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Advances in weather and climate
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ever increasing volume of new and exciting observations and the underlying patterns

of climate change that may affect somany aspects of weather and the climate system.

In this series, the Royal Meteorological Society, in conjunction with

Wiley–Blackwell, is aiming to bring together both the underpinning principles and

new developments in the science into a unified set of books suitable for under-

graduate and postgraduate study as well as being a useful resource for the profes-

sional meteorologist or Earth system scientist. New developments in weather and

climate sciences will be described together with a comprehensive survey of the

underpinning principles, thoroughly updated for the 21st century. The series will

build into a comprehensive teaching resource for the growing number of courses in

weather and climate science at the undergraduate and postgraduate levels.

Series Editors

Peter Inness

University of Reading, UK

William Beasley
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Preface

Time series analysis is widely used in meteorological and climatological studies

because the vast majority of observations of atmospheric and land surface variables

are ordered in time (or space). Over the years we have found a continuing interest by

both students and researchers in our profession (and those allied to it) in under-

standing basic methods for analyzing observations ordered in time or space and

evaluating the results. The purpose of this book is to respond to this interest. We’ve

done this by deriving and interpreting various equations that are useful in explaining

the structure of data and then, using computer programs, applying them to

meteorological data sets. Overall, the material we cover serves as an introduction

in the application of statistics to the analysis of univariate time series. The topics

discussed should be relevant to anyone in any science where events are observed in

time and/or space. To demonstrate a procedure, we use scalar atmospheric variables,

for example, air temperature. Anyone who completes the five chapters, including

working the problems at the end of each chapter, will have acquired sufficient

understanding of time series terminology andmethodology to confidently deal with

more advanced spectrum analysis, for example, that found in radar and atmospheric

turbulence measurements, analysis, and theory.

Chapter 1 deals with Fourier analysis and is divided into five sections. In the first

three sections, mathematical formulas for representing a time series by Fourier sine

and cosine coefficients are developed and their inherent symmetry emphasized.

These formulas are applied to three data sets, two of which are actual observations.

The three sections provide the background necessary to apply Fourier analysis to a

time series, and one of the end-of-chapter problems invites the reader to write a

computer program designed to accomplish this.

In the fourth section of Chapter 1 we investigate statistical properties of the

Fourier spectrum. These statistical properties arise because time series from the phys-

ical world are usually nondeterministic, that is, no two data sets are alike. We explore

the concept of a random variable, a realization, a population, stationarity, expec-

tation, and a probability density function. The goal is to understand how random

data produce a distribution of variances at each harmonic frequency and the

statistical properties of this distribution. Armed with this information, the last part



of this section involves testing the hypothesis that a particular data set, as viewed

through the Fourier spectrum, is a sample from a population of white noise, that is,

random numbers.

The fifth section of Chapter 1 is an examination of various topics relevant to

time series analysis.We discuss aliasing, spectrum folding, and spectrumwindows,

phenomena that are a direct consequence of digital sampling, and show examples

of each. In addition, we develop the Fourier transform, the mathematical for-

mula that in one step converts a time series into its Fourier components in the

frequency domain.

Chapter 1 is the longest of the five chapters because it encompasses both

theory and application of Fourier analysis, relevant statistical concepts, and

the foundation of methods of time series analysis developed in the remaining

chapters.

The subject of Chapter 2 is linear systems. This chapter is the study of the

relationships between two time series, an input series and an output series, and the

associated input and output spectra. What links the two time series is a physical

system, as in the case of measurement of some physical variable (for example, a

thermometer to measure temperature), or a mathematical system, as in the case of

filtering an observed time series to remove unwanted noise in the data.

Fundamental to Chapter 2 is the convolution integral. Whether a system is

physical or mathematical, the convolution integral provides the mathematical

connection between the input and output series, and its Fourier transform provides

the connection between the input and output spectra.

Most variables of interest in the physical sciences are continuous in time (or

space). Nevertheless, we practically always analyze digital time series. We investigate

the relationship between analog and digital time series using a generalized function

called the Dirac delta function. Through its application we can explain how the

structure of an output time series that has passed through a linear system is altered

relative to the input time series in terms of modified Fourier coefficients and phase

angles. Two examples are discussed, a first order linear system and an integrator,

both of which have practical use in meteorology and climatology, and the physical

sciences in general.

Chapter 3 is principally about nonrecursive data filtering; that is, a filtered output

time series is related only to the input time series – there is no feedback (as in

recursive filtering). Time series that are to be filtered are viewed as data that already

have been collected as opposed to real time filtering.

The primary objective of this chapter is to design and apply a two-parameter filter

called the Lanczos filter. The two design parameters are the number of weights and

the frequency that separates the Fourier spectrum into harmonic variances that

remain unchanged and those that are suppressed. This filter provides its designer

much more control of the filtering process than simple one-parameter filters, for

example, the runningmean. The theory of Lanczos filtering is developed, examples of

x PREFACE



its use are shown, and a computer program is provided so that the reader can apply

the procedure to a data set.

One of the goals of a physical scientist is to understand the morphology of natural

events. An obvious step that must be taken is to obtain samples in time and/or space

of variables that characterize the physical properties of an event over its lifetime.

The fact that an event has a lifetime implies that it evolves in time and/or space, a

consequence of which is that successive observations of its properties are related.

This is called autocorrelation, the title of Chapter 4. To realize the importance of

autocorrelation in analyzing time series, we compare the formula for calculating the

variance of the mean of a random variable with autocorrelation to that without

autocorrelation. The latter formula is the form seen in typical undergraduate

statistics texts while the former formula takes into account the degree of dependence

in the time series.

In Chapter 4 we are interested in finding the best formula for estimating themean,

variance, autocovariance function, and autocorrelation function of a population of

time series based, typically, on a single observed time series taken from that

population. We examine populations of independent as well as autocorrelated data.

Among the five chapters, this one is the most statistically oriented.

The lagged-product method discussed in Chapter 5 is an alternative to Fourier

analysis. Quite often, Fourier analysis of geophysical data yields noisy-looking

spectra. When this occurs, it is common to smooth a spectrum to make it more

visually interpretable. In the lagged-productmethod, a smoothed variance spectrum

can be obtained directly from the Fourier transform of the product of the auto-

covariance function with another function that alters its shape. The degree of

smoothing is controlled entirely by the latter function. The term lagged-product

is used because the autocovariance function comprises time-lagged (or spatially-

lagged) products and it is the autocovariance function that is being transformed.

This book was written for students and scientists who have a background in

calculus and statistics, and familiarity with complex variables. Prior in-depth study

of complex variables is not required.

The authors wish to thank the many students who have provided valuable com-

ments and corrections over the years the material was used as lecture notes.

Chapters 2, 4, and 5 were inspired by the book Spectral Analysis and its Applications

(1968) by G.M. Jenkins and D.G. Watts, a classic volume in time series analysis.

Claude Duchon and Rob Hale

22 May 2011
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1
Fourier analysis

It is often the case in the physical sciences, and sometimes the social sciences as well,

that measurements of a particular variable are collected over a period of time. The

collected values form a data set, or time series, that may be quite lengthy or otherwise

difficult to interpret in its raw form. We then may turn to various types of statistical

analyses to aid our identification of important attributes of the time series and their

underlying physical origins. Basic statistics such as the mean, median, or total

variance of the data set help us succinctly portray the characteristics of the data set as

a whole, and, potentially, compare it to other similar data sets.

Further insight regarding the time series, however, can be gained through the use

of Fourier, harmonic, or periodogram analysis – three names used to describe a single

methodology. The primary aim of such an analysis is to determine how the total

variance of the time series is distributed as a function of frequency, expressed either

as ordinary frequency in cycles per unit of time, for example, cycles per second, or

angular frequency in radians per unit of time. This allows us to quantify, in away that

the basic statistics named above cannot, any periodic components present in the data.

For example, outside air temperature typically rises and falls with some regularity

over the course of a day, a periodic component governed by the rising and setting of

the sun as the earth rotates about its axis. Such a periodic component is readily

apparent and quantifiable after applying Fourier analysis, but is not describedwell by

the mean, median, or total variance of the data.

In the first two sections of Chapter 1, we will learn some essential terminology of

Fourier analysis and the fundamentals of performing Fourier analysis and its inverse,

Fourier synthesis. Example data sets and their analyses are presented in Section 1.3 to

further aid in understanding the methodology.

As with other types of statistical analyses, statistical significance plays an impor-

tant role in Fourier analysis. That is, after performing a Fourier analysis, what if we

Time Series Analysis in Meteorology and Climatology: An Introduction, First Edition. Claude Duchon and Robert Hale.
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find that the variance at one frequency is noticeably larger than at other frequencies?

Is this the result of an underlying physical phenomenon that has a periodic nature?

Or, is the larger variance simply statistical chance, owing to the randomnature of the

process? To answer these questions, in Section 1.4 we examine how to ascribe

confidence intervals to the results of our Fourier analysis.

In Section 1.5, we take a more detailed look at particular issues that may be

encountered when using Fourier analyses. Although not generally requisite to

performing a Fourier analysis, the concepts covered are often critical to correct

interpretation of the results, and in some cases may increase the efficacy of an

analysis. An understanding of these topics will allow an investigator to pursue

Fourier analysis with a high degree of confidence.

1.1 Overview and terminology

1.1.1 Obtaining the Fourier amplitude coefficients

The goal of Fourier analysis is to decompose a data sequence into harmonics

(sinusoidal waveforms) such that, when added together, they reproduce the time

series.Whatmakes sinusoidal waveforms an appropriate representation of the data is

their orthogonality property, their ability to successfully model waves in the

atmosphere, oceans, and earth, as well as phenomena resulting from solar forcing,

and the fact that the harmonic amplitudes are independent of time origin and time

scale (Bloomfield, 1976, p. 7).

Harmonic frequencies are gauged with respect to the fundamental period, the

shortest record length for which the time series is not repeated. In most practical

cases, this is the entire length of the available record, since the record typically

does not contain repeated sequences of identical data. The harmonic frequencies

include harmonic 1, which corresponds to one cycle over the fundamental

period, and higher harmonics that are integer multiples of one cycle. Thus each

harmonic is always an integer number of cycles over the length of the funda-

mental period.

To establish a sense of Fourier analysis, consider a simple example. The heavy line

in Figure 1.1 connects the average monthly temperatures at Oklahoma City over

the three-year period 2007–2009. By looking at the heavy line only, it is quite evident

that there is a strong annual cycle in temperature. It is equally clear that one sinusoid

will not exactly fit all the data, so other harmonics are required. The fundamental

period, or period of the first harmonic, is the length of the record, three years. The

third harmonic has a period one-third the length of the fundamental period, and

consequently represents the annual cycle. The thin line in Figure 1.1 shows the third

harmonic after it has been added to the mean of all 36 months, that is, the

0-th harmonic. As expected, the third harmonic provides a close fit to the observed

time series.
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1.1.2 Obtaining the periodogram

The computation of variance arises in elementary statistics as a defined measure of

the variability in a data set. When the computation of variance is applied to a time

series, it is similarly defined. Now, though, the variance in the data set can be

decomposed into individual variances, each one related to the amplitude of a

harmonic. Just as adding the sinusoids from all harmonics reproduces the original

time series, adding all harmonic variances yields the total variance in the time series.

How the decomposition is achieved and how variance is related to harmonic

amplitude are discussed in Section 1.2.

A periodogram is a plot of the variance associated with each harmonic (usually

excluding the 0-th) versus harmonic number and shows the contribution by each

harmonic to the total variance in the time series. Henceforth, the term periodogram

will be used to refer to the calculation of variance at the harmonic frequencies.

The term Fourier line variance spectrum is synonymous with periodogram, while

the generic term spectrum generally means the distribution of some quantity

with frequency.

The variance at each harmonic frequency is given by the square of its amplitude

divided by two, except at the last harmonic. Figure 1.2 shows the periodogram

(truncated to the first 10 harmonics) of the data in Figure 1.1 where we see that

harmonic 3 dominates the variability in the data. The small variances at harmonics 6

(period¼ 6 months) and harmonic 9 (period¼ 4 months) are easily observed in

Figure 1.2, but, in fact, there are nonzero variances at all 18 possible harmonics

(excluding the 0-th) and their sum equals the total variance of 75.23 �C2 in the

2007–2009 Oklahoma City mean monthly temperature time series.
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Figure 1.1 Mean monthly temperatures at Oklahoma City 2007–2009 (heavy line), and

harmonic 3 (light line) of the Fourier decomposition.
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The periodogram in Figure 1.2 was computed using the computer program

given in Appendix 1.A. This program, written in Fortran 77, performs a ‘fast’ Fourier

analysis of any data set with an even number of data and has been used throughout

this chapter to compute the periodograms we discuss.

1.1.3 Classification of time series

We can classify time series of data into four distinct types of records. The type

of record determines the mathematical procedure to be applied to the data to obtain

its spectrum.

The 36 values of temperature xn, in Figure 1.1, connected by straight-line segments

for ease in visualization, constitute a finite digital record. Digital time series arise in

twoways (Box and Jenkins, 1970, p. 23): sampling an analog time series, for example,

measuring continuously changing air temperature each hour on the hour; or

accumulating or averaging a variable over a period of time, for example, the previous

record of monthly mean temperatures at Oklahoma City. With respect to the latter

case, if N is the number ofmonths of data andDt the time interval between successive

values, the record length in Figure 1.1 isNDt¼ 36months. In this case, as well as with

all finite digital records, all data points can be exactly fitted with a finite number of

harmonics. This is in contrast to a finite analog record of length T, such as a pen trace

on an analog strip chart, for example, a seismograph, for which an infinite number of

harmonics may be required to fit the signal.

Figure 1.3 is an example of a finite analog record. Sampling the time series at

intervals ofDt yields the finite digital record shown in Figure 1.4. The sample values

again have been connected by straight-line segments to better visualize the variations
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Figure 1.2 Variance at each harmonic through 10 for the data in Figure 1.1.
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in xn. The sampling interval,Dt, associated with each datum can be shown on a time

series plot to the left or right of, or centered on, each datum – it is a matter of choice.

In Figure 1.4, Dt is to the right of each datum. One might think that there should

be a fifteenth sample point at the very end of the curve in Figure 1.3. However,

because of the association of each sampled value with oneDt, the length of the digital
record would be one sample interval longer than the analog record. Conceptually,

the fifteenth sample point is the first value of a continuing, but unavailable,

analog record.

The concept of an infinite analog record is often used in theoretical work.

An example would be the trace in Figure 1.3 extended indefinitely in both directions

of time. For this case a continuum of harmonics is required to fit the signal, thereby

resulting in a variance density spectrum. Note, however, that a variance density

spectrum can be created also with a finite digital record. How this comes about is

0

t
0 T

x
t

Figure 1.3 An example of a finite analog data record.

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Δt

NΔt = 14Δt

x
n

0

Figure 1.4 An example of a finite digital data record obtained by sampling the finite analog

record in Figure 1.3. There are N¼ 14 data.
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discussed in Chapter 5. An infinite digital record would be obtained by sampling the

infinite analog record at intervals of Dt. We will use infinite analog and digital

records in Section 3.1.4 (Chapter 3) to determine the effects on the mean value of a

time series after it is filtered.

By far the type of record most commonly observed and analyzed in science and

technology is the finite digital record. With a few exceptions, this is the type of data

recordwewill dealwith in the remainder ofChapter 1, and forwhich the formulas for

computing a periodogram are presented.

1.2 Analysis and synthesis

1.2.1 Formulas

If one of the data sets collected in your research is a time series of atmospheric

pressure, Fourier “analysis” can be used to derive its periodogram and to examine

which harmonics dominate the series. Conversely, once the analysis has been done,

the original time series of pressure can be reconstructed purely from knowledge of

the harmonic amplitudes. Thus Fourier “synthesis” is the inverse process of analysis.

Note that the title of this chapter employs the more generic meaning of analysis and

includes both the analysis and synthesis terms just described.

The formulas in Table 1.1 are those needed to perform analysis and synthesis. The

equations under Fourier Analysis are used to calculate the Fourier coefficients or

harmonic amplitudes. The equations under Fourier Synthesis express the time series

xn as the sum of products of cosines and sines with amplitudes Am and Bm,

respectively, or, alternatively, the sum of products of cosines only with amplitudes

Rm and phase angles qm. Notice that the expressions are slightly different depending
on whether the time series has an even or an odd number of data. The synthesis

equations are equivalent to the forms introduced by Shuster around 1900

(Robinson, 1982).

The arguments of the cosine and sine terms associated with the Am and Bm
coefficients are of the form

2pmnDt

NDt

where m is harmonic number and nDt a point in time along the time axis of total

length NDt. Thus, 2pm is the number of radians in them-th harmonic over the total

length of the time series. The product of 2pmand the ratio nDt/NDt provide location
along the sinusoid in radians. Because the time increments (Dt) cancel, they are not
shown in Table 1.1. In Fourier synthesis, the summation is over all harmonics at a

given location nDt, while in Fourier analysis the summation is over all data locations

for a given harmonic m.
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The variance at each harmonic for even and odd data lengths is given in Table 1.1

under the heading Variance at Harmonic m. Note that the only exception to the

general formula for harmonic variance occurs at m¼N/2 when N is even. The

cosine coefficient at N/2 is squared but not divided by two (the sine coefficient is

zero). The formulas for the total variance S2 under the heading Total Variance yield

the same variance estimates as the formula

S2 ¼ 1

N

XN�1

n¼ 0

xn � xð Þ2 ð1:1Þ

for computing total variance directly from the data, in which x is the series mean.

The two formulas in Table 1.1 are nearly the same, the only difference being that the

Table 1.1 Formulas used in Fourier synthesis and analysis for an even or odd number of data.

Fourier Analysis

A0 ¼ 1
N

PN�1

n¼ 0

xn B0 ¼ 0

Am ¼ 2
N

PN�1

n¼ 0

xn cos
2pmn

N
Bm ¼ 2

N

PN�1

n¼0

xn sin
2pmn

N

m¼ 1;N
2
�1

� �
N evenð Þ; m¼ 1;N�1

2

� �
Noddð Þ

AN=2 ¼ 1
N

PN�1

n¼ 0

xn cosðpnÞ BN=2 ¼ 0 ðN evenÞ

Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
m þ B2

m

q
qm ¼ tan�1 Bm

Am

� �

Fourier Synthesis

xn ¼
PN=2
m¼0

Amcos
2pmn

N
þBmsin

2pmn

N

� �
¼ PN=2

m¼0

Rmcos
2pmn

N
�qm

� �
; n¼ 0;N�1½ � ðN evenÞ

xn ¼
PN�1
2

m¼0

Amcos
2pmn

N
þBmsin

2pmn

N

� �
¼ PN�1

2

m¼0

Rmcos
2pmn

N
�qm

� �
; n¼ 0;N�1½ � ðN oddÞ

Variance at Harmonic m

S2m ¼ A2
m þ B2

m

2
m ¼ 1; N

2
�1

� � ðNevenÞ; m ¼ 1; N�1
2

� � ðN oddÞ

S2N=2 ¼ A2
N=2 ðN evenÞ

Total Variance

S2 ¼ PN=2
m¼ 1

S2m ðN evenÞ S2 ¼ PN�1
2

m¼ 1

S2m ðN oddÞ
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expression for the upper limit of each summation depends on whether N is even

or odd.

1.2.2 Fourier coefficients

The method for obtaining the Fourier coefficients is based on the orthogonality of

cosine and sine functions at harmonic frequencies, where orthogonality means that

the sumof the products of two functions over some interval equals zero. Themethod

entails multiplying both sides of a Fourier synthesis equation by one of the cosine or

sine harmonic terms, summing over all n, and solving for the coefficient associated

with the harmonic term.

For example, consider multiplying both sides of the first Fourier synthesis equa-

tion in Table 1.1 (using the Am, Bm form) by cos 2pkn
N

and summing over all n. The

second summation on the right-hand side will have the form and result

XN�1

n¼ 0

sin
2pmn

N
cos

2pkn

N
¼ 0 ð1:2Þ

wherem and k are integers. That this sum is zero can be shown with two examples as

well as mathematically. The sine and cosine terms for m¼ k¼ 1 are shown in

Figure 1.5 and for m¼ 1 and k¼ 2 in Figure 1.6. The algebraic signs of the sum of

cross products within each quadrant are shown at the base of each figure. Because of

symmetry, the absolute magnitude of each sum is the same for each quadrant in

−1

−0.5

0

0.5

1

n = 0 n = N
+ +− −

sin(2πmn/N)

cos(2πkn/N)

Figure 1.5 Signs of sums of cross products of cosine and sine terms for m¼ k¼ 1.
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Figure 1.5 and similarly for Figure 1.6. Thus the waveforms are orthogonal because

the sum of their cross products is zero over the interval 0 to N in each illustration.

It can be surmised from these figures that the sumof the cross products is zero over

the fundamental period for any combination of the m and k integers. But how could

this be shown mathematically? Firstly, we put the sine and cosine terms in complex

exponential form, and then expand the summation above using Euler’s formula

to obtain

XN�1

n¼0

sinð2pmn=NÞ cosð2pkn=NÞ

¼
XN�1

n¼0

1

2i
ðei2pmn=N� e�i2pmn=NÞ 1

2
ðei2pkn=Nþ e�2pkn=NÞ

¼ 1

4i

XN�1

n¼0

ðei2pðmþkÞn=Nþ ei2pðm�kÞn=N� e�i2pðm�kÞn=N� e�i2pðmþkÞn=NÞ: ð1:3Þ

A procedure is developed in Appendix 1.B for finding the sum of complex

exponentials. The final two formulas, Equations 1.B.3 and 1.B.4, are very useful

for quickly finding the sums of sines and cosines over any range of their arguments.

An example of using the first formula follows.

Consider just the first summation on the right-hand side in Equation 1.3. Let

Q ¼
XN�1

n¼ 0

ei2pðmþkÞn=N: ð1:4Þ

cos(2πkn/N)

sin(2πmn/N)

−1

−0.5

0

0.5

1

n = 0 n = N

++ −− −+

Figure 1.6 Signs of sums of cross products of cosine and sine terms for m¼ 1 and k¼ 2.
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Using Equation 1.B.3, Q becomes

Q ¼ 1� ei2pðmþkÞ

1� ei2pðmþkÞ=N

¼ 1� cos½2pðmþ kÞ� � i sin½2pðmþ kÞ�
1� cos½2pðmþ kÞ=N� � i sin½2pðmþ kÞ=N�

¼ 0; mþ k 6¼ 0; N: ð1:5Þ

The numerator is zero for all integer values of m and k while the denominator is

nonzero except when (mþ k)¼ 0 or N, in which cases the denominator is 0 and

Equation 1.5 is indeterminate. To evaluate Equation 1.5 for these cases we can apply

l’Hopital’s rule. The result of taking the first derivative with respect to (mþ k) in

both the numerator anddenominator yields a determinate formwith valueN. That is

Q0 ¼ 2p sin½2pðmþ kÞ� � i 2p cos½2pðmþ kÞ�
ð2p=NÞ sin½2pðmþ kÞ=N� � i ð2p=NÞ cos½2pðmþ kÞ=N�

¼ N; mþ k ¼ 0; N: ð1:6Þ

The same result also can be obtained by substituting 0 or N for (mþk) in

Equation 1.4. We observe that the first and fourth summations in Equation 1.3

cancel each other for these values.

We can apply the above procedure to the second term in Equation 1.3. The

summation will be zero again, except when (m� k) is 0 or N. Employing l’Hopital’s

rule yields a determinate form with value N for these cases, similar to Equation 1.6.

And again, the same results can be obtained from Equation 1.4. Accordingly, when

(m� k)¼ 0 or N, the second and third summations in Equation 1.3 cancel. Thus

Equation 1.2 is valid for any integer k orm. This includes the possibility that (kþm)

is an integer multiple of N.

Now that we have shown that the summed sine–cosine cross product terms akin

to Equation 1.2 must be zero, let us consider the sums of sine–sine and cosine–

cosine products resulting from multiplying the first Fourier synthesis equation

by cos 2pkn
N

and summing over all n. Following the procedure in Appendix 1.B we

find that

XN�1

n¼0

sin
2pmn

N
sin

2pkn

N
¼

0 ; k 6¼m
N
2
; k ¼ m 6¼ 0; N

2
ðNevenÞ; k ¼ m 6¼ 0 ðNoddÞ

0 ; k ¼ m ¼ 0; N
2
ðNevenÞ; k ¼ m ¼ 0 ðNoddÞ

8>>><
>>>:

ð1:7Þ
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and

XN�1

n¼0

cos
2pmn

N
cos

2pkn

N
¼

0 ; k 6¼m

N
2
; k ¼m 6¼0; N

2
ðNevenÞ; k ¼m 6¼0ðNoddÞ

N; k ¼m¼ 0; N
2
ðNevenÞ; k ¼m¼ 0ðNoddÞ:

8>>><
>>>:

ð1:8Þ

Thusmultiplying the synthesis equation for N even by the k-th sine harmonic term

and summing yields

XN�1

n¼0

xn sin
2pkn

N
¼
XN=2
m¼0

Am

XN�1

n¼0

sin
2pkn

N
cos

2pmn

N
þBm

XN�1

n¼0

sin
2pkn

N
sin

2pmn

N

 !

ð1:9Þ

which reduces to

XN�1

n¼0

xn sin
2pkn

N
¼ BkN=2; k ¼ 1;

N

2
�1

� �
ð1:10Þ

so that

Bk ¼ ð2=NÞ
XN�1

n¼0

xn sin
2pkn

N
; k ¼ 1;

N

2
�1

� �
: ð1:11Þ

Observe that the sine coefficients for k¼ 0, N/2 (N even) are always zero.

The Fourier cosine coefficients, Ak, are obtained in a similar manner, but A0 and

AN/2 are, in general, nonzero. As is evident from Table 1.1, A0 is the mean of the time

series. For N odd, an expression similar to Equation 1.9 is used to obtain the Fourier

coefficients, the only difference being that the range of harmonics extends from 0 to

(N� 1)/2. Table 1.1 shows the resulting formulas for all Fourier coefficients.

The coefficients Am and Bm represent the amplitudes of the cosine and sine

components, respectively. As shown in the left-hand panel of Figure 1.7a, the cosine

coefficient is always along the horizontal axis (positive to the right), and the sine

coefficient is always normal to the cosine coefficient (positive upward). In the right-

hand panel we see how the cosine and sine vector lengths determine the associated

cosine and sine waveforms (ignore the dashed line for the moment). Figures 1.7b–d

show various possibilities of waveform relationships depending on the sign of Am

and the sign of Bm. More discussion of Figure 1.7 is given in Section 1.2.4.
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Bm(+)

Bm(+)

Am(+)

Am(−)

θm(+)
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0 ≤ θm ≤ π/2

π/2 ≤ θm ≤ π

n = 0

Rm

Bm(+)

n

xn
Am(+)
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n = 0

n

xn Bm(+)

Am(−)

Rm

(a) θm is in the first quadrant.

(b) θm  is in the second quadrant.

Bm(−) m(−)

Am(−)

Rm

m /2

xn

n = 0

n

m(−)

Rm

x

Bm(−)

m(−)

Am(+)

Rm

/2 m ≤ 0

xn

n = 0

n

Rm

m(−)

(c) m is in the third quadrant.

(d) m is in the fourth quadrant.

Bm(−)Am(−)

Am(+)

Bm(−)

≤ θ

≤≤ θ

Figure 1.7 (a)–(d) The magnitude and sign of each Fourier coefficient determines the

quadrant in which the phase angle lies. Geometric vector lengths in the left hand panels are

twice the lengths of the Fourier coefficients in the right hand panels.
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An alternative approach can be taken to solve for the Fourier coefficients.

As shown by Bloomfield (1976, p. 13), the As and Bs above are identical to the

coefficients from a least-squares fit of individual harmonics to the data.

1.2.3 Total and harmonic variances

The standard formula for the total variance of a time series of length N

S2 ¼ 1

N

XN�1

n¼ 0

xn � xð Þ2 ð1:1Þ

was given in section in Section 1.2.1. The total variance is identical to the sum of

the variances at the individual harmonics as shown in Table 1.1 for N even and

N odd. The variance at an individual harmonic can be derived from Equation 1.1

by first substituting the Fourier synthesis equations for N even or N odd in

Table 1.1 into Equation 1.1 for xn and x. The substitution for x is A0. After

expanding the synthesis equation inside the parentheses in Equation 1.1,

squaring the result, and performing the required summation, the cross product

terms vanish (see Equation 1.2) and, using Equations 1.7 and 1.8, the remaining

squared terms will reduce to the equations for variance at any harmonic seen in

Table 1.1. With one exception, a harmonic variance is the sum of the squares of

the Fourier cosine and sine coefficients divided by two. The exception occurs at

harmonic m¼N/2. The expansion of Equation 1.1 into the sum of harmo-

nic variances is a good exercise in the application of orthogonality in time

series analysis.

1.2.4 Amplitude and phase representation

Instead of representing a time series by the appropriate sums of both sines and

cosines, an alternative representation is to use either sines or cosines alone and

include phase angles, as seen in the right-hand equations in Table 1.1 under Fourier

Synthesis. Because of orthogonality, the cosine term is shifted by 90� or p/2 radians
from the sine term for any harmonic. As a result, a single sinusoid can be represented

by two amplitude coefficients (Am and Bm) or, equivalently, by a single amplitude

coefficient Rm and a phase angle qm. The advantages of the latter are a slightly more

compact representation of xn and only one waveform for each harmonic.

Figure 1.7a illustrates the connection between the two forms of Fourier synthesis.

The dashed sinusoid with amplitude Rm in the right-hand panel has been decom-

posed into a cosine term and a sine term. Their respective amplitudes Am and Bm
depend on the location of the dashed sinusoid relative to the origin n¼ 0, that is, its

1.2 ANALYSIS AND SYNTHESIS 13



phase angle qm. As noted earlier, the left-hand panel shows the vector relationship

among the three amplitudes and the phase angle. Thus

Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
m þ B2

m

q
Am ¼ Rm cosqm

and

Bm ¼ Rm sinqm

so that

qm ¼ tan�1ðBm=AmÞ; �p � qm � p:

Substituting themiddle two equations above into a cosine–sine synthesis results in the

amplitude phase synthesis. We see that phase angle qm is determined by the sign and

magnitude of Am and Bm. The sign of each coefficient, not merely the sign of the

ratio, determines the quadrant in which the phase angle lies. The left-hand panels in

Figures 1.7a–d show the amplitude andphase angle in the quadrant associatedwith the

right-hand panels.Weobserve in each right-hand panel that, given the dashed line and

the origin, we can immediately determine the magnitudes of the cosine and sine

coefficients: the cosine coefficient is available at the origin and the sine coefficient 90�

to the right.

1.3 Example data sets

1.3.1 Terrain heights

Table 1.2 contains the data set for this example. The formulas in Table 1.1 are used

to perform a Fourier analysis and synthesis. Consider h to be the variation of

terrain height above some datum with distance d along a specified direction.

Furthermore, let the data in the table represent a finite digital subset of analog

periodic data. The data are plotted in Figure 1.8 and connected by straight-line

segments. After looking at Figure 1.8 and the tabled data, it should become

clear that the waveform repeats itself every 3000m. Thus one may as well

work with 15 values (n¼ 0, . . ., 14). Or should one use 16 values? Let us determine

the difference. Since Dd¼ 200m and the length of the fundamental period

L¼ 3000m, N¼ 15. Every datum must have a space increment Dd associated

with it. Although 16 points subtend L, the Dd associated with the sixteenth point

would make the fundamental period 3200, which it clearly is not. In short, the

sixteenth point is the first point of the next period and similarly for the thirty-first

point in the table.
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Further examination of the first 3000m in Figure 1.8 suggests odd symmetry in the

data. That is, if a vertical line were drawn at 1500m, the heights of any two points

equidistant from this line will appear to be a reflection about a horizontal line

at 100m elevation. Consequently, except for themean, only sine termswill be needed

in the Fourier synthesis. Lastly, we notice that the time series exhibits only

comparatively slow fluctuations, so that most of its variance should be

“explained” (i.e., accounted for) by low harmonic frequencies.

Based on this insight, we first compute the mean and find that A0¼ 100m. Over

the first 3000 meters we can easily identify three peaks and three troughs, indicating

we should calculate the magnitude of harmonic 3, that is

B3 ¼ ð2=15Þ
XN�1

n¼ 0

hn sinð2p3n=15Þ ¼ 20 m; N ¼ 15:
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Figure 1.8 Plot of terrain height data connected by straight-line segments.

Table 1.2 Height (h) versus distance (d¼ nDd¼ n200m).

n nDd(m) h(m) n nDd(m) h(m) n nDd(m) h(m)

0 0 100.00 10 2000 98.25 20 4000 101.75

1 200 129.02 11 2200 110.73 21 4200 117.30

2 400 127.14 12 2400 97.55 22 4400 110.59

3 600 102.45 13 2600 72.86 23 4600 89.41

4 800 89.27 14 2800 70.98 24 4800 82.70

5 1000 101.75 15 3000 100.00 25 5000 98.25

6 1200 117.30 16 3200 129.02 26 5200 110.73

7 1400 110.59 17 3400 127.14 27 5400 97.55

8 1600 89.41 18 3600 102.45 28 5600 72.86

9 1800 82.70 19 3800 89.27 29 5800 70.98

30 6000 100.00
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Thus, its variance is S23 ¼ B2
3=2 ¼ 200m2. The third harmonic added to themean is

plotted in Figure 1.9 from 0 to 3000m and then repeated to include the entire length

of the data set.

Since the average value of the height departures from A0 for the first 1500m is

positive and for the second 1500m is the same magnitude but negative in sign,

harmonic 1 should be nonzero. This is illustrated in Figure 1.10, in which it can be

seen that harmonic 1 will have to be a sine wave to account for heights above the

mean from 0 to 1500m and heights below the mean from 1500m to 3000m.

Using the formula for B1 we get B1¼ 10, so that S21 ¼ 50 m2. The first harmonic

added to the mean is plotted in Figure 1.11, again over the entire time series. The

accumulated variance from harmonics 1 and 3 is 250m2 in comparison to the total

variance of 282m2 computed from Equation 1.1. As there is no apparent high

frequency variance in Figure 1.8, wewould expectmuch of the remaining variance to

be at a low harmonic frequency. If we try harmonic 2 we find that B2¼ 8m and

S22 ¼ 32 m2. The waveform is shown in Figure 1.12. Since the first three harmonics
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Figure 1.9 Plot of the mean plus harmonic 3 fitted to the data in Figure 1.8 from 0 to 3 km

and repeated from 3 to 6 km.
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Figure 1.10 Harmonic 1 results from above average and below average heights as shown.
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account for 100% of the variance in the data, there is no need to make further

calculations (obviously, the data were generated using just the above coefficients!).

Figure 1.13 shows the sum of the three harmonics plus the mean, drawn as a smooth

curve that passes through all the observations in Figure 1.8.

It is interesting to consider what would happen if a 16-point data length (3200m)

were used, an earlier consideration. Instead of computing the three sine coefficients

above to explain 100% of the variance, it would take eight cosine and eight sine

nonzero coefficients to account for all the variance. The addition of the one point

destroys the symmetry present in the 15-point data length (3000m).

In Figures 1.9–1.13 the waveforms from 0 to 3000m were repeated over the

interval 3000–6000m. This is allowed since the data are periodic. By extending the

Fourier synthesis using the 15-point record, namely

hn ¼ 100þ 10 sinð2pn=15Þ þ 8 sinð4pn=15Þ þ 20 sinð6pn=15Þ
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Figure 1.11 Same as Figure 1.9 except for harmonic 1.
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Figure 1.12 Same as Figure 1.9 except for harmonic 2.
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the series will exactly match that in Figure 1.8 for 15� n� 29, and, more generally,

repeat the observed data for any n replaced by n� 15k where k is an integer. With a

16-point record, values of the computed serieswill be repeated every�16kpoints but

will not match the observed record for k 6¼ 0. For example, the first value in the

extended series will be 100m compared to 129.02m in the observed series.

Clearly, it is important to determine the correct number of data points when

working with periodic data. Many observed variables in meteorology and other

physical sciences are externally forced by the sun, so that there are strong diurnal

and annual components in the data. These components serve to define the funda-

mental period.

1.3.2 Paradrop days

Table 1.3 shows themean number of days in January that “paradrop” criteria aremet

for each hour of the day at Seymour-Johnson Air Force Base, Goldsboro, North

Carolina. A paradrop is the insertion of troops or equipment into a site via parachute

from an airplane. For a safe paradrop, three meteorological criteria should prevail:

ceiling� 2000 feet (610 m), horizontal visibility� 3 miles (4.8 km) and surface

winds< 10 knots (5.1m/s). Although “ceiling” has a specific definition, it can be

taken here tomean there is good vertical visibility between the surface and the height

of the ceiling. As an example of paradrop days, from Table 1.3 we see that at 0700,

19.2 days of the 31 days in January meet the safety criteria, on average.

The results of performing a Fourier analysis of the data given in Table 1.3 are

shown in Table 1.4. Only the results for the three largest harmonics are presented as

they account for 97.8%of the total variance and the remaining variances are all small.

Figure 1.14 is a plot of the mean number of days of occurrence versus time, the three

largest harmonics (about the mean), and their sum. As expected, their sum provides

a good fit to the data.
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Figure 1.13 Plot of the mean plus harmonics 1, 2, and 3 fitted to the data in Figure 1.8 from

0 to 3 km and repeated from 3 to 6 km.
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We can also establish the time or times of the peaks in each harmonic. To do this,

we use the formula

H ¼ F� ðphase angle q in degreesÞ

where H is the time in hours after 0000 local time and F is the ratio of the harmonic

period to 360�. Thus, from Table 1.4 for the second harmonic

H ¼ ð12=360Þ � ð�143:3Þ ¼ �4:78 h:

Converting this value to local time, we get 0713 and 1913. Similarly, the peaks for

the third harmonic are at 0223, 1023, and 1823 and for harmonic one at 2305.

In Problem 6 at the end of this chapter you are asked to write a Fourier analysis

computer program, apply it to the data in Table 1.3, compare your results with

those in Table 1.4 and Figure 1.14, and try to ascribe physical meaning to the

main harmonics.

Table 1.3 January paradrop days at Seymour-Johnson Air Force Base, North Carolina.

Hour Mean

number of days

Hour Mean

number of days

0000 21.6 1200 15.6

0100 21.1 1300 15.7

0200 21.2 1400 16.2

0300 20.8 1500 16.5

0400 20.3 1600 18.3

0500 20.4 1700 20.5

0600 20.0 1800 23.0

0700 19.2 1900 23.1

0800 19.5 2000 23.4

0900 18.0 2100 22.4

1000 17.4 2200 22.4

1100 17.5 2300 21.5

Table 1.4 Results of Fourier analysis of the data in Table 1.3.

Harmonic Cosine

coefficient

Sine

coefficient

Variance Percentage of

total variance

Phase angle

in degrees

0 19.817 0 0 0

1 2.8188 �0.6848 4.2072 74.9 �13.7

2 �1.1965 �0.8919 1.1136 19.8 �143.3

3 �0.1743 0.5623 0.1733 3.1 107.2
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1.3.3 Hourly temperatures

Even if there is a substantial amount of variance at a number of harmonics, one

should not believe, in general, that the variance at each harmonic is the conse-

quence of a different physical cause. Instead, often a band of harmonics can be

related to a physical phenomenon. Figure 1.15 is an example of a spectrum that

shows variance at particular harmonics and at broad bands of frequencies. The data

from which the spectrum was computed are hourly temperatures taken at the

Norman, Oklahoma Mesonet site (McPherson et al. 2007; http://www.mesonet.

org) from 1 December 2006 through 31 March 2007 at a height of 1.5m. Each

hourly temperature is a five-minute average at the top of the hour. The logarithmic

x-axis is in frequency in cycles/h converted from harmonic number and the y-axis is

proportional to the product of variance and frequency. In contrast to the period-

ogram with line variance in Figure 1.2, the spectrum amplitudes here are connected

by straight-line segments, the usual method of presentation. There are two broad

frequency bands of interest. One contains periods from about 12 to around 30 days

(0.0035–0.0014 cycles/h) and the other from about four to eight days

(0.0104–0.0052 cycles/h). The variances in these two bands are due to the passage

of long waves in the westerlies (major ridge–trough systems, i.e., Rossby-type

waves) and short waves (minor ridge–trough systems and fronts), respectively.

Their largely aperiodic nature results in the distribution of variance across a band of
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Figure1.14 Mean number of days thatmeet paradrop criteria versus time of day at Seymour-

Johnson Air Force Base, Goldsboro, North Carolina for the month of January. Three harmonics

explain 98% of the variance in the data.
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frequencies, the width of which can vary from year to year. Variance at periods

longer than 30 days is not shown because there are too few cycles over the 121 days

of data to yield satisfactory estimates.

The two well-defined peaks at periods of 24 and 12 hours are due to the daily cycle

of solar heating. Similar to the paradrop data in the previous section, the diurnal

temperature variation is a deformed sinusoid such that a semi-diurnal component is

also required. In fact, close inspection of Figure 1.15 shows a small amount of

variance at a period of six hours (0.1667 cycles/h), the fourth harmonic of the daily

cycle of temperature. Thus all three variances are required to explain the variance in

the daily cycle.

