, for example, the 
A12C17- ion may be considered as two aluminum tetrachloride tetrahedra 
joined at a common vertex, or the AI2CI 6 molecule may be looked at as two such 
tetrahedra joined at a common edge. These examples are shown in Figure 3-33. 
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Figure 3-30. (a) Adamantane, CIoHI6 or (CH)4(CH2)6, in three representations. (b) Inorganic 
adamantane analogs: P406 , (PO)406. 

In mixed-halogen complexes, such as potassium tetrafluoroaluminate, 
KAIF 4 [3-49], there is also a tetrahedral metal coordination. In fact, the regular 
or nearly regular tetrahedral tetrafluoroaluminate part of the molecule is an 
especially well defined structural unit. It is relatively rigid, whereas the 
position of the potassium atom around the A1F 4 tetrahedron is rather loose. The 
most plausible model for this molecule is also shown in Figure 3-33 [3-49]. 
The KA1F 4 molecule is merely a representative from a large class of com- 

b 

Figure 3-31. Joined adamantanes: (a) At vertices, [1]diadamantane [3-44]; (b) at edges, 
[2]diadamantane [3-45]; (c) at faces, diamantane (congressane) [3-40], triamantane [3-46], and 
three isomers of tetramantane [3-47]: "iso," C3v; "anti," C2h; and "skew," C a. 
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Figure 3-32. Joined tetrahedra and octahedra. 

pounds with great practical importance: the mixed halides have greatly en- 
hanced volatility compared with the individual metal halides. 

For tetralithiotetrahedrane, (CLi)4 , the structure with the lithium atoms 
above the faces of the carbon tetrahedron was found in calculations to be more 
stable than that with the lithium atoms above the vertices [3-50] (Figure 3-34). 

The prismatic cyclopentadienyl and benzene complexes of transition 
metals (see, e.g., Ref. [3-9]) are reminiscent of the polycyclic hydrocarbon 
prismanes. Figure 3-35 shows ferrocene, (CsHs)2Fe, for which both the barrier 
to rotation and the free energy difference between the prismatic (eclipsed) and 
antiprismatic (staggered) conformations are very small [3-51]. Figure 3-35 
presents also a prismatic model with D6h symmetry for dibenzenechromium, 
(C6H6)2Cr. 

- - - - - - - - - - - -  

Figure 3-33. The configurations of the AI2CI 7- ion and AI2CI 6 and KA1F 4 molecules. 
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Figure 3-34. 
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Model of the (CLi) 4 molecule 13-501. 

Molecules with multiple bonds between metal atoms often have structures 
with beautiful and highly symmetrical polyhedral shapes [3-52]. The square 
prismatic [Re2C18] 2- ion [3-53], shown in Figure 3-36, played an important 
role in the history of the discovery of metal-metal multiple bonds. Figure 
3-37a shows another molecular model with a metal-metal multiple bond. Its 
shape is similar to the paddles that propel riverboats. There is then a whole 
class of hydrocarbons ca/led paddlanes [3-56], and one of their representatives 
is shown in Figure 3-37b. 

3.7.4 Regularities in Nonbonded Distances 

The structure of the ONF 3 molecule (Figure 3-38) can be looked at as a 
regular tetrahedron formed by three fluorines and one oxygen. The nonbonded 
F • • • F and F • • • O distances representing the lengths of the edges of a 
tetrahedron are equal within the experimental errors of their determination 
[3-57], as shown in Figure 3-38. The bond lengths and bond angles are also 
given. The molecule has C3v symmetry, and the central nitrogen atom is 
obviously not in the center of the essentially regular tetrahedron of its ligands. 

In some molecular geometries, the so-called intramolecular 1,3 separa- 
tions are remarkably constant. The "1,3" label refers to the interactions 
between two atoms in the molecule which are separated by a third atom. The 

Figure 3-35. (a) Ferrocene: prismatic (Dsh) and antiprismatic (D.~a) models. (b) Di- 
benzenechromium: prismatic model (D6h). 
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Figure 3-36. The square prismatic structure of the [Re2CIs] 2- ion, which played a historic role 
in the discovery of metal-metal multiple bonds ([3-54], of. Ref. [3-53]), and a Soviet stamp with 
the same structure. On the stamp, the building in the background is the Moscow research institute 
where the first such structure was obtained [3-54]. 

near equality of the nonbonded distances in the ONF 3 molecule is a special 
case. What is usually observed is the constancy of a certain 1,3 nonbonded 
distance throughout a series of related molecules. Significantly, this constancy 
of 1,3 distances may be accompanied by considerable changes in the bond 
lengths and bond angles within the three-atom group. The intramolecular 1,3 
interactions have also been called intramolecular van der Waals interactions, 
and Bartell [3-58] postulated a set of intramolecular nonbonded 1,3 radii. 
These 1,3 non-bonded radii are intermediate in value between the correspond- 
ing covalent radii and "traditional" van der Waals radii. All these values are 
compiled for some elements in Table 3-5. 

H 

H ~,C j H  

\ c ~  H I / 
~ - - I ~ c - - , ~ - - c ~  

. H ~  E ~ 

-,. 

Oo . / ~  
? ~ b H 

Figure 3-37. (a) Dimolybdenum tetraacetate, Mo2(O2CCH3), ~ [3-55]. (b) 12.2.2.2]Paddlane, 
not yet prepared. 
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Figure 3-38. The molecular geometry of ONF 3 [3-57]. (a) Bond lengths and bond angles; 
(b) nonbonded distances. 

Figure 3-39 shows some structural peculiarities which originally prompted 
Bartell [3-61] to recognize the importance of the intramolecu]ar nonbonded 
interactions. It was an interesting observation that the three outer carbon atoms 
in H2C=C(CH3) 2 were arranged as if they were at the corners of an approx- 
imately equilateral triangle, as shown in Figure 3-39a. Since the central carbon 
atom in this arrangement is obviously not in the center of the triangle, the bond 
angle between the bulky methyl groups is smaller than the ideal 120 ° . In the 
other example, in Figure 3-39b, the C-C bond lengthening is related to the 
increasing number of nonbonded interactions. 

Table 3-5. Covalent, 1,3 Intramolecular Nonbonded, 
and van der Waals Radii of Some Elements 

Covalent radius" 1,3 lntramolecular nonbonded radius ~' van der Waals radius" a 
Element (~) (A,) (A,) 

B 0.817 1.33 
C 0.772 1.25 
N 0.70 1.14 1.5 
O 0.66 1.13 1.40 
F 0.64 1.08 1.35 

AI 1.202 1.66 
Si 1.17 1.55 
P 1.10 1.45 1.9 
S 1.04 1.45 1.85 
C1 0.99 1.44 1.80 

Ga 1.26 1.72 
Ge 1.22 1.58 
As 1.21 1.61 2.0 
Se 1~ 17 1.58 2.00 
Br 1.14 1.59 1.95 

"After Pauling [3-59]. 
~'After Bartell [3-58] and Glidewell [3-60]. 
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Figure 3-39. Geometrical consequences of nonbonded interactions, after Bartell [3-61]. 
(a) The three outer carbon atoms of H2C=C(CH3) 2 are at the corners of an approximately 
equilateral triangle, leading to a relaxation of the bond angle between the methyl groups. 
(b) Considerations of nonbonded interactions in the interpretation of the C-C single bond length 
changes in a series of molecules. 

Of course, the 1,3 intramolecular nonbonded radii (Table 3-5) are purely 
empirical, but so are the other kinds of radii. Thus, the 1,3 nonbonded radii 
may be updated from time to time (see, e.g., Ref. [3-60]). 

The F • • • F nonbonded distances have been observed to be remarkably 
constant in trifluoromethyl derivatives at 2.16 ,~ [3-62]. Similarly, the O" • • O 
nonbonded distances in XSO2Y sulfones have been observed to be remarkably 
constant at 2.48/~ [3-63] in a relatively large series of compounds. At the same 
time the S=O bond lengths vary by up to 0.05 ~k and the O=S=O bond angles by 
up to 5 ° depending on the nature of the X and Y ligands. The geometrical 
variations in the sulfone series could be visualized (Figure 3-40a) as if the two 
oxygen ligands were firmly attached to two of the four vertices of the ligand 
tetrahedron around the sulfur atom, and this central atom were moving along 
the bisector of the OSO angle depending on the X and Y ligands [3-63]. The 
sulfuric acid, H2SO 4 or (HO)SO2(OH), molecule has its four oxygens around 
the sulfur at the vertices of a nearly regular tetrahedron (Figure 3-40b). 
Compared with the differences in the various OSO angles (up to 20 °) and in the 
two kinds of SO bonds (up to 0.15/~), the greatest difference among the six 
O • - • O nonbonded distances is only 0.07 ~ [3-64]. 

The alkali sulfate molecules used to appear in old textbooks with the 
following structural formula: 

N°--O\s//O 
No--O / %o 

3-~ 
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Figure 3-40. The configurations of XSO2Y sulfone molecules (a), the sulfuric acid molecule 
(b), and (c) alkali sulfate molecules, M2SO 4. 

However, the SO 4 groups have nearly regular tetrahedral configuration in such 
molecules. The metal atoms are located on axes perpendicular to the edges of 
the SO 4 tetrahedron. Thus, this structure is bicyclic as shown in Figure 3-40c. 

3.7.5 The VSEPR Model 

Numerous examples of molecular structures have been introduced in the 
preceding sections. They are all confirmed by modern experiments and~or 
calculations. We would like to know, however, not only what is the structure of 
a molecule and its symmetry, but also, why a certain structure with a certain 
symmetry is realized. 

It has been a long-standing goal in chemistry to determine the shape and 
measure the size of molecules, and also to calculate these properties. Today, 
quantum chemistry is capable of determining the molecular structure, at least 
for relatively simple molecules, starting from the mere knowledge of the 
atomic composition, and without using any empirical information. Such 
calculations are called ab initio. The primary results from these calculations 
are, however, wave functions and energies, which may also be considered "raw 
measurements," similar to some experimental data. At the same time there is a 
desire to understand molecular structures in simple terms--such as, for 
example, the localized chemical bond-- that  have proved so useful to chemists' 
thinking. There is a need for a bridge between the measurements and calcula- 
tions, on one hand, and simple qualitative ideas, on the other hand. There are 
several qualitative models for molecular structure that serve this purpose well. 
These models can explain, for example, why the methane molecule is regular 
tetrahedral, Td, why ammonia is pyramidal, C3v, why water is bent, C2v, and 
why the xenon tetrafluoride molecule is square planar, Dab. It is also important 
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to understand why seemingly analogous molecules such as OPF 3 and OC1F 3 
have so different symmetries, the former C3~,, and the latter C~, as seen in 
Figure 3-41. 

The structure of a series of the simplest AX n type molecules will be 
examined in terms of one of these useful and successful qualitative models. 
A is the central atom, the X's are the ligands, and not necessarily all n ligands 
are the same. 

Qualitative models simplify. They usually consider only a few, if not just 
one, of the many effects which are obviously present and are interacting in a 
most complex way. The measure of the success of a qualitative model is in its 
ability to create consistent patterns for interpreting individual structures and 
structural variations in a series of molecules and, above all, in its ability to 
correctly predict the structures of molecules, not yet studied or not even yet 
prepared. 

One of the simplest models is based on the following postulate [3-65]: The 
geometry of tke molecule is determined by the repulsions among the electron 
pairs in tke valence shell of its central atom. The valence shell of an atom may 
have bonding pairs and other electron pairs that do not participate in bonding 
and belong to this atom alone. The latter are called unshared or lone pairs of 
electrons. The above postulate emphasizes the importance of botk bonding 
pairs and lone pairs in establishing the molecular geometry. The model is 
appropriately called the valence shell electron pair repulsion or VSEPR model. 
The bond configuration around atom A in the molecule AXn is such that the 
electron pairs of the valence shell are at maximum distances from each other. 
Thus, the situation may be visualized in such a way that the electron pairs 
occupy well-defined parts of the space around the central atom, corresponding 
to the concept of localized molecular orbitals. 

If it is assumed that the valence shell of the central atom retains its 
spherical symmetry in the molecule, then the electron pairs will be at equal 
distances from the nucleus of the central atom. In this case the arrangements at 

O F 

01 

oi I 
F F 

Figure 3-41. Molecular configuration of OPF 3 (C3~.) and OCIF 3 (Cs). 
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which the distances among the electron pairs are at maximum will be those 
listed in Table 3-6. If the electron pairs are represented by points on the surface 
of a sphere, then the shapes shown in Figure 3-42 are obtained by connecting 
these points. Of the three polyhedra shown in Figure 3-42, only two are regular, 
viz., the tetrahedron and the octahedron. The trigonal bipyramid is not a 
regular polyhedron; although its six faces are equivalent, its edges and vertices 
are not. Incidentally, the trigonai bipyramid is not a unique solution to the five- 
point problem. Another, and only slightly less advantageous, arrangement is 
the square pyramidal configuration. 

The repulsions considered in the VSEPR model may be expressed by the 
potential energy terms 

Vii = k/r~j 

where k is a constant, rij is the distance between the points i and j ,  and the 
exponent n is large for strong, or "hard,"  repulsion interactions and small for 
weak, or "soft ,"  repulsion interactions, and is generally much larger than it 
would be for simple electrostatic coulomb interactions. Indeed, when n is 
larger than 3, the results become rather insensitive to the value of n. That is 
very fortunate because n is not really known. This insensitivity to the choice 
of n is what provides the wide applicability of the VSEPR model. 

3.7.5.1 Analogies 

It is easy to demonstrate the three-dimensional consequences of the 
VSEPR model in reality. We need only to blow up a few balloons that children 
play with. If groups of two, three, four, five, and six balloons, respectively, are 
connected at the ends near their openings, the resulting arrangements are those 
shown in Figure 3-43. Obviously, the space requirements of the various groups 

Table 3-6. Arrangements of Two to Six 
Electron Pairs That Maximize Their 

Distances Apart 

Number of electron 
pairs in the valence shell Arrangement 

2 Linear 
3 Equilateral triangle 
4 Tetrahedron 
5 Trigonal bipyramid 
6 Octahedron 
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Figure 3-42. Molecular shapes from a points-on-the-sphere model. 

of balloons, acting as mutual repulsions, determine the shapes and symmetries 
of these assemblies. The balloons here play the role of the electron pairs of the 
valence shell. 

Another beautiful analogy with the VSEPR model, and one found directly 
in nature, is demonstrated in Figure 3-44. These are hard-shell fruits growing 
together. The small clusters of walnuts, for example, have exactly the same 
arrangements for two, three, four, and five walnuts in assemblies as predicted 
by the VSEPR model or as those shown by the balloons. The walnuts are 
required to accommodate themselves to each other's company and find the 
arrangements that are most advantageous considering the space requirements 
of all. Incidentally, the balloons and the walnuts may be considered as "soft" 
and "hard" objects, with weak and strong interactions, respectively. 

3.7.5.2 Molecular Shapes 

Using the VSEPR model, it is simple to predict the shape and symmetry 
of a molecule from the total number of bonding pairs, n, and lone pairs, m, of 

Figure 3-43. Shapes of groups of balloons. 
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Figure 3-44. (a) Walnut clusters. Photographs by the authors. (b) Chestnut clusters. Photograph 
by Dr. Anna Rita Campanelli, University of Rome. (c) Ho'awa (endemic Hawaiian tree). 
Photograph by the authors. 

electrons in the valence shell of its central atom. The molecule may then be 
written as AX,Em, where E denotes a lone pair of electrons. Only a few 
examples will be described here for illustration. For a comprehensive cover- 
age, see, e.g., Ref. [3-65]. 

First, we shall consider the methane molecule, shown in the second row of 
Figure 3-45, together with ammonia and water. Originally, there were four 
electrons in the carbon valence shell, and these formed four C-H bonds, with 
the four hydrogens contributing the other four electrons. Thus, methane is 
represented as AX 4 and its symmetry is, accordingly, regular tetrahedral. In 
ammonia, originally there were five electrons in the nitrogen valence shell, and 
the formation of the three N-H  bonds added three more. With the three 
bonding pairs and one lone pair in the nitrogen valence shell, ammonia may be 
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Figure 3-45. Bond configurations with two, three, four, five. and six electron pairs in the 
valence shell of the central atom, after Ref. [3-65]. 

written as AX3E, and, accordingly, the arrangement of the molecule is related 
to a tetrahedron. However, only in three of its four directions do we find bonds, 
and consequently ligands, while in the fourth there is a lone pair of electrons. 
Hence, a pyramidal geometry is found for the ammonia molecule. The bent 
configuration of the water molecule can be similarly deduced. 

In order to establish the total number of electron pairs in the valence shell, 
the number of electrons originally present and the number of bonds formed 
need to be considered. A summary of molecular shapes based on the arrange- 
ments of two to six valence shell electron pairs is shown in Figure 3-45. 

The molecular shape to a large extent determines the bond angles. Thus, 
the bond angle X - A - X  is 180 ° in the linear AX 2 molecule, 120 ° in the trigonal 
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planar AX 3 molecule, and 109°28 ' in the tetrahedral AX 4 molecule. The 
arrangements shown in Figure 3-45 correspond to the assumption that the 
strengths of the repulsions from all electron pairs are equal. In reality, however, 
the space requirements and, accordingly, the strengths of the repulsions from 
various electron pairs may be different depending on various circumstances as 
described in the following three subrules [3-65]: 

1. A lone pair, E, in the valence shell of the central atom has a greater space 
requirement in the vicinity of the central atom than does a bonding pair. 
Thus, a lone pair exercises a stronger repulsion towards the neighboring 
electron pairs than does a bonding pair, b. The repulsion strengths weaken 
in the following order: 

E/E > E/b > b/b 

. 

This order is well illustrated by the various angles in sulfur difluoride in 
Figure 3-46 as determined by ab initio molecular orbital calculations 
[3-66]. This is also why, for example, the bond angles H - N - H  of 
ammonia, 106.7 ° [3-67], are smaller than the ideal tetrahedral value, 
109.5 ° . Unless stated otherwise, the parameters in the present discussion 
are taken from Ref. [3-67]. 
Multiple bonds, b m, have greater space requirements than do single bonds 
and thus exercise stronger repulsions toward the neighboring electron 
pairs than do single bonds. The repulsion strengths weaken in the follow- 
ing order: 

bm/b m > bm/b > b/b 

A consequence of this is that the bond angles will be larger between 
multiple bonds than between single bonds. The structure of dimethyl 
sulfate provides a good example as shown in Figure 3-47. This molecule 
has three different types of OSO bond angles, and they decrease in the 
following order: 

S=O/S--O > S=O/S-O > S-O/S-O 

F 

F 

Figure 3-46. The angles of sulfur difluoride as determined by ab initio molecular orbital 
calculations [3-66]. 
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Figure 3-47. The three different kinds of oxygen-sulfur-oxygen bond angles in the dimethyl 
sulfate molecule as determined by electron diffraction [3-68]. 

. A more electronegative ligand decreases the electron density in the 
vicinity of  the central atom as compared with a less electronegative 
ligand. Accordingly, the bond to a less electronegative ligand, b x, has a 
greater space requirement than the bond to a more electronegative ligand, 
b v. The repulsion strengths then weaken in the following order: 

bx/b x > bx/b v > bv/b ¥ 

Consequently, the bond angles are smaller for more electronegative 
ligands than for less electronegative ligands. An example of  this effect can 
be seen in a comparison of  sulfur difluoride (98 °) and sulfur dichloride 
(103°). 

( /  f ~ 

f ~  

! , I 

Figure 3-~,  Localized molecular orbitals, represented by contour lines denoting electron 
densities of 0.02, 0.04, 0.06, etc. eledron/bohr 3 from theoretical calculations [3-66], for the 
S-H, S-E and S=O bonds and the lone pair on sulfur. 
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It is interesting to compare the implications expressed by these subrules 
with the depiction of some localized molecular orbitals in Figure 3-48, after 
Schmiedekamp et al. [3-66]. The lone pair of electrons occupies more space 
than do the bonding pairs in the vicinity of the central atom. Also, a bond to a 
more electronegative ligand such as fluorine occupies less space in the vicinity 
of the central atom than does a bond to a less electronegative ligand such as 
hydrogen. Finally, a double bond occupies more space than a single bond. The 
angular ranges of the corresponding contours in the electron density plots are 
all in good qualitative agreement with the postulates of the VSEPR model. 

The VSEPR model has a fourth subrule that concerns the relative 
availability of space in the valence shell: 

4. There is less space available in a completely filled valence shell than in a 
partially filled valence shell. Accordingly, the repulsions are stronger and 
the possibility for angular changes are smaller in the filled valence shell 
than in the partially filled one. Thus, for example, the bond angles of 
ammonia (107 °) are closer to the ideal tetrahedral value than are those of 
phosphine (94°). 

Thus, the differences in the electron pair repulsions may account for the 
bond angle variations in various series of molecules. The question now arises 
as to whether these differences have any effect on the symmetry  choice of the 
molecules. In the four-electron-pair systems, the differences in the electron 
pair repulsions have a decisive role in the sense that the AX 4, EBX 3, and 
E2CX 2 molecules have T a, C3v, and C2v symmetries, respectively. Within each 
series, however, the symmetry is preserved regardless of the changes in the 
ligand electronegativities. For example, only the bond angles change in the 
molecules EBX 3, and EBY3; the symmetry remains the same. 

Ligand electronegativity changes may have decisive effects, however, on 
the symmetry choices of various bipyramidal systems, of which the trigonal 
bipyramidal configuration is the simplest. 

When five electron pairs are present in the valence shell of the central 
atom, the trigonai bipyramidal configuration is usually found, although a 
tetragonal pyramidal arrangement cannot be excluded in some cases. Even 
intermediate arrangements between these two may appear to be the most stable 
in some special structures. The trigonal bipyramidal configuration with an 
equilateral triangle in the equatorial plane has D3h symmetry while the square 
pyramidal configuration has C4v symmetry. The intermediate arrangements 
have Ca, ' symmetry or nearly so. Indeed, rearrangements often occur in 
trigonal bipyramidal structures performing low-frequency large-amplitude 
motion. Such rearrangements will be illustrated later. 

The positions in the D3h trigonal bipyramid are generally not equivalent, 
and the axial ligand position is further away from the central atom than the 



146 Chapter 3 

equatorial one. This has no effect on the symmetry of the AX 5 structures, and 
this is comforting from the point of view of the applicability of the VSEPR 
model in establishing the point-group symmetries of such molecules. 

On the other hand, when there is inequality among the electron pairs, the 
differences in the axial and equatorial positions do have importance for 
symmetry considerations. The PF5 molecule, as an AX~ system, unambigu- 
ously shows D3h symmetry in its trigonal bipyramidal configuration. However, 
the prediction of the symmetry of the SF 4 molecule, which may be written as 
AXaE, is less obvious. For SF 4 the problem is, where will the lone pair of 
electrons occur? 

An axial position in the trigonal bipyramidal arrangement has three 
nearest neighbors at 90 ° away and one more neighbor at 180 °. For an equatorial 
position there are two nearest neighbors at 90 ° and two further ones at 120 ° . As 
the closest electron pairs exercise by far the strongest repulsion, the axial 
positions are affected more than the equatorial ones. In agreement with this 
reasoning, the axial bonds are usually found to be longer than the equatorial 
ones. If there is a lone pair of electrons with a relatively large space require- 
ment, it should be found in the more advantageous equatorial position. 
Accordingly, the SF 4 structure has Czv symmetry, as does the CIF 3 molecule, 
which is of the AX3E 2 type. Finally, the XeF2 molecule is AX2E 3 with all three 
lone pairs in the equatorial plane; hence, its symmetry is D~h. All these 
structures are depicted in Figure 3-45. 

By similar reasoning, the VSEPR model predicts that a double bond will 
also occupy an equatorial position. Thus, the point group may easily be 
established for the molecules O=SF 4, (C2v), O=CIF 3 (Cs), XeO3F 2 (D3h), and 
XeO.,F~ (C2~,). We note the C s symmetry for the OC1F 3 molecule (cf. Figure 
3-41) as a consequence of the bipyramidal geometry with both the CI=O double 
bond and the lone pair in the equatorial plane. The molecule OPF 3 (cf. Figure 
3-41) is only seemingly analogous, There is no lone pair in the phosphorus 
valence shell, and thus the molecule has a distorted tetrahedral bond configura- 
tion. The P=O double bond is along the threefold axis, and the point group 
is C3~ ,, like that for ammonia. 

Lone pairs and/or double bonds replaced single bonds in the above 
examples. Similar considerations are applicable when only ligand electron- 
egativity changes take place. A typical example is demonstrated by a compari- 
son of the structures of PFzCI 3 and PF3C1 z. The chlorine atoms are less 
electronegative ligands than the fluorines, and they will be in equatorial 
positions in both structures, as seen in Figure 3-49. The point groups are Cz,, 
for PF3CI " , and D3h for PF?C13 [3-69]. Were the chlorines in the axial positions 
in PF3CI 2, this molecule would also have the much higher symmetry D3h. 

All six electron pairs are equivalent in the AX 6 molecule and so the 
symmetry is unambiguously O h. An example is SF 6. The IF 5 molecule, how- 
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Figure 3-49. The molecular structures of PF3CI 2 and PF2C13 are not analogous: the chlorine 
ligands occupy equatorial positions in both cases. 

ever, corresponds to AXsE, and its square pyramidal configuration has C4v 
symmetry. There is no question here as to the preferred position for the lone 
pair, as any of the six equivalent sites may be selected. When, however, a 
second lone pair is introduced, then the favored arrangement is that in which 
the two lone pairs find themselves at the maximum distance apart. Thus, for 
XeF 4, i.e., AX4E2, the bond configuration is square planar, point group D4h. 
These structures are depicted in Figure 3-45. 

The difficulties encountered in the discussion of the five- electron-pair 
valence shells are intensified in the case of the seven-electron-pair case. Here 
again the ligand arrangements are less favorable than for the nearest coordina- 
tion neighbors, i.e., six and eight. It is not possible to arrange seven equivalent 
points in a regular polyhedron, while the number of nonisomorphic polyhedra 
with seven vertices is large, viz., 34 [3-70]. A few of them are shown in Figure 
3-50. No single one of them is distinguished, however, from the others on the 
basis of relative stability. There may be quite rapid rearrangements among the 
various configurations. One of the early successes of the VSEPR model was 

~v  C~v D~. C~ 

Figure 3-50. A sample of configurations for seven electron pairs in the valence shell. 
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that it correctly predicted a nonregular structure for XeF 6 by considering it as a 
seven-coordination case, AX6E. 

Numerous examples, a wealth of structural data, and detailed considera- 
tions on the potential and limitations of the applicability of the VSEPR model 
are given in a recent monograph [3-65]. 

3.7.5.3 Historical Remarks 

The simplicity of the VSEPR model is one of its primary strengths. In 
addition, the model provides a continuity in the development of the qualitative 
ideas about the nature of the chemical bond and its correlation with molecular 
structure. Abegg's octet rule (see, e.g., Ref. [3-71]) and Lewis's theory of the 
shared electron pair [3-72] may be considered as direct forerunners of the 
model. 

Lewis's cubical atom [3-72] deserves special mention. It was instrumental 
in shaping the concept of the shared electron pair. It also permitted a resolution 
of the apparent contradiction between the two distinctly different bonding 
types, viz., the shared electron pair and the ionic electron-transfer bond. In 
terms of Lewis's theory, the two bonding types could be looked at as mere 
limiting cases. Lewis's cubical atoms are illustrated in Figure 3-51. They are 
also noteworthy as an example of a certainly useful though not necessarily 
correct application of a polyhedral model. 

Sidgwick and Powell [3-73] were first to correlate the number of electron 
pairs in the valence shell of a central atom and its bond configuration. Then 
Gillespie and Nyholm [3-74] introduced allowances for the difference between 
the effects of bonding pairs and lone pairs and applied the model to large 
classes of inorganic compounds. 

There have been attempts to provide quantum-mechanical foundations for 
the VSEPR model. These attempts have developed along two lines. One is 
concerned with assigning a rigorous theoretical basis to the model, primarily 
involving the Pauli exclusion principle, to the extent that it was even suggested 
that the application of the model be named "Pauli mechanics" [3-75]. The 
other line is the numerous quantum-chemical calculations (e.g., Refs. [3-66] 
and [3-76]) which have already produced a large amount of structural data 
consistent with the VSEPR model, demonstrating that it indeed captures some 
important effects determining the structures of molecules. It has also been 
shown that while the total electron density distribution of a molecule does not 
provide any evidence for the localized electron pairs, the charge concentrations 
obtained by deriving the second derivative of this distribution parallel the 
features of these localized pairs [3-77]. This may be considered as supporting 
evidence, or even a physical basis, for the VSEPR model. We would stress, 
however, that the VSEPR model is a qualitative tool, and, as such, it over- 
emphasizes some effects and ignores many others. Its simplicity, wide appli- 
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Figure 3-51. (a) Lewis's cubical atoms and some molecules built from such atoms (cf. Ref. 
[3-72]). (b) Lewis's original sketches, after Ref. [3-72]. 

cability, and predictive power have been repeatedly demonstrated, making it 
useful in both research and education. 

3.7.6 Consequences of Intramolecular Motion 

Imagine the merry-go-round (Figure 3-52a) revolving and one of the 
wooden horses getting lifted and, upon its returning to the ground level, the 
next horse is lifted and so on. In addition to the real revolution of the whole 
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a 

Figure 3-52. (a) Merry-go-round (Bologna, Italy, photograph by the authors). (b) Henri 
Matisse, Dance. The Hermitage, St. Petersburg. Reproduced by permission. 

circle, the vertical motion is transmitted from horse to horse; this can be 
considered pseudorotation. If we take a picture of the merry-go-round in 
operation and the exposure is long enough, there will be a blurred image of all 
the horses in the elevated position in addition to the ground circle. With a very 
sensitive film, however, the exposure may be reduced so that we get a picture of 
a single horse being lifted. Another fitting analogy may be the Dance by Henri 
Matisse (Figure 3-52b). Let us imagine the following choreography for this 
dance: one of the dancers jumps and is thus out of the plane of the other four. As 
soon as this dancer returns into the plane of the others, it is now the role of the 
next to jump, and so on. The exchange of roles from one dancer to another 
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throughout the five-member group is so quick that if we take a normal 
photograph, we will have a blurred picture of the five dancers. However, if we 
have a very sensitive film, we may be able to use such a short exposure that a 
well-defined configuration of the dancers at a particular moment can be 
identified. 

The above descriptions simulate well the pseudorotation of the cyclopen- 
tane molecule, although on a different time scale. The cyclopentane, (CH2) 5, 
molecule has a special degree of freedom when the out-of-plane carbon atom 
exchanges roles with one of its two neighboring carbon atoms (and their 
hydrogen iigands). This is equivalent to a rotation by 2"rr/5 about the axis 
perpendicular to the plane of the four in-plane carbons (Figure 3-53) (see, e.g., 
Ref. [3-78]). All three examples emphasize the importance of the relationship 
between the time scale of motion and the time scale of measurement. This 
relationship must be taken into account when making a conclusion about the 
symmetry of a moving structure. 

In discussing molecular structure, an extreme approach is to disregard 
intramolecular motion and to consider the molecule to be motionless. A 
completely rigid molecule is a hypothetical state corresponding to the mini- 
mum position of the potential energy function for the molecule. Such a 
motionless structure has an important and well-defined physical meaning and 
is called the equilibrium structure. It is this equilibrium structure that emerges 
from quantum-chemical calculations. On the other hand, real molecules are 
never motionless, not even at temperatures approaching 0 K. Furthermore, the 
various physical measurement techniques determine the structures of real 
molecules. As our discussion of the merry-go-round and Matisse's Dance 
illustrated, the relationship between the lifetime of the configuration under 
investigation and the time scale of the investigating technique is of crucial 
importance. 

Large-amplitude, low-frequency intramolecular vibrations may lower the 
molecular symmetry of the average structure from the higher symmetry of the 

Figure 3-53. Pseudorotation of the cyclopentane molecule. 
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Figure 3.54. Equilibrium versus average structures of metal halide molecules with low- 
frequency, large-amplitude deformation vibrations (filled circles, metal; open circles, halogen). 

equilibrium structure. Some examples from metal halide molecules are shown 
in Figure 3-54. 

If  we determine the average interatomic distances of symmetric triatomic 
molecules, for example, the emerging geometry will always be bent, regard- 
less of whether the equilibrium structure is linear or bent, because of the 
consequences of bending vibrations (Figure 3-55a). In order to distinguish 
between linear and truly bent molecules, the potential energy function describ- 
ing the bending motion must be scrutinized [3-79]. The bending potential 
energy functions of ZnCI 2 and SrBr2 are shown in Figure 3-55b; Pe = 0° 
corresponds to the linear configuration. The minimum of the potential energy 
function appears at Pe = 0° for both molecules. It is also seen though that the 
minimum is much more shallow for SrBr z than for ZnCI 2. Figure 3-55c shows 
the bending potential energy functions of SiBr 2 and, again, of SrBr 2. The 
relatively high barrier at 9e = 0° for SiBr 2 indicates an unambiguously bent 
configuration. Further enlarging the scale reveals a small barrier at pe = 0 ° for 
SrBr 2, so small that it lies below the level of the ground vibrational state. Such 
structures are called quasilinear. 

A rapid interconversion of the nuclei takes place in the bullvalene 
molecule under very mild conditions in fluid media. This process involves 
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F i g u r e  3-55. (a) Even a linear triatomic molecule appears bent due to its bending vibrations 
(r < re). Comparison of bending potential functions makes it possible to distinguish between 
linear and truly bent molecules [3-79]. (b) Linear models of ZnC12 and SrBr 2. (c) Bent models of 
SrBr 2 and SiBr2. 

making and breaking  bonds,  but  this is accompanied  by  very small  shifts in the 
nuclear  posit ions.  The molecular  formula is (CH)~o, and the carbon skeleton is 
shown in Figure  3-56a. There  are only four different  k inds  of  carbon posi t ions 
(and hydrogen  posi t ions,  accordingly) ,  and all four  posi t ions  are being inter- 
conver ted  s imul taneously  [3-80]. Hypos t rophene  is another  (CH)~0 hydrocar-  
bon. Its trivial  name was chosen to reflect its behavior  [3-81]. The Greek  
hypostrophe means  turning about ,  a recurrence.  The molecule  is cease less ly  
undergoing the in t ramolecular  rearrangements  indicated in Figure 3-56b. The 
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atoms have a complete time-averaged equivalence yet hypostrophene could not 
be converted into pentaprismane (cf. Ref. [3-36]). 

Permutational isomerism among inorganic substances was discovered by 
R. S. Berry [3-82] for trigonal bipyramidal structures. Although the trigonal 
bipyramid and the square pyramid have very different symmetries, D3h versus 
C4,., they easily interconvert by means of bending vibrations as is illustrated in 
Figure 3-57. The possible change in the potential energy during this structural 
reorganization is also shown. The permutational isomerism of an AX 5 mole- 
cule, e.g., PF~, is easy to visualize as the two axial ligands replace two of the 
three equatorial ones, while the third equatorial ligand becomes the axial 
ligand in the transitional square pyramidal structure. The rearrangements 
quickly follow one another without any position being constant for any 
significant time period. The C4~. form originates from a D3h structure and yields 
then again to another D3h form. A somewhat similar pathway was established 
[3-83] for the (CH3)ENPF 4 molecule, in which the dimethylamine group is 
permanently locked in an equatorial position whereas the fluorines exchange in 
pairs all the time. 

The structure of the (CH3)2NPF4 molecule and its investigation by nuclear 
magnetic resonance (NMR) spectroscopy is also a good example demonstrat- 
ing the importance of the relationship between the lifetime of a configuration 
and the time scale of the investigating technique [3-83]. The 31p NMR spectra 
of (CH~)~NPF 4 at low temperatures provide evidence of two different kinds of 
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Figure 3-56. (a) The interconversion of bullvalene [3-80] and (b) hypostrophene [3-81]. 
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Figure 3-57. Berry pseudorotation of PFs-type molecules [3-84]. 

P-F bond in this molecule, viz., axial and equatorial. At low temperatures the 
interconversion is slow, and the lifetimes of the fluorines in the axial and 
equatorial positions are much greater than the interaction time for producing 
the spectrum so the two kinds of P-F bond give separate resonances in the 
spectrum. At higher temperatures the intramolecular exchange of the fluorine 
positions accelerates, and the lifetimes of the fluorines in the axial and 
equatorial positions decrease. As the interaction time needed to produce the 
spectrum remains the same, the spectrum becomes simpler, and the none- 
quiva[ent fluorines are no longer distinguished. Since the time scale of NMR 
spectroscopy is commensurable with the lifetimes of separate configurations in 
intramolecular motion, different molecular shapes may be observed at differ- 
ent temperatures. Other techniques utilize interactions on different time scales. 
Thus, for example, the time scale of electron diffraction is several orders of 
magnitude smaller, and, accordingly, the two different fluorine positions will 
always be distinguished in an electron diffraction analysis. 

Iodine heptafluoride, IFv, has a pentagonal bipyramidal structure of at 
least approximately Ds~ ~ symmetry [3-84]. Its dynamic behavior has been 
described by pseudorotation. 

The rearrangement that characterizes the PF5 molecule also describes 
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well the permutation of the atomic nuclei in five-atom polyhedral boron 
skeletons in borane molecules [3-85]. 

Lipscomb [3-86] has elaborated a general concept for the rearrangements 
of polyhedral boranes. According to this concept, two common triangulated 
faces are stretched to a square face in the borane polyhedra. There is an 
intermediate polyhedral structure with square faces. In the final step of the 
rearrangement, the intermediate configuration may revert to the original 
polyhedron with no net change, but it may as well turn into a different 
arrangement. The arrangement has rectangular faces with an orthogonal 
linkage with respect to the bonding situation in the original polyhedron [3-85]. 
This is illustrated in Figure 3-58. There are many practical examples, among 
which is the rearrangements of dicarba-closo-dodecaboranes, illustrated in 
Figure 3-59. There are three isomers of this beautiful carborane molecule: 

1,2-dicarba-closo-dodecaborane, or o-C2B 10H~2, 
1,7-dicarba-closo-dodecaborane, or m-C2BIoH~2, and 
1,12-dicarba-closo-dodecaborane, or p-C2Bt0H~2. 

Whereas the ortho isomer easily transforms into the meta isomer in agreement 
with the above-mentioned model, the para isomer is obtained only under more 
drastic conditions and only in a small amount ([3-86]; see also Refs. [3-88] and 
[3-89]). A similar model has been proposed [3-90] for the so-called carbonyl 
scrambling mechanism in molecules like Co,~(CO)~2, Rh,~(CO)t2, and Ir4(CO)~2. 

Incidentally, the carbonyl ligands can have several modes of coordination, 
viz., terminal and a variety of bridging possibilities. Rapid interconversion 
between the different coordination modes is possible, even in the solid state 
[3-91]. The above-mentioned metal-carbonyl molecules belong to a large class 
of compounds whose general formula is Mra(CO)n, where M is a transition 

b b b 

6 6 0 

Figure 3-58. (a) The Lipscomb model of the rearrangement in polyhedral boranes [3-86]. (b) 
An example of icosahedron/cuboctahedron/icosahedron rearrangement [3-86]. 
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Figure 3-59. Structures of o-, m-, and p-dicarba-closo-dodecaborane [3-87]. 

metal. The usually small m-atomic metal cluster polyhedron is enveloped by 
another polyhedron whose vertices are occupied by the carbonyl oxygens 
[3-92]. An attractive example is the structure of [Co6(CO)~4] 4-, in which the 
octahedral metal cluster has six terminal and eight triply bridging carbonyl 
groups, as shown in Figure 3-60a. This structure may also be represented by an 
omnicapped cube enveloping an octahedron as shown in Figure 3-60b, after 
Ref. [3-92]. These models are reminiscent of another model in which, also, 
polyhedra were enveloping other polyhedra. That model was Kepler's plane- 
tary system [3-93] cited in Figure 2-64. 
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a 

Co ~ Co 

~ b ~ 0 

Figure 3-60. The structure of [C%(CO)I,,] a- in two representations, after Benfield and Johnson 
[3-92]. (a) The octahedron of the cobalt cluster possesses six terminal and eight triply bridging 
carbonyl groups. (b) An omnicapped cube of the carbonyl oxygens envelopes the cobalt 
octahedron. 
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Chapter 4 

Helpful Mathematical Tools 

4.1 GROUPS 

So far, our discussion has been nonmathematical. Ignoring mathematics, 
however, does not necessarily make things easier. Group theory is the mathe- 
matical apparatus for describing symmetry operations. It facilitates the under- 
standing and the use of symmetries. It may not even be possible to successfully 
attack some complex problems without the use of group theory. Besides, 
groups are fascinating. 

This introductory chapter gives the reader the tools necessary to under- 
stand the next three chapters, in which molecular vibrations, electronic struc- 
ture, and chemical reactions are discussed. Further reading is recommended 
for broader knowledge of the subject [4-1-4-7]. 

A mathematical group is a very general idea. It is a special case when the 
elements of the group are symmetry operations. When the symmetries of 
molecules are characterized by Schoenflies symbols, for example, C2,,, C3~. or 
C2h, these symbols represent well-defined groups of symmetry operations. Let 
us consider first the C2v point group. It consists of a twofold rotation, C 2, and 
two reflections through mutually perpendicular symmetry planes, % and ~r(., 
whose intersection coincides with the rotation axis. All the corresponding 
elements are shown in Figure 4-1. One more operation can be added to these, 
called the identity operation, E. Its application leaves the molecule unchanged. 
The set of the operations C2, O'v, O"v, and E together make a mathematical 
group. 

163 
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Figure 4-1, Symmetry operations in the C2~. point group. 

A mathematical group is a set of elements related by certain rules. They 
will be illustrated on the symmetry operations. 

1. The product of  any two elements of  a group is also an element of  the group. 
The product here means consecutive application of the elements rather 
than common multiplication. Thus, for example, the product tr~-C 2 means 
that first a twofold rotation is applied to an operand* and then reflection is 
applied to the new operand. Let us perform these operations on the atomic 
positions of a sulfuryl chloride molecule as is shown in Figure 4-2a. The 
same final result is obtained by simply applying the symmetry plane ~r~,, as 
is also shown in Figure 4-2b. Thus, 

~ ' C 2  = ~r'v 

. 

The products of  the elements in a group are generally not commutative. 
That means that the result of the consecutive application of the symmetry 
operations depends on the order in which they are applied. This is why it is 
so important to read the multiplication sign as "preceded by." Figure 4-3 
gives an example for the ammonia molecule, which belongs to the C3v 
point group. Depending on whether the C 3 operation is applied first and 
then the ~r~ or vice versa, the effect is different. There are some groups for 
which multiplication is commutative; they are called Abelian groups. The 
C2v point group is an example. Thus, in Figure 4-2a we could get the same 
result by first applying the o" v reflection and then the twofold rotation. 
One element in the group must commute with all other elements in the 
group and leave them unchanged. This is the identity element. Thus, 

E.X = X.E = X 

"Shortly, we shall use a wide range of operands related to molecular structure. 
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a 

C~ ,,, S~ 0",~ = 

0 s O~ 

c tT,...... /Cl~ 

o. 

/%°, 
o~ o~ 

Figure 4-2. (a) Consecutive application of two symmetry operations, C x and o,., to the nuclear 
positions of the SO2CI 2 molecule. (b) Application of o'$ to SO2C12. 

. 

. 

The products of the elements in a group are always associative. That 
means that if there is a consecutive application of several symmetry 
operations, their application may be grouped in any way without changing 
the final result as long as the order of application remains the same. Thus, 
for example, 

t 

C 2 . % . ~ r '  v = C2.(%.~r'v)  = (C2.~rv). % 

For each element in a group, there is an inverse or reciprocal operation 
which is also an element of  the group and satisfies the following condition: 

X'X -I = X - t ' X  = E 

N~ N 
H ~  ~ H, C3 H 2 ~ ' N ~ H 3  H2~/" ~ H  1 

H 2 HI H 3 

N c~ . ( . - /  ~ .~ H3 ~ ' /  ~"H, O'v"~, H3../'//N~'H2 . N .  

H 2 H~ H z 

Figure 4-3. Illustration for the noncommutative character of the symmetry operations. 
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For example, 

C2.C2 - I  = C2-1 .C2  = E 

or  

crv-o'v -1 = O'v-l'o'v = E 

The symmetry operation corresponding to an inverse operation can be 
found in group multiplication tables. These tables contain the products of the 
elements of a group. An example is shown in Table 4-1, for the C2~ ' point group. 
Here each element of the group, that is, each symmetry operation, is listed only 
once in the initial row at the top and in the initial column at the far left. In 
forming the product of  any two elements, one belonging to the row and the 
other to the column, the order of the application of the elements is strictly 
defined. First, the element in the top row is applied, followed by the element in 
the tar left column. The result is found at the intersection of the corresponding 
column and row. Any one of the results is also a symmetry operation belonging 
to the C2, ' point group. In fact, each row and each column in the field of  the 
results is a rearranged list of the initial operations, but no two rows or two 
columns may be identical. From the C >,  multiplication table, it is seen that the 
inverse operation of C 2 is C 2, since their intersection is E; similarly, the inverse 
operation of o'~, is cry, tn this group. 

The multiplication table of the C3~, point group is compiled in Table 4-2. 
He re, 

C 3 . C  3 = C ~  

means two successive applications of the threefold rotation. Applying it once 
yields a 120 ° rotation, while C 2 corresponds to a 240 ° rotation altogether. 3 

Table 4-1. Group 
Multiplication Table 

for the C2,. Point Group 

C2~ E C 2 ~r, ~ ,  

E E C 2 ~r, c~ I 

C 2 C 2 E ~r I % 

% ~r,, ~ .  E C 2 

~(. ~ % C 2 E 
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Table 4-2. Group Multiplication 
Table for the C3,. Point Group 

C3,, E C~ C~ ~, ~(. ~; 

E 

C3 

c~ 
IJ v 

e C~ C~ ~,, <, "i! 
c3 c~ e ~7 ~, ~; 
C~ E C 3 if; ff~ fly 
~, ¢; ~; E C~ C~ 
~; ~i: ~ C~ ~ C 3 
~ ~ ~; c~ c~ E 

Accordingly, for example, the meaning of C52 is a rotation by 2"(360°/5) 
= 144 °. 

The number of elements in a group is called the order o f  the group. Its 
conventional symbol is h. The group multiplication tables show that h = 4 for 
the C2,. point group and h = 6 for C3, ,. 

A group may be divided into two kinds of subunits: subgroups and 
classes. A subgroup is a smaller group within a group that still possesses the 
four fundamental properties of a group. The identity operation, E, is always a 
subgroup by itself, and it is also a member of  all other possible subgroups. 

A class is a complete set of elements, in our case symmetry operations, of  
the group that are conjugate to one another. Elements A and B of a group are 
conjugates if there is some group element, Z, for which 

B = Z -  I-A.Z 

Designating a conjugate B to a symmetry operation A is called a similari ty  
transformation. B is a similarity transform of A by Z, or, in other words, A and 
B are conjugates. Elements belong to one class if they are conjugate to one 
another. The inverse operation can be applied with the aid of  the multiplication 
table and rule 4 given above, 

Z - i ' Z  = Z ' Z  -~ = E 

To find out what operations belong to the same class within a group, all 
possible similarity transformations in the group have to be performed. Let us 
work this out for the C3,. point group and begin with the identity operation. 
Since E commutes with any other elements Z (see under rule 2 above), we have 

Z - ~ . E ' Z  = Z - ~ . Z . E  = E . E  = E 
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for all elements in the class. Consequently, E is not conjugate with any other 
element, and it always forms a class by itself. This is true for all other point 
groups as well. 

Consider now <rv: 

E-~'(~r,,.E) = E-t'tr,. = cr~ 

C~t.(%.C.O -~. , = C 2. , ,, = C3 (Yv 3 ~ v  = °'v 

= = c = 

~'(~,.'~,.) = ~'E = ~v'E = ~ 
~-1 ~ ~-1.  = ~ .  = . 

~,, "(~:%) = ~ C3 ~ C3 ~ 
~ , , : - t . f ~ , , . ~ )  = ,,-~ - z  ,, ~ , 

~v "~3 = ~ v ' ~ 3  = ~v 

We have performed all possible similarity transformations for the operation crv. 
As a result, it is seen that the three operations expressing vertical mirror 
symmetry belong to the same class. We could reach the same conclusion by 
similarity transformations on either of the other two ~rv operations. 

Next let us examine C3: 

E- t . (C3 .E)  = E - t . c 3  = E . C  3 = C 3 

C3-~.(C3.C3) = C3-~.C~ = C32.C~2 = C3 
( C ~ ) - I . ( c 3 . c ~ )  -~. ( C ~ ) - I - E  = C 3 . E  = C 3 

~r,,-~.(C3-tr~) = ~r~ -~ . . . . .  ~r~ = ~r~.~r,, = C~ 
,-I = ' = C~ 

~ ; - t . ( C 3 . ~ .  ) = ~,. " ~  ~ - ~  
~ t~  I ~ I~x t l - -  I I ~ 

~ v  "~v ~ v ' ~ v  ~ v  " (C3"~v)  = = " ~ = C 

According to these transformations, C 3 and C~ ~ e  conjugates and thus ~ l o n g  
to the s ~ e  class. 

The order o f  a class is defined as ~e  number of elements in the class. For 
example, the order of the class of the reflection operations in C3v is 3, and the 
order of the class of the rotation operations is 2. The order of a class, or a 
subgroup, is an integral divisor of the order of the group. 

The mathematical handling of the s y ~ e t r y  o~rat ions is done by means 
of matrices. 

4.2 MATRICES 

A matrix is a rectangular array of numbers, or symbols for numbers. 
These elements are put between square brackets. A numerical example of a 
matrix is shown below: 
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7 0 - 

0 - 2  

General ly,  a matr ix  has m rows and n columns:  

a l l  a l  2 • . . aln 

a21 a22 • . . a2n 

a31 a32 • • ' a3n 

am I am2 " " " amn 

The above matr ix  may be represented by a capital  letter A. Another  notat ion is 
[as./]. The symbol  as- / represents  the matr ix  e lement  s tanding in the ith row and 
the j th  column.  The number  of  rows is m, and the number  of  columns is n, and 1 
~< i ~< m and 1 < ~ j < ~ n .  

There are some special  matr ices  that are important  for our  discussion.  A 
square  ma t r i x  has equal  numbers  of  rows and columns.  Accord ing  to the 
general  notat ion,  a matr ix  [aij] is a square matr ix  i f  m = n. The d imens ion  of  a 
square matr ix  is the number  of  its rows or columns.  

A special  square matr ix  is the uni t  ma t r i x ,  in which all e lements  along the 
top- lef t - to-bot tom-r ight  d iagonal  are 1 and all the other  e lements  are zero. The 
short  notat ion for a unit matr ix  is E. Some unit matr ices  are presented here: 

-I 0 0 0 O 

0 l 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 
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Figure 4-4. 

v~/~ (x ~ y~.z41 

~ ~, 

Representation of a vector in three-dimensional space. 

A column matrix consists of only one column. Column matrices are used 
to represent vectors. A vector is characterized by its length and direction. A 
vector in three-dimensional space is shown in Figure 4-4. If one end of the 
vector is at the origin of the Cartesian coordinate system, then the three 
coordinates of its other end fully describe the vector. These three Cartesian 
coordinates can be written as a column matrix: 

ILl Yl 

Z 1 

Thus, this column matrix represents the vector. 
While column matrices are used to represent vectors, square matrices are 

used to represent symmetry operations. Performing a symmetry operation on a 
vector is actually a geometrical transformation. How can these geometrical 
transformations be translated into matrix " language"?  Consider a specific 
example and see how the symmetry operations of the C s symmetry group can 
be applied to the vector of Figure 4-4. For a matrix representation, we first 
write (or usually just imagine) the coordinates of the original vector in the top 
row and the coordinates of the vector resulting from the symmetry operation in 
the left-hand column: 

Xl Yl Zl ,-- original vector 

xi 
resultant 
vector Y'I 

..~ 
"1  



Helpful Mathematical Tools 171 

Then we examine the effect of  the symmet ry  operation in detail. If  a coordinate 
is t ransformed into itself, I is placed into the intersection position, and if it is 
t ransformed into its negative self, - 1 is put into the intersection position. Both 
these positions will be along the diagonal of  the matrix. If  a coordinate is 
t ransformed into another coordinate or into the negative of  this other coordi- 
nate, 1 or - 1  is placed into the intersection position, respectively. These 
intersection positions will be of f  the matrix diagonal.  

There are two symmet ry  operations in the C~. point group, E and cr h. The 
identity operation, E, does not change the position of  the vector so it can be 
represented by a unit matrix: 

Xl Yl zl 

x I 1 0 0 X 1 X 1 
,~ 

3,~ 0 1 '1 = Yl 

~' 0 0 z I -, LZ,l 

Accordingly, 

E.Vl ----- V 1 

If  the matrix elements  are aij and the vector components  are bj, then the 
components  of  the product vector  c i are given by 

c i = ~,ao.b j 
J 

To get the first member  of the resulting matrix, all the elements of the first row 
of the square matrix are multiplied by the consecutive members of  the column 
matrix and then added together. To get the second member, the same procedure is 
followed with the second row of the square matrix, and so on, as shown below: 

I 0oZ1 X 1 

1 ,~ = 0 " x  I + l - y i  + 0"z~ = y~ 

o L~,j LO- , + O-y, + =, 

The other symmet ry  operation of  the C~. point group is the horizontal reflection 
(see Figure 4-5). In matrix language this operation can be written as follows: 
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xl Yt z~ 

y; 1 Yl -- / ° -x ,+l -Y,  + 0 -z , [ - -  Yl 

z[ 0 - z, LO.x, + O.y, + ( - l ) . z , j  - z ,  

E v I = v 2 

It often happens that the coordinates are not transformed simply into each 
other by a symmetry  operation. Trigonometric relations must be used to 
express, for instance, the consequences of  threefold rotation. 

Figure 4-6 illustrates a vector rotated by an angle e~ in the xy plane. The 
coordinates of  the rotated vector are related to the coordinates of  the original 
vector in the following way (13 is an auxiliary angle shown in Figure 4-6, and 
the rotation is clockwise): 

x 1 = r.cos13 and Yl = r.sin[3 (4-1) 

x 2 = r.cos(e~ - 13) and Y2 = - r . s i n ( a  - 13) (4-2) 

Utilizing the tr igonometric expressions: 

c o s ( a  - 13) = cosa .cos13  + sina.sin13 

sin (a  - 13) = sin a . cos  13 - cos a ' s i n  13 

(4-3a) 

(4-3b) 

Figure 4-5. 

I 

Reflection of a vector by a horizontal mirror plane. 
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x 1 

Y~ 

x 2 

~ -x  

F i g u r e  4-6. Rotat ion of a vector  by an angle  a in the xy plane. 

and substituting Eqs. (4-3) and (4-1) into Eq. (4-2), we get: 

x 2 = r ' co sa ' cos l  3 + r.sina-sin[3 = XI'COS(X - ~ - y t ' s i n a  (4-4a) 

y2 = -r 's intx-cos[3 + r'cos~x'sin[3 = -x~'sin(x + y~ 'cosa (4-4b) 

or, in matrix formulation: 

coco I:l I:l 
- s i n a  cosaJ  ~ 2 

The square matrix above is the matrix representation of a rotation through an 
angle a.  

Since matrices can be used to represent symmetry operations, the set of 
matrices representing all symmetry operations of a point group will be a 
representation of that group. Moreover, if a set of matrices forms a representa- 
tion of a symmetry group, it will obey all the rules of a mathematical group. It 
will also obey the group multiplication table. Let the SO2C12 molecule serve as 
an example again. This molecule belongs to the C2v point group, and some of 
its symmetry operations have already been illustrated in Figure 4-2. To 
construct the corresponding matrices, the same procedure can be applied as 
used before with a vector. The original nuclear positions of the molecule can be 
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written at the top row, and the nuclear positions resulting from the symmetry 
operation at the far left column. 

There are four operations in the C2~. point group. E leaves the molecule 
unchanged, so the corresponding matrix will be a unit matrix: 

s~ 

cl~ 

~ = Cl'~ 

o~ 

o'~ 

S~ C! 2 C13 O 4 O 5 

1 0 0 0 0 

0 1 0 0 0 

0 0 i 0 0 

0 0 0 1 0 

0 0 0 0 1 

The twofold rotation changes the positions of the two chlorine atoms and also 
the positions of the two oxygen atoms. The sulfur atom remains in place. 

s; 

CI~ 
c~ = Cl'~ 

o~ 

o; 

S~ C12 C13 O 4 O 5 

1 0 0 0 0 

0 0 1 0 0 

0 1 0 0 0 

0 0 0 0 1 

0 0 0 1 0 

The o~, operation changes the positions of the two chlorines and leaves the other 
three atoms in place (the auxiliary top row and left-hand column will no longer 
be indicated): 

- 1 0 0 0 0  

0 0  1 0 0  

0 1 0 0 0  

0 0 0 1 0 

0 0 0 0 1 
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Finally, or,i. changes the positions of  the two oxygen atoms and leaves the sulfur 
and the two chlorines in their original positions: 

-1 0 

0 1 

' =  0 0 O" v 

0 0 

0 0 

0 0 0- 

0 0 0 

1 0 0 

0 0 1 

0 1 0 

Since each of  these four 5 × 5 matrices represents one of  the symmetry  
operations of  the C2~, point group, the set of  these four 5 × 5 matrices will be a 
representation of  this group. They will also obey the C2, ' multiplication table. 
As was shown in Figure 4-2, 

The corresponding 

1 0 0 0 

0 0 1 0 

0 I 0 0 

0 0 0 1 

0 0 0 0 

O" v 

II.1 + 0.0 + 0.0 + 0.0 + 0.0 

0.1 + 0 . 0 +  1 . 0 + 0 . 0  + 0.0 

0-1 + 1.0 + 0.0 + 0.0 + 0.0 

0.1 + 0-0  + 0 -0  + 1-0 + 0-0 

0-1 + 0 . 0 + 0 - 0  + 0 . 0 +  1-0 

O'v'C 2 ~r v 

matrix representations are the following: 

O_ 
0 

0 

0 

1 

'1 0 0 0 

'0  0 1 0 

0 1 0 0 

0 0 0 0 

0 0 0 1 

O. 

0 

0 = 

l 

0 

C~ 

l.O + 0.0 + O.1 + 0.0 + 0 . 0 . .  

0.0 + 0 . 0 +  1.1 + 0.0 + 0 . 0 . .  

0.0 + 1.O + O.1 + 0.0 + 0 - 0 . .  

0 - 0 +  0-0 + O.1 + 1.0 + 0 . 0 . .  

0.0 + 0-0 + 0.1 + 0.0 + 1 . 0 . .  
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-1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 0 1 

0 0 0 1 0 

r 

O" v 

The multiplication is shown here in detail only for the first two columns of the 
resulting matrix. The elements of the product matrix are given by 

Cik-~ ~aij'bjk 
J 

To get the first member of the first row, all elements of the first row of the first 
matrix are multiplied by the corresponding elements of the first column of the 
second matrix and the results are added. To get the second member of the first row, 
all elements of the first row of the first matrix are multiplied by the corresponding 
members of the second column of the second matrix and the results are added, and 
so on. To get the second-row members, the same procedure is repeated with the 
second-row members of the first matrix, and so on. It is also possible to visualize 
the second matrix as a series of column matrices and then consider the multiplica- 
tion of each of these column matrices, one by one, by the first matrix. 

4.3 REPRESENTATION OF GROUPS 

Any collection of quantities (or symbols) which obey the multiplication 
table of a group is a representation of that group [4-2]. These quantities are the 
matrices in our examples showing how certain characteristics of a molecule 
behave under the symmetry operations of the group. The symmetry operations 
may be applied to various characteristics or descriptions of the molecule. The 
particular description to which the symmetry operations are applied forms the 
basis for a representation of the group. Generally speaking, any set of algebraic 
functions or vectors may be the basis for a representation of a group [4-1]. Our 
choice of a suitable basis depends on the particular problem we are studying. 
After choosing the basis set, the task is to construct the matrices which 
transform the basis or its components according to each symmetry operation. 
The most common basis sets in chemical applications are summarized in 
Section 4.11. Some of them will be used in the following discussion. Let us now 
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work out the representation of a point group for a very simple basis. We will 
choose just the changes, Ar~ and Ar2, of the two N-H bond lengths of the 
diimide molecule, N2H 2 (4-1). 

H / 
N "N 

/ 
H 

4-1 

These two vectors may be used in the description of the stretching vibrations of 
the molecule. The molecular symmetry is C2h. Figure 4-7 helps to visualize the 
effects of the symmetry operations of this group on the selected basis. There 
are four symmetry operations in the C~h point group, E, C 2, i, and tr h. E leaves 
the basis unchanged, so the corresponding matrix representation is a unit 
matrix: 

r 'r1  : I r 'r1  
" LAr=j L X,- j 

C 

E Arl H 
A_~ N ~. N ,~;'" 
H-- 

y 

x 

C2 ~r~.H 
H ~.~, N ~ N  ~'~ 

Arl. N ~ _  N~r2~ 'H 
H ~ "  

~h =_ %N~.N ~H 
H 

Figure 4-7. The four symmetry operations of the C2h point group applied to the two N-H bond 
length changes of the HNNH molecule. 
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Both C 2 and i interchange the two vectors; i.e., Aq "goes into" Ar 2 and vice 
versa'. 

C~ LAr~J 01 ~ lAr~l 

i .  L r2j L r2J 

Finally, o~ leaves the molecule unchanged: 

Artl = IArtl 
Ar2] [10 :] %" LAr J 

With this basis the representation consists of four 2 x 2 matrices. 
Let us take now a more complicated basis, and consider all the nuclear 

coordinates of HNNH shown in Figure 4-8a. These are the so-called Cartesian 
displacement vectors and will be discussed in Chapter 5 on molecular vibra- 
tions. Let us find the matrix representation of the (r h operation (see Figure 
4-8b). The horizontal mirror plane leaves all x and y coordinates unchanged 
while all z coordinates will "go" into their negative selves. In matrix notation 
this is expressed in the following way: 

( ] ' h  " 

. - 

X 1 

Y l 

~'1 

X 2 

Y2 

2 2 

X 3 

3'3 

z 3 

X 4 

Y4 

~4 
_ _ 

F ~1 0 0 0 0 0 0 0 0 0 0 0- 

0 1 0 0 0 0 0 0 0 0 0 0 

0 0 - 1  0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 - 1  0 0 0 0 0 0 

iO 0 0 0 0 0 1 0 0 0 0 0 

iO 0 0 0 0 0 0 1 0 0 0 0 

,0 0 0 0 0 0 0 0 - 1  0 0 0 

:0 0 0 0 0 0 0 0 0 1 0 0 

iO 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 - 1  

. - 

Yl 

¢'1 

X 2 

Y2 

~2 

X 3 

)'3 

"3 

X~ 

Y4 

_~4~ 
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Z! 

Yl 
~3 xv 

x 3 

x 2 
~ x~ 

Zl 
Z 3 

Zz 
Z~, 

~ ZI. Z~.' i 

Z3.Z2' i , 

~ ' ~ z~' I ~ '  
• x ~ '  i Y~'~ . . . .  / 

Zt"Zl , . ,  1.'" i t x 3' " - ~ ' ~  Yl 

Yl~ . . . .  " "  ~ "" ~" ~ ~ n  
x~ , 

Figure 4-8. (a) Cartesian coordinates as basis for a representation; (b) the effect of crh; (c) the 
effect of C 2. 

Take one more operation, the C 2 rotation (Figure 4-8c). This operation 
introduces the following changes: 

x~, y~, and z~ to - x  4, - y ~ ,  and z~, 
x~, y~, and z~ to - x ~ ,  - y ~ ,  and z~, 
x~, y~, and z~ to - x z ,  -Y2,  and z~, and 
x~, ya, and z~ to -x~ ,  - y ~ ,  and z~. 
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In matrix notation: 

C 2 - 

. - 

X| 

Yl 

Z 1 

X 2 

Y2 

Z 2 

X 3 

Y3 

z 3 

X 4 

Y4, 

7,  4 
. ~ 

0 

0 

o 

0 

-1  

0 

0 

0 0 0 0 0 0 0 0 0 - I  0 O 

0 0 0 0 0 0 0 0 0 0 - I  0 

0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 -1  0 0 0 0 0 

0 0 0 0 0 0 0 - l  0 0 0 0 

0 0 0 0 0 0 0 l 0 0 0 

0 0 - l  0 0 0 0 0 0 0 0 

0 0 0 -1  0 0 0 0 0 0 0 

0 0 0 0 i 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

-1  0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 

. , 

"~1  

Yl 

Z 1 

X 2 

Y~ 

Z2 

X 3 

Y3 

23 
x~ 

Ya 

Z4 
_ . 

Considering all four symmetry operations of the C2h point group, the complete 
representation of the displacement coordinates of HNNH as basis consists of 
four 12 x 12 matrices. Working with such big matrices is awkward and time- 
consuming. Fortunately, they can be simplifed. We shall not go into the details 
of  how this is done since only the easiest and quickest methods utilizing matrix 
representations will be used in the next chapters. We shall merely outline the 
procedure leading from the big unpleasant representations of symmetry opera- 
tions to simpler tools [4-1]. With the help of suitable similarity transforma- 
tions, matrices can be turned into so-called block-diagonal matrices. A block- 
diagonal matrix has nonzero values only in square blocks along the diagonal 
from the top left to the bottom right. The merits of  block-diagonal matrices are 
best illustrated in their multiplication. Suppose, for example, that two 5 × 5 
matrices are to be multiplied, as follows: 

-2 3 0 0 0 

1 2 0 0 0 

0 0 1 1 0  

0 0 1 1 0 

0 0 0 0 2 

1 2 0  

2 1 0  

0 0 2  

0 0 1  

0 0 0  

0 0- 

0 0  

2 0 = 

2 0  

0 1  

"8 7 0 0 0 

5 4 0 0 0  

0 0 3 4 0  

0 0  3 4 0  

0 0 0 0 2 
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The determination of the first row is already quite complicated: 

2.1 + 3-2 + 0.0 + 0.0 + 0.0 = 8 
2.2 + 3.1 + 0-0 + 0.0 + 0.0 = 7 
2 . 0 +  3 . 0 +  0-2 + 0.1 + 0 " 0  = 0 
2 . 0 +  3 . 0 + 0 . 2  + 0.2 + 0.0 = 0  
2.0 + 3.0 + 0.0 + 0.0 + 0.1 = 0 

Notice that the product of two equally block-diagonalized matrices--such as 
those two above-- is  another similarly block-diagonalized matrix. It is espe- 
cially important that this resulting matrix can be obtained simply by multiply- 
ing the corresponding individual blocks of the original matrices. Check this on 
the above example: 

[: :] [: :1: [,.2+,.2 , ,.,'" ,.2"21 : :] 

Generally, if two matrices A and B can be transformed by similarity transfor- 
mation into identically shaped block-diagonalized matrices, their product 
matrix C will also have the same block-diagonal form: 

4 - - - -  1 4 - - - -  I ~----q 
I B2 I = ! C2 I L't_~_~ ~.~.j "-I~ "--~ 

The multiplication will also be valid for the individual blocks: 

A~'B~ = C~ 

A2"B 2 = C 2 

A~ 'B  3 = C 3 
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Since the blocks themselves will obey the same multiplication table that 
the big matrices do, each block will be a new representation for an operation of 
the group. Thus, if the above A and B matrices are representations for the 
respective symmetry operations % and ~. in the Cz~. point group, so will be the 
matrices A~, Az, and A3 and BI, B2, and B~v respectively. The C2~ multiplication 
table (Table 4-1) shows that 

~,,-crl ,  = C 2 

and, accordingly, not only the big C matrix but also the small matrices CI, C2, 
and C 3 will be representations of the C 2 operation. This way the big matrices 
reduce into smaller ones which are more convenient to handle. Let us suppose 
that the above big matrices A, B, and C together with the E matrix constitute a 
representation tbr the C2,. point group. This is called then a reducible represen- 
tation of the group, indicating that it is possible to find a similarity transforma- 
tion that reduces all its matrices into new ones with smaller dimension. If this is 
repeated until it is no longer possible to find a similarity transformation to 
reduce simultaneously all the matrices of a representation into smaller ones, we 
call this representation irreducible. Suppose now that in the example above the 
small matrices along the diagonals of the big ones cannot be reduced further by 
a similarity transformation. In this case each set of the small matrices will be 
an irreducible representation of the C2~. point group. The set of AI, B~, C~, and 
E 1 will be an irreducible representation, so will be the set of A> B2, C2, and E2, 
and yet another irreducible representation will be the set of A3, B 3, C3, and E3. 
Thus, the reducible representation was reduced to three irreducible representa- 
tions. Since the symmetry operations can be applied to all kinds of bases tbr a 
molecule, there may be countless numbers of reducible representations. The 
important thing is that all these representations reduce into a small andfinite 
number of irreducible representations for practically all point groups. These 
irreducible representations, often called symmeto, species, are then used in 
many areas of chemistry to describe symmetry properties. 

4.4 THE CHARACTER OF A REPRESENTATION 

Considering the sizes of the initial matrices, using irreducible representa- 
tions is a great improvement. Fortunately, even further simplification is 
possible. Instead of working with irreducible representations, we can simply 
use their characters. The utility of this approach will be amply demonstrated 
later. The character (or trace) of a matrix is the sum of its diagonal elements. 
For the following matrix 
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1 \  .2 o 3- 
\ ~ "  \ 1  1 

I1 2 \  o \  o 

l, -~ ~ 
the character is 

1 + 7 + 0 + ( - 4 ) = 4  

Since a representation--reducible or i rreducible-- is  a set of matrices corre- 
sponding to all symmetry operations of a group, the representation can be 
described by the set of characters of all these matrices. For the simple basis of 
Ar~ and Ar e used before for the HNNH molecule in the C2~ , point group, the 
representation consisted of four 2 x 2 matrices: 

characters 

:l I + 1 = 2  

:1 0 + 0 = 0  

I: 'ol 0 + 0 = 0  

1 + 1 = 2  

Thus, the characters of this representation are 

2 0 0 2 
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We do not know yet, however, whether this representation is reducible or 
irreducible. To answer this question, first we have to know the characters of the 
irreducible representations of the C~h point group. 

4.5 CHARACTER TABLES AND PROPERTIES OF IRREDUCIBLE 
REPRESENTATIONS 

The characters of irreducible representations are collected in so-called 
character tables. We shall not discuss here how to find the characters of a given 
irreducible representation. The character tables are always available in text- 
books and handbooks, and some of them are also given in the subsequent 
chapters of this book. Table 4-3 shows the character table for the C2h point 
group. The top row contains the complete set of symmetry operations of this 
group. The left column shows, for the time being, some temporary names. F is 
the generally used label for the representations. The main body of the character 
table contains the characters themselves. Thus, each row constitutes the 
characters of an irreducible representation, and the number of rows gives us the 
number of irreducible representations of the particular point group. The 
irreducible representations have some important and useful properties: 

1. The sum of the squares of the dimensions of  all irreducible represen- 
tations in a group is equal to the order of  the group. The dimension of 
an irreducible representation is simply the dimension of any of its 
matrices, which is the number of rows or columns of the matrix. 
Since the identity operation always leaves the molecules unchanged, 
its representation is a unit matrix. The character of a unit matrix is 
equal to the number of rows or columns of that matrix, as is 
demonstrated below: 

Table 4-3.  A 
Preliminary 

Character Table 
for the C2h Point Group 

C2h E C2 i ~ 

F~ 1 I 1 l 
F~ 1 -1 1 -1 
F 3 1 1 -1 -1 
~a 1 - 1  -1  1 
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E = character  = 1 + 1 + 1 = 3 

character  = 1 + 1 = 2 

E = I i  ] c h a r a c t e r =  1 

From this it follows that the character under E is always the 
dimension of the given irreducible representation. The one- 
dimensional representations are nondegenerate,  and the two- or 
higher-dimensional representations are degenerate.  The meaning of  
degeneracy will be discussed in Chapter  6. 

2. The sum of the squares of the absolute values of characters of any 
irreducible representation in a group is equal to the order of the 
group. 

3. The sum of the products of the corresponding characters (or one 
character with the conjugate of another in the case of imaginary 
characters) of any two different irreducible representations of the 
same group is zero. 

4. The characters of all matrices belonging to operations in the same 
class are identical in a given irreducible representation. 

5. The number of irreducible representations of a group is equal to the 
number of classes of that group. 

Let us check these rules on the C2h character  table given above. All four 
irreducible representations have 1 as their character  under E,  so all of  them are 
one-dimensional .  Applying rule 1, 

12 + 12 + 12 + 12 = 4 

This is, indeed, the order of  the group since there are four symmet ry  operations 
in C2h. Let us check rule 2 with the I" 2 representation: 

12 + (--1) 2 + 12 + (--1) 2 = 4 
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Tab le  4-4.  A Pre l iminary  Charac te r  
Table for the C3,, Po in t  G r o u p  

C~, E C~ C~ o', o'~ o.','. 

F~ 1 I 1 1 1 I 
I'~ 1 1 1 - 1  - 1  - [  
F.~ 2 - 1 - 1 0 0 0 

This is, again, the order of the group. Let us form the sum of the products of 
F 3 and ['4 according to rule 3: 

1.1 + 1.(-1)  + ( - 1 ) - ( - 1 )  + (-1) .1 = 0 

Since all four symmetry elements in Czh stand by themselves, rule 4 cannot be 
checked with this point group. Finally, the number of irreducible representa- 
tions is four just as is the number of classes, according to rule 5. 

Table 4-4 shows a preliminary character table for the C3,, point group. The 
complete set of symmetry operations is listed in the upper row. Clearly, some of 
them must belong to the same class since the number of irreducible representa- 
tions is 3 and the number of symmetry operations is 6. A closer look at this 
table reveals that the characters of all irreducible representations are equal in C 3 
and C 2 and also in ~r,,, ~r(., and cry, respectively. Thus, according to rule 4 C a 

3 _ 

and C~ form one class, and cr v, ~r'v, and ~r~ together form another class. 
A complete character table is given in Table 4-5 for the C3v point group. 

The classes of symmetry operations are listed in the upper row, together with 
the number of operations in each class. Thus, it is clear from looking at this 
character table that there are two operations in the class of threefold rotations 
and three in the class of vertical reflections. The identity operation, E, always 
forms a class by itself, and the same is true for the inversion operation, i (which 
is, however, not present in the C3~, point group). The number of classes in C3,. 
is 3; this is also the number of irreducible representations, satisfying rule 5 as 
well. 

o 

- 3 v  

t~ 

~., 
~c 

Tab le  4-5 .  Comple t e  Charac te r  Table 
for the C3~, Point  Group  

E 2C3 3o',, 

I 1 1 z x 2 + y2, z 2 

1 1 - 1 R :  

2 - I  0 (x, y) (R x, R r) (x 2 - 3, 2, xy)  (xz, yzl  
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T a b l e  4-6. Symbols for Irreducible Representations 
of Finite Groups 

Dimension of 
representation 

Character under: 

E C. i ~h C2" or o ' , ,  Symbol(s) 

1 I 1 A 
1 - 1  B 

2 2 E 

3 3 T 

1 Ag B~. Eg T~ 
- l  A . B ~ E . T  u 

1 A' B' 

- 1  A" B" 

1 A~ B I 
- 1 A2 B~_ 

"C 2 axis perpendicular to the principal axis. 
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Consider now the symbols used for the names of the irreducible represen- 
tations. These are the so-called Mulliken symbols, and their meaning is 
described below, along with other Mulliken symbols collected in Table 4-6. 

Letters A and B are used for one-dimensional irreducible representations, 
depending on whether they are symmetric or antisymmetric with respect to 
rotation around the principal axis of the point group. Antisymmetric behavior 
here means changing sign or direction.* The character for a symmetric 
representation is + 1, and this is designated by the letter A. An antisymmetric 
behavior is represented by the letter B and has - l character. E is the symbolS 
for two-dimensional, and T (sometimes F) the symbol for three-dimensional 
representations. The subscripts g and u indicate whether the representation is 
symmetric or antisymmetric with respect to inversion. The German gerade 
means even, and ungerade means odd. The superscripts ' and " are used for 
irreducible representations which are symmetric and antisymmetric with 
respect to a horizontal mirror plane, respectively. The subscripts I and 2 with A 
and B refer to symmetric (1) and antisymmetric (2) behavior with respect to 
either a C 2 axis perpendicular to the principal axis or, in its absence, a vertical 
mirror plane. The meaning of subscripts 1 and 2 with E and T is more 
complicated and will not be discussed here. The character tables of the infinite 
groups, C:~, and D~h , use Greek rather than Latin letters: E stands for one- 

*Antisymmetry will be discussed in Section 4.6. 
+Not to be confused with the symbol of the identity operation, which is also E. 
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dimensional representations, and H, A, qb, etc., for two-dimensional represen- 
tations. 

It is always possible to find a behavior that remains unchanged under any 
of the symmetry operations of the given point group. Thus, there is always an 
irreducible representation which has only + 1 characters. This is the totally 
symmetric irreducible representation, and it is always the first one in any 
character table. 

The character tables usually consist of four main areas (sometimes three if 
the last two are merged), as is seen in Table 4-5 for the C3v and in Table 4-7 for 
the C2h group. The first area contains the symbol of the group (in the upper left 
corner) and the Mulliken symbols referring to the dimensionality of the 
representations and their relationship to various symmetry operations. The 
second area contains the classes of symmetry operations (in the upper row) and 
the characters of the irreducible representations of the group. 

The third and fourth areas of the character table contain some chemically 
important basis functions for the group. The third area contains six symbols: x, 
y, z, R x, Ry, and R~. The first three are the Cartesian coordinates that we have 
already used as bases for a representation of the C2h point group. The symbols 
Rx, Ry, and R z stand for rotations around the x, y, and z axes, respectively. A 
popular toy, the spinning top, is helpful in visualizing the consequences of 
symmetry operations on rotation. Let us work out the characters for rotation 
around the z axis in the C3, ' point group (Figure 4-9a). Obviously, the identity 
operation leaves the rotating spinning top unchanged (character 1). So does the 
rotation around the same axis since the rotational symmetry axis is indis- 
tinguishable from the axis of rotation of the toy. The corresponding character is 
again 1. Now place a mirror next to the rotating toy (Figure 4-9b). Irrespective 
of the position of the mirror, the rotation of the mirror image will always have 
the opposite direction with respect to the real rotation. Accordingly, the 
character will be -1 .  

Thus, the characters of the rotation around the z axis in the C3~, point group 
will be: 

1 1 - 1  

~2~ 

~g 
~ 
4~ 
8~ 

Table 4.7. C2n Character Table 

E C2 i ~h 

I I I 1 

I - 1  1 - 1  

1 1 - I  - 1  

1 - I  - 1  l 

R: x 2, y2, x~, .~ 
R~, R.,, xz,  y~ 

2 

x,  y 
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E 

+ 
C 

c~ 

+ 
Figure 4-9. (a) Applying the identity and the C 3 operation to a rotating spinning top. (b) Illus- 
tration of the effect of mirror planes on the rotating spinning top. 

Indeed, R z belongs to the irreducible representation A 2 in the C3, ' character 
table. In other words, R z transforms as A 2, or, it forms a basis for A 2. 

The fourth area of  the character table contains all the squares and binary 
products of the coordinates according to their behavior under the symmetry 
operations. All the coordinates and their products listed in the third and fourth 
areas of  the character table are important basis functions. They have the same 
symmetry properties as the atomic orbitals under the same names; z corre- 
sponds to Pz, x2 - y2 to dx2_y2, and so on. We shall meet them again in the 
discussion of the properties of atomic orbitals. 

The term antisymmetry has occurred several times above, and it is a whole 
new idea in our discussion. It is again a point where chemistry and other fields 
meet in a uniquely important symmetry concept. 

4.6 ANTISYMMETRY 

Antisymmetry is the symmetry of opposites [4-8]. "Operations of anti- 
symmetry transform objects possessing two possible values of  a given prop- 
erty from one value to the other" [4-9]. The simplest demonstration of an 
antisymmetry operation is by color change. Figure 4-10 shows an identity 
operation and an antiidentity operation. Nothing changes, of course, in the 
former whereas merely the black-and-white coloring reverses in the latter. 
Antimirror symmetry along with mirror symmetry can be found in Figure 
4-11, and further antimirror symmetries are presented in Figure 4-12. The 
Vasarely picture (Figure 4-12a) is a characteristic representative of geometrical 
art. There is more than geometrical correspondence in the Soviet poster from 
1987 (Figure 4-12b). The text says "This is perestroika to some,"  implying 
dissatisfaction in the way reforms of that time were carried out, amounting to 
mere color changes rather than substantial ones. 
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Figure 4-10. Identity operation (top) and antiidentity operation (bottom). 

Symmetry elements other than a symmetry plane may also serve as 
antisymmetry elements. Thus, for example, twofold, fourfold, and sixfold 
antiroiation axes appear in Figure 4-13, after Shubnikov [4-10]. The fourfold 
antirotation axis includes a twofold rotation axis, and the sixfold antirotation 
axis includes a threefold rotation axis. The antisymmetry elements have the 
same notation as the ordinary ones except that they are underlined. Antimirror 
rotation axes characterize the rosettes in the second row of Figure 4-13. The 
antirotation axes appear in combination with one or more symmetry planes 
perpendicular to the plane of the drawing in the third and fourth rows of Figure 
4-13. Finally, the ordinary rotation axes are combined with one or more 

~ 2 3 /. 

Figure 4-11. Mirror symmetries and an~mirror symmetries: 1-2 and 3-4 mirror symmetries: 
1-4 and 2-3, antimirror symmetries. 
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a 

<<II( 

b ~ '~ 

Figure 4-12, Illustrations of antimirror symmetry: (a) Picture by Victor Vasarely; used by 
permission; (b) Soviet (1987) poster on perestroika. Photograph by the authors. 

antisymmetry planes in the three bottom rows of this figure. In fact, symmetry 
l-m__ here is the symmetry illustrated also in Figures 4-11 and 4-12. 

The black-and-white variation is the simplest case of what is color 
symmetry. These considerations become very complicated quickly with in- 
creasing number of colors [4-10-4-13]. Our single example indicative of the 
complexity of color symmetry involves the Rubik's cube. In its monocolor 
version, the cube itself has many symmetry elements, among them fourfold 
axes going through the midpoints of opposite faces. In the unscrambled 
starting position of the Rubik's cube, each side has a different color. Thus, the 
original fourfold axis of the cube is no longer a symmetry element for the 
Rubik's cube. However, it is possible to specify this axis in such a way that it 
corresponds to the color changes of the Rubik's cube. 

All the above examples applied to point groups. Such distinctions and 
further coloring, of course, may be introduced in space-group symmetries as 



2 t. 6 
- -  

2.m 2.m 4.m 4,m 
- -  - -  _ 

6_.m 6.rn 

1.m 3._m 

_ - -  

Figure 4-13. Antisymmetry operations: antirotation axes 2, 4, 6; antimirror rotation axes 2, 4, 
g; antirotation axes combined with ordinary mirror planes 2.m, 4"m, 6"m; ordinary rotation axes 
c-ombined with antimirror planes l-m, 2'm, 3'm, 4,m, 6.m. After Shubnikov [4-10]. Reproduced 
with permission from Nauka Publ. Co., Moscow. 
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well [4-10]. Antisymmetry also appears in space groups in Figures 8-31, 8-32, 
8-40, and 9-46, in the discussion of space groups. 

The color change is perhaps the simplest version of antisymmetry. The 
general definition of antisymmetry, at the beginning of this section, however, 
calls for a much broader interpretation and application. The relationship 
between matter and antimatter is a conspicuous example of antisyrmnetry. 
There is no limit to down-to-earth examples, as well as to abstract ones, 
especially if, again, symmetry is considered rather loosely. 

We have already seen the contour of the oriental symbol Yin Yang 
representing twofold rotational symmetry in Figure 2-16a. The complete sign 
has also a black/white or red/blue color change as seen in Figure 4-14 and thus 
shows twofold antirotational symmetry. Besides color change, this symbol 
represents a whole array of opposites, such as night/day, hot/cold, male/ 
female, young/old, etc. 

The op art decoration of the car in Figure 4-15 involves a change in the 
motifs of the pattern in addition to color change. The change of the motifs 
appears as circle/square variation, and it may also be considered antisymmetric 
if the circle and the square are considered as each other's opposites. 

Figure 4-16 shows the logo of a sporting goods store in Boston, Massa- 
chusetts. Geometrical correspondence is gone, yet we have no difficulty in 
recognizing the antimirror symmetry relationship. The antireflection plane 
relates a half-snowflake and a half-sun, symbolizing winter and summer. There 
are two Coke machines in the picture of Figure 4-17. There is no geometrical 
correspondence, but there is color reversal, and reversal of yet another, more 
important, property, the sugar content. This makes the two machines an 
example of antisymmetry with some abstraction. 

Twofold rotational antisymmetry is shown by the ballet dancer couple in 
Figure 4-18, involving not only color change but gender change as well. 

 'll" 
Figure 4-14. The flag of the Republic of Korea. Photograph by the authors. 
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Figure 4-15. Op art decoration of a car. Photograph by the authors. 

Our final example shows two military jets and a seagull in Figure 4-19, 
symbolizing the contrast between war and peace. 

The above examples of antisymmetry may have implied at least as much 
abstraction as any chemical application. The symmetric and antisymmetric 
behavior of orbitals describing electronic structure and vectors describing 
molecular vibrations may be perceived with greater ease after the preceding 
diversion. Before that, however, some more of group theory will be covered. 

Figure 4-16. Logo of a sporting goods store in Boston, Massachusetts. Photograph by the 
authors. 
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Figure 4-17. Two Coke machines 
where color change and, even more 
importantly, reversal of sugar content 
make the antisymmetric relationship. 
Photograph by the authors. 

Figure 4-18. Twofold rotational anti- 
symmetry involving not only color 
changc but gender change as well. 
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Figure 4-19, Military jets and sea gull, off Bode, Norway, symbolizing the antisymmetric 
relationship between war and peace. Photograph by the authors (1982). 

4.7 SHORTCUT TO DETERMINE A REPRESENTATION 

It was quite easy to find the irreducible representation of R z before, as the 
representation we worked out appeared to be an irreducible representation 
itself. In most cases, however, a reducible representation is found when the 
symmetry operations are applied to a certain basis. Now a simpler way will be 
shown (1) to describe the representation on a given basis without generating the 
matrices themselves and (2) to reduce them, if reducible, to irreducible 
representations. 

The diimide molecule (4-1) is our example again, and the basis is the two 
N-H bond length changes (see Figure 4-7). It is easy to generate the matrices 
corresponding to each operation using such a simple basis; however, even this 
may not be necessary. As mentioned before, instead of the representations 
themselves, we can work with their characters. For this particular case, the 
characters of the representation have already been determined: 

F t 2 0 0 2 

But how can we know the character of a matrix without writing down the whole 
matrix? 

Looking back at the effect of the different symmetry operations on HNNH 
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(Figure 4-7), it is recalled, for example, that C 2 interchanges Arj and Ar 2, so 
the diagonal elements of the matrix will all be 0. Consequently, these vectors 
do not contribute to the character. 

This observation can be generalized so that those basis elements that are 
associated with an atom changing its position during the symmetry operation 
will have zero contribution to the character. The basis element that is un- 
changed by a given operation contributes + 1 to the character. Finally, the basis 
element that is transformed into its negative contributes - 1. The only compli- 
cation arises with the rotational operations when the atom does not move 
during the symmetry operation but the basis element associated with it is 
rotated by a certain angle. Here the matrix of the rotation has to be constructed 
as shown in Section 4.2. 

Returning to the diimide N-H bond length changes, let us see how the 
above simple rules work. The identity operation, E, leaves the molecule 
unchanged, so the two vectors, Ar I and At2, will  each contribute + 1 to the 
character: 

1 + 1 = 2  

The effect of C 2 has already been looked at. Its character is 0. The effect of the 
inversion operation is the same as that of C 2, so the character will be 

0 + 0 = 0  

Finally, operation ~r h leaves the two bonds unchanged, so both of them 
contribute + 1 to the character: 

1 + 1 = 2  

The result is the same as before: 

F~ 2 0 0 2 

Now, check the rules with a larger basis set, the Cartesian displacement 
coordinates of the atoms of HNNH (see Figure 4°8). Operation E leaves all the 
12 vectors unchanged, so its character will be 12. C a brings each atom into a 
different position so their vectors will also be shifted. This means that all 
vectors will have zero contribution to the character. The same applies to the 
inversion operation. Finally, as already worked out before, the horizontal 
reflection leaves all the x and y vectors unchanged and brings the four z vectors 
into their negative selves. The result is 

8 + ( - 4 )  - - 4  
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The whole representation of the displacement vectors is: 

F 2 12 0 0 4 

Both representations that we have constructed here are reducible since 
there are no 2- and 12-dimensional representations in the C2h character table 
(Table 4-7). The next question is how to reduce these representations. 

4.8 REDUCING A REPRESENTATION 

It was discussed before that the irreducible representations can be pro- 
duced from the reducible representations by suitable similarity transtbrma- 
tions. Another important point is that the character of a matrix is not changed 
by any similarity transformation. From this it follows that the sum of the 
characters of the irreducible representations is equal to the character of the 
original reducible representation from which they are obtained. We have seen 
that for each symmetry operation the matrices of the irreducible representa- 
tions stand along the diagonal of the matrix of the reducible representation, and 
the character is just the sum of the diagonal elements. When reducing a 
representation, the simplest way is to look for the combination of the irreduc- 
ible representations of that group-- that  is, the sum of their characters in each 
class of the character table--that will produce the characters of the reducible 
representation. 

First, reduce the representation of the two N-H bond length changes 
of HNNH: 

F t 2 0 0 2 

The C2t ' character table shows that F t can be reduced to Ag + B,: 

A g 

C2t ' E C 2 i % 

k 1 1 1 1 g 
B 1 - 1  1 - 1  g 
A~ 1 1 -1  -1 
B .  1 - 1  - 1  1 

+ B. 2 0 0 2 

It may be asked, of course, whether this is the only way of decomposing the F~ 
representation. The answer is reassuring: The decomposition of any reducible 
representation is unique. If we find a solution just by inspection of the character 
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table, it will be the only one. Often this is the fastest and simplest way to 
decompose a reducible representation. 

A more general and more complicated way is to use a reduct ion formula:  

a i = (I/h) ~ x ( R ) ' x i ( R )  

where a i is the number of times the ith irreducible representation appears in the 
reducible representation, h is the order of the group, R is an operation of the 
group, ×(R) is the character of R in the reducible representation* and x i ( R )  iS 
the character of R in the ith irreducible representation. The summation extends 
over all operations of the group. 

The reduction formula can be simplified by grouping the equivalent 
operations into classes, 

a i = (l/h) Q~N-x(R)o-xi(R)Q 

where a i is the number of times the ith irreducible representation appears in the 
reducible representation, h is the order of the group, Q is a class of the group, N 
is the number of operations in class Q, R is an operation of the group, x(R)Q is 
the character of an operation of class Q in the reducible representation, and 
xi(R)Q is the character of an operation of class Q in the ith irreducible 
representation. The summation extends over all classes of the group. 

The reduction formula can only be applied to finite point groups. For the 
infinite point groups, D=h and C~v, the usual practice is to reduce the 
representations by inspection of the character table. 

For illustration, let us find the irreducible representations of the two 
examples used before. First, on the basis of the two N-H distance changes of 
diimide (i.e., F1): 

C2h E C 2 i O" h 

A 1 1 1 1 
B g 1 - 1  1 - 1 

A g 1 1 - 1  - 1  u 

B,  1 - 1  - 1  1 

F~ 2 0 0 2 

The order of the group is 4. The number of times the irreducible representation 
Ag appears in the reducible representation is 

*Here and hereafter, the short expression "character of R" stands for the character of the matrix 
corresponding to operation R, in accordance with our previous discussion. 
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aA~ = (1/4)[1"2"1 + 1"0"1 + 1"0"1 + 1"2"1] = (1/4)(2 + 0 + 0 + 2) = 4/4 = 1 

In the same way we can deduce the number o f  times the other irreducible 
representations appear in F j: 

aB~ = (1/4)[1.2.1 + 1 .0"(-1)  + 1"0.1 + 1 .2-( -1)]  = (1/4)(2 + 0 + 0 - 2) = 0 

aa~ = (1/4)[1"2"1 + 1"0"1 + 1"0"(--1) + 1"2"(--1)] = (1/4)(2 + 0 + 0 -- 2) = 0 

as~ = (1/4)[1-2"1 + 1"0"(--1) + 1"0"(--1) + 1-2-1] = (1/4)(2 + 0 + 0 + 2) = 1 

That is, F~ = A s + B.,  and the result is the same as before. 
With the 12-dimensional reducible representation o f  the Cartesian dis- 

placement vectors of  H N N H ,  the inspection method probably does not work. 
However, the reduction formula can be used. The reducible representation is 

F 2 12 0 0 4 

Applying the reduction formula, we obtain: 

aA~ = (1/4)[1"12"1 + 1"0"1 + 1"0"1 + 1"4"1] = (1/4)(12 + 4) = 4 

aB~ = (1/4)[1"12.1 + 1"0"(--1) + 1-0.1 + 1"4"(--1)] = (1/4)(12 -- 4) = 2 

aa, = (1/4)[1"12"1 + 1"0"1 + 1"0"(--1) + 1"4"(--1)] = (1/4)(12 -- 4) = 2 

an, = (1/4)[1.12.1 + 1"0"(--1) + 1"0"(--1) + 1"4"1] = (1/4)(12 + 4) = 4 

Thus, 

Fe = 4A~ + 2B~ + ZA. + 4B u 

4.9 AUXILIARIES 

A few additional things need to be mentioned before embarking on 
chemical applications of  group theoretical methods. For detailed descriptions 
and proofs, we refer to Refs. [4-1]-[4-3].  

4.9.1 Direct Product 

Wave functions form bases for representations of  the point group of  the 
molecule [4-1] Suppose thatf~ andf~ are such functions; then the new set of  

• t J 

functions f/f,, called the direct product off/andf~, is also basis for a representa- 
J , , 

tion of  the group. The characters of  the direct product can be determined by the 
following rule: The characters of the representation of a direct product are 
equal to the products of the characters of the representations of the original 
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functions. The direct product of two irreducible representations will be a new 
representation which is either an irreducible representation itself or can be 
reduced into irreducible representations. Tables 4-8 and 4-9 show some 
examples for direct products with the C 2 v  and Ca,. point groups, respectively. 

4.9.2 Integrals of Product Functions 

Integrals of product functions often occur in the quantum-mechanical 
description of molecular properties, and it is helpful to know their symmetry 
behavior. Why? The reason is that an integral whose integrand is the product of 
two or more functions will vanish unless the integrand is invariant under all 
symmetry operations of the point group. There is only one irreducible repre- 
sentation whose characters are 1 for each symmetry operation of the point 
group, and this is the totally symmetric irreducible representation. Therefore, 
an integral will be nonzero only if  the integrand belongs to the totally 
symmetric irreducible representation of the molecular point group. 

The representation of a product function can be determined by forming 
the direct product of the original functions. The representation of a direct 
product will contain the totally symmetric representation only if the original 
functions whose product is formed belong to the same irreducible representa- 
tion of the molecular point group. This follows directly from rules 2 and 3 in 
Section 4.5. 

These rules can be extended to integrals of products of more than two 
functions. For a triple product the integral will be nonzero only if the 
representation of the product of any two functions is the same as, or contains, 
the representation of the third function. If the integral is 

f 

Table 4-8. Character Table and 
Some Direct Products for the C2,, 

Point Group 

C2~, 

A I 

A 2 

B~ 

B~ 

A~ "A 2 
A 2"B* 

B,'B2 

E C 2 ~ ~r~. 

1 1 1 1 

1 1 - I  - 1  

I - I  1 - 1  

1 - 1  - 1  1 

1 l - I  - I  

1 - 1  - 1  1 

1 1 - 1  - l  

= A  2 

= B 2 

= A 2 
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T a b l e  4 -9 .  C h a r a c t e r  Table  and  D i r ec t  

P r o d u c t s  for the C3,. Po in t  G r o u p  

C3~. E 2C 3 3~r v 

A t 1 1 1 

A 2 I I - 1 

E 2 - 1  0 

A 2 . A  2 1 1 1 = A l 

A , . .E  2 - 1 0 = E 

E ' E  4 1 0 = A~ + A 2 + E 

then the above condition is expressed by 

c 

where F stands for the representation, and C means "is or contains." Very 
often, f~ is a quantum-chemical operator, and then the expressions are 

f fio~.fkd~ 

or with other notation, 

and 

F~,.Fjz C Fob . 

This kind of condition appears in energy integrals and spectral selection rules 
and in the discussion of chemical reactions. 

4.9.3 Projection Operator 
The projection operator is one of the most useful concepts in the 

application of group theory to chemical problems [4-I, 4-2]. It is an operator 
which takes the non-symmetry-adapted basis of a representation and projects it 
along new directions in such a way that it belongs to a specific irreducible 
representation of the group. The projection operator is represented by/3 in the 
following form: 

/6i = (l/h) ~ xi(R).I~ 
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where h is the order of the group, i is an irreducible representation of the group, 
R is an operation of the group, x i ( R )  is the character of R in the ith irreducible 
representation, and/~ means the application of the symmetry operation R to our 
basis component. The summation extends over all operations of the group. 

Consider now the construction of the A~ symmetry group orbital of the 
hydrogen s atomic orbitals in ammonia as an example of the application of the 
projection operator. (The various kinds of orbitals will be discussed in detail in 
Chapter 6.) The projection operator for the A~ irreducible representation in the 
C3, ' point group is 

/3A, = (1/6) ~ XA~(R)']~ 

Applying this operator to the s orbital of one of the hydrogens (HI) of 
anamonia, we obtain 

tSA~S~ ~- I ' E ' s ~  + I ' C 3 " s  1 + l . C ~ . s l  + l-o-.s t + 1-0".s~ + l.cr"-s l 

= s~ + s 2 + s 3 + s~ + s 2 + s 3 ~- s~ + s 2 + s 3 

The expression is an approximation here since the numerical factor of ~ was 
omitted. The coefficient (the normalization factor) in the symmetry-adapted 
linear combinations can be determined at a later stage by normalization. In an 
actual calculation this is necessary, whereas here we arc interested only in the 
symmetry aspects, which are well represented by the relative values. In fact, 
the normalization factors will be ignored throughout our discussions. 

Application of the projection operator will also be demonstrated picto- 
rially in forthcoming chapters. These representations will emphasize the 
results of summation of symmetry-sensitive properties while the absolute 
magnitudes will not be treated rigorously. Thus, for example, the directions of 
vectors will be summed in describing vibrations, and the signs of the angular 
components of the electronic wave functions will be summed in describing the 
electronic structure. 

4.10 DYNAMIC PROPERTIES 

Molecular properties can be of either static or dynamic nature. A static 
property remains unchanged by every symmetry operation carried out on the 
molecule. The geometry of the nuclear arrangement in the molecule is such a 
property: a symmetry operation transforms the nuclear arrangement into 
another which will be indistinguishable from the initial.* The mass and the 
energy of a molecule are also static properties. 

*Unless, of course, identical atoms are distinguished by labels as, e.g.. in Figures 4-2 and 4-3. 
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Figure 4-20. Symmetric (a) and antisymmetric (b) consequencies of the "mirror operation" for 
two movements. Drawing courtesy of Gy6rgy Doczi, Seattle, Washington. 

Dynamic properties, on the other hand, may change under symmetry 
operations. Molecular motion itself is a most common dynamic property. In 
our previous discussions of molecular structure, the molecules were mostly 
assumed to be motionless, and only the symmetry of their nuclear arrangement 
was considered. However, real molecules are not motionless, and their chemi- 
cal behavior is influenced by their motion to a great extent. 

In order to appreciate the effects of symmetry operations on motion, an 
example from our macroscopic world is invoked here, following the idea of 
Orchin and Jaffe [4-14]. Suppose there exists a long wall of mirror, and one 
walks alongside this mirror (Figure 4-20a). Our mirror image will be walking 
with us with the same speed and in the same direction (its velocity will be the 
same as ours). If we walk now from a distance towards the mirror perpen- 
dicularly to it, our mirror image will have a different velocity from ours: the 
speed will be the same again, but the direction will be just the opposite. Both 
we and our mirror image will be walking toward the plane of the mirror, and if 
we do not stop in time, we shall collide in that plane (Figure 4-20b). 

The consequences of the mirror operation were different for the two 
movements. One was symmetric, and the other was antisymmetric. 

There are analogous phenomena for all kinds of molecular motion which 
may be symmetric and antisymmetric with respect to the various symmetry 
operations of the molecular point group. The two main kinds of motion in a 
molecule are nuclear and electronic. The nuclear motion may be translational, 
rotational, and vibrational (Chapter 5). The electronic motion is basically the 
changes in the electron density distribution (Chapter 6). 
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4.11 WHERE IS GROUP THEORY APPLIED? 

It is primarily the description of the dynamic properties that is facilitated 
by group-theoretical methods. This is in fact an understatement. The dynamic 
properties cannot be fully discussed without group theory. On the other hand, 
this theory need not be used to determine the point-group symmetry of the 
nuclear arrangement of a molecule, as has been shown before (cf. Figure 3-5). 

The first step in the symmetry determination of the dynamic properties is 
the selection of the appropriate basis. Appropriate here means the correct 
representation of the changes in the properties examined. In the investigation 
of molecular vibrations (Chapter 5), either Cartesian displacement vectors or 
internal coordinate vectors are used. In the description of the molecular 
electronic structure (Chapter 6), the angular components of the atomic orbitals 
are frequently used bases. Since the angular wave function changes its "sign" 
under certain symmetry operations, its behavior will be characteristic of the 
spatial symmetry of a particular orbital. Molecular orbitals can also be used as 
basis of representation. The simple scheme below shows some important areas 
in chemistry where group theory is indispensable, and the most convenient 
basis functions are also indicated: 

Area 

Construction of molecular orbitals 
Construction of hybrid orbitals 
Predicting the decrease of degeneracies 

of d orbitals under a ligand field 
Predicting the allowedness of chemical 

reactions 
Determining the number and symmetries 

of molecular vibrations 
Normal coordinate analysis (symmetry 

coordinates) 

Group theory is also used prior to calculations to determine whether a 
quantum-mechanical integral of the type f t~i@.Ojdr is different from zero or 
not. This is important in such areas as selection rules for electronic transi- 
tions, chemical reactions, infrared and Raman spectroscopy, and other spec- 
troscopies. 

Basis functions 

Atomic orbitals 
Position vectors pointing toward the ligands 
d Atomic orbitals 

Molecular orbitals 

Cartesian displacement vectors 

Internal coordinate displacements 

REFERENCES 

[4- I ] E A. Cotton, Chemical Applications of Group Theory, 3rd ed., Wileyolnterscience, New 
York (1990). 



206 Chapter 4 

[4-2} 

[4-3] 
[4-4] 

[4-5] 

[4-61 

[4-7] 

[4-8] 
[4-9] 

[4-10] 

[4-11] 
[4-12] 

[4-13] 
[4-14] 

A. Nussbaum, Applied Group Theory for Chemists, Physicists and Engineers, Prentice- 
Hall, Englewood Cliffs, New Jersey (1971). 
L. H. Hall, Group Theory and SymmetD' in ChemistD', McGraw-Hill, New York (1969). 
G. Burns, Introduction to Group Theory with Applications, Material Science Series 
(A. M. Alper and A. S. Nowich, eds.), Academic Press, New York (1977). 
A. Vincent, Molecular Symmetry and Group Theory: A Programmed Introduction to 
Chemical Applications, Wiley-Interscience, New York (1977). 
S. E A. Kettle, Symmeto' and Structure, John Wiley & Sons, Chichester, England 
(1985). 
B. E. Douglas and C. A. Hollingsworth, Symmetry in Bonding and Spectra: An 
Introduction, Academic Press, Orlando, Florida (1985). 
I. Hargittai and M. Hargittai, Math. lntell. 16(2), 60 (1994). 
A. L. Mackay, Acta Crystallogr. 10, 543 (1957). 
A, V. Shubnikov, Simmetriya i antisimmetriya konechnikhfigur, Izd. Akad. Nauk SSSR, 
Moscow (1951). 
A. Loeb, Color and Symmetry. Wiley-Interscience, New York (1971). 
A. Loeb, in Patterns of Symmeto, (M. Senechal and G~ Fleck, eds.), University of 
Massachusetts Press, Amherst (1977). 
M. Senechal, Acta Crystallogr., Sect. A 39, 505 (1983). 
M. Orchin and H. H. Jaffe, Symmetry, Orbitals, and Spectra (S.O.S.), Wiley- 
Interscience, New York (197l). 



Chapter 5 

Molecular Vibrations 

Vibration is a special kind of motion: the atoms of every molecule are 
constantly changing their relative positions at every temperature (even at 
absolute zero) without changing the position of the molecular center of mass. 
In terms of the molecular geometry, these vibrations amount to continuously 
changing bond lengths and bond angles. Symmetry considerations will be 
applied to the molecular vibrations in this chapter following primarily Refs. 
[5-1-5-3]. Our brief discussion is only an indication of yet another important 
application of symmetry considerations. The mentioned references and two 
other fundamental monographs [5-4, 5-5] on vibrational spectroscopy are 
suggested for further reading. Our primary concern will be to examine in 
simple terms the following question. What kind of information can be deduced 
about the internal motion of the molecule from the mere knowledge of its point- 
group symmetry? 

5.1 NORMAL MODES 

The seemingly random motion of molecular vibrations can always be 
decomposed into the sum of relatively simple components, called normal 
modes of vibration. Each of the normal modes is associated with a certain 
frequency. Thus, for a normal mode every atom of the molecule moves with the 
same frequency and in phase. Three characteristics of normal vibrations will 
be examined: their number, their symmetry, and their type. 

207 
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5.1.1 Their Number 

Since vibration is only one of the possible forms of motion, it has to be 
separated from the others, translation and rotation. Consider first a single atom. 
Its motion can be characterized by the three Cartesian coordinates of its 
instantaneous position as shown in Figure 5-1. In other words, the atom has 
three degrees of motional freedom. Consider next a diatomic molecule. It will 
have 2 × 3 = 6 degrees of freedom. We might think again that the three 
Cartesian coordinates of  each atom describe the motion of the molecule in 
space. However, this is not quite so. Since the two atoms are not independent 
from each other, they must move together in space. This means that three 
degrees of  freedom will account altogether for the translation of a diatomic 
molecule (see Figure 5 - 2 ) - - o r  of any polyatomic molecule, for that matter. 
Two other degrees of freedom describe the rotation of the diatomic molecule 
around the center of mass (see Figure 5-3a). The rotation around the z axis 
(Figure 5-3b) need not be considered as it is the axis of the molecule, and the 
rotation around it does not change the position of the molecule. 

Thus, of the six degrees of freedom, five have been accounted for. The 
sixth will describe the movement of  the two atoms relative to each other 
without changing the center of mass. This is the vibration of the molecule. 

The complete nuclear motion of an N-atomic molecule can be described 
with 3N parameters; that is, an N-atomic molecule has 3N degrees of freedom. 
The translation of a molecule can always be described by three parameters. The 
rotation of a diatomic or any linear molecule will be described by two 
parameters, and the rotation of a nonlinear molecule by three parameters. This 
means that there are always three translational and three (for linear molecules 

Z 

, ,~ ;~r~,  u " 
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F i g u r e  5-1. Three motional degrees of freedom of an atom. 
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Figure 5-2. The three transitional degrees of freedom of a diatomic molecule. 
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Figure 5-3. Rotation of a diatomic molecule. (a) Two rotational degrees of freedom describe the 
rotation of the molecule around the center of mass. (b) Rotation around the molecular axis does 
not change the position of the molecule. 
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two) rotational degrees of  freedom. The remaining 3N - 6 (for the linear case 
3N - 5) degrees of  freedom account for the vibrational motion of  the molecule. 
They give the number  of  normal vibrations. 

The translational and rotational degrees of  freedom, which do not change 
the relative positions of  the atoms in the molecule, are often called nongenuine 
modes. The remaining 3N - 6 (or 3N - 5) degrees of  freedom are called 
genuine vibrations or genuine modes. 

5.1.2 Their Symmetry 

The close relationship between symmetry  and vibration is expressed by 
the following rule: Each normal mode of vibration forms a basis for an 
irreducible representation of the point group of the molecule. 

Let us use the water molecule to illustrate the above statement. The 
normal modes of  this molecule are shown in Figure 5-4. The point group is C2,,, 
and the character table is given in Table 5-1. It is seen that all operations bring 
vl and v~ into themselves so their characters will be: 

F~,, 1 1 1 1 

F~, 2 1 l 1 1 

The behavior of  the third normal mode,  v 3, is different. While E and ~r~. leave it 
unchanged,  both C 2 and o-,. bring it into its negative self: each atom moves in 
the opposite direction after the operation. This means that v 3 is antisymmetric 
to these operations. The characters are: 

F~,~ 1 - 1 - 1 i 

Looking at the C2~. character table, we can say that v~ and v 2 belong to the totally 
symmetric  irreducible representation A 1 and v 3 belongs to B 2. 