As a final comment about Figure 1.15, we point out that when the product of

variance density and frequency is plotted against the logarithm of frequency, the

result is an equal-area representation. Thus this is the plot design to usewhen the goal

is to compare variances from different frequency bands. Although we mentioned in

Section 1.1.3 that variance density would be discussed in Chapter 5, here it is only

necessary to know that variance and variance density are directly proportional to

each other to understand Figure 1.15.

1.3.4 Periodogram of a rectangular signal

Fourier analysis necessarily fits sinusoids to a time series; thus it is interesting to

observe what happens when data are intrinsically not comprised of sinusoids. The

heavy solid line in Figure 1.16a shows a periodic rectangular signal that might

represent, for example, whether it is raining or not or the occurrence and non-
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Figure 1.15 Temperature spectrum at 1.5m height for December 2006–March 2007 at

Norman, Oklahoma.
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occurrence of someperiodic phenomenon. Because of the locationof the time origin,

the signal is an even function and, therefore, only Fourier cosine coefficients will be

required. By analogy with Fourier analysis for digital data, the expression for the

Fourier cosine coefficients for this periodic analog record is

Am ¼ 2

T

ðT=2
�T=2

xðtÞ cosð2pmt=TÞdt; m ¼ 0; 1; 2; . . .

where T is the fundamental period. The periodogram in Figure 1.16b shows that only

odd-numbered harmonics are needed to synthesize the signal. The two light solid

lines and dashed line in Figure 1.16a are the waveforms of the first, third, and fifth

harmonics.

Given the waveform of the first harmonic, the waveforms of the third and fifth

harmonics serve to improve the Fourier synthesis. The positive and negative over-

shoots of the rectangular signal by the first harmonic are compensated by the

addition of the associated negative and positive peaks, respectively, in the third
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Figure 1.16 (a) A hypothetical rain – no rain analog signal, f(t), showing the first three

nonzero cosine harmonics. (b) Resulting periodogram with fundamental period shown in (a).
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harmonic. However, as can be seen in Figure 1.16a, the addition results in

overcompensation that, in turn, is compensated by the fifth harmonic. In this way,

adding the waveforms of successive odd harmonics better approximates the flat

peaks and troughs in the rectangular signal and sharpens the change in value from 1

to�1 and�1 to 1. In practice, if you computed a periodogram that showed evidence

of decreasing variance at alternate harmonics, you should bewary of the presence of a

rectangular wave. Other special signals (for example, triangular and saw-tooth) also

show characteristic spectra.

In summary, we are reminded that Fourier analysis fits sinusoids to data regardless

of the signal being generated by the physical (ormathematical) process. It is up to the

analyst to keep this in mind when interpreting a periodogram.

1.4 Statistical properties of the periodogram

Section 1.4.1 provides basic statistical concepts and terminology needed to under-

stand the remainder of Section 1.4. Section 1.4.2 discusses the term expectation and

shows how it is used to find statistical properties, for example mean, variance, and

covariance, of digital and analog data. Expectation is used in Appendix 1.C to derive

the formulas for the distribution of variances at the Fourier harmonics. Section 1.4.3

dealswith themain result ofAppendix 1.C, namely, that the frequencydistributionof

variance at any harmonic is proportional to a chi-square variable. This conclusion

requires that the datawe analyze come fromanormalwhite noise process. That is, the

data have a normal distribution and the periodogramof the data showsnopreference

for large or small variance at any harmonic. In practice,we assume the data are at least

approximatelynormallydistributedand, if thedataarenotwhitenoise, thedata length

is sufficiently long that the properties of the chi-square distribution of variance at a

harmonic and their independence fromone harmonic to the next are effectivelymet.

Knowing that the statistical distribution of variances at a harmonic is chi-square

opens the window to finding confidence limits for the underlying variance spectrum

from which a sample periodogram has been computed as well as testing the null

hypothesis that the periodogram came from awhite noise process. To put these ideas

into practice, we will deal with two data sets: one a 100-year record of autumn

temperatures; the other a five-year record of monthly mean temperature, both from

central Oklahoma, USA. The theory and application of confidence limits are

presented in Sections 1.4.4–1.4.6.

1.4.1 Concepts and terminology

The computation of a periodogram is purely an algebraic manipulation of the data.

The interpretation of a periodogramdepends on howone views the data. If one views

a data set as resulting from a physical phenomenon or mathematical process that
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produces an identical data set each time the phenomenon or process is initiated, the

data set is considered deterministic. Each data set produced is identical to every other

data set, and likewise for the associated periodograms. If one views a data set as

resulting from a physical phenomenon or mathematical process that produces a

different data set each time the phenomenon or process is initiated, however small

the differences, the data set is nondeterministic, or equivalently, the data are stochastic

or random. Because no two data sets are alike, there is, conceptually, a population of

data sets, with each data set a member or realization of the population. The

population can be finite or infinite. The periodogram of a nondeterministic data

set is also one realization of a population of periodograms. In this concept, each

realization, whether a data set or a periodogram, represents an equally valid statistical

representation of the physical phenomenon ormathematical process being analyzed.

Observed time series in natural science are typically nondeterministic, although

deterministic components can exist in the series. In Section 1.4 we focus our

attention on nondeterministic data sets and the statistical properties of the resulting

periodograms. As part of this effort, we need certain additional terminology.

A random variable (rv) is a variable that has associated with it a range of values and

either a probability distribution (pd) if the variable is digital, or a probability density

function (pdf) if thevariable is analog.For example, randomvariable (rv)Xmight take

on any integer value from151 to 250, inclusive. The probability distribution gives the

probability of occurrence assigned to each of the 100 possible values, with the sum of

the probabilities equal to one. Alternatively, rv Xmight take on any real value within

the range 151 to 250, of which there are infinitely many possibilities. In this case the

probability of X exactly assuming any particular value (say, exactly 200) is zero.

However, there exists a finite probability that X will lie within a range of values

(say, 199.99–200.01) that is a subset of the overall range of possibilities. Thus,

in the case of analog data, it is necessary to describe probabilities using pro-

bability densities, the relative likelihoods of the values within the overall range. The

probability density function describes these relative likelihoods and, in parallel with

thecaseofdigitaldata, the integralof theprobabilitydensity functionover the rangeof

rv X is one.

Nowwe develop the concept of a time series of random variables. Imagine a time

series of data from time t0 to time tT collected from an experiment. Continue to

repeat the experiment, thereby forming successive data sets (realizations) of x(t)

from t0 to tT. The values of x at, say, time t0, where t0� t0 � tT form random variable

X(t0). This concept is illustrated in Figure 1.17, which shows a selection of

realizations stacked one upon the other with t0 and tT lying beyond the ends of

the time axis shown. The intersection of the left-hand vertical dashed line with each

realization provides the range of values that comprise rv X at time t0. A random

variable also can exist at any other point along the time axis (for example, X(t00) at
t00). In the experiment above, the time axis was finite (t0 to tT). In general, both the

time axis and the number of realizations can be infinite. Whether the time axis X(t00)
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and number of realizations is finite or infinite t0 to tT, the collection of random

variables comprise a random process or stochastic process.

Before continuing with additional concepts we comment on the notation for

random variables. Throughout the text we will use only upper case letters to indicate

random variables. However, all upper case letters are not random variables; they can

be standard mathematical variables, parameters, or constants. We’ve seen this, for

example, with Fourier coefficients in Table 1.1. It is always easy to understand

whether or not an upper case letter represents a random variable by the context in

which it occurs.

Realizations

X(t'')

Time, t

...

...

xk+1(t)

xk(t)

x3(t)

x2(t)

x1(t)

X(t')

Figure 1.17 A selection of realizations from a random process. Function X(t0) denotes

random variable X at any time t0. The light horizontal lines have the same reference value of X
for each realization.
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When the data are nondeterministic, we need to consider another attribute:

whether the random process is stationary or nonstationary. If a time series is

stationary, the statistical properties of the pd or probability density function do

not change with time; a time series is nonstationary if the opposite is true. A simple

example of a nonstationary time series is a record of air temperature from winter to

summer at a typical middle latitude station. The nonstationarity results from the

increasing value of mean daily temperature, that is, a trend. In order to make the

series stationary, a low-order polynomial can be fitted to the data set and then

subtracted from it. Another common type of nonstationarity occurs when the

magnitude of the fluctuations, the population variance, changes with time. An

example is the greater variability (gustiness) of the surface wind speed during

daytime than nighttime due to the verticalmixing of air as the surface is differentially

heated during daylight hours.

If a time series is nonstationary and it is not clear how to remove nonstationary

effects, it may be necessary to resort to special analyses using many realizations,

divide the data into stationary segments, or apply other methods, such as wavelet

analysis (Daubechies, 1992). With the exception of Section 4.1, all mathematical

statistics in this text apply to stationary random processes; that is, the population

mean and population variance are independent of time. The data sets we analyze can

be considered realizations of a stationary random process or can be filtered in such a

way to make them stationary or approximately so.

An additional underlying concept needed to derive the statistical properties of a

periodogram is a particular random process calledGaussian (or normal)white noise.

There are two attributes of this process.With reference to Figure 1.17, the first is that

the probability density function of rv X(t0) (or X(t00)) is Gaussian. The second

attribute is that rv X(t0) and rv X(t00) are independent of each other. In practice, this

means that knowledge of the value of one member of the population at time t0

provides no predictability of the value of the same or any other member at any other

time. In statistical parlance, the covariability or covariance between X(t0) and X(t00),
t0 6¼ t00, is zero, a condition that implies the underlying randomprocess is white noise.

The equivalent mathematical statement is derived in the next section.

An examination of the periodogramof any selected time series (a realization) from

a Gaussian white noise process would indicate no preference for large or small

variances in any part of the spectrum. The average over all possible realizations of the

variances at any one harmonic would be identical to that at any other harmonic

(with the exception of the highest harmonic for an even number of data, where the

variance would be reduced by one-half relative to the other harmonics). That is,

the periodogram variances would be uniform with harmonic frequency (less the

exception), a condition referred to as “white” by loose analogy with white light

wherein no one of the component colors is preferred (there is also acoustic white

noise). It is through this connection that the process that produces the uniform

variance spectrum is referred to as “white.”When we subsequently deal with a white
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noise process, it will be assumed to be normal or Gaussian, so that use of either

qualifier will be dropped.

1.4.2 Expectation

The term expectation is of fundamental importance to understanding the statistical

properties of the periodogram. The synonym for expectation is average. When

expectation is indicated, the average is taken over the entire population, whether it is

finite or infinite. The indicator for expectation is the symbol or operator E.When the

operator E is applied to a random variable (or a function of a random variable),

the question being asked is, “What is the average value of the random variable (or

the function of the random variable).” We will see examples of both in

subsequent sections.

In the first subsection formulas for the expectation of rv X and general function

g(X) for digital data are developed, followed by, in the second subsection, a parallel

development for analog data. In the third subsection the expectation of the product

of two random variables is developed. The results are formulas for the covariability

or covariance between these variables. For those readers familiar with expectation,

it may be necessary only to skim through this section to become familiar with

the notation.

1.4.2.1 Digital data

Let the sample space S in Figure 1.18 contain a population of N elements, some of

whichmay be the same. Denote distinct elements of S by x1, x2, . . ., xK. In Figure 1.18
N¼ 10 and K¼ 6; two x1 elements are alike, three x2 elements are alike, and two x4
elements are alike.

The symbol for expectation is E and the expectation of random variable X is

defined by

E X½ � ¼ mX ¼
PK
k¼ 1

xk nk

N
ð1:12Þ

where X is a digital random variable, nk is the number of elements with value xk, and

N ¼
XK
k¼ 1

nk:

The expectation operator asks the question – What is the mean value of the

quantity in brackets when the entire population is considered? Thus the summation
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in Equation 1.12must include all elements. Since the probability of getting value xk in

a random selection of one of the N elements in S is given by

pxk ¼
nk

N

an equation equivalent to Equation 1.12 is

E½X� ¼ mX ¼
XK
k¼ 1

xk pxk : ð1:13Þ

In the example above

N ¼
X6
k¼ 1

nk ¼ 2þ 3þ 1þ 2þ 1þ 1 ¼ 10

and

E½X� ¼ mX ¼
X6
k¼ 1

xk pxk

¼ 3:6� 2

10
þ 2:1� 3

10
� 2:4� 1

10
� 5:1� 2

10
� 0:1� 1

10
þ 0:8� 1

10

¼ 0:16:

X5 = −0.1
X2 = 2.1

X4 = −5.1

X1 = 3.6

X2 = 2.1

X1 = 3.6

X3 = −2.4

X4 = −5.1

X6 = 0.8

X2 = 2.1

S space

Figure 1.18 Sample space S with N¼ 10 elements, some of which are alike.
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Equation 1.13 is good for both finite and infinite populations. In the case of the

latter, no empirical determination of the probabilities can be made; they must be

known a priori.

Now replace digital rv X by a general function of X, namely, g(X). Then,

E½gðXÞ� ¼
XK
k¼ 1

gðxkÞ pxk : ð1:14Þ

Consider two example functions. Let g(X)¼Xi for i� 1. Then, by analogy with

Equation 1.12,

E½Xi� ¼
XK
k¼ 1

xik pxk ð1:15Þ

is the i-th moment of rv Xi about zero. Of course, i¼ 1 results in the mean mx. For
the second example function, let g(X)¼ (X� E[X])i for i� 1. The expectation

becomes

E
�ðX� E½X�Þi� ¼

XK
k¼ 1

ðxk � mXÞi pxk ð1:16Þ

which is the i-th moment about the mean, or the i-th central moment.

A common central moment is the second moment or variance. Accordingly, for

i¼ 2 we have

E ðX� E½X�Þ2� � ¼
XK
k¼ 1

ðxk � mXÞ2 pxk ð1:17Þ

or, what is the same,

VarðXÞ ¼ s2X ¼ E ðX� E½X�Þ2� � ¼ E½X2� � 2E½X� 	E½X� þ ðE½X�Þ2

¼ E½X2� � ðE½X�Þ2: ð1:18Þ

The last form for the variance in Equation 1.18 shows that it is equivalent to the

“mean of the squares minus the square of the mean.”
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For the S space example, substituting Equation 1.13 and Equation 1.15 into

Equation 1.18 yields

s2X ¼ ½ð3:6Þ2 � 2þð2:1Þ2 � 3þð�2:4Þ2 � 1þð�5:1Þ2 � 2þð�0:1Þ2 � 1þð0:8Þ2 � 1�
10

�ð0:16Þ2

¼ 9:732:

1.4.2.2 Analog data

The expected value of analog random variable X is given by

E½X� ¼ mX ¼
ðþ1

�1
x fðxÞ dx ð1:19Þ

where f(x) is the probability density function of rv X. Integration is involved for an

analog variable as opposed to discrete summation for a digital variable. The limits on

X extend over the range �1 to þ1 and include the case in which the probability

density function is zero over some portion of this range. For the general analog

function g(X),

E½gðXÞ� ¼
ðþ1

�1
gðxÞ fðxÞ dx: ð1:20Þ

Consider two analog example functions following those for digital data. Let

g(X)¼Xi for i� 1. Then

E½Xi� ¼
ðþ1

�1
xi fðxÞ dx ð1:21Þ

is the i-th moment of rv Xi about zero. Again, when i¼ 1, we obtain the population

mean mX. Now let g(X)¼ (X� E[X])i for i� 1. Parallel to Equation 1.16,

E ðX� E½X�Þi
h i

¼
ðþ1

�1
ðx� mXÞi fðxÞ dx ð1:22Þ

is the i-th central moment. The second moment, i¼ 2, is the variance. Thus, for

analog data

VarðXÞ ¼ s2X ¼ E ðX� E½X�Þ2� � ¼
ðþ1

�1
ðx� mXÞ2 fðxÞ dx: ð1:23Þ
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1.4.2.3 Covariance

Consider two analog random variables X1 and X2. We can find the variance of each

using Equation 1.23. We now inquire about how these two random variables covary

in time. That is, do they tend to track each other? When X1 increases, does X2 also

tend to increase (or decrease), or does X2 just as likely increase as decrease? The

measure of this relationship is called covariance. If, when X1 increases (decreases)

X2 also tends to increase (decrease), the sign of the covariance (or covariability) will

be positive; if, when X1 increases (decreases) X2 tends to decrease (increase), the

sign of the covariance (or covariability) will be negative; and, lastly, if, when X1

increases or decreases X2 is just as likely to increase as decrease, the expected

covariance is zero and the variables are independent of each other. Stated math-

ematically, we have

E ðX1�m1ÞðX2�m2Þ½ � ¼ Cov½X1;X2� ¼
ðþ1

�1

ðþ1

�1
ðx1�m1Þðx2�m2Þfðx1;x2Þdx1 dx2

ð1:24Þ
where Cov[X1,X2] means covariance between random variables X1 and X2 and

f(x1, x2) is the joint probability density function between random variables X1 and X2.

If X1 and X2 are independent, f(x1, x2)¼ f(x1) 	 f(x2); that is, the joint probability
density function is equal to the product of the individual probability density

functions. With this condition,

Cov½X1;X2� ¼
ðþ1

�1
ðx1 � m1Þ fðx1Þ dx1

ðþ1

�1
ðx2 � m2Þ fðx2Þ dx2

¼ E½X1 � m1� E½X2 � m2� ¼ 0: ð1:25Þ

Because the expectation operator is linear, it can be taken inside the brackets of

each term in the product on the right, so that E[X1� m1]¼ m1�m1¼ 0, and similarly

for the second term. The expected value of a constant is, of course, the same constant.

The formulas for digital data similar to Equations 1.24 and 1.25 are

E½ðX1�m1ÞðX2�m2Þ� ¼ Cov½X1;X2� ¼
XK
k¼1

XM
m¼1

ðx1k �m1Þ ðx2m�m2Þpx1k ;x2m
ð1:26Þ

where K¼M and, for independent variables,

Cov½X1;X2� ¼
XK
k¼1

ðx1k �m1Þpx1k
XM
m¼1

ðx2m�m2Þpx2m

¼ E½X1�m1�E½X2�m2� ¼ 0: ð1:27Þ
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1.4.3 Distribution of variance at a harmonic

Let us now shift our focus from comparing variances among harmonics in

Section 1.4.1 to examining how variance is distributed at a single harmonic across

the population of realizations. The detailed and somewhat lengthy derivation of

this distribution is the subject of Appendix 1.C. In this section we present only the

results. Our recommendation is that readers complete this section before studying

Appendix 1.C.

Basic knowledge of the properties of a chi-square distribution is essential from this

point forward. Sufficient background usually can be found in an undergraduate text

in statistics. We will expand on this basic knowledge as needed.

In Appendix 1.C it is shown that, for a normal white noise process, the covariance

between the sine and/or cosine coefficients at any two harmonics is zero (a result that

might have been anticipated from Equations 1.4 and 1.5) and the coefficients are

normally distributed. Squaring the coefficients and standardizing them by dividing

by their variances yields random variables with a chi-square distribution. Using the

additive property of chi-square variable results in harmonic variances that are

independent and proportional to a x22-distribution (a chi-square distribution with

two degrees of freedom) except at the frequency origin (harmonic 0) and, for an even

number of data N, at harmonic N/2.

In analyzing geophysical data, we are usually concerned with an underlying

stochastic process that is other than white noise. For this situation, the sinusoids at

the harmonic frequencies are likewise orthogonal (see Equations 1.4 and 1.5) but it

is only in the limit as the number of data N in a realization becomes infinite

that their variances are independent and have a chi-square distribution. Koop-

mans (1974, Section 8.2) provides further discussion of the properties of

nonwhite noise.

In obtaining the frequency distribution of variance for a general stochastic

process, we will assume N is sufficiently large that it is reasonable to apply the

results for white noise given in Appendix 1.C. The magnitude of N required to make

this assumption reasonable depends on the departure of the random process from

white noise. The greater the departure, the larger the value of N, but no specific value

can be given. Thus, in accepting a conclusion from statistical analysis of a realization

that depends on it being from a normal white process, it is important to express some

caution. Assuming that N is sufficiently large, the variances at the interior harmonics

are independently distributed according to

CðfmÞ
CðfmÞ )

x22
2
;

0 < m < N=2; N even

0 < m � ðN� 1Þ=2; N odd

	
ð1:28aÞ

where random variable C(fm) is the variance at the m-th harmonic frequency fm,

C(fm) is the process variance at fm, the arrow indicates “is distributed as,” and,
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therefore, the above variance ratio is distributed as a chi-square variable with two

degrees of freedom divided by two. In general, the value of C(fm) is unknown. The
next section showshow to determine a confidence interval forC(fm). The twodegrees
of freedom (dof) at each harmonic are a consequence of a sine and a cosine being

fitted to the data. There is only one dof at the 0-th harmonic (the mean), regardless

of whether N is even or odd. In cases where N is even, there also is only one dof at the

N/2-th harmonic. As Table 1.1 shows, the calculations at these harmonics require

only a cosine term. That is,

Cðf 0Þ
Cðf 0Þ ) x21; N even or odd ð1:28bÞ

and

CðfN=2Þ
CðfN=2Þ

) x21; N even: ð1:28cÞ

For N odd, the variance at the highest frequency [(N� 1)/2] has two dof as noted

in Equation 1.28a. For N even or odd the total number of dof in the periodogram

equals the number of data N.

It should be noted that C(fm) is analogous to S2m in Table 1.1. One reason for

changing notation is because C(fm), unlike S
2
m, is a random variable. Another reason

is that in Section 1.5.6wewill be calculating variance at any frequency, f, and it will be

convenient to simply drop the subscript m. For now, our interest remains in dealing

with variance at the harmonic frequencies, fm, only.

1.4.4 Confidence intervals on periodogram variances

In this and the following section, the underlying stochastic process is unspecified.

It may or may not be white noise, but we assume that the number of data, N, is

sufficiently large to justify application of independent chi-square distributions

derived from a white noise process to the harmonic variances, as discussed in the

previous section. In addition, we assume the data follow a normal distribution.

Given that the variance ratio C(fm)/C(fm) follows a chi-square distribution

according to Equation 1.28a, we can determine a confidence interval for the ratio

using the probability expression

Pr
x22ða=2Þ

2
�CðfmÞ
CðfmÞ �

x22ð1�a=2Þ
2

	 

¼ 1�a; m 6¼ 0 ðallNÞ; m 6¼N=2 ðNevenÞ

ð1:29Þ
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where a is the level of significance. In this equation observed values of C(fm)/C(fm)

vary between confidence limits x22ða=2Þ=2 and x22ð1�a=2Þ=2 in 100(1�a)% of the

observations. The term x22ða=2Þ is a particular value of the randomvariable such that

the area beneath its probability density function to the left of this value is a/2.
We consider the case in which we have an observed value of C(fm) and the

objective is to find the limits of the confidence interval for the population variance

C(fm). By rearranging Equation 1.29, the 100(1�a)% confidence interval for C(fm)
can be obtained from the probability statement

Pr
CðfmÞ

x22ð1� a=2Þ=2 � CðfmÞ � CðfmÞ
x22ða=2Þ=2

	 

¼ 1� a; m 6¼ 0; N=2 ðN evenÞ:

ð1:30Þ

The interval between 2C(fm)/x
2
2(1�a/2) and 2C(fm)/x

2
2(a/2) is the 100(1�a)%

confidence interval for C(fm). By taking the logarithm of the limits of the confidence

interval for log C(fm), the lower and upper limits become, respectively,

log CðfmÞ þ logð2=x22ð1� a=2ÞÞ and log CðfmÞ þ logð2=x22ða=2ÞÞ:

The logarithmic form of expressing the confidence interval is particularly useful in

graphical representations of the periodogram. The reason is that the width of the

confidence interval will be fixed regardless of frequency when the variances are

plotted on a logarithmic axis.

We now apply Equation 1.30 to a set of data. Figure 1.19 is a plot of the data in

Table 1.5 covering 100 consecutive years (1906–2005) of average autumn (Septem-

ber, October, November) temperatures from Climate Division 5 in Oklahoma.

Climate Division 5 comprises 13 counties in central Oklahoma. Temperatures are in

their original units of degrees Fahrenheit.
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100 year mean = 61.39ºF

Figure 1.19 One hundred years of mean autumn temperature (September, October,

November) for central Oklahoma (Climate District 5) from 1906 to 2005.
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The periodogram is shown by the solid line in Figure 1.20 and was computed

using subroutine Foranx in Appendix 1.A. The 95% confidence interval for the

population variance is shown on the right-hand side of the figure (solid line) where

the dot is to be placed over each sample variance c(fm) as shown, for example, at

harmonic 39. Note that c(fm) is used to denote a sample value of the rv C(fm). That

the dot with constant width confidence interval around it may be placed at any

harmonic is a direct consequence of the logarithmic plot, as described above.

Because the periodogram varies wildly, it is not easy to discern bands of small or

large variance or a trend in variance with harmonic number. Correspondingly, the

95% confidence interval (a¼ 0.05) for C(fm) is very wide. The variability in c(fm)

seen here is typical of periodograms of many kinds of geophysical data and is the

chief reason that periodograms of observed data are often smoothed, as discussed

in the next section.

1.4.5 The smoothed periodogram

To better distinguish bands of large and small variance or a trend in the spectrum, a

common practice is to smooth the spectrum by weighting together a number of

contiguous variances. The simplest smoothing is the runningmean of length n (odd)

given by

CðfmÞ ¼ 1

n

Xmþðn�1Þ=2

j¼m�ðn�1Þ=2
Cðf jÞ ð1:31Þ

Table 1.5 One hundred years (1906–2005) of autumn mean temperature (�F) for Oklahoma
Climate Division 5 (central part of the state). (Source: Oklahoma Climatological Survey.)

Decade down/

Year across

0 1 2 3 4 5 6 7 8 9

1900–1909 58.1 60.8 59.8 63.2

1910–1919 63.2 61.9 60.5 60.7 62.6 62.6 61.1 59.7 59.7 60.1

1920–1929 60.7 64.2 62.9 59.6 62.2 59.3 61.1 63.8 61.8 58.3

1930–1939 62.4 67.3 59.5 63.6 62.2 58.8 60.7 60.1 63.2 64.1

1940–1949 60.9 62.1 61.2 60.6 62.6 62.0 61.6 64.0 60.7 60.7

1950–1959 61.2 59.3 60.3 62.5 65.1 61.6 63.7 57.9 62.6 58.4

1960–1969 63.5 59.9 61.6 65.5 61.3 63.3 61.1 59.7 59.9 60.3

1970–1979 60.1 62.2 60.1 63.0 59.1 60.9 56.9 63.8 63.8 61.1

1980–1989 62.1 61.5 61.2 62.9 60.9 60.7 60.5 60.0 60.5 60.9

1990–1999 63.6 59.3 60.1 57.7 61.6 60.8 59.1 61.2 65.7 63.0

2000–2009 61.3 61.9 59.5 60.7 62.6 63.8
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in which average variance is calculated only for those harmonics that do not include

f0 and fN/2 (N even) in the summation. Random variable C is used in Equation 1.31

to indicate we are determining the effects of smoothing on the distribution of

variances; in application, however, harmonic variances from a single realization

would be smoothed, and lower case variable c would be used as in the previous

section. Because of the inability to include the correct number of terms, there will

be a loss of (n� 1)/2 harmonic variances at either end of the smoothed

periodogram.

If we assume, as prescribed earlier, that the number of data in a realization is

sufficiently large that the variance ratios C(fj)/C(fj) can be approximated by inde-

pendent x2 variables with two dof divided by two and, furthermore, that C(fj) is
effectively constant over the length n, then, using Equation 1.31, the smoothed

variance ratios C fmð Þ=C fmð Þ are approximately x2 random variables with 2n dof

(Hoel, 1962, p. 268) divided by 2n and are independent every n harmonics.

The dashed line in Figure 1.20 is the result of a five-point running mean and

provides an improved picture of the structure of the variance. There are now

2n¼ 10 dof associatedwith each variance ratio. For this realization, periods from5 to

10 years contain more variance than periods shorter than five years except near the

two-year period. This comparison suggests the data should comprise sharp year-to-
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Figure 1.20 Periodogram of the data in Table 1.5 and Figure 1.19 (solid line). Averaged

periodogram using 5-point running mean (dashed line). The respective 95% confidence

intervals for the population mean variance at each harmonic are shown to the right and the

respective bandwidths at the top of the figure.
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year fluctuations superimposed on long-period fluctuations. The plot of the data in

Figure 1.19 clearly indicates that there are short period variations; long period

variations, though, are less obvious. Thus the need for a periodogram to show the

not-so-obvious.

By analogy with the limits of the confidence interval for log C fmð Þ, the limits for

log C fmð Þ are

logCðfmÞ þ logð2n=x22nð1� a=2ÞÞ and logCðfmÞ þ logð2n=x22nða=2ÞÞ:

For n¼ 5 and a¼ 0.05, the values for the constant terms above are�0.31 and 0.49.

The 95% confidence interval is shown by the dashed vertical line on the right of

Figure 1.20 and its reduced length relative to that for no smoothing (n¼ 1) reflects its

application to an averaged spectrum, namely, to log CðfmÞ, which, by our previous
assumption, is approximately logC(fm).

To take into account smoothing of the periodogram by other than a running

mean, an approximate general formula for the dof r in x2 distributions is, for n odd,

r ¼ 2
Xðn�1Þ=2

j¼�ðn�1Þ=2
K2ðf jÞ

2
4

3
5
�1

ð1:32Þ

where K(fj) is a symmetric weight function centered at frequency f0 such that the

sum of the weights is unity (Koopmans, 1974, p. 273). Maintaining unity

preserves the total variance in the spectrum. When K(fj)¼ 1/n, the running

mean, r¼ 2n.

Associated with dof is bandwidth b, the frequency interval between independent

adjacent estimates of variance. In the case of a periodogram with no smoothing it is

b ¼ 1

NDt
ð1:33Þ

which is the frequency difference between harmonics i and iþ 1. Rewriting Equa-

tion 1.33 in the form

bNDt ¼ 1 ð1:34Þ

we see that the product of b and NDt is constant. This means that as the length N of

a time series increases (Dt remains fixed), the bandwidth of each independent

periodogram estimate will proportionately decrease and the total number of

spectrum estimates will proportionately increase. Because there are two dof asso-

ciated with each spectrum estimate, increasing the length of a time series in and of

itself does not reduce the variability of periodogram estimates.
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Equation 1.33 is exact forwhite noise and approximate for nonwhite noisewhenN

is large. For a five-point running mean the bandwidth would be five times as wide.

The bandwidths are shown in Figure 1.20 for their associated spectra. An approx-

imate general formula for the bandwidth is (Koopmans, 1974, p. 277)

b ¼ r

2NDt
¼ NDt

Xðn�1Þ=2

j¼�ðn�1Þ=2
K2ðf jÞ

2
4

3
5
�1

ð1:35Þ

which reduces to b¼ n/NDt for a running mean of length n.

As an example of a simple nonrunning mean filter, consider a three-point

smoother (a triangular filter) whose weights are 1/4, ½, 1/4 (sum of weights¼ 1).

From Equation 1.32 the dof will be 51/3 whereas the number of dof for a three-point

running mean is six. From Equation 1.35 the bandwidth of the former is 8/9 as wide

as that of the latter. It is of interest to know that the periodogramused to produce the

spectrum of hourly temperatures in Figure 1.15 was smoothed with this triangular

filter prior to creating the product of variance density and frequency. The purpose

was to magnify the two broad frequency bands that were discussed relative to the

main peak of the daily cycle of temperature.

1.4.6 Testing the white noise null hypothesis

In this section we examine the problem of testing the null hypothesis that a sample of

data comes from a random process that is white noise. This is equivalent to the null

hypothesis that the expected values of the spectrum variances are uniform with

frequency. A white noise test can be an important tool in analyzing spectra of

geophysicaldata. Ifweobserve inagivenspectrumasinglevariance,multiple variances,

or a band of variance that seems to be unexpectedly large, the question arises whether

these features are a consequence of an underlying physical process or whether they

occurred by chance. If the white noise null hypothesis applied to the spectrum cannot

be rejected, there is then doubt that the observed large variance or variances are

anything more than natural fluctuations in a realization from a white noise process.

In the previous section a method was developed to place a confidence interval for

the population variance surrounding each sample variance (variance at a harmonic

from a single realization). In contrast, in this section we will place confidence

intervals for the sample variances about the estimated population variance, hypoth-

esized to be uniform with frequency. Here, however, it is necessary to consider two

types of confidence intervals. Thesewill be demonstratedwith two examples, the first

of which employs the 100-year record of central Oklahoma temperature data seen in

the previous two sections. How these confidence intervals are used inmaking a white

noise test requires some background knowledge, to which we now turn.
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Figure 1.21 shows the probability density function (or, equivalently, the frequency

distribution) of a x2 random variable with two dof. The probability density function

is given by:

fðx22Þ ¼
exp � x22

2

� �
2

: ð1:36Þ

The two vertical dashed lines encompass what is called the a priori 95% confidence

interval. Figure 1.21 is the typical way of presenting a probability density function or

frequency distribution with confidence limits. When a confidence interval is applied

to a spectrum, the width of this interval is oriented in the vertical, as we did in

Figure 1.20.

Let us imagine successivelywithdrawing 29 samples fromapopulation that has the

distribution shown in Figure 1.21. Prior to the first withdrawal, the probability that

its value will lie outside the interval (0.05, 7.38) is 0.05. Prior to the second

withdrawal, the probability that its value will lie outside the same interval is also

0.05. Repeat this 27 more times. Because each withdrawal is independent of any

other, the probability is 0.05 that any sample value of x22 will lie outside the interval
(0.05, 7.38).

Now arrange the sample values of x22 as shown in Figure 1.22, except that each

value withdrawn is divided by two (with this adjustment we can apply the results

of this section directly to the distribution of periodogram variance ratios). Before

even looking at the sample values of x22=2, we would not be surprised to find one

or two lying outside the confidence interval. This follows from the calculation
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Figure 1.21 The probability density function (pdf) of a random variable that has a chi-

square distribution with two degrees of freedom. Confidence limits for the 95% a priori

confidence interval are shown by the vertical dashed lines. The area under the curve has

unit value.
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29� 0.05¼ 1.45, where 29 is the number of withdrawals and 0.05 is the level of

significance or the probability of rv x22=2 being greater than 3.69 (7.38/2 from

Figure 1.21) or less than 0.025 (0.05/2) per withdrawal. (If we had 100 such data

sets we would expect 145 of the 2900 values to lie outside the confidence interval.)

In fact, Figure 1.22 shows that one value or point lies very close to the upper

confidence limit (withdrawal 1 is 3.501) and the value of withdrawal 24 (0.038) is

slightly above the lower confidence limit.

To show the probability, a, of observing one or more values from a x22=2
distribution outside the a priori confidence interval, we make use of the binomial

distribution

M!

Z!ðM� ZÞ!� pZð1� pÞM�Z

where: p¼ probability that the value of a randomly selected point will lie outside the

a priori confidence interval (0.05 for a 95% confidence interval); M¼ total number

of points (29 in this example); and Z¼ the number of the M points that lie outside

the a priori confidence limits.

The probability of one or more points lying outside the confidence interval is one

minus the probability of no points lying outside the confidence interval, or, in

general, a¼ 1� (1� p)M. Thus, if p¼ 0.05 and M¼ 29, then a¼ 1� (0.95)29¼
1� 0.2259¼ 0.7741. Instead of having a 5% chance of finding at least one value of

x22=2 outside the confidence interval, we actually have a 77% chance when consid-

ering the group of 29 values or points.
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Figure 1.22 A plot of 29 random withdrawals from a chi-square distribution with 2 degrees

of freedom after dividing the value of each withdrawal by 2. The chi-square distribution

function is shown in Figure 1.21. 95% a priori and a posteriori confidence intervals are

also shown.
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In practice, we are sometimes faced with the following dilemmas. In a given data

set the number of values that lie outside the a priori confidence interval is about as

expected, but one of the values is very large. Is the very large value significantly greater

than expected? In another case, a few more values than expected lie outside the

confidence interval. Is the difference between the expected number and observed

number significant?

The solution to both dilemmas is as follows. We really want a to be 0.05. That is,

whenwe consider all the points in the group (29 in this example), wewant to find the

two particular values of x22=2 such that there is only a 5% chance that any one or more

points will lie outside the associated interval. This is called the a posteriori confidence

interval. With the meaning of p the same as that given previously, except that it now

applies to the confidence interval for the group of points, the determination of the

limits of this interval follows.

From above, and using the binomial theorem, for p
 1

a ¼ Mp;

so that

p ¼ a=M:

With

a ¼ 0:05; M ¼ 29;

then

p ¼ 0:00172:

If we now integrate the probability density function (Equation 1.36) between 0

and x2�2 and between x2��2 and 1 where � and �� indicate particular values of x22,
and equate both results to p/2, we obtain x2�2 =2 ¼ 0:00086 and x2��2 =2 ¼ 7:06.
These are the lower and upper limits for the a posteriori 95% confidence interval

and are plotted in Figure 1.22 (however, the lower limit is off the graph). The a

posteriori confidence interval deals with all 29 values at one time and the a priori

confidence interval deals with one value at a time. There is only one chance in 20

that any one or more of the 29 values would lie outside the 95% a posteriori

confidence interval, and as Figure 1.22 shows none do. This result is in accord

with our withdrawal of 29 random samples from a x2 distribution with two dof

divided by two.

In periodogram analysis we typically use a posteriori confidence limits because we

want to observe the entire spectrum of harmonic variances after the fact of calculating
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the spectrum. If we wanted to know whether the variance at a particular harmonic

exceeded the confidence limits before the fact of observing the variance at the

harmonic in question, we would use the a priori confidence interval. Interest in

the latter approach is uncommon. Nevertheless, obtaining a priori confidence limits

is always a natural first step because if none of the spectrum variances exceed these

limits, there is no need to proceed to the next step of computing a posteriori

confidence limits.

To better understand white noise testing we examine two applications to

real data.

1.4.6.1 White noise test: Example 1

We revisit the 100-year record of mean autumn temperatures for central Oklahoma

(Climate Division 5) given in Table 1.5 and plotted in Figure 1.19. Figure 1.20

showed confidence intervals for the population variance C(fm) and smoothed

population variance CðfmÞ at each harmonic given samples of CðfmÞ and CðfmÞ,
respectively. The underlying random process was unspecified, but the number of

data was assumed sufficiently large to justify using independent chi-square dis-

tributions of the harmonic variances derived for a normal white noise process. In this

example we will use the same data to find a different kind of confidence interval; that

is, we will find confidence limits for observations of rv CðfmÞ common to all

harmonic frequencies given an estimate ĈðfmÞ of the population variance under the
white noise hypothesis. Because a white noise process is hypothesized, there is no

restriction on the size of a data set.

The variance of the data set in Table 1.5 is 3.4201�F2. As a consequence, our

estimate of the population variance at each of the 49 interior harmonics (m¼ 0

and m¼ 50 excluded) in the periodogram under the white noise hypothesis is

ĈðfmÞ¼ 3.4201�F2/49.5¼ 0.0691�F2. The symbol ^ means “estimate of” and the

reason we make this distinction is that variance of the realization (3.4201�F2) is
just an estimate of the population variance. In general, we do not test the

variance at the highest harmonic for N even, here m¼ 50, because its variance,

under a white noise hypothesis, is one-half the interior variances; it is a unique

harmonic. The reason for its uniqueness is that its bandwidth is one-half the

bandwidth associated with each of the interior harmonics. That the divisor is 49.5

instead of 49 is because the variance of the data set included the variance at

m¼ 50. Thus, for the general case of an even number of data, N, the white noise

variance at the interior harmonics is determined from the total variance in the

data set divided by (N/2� 1)þ 0.5¼ (N/2)� 0.5. In the general case of an odd

number of data, N, the white noise variance at all the harmonics (except m¼ 0) is

the total variance in the data set divided by (N� 1)/2. The highest harmonic has

full bandwidth.
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To find the a priori confidence interval for the sample variances about their

estimated expected value, we rewrite Equation 1.29 to obtain the form

Pr
CðfmÞ x22ða=2Þ

2
� CðfmÞ � CðfmÞ x22ð1� a=2Þ

2

	 


¼ 1� a; m 6¼ 0 ðall NÞ; m 6¼ N=2 ðN evenÞ: ð1:37Þ

To be consistent with Figure 1.20, we take logarithms of the limits of the

confidence interval and obtain

log CðfmÞ x22ða=2Þ=2
� �

and log CðfmÞ x22ð1� a=2Þ=2� �
which, for a¼ 0.05 and ĈðfmÞ¼ 0.0691�F2, are �2.76 and �0.59, respectively.