It was easy to determine the symmetry  of  the normal modes of  the water 
molecule because we already knew their forms. Can the symmetry  of  the 

~ '/2 1'3 

Figure 5-4. Normal modes of vibration for the water molecule. The lengths of the arrows 
indicate the relative displacements of the atoms. 
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Table 5-1. The C2~ Character Table 

C2~, E C 2 ~r~,(xz) tr~,%'z) 

~1 1 1 1 l = x 2, y2 ,  z '  

4 2 1 1 - 1 - 1 R .  x y  

//~ 1 - 1  I - 1  x ,  R~. x=  

/3 2 1 - I  - 1 1 y ,  R~ y z  

normal modes of a molecule be determined without any previous knowledge of 
the actual forms of the normal modes? The answer is fortunately yes. From the 
symmetry group of the molecule the symmetry species of the normal modes 
can be determined without any additional information. 

First, an appropriate basis set has to be found. Considering that a mole- 
cule has 3N degrees of motional freedom, a system of 3N so-called C a r t e s i a n  
d i s p l a c e m e n t  v e c t o r s  is a convenient choice. A set of such vectors is shown in 
Figure 5-5 for the water molecule. A separate Cartesian coordinate system is 
attached to each atom of the molecule, with the atoms at the origin. The 
orientation of the axes is the same in each system. Any displacement of the 
atoms can be expressed by a vector, and in turn this vector can be expressed as 
the vector sum of the Cartesian displacement vectors. 

Next, the set of Cartesian displacement vectors is used as a basis for the 
representation of the point group. As discussed in Chapter 4, the vectors 
connected with atoms that change their position during an operation will not 
contribute to the character and thus can be ignored. 

Continuing with the water molecule as an example, the basis of the 
Cartesian displacement vectors will consist of nine vectors (see Figure 5-5). 
Operation E brings all of  them into themselves, and the character is 9. 
Operation C 2 changes the position of the two hydrogen atoms, so only the three 
coordinates of  the oxygen atom have to be considered. The corresponding 
block of the matrix representation is 

Figure 5-5. Cartesian displacement vectors as basis for representation of the water molecule. 
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C2 

X2 Y2 z2 

x2 - 1 0 0 

= Y2 - 1  
t x 2 0 

The character is ( - 1 )  + ( - 1 )  + 1 = - 1 .  
The next operation is o'~. Again,  only the oxygen coordinates have to be 

considered. Reflection through the x z  plane leaves x 2 and z z unchanged and 
brings Y2 into -Y2'  The character is 1 + 1 + ( - 1 )  = 1. 

Finally, operation tr'~ leaves all three atoms in their place, so all the nine 
coordinates have to be taken into account. Reflection through the y z  plane 
leaves all y and z coordinates unchanged and takes all x coordinates into their 
negative selves. The character will be ( -  1) + 1 + 1 + ( -  1) + 1 + 1 + ( -  1) + 1 
+ 1 = 3 .  

The representation is 

I~tot 9 - 1 1 3 

This is, of  course, a reducible representation. Reduce it now with the reduction 
formula (see Chapter 4): 

a,~ t = (1/4)[1"9"1 + 1 . ( -1) .1  + 1.1"1 + 1-3-1] 
= ( 1 / 4 ) ( 9 -  I + 1 + 3) = 3 

aa2 = (1/4)[1"9"1 + 1-(-1) .1 + 1-1"(-1) + 1"3-(-1)]  
= ( 1 / 4 ) ( 9 -  1 - 1 - 3) = 1 

as, = (1/4)[1"9.1 + 1 - ( - 1 ) . ( - 1 )  + 1.1.1 + 1 .3 . ( -1 ) ]  
= (1/4)(9 + 1 + 1 - 3) = 2 

aBz = (1/4) [1.9"1 + 1 - ( - 1 ) . ( - 1 )  + 1 .1 . ( -1)  + 1.3.1] 
= (1/4) (9 + 1 - 1 + 3) = 3 

The representation reduces to 

1?'to t = 3A~ + A 2 + 2B~ + 3B 2 

These nine irreducible representations correspond to the nine motional degrees 
of  freedom of  the triatomic water molecule. To obtain the symmetry  of  the 
genuine vibrations, the irreducible representations o f  the translational and 
rotational motion have to be separated. This can be done using some considera- 
tions described in Chapter 4. The translational motion always belongs to those 
irreducible representations where the three coordinates, x, y, and z, belong. 
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Rotations belong to the irreducible representations of the point group indicated 
by R x, Ry, and R z in the third area of the character tables. In the C2v point group, 

Ftran = A l  + B~ + B 2 

and 

Fro t = A 2 + B 1 + B 2 

Subtracting these from the representation of the total motion, we get 

Fro t = 3A l + A 2 + 2B 1 q- 3B 2 

-(Ftran = A l + B~ + B2) 

-(['rot = A2 + B~ + B2) 

Fvi b = 2A l + B 2 

Thus, of the three normal modes of water, two will have A~ and one will have B 2 
symmetry. Let us stress again: this information could be derived purely from 
the molecular point-group symmetry. 

5.1.3 Their Types 

The normal modes can usually--though not a lways--be associated with 
a certain kind of motion. Those connected mainly with changes in bond lengths 
are the stretching modes. The ones connected mainly with changes of bond angles 
are the deformation modes. These may be mainly either in-plane or out-of-plane 
deformation modes. The simplest deformation mode is the bending mode. 

Examine now the symmetries of these different types of vibration. For this 
purpose, a new type of basis set is used. Since we are interested in the changes 
of the geometrical parameters, these changes are an obvious choice for basis set. 
The geometrical parameters are also called internal coordinates, and the basis is 
the displacement of these internal coordinates. 

Let us continue with the water molecule and determine the symmetry of its 
stretching modes. The molecule has two O-H bonds, so the basis will be the 
changes of these O-H bonds. The representation of this basis set is 

F~t ~ 2 0 0 2 

and with inspection of the C2~ character table we see that it reduces to A t + B2. 
This means that the stretching of the O-H bonds contributes to the normal 
modes of A~ and B2 symmetry. (We shall later see that these are the symmetric and 
antisymmetric stretches, respectively.) 
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The third internal coordinate which can be considered in the water molecule 
is the bond angle, H-O-H.  Its change will be the bending mode. All symmetry 
operations leave this basis unchanged, so the representation is 

Fb~,~ d 1 1 1 1 

and it belongs to the totally symmetric representation, A v What can we conclude? 
B 2 appears only in the stretching mode, so the B 2 normal mode will be a pure 
stretching mode. The A 1 symmetry mode, however, appears in both the stretching 
and the bending mode. At this point we cannot say whether one of the A~ normal 
modes will be purely stretch and the other purely bend or they will be a mixture. 
This depends on the energy of these vibrations. If they are energetically close, they 
can mix extensively. If they are separated by a large energy difference, they will 
not mix. In the case of H20, for example, the two A~ symmetry modes are quite 
well separated, while in C120 they are completely mixed. 

Modes of different symmetry never mix, even if they are close in energy. 
(This is a general rule which will have its analogous version for the transitions 
among electronic states as will be seen later in Chapters 6 and 7,) 

The above analysis of the types of normal modes brings us to the limit where 
simple symmetry considerations can take us. Nothing yet has been said about the 
pictorial manifestation of the various normal modes. Above we deduced, for 
example, that the B 2 normal mode of the water molecule is a pure stretch. The 
question may also be asked, how does it look'? This question can be answered with 
the help of symmeto' coordinates. 

5.2 SYMMETRY COORDINATES 

The symmetry coordinates are symmetry-adapted linear combinations of 
the internal coordinates. They always transform as one or another irreducible 
representation of the molecular point group. 

Symmetry coordinates can be generated from the internal coordinates by 
the use of the projection operator introduced in Chapter 4. Both the symmetry 
coordinates and the normal modes of vibration belong to an irreducible 
representation of the point group of the molecule. A symmetry coordinate is 
always associated with one or another type of internal coordinate--that is, pure 
stretch, pure bend, e tc . - -whereas  a normal mode can be a mixture of different 
internal coordinate changes of the same symmetry. In some cases, as in H20, 
the symmetry coordinates are good representations of the normal vibrations. In 
other cases, they are not. An example of such a case is Au2C16 [5-1], where the 
pure symmetry coordinate vibrations would be close in energy, so the real 
normal vibrations are mixtures of the different vibrations of the same symme- 
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try type. The relationship between the symmetry coordinates and the normal 
vibrations can be established only by calculations called normal coordinate 
analysis [5-5, 5-6]. These calculations necessitate further data in addition to 
the knowledge of molecular symmetry and are not pursued here. 

Return now to the symmetry coordinates of the water molecule. They can 
be generated using the projection operator. As has been mentioned before, here 
we are interested only in the symmetry aspects of the symmetry coordinates. 
Thus, the numerical factors are omitted, and normalization is not considered. 
First, let us work out the symmetry coordinate involving the stretching 
vibrations: 

A~ ~ ' ~  B z 

~ 1E 1E ~ 
,~1 m,, 

~ , ~  _ 1Cz -1Cz= ~ 

~ 1¢r -l~r ~ 
~.~ _-- 

~ -- lo" 10" ~- ~ 

vector sum 

Figure 5-6. Generation of the symmetry coordinates representing bond stretching fi~r H20. 
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}SAfAri ~- 1 .E.Art  + I .C2.Arl  + l . t r .Ar t  + l .cr ' .Art  

= Ar, + Ar  2 + Ar2 + Ar  t ~ A r  t + Ar~ 

tS~2Ar~ ~- 1.E.Ar~ + ( - I ) . C 2 . A r  ~ + (--1).~r.Ar 1 + l.~r'.Ar~ 

= A r  t -- Ar 2 -- Ar 2 + Ar t = Ar t - Ar 2 

The same procedure is presented pictorially in Figure 5-6. The bending 
mode of the water molecule stands alone (see the v 2 mode in Figure 5-4), so it 
will be a symmetry coordinate by itself. 

Since the symmetry coordinates of water are good approximations of  the 
normal vibrations, the pictorial representations are applicable to them as well. 
Indeed, the three normal modes of Figure 5-4 are the same as the symmetry 
coordinates we just derived. The A~ symmetry stretching mode is called the 
symmetric stretch while the B 2 mode is the antisymmetric stretch. 

5.3 SELECTION RULES 

The vibrational wave function, as any wave function, must form a basis 
for an irreducible representation of the molecular point group [5-2]. 

The total vibrational wave function, 0v, can be written as the product of 
the wave functions Oi(ni), where Oi is the wave function of the ith normal 
vibration (i = 1 through rn) in the nth state: 

d:v = Ol(nl).O2(n2).O3(n3)...~bm(nm) 

In general, at any time, each of the normal modes may be in any state. There is, 
however, a situation when all the normal modes are in their ground states and 
only one of them gets excited into the first excited state. Such a transition is 
called a f u n d a m e n t a l  transit ion.  The intensity of the fundamental transitions is 
much higher than the intensity of the other kinds of transitions.* Therefore, 
these are of particular interest. 

The vibrational wave function of the ground state belongs to the totally 
symmetric irreducible representation of the point group of the molecule [5-2]. 
The wave function of the first excited state will belong to the irreducible 
representation to which the normal mode undergoing the particular transition 
belongs. 

A fundamental transition will occur only if one of the following integrals 
has nonzero value: 

"Were the vibrations strictly harmonic, only fundamental transitions would he observable. 
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Here, t0v ° is the total vibrational wave function for the ground state, t~iv is the 
total vibrational wave function for the first excited state referring to the ith 
normal mode, and x, y, and z are Cartesian coordinates. 

The condition for an integral of  product functions to have a nonzero value 
was given in Chapter 4. For the vibrational transitions this condition can be 
expressed in the following way: 

F,~0-F,~ C F~ or F,~o.F,~ C Fy or F,~.F,~. c F~ 

The considerations on the symmetries of the ground and excited states and the 
above conditions lead to the selection rule for infrared spectroscopy: A fundamen- 
tal vibration will be infrared active if  the corresponding normal mode belongs to 
the same irreducible representation as one or more of the Cartesian coordinates. 

The selection rule for Raman spectroscopy can also be derived by similar 
reasoning. It says: A fundamental vibration will be Raman active if the normal 
mode undergoing the vibration belongs to the same irreducible representation as 
one or more of the components of  the polarizability tensor of the molecule. These 
components are the quadratic functions of the Cartesian coordinates given in the 
fourth area of the character tables. The Cartesian coordinates themselves are given 
in the third area. Thus, the symmetry of the normal modes of a molecule is 
sufficient information to tell what transitions will be infrared active and what 
transitions will be Raman active. The normal modes of the water molecule belong 
to the A l and the B 2 irreducible representation of the C2v point group. By using 
merely the C2,, character table, it can be deduced that all three vibrational modes 
will be active in both the infrared and Raman spectra. 

Since a particular normal mode may belong to different symmetry species in 
different point groups, its behavior depends strongly on the molecular symmetry. 
Just to mention one example, the v I symmetric stretching mode of an AX 3 
molecule is not infrared active if the molecule is planar (D3h). It is infrared active, 
however, if the molecule is pyramidal (C3v). Vibrational spectroscopy is obviously 
one of the best experimental tools to determine the symmetry of molecules. 

5.4 EXAMPLES 

The utilization of symmetry rules in the description of molecular vibra- 
tions will be further illustrated by a few examples. 



218 Chapter 5 

Diimide, H N N H .  This molecule belongs to the C2h point group (see 
Figure 4-7). The number of atoms is 4, so the number of normal vibrations is (3 
× 4 ) - 6 = 6 .  

Our first task is to generate the representation of the Cartesian displace- 
ment vectors of the four atoms of the molecule (see Figure 4-8a-c). As was 
shown in Chapter 4 (Section 4.7), the representation is 

Fto t 12 0 0 4 

The reduction of this representation is also given in Chapter 4 (see p. 200). 
The result is 

['tot = 4Ag + 2Bg + 2A u + 4B.  

These 12 irreducible representations account for the 12 degrees of mo- 
tional freedom of HNNH. Subtracting the irreducible representations corre- 
sponding to the translation and rotation of the molecule (see C2h character 
table, Table 5-2) leaves us the symmetry species of the normal modes of 
vibration: 

['tot = 4Ag + 2B e + 2A, + 4B . 

--([`tran = A u  + 2 B u )  

-(]Prot = A g  + 2 B g  ) 

Fvi b = 3Ag + A u + 2B u 

Table 5-2. The C2h Character Table 
and the Representations of the Internal 

Coordinates of Diimide 

C2h E C 2 i ~ 

Ag l 1 l 
Bg I - 1  1 - I  
A= I 1 - I  - I  
B u 1 - 1  - 1  1 

I~NH 
FNS 
FNNu 
I'HNNH a 

2 0 0 2 
1 1 1 1 
2 0 0 2 
1 1 - 1  --! 

1 R: 
R,, Ry 
z 

.r., y 

= A~ + B,, 
= A g  

= Ag + B u 
= A u 

x 2, y2, z:, xy 
X2, ya 

"Out-of- ~lane deformation mode. 
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Next we will see what kind of internal coordinate changes can account for 
each of these normal modes. There will have to be two N-H stretching modes 
and one N-N stretching mode. For deformation modes the two N - N - H  angle 
bending modes are obvious choices, and they will be in-plane deformation 
modes. These constitute five normal vibrations so one is left to be accounted 
for. In deciding the nature of this normal mode, inspection of the character 
table may help. Of the above three different kinds of irreducible representa- 
tions, Ag and B, are symmetric with respect to ~r h so they must be vibrations 
within the molecular plane. The five vibrational modes suggested above then 
account for 3Ag + 2B,. The remaining A, normal mode, however, is antisym- 
metric with respect to cr h, so it must involve out-of-plane motion. Conse- 
quently, this normal mode will be an out-of-plane deformation mode. 

We will work out next the representations of the internal coordinates. The 
representation of the two N-H distance changes has been given in Chapter 4 
(Section 4.3). This and the other representations are all shown in Table 5-2, 
together with the C~h character table. The FNr t representation has been reduced 
to A s + B, in Chapter 4 (Section 4.8). The reduction of the I-'NN H representation 
is the same. Both the N-N stretching and the out-of-plane deformation are 
already irreducible representations by themselves. Since Ag occurs three times, 
we cannot tell without calculation whether there will be three pure Ag modes, 
onc N-H stretch, one N-N stretch, and one N - N - H  bend, or each of the three 
Ae modes will be a mixture of these three vibrations. Similarly, there are two B,, 
symmetry normal vibrations, and they will be either pure N-H antisymmetric 
stretching and N - N - H  bending modes or their mixtures. The only unam- 
biguous assignment is that the A u symmetry normal mode will be the out-of- 
plane deformation mode. 

Let us generate the symmetry coordinates of HNNH by means of thc 
projection operator (a is the N - N - H  angle): 

tSA~Arl .~ 1 .E.Ar l  + 

= A r  I + Ar  2 

~B ,Ar  I ~- 1.E.Ar~ + 

= Ar~ -- Ar 2 

I 'C2"Ar  ~ + 1 . i .Ar  I + 1.6ra-Ar ~ 
+ A r  2 + Ar~ ~. Ar~ + Ar  2 

(-1).C~.Ar~ + (- l ) . i .Ar~ + 1-~r~.Ar I 
-- Ar 2 + Ar~ ~ Ar~ - Ar 2 

~A,+Aot t ~ I.E.Ao~ t + 1.C2.Aot I -ff 1.i.Aeq + l -oh 'A~ t 

= ~RI + ~ 2  + ~ 2  + ~a l  ~ ~ 1  + ~R2 
~ , , & a ~  l'E'&a~ + (--1)'C2"&R 1 + ( - } ) ' i ' & ~ l  + i 'ffh'&~l 

= ~ a ~  - ~ a  2 -  ~ a  2 + ~ a ~ a ~  - ~ a  2 

The same procedure is depicted in Figure 5-7. The forms of the symmetry 
coordinates of HNNH are shown in Figure 5-8. They might approximate well 
the normal modes of the molecule, and again, they might not. 
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Ag 

1E 

B u  

1E 

-1C2 ~, ~ 

-li ; ~ 

l<x~_ 
- ~ 

~ __1~ 

~ li 

~ 1~ 

Ag 

vector sum ~ 

~ 1E 1E ~ ~ __-~ 

~ 1~ 1~ ~ 

vector sum 

Figure 5-7. Generation of some symmetry coordinates of HNNH. (a) Symmetry coordinates 
corresponding to N-H bond stretches; (b) symmetry coordinates representing in-plane defor- 
mation. 



Molecular Vibrations 221 

Figure 5-8 .  S y m m e t r y  coo rd ina t e s  for  the H N N H  molecu le .  

Finally, let us decide which normal modes will be infrared active and 
which ones will be Raman active. The Cartesian coordinates belong to the A, 
and the B u irreducible representation of the C2h point group, while their binary 
products belong to Ag and Bg. Consequently, the selection rules are: 

Infrared active: A u, B, 
Raman active: Ag 

This means that the A symmetry stretching modes and the A symmetry g g . 
bending mode will be Raman active, while the B, symmetry stretching and 
bending modes will be infrared active. Similarly, the A~ symmetry out-of- 
plane deformation mode will be infrared active. 

Carbon Dioxide, CO 2. The molecule is linear and belongs to the D~h 
point group. The number of atoms is 3, so the number of normal vibrations is 
(3 × 3) - 5 = 4. The set of Cartesian displacement vectors as basis for a 
representation is shown in Figure 5-9. The symmetry operations of the point 
group are also shown. The D~h character table is given in Table 5-3. Recall 
(Chapter 4) that the matrix of rotation by an angle • is 

C • ~ 
cos • sin ~]  

| 
- s in  q~ cos ~J 

The rotation by an arbitrary angle ~b will leave the three z coordinates 
unchanged and will mix the x and y coordinates according to the above 
expression. The following matrix represents the C '~ rotation:* 

*In the matr ix ,  cos is abbreviated as c,  and sin as s. 
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~ 2 

i 
J 

I 

Y 

~ - -  ~ 

c~ ---,~ ...... 

C ~ , S ~  

Figure  5-9. Cartesian displacement vectors of  CO 2. 

x; 
yl 
~ t  

"1 

X 2 

J 
Y2 

z 2 
t 

x 3 

y, 
3 

x~ y~ z~ x2 Y2 z2 x3 Y3 z3 

c ~  s~  0 0 0 0 0 0 0 

- s ~  c ~  0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 c ~  s@ 0 0 0 0 

0 0 0 - s@ c ~  0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 c ~  s~  0 

0 0 0 0 0 0 - s ~  c ~  0 

0 0 0 0 0 0 0 0 1 

The character will be 3 + 6 cos ~b. The other relatively complicated operation 
is the mirror rotation by an arbitrary angle, S ~'. This operation means a rotation 
around the z axis by angle qb, followed by reflection through the xy plane. This 
reflection interchanges the positions of the two oxygen atoms so they need not 
be considered. The block matrix of the S '~ operation will be: 

x 2 

Y2 
¢ 

z 2 

x2 Y2 z2 

cosqb sinqb 0 / 

:l -sinqb c o s ~  

0 0 - 

The character is - ! + 2cos qb. 
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T a b l e  5-3 ,  T h e  D~h C h a r a c t e r  Table  

9.~ E 2C'~ . . . ~c~,. i ~ . . , :~C: 

'~g 

1 1 

1 1 

2 2c qb" 

2 2c2qb 

. . . . .  

I 1 

1 I 

2 2cqb 

2 2c2qb 

1 I 1 

- 1  1 I 

0 2 - 2cqb 

0 2 2c2qb 

1 - 1  - 1  

- I  - 1  - 1  

0 - 2  2cq b 

0 - 2  - 2c2qb 

• . . 1 

. . .  - 1  R .  

• . . 0 (R~,  R 0 

• • , - - |  Z 

• . . 0 ( x ,  y )  

"c stands for cos. 

x 2, y2, Z2 

(xz, yz) 
(x 2 _ y2, ,~,) 

Omitting the details of  the determination of  the remaining characters, the 
representation o f  the Cartesian displacement vectors is 

l~tot 9 3 + 6 cos • 3 - 3 - 1 + 2 cos • - 1 

Subtract the characters of  the translational and rotational representations. 
Remember  that CO 2 is linear and the rotation around the molecular axis need 
not be taken into account. 

Fro t = 9 3 + 6 c o s ~  3 - 3  - 1  + 2 c o s ~  - 1  

-(Ftran = 3 1 + 2 c o s ~  1 - 3  - 1  + 2cosd~ - 1 )  

- ( F r o  t = 2 2cos • 0 2 - 2cos • 0) 

Fvi b = 4 2 + 2cos • 2 - 2  2cos qb 0 

The reduction formula cannot be applied to the infinite point groups 
(Chapter 4). Here inspection o f  the character table may help. Since 2cos d~ at 
S~ appears with the I I  u irreducible representation, it is worth a try to subtract 
this one from l~vib: 

Fvi b = 4 2 + 2cos • 2 - 2  2cos ~ 0 

- ( F n ,  = 2 2 c o s ~  0 - 2  2cosqb 0) 

2 2 2 0 0 0 

This representation can be resolved as the sum of  Zg and ~ , :  
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~ = 1 1 1 1 1 1 

5~. = 1 1 1 - 1  - 1  - 1  

~ + Y~ = 2 2 2 0 0 0 

Thus, the normal modes of the CO 2 molecule will be 

F~i b = ~;e + £ .  + II .  

Since I1~ is a degenerate vibration, it counts as two, and so we indeed have the 
four necessary normal vibrations. 

The obvious choice for the three internal coordinate changes is the 
stretching of the two C=O bonds and the bending of the O=C=O angle. Using 
these as bases for representations, we can build up the symmetry coordinates. 

Fst r 2 2 2 0 0 0 

We have already seen before that this representation reduces as ~g + ~. .  
The I-1 u normal mode will correspond to the bending vibration. 

Since each of the three symmetry species, 2; s, ~ ,  and I1. appears only 
once, the symmetry coordinates will be good representations of the normal 
modes. There is no possibility for mixing. Figure 5-10 shows the forms of the 
normal vibrations of the CO 2 molecule. The two bending modes are degener- 
ate; they are of equal energy. 

Finally, apply the vibrational selection rules to CO 2 

Infrared active: ~ . ,  II .  
Raman active: ~g 

Accordingly, the symmetric stretch C=O normal mode should appear in 
the Raman spectrum, while the antisymmetric stretch and the degenerate 
bending modes are expected to appear in the infrared spectrum. 

A A A 
_ A A A ~ ~ I V  ~ ~ s 

~ ~ , ~ ,  - ~ 

+ - ÷ 

1~ 1 v~ va 

Figure 5-10. Normal modes of vibration of the CO 2 molecule, 
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Chapter 6 

Electronic Structure 

of Atoms and Molecules 

Everything that counts in chemistry is related to the electronic structure of 
atoms and molecules. The formation of molecules from atoms, their behavior, 
and their reactivity all depend on electronic structure. What is the role of 
symmetry in all this? In regard to various aspects of the electronic structure, 
symmetry can tell us a good deal; why certain bonds can form and others cannot, 
why certain electronic transitions are allowed and others are not, and why cer- 
tain chemical reactions occur and others do not. Our discussion of these points 
is based primarily on some monographs listed in the references [6-1-6-7]. 

To describe the electronic structure, the electronic wave function t~(x, y, z, t) 
is used. As indicated, + depends, in general, on both space and time. Here, how- 
ever, only the spatial dependence will be considered, +(x, y, z). For detailed 
discussions of the nature of the electronic wave function, we refer to texts on 
the principles of quantum mechanics [6-1-6-3]. For a one-electron system the 
physical meaning of the electronic wave function is expressed by the product of 
+ with its complex conjugate ~*. The product ~*-~ dr gives the probability of 
finding an electron in the volume d-r = d x d y d z  about the point (x, y, z). 

A many-electron system is described by a similar but multivariable wave 
function: 

~/(XI' Yl, -~1 . . . . .  Xi' Yi' Zi . . . . .  Xn' Y,,' zn) 

The product O*'O d'r gives the probability of finding the first electron in d'r l, 
about the point (x~, y~, z~), and the ith electron in d'r i, about the point (x i, Yi, zi), 
all at the same time. 

227 
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The symmetry properties of the electronic wave function and the energy 
of the system are two determining factors in chemical behavior. The relation- 
ship between the wave function characterizing the behavior of the electrons and 
the energy of the system--atoms and molecules--is expressed by the Schr6- 
dinger equation. In its general and time-independent form, it is usually written 
as follows: 

/-~t~ = Et~ (6-1) 

where/-~ is the Hamiltonian operator, and E is the energy of the system. 
The Hamiltonian operator is an energy operator, which includes both 

kinetic and potential energy terms for all particles of the system. In our discus- 
sion, only its symmetry behavior will be considered. With respect to the inter- 
change of like particles (either nuclei or electrons), the Hamiltonian must be 
unchanged under a symmetry operation. A symmetry operation carries the sys- 
tem into an equivalent configuration, which is indistinguishable from the 
original. However, if nothing changes with the system, its energy must be the 
same before and after the symmetry operation. Thus, the Hamiltonian of a 
molecule is invariant to any symmetry operation of the point group of the 
molecule. This means that it belongs to the totally symmetric representation of 
the molecular point group. 

A fundamental property of the wave function is that it can be used as basis 
for irreducible representations of the point group of a molecule [6-4]. This 
property establishes the connection between the symmetry of a molecule and 
its wave function. The preceding statement follows from Wigner's theorem 
which says that all eigenfunctions of a molecular system belong to one of the 
symmetry species of the group [6-8]. 

In the expression of the energy of a system the following type of integral 
appears: 

Depending on the problem, t~i and ~b.~ may be atomic orbitals used to 
construct molecular orbitals, or they may represent two different electronic 
states of the same atom or molecule, etc. The energy, then, expresses the extent 
of interaction between the two wave functions ~i and ~j. As was shown in 
Chapter 4, an integral will have a nonzero value only if the integrand is 
invariant to the symmetry operations of the point group, i.e., belongs to the 
totally symmetric irreducible representation. 

The above energy integral contains the/~ operator, which always belongs 
to the totally symmetric irreducible representation. Therefore, the symmetry 
of the whole integrand depends on the direct product of ~i and q~j. As was also 
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shown in Chapter 4, the direct product of the representations of 0i and 0j 
belongs to, or contains, the totally symmetric irreducible representation only if 
Oi and Oj belong to the same irreducible representation. Consequently, the 
energy integral will be nonzero only if ~b i and qJj belong to the same irreducible 
representation of the molecular point group. 

6.1 ONE-ELECTRON WAVE FUNCTION 

Before discussing many-electron systems, the hydrogen atom (a one- 
electron system) will be described. This is essentially the only atomic system 
for which an exact solution of the wave function is available. The spherical 
symmetry of the hydrogen atom makes it convenient to express the wave 
function in a polar coordinate system. Such a system is shown in Figure 6-1 
with the proton at the origin. Ignoring the translational motion of the hydrogen 
atom, the Schr6dinger equation can be simplified as follows [6-5]: 

~et~ = E ~  (6-2) 

where/~e depends only on the coordinates of the electron. 
The electronic wave function can be represented as a product of a radial 

and an angular component: 

~b e = R(r).A(O, ¢b) (6-3) 

The radial wave function R(r) depends on two quantum numbers, n and l. 
The principal quantum number, n, determines the electron shell. The numbers 

protor~ 

~ l e c ~ r o n  

~ ', ~ / r  !~cose 
• ~1 

~ ' " - ~ , ' ; ' ~ i ~ o ~  ~~i'- ~'" 

Figure 6-1. The relationship between Cartesian coordinates and spherical polar coordinates, 
illustrated for the hydrogen atom with the proton at the origin. 
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n = 1, 2, 3, 4 . . . .  correspond to the shells K, L, M, N, respectively. For the 
hydrogen atom, n completely determines the energy of the shell, which is 
inversely proportional to n 2. Since this energy is negative, E is smallest for the 
first (K) shell and increases with increasing n. The azimuthal quantum number, 

l, is associated with the total angular momentum of the electron and determines 
the shape of the orbitals. It may have integral values from 0 to n - 1. The 
s, p,  d , f , . . ,  orbitals correspond to the azimuthal quantum numbers l = 0, 1, 
2, 3 . . . . .  respectively. 

The angular wave function A(O, ~ )  depends also on two quantum 
numbers, I and m r The magnetic quantum number, m t, is associated with the 
component of angular momentum along a specific axis in the atom. Since the 
hydrogen atom is spherically symmetrical, it is not possible to define a specific 
axis until the atom is placed in an external electric or magnetic field. This also 
means that the quantum number m r has no effect on the energy and shape of the 
wave function of the hydrogen atom in the absence of such an external field. 
Generally, m t may have values -1,  - I  + 1 . . . . .  0 . . . . .  1 - !, l, altogether 
21 + 1 of them, and the orbitals are subdivided accordingly. 

Usually, we refer to the energy of an orbital while what is really meant is 
the energy of an electron in that orbital. It was mentioned earlier that only the 
principal quantum number n influences the orbital energy in the hydrogen 
atom. This means that while ls and 2s orbitals have different energies, the 2s 
and all three 2p orbitals have the same energy; i.e., these four n = 2 orbitals are 
degenerate in the hydrogen atom. 

In many-electron atoms the value of l also influences the energy of the 
orbitals; thus, the 2s and 2p orbitals, or the 3s, 3p, and 3d orbitals, will no 
longer be degenerate. However, there are always three p orbitals and five d 
orbitals in each shell, and they differ only in the quantum number mt and will be 
degenerate. As there are 21 + 1 values ofm t for an orbital with quantum number 
l, the p orbitals (l = 1) will always be threefold degenerate while the d orbitals 
(! = 2) will always be fivefold degenerate. 

Harris and Bertolucci [6-5] illustrated the relationship between symmetry 
and degeneracy of energy levels with a simple and attractive example. There 
are three parallelepipeds in Figure 6-2. Each of them has six stable resting 
positions. The potential energy of these positions depends on the height of the 
center of the mass above the supporting surface. This height, in turn, is 
determined by the choice of face on which the body rests. Three different 
positions are possible for the first parallelepiped (1) according to its three 
different kinds of faces. The potential energy of 1 will be largest when it stands 
on an ab face, since its center of mass is then at the highest possible position. 
There are only two energetically different positions for 2 since its center of 
mass is at the same height when it rests on face bc or on face ac. Parallelepiped 
3 is indeed a cube, and all possible positions will be energetically equivalent. 
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Figure 6-2. Illustration of the interrelation of symmetry and degeneracy, after Ref. [6-5]. Used 
with permission. See text for details, 

Looking at the degeneracy of the most stable (lowest energy) position, it is 
twofold for 1, fourfold for 2, and sixfold for the cube. Thus, with increasing 
symmetry, the degree of degeneracy increases. The connection between 
symmetry and degeneracy is strikingly obvious. The greater the degree of 
symmetry, the smaller will be the number of different energy levels and the 
greater will be the degeneracy of these levels. 

This correlation between symmetry and degeneracy of energy levels is 
fundamental to understanding the electronic structure of  atoms and molecules. 
This relationship is valid not only when increasing symmetry renders the 
energy levels degenerate but also when energy levels are split as molecular 
symmetry decreases. 

Let us now return to the wave function description of electronic structure. 
The separation of the wave function into two parts is convenient since these two 
parts relate to different properties. The radial part determines the energy of the 
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system and is invariant to symmetry operations. The square of the radial 
function is related to probability. If we fix the angular variables, O and alp, they 
define a direction from the nucleus. Then the square of the radial function is 
proportional to the probability of finding the electron in a volume element 
along this direction. In order to determine the probability of finding the 
electron anywhere in a spherical shell surrounding the nucleus at a distance r 
from the nucleus, integration over both angular variables must be performed. 
The result is the radial distribution function. 

Consider now the angular part of the one-electron wave function. It says 
nothing about the energy of the system, but it can be altered by symmetry 
operations. Therefore, we shall be dealing with this function in greater detail. 
The function A(O, ~ )  may have different signs (+  and - )  in different spatial 
regions. A change in sign indicates a drastic change in the wave function. 
These signs might be thought of as signs of the amplitudes of the wave 
function; they certainly have nothing to do with electric charges. The places 
where the wave function changes sign are called nodes. The number of nodes 
is n - I, where n is the principal quantum number. Again, the squared function 
has physical significance; it is positive everywhere. The probability of finding 
an electron at a node is zero. However, as one proceeds in either direction from 
the nodes, the squared wave function has equal values relating to equal 
probabilities; to wit, the probability of finding the electron on the "positive" 
or on the "negative" side of the wave function is equal. 

It usually helps to visualize and understand a problem in a pictorial way. 
However, since the wave function depends upon three variables, it can be 
represented only in four dimensions. To overcome this problem, symbolic 
representations are used to emphasize various properties of the wave function. 

The angular wave function, A(O, ~), is shown for the H ls and 2pz orbitals 
in Figure 6-3a. The H ls orbital is positive everywhere, but the 2pz orbital has 
one node, through which it changes sign. The A2(O, qb) function is shown for 

i:~,~:~:~ ~;~:~:: 
:"~! .~:: 

a b c 

Figure 6-3. Representations of the hydrogen ls and 2pz orbitals: (a) Plot of the angular wave 
function, A(O, d~); (b) plot of the squared angular wave function, A2(O, @); (c) cross section of 
the squared total wave function, 0 2, representing the electron density. Reprinted from Ref. [6-6] 
by permission of Thomas H. Lowry. 
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the same orbitals in Figure 6-3b. For both orbitals, the shape of this function is 
similar to the shape of the A(O, qb) function, but this function is positive 
everywhere. It represents the region in space where the electron can be found 
with a large probability (usually 90% or more). The boundary surface of this 
space is determined by the square of the angular function. The squared angular 
function does not say anything, however, about the variation of the probability 
density within this surface. That information is contained in the radial distribu- 
tion function. A way to illustrate the latter is shown for the ls and 2pz orbitals in 
Figure 6-3c. A cross section of the electron density distribution is depicted. 
The varying amount of shading reflects the square of the radial function. Thus, 
this picture represents the squared total wave function, 02 . Rotating this 
picture around any axis for the ls orbital and around the z axis for the 2pz orbital 
would give the three-dimensional representation of the total wave function. 

Whereas the square of the angular function has outstanding physical 
significance, the angular function itself contains valuable information regard- 
ing the symmetry properties of the wave function. These properties are lost in 
the squared angular function. 

The well-known shapes of the one-electron orbitals are presented in 
Figure 6-4; these are, in fact, representations of the angular wave functions. 
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x 
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Figure 6-4. Shapes of one-electron orbitals. They are representations of the angular wave 
function, A(O, ¢P). 
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Figure 6-5. Three-dimensional computer drawings of the total wave function, 0,  of the iodine 
atom, calculated with a 3-21G basis set [6-9]. They show the values of ~ in a cross section. 
Courtesy of Dr. Istv~in Kolossv~y. (a) ls orbital; (b) 2p~ orbital; (c) 3dnu orbital. 
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Such representations are used commonly for illustrations because they describe 
accurately the symmetry properties of the wave function. In order to give the 
total wave function, however, they must be multiplied by an appropriate radial 
function. Another representation, shown in Figure 6-5, is a three-dimensional 
computer drawing of the total function [6-9] including both the radial and the 
angular functions. These are not yet real "pictures" of the orbitals, since they 
represent a cross section of the wave function in one plane only. The vertical 
scale gives the value of ~ for each point in the xy plane. These diagrams show 
how the sign and magnitude of t~ vary in the xy plane, and they also help us 
visualize the electronic wave function as a wave. On the other hand, they do not 
illustrate its symmetry properties so well as do the simple diagrams in Figure 6-4. 

As mentioned before, the symmetry properties of the one-electron wave 
function are shown by the simple plot of the angular wave function. But, what 
are the symmetry properties of an orbital and how can they be described? We 
can examine the behavior of an orbital under the different symmetry operations 
of a point group. This will be illustrated below via the inversion operation. 

The s and d orbitals are transformed into themselves as the inversion 
operation is applied to them (Figure 6-6). Both the magnitude and the "sign" 
of the wave function will remain the same under the inversion operation. These 
orbitals are said to be symmetric with respect to inversion. The effect of the 
inversion operation on the p orbitals is demonstrated in Figure 6-7. Whereas 
the magnitude of the wave functions does not change, their "sign" changes 
upon inversion. These orbitals are said to be antisymmetric with respect to 
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Figure 6.6. The effect of inversion on the s and d orbitals. They are symmetric to this operation. 
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Figure 6.7. The effect of inversion on the p orbitals. They are antisymmetric to inversion, as 
the inversion operation changes their sign. 

inversion. In the character tables, this is indicated by + I for symmetric and 
- 1 for antisymmetric behavior under each symmetry operation. As mentioned 
in Chapter 4, the atomic orbitals always belong to the same irreducible repre- 
sentations of the given point group as their subscripts (x, y ,  z,  x)', x 2 - ~,2, etc.). 

6.2 MANY-ELECTRON ATOMS 

There is interaction among all the electrons in a many-electron atom. 
Thus, the wave function for even one electron in a many-electron system will, 
in principle, be different from the wave function for the one electron in the 
hydrogen atom. Since the electrons are mutually indistinguishable, it is not 
possible to describe rigorously the properties of a single electron in such a 
system. There is no exact solution to this problem, and approximate methods 
must be adopted. 

In the most commonly utilized approximation, the many-electron wave 
functions are written in terms of products of one-electron wave functions 
similar to the solutions obtained for the hydrogen atom. These one-electron 
functions used to construct the many-electron wave function are called atomic  

orbitals.  They are also called "hydrogen-like" orbitals because they are one- 
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electron orbitals and also because their shapes are similar to those of the 
hydrogen atom orbitals. Coulson referred to the atomic orbitals as "personal 
wave functions" [6-10] to emphasize that each electron is allocated to an 
individual orbital in this model. 

At this point we can, again, appreciate the possibility of separating the 
total wave function into a radial and an angular wave function. The angular 
wave function does not depend on n and r, so it will be the same for every atom. 
This is why the "shapes" of atomic orbitals are always the same. Hence, 
symmetry operations can be applied to the orbitais of all atoms in the same way. 
The differences occur in the radial part of the wave function; the radial 
contribution depends on both n and r, and it determines the energy of the 
orbital, which is, of  course, different for different atoms. 

While the energy of a one-electron orbital depends only on n, in a many- 
electron atom the energy of the orbital is determined by both n and l. Thus, an 
electron in a 2p orbital has higher energy than an electron in a 2s orbital. The 
order of orbital energies in many-electron atoms is generally as follows: 

I s <  2 s <  2p < 3 s <  3p < 4 s  ~ 3 d <  4 p <  5s < 4 d <  . . . 

There are some cases, however, when the order is changed somewhat. For 
example, the 3d orbital, sometimes lies below the 4s orbital. A diagram which 
illustrates the order of orbital energies is shown in Figure 6-8. 

In addition to the three quantum numbers used to describe the one- 
electron wave function, the electron has also a fourth, the sp in  q u a n t u m  

n u m b e r ,  m s . It is related to the intrinsic angular momentum of the electron, 
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Figure 6-8. The sequence of orbital energies. 
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called spin. This quantum number may assume the values of +½ or -½. 
Usually, the sign of m s is represented by arrows ('1' and ~,), or by the Greek 
letters a and 13. Thus, the wave function of an orbital is expressed as 

t~e = R(r).A(O, ~) 'S(s)  (6-4) 

rather than as in Eq. (6-3). However, the introduction of spin does not alter any 
of the properties discussed previously that relate to the shape and symmetry of 
the orbitals. The reason is that the spin function is independent of the spatial 
coordinates. 

An important postulate in connection with the spin of the electron is called 
the Pauli principle. It states that if a system consists of identical particles with 
half-integral spins, then all acceptable wave functions must be antisymmetric 
with respect to the exchange of the coordinates of any two particles. In our 
case, the particles are electrons, and the Pauli principle is formulated accord- 
ingly: No two electrons in an atom can have the same set of  values for all four 
quantum numbers. 

The electronic configuration of an atom gives us the number of electrons 
that the atom has in its subshells. A subshell is a complete set of orbitals that 
have the same n and l. The building up of electronic configurations is governed 
by the Pauli principle and by Hund'sfirst rule, according to which, for a given 
electronic configuration, the state with the greatest number of  unpaired spins 
has the lowest energy. 

There is a marked periodicity in the electronic configuration of the 
elements and this is the underlying idea of the periodic table (see Chapter 1). As 
the chemical properties of the atoms are determined by their electron configu- 
ration, atoms with similar electron configurations will have similar chemical 
properties. 

6.3 MOLECULES 

6.3.1 Constructing Molecular Orbitals 

In the discussion of the electronic structure of atoms, the Schr6dinger 
equation could be reduced to one involving only the electrons. This was 
achieved by separating the electronic energy of the atom from the nuclear 
kinetic energy, which is essentially determined by the translational motion of 
the atom. 

Such a separation is exact for atoms. For molecules, only the translational 
motion of the whole system can be rigorously separated, while the kinetic 
energy i~cludes all kinds of motion, vibration and rotation as well as transla- 
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tion. First, as in the case of atoms, the translational motion of the molecule is 
isolated. Then a two-step approximation can be introduced. The first is the 
separation of the rotation of the molecule as a whole, and thus the remaining 
equation describes only the internal motion of the system. The second step is 
the application of the Born-Oppenheimer approximation in order to separate 
the electronic and the nuclear motion. Since the relatively heavy nuclei move 
much more slowly than the electrons, the latter can be assumed to move about a 
fixed nuclear arrangement. Accordingly, not only the translation and rotation 
of the whole molecular system but also the internal motion of the nuclei is 
ignored. The molecular wave function is written as a product of the nuclear and 
electronic wave functions. The electronic wave function depends on the 
positions of both nuclei and electrons, but it is solved for the motion of the 
electrons only. 

As was emphasized before (cf. Chapter 3), a molecule is not simply a 
collection of its constituent atoms. Rather, it is a system of atomic nuclei and a 
common electron distribution. Nevertheless, in describing the electronic struc- 
ture of a molecule, the most convenient approach is to approximate the 
molecular electron distribution by the sum of atomic electron distributions. 
This approach is called the linear combination of atomic orbitals (LCAO) 
method. The orbitals produced by the LCAO procedure are called molecular 
orbitals (MOs). An important common property of the atomic and molecular 
orbitals is that both are one-electron wave functions. Combining a certain 
number of one-electron atomic orbitals yields the same number of one-electron 
molecular orbitals. Finally, the total molecular wave function is the sum of 
products of the one-electron molecular orbitals. Thus, the final scheme is as 
follows: 

One-electron atomic orbitals (AOs) 

,~ LCAO 

One-electron molecular orbitals (MOs) 

,~ Multiplication (and summation) 

Total molecular wave function 

Although both atomic orbitals and molecular orbitals are one-electron 
wave functions, the shape and symmetry of the molecular orbitals are different 
from those of the atomic orbitals of the isolated atom. The molecular orbitals 
extend over the entire molecule, and their spatial symmetry must conform to 
that of the molecular framework. Of course, the electron distribution is not 
uniform throughout the molecular orbital. In depicting these orbitals, usually 
only the portions with substantial electron density are emphasized. 

When constructing molecular orbitals from atomic orbitals, there may 
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be a large number of possible linear combinations of atomic orbitals. Many of 
these linear combinations, however, are unnecessary. Symmetry is instrumen- 
tal as a criterion in choosing among them. The following statement is attributed 
to Michelangelo: "The sculpture is already there in the raw stone; the task of a 
good sculptor is merely to eliminate the unnecessary parts of the stone" 
(Figure 6-9). In the LCAO procedure, the knowledge of symmetry allows the 
unnecessary linear combinations to be eliminated. All those linear combina- 
tions must be eliminated that do not belong to any irreducible representation of 
the molecular point group. The reverse of this statement constitutes the 
fundamental principle of forming molecular orbitals: Each possible molecular 
orbital must belong to an irreducible representation of the molecular point 
group. Another equally important rule for the construction of molecular 

Figure 6-9. One of Michelangelo's unfinished sculptures. It may be taken as an example of the 
sculpture existing already in the stone, the sculptor's task being merely to eliminate the 
unnecessary parts. 
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orbitals is that only those atomic orbitals can form a molecular orbital which 
belong to the same irreducible representation of the molecular point group. 
This rule follows from the general theorem (see p. 229) about the value of an 
energy integral. This theorem can be restated for the special case of MO 
construction as follows: An energy integral will be nonzero only if the atomic 
orbitals used for the construction of molecular orbitals belong to the same 
irreducible representation of the molecular point group. 

The atomic orbitals in an isolated atom possess spherical symmetry. 
When they are used for MO construction, however, their symmetry must be 
considered in the symmetry group of the particular molecule. When two 
atomic orbitals of the same symmetry form a molecular orbital, the symmetry 
of the molecular orbital will be the same as that of the component atomic 
orbitals. 

In addition to complying with the symmetry rules, successful MO 
construction requires certain energy conditions. In order for two orbitals to 
interact appreciably, their energies cannot be too different. 

The so-called overlap integral Sij is a useful guide in constructing 
molecular orbitals. It is symbolized as 

Sij = f oi'Ojdr (6-5) 

where ~i and t~) are the two participating atomic orbitals. The physical meaning 
of S O is related to the measure of the volume in which there is electron density 
contributed by both atoms i andj. The knowledge of the sign and magnitude of 
S O is especially instructive; it can be arrived at via the following considerations. 

Positive overlap results from the combination of adjacent lobes that have 
the same "sign."  The electron density originating from both atoms will 
increase and concentrate in the region between the two nuclei. The resulting 
MO is a bonding orbital. Some typical bonding atomic orbital combinations 
are presented in Figure 6-10. Two kinds of molecular orbitals are shown in this 
figure. Atr  orbital is concentrated primarily along the internuclear axis. On the 
other hand, a ~r orbital has a nodal plane going through this axis, and its 
electron density is highest on either side of this nodal plane. The ~r orbitals are 
nondegenerate, while the ~r orbitals are always doubly degenerate. 

Negative overlap results from the combination of adjacent lobes that have 
opposite "sign." In such an instance, there will be no common electron density 
in the region between the two nuclei; instead, electron density will concentrate 
in the outside regions. Such an MO is an antibonding orbital and is illustrated 
in Figure 6-11. 

Zero overlap means that there is no net interaction between the two atomic 
orbitals. They have both positive and negative overlaps that cancel each other. 
Some examples are shown in Figure 6-12. 
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Figure 6-10. Illustration of positive overlap between atomic orbitals. The result is a bonding 
orbital. (a) tr orbitals; (b) ,rr orbitals. 
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Figure 6-11. Formation of antibonding orbitals by the combination of different lobes of atomic 
orbitals. (a) cr antibonding orbitals; (b) 'rr ~ntibonding orbitals. 
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Zero overlap between atomic orbitals. There is no net interaction. 
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The energy changes in the formation of homonuclear and heteronuclear 
diatomic molecules are illustrated in Figure 6-13. The energy of the bonding 
MO is smaller (larger negative value) than the energy of the interacting atomic 
orbitals. On the other hand, the energy of the antibonding MO is larger than the 
energy of the interacting atomic orbitals. The largest energy changes occur 
when the two participating atomic orbitals have equal energies. As the energy 
difference between the participating atomic orbitals increases, the stabilization 
of the bonding MO decreases. Molecular orbitals are not formed when the 
participating atomic orbitals possess very different energies. 

Thus, both symmetry and energy requirements must be fulfilled in order 
to form molecular orbitals. Energetically, the 2s and 2p atomic orbitals are 
sufficiently similar to form molecular orbitals with each other. For symmetry 

ontibonding MO 

)_ 
bonding NO 

antibonding MO 

bonding NO 

AO 

AO 

C)estabitization energy 

Stabilization energy 

I Destabilization energy 

I Stabilization energy 

Figure 6-13. Energy changes during MO formation: (a) Homonuclear molecules; (b) hetero- 
nuclear molecules. 
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reasons, however, the p~ and py orbitals of one atom of a homonuclear diatomic 
molecule cannot combine with the 2s orbital of the other atom because they 
belong to different irreducible representations (see Figure 6-14). On the other 
hand, 3d orbitals of first-row transition metals are often prevented from 
forming molecular orbitals with the ligand orbitals for energy reasons, despite 
their matching symmetries. Quantum-chemical calculations on transition 
metal dihydrides [6-11] support this suggestion. 

Knowledge of the symmetry of the MOs is important for practical 
reasons. The energy of the orbitals can be calculated by costly quantum- 
chemical calculations. The symmetry of the molecular orbitals, on the other 
hand, can be deduced from the molecular point group and with the use of 
character tables, a process that requires merely paper and pencil. Then, when 
all possible solutions that are not allowed by symmetry have been excluded, 
only the energies of the remaining orbitals must be calculated. 

We are, of course, concerned with the symmetry aspects of the MOs and 
their construction. As was discussed before, the degeneracy of  atomic orbitals 
is determined by m t. Thus, all p orbitals are threefold degenerate, and all d 
orbitals are fivefold degenerate. The spherical symmetry of the atomic sub- 
shells, however, changes when the atoms enter the molecule, since the symme- 
try of molecules is nonspherical. The degeneracy of atomic orbitals will, 
accordingly, decrease; the extent of decrease will depend upon molecular 
symmetry. 

Various methods (described in Chapter 4) can be used to determine the 
symmetry of atomic orbitals in the point group of a molecule, i.e., to determine 
the irreducible representations of the molecular point group to which the 
atomic orbitals belong. There are two possibilities depending on the position of 
the atoms in the molecule. For a central atom (such as O in H20 or N in NH3), 

Figure 6-14. Combination of the 2s and 2p~ (or 2py) atomic orbitals does not result in 
a molecular orbital. 
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the coordinate system can always be chosen in such a way that the central atom 
lies at the intersection of all symmetry elements of the group. Consequently, 
each atomic orbital of this central atom will transform as one or another 
irreducible representation of the symmetry group. The atomic orbitals will 
have the same symmetry properties as those basis functions in the third and 
fourth areas of the character table which are indicated in their subscripts. For 
all other atoms, so-called "group orbitals" or "symmetry-adapted linear 
combinations" (SALCs) must be formed from like orbitals. Several examples 
below will illustrate how this is done. 

First, however, consider the symmetry properties of the central atom 
orbitais. Take the C4v point group as an example. Its character table is presented 
in Table 6-1. Thepz and d~2 atomic orbitals of the central atom belong to the totally 
symmetric irreducible representation AI, the dx2_y2 orbital belongs to B~, and dx~, to 
B z. The symmetry properties of the (Px, Py) and (dxz, d,~, z) orbitals present a good 
opportunity for illustrating two-dimensional representations. Taking the three p 
orbitals as basis functions, the symmetry operations of the C4~, point group are 
applied to them. This is shown in Figure 6-15. The matrix representations are 
given here: 

E =  1 

0 

C 4 ~ C ] =  0 

0 

6 2 ~ 

0 

- 1  

0 
!J 

o- , , (xz )  = 

l~ 0 

-1  
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0 1 
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0 

% I [ ° 
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C 4 ,  , E 

A~ 1 

A2 I 
B~ 1 

B 2 I 
E 2 

Table 6 - 1 .  T h e  C4,, C h a r a c t e r  Table  

2C 4 C 2 2try, 2~ a 

1 1 I 1 
1 1 - 1  - I  

- 1  1 I - I  
- I  1 - I  I 

0 - 2  0 0 

z 

R z 

(x, y) (R.~, R~) 

.~ + y~, z" 

x~ _ f -  

x y  

(xz, yz) 

z 

I~ ~ y  
~ ~ 

PY ~ Y  
I~ Z 

Pz x ~ Y  

/ ic~ 
z z l z 

~ x x ~ 

~ ~ x ~ ~ 

F i g u r e  6-15. The  s y m m e t r y  operat ions of the Ca~, point  group applied to the 2p orbitals. 
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All these matrices can be simultaneously block-diagonalized into a 2 × 2 and a 
1 × 1 matrix. The set of the 1 × 1 matrices corresponds to Pz and the set of the 
2 × 2 matrices corresponds to Px and py. The representations are: 

E 2C 4 C 2 2~r~. 2~r a 
Pz 1 1 1 1 1 A~ 
(p~, p).) 2 0 - 2  0 0 E 

Notice that the operations C 4 and ~r a transform p~ into py and vice versa. They 
cannot be separated from one another so they together  belong to the two- 
dimensional representation E. 

If two or more atomic orbitals are interrelated under a symmetry operation 
of the point group and, accordingly, they toge ther  belong to an irreducible 
representation, their energies will also be the same. In other words, these 
orbitals are degenera te .  Such atomic orbitals are parenthesized in the character 
tables. 