We expect, on average, 2½ (0.05� 50) variances to exceed these limits; in Figure 1.23

we note that the variances at three harmonics (12, 42, and 47) fall outside either the

upper or lower limit. Should the white noise null hypothesis be rejected? This is a

good example in which the answer can be found by calculating the a posteriori

confidence limits.
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Figure 1.23 Periodogramof the data in Table 1.5 and Figure 1.19 (see also Figure 1.20). The

inner two dashed lines are the 95% a priori confidence limits; the upper dashed line is the

upper 95% a posteriori confidence limit. The lower 95% a posteriori confidence limit is located

below the graph and has value �4.45.
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The a posteriori confidence interval is determined by replacing a/2 in Equa-

tion 1.37 and the expressions for the limits of the confidence interval by p/2 where

p�a/M and M¼ 49. Therefore, the parallel equations for a posteriori confidence

limits are

Pr
CðfmÞ x22ðp=2Þ

2
� CðfmÞ � CðfmÞ x22ð1� p=2Þ

2

	 


¼ 1� p; m 6¼ 0 ðall NÞ; m 6¼ N=2 ðN evenÞ ð1:38Þ

and logarithms of the limits of the confidence interval are

log CðfmÞ x22ðp=2Þ=2
� �

and log CðfmÞ x22ð1� p=2Þ=2� �
:

Equation 1.36 can be integrated, as in the previous example, to obtain the values of

x22 for area p/2¼ 0.0005102 at the left and right extremes of the chi-square

distribution (refer to Figure 1.21). The results are x22ðp=2Þ ¼ 0:0010207 and

x22ð1� p=2Þ ¼ 15:161, so that the logarithms of the lower and upper limits of the

95% a posteriori confidence interval are�4.45 and�0.28. We observe in Figure 1.23

that no variance lies outside this range and, therefore, we cannot reject the null

hypothesis that the data are a realization from a white noise process. Thus there

appears to be no useful statistical predictability of mean autumn temperature at

Oklahoma City other than using its long-term mean as the predictor.

1.4.6.2 White noise test: Example 2

For our second example, we investigate five years of mean monthly temperature at

Oklahoma City from 2003–2007. The data are given in Table 1.6 and plotted in

Figure 1.24a. As expected, the time series shows a strong annual solar influence.

We can consider the annual solar cycle for each year to vary in a different way about a

long-termmean annual temperature cycle. Ideally, it is the long-term cycle wewould

like to remove from the time series before we apply awhite noise test. The best we can

do, however, is to estimate this cycle using the five years of data available to us. Except

for the solar cycle, the approach to obtain confidence limits is similar to that in the

first example.

We can estimate the long-term annual cycle by averaging the five years of data

month-by-month and then subtracting the appropriate five-year average from each

observedmonthlymean. The set of residuals, also given in Table 1.6, form a sequence

of 60 values from January 2003 throughDecember 2007 and comprise the time series

for which the white noise null hypothesis will be tested. The time series is shown in

Figure 1.24b.
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Before applying the test, a few comments are in order concerning the method of

removing the annual cycle. The total variance of the annual cycle is the sum of

variances from harmonics with periods of 12, 6, 4, 3, 2.4, and 2 months. When the

periodogram of the residuals is computed (an exercise we recommend), one will

discover the variance is zero at these six harmonics. The reason is that we have

removed the variances at all harmonics of the annual cycle from the original time

series. In fact, had we computed a periodogram of the original data, it would

have included the identical variances at the harmonics corresponding to the periods

of the estimated annual cycle. In this example, we will replace the zero variances at

periods of 12, 6, 4, 3, and 2.4 months by the average of the two adjacent variances.

While these replacement values are artificial and are not part of the white noise test,

for the sake of appearance they will provide a smoothly varying periodogram in the

vicinity of the harmonics of the annual cycle. From Equation 1.28c, the distribution

of the variance ratio at the harmonic corresponding to a period of two months is x21.
As in Example 1, the white noise test is applied only to the interior harmonics.

The variance of the residual data shown in Figure 1.24b is 2.3160 �C2. Under the

null hypothesis that this data set is a realization of a white noise process, we can

Table 1.6 (a) Monthly mean temperatures (�C) at Oklahoma City Will Rogers Airport

from 2003 to 2007. The bottom row shows monthly means averaged over the five-year

period. (b) Monthly mean residuals, i.e., the appropriate five-year monthly average has been

subtracted from each monthly mean. (Note: All monthly means in (a) have been converted

to Celsius from the original monthly means in Fahrenheit. Source: National Climatic Data

Center, Asheville, NC.)

(a)

Month/

Year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2003 2.67 3.17 9.72 15.78 20.61 23.28 29.06 28.22 20.78 17.56 10.28 6.17

2004 4.39 4.39 12.94 16.22 22.17 24.11 26.06 24.78 23.94 18.11 10.33 6.39

2005 4.22 8.22 10.94 16.28 20.67 25.56 26.89 27.22 25.06 17.50 12.11 3.83

2005 8.72 5.39 12.83 19.61 22.56 26.67 30.11 29.94 21.83 17.11 11.61 6.39

2007 2.67 5.61 15.67 14.11 21.67 25.06 27.06 29.00 24.50 18.61 11.61 3.94

Mean 4.53 5.36 12.42 16.40 21.53 24.93 27.83 27.83 23.22 17.78 11.19 5.34

(b)

Month/

Year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2003 �1.87 �2.19 �2.70 �0.62 �0.92 �1.66 1.22 0.39 �2.44 �0.22 �0.91 0.82

2004 �0.14 �0.97 0.52 �0.18 0.63 �0.82 �1.78 �3.06 0.72 0.33 �0.86 1.04

2005 �0.31 2.87 �1.48 �0.12 �0.87 0.62 �0.94 �0.61 1.83 �0.28 0.92 �1.51

2006 4.19 0.03 0.41 3.21 1.02 1.73 2.28 2.11 �1.39 �0.67 0.42 1.04

2007 �1.87 0.26 3.24 �2.29 0.13 0.12 �0.78 1.17 1.28 0.83 0.42 �1.40
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estimate the population variance C(fm) at each of the 29 interior harmonics

(harmonics m¼ 0 and m¼N/2 are excluded) in the Fourier spectrum using the

equation ĈðfmÞ¼ (2.3160/24) �C2¼ 0.0965 �C2. The reason for dividing by 24 is that

the residual variance does not include any variance from the six harmonic frequen-

cies previously discussed. Since there are a total of 30 harmonic frequencies

(60 samples of data), and the variance has been removed from the six harmonics

associated with the annual cycle, the residual variance is distributed equally among

the remaining 24 harmonics to estimate the population variance.

Upon replacingC(fm) by its estimate ĈðfmÞ, we conclude fromEquation 1.28a that

the variance ratio CðfmÞ=ĈðfmÞ varies approximately as x22=2. Figure 1.25 shows the
sample variance ratios versus harmonic number where the ratios at harmonics 5, 10,

15, 20, and 25 are the averages of adjacent ratios. Since no ratio lies outside the a

posteriori confidence interval, the null hypothesis that the sample data come from a

random process that is white noise cannot be rejected at the 5% level of significance.

Stated another way, this realization can be viewed as a member of a population of

similar random time series, the totality of which comprises a white noise random

process. In this particular example, computing the a posteriori confidence interval

was not necessary since none of the variance ratios lie outside the a priori confidence

interval. The goal of this example was to derive the 95% a posteriori confidence limits

for variance ratios as opposed to variances in the first example.
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Figure 1.24 (a) Meanmonthly temperatures at Oklahoma CityWill Rogers Airport from 2003

to 2007 (solid line) and averagemeanmonthly temperatures (dashed line). (b) Residual mean

monthly temperatures (actual – average).
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A keen observer will recognize that the plot in Figure 1.22 is identical to that in

Figure 1.25. In fact, the same data set was used to produce the plot in Figure 1.22.

Thus withdrawing 29 values from a chi-square distribution in the discussion in

Section 1.4.6 was a little “white” lie! But whether one literally withdrew samples from

a chi-square distribution was immaterial to developing an understanding of the

mechanics of a white noise test.

Practically speaking, if the data set in this example is representative of other five-

year intervals at Oklahoma City, then there is no skill in attempting to forecast mean

monthly temperature beyond what can be accomplished by employing the average

annual cycle. Had the white noise hypothesis been rejected, there would have been

potentially useful skill inmeanmonthly temperature forecasts apart from the average

annual cycle. In conclusion, if there is interest on the part of an investigator to make

statistical forecasts of any variable represented by a time series, a good first step is to

perform a white noise test of the original data or, if appropriate, the residual data,

that is, the original data less the deterministic components.

1.5 Further important topics in Fourier analysis

At this juncture, we are able to (i) compute the Fourier coefficients of a data set,

(ii) calculate its spectrum or periodogram, (iii) determine a confidence interval for

the population variance at each harmonic frequency, and (iv) perform a priori and a

posteriori white noise tests. Now we consider selected topics that will extend our

understanding of Fourier analysis. As we have already seen in Table 1.1, the number

of harmonics at which variance is computed is directly related to the number of data.
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Figure 1.25 Observed variance ratio versus harmonic frequency for the residuals in

Figure 1.24b. The population varianceC(fm) is estimated from the sample variance. Harmonic

frequency fm has been converted to harmonic number. 95% a priori and a posteriori confidence

intervals are also shown.
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Section 1.5.1 explains why. The second topic, covered in Section 1.5.2, shows,

mathematically, why variance calculated at a given harmonic frequency includes not

only the variance at that harmonic but also variance from frequencies between

nearby harmonics. Thus variance in one part of a spectrum can “bleed” or “leak” to

another part of the spectrum. In short, we always view a spectrum through

a “window.”

Sometimeswe are facedwith a signal andnoise problem. For example, wemight be

suspicious that there is a 60Hz signal, say, from a power source, corrupting a data set

we collected. That is, a deterministic signal may be embedded in otherwise random

data. In Section 1.5.3 we investigate how averaging spectra from a number of data

records, each of which contains the deterministic signal, smooths the averaged

spectrum so the deterministic signal is more easily discernible. Another approach is

discussed in Section 1.5.4, where we examine the effect that increasing the length of a

time series has on discriminating a sinusoid from random components. The fifth

topic shows how to convert the formulas in Table 1.1 for Fourier synthesis and

analysis to complex form; this is developed in Section 1.5.5. Because of trigonometric

symmetry, a complex representation is very compact. Using complex formsmakes it

easy to compute variance at frequencies between harmonics. This is the subject of

Section 1.5.6. One interesting result is that the variance at a nonharmonic frequency

is uniquely related to the variances at all the harmonic frequencies. The seventh and

last topic, in Section 1.5.7, is concerned with adding zeroes to a data set, why we

might do that, and how to interpret the resulting spectrum

1.5.1 Aliasing, spectrum folding, and the Nyquist frequency

Aliasing is a direct consequence of digitally sampling an analog signal. Aliasing has no

relevance to purely analog data records. To show how aliasing works, consider the

three cases in Figure 1.26. In example (1) an analog sinusoidal wave with frequency

10Hz is sampled at intervals of 0.1 s as indicated by the arrowheads. The dashed line

connects the sample values. Based on just the sample values, we would likely

(mistakenly) conclude the underlying signal has constant value. In example (2)

there is a 9Hz sinusoid sampled every 0.1 s. After fitting the sample values with a

smooth line, we would likely (mistakenly) conclude that the underlying signal is a

1Hz sinusoid. Example (3) indicates that for 0.1 s sampling, a 6Hz sinusoid could

just as well be interpreted as a 4Hz sinusoid. These examples show that in digital

sampling there is an inherent ambiguity in the frequency at which the true

fluctuations are occurring. This is reflected in their line spectra shown in Figure 1.27.

In example (1), all the variance in the true spectrum (solid bar) is at 10Hz, but the

observed spectrum indicates a nonvarying signal, that is, no variance at all.

In example (2), the variance in the true spectrum is at 9Hz while the observed

spectrum (open bar) shows variance at 1Hz. The true and observed spectra in
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example (3) follow the same pattern as above. Another way to look at aliasing is that

more than two observations per cycle are required to unambiguously define a sinusoid.

Otherwise, it can be interpreted also as a sinusoid of lower frequency.

The picture that emerges fromFigure 1.27 is that the calculated value of variance is

folded about 5Hz. This frequency is called the folding or Nyquist frequency, fu, the

latter named after Harry Nyquist who did pioneering work in signal analysis

(Nyquist, 1928). In general, the Nyquist frequency is determined by the sampling

interval Dt, that is, fu¼ 1/(2Dt); in the example just discussed, fu¼ 5Hz.

t

= 0.1 s

10 Hz(1)

t

= 0.1 s

9 Hz
1 Hz(2)

A
m

p
l
i
t
u

d
e

t

= 0.1 s

6 Hz 4 Hz

1 second

(3)

Figure 1.26 Three examples of aliasing indicated by dashed lines. (1) A 10Hz sinusoid is

sampled as a constant signal. (2) A 9 Hz sinusoid is sampled as a 1 Hz sinusoid. (3) A 6 Hz

sinusoid is sampled as a 4 Hz sinusoid.
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Furthermore, it is easy to conclude that the spectrumwill repeat itself at frequency

intervals of �i/Dt, i¼ 1, 2, . . . . As an illustration, consider time series 1 given by

x1n ¼ cosð2pfmnDtþ wÞ ð1:39Þ

in which the series represents digital sampling of a sinusoid with frequency fm, data

point number n, and phase shift w at intervals of Dt. Then define time series 2 as

x2n ¼ cos½2pðfm � i=DtÞ nDtþ w�: ð1:40Þ
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= 2f

0
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Figure 1.27 The true and observed spectra corresponding to the three examples in

Figure 1.26. In each example above, the true spectrum is indicated by a solid bar and the

observed spectrum by an open bar.
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That is, time series 2 is digitally sampled in the same way as time series 1, except

the frequency of the signal being sampled has been increased or decreased by

integer multiples of twice the Nyquist frequency. Time series 2 can be expanded as a

standard trigonometric angle-sum relation and then, because cos(2pin)¼ 1 and

sin(2pin)¼ 0, reduced to

x2n ¼ cosð2pfmnDtþ wÞ ð1:41Þ

the same formula as for time series 1. As a consequence of digital sampling, the x1n
and x2n time series are identical, despite the fact that the underlying signals being

sampled are different. Thus the same variance will be computed at fm, fm� 1/Dt,
fm� 2/Dt, and so on.Wenotice that negative frequencies are allowed. This is purely a

mathematical convenience. While employing a spectrum that has both positive and

negative frequencies is especially helpful in understanding aliasing, the “two-sided”

spectrum concept also will be used later in Sections 1.5.5–1.5.7. In these sections we

will find that mathematical formulas for spectra are more compact and easier to

interpret when they include variance at both positive and negative frequencies.

Figure 1.28a summarizes aliasing from a schematic viewpoint. The aliased

spectrum extends across all negative and positive frequencies with the spectrum

repeated at intervals of 2fu¼ 1/Dt. In the jargon of spectrum analysis, the band of

Figure 1.28 (a) The complete aliased spectrum and its principal part. fn is the Nyquist

frequency. (b) In a two-sided spectrum, one-half the variance appears at f0 and one-half at�f0

and each is aliased to frequencies �i/Dt from �f0 where i is an integer.

1.5 FURTHER IMPORTANT TOPICS IN FOURIER ANALYSIS 51



frequencies between�fu andþfu is called the principal part of the aliased spectrum.

In practice, only the principal part is needed because the spectrum is repeated every

2fu or 1/Dt; that is, the principal part contains all the variance in the time series.

Further insight into aliasing can be obtained by considering an input sinusoid with

frequency greater than fu. Let us use the same frequency scale in Figure 1.28b and

place the variance at f 0 between 2fu and 3fu. Because we are using both positive and

negative frequencies, the total variance at f0 is split so that one-half the variance of the
sinusoid is at f 0 and one-half at�f 0. Figure 1.28b shows the solid vertical bars; their

sum is the total variance. From Equations 1.40 and 1.41 the variances will be

distributed to the open bars at frequencies�i/Dt relative to�f 0 as shown by the lines
and pointers. If the input frequency happens to be a multiple of fu, no variance will

appear at any frequency in accord with example (1) in Figure 1.27.

The repetition of the variance distribution in the principal part of the aliased

spectrum in the remainder of the aliased spectrum is evident. If your preference is to

deal only with variances at positive frequencies from0 to fu, simply fold the spectrum

from 0 to �fu around the origin from 0 to fu and add the variances.

It should be clear by now that it is important to know whether you are working

with a two-sided (�fu to fu) spectrum or a one-sided spectrum (0 to fu) to get the

correct total variance of the time series. In the former the total variance resides

between �fu and fu while in the latter between 0 and fu. The variances at positive

and negative frequencies in the former spectrum are one-half those in the latter.

In the periodogram or Fourier analysis in previous sections, including Table 1.1,

the harmonic variances were calculated at positive frequencies only, that is, from

0 to fu.

Let us return to example (2) in Figure 1.26 to create a new analog time series that

is the sum of the original 9Hz sinusoid and the 1Hz aliased sinusoid (dashed line)

and sample it at Dt¼ 0.1 s as shown. The value at each sample point will be twice as

large (negative or positive) as in the original 9Hz sinusoid. As a consequence, the

observed variance at 1Hz in the principal part of the aliased spectrum will be four

times larger than that with only the original 9Hz sinusoid.With a 180� phase shift of
either wave (flip either sinusoid about the horizontal axis), the value at each Dt of
the sum waveform is zero, and thus the variance is zero. In a word, this is why we

have to be concerned with the effects of aliasing; variance at frequencies greater than

fu will alter the true variance present at frequencies less than fu and produce an

erroneous picture of variance. The seriousness of aliasing is in proportion to the

ratio of the variance at frequencies outside the principal part to the true variance in

the principal part.

Consideration of the potential for aliasing is critical to effective experiment design

and proper analysis of results. To minimize aliasing, the sample rate should be such

that practically all the variance will be at frequencies less than 1/(2Dt). If the general
structure of the spectrum is unknown before sampling, experimentation may be

required with different sampling rates to observe spectrum changes. If, for a given
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sampling rate, the potential exists for serious aliasing and the sampling rate cannot be

increased, then onemust filter the variance at frequencies>1/(2Dt) before sampling.

There is no effect on aliased variance if filtering is performed after digitizing. That is,

the analog signal must be filtered.

A visual example of aliasing as seen in Western cowboy movies is the familiar

changing of the direction of rotation of a wagon wheel as the wagon increases its

speed from rest. The digital sampling is done by the camera shutter opening and

closing 24 times each second.

Consider the four-spoke wheel in Figure 1.29. One cycle means rotation of the

wheel 1/4 revolution. When the wheel turns slowly, we see a continued forward

rotation of the set of four spokes because there are many samples (shutter openings

and closings) for the small angular rotation. As the wheel rate of rotation increases,

the angular separation between successive samples also increases until the separation

reaches a¼ 45�, or ½ cycle or fu¼ 0.5 cycle/Dt, where Dt¼ (1/24) s. This is the

maximum observable frequency or rate of rotation of the wheel and is shown in

Figure 1.30a. As the rate of rotation or actual frequency f increases beyond fu, the

observed frequency will be negative. This can be understood by referring to

Figure 1.30b, keeping in mind that the sampling rate is fixed. Since a> 45�, it is
apparently easier for our brain to think the wheel has rotated not through angle a

1 cycle

Figure 1.29 A four-spoke wagon wheel.

t = 1 t = 1 t = 1 t = 1

α α α

t = 2

t = 2

t = 2'

α
β

β
t = 2'

(a) (b) (c) (d)

t = 2 t = 2

Figure 1.30 Successive positions of the four-spoke wagonwheel at times t¼ 1 and t¼ 2 for

an increasingly higher rate of rotation from case (a) to case (d).
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from position t¼ 1 to position t¼ 2, but through smaller angle b fromposition t¼ 1

to position t¼ 20. (Of course, the appearance of the wheel is identical at t¼ 2 and

t¼ 20.) In the spectrum in Figure 1.31 this corresponds to the variance at frequency B

aliased to frequency B0. As thewheel rotates faster,a¼ 90� and it appears that there is
no motion (Figure 1.30c). Each spoke advances 1/4 revolution or one cycle each time

the shutter opens. In the spectrum this corresponds to variance at frequencyC aliased

to frequency C0 (the origin). From B0 to C0 it appears that the wheel rotation rate is

decreasing, that is, becoming less negative.

An increasing forward rate of rotation occurs for a> 90�. For example, the

variance at frequency D in Figure 1.31 is aliased to D0. As seen in Figure 1.30d, it

is, again, apparently easier for our brain to accept rotation of the wheel through

angle b at apparent time t¼ 20 rather than larger angle a at real time t¼ 2. As the

wheel rotates still faster, say at rate E in the spectrum, the rotation rate will be

aliased back to frequency E0 ¼B0, as shown by the heavy lines. Thus, as the rate of

rotation of the wheel increases from zero it reaches a maximum forward rate,

which instantaneously becomes the maximum backward rate, which then

decreases to zero and the cycle starts all over again – all because of digitally

sampling an analog signal.

1.5.2 Spectrum windows

Consider the “idealized time series” of 36 consecutive values of temperature at

Phoenix, Arizona, during fair weather shown in Figure 1.32a. Because Phoenix is

located in the southwestern desert of the United States, we expect a strong diurnal

variation in air temperature. It is idealized because other harmonics that would

normally contribute to the daily temperature variation, such as the semi-diurnal

−0.5 cycles
Δt Δt Δt Δt

 = −fν

B' C' D' B C D E

0.5 cycles

= fν

1.0 cycles

= 2fν

1.5 cycles

  = 3fν

0

Frequency (rate of rotation) f

Figure 1.31 The aliased spectrum for frequency of rotation greater than the Nyquist

frequency.
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component seen in Figure 1.15, have been ignored. In a periodogram of this time

series, the diurnal variation would occur at a nonharmonic frequency midway

between harmonic 1 (fundamental period¼ 36 hours) and harmonic 2 (period

¼ 18 hours). The purpose of this section is to show how the input variance at a

nonharmonic frequency (the daily cycle here) gets distributed to the harmonic

frequencies.

Apart from the constant offset value of 35 �C, the time series in Figure 1.32a is

given by the sinusoid

xn ¼ a cosðvnDt� wÞ; n ¼ 0; 1; . . . ;N� 1
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Figure 1.32 (a) Idealized time series of temperature at Phoenix, Arizona, during fair

weather in July. (b) Periodogram to harmonic 6 of idealized time series of temperature in (a).
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where x represents temperature,Dt¼ 1 hour, amplitude a¼ 7 �C, data lengthN¼ 36

hours, phase angle w¼ 0�, and angular frequencyv¼ 2p� 1.5/N. That is, there are

1.5 cycles over the 36-hour record. Changing to angular frequency is merely a

convenience to reduce the number of symbols in each equation. Figure 1.32b is the

resulting periodogram in the form of a line spectrum out to harmonic 6. Harmonics

1 and 2,which are adjacent to the frequency of the inputwave, account for about 80%

of the variance of xn; the higher harmonics account for the remaining variance.

The big question is: How did the variance from the input wave get distributed to the

various harmonics?

To find the answer, we first substitute xn above into the equations for Am and Bm
(N even) in Table 1.1. Carrying out the summations is a tedious exercise in

trigonometry, and the general procedure is shown in Appendix 1.D. We are really

interested in the variance at harmonics, so the Fourier coefficients need to be squared

according to S2m ¼ ðA2
m þ B2

mÞ=2. This step is also given in Appendix 1.D, with the

result that

S2mðvÞ ¼ a2

2

(
sin2½Nðvþ vmÞ=2�
N2 sin2½ðvþ vmÞ=2�

þ sin2½Nðv� vmÞ=2�
N2 sin2½ðv� vmÞ=2�

þ2 cos ðN� 1Þv� 2w½ � sin½Nðvþ vmÞ=2�
N sin½ðvþ vmÞ=2� �

sin½Nðv� vmÞ=2�
N sin½ðv� vmÞ=2�

)
;

m 6¼ 0; N=2: ð1:42Þ

It is not necessary to work through Appendix 1.D at this time. It is important,

though, to be able to properly interpret Equation 1.42, and there are twoways. In the

first way, S2m vð Þ gives the variance at harmonic numbersm, where 0<m<N/2, due

to an input sinusoid of amplitude a at angular frequency v. Figure 1.32b is an

example. In short, the equation shows how input variance a2/2 is distributed among

the harmonic frequencies.

The second way to interpret Equation 1.42 is to consider fixing m successively at

1, 2, 3, . . ., wherevm¼ 2pm/N, and, then, for eachm, allow the input frequencyv to

vary continuously over the range of frequencies in the spectrum. A plot of the ratio

S2m vð Þ= a2=2ð Þ for each m provides the “window” through which the spectrum is

viewed at that harmonic for input variance at anyv. Figure 1.33 shows the spectrum
window, that is, the part of Equation 1.42 in braces, for harmonicsm¼ 1, 2, and 3 for

a cosine input (w¼ 0�). The heavy solid line shows the location of the input wave at
harmonic 1.5. To get the variance at harmonic 2, we multiply the variance of an

integer number of cycles of the input wave, a2/2¼ 24.5 �C2, by 0.5277, the amplitude

of the window associated with harmonic 2 (i.e., center curve) at the input frequency.

The product is the variance at harmonic 2 in Figure 1.32b. The product of 0.2641,

56 CH 1 FOURIER ANALYSIS



the amplitude of the window associated with harmonic 1 (i.e., left-hand curve) at the

input frequency, and 24.5 �C2 is the value of variance at harmonic 1 and, similarly,

the variance at harmonic 3 is the product of 24.5 �C2 and 0.0804 (right-hand curve).

The windows for sine wave inputs (w¼ 90�) are shown in Figure 1.34; their indi-

vidual shapes tend to be a reverse image of those in Figure 1.33.We conclude that the

spectrum window depends on harmonic number and phase angle for a given N.

The spectrum window for the mean squared value standardized by the input

variance is, from Equation 1.D.4,

A2
0=ða2=2Þ ¼ 2 cos2 ðN� 1Þðv=2Þ � w½ � sin

2ðNv=2Þ
N2 sin2ðv=2Þ : ð1:43Þ

Figure 1.35 shows the spectrum windows for a cosine input (w¼ 0�) and a sine

input (w¼ 90�). For the Phoenix example (w¼ 0�) the value of the window at

harmonic 1.5 is 0.001543, so that with a¼ 7 �C, A0¼ 0.1944 �C (to get the mean of

the time series in Figure 1.32a, add back 35 �C). That A0, the mean of the time

series, is not zero is because the Phoenix time series does not have an integer

number of cycles. In fact, if A0 is multiplied by N¼ 36, the number of data, the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

harmonic 1
harmonic 2
harmonic 3

R
at

io

Harmonic (cycles/data record length)

variance = 24.5ºC2

0.5277

0.2641

36 24 18 12 9 7.2
Period (hours)

0.0804

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Figure 1.33 Spectrum windows from Equation 1.42 centered at harmonics 1, 2, and 3 for

a cosine wave input. The product of the variance (24.5 �C2) in Figure 1.32a and the

intersection of the spectrum windows yields the observed variance at harmonics 1, 2,

and 3 in Figure 1.32b.
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result is 7 �C, the amplitude of the sinusoid. By matching positive departures from

35 �C with negative departures, we see that only one of the two maximum positive

values of temperature has a negative equivalent. At the Nyquist frequency, where

m¼N/2, S2N=2 vð Þ can be obtained directly from Equation 1.42 by dividing the

right-hand side by two.

In general, the window shape is dependent on harmonic number, the number of

data, and the phase angle of the input. When the number of data in a sample is
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Figure 1.34 Spectrum windows (Equation 1.42) centered at harmonics 1, 2, and 3 for a sine

wave input.
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Figure 1.35 Spectrumwindows (Equation1.43) at the 0-th harmonic for sine and cosine inputs.
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N� 100 or higher, themain and adjacent lobes at the interior harmonics can be quite

accurately modeled by simplifying Equation 1.42 to

S2mðvÞ ¼ a2

2

sin2½Nðv� vmÞ=2�
½Nðv� vmÞ=2�2

ð1:44Þ

which is dependent only on the number of data and the difference between the input

frequency and the harmonic where the calculation is made. The maximum error in

using Equation 1.44 in place of Equation 1.42 for interior harmonics is about �3%

for N¼ 100. This formula is the square of the familiar “diffraction function”

common in optics and is plotted in Figure 1.36.

Assuming N is sufficiently large, we can think of the variance computed at a given

harmonic frequency as the integral over the frequency range in the spectrum of a

weight function (Equation 1.44) centered at that harmonic times an underlying, but

unknown, spectrum. This process is repeated at all harmonics and results in variance

“leaking” from one part of the spectrum to other parts of the spectrum. The variance

observed at a particular harmonic does not necessarily mean that the data contain a

pure tone at that harmonic. To find the variance of the Phoenix diurnal temperature

cycle in a periodogram, a record length that is a multiple of 24 hours should

be selected.

1.5.3 Detecting a periodic signal by averaging spectra

If we were to average together periodograms of equal length realizations from the

same random process, harmonic by harmonic, we expect the averaged periodogram

would be smoother than any individual periodogram. If a deterministic signal is
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Figure 1.36 The spectrum window (Equation 1.44) at general harmonic m, when m is away

from the low and high frequency ends of the periodogram.
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present, its magnitude should not be affected by averaging. In this section we use the

idea of averaging to investigate the particular problem of detecting a sinusoid

embedded in white noise when multiple realizations are available.

The average of the two periodogram random variables C1(fm) and C2(fm) from

realizations of equal length N (even) of a white noise process is

CðfmÞ ¼ C1ðfmÞ þ C2ðfmÞ
2

so that

CðfmÞ
CðfmÞ ¼ 1

4
x22 þ x22
� � ¼ x24

4

or, in general, averaging u spectra, u¼ 1, 2, . . ., yields

CuðfmÞ
CðfmÞ ¼ x22u

2u
ð1:45aÞ

for the interior harmonics, and

CuðfmÞ
CðfmÞ ¼ x2u

u
ð1:45bÞ

for the 0-th and Nyquist frequencies, that is, f0 and fn¼ fN/2, respectively.

In parallel with Equation 1.30 we can use Equation 1.45a to determine the

confidence interval for the population variance at the interior harmonics given the

sample variance. Thus,

Pr
CuðfmÞ

x22uð1� a=2Þ=2u � CðfmÞ � CuðfmÞ
x22uða=2Þ=2u

	 

¼ 1� a; fm 6¼ f 0; fn

where a is the significance level. The interval between

2u
CuðfmÞ

x22uð1� a=2Þ and 2u
CuðfmÞ
x22uða=2Þ

is the 100(1�a)% confidence interval for C(fm). By taking logarithms of the lower

and upper limits of the confidence interval for log C(fm), they become, respectively,

logCuðfmÞ þ log
2u

x22uð1� a=2Þ
� �

and logCuðfmÞ þ log
2u

x22uða=2Þ
� �

:
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As noted in Section 1.4.4, the width of the confidence interval will remain constant

regardless of frequency. For example, consider averaging three Fourier spectra so

that u¼ 3. The 95% (a¼ 0.05) confidence interval for logC(fm), fm 6¼ f0, fu, extends

from log C(fm)þ log (0.415) to log C(fm)þ log (4.85). In a similar manner,

Equation 1.45b can be used to find the confidence interval for the population

variance at the exterior harmonics.

If there are deterministic components in the spectrum, they will remain

unchanged by spectrumaveraging. Looking at thismethod in anotherway, averaging

spectra can be used to detect deterministic components.

Consider the following computer simulation of

xn ¼ b sinð2pfn� wÞ þ en; n ¼ 1; 2; . . . ;N

where b¼ ffiffiffi
2

p
, N¼ 32, f¼ 6.25/N, w is phase angle (0�w< 360�), and en is white

noise with population variance s2¼ 5. If the signal-to-noise variance ratio (SNR) is

defined to be

SNR¼
b2

2
s2

ðN� 1Þ=2
ð1:46Þ

the ratio of the variance of the sinusoid to the white noise variance at an interior

harmonic frequency, its value is 3.1.

Each realization of length 32 comprises computer generated normal white noise,

en, added to the sinusoid with a different value of w. If we make the null hypothesis

that the variance spectrum comes from a white noise process and rewrite the two-

sided equation for the confidence interval for the population variance in the form for

a one-sided test only, namely,

Pr 0 � CuðfmÞ � x22uð1� aÞCðfmÞ
2u

	 

¼ 1� a ð1:47Þ

we can use this formula to obtain the a priori upper confidence limit for the

distribution of the observed harmonic variances. That we are dealing with only the

upper confidence limit is because we are interested in the possible existence of a

sinusoid, the indication of which is a peak in the spectrum. Figure 1.37 shows the

spectra for six realizations of 32 data each for harmonics 3–9. The lower dashed line

in each realization is the average variance for the interior harmonics and the arrow

indicates the input frequency of the sinusoid. The upper dashed line shows the 95%
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upper confidence limit for the observed variance of each individual realization

(u¼ 1) and is computed from:

x22ð0:95Þ
2

CðfmÞ

where C(fm) is estimated by summing all of the harmonic variances (signal plus

noise) of a realization and dividing by (N� 1)/2. Realizations (1) through (6) of
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Figure 1.37 Periodograms of six realizations of a sinusoid plus white noise with signal-to-

noise ratio (SNR)¼ 3.1 (solid line). The input sinusoid is 6.25 cycles over data length N¼ 32.

The upper dashed line is the 95% a priori confidence limit. The lower dashed line is the average

variance of the 15 interior harmonics for N¼ 32.
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white noise yielded variances 6.72, 4.12, 5.60, 4.92, 6.77, and 4.25, respectively,

compared to the population variance s2¼ 5.

Figure 1.37 shows that the spectra vary considerably from one sample to the next,

as expected, and that with a signal-to-noise ratio slightly greater than three, one

may very well not detect the sinusoid using a single realization. Figure 1.38 shows

the results of averaging the six spectra in Figure 1.37. The a priori 95% upper

confidence limit is computed from x212 0:95ð ÞCðfmÞ=12 ¼ 0:61, where the estimate

of C(fm)¼ 0.348 is obtained by averaging the estimates from all six realizations.

The upper confidence limit occurs at a lower value of variance and closer to the

mean than for any single periodogram. The result is the variance at harmonic 6 now

clearly stands out.

Let us assume that the six realizations are actual data.Whether wewould conclude

that there is a significant oscillation at or near harmonic 6 depends on what we know

from physical considerations may be occurring there and the likelihood the peak

could have occurred by chance. With regard to the latter, we expect to observe, on

average, 1 in 20 harmonic variances that exceed the a priori upper confidence limit.

It is appropriate then to find the 95% a posterioriupper confidence limit, so that there

is only a 5% chance that any one or more of the 15 harmonic variances will exceed

this limit.

Following the procedure in Section 1.4.6, we divide a¼ 0.05 by 15, the number of

interior harmonics, the result being 0.0033. Next we find (estimate) from a chi-

square table the abscissa of a x212 distribution such that the area to the left is 0.9967.

Thus, x212ð0:9967Þ=12 ¼ 2:46. Given the above estimate of C(fm), the 95% a

posteriori upper confidence limit is 0.86. Assume further that there is physical
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Figure 1.38 Average of the six periodgrams in Figure 1.37 (solid line). The upper two

dashed lines are the a priori and a posteriori 95% confidence limits, the bottom dashed line is

the average variance across all interior harmonics.
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evidence for a sinusoid close to harmonic 6. Since the white noise null hypothesis has

been rejected, the variance in the sinusoid should have been removed from the

estimate of C(fm), the consequence being the correct a posteriori upper confidence

limit would be even lower. Therefore, the test is conservative in that if the null

hypothesis is rejected at some value ofausing the precedingmethod, the actual value

of a is even less.

When the spectrum of random data is not white noise, the estimation of C(fm) in
Equation 1.47 must be made at the frequency at which a sinusoid is suspected. One

way to do this is to apply a straight-line fit to the surrounding periodogram values

and use the value of the straight line at fm as the estimate of C(fm), as illustrated in

Figure 1.39. Confidence limits for the observed variance then can be computed if the

departures from the straight line are suitably white. Another way is to model the

underlying stochastic process using an appropriately smooth function and deter-

mine the white noise confidence limits with respect to the departures from the

model. Crowley, Duchon, andRhi (1986) show an example of the latter inwhich they

searched for potential solar cycles in annual varve data.

We conclude this section by saying that if onewere fortunate enough to have six or

more realizations from a random process in which there is a deterministic sinusoid

with the signal-to-noise ratio of three or greater, there is a good chance of detecting

the sinusoid in the averaged periodogram. The determination of the minimum SNR

required for detection and statistical confirmation of a sinusoid, in general, is

complicated because the outcome depends on its proximity to the nearest harmonic

and the spectrum of the noise. For example, if the sinusoid is located between
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ˆ

Figure 1.39 When the white noise null hypothesis is inadequate, it may be advantageous to

fit a smooth curve or, as shown above, a straight line to the harmonic variances in the

neighborhood of the possible sinusoid. A white noise test can be applied to the departures

from the fitted curve.
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harmonics, the spectrum window will distribute its variance to a number of

harmonics (Section 1.5.2). If the noise spectrum falls or rises sharply where it

is located, we expect that the SNR would have to be very large in order to detect a

pure sinusoid.

1.5.4 Effect of data length on detecting a periodic component

As noted in Section 1.4.5, the Fourier spectrum of random data can be viewed as an

“unstable” spectrum because increasing the data length does not reduce the

variability of variance computed at any harmonic from one realization to the next.

Rather, an increase in data length results in an increase in frequency resolution; if the

data length is doubled, the bandwidth or frequency separation between adjacent

harmonic frequencies is halved. The dof for each approximately independent

variance estimate is still two; as a result, the statistical distribution of each variance

ratio C(fm)/C(fm) remains x22=2.
As in the previous section, consider a sinusoidal signal to which is added white

noise. In this case let the signal have an integer number m cycles. The variance at the

harmonic of the sinusoid is the sum of three terms: the variance of the sinusoid, the

variance of the randomcomponent, and the covariance between the twoharmonics –

one from the sinusoid, the other from the noise. This can be understood by

considering the sample variance of the sum of two sinusoids x1n¼ a1 cos (2pmn/

Nþw1) and x2n¼ a2 cos (2pmn/Nþw2), where x1n is the sinusoid and x2n the

Fourier component of randomnoise at the frequency of the sinusoid. It can be shown

that the variance of the sum

S2ðx1n þ x2nÞ ¼ ð1=NÞ
XN
n¼ 1

ðx1n þ x2nÞ2

reduces to

S2ðx1n þ x2nÞ ¼ a21 þ a22
� �

=2þ a1a2 cosðw1 � w2Þ: ð1:48Þ

A convenient way to prove Equation 1.48 is to express x1n and x2n in terms of

complex exponentials using Euler’s formula and then apply the summation

procedure in Appendix 1.B – similar to the way it was applied it in Section 1.2.2.

We see from Equation 1.48 that, depending on the magnitudes of a2 and w2 in a

particular realization of noise, the variance at the harmonic of the sinusoidal

signal could be larger or smaller than the variance of the sinusoid itself. In an

expected sense there is no preference for the covariance term in Equation 1.48 to

be either positive or negative because a2 has no sign preference and is uncor-

related with w2.
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The important point to remember is that if the data length is doubled, the white

noise variance will be distributed over twice as many frequencies and, on average,

reduced by a factor of two at the frequency of the sinusoidal signal. The variance of

the sinusoid will remain unchanged but occurs at twice the original harmonic

number. Of course, there will be a proportional reduction in white noise at any

harmonic for other integer multiple increases in data length.

If the sinusoid is not at a harmonic frequency, the most likely case in practice, the

results aremore complex, but in the expected sense can be qualitatively inferred from

multiplying the spectrumwindowwith the sinusoidal input variance, as discussed in

Section 1.5.2. For example, if the frequency of the sinusoid lies midway between

adjacent harmonics in the periodogram, the variance at the same frequency after

doubling the data length will contain all the variance of the sinusoid. Considering

only the variance of the sinusoid, its value will be more than twice the values at the

adjacent harmonics in the original periodogram because the spectrum window

spreads the variance of the sinusoid to all harmonics, not just the two adjacent

harmonics. If the sinusoid is nearer to one or the other adjacent harmonics in the

original periodogram, the variance will be mostly contained in the two harmonic

frequencies that surround it in the spectrum for the case of twice the original data

length. In summary, increasing the length of a time series that is stationary and

contains a deterministic component results in improved ability to distinguish the

variance of the deterministic component from the surrounding harmonic variances.

At an appropriate stage, one can test for statistical significance of a possible sinusoid

using one of the approaches given in Section 1.4.6.

As an example, consider the simulated time series b sin(2pft�p/4), where
b¼ ffiffiffi

2
p

and t¼ 1, 2, . . . , N, to which white noise is added. The white noise has

a population variance s2¼ 5.0. In Figure 1.40, curve (a) shows the distribution of

percentage of total variance for harmonic numbers three through nine for the

sinusoid plus a realization of white noise for N¼ 32 and f¼ 6/N. The signal-to-

noise ratio, as defined by Equation 1.46, is 3.1. Percentage of total variance is used

as the ordinate so that comparisons between realizations are not affected by varying

amounts of total sample variance. Curve (a) indicates that the periodogram

estimates vary considerably and that there would be no reason to expect an input

sinusoid at harmonic 6. The periodogram of the white noise by itself (not

presented) shows that, by chance, the value of variance at harmonic 6 is small

compared to the adjacent variances and the phase angle between the component of

white noise at harmonic 6 and the sinusoidal signal is about 30�. The combination

of these two factors yields the value shown at harmonic 6 as dictated by

Equation 1.48.