The direct connection between symmetry and degeneracy of the atomic 
orbitals is demonstrated here once again. The higher the symmetry of the 
molecule, the greater will be the interrelation of the orbitals upon symmetry 
operations. Consequently, their energies become less and less distinguishable. 
The following example shows how the degeneracy o fp  orbitals decreases with 
diminishing symmetry: 

Free atom 

O h point group 

C4,. point group 

c2,. point group 

The degree 

Spherical symmetry (p:,, py, p:) Threefold degenerate 

T~. (p~,, p~, P~) Threefold degenerate 

A ~ p~ Nondegenerate 
E (Px, PrO Twofold degenerate 

A ~ Pz Nondegenerate 
B t px Nondegenerate 
B 2 py Nondegenerate 

of degeneracy of atomic orbitals always corresponds to the 
dimension of the irreducible representation to which these atomic orbitals 
belong. The same is true for molecular orbitals. Thus, knowing the symmetry 
of a molecule and looking at the character table, one can determine at once the 
maximum possible degeneracy of its molecular orbitals. The irreducible 
representation having the highest dimension will show this. 

6.3.2 Electronic States 

The orbitals and electronic configurations are useful descriptions. How- 
ever, they are only models, and they employ approximations. The energy of an 
orbital has rigorous physical meaning for systems that contain only a single 
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electron. In many-electron systems, the energy of the orbitals loses its physical 
meaning, and only the energies of the (ground and excited) states are real. It is 
these states that are described by the total electronic wave functions. Electronic 
transitions, in fact, represent changes in the state of an atom or a molecule and 
not necessarily in the electronic configurations. 

We shall not be concerned with the atomic states. The systematic way of 
determining them is given, for example, in Refs. [6-3] and [6-5]. Molecular 
states and the determination of their symmetries, however, will be briefly 
introduced [6-4]. 

First, let us consider the customary notations. Assume that a hypothetical 
ground-state molecule of the C2v point group has four electrons, two in an A~ 
symmetry and two in a B~ symmetry orbital. In shorthand notation this can be 
written as ~ .  An electron occupying an A~ symmetry orbital is represented 
by a~, the lower-case letter indicating that this is the symmetry of an orbital 
and not of an electronic state. If two electrons occupy this orbital, the notation 
is ~ .  The symmetry of a state is represented by capital letters, just as are the 
irreducible representations. 

The symmetry of the electronic states can be determined from the sym- 
metry of the occupied orbitals. There are two different cases: 

1. States with fully occupied orbitals. An electronic configuration in 
which all orbitals are completely filled possesses only one electronic 
state, and it will be totally symmetric. This can be seen for the case of 
nondegenerate orbitals. The wave function describing the electronic 
state can be written as the product of the one-electron orbitals. The 
symmetry of the product is given by the characters of the direct 
product representation. However, the product of any orbital with it- 
self will always give the totally symmetric representation, no matter 
what characters it has, both 1-1 and ( -1 ) - ( -1 )  equal i, i.e., in each 
class of the point group the characters of the product will be 1. The 
same is true for degenerate orbitals, although the procedure in this 
case is not as simple. 

2. States with partially occupied orbitals. First of all, the completely 
filled orbitals are ignored for reasons described above. The symme- 
try of the state will be given by the direct product of the partially 
filled orbitals. 

Let us consider some examples for the above hypothetical molecule. The 
supposed ground state and the configurations of two different singly excited 
states are represented in Figure 6-16. 

The ground state ~ has only fully occupied orbitals, so its symmetry is 
A~. The first excited state, a~lbla 2, has one fully occupied orbital, ~ ,  so this 
is not considered. The symmetry of this state will be given by the direct 
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Figure 6-16. Different states of a molecule with Cz, ' symmetry 

product B~ .A 2. Table 6-2 lists the direct products under the C 2 v  character table. 
The symmetry of the state is B 2. The other excited state in our example has 
the configuration ~ b l b  2. The direct product is given in Table 6-2; the state 
symmetry is A 2. Since we are concerned only with the spatial symmetry 
properties, the electron spin and its role in determining the electronic states 
have been neglected in the above description. 

6.3.3 Examples of MO Construction 

6.3.3.1 Homonuclear Diatomics 

a. H y d r o g e n ,  H 2. There are two ls hydrogen atomic orbitals available 
for bonding. The molecular point group is D=h. This molecule does not have a 
central atom, so the symmetry operations of the point group are applied to both 
ls orbitals, since they t o g e t h e r  form the basis for a representation of this point 
group. The ls orbital of one hydrogen atom alone does not belong to any 
irreducible representation of the D= h point group. Several symmetry operations 
of this group transform one of the two ls orbitals into the other rather than into 
itself (see Figure 6-17a). Thus, they must be treated together; in this way they 

Table 6-2. C2v Character Table 
and Some Direct Product Representations 

C2v E C2 % (xz) ~r'~ (yz) 

4~ 1 I 1 1 

4 2 1 I - 1  - 1  
//~ 1 - 1  1 - !  

//2 1 - 1  - 1  1 

//~ .A 2 1 - 1 - 1 1 
//~'B 2 1 1 - 1  - 1  

z x2, y ~, z ~ 
R z xy 
X, Ry xz 
y, R~ yz 

B 2 
A2 
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% 
C2 

a b 

C2 

Figure 6-17. Some symmetry operations of the D~h point group applied to one Is orbital in the 
hydrogen molecule (a) and the two Is orbitals of the hydrogen molecule together (b). 

form a basis for a representation. All symmetry operations are indicated in 
Figure 6-17b. The D~ h character table is given in Table 5-3. The characters of 
this representation will be 

D~, E 2C~ ~r~. i 2S~ ~C 2 
2H(ls) 2 2 2 0 0 0 

This is a reducible representation of the D~h point group which reduces to ~re 
+ o',,. Two molecular orbitals must be generated, one with ~r e and the other 
with ~r,, symmetry. The two possible combinations are the bonding and 
antibonding orbitals which can be formed from the two Is atomic orbitals. 

O + Q )  - 

0 + 0 - - -  

Q O. u 

O ag 

The two electrons in the hydrogen molecule will occupy the lower energy 
bonding orbital, and none will go into the antibonding orbital. 

tr, antibonding 

~' $ cr~ bonding 

Hence, the molecule is stable. 

b. Other Homonuclear Diatomic Molecules. The principle utilized to 
construct molecular orbitals is the same as that for the hydrogen molecule. For 
helium, the MO picture is the same as for hydrogen except that here the 
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additional two electrons occupy the antibonding cr u orbital, and, therefore, the 
molecule is unstable. 

In the series from lithium through neon, similar symmetry considerations 
apply, except that in these examples the second electron shell must be consid- 
ered. The two 2s orbitals, as was found to be the case for the two ls orbitals, 
form MOs that possess Crg and ~, symmetry. As regards the 2p orbitals, the two 
2pz orbitals lie along the molecular axis and belong to the same irreducible 
representation as the 2s orbitals. They also combine to give MOs that possess 
o-g and o-~ symmetry. 

- - , .  

The 2s and 2pz orbitals of the same atom belong to the same irreducible 
representation of the D~h point group. Their energies are also similar so they 
cannot be separated completely. Another way of making linear combinations is 
to first combine the 2s and 2pz orbitals of the same atom 

and then combine the resulting orbitals into MOs. 

+ 

c ~  + ~ , ~ - - - - - ~  c ~ ~  ~g 

The result is essentially the same as before. 
The 2px and 2py.orbitals of the two atoms together form a representation 

that reduces to Vg and 'rr,. These correspond to two doubly degenerate ,n" 
orbitals, one of which lies in the y z  plane 

+ ~ ";  . . . .  ~ u  

and the other in the x z  plane. The relative energies of these orbitals are known 
from energy calculations. In most cases the order is as follows: 
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l~yg < 1~ u < 2(rg < 2ty, < 3~rg < l.rr u < l'rrg < 3~r, 

while in some cases l~r, < 3o'g. 

6.3.3.2 Polyatomic Molecules 
Before working out actual examples, let us recall what was said about the 

symmetry properties of atomic orbitals. If there is a central atom in the 
molecule, its atomic orbitals belong to some irreducible representation of the 
molecular point group. For the other atoms of these molecules, SALCs are 
formed from like orbitals. These new orbitals are then coupled with the atomic 
orbitals of the central atom to form MOs. 

If the molecule does not have a central atom (e.g., C6H6), we begin with 
the second step, first forming different group orbitals and then combining 
them, if possible, into MOs. Examples will be given for both cases. 

a. Water, H20. The molecular symmetry is C2v. There are six atomic 
orbitals available for MO construction: two H Is, one oxygen 2s, and three 
oxygen 2p. They can combine to produce six MOs. The molecule has a central 
atom, and its AOs will belong to some of the irreducible representations of the 
C2,, point group by themselves. Group orbitals must be formed from the H ls 
orbitals. The symmetry operations applied to them are shown in Figure 6-18. 
The C2v character table was given in Table 6-2. The reducible representation is: 

C2~. E C 2 trv(xz) ~r~.(yz) 
2H(ls) 2 0 0 2 

This representation reduces to A 1 + B 2. The projection operator (see Chapter 
4) is used to form these SALCs. Since we are interested only in symmetry 
aspects, numerical factors and normalization are omitted. 

I .)C~ 

Figure 6-18. The C2,. symmetry operations applied to the 
two hydrogen Is orbitals of water as basis functions. 
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~ l s  I ~- l 'E . s l  + 1.C2.s x + 1.tr-s~ + 1-cr'.sl = s 1 + s 2 + s 2 + s l 
= 2 s  1 + 2 s  2 ~ s l  + s 2 

l~t~s~ ~ l 'E's~ + ( - 1 ) - C 2 . s  1 + ( - 1 ) - o - . s 1  + 1 .o - ' .S l  = s1 - s2 - $2 + s l  

= 2 s  I - 2 s  2 ~ s I - s 2 

Thus, the two hydrogen group orbitals (q31 and q~2) will have the forms: 

q0 2 = S 1 - -  $2~ ~ 

q01 = S 1 -I- $2~ 

The available AOs are summarized according to their symmetry properties in 
Table 6-3. Since only orbitals of the same symmetry can overlap, two 
combinations are possible: one has A~ symmetry and the other has B 2 symme- 
try. The remaining two orbitals of oxygen (one with A 1 and the other with B I 
symmetry) will be nonbonding in the water molecule. 

If we choose the oxygen 2s orbital for bonding and leave the 2pz orbital 
nonbonding (from the symmetry point of view, the opposite choice or a mixed 
orbital would do just as well; actually, if the two orbitals are close in energy, 
they mix), the MOs of the water molecule can be constructed as shown in 
Figure 6-19. These MOs are compared with the calculated contour diagrams of 
the water molecular orbitals in Figure 6-20 [6-12]. 

The construction of the molecular orbitals of the water molecule can also 
be represented by a qualitative MO diagram (see Figure 6-21). The relative 
energies of the orbitals are also indicated in Figure 6-21. What information can 
be deduced from such a diagram? First, there are two bonding orbitals 
occupied by four electrons; these correspond to the two O -H  bonds of water. 
There are two nonbonding orbitals also occupied; these are the two lone pairs of 
oxygen. Finally, there are two antibonding orbitals that are empty, so there is a 
net energy gain in the formation of H20 and the molecule is stable. 

Table 6-3. The Atomic 
Orbitals of Water Grouped 

According to Their Symmetry 
Properties 

O orbitals H group orbitals 

A 1 2s, 2pz ~1 
A2 
BI 2px 
B 2 2py q~z 
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\H 
2pv ~Z antibonding 

A1 
H H 

2s 

A1 

~p~ antibonding 

, ,  

H H 
nonbonding 

Bz H ~H Jr 

2 p y ~o 2 

D 

bonding 

A~ + 
H H 

2s % bonding 

Figure 6-19. Construction of the molecular orbitals of water. 

b. Ammonia, NH 3. This example is given primarily to illustrate the 
construction of degenerate molecular orbitals. The symmetry of the molecule 
is C3,.. There are seven atomic orbitals available for bonding: three H Is, one N 
2s, and three N 2p AOs; hence, seven MOs must be formed. Since the nitrogen 
atom is a central atom, the coordinate axes can be chosen so that its AOs lie on 
all symmetry elements of the C3v point group. The pertinent character table is 
given in Table 6-4. The N 2s and 2pz orbitals will have A 1 symmetry and the 2p:, 
and 2p>, orbitals together belong to the E irreducible representation. Group 
orbitals must be formed from the three H Is orbitals. The symmetry elements of 
the C3v point group applied to these orbitals are shown in Figure 6-22; their 
representation is given in Table 6-4. 



Electronic Structure of Atoms and Molecules 255 

,:;,'~?;', ~ 
I :- ~,~. ?".'~, 

~": _: :",'l,'" .,.;r.,?~::. 
~..r : ~"ll -: "'"(':k 
I !..7..i. i " - J  ill I II ,. _,'t&_ ,' ',"-.~ "'., 
' . t !  : ,  ' . ,~ ".-t-£": '",~,~.-: '".7"i 

'.',..t { .- ' : . '  i ' , ' f - f 7 ,  r',Ti,' 
. . . . . .  ,..~ ~ ~ "f..'S 

" .  ~_.{ . ~ , ' "  

,I#~ 1 

~#'1 

~ A  I 

~1}~, 

7).! '::':-W,:U"-~ '~ 
1 8 1  

,: .~t-,;~? ~,. ,~,~-.7::,,'-.,,',,,~ 
" ' - - t  - ' , " , "  ' x~.~'IL[~,..."~ 1 . ' 7  , - ,~- . ,  7. ' , ,  

I B  E 

Figure 6-20. Contour diagrams of the molecular orbitals of water. Reproduced with permission 
from Ref. [6-12l. Copyright (1973) Academic Press. 

This representation can now be reduced by using the reduction formula 
introduced in Chapter 4: 

aa, = (~)(l '3"l + 2"0"1 + 3"1"1) = 1 

aA2 ----- (~)(1"3"1 + 2"0"1 + 3"1" ( - l )  = 0 

a E = (~)(1.3-2 + 2 . 0 . ( - 1 )  + 3-1.0) = 1 

Thus, the representation reduces to A i + E. Next, let us use the projection 
operator to generate the form of  these SALCs: 
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b2 

a~*bz / b~ ~ O~*b~*b~ 
} ~  " .2a  --  

QI . ~ " ~  ~ / {  

~/~'"~ ~, 
. . . . .  

HyPhen HIO Oxy~n 
gro~ ~b t~  ~Os ~Os 

Figure  6-21. Qualitative MO diagram for water. 

t6a~s~ ~ l . E . s  I + l.C3.s I + 1.C~.s  t -4- 1.~.s I + l . t r ' . s  I + l ' t r" . s l  
= s~ + s 2 + s 3 + s~ + s 2 + s 3 = 2(s~ + s 2 + s a ) ~ s ~  + s 2 + s a 

The same procedure is illustrated pictorially in Figure 6-23, after Ref. [6-5]. 
For the construction of the E symmetry group orbitals, a time-saving 

simplification will be introduced [6-5]. First of all, it utilizes the fact that the 
rotational subgroup C, in itself contains all the information needed to construct 
the SALCs in a molecule that possesses a principal axis C n. The rotational 
subgroup of Ca~, is C a, and its character table is given in Table 6-5. If  we 
perform the three symmetry operations of the C a point group and check the 
generation of the A 1 symmetry SALC of NH 3 (Figure 6-23), we see that the 
application of these three operations suffices to define the form of this orbital. 

The difficulty in applying the projection operator for this symmetry group 
arises from the fact that the C 3 character table contains imaginary characters for 

Table 6-4. The C3,, Character Table and the Reducible 
Representation of the Hydrogen Group Orbitals of Ammonia 

~av E 2C 3 30",. 

41 1 1 I Z X2 + y2, z 2 

A 2 1 [ - 1 R.. 
~ 2 - 1 0 (x, y)  (R x, Ry) (x 2 _ y2, xy )  (xz, yz~ 

~ H(ls)  3 0 1 
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Figure 6-22. The C3,  ' symmetry operations applied to the three hydrogen atom ls orbitals of 
ammonia as basis functions. 

the E representation. They can be eliminated by following the procedure used 
in Ref. [6-5]. The character e corresponds to exp (2'rri/n), where n is the order 
of the rotation axis; in our case, 3. Using Euler's formula, exp (i~t) = cos ot + 
i sin o~ (and the complex conjugate of g will be e* = cos ot - /sin et), the 
characters for the E representation will be: 

11 -½ + iN/~/2 -½ - i'V/~/2] (a) 
-½ - iN/~/2 -½ + ik/~/2J (b) 

Using two different ways to obtain linear combinations of these characters will 
make it possible to eliminate the imaginary characters. One way may be 
summing Eqs. (a) and (b), resulting in 

2 - 1  -1  

The other linear combination may be obtained by subtraction of Eq. (b) from 
Eq. (a) and dividing the result by iX/~. This linear combination results in the 
"characters" 

0 1 - 1  

not satisfying all the relationships of irreducible representations, but it serves 
our purpose of showing the shape of the SALCs. Our "quasi character table" 
for the C 3 point group is now: 
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Figure 6-23. 

1~ : ~ i ~  

lC] = , ~ ,  

3~',' = Z ~  

lo'¢' .._ , / ~  

Sum: ~ 

SI~S~*S ) 
Generation of the A~ symmetry orbital of the 3H group orbitals of ammonia. 

A 1 1 1 

E 1 - 1  

W h e n  the p ro jec t ion  opera tor  is appl ied  to one  o f  the Is orbi tals  o f  the h y d r o g e n  
group  orbi tals  wi th  the two E representa t ions ,  the two E s y m m e t r y  doub ly  de- 
genera te  SALCs  result:  

P~s~ ~ 2"E's  t + ( - l ) ' C 3 - s  t + ( - I ) ' C ] ' s  I = 2s I - s 2 - s 3 

15~Sl .-~ O.E.st  + 1.C3.s I + ( - 1 ) . C ~ . s  I = s 2 - s 3 

F igure  6-24  i l lustrates  the same procedure  pictorially.  
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T a b l e  6-5. The C 3 Character Table 

~3 E C 3 C~ ~ = exp(2 'rri/3) 

4j 1 1 1 z,  R z x z + y2, z 2 

{I :'} E e (x, y)(R~, R~) (x ~ - y~, xy ) (yz ,  xz)  ~* 
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The next step is the MO construction. The orbitals used for this purpose 
are summarized in Table 6-6. An A a and a doubly degenerate E symmetry 
combination is possible here, and there will be a nonbonding orbital with A 1 
symmetry left on nitrogen. Figure 6-25 illustrates the building of MOs. Again, 
the MOs can be compared with the calculated contour diagrams of the 
ammonia molecular orbitals in Figure 6-26. The qualitative MO diagram is 
given in Figure 6-27. The following conclusions can be drawn: (1) there are 
three bonding orbitals occupied by electrons; these correspond to the three 
N - H  bonds; (2) there is a nonbonding orbital also occupied by electrons; this 
corresponds to the lone electron pair; and (3) the three antibonding orbitals are 

2E 0E 
• 1 l i t  

~ ~ 

-w; 
• • 

sum 

Figure 6-24. Projection of the two E symmetry group orbitals of the three H ls orbitals in 
ammonia. 



260 Chapter 6 

Table 6-6. The Atomic Orbitals 
of  A m m o n i a  Sorted According 
to Thei r  Symmet ry  Propert ies 

N orbitals H group orbitals 

A I s, p: q~l 
E (P~' P;') ~2 

unoccupied, so the MO construction is energetically favorable, and the 
molecule is stable. 

c. Benzene, C6H 6. The molecular symmetry is D6h. There are 30 AOs 
that can be used for MO construction: six H Is, six C 2s and 18 C 2p orbitals. 
Since this molecule does not contain a central atom, each AO must be grouped 
into SALCs in such a way that they can transform according to the symmetry 
operations of the D6h point group. It is straightforward to combine like orbitals, 
for example, the hydrogen Is orbitals, the carbon 2s orbitals, and so on. The 
following combinations will be used here: 

• ~(6 H Is), ~2(6 C 2s), ~3(6 C 2px,2py), and ~4(6 C 2p~) 

The next step is to determine how these group orbitals transform in the D6h 
point group. The D6~ character table is given in Table 6-7. Since most of the 
AOs in the suggested group orbitals are transformed into another AO by most 
of the symmetry operations, the representations will be quite simple, though 
still reducible: 

F,I,~ 6 0 0 0 2 0 0 0 0 6 0 2 

Fa,: 6 0 0 0 2 0 0 0 0 6 0 2 

['~3 12 0 0 0 0 0 0 0 0 12 0 0 

l-'qb 4 6 0 0 0--2  0 0 0 0- -6  0 2 

These representations can be reduced by applying the reduction formula. 
First, ~ :  

aa, ' = (~)(1.6.1 + 2-0.1 + 2.0.1 + 1.0.1 + 3.2.1 + 3.0-1 + 1-0.1 + 2.0"1 + 
2.0.1 + 1-6-1 + 3.0.1 + 3.2-1) = (~)(6 + 6 + 6 + 6) = ~ = 1 

aA2 ~ = ( ~ ) ( 6 -  6 + 6 -  6) = 0 

an, ~ = (~) (6  + 6 -  6 - 6 ) = 0  

aB2 ~ = ( ~ ) ( 6 -  6 -  6 + 6) = 0 



2py 

E1 ~ - 

2p~ 

~ozz ~:mtibonding 

k~ antibonding 

A1 

2s antibonding 

2Pz 

E,~. 
2py 

nonbonding 

~o~ z bonding 

2Px ~ bonding 

A1 

2s q)l bonding 

Figure 6-25, Construction of molecular orbitals for ammonia. 



262 
. . :~-:  - : : : , . .  . .  -.-.:.:.:: 

,.¢ . . . . . . .  .;,.~ ,-.- . . . . .  . , N .  
t , .  " ; , '~  ...~ . . . .  ~ , .~ '  
~:'L . . . . . .  :~ ?~, L :... "'3'. "1 ~ ,. . . . . . . . .  ; ~- .  . . . .  ~._ 

" 'e  ' ? -Z~ :  , ~ ' : : : ~ ;  
'~.:= , ~ , ,  

~ ' ~ - . .  '?~.~:::23' 

~L--. .~"-; .~ ,':~'~'~ .... 2 . . . . .  ~?~.,£;::~,:?::~:,;~ ;0..~ ~ )  ~ " 

• ..5 . . . . .  ; . .)  ':,-;. :-Kt..~ ,~ ~::..:=; . . . .  ~ . - -  .:.¢: 

g',:~'F:~, 

(~ ~. ~ ~ ;i:% ~., ':. ; ~ : ~ f : ~ :  :~ 
::.:. ,-;, ~ : :: ',.: : ~..r 
"~ .~"~ '~  ;'. 7, >'~';'J . . . .  ~,. "¢-.I.P 

~ I  

(,:.:~...~-~'~-."~.'~,, ~ 
~ ~ ~ ~. ~ ~ ~ ~: ~'.:".i-.,::L ~:~ .-,.. , 
~ 't, : -  :,,'~ ~ - : ' : - .  - . : r  ~ , , ' F "  ', ~" ~::: '  ~,,-~:.:~ ,~,:,~~.,~ ~ ~ ~  

~ ;  i. ~i-:-7;)" ~ d ]  ~ ~  '~::~,~ ~ 

~ 1  

Chapter 6 

Figure 6-26. Contour diagrams of the MOs of ammonia. Reproduced with permission from 
R e f .  [ 6 - 1 2 ] .  C o p y r i g h t  ( 1 9 7 3 )  A c a d e m i c  P r e s s .  

aE~ ~ = ( ~ ) ( 1 2  - 12) = 0 

a E 2  ~ = ( ~ ) ( 1 2  + 12) = 1 

aa~" = ( ~ ) ( 6  + 6 - 6 - 6 )  = 0 

aA2,, = (~Z~)(6 - -  6 --  6 + 6 )  = 0 

1 6 aat" = ( ~ ) (  + 6 + 6 + 6 )  = 1 

aa2 . =  ( ~ ) ( 6 - -  6 +  6 - -  6 )  = 0  

aE~ ~ = ( ~ ) ( 1 2  + 12) = 1 

ae.~. = ( ~ ) ( 1 2  --  12) = 0 
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SALCs 
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Hydrogen NH 3 Nitrogen 
MOs AOs 

Figure 6-27. Qualitative MO diagram for ammonia. 

Thus ,  the first representa t ion  reduces  to the fo l lowing i r reduc ib le  represen-  
tat ions:  

I ~  = alg + E2g + B!u + Elu 

Without giving details of the other three reductions, the results are: 

F% = A!g + E2g + Blu + Elu 
Fqb 3 = Aig + A2g + 2E2g + Blu + B2u + 2E!u 
I~4 = Bzg + E!g + A2u + E2u 

Table 6-7. The D6h Character Table 

D6h E 2C 6 2C 3 C 2 3C~ 3C~ i 2.S 3 2S 6 (r h 3(r a 3o',~ 

Atg 
A2g 
B~g 
B2~, 
E~x 
E2x 
Alu 
A 2u 
Blu 
B2. 
El. 
E2u 

1 1 1 1 1 I 1 1 1 1 1 1 

1 1 1 1 - I  - 1  1 1 1 1 - 1  - I  R z 
1 - 1  I - I  1 - 1  1 - I  1 - 1  1 - I  

1 - 1  I - 1  - 1  1 1 - -1  1 - -1  - 1  I 
2 1 --1 --2 0 0 2 1 --1 --2 0 0 (R~, R 0 
2 - 1  - 1  2 0 0 2 - 1  - I  2 0 0 
1 1 I 1 1 1 - 1  - 1  - I  - 1  - 1  - 1  
1 1 1 1 - I  - 1  - I  - 1  - 1  - 1  1 1 z 

1 - 1  1 - 1  1 - 1  - I  1 - 1  1 - 1  1 

1 - 1  1 - 1  - I  1 - 1  1 - 1  1 1 - 1  
2 ! - 1  - 2  0 0 - 2  - 1  1 2 0 0 (x ,y )  
2 - 1  - 1  2 0 0 - 2  1 1 - 2  0 0 

X 2 + y2, z2 

(xz, yz) 
(x 2 _ y2, xy) 
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Similarly to the case of ammonia, the rotational subgroup of D6, ~, that is 
C 6, contains enough information to generate the SALCs of benzene. The C 6 
character table is given in Table 6-8, and, again, contains imaginary charac- 
ters. These can be handled in the same way as was done for ammonia, keeping 
in mind that the solution is right for the determination of the shape of the 
SALCs but the derived "quasi-characters" are not real characters. 

These "quasi-characters" for the two E representations are: 

Et 0 1 1 0 - 1  - 

_ ,  

E~ 1 - 1 0 1 

Benzene consists of 30 MOs; only a few of these will be constructed and 
shown here. It may be a good exercise for the reader to construct the remaining 
MOs of benzene by following the procedure demonstrated here. The SALCs 
are sorted according to their symmetry properties in Table 6-9. Inspection of 
this table reveals that the first three group orbitals have common irreducible 
representations, so they can be mixed with each other. They consist of 24 AOs; 
thus, 24 MOs will be formed. Since each bonding MO has its antibonding 
counterpart, there will be 12 bonding and 12 antibonding molecular orbitals. 
The former will be the ~r bonding orbitals of benzene, since there are six C--C 
and six C-H bonds. The fourth group orbital does not belong to any irreducible 
representation common to the other three, so it will not be mixed with them. 
This representation corresponds to the "rr orbitals of benzene by itself. 

Let us now construct the A and B symmetry cr orbitals of benzene The 
I g  J/~ ' 

totally symmetric representation, A l g ,  appears three times, once in each of ~ ,  
(I) 2, and ~3' Tw° AI~ representations can be combined into an MO, and the third 
one can represent an MO by itself. These three SALCs can be generated by 
using the projection operator pictorially as shown in Figure 6-28. The forms of 

C 6 

A 
8 

E~ 

E 2 

Table 6-8. The C 6 Character Table 

E C 6 C~. C,. C 2~ C~ e = exp(2wi/6) 

1 1 I 1 1 1 z ,  R z 

l - 1  1 - 1  1 - 1  

{: :1 e*  - e  - 1 - e *  ( R , ,  R~,) 

II ' --~ - -~* I --~ - -~*  

x2 + y2,  z2 

(xz, y z )  

(x ~ _ y2, ~,)  
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Table 6-9. The Symmetry of  the Different 
Group Orbitals of  Benzene 

q~)l (I)2 qr~3 d~4 
H group C 2s group C 2px, 2p~ C 2pz group 
orbital orbital group orbital 

orbital 

Alg q- + + 
A2& + 
Big 
B2g 
Etg 

E2g + + + + 
Alu 

A2u 
B1, , + + + 

B2u + 
E~u + + ++ 
E2. + 
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these group orbitals are.such that qb2(A ~o) can be taken as an MO by itself (C-C 
~ bond; cf. also the corresponding o~-~oital, 2A~g, in the contour diagram in 
Figure 6-29a), and the other two group orbitals can be combined into molecular 
orbitals as shown in Figure 6-30. The contour diagram of the bonding MO is 
depicted by the 3A~g orbital in Figure 6-29a. 

The next MO will be of Blu symmetry. This irreducible representation 
also appears in qb~, qb2, and qb 3. Take this time the corresponding dp~ and qb 2 
group orbitals and combine them into molecular orbitals: 

PB'us~ ~ l 'E ' s l  + ( -1) 'C6"s  I + l 'C3"s ~ + (-1) 'C2"s ~ + l 'C~'s  1 + (-1)'C~.s~ 

= S 1 - -  S 2 -}- S 3 - -  S 4 q-  S 5 - -  S 6 

or pictorially: 

The B~, symmetry SALC of ~2,  i.e., the group orbital of the six C 2s AOs, will 
have a similar form: 
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A~g 

1E 

lc, 

1C~ 

1~ 

1~ 
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s u m  

®~tA~) e21A~e) %(A~e) 

Figure 6-28. Generation of the Atg symmetry group orbitals of benzene. 
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.The combination of these dp~ a n d  di) 2 SALCs affords the bonding and antibond- 
mg combinations shown in Figure 6-31. The contour diagram corresponding to 
the bonding MO is the 2B~. orbital in Figure 6-29a. 

Since there is only one Bzu symmetry orbital among the SALCs, the one in 
qb~, it will be an MO by itself. Let us generate this MO: 

/St~Z.py(C1) ~ 1.E .py~+ ( - l ) . C 6 . P y  ~ + 1.C~.p~,, + (-1).C2-p~,, + 1.C~.pv ~ + 

( -1 ) 'C6"Py  ~ = Py~ - Py~ + Py~ - Py4 + P~,~ - P~,6 ~ 

This group orbital has the following shape: 

Compare the above orbital with 1B2, (Figure 6-29a). 
The "rr orbitals of benzene will be the two doubly degenerate and the two 

non-degenerate combinations of the ~Sa group orbital itself. All of these are 
shown below. 

A2u symmetry  orbital: This corresponds to the totally symmetric represen- 
tation in the rotational subgroup C6; so, even without using the projection 
operator, its form can be given by: 

04(A2u) = Pz~ + Pz2 + Pz3 ÷ Pz4 + Pz~ + P~ 

The corresponding orbital in Figure 6-29b will be the 1A2, orbital. 
B2g symmetry  orbital: Using the projection operator, we obtain: 

['n2gPz(C1) "~ l 'E 'pz  1 + (-1)'C6"pzl + 1.Cx.pz~ + (-1).C2.pz ' ÷ 1.C~.pz I + 

(-I)'C~'Pz~ = Pzl - Pz2 + Pz3 - Pz4 + Pz5 - Pze  

This is the 1B2g orbital of Figure 6-29b. 
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Figure  6-29. Contour diagrams of some molecular orbitals of benzene: (a) (r orbitals. (Con- 

tinued on next page) 

The two Els symmetry SALCs are constructed in Figure 6-32. Compare 
them to the contour diagram of the IEt~ l orbitals in Figure 6-29b. 

Finally, the two E2u symmetry orbltals are expressed as follows: 

p'~,pz(Cl) ~ 2 . E . p z  ~ + ( - 1 ) ' C 6 " P z  ~ + ( - 1 ) ' C 3 " p z  1 + 2.C2"Pz t + ( - l ) ' C ] ' p z ~  

+ ( - l ) ' C ~ ' P z ,  = 2e , ,  - Pz2 - Pz~ + 2Pz, - pz~ - Pz6 

i f ~ p z ( C 1 )  .~ O .E .pz  ~ + l . C 6 . p z  . + ( - 1 ) . C 3 . p z  , + O.C2.pz  , + 1.C~.pz  t 

+ ~ - ~ ) . c ~ . p ~ ,  = pz~ - p ~  + pz~ - p~6 
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Figure 6-29. (Continued) (b) rr orbitals. Reproduced with permission from Ref. [6-12], 
Copyright (1973) Academic Press. 
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Figure 6-30. 
zenc. 

¢l(A1g) + ®3(Alg) ¢~l(Alg) - ¢3(A lg)  

Bonding and antibonding combination of A~e symmetry group orbitals of bcn- 

Their forms are: 

These SALCs correspond to the contour diagram of the 1E2u orbitals (Figure 
6-29b). Figure 6-33 shows the relative energies of the benzene 'rr orbitals. 

6.3.3,3 Short  S u m m a r y  of MO Construct ion 

The steps of  MO construction can now be summarized as follows: 

1. Identify the symmetry of the molecule. 
2. List all atomic orbitals that are intended to be used for MO construc- 

tion. 
3. See whether or not the molecule has a central atom. If it does, then 

look up in the character table the irreducible representations to which 

¢~(B~=I ÷ ez(B~u) $~ (B~u) - SzIB~,,I 

Figure 6.31. Bonding and antibonding combination of B~,, symmetry group orbitals of benzene. 
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Figure 6-32. The two Ele symmetry group orbitals formed from the carbon 2p: orbitals in 
benzene. 

its atomic orbitals belong. If there is no central atom in the molecule, 
proceed to the next step. 

4. Construct group orbitals (SALCs) from the atomic orbitals of like 
atoms. 

5. Use these orbitals as bases for representations of the point group. 
6. Reduce these representations to their irreducible components. 
7. Apply the projection operator to the AOs for each of these irreducible 

representations to obtain the forms of the SALCs. 
8. These SALCs will either be MOs by themselves, or they can be 

combined with other SALCs or central atom orbitals of the same 
symmetry. Each of these combinations will give one bonding and one 
antibonding MO of the same symmetry. 

9. Normalization has been ignored throughout our discussion. However, 
the SALCs must be properly normalized in all calculations [6-4]. 
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Figure 6-33. 
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Relative energies of the benzene "rr orbitals. 

This may be done at the end of the SALC construction, i.e., after step 
7 in our list. 

6.4 QUANTUM-CHEMICAL CALCULATIONS 

The results of quantum chemical calculations usually yield the wave 
functions and the energies of a system. Numerous integrals must be evaluated 
even for the simplest molecules. Their number can be conveniently reduced, 
however, by applying the theorem according to which an energy integral, 
fd2itfld~jdr, is nonzero only if Oi and t~j belong to the same irreducible 
representation of the molecular point group. 

Many chemical and physical properties of the molecule can be calculated, 
including the complete geometry, conformational properties, barrier to inter- 
nal rotation, and relative stabilities of various isomers as well as different 
electronic states. The electron spectroscopic and vibrational spectroscopic 
constants and other parameters can also be determined. The present comments 
focus on just one of the many characteristics of the molecule, viz., its 
equilibrium geometry. State-of-the-art calculations of molecular geometry 
involving relatively light atoms are as reliable as the results of the best 
experiments (cf. Ref. [6-13]). While calculations provide information on the 
equilibrium geometry, the various experiments yield some effective geomet- 
ries for the molecule, averaged over molecular vibrations. Depending on the 
magnitude of these vibrations and their structural influence, the equilibrium 
and average structures may differ to various extents. Examples of rather 
extreme effects were mentioned in Section 3.7.6. The results of calculations 
are less reliable for molecules involving heavier atoms, for example, transition 
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metals. On the other hand, even less sophisticated calculations may be 
instructive if structural differences, rather than absolute values of the struc- 
tural parameters, are sought. Important systematic errors usually cancel in the 
determination of structural differences in calculations as well as in experi- 
ments. The importance of small structural differences in understanding var- 
ious effects in series of substances is increasingly becoming recognized [6-14]. 

Small structural changes are especially important in molecular recogni- 
tion. It has been noted [6-15], for example, that "subtle changes of molecular 
structure may result in severe changes of inclusion behavior of a potential host 
molecule due to the complicated interplay of weak intermolecular forces that 
govern host-guest complex formation." 

Quantum-chemical calculations have proved to be an especially impor- 
tant source of information on small structural differences. In this respect they 
have aided greatly the experimental determination of molecular geometry in 
that they can provide reliable constraints in the experimental analysis (see, 
e.g., the structural analysis of 2-nitrophenol [6-16]). 

For direct comparison of parameters determined experimentally and 
computationally, however, the following caveat has been issued [6-17]: "For 
truly accurate comparison, experimental bond lengths (or, generally, geomet- 
ries) should be compared with computed ones only following necessary 
corrections, bringing all information involved in the comparison to a common 
denominator." 

The difference, however, is not merely practical; it is conceptual as well. 
R. D. Levine [6-18] distinguished between physical and chemical shapes. 
According to him, the physical shape corresponds to a hard space-filling 
model, whereas the chemical shape describes how molecular reactivity de- 
pends on the direction of approach and distance of the other reactant. In terms 
of geometrical representations, the chemical shape can be related to the 
average structures determined from the experiments and the physical shape to 
the motionless equilibrium structure. 

Quantum-chemical calculations are, of course, the exclusive source of 
information for systems that are not amenable to experimental study. Such 
systems may include unstable or even unknown species and transition states. 
These calculations have proved to be complementary with experiments or can 
even be their alternatives. The situation is evolving, and a host of problems 
must still be resolved for individual systems (see, e.g., Reviews in Computa- 
tional Chemistry [6-19]). 

6.5 INFLUENCE OF ENVIRONMENTAL SYMMETRY 

Symmetry has a major role in two widely used and successful theories of 
chemistry, viz., the crystal field and ligand field theories of coordination com- 
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pounds. This topic has been thoroughly covered in textbooks and monographs 
on coordination chemistry. Therefore, it is mentioned here only in passing. 

Bethe [6-20] showed that the degenerate electronic state of a cation is split 
by a crystal field into nonequivalent states. The change is determined entirely 
by the symmetry of the crystal lattice. Bethe's original work was concerned 
with ionic crystals, but his concept has more general applications. When an 
atom or an ion enters a ligand environment, the symmetry of the ligand arrange- 
ment will influence the electron density distribution of that atom or ion. The 
original spherical symmetry of the atomic orbitals will be lost, and the sym- 
metry of the ligand environment will be adopted. As a consequence of the 
decrease of symmetry that usually results, the degree of degeneracy of the 
orbitals decreases. 

The s electrons are already nondegenerate in the free atom, so their 
degeneracy does not change. They will always belong to the totally symmetric 
irreducible representation of the symmetry group. The p orbitals, however, are 
threefold degenerate, and the d orbitals are fivefold degenerate. To determine 
their splitting in a certain point group, we must use them, in principle, as bases 
for a representation of the group. In practice, we can find in the character table 
of the point group the irreducible representations to which the orbitals belong. 
An orbital always belongs to the same irreducible representation as do its 
subscripts. Some orbital splittings that accompany the decrease in environmen- 
tal symmetry are shown in Table 6-10. 

As environmental symmetry decreases, the orbitals will become split to 
an increasing extent. In the C2v point group, for example, all atomic orbitals 
become split into nondegenerate levels. This is not surprising since the C2,. 
character table contains only one-dimensional irreducible representations. 
This result shows at once that there are no degenerate energy levels in this point 
group. This has been stressed in Chapter 4 in the discussion of irreducible 
representations. 

Table 6-10. Splitting of Atomic Orbitals 
in Different Symmetry Environments 

s p d 

Oh ale flu eg + t2g 

T d a I t 2 e + 12 
D~h 0"~ 0". + "rr~ i i  ~. + W ~ + A~ 

D4d a~ b 2 + e~ a I + e 2 + e 3 

Onh al e a2u + e u al x + big + b2e + e e 
C4~ ~ a~ a~ + e a~ + b~ + bz + e 

Cz~, a~ a~ + b~ + b z 2a~ + az + b~ + bz 
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The symmetry of the ligand environment gives an important but limited 
amount of information about orbital splitting. Both the octahedral and cubic 
ligand arrangements, for example, belong to the O h point group, and we can 
tell that the d orbitals of the c9ntral atom will split into a doubly degenerate 
and a triply degenerate pair. Nothing is revealed, however, about the relative 
energies of these two sets of degenerate orbitals. 

The problem of relative energies is dealt with by crystal field theory. This 
theory examines the repulsive interaction between the ligands and the central- 
atom orbitals. Consider first an octahedral molecule (Figure 6-34), and com- 
pare the positions of one eg (e.g., dx~_y2 ) and one t2g (e.g., dyz) orbital. The 
others need not be considered, as they are degenerate with, and thus have the 
same energy as, one of the eg or t2g orbitals. The lobes of the dx~_y2 orbital point 
towards the ligands. The resulting electrostatic repulsion will destabilize this 
orbital, and its energy will increase accordingly. The d w orbital, on the other 
hand, points in directions between the ligands. This is'an energetically more 
favorable position; hence, the energy of this orbital will decrease. 

Examine now the cubic arrangement in Figure 6-35. It can be seen that 
the dy, z orbital is in a more unfavorable situation relative to the ligands than is 
the dx~_y2 orbital, so their relative energies will be reversed (see Figure 6-36). 
Some other typical orbital splittings and the corresponding changes in the 
relative energies are shown in Figure 6-37. 

Prediction of Structural Changes. Crystal field theory is frequently 
applied to account for, and even predict, structural and chemical changes. A 
well-known example is the variation of first-row transition metal ionic radii in 
an octahedral environment [6-21], as illustrated by curve A in Figure 6-38. The 
solid line connects the points for Ca, Mn, and Zn, i.e., atoms with a spherically 
symmetrical distribution of d electrons. Since the shielding of one d electron 
by another is imperfect, a contraction in the ionic radius is expected along this 
series. This in itself would account only for a steady decrease in the radii, 

dxZ-y z dyz 

Figure 6-34. The orientation of the different symmetry d orbitals in an octahedral environment. 
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Figure 6-35. 

d~'.ya dyz 

The orientation of the different symmetry d orbitals in a cubic environment. 

whereas the ionic radii of all the other atoms are smaller than interpolation from 
the C a - M n - Z n  curve would suggest. As is well known, the nonuniform 
distribution of d electrons around the nuclei is the origin of  this phenomenon. 
In the octahedral environment the d orbitals split into orbitals with t2g and e 
symmetry. The electrons, added gradually, occupy tEg orbitals in Sc 2+, Ti 2+, and 
V 2+ as well as in Fe 2+, Co 2+, and Ni 2+, if only high-spin configurations are 
considered. Since these orbitals are not oriented toward the ligands, the degree 
of shielding between the ligands and the positively charged atomic cores 
decreases along with the ionic radius. The fourth electron in Cr 2+ as well as the 
ninth electron in Cu E+ occupy eg symmetry orbitals. The degree of shielding 
thus somewhat increases, and, accordingly, there is a smaller relative decrease 
in the ionic radii. 

The bond length variation among the first-row transition metal dihalides 

Energy 
eg 

e~ / 

CUI~C ocloI'~OI 

Figure 6-36. Relative energies of the d orbitals in an octahedral and a cubic ligand envi- 
ronment. 
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Figure 6-37. The d orbital splittings in different ligand environments. 
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Figure 6-35. The variation of octahedral M e* ionic radii according to Ref. [6-21] (curve A; 
ionic radii from Ref. [6-22]) and of the bond lengths of difluorides (curve B), dichlorides (curve 
C), and dibromides (curve D) in the first transition metal series. 
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has been interpreted in terms of similar symmetry arguments [6-23]. Curves 
B - D  in Figure 6-38 represent the available experimental data on the bond 
lengths of gaseous first-row transition metal difluorides, dichlorides, and 
dibromides, respectively. The solid lines again connect the points for atoms 
that possess spherically symmetrical electron distributions. 

The observed decrease in the bond lengths with increasing atomic number 
is even more pronounced than what was observed for the ionic radii. This 
difference between the slopes of the curves may originate from differences in 
coordination numbers. The coordination number is smaller in the dihalides 
than in the octahedral complexes. The electronic repulsion between the ligand 
lone pairs may counter the attraction by the central atom in the octahedral 
environment and may partially compensate for the imperfect shielding. On the 
other hand, this repulsion probably has a negligibly small influence on the 
metal-halogen bond length in the linear dihalides. 

Even more interesting is the different extent of deviation from the smooth 
curves for the bond lengths and the crystal radii. Here, the explanation may be 
sought by considering molecular symmetry, i.e., the symmetry of the "ligand 
field." The splitting of d orbitals in these linear molecules will be different 
from that in an octahedral environment. Figure 6-39 depicts the two different 
orbital splittings. In the linear dihalides, only the dz2 orbital is oriented toward 
the ligands. Since this is energetically the least favorable orbital, it will be 
occupied only by the fifth and the tenth electrons. Thus, the least shielding 
occurs with the fourth and ninth electrons. Accordingly, the largest deviations 
from the C a - M n - Z n  line could be anticipated for the bond lengths of 
chromium and copper dihalides. According to curve B of Figure 6-38, the 
shortest bond occurs for copper difluoride, indeed. Also, the deviation of the 
chromium difluoride bond length from the continuation of the Mn-Zn line is 
conspicuously large, which is consistent with the prediction. 

In a similar way, the variation of M 3+ octahedral crystal radii can be 

O~ D=,, 

eg og - - \  / - -  
\ / 

.... 0 ,  

t=~. / /  ..... \ \  ~ 

Figure 6-39. The d orbital splittings in an octahedral and a linear ligand environment. 
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Figure 6-40. The variation of octahedral M 3+ ionic radii [6-22] (curve A) and of the bond 
lengths of trifluorides (curve B) in the first transition metal series. 

compared with the bond length variation of transition metal trihalides, as 
shown in Figure 6-40. In this case Sc 3÷ (d °) and Fe3÷(d 5) have spherical d 
subshells, and there is no third such ion (d~°). Curve B in Figure 6-40 
represents the experimental bond lengths for the planar gas-phase trifluorides, 
and the points for S c F  3 and F e F  3 are connected. 

The d orbital splitting in a trigonal planar environment is shown in Figure 
6-41 and is similar to that in the octahedral environment, although the 
degeneracy and the symmetry of the orbitals are different. There are two 
unfavorable orbitals in the trigonal planar situation just as in the octahedral 
situation. Consequently, the same qualitative trend can be expected in the bond 
length variation of M X  3 molecules as in the corresponding M 3+ ions. The 

Oh 0~ eg_\ 

t29 ~ .  o, 

Figure 6-41. Relative energies of the d orbitals in an octahedral and a trigonal planar 
environment. 
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available experimental data fully support this reasoning. The difference be- 
tween the ionic radii and the bond lengths of the trifluorides is nearly constant. 
Accordingly, we can predict CrF 3 to have the shortest bond in its vicinity. The 
overall shortest bond may be similarly predicted for CuF 3. 

6.6 JAHN-TELLER EFFECT 

"Somewhat paradoxically, symmetry is seen to play an important role in 
the understanding of the Jahn-Teller effect, the very nature of which is 
symmetry destruction" [6-24]. Only a brief discussion of this effect, also 
called the "first-order Jahn-Teller effect," will be given here. For more detail, 
we refer the reader to the literature [6-25-6-28]. According to the original 
formulation of the Jahn-Teller effect [6-29], a nonlinear symmetrical nuclear 
configuration in a degenerate electronic state is unstable and gets distorted, 
thereby removing the electronic degeneracy, until a nondegenerate ground 
state is achieved. This formulation indicates the strong relevance of this effect 
to orbital splitting and, generally, to the relationship of symmetry and elec- 
tronic structure as well as molecular vibrations, discussed in previous sections. 
Owing to a coupling of the electronic and vibrational motions of the molecule, 
the ground-state orbital degeneracy is removed by distorting the highly 
symmetrical molecular structure to a lower symmetry structure. 

Jahn-Teller distortion can only be expected if the energy integral 

t°0 l,0t ,6.6, 
has a nonzero value (~0 is the ground-state electronic wave function of the 
high-symmetry nuclear configuration, and q is a normal mode of vibration). 
According to what has already been said about the value of an energy integral 
(Section 4.9.2), this can only happen if the direct product of ~o with itself is, or 
contains, the irreducible representation of the q normal mode of vibration: 

Fq,0.F,0 C Fq (6-7) 

Since ~0 is degenerate, its direct product with itself will always contain the 
totally symmetric irreducible representation and, at least, one other irreducible 
representation. For the integral to be nonzero, q must belong either to the to- 
tally symmetric irreducible representation or to one of the other irreducible 
representations contained in the direct product of ~0 with itself. A vibration 
belonging to the totally symmetric irreducible representation, however, does 
not decrease the symmetry of the molecule. Accordingly, in order to have a 
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Jahn-Teller type distortion, q must belong to one of the other irreducible 
representations. 

Let us see a simple example, the H 3 molecule, which has the shape of an 
equilateral triangle. Its symmetry is D3h , the electronic configuration is a'12e ' , 

and the symmetry of the ground electronic state is E' .  Thus, the electronic state 
of the molecule is degenerate and is subject to Jahn-Teller distortion. 

The symmetry of the normal mode of vibration that can take the molecule 
out of the degenerate electronic state will have to be such as to satisfy Eq. (6-7). 
The direct product of E'  with itself (see Table 6-11) reduces to A'I + A~ + E'.  
The molecule has three normal modes of vibration [(3 × 3) - 6 = 3], and their 
symmetry species are A I + E ' .  A totally symmetric normal mode, A~, does not 
reduce the molecular symmetry (this is the symmetric stretching mode), and 
thus the only possibility is a vibration of E' symmetry. This matches one of the 
irreducible representations of the direct product E ' .E ' ;  therefore, this normal 
mode of vibration is capable of reducing the D3h symmetry of the H 3 molecule. 
These types of  vibrations are called Jahn-Teller active vibrations. 

The two E' symmetry vibrations of the H 3 molecule are the angle bending 
and the asymmetric stretching modes (see Figure 6-42). They lead to the 
dissociation of the molecule into H 2 and H. Indeed, H 3 is so unstable that it 
cannot be observed as it would immediately dissociate into H 2 and H. This is 
one of the reasons why it has been so difficult to find experimental evidence of 
the Jahn-Teller effect. The structures that are predicted to be unstable are often 
not found, and the observed structures axe so different from them that the 
connection is not obvious. Other reasons of the frequent difficulty encountered 
in observing the Jahn-Teller effect will be given later. 

Obviously, only molecules with partially filled orbitals display Jahn- 
Teller distortion. As was shown in Section 6.3.2, the electronic ground state of 
molecules with completely filled orbitals is always totally symmetric and thus 
cannot be degenerate. In comparison with the unstable H 3 molecule, H~- has 

Table 6-11. The D3h Character Table 
and the Reducible Representation E' .E' 

D3h E 2C~ 3C z tr~ 2S 3 3tr~ 

a,, 
,~ 
E' 

a7 
a~ 
E" 

E' .E' 

I 1 1 [ i 1 
1 1 - I  1 1 - 1  
2 - I  0 2 - I  0 
1 1 I - 1  - !  - I  
1 1 - 1  - 1  - 1  l 
2 -1  0 - 2  I 0 

4 1 0 4 1 0 

X2 + y2, ~2 

R~ 
(x, y) (x 2 _ y2, xyl 

2 
(R~, Ry) (xz, yz) 

= A'~ + A': + E' 
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Figure 6-42. 
dissociation. 

The two E' symmetry normal modes of vibration of the H 3 molecule leading to 

only two electrons in an a' t symmetry orbital; therefore, its electronic ground 
state is totally symmetric, and the D3h symmetry triangular structure of this ion 
is stable (see, e.g., Ref. [6-30]). 

Transition metals have partially filled d o r f  orbitals, and therefore their 
compounds may be Jahn-Teller systems. Let us consider an example from 
among the much studied cupric compounds (cf. Ref. [6-21]). Suppose that the 
Cu z+ ion with its d 9 electronic configuration is surrounded by six ligands in an 
octahedral arrangement. We have already seen (Table 6-10 and Figure 6-36) 
that the d orbitals split into a triply (t2g) and a doubly (eu) degenerate level in an 
octahedral environment. For Cu e+ the only possible electronic configuration 
is t 6 e 3 

2g " 
Sguppose now that of the two eu orbitals, d? is doubly occupied while d~_y2 

is only singly occupied. Thus, the two ligands along the z axis are better 
screened from the electrostatic attraction of the central ion, and will move 
farther away from it, than the four ligands in the xy plane. The opposite 
happens if the unpaired electron occupies the d..2 orbital. In both cases the 
octahedral arrangement undergoes tetragonal distortion along the z axis, in the 
former by elongation, and in the latter by compression. The original O h 
symmetry reduces to D4h. The symmetry-reducing vibrational mode herc is of 
E.e symmetry and has the form shown in Figure 6-43. The splitting of d orbitals 
in both environments is given in Table 6-10 and is also shown here: 

O h ~ D4h 

e g -~* Olg + big 
(d,~.2_y2, dz2) (dz2) (d,~._.v 2 ) -  

t2g --) e g + b2g 
(d,z, dvz, dv,) (d~:, d,y) (d~y) 

Figure 6-44 illustrates the tetragonal elongation and compression of an 
octahedron. For the Cu e+ ion the relative energies of the dz: and dxe y2 orbitals 
depend on the location of the unpaired electron. 
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Figure 6-43. The symmetry-reducing vibrational mode of Eg symmetry for an octahedron. 
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Figure 6-44. Tetragonal distortions of the regular octahedral arrangement around a d '~ ion. 
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Consider now a qualitative picture of the splitting of the t2g orbitals. If the 
ligands are somewhat further away along the z axis, their interaction with the 
dx: and dvz orbitals will decrease, and so will their energy compared with that of 
the d~y orbital. This is illustrated on the left-hand side of Figure 6-44. 
Tetragonal compression can be accounted for by similar reasoning (cf. right- 
hand side of Figure 6-44). 

The splitting of the d orbitals in Figure 6-44 shows the validity of the 
"center of gravity rule." One of the eg orbitals goes up in energy as much as the 
other goes down. From among the t2d orbitals, the doubly degenerate pair goes 
up (or down) in energy half as much as the nondegenerate orbital goes down (or 
up). Thus, for the Cu(II) compounds the splitting of the fully occupied 12g 
orbitals does not bring about a net energy change. The same is true for all other 

4 2 symmetrically occupied degenerate orbitals, such as ~ , e , or e . On the other 
• . z g  g . g  . 

hand, the occupancy of the en orb~tals of Cu 2+ ~s unsymmetrical, since two 
electrons go down and only one goes up in energy, and here there is a net 
energy gain in the tetragonal distortion. This energy gain is the Jahn-Teller 
stabilization energy. 