Curve (b) in Figure 1.40 results from extending the sinusoid and the realization of

white noise associated with curve (a) to double their lengths. That is, the seed for the

white noise random number generator was the same for curves (a) and (b).

As expected, the periodogram values are generally reduced in magnitude as the
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white noise variance is now distributed across twice the number of harmonics in (a).

The presence of an input sinusoid is more in evidence with a SNR¼ 6.2, double that

in (a) (ignoring the –1 contribution in the denominator of Equation 1.46). Even

with this higher SNR, there is still considerable variance at harmonic 8.

Figure 1.41 is similar to Figure 1.40 with two exceptions: the input sinusoid is at

harmonic 6.25 in the 32-point data set and there is a second doubling of the initial

data length to yield a 128-point data set. The highest peak in curve (a) occurs at

harmonic 7 with a comparatively small value at harmonic 6. By chance,

the component of white noise at harmonic 6 is nearly out of phase (170�) with
the component of the input sinusoid at harmonic 6 (negative covariance term).

At the same time, there is only about a 70� phase difference between the component

of white noise at harmonic 7 and the component of the input sinusoid at harmonic 7

(positive covariance term). The result is that the contribution of the input sinusoid to

the variance at harmonic 7 is about 1.5 times greater than that at harmonic 6.

This, coupled with the much larger variance of the random component at harmonic

7 than at harmonic 6, yields the magnitudes shown. Curve (b) shows the spectrum

when the data are extended to twice the original length so that the SNR is 6.2.

Generally, the periodogram values are less than those in (a), as anticipated.

The frequency of the input sinusoid now lies midway between adjacent harmonics.

The phase differences between the components of white noise and the input sinusoid

at harmonics 12 and 13 and the magnitudes of the components account for the

similar percentages of total variance at these harmonics. Other large percentages of

total variance occur at harmonics 8, 14, and 17, due mainly to the strength of the
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Figure 1.40 Partial periodograms for sinusoidal input plus white noise. (a) For signal-to-

noise ratio (SNR)¼ 3.1 and data length N¼ 32. (b) For SNR¼ 6.2 and N¼ 64.
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component of white noise as leakage of variance from the input sinusoid diminishes

with distance from harmonic 12.5.

In curve (c) in Figure 1.41, the data have been extended to four times the original

length, the SNR thus being 12.4. FromTable 1.7, which applies to curve (c), the phase

difference between the input sinusoid and the sinusoid of noise at harmonic 25 is

about 95�. In the “worst case” that could have arisen, the phase angle difference

would be 180�, with the result that the ordinate would have been 9.4%. This figure is

not too different from the values of 7.3% and 8.6% that were found at harmonics 2

and 10 (not shown), in which situation there would be little evidence for the

deterministic component at harmonic 25. The figure of 9.4% can be calculated from

values in the total variance and variance columns of Table 1.7 and Equation 1.48. The

calculation is a good exercise to demonstrate understanding of how periodogram

variances can change due to phase angle differenceswhen two sinusoids are summed.

Nowwe can adapt Equation 1.47 to the ordinate in Figure 1.41 in order to find the

100(1�a)% a priori confidence interval. Dividing each term by the total variance,

such that the confidence interval is expressed as a percentage, yields

Pr 0 � CðfmÞ
5:882

� x22ð1� aÞCðfmÞ
2� 5:882

	 

¼ 1� a: ð1:49Þ

The white noise estimate for C(fm) is 5.882/((N� 1)/2)¼ 2� 5.882/127¼ 0.0926.

The resulting upper limit of the 95% a priori confidence interval is 4.7%. Among the
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63 interior harmonics there are four with values outside this limit. These include

harmonic 25 for both the observed (95�) and “worst case” (180�) phase differences.
On average, one would expect about three (63� 0.05) rejects under the white noise

null hypothesis. Using only the a priori confidence limit, it is unclear whether to

reject or not reject the white noise null hypothesis that the data set comes from a

white noise process. Accordingly, we calculate the 95% a posteriori confidence

interval from Equation 1.49 after replacing the argument of x22 by 1�
a/63¼ 0.99921. Integrating Equation 1.36 between 0 and the upper limit of

integration results in x22(0.99921)¼ 14.278. The upper limit of the a posteriori

confidence interval is, therefore, 11.2%. The only harmonic whose percentage of

total variance exceeds this limit is that at harmonic 25 for the 95� phase angle

difference case. There are no harmonics with values exceeding this limit for the 180�

“worst case.”

We conclude that even with a SNR as large as 12, it can be difficult, in general, to

not only detect a sinusoidal signal in the presence ofwhite noise in a given realization,

but to show also that it is statistically significant. Factors that contribute to this

difficulty are (i) the occurrence of the sinusoid between harmonics and the attendant

spectrum window effects and (ii) the chance occurrence of a combination of

amplitude and phase angle of random noise at the same harmonic as the signal

that significantly cancels the signal variance.

To briefly summarize Sections 1.5.3 and 1.5.4, we can state that the detection of a

sinusoidal signal embedded in noise will be enhanced by either increasing the data

length (with resultant increase in the SNR) or averaging a number of periodograms

(with resultant narrowing of the spectrum confidence interval). Increasing the data

length forces the periodic component to be closer to a harmonic frequency.

1.5.5 Complex representation of Fourier series

The most compact expression of a Fourier synthesis is that written in complex

exponential form. The purpose of this section is to develop complex exponential

forms for Fourier synthesis and analysis producing what is called a Fourier transform

pair. The periodogram is then expressed in terms of complex coefficients. We shall

Table 1.7 Statistical properties of signal
ffiffiffi
2

p
sin (2p 25 n/128�p/4) and a realization of a

time series of 128 values of white noise.

Time

series

Total

variance

Variance at

harmonic 25

Percentage of total

variance

Phase angle

(degrees)

signal 1.000 1.000 100.00 135.0

noise 4.936 0.084 1.70 39.6

signalþ
noise

5.882 1.030 17.51 118.5
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see that one of the features of the periodogram in complex form is that, with a couple

exceptions, the Fourier coefficients are one-half the magnitude given in Table 1.1.

The exceptions occur at the zero harmonic (N even or odd) and the Nyquist

frequency (N even), in which cases there is no change of magnitude. The compact-

ness also can result in an amplitude spectrum that includes both positive and

negative harmonics (or frequencies), as described in Section 1.5.1 and Figure 1.28.

Figure 1.42 shows the locations of the harmonic coefficients Am and Bm along a

harmonic axis that has been extended to twice its usual length. If the range ofm in the

synthesis formula

xn ¼ A0 þ
XN2�1

m¼ 1

Am cos
2pmn

N
þ Bm sin

2pmn

N

� �
þ AN=2 cospn ð1:50Þ

fromTable 1.1 forN evenwere to be extended beyondN/2,whatwould happen to the

values of Am, Bm, cos
2pmn
N

, and sin 2pmn
N

? Using trigonometric identities for the sum

and difference of two angles, the results for the sine terms will be

sin
2p N

2
þm

� �
n

N
¼ sinðpnÞ cosð2pmn=NÞ þ cosðpnÞ sinð2pmn=NÞ ð1:51Þ

and

sin
2p N

2
�m

� �
n

N
¼ sinðpnÞ cosð2pmn=NÞ � cosðpnÞ sinð2pmn=NÞ: ð1:52Þ

Because the first term on the right-hand side in both equations is always zero and

the second term is the same except for sign, it follows that

sin
2p N

2
þm

� �
n

N
¼ �sin

2p N
2
�m

� �
n

N
: ð1:53Þ

0

1 2 (N/2)−2 (N/2)−1

N/2

(N/2)+2(N/2)+1 N−2 N−1

N

m

Figure 1.42 Fourier coefficents Am andBm computed at harmonics (N/2)þ 1 to N� 1 can be

exactly matched to Fourier coefficients computed at harmonics 1 to (N/2)� 1 with appro-

priate change in sign. N is even.
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In a similar manner it can be shown that

cos
2p N

2
þm

� �
n

N
¼ cos

2p N
2
�m

� �
n

N
: ð1:54Þ

Thus, the sine terms show odd symmetry about harmonicN/2 and the cosine terms

show even symmetry. For N odd, the location of the Nyquist frequency is between

adjacent harmonics that surround the Nyquist frequency. Nevertheless, the same

pattern of symmetry about the Nyquist frequency holds for N odd as for N even.

Continuing with N even, since Am and Bm both involve the cosine and sine

terms above,

AN
2
þm ¼ AN

2
�m and BN

2
þm ¼ �BN

2
�m: ð1:55Þ

Thus, noting the even and odd symmetry of the Fourier cosine and sine

coefficients, respectively, xn can be written

xn ¼
XN�1

m¼ 0

A0m cos
2pmn

N
þ B0

m sin
2pmn

N

� �
ð1:56Þ

where A0
m¼Am/2 and B

0
m¼Bm/2, except A

0
0¼A0 (N even or odd) and A0

N/2¼AN/2

(N even). Fourier coefficients Am and Bm are the original coefficients defined in

Table1.1.Fromthispoint forward,wheneveraprimedFourier coefficient isobserved,

itmeans that its value isone-half thevalueof anunprimedcoefficient, except asnoted.

Primed coefficients have been used already in Appendix 1.D.

Before rewriting the expression above in terms of complex numbers, let us briefly

review what we mean by a complex number. A complex number is given by

z ¼ xþ iy

and its complex conjugate by

z
� ¼ x� iy

where x and y are real numbers and i the imaginary unit defined by

i ¼
ffiffiffiffiffiffi
�1

p
:

The real number x is called the real part of z (or its conjugate) and the real number

y is called the imaginary part of z (or its conjugate). (Note that the x notation here is

distinct from notation xn for the time series above.) The complex number z can be
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easily interpreted as a vector in the complex plane shown in Figure 1.43 extending

from the origin to the intersection of x and y.

The length of vector z is given by

jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and its direction by

q ¼ tan�1 y

x

 �
:

Since

x ¼ jzj cosq and y ¼ jzj sinq

it is apparent that z¼ xþ iy can be written in the equivalent form

z ¼ jzj cosqþ ijzj sinq ¼ jzj ðcosqþ i sinqÞ

which, from Euler’s formula, can be written

z ¼ jzj eiq:
This is called the polar or trigonometric form of a complex number.

As for now, we represent the Fourier coefficients using complex numbers in order

to rewrite the synthesis formula in complex exponential form. That is,

xn ¼
XN�1

m¼ 0

A0
m � iB0

mð Þ cos
2pmn

N
þ i sin

2pmn

N

� �
: ð1:57Þ

The cross product termswill vanish in the summation because of their odd symmetry

aboutm¼N/2. For example, the product of A0
mwith sin(2pmn/N) for 0<m<N/2

Imaginary axis

Complex plane

Real axis

−i

i

x

y
z

| z |

θ

Figure 1.43 The complex plane.
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will be identical to the same product at harmonic N�m, but of opposite sign since

A0
m is an even function about N/2 and sin(2pmn/N) is an odd function.

If we let S0m¼A0
m� iB0

m, then, from Table 1.1 and the Fourier coefficients there

divided by two, as required earlier,

S0m ¼ 1

N

XN�1

n¼ 0

xn cos
2pmn

N
� i

1

N

XN�1

n¼ 0

xn sin
2pmn

N

¼ 1

N

XN�1

n¼ 0

xn cos
2pmn

N
� i sin

2pmn

N

 !
; 0 � m � ðN� 1Þ; N even:

ð1:58Þ

S0m is the complex Fourier coefficient at the m-th harmonic frequency.

Using Euler’s formula, expressions for xn and S
0
m can be expressed very compactly

and symmetrically as

S0m ¼ 1

N

XN�1

n¼ 0

xn expð�i2pmn=NÞ; m ¼ 0; 1; . . . ;N� 1 ð1:59Þ

and

xn ¼
XN�1

m¼ 0

S0m expði2pmn=NÞ; n ¼ 0; 1; . . . ;N� 1: ð1:60Þ

These equations constitute a digital Fourier transform pair, are valid whether N is

even or odd, and could be written also

S0m ¼ 1

N

XN�1

n¼ 0

xn expð�i2pmn=NÞ; m ¼�½ðN� 1Þ=2�; . . . ; 0; . . . ; ½N=2�

or m¼�½N=2�; . . . ; 0; . . . ; ½ðN� 1Þ=2�
ð1:61Þ

and

xn ¼
X½N=2�

m¼�½ðN�1Þ=2�
S0m expði2pmn=NÞ; n ¼ 0; 1; . . . ;N� 1

or

xn ¼
X½ðN�1Þ=2�

m¼�½N=2�
S0m expði2pmn=NÞ; n ¼ 0; 1; . . . ;N� 1 ð1:62Þ
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where [q] means truncation of q. The new limits on m follow from the easily proved

relation S0m� kN¼ S0m,where k is an integer. Equations 1.60 and 1.62 are referred to as
inverse Fourier transforms of Equations 1.59 and 1.61, respectively. Whenever there

is a Fourier transformpair, the equation for the time or space function in terms of the

frequency function is considered the inverse Fourier transform.

If the variance in the periodogram is denoted by C0
m, then

C0
m ¼ S0m � S0m

�
¼ A0

m � iB0
mð Þ A0

m þ iB0
mð Þ ¼ A02

m þ B02
m;

m ¼ �½ðN� 1Þ=2�; . . . ; 0; . . . ; ½N=2� ð1:63Þ

where the asterisk again indicates complex conjugate. Ordinarily, variance is not

computed at m¼ 0. Notice the periodogram here is two-sided; that is, there are

variances at both negative and positive harmonics. Their use is a mathematical

convenience. Recall that the primed Fourier coefficients are one-half the values given

inTable 1.1 except atm¼ 0 andm¼N/2 (Neven). Tomatch the one-sided spectrum

in Table 1.1 for N even or odd, the variances have to be doubled according to

S2m ¼ Cm ¼ C0
m þ C0�m ¼ 2C0

m; m 6¼ 0; m 6¼ N=2 ðN evenÞ
and

S2N=2 ¼ CN=2 ¼ C0
N=2; ðN evenÞ:

ð1:64Þ

1.5.6 The spectrum at nonharmonic frequencies

Itwas pointedout in Section 1.2 that the total variance in adata set can be shown to be

the sumof the variances at the harmonic frequencies. In terms of accounting for total

variance, there is no need to examine the spectrum at a frequency resolution higher

than the spacingbetweenadjacent harmonics.Nevertheless, a valueof variance canbe

computed at any frequency by changing the cosine and sine arguments in the

spectrum formulations from 2pmnDt/(NDt) to 2pfnDt where f is frequency (in

cycles per time interval between samples). In this section we derive a formula from

which we conclude that the variance spectrum C0(f), available at a continuum of

frequencies, is uniquely related to the variances at the harmonic frequencies C0
m.

Define S0(f) to be the complex amplitude coefficient at frequency f. Then, by

analogy with Equation 1.61,

S0ðfÞ ¼ 1

N

XN�1

n¼ 0

xn expð�i2pfnDtÞ; �1=ð2DtÞ � f � 1=ð2DtÞ: ð1:65Þ
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Now substitute the first form of Equation 1.62 for xn to get

S0ðfÞ ¼
X½N=2�

m¼�½ðN�1Þ=2�
S0m
XN�1

n¼ 0

1

N

� �
exp i2p

m

N
� fDt

 �
n

h i
ð1:66Þ

where [q], as earlier, means the truncated value of q in the summation limits.

Using Equation 1.B.4 to obtain the second summation yields

S0ðfÞ ¼
X½N=2�

m¼�½ðN�1Þ=2�
S0m � EmðfÞ; �1=ð2DtÞ � f � 1=ð2DtÞ ð1:67Þ

where

EmðfÞ ¼ exp i N� 1ð Þ m

N
� fDt

 �
p

h i
�

sin
m

N
� fDt

 �
Np

h i
N sin

m

N
� fDt

 �
p

h i : ð1:68Þ

Equation 1.67 tells us that each complex Fourier coefficient at a frequency between

two adjacent harmonics is a weighted sum of the S0m harmonic coefficients. This

means that calculating Fourier coefficients at nonharmonic frequencies yields no

additional insight into the variance structure of the data; all of the variance

information is revealed by the harmonic coefficients.

If S0m and Em(f) are replaced by their conjugates, the conjugate companion of

Equation 1.67 will result and the weighted sum relation will apply to S0
�
ðfÞ. Because

the periodogram is the product of S0m and S0m
�
, we conclude that at any frequency, f,

the variance spectrum

C0ðfÞ ¼ S0ðfÞ � S0
�
ðfÞ; � 1=ð2DtÞ � f � 1=ð2DtÞ ð1:69Þ

is a weighted sum of the variances at the harmonic frequencies. When f is at a

harmonic frequency, theweight function is zero at all other harmonics except the one

under consideration.

Let us re-examine Equation 1.68 for the case when m¼ 0. Then,

E0ðfÞ ¼ exp �iðN� 1ÞpfDt½ � sinðpNfDtÞ
N sinðpfDtÞ : ð1:70Þ

Note that the limit ofE0(f) is one as f tends to zero. If S
0
0, themeanof the series, is large,

the product of E0(f) and S00 will provide a large contribution to S0(f) when f is in the

neighborhood of the origin. The variance C0(f) will then include a large contribution
from the mean. Since it is the second moment about the mean that is desired, this
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contribution must be deleted. Therefore, in applying Equation 1.69 it is to be

understood that the samplemean has been removed before computing S0(f) or C0(f).
One might expect that C0(f) could be used to find the exact frequency of a

deterministic signal embedded in noise. Unfortunately, this is not true, and an

illustration of this fact is shown in Figure 1.44. The spectrum here is the same as

spectrum (5) in Figure 1.37, except that the variances were calculated at frequency

increments corresponding to 1/20 the harmonic spacing using Appendix 1.A. Due

mainly to the leakage of noise variance from surrounding harmonics, the peak in the

spectrum occurs not at the frequency of the input sinusoid (harmonic 6.25) but

slightly to the left of harmonic 6.

If the noise is reduced to zero, however, the input frequency can be accurately

determined, as shown in Figure 1.45.Why is this? In the first place there is no noise to

contend with and, therefore, no noise leakage. In the second place, for interior

frequencies and sufficiently large N, the frequency at which the peak in the spectral

window in Equation 1.42 occurs when 2pfi is substituted for vm is close to the

frequency of the input sinusoid fi. Recall from Figures 1.33 and 1.34 that the peak in

the spectrum window at harmonic 1 is displaced from harmonic 1 for a pure cosine

or sine input. It was found from simulations that when N> 100 a reasonably

accurate estimate of the frequency of an input sinusoid away from the ends of the

spectrumcanbemade because thewindow is nearly symmetric and its peak is close to

the center of the window. This parallels the earlier finding in Section 1.5.2 that the

squared diffraction function in Equation 1.44 provides a good approximation to the

window function in Equation 1.42 away from the spectrum ends for N> 100.

Of course, the larger the value of N, the greater the accuracy. From Figures 1.44
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Figure 1.44 Spectrum of sinusoid with frequency 6.25 cycles over data length N¼ 32 with

added white noise. The ratio of the signal variance to the white noise variance at an internal

harmonic (SNR) is 3.1 (see Equation 1.46).
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and 1.45 we conclude that the higher the ratio of the deterministic signal variance to

the noise variance, the more accurately one can estimate the frequency of the signal.

The various equations developed in this and the previous sections typically are not

used in computing a periodogram. Instead, we use a straightforward algorithm

employing the formulas in Table 1.1 or a fast algorithm as in the computer program

in Appendix 1.A. The latter algorithm permits us to evaluate the Fourier coefficients

and variances at as high a resolution in frequency as we wish. When we do this, we

now know that the variance computed at an off-harmonic frequency is a weighted

sum of all harmonic variances, and the closer they are to a given off-harmonic

frequency, the greater their influence.

1.5.7 Padding data with zeroes

In this section we investigate a topic of practical interest wherein a time series with

zero mean is modified by appending zeroes to it in order to obtain a desired length.

The procedure is called “padding data with zeroes” and a common purpose is to

match the length of a record with that required when using an FFT (fast Fourier

transform) algorithm to analyzemany and/or long data sets. As an example, if we had

an 83 point sequence and were using a simple FFT requiring 2k points, we could add

45 zeroes to obtain 27¼ 128.Wewill show that the periodogramof the paddeddata is

identical to the variance spectrum (Equation 1.63) of the original data computed

at intervals in frequency of 1/128, except for a multiplicative constant. It may seem

odd that one would add a sequence of zeroes to a time series (after removal of the

mean) and compute a periodogram that has any meaning. The interesting aspect

is that in calculating the Fourier coefficients, the padded series can be partitioned
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Figure 1.45 Spectrum of sinusoid with frequency 6.25 cycles over data data length N¼ 32.
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into the original series and the sequence of zeroes, the latter contributing nothing to

the coefficients. The result is a spectrum with higher resolution than the period-

ogram of the original data.

Let us begin by considering a time series of data and subtract its mean from each

datum to get data set A. Next consider data set B. It is the same as data set A except

that zeroes have been appended in order to apply an FFT. The means of data sets

A and B are zero. The variances of both are the same if, for set B, the coefficient of the

sum in the expression for variance is the same as that for set A – a condition that we

now investigate.

The formula for the Fourier coefficients in data set A is, following Equations 1.58

and 1.59,

S0m ¼ A0
m� iB0

m ¼ 1

N

XN�1

n¼0

xn expð�i2pmn=NÞ; m ¼ � ðN�1Þ=2½ �; . . . ;0; . . . ; N=2½ �

ð1:71Þ
where m is harmonic number, xn is the n-th datum, N is the number of data and [q]

indicates truncated value, as before.

Of course, we know from the previous section that we can calculate Fourier

coefficients at higher resolution in frequency than the harmonic frequencies

(Equation 1.65) and they are completely dependent on those at the harmonic

frequencies (Equation 1.67). Consider increasing the number of complex coeffi-

cients N in set A by a factor R, such that RN is the number of data needed by an FFT.

Then the new formula for the high resolution coefficients in data set A is

S0r ¼ A0
r � iB0

r ¼ 1

N

XN�1

n¼ 0

xn expð�i2prn=ðRNÞÞ;

r ¼ �½ðRN� 1Þ=2�; . . . ; 0; . . . ; ½RN=2�: ð1:72Þ
To distinguish padded data set B from data set A, we will use bold notation, for

example, xn. Data set B has RN data and, by analogy with Equation 1.71, noting that

xn¼ 0 beyond n¼N� 1, its Fourier coefficients are

S0r ¼ A0
r � iB0

r ¼ 1

RN

XRN�1

n¼ 0

xn exp½�i2prn=RN�

¼ 1

RN

XN�1

n¼ 0

xn expð�i2prn=RNÞ þ 1

RN

XRN�1

n¼N

xn expð�i2prn=RNÞ

¼ 1

RN

XN�1

n¼ 0

xn expð�i2prn=RNÞ; r ¼ � ðRN� 1Þ=2½ �; . . . ; 0; . . . ; RN=2½ �:

ð1:73Þ
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Except for the coefficient of the summation, Equation 1.73 is the same as Equa-

tion 1.72. If it were desired that the Fourier coefficients of padded data set B be the

same as the high resolution coefficients of data set A, the former coefficients need to

be multiplied by R.

Whether one uses padding (Equation 1.73) or direct calculation (Equation 1.72),

the total variance derived from the Fourier coefficientsmust equal the variance in the

data. The variance at a Fourier harmonic frequency can be obtained by forming the

product Sm � S
�
m, inwhich the asteriskmeans complex conjugate. Accordingly, from

Equations 1.61 and 1.63,

S0m � S0m
�

¼ A02
m þ B02

m ¼ 1

N2

XN�1

n¼ 0

xn expð�i2pmn=NÞ
�����

�����
2

;

m ¼ � ðN� 1Þ=2½ �; . . . ; 0; . . . ; N=2½ � ð1:74Þ

the total variance of which is

X½N=2�
m¼�½ðN�1Þ=2�

A02
m þ B02

m

 �
: ð1:75Þ

When variances are computed at a higher resolution in frequency than that

associatedwith just the harmonic frequencies, theymust be scaled by 1/R. The reason

for scaling is that the variances computed at a resolution in frequency greater than the

harmonic resolution are not independent (as are the harmonic variances). The

dependence is taken into account by reducing the bandwidth associated with each

high resolution spectrum variance by 1/R.

Using padding for FFT purposes, with the consequent increase in spectral

resolution, the expression for the periodogram variance is

S0r � S0r
�

¼ A02
r þ B02

r ¼ 1

ðRNÞ2
XN�1

n¼ 0

xn expð�i2prn=RNÞ
�����

�����
2

;

r ¼ � ðRN� 1Þ=2½ �; . . . ; 0; . . . ; RN=2½ �: ð1:76Þ

However, as mentioned earlier, to match the variances associated with high

resolution data set A, the Fourier coefficients in data set B have to be multiplied

by R, or, what is the same, the variances in Equation 1.76 have to be multiplied

by R2. Thus,

A02
r þ B02

r ¼ R2A02
r þ R2B02

r : ð1:77Þ
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It follows that for high-resolution data set A, the total variance is given by

1

R

X½RN=2�
r¼�½ðRN�1Þ=2�

ðA02
r þ B02

r Þ ð1:78Þ

and, for data set B, by

1

R

X½RN=2�
r¼�½ðRN�1Þ=2�

R2 A02
r þ B02

r

 �
¼ R

X½RN=2�
r¼�½ðRN�1Þ=2�

ðA02
r þ B02

r Þ: ð1:79Þ

If the variances at the nonharmonic frequencies in Equation 1.77 are treated as

random variables, they have the same asymptotic (as N tends to infinity) mean,

variance, and distribution as those at the harmonic frequencies (Koopmans, 1974,

pp. 261–265).

The consequences of padding a time series with zeroes to accommodate analysis

with an FFT can be illustrated with a typical example in which the number of data

does not match the requirements of the FFT that is to be used. Consider spatially

averaged sea surface temperature (SST) in an area bounded by 10� south latitude on
its southern edge, the equator on its northern edge, and 80 and 90� west longitude on
its eastern andwestern edges, respectively. This area comprisesNiño Regions 1 and 2,

which are often used as indicator regions of the current state of the El Niño Southern

Oscillation (ENSO). Figure 1.46 shows Niño Region 1þ 2 monthly SST anomalies

for the 30-year period of 1981–2010. These values were derived by subtracting the

1981–2010 monthly means from each month’s actual SST in a manner identical to

that used in Section 1.4.6.2. The original monthly values of SST were obtained from
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Figure 1.46 Mean monthly SST (sea surface temperature) anomalies in Niño Region 1þ 2

for the 30-year period of 1981–2010.
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the National Weather Service Climate Prediction Center (http://www.cpc.ncep.

noaa.gov/data/indices/).

If one were not concerned with computational speed, the SST anomaly data

could be analyzed without implementation of an FFT by using standard Fourier

analysis techniques, as in Appendix 1.A, where the number of data is N¼ 360. The

first 60 harmonics of the periodogram resulting from such an analysis are

presented in Figure 1.47, where these harmonics explain over 96% of the total

variance in the time series. Notice that harmonics 30 and 60 necessarily have zero

variance, since the 30-year mean was removed from the data. There is a

concentration of variance at harmonics 20 and lower, corresponding to periods

of 1.5 years and longer, and of particular interest are the peak variances that occur

at periods of 3.75 and 5.0 years (harmonics 8 and 6, respectively). The period-

ogram provides an informative depiction of the cyclic nature of El Niño and

La Niña.

Suppose, however, that many thousands of such analyses needed to be performed

as rapidly as possible. The computational efficiency of FFTs then becomes necessary,

and it may be the case that the FFT requires N¼ 2k data points as previously

described. By augmenting the 30 years of monthly data with 152 zeroes, we obtain a

time series that is 512 (29) data points in length. An FFT was used to compute the

folded version (positive harmonics only) of the Fourier coefficients in Equation 1.73

and the folded version of the periodogram variances in Equation 1.76 where

RN¼ 512. The ratios (in percentage) of the individual variances to their sum are

shown in Figure 1.48 for the first 85 harmonics to account for the inherently

narrower bandwidth of the analysis.

In comparing Figures 1.47 and 1.48 to each other, we can make the general

statement that they are different for two reasons. One is that the period (in years)
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Figure 1.47 Periodogram to harmonic 60 of SST anomalies in Figure 1.46. Total anomaly

variance is 1.440 �C2.
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versus harmonic relation is different in each figure; the other is that the bandwidth

or width of the spectrum window associated with the variance estimates in each

figure is different. To explain these differences, consider an example. As mentioned

earlier, Figure 1.47 shows two strong peaks: the first at a period of 5 years

(harmonic 6) and the second at a period of 3.75 years (harmonic 8). In Figure 1.48,

the periodogram of the padded data, the variance in the first peak lies between

harmonic 8, corresponding to a period of 5.333 years, and harmonic 9, corre-

sponding to a period of 4.741 years. The spectrum windows centered at harmonics

8 and 9 transfer most of the variance in the first peak in Figure 1.47 to these

two harmonics. Because the location of the first peak is approximately midway

between the surrounding harmonics 8 and 9 in Figure 1.48, the variances there are

quite similar.

An analogous situation occurs with the second peak in variance in Figure 1.47.

This peak, at a period of 3.75 years (harmonic 8), lies between harmonics 11 (period

of 3.879 years) and 12 (period of 3.556 years). Again, the spectrumwindows centered

at these harmonics redistribute the variance that lies between them in Figure 1.47 to

these harmonics, as shown in Figure 1.48.

The opposite situation occurs in Figure 1.48 at harmonic 15 and period 2.844

years. The peak at this harmonic falls between harmonics 10 (period of 3 years) and

11 (period of 2.727 years) in Figure 1.47. In this case, a redistribution of a peak in

variance in the padded spectrum occurs in the unpadded spectrum. In any period-

ogram, variance that is intrinsically located between harmonics is distributed to

surrounding harmonics by a spectrum window centered at each harmonic, as we

learned in Section 1.5.2. In addition, the two periodograms of the SST anomaly data

illustrate the effect of data length on finding periodicities, a subject discussed in

Section 1.5.4.
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Figure 1.48 Periodogram to harmonic 85 of SST anomalies in Figure 1.46 after padding with

152 zeroes. Total anomaly variance is 1.440 �C2.
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Appendix 1.A Subroutine foranx

subroutine foranx (s, n, var, nf, tvar, fr1, fr2, iprnt)

dimension s(1), a(400), b(400), pvar(400), phi(400), var(400),

freq(400)

c*************************************************************

c

c This subroutine performs a fast Fourier analysis of an even

number of data points at as

c many frequencies as desired. The frequency span is between 0.0

and 0.5 cy/data interval,

c inclusive. The algorithm used is that given at the end of

Chapter 9 of Spectral Analysis

c (Jenkins & Watts, 1968, Holden-Day, San Francisco, 525 pp.)

c * Input *

c s input data array.

c n length of s. n is an even number.

c nf number of frequencies (including zero) at which variance

is to be computed.

c nf.gt.n/2 and is an odd number.

c nf = n/2 + 1 for standard periodogram.

c fr1 frequency at which printing begins.

c fr2 frequency at which printing ends.

c fr1 and fr2 are less than or equal to 0.5 and fr1 < fr2.

c * Output *

c var the array of spectrum variances at the nf frequencies.

c tvar the total variance in the data.

c * Other *

c iprnt user supplied output device unit number.

c

c the synthesis form is x(t) = a*cos(wt) + b*sin(wt)

c = c*cos(wt - phi) phi = phase angle in program

c

c*************************************************************

c **setconstants,variancescalefactor,andfrequencyarray**

c

data pi /3.1415926536/

anf = nf

an = n

rddg = 180.0/pi

frfac = an/(2.0*anf - 2.0)

bb = 0.5/(anf - 1.0)

do 10 i = 1, nf

aa = i

10 freq(i) = (aa - 1.0)*bb
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c

c ** get Fourier coefficients at 0 and Nyquist frequencies **

c

a(1) = 0.0

b(1) = 0.0

a(nf) = 0.0

b(nf) = 0.0

e = n

tvar = 0.0

do 20 i = 1, n

c = i - 1

r = s(i)/e

a(1) = a(1) + r

20 a(nf) = a(nf) + r*cos(c*pi)

c

c ** get variance in data, start accumulation of variance in

spectrum **

c

do 30 i = 1, n

s(i) = s(i) - a(1)

30 tvar = tvar + s(i)**2/e

var(nf) = a(nf)**2

pvar(nf) = var(nf)*100.0*frfac/tvar

var(1) = 0.0

pvar(1) = 0.0

wvar = var(nf)*frfac

g = n/2

phi(1) = 0.0

phi(nf) = 0.0

do 40 i = 1, n

40 s(i) = s(i)/g

c

c ** J & W algorithm **

c

nfm1 = nf - 1

do 50 j = 2, nfm1

ang = 2.0*pi*freq(j)

co = cos(ang)

si = sin(ang)

v0 = 0.0

v1 = 0.0

z0 = 0.0

z1 = 0.0

do 60 i = 2, n

ii = n - i + 2
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v2 = 2.0*co*v1 - v0 + s(ii)

z2 = 2.0*co*z1 - z0 + s(ii)

v0 = v1

v1 = v2

z0 = z1

z1 = z2

60 continue

a(j) = s(1) + v1*co - vo

b(j) = z1*si

var(j) = (a(j)**2 + b(j)**2)/2.0

pvar(j) = var(j)*frfac*100.0/tvar

wvar = wvar + var(j)*frfac

50 phi(j) = atan2(b(j), a(j))*rddg

c

c **print results **

c

kj = 0

ih1f = 1

ih2f = nf

if(fr1.lt.0.0.or.fr1.gt.0.5) go to 111

if(fr2.lt.fr1.or.fr2.gt.0.5) go to 111

if(fr1.eq.0.0.and.fr2.eq.0.5) go to 109

ih1f = 2.0*fr1*(anf - 1.0) + 1.01

ih2f = 2.0*fr2*(anf - 1.0) + 1.01

c

109 do 70 j = ih1f, ih2f

wn = freq(j)*an

kj = kj + 1

if(((kj - 1)/25)*25.eq.(kj - 1)) write(iprnt, 102)

70 write(iprnt,103) wn, freq(j), a(j), b(j), var(j), pvar(j),

phi(j)

write(iprnt,104) tvar, wvar

102 format(//9x, ’har-’, 6x, ’freq’, 7x, ’cosine’, 9x, ’sine’,

*10x, ’line’, 7x, ’percent of’, 5x, ’phase’, /8x, ’monic’,

*5x, ’cy/di’, 2(3x,’coefficient’), 5x, ’variance’, 6x,

’total var’,*5x, ’angle’, /)

103 format(5x, f8.3, 4x, f6.3, 4(2x,g12.5), 4x, f6.1)

104 format(///21x, ’variance in data set’, g12.5//8x,

*’variance explained by periodogram’, g12.5)

go to 99

111 write(iprnt, 112)

112 format(//, 10x, ’fr1 or fr2 or both out of range’)

99 return

end
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Appendix 1.B Sum of complex exponentials

Let

Q ¼
Xb
n¼ a

expðivnÞ ¼ eiva þ eivðaþ1Þ þ 	 	 	 þ eivb ð1:B:1Þ

where a and b are integers and b> a. Multiply Equation 1.B.1 by eiv to get

eivQ ¼ eivðaþ1Þ þ eivðaþ2Þ þ . . .þ eivðbþ1Þ: ð1:B:2Þ

Subtract Equation 1.B.2 from Equation 1.B.1 to obtain

Q ¼ eiva � eivðbþ1Þ� �
1� eivð Þ : ð1:B:3Þ

Nowmultiply the numerator and denominator of Equation 1.B.3 by exp(�iv/2).
Then successively withdraw exp(iav/2) and exp(ibv/2). The result is

Q ¼
Xb
n¼ a

expðivnÞ

¼ exp iðaþ bÞv=2½ � eivðb�aþ1Þ=2 � e�ivðb�aþ1Þ=2

eiv=2 � e�iv=2

" #

which, using Euler’s formula, reduces to

Q ¼ exp iðaþ bÞv=2½ � sin½vðb� aþ 1Þ=2�
sinðv=2Þ : ð1:B:4Þ

In application of Equations 1.B.3 and 1.B.4 it is important to test sin (v/2) to verify
that it is not zero for any values of the argument. If sin (v/2) is zero, then l’Hopital’s

rule can be applied to these equations to obtain a determinate form. Equation 1.B.1

can be used, also.

Appendix 1.C Distribution of harmonic variances

The purpose of this appendix is to develop relationships for the statistical

distribution of the harmonic variances. Because the chi-square (x2) distribution
plays a prominent role in the development that follows, it is important to be
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familiar with its properties. We begin with the forms for the Fourier cosine and sine

amplitudes given in Table 1.1, now treated as random variables, for an even number

of data N, namely

Am ¼ 2

N

XN�1

n¼ 0

Xn cos
2pmn

N
ð1:C:1aÞ

and

Bm ¼ 2

N

XN�1

n¼ 0

Xn sin
2pmn

N
; m ¼ 0;

N

2

� �
: ð1:C:1bÞ

Making use of linear expectation operator E and assuming a purely random process

(white noise) represented by random variable Xn with E[Xn]¼ 0 so that E[Am]¼
E[Bm]¼ 0, we obtain:

Var½Am� ¼ E½A2
m�

¼ 4

N2
E X0X0½ � cos2pm0

N
cos

2pm0

N
þE X0X1½ � cos2pm0

N
cos

2pm1

N

8<
:

þ		 	þE X0XN�1½ � cos2pm0

N
cos

2pmðN� 1Þ
N

þE X1X0½ � cos2pm1

N
cos

2pm0

N

þE X1X1½ � cos2pm1

N
cos

2pm1

N
þ	 	 	þE X1XN�1½ � cos2pm1

N
cos

2pmðN� 1Þ
N

þ	 	 	þE XN�1X0½ � cos2pmðN� 1Þ
N

cos
2pm0

N

þE XN�1X1½ � cos2pmðN� 1Þ
N

cos
2pm1

N

þ 		 	þE XN�1XN�1½ � cos2pmðN� 1Þ
N

cos
2pmðN� 1Þ

N

9=
;: ð1:C:2Þ

The expectation E[XiXj]¼ 0 for i 6¼ j because the random variables are uncorrelated;

similarly, E[XiXj]¼ s2X for i¼ j because the random variables are completely

correlated. The latter relation follows from Equation 1.18 and noting from above

that E[Xn]¼ 0. Therefore, Equation 1.C.2 becomes
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Var Am½ � ¼

4

N2 s
2
X

XN�1

n¼ 0

cos2
2pmn

N
¼ 4

N2 s
2
X

N

2
¼ 2

N
s2X; m ¼ 1;

N

2
� 1

" #

1

N2
s2X
XN�1

n¼ 0

cos2
2pmn

N
¼ 1

N2
s2XN ¼ 1

N
s2X; m ¼ 0;

N

2

8>>>>><
>>>>>:

ð1:C:3Þ

and for the sine coefficients

Var Bm½ � ¼

4

N2 s
2
X

XN�1

n¼ 0

sin2
2pmn

N
¼ 4

N2 s
2
X

N

2
¼ 2

N
s2X; m ¼ 1;

N

2
� 1

" #

1

N2 s
2
X

XN�1

n¼ 0

sin2
2pmn

N
¼ 0; m ¼ 0;

N

2
:

8>>>>><
>>>>>:

ð1:C:4Þ

The sums of the cosine-squared and sine-squared terms can be determined from

Equations 1.4 and 1.5.

The covariance between the coefficients at different harmonics may be calculated

in a similar manner. For m 6¼ k,

Cov½Am;Ak� ¼ 4

N2
s2X
XN�1

n¼ 0

cos
2pmn

N
cos

2pkn

N

¼ 0 ð1:C:5Þ

since the cosine terms are orthogonal to each other, as demonstrated in the

derivation of Equation 1.8. Similarly, for the sine coefficients

Cov½Bm;Bk� ¼ 0: ð1:C:6Þ

Lastly, for all m, k,

Cov½Am;Bk� ¼ 0 ð1:C:7Þ

because over their length, any integer number of sine waves is orthogonal to any

integer number of cosine waves.

Now assume that each rv Xn from our white noise process has a normal

distribution with population mean zero and population variance s2X. Since random
variables Am and Bm are linear functions of normal random variables from

Equation 1.C.1, they also are normally distributed. From statistical theory, the

square of a normal random variable with zero mean and unit variance (i.e., a

standard normal variable) is distributed as a chi-square variable with one degree of
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freedom. Thus, if we square the Fourier coefficients and standardize them by

dividing by their variance, we have

A2
m

Var½Am� ¼
A2
m

s2X=ðN=2Þ
) x21; m ¼ 1;

N

2
� 1

� �
ð1:C:8Þ

B2
m

Var½Bm� ¼
B2
m

s2X=ðN=2Þ
) x21; m ¼ 1;

N

2
� 1

� �
ð1:C:9Þ

and

A2
m

Var½Am� ¼
A2
m

s2X=N
) x21; m ¼ 0;

N

2
ð1:C:10Þ

in which the arrow indicates “is distributed as.” Notice that no equation compa-

rable to Equation 1.C.10 is given for Bm when m¼ 0, N/2; the reason is that Bm is

always zero for these two values of m. There is another relevant relationship

involving x2 variables: the sum of any number of mutually independent x2 variables
whose degrees of freedom sum to n is itself a x2 variable with n degrees of freedom;

that is,

x2n1 þ x2n2 þ 	 	 	 þ x2nk ¼ x2n ð1:C:11Þ

where n¼ n1þ n2þ 	 	 	 þ nk. Thus, dividing Equations 1.C.8 and 1.C.9 by two and

then summing yields

A2
mþB2

m

2

s2X=ðN=2Þ
) x22

2
; m ¼ 1;

N

2
� 1

� �
: ð1:C:12Þ

The reason for dividing by two is to match the expression for variance at a

harmonic given in Table 1.1. The denominators in Equations 1.C.12 and 1.C.10

distribute the population variance s2X among the harmonic frequencies in such a

way that the variance at the interior harmonics is uniform and twice the value at the

frequency origin (m¼ 0) and the highest frequency (m¼N/2). The variance at

m¼ 0 is the variance of the sample mean (i.e., the mean of a realization) about the

population mean, the latter value of which is zero in this development.

Now simplify the notation by letting

CðfmÞ ¼ A2
m þ B2

m

2
; m ¼ 1;

N

2
� 1

� �
ð1:C:13aÞ
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and

CðfmÞ ¼ A2
m; m ¼ 0;

N

2
ð1:C:13bÞ

where fm¼m/NDt is the harmonic frequency for harmonic m. Next, replace the

white noise variance s2X/(N/2) at the interior harmonics and s2X /N at the two exterior

harmonics, by C(fm) in Equations 1.C.12 and 1.C.10. Taking their expectations, and
noting that E[x2n]¼ n, yields

E
CðfmÞ
CðfmÞ
� �

¼ E
x22
2

� �
¼ 1; m ¼ 1;

N

2
� 1

� �
ð1:C:14Þ

and

E
CðfmÞ
CðfmÞ
� �

¼ E x21
� � ¼ 1; m ¼ 0;

N

2
ð1:C:15Þ

with the result that

E CðfmÞ½ � ¼ CðfmÞ; m ¼ 0;
N

2

� �
: ð1:C:16Þ

We now introduce the term estimator. An estimator is a random variable used to

estimate a population parameter. For example, in Equation 1.C.13, spectrum

estimator C(fm), as an appropriate function of the Fourier coefficients, is used to

estimate the population variance at frequency fm. Equation 1.C.16 shows that C(fm)

is an unbiased estimator of the white noise variance at the harmonic frequencies

because its expected value is equal to the population variance C(fm). If the expected
value were something other than C(fm), C(fm) would be a biased estimator. It is

usually desirable that an estimator be unbiased. However, if the calculation of an

unbiased estimator requires information that is otherwise unavailable, or if repeated

calculations are needed that consume significant computation time, it may be more

advantageous to employ a biased estimator.

Since Var[x2n]¼ 2n, we have, following Equations 1.C.14 and 1.C.15,

Var CðfmÞ½ � ¼ C2ðfmÞ; m ¼ 1;
N

2
� 1

� �
ð1:C:17Þ

and

Var CðfmÞ½ � ¼ 2C2ðfmÞ; m ¼ 0;
N

2
ð1:C:18Þ
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showing that the variance of the estimator is uniform at the interior harmonics

and twice that value at the exterior harmonics (note the definitions of C(fm)).
That we are dealing with the variance of harmonic variances simply means

that each harmonic variance C(fm) is itself a random variable and thus has

a probability distribution function based on an infinity of realizations. Equa-

tions 1.C.16–1.C.18 are the expressions for the mean and variance of the

probability distribution function.

It is significant that the variances of the harmonic variances are independent of

sample size. The collection of additional data does not increase the stability of

the estimator. That this is the case is not unexpected because as the length, N, of the

time series increases, the number of Fourier harmonics increases accordingly and

the separation between them, that is, the bandwidth or frequency averaging distance

associated with each harmonic, decreases. The number of data (degrees of freedom

for white noise) consumed in a variance estimate remains the same. To effect

increased stability of the spectrum estimator requires some form of spectrum

averaging.

In the case of N odd, the analysis parallels that above, except that the highest

harmonic is (N� 1)/2. To get C(fm) at all harmonics except the frequency origin

divide the population variance by N/2; at m¼ 0 divide s2X by N.

The above derivations have been done under the assumption that the pop-

ulation mean is known, and in this case equal to zero. The derivation could have

been done with a known nonzero mean, but the procedure is more tedious. More

generally, the population mean is unknown and the total variance in a given time

series is taken with respect to the sample mean. If the time series is hypothesized

to be a realization of white noise (with mean unknown), the total variance is

similarly distributed as above but without any variance contribution at m¼ 0.

This is because the total variance must be perforce computed about the sample

mean.

For the case of an even number of data, the estimate of the total variance, ŝ2X, is
divided by (N� 1)/2 to obtain white noise variances at the interior harmonics and

by N� 1 to obtain the white noise variance at the highest harmonic, N/2. There is

no contribution of variance at m¼ 0. In the case of an odd number of data, the total

variance is divided by (N� 1)/2 to obtain estimates of the harmonic white noise

variances and, again, there is no contribution of variance at m¼ 0.

In summary, for N even and the mean of the white noise process known,

variances at the interior harmonics have a distribution proportional to x22=2.
Variances at the two exterior harmonics (0 and N/2) have a distribution propor-

tional to x21=1. For N odd and the population mean known, the distributions of

variance at all harmonics are proportional to x22=2, except at the 0-th harmonic

where the distribution is proportional to x21=1. When the population mean is

unknown, the variances have similar distributions except that no variance is

generated at the origin.
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Appendix 1.D Derivation of Equation 1.42

The problem is to find the variance at any harmonic frequency when the input is at a

nonharmonic frequency. Consider the general input sinusoid acos(vn�w) and take
its Fourier transform. From Equation 1.63 for a two-sided spectrum,

S0m ¼ A0
m � iB0

m ¼ 1

N

XN�1

n¼ 0

a cos ðvn� wÞ expð�ivmnÞ

m¼�½ðN� 1Þ=2�; . . . ; 0; . . . ; ½N=2� ð1:D:1Þ

where m is harmonic number and vm¼ 2pm/N is angular frequency. It is assumed

that the time step Dt¼ 1.

Using Euler’s formula, the input sinusoid can be put in complex exponential form

such that:

A0
m� iB0

mð Þ2N
a

¼ expð�iwÞ
XN�1

n¼0

exp i v�vmð Þn½ �þexp iwð Þ
XN�1

n¼0

exp �i vþvmð Þn½ �:

ð1:D:2Þ

From Equation 1.B.4,

A0
m� iB0

mð Þ2N
a

¼ exp i N�1ð Þ v�vmð Þ=2�w½ �f g sin N v�vmð Þ=2½ �
sin v�vmð Þ=2½ �

þexp �i N�1ð Þ vþvmð Þ=2�w½ �f g sin N vþvmð Þ=2½ �
sin vþvmð Þ=2½ � :

ð1:D:3Þ

We can make use of Euler’s formula, again, to rewrite the exponential terms of

Equation 1.D.3. Equating the real portions of the resulting equation allows us to solve

for A0
m, and, similarly, equating the imaginary portions yields B0

m, so that

A0
m ¼ a

2
cos

�
N�1ð Þ

�
vþvm

2

�
�w

�
sinN vþvmð Þ=2½ �
Nsin vþvmð Þ=2½ �

(

þcos

�
N�1ð Þ

�
v�vm

2

�
�w

�
sin N v�vmð Þ=2½ �
Nsin v�vmð Þ=2½ �

)
ð1:D:4Þ
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and

B0
m ¼ a

2

(
sin

�
N�1ð Þ

�
vþvm

2

�
�w

�
sin N vþvmð Þ=2½ �
Nsin vþvmð Þ=2½ �

�sin

�
N�1ð Þ

�
v�vm

2

�
�w

�
sinN v�vmð Þ=2½ �
Nsin v�vmð Þ=2½ �

)
: ð1:D:5Þ

These results apply for N even or odd and to a two-sided spectrum. In reference to

Equation 1.42, where N is even and the periodogram is one sided, the A0
m and B0

m

above have to be doubled except at m¼ 0, N/2. Thus the variance at positive

harmonic m is

S2mðvÞ ¼ 2Amð Þ2þ 2Bmð Þ2� �
=2 ¼ 2A2

mþ2B2
m

¼ a2

2

(
sin2 N vþvmð Þ=2½ �
N2 sin2 vþvmð Þ=2½ �þ

sin2 N v�vmð Þ=2½ �
N2 sin2 v�vmð Þ=2½ �

þ 2cos ðN�1Þv�2w½ � sin N vþvmð Þ=2½ �
Nsin vþvmð Þ=2½ �

� sin N v�vmð Þ=2½ �
Nsin v�vmð Þ=2½ �

)
; m 6¼ 0;

N

2
ð1:D:6Þ

which is Equation 1.42.

Problems

1 On graph paper, carefully sketch at least one complete cycle of the sinusoid

given by

yðtÞ ¼ 1� 2 cosð0:5ptþ p=4Þ

starting at t¼�1. (Suggestion: First find the period and location of the

maximum or minimum of the cosine term alone without the phase angle.

Then adjust the plot to take into account phase and vertical

displacement.)
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2 The figure below shows a sinusoid that is digitally sampled according to

xk ¼ aþ ccos
2pmk

N
� wm

� �
; k ¼ 0;�1;�2; . . .

–2

–1

0

1

2

3

0 20 40 60 80

xk

k

From the above figure determine:

(a) a¼ ________

(b) c¼ ________

(c) an appropriate m¼ ____ for an appropriate N¼ ____

(d) wm¼ ____ degrees

3 Use Appendix 1.B to show that

XN�1

n¼ 0

sin2
2pkn

N

� �
¼ N

2

where N is an even integer and 0� k�N/2.

4 A time series of length NDt where N¼ 50 is obtained. It then is discovered

that the last half of the series, 25Dt, is a repeat of the first 25Dt. How does the

variance of the time series of length 50Dt compare with the variance of the

time series of length 25Dt?

5 Manual Fourier Analysis: use only paper, pencil, and a nonprogrammable

hand-held calculator.

The data below are 30-year normal monthly precipitation values for

1971–2000 at San Francisco International Airport (SFO AP), California

(37.62 N, 122.40 W) and Oklahoma City Will Rogers Airport (OKC AP),

Oklahoma (35.38 N, 97.60 W).
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(a) Plot the data on separate graphs and comment on differences you

observe between the time series. Can you provide a meteorological

explanation for the differences in annual total precipitation regimes?

(b) Choose one of the time series and perform a Fourier analysis of the data

sufficient to detect both amplitudes and phase angles of the significant

harmonics present (i.e., find enough harmonics to explain at least 95%

of the variance in the data).

(c) On a separate graph, plot the significant waves in (b) in the form of the

amplitude and phase representation discussed in Section 1.2.4.

(d) Plot the sum of the significant waves (plus the mean) on the time series

graph in (a).

(e) What percentage of the variance of the observed series does each

harmonic explain?

(f) Compare the observed variance (that of the data set itself) with the

explained variance to obtain residual variance.

Month San Francisco

International Airport

Oklahoma City

Will Rogers Airport

Precipitation (mm) Precipitation (mm)

January 113.0 32.5

February 101.9 39.6

March 82.8 73.7

April 30.0 76.2

May 9.7 138.2

June 2.8 117.6

July 0.8 74.7

August 1.8 63.0

September 5.1 101.1

October 26.4 92.5

November 63.2 53.6

December 73.4 48.0

6 Fourier Analysis Using a Computer Program

In this problem we use the paradrop days data in Table 1.3 that were

discussed in Section 1.3.2.

(a) Write a computer program that will find the cosine amplitudes, sine

amplitudes and phase angles for the largest harmonics that explain at

least 95% of the variance.

(b) Convert the phase angles into actual times of the maximum amplitude

for the various harmonics.
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(c) Plot (l) the original data, (2) each of the largest harmonics, the sum of

which explains at least 95% of the variance, and (3) the sum of these

harmonics, all on one graph. Compare your results with Figure 1.14.

(d) Can you attach any physical meaning to the individual harmonics? You

might consider the typical cycle of daily wind, for example. Does it have

a sinusoidal shape?

7 Recall that the variance of rv X is given by

Var½X� ¼
ð1

�1
ðx� mÞ2fðxÞdx:

Let rv X have a uniform probability density function f(x) between a and b

and zero elsewhere. If b� a¼ 1, find the variance of rv X for this rectangular

distribution.

8 Theobserved variance in a periodogramat harmonic k is 8 �C2. The goal is to

find the limits of the 95% a priori confidence interval for the population

variance C(fk) at harmonic k. Assume that

Cðf kÞ
Cðf kÞ ¼ x22=2

(a) Write down the appropriate probability statement(s) of the form

Pr{__}¼ __ for the confidence limits on the population variance

(b) What are the upper and lower limits of the 95% a priori confidence

interval? Recall that

fx22ðxÞ ¼ 1

2
e�x=2

9 The observed variance in a periodogram of a time series with N¼ 41 data

is found to be 12m2. The null hypothesis is made that the sample of data

comes from a white noise process. Find the limits of the 95% a posteriori

confidence interval for the observed variances at the harmonic

frequencies.

10 Consider a time series comprising N¼ 51 data with variance¼ 40 Pa2. The

null hypothesisH0 ismade that the realization is from a data population that

is white noise. A periodogram of the time series is calculated and the largest

value in the periodogram is 10.45 Pa2 and the smallest is 0.0065 Pa2. Show

whether Ho will be rejected or not rejected.
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11 If a signal can be described by xn¼A sin (2pfnDt) in whichDt¼ 0.1 s and

f¼ 12Hz, at which frequencies in the principal part of the complete aliased

spectrumwill the variance be observed andwhatwill be the variance at each

frequency?

12 Suppose you have a data set that comprises 100 values of wind speed in

which the sampling interval is two seconds. Unbeknownst to you, there

was a strong sinusoid with period 1.6 seconds introduced into the

analog signal (i.e., before digitization) because of a defective electronic

component. A periodogram analysis of the data set is performed.

(a) What is the Nyquist frequency in Hz?

(b) At what positive frequency (in Hz) in the principal part of the aliased

spectrum will the erroneous variance occur?

(c) What is the corresponding harmonic number for the frequency found

in (b)?

(d) What can be done or what should have been done to eliminate the

unwanted signal from appearing in the periodogram? Explain.

13 An analog temperature signal is sampled once every second. The number

of data collected is 40. Unfortunately, a nearby transmitter has added an

unwanted frequency of 1.125Hz.

(a) At what frequencies (Hz) in the principal part of the (two-sided) aliased

spectrum will the unwanted variance appear?

(b) What are the corresponding harmonics in the principal part of the

aliased spectrum at which the variances occur?

14 Consider a stagecoach scene in a motion picture (e.g., How the West

Was Won). The wheels of the stagecoach have a radius r¼ 0.6 m and

each has eight spokes. Assume the camera shutter speed is 24 frames

per second.

Plot the perceived (which may be the actual) angular speed (radians/

second) of one of the wheels versus the speed of the stagecoach as it

increases from 0m/s to the speed at which the wheels are perceived to be

stationary, that is, not rotating. (Hint: Sketch an eight-spoke wheel, write

down the equation for the stagecoach speed in terms of the angular speed

of a wheel, then adapt it to the conditions of the problem.)

15 Under certain conditions the spectrum window function of the form

[(sin x)/x]2 can be used to estimate the variance at harmonic frequencies

due to variance in the data at nonharmonic frequencies.
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(a) What are the two primary conditions?

(b) Assume the conditions of (a) are met. Sketch at least one spectrum

window centered at a harmonic and calculate the variance at harmonics

m� 1, m, andmþ 1 based on the figure below. The one-sided variance

input shown in the figure is 10m2 s�2 located midway between har-

monics m�1 and m.

variance

m-3 m-2 m-1 m m+1 m+2

harmonic

16 The objectives of this problem are to compare periodograms of hourly

temperature for January and July, 2009 at Oklahoma City, OK, and

determine whether the hourly temperatures in these months can be

modeled as a white noise process after removal of the daily cycle.

Data

The data are available on the website http://www.wiley.com/go/duchon/

timeseriesanalysis. The filenames are OKC_200901_hrly_temp.xls and

OKC_200907_hrly_temp.xls. The data are hourly temperatures in degrees

Celsius for January and July 2009. The first column is the sequential hour

count, the second column is the date, the third column is the time the

temperature was observed in Central Standard Time, and the fourth

column is the temperature. The only data needed to work this problem

are the hourly temperatures in the fourth column.

(a) Plot the times series of hourly temperature for each month on separate

sheets of paper, using the same size for all your plots. Show on each plot

frontal passages, cloudy days, clear days, and any other meteorological

events that you believe to be present.

(b) Use the Fourier Analysis computer program you designed in problem 6

or subroutine FORANX in Appendix 1.A to compute the periodogram

of the 744 points for eachmonth. Plot the log10 variance (or variance on

a log10 axis) versus frequency, period, or harmonic for all harmonics.

On each plot show the total variance and bandwidth associated with

each plot. Place the plots on separate pages.

(c) Compute and plot the average daily cycle of temperature for each

month. Briefly discuss the principal differences between the two

months and their causes.
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(d) Remove the daily cycle from the original hourly data for eachmonth to

form two new time series (the “uncontaminated” data). Plot the two

time series of “uncontaminated” data. Comment on the presence or

absence of the daily cycle of temperature.

(e) Plot the periodograms of the uncontaminated hourly data, replacing

the variance estimates at the harmonic frequencies of the daily cycle

with the average of surrounding variances. On each plot show the

total variance and the bandwidth associated with each estimate.

(f) Apply a white noise test to each periodogram in (e). Compute the a

priori confidence limits and a posteriori confidence limits. Place themon

the periodograms of variance in which the vertical axis is log10 variance.

Do you accept or reject the white noise null hypothesis? If you reject the

hypothesis that the sample comes from a population of white noise,

what physical phenomenon or phenomena do you think led to its

rejection?
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2
Linear systems

The analysis of linear systems is fundamentally the study of the connection between

two time series, one mathematically or physically created from the other. The com-

plete system comprises an input time series, an output time series, and a physical

system or mathematical system that provides the linkage between the input and

output. A simple example of a physical system is an ordinary liquid-in-glass

thermometer: it converts a change in temperature of its surroundings to a change

in length of the column of liquid due to the expansion or contraction of the liquid

in the bulb or reservoir. The complete system includes the air temperature (input),

the thermometer (physical system), and the temperature lines or etchedmarkings on

the thermometer (output). Another example of a complete system is the amplifier

(first part of the physical system) in a stereo receiver that magnifies a weak electrical

signal (input) to sufficient strength to drive a speaker (second part of the physical

system) that produces sound waves (output). A mathematical system consists of

a filter or set of weights applied to a time series in order to alter its character in a

predictable way. A common example is a running mean, which, when applied to a

varying input time series, reduces the magnitude of fluctuations in the output time

series. In addition to the mathematical system, the complete system includes the

unfiltered input time series and the filtered output time series.While these are exam-

ples of simple systems, other examples consist of multiple systems linked in series or

parallel. Their study can be very demanding.

No matter how simple or complex, the systems studied in this chapter are linear.

Linear systems are much easier to analyze than nonlinear systems because of

superposition; this is discussed in Section 2.1.

Time Series Analysis in Meteorology and Climatology: An Introduction, First Edition. Claude Duchon and Robert Hale.
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2.1 Input–output relationships

The motivation for this section is the schematic diagram in Figure 2.1, in which the

wind speed x(t) is being sensed by an anemometer (a device to measure the speed of

moving air) whose electrical output is amplified and recorded as a digital signal y(t)

in a data logger. The physical system comprises the sensor, a signal adapter, and data

logger, and its purpose is to provide an output signal y(t) that faithfully reproduces

the input signal x(t) within the limitations of the sensor. In the development that

follows, the electronic components of the physical system are assumed to function

perfectly, so that differences between the input and output signals are due only to the

properties of the sensor. In short, there is no electronic noise in the physical system.

From a mathematical viewpoint, input–output relations can be more easily under-

stood if both input and output are treated as analog time series, which will be the

approach used here.

Possible questions we might ask about a complete system are:

(1) What will be y(t) given x(t) and the properties of the sensor?

(2) What was x(t) given y(t) and the properties of the sensor?

(3) What are the properties of the sensor, given x(t) and y(t)?

In many situations the properties of the sensor can be described mathematically as a

time invariant linear ordinary differential or integro-differential equation. By time

invariant is meant that the coefficients in the equation are constant with time. The

general solution to this type of equation and the answer to question (1) is

yðtÞ ¼
ð1

�1
hðuÞ xðt� uÞ du ð2:1Þ

or, equivalently,

yðtÞ ¼
ð1

�1
xðuÞ hðt� uÞ du ð2:2Þ

where h(u) is the system function responsible for converting x(t) into y(t) and

mathematically explains what happens inside the box in Figure 2.1. Each of the above

physical system

(e.g., sensor, amplifier,

and recorder)

input

(atmospheric

wind speed)

x(t)

output

(recorded

wind speed)

y(t)

Figure 2.1 Schematic diagram of signal flow for a complete physical system.
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expressions is called a convolution integral because of the location of variable t on

the left side of the equation and inside the integral, where it is fixed with respect

to integration. That Equations 2.1 and 2.2 are equivalent can be shown through

a simple transformation of variables demonstrating that convolution obeys the

commutative law.

What is meant by linear system? If we let x1(t) and x2(t) represent input signals,

y1(t) and y2(t) output signals, and the signal flow by arrows, then in the two

signal paths

x1ðtÞ ! ½system function� ! y1ðtÞ

and

x2ðtÞ ! ½system function� ! y2ðtÞ

the system is linear if

ax1ðtÞ þ bx2ðtÞ ! ½system function� ! ay1ðtÞ þ by2ðtÞ

where a and b are arbitrary constants. If the last relationship is not true, the system is

nonlinear. Concomitant with a linear system is the term superposition, which states

that the output of a linear system having any number of inputs can be computed by

determining the output of each input separately and then summing the individual

outputs to obtain the total output as in the illustration above.

An example of a nonlinear system is the system equation

yðtÞ ¼ bx2ðtÞ ð2:3Þ

where x(t) is the input signal, y(t) the output signal, and b is a constant. To test for

superposition let the combined input at time t be (x1 þ x2); that is, there are two

sources of input. Thus,

y ðcombined inputÞ ¼ b x21 þ 2x1x2 þ x22
� �

: ð2:4Þ

The sum of the individual outputs, one from x1, the other from x2, and both passing

through the system, is

y ðindividual inputsÞ ¼ b x21 þ x22
� �

: ð2:5Þ

Outputs y for the combined and individual inputs are not the same; thus, super-

position does not hold and the system is nonlinear. Of course, the system equation is

obviously nonlinear because Equation 2.3 is a quadratic form.

The practical analysis of a system requires that it be stable. This means that if

we have an input x(t) which is bounded according to xðtÞj j � k1 < 1, where k1
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is a constant, the output y(t) is also bounded according to yðtÞj j � k2 < 1, where

k2 is also a constant. It can be shown that a sufficient condition for system stability

is that the integral of the magnitude of the system function is finite. Expressed

mathematically, ð1

�1
hðuÞj j du � k3 < 1

where k3 is a third constant.

2.2 Evaluation of the convolution integral

Consider the convolution of two time-dependent functions g1(t) and g2(t), where

g1(t) corresponds to h(u) and g2(t � u) to x(t � u) in Equation 2.1. The convo-

lution operation is given formally by

g3ðtÞ ¼ g1ðtÞ�g2ðtÞ ¼
ð1

�1
g1ðuÞ g2ðt� uÞ du ð2:6Þ

wherein the asterisk is often used as the convolution operator. The value of g3(t) for

any particular time, t, is thus the area under the curve of the product of g1(u) and

g2(t � u) over all time u. In addition, the arguments of g1 and g2 inside the integral

sign are interchangeable. To understand the convolution technique, it is useful to

visualize or sketch the relationship between g1(u) and g2(t � u) as time t changes.

We do this in the next section for some simple functions, and for a first-order linear

system in the subsequent section. Some of these illustrations are similar to convo-

lution figures in Cooper and McGillem (1999, 1967).

2.2.1 Interpretation

There is no difficulty understanding g1(u) in Equation 2.6 because it is the same

function as g1(t), except for a change in argument notation from t to u. However,

understanding the function g2(t� u) requires some thought. Mathematically,

g2(t�u) is a combination of reflection and translation of the original function

g2(u). The process can be visualized through examples.

Consider the function g2(u) shown in Figure 2.2a. The function g2(�u) shown in

Figure 2.2b is simply a reflection of g2(u) about the x¼ 0 axis. The function g2(t� u)

or g2(�u þ t) is g2(�u) translated to the right by the amount t (t positive) along the

u-axis. The function g2(t � u) is plotted in Figure 2.2c.

The combination of reflection and translation can be further illustrated with an

exponential function given by

yðxÞ ¼ expðaxÞ
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where a is a positive constant. The function y(x) is shown in Figure 2.3awith a¼ 1.01.

Next consider the new function z(x) such that

zðxÞ ¼ yð�xÞ ¼ expð�axÞ

which is plotted in Figure 2.3b. The function z(x) is y(x) reflected about the vertical

axis through the origin. Consider a third function, w(x), given by

wðxÞ ¼ yð�xþ tÞ ¼ exp½að�xþ tÞ�

and shown in Figure 2.3c, where it can seen that w(x) is z(x) translated

t¼ –0.375 units, or y(x) reflected about the origin and translated to the left

0.375 units.

The convolution integral as given by Equation 2.1 is the result of reflecting one

of two functions about the vertical axis at the time origin, displacing it a given

distance, multiplying the two functions and integrating the product over the

entire range of the abscissa. As the reflected function is moved to the right or left

for each allowable value of t, the multiplication and integration is repeated.

Figures 2.4 and 2.5 provide two examples that show, step-by-step, how convo-

lution works.

a b

g
2
(u)

(a)

0

u

−a−b

g
2
(−u)

(b)

0

u

t−a

g
2
(t−u)(c)

t−b

u

−b 0

t

Figure 2.2 The function g2(u) in (a) is reflected in (b) and translated in (c).
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2.2.2 A first-order linear system

First-order linear systems have easily understandable properties and can be used

to model certain physical systems. In general, physical systems can be thermal,

mechanical, electrical or chemical, and each contains some form of resistance or

friction. When the system properties are limited to resistance, the behavior of the

system can be described by the general first-order linear differential equation with

constant coefficients given by

a1
dyðtÞ
dt

þ a0yðtÞ ¼ b0xðtÞ ð2:7Þ

−1.5 −1 −0.5 0 0.5 1 1.5

x

1

2

3

4

5

(a) y(x) = e1.01x

−1.5 −1 −0.5 0 0.5 1 1.5

x

1

2

3

4

5

(b) z(x) = y(−x) = e−1.01x

−1.5 −1 −0.5 0 0.5 1 1.5

x

1

2

3

4(c)
w(x) = y(−0.375−x)

 = e−1.01(x+ 0.375)

Figure 2.3 Reflecting and translating an exponential function.
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where x(t) represents the input to the system and y(t) the output from the system.

It is convenient to divide both sides by ao and rewrite Equation 2.7 in the form

t
dy

dt

� �
þ yðtÞ ¼ xðtÞ ð2:8Þ

g1(t)

g2(t) t

g2(−u)

−2 −1    0          1          2          3          4          5          6          7

−2 −1  0 1 2 3 4 5 6 7

g1(u)

g1(u)
g2(2.5−u)

g2(4−u)
g1(u)

g2(6−u)
g1(u)

t

u

u

u

u

t

(a)

(b)

(c)

(d)

(e)

(f)

(g) g1(t) * g2(t)

Figure 2.4 Convolution of two rectangular signals. (a) and (b) show the two signals.

(c) shows g2 reflected and g1 unchanged. (d) shows the reflected g2 translated to the right

2.5 units, then 4 units in (e) and 6 units in (f ). The product of the two functions with time

after reflection and translation of g2 relative to g1 is shown in (g).
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where t¼ a1/ao is a system parameter and bo/ao¼ 1 when the input and output have

the same scale (as assumed in Equation 2.8). A simple example of a first-order linear

system is our previously mentioned liquid-in-glass thermometer in which y(t) is the

indicated temperature, x(t) is the environment temperature, and parameter t is the
time constant. The glass bulb and liquid in the bulb havemass and, therefore, thermal

resistance (that is, it takes time for heat to be conducted into or out of the bulb), as

manifested in its time constant. Mathematically, time constant t is the time required

for the thermometer to respond to 1 � (1/e)� 0.632 of a step change in temper-

ature. For example, if the environment temperature suddenly increases 1 �C, t is the
time it takes for the thermometer to register a 0.632 �C rise.

The analytic solution to Equation 2.8 can be obtained independently of any

prior discussion of convolution. After we have the solution, though, we will recog-

nize that it is in the form of a convolution integral. Multiplying Equation 2.8 by the

integrating factor et/t and integrating results in

ð t¼ z

t¼�1
dðytet=tÞ ¼

ð t¼ z

t¼�1
xðtÞet=t dt

g
1
(t)

g
2
(t)

0 0T T 2T

t

(a)

u

0 T 2T−2T −T

g
1
(u)g

2
(t

1
−u)

t
1

(b)

t

0 T 2T−2T −T

g
1
*g

2

(c)

Figure 2.5 Convolution of a rectangular signal with an exponential signal.(a) The two

functions. (b) Reflection and translation of the exponential function. (c) The result of the

multiplication of the two functions after complete translation.
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which becomes

yðzÞ ¼
ð t¼ z

t¼�1
xðtÞ e�ðz�tÞ=t

t
dt:

Replacing variables t by u and z by t to match previous notation yields

yðtÞ ¼
ð t

�1
xðuÞ e�ðt�uÞ=t

t
du: ð2:9Þ

Equation 2.9 is in the form of Equation 2.2 with system function

hðt� uÞ ¼ e�ðt�uÞ=t

t
; u � t: ð2:10Þ

Theonly difference is in the upper limit, which is now t. The integration extends from

all past time up to the present time only. This is because a physical system (the

thermometer is an example) “remembers” the past but cannot anticipate the future.

More generally,we cannot know values of the input time series x(u) for any time u later

than the current time t. This maxim is called physical realizability. Physical realiz-

ability is always connected to the input time series, not the system function. Had we

known the system function at the outset, we could have written down Equation 2.9

immediately using the convolution integral and physical realizability without having

to formally solve the differential equation.

Let us apply Equation 2.9 to an ordinary thermometer and ask, What is the

temperature at time t1? Figure 2.6 depicts the situation. In general, system func-

tion h(t � u)¼ e� (t� u)/t/t describes how the measurement of the environment

temperature is modified (filtered) by the thermometer to produce the output series of

temperature measurements. When adapted to time t1 it has the form hðt1 � uÞ ¼
e� t1�uð Þ=t=t, which is the same form as g2(t1� u) in Figure 2.5. Thus Figure 2.6 shows

the environment temperature function x(u) and system function h(t1 � u) from

which we conclude that y(t1), the measured temperature at t¼ t1, is the exponentially

weighted sum of all values of x(u) prior to t1, and is given mathematically by

u

–1/

h(t
1
− u)

x(u)

0

t
1

Figure 2.6 Convolution of the weight function h(u) of a liquid-in-glass thermometer with

the environment temperature x(u) at time u¼ t1.
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Equation 2.9. Recent values of environment temperature are weighted the most and

distant values the least.

2.2.3 More on physical realizability

As noted in Section 2.1, there are two general forms of the convolution integral,

Equations 2.1 and 2.2, that can be applied to the analysis of linear systems. Consider

the latter first. As discussed above, for physical systemswe can perform integration of

the input time series x(u) only up to the present time t, beyondwhich future values of

x(u) are unknown. Thus the upper limit of integration is the current time, t, so that

for physical systems, in general, Equation 2.2 becomes

yðtÞ ¼
ð t

�1
xðuÞ hðt� uÞ du: ð2:11Þ

It can be noted further that only when the value of the argument of the system

function is greater than zero is there a contribution to the integration. This is a

characteristic of physical systems so that system functions have meaning only when

their time argument is greater than or equal to zero.

The limits of integration for Equation 2.1 are somewhat different. Since the

argument of the input function is now (t � u), and future values of x(t � u) are not

available, it must be that (t � u)� t; that is, u cannot be negative. Thus, for physical

realizability, Equation 2.1 becomes

yðtÞ ¼
ð1

0

hðuÞ xðt� uÞ du: ð2:12Þ

Although the argument of the system function is different than in Equation 2.11, the

only contribution to integration occurs, again, when its argument is greater than or

equal to zero. Equation 2.12 with correct limits can be derived directly from

Equation 2.11 by substituting z¼ t � u. Thus both equations are equivalent forms

of the convolution integral under the constraint of physical realizability.

2.3 Fourier transforms for analog data

In Chapter 1 our primary interest was in analyzing digital signals of finite record

length. One of the more important results was the digital Fourier transform pair

given by Equations 1.61 and 1.62 that was derived in Section 1.5.5. In this section we

will derive two new Fourier transform pairs, the first for a finite analog record and

the second for an infinite analog record. The starting point for both transforms is the

equation for the complex amplitude spectrum.
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We first insert Dt into the numerator and denominator of the summation

coefficient and the exponential term of Equation 1.61 to obtain

S0m ¼ 1

NDt

Xn¼ ðN�1Þ=2½ �

n¼�½N=2�
xnDt e

�i2pmnDt=NDt; m ¼ � N=2½ �; . . . ; 0; . . . ðN� 1Þ=2½ �

ð1:610Þ
where S0m is the complex amplitude of them-th harmonic and the prime indicates the

implied Fourier coefficients are one-half the values defined in Table 1.1, except that

A0
0¼A0 and A0

N/2¼AN/2 (N even). In addition, for convenience, the limits of the

summation have been changed so that xn is centered about n¼ 0 for N odd and

displaced one time unit for N even where [q] means truncation of q.

Next, letDt tend to zero and N tend to infinity in such a way that NDt¼T, where

T is the finite temporal length of the record. Simultaneously, let nDt tend to a point
in time denoted by t, xnDt tend to x(t)dt, and the summation tend to an integral.

The result of applying these limits to Equation 1.610 is

S0m ¼ 1

T

ðT=2
�T=2

xðtÞ e�i2pmt=T dt; �1 � m � 1: ð2:13Þ

Correspondingly, Equation 1.62 tends to

xðtÞ ¼
X1

m¼�1
S0m ei2pmt=T; � T=2 � t � T=2 ð2:14Þ

thereby completing the Fourier transformpair for a finite analog record. Equation 2.14

is the inverse Fourier transform of Equation 2.13. We can think of x(t) as an original

analog signal that could have been digitally sampled to produce xn.

Extension of Equations 2.13 and 2.14 to an infinite record length can be approached

in the following way. The difference in frequency between adjacent harmonic fre-

quencies is given by

Df ¼ mþ 1

T
�m

T
¼ 1

T
:

As T tends to infinity,Df tends to df, and the harmonic frequenciesm/T tend to a con-

tinuous variation in frequency denoted by the variable f. By dividing Equation 2.13

by 1/T, the left side becomes S0m/(1/T), which accounts for the amplitude variation

in the frequency width 1/T, that is, amplitude per unit bandwidth or amplitude

density, which, as T tends to infinity, is written X(f ), as in Equation 2.15 below. The

concept of amplitude density may be difficult to grasp. That we are forced to deal

with amplitude density is a consequence of having finite amplitudes becoming

increasingly closely spaced along the frequency axis as T increases without bound.

2.3 FOURIER TRANSFORMS FOR ANALOG DATA 111



However, having finite amplitudes at frequencies with infinitesimal separation

losses mathematical meaning. The solution is to have a continuum of amplitudes

resulting in an amplitude density spectrum in the same way that a continuum of

harmonic variances resulted in a variance density spectrum, briefly discussed in

Section 1.1 (and that will be developed further in Chapter 5). Amplitude density is

analogous to probability density. We cannot realize a value of probability at a par-

ticular value of the independent variable, but we can realize a value of probability

if we integrate the probability density function over a range of the independent

variable. Similarly, we cannot realize a value of amplitude at a particular frequency,

but we can realize a value of amplitude if we integrate the amplitude density

function over a range in frequency.

To provide a consistent transform pair we divide S0m in Equation 2.14 by 1/T

and multiply the exponential term by 1/T, and, again, let T tend to infinity. The

result of these limiting operations is the Fourier transform pair for an infinite

analog record:

XðfÞ ¼
ð1

�1
xðtÞ e�i2pft dt; �1 � f � 1 ð2:15Þ

and

xðtÞ ¼
ð1

�1
XðfÞ ei2pft df : �1 � t � 1: ð2:16Þ

Equation 2.16 is the inverse Fourier transform of Equation 2.15.

Comparable derivations of Equations 2.13 through 2.16 can be found inKoopmans

(1974, pp. 19–21, 23–25) and Jenkins and Watts (1968, pp. 23–24), among other

sources. In order that these Fourier integrals exist it is assumed that
Ð1
�1 xðtÞj jdt < 1

and
Ð1
�1 XðfÞj jdf < 1 (Koopmans, 1974, p. 24). Equations (2.15) and (2.16) are

commonly used in theoretical investigations, an example of which is given in the

next section.

Equivalent expressions for Equations 2.15 and 2.16 using angular frequency instead

of ordinary frequency can be written down directly by substituting v¼ 2pf. Thus,

XðvÞ ¼
ð1

�1
xðtÞ e�ivt dt; �1 � v � 1 ð2:17Þ

and

xðtÞ ¼ 1

2p

ð1

�1
XðvÞ eivt dv: �1 � t � 1: ð2:18Þ

Of course, either amplitude density function Equation 2.15 or 2.17 can be used and

the relation between them is X(f )¼ 2p X(v).
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2.4 The delta function

In this section we derive one example of a class of functions called generalized

functions. In dealing with generalized functions, one is not so much concerned with

their behavior on a point-by-point basis but rather with their effect on the values of

integrals and other functionals in which they appear. All generalized functions have

derivatives of all orders and each has a Fourier transform (Lumley, 1972, p. 159).One

of these generalized functions is the Dirac delta function or simply delta function

[after P.A.M. Dirac, renowned English atomic physicist; see Dirac (1947, pp. 58–62)

for additional details on the development of this function]. The delta function is very

useful in the mathematical analysis of physical systems.

We begin the derivation by obtaining the Fourier transform of a rectangular

function of amplitude as shown in Figure 2.7a. From Equation 2.15 we have

XðfÞ ¼ a

ð b

�b

e�i2pft dt ð2:19aÞ

which, because of even symmetry about t¼ 0, reduces to

XðfÞ ¼ a

ð b

�b

cosð2pftÞ dt

¼ 2ab
sinð2pfbÞ
2pfb

:

ð2:19bÞ

From this equationwe see that the amplitude density function X(f )¼ 0 at f¼ k/(2b),

k¼�1, �2, . . ., while at f¼ 0, X(0)¼ 2ab following application of l’Hopital’s

rule. Equation 2.19b, plotted in Figure 2.7b, is the familiar diffraction function, a

bi-directional damped sinusoid.
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Figure 2.7 A rectangular function (a) and its Fourier transform (b).
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Consider the case where x(t) has unit height, that is, a¼ 1. Then Equation 2.19b

becomes

XðfÞ ¼ 2b
sinð2pfbÞ
2pfb

: ð2:20Þ

Similar to Figure 2.7, the rectangular function and its Fourier transform are

shown in Figure 2.8a. Now increase the width of the rectangular function by, say,

a factor of three and compute its Fourier transform. The results are shown in

Figure 2.8b, in which the increased width of the time function results in reduced

separation between consecutive zero crossings. In the limit as b!1, that is, the

time function extends indefinitely in either direction, the spacing between

consecutive zero crossings approaches zero so that X(f )¼ 0 everywhere except

at f¼ 0, where X(0)!1. Figure 2.8c shows the result of this process: a time

function of unit height and infinite extent and a frequency function of infin-

itesimal thickness and infinite height, the latter function represented by the

vertical line and arrow. This is a common definition of the delta function and has

the special notation d(f ).
The above result is not too surprising. As b increases without bound in Figure 2.8,

x(t) approaches a constant value, the frequency of which is zero. Simultaneously, the

area under x(t) increases without bound so that, in the limit, the amplitude density is

concentrated at f¼ 0 and X(f¼ 0) is infinite. From Figure 2.8c we conclude that,

mathematically,

XðfÞ ¼
ð1

�1
1 	 e�i2pft dt ¼ dðfÞ: ð2:21Þ

We can anticipate that the Fourier transform of Equation 2.21 is

xðtÞ ¼
ð1

�1
dðfÞ ei2pft df ¼ 1: ð2:22Þ

Equations 2.21 and 2.22 comprise the Fourier transform pair between a function of

unit value in the time domain and a delta function in the frequency domain.