The above example referred to an octahedral configuration. Other highly 
symmetrical systems, for example, tetrahedral arrangements, can also display 
this effect. For general discussion, see, e.g., Refs. [6-25], [6-27], and [6-31]. 

The Jahn-Teller effect enhances the structural diversity of Cu(II) com- 
pounds [6-32]. Most of the octahedral complexes of Cu 2+ , for example, show 
elongated tetragonally distorted geometry. Crystalline cupric fluoride and 
cupric chloride both have four shorter and two longer copper-halogen inter- 
atomic distances, 1.93 vs. 2.27 ~ and 2.30 vs. 2.95/~, respectively [6-32]. 

The square planar arrangement can be regarded as a limiting case of the 
elongated octahedral configuration. The four oxygen atoms are at 1.96 ,~ from 
the copper atom in a square configuration in crystalline cupric oxide, whereas 
the next nearest neighbors, two other oxygen atoms, are at 2.78/~. The ratio of 
the two distances is much larger than that in a usual distorted octahedral 
configuration [6-32]. 

Tetragonal compression around the central Cu ~÷ ion is much rarer. 
K2CuF 4 is an example with two shorter and four longer Cu-F distances, 
viz., 1.95 vs. 2.08 ~k [6-32]. 

There are also numerous cases in which experimental investigation has 
failed to provide evidence for Jahn-Teller distortion. For example, several 
chelate compounds of Cu(II), as well as some compounds containing the 
[Cu(NO2)6 ]4- ion, show no detectable distortion from the regular octahedrai 
structure (see Ref. [6-33] and references therein). 

Bersuker [6-27, 6-28, 6-31] has shown the need for a more sophisticated 
approach to account for such phenomena. We attempt to convey at least the 
flavor of his ideas here. Jahn-Teller distortions are of a dynamic nature in 
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systems under no external influence. This means that there may be many 
minimum-energy distorted structures in such systems. Whether an experiment 
will or will not detect such a dynamic Jahn-Teller effect depends on the 
relationship between the time scale of the physical measurement used for the 
investigation and the mean lifetime of the distorted configurations. If the time 
period of the measurement is longer than the mean lifetime of the distorted 
configurations, only an average structure, corresponding to the undistorted 
high-symmetry configuration, will be detected. Since different physical tech- 
niques have different time scales, one technique may detect a distortion which 
appears to be undetected by another. 

The static Jahn-Teller effect can be observed only in the presence of an 
external influence. Bersuker [6-28, 6-31] stressed this point as the opposite 
statement is often found in the literature. According to the statement criticized, 
the effect is not to be expected in systems where low-symmetry perturbations 
remove electronic degeneracy. According to Bersuker, it is exactly the low- 
symmetry perturbations that make the Jahn-Teller distortions static and thus 
observable. Such a low-symmetry perturbation can be the substitution of one 
ligand by another. In this case one of the previously equivalent minimum- 
energy structures, or a new one, will become energetically more favorable than 
the others. 

The so-called cooperative Jahn-Teller effect is another occurrence of the 
static distortions. Here, interaction, that is, cooperation between different crys- 
tal centers, makes the phenomenon observable. Without interaction, the nuclear 
motion around each center would be independent and of a dynamic character. 

Lattice vibrations tend to destroy the correlation among Jahn-Teller 
centers. Thus, with increasing temperature, these centers may become inde- 
pendent of each other at a certain point, and their static Jahn-Teller effects 
convert to dynamic ones. At this point, the crystal as a whole becomes more 
symmetric. This temperature-dependent static ¢:> dynamic transition is called 
a Jahn-Teller phase transition. Below the temperature of the phase transition, 
the cooperative Jahn-Teller effect governs the situation, providing static 
distortion; the overall structure of the crystal is of a lower symmetry. Above 
this temperature, cooperation breaks down, the Jahn-Teller distortion be- 
comes dynamic, and the crystal itself becomes more symmetric. 

The temperature of the Jahn-Teller phase transition is very high for CuF 2, 
CuCI z, and KzCuF 4 among the examples mentioned above [6-31]. Therefore, 
at room temperature their crystal structures display distortions. Other com- 
pounds have symmetric crystal structures at room temperatures as their Jahn- 
Teller phase transition occurs at lower temperatures. Cupric chelate compounds 
and [Cu(NO2)6] 4- compounds, such as K/PbCu(NO2) 6 and T12PbCu(NO2) 6, 
can be mentioned as examples [6-33]. Further cooling, however, may make 
even these structures distorted [6-33]. 
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Chapter 7 

Chemical Reactions 

The chemical reaction is the "most chemical" event. Our encounter with the 
role of symmetry in chemistry would certainly be one-sided without looking at 
chemical reactions. In fact, this is perhaps the most flourishing, booming area 
today of all chemistry-related applications of the symmetry concept. For this 
very reason, we shall present only a short survey and refer to the vast recent 
literature (see, e.g., Refs. [7-1]-[7-12]). Our discussion fully relies on these 
papers and monographs. 

The first application of symmetry considerations to chemical reactions 
can be attributed to Wigner and Witmer [7-13]. The Wigner-Witmer rules are 
concerned with the conservation of spin and orbital angular momentum in the 
reaction of diatomic molecules. Although symmetry is not explicitly men- 
tioned, it is present implicitly in the principle of conservation of orbital angular 
momentum. The real breakthrough in recognizing the role that symmetry plays 
in determining the course of chemical reactions has occurred only recently, 
mainly through the activities of Woodward and Hoffmann, Fukui, Bader, 
Pearson, and others. 

The main idea in their work is that symmetry phenomena may play as 
important a role in chemical reactions as they do in the construction of 
molecular orbitals or in molecular spectroscopy. It is even possible to make 
certain symmetry-based "selection rules" for the "allowedness" and "forbidden- 
hess" of a chemical reaction, just as is done for spectroscopic transitions. 

Before describing these rules, however, we would like to mention some 
limitations. Symmetry rules can usually be applied to comparatively simple 
reactions, the so-called concerted reactions. In a concerted reaction all relevant 
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changes occur simultaneously; the transformation of reactants into products 
happens in one step with no intermediates. 

At first sight, it would seem logical that symmetry rules can be applied 
only to symmetrical molecules. However, even nonsymmetric reactants can be 
"simplified" to related symmetrical parent molecules. As Woodward and 
Hoffmann put it, they can be "reduced to their highest inherent symmetry" 
[7-3]. This is, in fact, a necessary criterion if symmetry principles are to be 
applied. 

What does this mean'? For example, propylene, H2C=CHCH 3, must be 
treated as its "parent molecule," ethylene. The reason is that it is the double 
bond of propylene which changes during the reaction, and it nearly possesses 
the symmetry of ethylene. Salem calls this feature "pseudosymmetry" [7-7]. 

The statement "a chemical reaction is 'symmetry allowed' or 'symmetry 
forbidden' " should not be taken literally. When a reaction is symmetry 
allowed, it means that it has a low activation energy. This makes it possible for 
the given reaction to occur, though it does not mean that it always will. There 
are other factors which can impose a substantial activation barrier. Such factors 
may be steric repulsions, difficulties in approach, and unfavorable relative 
energies oforbitals. Similarly, "symmetry forbidden" means that the reaction, 
as a concerted one, would have a high activation barrier. However, various 
factors may make the reaction still possible; for example, it may happen as a 
stepwise reaction through intermediates. In this case, of course, it is no longer 
a concerted reaction. 

Most of the symmetry rules explaining and predicting chemical reactions 
deal with changes in the electronic structure. However, a chemical reaction is 
more than just that. Breakage of bonds and formation of new ones are also 
accompanied by nuclear rearrangements and changes in the vibrational behav- 
ior of the molecule. (Molecular translation and rotation as a whole can be 
ignored. ) 

As has been shown previously, both the vibrational motion and the 
electronic structure of the molecules strongly depend on symmetry. This 
dependence can be fully utilized when discussing chemical reactions. 

Describing the structures of both reactant and product molecules with the 
help of symmetry would not add anything new to our previous discussion. 
What is new and important is that certain symmetry rules can be applied to the 
transition state in between the reactants and products. This is indeed the topic 
of the present chapter. 

7.1 POTENTIAL ENERGY SURFACE 

The potential energy surface is the cornerstone of all theoretical studies of 
reaction mechanisms [7-7]. The topography of a potential energy surface 
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contains all possible information about a chemical reaction. However, how this 
potential energy surface can be depicted is another matter. 

The total energy of a molecule consists of the potential energy and the 
kinetic energy of both the nuclei and the electrons. The coulombic energy of 
the nuclei and the electronic energy together represent the whole potential 
energy under whose influence the nuclei carry out their vibrations. Since the 
energies of the (ground and various excited) electronic states are different, each 
state has its own potential energy surface. We are usually interested in the 
lowest energy potential surface, which corresponds to the ground state of the 
molecule. An N-atomic molecule has 3N - 6 internal degrees of freedom 
(a linear molecule has 3N - 5). The potential energy for such a molecule can 
be represented by a (3N - 6)-dimensional hypersurface in a (3N - 5)- 
dimensional space. Clearly, the actual representation of this surface is impos- 
sible in our limited dimensions. 

There are ways, however, to plot parts of the potential energy hypersur- 
face. For example, the energy is plotted with respect to the change of two 
coordinates during a reaction in Figures 7-1a and b. Such drawings help to 
visualize the real potential energy surface. It is like a rough topographic map 
with mountains of different heights, long valleys of  different depths, mountain 
paths, and holes. Since energy increases along the vertical coordinate, the 
mountains correspond to energy barriers, and the holes and valleys to different 
energy minima. 

Studying reaction mechanisms means essentially finding the most eco- 
nomical way to go from one valley to another. Two adjacent valleys are 
connected by a mountain path: this is the road that the reactant molecules must 
follow if they want to reach the valley on the other side, which will correspond 
to the product(s). The top of the pass is called the saddle point  or col. The name 

a b 

Figure 7-1. Three-dimensional potential energy surfaces. (a) Energy hypersurface for 
FSSF~-~SSF 2 isomerization (detail), Reproduced with permission from Solouki and Bock [7-14]. 
Copyright (1977) American Chemical Society. (b) Rotation-inversion surface of CH,,OH 
(detail). Reproduced with permission from Bernardi et al. [7-15]. Copyright (1975) American 
Chemical Society. 
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saddle point refers to the saddle on a horse. Starting from the center of the 
saddle, it is going up in the direction of the head as well as the tail, and it is 
going down in the direction of both sides. The configuration of nuclei at the 
saddle point is sometimes called a transition state, sometimes a transition 
structure, in other cases an activated complex, and yet in other cases a 
supermolecule. Transition state is the most commonly used term, although it is 
somewhat ambiguous (see Section 7.1.1). 

7.1.1 Transition State, Transition Structure 

The region of the potential energy surface indicating the transition state is 
illustrated in Figure 7-2, while a modern sculpture reminiscent of a potential 
energy surface at and around the saddle point is shown in Figure 7-3. 

The term transition state is sometimes used interchangeably with the term 
transition structure, although in a strict sense the two are not identical. 
Transition state is the quasi-thermodynamic state of the reacting system as 
defined by Eyring [7-17]. The transition structure, on the other hand, is the 
molecular structure at the saddle point. As was shown by Houk et al. [7-18], 
when a reaction has a large activation barrier and a slowly varying entropy in 
the region of the potential energy maximum, the transition-state geometry and 

Energy, 

R 
T$ 

R 

Energy ~ 

l&. 
Reoction coordinate 

Figure 7-2. Potential energy surface by Williams [7-16] in the region of the transition structure 
(TS) in different representations: (a) Three-dimensional representation of the saddle-shaped 
potential energy surface; (b) two-dimensional potential energy curve produced by a vertical cut 
through the surface in (a) along the reaction path (indicated by bold dashed line) from reactants 
(R) to products (P); (c) energy contours produced by horizontal cuts through the potential energy 
surface in (a). Adapted with permission from Ref. [7-16]. 
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Figure 7-3. Saddle-shaped sculpture in Madrid, Spain. Photograph by the authors. 

the transition structure are about the same. This is illustrated in Figure 7-4a. 
However, when the barrier of the reaction is low and the entropy varies rapidly 
in the region of the potential energy minimum, the transition-state geometry 
differs from the transition structure (Figure 7-4b). 

As Williams [7-16] stated: 

The transition state is of strategic importance within the field of 
chemical reactivity. Owing to its location in the region of the 
highest energy point on the most accessible route between reactants 
and products it commands both the direction and the rate of 
chemical change. Questions of selectivity ("Which way is it to the 
observed product?") and efficiency ("How easy is it to get there?") 
may be answered by a knowledge of the structure and properties of 
the transition state. 

The development of transition-state theory is due to Eyring and Polanyi 
[7-17], while the term transition state was first used by Evans and Polanyi 
[7-19]. Since then, it has been obvious that the properties of the region between 
the reactants and the products need to be known in order to understand reaction 
mechanisms. However, the lifetime of the transition state is usually less than 
10 -12 s, and, therefore, for a long time this state could only be studied by 
theoretical methods. Only recently have experimental techniques become 
available that make the study of elementary reactions possible in real time. 
Direct measurements of the transition state have been carried out using 
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I! 

Reac t i on  c o o r d i n a t e  = 

I! 

Reac t ion  c o o r d i n a t e  '= 

Figure 7-4. Variation of AG and E along a reaction path, after Houk et al. [7-18]. I, Transition 
structure; 11, transition state. (a) The transition structure and the transition state coincide; (b) the 
transition structure and the transition state differ. Adapted with permission. 

different sophisticated spectroscopic techniques (see, e.g., Refs. [7-20]- 
[7-22]). An example is the laser experiments that make it possible to record 
snapshots of chemical reactions in the femtosecond (10 -~5 s) time scale, thus 
providing direct real-time observations of the transition state [7-22]. 

At the same time, with the ever increasing capabilities of computational 
techniques, it has become possible to calculate the details of transition-state 
geometries and energetics with great precision [7-18]. Due to the increasing 
reliability of quantum-chemical calculations on the one hand and to the 
possibility of real-time experimental observation of transition-state geometries 
on the other, the investigation of the structure and dynamics of elementary 
chemical reactions has become one of the most exciting areas of modern 
chemical research [7-16, 7-18, 7-20]. 

7.1.2 Reaction Coordinate 

How does symmetry come into the picture'? It happens through the 
movement of the nuclei along the potential energy surface. As discussed in 
detail in Chapter 5, all possible internuclear motions of a molecule can be 
resolved into sets of special motions corresponding to the normal modes of the 
molecule. These normal modes already have a symmetry label since they 
belong to one of the irreducible representations of the molecular point group. 
The changing nuclear positions during the course of a reaction are collectively 
described by the term reaction coordinate. In simple cases, we may assume 
that the chemical reaction is dominated by one of the normal modes of 
vibration, and thus this vibrational mode is the reaction coordinate. By 
selecting this coordinate, we may cut a slice through the potential energy 
hypersurface along this particular motion. This was done by Williams [7-16] in 
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Figure 7-2 by cutting a slice of (a) in order to produce (b). Figure 7-2b shows 
the reaction path along the reaction coordinate. Points R and P are minima, 
corresponding to the initial (reactants) and final (product) stages of the 
reaction, while TS is the saddle point corresponding to the transition structure 
and the energy barrier. 

This diagram in Figure 7-2b has several important features. First of all, it 
represents only a slice of the potential energy hypersurface. It is the variation 
along one coordinate, and it is supposed that all the other possible motions of 
the nuclei, that is, all the other normal vibrations, are at their optimum value, 
so their energy is at minimum. Therefore, this reaction path can be taken as a 
minimum energy path. All other possible nuclear motions will be orthogonal to 
the reaction coordinate and will not contribute to it. In other words, if we would 
try to leave the reaction path sideways, that is, along some other vibrational 
mode, the energy would invariably increase. 

Figure 7-2a illustrates this point. The bold line shows the reaction path. It 
goes through a maximum point, which is the reaction barrier. The surface, 
however, rises on both sides of the reaction coordinate. Thus, with respect to 
the energy of the other vibrational coordinates, the reaction follows a minimum 
energy path indeed. 

7.1.3 Symmetry Rules for the Reaction Coordinate 

Symmetry rules to predict reaction mechanisms through the analysis of 
the reaction coordinate were first applied by Bader [7-23] (see, also, Ref. 
[7-24]) and were further developed by Pearson [7-6]. 

The energy variation along the reaction path can be characterized in the 
following way. The energy of all vibrational modes, except the reaction 
coordinate, is minimal all along the path; i.e., 

OE 02E 
0Q i - 0 and ~ / ~  > 0  ( 7 - 1 )  

where Qi is any coordinate (3N - 7 for nonlinear molecules), except Qr, the 
reaction coordinate. With respect to symmetry, these vibrations are unre- 
stricted. (Of course, every normal mode must belong to one or another 
irreducible representation of the molecular point group.) 

The energy variation of the reaction coordinate is different. At every 
point, except at the maximum and minimum values, it is nonzero: 

OE 
OQ-~ * 0 (7-2) 

This is simply the slope of the curve on the potential energy diagram. At the 
minimum points (R and P in Figure 7-2a): 
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dE 02E 
- 0 and > 0 (7-3) 

OQr ~ 

At the saddle point (TS in Figure 7-2a): 

OE O~E 
- 0 and < 0 (7-4) 

OQr ~ 

In order to predict reaction mechanisms and to estimate energy barriers, the 
energy can be expressed in terms of the reaction coordinate using second-order 
perturbation theory in such a way that the expression contains symmetry- 
dependent terms (see Refs. [7-6] and [7-23] for details). 

The expression of energy contains two different types of energy integrals, 

where 00 and ~i are the wave functions of the ground state and an excited state, 
respectively. In the actual calculations, these wave functions are approximated 
by molecular orbitals, but their relationship remains the same. 

Examine now the two energy integrals separately, bearing in mind what 
was said about the conditions necessary for an integral to have nonzero value 
(Chapter 4). The first integral contains only the ground-state wave function. It 
appears in the first-order perturbation energy term that expresses the effect of 
changing the nuclear positions on the original electron distribution. This 
integral will have a nonzero value only if 

F,0.F,o C FQ~ (7-6) 

that is, if the direct product of the representation of ¢0 with itself (a function 
with the same symmetry) contains the representation of Qr. 

Concerning ~0 there are two possibilities: it can be degenerate or non- 
degenerate. If ~0 is degenerate, the molecule will be unstable (this is the case of 
the first-order Jahn-Teller effect; see Section 6.6) and it will undergo a 
distortion that reduces the molecular symmetry and destroys the degeneracy of 
~0- Consider now the case when qJ0 is nondegenerate. We know that the direct 
product of two nondegenerate functions with the same symmetry always 
belongs to the totally symmetric irreducible representation. Therefore, Qr 
must also belong to the totally symmetric irreducible representation so that the 
integral will have a nonzero value. We can conclude that, except at a maximum 
or at a minimum, the reaction coordinate belongs to the totally symmetric 
irreducible representation of the molecular point group. 

The reaction coordinate is just one particular normal mode in the simplest 
case. It must always be, however, a symmetric mode, and this is so even if a 
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more complicated nuclear motion is considered for the reaction coordinate. 
Such a motion can always be written as a sum of normal modes. Of these 
modes, however, only those which are totally symmetric will contribute to the 
reaction coordinate. The nonsymmetric modes may contribute only at the 
extremes of the potential energy function. 

The second integral in Eq. (7-5) appears in the second-order perturbation 
energy term, and it expresses the mixing in of the first excited state into the 
ground state during the reaction: 

(0080,) 
This integral will be nonzero only if the direct product of the representations 
of the wave functions t~ 0 and ~i contains the representation to which the 
reaction coordinate belongs, 

F,0.F,, C Fo~ (7-8) 

This expression contains important information regarding the symmetry of the 
excited states. Only those excited states can participate in the reaction whose 
symmetry matches the symmetry of both the ground state and the reaction 
coordinate. We already know that Qr belongs to the totally symmetric irreduc- 
ible representation except at maxima and minima. This implies that only those 
excited states can participate in the reaction whose symmetry is the same as 
that of the ground state. This information is instrumental in the construction of 
correlation diagrams, as will be seen later. 

The reaction coordinate can possess any symmetry at maxima and 
minima provided that the condition of Eq. (7-8) is fulfilled. This also means 
that at the maximum point the symmetry of the excited state may differ from 
that of the ground state. However, any minute distortion will remove the system 
from the saddle point. The reaction coordinate must then become again totally 
symmetric. How can this happen? Obviously, the answer is by changing the 
point group of the system. By reducing the symmetry, nonsymmetric vibra- 
tional modes may become symmetric, and the reaction coordinate may become 
totally symmetric. This reasoning may even help in predicting how the 
symmetry will be reduced; we just have to find the point group in which the 
reaction coordinate becomes totally symmetric. 

Two examples will illustrate how these rules work. One involves the 
reduction of symmetry which occurs when a linear molecule becomes bent 
[7-6]. The other example involves transforming a planar molecule into a 
pyramidal one. 

For a linear AX 2 molecule of D~h symmetry, the normal mode that 
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Figure 7-5. The effect of the reduction of  symmetry on the reaction coordinate: (a) Bending of a 
linear AX 2 molecule [v2(~r,,) --~ v2(A0]; (b) puckering of a planar AX 3 molecule [v2(A ~) --~ v2(A0]. 

reduces the symmetry to C2,, is the -tr, bending mode (Figure 7-5a). In the Cz~. 
point group, this normal mode becomes totally symmetric. (The other compo- 
nent of the %, mode becomes the rotation of the molecule.) 

For an AX 3 planar molecule the symmetry is D3h. The puckering mode 
(Figure 7-5b) of A~ symmetry reduces the symmetry to C3,,. In the C3,, point 
group, the symmetry of this vibration is A t . 

Concerning the energy integral in Eq. (7-7), Bader [7-23] called attention 
to an interesting phenomenon. If the excited state +i lies very close to the 
ground state +0, a distortion occurs that will push the two states apart. This 
phenomenon is similar to the Jahn-Teller effect and is called the second-order 
Jahn-Teller effect. The symmetry of the distortion is predicted by Eq. (7-7). 

It is stressed that the physical bases for the first-order and the second- 
order Jahn-Teller effects are quite different. The first-order Jahn-Teller effect 
operates between states that are of equal energy and are degenerate, and the 
effect destroys degeneracy by lowering the symmetry. The second-order Jahn- 
Teller effect, on the other hand, appears between states that are only close in 
energy and are not degenerate. The effect here pushes the states further apart. 
The two states, +0 and +i, must belong to the same irreducible representation 
in the new point group as before and can continue to interact, which is not the 
case with the first-order Jahn-Teller effect. 
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7.2 ELECTRONIC STRUCTURE 

7.2.1 Changes during a Chemical Reaction 

A chemical reaction is a consequence of interactions between molecules. 
The electronic aspects of these interactions can be discussed in much the same 
way as the interactions of atomic electron distributions in forming a molecule. 
The difference is that while molecular orbitals (MOs) are constructed from the 
atomic orbitals (AOs) of the constituent atoms, in describing a chemical 
reaction the MOs of the product(s) are constructed from the MOs of the 
reactants. Before a reaction takes place (i.e., while the reacting molecules are 
still far apart), their electron distribution is unperturbed. When they approach 
each other, their orbitals begin to overlap, and distortion of the original electron 
distribution takes place. There are two requirements for a constructive inter- 
action between molecules: symmetry matching and energy matching. These 
two factors can be treated in different ways. The approaches of Fukui [7-1, 
7-2], and of Woodward and Hoffmann [7-3, 7-4] differ somewhat. Since these 
are the two most successful methods in this field, we shall concentrate on them. 
First, the basis of each method will be presented briefly, followed by a few 
classical examples, each of which will be treated in some detail. 

7.2.2 Frontier Orbitals: HOMO and LUMO 

A successful chemical reaction requires both energy and symmetry 
matching between the MOs of the reactants. The requirements are essentially 
the same as in the case of constructing MOs from AOs. Only orbitals of the 
same symmetry and comparable energy can overlap successfully. The strong- 
est interactions occur between those orbitals which are close to each other in 
energy. However, the interaction between filled MOs is destabilizing since the 
energy of one orbital increases by about as much--actual ly a little more- -as  
that of the other decreases (see Figure 7-6a). The most important interactions 
occur between the filled orbitals of one molecule and the vacant orbitals of the 
other. Moreover, since the interaction is strongest for energetically similar 
orbitals, the most significant interactions can be expected between the highest 
occupied molecular orbital (HOMO) of one molecule and the lowest unoccu- 
pied molecular orbital (LUMO) of the other (Figure 7-6b). The labels HOMO 
and LUMO were incorporated by Fukui into a descriptive collective name: 
frontier orbitals. The first article on this topic appeared in 1952 [7-25], and the 
idea has been extended to a host of different reactions in the succeeding years 
(see, e.g., Refs. [7-1] and [7-2]). 

Fukui [7-1] recognized the importance of the symmetry properties of 
HOMOs and LUMOs perhaps for the first time in connection with the Diels- 
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Figure 7-6. (a) Interaction of two filled orbitals. The interaction is destabilizing, and so the 
reaction will not occur. (b) Interaction of  the highest occupied MO (HOMO) of  one molecule with 
the lowest unoccupied MO (LUMO) of another molecule. 

Alder reaction. According to his Nobel lecture [7-12], however, it was only 
after the appearance of the papers by Woodward and Hoffmann in 1965 that he 
"became fully aware that not only the density distribution but also the nodal 
property"--that is, symmetry--"of  the particular orbitals have significance 
i n . . .  chemical reactions." 

The concept of frontier orbitals simplifies the MO description of chemical 
reactions enormously, since only these MOs of the reactant molecules need to 
be considered. Several examples of this approach will be given in Section 7.3. 

7.2.3 Conservation of Orbital Symmetry 

The first papers by Woodward and Hoffmann outlining and utilizing the 
idea of conservation of orbital symmetry appeared in 1965 [7-26-7-28]. Salem 
[7-7] called the discovery of orbital symmetry conservation a revolution in 
chemistry: 

It was a major breakthrough in the field of chemical reactions in 
which notions preexisting in other fields (orbital correlations by 
Mulliken, and nodal properties of orbitals in conjugated systems, 
by Coulson and Longuet-Higgins) were applied with great concep- 
tual brilliance to a far-reaching problem. Chemical reactions were 
suddenly adorned with novel significance. 

The idea and the principles of drawing correlation diagrams follows 
directly from the atomic correlation diagrams of Hund [7-29] and of Mulliken 
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[7-30]. They are very useful for predicting the "allowedness" of a given 
concerted reaction. In constructing correlation diagrams, both the energy and 
the symmetry aspects of the problem must be considered. On one side of the 
diagram the approximate energy levels of the reactants are drawn, while on the 
other side those of the product(s) are indicated. A particular geometry of 
approach must be assumed. Furthermore, the symmetry properties of the 
molecular orbitals must be considered in the framework of the point group of 
the supermolecule. In contrast to the frontier orbital method, it is not neces- 
sarily the HOMOs and LUMOs that are considered. Instead, attention is 
focused upon those molecular orbitals which are associated with bonds that are 
broken or formed during the chemical reaction. We know that each acceptable 
molecular orbital must belong to one irreducible representation of the point 
group of the system. At least for nondegenerate point groups, this MO must be 
either symmetric or antisymmetric with respect to any symmetry element that 
may be present. (The character under any operation is either 1 or - 1 . )  

Among all possible symmetry elements, those must be considered which 
are maintained throughout the approach and which bisect bonds that are either 
formed or broken during the reaction. There must always be at least one such 
symmetry element. The next step is to connect levels of like symmetry without 
violating the so-called noncrossing rule. According to this rule, two orbitals 
of the same symmetry cannot intersect [7-31]. Thus, the correlation diagram is 
completed. These diagrams yield valuable information about the transition 
state of the chemical reaction. The method will be illustrated with examples in 
Section 7.3. 

7.2.4 Analysis in Maximum Symmetry 

In the analysis in maximum symmetry approach two points are considered 
when predicting whether or not a chemical reaction can occur. One such point 
involves the allowedness of an electron transfer from one orbital to another. 
The other involves consideration of the reaction-decisive normal vibration. In 
both cases symmetry arguments are used. This approach, developed by Halevi 
[7-10, 7-32, 7-33], is thorough and rigorous. It is similar in part to the Bader/ 
Pearson method and in part to the Woodward-Hoffmann method. It incorpo- 
rates several features of each of these methods. First, the transformation of both 
the molecular orbitals (electronic structure) and the displacement coordinates 
(vibration) are examined in the context of the full symmetry group of the 
reacting system. All ways of breaking the symmetry of the system are 
explored, and no symmetry elements which are retained along the pathway are 
ignored. The correlation diagrams are called "correspondence diagrams" in 
this approach to distinguish them from the Woodward-Hoffmann diagrams. 

Halevi's method to determine whether a chemical reaction is allowed or 
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forbidden considers both the electronic and vibrational changes in the mole- 
cule. Of course, its high degree of rigor may render its application more 
complicated as compared with the methods which focus only upon changes in 
the electronic structure. The approaches introduced by Fukui and Woodward 
and Hoffmann, mentioned previously, seem to have received more widespread 
acceptance and utilization. 

7.3 EXAMPLES 

7.3.1 Cycloaddition 

7.3.1.1 Ethylene Dimerization 

The interaction of two ethylene molecules will be considered in two 
geometrical arrangements. The two molecules adopt a mutually parallel 
approach in one arrangement and a mutually perpendicular approach in the 
other. Applications of various methods will be considered briefly. 

a. Parallel Approach, HOMO-LUMO. According to the frontier or- 
bital method, only the HOMOs and the LUMOs of the two ethylene molecules 
need to be considered. A further simplification is introduced in the pictorial 
description of the interactions. Although the molecular orbitals of the reactants 
are used to construct the MOs of the products, the former are usually drawn 
schematically as the atomic orbitals from which they are built. The reason is 
that the form of the atomic orbitals is better defined and better understood than 
is the form of the molecular orbitals, unless one resorts to actual molecular 
orbital calculations. 

The MOs of ethylene can be constructed according to the principles given 
in the preceding chapter. The HOMO of ethylene is the bonding MO, and the 
LUMO is the antibonding MO composed of the two p., orbitals of carbon. These 
MOs are of B~, and B.2 ~ symmetry, respectively, in the D2h point group. Figure 
7-7 shows them both ~n a simplified way along with the corresponding contour 
diagrams. 

Consider first the frontier orbital interactions between two ethylene 
molecules that approach one another in parallel planes ("face to face"). Their 
HOMOs and LUMOs are indicated in Figure 7-8 on the left and right, 
respectively. Also shown is the behavior of these orbitals with respect to the 
symmetry plane bisecting the two breaking ~ bonds. Since the HOMOs are 
symmetric and the LUMOs are antisymmetric with respect to this operation, 
there is a symmetry mismatch between the HOMO of one molecule and the 
LUMO of the other. The symmetry-allowed combination is between the two 
filled HOMOs. Since the interaction of two filled molecular orbitals of the same 
energy is destabilizing, the reaction will not occur thermally. 
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Figure 7-7. The HOMO and LUMO of ethylene. The contour diagrams are reproduced by 
permission from Ref. [7-34]. Copyright (1973) Academic Press. 

b. Parallel Approach,  Correlation Diagram. Now consider  the eth- 
y lene d imer iza t ion  using the W o o d w a r d - H o f f m a n n  approach.  There is again 
the impor tant  condi t ion ment ioned before which must  be fulfilled: for the 
whole  react ing system,  at least  one s y m m e t r y  e lement  must  persist  throughout  
the entire process.  Let  us cons ider  the react ion in this respect .  Each separated 

ethylene O" 0" ethylene 

~ ~-'~-~-" LUMO 

HOMO -" I 
- "  HOMO 

: ;  

Figure 7-8. Frontier orbital interactions in the face-to-face approach of two ethylene molecules. 
S indicates symmetric and A indicates antisymmetric behavior with respect to the o-" symmetry 
plane. 
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ethylene molecule has D2h symmetry When two of these molecules approach 
one another with their molecular planes parallel as shown in Figure 7-9, the 
whole system retains this symmetry. Finally, the product cyclobutane is of D4h 
symmetry. Since D2h is a subgroup of O4h, the symmetry elements of O2h 
persist. 

One of the symmetry elements in the D2h point group is the symmetry 
plane tr' (Figure 7-9). All of the MOs considered in this reaction, that is, those 
associated with the broken 7r bonds of the two ethylene molecules and the two 
new tr bonds of cyclobutane, lie in the plane of this symmetry element. All of 
them will be symmetric to reflection in this plane. There will be no change in 
their behavior with respect to this symmetry operation during the reaction. This 
brings us back to a very important point in the construction of correlation 
diagrams: the symmetry element chosen to follow the reaction must bisect 
bonds broken or made during the process. Adding extra symmetry elements, 
like or' above, will not change the result. It is not wrong to include them; it is 
just not necessary. Considering, however, only such symmetry elements could 
lead to the erroneous conclusion that every reaction is symmetry allowed. 

As was found to be the case when constructing MOs from AOs, the 
symmetry of the reacting system as a whole must be considered rather than just 
the symmetry of the individual molecules alone. Figure 7-10 illustrates this 
point with respect to one of the reflection planes. The ~r plane transforms the 
MO drawn as the two Pz orbitals of the two carbon atoms of one ethylene 
molecule into the molecular orbital of the other ethylene molecule. Thus, each 
MO of the reacting system has a contribution from each p~ orbital. 

The possible combinations of the ~r and "rr* orbitals of the two ethylene 

C2 

D~̂  ~,¢~¢-" 

+ = 

D2h ~.. ~¢ - 
~ x  Ci 

%~'" 
~': f- 

/~2h 

Figure 7-9. The symmetry of reactants, transition structure, and product in the face-to-face 
dimerization of ethylene. 
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Figure  7-10. The w MO of one ethylene molecule alone does not belong to any irreducible 
representation of the point group of  the system of two ethylene molecules. 

molecules are presented on the left-hand side of Figure 7-11 in order of 
increasing energy. Consideration of these MOs shows that 7rl + w 2 and 
"rr~* + "rr2* are in proper phase to form a bonding MO (that is, closing the ring). 
The right-hand side of Figure 7-11 illustrates this, together with the formation 
of the antibonding orbitals of cyclobutane. 

The construction of the correlation diagram is shown in Figure 7-12. The 
two crucial symmetry elements are indicated in the upper part of the figure. 
The molecular orbitals of the reactants are shown in order of increasing energy 
at the left side of the diagram, and their behavior with respect to these 
symmetry elements is indicated; the corresponding product MOs are shown at 
the right in this same figure. 

Since ~r and ~" are maintained throughout the reaction, there must be a 
continuous correlation of orbitals of the same symmetry type. Therefore, 
orbitals of like symmetry correlate with one another, and they can be con- 
nected. This, the fundamental idea of the Woodward-Hoffmann method, is 
shown in the central part of the diagram. 

Inspection of this correlation diagram immediately reveals that there is a 
problem. One of the bonding orbitals at the left correlates with an antibonding 
orbital on the product side. Consequently, if orbital symmetry is to be 
conserved, two ground-state ethylene molecules cannot combine via face-to- 
face approach to give a ground-state cyclobutane, or vice versa. This con- 
certed reaction is symmetry forbidden*. 

c. State Correlation. The correlation diagram in Figure 7-12 refers to 
molecular orbitals. The molecular orbitals and the corresponding electronic 
configurations are, however, only substitutes for the real wave functions which 
describe the actual electronic states. It is the electronic states that have definite 
energy and not the electronic configurations (cf. Chapter 6). Since electronic 
transitions occur physically between electronic states, the correlation of these 

"Note that considerations of either one of the two crucial symmetry elements, cr and or", alone would 
give the same result. 
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Figure 7-11. Molecular orbitals of the ethylene-ethylene system and the construction of 
molecular orbitals of cyclobutane. (The energy scale refers to the reactant orbitals only.) 

states is of interest. It was Longuet-Higgins and Abrahamson [7-35] who drew 
attention to the importance of state-correlation diagrams. 

The rules for the state correlation diagrams are the same as for the orbital 
correlation diagrams; only states that possess the same symmetry can be 
connected. In order to determine the symmetries of the states, first the 
symmetries of the MOs must be determined. These are given for the face-to- 
face dimerization of ethylene in Table 7-1. The D2h character table (Table 7-2) 
shows that the two crucial symmetry elements are the symmetry planes ~r(xy) 
and ~r"(~vz). The MOs are all symmetric with respect to the third plane, ~r'(xz) 
(vide supra). The corresponding three symmetry operations will unam- 
biguously determine the symmetry of the MOs. Another possibility is to take 
the simplest subgroup of D2h which already contains the two crucial symmetry 
operations, that is, the C2~. point group (cf. Ref. [7-36]). In these two ap- 
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Figure 7-12. Construction of the correlation diagram for ethylene dimerization with parallel 
approach. S denotes symmetric and A denotes antisymmctric behavior with respect to the 
indicated symmetry planes. Adaptation of Figure 10.19 from Ref. [7-9]. Reprinted by permission 
of Thomas H. Lowry. 
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Table 7-1. The Symmetry of Molecular Orbitals 
in the Face-to-Face Dimerization of Ethylene a 

Ethylene + ethylene 

Character under: 

~.t tY 0"" 

ixz) (xy) (yz) Dzh 

- 1 - 1 b2s 
1 - 1 b3. 

- 1  1 b~,, 

1 1 ag 

Cyclobutane 

Character under: 

Orbital ~ '  tr C'  
occupation Dz~ (xz) (xy) (yz) 

bzs 1 - 1 - 1 
bl. 1 - 1  1 

~ ~ b3u 1 1 - 1 

~ ~ a 1 1 1 g 

erhe orientation of the coordinate axes is given in Figure 7-9. 

proaches, only the designation of the orbitals and states is different; the 
outcome, i.e., the state correlation diagram, is the same. 

In determining the symmetries of the states (see Chapter 6), we must 
remember that states with completely filled orbitals are always totally sym- 
metric. In other cases, the symmetry of the state is determined by the direct 
product of the incompletely filled orbitals. 

• 2 2 The ground-state configuration of the two-ethylene system is a~bl, (see 
Table 7-1). This state is totally symmetric, Ag. The excitation of an electron 
from the HOMO to the LUMO will give the electron configuration a~b~ub3, ,. 
The direct product is 

btu.b3u = b2g 

This yields a state of B2g symmetry. The electronic configuration of the product 
2 2 is agb3u, again with Ag symmetry. This electron configuration corresponds to a 

T a b l e  7 - 2 .  The  D:h Charac te r  Table 

Ozh E C2(z) C2(y) C2(x) i cr(xy) ~r(xz) ~(yz) 

~g 
Blg 
BI~ 
B~ 
A~ 
BIu 
B2u 
B~ 

1 I 

1 1 

1 - 1  

1 - 1  

1 1 

1 I 

1 - I  

1 - 1  

1 

- 1  
1 

- 1  
1 

- 1  
I 

- I  

1 1 1 I I x2, y 2, z" 

- 1  I 1 - 1  - 1  R:  .ry 
- 1 1 - 1 1 - 1 Ry xz  

1 1 - 1 - 1 1 R ,  y z  

1 - 1  - 1  - 1  - I  

- I  - 1  - 1  I 1 z 

- I  - 1  1 - 1  I y 

1 - 1  1 1 - 1  x 
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doubly excited state of the reactants. Finally, the state correlation diagram can 
be drawn (Figure 7-13). 

An obvious connection between states that possess the same electronic 
configuration would be the one indicated by dashed lines in Figure 7-13. This 
does not occur, however, because states of the same symmetry cannot cross. 
This is again a manifestation of the noncrossing rule, which applies to 
electronic states as well as to orbitals. Instead of crossing, when two states are 
coming too close to each other, they will turn away, and so the two ground 
states, both of Ag symmetry, and also two A s symmetry excited states will each 
mutually correlate. 

The solid line connecting the two ground states in Figure 7-13 indicates 
that there is a substantial energy barrier for the ground-state-to-ground-state 
process; this reaction is said to be "thermally forbidden." 

Consider now one electron in the reactant system excited photochemically 
to the B2g state. Since this state correlates directly with the Big state of the 
product, this reaction does not have any energy barrier and may occur directly. 
It is said that the reaction is "photochemically allowed." Indeed, it is an 
experimental fact that olefin dimerization occurs smoothly under irradiation. 

This observation can be generalized. I f  a concerted reaction is thermally 
forbidden, it is photochemically allowed and vice versa; if it is thermally 
allowed, then it is photochemically forbidden. 

Although the state correlation diagram is physically more meaningful 
than the orbital correlation diagram, the latter is usually used because of its 
simplicity. This is similar to the kind of approximation made when the 
electronic wave function is replaced by the products of one-electron wave 
functions in MO theory. The physical basis for the rule that only orbitals of the 

Z b B2g ~ agblu 3u ~ 
/ ~ 

/ ~ 
~ ~ \  

B2g 2 
og b3ublu 

Ag 2 2 
clg b3u 

Figure 7-13. State correlation diagram for the ethylene dimerization. 
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same symmetry can correlate is that only in this case can constructive overlap 
occur. This again has its analogy in the construction of molecular orbitals. The 
physical basis for the noncrossing rule is electron repulsion. It is important that 
this rule applies to orbitals--or states--of the same symmetry only. Orbitals of 
different symmetry cannot interact anyway, so their correlation lines are 
allowed to cross. 

d. Parallel Approach, Orbital Correspondence Analysis. It is worth- 
while to see what additional information can be learned from orbital correspon- 
dence analysis [7-7, 7-10, 7-32]. The correspondence diagram of the ethylene 
dimerization reaction is drawn after Halevi [7-32] in Figure 7-14. It is 
essentially the same as the correlation diagram in Figure 7-12 with the 
following difference: Here the maximum symmetry of the system, D2~ ,, is 
taken into consideration, and the irreducible representation of each MO in this 
point group is shown. The solid lines of the diagram connect molecular orbitals 
of the same symmetry. This is the same as the correlation diagram derived 
from consideration of the crucial symmetries. In addition, we can see that the 
required transition toward producing a stable ground-state cyclobutane would 
be from an MO of bt, symmetry to another MO of b3u symmetry. The symme- 
try of the necessary vibration is given by the direct product of these MOs: 

blu'b3u =- b2g 

The B2g symmetry motion of a rectangle of D2h symmetry would be an in-plane 
vibration that shortens one of the diagonals and lengthens the other: 

~ • 
~ o~ ~ , , .  ~ . . ~ . _ . .  ~ 

, " . " - - - ~ ' "  b 

,,t ! " ,/ 
~ " - ' ~ ¢ ' "  ~ " ' ~  i""  

This result suggests a stepwise mechanism. The first step is the formation 
of a transoid tetramethylene biradical. Then, this intermediate rotates, thereby 
permitting closure of the cyclobutane ring in a second step. Recent high- 
quality ab initio calculations [7-37] support this mechanism. The reverse of 
ethylene dimerization, the pyrolysis of cyclobutane, is experimentally observed 
[7-38]. Both quantum-chemical calculations [7-39] and thermochemical con- 
siderations [7-40] suggest that the pyrolysis proceeds through a 1,4-biradical 
intermediate. This shows the value of the additional information yielded by the 
orbital correspondence approach. 

e. OrthogonalApproach. Let us consider ethylene dimerization in yet 
another approach. Assume that the orientation of the two molecules is orthogonal: 
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There is one symmetry element that is maintained in this arrangement, i.e., the 
C 2 rotation. Considering the behavior of the reactant 7r MOs and the product cr 
MOs under the C 2 operation, the correlation diagram shown in Figure 7-15 can 
be drawn. It shows that both bonding MOs of the reactant side correlate with a 

T 

, °b2g 

Figure 7-14. Correspondence diagram for the face-to-face dimerization of ethylene. After Ref. 
[7-32]; reproduced with permission. 
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Figure 7-15. Correlation diagram for the orthogonal orientation of two ethylene molecules 
in the dimerization reaction. Adaptation of Figure 10.22 from Ref. [7-9]. Reprinted by permission 
of Thomas H. Lowry. 

bonding MO on the product side. There is a net energy gain in the reaction, and 
the process is "thermally allowed." 

One of the ethylene molecules enters the above reaction antarafacially; 
this means that the two new bonds are formed on opposite sides of this 
molecule: 
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The other ethylene molecule enters the reaction suprafacially; this means that 
the two new bonds are formed on the same side of this second molecule: 

\ / 

Thus, in the orthogonal approach the two molecules enter the reaction differ- 
ently: one of them antarafacially and the other suprafacially. On the other hand, 
in the parallel approach of two ethylenes, both molecules enter the reaction 
suprafacially: 

~ 
~ - ~ - ~ ¢  -. 

The following abbreviations are often used in the literature: ~2 s + ,~2 s 
means that both ethylene molecules are approaching in a suprafacial manner, 
while ~2 s + ~r2a indicates that the same molecules are reacting in a process 
which is suprafacial for one component and antarafacial for the other. The 
number ~2 indicates that two ~r electrons are contributed by each ethylene 
molecule. 

Just for the sake of completeness, it is worthwhile mentioning that, 
according to the orbital correspondence analysis, this ~2 s + ~r2a cycloaddition 
of ethylene is also thermally forbidden [7-10, 7-32]. Recent quantum-chemical 
calculations [7-37] reported a transition structure for this thermally allowed 
concerted reaction, but due to steric repulsions between some of the hydro- 
gens, this transition structure is very high in energy. Indeed, this reaction is not 
observed experimentally. 

7.3.1.2 Diels-Alder Reaction 

a. HOMO-LUMO Interaction. Another famous example that demon- 
strates the applicability of symmetry rules in determining the course of 
chemical reactions is the Diels-Alder reaction. It was discussed in Fukui's 
seminal paper [7-1] on the frontier orbital method. Figure 7-16 illustrates the 
HOMOs and LUMOs of ethylene (dienophile) and butadiene (diene). The only 
symmetry element common to both the diene and the dienophile is the 
reflection plane that passes through the central 2,3-bond of the diene and the 
double bond of the dienophile. The symmetry behavior of the MOs with 
respect to this symmetry element is also shown. 

There are two favorable interactions here. One is between the HOMO of 
ethylene and the LUMO of butadiene, and the other is between the HOMO of 
butadiene and the LUMO of ethylene. These two interactions occur simul- 



314 Chapter 7 

Figure 7-16. 
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HOMO-LUMO interaction in the Diels-Alder reaction. 

taneously, There is, however, a difference in the role of these two interactions 
because of their different symmetry behavior. The HOMO of ethylene and the 
LUMO of butadiene are symmetric with respect to the symmetry element that 
is maintained throughout the reaction. There is no nodal plane at this symmetry 
element, so the electrons can be delocalized over the whole new bond. Thus, 
both carbon atoms of ethylene are bound synchronously to both terminal atoms 
of butadiene. 

The situation is different with the other H O M O - L U M O  interaction. 
These orbitals are antisymmetric with respect to the symmetry element, and 
the two ends of the new linkage are separated by a nodal plane. Therefore, two 
separated chemical bonds will form, each connecting an ethylene carbon atom 
with a terminal butadiene carbon atom. From this consideration, it follows that 
the first symmetric interaction is the dominant one. Also, the symmetric pair 
(HOMO of ethylene and LUMO of butadiene) are closer in energy and thus 
give a stronger interaction. 

b. Orbital Correlation Diagram. The ethylene and butadiene mole- 
cules must approach each other in the manner indicated at the top of Figure 
7-17 in order to participate in a concerted reaction. There is only one persisting 
symmetry element in this arrangement, viz., the ~ plane which bisects the 2,3- 
bond of the diene and the double bond of the dienophile. The orbitals affected 
by the reaction are the rr orbitals of  the reactants which will be broken; two new 
~r bonds and one new ~r bond are formed in the product. The "rr orbitals and 
their antibonding pairs for the reactants are shown on the left-hand side of 
Figure 7-17. The new ~r and ~ orbitals, both bonding and antibonding, of the 
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Figure 7-17. Orbital correlation diagram for the ethylene-butadiene cycloaddition. Adaptation 
of Figure 10.20 from Ref. [7-9]. Reprinted by permission of Thomas H. Lowry. 
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product cyclohexene are on the right-hand side of this figure. These are the 
orbitals that are affected by the reaction. The behavior of these orbitals with 
respect to the vertical symmetry plane is also indicated. The correlation 
diagram shows that all the filled bonding orbitals of the reactants correlate 
with filled ground-state bonding orbitals of the product. The reaction, there- 
fore, is symmetry allowed. The predictions that arise by application of the 
correlation method and by application of the HOMO-LUMO treatment are 
identical. 

The ethylene-butadiene cycloaddition is a good example to illustrate that 
symmetry allowedness does not necessarily mean that the reaction occurs 
easily. This reaction has a comparatively high activation energy, 144 kJ/mol 
[7-7]. A large number of quantum-chemical calculations has been devoted to 
this reaction with conflicting results (for recent references, see Ref. [7-18]). It 
seems, however, that the concerted nature of the prototype Diels-Alder 
reaction is well established. The reason for the relatively high activation energy 
is that substantial distortion must occur in the reactants before frontier orbital 
interactions can stabilize the product. 

7.3.2 Intramolecular Cyclization 

a. Orbital Correlation for the Butadiene/Cyclobutene lnterconversion. 
The electrocyclic interconversion between an open-chain conjugated polyene 
and a cyclic olefin is another example for the application of the symmetry rules. 
The simplest case is the interconversion of butadiene and cyclobutene: 

This process can occur in principle in two ways. In one, the two ends of the 
open chain turn in the opposite direction into the transition state. This is called 
a disrotatory reaction. 

b"....~.. 

The other possibility is a conrotatory process, in which the two ends of the 
open chain turn in the same direction. 

. . . .  

b"-..~..... 
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The ring opening of substituted cyclobutenes proceeds at relatively low 
temperatures and always in conrotatory fashion [7-3, 7-41], as illustrated by 
the isomerization of cis- and trans-3,4-dimethylcyclobutene [7-41]: 

H 

CH 3 OH 3 

CH 3 

CH 3 

ell3 
ella 

This stereospecificity is well accounted for by the correlation diagrams 
constructed for the unsubstituted butadiene/cyclobutene isomerization in Fig- 
ures 7-18 and 7-19. Since two double bonds in butadiene are broken and a new 
double bond and a single bond are formed during the cyclization, two bonding 
and two antibonding orbitals must be considered on both sides. The persisting 
symmetry element is a plane of symmetry in the disrotatory process. The 
correlation diagram (Figure 7-18) shows a bonding electron pair moving to an 
antibonding level in the product, and, thus, the right-hand side corresponds to 
an excited-state configuration. The disrotatory ring opening is thus a thermally 
forbidden process. 

Figure 7-19 shows the same reaction with conrotatory ring closure. Here, 
the symmetry element maintained throughout the reaction is the C z rotation 
axis. After connecting orbitals of like symmetry, it is seen that all ground-state 
reactant orbitals correlate with ground-state product orbitals, so the process is 
thermally allowed. 

b. Symmetry of the Reaction Coordinate--Cyclobutene Ring Opening. 
It is interesting to consider the butadiene-cyclobutene reaction from a some- 
what different viewpoint, viz., to determine whether the symmetry of the 
reaction coordinate does indeed predict the proper reaction. Let us look at the 
reaction from the opposite direction, i.e., the cyclobutene ring opening 
process. From the symmetry point of view, this change of direction is 
irrelevant. 

The symmetry group of both cyclobutene and butadiene is C2v, but the 
transition state is of C 2 symmetry in the conrotatory and C s in the disrotatory 
mode. Pearson [7-6] suggested that this reaction might be visualized in the 
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Reactant Symmetry element Product 

Molecular Symmetry Symmetry Molecular 
orbitals o o orbitals 
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Figure 7-18. Correlation diagram for the disrotatory closure of butadiene. Adaptation of Figure 
10.14 from Ref, [7-9]. Reprinted by permission of Thomas H. Lowry. 

following way. In the cyclobutene-butadiene transition, two bonds of cyclo- 
butene are destroyed, to wit the ring-closing g bond and the opposite ar bond. 
Hence, four orbitals are involved in the change, the filled and empty ~r and or* 
orbitals and the filled and empty ,r and ~r* orbitals. These orbitals are indicated 
in Figure 7-20. Their symmetry is also given for the three point groups 
involved. 

Figure 7-21 demonstrates the nuclear movements involved in the conrota- 
tory and disrotatory ring openings. These movements define the reaction 
coordinate, and they belong to the A 2 and the B~ representation of the C2~. point 
group, respectively. 

The two bonds of cyclobutene can be broken either by removing electrons 
from a bonding orbital or by putting electrons into an antibonding orbital. 
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Reactant Symmetry element Product 

Molecular Symmetry Symmetry Molecular 
orbitals C 2 C z orbitals 

~ '  ~ A  

Energy 
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~1 ~ --H--A 

S II , ~  01 

Figure 7-19. Correlation diagram for the conrotatory ring closure in the butadiene-cyclobutene 
isomerization. Adaptation of Figure 10.12 from Ref. [7-9]. Reprinted by permission of Thomas 
H. Lowry. 

Consider the cr --~ rr* and the ,rr --~ ~r* transitions. According to Pearson [7-6], 
the direct product of the two representations must contain the reaction coor- 
dinate: 

o" ~ ~*: a l . a  2 = a 2 

"rr ~ ~r*: b l . b  2 = a 2 

A 2 is the irreducible representation of the conrotatory ring opening motion, so 
this type of ring opening seems possible. We can test the rules further. During a 
conrotatory process, the symmetry of the system decreases to C 2. The 
symmetry of the relevant orbitals also changes in this point group (see Figure 
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Figure 7-20. 

Symmetry 
Cz, C= C, 

a* ~ b~ b a" 

~ *  C1~ G el" 

rc ~ - -  bl b a' 

0 ~ 0  C h 0 G' 

The molecular orbitals participating in the cyclobutene ring opening. 

7-20). Both a t and a 2 become a,  and both b I and b 2 become b. Therefore, these 
orbitals are able to mix. Also, the symmetry  o f  the reaction coordinate 
becomes A. This is consistent with the rule saying that the reaction coordinate, 
except at maxima and minima, must belong to the totally symmetric  represen- 
tation of  the point group. 