To determine the area under the diffraction function we integrate X(f ) in

Equation 2.20 from –1 to 1 and make use of the known integralð1

�1

sin z

z
dz ¼ p

to show that the result is unity and independent of b. Since d(f ) is formed in the

limit as b tends to 1, the area under d(f ) is also unity. Thus,

ð1

�1
XðfÞdf ¼

ð1

�1
2b

sinð2pfbÞ
2pfb

df ¼ 1 ð2:23aÞ
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and ð1

�1
dðfÞdf ¼ 1: ð2:23bÞ

Next, consider the case in which the area under x(t) in Figure 2.7 is one, that is,

2ab¼ 1. If b ! 0 in such a way that the area remains at unit value, a must increase

without bound. This evolution can be followed in Figure 2.9. Panel (a) shows a

rectangular function with unit area and its Fourier transform with unit amplitude

density at f¼ 0. Panel (b) shows a narrower and taller time function with unit area

and associated amplitude density function but with much wider separation between
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Figure 2.8 Evolution of x(t) toward a constant (unit value) simultaneously with X(f ) toward

a delta function d(f ).
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zero crossings and, again, unit amplitude density at f¼ 0. In the limiting case in

panel (c), the time function has infinitesimal width and infinite height such that

unit area is preserved while the amplitude density function has infinite separation

between zero crossings and unit value everywhere. We conclude from the process in

Figure 2.9 that

XðfÞ ¼
ð1

�1
dðtÞ e�i2pft dt ¼ 1: ð2:24Þ
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Figure 2.9 Evolution of x(t) toward a delta function d(t) simultaneously with X(f ) toward a

constant (unit value). The area under x(t)¼ 1, i.e., 2a1b1¼ 1.
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Thus it takes an amplitude density constant with frequency to reconstruct a delta

function in the time domain. The Fourier transform of Equation 2.24 is

xðtÞ ¼
ð1

�1
1 	 ei2pft df ¼ dðtÞ ð2:25Þ

so that Equations 2.24 and 2.25 provide the Fourier transform pair between a delta

function in the time domain and a constant in the frequency domain. An important

implication of Equation 2.24 is that if a data set contains a very large glitch or spike

[x(t) tends to d(t)], the periodogram will contain approximately uniform variance

(called noise) across all frequencies due to the spike.

In terms of angular frequency,v, expressions parallel to Equations 2.21, 2.22, 2.24,
and 2.25 are:

XðvÞ ¼
ð1

�1
1 	 e�ivt dt ¼ 2p dðvÞ ð2:26Þ

xðtÞ ¼ 1

2p

ð1

�1
2p dðvÞ eivt dv ¼ 1 ð2:27Þ

XðvÞ ¼
ð1

�1
dðtÞ e�ivt dt ¼ 1 ð2:28Þ

and

xðtÞ ¼
ð1

�1
1 	 eivt dv ¼ dðtÞ: ð2:29Þ

These equations can be derived in a manner similar to those involving frequency

by applying the Fourier transform of Equation 2.17 to the rectangular function in

Figure 2.7. The comparable zero crossings will occur at integer multiples of

2p/(2b)¼p/b and the amplitude will be 2ab/(2p)¼ ab/p. Increasing the width

of the rectangle indefinitely while keeping its height at unit value and taking its

Fourier transform, as in Figure 2.8, yields Equations 2.26 and 2.27; fixing the area of

the rectangle at unit value as its width approaches zero and taking its transform, as in

Figure 2.9, yields Equations 2.28 and 2.29.

Three properties that are a consequence of the definition of the delta function are:

ð1Þ dðtÞ ¼ 0; t 6¼ 0

1; t ¼ 0
ðdimension is time�1Þ

�
ð2:30Þ

ð2Þ
ð1

�1
dðtÞdt ¼ 1 ð2:31Þ
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and

ð3Þ
ð1

�1
gðtÞ dðt0 � tÞ dt ¼ gðt0Þ: ð2:32Þ

Property (2) is a direct consequence of applying property (1) to Equation 2.24 and

recalling that the area under the rectangle in Figure 2.9 was unity. The third property

is called the “sifting” or “sampling” property and is simply a convolution integral.

It can be used to sample the value of a function, here g(t), at time t0. Note that

property (3) includes properties (1) and (2). There are a number of other properties

(Dirac, 1947; Cooper and McGillem, 1967) but only those above are used in this

chapter. Because the argument of a delta function is arbitrary, the properties above

apply as well to delta functions in the frequency domains (f andv). In the f-domain

the dimension of the delta function is inverse ordinary frequency and in the

v-domain it is inverse angular frequency.

In application to a finite record of digital data, the following can be observed

through simulation. A single finite spike or glitch located anywhere in a data

sequence that is otherwise constant in value results in a periodogram of essentially

constant variance, asmentioned above and in agreement with Equation 2.24. If there

are two finite spikes in the data set, the periodogram is no longer flat but contains a

pattern of small and large variances that is dependent on phase angle relationships of

the two sinusoids at each harmonic in accord with Equation 1.48. As the number of

spikes increases, the periodogram becomesmore chaotic. Thus one cannot remove a

portion of the observed variance at each harmonic in order to rid the spectrumof the

effect of the spikes in the data. The solution is to remove the spikes directly through

the use of some type of nonlinear filter, for example, themedian filter investigated by

Brock (1986).

2.5 Special input functions

Oneway to determine the properties of a linear system in the time domain is to input

one of two special functions called the impulse function and the step function. In an

experimental set up it is usually more practical to introduce a step change in input to

a measurement system than an impulse. Here we consider the mathematical aspects

of these functions as inputs to a system and the resulting outputs.

2.5.1 Impulse function

Let the input x(t)¼ kd(t) be defined as an impulse function in which k serves to scale

the unit area that results from integration of a delta function (Equation 2.31) to other

than unit value, that is, to value k. If k is unity, then kd(t)¼ 1	d(t) is the unit impulse

function and is equivalent to the delta function.
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Now let d(t) be the input to a linear system. From Equation 2.1 the output is

yðtÞ ¼
ð1

�1
h ðuÞ dðt� uÞ du ¼ h ðtÞ ð2:33Þ

making use of the sampling property (Equation 2.32) of a delta function. Thus y(t)

is the response to a unit impulse. Because h(t), referred to earlier as the system

function, is identical to y(t), it is called the impulse response function; that is, h(t) is

the response to introducing an impulse into the system. From a theoretical

viewpoint a unit impulse could be introduced into any linear physical system

to yield its impulse response function without knowing the integro-differential

equation that describes the system. It is usually desirable, though, to know the

mathematical form of h(t).While it is possible, in principle, tomodel h(t) given the

numerical output from the unit impulse function, it is better to know, in advance,

the integro-differential equation for the system. Then the form of h(t) can

be determined directly and only the system parameter values (coefficients) need

to be estimated.

We apply this idea to the first-order linear differential equation given by

Equation 2.8, the solution of which is Equation 2.9. If x(u) in Equation 2.9 is

replaced by d(u) then, from Equation 2.33,

yðtÞ ¼ hðtÞ ¼ ð1=tÞ e�t=t; t 
 0 ð2:34Þ

as shown in Figure 2.10. To determine t, we find h(t)¼ (1/t) e� 1¼ 0.368(1/t) on
the vertical axis of Figure 2.10b, move to the right until it intersects the curve, then

drop to the horizontal time axis where t¼ t, the time constant. Alternatively, t can be
determined directly from y(0)¼ h(0)¼ 1/t, but this is less useful experimentally.

The use of the unit impulse function in determining t is not possible for physical
systems because of the requirement for a pulse of infinite amplitude. The unit

impulse input approach can work in certain electronic systems in which the pulse is

of sufficiently large magnitude.

t t

0.368 1

1/

x(t) = (t) y(t) = h(t) = (1/ ) e−t/ ,
  t 0

0

x(t) = 

0

(a) (b)

Figure 2.10 (a) Impulse input to a first-order linear system. (b) Output from system.
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2.5.2 Step function

Amore satisfactory approach to estimate parameter values of a system function from

an application viewpoint is to use a step function. Although it also demands an

instantaneous change, the change is finite.

The unit step function is defined as

UðtÞ ¼ 0; t < 0

1; t 
 0:

(
ð2:35Þ

Let x(t)¼ qU(t) where q is a constant with dimensions of x(t) and which serves

to scale the unit step function to the desired level. If x(t) is the input to the system,

the output is then

yðtÞ ¼ q

ð t

0

UðuÞ hðt� uÞ du ð2:36Þ

where the lower limit is a consequence of U(u)¼ 0 for u< 0 from Equation 2.35 and

the upper limit is a consequence of physical realizability. Following a change in

variable, Equation 2.36 can be equivalently written

yðtÞ ¼ q

ð t

0

hðuÞUðt� uÞ du: ð2:37Þ

Substituting Equation 2.35 into Equation 2.37 yields

yðtÞ ¼ q

ð t

0

hðuÞ du: ð2:38Þ

To find y(t) we differentiate the output so that

dy

dt
¼ qhðtÞ: ð2:39Þ

Experimentally, y(t) would have to be modeled to allow mathematical

differentiation.

In the case of a first-order linear system, h(t) is given by Equation 2.34 so that we

can write the output y(t) in Equation 2.38 as

yðtÞ ¼ q 1� e�t=t
� �

; t 
 0: ð2:40Þ

Equations 2.35 and 2.40 are plotted in Figure 2.11.
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Now consider a numerical example in which a step function is used to determine

the time constant of a liquid-in-glass thermometer. Let the thermometer initially be

at room temperature¼ 23 �C. It is then instantly immersed in a water bath at 43 �C
with attentive eyes reading the temperature scale to produce the solid curve shown

in Figure 2.12. We need to take into account that the reference value is nonzero and

that U(t) represents the departure from this value. Therefore, from Equation 2.40,

the output can be written

yðtÞ ¼ q 1� e�t=t
� �

þ To ð2:41Þ

or, in �C,

yðtÞ � 23 ¼ 20 1� e�t=t
� �

: ð2:42Þ
From Equation 2.42 we see that the time constant t is the time required for the

difference between the thermometer temperature and the water bath temperature to

reach (1 � e� 1)¼ 0.632 of the initial difference. That is,

yðt ¼ tÞ ¼ 20 1� e�1ð Þ þ 23

¼ 12:64þ 23

yðt ¼ tÞ ¼ 35:64�C:

0.632  q

q q

0

0

0

0

tt

y(t) = q(1 − e−t/ ),

                t ≥ 0x(t) = qU(t)

(a) (b)

Figure 2.11 (a) Step input to first-order linear system. (b) Output from system.
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Figure 2.12 Response of a thermometer to a 20 degree Celsius step change in temperature.
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If one draws a horizontal line from 35.64 �C until it intersects the temperature curve

and from there a vertical line downward to the time axis, the latter intersection

corresponds to the time constant, that is, t¼ 13 s.

2.6 The frequency response function

The Fourier transform of the input of a linear system yields the amplitude density

spectrum of the input as given by Equation 2.15, and similarly for the output. The

Fourier transformof the system function h(t) shows how the Fourier amplitudes and

phase angles of input signal x(t) are modified by the system to produce the Fourier

amplitudes and phase angles in the output signal y(t). Accordingly, the Fourier

transform of system function h(t) is given by

HðfÞ ¼
ð1

�1
hðtÞ expð�i2pftÞ dt ð2:43Þ

where H(f ) is called the frequency response function and is, in general, complex and

contains information about changes in amplitude and phase angle between the input

and output of a linear system. The above integral applies tomathematical systems; in

the case of physical systems, the lower limit of integration is zero due to physical

realizability. Equation 2.43 can be written also as

HðfÞ ¼ GðfÞ eiwðfÞ ¼ GðfÞ½coswðfÞ þ i sinwðfÞ� ð2:44Þ

where G(f ) is called the gain function or gain factor or simply gain and w(f ) is called
the phase function or phase shift. We can think of H(f ) as a vector in the complex

plane as shown in Figure 2.13, where Im is the imaginary axis and Re is the real axis.

G(f ) is the modulus or absolute value of H(f ), which can be determined by

multiplying H(f ) by its complex conjugate and taking its square root. Thus,

GðfÞ ¼ HðfÞj j ¼ ½HðfÞH�ðfÞ�1=2: ð2:45Þ
To understand the meanings of gain and phase shift, consider an input sinusoid

given by

xðtÞ ¼ a cosð2pftÞ: ð2:46Þ

Let us pass this signal through a first-order linear system, the output of which is

given by

yðtÞ ¼
ð t

�1
xðuÞ e

�ðt�uÞ=t

t
du ð2:9Þ
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as derived in Section 2.2.2. Inserting the input sinusoid into Equation 2.9 and

integrating yields

yðtÞ ¼ a

½1þ ð2pftÞ2� cosð2pftÞ þ ð2pftÞ sinð2pftÞ½ �

¼ a

1þ ð2pftÞ2	 
1=2 cos 2pft� tan�1ð2pftÞ	 


¼ a GðfÞ cos½2pftþ wðfÞ�

ð2:47Þ

where

GðfÞ ¼ 1þ ð2pftÞ2	 
�1=2

and

wðfÞ ¼ �tan�1ð2pftÞ:

FromEquation 2.47 it is evident that the gain G(f ) is the ratio of the amplitude of the

output sinusoid to the amplitude of the input sinusoid at frequency f, and the phase

shift w(f ) is the angle by which the phase angle of the input signal (here 0) is shifted

in the output signal at frequency f. Figure 2.14 shows the input and output sinusoids

in Equations 2.46 and 2.47.

2.6.1 First-order linear system

In this section we will derive H(f ), G(f ) and w(f ) for the first-order linear system in

Equation 2.8. The impulse response function is already known. Therefore, from

Re

Im

G(f )

H(f )

(f )

Figure 2.13 The gain G(f ) and phase w(f ) components of the frequency response function

H(f ) in the complex plane.
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Equations 2.43 and 2.34, the frequency response function is

HðfÞ ¼
ð1

0

hðtÞ e�i2pft dt

¼ ð1=tÞ
ð1

0

e�t=t e�i2pft dt

HðfÞ ¼ ð1þ i2pftÞ�1:

ð2:48Þ

From Equation 2.45,

GðfÞ ¼ ½HðfÞH
�
ðfÞ�1=2

¼ 1

1þ i2pft
� 1

1� i2pft

� �1=2

GðfÞ ¼ 1þ ð2pftÞ2	 
�1=2
:

ð2:49Þ

From Equation 2.44,

eiwðfÞ ¼ HðfÞ
GðfÞ

so that

coswðfÞ þ i sinwðfÞ ¼ 1þ ð2pftÞ2	 
1=2
1þ ði2pftÞ :

After equating real and imaginary parts on the left to those on the right, we obtain

wðfÞ ¼ �tan�1ð2pftÞ: ð2:50Þ

As expected, the formulas for the gain and phase functions derived here are identical

to those we derived in the previous section by way of an example. A summary of the

response characteristics of a first-order linear system is given in Table 2.1.

0

–0.25/f 0 0.25/f 0.5/f 0.75/f 1/f

x(t) = a cos(2 ft)

y(t) = G(f) a cos(2 ft + (f))

(f )

t

a

–a

Figure 2.14 An example that illustrates themeaning of gain G(f ) and phase anglew(f ). The

solid curve is input x(t) and the dashed curve is output y(t).
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The gain and phase functions are plotted in Figures 2.15 and 2.16, respectively.

It should be noted that the phase shift cannot be less than –90� and approaches this

value asymptotically as frequency increases. When the period of the input sinusoid

is equal to 2p times the time constant (1/f¼ 2pt) the phase angle is � 45� and the

gain is 0.707 (i.e., 1/H2). Also, when the input period is equal to the time constant

(1/f¼ t) the phase angle is –81�, almost its maximum negative value. Simultaneously,

the gain is reduced to 0.157.

Asanumerical example, letus say thatweareobservingocean temperature atadepth

of two meters and we want to know how a thermometer will respond to a sinusoidal

water temperature oscillation with a one-second period if the thermometer’s time

constant is 0.5 s. From Table 2.1 Gðf ¼ 1 s�1Þ ¼ ½1þ ð2pftÞ2��1=2 ¼ ½1þ
ð2p0:5Þ2��1=2 ¼ 0:303 and w(f¼ 1 s� 1)¼ –72.34�. The actual and observed

0

0.5

1

G(f )

Frequency f

1   3   5   7 0

0.707

0.157

1/τ

2πτ 2πτ 2πτ 2πτ

Figure 2.15 Gain function G(f ) for a first-order linear system.
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  1
2πτ 2πτ 2πτ 2πτ

1/τ

−π /4

−π /2

  3   5   7
0

0

−81º

Figure 2.16 Phase function w(f ) for a first-order linear system

Table 2.1 Responses for a first-order linear system.

Unit impulse

response

Unit step

response

Frequency

response

Gain

function

Phase

function

y(t)¼ h(t)¼
(1/t)e� t/t,

(t
 0)

y(t)¼
1 � e� t/t,

(t
 0)

H(f )¼
(1 þ i2pft)� 1

G(f )¼
[1 þ (2pft)2]� 1/2

w(f )¼
–tan� 1(2pft)
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temperature variations are shown in Figure 2.17. As is evident from this figure, the

response to a one cycle per second sinusoid is quite small; the output amplitude is only

30%of the input amplitude and there is a large lag relative to the periodof the sinusoid.

Alternatively, consider the case when the time constant is 0.1 s. Then

G(f¼ 1 s� 1)¼ 0.850 and w(f¼ 1 s� 1)¼ –32.14�. Figure 2.17 shows the response is

much more favorable. One might consider as a rule-of-thumb that to obtain a good

representation of the signal at a desired frequency for a first-order linear system, the

time constant should be at most one-tenth the period of the oscillation.

2.6.2 Integration

Another example of a linear system is an integrator. This could be an electronic

or mechanical integrating device or mathematical integration. For an integrating

system, the output has the simple form

yðtÞ ¼
ð t

�1
xðuÞ du: ð2:51Þ

To find the impulse response function for an integrator, we substitute the unit

impulse function d(u) for x(u) in Equation 2.51 and obtain

hðtÞ ¼ 1; t 
 0

0; t < 0

�
ð2:52Þ

which is identical to the unit step function in Equation 2.35.

The frequency response function is

HðfÞ ¼
ð1

0

hðtÞ expð�i2pftÞ dt

HðfÞ ¼ ði2pfÞ�1

ð2:53Þ
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Figure 2.17 Example of a sinusoidal input with period 1 s and amplitude A and resulting

outputs from a first-order system for two different time constants t given in parentheses.
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from which the gain is

GðfÞ ¼ ½HðfÞH�ðfÞ�1=2 ¼ ð2pfÞ�1: ð2:54Þ

From Equation 2.44, the phase angle is

wðfÞ ¼ �p=2: ð2:55Þ

Regardless of the frequency, there is always a phase shift of 90� between the input

and output (because one is a sine and the other a cosine). The frequency

response function, gain, and phase angle are undefined for zero frequency. This

is because Equation 2.53 is infinite, reflecting continuous integration of a

constant input, which, if not zero, would result in an infinite value as t tends

to infinity.

Now consider a particular case of a rain gauge that measures accumulated rain

with time. The input signal x(t) to the rain gauge is rain intensity or rain rate

in mm/h. Let

xðtÞ ¼ a
1� cosð2pt=TÞ; 0 � t � 3T

0; elsewhere

(
ð2:56Þ

with T¼ 1 hour. The dashed line in Figure 2.18 is the rain rate with a¼ 25mm/

h. Thus Equation 2.56 represents a rain event occurring over a three-hour

period, in which the peak intensity of 25mm/h repeats itself at the midpoint of

each hour and the rain rate decreases to zero on the hour in a sinusoidal manner.

Of course, no real meteorological event would yield an analytical rain rate such

as Equation 2.56; it is employed only to illustrate system integration. From the

0

25

50

75

0 0.5 1 1.5 2 2.5 3 3.5 4

x(mm/h)

y(mm)

Time (hours)

accumulation y(t)

rain rate x(t)

(f) = –90̊

Figure 2.18 Example of input to and output from an integrating device, in this case,

a weighing rain gauge. The input rain rate x(t) is accumulated according to y(t). w(f ) is

phase angle.
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convolution formula Equation 2.1, the system output, or accumulated rain, at

time t is

yðtÞ ¼
ð1

�1
xðuÞ hðt� uÞ du

¼
ð t

0

xðuÞ du

¼ a

ð t

0

½1� cosð2pu=TÞ� du

¼
a

ð t

0

½1� cosð2pu=TÞ� du; 0 � t � 3T

a

ð 3T

0

½1� cosð2pu=TÞ� duþ a

ðt
3T

0 du; t > 3T

8>>><
>>>:

yðtÞ ¼ a
t� ðT=2pÞ sinð2pt=TÞ; 0 � t � 3T

3T; t > 3T
:

(
ð2:57Þ

The same result would be obtained with the first integrand being h(u) x(t � u).

The heavy solid line in Figure 2.18 is the accumulation y(t) with, again,

a¼ 25mm/h. To verify the gain and phase relationships, we first subtract the

nonfluctuating components. Thus, we subtract a from x(t) and at from y(t) over

the range 0� t� 3T and find that the ratio of the amplitude of the output sinusoid

to the amplitude of the input sinusoid, that is, the gain, is T/2p as predicted by

Equation 2.54 and [y(t) � at] lags [x(t) � a] by 90� (i.e., w(f )¼ –p/2) as

predicted by Equation 2.55. The phase angle is shown in Figure 2.18 along with

light solid line at.

2.7 Fourier transform of the convolution integral

Recall from Section 2.1 that the solution to a linear integro-differential equation is

given by the convolution integral

yðtÞ ¼
ð1

�1
xðuÞ hðt� uÞ du: ð2:1Þ

Consider now the Fourier transform (denoted by FT) of Equation 2.1. From

Equation 2.15,

FT½yðtÞ� ¼ YðfÞ ¼
ð1

�1

ð1

�1
xðuÞ hðt� uÞ du

� �
e�i2pft dt: ð2:58Þ
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After interchanging the order of integration we have

YðfÞ ¼
ð1

�1
xðuÞ e�i2pfu

ð1

�1
hðt� uÞ e�i2pfðt�uÞ dðt� uÞ

� �
du

¼
ð1

�1
xðuÞ e�i2pfu HðfÞ du

YðfÞ ¼ XðfÞHðfÞ

ð2:59Þ

or

HðfÞ ¼ YðfÞ
XðfÞ : ð2:60Þ

That is, the ratio of the output amplitude spectrum to the input amplitude spectrum

at frequency f is the frequency response function.

Convolution in the frequency domain parallels convolution in the time domain

and is given by

ZðfÞ ¼
ð1

�1
QðvÞWðf � vÞ dv ð2:61Þ

where f and v are ordinary frequency variables. If we apply Equation 2.58, except we

take the inverse Fourier transform and integrate with respect to frequency, we have

FT�1 ½ZðfÞ� ¼ zðtÞ ¼
ð1

�1

ð1

�1
QðvÞWðf � vÞ dv

� �
ei2pft df : ð2:62Þ

The sign of the exponent in the inverse Fourier transform is positive. After inter-

changing the order of integration and following Equation 2.59, except in the

frequency domain, Equation 2.62 reduces to

zðtÞ ¼ qðtÞwðtÞ ð2:63Þ
where q(t) and w(t) are the inverse Fourier transforms of Q(f ) and W(f ),

respectively.

Equations 2.1 and 2.59 tell us that the Fourier transform of the convolution

integral in the time domain is equivalent to the product of the Fourier transforms of

the individual terms in the frequency domain. Equations 2.61 and 2.63 tell us the

opposite also is true: the inverse Fourier transform of the convolution integral in the

frequency domain is equivalent to the product of the inverse Fourier transforms of

the individual terms in the time domain. Expressed mathematically, and using now

the notation in Equation 2.6, we have the general relations

FT ½g1ðtÞ�g2ðtÞ� ¼ FT½g1ðtÞ� FT ½g2ðtÞ� ¼ G1ðfÞG2ðfÞ ð2:64Þ
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or

FT�1½G1ðfÞG2ðfÞ� ¼ g1ðtÞ� g2ðtÞ ð2:65Þ
and

FT�1½G1ðfÞ� G2ðfÞ� ¼ FT�1½G1ðfÞ� FT�1½G2ðfÞ� ¼ g1ðtÞ g2ðtÞ ð2:66Þ
or

FT ½g1ðtÞ g2ðtÞ� ¼ G1ðfÞ� G2ðfÞ: ð2:67Þ
These results show that Fourier transformation converts convolution (multiplica-

tion) in one domain to multiplication (convolution) in the other domain.

If physical realizability is involved, the upper limit of integration in Equation 2.1

is t and Equation 2.59 becomes

YðfÞ ¼ Xðf ; tÞHðfÞ ð2:68Þ
where

Xðf ; tÞ ¼
ð t

�1
xðuÞ e�i2pfu du: ð2:69Þ

The above derivation has been done between the time and ordinary frequency

domains. If the convolution integral in Equation 2.1 had been transformed to the

v-domain, the formula equivalent to Equation 2.59 would be

YðvÞ ¼ XðvÞHðvÞ: ð2:70Þ

Replacing the ordinary frequencies f and v in Equation 2.61 by angular frequency

variables provides the formula for convolution in the angular frequency domain.

Taking its inverse Fourier transformusing Equation 2.18 results in Equation 2.63 but

with the multiplicative coefficient 2p on the right-hand side. The derivation is an

interesting and useful exercise.

2.8 Linear systems in series

So far we’ve dealt with an input signal passing through a linear physical system

resulting in an output signal as described in Figure 2.1. In this sectionwe consider the

possibility that the input signal passes through more than one physical system, in

fact, any number of systems. As long as the properties of each system are known, we

can find the output signal given the input signal and vice versa providing that overall

system noise is negligible. The signal flow for a sequence of n systems is shown in

Figure 2.19, where the first input x(t)¼ x1(t) passes through the systemwith impulse

response or system function h1, its output y1(t) becomes the input to the next system

with impulse response h2 and so on, until the final output y(t)¼ yn(t) is realized.
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From Equation 2.58, for two systems in series

system 1 Y1ðfÞ ¼ H1ðfÞ 	XðfÞ

system 2 Y2ðfÞ ¼ H2ðfÞ 	Y1ðfÞ

or

system 2 Y2ðfÞ ¼ H1ðfÞ 	H2ðfÞ 	XðfÞ:

Repeated application of Equation 2.58 will show that for n linear systems in series

YðfÞ ¼ H1ðfÞ 	H2ðfÞ . . .HnðfÞ 	XðfÞ ð2:71Þ

in which the overall frequency response function is the product of the individual

frequency response functions, that is,

HðfÞ ¼ P
n

i¼ 1
HiðfÞ: ð2:72Þ

From Equation 2.44 we conclude further that the overall gain function is the

product of the individual gains, that is,

GðfÞ ¼ P
n

i¼ 1
GiðfÞ ð2:73Þ

and that the overall phase shift is the sum of the individual phase shifts, or

wðfÞ ¼
Xn
i¼ 1

wiðfÞ: ð2:74Þ

Tofind the output y(t) from the n systems in series it is necessary only to transform

Equation 2.71 back to the time domain. Thus,

yðtÞ ¼
ð1

�1
H1ðfÞ 	H2ðfÞ . . .HnðfÞ 	XðfÞ ei2pft df : ð2:75Þ

x(t) = x1(t) y1(t) yn−1(t) yn(t) = y(t)hnh2h1

system 1 system 2 system n

. . .

Figure 2.19 The signal flow for a sequence of n systems.
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This approach to obtain y(t) is more straight forward than using the convolution

integral approach wherein y(t) is found in terms of x(t) and the sequence of impulse

response functions h1, h2, . . ., hn.

2.9 Ideal interpolation formula

The goal of the last section of this chapter is to show that there is a way to reconstruct

an analog time series given only its digitally sampled version. As we might expect,

there are important restrictions, but if they could be fully met the reconstruction

would be exact. In practice, however, one of the two restrictions cannot be com-

pletely met, so only an approximate reconstruction is possible. The formula that

performs the reconstruction is called the ideal interpolation formula and is in the

form of a convolution integral (look ahead to Equation 2.89). Our objective is to

develop this formula.

The first step is to derive the Fourier transform of an infinite train of unit impulse

functions (refer to Section 2.5.1) given by

xiðtÞ ¼
X1

k¼�1
dðt� kDtÞ; �1 � t � 1 ð2:76Þ

and shown in Figure 2.20. The sequence of vertical lines and arrows represents a train

of delta functions (Section 2.4). The superscript i (unrelated to the imaginary unit i)

is used throughout this section to indicate we are dealingwith a generalized function,

namely, the delta function. Because the impulses are periodic with period Dt, as
delineated by the dashed line, we need only transform a finite portion of the signal,

from �Dt/2 to Dt/2, rather than the infinite series. Following Equation 2.13, the

Fourier transform of the delta function in the delineated section is

Qm ¼ 1

Dt

ð Dt=2

�Dt=2

dðtÞ e�i2pf 0mt dt; �1 � m � 1 ð2:77Þ

t

−4Δt −3Δt −2Δt −1Δt −1Δt 2Δt 3Δt

Δt

4Δt0

xi(t)

Figure 2.20 An infinite train of unit impulse functions. The area under each impulse has

unit value.
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where Qm¼ S0m and f0¼ 1/Dt¼ 1/T. Using Equation 2.24, the Fourier amplitude at

harmonic m reduces to

Qm ¼ 1

Dt
: �1 � m � 1: ð2:78Þ

From Equation 2.14 and its periodic extension, the infinite train of delta functions

can be alternatively written

xiðtÞ ¼
X1

m¼�1

1

Dt
ei2pf 0mt: �1 � t � 1: ð2:79Þ

Using Equation 2.15 to obtain the Fourier transform of Equation 2.79 results in

XiðfÞ ¼
X1

m¼�1

ð1

�1

1

Dt
e�i2pðf�f 0mÞt dt ð2:80Þ

which, from Equation 2.21, reduces to

XiðfÞ ¼ 1

Dt

X1
m¼�1

dðf � f 0mÞ ¼ 1

Dt

X1
m¼�1

d f � m

Dt

� �
: ð2:81Þ

Equation 2.81 is shown in Figure 2.21. Function Xi(f ) is the amplitude density

spectrum of an infinite train of unit impulses or delta functions, either of which is

sometimes referred to as an “infinite Dirac comb” (after P.A.M. Dirac). The co-

efficient 1/Dt serves to scale the unit area that results from integration of each delta

function.

In summary, we have

FT xiðtÞ	 
 ¼ FT
X1

k¼�1
dðt� kDtÞ

" #

¼ 1

Dt

X1
m¼�1

dðf �mf0Þ ¼ 1

Dt

X1
m¼�1

d f � m

Dt

� �

¼ XiðfÞ:

ð2:82Þ

0

f

t

−4

X
i
(f)

t

−3

t

−2

t

−1

t

 4

t

 3

t

 1

t

 2

t

 1

Figure 2.21 Amplitude density spectrum of an infinite train of unit impulse functions. The

area under each delta function is 1/Dt.
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The Fourier transform of an infinite train of unit impulses in the time domain pro-

duces an infinite train of impulse functions in the frequency domain, each of which

has magnitude 1/Dt after integration. Using Equations 2.16 and 2.22, the inverse

Fourier transform of Equation 2.82 will lead directly to Equation 2.79, the original

train of unit impulse functions, xi(t).

The second step in obtaining the ideal interpolation formula is to apply Equa-

tion 2.82 to an infinite digitized time series. We begin by multiplying an infinite

analog time series, s(t), by the infinite train of unit impulses, xi(t), then transforming

the product to obtain the amplitude density spectrum. Mathematically,

siðtÞ ¼ sðtÞ xiðtÞ ð2:83Þ

where si(t) is the infinite train of digitally sampled values along the time axis. The

function si(t) is itself an infinite train of impulse functions, each impulse function of

the form skd(t � kDt), where sk is the magnitude of s(t) at the sampled locations.

The magnitude of each sk corresponds to the integral over skd(t � kDt) as given by

Equation 2.32. Figure 2.22 shows s(t), si(t), and sk in which si(t) is the same as xi(t)

(not explicitly shown) except for the scale factor sk. The Fourier transform of

Equation 2.83 can be written schematically as

FT siðtÞ	 
 ¼ FT sðtÞ xiðtÞ	 

: ð2:84Þ

Recalling that the Fourier transform of a product is equivalent to the convolution

of the Fourier transform of each quantity in the product, we obtain the amplitude

density spectrum of the digitally sampled infinite time series, si(t), that is,

SiðfÞ ¼
X1

m¼�1

ð1

�1
Sðf 0Þ 1

Dt
d f � m

Dt
� f 0

� �
df 0

¼
X1

m¼�1

1

Dt
S f � m

Dt

� � ð2:85Þ
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Figure 2.22 Continuous time series s(t) sampled by xi(t) yielding si(t).
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where S(f 0) is the infinite continuous transform of s(t) and the Fourier transform

of xi(t) is given by Equation 2.81. It is interesting to observe that while si(t) is an

infinite train of impulse functions, its Fourier transform is not. This is because

the amplitudes of si(t) are variable as determined by s(t). If this were not the case and

s(t) were constant with time, then its transform would be a delta function (see

Equation 2.21) and Equation 2.85 would be the convolution of an impulse function

with a train of impulse functions. Si(f ) is an aliased spectrum such that the amplitude

density at any frequency is the sum of the amplitude densities at that frequency and

all frequencies that are positive and negative integer multiples of 1/Dt away from

that frequency.

In the third step, Equation 2.85 is transformed back to the time domain with the

following restriction: S(f )¼ 0 for jf j >1/(2Dt); that is, the amplitude density

spectrum is zero beyond the Nyquist frequency. With this restriction, Si(f ) is simply

the periodic version of S(f ). A hypothetical S(f ) and the resulting Si(f ) are shown in

Figure 2.23 in which the heavy line corresponds to the principal part of the complete

aliased spectrum (as shown in Figure 1.28). Mathematically, we can multiply both

sides of Equation 2.85 by the rectangular window, W(f ), where

WðfÞ ¼
Dt; fj j � 1

2Dt

0; fj j > 1

2Dt

8><
>: ð2:86Þ

as seen by the dashed line in Figure 2.23.

Multiplying Si(f ) by W(f ) results in a spectrum in which only the principal part

is nonzero, yielding the amplitude density functions of the analog time series. Thus,

WðfÞ SiðfÞ ¼ SðfÞ: ð2:87Þ

Applying the inverse Fourier transform to the product, we have

FT�1½WðfÞ SiðfÞ� ¼ FT�1 ½SðfÞ�: ð2:88Þ

0

W(f)

S
i
(f)S(f)

2Δt

3

2Δt

2

2Δt

1−1

2Δt

−2

2Δt

−3

f

Δt

2Δt

Figure 2.23 Amplitude density spectrum S(f ), complete aliased spectrum Si(f ), and

rectangular window W(f ).
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The Fourier transform on the left side of Equation 2.88 becomes the convolution of

the Fourier transforms of each term in the brackets, while the transform on the right

side is simply s(t). Recalling that the Fourier transform of the rectangular function

W(f ) has the form of a diffraction function (sin z)/z (see Equations 2.19a and 2.19b),

Equation 2.88 becomes

sðtÞ ¼
ð1

�1

sinðpu=DtÞ
pu=Dt

siðt� uÞ du ¼
ð1

�1
siðuÞ sin½pðt� uÞ=Dt�

pðt� uÞ=Dt du ð2:89Þ

where si(u) is the infinite train of impulse functions with the amplitude of each

impulse function after integration equal to the value of the sampled signal at intervals

of Dt and zero elsewhere. The only contributions from the integration to s(t) result

when the argument of si(u) or si(t � u) is nonzero – and nonzero values occur only

at locations in time that are a multiple of Dt. The convolution process in the right-

hand integral of Equation 2.89 is illustrated in Figure 2.24. For example, each

nonzero value of si(u) during integration (the magnitudes sk in Figure 2.22) is

multiplied by the appropriate value of the diffraction function centered at t¼ t1; the

completed integral for t¼ t1 yields the value of s(t¼ t1). Figure 2.24 shows that s(t1)

is slightly positive. Repeating this process for all t yields s(t). The same result follows

from the left-hand convolution integral but it is more difficult to demonstrate

because the diffraction function is symmetric whereas si(t� u) is not. In application,

the integrals in Equation 2.89 would be replaced by summations.

The same steps can be carried out in the v-domain. Because v0¼ 2p/Dt, delta
functions in the plot of Xi(v) occur at integer multiples of 2p/Dt. The relevant basic
Fourier transform pair in the v-domain is given by Equations 2.17 and 2.18 and

other formulas in Section 2.4.

Assuming there is interest in reconstructing an original analog signal from

its digital representation, the fidelity of the reconstruction will depend on the

degree to which the two underlying restrictions in the above development are met.

The restrictions were that the analog time series is band limited, that is, its amplitude

−1 20 1 4

s(t)

t
1

s
i
(u)

sin[ ]π
Δt

(t
1
−u)

π
Δt

(t
1
−u)

3
Δt

u,t

Figure 2.24 Application of the ideal interpolation formula. The diffraction function is

convolved wth si(u) to yield s(t).
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density is zero beyond the Nyquist frequency, and that it has infinite record length.

In practice, the former can be met exactly or quite closely if the amplitude density or

variance beyond theNyquist frequency is sufficiently small. For the latter restriction,

it is, of course, not possible to have an infinite record. Nevertheless, even a

moderately long time series can be quite satisfactory because the magnitude of the

side lobes of the diffraction function decreases with distance from the main lobe.

On the other hand, there will consequences near the ends of the time series. The

situation is analogous to that discussed in Section 1.5.2 concerning spectrum

windows. Near the middle of a periodogram the spectrum window could be

accurately modeled as the square of the diffraction function (there in the frequency

domain). This was not the case near the zero and Nyquist frequencies.

Finally, it should be noted that in addition to Equation 2.89 being referred to as

the ideal interpolation formula it is known also as Whittaker’s sampling formula

and the cardinal interpolation formula (Jenkins and Watts, 1968). The diffraction

function alone, sin(pu/Dt)/(pu/Dt), is sometimes referred to as the “ideal inter-

polation function.”

Problems

1 For a steady-state first-order linear system with input x(t)¼A cos (2pft),
show that the output y(t) intersects x(t) at the extrema of y(t).

2 Show, mathematically, that the general convolution integral

f 3ðtÞ ¼
ð1

�1
f 1ðuÞ f 2ðt� uÞ du

and the form

f3ðtÞ ¼
ð1

�1
f 2ðuÞ f 1ðt� uÞ du

are equivalent.

3 Consider the following physical linear system:

x
i

x(t)
0
(t)h(t)

outputinput

(a) What are the two alternative equations for the convolution integral

relating output x0 to input xi? Be sure to include the appropriate limits.
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(b) Select one of the two equations and explain the connection between the

limits on the integral and “physical realizability.”

4 Write down the three principal properties of the delta function d(t).

5 Recall that we can find the value of a function at a given point in time using

the sifting property ð þ1

�1
dðt� t0Þ sðtÞ dt ¼ sðt0Þ:

Similarly, it is possible to define the m-th derivative of a delta function,

namely, d(m)(t), that can be used to select the m-th derivative of a function

at a given point. The formula isð þ1

�1
dðmÞðt� t0Þ sðtÞ dt ¼ ð�1Þm sðmÞ ðt0Þ; m 
 1:

Here, we will use this result to determine the frequency response function

of a system that serves as a differentiator. In real life this could be a device

that differentiates position with respect to time to obtain speed. The signal

flow is:

h(t)x(t) y(t)

input outputdifferentiation
device

The impulse response function is h(u)¼ d(1)(u). Derive the following:

(a) H(f ), the frequency response function.

(b) G(f ), the gain function.

(c) w(f ), the phase function.

6 A practical application of a first-order linear system is the resistance–

capacitance circuit, or R–C filter, shown in the figure below. Here, vi(t) and

v0(t) are the time varying input and output voltages, respectively.

v
i
(t)

R-C filter

v
0
(t)

Recording

     or

indicating

  device
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(a) Giventhat the product of the resistance, R (ohms), and capacitance, C

(farads), is equal to the time constant (in seconds) of this one-

parameter physical system, write down the differential equation that

governs its performance.

(b) Determine the value of the time constant if R¼ 1� 105 ohms and

C¼ 1� 10� 6 farads.

(c) Write down the impulse response function, h(t), for this system.

(d) Based on the illustration below, sketch h(t) indicating its value at time

t¼ 0, where the heavy line with an arrow represents a unit impulse

function (delta function).

0

0

t

(e) Write down the Fourier transform pair between H(v) and h(t). Note

that v¼ 2pf and dv¼ 2pdf.