The next step is to test whether the disrotatory ring opening is possible. 
The ~r ~ rr* and "rr ~ ~r* transitions obviously cannot be used here, since they 
correspond to the conrotatory ring opening ofA 2 symmetry.  Let us consider the 
~r --~ ~r* and the "rr --~ 7r* transitions: 

Symmetry: 

Conrotatory Disrotatory 

- 

• 

A 2 B~ 

Figure 7-21. The symmetry of the reaction coordinate in the conrotatory and disrotatory ring 
opening of cyclobutene. 
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o"---> tr*: a l . b  2 = b 2 

w -~. 'I1"*: bl 'O 2 = b 2 

Both direct products contain the B e irreducible representation. It corresponds 
to an in-phase asymmetric distortion of the molecule, which cannot lead to ring 
opening. The symmetry of the disrotatory reaction coordinate is B t (Figure 
7-21). Moreover, if we consider the symmetry of the orbitals in the C s 
symmetry point group of the disrotatory transition, it appears that cr and tr* as 
well as 7r and ,rr* belong to different irreducible representations. Hence, their 
mixing would not be possible anyway. The prediction from this method is the 
same as the prediction from the orbital correlation diagrams. While examina- 
tion of the reaction coordinate gives more insight into what is actually 
happening during a chemical reaction, it is somewhat more complicated than 
using orbital correlation diagrams. 

An a b  ini t io calculation for the cyclobutene-to-butadiene ring opening [7-42] 
led to the following observation. In the conrotatory process, first the C--C 
single bond lengthens followed by twisting of the methylene groups. The C-C 
bond lengthening is a symmetric stretching mode of A l symmetry, and the 
methylene twist is an A 2 symmetry process which was earlier supposed to be 
the reaction coordinate. This apparent controversy was resolved by Pearson 
[7-6], who emphasized the special role of the totally symmetric reaction 
coordinate. The effect of the C-C stretch is shown in Figure 7-22. The energies 
of the ~r and ti* orbitals increase and decrease, respectively, as a consequence 
of the bond lengthening. The A t symmetry vibration mode does not change the 
molecular symmetry. The crucial ~r -~  "tr* and "rr ~ ti* transitions, which are 
symmetry related to the A 2 twisting mode, occur more easily. Apparently, the 
large energy difference between these orbitals is the determining factor in the 
actual process. The transition structure for this electrocyclic reaction has been 

O * ~  

O* 
~* ~* 

n: i t  t l  n: 

t~ 0 

0 I I  

C-C stretch 

Figure 7-22. The effect of C--C stretching on the energies of the critical orbitals in the 
cyclobutene ring opening. 
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studied extensively in recent years by means of high-level quantum-chemical 
calculations [7-18]. Their results fully support the conclusions of the above 
reasoning. 

7.3.3 Generalized Woodward-Hoffmann Rules 

The selection rules for chemical reactions derived by using symmetry 
arguments show a definite pattern. Woodward and Hoffmann generalized the 
selection rules [7-3] on the basis of orbital symmetry considerations applied to 
a large number of systems. Two important observations are summarized here, 
and the reader may refer to the literature [7-3, 7-9] for further details. 

a. Cycloaddition. The reaction between two molecules is thermally 
allowed if the total number of electrons in the system is 4n + 2 (n is an integer), 
and both components are either suprafacial or antarafacial. If one component is 
suprafacial and the other is antarafacial, the reaction will be thermally allowed 
if the total number of electrons is 4n. 

b. Electrocyclic Reactions. The rules are similar to those given above. 
A disrotatory process is thermally allowed if the total number of electrons is 4n 
+ 2, and a conrotatory process is allowed thermally if the number of 
delocalized electrons is 4n. For a photochemical reaction, both sets of rules are 
reversed. 

7.4 HOCKEL-MOBIUS CONCEPT 

There are a number of other methods used to predict and interpret 
chemical reactions without relying upon symmetry arguments. It is worthwhile 
to compare at least some of them with symmetry-based approaches. 

The so-called "aromaticity rules" are chosen for comparison, as they 
provide a beautiful correspondence with the symmetry-based Woodward- 
Hoffmann rules. A detailed analysis [7-43] showed the equivalence of the 
generalized Woodward-Hoffmann selection rules and the aromaticity-based 
selection rules for pericyclic reactions. Zimmermann [7-44] and Dewar [7-45] 
have made especially important contributions in this field. 

The word "aromaticity" usually implies that a given molecule is stable, 
compared to the corresponding open-chain hydrocarbon. For a detailed ac- 
count on aromaticity, see, e.g., Ref. [7-46]. The aromaticity rules are based on 
the Htickel-M6bius concept. A cyclic polyene is called a Hiickel system if its 
constituent p orbitals overlap everywhere in phase, i.e., the p orbitals all have 
the same sign above and below the nodal plane (Figure 7-23). According to 
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Figure 7-23. Illustration of a Hfickel ring. Reproduced by permission from Ref. [7-49]. 

323 

Hfickel's rule [7-47], if such a system has 4n + 2 electrons, the molecule will 
be aromatic and stable. On the other hand, a Hfickel ring with 4n electrons will 
be antiaromatic. 

If the Hfickel ring is twisted once, as shown in Figure 7-24a, the situation 
is reversed [7-48]. Therefore, Dewar [7-45] referred to this twisted ring as an 
"anti-H~ickel system." It is also called a "M6bius system" [7-44, 7-49], an 
appropriate name indeed. A M6bius strip is a continuous, one-sided surface 
which is formed by twisting the strip by 180 ° around its own axis and then 
joining its two ends. There is a phase inversion at the point where the two ends 
meet, as seen in Figures 7-24a and b. Figure 7-24c and d depict yet other 
M6bius strips. 

According to Zimmermann [7-44] and Dewar [7-45], the allowcdness of a 
concerted pericyclic reaction can be predicted in the following way. A cyclic 
array of orbitals belongs to the Hfickel system if it has zero or an even number 
of phase inversions. For such a system, a transition state with 4n + 2 electrons 
will be thermally allowed due to aromaticity, while the transition state with 4n 
electrons will be thermally forbidden due to antiaromaticity. 

A cyclic array of orbitals is a M6bius system if it has an odd number of 
phase inversions. For a M6bius system, a transition state with 4n electrons will 
be aromatic and thermally allowed, while that with 4n + 2 electrons will be 
antiaromatic and thermally forbidden. For a concerted photochemical reac- 
tion, the rules are exactly the opposite to those for the corresponding thermal 
process. 

Each of these rules has its counterpart among the Woodward-Hoffmann 
selection rules. There was a marked difference between the suprafacial and 
antarafacial arrangements in the application of the Woodward-Hoffmann 
treatment of cycloadditions. The disrotatory and conrotatory processes in 
electrocyclic reactions presented similar differences. The suprafacial arrange- 
ment in both of the reacting molecules in the cycloaddition as well as the 
disrotatory ring closure in Figure 7-25 correspond to the Hackel system. On 
the other hand, the suprafacial-antarafacial arrangement as well as the con- 
rotatory cyclization have a phase inversion (Figure 7-26), and they can be 
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a 

Figure 7-24. (a) Illustration of a M6bius ring. Reproduced by permission from Ref. [7-49]. 
(b) M6bius strip. Drawing by Gy/Srgy Doczi, Seattle, Washington. (c) M6bius strip on the facade 
of a Moscow scientific institute. Photograph by the authors. (d) M6bius strip sculpture, 
Dependent Beings by John Robinson. Photograph courtesy of Professor Alan L. Mackay, London. 

regarded as M6bius systems. All the selection rules mentioned above are 
summarized in Table 7-3; their mutual correspondence is evident. 

Both the Woodward -Hof fmann  approach and the Hi ickel-M6bius  con- 
cept are useful for predicting the course of  concerted reactions. They both have 
their limitations as well. The application o f  the Hi ickel -M6bius  concept  is 
probably preferable for systems with low symmetry.  On the other hand, this 
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Figure 7-25. 
Hiickel ring. 

Comparison of the disrotatory ring closure and the ~2 s + ~2 s reaction with the 
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Figure 7-26. 
M6bius ring. 

Comparison of the conrotatory ring closure and the ~2 s + ~2 a reaction with the 
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Table 7-3. Selection Rules for 
Chemical Reactions from Different Approaches 

Thermally Thermally 
Approach '~ Reaction allowed forbidden 

1 s + s 4 n  + 2 4n 
a + a  

s + a 4n 4n + 2 

2 Disrotatory 4n + 2 4n 
Conrotatory 4n 4n + 2 

3 HiJckel system: sign inversion even or 0 4n + 2 4n 
M/Sbius system: sign inversion odd 4n 4n + 2 

'q, Woodward-Hoffmann cycloaddition; 2, Woodward-Hoffmann electrocyclic re- 
action; 3 HiJckel-M6bius concept. 

concept can only be applied when there is a cyclic array of orbitals. The 
conservation of orbital symmetry approach does not have this limitation. 

7.5 ISOLOBAL ANALOGY 

So far, our discussion of reactions has been restricted to organic mole- 
cules. However, all the main ideas are applicable to inorganic systems as well. 
Thus, for example, the formation of inorganic donor-acceptor complexes may 
be conveniently described by the HOMO-LUMO concept. A case in point is 
the formation of the aluminum trichloride-ammonia complex (cf. Figure 
3-22). This complex can be considered to result from interaction between the 
LUMO of the acceptor (A1C13) and the HOMO of the donor (NH3). 

The potential of a unified treatment of organic and inorganic systems has 
been expressed eloquently in Roald Hoffmann's Nobel lecture [7-11], entitled 
"Building Bridges between Inorganic and Organic Chemistry." 

The main idea is to examine the similarities between the structures of 
relatively complicated inorganic complexes and relatively simple and well 
understood organic molecules. Then the structure and possible reactions of the 
former can be understood and even predicted by applying the considerations 
that work so well for the latter. Two important points were stressed by 
Hoffmann: 

1. "It is the resemblance of the frontier orbitals of inorganic and organic 
moieties that will provide the bridge that we seek between the 
subfields of our science." 
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2. Many aspects of the electronic structure of the molecules discussed 
and compared are heavily simplified, but "the time now, here, is for 
building conceptual frameworks, and so similarity and unity take 
temporary precedence over difference and diversity." 

One of the fastest growing areas of inorganic chemistry is transition metal 
organometallic chemistry. In a general way, the structure of transition metal 
organometallic complexes can be thought of as containing a transition metal- 
ligand fragment, such as M(CO). 5, M(PF3) 5, M(allyl), and MCp (Cp = cyclo- 
pentadienyl) or, in general, ML n. All these fragments may be derived from an 
octahedral arrangement: 

..I 

- - "  ~ ~ ' M  . .M.._ . ~ M  

I 
In describing the bonding in these fragments, first the six octahedral 

hybrid orbitals on the metal atom are constructed. Hybridization is not 
discussed here, but symmetry considerations are used in constructing hybrid 
orbitals just as in constructing molecular orbitals [7-36]. In an octahedral 
complex, the six hybrid orbitals point toward the ligands, and together they can 
be used as a basis for a representation of the point group. The O h character table 
and the representation of the six hybrid orbitals are given in Table 7-4. The 
representation reduces to 

F h =Atu + Eg + T~ 

Inspection of the O h character table shows that the only possible combination 
from the available nd, (n + 1)s, and (n + 1)p orbitals of the metal is: 

S, Px'Py 'Pz' dx2-y'- ,dz: 
alg tlu eg 

These six orbitals will participate in the hybrid, and the remaining t.~g 
symmetry orbitals (dxz, d:, z, and d~.,,) of the metal will be nonbonding. 

Six ligands approach the six hybrid orbitals of the metal in forming an 
octahedral complex. These ligands are supposed to be donors, or, in other 
words, Lewis bases with even numbers of electrons. Six bonding o" orbitals and 
six antibonding tr* orbitals are formed, with the ligand electron pairs occupy- 
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ing the bonding orbitals as seen in Figure 7-27. As a consequence of the strong 
interaction, all six hybrid orbitals of the metal are removed from the frontier 
orbital region, and only the unchanged metal t2g orbitals remain there. 

We can also deduce the changes that will occur in the five-, four-, and 
three-ligand fragments as compared to the ideal six-ligand case with the help of 
Figure 7-27. The situation is illustrated in Figure 7-28. With five ligands, only 
five of the six metal hybrid orbitals will interact; the sixth orbital, the one 
pointing toward where no ligand is, will be unchanged. Consequently, this 
orbital will remain in the frontier orbital region, together with the tzg orbitals. 
With four ligands, two of the six hybrid orbitals remain unchanged, and with 
three ligands, three. Always, those metal hybrid orbitals which point toward 
the missing ligands in the octahedral site remain unchanged. 

Now we shall seek analogies between transition metal complexes and 
simple, well-studied organic molecules or fragments. In principle, any hydro- 
carbon can be constructed from methyl groups (CH3), methylenes (CH2), 
methynes (CH), and quaternary carbon atoms. They can be imagined as being 
derived from the methane molecule itself, which has a tetrahedral structure: 

The essence of the "isolobal analogy" concept is to establish similarities 
between these simple organic fragments and the transition metal ligand 

t2g 

, -  

L 

L 

I~ L 
Meto[ MLs Ligonds 

Figure 7-27. Molecular orbital construction in an ideal octahedral complex formation. Repro- 
duced by permission from Hoffmann [7-11]. © The Nobel Foundation 1982. 
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Figure 7-28. Molecular orbitals in different ML. transition metal-ligand fragments. Adapted 
with permission from Ref. [7-11]. © The Nobel Foundation 1982. 

fragments and then to build up the organometallic compounds. As defined by 
Hoffmann, "two fragments are called isolobal, if the number, symmetry 
properties, approximate energy and shape of the frontier orbitals and the 
number of electrons in them are similar--not identical, but similar" [7-11]. 
However, the molecules involved are not and need not be either isoelectronic or 
isostructural. 

The first analogy considered here is a dV-metal-ligand fragment, for 
example, Mn(CO) 5, and the methyl radical, CH3: 

01 , 
Q1 

t~g .~ 

d7-ML5  CH 3 

Though the two fragments belong to different point groups, C4,, and C3~ ,, 
respectively, the orbitals that contain the unpaired electron belong to the totally 
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symmetric representation in both cases. Since the three occupied t2e orbitals of 
the ML 5 fragment are comparatively low-lying, the frontier orbital' pictures of 
the two fragments should be similar. If this is so, then they are expected to show 
some similarity in their chemical behavior, notably in reactions. Indeed, both 
of them dimerize, and even the organic and inorganic fragments can codimer- 
ize, giving (CO)sMnCH3: 

, 

/ I .,. / 
~ c - - - - - . _  c . "  ~ M~'~_ ~ ,"  ~ M,~-----.__ c .  

/ l / '1  - - - " ° - -  1,, / ~- 
Following this analogy, the four-ligand d8-ML4 fragments [e.g., Fe(CO) 4] 

arc expected to be comparable with the methylene radical, CH2: 

: o : 

o!  ~ b~ , 

b 2 ~ 01 * 

t~g ~ 

dS-ML~ CH~ 

Both fragments belong to the C2v point group, and the representation of 
the two hybrid orbitals with the unpaired electrons is: 

C2~ E C 2 ~r or' 
F 2 0 0 2 

This reduces to a I + b 2. Although the energy ordering differs in the two 
fragments, this is not important, since both will participate in bonding when 
they interact with another ligand, and their original ordering will thereby 
change anyway. 

Consider the possible dimerization process: two methylene radicals give 
ethylene, which is a known reaction. Similarly, the mixed product, (CO)4FeCH2, 
or at least its derivatives, can be prepared. The Fez(CO) 8 dimer, however, is 
unstable and has only been observed in a matrix [7-50]. This illustrates that the 
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Figure 7-29. (a) The molecular geometry of Sn[Fe2(CO)8I 2. Reproduced by permission from 
Hoffmann [7-11]. © The Nobel Foundation 1982. (b) The organic analog, spiropentane. 

isolobal analogy suggests only the possible consequences of similarity in the 
electronic structure of two fragments. It says nothing, however, about the 
thermodynamic and kinetic stability of any of the possible reaction products. 

Although Fe2(CO) 8 is unstable, it can be stabilized by complexation. The 
molecule in Figure 7-29a consists of two Fe2(CO) 8 units connected through a 
tin atom [7-51]. Using the inorganic/organic analogy, this molecule can be 
compared to spiropentane (Figure 7-29b). 

An example of a d9-ML3 fragment is Co(CO) 3. This is isolobal to a 
methyne radical, CH: 

~ ~ 0 ~ ~ 

01 , ~, , , 

e * * Q1 " *  

~ ~il 

d ~- ML~ CI-I 
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Figure 7-30. Molecular geometries from tetrahedrane to its inorganic analog. Adapted with 
permission from Ref, [7-11]. © The Nobel Foundation 1982. 

Both have C3v symmetry. The representation of the three hybrid orbitals with 
an unpaired electron is: 

C3~. E 2C 2 3o-~, 
F 3 0 ! 

It reduces to a, + e. Again, the ordering is different, but the similarity between 
their electronic structures is obvious. A series of molecules and their sim- 
ilarities are illustrated in Figure 7-30. The first molecule is tetrahedrane, and 
the last one is a cluster with metal -metal  bonds that can be considered as being 
the inorganic analog of tetrahedrane. 

Only a few examples have been given to illustrate the isolobal analogy. 

Table 7°5. Isolobal Analogies 

Transition metal coordination number 
Organic 
fragment 9 8 7 6 5 

CH 3 dt-ML8 d3-ML 7 dS-ML6 dT-ML5 a~-ML4 
CH 2 d2-ML7 d4-ML6 d6-ML~ dS-ML,~ d~°-ML3 
CH d3-ML6 dS-ML5 dT-ML4 dg-ML3 
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Hoffmann and his co-workers have extended thi~ c_oncept to other metal-ligand 
fragment compositions with various d orbital participations. Some of these 
analogies are summarized in Table 7-5. Hoffmann's Nobel lecture [7-11] 
contained several of them, and many more can be found in the references given 
therein and in later works. 
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Chapter 8 

Space-Group Symmetries 

8.1 EXPANDING TO INFINITY 

Up to this point, structures of mostly finite objects have been discussed. Thus, 
point groups were applicable. A simplified compilation of various symmetries 
was presented in Figure 2-41 and Table 2-2. The point-group symmetries are 
characterized by the lack of periodicity in any direction. Periodicity may be 
introduced by translational symmetry. If periodicity is present, space groups 
are applicable for the symmetry description. There is a slight inconsistency 
here in the terminology. Even a three-dimensional object may have point-group 
symmetry. On the other hand, the so-called dimensionality of the space group 
is not determined by the dimensionality of the object. Rather, it is determined 
by its periodicity. The following groups are space-group symmetries, where 
the superscript refers to the dimensionality of the object and the subscript to the 
periodicity. 

Objects or patterns which are periodic in one, two, and three directions 
will have one-, two-, and three-dimensional space groups, respectively. The 
dimensionality of the object/pattern is merely a necessary but not a satisfactory 
condition for the "dimensionality" of their space groups. We shall first 
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describe a planar pattern, after Budden [8-1], in order to get the flavor of space- 
group symmetry. Also, some new symmetry elements will be introduced. 
Later in this chapter, the simplest one-dimensional and two-dimensional space 
groups will be presented. A separate chapter, the next one, will be devoted to 
the obviously most important three-dimensional space groups which character- 
ize crystal structures. 

A pattern expanding to infinity always contains a basic unit, a motif, 
which is then repeated infinitely throughout the pattern. Figure 8-1a presents a 
planar decoration. The pattern shown is only part of the whole as the latter 
expands to infinity! The pattern is obviously highly symmetrical. In Figure 
8-1b, the system of mutually perpendicular symmetry planes are indicated by 
solid lines. Some of the fourfold and twofold rotation axes are also indicated in 

\ 

• ,~ ~ ~ A ~  

• , / i  , " 

" + + + +  
\ \ \ 

F i g u r e  8-1. (a) Part of a planar decoration with two-dimensional space group, after Budden 
[8-1]. (b) Symmetry elements of the pattern shown in (a). (c) Some of the glide reflection planes 
and their effects in the pattern shown in (a). 
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this figure. A new symmetry element in our discussion is the glide reflection, 
which is shown by a dashed line. Some of these glide reflections are indicated 
separately in Figure 8-1c. A glide-reflection plane is a combination of transla- 
tion and reflection. It is a symmetry element that can be present in space groups 
only. The glide-reflection plane involves an infinite sequence of consecutive 
translations and reflections. Whereas in a simple canon, there is only repeti- 
tion of the tune at certain intervals in time, as shown in Figure 8-2a, Figure 
8-2b shows a canon in which the repetition is combined with reflection. Two 
further patterns with glide-mirror symmetry are given in Figure 8-3. They are 
also thought to extend to infinity, at least in our imagination. 

Simple translation is the most obvious synunetry element of the space 
groups. It brings the pattern into congruence with itself over and over again. 
The shortest displacement through which this translation brings the pattern 
into coincidence with itself is the elementary translation or elementary period. 
Sometimes it is also called the identity period. The presence of translation is 
seen well in the pattern in Figure 8-1. The symmetry analysis of the whole 
pattern was called by Budden [8-1] the analytical approach. The reverse 
procedure is the synthetic approach, in which the infinite and often compli- 
cated pattern is built up from the basic motif. Thus, the pattern of Figure 8-1a 
may be built up from a single crochet. There are several ways to proceed. Thus, 
for example, the crochet may be subjected to simple translation, then reflec- 

Xtl-grom,,derato Luuzs He,nrlch I{OHLER (1820--1886) 
:~. ~ . _ _  n z n s n ~. n 

~ - I ~ - o . - - ~ ,  t ,  I ~ . . . . . .  
~ '  l ~ ~ - ~  ~ :~ 
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Figure 8-2. Canons illustrating repetition (a) and repetition combined with reflection (glide- 
mirror symmetry) (b). 
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Figure 8-3. Illustrations of glide mirrors: (a) Pillow edge from Buzs~ik, Hungary; (b) function 
describing simple harmonic motion; reflection occurs following translation along the t axis by 
half a period, T/2. 

tion, and then transverse reflection; these steps are illustrated in Figure 8-4a. 
The horizontal array obtained in this way is a one-dimensional pattern. It can 
be extended to a two-dimensional pattern by simple translation as in Figure 
8-4a or by glide reflection as is shown in Figure 8-4b. Eventually, the complete 
two-dimensional pattern of Figure 8-1 can be reconstructed. In this synthetic 
approach, instead of the single crochet, any other motif combined from it could 
be selected for the start. If the crosslike motif were chosen, which contains 
eight of these crochets, then only translations in two directions would be 
needed to build up the final pattern. To learn most about the structure of a 
pattern, it is advantageous to select the smallest possible motif for the start. 

The one-dimensional space groups are the simplest of the space groups. 
They have periodicity only in one direction. They may refer to one- 
dimensional, two-dimensional, or three-dimensional objects, cf. G11, G~ z, and 
G~ of Table 2-2, respectively. The "infinite" carbon chains of the carbide 
molecules 

present one-dimensional patterns. The elementary translation or identity pe- 
riod is the length of the carbon-carbon double bond in the uniformly bonded 
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Figure 8-4. Pattern generation: (a) Starting with a single crochet, then applying horizontal 
translation/reflection/transverse reflection/vertical translation; (b) applying glide reflection, 
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chain while it is the sum of the lengths of the two different bonds in the chain 
consisting of alternating bonds. As the chain molecule extends along the axis of 
the carbon-carbon bonds, this axis can be called the translation axis. The 
carbon-carbon axis is a singular axis, and it is not polar as the two directions 
along the chain are equivalent. Earlier, we have seen the binary array . . . 
A B A B . . .  in a crystal. The unequal spacings between the atom A and the two 
adjacent atoms B produced a polar axis (cf. Section 2.6 on polarity). 

8.2 ONE-SIDED BANDS 

Figure 8-5 presents two band decorations; one of them has a nonpolar axis 
while the other has a polar axis. An important feature of these patterns is that 
they have a polar singular plane, which is the plane of the drawing. This plane 
is left unchanged during the translation. Such two-dimensional patterns with 
periodicity in one direction are called one-sided bands [8-2]. 

There are altogether seven symmetry classes of one-sided bands. They 
are illustrated in Figure 8-6 for a suitable motif, a black triangle. A brief 
characterization of the seven classes is given here, together with their notation: 

1. (a). The only symmetry element is the translation axis. The transla- 
tion period is the distance between two identical points of the 
consecutive black triangles. 

2. (a)'6. Here the symmetry element is a glide-reflection plane (d). The 
black triangle comes into coincidence with itself after translation 
through half of the translation period (a/2) and reflection in the plane 
perpendicular to the plane of the drawing. 

b 

Figure 8-5. Byzantine mosaics from Ravenna, Italy, with one-dimensional space-group sym- 
metry and polar (a) and nonpolar axes (b). Photographs by the authors. 
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Figure 8-6. The seven symmetry classes of one-sided bands. 

3. (a):2. There is a translation and a twofold rotation axis in this class. 
The twofold rotation axis is perpendicular to the plane of the one- 
sided band. 

4. (a):m. The translation is achieved by transverse symmetry planes in 
this pattern. 

5. (a)'m. Here the translation axis is combined with a longitudinal 
symmetry plane. 

6. (a).ti:m. Combination of a glide-reflection plane with transverse 
symmetry planes characterizes this class. These elements generate 
new ones such as twofold rotation. Consequently, there are alterna- 
tive descriptions of this symmetry class. One of them is by combin- 
ing twofold rotation with glide reflection--the corresponding nota- 
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Figure 8-8. Scheme for establishing the symmetry of a one-sided band, after Crowe [8-5]. 

. 

tion is (a):2"& Another is by combining twofold rotation with 
transverse reflection, for which the notation is (a):2:rn. 
(a).ra:m. This pattern has the highest symmetry, achieved by a 
combination of transverse and longitudinal symmetry planes. In this 
description the twofold axes perpendicular to the plane of the drawing 
are generated by the other symmetry elements. An alternative de- 
scription is (a):2-m. 

Figure 8-7. Illustration of the seven symmetry classes of one-sided bands by Hungarian 
needlework [8-3]. The numbering corresponds to that of Figure 8-6. A brief description of the 
origin of the needlework is given hero: (1) Edge decoration of table cover from Kalocsa, southern 
Hungary; (2) pillow-end decoration from Tolna county, southwest Hungary; (3) decoration 
patched onto a long embroidered felt coat of Hungarian shepherds in Bihar county, eastern 
Hungary; (4) embroidered edge decoration of bed sheet from the 18th century (note the deviations 
from the described symmetry in the lower stripes of the pattern); (5) decoration of shirtfront from 
Kar~id, southwest Hungary; (6) pillow decoration pattern from Torocko (Rimetea), Transylvania, 
Romania; (7) grape-leaf pattern from the territory east of the river Tisza. 
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The seven one-dimensional symmetry classes for the one-sided bands are 
illustrated by patterns of Hungarian needlework in Figure 8-7. This kind of 
needlework is a real "one-sided band." Figure 8-8 presents a scheme to 
facilitate establishing the symmetry class of one-sided bands [8-4, 8-5]. 

8.3 TWO-S IDED BANDS 

If the singular plane of a band is not polar, the band is two-sided. The one- 
sided bands are a special case of the two-sided bands. Figure 8-9a shows a one- 
sided band generated by translation of a leaf motif. Figure 8-9b depicts a two- 
sided band characterized by a glide-reflection plane. There is a translation by 
half of the translation period and then a reflection in the plane of the drawing. 
The leaf patterns are paralleled by patterns of the triangle in Figure 8-9. A new 
symmetry element is illustrated in Figure 8-9c, the twofold (or second-order) 
screw axis, 2 L. The corresponding transformation is a translation by half the 
translation period and a 180 ° rotation around the translation axis. Bands have 
altogether 31 symmetry classes, including the seven one-sided band classes. 

la~ 

a V I~" I I "  

{o)-~ 

b r 1 7  I ~  1 7  I ~  

c E~ ~2:~- 

Figure 8-9. (a) One-sided bands generated by simple translation of the leaf motif and black 
triangle motif. The plane of the drawing is a polar singular plane. (b) Two-sided bands generated 
from the one-sided bands by introducing a glide-reflection plane. The singular plane in the plane 
of the drawing is no longer polar. The glide-reflection plane coinciding with the plane of the 
drawing is labeled d jr [8-2]. Note that the two sides of the leaves are of different color (black and 
white). (c) Two-sided bands generated from the one-sided bands by introducing a screw axis of 
the second order. 2j. 
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Table $-1, Examples of  Notations of  Band 
Symmetr ies  

Noncoordinate Coordinate 
notation (international) notation 

(a) p 1 
(a).c~ p la l  
(a):2 p112 
(a):m pra I 1 
(a)'ra p lml  
(a).2:m =-- (a):2"d =- (a):~i.m pma2 
(a)'ra:m =-- (a):2"rn pmrn2 
(a).21 p2~l 1 
(a)'dl i pl  la 

Table 8-1 gives two different notations for the seven one-sided band classes and 
the two two-sided ones shown in Figure 8-9 as illustrations. 

The so-called coordinate, or international, notation refers to the mutual 
orientation of the coordinate axes and symmetry elements [8-2]. The notation 
always starts with the letter p, referring to the translation group. Axis a is 
directed along the band, axis b lies in the plane of the drawing, and axis c is 
perpendicular to this plane. The first, second, and third positions after the letter 
p indicate the mutual orientation of the symmetry elements with respect to the 
coordinate axes. If  no rotation axis or normal of a symmetry plane coincides 
with a coordinate axis, the number 1 is placed in the corresponding position in 
the notation. The coincidence of a rotation axis, 2 or 2 l, or the normal of  a 
symmetry plane, m or d, with one of the coordinate axes is indicated by placing 
m or a, respectively, in the corresponding position in the notation. 

8.4 RODS, SPIRALS, AND SIMILARITY SYMMETRY 

The "infinite" carbide molecule is, of  course, of  finite width. It is indeed 
a three-dimensional construction with periodicity in one direction only. Thus, 
it has one-dimensional space-group symmetry (G]). It is like an infinitely 
long rod. For a rod, the axis is a singular axis, and there is no singular plane. 
All kinds of symmetry axes may coincide with the axis of the rod, such as a 
translation axis, a simple rotation axis, or a screw-rotation axis. Of  course, 
these symmetry elements, except the simple rotating axis, may characterize the 
rod only if it expands to infinity. As regards symmetry, a tube, a screw, or 
various rays are as much rods as are the stems of plants, vectors, or spiral 
stairways. Considering them to be infinite is a necessary assumption in 
describing their symmetries by space groups. 
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Real objects are not infinite. For symmetry considerations, it may be 
convenient to look only at some portions of  the whole, where the ends are not 
yet in sight, and extend them in thought to infinity. A portion of an iron chain 
and a chain of  beryllium dichloride in the crystal are shown in Figure 8-10. 
Translation from unit to unit is accompanied by a 90 ° rotation around the 
translation axis. A portion of a spiral stairway displaying screw-axis symmetry 
is shown in Figure 8-11a. The imaginary impossible stairway of Figure 8-11b 
indeed seems to go on forever. 

A screw axis brings the infinite rod into coincidence with itself after a 
translation through a distance t accompanied by a rotation through an angle ct. 
The screw axis is of the order n = 360°/et. It is a special case when n is an 
integer. The iron chain and the beryllium dichloride chain have a fourfold (or 
fourth-order) screw axis, 42. Their overall symmetry is (a).m.42:m. For the 
screw axis of  the second order, the direction of the rotation is immaterial. Other 
screw axes may be either left-handed or right-handed. The pair of left-handed 
and right-handed helices of Figure 2-50 is an example. 

a 

gl Cl 

El Cl 

Figure 8-10. Examples of rods with 4 2 s c rew axis: (a) Iron chain in a park near the Royal Palace 
in Madrid; photograph by the authors; (b) beryllium dichloride chain in the crystal. 
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b 

Figure 8-11. (a) A portion of a spiral stairway displaying screw-axis symmetry. Photograph by 
the authors. (b) An impossible stairway with proper space-group symmetry (as xve can walk 
around this stairway ad infinitum). The idea for this drawing originated from a movie poster 
advertising Gliick im Hinterhaus. 

The scattered leaf arrangement around the stems of many plants is a 
beautiful occurrence of screw-axis symmetry in nature. The stem of Plantago 
media shown in Figure 8-12 certainly does not extend to infinity. It has been 
suggested, however, that for plants the plant/seed~plantJseed . . .  infinite 
sequence, at least in time, provides enough justification to apply space groups 
in their symmetry description. Let us consider now the relative positions of the 
leaves around the stem of Plantago media. Starting from leaf "0 , "  leaf "8"  
will be in eclipsed orientation to it. In order to reach leaf " 8 "  from leaf "0 , "  
the stem has to be circled three times. The ratio of the two numbers, viz., 3/8, 
tells us that a new leaf occurs at each three-eighths of the circumference of the 
stem. The ratio 3/8 is characteristic in phyllotaxis, as are 1/2, 1/3, 2/5, and even 
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Figure 8-12. The scattered leaf arrangement (phyllotaxis) of Plantago media. 

5/13. Very little is known about the origin of phyllotaxis. What has been noted 
a long time ago is that the numbers occurring in these characteristic ratios, viz., 

1 , 1 , 2 , 3 , 5 , 8 , 1 3  . . . .  

are members of the so-called Fibonacci series, in which each succeeding 
number is the sum of the previous two. Fibonacci numbers can be observed 
also in the numbers of the spirals of the scales of pine cones as viewed from 
below, displaying 13 left-bound and 8 right-bound spirals of scales as in Figure 
8-13a. Left-bound and right-bound spirals in strictly Fibonacci numbers are 
found in other plants as well. The plate of seeds of the sunflower can be 
considered as if it were a compressed scattered arrangement around the 
stem. Figure 8-13b shows an example. It is most striking that the continuation 
of the ratios of the characteristic leaf arrangements eventually leads to an 
extremely important irrational number, 0.381966 . . . .  expressing the golden 
m e a n  ! 

Returning to screw axes, Figure 8-14 shows an infinite anion with a 10 5 
screw axis [8-6]. An important application of one-dimensional space groups 
is for polymeric molecules in chemistry [8-7]. Figure 8-15 illustrates the 
structure and symmetry elements of an extended polyethylene molecule. The 
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Figure 8-13. (a) Pine cone from below. (b) Sunflower seed plate. 

a . 

b c 

Figure 8-14. The polymeric anion (Agsl6) with a 10 5 screw axis: (a) View along the screw axis; 
the sequence of the atoms from inside to outside is I - A g - I ;  (b) views of the five condensed Agl 4 
tetrahedra from the bottom and from the top. Reproduced from Ref. [8-6] with permission; 
(c) view perpendicular to the molecular axis . 
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Figure 8-15. The structure and translation period (a) and symmetry elements (b) of the 
polyethylene chain molecule. 

translation, or identity, period is shown; this is the distance between two carbon 
atoms separated by a third one. However, any portion with this length may be 
selected as the identity period along the polymeric chain. The translational 
symmetry of polyethylene is characterized by this identity period. In addition, 
there is a host of other symmetries as shown in Figure 8-15. 

Biological macromolecules are often distinguished by their helical struc- 
tures, to which one-dimensional space-group symmetries are applicable. 
Figure 8-16a shows the polypeptide chain of the ot helix, while Figure 8-16b 
depicts a polypeptide molecule in solution. The repeating units are the same in 
the two systems, viz., planar CCONHC skeletons. The linear rodlike structure 
of the a helix is accomplished by the hydrogen bonds, whereas these hydrogen 
bonds are disrupted in solution [8-8]. A double helix, the structure of a 
deoxyribonucleic acid molecule, is shown in Figure 8-17 in two representa- 
tions. The double helix is held together by the hydrogen bonds of the base pairs 
in between the two helices (see, e.g., Ref. [8-9]). 

Whereas helical symmetry is characterized by a constant amount of 
translation accompanied by a constant amount of rotation, in spiral symmetry 
the amounts of translation and rotation change gradually and regularly. A spiral 
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Figure 8-16. (a) Linear, rodlike, helical structure of the a helix. (b) Random chain of the 
polypeptide molecule as the hydrogen bonds of the a helix are disrupted in solution. After Ref. 
[8-8]. Copyright (1957) Scientific American. Used with permission. 
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Figure 8-17. 
Ref. [8-9]. 

Two representations of the double helix of a deoxyribonucleic acid molecule, after 
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may form along a rod or in a plane, and the scattered leaf arrangement and the 
sunflower seed plate may serve as their respective examples. An artistic double 
spiral is seen in Figure 8-18 as detail of a sculpture from the garden of a 
research institute where the structures of biological macromolecules are 
investigated. 

Interesting chemical examples of spirals occur in systems with chemical 
oscillations. Oscillating reactions are often called Belousov-Zhabotinsky 
reactions. B. P Belousov communicated his first observation in an obscure 
Russian medical publication [8-10] in the fifties, and it was followed by A. M. 
Zhabotinsky's first systematic studies [8-11] in the sixties. Although the 
chemical community was somewhat slow in catching up and many viewed the 
first reports on oscillating reactions with skepticism, research on nonlinear 
chemical phenomena has greatly expanded by now along with research on 
nonlinear phenomena in other fields. Recently, K6r6s [8-12] gave an overview 
of oscillations, waves, and spirals in chemical systems. Figure 8-19a illustrates 
the development of spiral structure in a Belousov-Zhabotinsky reaction. 
Incidentally, the two spirals shown make a heterochira[ pair, paralleled by the 
one on a tombstone in Figure 8-19b. 

Figure 8-18. Artistic double spiral. Detail of a sculpture in the garden of the Weizmann 
Institute, Rehovot, Israel. Photograph by the authors. 
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Figure 1t-19. (a) Evolution of a spiral ring pattern in a reacting Belousov-Zhabotinsky system, 
after K6r6s [8-12]. (b) Tombstone in the Jewish cemetery, Prague. Photograph by the authors. 

Spirals abound in Nature. Some examples are shown in Figure 8-20. 
It has been suggested that the spiral shape of the seashell served as an 

example for developing the first screws in ancient times [8-14].* Decorations 
in a spiral shape have been known from the chalcolitic period. The link 
between the spiral decorations and the screw was found recently. It is a bronze 
needle with a special twisted shape. It is supposed to have been produced in the 
Bronze Age. The thread of this bronze needle is shown in Figure 8-21a. 
Sensitive analytical techniques were used to detect small amounts of impuri- 
ties which gave clues as to the origin of the material used for producing the 
needle. A screw as a modern sculpture is seen in Figure 8-21b. 

A gradual and regular change in size may appear by itself, that is, without 
being part of a spiral. A regular change in size characterizes, for example, 
homologous series, such as the alkanes, CnH~+ 2, 

• . . C4HIo, C5H12, C6H14, C7FII6 . . . .  

with the increment of a methylene group, CH 2. Examples from outside 
chemistry are shown in Figure 8-22, where, again, it is up to our imagination to 
extend the series to infinity. All the spirals above and the phenomenon of 
phyllotaxis as well as the homologous series and the series of railway wheels 

"We thank Professor G. Hor~nyi, Budapest, for this reference. 
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Figure 8-20. Examples of spirals in Nature. (a) Galaxy [8-13]. The original photograph was 
taken with a near-infrared filter by Debra Meloy Elmegreen at the 48-inch Schmidt telescope on 
Mount Palomar in California. Image enhancement was made by Bruce Elmegreen, Debra 
Elmegreen, and Philip Seiden at the T. J. Watson Research Center in Yorktown Heights, New 
York. Photograph courtesy of Dr. B. Elmegreen, Yorktown Heights, New York. (b) Nautilus. 
Photograph courtesy of Lloyd Kahn, Bolinas, California. (c) Fern from the Big Island, Hawaii. 
Photograph by the authors. (d) Horn. Photograph courtesy of Fred Lipschultz, Storrs, Connecti- 
cut. (e) Plant from P6cs, Hungary. Photograph by the authors. 
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a 

Figure 8-21. 

b 

(a) Needle from the Bronze Age, after Ronen and Rozenak [8-14]. Photograph 
courtesy of Professor Ronen. (b) Screw as sculpture in Seoul. Photograph by the authors. 

Figure 8-22. Examples of similarity symmetry: (a) Railway wheels, Technical Museum. 
Budapest; (b) mountain goats, Budapest Zoo. Photographs by the authors. 
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and the family of mountain goats in Figure 8-22 can be considered as examples 
of similarity symmetry (see, e.g., Ref. [8-15]). 

8.5 TWO-DIMENSIONAL SPACE GROUPS 

There are altogether 17 symmetry classes of one-sided planar networks. 
Figure 8-23 illustrates them in a way analogous to that in which the seven 
symmetry classes of the one-sided bands were illustrated (Figures 8-6 and 
8-7). The most important symmetry elements and the coordinate notations of 
the symmetry classes are also given. The first letter (p or c) in this notation 
refers to translation. The next three positions carry information on the presence 
of various symmetry elements, where m denotes a symmetry plane, g a glide- 
reflection plane, 2, 3, 4, or 6 a rotation axis. The number 1, or a blank, 
indicates the absence of a symmetry element. The representations of the 
symmetry classes in Figures 8-6 and 8-23 were inspired by the illustrations 
inside the covers of Buerger's Elementary Crystallography [8-16]. Along with 
the purely geometrical configurations, Figure 8-23 presents 17 Hungarian 
needlework patterns. A brief description of their sources is given in the legend 
[8-17]. A scheme for establishing the symmetry class of one-sided two- 
dimensional space groups is given in Figure 8-24 [8-4, 8-5]. 

The lattice of the planar networks with two-dimensional space groups is 
defined by two noncollinear translations. Such a lattice is shown in Figure 
8-25a. Given a particular lattice, the question is, which pair of translations 
should be selected to describe it? An infinite number of choices exists for each 
translation because a line joining any two lattice points is a translation of the 
lattice. Figure 8-25b shows a plane lattice and some of the possible choices for 
translation pairs to describe it. A primitive cell is defined by choices of 
translation pairs such as t~ and t 2 or t 3 and t 4. Only one lattice point is associated 
with each primitive cell. This is understood if each lattice point in Figure 8-25 
is considered to belong to four adjacent cells, or only one-fourth of each point 
to belong to any one cell. As each cell contains four corners, all this adds up to 
one whole point. Alternatively, by displacing any one primitive cell, each 
primitive cell will contain only one lattice point. On the other hand, a multiple 
cell contains one or more lattice points in addition to the one shared at the 
corners. The translation pair t~ and t6, for instance, defines a double cell. A 
cell is called a unit cell if the entire lattice can be derived from it by 
translations. Thus, a unit cell may be either primitive or multiple. The unit cell 
is chosen usually to represent best the symmetry of the lattice. The translations 
selected as the edges of the plane unit cell are a and b, and for a space lattice, a, 
b, and c. The latter are called the crystallographic axes. The angles between the 
edges of the three-dimensional unit cell are et, 13, and "¢, but only ~/is needed 
for the plane lattice. 



360 Chapter 8 

'.' i " ~ ... ? ~. 
• 

," IV v" v" v-  
; : : :  ,: ,, 

I V V V ~ • ':: ~: 'ii: ~: 

~ - - - -  v --' P ' '  P" P" ~ ~ ~: ~ 

. ~ .  ~ ~ 

~ ~ ~  
] ~  ~ v ~ 

- i ~ - I ~  - ~  - 
~ ' ~ I ' ~  I v  1 

~ ~ k ~ i ~  

v ~ v v  

o~ . ' ~ . . ~ . . ~  

- - 

~" I~ '~'1~ .~"1~ " 
- - -  

' v "  ~ "  ~ 
0~ ~ ~ 

Figure 8-23. The 17 symmetry classes of one-sided planar networks, with the most important 
symmetry elements and the notations of the classes indicated. Along with the geometrical 
configurations, Hungarian needlework patterns are presented for illustration. A brief description 
of the origin of these patterns if given here [8-17]: pl  and p4, Patterns of indigo-dyed decorations 
on textiles for clothing, Sellye, Baranya county, 1899; p2, indigo-dyed decoration with palmette 
motif for curtains, currently a very popular pattern; p3, p6, p6mm, p3ml, and p3 Ira, decorations 
with characteristic bird motifs from peasant vests, northern Hungary. (Continued on next page) 
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Figure 8-23. (Continued) pm, decoration with tulip motif for tablecloth, cross-stitched needle- 
work, from the turn of the century. (Continued on next page) 
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Figure 8-23. (Continued) prom2, bed sheet border decoration with pomegranate motif, north- 
west Hungary, 19th century; p4mm, pillow-slip decoration with stars, cross-stitched needlework, 
Transylvania, 19th century; cm, pillow-slip decoration with peacock tail motif, cross-stitched 
needlework, much used throughout Hungary around the turn of the century; cram2, bed-sheet 
border decoration with cockscomb motif, cross-stitched needlework, Somogy county, |9th 
century. (Continued on next page) 
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Figure 8-23. (Continued) pg, from a pattern book of indigo-dyed decorations. P~ipa, Veszpr6m 
county, 1856; pgg2, children's bag decoration, Transylvania, turn of the century; prng2, pillow- 
slip decoration with scrolling stem motif, much used throughout Hungary around the turn of the 
century; p4gm, blouse-arm embroidery, B~ics-Kiskun county, 19th century. 
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Figure 8-24. Scheme for establishing the symmetry of planar networks, after Crowe [8-5]. 
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Figure 8-25. (a) Plane lattice defined by two noncollinear translations. (b) Illustration of 
primitive and unit cells on a plane lattice, after Azaroff [8-18]. Copyright (1960) McGraw-Hill, 
Inc. Used with permission. 

Figure 8-26 shows three planar networks based on the same plane lattice. 
Two and only two lines intersect in each point of  all three networks. Accord- 
ingly, the parallelograms of  all three networks have the same area. All of  them 
are unit cells, in fact, primitive cells. Each of  these parallelograms is deter- 
mined by two sides a and b and the angle 3' between them. These are called the 
cell parameters. 

The general plane lattice (a) shown in Figure 8-27 is called a parallelo- 
gram lattice. The other four plane lattices of  Figure 8-27 are special cases of  
the general lattice. The rectangular lattice (b) has a primitive cell with unequal 
sides. The so-called diamond lattice (c) has a unit cell with equal sides. A 

~,'/././_/~. 
y/y-// 

c I !  

Figure 8-26. Different networks based on the same plane lattice. 



366 Chapter 8 

a b c 

Figure 8-27. 
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The five unique plane lattices (for identification of a through e, see text). 

special case of the diamond lattice is that in which the angle between the equal 
sides of the unit cell is 120 °, and this lattice (d) is then called rhombic, or 
triangular since the short cell diagonal divides the unit cell into two equilateral 
triangles. This lattice may also be considered as having hexagonal symmetry. 
Finally, there is the square lattice (e). 

The five unique plane lattices were described above under the assumption 
that the lattice points themselves have the highest possible symmetry. In this 
case these live unique lattices will have the symmetries listed in Table 8-2. 

When the point-group symmetries are combined with the plane lattices, 
17 two-dimensional space groups can be produced. Severe limitations are 
imposed on the possible point groups that may be combined with lattices to 
produce space groups. Some symmetry elements, such as the fivefold rotation 

Table 8-2. Symmetries of the Five Unique 
Plane Lattices of Figure 8-27 

Space group 

Noncoordinate 
Lattice notation 

Coordinate 
(international) 

notation 

(al Parallelogram lattice (b/a):2 
(b) Rectangular lattice (b:a):2.m 
(c) Diamond Lattice (a/a):2.m 
(d) Hexagonal or triangular lattice (a/a):6.m 
(e) Square lattice (a:a):4"m 

p2 
prom2 
cram2 
p6mm 
p4mm 
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axis, are not compatible with translational symmetry. This will be examined in 
detail in Section 9.3. 

8.5.1 Some Simple Networks 

The simplest two-dimensional space group is represented in four varia- 
tions in Figure 8-28. This space group does not impose any restrictions on the 
parameters a, b, and ",/. The equal motifs repeated by the translations may be 
completely separated from one another, they may consist of disconnected parts, 
they may intersect each other, and, finally, they may fill the entire plane without 
any gaps. Of course, such variations are possible for any of the more 
complicated two-dimensional space groups as well. 

Especially intriguing are those variations which cover the whole available 
surface without gaps. Of the regular polygons, this is possible only with the 
equilateral triangle, the square, and the regular hexagon..For the latter, 
characteristic examples are shown in Figure 8-29, including some in which the 
hexagons have only approximately regular shapes. 

Planar motifs of irregular shape can be used in infinite numbers to 
construct planar patterns completely covering the whole available surface. 

M. C. Escher is especially famous for his periodic drawings which fill the 
plane [8-21]. Their symmetry aspects have been discussed in detail by the 
Dutch crystallographer Caroline MacGillavry [8-22]. The pattern in Figure 
8-30 is from her book. It has pl symmetry. The unit cell is the combination of a 
fish and a boat. 

Canadian crystallographer Franqois Brisse has designed a series of two- 
dimensional space-group drawings related to Canada [8-23]. The series was 

Figure 8-28. The simplest two-dimensional space group in four variations. 
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Figure 8-29. Networks of regular hexagons covering the surface without gaps or overlaps. 
(a) Honeycomb. Photograph courtesy of Professor P~il Zol t~ Or6si, Budapest, 1982. (b) Oil 
platform under construction in the North Sea. Drawn after a lithograph in the 1979 report of the 
Statoil Company, Norway. (c) Columnar basalt joints. Drawing by Ferenc Lantos, after Ref. 
[8-19]. (d) Moth compound eye (magnified approx. × 2000). Courtesy of Dr. J. Morral, The 
University of Connecticut, 1984. (e) Filament material [8-20]. Photograph courtesy of Eric 
Gregory, Waterbury, Connecticut. (f) Structure of graphite layer. 
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a 

Figure 8-30. (a) Escher's periodic drawing of fish and boats with space group pl from 
MacGillavry's book [8-22]. Reproduced with permission from the International Union of 
Crystallography. (b) The unit cell consisting of a fish and a boat. 

dedicated to the XIIth Congress of  the International Union of  Crystallography 
(IUCr), held in Ottawa in 1981. Drawings have been prepared to represent the 
Canadian provinces and territories. One of  them is shown in Figure 8-31. The 
polar bear is a symbol for Canada's  Northwest Territories. Its stylized represen- 
tation is the asymmetric  unit to which first a twofold rotation is applied, and 
then the translations. For unit cell it is convenient to choose two polar bears 

Figure 8-31. (a) Brisse's periodic drawing Northwest Territories. Reproduced with permission 
from La symdtrie bidimensionelle et le Canada [8-23]. (b) The primitive cell and a unit cell 
displaying twofold rotation. 
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related by twofold rotation. White and blue polar bears alternate in the original 
drawing, but the colors are disregarded in the present discussion. 

The symbol of the Xllth IUCr Congress was a unit of  four stylized maple 
leaves related by fourfold rotation. It is shown in Figure 8-32a. The maple leaf 
is Canada's symbol and is shown in a more natural appearance on a stamp. The 
two-dimensional drawing in Figure 8-32b is created by repetition from the 
above unit. Again, the original alternating white/red coloring is disregarded in 

a 

Figure 8-32. (a) The maple leaf and its stylized version. The unit cell displaying fourfold 
rotation was the symbol of the XIIth Congress of the International Union of Crystallography, 
Ottawa, 1981. (b) Brisse's periodic drawing Canada. Reproduced with permission from La 
sym~trie bidimensionelle et le Canada [8-23]. (c) Portuguese tile decoration. Photograph by the 
authors. 
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our discussion. The two-dimensional space group of the pattern is then p4gm 
[8-23]. The pattern shown in Figure 8-32b has already been used by P61ya 
[8-24] among his representations of the 17 two-dimensional space groups. It 
may also be found among typical decorations, both as a two-dimensional 
pattern [8-25] and in its one-dimensional variation as a band ornament [8-26]. 
A Portuguese tile decoration is shown as an example in Figure 8-32c. 

The repetition of the flies, butterflies, falcons, and bats in the Escher 
drawing in Figure 8-33 is accomplished by mirror planes. The two-dimensional 
space group is pmm, and the mirror planes are indicated separately as the 
borders of the primitive cell. The next two periodic drawings were created by 
Khudu Mamedov, an Azerbaijani crystallographer, and appeared in a remark- 
able little book Decorations Remember [8-27]. The space group of the drawing 
Unit), of Figure 8-34 is pl ,  with the basic motif consisting of an old and a young 
man. The repetition of the uniform shapes truly satisfies the requirement of the 
two-dimensional space group. A closer look, however, reveals distinct individ- 
uality of facial expressions, especially for the old men. The other drawing by 
Mamedov in Figure 8-35 is entitled Sea-Gulls. The basic motif is a single sea 
gull. However, the sea gulls turn their heads in alternating directions, and the 
unit cell consists of four sea gulls. 

A comprehensive and in-depth treatise of tilings and patterns has been 
published by Grtinbaum and Shephard [8-28]. 

b 

a 

Figure 8-33. (a) Escher's periodic drawing of flies, butterflies, falcons and bats, from Mac- 
Gillavry's book [8-22]. Reproduced with permission from the International Union of Crystal- 
lography. (b) The primitive cell framed by the square whose sides are parts of the mirror planes in 
the periodic drawing. 
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l'~igure 8-34. Mamedov's periodic drawing Unity [8-27]. 
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Figure 8-35. Mamedov's periodic drawing Sea-gulls [8-27]. 
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8.5.2 Side Effects of Decorations 

Shubnikov and Koptsik [8-2] have analyzed the influence of the various 
space groups of bands and networks on people's perception of movement. A 
one-sided band decoration without a polar axis induces no feeling of move- 
ment. The vertical symmetry planes of the fence and wall in Figure 8-36 act 
as if preventing motion. On the other hand, the bands with polar axes in Figure 
8-37 act as if inducing left-bound (top) and right-bound (middle) movement. 

Figure 8-36. Fence on the Liberty Bridge in Budapest (a) and The Great Wall, off Beijing (b) 
with vertical symmetry planes. Photographs by the authors. 



374 Chapter 8 

twj 
Figure 8-37. Band decorations with polar axis. 

Simple geometrical patterns can achieve similar effects, as seen, for example, 
in Figure 8-5a (inducing motion) and 8-5b (preventing it). 

A symmetry plane always conveys the impression of preventing motion 
perpendicular to it. Symmetry planes are supposed to induce calmness and 
thus may be recommended for decorating the walls of halls for serious 
meetings. Examples are shown in Figure 8-38. On the other hand, the walls of 
dancing halls should probably be decorated with patterns of rotational symme- 
try only (Figure 8-39). The pattern of the Escher-like airline advertisement in 
Figure 8-40 conveys a strong feeling of motion, left-bound, induced by the 
white birds, and right-bound, induced by the dark ones. Thus, translational 
symmetry is combined with antisymmetry. 

8.5.3 Moir(~s 

The so-called Moir6 pattern is created by superimposing infinite planar 
patterns. The resulting pattern is a new two-dimensional network. The simplest 
case is illustrated in Figure 8-41. Two identical systems of lines on transparent 
paper are superimposed. 

The starting and resulting systems have a period of h and d, respectively, 
and they are superimposed at an angle O. These parameters have the following 
relationship: 

h = 2dsin (0/2) 

This expression is well known as the Bragg law in X-ray diffraction of crystals, 
where k is the wavelength of the X rays, d is the distance between atomic layers 
in the crystal, and 0/2 is the angle at which the X rays hit the atomic layer. 