(f) The expression for the voltage gain is

GðvÞ ¼ V0ðvÞ
ViðvÞ ¼ 1þ ðvRCÞ2	 
�1=2

:

Compute the gain for values of (vRC)¼ 0.01, 0.1, 1, 10, 100, and 1000.

Based on these values, sketch the gain function on a log-log graph with

G(v) on the y-axis and vRC on the x-axis.

(g) Derive the mathematical expression for the slope of log [G(v)] versus
log (vRC).

(h) What is the asymptotic value of this slope asvRC becomes large?Make

sure your plot of the gain function in (f ) is in agreementwith this value.

(This kind of log-log plot is known as a Bode plot in electronic network

analysis.)

7 Consider a propeller anemometer that is assumed to obey a first-order

linear differential equation. Thus, we already know the system function (or

impulse response function). An experiment is performed with the objective
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of determining the anemometer’s time constant. The experiment involves

placing the anemometer in a wind tunnel in which the speed is set at 2m/s.

The propeller is prevented from rotating until time t¼ 0, at which time it is

released. The recorded data are given below, where y(t) is the measured

anemometer speed:

t (sec) y(t) (m/s)

0 0.00

1 0.66

2 1.10

4 1.60

6 1.82

8 1.92

10 1.96

(a) Plot y(t) on linear axes. Apply a smooth fit to the points (showing

them) using, for example, a spline fit available in some graphics

packages.

(b) Write down the convolution integral for the recorded anemometer

speed that includes the formal expression for the step function,

justifying your selection of limits on the integral. Then, carry out the

integration to obtain an analytic expression for the output y(t) for the

given input.

(c) Obtain an analytic expression for the time constant. Using the

above data and the analytic expression, obtain a value for the

time constant.

(d) The time constant can be determined graphically given the expres-

sion for the ratio of the anemometer speed to the tunnel speed

when t is equal to the time constant. Determine the numerical value

of the ratio and then use this ratio and the graph in (a) to find the

time constant.

(e) If the anemometer is placed in an atmospheric environment, what will

happen to an input sinusoid at a frequency f1¼ 0.2 Hz? That is,

determine the gain G(f1) and phase angle w(f1). Plot on a graph with

linear axes an input sinusoid of amplitude 3m/s (with, say, a mean

wind speed of 10m/s) and its associated output sinusoid. Show also the

phase angle.

(f) At what angular frequency,v0, will the output variance of the sinusoid
be one-half the input variance for a general first-order system?What is

v0 for the conditions of this problem?
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8 Given that Y(v)¼H(v) X(v) for a general linear system, take its inverse

Fourier transform to show that y(t)¼ h(t)�x(t), where the asterisk notation
has the usual meaning of convolution.

9 (a) Given a continuous stationary time series x(t) that is digitally

sampled with time interval Dt, thereby yielding xt, under what two

conditions can the original time series x(t) be exactly reconstructed

from xt?

(b) Which of these conditions can be met in practice?

(c) Suppose you were given a realization of 100 values from a stationary

process that met the condition in (b) and you reconstructed the time

series using the ideal interpolation formula and the sample values.

For which portion(s) of the realization would the reconstructed time

series, xr(t), provide the best approximation to x(t)? For which

portion(s) would it provide the poorest approximation to x(t)? Explain

your reasoning.

10 Let us say that your trusted friend gives you a long digital time series that

resulted from sampling (digitizing) an analog signal every 0.1 second.

What is the highest frequency beyond which there can be no variance in the

analog signal in order for you to use the ideal interpolation formula to

reconstruct – reasonably well – the analog signal?

11 Given the following continuous signal flow where h1(t) and h2(t) are

linear filters:

h
1
(t)x

1
(t) x

3
(t)

outputinput

  x
2
(t) h

2
(t)

(a) Write down the convolution integral relating output x3(t) to input

x1(t). Be careful with the dummy variables of integration.

(b) Let h1 and h2 be the impulse response functions for two first-order

linear systems inwhich the time constant for h1 is t1 and that for h2 is t2.
Write down the convolution integral for x3(t) that contains the specific

expressions for these two impulse response functions.

(c) By finding X3(f ) and then transforming it back to x3(t), derive the

relationship

x3ðtÞ ¼
ð þ1

�1

h
1þ ið2pft1Þ� ½1þ ið2pft2Þ

i� �1

X1ðfÞ ei2pft df
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3
Filtering data

In this chapter we investigate the properties of selected filters that can be applied to

one-dimensional time series. To begin the investigation, we can think of the time

series to be filtered as an input signal to which we apply a weight function, thereby

yielding an output signal. The result of our action is embodied in the frequency

response function that comprises a gain function and a phase function. The gain

function tells us how the amplitude spectrum of the input will be modified by the

weight function to yield the amplitude spectrum of the output. The phase function

tells us how the phase spectrum of the input will be altered to yield the phase

spectrum of the output; that is, it gives us the frequency-dependent phase angle

changes, if any, that occur between the input and output signals. These functions and

their analytical development were discussed in Chapter 2 (in particular, Equation

2.44) and provide the background needed in this chapter. Recall that the emphasis in

Chapter 2 was on input–output relationships for a general linear physical system

followed by applications to a system that obeyed a first-order linear differential

equation and to an integrating device. What is different here is that we are dealing

with data fromaphysical system that already have been collected or that are real-time

data we wish to filter. The physical system per se is not of interest, only its output,

which now becomes our input. In Chapter 2 we used the terms system function and

impulse response function because we were dealing directly with physical systems.

Here we use the termweight function in their place but carry over the term frequency

response function.

An important aspect of this chapter is how to design a filter for application to

digital data. By this is meant finding the number of weights and their values, that is,

the weight function, needed to achieve a desired frequency response. We apply these

design properties to a particular filter known as the Lanczos filter.
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3.1 Recursive and nonrecursive filtering

There are two general types of data filters. A recursive filter is one in which the current

output is related to the input and to the previous output; a nonrecursive filter is one in

which the output is related only to the input. We begin our investigation by

examining these two general types of filters for analog and digital data.

3.1.1 Analog data

When the input to the filtering process is an analog signal, we have

yðtÞ ¼
ð1

�1
wðuÞ xðt� uÞ duþ

ð1

0

gðtÞy ðt� tÞ dt; �1 < t < 1 ð3:1Þ

in which y(t)¼ output signal, x(t)¼ input signal, w(u)¼weight function applied

to the input signal, and g(t)¼weight function applied to the output signal.

The second convolution integral on the right-hand side accounts for Equation 3.1

being a recursive filter. As shown in Figure 3.1, a recursively filtered signal comprises

the output from its weighted past (the recursive part) and the output from the

weighted input (the nonrecursive part). If there is no recursion (no feedback),

Equation 3.1 reduces to the familiar convolution integral

yðtÞ ¼
ð1

�1
wðuÞ xðt� uÞ du: ð3:2Þ

Equation 3.2 is the general form of a nonrecursive filter.

3.1.2 Digital data

For the case when the input data to the system are digital

yt ¼
X1

k¼�1
wk xt�k þ

X1
m¼ 1

gm yt�m; �1 < t < 1 ð3:3Þ

w(t) +

g(u)

. y(t)x(t)

Nonrecursive

       Part

Recursive

     Part

Figure 3.1 Schematic diagram of an analog recursive filter.
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in which the notation parallels that for Equation 3.1. An example is

yt ¼ w0 xt þ g1 yt�1 þ g2 yt�2: ð3:4Þ

This example is shown schematically in Figure 3.2, where a singleweight is used in the

nonrecursive portion of the filter and the recursive portion of the output yt is the sum

of the output two time steps backmultiplied by g2 plus the output one time step back

multiplied by g1.

When gm¼ 0, Equation 3.3 becomes the nonrecursive filter

yt ¼
X1

k¼�1
wk xt�k; �1 < t < 1: ð3:5Þ

One application of recursive filters is in generating random processes, often for

prediction purposes in science, engineering, and economics. We provide a simple

illustration using Equation 3.4 and write it in the form of a prediction, one time step

ahead. Thus,

ytþ1 ¼ w0 xtþ1 þ g1 yt þ g2 yt�1:

If t is the current time, the next value of variable y (ytþ1) is predicted using the current

value of y (yt) and the previous value of y (yt–1). The error of the prediction is the term

w0xtþ1 because future values of the input are unknown. A similar calculation can be

used to predict the value of y at time tþ 2 given the predicted value ytþ1 and current

value yt. You will have an opportunity to study the error of prediction for a simple

statistical data model in problem 12 at the end of Chapter 4.

In the remainder of this chapter, our interest lies in nonrecursive filtering.

3.1.3 Low-pass, high-pass and band-pass filters

In nonrecursive data filtering it is common to refer to one of the three names given in

the section title in order to identify which part of the frequency spectrum the Fourier

amplitudes are to be retained or passed. Hence a low-pass filter is one in which the

w
0 +

g
2

. ytxt

Nonrecursive

       Part

Recursive

     Part

+

g
1

t t

Figure 3.2 Schematic diagram of a digital recursive filter.
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amplitudes at the low frequency end of the Fourier spectrum, starting at the origin,

are retained, while amplitudes at the high frequency end, toward the Nyquist

frequency, are removed or suppressed. An example is shown in Figure 3.3a. A

high-pass filter has the opposite result in the frequency domain, an example of which

is shown in Figure 3.3b. A band-pass filter is one in which only amplitudes away

from both the low and high frequency ends of the spectrum are retained as seen in

Figure 3.3c. Its companion is the band-stop filter shown in Figure 3.3d, in which

amplitudes in the interior of the spectrum are deleted. In each of the four examples in

Figure 3.3 there is a dashed line and a solid line. The former represents whatmight be

thought of as an ideal filter; that is, there is a 0-th order discontinuity or transition

from unit response to zero response or vice versa. The frequency at which the

discontinuity occurs is denoted by fc for low- and high-pass filters and by fc1 and fc2
for band filters because two discontinuities are involved. Frequencies fc for low-pass

and fc2 and fc1 for band-pass and band-stop filters, respectively, are often referred to

as the “cut-off” frequency (unit response to zero response), while fc for high-pass and

fc1 and fc2 for band-pass and band-stopfilters, respectively, are appropriately referred

to as the “cut-in” frequency (zero response to unit response). The solid lines aremore

appropriate to reality wherein a continuous transition from unit response to zero

response, or the opposite, can be expected. In fact, none of the ideal response

functions are achievable in practice.

Illustrations of the results of applying a high quality low-pass filter and a high

quality high-pass filter to a time series are shown in Figure 3.4. Panel (a) shows

a slowly varying noisy-looking data sequence yt. Panel (b) is yt after applying the
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Figure 3.3 Ideal (dashed lines) and actual (solid lines) responses for (a) a low-pass filter,

(b) a high-pass filter, (c) a band-pass filter, and (d) a band-stop filter. The quantity fn is the

Nyquist frequency and fc is a ‘cut-off’ or ‘cut-in’ frequency.
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low-pass filter and panel (c) is yt after applying the high-pass filter. The smoothly

varying signal in Figure 3.4b reflects the trend visually evident in Figure 3.4a; with the

trend removed, Figure 3.4c shows that time series yt is distributed about zero.

The high-frequency fluctuations in panels (a) and (c) can be easily matched.

Examples of specific simple low-pass and high-pass filters are described in

Section 3.2. In the next section we discuss the connection between a low-pass filter

and a high-pass filter and the mean value of the filtered data.

3.1.4 Preserving and removing the mean value of a time series

In applying a low-pass or band-stop filter to a data set, one wishes to preserve, as best

one can, themean of the time series. Similarly, in using a high-pass filter or band-pass

filter, one desires to remove the mean of the time series. In this section we derive the
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Figure 3.4 A time series of 100 values is shown in panel (a). Panel (b) is the same time series

after applying a lowpass filter and panel (c) after applying a high-pass filter.
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criteria formeeting these objectives, first for an infinite analog time series, then for an

infinite digital time series. Then we look at the application of these criteria to

preserving or removing themean for a time series of finite length, whether it is analog

or digital.

3.1.4.1 Infinite analog time series

Consider the infinite input series x(t) to which is applied the nonrecursive filter

function w(t). From Equation 3.2 the convolution integral has the form

yðtÞ ¼
ð L=2

�L=2

wðuÞ xðt� uÞ du; �1 � t � 1 ð3:6Þ

where L is the filter length and y(t) the filtered output. The mean value of the

output is obtained by taking the limit of the time-dependent average of y(t)

according to

y ¼ lim
T!1

1

T

ð T=2

�T=2

yðtÞ dt

¼ lim
T!1

1

T

ð T=2

�T=2

ð L=2

�L=2

wðuÞ xðt� uÞ du dt

y ¼
ð L=2

�L=2

wðuÞ lim
T!1

1

T

ð T=2

�T=2

xðt� uÞ dt
" #

du ð3:7Þ

where T is the length of the averaging interval. In the limit as the averaging interval

tends to infinity, the term in the brackets becomes x, so that

y ¼ x

ð L=2

�L=2

wðuÞ du: ð3:8Þ

This result implies that

ð L=2

�L=2

wðuÞ du ¼ 1; mean preserved

0; mean removed
:

�
ð3:9Þ

Thus, when the integral of the weight function is one, the mean after filtering is the

same as the mean before filtering. When the integral is zero, the mean after

filtering is zero regardless of the mean before filtering.
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3.1.4.2 Infinite digital time series

For digital data we apply the nonrecursive filter weight function wk to the time series

xt. From Equation 3.5 the expression for the convolution summation is

yt ¼
Xn
k¼�n

wk xt�k; t ¼ 0;�1;�2; � � � ð3:10Þ

where (2nþ 1) is the length of filter wk and yt is the filtered output. By analogy with

the analog case above, the mean value of the output is given by

y ¼ lim
N!1

1

N

XðN�1Þ=2

t¼�ðN�1Þ=2
yt

¼ lim
N!1

1

N

XðN�1Þ=2

t¼�ðN�1Þ=2

Xn
k¼�n

wk xt�k

y ¼
Xn
k¼�n

wk lim
N!1

1

N

XðN�1Þ=2

t¼�ðN�1Þ=2
xt�k

2
4

3
5 ð3:11Þ

where N is the number of data in the averaging interval, and N is odd. In the limit as

the averaging length approaches infinity, the term in brackets becomes x. Thus,

y ¼ x
Xn
k¼�n

wk ð3:12Þ

implying that

Xn
k¼�n

wk ¼ 1; mean preserved

0; mean removed
:

�
ð3:13Þ

Therefore, identical to the infinite analog case, when the sum of the weights is one,

the mean after filtering is the same as the mean before filtering.When the sum of the

weights is zero, themean after filtering is zero. Note that Equations 3.8 and 3.12 show

no restriction on the value of individual weights, only their sum.

3.1.4.3 Finite time series

In practice, the length of the time series is always finite, regardless of whether

the data are analog or digital. In Figure 3.5 the heavy line is a time series of length
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T (analog) or N (digital) and a triangular filter (discussed in Section 3.2.2) of

corresponding length L or (2nþ1) is shown at both ends of the time series.

Filtered values y(t) or yt cannot be calculated any closer than one-half the filter

length, L/2 or n, to either end of the time series of x(t) or xt. Any attempt to compute

a filtered time series beyond L/2 or n at either end of the time series in the

illustration will yield an incorrect filtered time series. Thus, when the objective is to

have y equal to either x or 0, this will occur, in general, only in the limit as T or N

tend to infinity. Good approximations to y¼ x or y¼ 0, however, can be realized

when the length of the filter is small relative to the length of the data record, that is,

when the “end effect” is small.

3.2 Commonly used digital nonrecursive filters

In this section we examine the weight function and resulting frequency response

function of several low-pass filters and one high-pass filter that are often used

because their weights are easy to calculate. These filters belong to the category of

one-parameter filters; that is, the only quantity that can be varied is the number

of weights.

In Chapter 2 we established the relationship between the frequency response

function H(f) and the system or unit impulse response h(t). This was done in

Section 2.6 for analog data and resulted in the Fourier transform

HðfÞ ¼
ð1

�1
hðtÞ expð�i2pftÞ dt: ð2:43Þ

Before we investigate the properties of easy-to-apply filters, we need to use Equation

2.43 to determine the formula for the transformwhere the system function is a digital

weight function rather than a general analog function. As opposed to integration, we

will need a summation over the weight functionwith the exponential term occurring

only at the instances in time of the digital weights. Making use of the d-function

T or N

x(t) or xt

t

y

L/2
n

L/2
n

x

Figure 3.5 The length of a filtered time series relative to the length of the original finite

time series is reduced by the length of the filter.
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(Section 2.4) to isolate these instances, we have

HðfÞ ¼
X1

k¼�1
wk

ð1

�1
dðt� kDtÞ expð�i2pftÞ dt; k ¼ 0;�1� 2; . . .

which reduces to

HðfÞ ¼
X1

k¼�1
wk expð�i2pfkDtÞ: ð3:14Þ

H(f) contains all the information about amplitude and phase angle changes that

result from filtering a time series with weight function wk.

3.2.1 Running mean filter

The weight function for the running mean or rectangular filter is

wk ¼
1=ð2nþ 1Þ; 0 � kj j � n

0; kj j > n

(
ð3:15Þ

and is shown in Figure 3.6 for the total number of weights (2nþ 1)¼ 11.
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Figure 3.6 Weight value versus weight number for the runningmean filter in Equation 3.15,

the triangular filter in Equation 3.19, and the cosine filter in Equation 3.23. The number of

weights for each filter is (2nþ1)¼ 11.
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From Equation 3.14 we have

HðfÞ ¼ 1

2nþ 1

Xn
k¼�n

expð�i2pfkDtÞ:

Using Equation 1.B.4 this becomes

HðfÞ ¼ sin½pfð2nþ 1ÞDt�
ð2nþ 1Þ sinðpfDtÞ : ð3:16Þ

According to Equation 3.16, the first zero crossing (i.e., the argument in the

numerator is equal to p) occurs at the frequency that is inversely proportional to

the length of the filter; subsequent crossings occur at multiples of this frequency. As

an example, let’s use the weight function in Figure 3.6 and let the sampling or data

interval Dt equal one week. Figure 3.7 shows that the first zero crossing is at a

frequency of 0.091 cycles/week. The second zero crossing is at a frequency of 0.182

cycles/week or a period of 5.5 weeks, and so on. Although the runningmean is easy to

apply, it has large negative and positive side lobes. Waveforms at frequencies with

negative responses are inverted in the filtered data relative to the original data.

Figure 3.7 also shows the frequency response functions for two other simple filters

that will be discussed shortly.

For sufficiently large n, Equation 3.16 can be approximated by

HðfÞ ¼ sinð2pfnDtÞ
2pfnDt

: ð3:17Þ
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Figure 3.7 The response functions associated with the weight functions in Figure 3.6. The

respective equations for the response functions are Equation 3.16, Equation 3.20, and

Equation 3.26. The sampling interval Dt is one week.
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Equation 3.17 has an absolute error of less than 0.05 for n> 10. For n< 10,

Equation 3.16 should be used (as in Figure 3.7). We notice that Equation 3.17 is

a diffraction function. This is not surprising because we saw in section 2.4 that

the Fourier transform of an analog rectangular function (Equation 2.19) is a

diffraction function.

If we replace the approximate filter length 2nDt by L and frequency f by 1/T,

where T is the period, Equation 3.17 becomes

HðfÞ ¼ sinðpL=TÞ
pL=T

: ð3:18Þ

Equation 3.18 is plotted in Figure 3.8. The zero crossings are located at L/T¼ k¼ 1,

2, . . ., when the numerator in Equation 3.18 is zero. Each integer k is the number of

complete cycles in the length of the running mean filter. Averaging an integer

number of sinusoids always yields zero. Figure 3.8 provides a general way to assess the

frequency response of simple filters as a result of altering the number of weights, data

interval, and frequency.

Each of the frequency response functions Equations 3.16–3.18 could be placed in

an alternative form involving gain and phase functions following Equations 2.43 and

2.44. Thus the absolute values of Equations 3.16–3.18 become their respective gain

functions G(f). The phase function of each is the arctangent of the ratio of the

imaginary part ofH(f) to its real part. The imaginary part is zero because the running

mean as defined above is an even function; the real part is nonzero and varies in

algebraic sign with frequency. Furthermore, the angle defined by the arctangent of
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Figure 3.8 Approximate frequency response functions for a running mean or rectangular

filter (Equation 3.18) for n> 10, a triangular filter (Equation 3.22) for n> 15, and a cosine

filter (Equation 3.27) for n> 1. The number of weights is 2nþ1.
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the ratio is either 0 or 180 degrees, as shown in Figures 3.7 and 3.8. Positive response

corresponds to 0 degrees and negative response to 180 degrees.

3.2.2 Triangular filter

The weight function for the triangular filter can be derived from convolving two

identical runningmean filters. The derivation is carried out in Appendix 3.Awith the

result that

wk ¼
1

nþ 1
1� kj j

nþ 1

 !
; 0 � kj j � n

0; kj j > n

:

8><
>: ð3:19Þ

The weight sequence is plotted in Figure 3.6 for 2nþ 1¼ 11 weights. The response is

derived in Appendix 3.B where it is shown that

HðfÞ ¼ sin2½pfðnþ 1ÞDt�
ðnþ 1Þ2sin2ðpfDtÞ : ð3:20Þ

The response function Equation 3.20 for 11 weights is shown in Figure 3.7. With

Dt¼ 1 week, the first zero crossing is at 0.167 cycles/week, nearly double that for the

running mean. At the same time, the side lobes are reduced relative to the running

mean and always positive. Thus there is a trade-off between the rate of descent of the

frequency response from the frequency origin and the absolute amplitude of the side

lobes when both filters have the same number of weights.

Similar to Equation 3.16, an approximate form of Equation 3.20 is

HðfÞ ¼ sin2ðpfnDtÞ
ðpfnDtÞ2 ð3:21Þ

for which the absolute error is less than 0.05 for n> 15. If we again let L¼ 2nDt and
f¼ 1/T, Equation 3.21 becomes

HðfÞ ¼ sin2½pL=ð2TÞ�
½pL=ð2TÞ�2 : ð3:22Þ

Equation 3.22 is plotted in Figure 3.8, in which the zero crossings are at L/T¼ 2k,

k¼ 1, 2, . . .. Because of the triangular shape of the weight function, two complete

cycles of a sinusoid, or multiples thereof, over the filter length are required to yield

zero response after convolution. A useful exercise is to show this graphically.
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3.2.3 Cosine filter

Another easy-to-use filter is the cosine or raised-cosine or von Hann filter

(Hamming, 1977, pp. 88–90). As with the running mean and triangular filters, it

has one parameter, the number of weights. It is defined by

w0
k ¼

1þ cosðpk=nÞ
2

; kj j � n

0; kj j > n

:

8<
: ð3:23Þ

Because the sum of the 2nþ 1 weights must equal one, using Appendix 1.B we find

that the expression for the standardized weight function is

wk ¼
1þ cosðpk=nÞ

2n
; kj j � n

0; kj j > n

8<
: ð3:24Þ

which is shown in Figure 3.6 for 2nþ 1¼ 11 weights. We notice that the two end-

weights are zero so that, effectively, they contribute nothing to a filtered value. That

is, there are 2n – 1 “working weights.”

The derivation of the response function is initiated by

HðfÞ ¼
Xn
k¼�n

wk expð�i2pfkDtÞ

¼ 1

ð4nÞ
Xn
k¼�n

½expðipk=nÞ þ 2þ expð�ipk=nÞ� expð�i2p fk DtÞ:

The completion of the derivation is lengthy and is given in the previous reference.

The result is

HðfÞ ¼ sinð2pnfDtÞ cosðpfDtÞ
2n sinðpfDtÞ

1

1� sinðpfDtÞ
sinðp=ð2nÞÞ
h i2

2
64

3
75 ð3:25Þ

which can be approximated by

HðfÞ ¼ sinð2pnfDtÞ
2pnfDt

1

1� ð2nfDtÞ2
" #

: ð3:26Þ

The absolute error of Equation 3.2.6 is less than 0.03 for n> 1. Equation 3.26 for

2nþ 1¼ 11 weights is plotted in Figure 3.7, which shows that the main lobe of the
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cosine filter is somewhat broader than that of the triangular filter while the side lobes

are reduced in amplitude and are alternately positive and negative.

If we let L¼ 2nDt and f¼ 1/T as in the previous filters, Equation 3.26 becomes

HðfÞ ¼ sinðpL=TÞ
pL=T

1

1� ðL=TÞ2
" #

: ð3:27Þ

Equation 3.27 is plotted in Figure 3.8. The zero crossings coincide with the second

and subsequent zero crossings of the running mean filter. Based on Figures 3.7

and 3.8 for these three simple filters, we conclude that, for the same number of

weights, the smoother the weight function, the lower the side lobes in the frequency

response function and the less rapid the descent in the main lobe.

3.2.4 Difference filter

The fourth and last one-parameter filter we examine is a high-pass difference filter.

Among the four filters, it is the only one that has a complex response function H(f ).

It is complex because its weight function is not symmetric about the time origin.

The previous filters we studied each had a symmetric weight function, resulting in

real response functions.

The high-pass difference filter we investigate has weight function

w0 ¼ 1=2; w1 ¼ �1=2; wk ¼ 0 elsewhere: ð3:28Þ

The sum of the weights is zero so that the mean of a filtered time series will be

removed. The formula for convolution is, from Equation 3.5,

yt ¼ ðxt � xt�1Þ=2: ð3:29Þ

Since the filter is asymmetric, there will be nonzero phase angle differences between

the input and the output. The response function is

HðfÞ ¼
X1
k¼ 0

wk expð�i2pfkDtÞ

which reduces to

HðfÞ ¼ 1

2
1� expð�i2pfDtÞ½ �: ð3:30Þ
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After extracting exp(–ipfDt) from the right-hand side, we obtain

HðfÞ ¼ i sinðpfDtÞ expð�ipfDtÞ

or

HðfÞ ¼ sinðpfDtÞ exp �ip f � 1

2Dt

� �
Dt

� �
: ð3:31Þ

From Equation 2.44

HðfÞ ¼ GðfÞ exp½iwðfÞ�

so that

GðfÞ ¼ jsinðpfDtÞj ð3:32Þ

and

wðfÞ ¼
�p

�
f � 1

2Dt

�
Dt; 0 � f � 1=ð2DtÞ

�p

�
f þ 1

2Dt

�
Dt; �1=ð2DtÞ � f < 0

:

8>>><
>>>:

ð3:33Þ

Because G(f) is always positive, Equation 3.33 validates Equation 3.31 by taking

into account that sin(pfDt) is negative for –1/(2Dt)� f< 0. The gain and phase

functions for w0¼ 1/2 and w1¼ –1/2 are shown in Figures 3.9 and 3.10 for positive

frequency. As can be seen in Figure 3.9, the difference filter is a high-pass filter,
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Figure 3.9 Gain function for the difference filter in Equation 3.29.
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eliminating themean and passing unchanged the amplitude at theNyquist frequency.

Figure 3.10 shows that as the frequency of a sinusoid approaches zero (wavelength

tends to infinity), digital differencing is similar to taking the derivative of a sine

function, resulting in a cosine function and a phase difference of 90�. At the Nyquist
frequency, the filtering amounts to differencing successive maximum andminimum

values which leaves the sinusoid unchanged. Equation 3.33 shows that there is a

discontinuity in w(f) at the frequency origin where its value is þ90� as the origin is

approached from the positive side and –90� as the origin is approached from the

negative side. Phase function w(f) increases linearly from –90 to 0� as the frequency
decreases from –0 cycles per data interval to the negative Nyquist frequency.

3.2.5 Relationship between high-pass and low-pass filters

As noted in Section 3.1.4, when the sum of the filter weights is one, the mean of

the time series is preserved, and when the sum of the weights is zero, the mean

is removed. The respective frequency response functions are low-pass, with

H(f¼ 0)¼ 1, and high-pass, with H(f¼ 0)¼ 0. Intuitively, we should expect that

a high-pass filter H0ðfÞ could be derived from a low-pass filter H(f) by subtraction

according to

H0ðfÞ ¼ 1�HðfÞ: ð3:34Þ

That is, where the response was high in a low-pass filter it will be low in the high-

pass filter, and vice versa. Using Equation 3.14 and assuming a finite number of

weights, the frequency response function for the high-pass filter (Equation 3.34)

becomes

H0ðfÞ ¼ 1� w0 �
X�1

k¼�m

wk e
�i2pfkDt �

Xn
k¼ 1

wk e
�i2pfkDt ð3:35Þ
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Figure 3.10 Phase function for the difference filter in Equation 3.29.
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in which allowance has been made for an asymmetric filter. The weights for the

high-pass filter are then

w0
0 ¼ 1� w0 and w0

k ¼ �wk; k 6¼ 0: ð3:36Þ
When the filter is symmetric,m¼ n, and the high-pass frequency response function

(Equation 3.34) reduces to

H0ðfÞ ¼ w0
0 þ 2

Xn
k¼ 1

w0
k cosð2pfkDtÞ ð3:37Þ

where we see that H0ðfÞ has no imaginary component since the sine term sums to

zero. This form will be used again in Section 3.4.3 in discussing filter design.

In this section we examined the conversion of a low-pass filter to a high-pass filter,

the result of which was the set of Equations 3.34–3.37. We could just as well have

applied this equation set to the conversion of a high-pass filter to a low-pass filter.

Moreover, these same equations apply to conversion of a band-pass filter to a stop-

band filter and vice versa.

3.3 Filter design

In the previous section we examined a selection of commonly used filters and their

response functions. A specific set of weights resulted in a specific response function.

In this section we investigate the reverse problem. Given a desired response function,

what is the required set of weights? Thus, the first step in designing a digital filter is to

decide the shape of the frequency response function. The second step is to Fourier

transform this function to the time domain to obtain the weight function or digital

filter weights. Typically, to achieve the desired response function requires a greater

number of weights than are practical, so the weight function must be truncated.

The third step is to Fourier transform the truncated weight function back to the

frequency domain to get the actual response function.

It is useful to think of the frequency response function as an analog periodic data

series with frequency instead of time as the independent variable andwhose period is

1/Dt, the frequency interval between the Nyquist frequencies –fn and fn. That we can
view the frequency response function as a periodic function is because it comprises

the principal part of the complete aliased spectrum. In this context, we represent the

response function by a Fourier synthesis whose Fourier coefficients become the filter

weights in the time domain.

Thus, by steps 1 and 2 we have, following Equations 2.13 and 2.14,

wk ¼ 1

2fn

� �ð fn

�fn

HðfÞ expð�i2pfkDtÞ df ; �1 � k � 1 ð3:38Þ
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and

HðfÞ ¼
X1

k¼�1
wk expði2pfkDtÞ

¼
X1

k¼�1
wk cosð2pfkDtÞ þ i

X1
k¼�1

wk sinð2p fkDtÞ:
ð3:39Þ

In the framework of filter design, H(f) can be appropriately called the design response

function; as in previous sections, wk is the weight function. Comparing Equa-

tions 3.38 and 3.39 with Equations 2.13 and 2.14, respectively, we see that wk

corresponds to S0m, 2fn to T, H(f) to x(t), df to dt, and fDt to t/T in the exponent.

After parsimonious truncation of the weight function, the filtered series takes the

usual form of digital convolution (see Equation 3.5):

yt ¼
Xn

k¼�m

wk xt�k; �1 � t � 1: ð3:40Þ

What ismeant by “parsimonious” here is that the number of weights should be small

compared to the length of the time series but large enough to provide good fidelity of

the response function. The actual values of m and n are decided by the investigator.

Next, we anticipate the results of applying a Fourier transform to a convolution

integral (or summation here) that we found in Section 2.7. Accordingly, we Fourier

transform Equation 3.40 to the frequency domain to obtain the amplitude spectra of

the filtered series yt, the original time series xt, and the weight function wk. Thus,

YðfÞ ¼
X1

t¼�1

Xn
k¼�m

wk xt�k

" #
expði2pftDtÞ

¼
Xn

k¼�m

wk

X1
t¼�1

xt�k expði2pftDtÞ
" #

¼
Xn

k¼�m

wk expði2pfkDtÞ
X1

t¼�1
xt�k exp½i2pfðt� kÞDt�

" #
ð3:41Þ

which reduces to

YðfÞ ¼ Hm;nðfÞ XðfÞ: ð3:42Þ

Except for the interchange of variables, Equations 3.41 and 3.42 are similar to

Equations 2.58 and 2.59 for analog data.
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The actual response function

Hm;nðfÞ ¼
Xn

k¼�m

wk expði2pfkDtÞ ð3:43Þ

can be expanded into its real and imaginary parts as

Hm;nðfÞ ¼
Xn

k¼�m

wk cosð2pfkDtÞ þ i
Xn

k¼�m

wk sinð2pfkDtÞ: ð3:44Þ

Equation 3.44 can be written also

Hm;nðfÞ ¼ YðfÞ
XðfÞ ð3:45Þ

in which form it is the same as Equation 2.60 for analog time series and expresses the

ratio of the output to the input complex amplitudes as a function of frequency f.

Similar to Equation 2.44, the response functionHm,n(f) can bewritten as the product

of a gain function and an exponential term involving the phase function.

If the design response function H(f) in Equation 3.39 is real and symmetric about

f¼ 0, then theweight functionwk is real and symmetric about k¼ 0.Only cosines are

needed in the synthesis of H(f). The same can be said of Hm,n(f) if m¼ n. In fact,

we will limit our investigation to symmetric filters with the result that their response

functions are always real and Hm,n(f)¼Hn(f). Because the phase angle will be either

0� or 180� (as in the running mean), we will usually not use the terms gain function

(or gain) or phase function (or phase), but instead, frequency response function or

response function or, simply, response.

3.4 Lanczos filtering

In this section, we describe a Fourier filtering method called Lanczos filtering. Its

principal feature is the use of “sigma factors,” which significantly reduce the

amplitude of the Gibbs phenomenon, an oscillation that occurs when a function

is approximated by a partial sum of a Fourier synthesis. The Gibbs phenomenon or

oscillation can result in considerable error in the vicinity of the discontinuity in an

ideal response function, for example, the cut-off fc in Figure 3.3a. The filter is a two-

parameter symmetric filter, one parameter being the number of weights, the other

the cut-off frequency. In the one-parameter filters in Section 3.2 the number of

weights completely determined the frequency response function. Here we have an

additional degree of flexibility. Using these parameters as entries to a pair of graphs,

the frequency response function can be estimated. The simplicity of calculating the

weights and the adequate response for many needs make Lanczos filtering an

attractive filtering method.
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3.4.1 Mathematical development

The material provided in this and the following two sections is based on a paper by

Duchon (1979). Application of Lanczos filtering to data sets in two dimensions is

also discussed in this paper. We begin by considering an ideal low-pass response

function shownby the solid line in Figure 3.11 (or dashed line in Figure 3.3a)where fc
and fn are the cut-off andNyquist frequencies, respectively. Mathematically, we have

HðfÞ ¼ 1; fj j � f c
0; fj j > f c

:

�
ð3:46Þ

Using Equation 3.38, we Fourier transform H(f) to get its weight function

wk ¼ 1

2fn

� �ð f c

�f c

expð�i2pfkDtÞ df ¼ sinð2pfckDtÞ
2pfnkDt

; �1 � k � 1: ð3:47Þ

In application, we have to limit the number of weights. Lanczos (1956, p. 219)

showed that when the finite set of weights is transformed back to the frequency

domain by Equation 3.43 where m¼ n, the departure from the ideal response

function has the form of a “modulated carrier wave.” The carrier frequency is equal

to the frequency of the first term neglected in the Fourier synthesis and its amplitude

contributes significantly to the Gibbs oscillation. Thus, as proposed by Lanczos, the

carrier frequency should be filtered. This can be done using a “sigma factor.” An

example of Gibbs oscillation and its suppression is shown in Figure 3.12 and

described in the next section.

In the mathematical development in this section, a nonstandard formula for

the total number of weights in a filter is employed. The standard formula is 2nþ 1,

where n is the number of weights to the right and left of the central weight. The

formula for the total number of weights used in Lanczos filtering is 2n–1. For

example, if there are a total of seven weights, the central weight (w0) and three

weights to the right (w1, w2, w3) and three to the left (w�1, w�2, w�3), n¼ 4.

Response

1.0

0

−fν f fc−fc
0

∆f

(a)

(b)

ν

Figure 3.11 (a) An ideal low-pass response function with cut-off frequency fc. (b) The

smoothed ideal response function given by Equation 3.49. The transition band is 2Df¼ 2fn/n

(Duchon, 1979).
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The reason for choosing the nonstandard formula is because n is equal to the first

term truncated in synthesizing H(f) and corresponds to n cycles over 2fn. In this

example, the carrier frequency is n¼ 4 cycles over 2fn.

Therefore, to suppress the Gibbs oscillation for the general case of using 2n–1

weights, we convolve the ideal response function Equation 3.46 with the rectangular

function

hðfÞ ¼
n

2fn
; fj j � fn=n

0; fj j > fn=n

:

8<
: ð3:48Þ

The width of rectangular filter h(f) corresponds to the width of one cycle of a Gibbs

oscillation and would result in its complete suppression were there no modulation.

Due to the modulation (we no longer have a pure sinusoid) we can anticipate some

residual oscillation after filtering. The area under h(f) has unit value so that themean

of the function being filtered is unchanged.

The smoothed version of H(f) is produced by the convolution integral

HðfÞ ¼
ð fn=n

�fn=n

hðgÞHðf � gÞ dg

¼ n

2f n

 !ð fn=n

�fn=n

Hðf � gÞ dg ð3:49Þ

where h(g)¼ h(f). HðfÞ is shown by dashed curve (b) in Figure 3.11. We note that,

as expected, the width of the frequency band from unit response to zero response is

the same as the width of the nonzero part of h(f), that is, 2Df¼ 2fn/n. The narrow

band from unit to zero response or vice versa is commonly referred to as the

transition band.

Using Equation 3.38 again, the Fourier transform of Equation 3.49 yields the

smoothed weight function

wk ¼ 1

2fn

� �ð fn

�fn

HðfÞ expð�i2pfkDtÞ df ; �1 � k � 1: ð3:50Þ

For the case of a partial sum of Fourier synthesis we have, following Equation 3.43,

HnðfÞ ¼
Xn�1

k¼�ðn�1Þ
wk expði2pfkDtÞ

¼ w0 þ 2
Xn�1

k¼ 1

wk cosð2pfkDtÞ: ð3:51Þ
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Equation 3.51 shows the actual response function as a consequence of smoothing

(convolving) the ideal response function with a rectangular function that is tuned to

the number of weights used, (2n–1), tominimize the Gibbs oscillation. Nowwe need

to find the values of the weights.

The result of substituting Equation 3.49 into Equation 3.50 and interchanging the

order of integration is

wk ¼ n

2f v

� �ð fn=n

�fn=n

expð�i2pgkDtÞ

� 1

2f v

� �ð fn

�fn

Hðf � gÞ exp �i2pðf � gÞkDt½ � dðf � gÞ
� �

dg ð3:52Þ

where the term in brackets is weight function wk in Equation 3.47. Because H(f ) is

periodic (Section 3.3) with period 2fn, Equation 3.52 reduces to

wk ¼ wk

sinð2pkfnDt=nÞ
2pkfnDt=n

¼ sinð2pf ckDtÞ
2pfnkDt

sinð2pkfnDt=nÞ
2pkfnDt=n

:
ð3:53Þ

If we let Dt¼ 1 and fn¼ 0.5 so that f has units of cycles/data interval, then

wk ¼ sinð2pf ckÞ
pk

sinðpk=nÞ
pk=n

; k ¼ �ðn� 1Þ; . . . ; 0; . . . ; ðn� 1Þ: ð3:54Þ

We see that the weight function for the smoothed response function is the product of

that for the ideal response function and the term

s ¼ sinðpk=nÞ
pk=n

ð3:55Þ

called the “sigma factor” by Lanczos. A second smoothing of the ideal response

function (Equation 3.46) with Equation 3.47 yields s2 in Equation 3.54 and sub-

sequent smoothing by a corresponding increase in power of the sigma factor.

Typically, only one smoothing is performed.

There is one caveat in the above derivation. In carrying out the integration of the

interior integral on the right-hand side of Equation 3.52 it was assumed that H fð Þ
in Equation 3.49 or the dashed line in Figure 3.11 became zero before �fn.