The patterns produced in Figure 8-41 have twofold rotation axes perpen- 
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Figure 8-38. Wall decorations with sym- 
metry planes from the Alhambra, Granada, 
Spain. Photographs by the authors. 
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Figure 8-39. Wall decorations with no 
symmetry planes from the Alhambra, Gra- 
nada, Spain. Photographs by the authors. 
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Figure 8-40. Airline advertisement. There is a color change associated with the reversal of the 
direction of motion. Thus, translational symmetry is combined with antisymmetry. From a 
highway near O'Hare Airport, Chicago. Photograph by the authors. 

dicular to their plane. Thus, the superposition at angle 180 + O will produce 
the same result as that at angle O. 

Figure 8-42 shows the interference of two identical infinite systems of 
small circles at a series of angles. 

Moir6 patterns occur in the most diverse phenomena. Two examples are 
mentioned here. It has been observed that only certain drop sizes cause 
supernumerary bows in a rain shower. The interference pattern produced by 
the rain wave front folding over on itself can be simulated with Moir6 patterns. 

Figure 8-41. Moir6 patterns from the superposition of two line systems at increasing angles. 



Space-Group Symmetries 377 

Figure 8-42. Moir6 patterns from the superposition of two circle systems at increasing angles. 

Figure 8-43. Moir6 patterns simulate the formation of supernumerary bows in rain showers. 
The largcr drops produce closely spaced bows at the top, while at the bottom the smaller drops 
produce more widely spaced bows. After Fraser [8-29], reproduced with permission. 
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Figure 8-44. A model of the Moir6 pattern produced by two misoriented graphite sheets. 
Illustration courtesy of Professor K, Sattler, University of Hawaii. 

Figure 8-45. Werner Witschi and his Moir6 sculptures, Photographs by the authors. 
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This is illustrated in Figure 8-43, after Fraser [8-29]. The spacing in the bows 
clearly depends on the drop size. 

The other example is related to fullerene tubular structures [8-30]. Such 
structures have been generated by vapor condensation of carbon on atomically 
flat graphite surfaces. Due to a misorientation of the top layer relative to the 
second layer, a Moir6 pattern is created whose lattice parameter is determined 
by the angle of misorientation. The structural model of the superpattern 
produced by two misoriented sheets is illustrated by Figure 8-44. 

An analysis of Moir6 patterns has been given by Hans Giger [8-31]. 
Moir6s are often used in artistic expression [8-32]. The work of the Swiss 
sculptor Werner Witschi is illustrated by Figure 8-45. 
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Chapter 9 

Symmetries in Crystals 

• . . But I must speak again about crystals, shapes, colors. There 
are crystals as huge as the colonnade of a cathedral, soft as mould, 
prickly as thorns; pure, azure, green, like nothing else in the world, 
fiery black; mathematically exact, complete, like constructions by 
crazy, capricious scientists, or reminiscent of the liver, the heart 
• . . There are crystal grottos, monstrous bubbles of  mineral mass, 
there is fermentation, fusion, growth of minerals, architecture and 
engineering art . . . Even in human life there is a hidden force 
towards crystallization. Egypt crystallizes in pyramids and ob- 
elisks, Greece in columns; the middle ages in vials; London in 
grinny c u b e s . . .  Like secret mathematical flashes of lightning the 
countless laws of construction penetrate the matter. To equal nature 
it is necessary to be mathematically and geometrically exact. 
Number and phantasy, law and abundance-- these  are the living, 
creative strengths of nature; not to sit under a green tree but to 
create crystals and to form ideas, that is what it means to be at one 
with nature! 

These are the words of Karel ~apek,  the Czech writer, after his visit to the 
mineral collection of the British Museum [9-1].* He added a drawing (Figure 
9-1) to his words to express his humility in front of  these miracles of  nature. 

"The English version cited in the text was kindly provided by Professor Alan L. Mackay. 

381 
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Figure 9-1. (~apek's drawing after his visit to the mineral collection of the British Museum 
[9-1]. Reproduced with permission. 

Figure 9-2 displays a few stamps with crystals from different countries and 
several pictures of crystals. 

The word crystal comes from the Greek krystallos, meaning clear ice. 
The name originated from the mistaken belief that the beautiful transparent 
quartz stones found in the Alps were formed from water at extremely low 
temperatures. By the 18th century the name crystal was applied to other solids 
that were also bounded by many fiat faces and had generally beautiful 
symmetrical shapes. Crystals have also been considered to be mystical. A sad 

Figure 9-2. Crystals: (a) Stamps with crystals. (Continued on next page) 
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Figure 9-2. (Continued) (b) electron microscope pictures; (c) photographs. 
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angel looks hopelessly at the huge rhombohedric crystal in Albrecht DiJrer's 
Melancholia (Figure 9-3). The polyhedron in the picture is a truncated 
~:hombohedron, and there has been considerable discussion as to whether Diirer 
meant a particular mineral by it and, if so, which one [9-2, 9-3]. It was 
concluded that this polyhedron "is simply an exercise in accurate draughts- 
manship and that the art historians have made rather heavy weather of its 
exp l ana t i on . . .  The integral proportions show that no particular mineral was 
intended" [9-3]. Dtirer's drawings have been carefully analyzed by Schr&ter 
[9-4], who "has satisfactorily settled the matter with a technological rather 
than a mystical explanation" [9-3]. 

Space-group symmetries have played an outstanding role in Escher's 
graphic art. So what he wrote about crystals is also of interest [9-5]: 

Long before there were men on this globe, all the crystals grew 
within the earth's crust. Then came a day when, for the very first 

Figure 9-3. Albrecht Diirer's Melancholia. 
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Figure 9-4. 
impurities. 

Different shapes of sodium chloride crystals as a consequence of the influence of  

time, a human being perceived one of these glittering fragments of 
regularity; or maybe he struck against it with his stone ax; it broke 
away and fell at his feet; then he picked it up and gazed at it lying 
there in his open hand. And he marveled. 

There is something breathtaking about the basic laws of 
crystals. They are in no sense a discovery of the human mind; they 
just "are"--they exist quite independently of us. The most that 
man can do is to become aware, in a moment of clarity, that they are 
there, and take cognizance of them. 

The symmetry of the shapes of crystals is their most easily recognizable 
feature. The Russian crystallographer E. S. Fedorov remarked that "the 
crystals glitter with their symmetry." Obviously, this outer symmetry is a 
consequence of the inner structure. However, with the same inner structure, 
crystals may grow into different forms. Besides, under natural conditions, 
crystals seldom grow into their well-known regular forms. Under different 
conditions, in the presence of different impurities, for example, different forms 
may grow. Figure 9-4 shows the influence of impurities upon the form of 
sodium chloride crystals. 

9.1 BASIC LAWS 

It was recognized already in the earliest stages in the history of crystal- 
lography* that the most important characteristic of the outer symmetry of the 

"There is a beautiful book on the history of crystallography: see Ref. [9-6]. 
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crystals is not really the form itself but rather two phenomena expressed by two 
rules. One is the constancy of the angles made by the crystal faces. The other 
is the law of rational intercepts or the law of rational indices. 

Already in 1669 the Danish crystallographer Steno made a detailed study 
of ideal and distorted quartz crystals (Figure 9-5). He traced their outlines on 
paper and found that the corresponding angles of different sections were 
always the same regardless of the actual sizes and shapes of the sections. Thus, 
all quartz crystals, however much distorted from the ideal, could result from 
the same fundamental mode of growth and, accordingly, corresponded to the 
same inner structure. 

Instruments were developed to measure the angles made by the crystal 
faces. In 1780 the contact goniometer (Figure 9-6a) was already in usage. 
Later, for more precise measurement of the interfacial angles, the reflecting 
goniometer was introduced (Figure 9-6b). 

Another interesting phenomenon observed early in crystals is their cleav- 
age. It is characteristic that they break along well-defined planes. The French 
crystallographer Hairy [9-7] noticed that the cleavage rhombs from any calcite 
crystal always had the same interfacial angles. Thus, he suggested that all 
calcite crystals could be built of these fundamental cleavage rhombs. This is 
illustrated in Figure 9-7, which is from Hai.iy's Trait~ de Cristallographie 
[9-7]. From the units shown in Figure 9-7, it is possible to build straight edges 
corresponding to the faces of a cube, as well as inclined edges corresponding to 
the faces of an octahedron. Edges inclined at other edges may also be built. Let 
the dimensions of the cleavage unit be a and b (Figure 9-8); then tan @j = b/a 
and tan O 2 = b/2a, and generally tan O = mb/na, where m and n are rational 
integers. By extension into the third dimension, we may have a reference face 
making intercepts a, b, and c on three axes. The intercepts made by any other 
face must be in the proportion of rational multiples of these intercepts. This is 
called the law of rational intercepts. 

Usually, the crystal faces are described by the reciprocals of the multiples 
of the standard intercepts, hence the name "the law of rational indices." In 
Figure 9-8 three lines are adopted as axes which may also be directions of the 

~ f 

C 

Figure 9-5. Sections of ideal and distorted quartz crystals. 
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(a) Contact goniometer, from Hatiy [9-7]. (b) Reflecting goniometer. 

crystal edges. A reference face ABC makes intercepts a, b, and c on these axes. 
Another face of the crystal, e.g., DEC, can be defined by intercepts a/h, b/k, 
and c/l. Here h, k, and I are simple rational numbers or zero. They are called 
Miller indices. The intercept is infinite if a face is parallel to an axis, and h or 
k or I will be zero. For orthogonal axes the indices of the faces of a cube are 
(100), (010), and (001). The indices of the face DEC in Figure 9-8 are (231). 

The simple cleavage model of Hafiy indeed revealed a lot about the 
structure of crystals. However, it was not generally applicable since cleavages 
do not always lead to cleavage forms which can necessarily fill space by 
repetition, and, as is known, there is only a limited number of space-filling 
polyhedra. 

The characterization of the regularities in the outer form of crystals led to 
the recognition of three-dimensional periodicity in their inner structure. This 
was long before the possibility of determining the atomic arrangements in 
crystals by diffraction techniques had materialized. 

It was 200 years before Dalton and 300 years before X-ray crystallogra- 
phy that Kepler discussed the atomic arrangement in crystals. In his Strena seu 
de nive sexangula [9-8] he presented arrangements of close-packed spheres. 
These are reproduced in Figure 9-9. Incidentally, close packing of spheres was 
invoked and illustrated in Dalton's works (Figure 9-10) in relation to gas 
absorption [9-9]. A close-packed arrangement of cannon balls and a sculpture 
apparently expressing close packing are shown in Figure 9-11. The fundamen- 
tal importance of Kepler's idea is that he correlated, for the first time, the 
external forms of solids with their inner structure. Kepler's search for harmo- 
nious proportions is the bridge between his epoch-making discoveries in 
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Figure 9-8. Inclined edges from cleavage units and illustration for the law of rational intercepts. 

heavenly mechanics and his less widely known but nonetheless seminal ideas 
in what is called today crystallography. As Schneer has remarked [9-10], the 
renaissance era provided a stimulating background for the beginnings of the 
science of crystals. 

It is to be noted that even after the discovery of Hatiy's model, attention 
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Figure 9-9. Illustration of closely packed spheres by Kepler [9-8]. 
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Figure 9-10. Illustration of closely packed spheres by Dalton [9-9]. 

was focused on the packing in crystals. The aim was to find those arrangements 
in space which are consistent with the properties of the crystals. 

The most important characteristic of the crystal structure is the three- 
dimensional periodicity of  the atomic arrangement, for which we find an 
explanation in the dense packing of the participating species. 

The symmetry of the form of the crystal is a consequence of its structure. 
The same high symmetry of the form, however, may be easily achieved for a 
piece of glass by artificial mechanical intervention. By acquiring the same 
outer form as is typical for a piece of diamond, the piece of glass will not 
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Figure 9-11. Examples of close-packed arrangements: (a) Cannon balls, Laconia, New Hamp- 
shire; (b) in an open-air sculpture garden near PEcs, Hungary. Photographs by the authors. 
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acquire all the other properties that the diamond possesses. The difference in 
value has long been recognized. In the India of the sixth century portrayed by 
Kama Sutra of Vatsayana, one of the arts which a courtesan had to learn was 
mineralogy (along with chemistry). If she were paid in precious stones, she 
had to be able to distinguish real crystals from paste [9-11]. 

It is primarily the structure, and, accordingly, the outer and inner 
symmetry properties of the crystal, that determines its many outstanding 
physical properties. The mechanical, electrical, magnetic, and optical proper- 
ties of crystals are all in close conjunction with their symmetry properties (see, 
e.g., Ref. [9-12]). 

In an actual crystal the atoms are in permanent motion. However, this 
motion is much more restricted than that in liquids, let along gases. As the 
nuclei of the atoms are much smaller and heavier than the electron clouds, their 
motion can be well described by small vibrations about the equilibrium 
positions. In our discussion of crystal symmetry, as an approximation, the 
structures will be regarded as completely rigid. However, in modern crystal 
molecular structure determination, atomic motion must be considered (see, 
e.g., Ref. [9-13]). Both the techniques of structure determination and the 
interpretation of the results must include the consequences of the motion of 
atoms in the crystal. Let the poet crystallographer be cited here [9-14]: 

My molecule is sick 
And I have caught the illness too. 
Two atoms have temperatures 
Which are negative, 
And two are not resolved at all. 
How can I find a c u r e - -  
The R-factor is enormous 
And direct methods fail me? 
Perhaps it is not my m6tier, 
To be a structure analyst. 

9.2 THE 32 CRYSTAL GROUPS 

Although the word crystal in its everyday usage is almost synonymous 
with symmetry, there are severe restrictions on crystal symmetry. While there 
are no restrictions in principle on the number of symmetry classes of mole- 
cules, this is not so for crystals. All crystals, as regards their form, belong to 
one or another of only 32 symmetry classes. They are also called the 32 crystal 
point groups. Figures 9-12 and 9-13 illustrate them by examples of actual 
minerals and by stereographic projections with symmetry elements, respectively. 
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Stereographic projection starts by representing the crystal through a set of 
lines perpendicular to its faces. The introduction of this method of representa- 
tion followed soon after the invention of the reflecting goniometer. Let us place 
the crystal in the center of a sphere and extend its face normals to meet the 
surface of the sphere as seen in Figure 9-14a. A set of points will occur on the 
surface of the sphere representing the faces of the crystal. Join now all the 
points in the northern hemisphere to the South Pole, and mark the points on the 
equatorial plane where these connecting lines intersect this plane. This will 
create a representation of the faces on the upper half of the crystal within a 
single circle as seen in Figure 9-14b. Performing a similar operation for the 

b ¢ d 

Figure 9-14. The preparation of the stereographic representation. See text for details. 
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a b c d 

Figure 9-15. Representations of some simple highly symmetrical shapes: (a) Cube; (b) 
tetrahedron; (c) octahedron; (d) rhombic dodecahedron. 

points of the equator (Figure 9-14c) and for the points in the southern 
hemisphere (Figure 9-14d), we arrive at the representation of the whole crystal 
within the circle (Figure 9-14e). The points from the northern hemisphere are 
marked by dots, and those from the southern hemisphere by small circles. 
Some examples for simple polyhedra are shown in Figure 9-15. 

9 .3  R E S T R I C T I O N S  

To have 32 symmetry classes for the external forms of crystals is a definite 
restriction, and it is obviously the consequence of inner structure. The 
translation periodicity limits the symmetry elements that may be present in a 
crystal. The most striking limitation is the absence of fivefold rotation in the 
world of crystals. Consider, for example, planar networks of regular polygons 
(Figure 9-16). Those with threefold, fourfold, and sixfold symmetry cover the 

Figure 9-16. Planar networks of regular polygons with up to eightfold symmetry. 
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available surface without any gaps, while those with fivefold, sevenfold, and 
eightfold symmetry leave gaps on the surface. Figure 9-17 presents two planar 
networks of octagons. It is evident that the regular octagons cannot cover the 
surface without gaps. There are smaller squares among the octagons. 

Let us examine now the possible types of symmetry axes in space groups 
(cf., e.g., Ref. [9-17]). Figure 9-18 shows a lattice row with a period t. An 
n-fold rotation axis, Cn, is placed on each lattice point. Since n rotations, each 
by an angle q~, must lead to superposition, it does not matter in which direction 
the rotations are performed. Two rotations by q0 about two axes but in opposite 
directions are shown in Figure 9-18. The two new lattice points produced this 
way are labeledp and q. These two new points are equidistant from the original 
row, and hence the line joining them is parallel to the original lattice row. The 
length of the parallel line joining p and q must be equal to some integer 
multiple rn of  the period t. Were it not, then the line joining the two new lattice 
points p and q would not be a translation of the lattice, and the resulting array 
would not be periodic. 

Using Figure 9-18, it is possible to determine the possible values that the 
rotation angle q~ can have in the lattice, 

m t  = t + 2tcosq~ rn = 0, ---1, +2 ,  --+3 . . . .  

where + m  or - m  is taken depending on the direction of the rotation: 

m - 1  
cos q~ - 2 

b 

Figure 9-17. Octagonal planar networks: (a) Detail of a Tintoretto painting in the Prado 
Museum, Madrid; photograph by the authors; (b) Hungarian needlework [9-16]. 
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F i g u r e  9-18. Illustration of the determination of the possible throws that rotation axes can have 
in space groups. After Azaroff [9-17]. Copyright (1960) McGraw-Hill, Inc. Used with per- 
mission. 

Only the solutions corresponding to the range 

- 1  <~ c o s ¢  ~< 1 

need be considered, and these are shown in Table 9-1. Five solutions are 
possible, and, accordingly, only five kinds of rotation axes are compatible with 
a lattice. Thus,  not only fivefold symmetry  is not allowed in crystal structures, 
but all periods larger than six are impossible. Naturally, this applies to the 
planar networks as well. 

The permissible periods of mirror-rotation axes have the same limitations 

as those of the proper rotation axes. 
Let us examine now the limitations on the screw axes. In a lattice the 

screw axes must be parallel to a translation direction. After n rotations by an 
angle ~ and n translations by the distance T, that is, after n translations along 
the screw axis, the total amount  of translation distance in the direction of this 
axis must be equal to some multiple of the lattice translation rnt, 

n T  = m t  

T a b l e  9-1. Allowed Rotation Axes n in a 
Lattice 

Possible values of m - 1 cos ~ ~0 (o) n 

-2  -1 180 2 
- ~ -½ 120 3 

0 0 90 4 
+1 +½ 60 6 
+ 2 + I 360 or 0 1 
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where  n and m are  integers .  R e a r r a n g i n g  this equa t ion ,  

m t  

n 

where  m,  o f  course ,  may  be 0, 1, 2, 3, e tc . ,  but  n may  only  be 1, 2, 3, 4, or  6. 

It is then poss ib le  to de t e rmine  the pe rmi s s ib l e  va lues  o f  the p i tch  o f  the sc rew 

axes in latt ices.  T h e y  are  s u m m a r i z e d  in Table 9-2,  taking also into  cons ide ra -  

t ion that (za)t = t + (½)t, (]) t  = t + (4~)t, etc.  T h e r e  are on ly  11 sc rew axes  that are 

a l lowed  in a la t t ice ,  n,~, acco rd ing  to Table 9-2.  T h e  subscr ip t  in the no ta t ion  is 
the m o f  the express ion  T = ( m t ) / n .  T h e  p rope r  ro ta t ion axes may  be  cons ide r ed  

to be  specia l  cases  o f  the screw axes,  wi th  rn = 0 and m = n. T h e  11 screw axes  

are shown in pe r spec t ive  in F igure  9-19. It is seen  there that s o m e  pairs  are 

iden t ica l  excep t  for the d i rec t ion  o f  the sc rew mot ion .  Such screw axes  are  

e n a n t i o m o r p h o u s .  T h e  e n a n t i o m o r p h o u s  sc rew axis  pairs  are the fo l lowing :  

• 3~ and 3 2 

• 41 and 4 3 
• 61 and 6~ 

• 6 2 and 6 4 

Finally,  the on ly  r e m a i n i n g  s y m m e t r y  e l e m e n t  is cons ide red ,  the g l ide -  

s y m m e t r y  plane.  It causes  g l ide  re f lec t ion  as a result  o f  re f lec t ion  a n d  

Table 9-2. Possible Values of the Pitch T of an n-Fold Screw Axis 

A. Possible values of T 
n = 1 0t, lt, 2t . . . .  
n = 2 0t, (l/2)t. (2/2)t, (3/2)t . . . .  
n = 3 Ot, (I/3)t, (2/3)t, (3/3)t, (4/3)t . . . .  
n = 4 0t, (l/4)t, (2/4)t, (3/4)t, (4/4)t, 
n = 6 0t, (l/6)t, (2/6)t, (3/6)t, (4/6)t, 

B. Possible values of T (redundancies eliminated) 
n = l  
n = 2 (l/2)t, 
n = 3 (l/3)t, (2/3)t 
n = 4 (l/4)t, (2/4)t, (3/4)t 
n = 6 (1/6)t, (216)t, (3/6)t, (4/6)t. 

C. Notation of screw axes allowed in a lattice 
n = 2 21 
n = 3 3~ 32 
n = 4 41 42 4~ 
n = 6 61 62 63 64 

(5/4)t . . . .  
(5/6)t, (6/6)t, (7/6)t . . . .  

(5/6)t 

65 
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r J r  

Figure 9-19. The 11 screw axes. The simple twofold, threefold, fourfold, and sixfold axes are 
also shown for completeness. After Azaroff [9-17]. Copyright (1960) McGraw-Hill, Inc. Used 
with permission. 
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T a b l e  9 - 3 .  P o s s i b l e  G l i d e  P l a n e s  

Glide type Symbol  Translation component  

Axial  a a /2  

Axial  b b/2 
Axial  c c/2 

Diagonal  n a/2 + b/2; b/2 + c/2; or c/2 + a/2 
Diamond a d a/4 + b14; b/4 + c/4; or c/4 + a/4 

~rTranslation component  is one-hal f  of  the t rue translation along 
the face diagonal  of a centered plane lattice. 

translation. The translation component T of a glide plane is one-half of the 
normal translation of the lattice in the direction of the glide. A glide along the a 
axis is T = (½)a, and this is called an a glide. Similarly, a diagonal glide can 
have T = (½)a + (½)c. The different possible glide planes are summarized in 
Table 9-3. 

The fact that the crystal has a lattice framework imposes strict limitations 

Table 9 - 4 .  C h a r a c t e r i z a t i o n  o f  C r y s t a l  S y s t e m s  

Sys tem 

Minimal symmet ry  Relations between Number ing  

(diagnostic symmet ry  edges  and angles Latt ice in 

elements) o f  unit cell type Figure 9-20  

"R'iclinic 1 (or T) a # b # c P 1 
ot # 13 # ~, # 90 ° 

Monocl inic  2 (or ~) a # b # c P 2 

a = ~ = 90 ° ~  13 C ( o r A )  3 
- -  

Orthorhombic  222 (or 222) a # b # c P 4 

ct = 13 = ~/ = 90  ° C ( o r B o r A )  5 

I 6 

F 7 

Trigonal 3 (5) a = b = c R 8 

( rhombohedral )  a = 13 = , / ~  90 ° 

Hexagonal  6 (g) a = b ~ c P 9 

a = 13 = 9 0  ° , ~  = 120 ° 

Tetragonal 4 (or ~) a = b ~ c P 10 

ot = ~ = 'y = 90  ° / I1 

Cubic  Four  3 (or 5) a = b = c P 12 

0t = 13 = ~/ = 90 ° 1 13 
F 1~1 
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on the symmetry of its outer form. On the other hand, the question arises as to 
whether it is possible to derive any information about the crystal lattice from 
the knowledge of the symmetry of its outer form. 

The 32 crystal point groups can be classified by symmetry criteria. They 
are usually grouped according to the highest ranking rotation axis that they 
contain. The resulting groups are called crystal systems. There are altogether 
seven of them, and they are listed in Table 9-4. The crystal point groups have to 
be combined with all possible space lattices in order to produce the space 
groups. 

9.4 THE 230 SPACE GROUPS 

There are 14 infinite lattices, called Bravais lattices, in three-dimensional 
space. They are shown in Figure 9-20. These lattices are the analogs of the five 
infinite lattices in two-dimensional space (Figure 8-27). The Bravais lattices 
are presented as systems of points at vertices of parallelepipeds. The corre- 
sponding parallelepipeds are capable of filling space without any gaps or 
overlap. The representation of the lattices by systems of points is especially 
useful as it makes it possible to join the lattice points in any desired way 
conforming with the symmetry requirements. In this way, not only the original 
parallelepipedal forms but any other possible figures may be used as building 
units for the space lattice. 

The 14 Bravais lattices are classified in Table 9-4 as the following types: 
primitive (P, R), side-centered (C), face-centered (F), and body-centered (/). 
The numbering of the Bravais lattices in Table 9-4 corresponds to that in Figure 
9-20. The lattice parameters are also enumerated in the table. In addition, the 
distribution of lattice types among the crystal systems is shown. 

The actual infinite lattices are obtained by parallel translations of the 
Bravais lattices as unit cells. Some Bravais cells are also primitive cells, others 
are not. For example, the body-centered cube is a unit cell but not a primitive 
cell. The primitive cell in this case is an oblique parallelepiped constructed by 
using as edges the three directed segments connecting the body center with 
three nonadjacent vertices of the cube. 

The three-dimensional space groups are produced by combining the 32 
crystallographic point groups with the Bravais lattices. Since the symmetry 
elements in a space lattice can have translation components, indeed not only 
the 32 groups but also the analogous groups, which have screw axes and glide 
planes, have to be considered. There are altogether 230 three-dimensional 
space groups! Their complete description can be found in the International 
Tables for X-Ray Crystallography [9-18]. Only a few examples are discussed 
here. 
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Figure 9-20. The 14 Bravais lattices. 

There are only two combinations possible for the triclinic system. They 
are named PI and P~-. For the monoclinic system three point groups are to be 
considered and two lattice types. Combining P and I lattices, on one hand, and 
point group 2 and symmetry 2~, on the other hand, the four possible combina- 
tions are P2, P2t, 12, and 12t. The latter two, however, are equivalent; only 
their origins differ. 

The description of the symmetry elements of the space groups is similar 
to that of the point groups [9-19]. The main difference is that the order in which 
the symmetry elements of the space groups are listed may be of great 
importance, except for the triclinic system. The order of the symmetry 
elements expresses their relative orientation in space with respect to the three 
crystallographic axes. For the monoclinic system, the unique axis may be the 
c or the b axis. For the P2 space group, the complete symbol may be PII2 or 
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PI21, depending on this choice and using the sequence abc. The two variations 
are called first setting and second setting, respectively. The ordering of 
symbols for the orthorhombic system is especially important. The symmetry 
elements are usually listed in the order abc. The space groups which belong to 
the crystal class 2mm are properly presented as Pmm2, c being the unique axis. 

In the tetragonal system, the c axis is the fourfold axis. The sequence for 
listing the symmetry elements is c, a, [110], since the two crystallographic 
axes orthogonal to c are equivalent. For example, the three-dimensional space 
group notation P-~rn2 has the following meaning: the unique axis in a primitive 
tetragonal lattice is a ~ axis, the two a axes are parallel to m, and the [110] 
direction has twofold symmetry. A similar sequence is used for listing the 
symmetry elements of the hexagonal system, for which the c axis again is the 
unique axis and the other two are equivalent. P denotes the primitive hexagonal 
lattice while R denotes the centered hexagonal lattice in which the primitive 
rhombohedral cell is chosen as the unit cell. 

All three crystallographic axes are equivalent in the cubic system. The 
order of listing the symmetry elements is a, [111], [110]. When the number 3 
appears in the second position, it merely serves to distinguish the cubic system 
from the hexagonal one. 

It may be of interest to add some new symmetry to a group or to decrease 
its symmetry and examine the consequences. If the addition produces a new 
group, it is called a supergroup of the original group. If eliminating symmetry 
leads to a new group, it is usually a subgroup of the original one. For example, 
the point group I is obviously a subgroup of all the other 31 groups as it has the 
lowest possible symmetry. On the other hand, the highest symmetry cubic 
group can have no supergroups. 

It is important to distinguish between the symmetry of the lattice and the 
symmetry of the actual building elements of the crystal--the atoms, ions, or 
molecules. In the illustration of Figure 9-21, the lattice positions are occupied 
by spheres, which have the highest possible symmetry. However, the building 
elements usually have lower symmetries, especially in molecular crystals. 
Brock and Lingafelter [9-20] pointed out commonly existing misconceptions 
about the difference between the crystal and its lattice. A crystal is an array of 
units (atoms, ions, or molecules) in which a structural motif is repeated in three 
dimensions. A lattice is an array of points, and every point has the same 
environment of points in the same orientation. Each crystal has an associated 
lattice, whose origin and basis vectors can be chosen in various ways. From the 
above it is clear, for example, that it would be improper to speak about 
"interpenetrating lattices," while it is correct to talk about interpenetrating 
arrays of atoms [9-20]. 

As we have reached in our discussion the system of the 230 three- 
dimensional space groups, it appears, as it indeed is, a perfect system. It was 
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Figure 9-21. Artistic expression of atomic arrangement in extended structure. Stainless steel 
sculpture Cosrnonergy in downtown Seoul by Professor Kawan-Mo Chung. Photograph by the 
authors. 

established a long time ago, in fact, well before X-ray diffraction could have 
been applied to the determination of crystal structure. That these 230 three- 
dimensional space groups were derived in their entirety by Fedorov, Schoen- 
flies, and Barlow, working independently at the end of the 19th century, will 
always be considered a great scientific feat. No crystal can ever be produced, 
either in nature or artificially, whose structure would not fall into one or 
another of these 230 groups. 

An interesting statistical test was performed concerning the total number 
of three-dimensional space groups some time in the mid-sixties [9-21]. It was a 
uniquely appropriate point in the history of crystallography for such a test: 
Already a large number of crystal structures had been determined, but 
examples for all the space groups had not yet been found among actual crystals. 
The total number of three-dimensional space groups had long before been 
firmly established. Thus, the test was considered as much to be a check of the 
applied statistical method as to be a source of crystallographic information. 

Although there are 230 space groups, not all of them are in practice 
distinguishable. So 11 enantiomorphous groups were excluded from the count 
as were two more groups for other reasons. Thus, the number of space groups 
to be considered was 217. The 3782 crystal structures that were reviewed 
showed a wide variation in the frequency of occurrence of the different space 
groups. One group occurred 355 times, while 33 groups occurred only once 
each. It was also interesting that only 178 groups out of the total of 217 
occurred. Based on the available data for the distribution of the space groups 
among the determined structures, the findings were extrapolated to an indefi- 
nitely large sample. The statistical test led to an extrapolated value of 216. The 
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estimated accuracy of the procedure was 2%. Thus, the estimate agreed with 
the accepted value of the total number of practically distinguishable space 
groups of 217. 

The statistical analysis was also applied separately to the data on inor- 
ganic and organic crystals. In both cases the extrapolated estimate for the total 
number of three-dimensional space groups was smaller than when all the data 
had been considered together. The total numbers estimated for the inorganic 
and organic structures were 209 and 185, respectively. Thus, the conclusion 
could be made that the inorganic and organic crystals belong to space groups 
with different population distributions. Statistical analysis of population distri- 
butions among the three-dimensional space groups, according to various cri- 
teria, has remained an important research tool (see, e.g., Refs. [9-22] and [9-23]). 

In the following sections, we will look in some more detail at the 
symmetry systems of two fundamentally important crystals, rock salt and 
diamond, following their descriptions by Shubnikov and Koptsik [9-19]. The 
descriptions that will be given are far from complete. They are intended to give 
some flavor for the characterization of these two highly symmetrical structures 
rather than to be a rigorous treatment. 

9.4.1 Rock Salt 

The unit cell of the rock salt structure and the projection of this structure 
along the edges of the unit cell onto a horizontal plane are shown in Figure 
9-22a and b. The equivalent ions are related by translations a = b = c along the 
edges of the cube, or (a + b)/2, (a + c)/2, (b + c)/2 along the face diagonals. 
All this corresponds to the face-centered cubic group (F). The structure 
coincides with itself not only after these translations, but also after the 
operations of the point group m~m (or in other notation i5/4). The point-group 
symmetry elements are shown also in Figure 9-22c. The symmetry elements of 
this group intersect at the centers of all ions, and thus they become symmetry 
elements for the whole unit cell and, accordingly, for the whole crystal. 

Among the projected symmetry elements in Figure 9-22c, there are some 
which are derived from the generating elements. This is the case, for example, 
for vertical glide-reflection planes with elementary translations a/2 and b/2 
(represented by broken lines), translations (dot-dash lines), vertical screw axes 
2~ and 42, and symmetry centers (small hollow circles, some of which lie above 
the plane by ~ of the elementary translation). 

Two very simple descriptions of the rock salt crystal structure are also 
given. According to one, the sodium and chloride ions occupy positions with 
point-group symmetry m~m forming a checkered pattern in the Fm-~rn space 
group. According to the other description, the structure consists of two cubic 
sublattices in parallel orientation, one of sodium ions and the other of chloride 
ions. 
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F i g u r e  9°22. The crystal structure of rock salt. (a) A unit cell. (b) Projection of the structure 
along theedges of the unit cell onto a horizontal plane. (c) Projection of some symmetry elements 
of the Fm3m space group onto the same plane. The vertical screw axes 2~ and 42 are marked by the 
symbols ~ and ~ ,  respectively. After Shubnikov and Koptsik [9-19]. 

9.4.2 Diamond 

Figure 9-23 illustrates the diamond structure. It can be regarded as a set of 
two face-centered cubic sublattices displaced relative to each other by ]- of the 
body diagonal of the cube. Each of the two sublattices has the F~3m space 
group, and, in addition, there are some operations transforming one to the 
other. The complete diamond structure has the space group Fd~m, where "d "  
stands for a "diamond" plane. 

Among the projected symmetry elements in Figure 9-23c, there are again 
some which are produced by the generating elements. Special for the diamond 
structure are the symmetry elements which connect the two subgroups F~3m. 
They include vertical left-handed and right-handed screw axes, 4~ and 43, 
respectively, symmetry centers (small hollow circles, k and ] of the elementary 
translation c above the plane), vertical "diamond" glide-reflection planes d 
represented by dot-dash lines with arrows, and similar systems of connecting 
elements in the horizontal directions. 

The subgroup FT~3m is common to both the rock salt space group Fm3m 
and the diamond space group Fd'~m. The space group Fd-~m is obtained from 
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Figure 9-23. The diamond structure. (a) A unit cell; the edges of the cube are the a, b, and c 
axes. (b) Two face-centered cubic sublattices displaced along the body diagonal of the cube. (c) 
Projection of some symmetry elements of the Fd~m space group onto a horizontal plane. The 
vertical screw axes 4~ and 43 are marked by the symbols . ~  and - ~ ,  respectively. After 
Shubnikov and Koptsik [9-19]. 

Fm'~m by replacing the symmetry planes m by glide-reflection planes d with 
the latter displaced ~ along the cube edges. 

9.5 DENSE PACKING 

Dalton [9-24] envisaged the structural difference between water and ice in 
packing properties. Figure 9-24 reproduces a drawing from his 1808 book A 
New System of Chemical Philosophy. According to Dalton, the "atoms" of ice 
arrange themselves in a hexagonal scheme, while the "atoms" of water do not. 
In any case it is remarkable that the principal difference between the water and 
ice structures is expressed in the packing density. Figure 9-25 originates from a 
different age [9-25]. It shows the atomic and molecular arrangements in the 
crystals of 2Zn-insulin from the work of Dorothy Hodgkin and her associates. 
The molecular structure of insulin is extremely complicated, but the molecular 
packing, especially the arrangement of the insulin hexamers, reminds us of 
Dalton's hexagonal ice. 
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F igure  9-24. Dalton's models for water (1, 3) and ice (2, 4 -6 )  [9-24]. 

The symmetry of the crystal structure is a direct consequence of dense 
packing. The densest packing is when each building element makes the 
maximum number of contacts in the structure. First, the packing of equal 
spheres in atomic and ionic systems will be discussed. Then molecular packing 
will be considered. Only characteristic features and examples will be dealt with 
here since systematic treatises on crystal symmetries are available for consulta- 
tion [9-17, 9-22, 9-26]. 

9.5.1 Sphere Packing 

The most efficient packing results in the greatest possible density. The 
density is the fraction of the total space occupied by the packing units. Only 
those packings are considered in which each sphere is in contact with at least 
six neighbors. The densities of some packings are given in Table 9-5. There are 
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Figure 9°25. Atomic arrangement in the 2Zn-insulin crystal. The smaller projection drawing 
shows the molecular packing in the insulin hexamers. Courtesy of Professor D. Hodgkin [9-251. 

stable arrangements with smaller numbers of neighbors, meaning lower coor- 
dination numbers, when directed bonds are present. In our discussion, how- 
ever, the existence of chemical bonds is not a prerequisite at all. 

For three-dimensional six-coordination, the most symmetrical packing is 
when the spheres are at the points of a simple cubic lattice (Figure 9-26a). Each 
sphere is in contact with six others situated at the vertices of an octahedron. For 

Table 9-5. Densities of Sphere Packing" 

Coordination 
number Name of packing Density 

6 Simple cubic 0.5236 
8 Simple hexagonal 0.6046 
8 Body-centered cubic 0.6802 

|0 Body-centered tetragonal 0.6981 
12 Closest packing 0.7405 

"After Wells [9-26]. 
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Figure 9-26. Various types of sphere packing: (a) Simple cubic; (b) the somewhat distorted 
cubic packing of arsenic; (c) simple hexagonal; (d) body-centered cubic. After Wells [9-26]. 
Reproduced with permission. 

the sake of clarity, the atoms are shown separated in the figure. The packing is 
more realistically represented when the spheres touch each other. Already 
Kepler (Figure 9-9) and later Dalton (Figures 9-10 and 9-24) also employed 
such representations. 

The structure of crystalline arsenic provides an example of somewhat 
distorted simple cubic packing. It is illustrated in Figure 9-26b. Each atom has 
three nearest and three more distant neighbors. The layers formed by the 
nearest bonded atoms may also be derived from a plane of hexagons. These 
layers buckle as the bond angle decreases from 120 ° . 

The simple hexagonal sphere packing is shown in Figure 9-26c. The 
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coordination number is eight. This packing is not very important for crystal 
structures. 

Figure 9-26d shows the body-centered packing with eight-coordination. 
For the central atom, the six next nearest neighbors are at the centers of 
neighboring unit cells. In terms of polyhedral domains, a truncated octahedron 
is adopted here. The central atom, in fact, has a coordination number of 14. 

It may often be convenient to describe the crystal structure in terms of the 
domains of the atoms [9-26]. The domain is the polyhedron enclosed by planes 
drawn midway between the atom and each neighbor, these planes being 
perpendicular to the lines connecting the atoms. The number of faces of the 
polyhedral domain is the coordination number of the atom, and the whole 
structure is a space-filling arrangement of such polyhedra. 

The closest packing of equal circles on a plane surface has already been 
considered. The closest packing of spheres on a plane surface is a similar 
problem. Again, the densest arrangement is when a sphere is in contact with 
six others. Layers of spheres may then be superimposed in various ways. The 
closest packing is when each sphere touches three others in each adjacent layer, 
the total number of contacts then being 12. Closest packing is thus based on 
closest packed layers. Figure 9-27 illustrates this. The spheres in one layer are 
labeled A, and a similar layer can be placed above the first so that the centers of 
the spheres in the upper layer are vertically above the positions B (or C). The 
third layer can be placed in two ways. The centers of the spheres may lie above 
either the C or the A positions. The two simplest sequences of layers are then 
A B A B A B . . .  and A B C A B C  . . . .  They will have the same density (0.7405). 

The packing based on the sequence A B A B . . .  is called hexagonal closest 

Figure 9-27. 

i. 

Closest packing of ABC layers. After Wells [9-26]. Reproduced with permission. 
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packing and is illustrated by Figure 9-28a. Each sphere has 12 neighbors 
situated at the vertices of a coordination polyhedron. 

The packing based on the sequence A B C A B C . . .  is called cubic closest 
packing. It is illustrated in Figure 9-28b and is characterized by cubic 
symmetry. 

The closest packing of equal spheres is achieved in an arrangement in 
which each sphere touches three others in each adjacent layer. The total number 
of neighbors is then 12. Although the packing in any layer is evidently the 
densest possible packing, this is not necessarily true of the space-filling 
arrangements resulting from stacking such layers. Thus, consider the addition 
of a fourth sphere to the most closely packed triangular arrangement [9-26]. 
The maximum number of contacts is three in the emerging tetrahedral group. 
The space-filling arrangement would require each tetrahedron to have faces 
common with four other tetrahedra. However, regular tetrahedra are not 
suitable to fill space without gaps or overlaps because the angle of the 
tetrahedron, 70°32 ', is not an exact submultiple of 360 °. 

Alternatively, continue placing spheres around a central one, all spheres 
having the same radius. The maximum number that can be placed in contact with 
the first sphere is 12. However, there is a little more room around the central 
sphere than just for 12, but not enough for a 13th sphere. Because of the extra 
room, there are an infinite number of ways of arranging the 12 spheres [9-26]. 

9.5.2 Icosahedral Packing 

The most symmetrical arrangement is to place the 12 spheres at the 
vertices of a regular icosahedron, which is the only regular polyhedron with 12 
vertices. Thus, the icosahedral packing is the most symmetrical. However, it is 

a b 

Figure 9-28. Close packing of spheres: (a) Hexagonal closest packing; (b) cubic closest 
packing. After Shubnikov and Koptsik [9-19]. 
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Figure 9-29. Icosahedral polyoma virus, drawn after Ref. [9-27]. 

not the densest packing. Also, it is not a crystallographic packing. When 
icosahedra are packed together, they will not form a plane but will gradually 
curve up and will eventually form a closed system as is illustrated in Figure 
9-29 [9-27]. 

Buckminster Fuller recognized early the importance of icosahedral con- 
struction and its great stability in geodesic shapes as well as in viruses [9-28]*: 

This simple formula governing the rate at which balls are agglome- 
rated around other balls or shells in closest packing is an elegant 
manifest of the reliably incisive transactions, formings, and trans- 
formings of Universe. I made that discovery in the late 1930s and 
published it in 1944. The molecular biologists have confirmed and 
developed my formula by virtue of which we can predict the 
number of nodes in the external protein shells of all the viruses, 
within which shells are housed the DNA-RNA-programmed de- 
sign controls of all the biological species and of all the individuals 
within those species. Although the polio virus is quite different 
from the common cold virus, and both are different from other 
viruses, all of them employ frequency to the second power times 
ten plus two in producing those most powerful structural enclo- 
sures of all the biological regeneration of life. It is the structural 
power of these geodesic-sphere shells that makes so lethal those 
viruses unfriendly to man. They are almost indestructible. 

Indeed, the discoverers of virus structures Caspar and Klug [9-29] stated: 

"We thank Professor H.-U. Nissen, Ziirich, for this quote. 
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The solution we have found . . . was, in fact, inspired by the 
geometrical principles applied by Buckminster Fuller in the con- 
struction of geodesic d o m e s . . .  The resemblance of the design of 
geodesic domes . . .  to icosahedral viruses had attracted our 
attention at the time of the poliovirus work . . . Fuller has pi- 
oneered in the development of a physically orientated geometry 
based on the principles of efficient design. 

The length of an edge of a regular icosahedron is some 5% greater than the 
distance from the center to a vertex. Thus, the sphere of the outer shell of 12 
makes contact only with the central sphere. Conversely, if each sphere of an 
icosahedral group of 12, all touching the central sphere, is in contact with its 
five neighbors, then the central sphere must have a radius some 10% smaller 
than the radius of the outer spheres. The relative size considerations are 
important in the structures of free molecules as well if the central atom or 
group of atoms is surrounded by 12 ligands [9-30]. 

An interesting case, and a step forward from the isolated molecule toward 
more extended systems, is when an icosahedron of 12 spheres about a central 
sphere is surrounded by a second icosahedral shell exactly twice the size of the 
first [9-31]. This shell will contain 42 spheres and will lie over the first so that 
spheres will be in contact along the fivefold axes. Further layers can be added in 
the same fashion. The third layer is shown in Figure 9-30 as an example of 
icosahedral packing of equal spheres. The layers of spheres succeed each other 
in cubic close-packing sequence on each triangular face. Each sphere which is 

Figure 9-30. Illustration of icosahedral packing, after Mackay [9-31]: Icosahedral packing of 
spheres showing the third shell. 
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not on an edge or vertex touches only six neighbors, three above and three 
below. Each such sphere is separated by a distance of 5% of its radius from its 
neighbors in the plane of the face of the icosahedron. The whole assembly can 
be distorted to cubic close packing in the form of a cuboctahedron. This 
distortion may be envisaged as a reversible process by the kind of transforma- 
tion discussed earlier. Herbert Hauptman (Figure 9-31a), a mathematician 
turned crystallographer and chemistry Nobel laureate in 1985, has devoted a 
lot of attention to close packing of spheres in the icosahedron. Figure 9-31b 
shows one of his beautiful stained-glass models. 

While the most symmetrical arrangement of 12 neighbors, viz., the 
icosahedral coordination, does not lead to the densest possible packing, other 
arrangements do. The cuboctahedron and its "twinned" version, alone or in 
combination, lead to infinite sphere packing with the same high density 
(0.7405). Both coordination polyhedra are shown in Figure 9-32. The 
"twinned" polyhedron is obtained by reflecting one-half of a cuboctahedron 
cut parallel to a triangular face across the plane of section. 

9.5.3 Connected Polyhedra 

There are, of course, more complex forms of closest packing than those 
considered so far. Besides, the species to be packed need not be identical. 

Figure 9-31. (a) Herbert Hauptman (1989). Photograph by the authors. (b) Stained-glass model 
of icosahedron with densely packed spheres. Photograph courtesy of Dr. Hauptman, Buffalo, 
New York. 
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@ 
Figure 9-32. Cuboctahedron and "twinned" cuboctahedron. 

Thus, close packing of atoms of two kinds could be considered. Close-packed 
structures with atoms in the interstices are also important. The interstice arrays 
may have very different arrangements in various structures. A shorthand 
notation of some configurations has been worked out to facilitate the descrip- 
tion of more complicated systems (see, e.g.,  Ref. [9-26]). Such a notation is 
illustrated in Figure 9-33. Suppose, for example, that in a compound with 
composition AX 2, each atom A is bonded to four X atoms and that all four X 
atoms are equivalent. Each X atom must then be bonded to two A atoms. The 
lines of  the squares in Figure 9-33 do not represent chemical bonds; rather, 
these squares stand for polyhedral arrangements. Among the AX n polyhedral 
groups, the most common are the AX 4 tetrahedra and AX 6 octahedra. They 
may appear in various orientations in crystal structures. Similar structural 
features have already been discussed for the polyhedral molecular geometries. 
Whereas in molecules only two, or at most a few, polyhedra were joined, here 
we deal with their infinite networks. 

Figure 9-33. 
[9-26]. 

Shorthand notations for the tetrahedron (a) and the octahedron (b). After Wells 
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Many crystal structures may be built from the two most important 
coordination polyhedra, the tetrahedron and octahedron. They may share 
vertices, edges, or faces. The ways in which the polyhedra are connected 
introduce certain geometrical limitations with important consequences as to 
the variations of  the interatomic distances and bond angles [9-26]. 

Examples are shown in Figures 9-34-9-39 for a variety of ways in which 
tetrahedral and octahedral units may be connected. Tetrahedra share two 
vertices or/and three vertices in Figure 9-34. For one of these, decorations 
analogous to its projection are shown in Figure 9-35. Octahedra share adjacent 
vertices and form a tetramer in two representations in Figure 9-36a and b. Two 
more examples show infinite chains of octahedra sharing adjacent (Figure 
9-36c) and nonadjacent vertices (Figure 9-36d). Octahedra sharing two, four, 
or six edges are presented in Figure 9-37. An example of octahedra sharing 
faces and edges is seen in Figure 9-38 together with an analogous pattern from 
a Formosan basket weaving [9-34]. Finally, a composite structure from 
tetrahedra and octahedra is shown in Figure 9-39. 

The tetrahedra and octahedra are important building blocks of crystal 
structures. The great variety of structures combining these building blocks, on 
one hand, and the conspicuous absence of some of the simplest structures, on 
the other hand, together suggest that the immediate environment of  the atoms is 

_ A  A 
a V b 

Figure 9-34. Connected tetrahedra. (a) All tetrahedra share two vertices. (b) and (c) All 
tetrahedra share three vertices. After Ref. [9-32]. (d) and (e) Some tetrahedra share two and 
others share three vertices. 
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Figure 9-35. Decorations, analogous to the one-dimensional pattern of Figure 9-34d but 
extending in two dimensions: (a) Islamic decoration, drawn after Ref. [9-33]; (b) pavement 
pattcrn in Granada, Spain; photograph by the authors. 

/ 
/ \  

419 

/ X /  
Figure 9-36. Connected octahedra. (a) and (b) Two representations of four octahedra sharing 
adjacent vertices and forming a tetramer. (c) Infinite chain of octahedra connected at adjacent 
vertices. (d) Infinite chain of octahedra connected at nonadjacent vertices. 
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Figure 9-37. Octahedra sharing two (a), four (b), and six edges (c). 

not the only factor that determines these structures. Indeed, the relative sizes of 
the participating atoms and ions are of great importance. 

9.5.4 Atomic Sizes 

The interatomic distances are primarily determined by the position of the 
minimum in the potential energy function describing the interactions between 
the atoms in the crystal. The question is then, what are the sizes of the atoms 
and ions? Since the electron density for an atom or an ion extends indefinitely, 
no single size can be rigorously assigned to it. Atoms and ions change 
relatively little in size when forming a strong chemical bond, and even less for 
weak bonds. For the present discussion of crystal structures, the atomic and 
ionic radii should, when added appropriately, yield the interatomic and inter- 
ionic distances characterizing these structures. 

Covalent and metallic bondings suppose a strong overlap of the outermost 
atomic orbitals, and so the atomic radii will be approximately the radii of the 
outermost orbitals. The atomic radii [9-35] are empirically obtained from 
interatomic distances. For example, the C - C  distance is 1.54/~ in diamond, 
the Si-Si distance is 2.34 A in disilane, and so on. The consistency of this 
approach is shown by the agreement between the Si-C bond lengths deter- 
mined experimentally and calculated from the corresponding atomic radii. The 
interatomic distances appreciably depend on the coordination. With decreasing 
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Figure 9-38. Joined octahedra sharing faces and edges: (a) Nb3S 4 crs'stal, after Ref. [9-26]; (b) 
analogy from Formosan basket weaving pattern, after Ref. [9-34]. 

Figure 9-39. Joined tetrahedra and octahedra: A composite structure (kaolin) built from 
tetrahedra and octahedra, after Ref. [9-26]. Reproduced with permission. 
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coordination number, the bonds usually get shorter. For coordination numbers 
of 8, 6, and 4, the bonds get shorter by about 2, 4, and 12%, respectively, as 
compared with the bonds for a coordination number of 12. 

The covalent bond is directional, and multiple covalent bonds are consid- 
erably shorter than the corresponding single ones. For carbon as well as for 
nitrogen, oxygen, or sulfur, the decrease on going from a single bond to a 
double and a triple bond amounts to about 10 and 20%, respectively. 

Establishing the system of ionic radii is an even less unambiguous 
undertaking than that for atomic radii. The starting point is a system of 
analogous crystal structures. Such is, for example, the structure of sodium 
chloride and the analogous series of other alkali halide face-centered crystals. 
In any case the ionic radii represent relative sizes, and if the alkali and halogen 
ions are chosen as the starting point, then the ionic radii of all ions represent the 
relative sizes of the outer electron shells of the ions as compared with those of 
the alkali and halogen ions. 

Consider now the sodium chloride crystal structure shown in Figure 9-40. 
It is built from sodium ions and chloride ions, and it is kept together by 
electrostatic forces. The chloride ions are much larger than the sodium ions. As 
equal numbers of cations and anions build up this structure, the maximum 
number of neighbors will be the number of the larger chloride ions that can be 
accommodated around the smaller sodium ion. The opposite would not work: 
although more sodium ions could surround a chloride ion, the same coordina- 
tion could not be achieved around the sodium ions. Thus, the coordination 
number will obviously depend on the relative sizes of the ions. In the simple 
ionic structures, however, only such coordination numbers may be accom- 
plished that make a highly symmetrical arrangement possible. The relative 

Figure 9-40. The sodium chloride crystal structure in two representations. The space-filling 
model is from W. Barlow [9-36]. 
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Figure 9-41. The arrangement of ions in cube-face layers of alkali halide crystals with the 
sodium chloride structure. Adaptation from Pauling [9-35]. Copyright (1960) Cornell University. 
Used by permission of the publisher, Cornell University Press. 

sizes of the sodium and chloride ions allow six chloride ions to surround each 
sodium ion in six vertices of an octahedron. Figure 9-41 shows the arrangement 
of ions in cube-face layers of alkali halide crystals with the sodium chloride 
structure. As the relative size of the metal ion increases with respect to the size 
of the halogen anion, greater coordination may be possible. Thus, for example, 
the cesium ion may be surrounded by eight chloride ions in eight vertices of a 
cube in the cesium chloride crystal as shown in Figure 9-42. 

Figure 9-42. Cesium chloride crystal structure. 
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9.6 MOLECULAR CRYSTALS 

A molecular crystal is built from molecules. It is easily distinguished from 
an ionic/atomic crystal on a purely geometrical basis. At least one of the 
intramolecular distances of an atom in the molecule is significantly smaller 
than its distances to the adjacent molecules. Every molecule in the molecular 
crystal may be assigned a certain well-defined space in the crystal. In terms of 
interactions, there are the much stronger intramolecular interactions and the 
much weaker intermolecular interactions. Of course, even among the intra- 
molecular interactions, there is a range of interactions of various energies. 
Bond stretching, for instance, requires a proportionately higher energy than 
angular deformation, and the weakest are those interactions that determine the 
conformational behavior of the molecule [9-37]. On the other hand, there are 
differences among the intermolecular interactions as well. For example, 
intermolecular hydrogen bond energies may be equal to or even greater than 
the conformational energy differences. Thus, there may be some overlap in the 
energy ranges of the intramolecular and intermolecular interactions. 

The majority of molecular crystals are organic compounds. There is 
usually very little electronic interaction between the molecules in these crys- 
tals, although, as will be discussed later, even small interactions may have 
appreciable structural consequences. The physical properties of the molecular 
crystals are primarily determined by the packing of the molecules. 

9.6.1 Geometrical Model 

As structural information for large numbers of molecular crystals has 
become available, general observations and conclusions have appeared [9-22]. 
An interesting observation was that there are characteristic shortest distances 
between the molecules in molecular crystals. The intermolecular distances of a 
given type of interaction are fairly constant. From this observation a geometri- 
cal model was developed for describing molecular crystals. First, the shortest 
intermolecular distances were found, and then the so-called "intermolecular 
atomic radii" were postulated. Using these quantities, spatial models of the 
molecules were built. Fitting together these models, the densest packing could 
be found empirically. A simple but ingenious device was even constructed for 
fitting the molecules. A packing example is shown in Figure 9-43. The 
molecules are packed together in such a way as to minimize the empty space 
among them. The concave part of one molecule accommodates the convex part 
of the other molecule. The example is the packing of 1,3,5-triphenylbenzene 
molecules in their crystal structure. The arrangement of the areas designated to 
the molecules is analogous to a characteristic decoration pattern, an example of 
which is also shown in Figure 9-43. The analogy is not quite superficial. The 
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a 

Figure 9-43. (a) Dove-tail packing. Dense packing of 1,3,5-triphenylbenzene molecules, after 
Ref. [9-22]. (b) Chinese decoration from a sculpture in the sculpture garden of the Ming tombs, 
near Beijing. Photographs by the authors. 

decoration is from the metal-net dress of a warrior. The dress was made of 
small units to maintain flexibility, the small units were identical for economy, 
and they covered the whole surface without gaps to ensure protection. 

The complementary character of molecular packing is well expressed by 
the term dove-tail packing [9-38]. The arrangement of the molecules in Figure 
9-44a can be called head-to-tail. On the other hand, the molecules of a similar 
compound are arranged head-to-head as seen in Figure 9-45a. The head-to- 
head arrangement is less advantageous for packing. This is well seen in Figs. 
9-44b and 9-45b, displaying the arrangement of the molecules in the crystal 
after Wundl and Zellers [9-39, 9-40]. 

Many of Escher's periodic drawings with interlocking motifs are also 
excellent illustrations for the dove-tail packing principle. Figure 9-46 repro- 
duces one of them. Note how the toes of the black dogs are the teeth of the 
white dogs and vice versa in this figure [9-41]. 

Because of the interlocking character, the packing in organic molecular 
crystals is usually characterized by large coordination numbers, i.e., by a 
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Figure 9-44. Head-to-tail packing (a) and arrangement of molecules in the crystal (b). After 
Ref. [9-39]. Copyright (1980) American Chemical Society. 
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Figure 9-45. Head-to-head packing (a) and arrangement of molecules in the crystal (b). After 
Rcf. [9-401. Copyright (1980) American Chemical Society. 
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Figure 9-46. Escher's periodic drawing of dogs, from MacGillavry's book [9-41]. Reproduced 
with permission from the International Union of Crystallography. 

relatively large number of adjacent or touching molecules. Experience shows 
that the most often occurring coordination number in organic structures is 12, 
so it is the same as for the densest packing of equa! spheres. Coordination 
numbers of 10 or 14 occur also but less often. 

A. I. Kitaigorodskii was a true pioneer in the field of molecular crystals. 
First of all, he gave real sizes and volumes to the molecules by accounting for 
the hydrogen atoms, however poorly their positions could be determined. The 
whole molecule was considered in examining the packing, rather than the 
heavy-atom skeleton only. Figuratively speaking, and using Kitaigorodskii's 
own expression [9-42], he "dressed the molecules in a fur-coat of van der 
Waals spheres." This was in complete agreement with the molecular models 
introduced already in the early thirties by Stuart and Briegleb [9-43] to 
represent the space-filling nature of molecular structures. They are illustrated 
in Figure 9-47 by a plastic model and a palm-tree fruit which looks remarkably 
similar to the space-filling molecular models. 

The geometrical model allowed Kitaigorodskii [9-22, 9-38] to make 
predictions of the structure of organic crystals in numerous cases, knowing 
only the cell parameters and, obviously, the size of the molecule itself. In the 
age of fully automated, computerized diffractometers, this may not seem to be 
so important, but it has indeed enormous significance for our understanding of 
the packing principles in molecular crystals. 

The packing as established by the geometrical model is what is expected 
to be the ideal arrangement. Usually, it does not differ from the real packing as 
determined by X-ray diffraction measurements. When there are differences 
between the ideal and experimentally determined packings, it is of interest to 
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Figure 9-47. Illustrations of space-filling molecular models: (a) Plastic model; (b) palm-tree 
fruit in Hawaii. Photographs by the authors. 

examine the reasons for their occurrence. The geometrical model has some 
simplifying features. One of them is that it considers uniformly the inter- 
molecular atom • • • atom distances. Another is that it considers interactions 
only between adjacent atoms. 

The development of experimental techniques and the appearance of more 
sophisticated models have recently pushed the frontiers of molecular crystal 
chemistry much beyond the original geometrical model. Some of the limita- 
tions of this model will be mentioned later. However, its simplicity and the 
facility of visualization ensure this model a lasting place in the history of 
molecular crystallography. It has also exceptional didactic value. 

The so-called coefficient of molecular packing (k) has proved useful in 
characterizing molecular packing. It is expressed in the following way: 

molecular volume 
k ~ 

crystal volume/molecule 
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The molecular volume is calculated from the molecular geometry and the 
atomic radii. The quantity crystal volume/molecule is determined from the 
X-ray diffraction experiment. For most crystals k is between 0.65 and 0.77. 
This is remarkably close to the coefficient of the dense packing of equal 
spheres. The density of closest packing of equal spheres is 0.7405 [9-26]. If the 
form of the molecule does not allow the coefficient of molecular packing to be 
greater than 0.6, then the substance is predicted to transform into a glassy state 
with decreasing temperature. It has also been observed that morphotropic 
changes associated with loss of symmetry led to an increase in the packing 
density. Comparison of analogous molecular crystals shows that sometimes the 
decrease in crystal symmetry is accompanied by an increase in the density of 
packing. 

Another interesting comparison involves benzene, naphthalene, and an- 
thracene. When their coefficient of packing is greater than 0.68, they are in the 
solid state. There is a drop in this coefficient to 0.58 when they go into the 
liquid phase. Then, with increasing temperature, their k decreases gradually 
down to the point where they start to boil. The fused-ring aromatic hydrocar- 
bons have served as targets of a systematic analysis of packing energies and 
other packing characteristics [9-44]. 

Recently, geometrical considerations have gained additional importance 
due to their role in molecular recognition, which implies "the (molecular) 
storage and (supramolecular) retrieval of molecular structural information," 
according to J.-M. Lehn [9-45]. The formation of supramolecular structures 
necessitates commensurable and compatible geometries of the partners. The 
molecular structure of the inclusion complex formed by para-tert-butylcalix- 
[4]arene and anisole [9-46] is shown in Figure 9-48. The representation is a 
combination of a line drawing of the calixarene molecule and a space-filling 
model of anisole. 

The supramolecular formations and the molecular packing in the crystals 
show close resemblance, and the nature of the interactions involved is very 
much the same. There is great emphasis on weak interactions in both. 
According to Lehn [9-47], "beyond molecular chemistry based on the covalent 
bond lies supramolecular chemistry based on molecular interactions--the 
associations of two or more chemical entities and the intermolecular bond." 

The relevance of supramolecular structures to molecular crystals and 
molecular packing was eloquently expressed by J. D. Dunitz [9-48]: 

A crystal is, in a sense, the supramolecule par excellence--a lump 
of matter, of macroscopic dimensions, millions of molecules long, 
held together in a periodic arrangement by just the same kind of 
non-bonded interactions as those that are responsible for molecular 
recognition and complexation at all levels. Indeed, crystallization 
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Figure 9-48. Two par~2-tert-butylcalix[4]arene molecules envelope an anisole molecule. After 
Andreetti et al. [9-46]. Reprinted by permission of Kluwer Academic Publishers. 

itself is an impressive display of supramolecular self-assembly, 
involving specific molecular recognition at an amazing level of 
precision. 

9.6.2 Densest Molecular Packing 

Kitaigorodskii [9-22, 9-38] examined the relationship between densest 
packing and crystal symmetry by means of the geometrical model. He 
determined that real structures will always be among those that have the 
densest packing. First of all, he established the symmetry of those two- 
dimensional layers that allow a coordination number of six in the plane at an 
arbitrary tilt angle of the molecules with respect to the axes of the layer unit 
cell. In the general case for molecules with arbitrary form, there are only two 
kinds of such layers. One has inversion centers and is associated with a 
nonorthogonal lattice. The other has a rectangular net, from which the 
associated lattice is formed by translations, plus a second-order screw axis 
parallel to a translation. The next task was to select the space groups for which 
such layers are possible. This is an approach of great interest since the result 
will answer the question as to why there is a high occurrence of a few space 
groups among crystals while many of the 230 space groups hardly ever occur. 

We present here some of the highlights of Kitaigorodskii's considerations 
[9-22]. First, the problem of dense packing is examined for the plane groups of 
symmetry. The distinction between dense-packed, densest packed, and maxi- 
mum density was introduced for the plane layer of molecules. The plane was 
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called dense-packed when a coordination number of six was achieved for the 
molecules. The term densest packed meant six-coordination with any orienta- 
tion of the molecules with respect to the unit cell axes. The term maximum 
density was used for the packing if six-coordination was possible for any 
orientation of the molecules with respect to the unit cell axes while the 
molecules retained their symmetry. 

For the plane group pl  it is possible to achieve densest packing with any 
molecular form if the translation periods t I and t 2 and the angle between them 
are chosen appropriately as illustrated in Figure 9-49. The same is true for the 
plane groupp2, shown also in Figure 9-49. On the other hand, the plane groups 
pm and p m m  are not suitable for densest packing. As is seen in Figure 9-50, the 
molecules are oriented in such a way that their convex parts face the convex 
parts of other molecules. This arrangement, of course, counteracts dense 
packing. The plane groups pg  and pgg may be suitable for six-coordination as 
shown by the example in Figure 9-51a. This layer is not of maximum density, 
and in a different orientation of the molecules, only four-coordination is 
achieved, as seen in Figure 9-51b. For the plane groups cm, cmm,  and pmg,  

six-coordination cannot be achieved for a molecule with arbitrary shape. For 
higher symmetry groups, for example, tetragonal p4 or hexagonal p6, the axes 
of the unit cell are equivalent, and the packing of the molecules is not possible 
without overlaps. This is illustrated for group p4 in Figure 9-52. 

If the molecule, however, retains a symmetry plane, then it may be packed 
with six-coordination in at least one of the plane groups, pro, pmg,  or cm. The 
form shown in Figure 9-53 is suitable for such packing in ping and cm,  though 
not in pro. Thus, depending on the molecular shape, various plane groups may 
be applicable in different cases. 

The criteria for the suitability as well as for the incompatibility of plane 
groups for achieving molecular six-coordination have been considered and 
illustrated with examples. The next step is to apply the geometrical model to 
the examination of the suitability of three-dimensional space groups for densest 

p~ 

Figure 9-49. Densest packing with space groups pl and p2, after Ref. [9-22]. 
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Figure 9-50. The symmetry planes in the space groups pm and pmm prevent dense packing 
[9-22]. 

packing. The task in this case is to select those space groups in which layers 
can be packed in such a manner as to allow the greatest possible coordination 
number. Obviously, for instance, mirror planes would not be applicable for 
repeating the layers. 

Low-symmetry crystal classes are typical for organic compounds. 
Densest packing of the layers may be achieved either by translation at an 
arbitrary angle formed with the layer plane or by inversion, glide plane, or 
screw-axis rotation. In rare cases closest packing may also be achieved by 
twofold rotation. 

Kitaigorodskii [9-22] has analyzed all 230 three-dimensional space 
groups from the point of view of densest packing. Only the following space 

I t 

I I I 
I I I 

Pgg 

Figure 9-51. Two forms of packing with pgg space groups: (a) Densest packing of molecules 
with arbitrary shape; (b) another orientation of the molecules which reduces the coordination 
number to four. After Ref. [9-22]. 

b 
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Figure 9-52. Molecules of arbitrary shape cannot be packed in space group p4 without 
overlaps. After Ref. [9-22]. 

groups were found to be available for the densest packing of molecules of 
arbitrary form: 

P~, P21, P2~/c, Pca, Pna, P2~2~21 

For molecules with symmetry centers, there are even fewer suitable three- 
dimensional space groups, namely: 

PT, P2~/c, C2/c, Pbca 

In these cases all mutual orientations of the molecules are possible without 
losing the six-coordination. 

The space group P2t/c occupies a strikingly special position among the 
organic crystals. This space group has the unique feature that it allows the 
formation of layers of densest packing in all three coordinate planes of the unit 
cell. 

The space groups P21 and P212~2 ~ are also among those providing densest 
packing. However, their possibilities are more limited than those of the space 

Figure 9-53. Molecules with a symmetry plane achieve six-coordination in the space groups 
cm and ping. After Ref. [9-22]. 
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group P2~/c, and these space groups occur only for molecules that take either 
left-handed or right-handed forms. 

According to statistical examinations performed some time ago, these 
three space groups are the first three in frequency of occurrence. 

An interesting and really fundamental question is the conservation of 
molecular symmetry in the crystal structure. Densest packing may often be 
facilitated by partial or complete loss of molecular symmetry in the crystal 
structure. There are, however, space groups in which some molecular symme- 
try may "survive" densest packing in building of the crystal. Preserving 
higher symmetry though usually results in too great a sacrifice of packing 
density. On the other hand, there may be some energetic advantage of some 
well-defined symmetrical arrangements. The alternative to the geometrical 
model for discussing and establishing molecular packing in organic crystals 
has been energy calculations, based on carefully constructed potential energy 
functions (see, e.g., Ref. [9-49] and references therein). 

9.6.3 Energy Calculations and Crystal Structure Predictions 

It is important to be able to determine a priori the arrangement of 
molecules in crystals. The correctness of such predictions is a test of our 
understanding of how crystals are built. A further benefit is the possibility of 
calculating even those structures that are not amenable to experimental 
determination. However, even as part of an experimental study, it is instructive 
to build good models, which can then be refined. The main advantages of the 
geometrical model have been seen above. Its main limitations are the follow- 
ing. It cannot account for the structural variations in a series of analogous 
compounds. It is very restricted in correlating structural features with various 
other physical properties. Finally, it cannot be used to make detailed predic- 
tions for unknown structures. Calculations seeking the spatial arrangement of 
molecules in the crystal corresponding to the minimum of free energy have 
become a much used tool. If the system is considered as completely rigid, the 
molecular packing may be determined by minimizing the potential energy of 
intermolecular interactions. 

Considering the molecules to be rigid, that is, ignoring the vibrational 
contribution, the energy of the crystal structure is expressed as a function of 
geometrical parameters including the cell parameters, the coordinates of the 
centers of gravity of the symmetrically independent molecules, and parameters 
characterizing the orientation of these molecules. In particular cases, the num- 
ber of independent parameters can be reduced. On the other hand, considera- 
tion of the nonrigidity of the molecules necessitates additional parameters. 
Minimizing the crystal structure energy leads to structural parameters corre- 
sponding to optimal molecular packing. Then it is of great interest to compare 
these findings with those from experiment. 
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To determine the deepest minimum on the multidimensional energy 
surface as a function of many structural parameters is a formidable mathemati- 
cal task. Usually, simplifications and assumptions are introduced concerning, 
for example, the space-group symmetry. Accordingly, the conclusions from 
these theoretical calculations cannot be considered to be entirely a priori.  

The considerations of the intermolecular interactions can be conveniently 
reduced to considerations of atom-atom nonbonded interactions. Although these 
interactions can be treated by nonempirical quantum-mechanical calculations, 
empirical and semiempirical approaches have also proved successful in deal- 
ing with them. In the description of the atom-atom nonbonded interactions, it 
is supposed that the van der Waals forces originate from a variety of sources. 

In addition to the intermolecular interactions, the intramolecular inter- 
actions may also be taken into account in a similar way. This rather limited 
approach may nevertheless be useful for calculating molecular conformation 
and even molecular symmetry. Deviations from the ideal conformations and 
symmetries may also be estimated in this way, provided they are due to steric 
effects. 

By summation over the interaction energies of the molecular pairs, the 
total potential energy of the molecular crystal may be obtained in an atom- 
atom potential approximation. The result is expected to be approximately the 
same as the heat of sublimation extrapolated to 0 K provided that no changes 
take place in the molecular conformation and vibrational interactions during 
evaporation. 

In many of the molecular packing studies, the crystal classes are taken 
from experimental X-ray diffraction determinations. The optimal packing is 
then determined for the assumed crystal class. In other cases, the crystal 
classes have also been established in the optimization calculations. 

Depero [9-50] has summarized the various approaches developed histori- 
cally in molecular packing calculations. Her scheme has the following five 
subdivisions: 

1. Geometrical model: The molecular energy is considered to be in a 
deep minimum, and, accordingly, all intramolecular changes are 
ignored. 

2. Atom-atom potential method: The packing energy is expressed by 
summing all intermolecular interactions, the pairwise potentials are 
determined especially, and, again, the molecular structure is kept 
unchanged. 

3. Force fields: All atoms, not only those participating in intermolecular 
interactions, are included. 

4. Pseudo-potential calculations: The Schr6dinger equation is applied, 
the core electrons are described by empirical potentials, and only the 
valence electrons are taken into account in the calculations. 
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5. Ab initio calculations: All electrons are considered in the application 
of the Schr6dinger equation; no empirical parameters are involved. 

Ideally, it should be possible to predict molecular packing, and thus the 
crystal structure, from the knowledge of the composition of a compound and 
the symmetry and geometry of its molecules. It has proved, however, a rather 
elusive task. Only a few years ago the frustration over the difficulty in 
predicting crystal structures was expressed by the Editor of Nature in the 
tbllowing words [9-51]: "One of the continuing scandals in the physical 
sciences is that it remains impossible to predict the structure of even the 
simplest crystalline solids from a knowledge of their chemical composition." 
There has been considerable progress in this respect, however, mainly due to 
the utilization of the wealth of information from data banks, and in particular, 
from the Cambridge Crystallographic Data Centre [9-52]. 

It has also proved fruitful to use the energy calculations with computer 
graphic analysis. Plausible crystal-building scenarios have been described 
which, while not being necessarily unique solutions, seem to point in the right 
direction in conquering this important frontier of structural science. An 
example is the construction of organometallic crystals by Braga and Grepioni 
[9-53], illustrated here with Ru3(CO)I 2 in Figure 9-54. The construction, 
which is a simultaneous process in reality, is broken down into three steps in 
the model. First, a row of molecules is constructed in a head-to-tail arrange- 
ment. The second step involves adding rows to form a layer utilizing interlock- 
ing interactions. Finally, whole layers are added to form a crystal. 

A concerted use of geometry and energy considerations, as demonstrated 
by the crystal building of Ru3(CO)I2, seems most promising. Extending such 
studies may accomplish a "Kitaigorodskian dream," as they "provide the 
starting point for the formulation of a generalized force field for intermolecular 
interactions in organic crystals" [9-49]. 

There seems to be a remarkable consistency between Buckminster 
Fuller's evaluation of chemistry ("chemists consider volumes as material 
domains and not merely as abstractions"; see Chapter 1) and Kitaigorodskii's 
geometrical model of crystal structures. In one of his last statements, 
Kitaigorodskii (Figure 9-55) said (when asked about his most important 
achievements in science): "I 've shown that the molecule is a body.* One can 
take it, one can hit with i t - - i t  has mass, volume, form, hardness. I followed the 
ideas of Democritos . . ." [9-42]. 

'A  similar statement is also attributed to A. I. Kitaigorodskii, "The molecule also has a body; when it's 
hit, it feels hurt all over." This implied the possibility of structural changes in the molecule upon 
entering the crystal structure, a symbolic departure from Kitaigorodskii's earlier views about the 
constancy of molecular geometry regardless of whether in the gas phase or in the crystal. 
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c 

Figure 9-54. Building a crystal of Ru3(CO)I2, according to Braga and Grepioni [9-53]: (a) Row 
of molecules; (b) forming a layer; (c) extending in three dimensions. Copyright (1991) American 
Chemical Society. 

, . ~  ~ .  . 

, ~ ,:,~., ~ . ~  - 

~;3 
: I! ~: ~ 

a 

; . . . . . . . . . . . . . . . . .  ~ ' ~  . . . . . . .  i 

~ .  ~ . . . . .  . . . . . . . .  ~ - - . ~ .  - 

Figure 9-55. (a) A. I. Kitaigorodskii (1914-1985) among his students in the late 1960s in 
Moscow. (b) Democritos (ca. 460-ca. 370 n.c.) on Greek stamp: "Nothing exists except atoms 
and empty space; everything else is opinion." (See Mackay [9-54].) 



438 Chapter 9 

9.6.4 Hypersymmetry 

There are some crystal structures in which further symmetries are present 
in addition to those prescribed by their three-dimensional space group. The 
phenomenon is called hypersymmetry and has been discussed in detail by 
Zorky and co-workers [9-55, 9-56]. Thus, hypersymmetry refers to symmetry 
features not included in the system of the 230 three-dimensional space groups. 
For example, phenol molecules, connected by hydrogen bonds, form spirals 
with threefold screw axes as indicated in Figure 9-56. This screw axis does not 
extend, however, to the whole crystal, and it does not occur in the three- 
dimensional space group characterizing the phenol crystal. 

A typical characteristic of hypersymmetry operations is that they exercise 
their influence in well-defined discrete domains. These domains do not 
overlap--they do not even touch each other. The usual hypersymmetry 
elements lead to point-group properties. This means that no infinite molecular 
chains could be selected, for example, to which these hypersymmetry opera- 
tions would apply. They affect, instead, pairs of molecules or very small 
groups of molecules. Thus, they can really be considered as local point-group 
operations. These hypersymmetry elements, accordingly, divide the whole 
crystalline system into numerous small groups of molecules or transform the 
crystal space into a layered structure. 

A prerequisite for hypersymmetry is that there should be chemically 
identical (having the same structural formula), but symmetrically indepen- 

J 

Figure 9-56. The molecules in the phenol crystal are connected by hydrogen bonds and form 
spirals with a threefold screw axis. This symmetry element is not part of the three-dimensional 
space group of the phenol crystal. After Ref. [9-55]. 
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dent, molecules in the crystal structure--symmetrically independent, that is, 
in the sense of the three-dimensional space group to which the crystal belongs. 
The question then arises as to whether these symmetrically independent but 
chemically identical molecules will have the same structure or not. Only if they 
do have the same structure and conformation as well as bond configuration can 
we talk about the validity of the hypersymmetry operations. Here, preferably, 
quantitative criteria should be introduced, which is the more difficult since, for 
example, with increasing accuracy, structures that could be considered identi- 
cal before may no longer be considered so later when more accurate data 
become available. 

On the other hand, since even a slightly different environment will have 
some influence on the molecular structure, the hypersymmetry operations will 
not be absolute. In this, the hypersymmetry operations are somewhat different 
from the usual symmetry operations. The ultimate goal is to find a generalized 
formulation of the space-group system that would allow the simultaneous 
consideration of the usual symmetry as well as the hypersymmetry. When such 
a generalized formulation of space groups encompassing usual and hypersym- 
metry operations becomes available, the task of discovering crystals with 
hypersymmetry will be greatly facilitated. 

A special case of hypersymmetry is when the otherwise symmetrically 
independent molecules in the crystal are related by hypersymmetry operations, 
making them enantiomorphous pairs. 

Hypersymmetry is a rather widely observed, and sometimes ignored, 
phenomenon which is not restricted to a special class of compounds. It may be 
supposed, however, that certain types of molecules are more apt to have this 
kind of additional symmetry in their crystal structures than others. 

There are hypersymmetry phenomena in some crystal structures that are 
characterized by extra symmetry operations applicable to infinite chains of 
molecules. This kind of hypersymmetry has proved to be more easily detect- 
able and has been reported often in the literature. 

Hypersymmetry may be interpreted on the basis of the symmetry of the 
potential energy functions describing the conditions of the formation of the 
molecular crystal. The molecules around a certain starting molecule will be 
related by the symmetry of the potential function itself or the symmetry of 
certain combinations of the potential energy functions. The occurrence of 
some screw axes of rotation by hypersymmetry elements has been successfully 
interpreted in this way. In some instances, energy calculations as well as 
geometrical reasoning have shown the physical importance of hypersymmetry. 
For example, hypersymmetry may be related to stronger chemical bonding 
among molecules. Hypersymmetry may often be described as involving 
layered structure of a molecular crystal. This, again, may have advantages for 
geometrical and energy considerations. Thus, the phenomenon of hypersym- 
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metry is another good example of how symmetry properties and other proper- 
ties are related to each other. 

9.6.5 Crystal Field Effects 

Elucidating the effects of intermolecular interactions may greatly facili- 
tate our understanding of the structure and energetics of crystals. The geomet- 
rical changes of molecular structures cover a wide range in energy. Molecular 
shape, symmetry, and conformation change more easily upon the molecule 
becoming part of a crystal than do bond angles and especially bond lengths. 

Kitaigorodskii [9-38] suggested four approaches to investigating the 
effect of the crystalline field on molecular structure: (1) comparison of gaseous 
(i.e., free) and crystalline molecules; (2) comparison of symmetrically (i.e., 
crystallographically) independent molecules in the crystal; (3) analysis of the 
structure of molecules whose symmetry in the crystal is lower than their free 
molecular symmetry; and (4) comparison of the molecular structure in differ- 
ent polymorphic modifications. It is also possible that the molecule has higher 
symmetry in the crystal than as a free unit in the gas. Thus, for example, 
biphenyl has a higher molecular symmetry (a coplanar structure) in the crystal 
[9-57] than in the vapor [9-58] (where the two benzene rings are rotated by 
about 45 ° relative to each other, as shown in Figure 9-57). 

9.6.5.1 Structure Differences in Free and Crystalline Molecules 

Points 1 and 3 above both refer to the comparison of the structure of free 
and crystalline molecules. Such comparisons provide, perhaps, the most 
straightforward information, since the structure of the free molecule is deter- 
mined exclusively by intramolecular interactions. Any difference that is 
reliably detected will carry information as to the effects of the crystal field on 
the molecular structure. However, before discussing more subtle structural 
differences in molecular crystals as compared with free molecules, it is 
appropriate to point out some more striking differences between ionic crystals 
and the corresponding vapor-phase molecules. 

Figure 9-57. The molecular structure of biphenyl is coplanar in the crystal [9-57] while its two 
benzene rings are rotated by about 45 ° relative to each other in the vapor [9-58]. 
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Although molecules cannot be identified as the building blocks of ionic 
crystals, the free molecules of s o m e  compounds may be considered as if they 
were taken out of the crystal. A nice example is sodium chloride, whose main 
vapor components are monomeric and dimeric molecules. They are indicated 
in the crystal structure in Figure 9-58, as is a tetrameric species. Mass- 
spectrometric studies of cluster formation determined a great relative abun- 
dance of a species with 27 atoms in the cluster. The corresponding 3 × 3 × 3 
cube may, again, be considered as a small crystal [9°59]. 

Another series of simple molecules whose structure may easily be traced 
back to the crystal structure is shown in Figure 9-59. It is evident, for example, 
that various MX 2 and MX 3 molecules may take different shapes and symme- 
tries from the same kind of crystal structure. The crystal structure is repre- 
sented by the octahedral arrangement of six "ligands" around the "central 
atom." 

There seems to be even less structural similarity for many other metal 
halides when the crystalline systems are compared with the molecules in the 
vapor phase. Aluminum trichloride, for example, crystallizes in a hexagonal 
layer structure. Upon melting and then evaporation at relatively low tempera- 
tures, dimeric molecules are formed. At higher temperatures, they dissociate 
into monomers (Figure 9-60) [9-60]. The coordination number decreases from 
six to four and then to three in this process. 

Under closer scrutiny, even the dimeric aluminum trichloride molecules 
can be derived from the crystal structure. Figure 9-61 shows another represen- 
tation of crystalline aluminum trichloride which facilitates the identification 
of the dimeric units. Correlation between the molecular composition of the 
vapor and the source crystal has been established for some metal halides [9-62]. 

Figure 9-58. Part of sodium chloride crystal structure with NaCI, (NaC1)2, and (NaCI)4 units 
indicated. The species of 3 × 3 × 3 ions has a high relative abundance in cluster formation. 
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Figure 9-59. Different shapes of MX 2 and MX 3 molecules derived from the crystal structure in 
which the central atom has an octahedral environment. 

Gas/solid differences of a different nature may occur in substances 
forming molecular crystals. In some cases, for example, the vapor contains 
more rotational isomers than the crystal. Thus, for example, the vapor [9-63] of 
ethane-l,2-dithiol consists of anti and gauche forms with respect to rotation 
about the central bond while only the anti form was found in the crystal [9-64]. 
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Figure 9.60. Structural changes upon evaporation of aluminum trichloride. 
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Figure 9-61. The crystal structure of aluminum trichloride, after Ref. [9-61]. The dimeric unit 
with a four-membered ring is discernible. Copyright (1993) John Wiley & Sons. Used by 
permission. 

The comparison of the structures of free and crystalline molecules is 
obviously based on the application of various experimental techniques with 
theoretical calculations playing an increasing role. Thus, it is important to 
comment upon the inherent differences in the physical meaning of the struc- 
tural information originating from such different sources [9-65]. The conse- 
quences of intramolecular vibrations on the geometry of free molecules have 
already been mentioned. The effects of molecular vibrations and librational 
motion in the crystal are not less important. To minimize their effects, it is 
desirable to examine the crystal molecular structure at the lowest possible 
temperatures. Also, the corrections for thermal motion are of great impor- 
tance. Especially when employing older data in comparisons and discussing 
subtle effects, these problems have to be considered. There is another impor- 
tant source of differences in structural information, which may have no real 
structural implications. Apparent differences may originate from the differ- 
ence in the physical meaning of the physical phenomena utilized in the 
experimental techniques. When all sources of apparent differences have been 
eliminated, and the molecular structure still differs in the gas and the crystal, 
the intermolecular interactions in the crystal may indeed be responsible for 
these differences [9-66, 9-67]. 

Variations in the ring angular deformations of gaseous and crystalline 
substituted benzene derivatives have been found to be a sensitive indicator of 
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intermolecular interactions [9-68]. This was especially well indicated when 
different molecular packings were found to influence the benzene ring defor- 
mations to different extents for similar derivatives. 

These findings may serve as a stimulus for the structural chemist in search 
of gas/crystal differences in accurately determined systems and for the theo- 
retical chemist who may build models and perform calculations on them in 
which both the intramolecular and intermolecular interactions are adequately 
represented. The gas/crystal structural changes obviously depend on the 
relative strengths of the intramolecular and intermolecular interactions. More 
pronounced changes under the influence of the crystal field are expected, for 
example, in relatively weak coordination linkages than in stronger bonds. 
Thus, the N-B bond of donor-acceptor complexes is considerably longer in the 
gas than in the crystal. The difference is about 0.05 .& for (CH3)3N-BCI 3 (9-1) 

CH 3 
H3C ~ ~ .-----" C H3 

C~ ...... .  ) B ~ c l  
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[9-69], and it may be supposed that the intermolecular forces somewhat 
compress the molecule along the coordination bond in the crystal. An extreme 
case of an 0.84-/~ difference was reported for HCN-BF 3 [9-70]. 

Another case in point is the silatrane structures, where, again, the 
relatively weak N-Si dative bond is much longer in the gas than in the crystal. 
The difference is 0.28/~ for 1-fluorosilatrane [9-711, represented here (9-2) by 
the heavy-atom skeleton. 
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Gas/crystal comparisons are as of yet mainly confined to registering 
structural differences. The interpretation of these results is at a qualitative 
initial stage. Further investigation of such differences will enhance our under- 
standing of the intermolecular interactions in crystals. 
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9.6.5.2 Conformational Polymorphism 

The investigation of different rotational isomers of the same compound in 
different crystal forms (polymorphs) is also an efficient tool in elucidating 
intermolecular interactions. The phenomenon is called conformational poly- 
morphism. The energy differences between the polymorphs of organic crystals 
are similar to the free energy differences of rotational isomers of many free 
molecules, viz., a few kilocalories per mole. When the molecules adopt dif- 
ferent conformations in the different polymorphs, the change in rotational 
isomerism is attributed to the influence of the crystal field since the difference 
in the intermolecular forces is the single variable in the polymorphic systems. 

Polymorphism is ubiquitous (see, e.g., Ref. [9-48]), and most compounds 
can exist in more than one crystalline form. Bernstein and co-workers [9-37] 
have extensively studied conformational polymorphism of various organic com- 
pounds with a variety of techniques in addition to X-ray crystallography. Among 
the molecules investigated were N-(p-chlorobenzylidene)-p-chloroaniline [9-3, X 
= CI (I)], which exists in at least two forms, and p-methyl-N-(p-methylbenzyl- 
idene)aniline [9-3, X = CH 3 (If)], which exists in at least three forms. For I, a 
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high-energy planar conformation was shown to occur with a triclinic lattice. A 
lower energy form with normal exocyclic angles was found in the orthorhombic 
form. It was an intriguing question as to why molecule I would not always pack 
with its lowest energy conformation. 

The X-ray diffraction work has been augmented by lattice energy calcula- 
tions employing different potential functions. The results did not depend on the 
choice of the potential function, and they showed that the crystal packing and the 
(intra)molecular structure together adopt an optimal compromise. The minimized 
lattice energies were analyzed in terms of partial atomic contributions to the total 
energy. Even for the trimorphic molecule II, the relative energy contributions of 
various groups were similar in all polymorphs. However, this obviously could only 
be achieved in some lattices by adopting a conformation different from the most 
favorable with respect to the structure of the isolated molecule. The investigation 
of conformational polymorphism proved to be a suitable and promising tool for 
investigating the nature of those crystal forces influencing molecular conforma- 
tion and even molecular structure, in a broader sense. 

Obviously, possible variations in bond angles and bond lengths have been 
ignored in the considerations described above. The energy requirements for 
changing bond angles and bond lengths are certainly higher than those for con- 
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formational changes [9-37] and, accordingly, higher than what may be available 
in polymorphic transitions. However, some relaxation of the bond configura- 
tion may take place, especially considering that the (intra)molecular structure 
is also adopted as a compromise by the bond configurations and the rotational 
forms. 

Bond configuration relaxation during internal rotation has been investigated 
by quantum-chemical calculations for a series of 1,2-dihaloethanes [9-72]. The 
bond angle C-C-X may change by as much as 4 ° during internal rotation 
according to these calculations. If there is then a mixture of, say, anti and gauche 
forms, as is often the case, and the relaxation of the bond configuration is ignored, 
this may lead to considerable errors in the determination of the gauche angle of 
rotation. 

9.7 BEYOND THE PERFECT SYSTEM 

The 230 space groups exhaustively characterize all the symmetries 
possible for infinite lattice structures. So "exhaustively" that according to 
some views this perfect system is a little too perfect and a little too rigid. These 
views may well point toward the further development of our ideas on structures 
and symmetries [9-11, 9-73]. 

There is an inherent deficiency in crystal symmetry in that crystals are not 
really infinite. Mackay [9-73] argues that the crystal formation is not the 
insertion of components into a three-dimensional framework of symmetry 
elements; on the contrary, the symmetry elements are the consequence. The 
crystal arises from the local interactions between individual atoms. He further- 
more says that a regular structure should mean a structure generated by simple 
rules, and the list of rules considered to be simple and "permissible" should be 
extended. These rules would not necessarily form groups. Furthermore, 
Mackay finds the formalism of the International Tables for X-Ray Crystallogra- 
phy [9-18] to be too restrictive and quotes Bell, the historian of mathematics, 
on the rigidity of the Euclidean geometry formalism: "The cowboys have a 
way of trussing up a steer or a pugnacious bronco which fixes the brute so that it 
can neither move nor think. This is the hog-tie and it is what Euclid did to 
geometry." 

Mackay presented a long list [9-74] covering a whole range of transitions 
from classical crystallographic concepts to what is termed the modern science 
of structure at the atomic level. This list is reproduced in Table 9-6. Notice 
some resonance of several of Mackay's ideas with other directions in modern 
chemistry, where the nonclassical, the nonstoichiometrical, the nonstable, the 
nonregular, the nonusual, and the nonexpected are gaining importance. For 
crystallography it seems to be a long way yet to perform all the suggested 
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Table 9-6. Mackay's List of  Transitions from the Classical Concepts  of  
Crystallography to the Modern Concepts of  a Science of  Structure" 
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Classical concepts Modern concepts 

Absolute identity of components 
Absolute identity of the environment of 

each unit 
Operations of infinite range 
"Euclidean" space elements (plane sheets, 

straight lines) 

Unique dominant minimum in free energy 
configuration space 

Infinite number of units. Crystals 
Assembly by incremental growth (one 

unit at a time) 

Single level of organization (with large 
span of level) 

Repetition according to symmetry 
operations 

Crystallographic symmetry operations 

Assembly by a single pathway in 
configuration space 

Substitution and nonstoichiometry 
Quasi-identity and quasiequivalence 

Local elements of symmetry of finite range 
Curved space elements. Membranes, micelles. 

helices. Higher structures by curvature of lower 
structures 

One of many quasiequivalent states; metastability 
recording arbitrary information (pathway); 
progressive segregation and specialization of 
information structure 

Finite numbers of units. Clusters; "crystalloids" 
Assembly by intervention of other components 

("crystalase" enzyme), Information-controlled 
assembly. Hierarchical assembly 

Hierarchy of levels of organization, Small span of 
each level 

Repetition according to program. Cellular automata 

General symmetry operations (equal "program 
statements") 

Assembly by branched lines in configuration space. 
Bifurcations guided by "information," i.e., low- 
energy events of the hierarchy below. 

aRef.[9-74]. 

transitions, but the initial breakthroughs are fascinating and promising. Im- 
pressive progress has been reported in the studies of liquids, amorphous 
materials, and metallic alloys as regards the description of their structural 
regularities (cf. Ref. [9-75] and see also Section 9.8). 

Liquid structures, for example cannot be characterized by any of the 230 
three-dimensional space groups, and yet it is unacceptable to consider them as 
possessing no symmetry whatsoever. Bernal noted [9-76] that the major 
structural distinction between liquids and crystalline solids is the absence of 
long-range order in the former. A generalized description should also charac- 
terize liquid structures and colloids, as well as the structures of amorphous 
substances. It should also account for the greater variations in their physical 
properties as compared with those of the crystalline solids. Bernal's ideas 
[9-77] have greatly encouraged further studies in this field, which may be 
called generalized crystallography. Referring to Bernal's geometrical theory of 
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liquids, Belov [9-78] noted in Bernal's obituary: "His last enthusiasm was for 
the laws of lawlessness." 

The paradoxical incompleteness and inadequacy of perfect symmetry, 
compared with less-then-perfect symmetry, are well expressed in a short poem 
entitled "Gift to a Jade" by the English poet Anna Wickham [9-79]: 

For love he offered me his perfect world. 
This world was so constricted and so small 
It had no loveliness at all, 
And I flung back the little silly ball. 
At that cold moralist I hotly hurled 
His perfect, pure, symmetrical, small world. 

The structures intermediate between the perfect order of crystals and the 
complete disorder of gases are not merely rare exceptions. On the contrary, 
they are often found in substances which are very common in our environment 
or are widely used in various technologies. These include plastics, textiles, and 
rubber. Glass is an especially fascinating material whose amorphous atomic 
network was discussed by Zachariasen [9-80] over six decades ago in a 
contribution which is considered still valid [9-81]. Figure 9-62 shows 
Zachariasen's two-dimensional representations of crystalline and amorphous 
structures of compounds of the same composition, A20 3. Guinier [9-82] 
envisaged a continuous passage from the exact scheme of neighboring atoms in 
a crystal to the very flexible arrangement in an amorphous body. The term 
paracrystal was coined for domains with approximate long-distance order in 
the range of a few tens to a few hundreds of atomic diameters. Figure 9-63 is a 
schematic representation of a paracrystal lattice with one atom per unit cell. 
The blackened areas indicate the regions where an atom is likely to be found 
around the atom fixed at the origin. At greater distances, the neighboring sites 
first overlap, and then merge, and thus eventually the long-range order 
vanishes completely. 

One of the most fascinating examples of nonperiodic regular arrange- 
ments is described in Mackay's paper [9-73] De nive quinquangula--on the 
pentagonal snowflake. A regular but "noncrystalline" structure is built from 
regular pentagons in a plane. It starts with a regular pentagon of given size 
(zeroth-order pentagon). Six of these pentagons are combined to make a larger 
one (first-order pentagon). As is seen in Figure 9-64, the resulting triangular 
gaps are covered by pieces from cutting up a seventh zeroth-order pentagon. 
This indeed yields five triangles plus yet another regular pentagon of the order 
- 1. This construction is then repeated on an ever increasing scale as indicated 
in Figure 9-64. The hierarchical packing of pentagons builds up like a 
pentagonal snowflake, shown in Figure 9-65 from a computer drawing. 
Attempts of pentagonal tiling of the plane were already quoted in Chapter 1 and 
will be referred to again in Section 9.8. 
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Figure 9-62. Zachariasen's representation of the atomic arrangement in the crystal (a) and glass 
(b) of compounds of the same composition, A203. After Ref. [9-80]. 

Figure 9-63. Paracrystal lattice with one atom per unit cell. After Guinier [9-82]. Used with 
permission. 
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Figure 9-64. Tiling with regular pentagons, after Mackay [9-73]. 

Figure 9-65. Pentagonal Snonflake. Computer drawing, courtesy of Robert H. Mackay, 
London, 1982. 
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Mackay [9-73, 9-74] called attention to yet another limitation of the 230- 
space-group system. It covers only those helices that are compatible with the 
three-dimensional lattices. All other helices that are finite in one or two 
dimensions are excluded. Some important virus structures with icosahedral 
symmetry are among them. Also, there are very small particles of gold that do 
not have the usual face-centered cubic lattice of gold. They are actually 
icosahedral shells. The most stable configurations contain 55 or 147 atoms of 
gold. However, icosahedral symmetry is not treated in the International Tables, 
and crystals are only defined for infinite repetition. 

Crystals are really advantageous for the determination of the structure of 
molecules. A crystal provides an amplification which multiplies the scattering 
of the X rays from a single rnolecule by the number of molecules in the array, 
perhaps by 1015. It also minimizes the damage to individual molecules by the 
viewing radiation. The spots are emphasized in the diffraction pattern, and the 
background is neglected. The damaged molecules transfer their scattering 
contribution to the background as do those which are not repeated with regular 
lattice periodicity. However, defects and irregularities may be important and 
may well be lost in present-day sophisticated structural analyses. 

It is perhaps worth pointing out that every crystal is in fact defective, even 
if its only defect is that it has surfaces. However, if a crystal is only a ten-unit- 
cell cube, about half of the unit cells lie in the surface and thus have 
environments very different from those of the other half. The physical observa- 
tion is that very small aggregates need not be crystalline, although they may 
nevertheless be perfectly structured. Mackay's proposal is to apply the name 
c r y s t a l l o i d  to them. His proposed definitions are as follows [9-73]: 

• Crys ta l :  The unit cell, consisting of one or more atoms, or other 
identical components, is repeated a large number of times by three 
noncoplanar translations. Corresponding atoms in each unit cell have 
almost identical surroundings. The fraction of atoms near the surface 
is small, and the effects of the surface can be neglected. 

• Crys ta l l i t e :  A small crystal where the only defect is the existence of the 
external surface. The lattice may be deemed to be distorted, but it is 
not dislocated. Crystallites may further be associated into a mosaic 
block. 

• Crys ta l lo id :  A configuration of atoms, or other identical components, 
finite in one or more dimensions, in a true free energy minimum, 
where the units are not related to each other by three lattice operations. 

The above ideas are being further developed mainly by translating them 
into more quantitative descriptions that are being applied to various structural 
problems. They can also be compared with similarly new definitions men- 
tioned in Section 9.8. These new attempts of taxonomy by no means belittle the 



452 Chapter 9 

great importance of the 230 three-dimensional space groups and their wide 
applicability. What is really expected is that they will eventually help in the 
systematization and characterization of the less easily handled systems with 
varying degrees of regularity in their structures. 

The appearance of quasicrystals on the scene of materials has given a 
great thrust to these developments. 

9.8 QUASICRYSTALS 

The term "quasicrystal" was coined by Paul Steinhardt, who studied the 
structure of metallic glasses by theoretical means and modeling [9-83] (for an 
overview, see Ref. [9-84]). What he meant by this term was to have something 
expressing the connection between crystals on the one hand and quasiperiodic 
long-range translational order, on the other. Here, long-range translational 
order means that the position of a unit cell far away in the lattice is determined 
by the position of a given unit cell. In a crystal structure there is only one unit 
cell, whereas in a quasiperiodic structure there is more than just one. The 
repetition of the unit cell is regular in the crystal whereas it is not regular, nor 
is it random, in the quasiperiodic structure. In two-dimensional space, this is 
accomplished by the Penrose tiling [9-85], which was originally created more 
as recreational mathematics than as the extraordinarily important scientific tool 
that it has eventually become. A Penrose tiling is shown in Chapter 1 in Figure 
1-11. Some attempts of pentagonal tiling over the centuries have already been 
mentioned in Chapter 1. There is a detailed and systematic discussion of 
pentagonal tilings in Grtinbaum and Shephard's book [9-86]. 

The discovery of the Penrose tilings was a breakthrough in that pentago- 
nal symmetry occurred in a pattern otherwise described by space-group 
symmetry. Curiously, the Penrose tiling was first communicated not by its 
inventor but by Martin Gardner in the January 1977 issue of Scientific 
American [9-87]. Mathematical physicist Roger Penrose himself subsequently 
published a paper in a university periodical, which was then reprinted in a 
mathematical magazine [9-85]. The title of the communication was rather 
telling, Pentaplexity, with a more somber subtitle, A Class of Non-Periodic 
Tilings of the Plane. 

Mackay [9-88] made the connection with crystallography. He designed a 
pattern of circles based on a quasilattice to model a possible atomic structure. 
An optical transformation then created a simulated diffraction pattern exhibit- 
ing local tenfold symmetry (see Figure 1-12 in Chapter 1). In this way, Mackay 
virtually predicted the existence of what were later to be known as quasicrys- 
tals and issued a warning that such structures may be encountered but may stay 
unrecognized if unexpected [9-89]! 
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The moment of discovery came in April 1982 when Dan Shechtman was 
doing some electron diffraction experiments on alloys, produced by very rapid 
cooling of molten metals. In the experiments with molten aluminum with 
added magnesium, cooled rapidly, he observed an electron diffraction pattern 
with tenfold symmetry (see Figure 1-13 in Chapter 1). It was as great a surprise 
as it can be imagined to have been for any well-trained crystallographer. 
Shechtman's surprise was recorded with three question marks in his lab diary, 
" 99 " 10-fold..? [9-90]. 

Fortunately, Mackay's fear that quasicrystals may be encountered but may 
stay unrecognized did not materialize because, although Shechtman was not 
familiar with the Penrose tiling and its potential implications for three- 
dimensional structures, he had what Louis Pasteur called a prepared mind for 
new things.* He did not let himself be discouraged by the seemingly well- 
founded disbelief of many though he did not attempt to publish his observa- 
tions until he and his colleagues found a model that could be considered a 
possible origin of the experimental observation [9-84]. Ilan Blech constructed 
a three-dimensional model of icosahedra filling space almost at random and 
added restrictions to the model stipulating that the adjacent icosahedra touch 
each other at edges, or, in a later version, at vertices. Blech's model produced a 
simulated diffraction pattern that was consistent with Shechtman's observa- 
tions. 

The first report about Shechtman's seminal experiment did not appear 
until two and a half years after the experiment. The delay was caused by the 
authors' cautiousness and by some journal editors' skepticism. The paper 
[9-91] was titled modestly "Metallic Phase with Long-Range Orientationai 
Order and No Translational Symmetry." It starts with the following sentence: 
"We report herein the existence of a metallic solid which diffracts electrons 
like a single crystal but has point group symmetry m35 (icosahedral) which is 
inconsistent with lattice translations." The three-page report was followed by 
an avalanche of papers [9-92, 9-93], conferences, schools, special journal 
issues (see, e.g., Ref. [9-94]), and monographs (see, e.g., Refs. [9-95]- 
[9-98]), of which only a sample is mentioned here. Figure 9-66 shows some 
beautiful representatives of quasicrystals [9-99-9-101], and an artistic expres- 
sion of what could be a quasicrystal [9-102]. 

Independent of Mackay's predictions and Shechtman's experiments, there 
was another line of research by Steinhardt and Levine, leading to a model 
encompassing all the features of shechtmanite (the original quasiperiodic alloy 
was eventually named so) and other materials that are symmetric and icosa- 

""Dans les champ de l'observation, l'hasard ne favorise que les esprits prepares." (In the field of 
observation, chance only favors those minds which have been prepared.) Encyclopaedia Britannica 
1911, llth edition, Vol. 20, quoted here after Mackay [9-54]. 
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Figure 9-66. Quasicrystals: (a) Flowerlike icosahedral quasicrystals in a quenched AI/Mn 
sample, from Csan~idy et al .  [9-99]; (b) pentagonal dodecahedron in quasicrystalline AI/Cu/Ru 
sample obtained by slow cooling from melt; photograph courtesy of Professor H.-U. Nissen, 
Ztirich (cf. Ref. [9-100]). (Cont inued  on next  page)  

hedral and nonperiodic [9-83]. It was perfect timing that as soon as Steinhardt 
and Levine built up their model and produced its simulated diffraction pattern, 
they could see its proof from a real experiment. 

Steinhardt [9-103], like Mackay [9-74] before (see Section 9.7), felt the 
need for redefinition of materials categories. These categories now included the 
newly discovered quasicrystals. Steinhardt has succinctly characterized crys- 
tals, glassy materials, and quasicrystals as follows: 
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Figure 9-66. (Continued) (c) Triacontahedral A1/Li/Cu quasicrystal; photograph courtesy of 
Professor E D6noyer, Orsay (cf. Ref. [9-101]). (d) Sculpture resembling a quasicrystal, by Peter 
H~ichler, Switzerland. Photograph by the authors [9-102]. 

• Crys ta l :  "highly ordered, with its atoms arranged in clusters which 
repeat periodically, at equal intervals, throughout the solid." 

• G l a s s y  mater ia l :  "highly disordered, with atoms arranged in a dense 
but random array." 

• Q u a s i c r y s t a l :  "highly ordered atomic structure, yet the clusters repeat 
in an extraordinarily complex nonperiodic pattern." 

The appearance of quasicrystals has caused a minirevolution in crystal- 
lography. The lack of periodicity was a major obstacle in applying the 
traditional terms and approaches to this domain of materials. This was an 
interesting development also from the point of view of Mackay's suggestions 
for generalized crystallography (cf. Section 9.7). He truly anticipated the 
breakdown of the perfect traditional system, which he felt was a little too 
perfect. 

It has been suggested that quasicrystals be treated as three-dimensional 
sections of materials that are periodic in more than three dimensions. On the 
other hand, a new and more general formulation of crystallography has also 
been proposed [9-104] which would stay within the realm of three-dimension- 
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ality and would not have the concept of periodicity at the focus of its 
foundation. David Mermin [9-104] compared abandoning the traditional clas- 
sification scheme of crystallography, based on periodicity, to abandoning the 
Ptolemaic view in astronomy and likened changing to a new foundation to 
astronomy's adopting the Copernican view--hence the title of Mermin's 
communication, "Copernican Crystallography." The suggestion was to build 
the new foundation on the three-dimensional concept of point-group operations 
that would have the concept of indistinguishable densities at its focus, rather 
than identical densities, to correspond to the character of quasisymmetries, 
describing, among others, the quasicrystals. 

Concluding, we quote again Mackay [9-105], who stated: 

Amorphous materials may be shapeless, but they are not without 
order. Order, like beauty, is in the eyes of the beholder. If you look 
only with X-ray diffraction eyes, then all you see is translational 
order, to wit crystals . . . .  there is a wider range of structures, 
between those of crystals and those of gases . . . .  Other structures 
need not be failed crystals but are sui generis. 

In the words of the poet crystallographer [9-14], 

We cruise through the hydrosphere 
Our world is of water, like the sea, 
But the molecules more sparsely spread, 
Not independent, not touching 
But somewhere in between, 
Clustering, crystallizing, dispersing 
In the delicate balance of radiation 
And the adiabatic lapse rate. 

As crystallography is becoming more general, transforming itself into the 
science of structures, so may we anticipate a broadening application of the 
symmetry concept in the description and understanding of all possible struc- 
tures. 

9.9 FORGET ME NOT 

Lest the classical crystallographer feels our discussion too esoteric, let us 
return now to those exquisite shapes that we think of when the word crystal is 
mentioned. The words of the 19th century English writer John Ruskin (after 
Azaroff [9-17]) and drawings of C. Bunn [9-106] are cited here (Figure 9-67). 

And remember, the poor little crystals have to live their lives, and 
mind their own affairs, in the midst of all this, as best they may. 
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TOO PERFECT ? ~r.~,~,~,~ 

Figure 9-67. 

~*~ ~...t,,, sa, a R.v..t.~ ~ ~,,~,f,, ? 

~ t , ~  ~ ~ ' ~  

¢~,tA C k , ~  

Crystal Characters from C. Bunn's book [9-106]. Reproduced with permission. 

They are wonderfully like humane creatures--forget all that is 
going on if they don't see it, however dreadful; and never think 
what is to happen tomorrow. They are spiteful or loving, and 
indolent or painstaking, with no thought whatever of the lava or the 
flood which may break over them any day; and evaporate them into 
air-bubbles, or wash them into a solution of salts. And you may look 
at them, once understanding the surrounding conditions of their 
fate, with an endless interest. You will see crowds of unfortunate 
little crystals, who have been forced to constitute themselves in a 
hurry, their dissolving element being fiercely scorched away; you 
will see them doing their best, bright and numberless, but tiny. 
Then you will find indulged crystals, who had had centuries to 
form themselves in, and have changed their mind and ways contin- 
ually; and have been tired, and taken heart again; and have been 
sick, and got well again; and thought they would try a different 
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diet, and then thought better of it; and made but a poor use of their 
advantages, after all. 

And sometimes you may see hypocritical crystals taking the 
shape of others, though they are nothing like in their minds; and 
vampire crystals eating out the hearts of others; and hermitcrab 
crystals living on the shells of others; and parasite crystals living on 
the means of others; and courtier crystals glittering in the atten- 
dance upon others; and all these, besides the two great companies 
of war and peace, who ally themselves, resolutely to attack, or 
resolutely to defend. And for the close, you see the broad shadow 
and deadly force of inevitable fate, above all this: you see the 
multitudes of crystals whose time has come; not a set time, as with 
us, but yet a time, sooner or later, when they all must give up their 
crystal ghos t - -when  the strength by which they grew, and the 
breath given them to breathe, pass away from them; and they fail, 
and are consumed, and vanish away; and another generation is 
brought to life, framed out of their ashes. 
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