Mathematically, this can be expressed as fcþ fn/n< fn. If this criterion is not met,

then Equation 3.53 is incorrect. The practical result is that the response function for a

low-pass filter will never pass through zero.
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3.4.2 Results

Curve (a) in Figure 3.12 is an ideal response function inwhich the cut-off frequency fc
is 0.2 cycles/data interval; curve (b) is the response function computed from

Equation 3.45 in which there are 2n–1¼ 19 weights computed from Equation 3.47

in which the limits of integration are � 0.2. Curve (b) is an example of Gibbs

oscillation and we observe that, in this case, it has 10 cycles over the frequency span

from –fn to þfn (Figure 3.12 shows one cycle per 0.1 cycles/data interval) corre-

sponding to n¼ 10, the first term truncated in the Fourier series. Curve (c) is the

response function from Equation 3.51, where weights wk are computed using

Equation 3.54. The quantity DfL (DfR) is the bandwidth between fc and the nearest

unit (zero) response. The advantage in using the sigma factor to reduce the Gibbs

oscillation is plainly evident. The trade-off with the reduced Gibbs oscillation in

curve (c) is the increasedwidth of the transition band, the frequency interval between

the nearest unit and zero responses surrounding fc. This trade-off is such that there is,

in general, no advantage to using a sigma factor to a power greater than one.
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Figure 3.12 (a) Ideal response function. (b) Lanczos filter for fc¼ 0.2, 2n�1¼ 19 weights,

and sigma factor¼ 0. (c) Same as (b) but for sigma factor¼ 1. The Gibbs oscillation

associated with (c) is denoted by Gþ and G�.
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The approximate properties of the maximum Gibbs oscillation (Gþ or G� in

Figure 3.12) can be summarized by examining three areas in Figure 3.13, in which it

should be noted that the vertical axis is the number of weights given by 2nþ 1. We

can return to using the traditional formula for total number of weights because if we

extend the limits of k from� (n – 1) to� n in Equation 3.54, the weights w�n ¼ 0.

We just need to recognize that the weights at the extrema of the more familiar

formula for the total number of weights are zero. To the right of the dashed line,

where the number of weights is small or the cut-off frequency is close to the Nyquist

frequency, the response function never crosses zero response (i.e., G� is negative).

This is a consequence of fn/nþ fc> fn. In the large area inside the solid and dashed

curved lines the Gibbs oscillation is about 0.01,DfR andDfL are approximately equal

to 1.3/(2n), and H(fc)ffi 0.5. The best fidelity is found here. Larger values of Gibbs

oscillation occur in an irregular pattern along the border of this area and especially at

low cut-off frequencies.

In the small area between the solid and dashed curves on the left side of Figure 3.13

the magnitude of Gþ is zero, since the response function decreases toward zero

directly from the origin. Simultaneously, DfL¼ fc. The magnitude of G– can be

substantially greater than 0.01 when the number of weights is small. In this region

H(fc)> 0.5. Regardless of the area inwhich the intersection of the cut-off frequency fc
and number of weights (2nþ 1) lies, increasing the number of weights always results

in a narrowing of the transition band and the associated steepening of the response

from unity toward zero.

For high-pass filters, DfL (DfR) is the bandwidth between fc and the nearest

zero (unit) response. With the convention that Gþ (G�) is the maximum value of
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Figure 3.13 The magnitudes of the maximum positive (Gþ) and negative (G�) Gibbs

oscillations and the left (DfL) and right (DfR) bandwidths (Figure 3.12).
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the Gibbs oscillation below zero (above unit) response, Figure 3.13 can be applied

directly to high-pass filters. In this case, G� (negative) means that the response

function never passes through one. These relations follow from Section 3.2.5, in

which a high-pass filter response is one minus the low-pass filter response.

3.4.3 An application

In this section we apply low-pass, high-pass and band-pass filters to hourly

temperature data at St. Louis, Missouri, USA, for February 2010. These data are

available on the website http://www.wiley.com/go/duchon/timeseriesanalysis. The

filename is STL_201002_hrly_temp.xls. See problem16 inChapter 1 for information

on the data structure. The weight sequences and responses are obtained from a

computer program provided in Appendix 3.C for Lanczos filtering in which the

required inputs are the cut-off frequency (two frequencies in the case of a band-pass

filter), the number of weights, and the type of filter (low-, high-, or band-pass). The

power of the sigma factor is set to one but can be easily changed in the program.

The 672 values of temperature are plotted in Figure 3.14. There are five distinct

cold front passages with two extended warming trends, one beginning 15 February

and the other 25 February. First we examine periods longer than one day. Since one

cycle per day¼ 0.0417 cy/h we would like the ideal low-pass response function to

drop from one to zero at this frequency. However, we observed from Figures 3.10

and 3.11 that the value of H(f) or HnðfÞ at the cut-off frequency fc using the Lanczos
filter is about 0.5. Consequently, fc needs to be adjusted such that it is to the left of one

cycle per day in order to achieve zero response at the daily cycle. In addition, because

fc is so close to the origin, we can anticipate using a large number ofweights if wewish

to reasonably approximate the ideal response. Let us say thatwe can afford to lose one

day at either end of the month. In this case, to stay to the right of the solid line in

–15

–10

–5

0

5

10

15

0 96 192 288 384 480 576 672

A
i
r
 T

e
m

p
e
r
a
t
u
r
e
 (

º
C

)

Hour of February 2010

mean

Day of Month

1 5 9 13 17 21 25

Figure 3.14 Hourly air temperature for February 2010 at Lambert-St. Louis (Missouri)

International Airport.
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Figure 3.13, we can choose 2nþ 1¼ 51 weights. Since the response at fc is about 0.5

we can estimate fc from

fc ffi 0:042� DfR ¼ 0:042� 1:3=ð2nÞ ¼ 0:042� 1:3=50

¼ 0:042� 0:026 ¼ 0:016 cy=h:
ð3:56Þ

The quantity DfR (Figure 3.12) in this equation has the approximate value 1.3/2n

throughout most of the good fidelity region in Figure 3.13. With 2nþ 1¼ 51 and

fc¼ 0.016 cy/h, the response is essentially zero at 0.042 cy/h, as seen in Figure 3.15

(the low-pass filter response). The low-pass filtered data in Figure 3.16 showmainly

the influence of synoptic-scale features: frontal passages and warming and cooling
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Figure 3.15 Frequency response functions for low-pass and high-pass Lanczos filters for

2nþ1¼ 51 weights and fc¼ 0.016 cycles/hour.
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Figure 3.16 The data in Figure 3.14 after applying the filter having the low-pass response

H(f) in Figure 3.15. The dashed line is the mean of the filtered data.
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trends. Next, we examine periods one day and shorter. The response function for the

high-pass filter used here is obtained by subtracting the low-pass filter (Equa-

tion 3.51) from one to get

H
0
nðfÞ ¼ w0

0 þ 2
Xn
k¼ 1

w0
k cosð2pfkÞ ð3:57Þ

where w0
0 ¼ 1� w0 and w0

k ¼ �wk (see Figure 3.15 for high-pass filter response).

Figure 3.17 is the result of high-pass filtering. The daily cycle is obvious, in addition

to disturbances whose duration is less than a day.

Lastly, consider a band-pass filter. The objective is to obtain a clearer picture of the

daily cycle in temperature by eliminating the high frequency fluctuations in

Figure 3.17. In order to determine the width of the pass-band it is helpful to

examine a variance spectrum of the data. Figure 3.18 shows the periodogram of the

St. Louis data out to harmonic 120. The spectrum beyond harmonic 120 is similar to

that between about harmonics 100 to 120 with a small average decrease. Judging by

the magnitude of the peaks that are a multiple of harmonic 28 (24 hour period), it

should be satisfactory to include just those harmonics between 28 and 56 or 0.042

and 0.083 cy/h. The variance at harmonics 84 (eight hour period) and 112 (six hour

period) are about two orders of magnitude less than that at harmonic 56 and are

comparable to some nearby peaks.

A simple way to create a band-pass filter is to subtract one low-pass filter from

another. For example, Figure 3.19a shows the response functions for two low-pass

filters with 2nþ1¼ 43 weights and fc1¼ 0.2 and fc2¼ 0.3 cycles/data interval;
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Figure 3.17 The data in Figure 3.14 after applying the filter having the high-pass response

H(f) in Figure 3.15 and adding back the mean of the unfiltered data shown by the

dashed line.
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Figure 3.18 Periodogram of the data in Figure 3.14 for harmonics 1-120.
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Figure 3.19 (a) Response functions for two low-pass Lanczos filters with fc¼ 0.2 cy/di,

fc¼ 0.3 cy/di and 2nþ 1¼ 43 weights. (b) The band-pass filter that results from the

difference of the two response functions in (a).
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Figure 3.19b shows the difference. The band-pass smoothed response function is

given by

H


nðfÞ ¼ w


0 þ 2
Xn
k¼ 1

w

k cosð2pfkÞ ð3:58Þ

where w

k ¼ w2k � w1k, k¼ 0,1, . . ., n.

As the width of the pass-band becomes narrower for a given number of weights,

the response at the center of the band approaches zero (the two curves in Figure 3.19a

move closer together). To keep the response around the center of the band very close

to one, the following criterion can be deduced from Figure 3.19a:

DfR1 þ Df L2 � f c2 � f c1: ð3:59Þ
Using the approximation DfR1¼DfL2¼ 1.3/(2n), an equivalent criterion is

n � 1:3=ðf c2 � f c1Þ: ð3:60Þ

Thus the narrower the band between cut-off frequencies, the greater n must be to

maintain unit response at the band center.

When the objective is to pass essentially a single frequency or a very narrowbandof

frequencies, Equation 3.59 or Equation 3.60 is especially valuable, in which case the

equal sign is used. More generally, we want to pass a band of frequencies with

essentially unit response so that the problem then is to select the fc1 and fc2 that will

yield such a response. This is the case for the St. Louis data in which the pass-band is

from 0.042 to 0.083 cy/h. Thus,

f c1 ¼ 0:042� DfR1 ffi 0:042� 1:3=2n ð3:61aÞ

and

f c2 ¼ 0:083þ Df L2 ffi 0:083þ 1:3=2n: ð3:61bÞ

We are free to choose n insofar as (i) the above relationship between DfR1 and DfL2
and n holds (this means staying away from the frequency origin and the Nyquist

frequency when n is small) and (ii) fc1> 0.0 and fc2< fn. The greater the number of

weights, the narrower the transition bands.

Employing a total of 2nþ1¼ 71 weights should provide a good response. From

Equation 3.61 the cut-off frequencies are

f c1 ¼ 0:042� 1:3=70 ¼ 0:023 cy=h ð3:62aÞ

and

f c2 ¼ 0:083þ 1:3=70 ¼ 0:102 cy=h: ð3:62bÞ
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Using the above values in the computer program in Appendix 3.C produces the

band-pass frequency response in Figure 3.20.

The band-pass filtered data are shown in Figure 3.21. The high frequency

fluctuations seen in Figure 3.17 have been removed. Even though the variance

associated with the semi-daily cycle is an order of magnitude less than that of the

daily cycle (Figure 3.18), its impact can be seen in the decreasing portion of the daily

cycle for days 18, 19, and 20, for example. The change in shape relative to the nearly

straight line (on the scale of the plot) during the increasing portion is brought about

by the difference in phase angles between the daily and semi-daily sinusoids.

Problem 7 provides an opportunity to apply Lanczos filtering to the January and

July 2009 temperature data at Will Rogers Airport, Oklahoma City, Oklahoma, that

were analyzed in problem 16 of Chapter 1.
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Figure 3.20 Response function for Lanczos band-pass filter with fc1¼ 0.023 cy/di,

fc2¼ 0.102 cy/di, and number of weights 2nþ1¼ 71.
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Figure 3.21 The data in Figure 3.14 after applying the bandpass filter having the response

H(f) in Figure 3.20 and adding back the mean of the unfiltered data shown by the dashed line.
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Appendix 3.A Convolution of two running mean filters

In this appendix we show how to create a triangular filter by convolving two

identical running mean digital filters. The weights for the first running mean filter

are given by

w1m ¼
1

nþ 1
; 0 � m � n

0; m > n

8<
: ð3:A:1Þ

and for the second by

w2m ¼
1

nþ 1
; 0 � m � n

0; m > n

8<
: ð3:A:2Þ

for n> 0.

Following Equation 3.5 we can write the convolution summation for the weights

of the triangular filter as

wk ¼
X1

m¼�1
w1m w2ðk�mÞ; �1 < k < 1: ð3:A:3Þ

Because we are convolving two weight functions to produce a third weight function,

we use the symbol w for all three weight functions.

To demonstrate the convolution, panel (a) below shows two three-weight running

mean filters, w1m and w2m, outlined by the solid and dashed lines, respectively, for

n¼ 2, with weights 1/(nþ 1). Running mean filter w2m has been reflected about the

axis m¼ 0 and is coming from the left andmoving to the right to k¼ –1. There is no

overlap of w2(–1–m) with w1m.

xxx ooo

m

4321−1−2 0−3

1

n+1

1

n +1

w
1m

w
2(−1−m)

(a)
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Next, translate w2(–1–m) to the right one time step as shown in panel (b). Now there is

overlap.

xxx ooo

m

4321−1−2 0−3

1

n +1

1

n +1

w
1m

w
2(−m)(b)

and the weight at k¼ 0 as a consequence of convolution is

wk¼ 0 ¼ 1

ðnþ 1Þ �
1

ðnþ 1Þ ¼ 1

ðnþ 1Þ2 : ð3:A:4Þ

Now translate w2(–m) to the right one more time step as shown in panel (c).

xxx ooo

m

4321−1−2 0−3

1

n+1

1

n +1

w
2(1−m)(c)

w
1m

From panel (c) we see that

wk¼ 1 ¼ 2

ðnþ 1Þ2 : ð3:A:5Þ

If we were to continue with k¼ 2, k¼ 3, and so on, we would conclude the

corresponding weights would be

wk¼ 2 ¼ 3

ðnþ 1Þ2

wk¼ 3 ¼ 2

ðnþ 1Þ2

wk¼ 4 ¼ 1

ðnþ 1Þ2

wk¼ 5 ¼ 0

ðnþ 1Þ2
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and so on, for n¼ 2. For the general case of n being a positive integer> 1, we surmise

the relation between wk and n is

..

.

wk¼�1 ¼ 0

ðnþ 1Þ2

wk¼ 0 ¼ 1

ðnþ 1Þ2

wk¼ 1 ¼ 2

ðnþ 1Þ2

..

.

wk¼ n�1 ¼ n

ðnþ 1Þ2

wk¼ n ¼ nþ 1

ðnþ 1Þ2

wk¼ nþ1 ¼ n

ðnþ 1Þ2

..

.

wk¼ 2n�1 ¼ 2

ðnþ 1Þ2

wk¼ 2n ¼ 1

ðnþ 1Þ2

wk¼ 2nþ1 ¼ 0

ðnþ 1Þ2

..

.
:

If we offset the location of the central weight at k¼ n above to k¼ 0, we obtain a

convenient formula for the triangular filter given by

wk ¼
ðnþ 1Þ � kj j
ðnþ 1Þ2 ; 0 � kj j � n

0; kj j > n

8><
>: ð3:A:6Þ

which simplifies to

wk ¼
1

ðnþ 1Þ 1� kj j
ðnþ 1Þ

 !
; 0 � kj j � n

0; kj j > n

8>><
>>: ð3:A:7Þ
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which is the same as Equation 3.19. The length of the filter is (2nþ1) and the sum of

the weights is one.

Appendix 3.B Derivation of Equation 3.20

In this appendix we outline a procedure to derive the response function

for a triangular filter. We begin with the weight function for the triangular

filter, namely

wk ¼
1

nþ 1
1� kj j

nþ 1

 !
; kj j � n

0; kj j > n

:

8><
>: ð3:19Þ

The corresponding frequency response function is

HðfÞ ¼ 1

nþ 1

Xn
k¼�n

1� kj j
nþ 1

 !
expð�i2pfkÞ

¼ 1

nþ 1

Xn
k¼�n

expð�i2pfkÞ � 2

ðnþ 1Þ2
Xn
k¼ 0

k cosð2pfkÞ
ð3:B:1Þ

where Dt¼ 1 and the sine term that might otherwise be expected in the final

summation is zero since sine is an odd function.

The second summation can be written

Xn
k¼ 0

k cosð2pfkÞ ¼ 1

2p

d

df

Xn
k¼ 0

sinð2pfkÞ
 !

¼ 1

2p

d

df

Xn
k¼ 0

½expði2pfkÞ � expð�i2pfkÞ�=ð2iÞ
 !

¼ 1

2p

d

df

sinðpfnÞ sin pfðnþ 1Þ½ �
sinðpfÞ

" #
ð3:B:2Þ

in which Equation 1.B.4 has been used.
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Substituting Equation 3.B.2 into Equation 3.B.1 and differentiating yields

HðfÞ ¼ 1

nþ 1

sin pfð2nþ 1Þ½ �
sinðpfÞ � 1

ðnþ 1Þ2
"
ðnþ 1Þ sinðpfnÞcos½pfðnþ 1Þ�

sinðpfÞ

þ n sin½pfðnþ 1Þ� cosðpfnÞ
sinðpfÞ � sinðpfnÞ sin½pfðnþ 1Þ� cosðpfÞ

sin2ðpfÞ

#
:

Expanding the first term on the right to match the form of the second and third

terms, then reducing, results in

HðfÞ ¼ 1

ðnþ 1Þ2 sinðpfÞ cosðpfnÞ sin pfðnþ 1Þ½ � þ sinðpfnÞ sin½pfðnþ 1Þ� cosðpfÞ
sinðpfÞ

� �
:

With additional manipulation, we obtain

HðfÞ ¼ sin2½pfðnþ 1Þ�
ðnþ 1Þ2sin2ðpfÞ ð3:B:3Þ

which is the same as Equation 3.20 for Dt¼ 1.

Appendix 3.C Subroutine sigma

subroutine sigma (nwt, wt, wtbp, fca, fcb, resp, freq, ihp)

dimension wt(1), resp(1), freq(1), wtbp(1)

data pi, topi /3.1415926536, 6.2831853072/

c******************************************************************

c

c This subroutine computes the weight sequence and response

c function for low-pass, high-pass and band-pass Lanczos

c filters.

c

c *Input*

c

c.... nwt Total number of weights, 2n+1. n is the num-

c ber of weights to the right and left of the central

c weight. The end weights (n, -n) will always be zero

c when the sigma factor is greater than 0.

c

c.... fca The cut-off frequency of the ideal high or low-pass

c filter.

c
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c.... fcb Used only when a band-pass filter is desired, in which

c case it is the cut-off frequency for the second low-pass

c filter. fcb is greater than fca.

c

c.... ihp If low-pass filter ihp = 0, if high-pass filter ihp = 1,

c if band-pass filter ihp = 2.

c

c *Output*

c

c.... wt The array of low-, high-, and band-pass computed weights

c including the central weight and those on either side.

c Its length is (nwt+1)/2.

c

c.... wt resp The array of responses at frequency intervals of 0.005

c cycles/data interval from the origin to the Nyquist

c frequency. Its length is 101.

c

c.... freq The array of frequencies at intervals of 0.005 cycles/

c data interval at which the responses are calculated.

c Its length is 101.

c

c *Other*

c

c.... wtbp The array of weights for the first low-pass filter

c used in computing a band-pass filter. Its length is

c (nwt + 1)/2.

c

c....nsigma The power of the sigma factor. It can be greater than or

c equal to zero. It is currently set to one.

c

c******************************************************************

nsigma = 1

arg = topi*fca

argb = topi*fcb

nw = (nwt - 1) / 2

anw = nw

kk = 0

wt(1) = 2.0*fca

c

c...............Compute weights

c

91 kk = kk + 1

do 10 i = 1, nw

ai = i

knw = i + 1
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a = sin(arg*ai) / (pi*ai)

b = anw*sin(ai*pi / anw) / (pi*ai)

b = b**nsigma

wt(knw) = a*b

10 continue

c

c...............Standardize weights

c

sum = wt(1)

do 20 i = 2, knw

20 sum = sum + 2.0*wt(i)

do 30 i = 1, knw

30 wt(i) = wt(i) / sum

if (kk.ge.2) go to 81

if (ihp - 1) 1, 2, 3

c

c...............Alter weights to get high-pass filter

c

2 wt(1) = 1.0 - wt(1)

do 70 i = 2, knw

70 wt(i) = -wt(i)

go to 1

c...............Compute weights of 2nd low-pass filter for band-pass filter

c

3 do 80 i = 1, knw

80 wtbp(i) = wt(i)

arg = argb

wt(1) = 2.0*fcb

go to 91

c

c...............Alter weights to get band-pass filter

c

81 do 90 i = 1, knw

90 wt(i) = wt(i) - wtbp(i)

c

c...............Compute response function

c

1 nf = 101

frqint = 0.5 / float(nf - 1)

freq(1) = 0.0

d = 0.0

do 60 j = 2, knw

60 d = d + 2.0*wt(j)

resp(1) = d + wt(1)

do 40 i = 2, nf
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ai = i - 1

freq(i) = ai*frqint

fr = freq(i)

d = 0.0

do 50 j = 2, knw

bi = j - 1

d = d + wt(j)*cos(topi*fr*bi)

50 continue

resp(i) = wt(1) + 2.0*d

40 continue

return

end

Problems

1 On a graph of response versus frequency, sketch an example of a high-pass

filter, a low-pass filter, and a band-stop filter, labeling each. Each curve

should extend from 0 to 0.5 cycles per data interval. What is the sum of the

weights for each filter?

2 Show, mathematically, that if the mean of a stationary infinite analog time

series is to be preserved after applying a filter of finite length, the area of

the weight function must be one.

3 Starting with

yt ¼
Xm

k¼�m

hk xt�k; t ¼ 1; 2; � � � N

where m<<N, show that if hk is a filter with the sum of the weights equal

to zero, then
y ffi 0

in which the overbar represents the mean value of the realization. Explain

any approximations you make. Use a sketch to aid you in your analysis.

4 (a) Write down the formula for the weights wk for a running mean

(rectangular) digital filter.

(b) Using the appropriate Fourier transform and Equation 1.B.4, show that

the frequency response function for the running mean filter is given by

HðfÞ ¼ sin½pfð2nþ 1ÞDt�
ð2nþ 1Þ sinðpfDtÞ

where Dt¼ 1.
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(c) Now convert H(f) above into a high-pass filter. Sketch the associated

high-pass frequency response H0(f) for frequencies from 0 to 0.5 cycles

per data interval.

(d) What is the formula for the high-pass weights wk
0? Also, calculate the

value of each of the high-pass weights if the total number of weights

is five.

5 The following is a sequence of digital data from a time series.

y5 ¼ 2 y6 ¼ 3 y7 ¼ �1 y8 ¼ 0 y9 ¼ 1 y10 ¼ 4

(a) If the data are to be smoothed with a high-pass filter that is a five-point

triangular filter (total number of weights is five), determine the weights

and show your method of determination.

(b) Compute the value of the high-pass filtered time series y0t at all times for

which it is feasible.

(c) PlotH(f) for frequencies extending from 0 to 0.5 cycles per data interval

for Dt¼ 1. Calculate H(f) at a sufficient number of frequencies to

clearly define H(f).

(d) On the same graph as in (c), plot the companion low-pass frequency

response function using a dashed line.

6 A cosine filter with (2nþ1) weights where n¼ 3 is applied to a digital time

series. The central weight w0¼ 1/3, w1¼w-1¼ 0.75/3, and w3¼w-3¼ 0.

(a) What is the value of w2¼w–2 for this low-pass filter?

(b) What is the value of x0t at all times for which it is calculable given

x6 ¼ 4 x7 ¼ 5 x8 ¼ 6 x9 ¼ 3 x10 ¼ 0

x11 ¼ �1 x12 ¼ �3 x13 ¼ �1 x14 ¼ 2

7 This problem deals with the application of high-pass and low-pass filters to

Oklahoma City, Oklahoma, hourly temperature data for January and July

2009. These data are available on the website http://www.wiley.com/go/

duchon/timeseriesanalysis. The filenames are OKC_200901_hrly_temp.xls

and OKC_ 200907_hrly_temp.xls. See problem 16 in Chapter 1 for infor-

mation on the data structure.

(a) Design a low-pass Lanczos filter to pass only periods longer than one

day. That is, periods one day and shorter should be removed. Use 51

weights and a sigma factor to power 1. Discuss your design procedure,

particularly your selection of fc, and plot the filter response function to

verify that the daily cycle will be removed.
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(b) On a single graph with a common temperature scale, plot both the

original January 2009 data and the data passed by the filter.

(c) Use a high-pass Lanczos filter to pass only periods 24 hours and shorter.

That is, periods 24 hours and shorter should be essentially completely

passed. Plot the filter response function.

(d) Plot the data passed by the high-pass filter and the original January 2009

data on one graph. Use a continuous temperature scale for both time

series so that the two curves are separate from each other.

(e) What do the low-pass filtered data show? Indicate the times of the cold

front passages on the plot of the low-pass filtered data in (b).What is the

average number of days between cold front passages (if that’s what you

see) over the course of the month?

(f) What do the high-pass filtered data show? Comment on the causes of

the variable amplitude of the daily cycle. What accounts for the

nighttime temperatures often being noisier-looking than the daytime

temperatures?

(g) Use the low- and high-pass filters from (a) and (c) to filter the July 2009

data. Create plots of the original and filtered data similar to those you

created in (b) and (d).

(h) Compare and contrast the July time series with the January time series,

particularly from a meteorological standpoint.

8 Repeat problem 7, but using data from the January and July 2010 files for

San Francisco, California. These data are available on the website http://

www.wiley.com/go/duchon/timeseriesanalysis. The filenames are SFO_

201001_hrly_temp.xls and SFO_201007_hrly_temp.xls. See problem 16

in Chapter 1 for information on the data structure.
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4
Autocorrelation

One of the goals of a physical scientist is to understand the morphology of natural

events. An obvious step that must be taken is to obtain samples in time and space of

variables that characterize the physical properties of an event over its lifetime. The

fact that an event has a lifetime implies that it evolves in time and/or space, a

consequence of which is that successive observations of its properties are related.

This is called autocorrelation, the term “auto” meaning “with itself.” The degree of

autocorrelation depends on the physical nature of the phenomenon being sampled

and the time and/or space separation between successive observations. Sometimes

the term “serial correlation” is used in place of autocorrelation. While both terms

have the same meaning, we tend to use the latter term.

An example of a meteorological event is an isolated thunderstorm, the lifetime of

which, from birth through maturity to death, may last around an hour and move

50 km. A variable that is used to characterize storm intensity is the maximum speed

in the updraft located inside the storm. Initially it is small, reaches a peak at maturity

and then decreases. Successive values of the maximum updraft speed are clearly

related; that is, they are autocorrelated. Another example is the changing river stage

(water level) at a location along a river fed by basin runoff in response to rainfall in

the basin. The river stage rises, reaches a maximum, and then falls as the runoff

ceases, the record of which is called a hydrograph. Thus themagnitudes of successive

measurements of river stage are related.

From a statistical viewpoint, a positive value of autocorrelation for a time

separation of 10minutes, for example,means that a higher-than-average observation

tends to be followed by another higher-than-average observation 10minutes later,

and similarly for lower-than-average observations. A negative value means that a

higher-than-average observation tends to be followed by a lower-than-average

Time Series Analysis in Meteorology and Climatology: An Introduction, First Edition. Claude Duchon and Robert Hale.

� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.



observation 10minutes later, and vice versa. The greater the tendency for any two

successive departures from the mean to be of the same or opposite sign for a given

time separation, the greater the positive or negative autocorrelation, respectively.

The sequence of autocorrelation values associated with increasing time separation is

called the autocorrelation function. While the autocorrelation function is dimen-

sionless, it has a companion function called the autocovariance function, the units of

which are the squared units of the variable of interest. The autocorrelation function is

a standardized autocovariance function.

Any statistical property that involves the number of independent data or degrees

of freedom (dof) will be altered by the presence of autocorrelation in the data used to

calculate that property. Common examples are the variance, variance of the mean,

variance of the variance, and confidence intervals for the population mean, each of

which is discussed in this chapter.

Before proceeding further, it may be appropriate to review Section 1.4.1, wherein

various statistical concepts and terms are discussed. A number of them will be used

throughout this chapter.

4.1 Definition and properties

The autocovariance function (acvf) of a randomprocess denoted by randomvariable

(rv) X(t) is given by

cðt2 � t1Þ ¼ Cov½Xðt1Þ;Xðt2Þ�
¼ E½ðXðt1Þ � mðt1ÞÞðXðt2Þ � mðt2ÞÞ� ð4:1Þ

where Cov means covariance, E is the expectation operator, and m is the time-

dependent population mean. In order to understand Equation 4.1 we consider the

vertically stacked array of time series shown in Figure 4.1(which is nearly identical to

Figure 1.17). The realizations shown are examples from the population of time series

comprising a random process. Taking the expectation in Equation 4.1 means we are

finding the average of products of the departures of rv X(t1) about its population

mean m(t1) with those of rv X(t2) about its population mean m(t2). Each population
mean results from taking the average across all members of the population of time

series at the respective times and is equivalent to taking the expectation.

Equation 4.1 is themost general form for the population autocovariance function.

It allows for nonstationary time series, as reflected by the time dependence of the

population means. However, analysis of data with time varying statistical properties

can present an enormous challenge. In Section 1.4.1 we discussed the need to

transform nonstationary time series to stationary time series by any appropriate

method. Accordingly, we continue our investigation of autocorrelation for
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stationary random processes only. Under this proviso, the expected value of

products of the departures from the mean for a given time separation, Dt¼ t2� t1
in Figure 4.1, is independent of location along the time axis. That is, the

autocorrelation function depends only on time difference, not actual time. As

a consequence, we can write the equations for the autocovariance and autocor-

relation for a stationary random process directly from Equation 4.1 for both

analog and digital time series.

Realizations

Δt

X(t
2
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x
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(t)

x
1
(t)

X(t
1
)

Figure 4.1 A selection of realizations from a random process. X(t1) is random variable X at

time t1, X(t2) is random variable X at time t2. The light horizontal lines are the same reference

value of x for each realization.
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4.1.1 Analog data

For an analog stationary random process X(t), the population autocovariance

function given by Equation 4.1 reduces to

cðuÞ ¼ Cov½XðtÞ;Xðtþ uÞ�
¼ E ðXðtÞ � mÞðXðtþ uÞ � mÞ½ � ð4:2Þ

where u is referred to as the time lag or simply lag. For a stationary process the

population means are no longer dependent on time; they all have the same value.

Thus, the expectation in Equation 4.2 depends only on time separation u, not on

actual time.

As stated earlier, the population autocorrelation function (acf) is the standardized

population autocovariance function, so we can write

rðuÞ ¼ cðuÞ
cð0Þ ¼

cðuÞ
s2X

ð4:3Þ

where s2X is the population variance.

Three common properties of the acf are:

(1) r(0)¼ 1

(2) r(u)¼ r(�u) (also c (u)¼ c (�u))

(3) |r(u)|� 1, for all u.

Property (1) is a consequence of the definition ofr given by Equation 4.3 and the fact
that the autocovariance at lag 0 is identical to the variance, as seen in Equation 4.2.

Property (2) follows fromthe interchangeability ofX(t) andX(t þ u) inEquation4.2

because of the stationarity assumption. Thus the acvf and acf are even functions.

Property (3) can be proved by considering the variance of the linear combination

(a1Z1 þ a2Z2), wherea1 anda2 are coefficients andZ1 andZ2 are randomvariables.

Then, from Equation 1.18,

Var½a1Z1þa2Z2� ¼ E½fða1Z1þa2Z2Þ � E½a1Z1þa2Z2�g2�
¼ E½fa1ðZ1 � mZ1

Þþa2ðZ2 � mZ2
Þg2�

¼ a2
1 Var½Z1� þ 2a1a2 Cov½Z1;Z2� þa2

2 Var½Z2� : ð4:4Þ

Because Equation 4.4 is positive or zero, dividing both side by a2
2 yields

fða1=a2Þ ¼ Var½Z1� ða1=a2Þ2 þ 2Cov½Z1;Z2� ða1=a2ÞþVar½Z2� ð4:5Þ
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which is likewise positive or zero. This is a quadratic equation in (a1/a2), thus

f(a1/a2)will formaparabola if plotted on real axes. If f(a1/a2) is everywhere positive,

then there are no zero crossings and thus no real roots; the two roots of the equation

must be complex. This means that the discriminant of Equation 4.5 must be less

than zero. If f(a1/a2)¼ 0, the parabola intersects the (a1/a2) axis at a single point

(a double root) and the discriminant of Equation 4.5 is equal to zero. Consequently,

for Equations 4.4 and 4.5 to always be positive or zero requires the discriminant in

Equation 4.5 to be �0, resulting in

ðCov½Z1;Z2�Þ2
Var½Z1� Var½Z2� � 1: ð4:6Þ

Replacing Z1 by X(t) and Z2 by X(t þ u) and taking the square root yields

Cov½XðtÞ;Xðtþ uÞ�
ðVar½XðtÞ� Var½Xðtþ uÞ�Þ1=2
�����

����� ¼ Cov½XðtÞ;Xðtþ uÞ�
Var½XðtÞ�

����
���� ¼ cðuÞ

s2X

����
���� ¼ jrðuÞj � 1

which is property (3). This is the approach taken by Jenkins and Watts (1968) to

prove property (3). In practice, it is possible to compute sample values of the acf that

exceed unity, but this is an artifact of the formulas used for computation and occurs

with nonrandom time series, for example, a sinusoid.

4.1.2 Digital data

Expressions parallel to Equation 4.2, Equation 4.3, and the acf properties for digital

data follow. The population autocovariance function is

cðkÞ ¼ Cov½Xt;Xtþ k�
¼ E½ðXt � mÞ ðXtþ k � mÞ�; jkj ¼ 0; 1; 2; . . . ð4:7Þ

where k is the lag for unit increments in time. The population autocorrelation

function is

rðkÞ ¼ cðkÞ
cð0Þ ¼

cðkÞ
s2X

; jkj ¼ 0; 1; 2; . . . : ð4:8Þ

The three common properties are:

(1) r(0)¼ 1

(2) r(k)¼ r(�k) (also c (k)¼ c (�k))

(3) |r(k)|� 1, for all k.
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4.2 Formulas for the acvf and acf

4.2.1 Acvfs for analog data

When performing statistical analyses in Chapter 1 we used upper case symbols to

represent random variables and lower case symbols to represent samples or

realizations. We followed this convention in the previous section and will continue

to do so throughout this chapter. Thus c(u) and c0(u) below identify working

formulas for calculating the acvf of a realization x(t). The structure of Equation 4.2

suggests there are two formulas for analog data. The first is

cðuÞ ¼
1

T

ð T�juj

0

ðxðtÞ � xÞðxðtþ jujÞ � xÞ dt; 0 � juj < T

0; juj � T

8<
: ð4:9Þ

and the second is

c0ðuÞ ¼
1

T� juj
ð T�juj

0

ðxðtÞ � xÞðxðtþ jujÞ � xÞ dt; 0 � juj < T

0; juj � T

8<
: ð4:10Þ

where

x ¼ 1

T

ð T

0

xðtÞ dt:

Figure 4.2 demonstrates one way to understand how c(u) or c0(u) is calculated.
There is but one time series x(t) extending from 0 to T. It is represented by the upper

rectangle in the figure. The identical time series is represented by the lower rectangle,

but is shifted u units of time relative to the upper rectangle. Cross-multiplication of

the overlapping time series (shaded rectangles) as expressed by the integrals in

Equations 4.9 and 4.10 leads to either value of autocovariance c(u) or c0(u). The
coefficient 1/(T� |u|) of the integral in Equation 4.10 takes into account the

 0 |u|    T

 0  T-|u| T

x(t)

x(t+|u|)

t

Figure 4.2 Schematic representation of an autocovariance calculation. The shaded area

represents the portion of each series involved in the integration of c0ðuÞ or c(u).
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continual reduction in the overlap of the two time series as the lag u increases. In

Equation 4.9 no accounting is made for the reduction in overlap.

4.2.2 Acvfs for digital data

The form of Equation 4.7 suggests similar formulas for digital data. Expressions

parallel to Equations 4.9 and 4.10 are

cðkÞ ¼
1

N

XN�jkj�1

t ¼ 0

ðxt � xÞðxtþ jkj � xÞ; jkj ¼ 0; 1; . . . ;N� 1

0; jkj > N� 1

8><
>: ð4:11Þ

and

c0ðkÞ ¼
1

N� jkj
XN�jkj�1

t ¼ 0

ðxt � xÞðxtþ jkj � xÞ; jkj ¼ 0; 1; . . . ;N� 1

0; jkj > N� 1

8><
>: ð4:12Þ

where

x ¼ 1

N

XN�1

t ¼ 0

xt:

Similar to analog data, the coefficient 1/(N� |k|) takes into account the continual

reduction in the number of products as the lag k increases. In calculating the

coefficient in the first formula, no accounting is made for the loss of products. In

either Equations 4.11 or 4.12, the acvf is proportional to the sum of the products of a

given time series with the same time series lagged k units in time. Figure 4.2 is also a

schematic representation of this process if T is replaced by N� 1, T� |u| by

N� |k|� 1, x(t) by xt, x(t þ |u|) by xt þ |k|, and |u| by |k|.

4.2.3 Mean square error of acvf estimators

As given above, c(k) and c0(k) are formulas to use with realizations of digital data. If

we now consider c(k) and c0(k) to be estimators (which are random variables) of the

population acvf c, then xt, xt þ |k| and x must be treated as random variables. By our

convention, upper case notation is used for random variables. Hence, sample

c(k) becomes random variable C(k), sample c0(k) becomes random variable C0(k),
sample xt becomes random variable Xt, and sample x becomes random variable X.

A logical question to ask is which estimator is better to use. The answer can be

approached by comparing their mean square errors. The general expression for the
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mean square error of an estimator q of parameter H is given by

E½ðq�HÞ2� ¼ E½fðq� E½q�Þþ ðE½q� �HÞg2�
¼ Var½q� þB2ðqÞ ð4:13Þ

where B represents bias. Thus, the mean square error of an estimator is the sum of

the variance of the estimator about its expected value and the square of the bias.

The cross-product term is zero.

If we treat Equations 4.11 and 4.12 as estimators for the acvf and apply

Equation 4.13 to each, where C(k) or C0(k) corresponds to q and c(k), the
autocovariance function for a stationary random process, corresponds to H, the

results are

E½ðCðkÞ � cðkÞÞ2� ¼ Var½CðkÞ�þB2½CðkÞ� ð4:14Þ

and

E½ðC0ðkÞ � cðkÞÞ2� ¼ Var½C0ðkÞ� þB2½C0ðkÞ�: ð4:15Þ

We first determine the bias of Equation 4.11 by taking its expectation

E½CðkÞ� ¼ E
1

N

XN� kj j�1

t¼ 0

Xt � X
� �

Xtþ kj j � X
� �" #

; kj j ¼ 0; 1; 2; . . . ;N� 1

¼ E
1

N

XN� kj j�1

t¼ 0

ðXt � mÞ � ðX� mÞ� � ðXtþ kj j � mÞ � ðX� mÞ� �" #
ð4:16Þ

in which the population mean m, has been introduced. Expanding the summation

and taking the expectation yields

E½CðkÞ� ¼ 1� kj j
N

� �(
cðkÞþVar X

� �

�E ðX� mÞ 1

N� kj j
XN� kj j�1

t¼ 0

ðXtþ kj j � mÞ
" #

�E ðX� mÞ 1

N� kj j
XN� kj j�1

t¼ 0

ðXt � mÞ
" #)

: ð4:17Þ

190 CH 4 AUTOCORRELATION



The comparable expression for the other choice of estimator is

E C0ðkÞ½ � ¼ cðkÞþVar½X�

� E ðX� mÞ 1

N� kj j
XN� kj j�1

t¼ 0

ðXtþ kj j � mÞ
" #

� E ðX� mÞ 1

N� kj j
XN� kj j�1

t¼ 0

ðXt � mÞ
" #

: ð4:18Þ

The two expectations on the right-hand sides of Equations and 4.18 are equal to

each other and when k¼ 0 their sum is –2 Var[X] in each equation. Thus, for k¼ 0

and removal of the curly brackets in Equation , the sum of the last three terms on the

right-hand sides of Equations and 4.18 is –Var[X]. As |k| increases, the sum of the

same terms will become less negative but will be always less than Var[X]. Therefore,

in general, both C0(k) and C(k) are biased. However, if N is sufficiently large, such

that X� m, the sums of the three terms will be small, resulting in

E CðkÞ½ � � 1� kj j
N

� �
cðkÞ ð4:19Þ

and

E C0ðkÞ½ � � cðkÞ: ð4:20Þ

The corresponding bias squared terms are

B2 CðkÞ½ � � kj j
N

cðkÞ
� �2

ð4:21Þ

and

B2½C0ðkÞ� � 0: ð4:22Þ

As seen in Equation 4.19, the effect of bias is to systematically reduce themagnitude

of the expected acvf relative to the process acvf as |k| increases. There is no

dependence of bias on lag in Equation 4.20. With the assumption of N suf-

ficiently large, C(k) and C0(k) are referred to as biased and unbiased estimators,

respectively.

At this point we’ve determined the bias squared portion of the mean square error.

Because the determination of the variance of each acvf estimator is complex, its

development is postponed until Section 4.7. In summary of that section, it is

shown that the variance ratio Var[C0(k)]/Var[C(k)] is approximately N2/(N – |k|)2

so that the variability of the C0(k) estimator relative to that of C(k) becomes

increasingly unstable as lag k increases. It is thought that for most acvfs the
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effect of the increasing variance of C0(k) overwhelms the bias squared effect as-

sociatedwithC(k) (Jenkins andWatts, 1968, pp. 179–180).Consequently,we recom-

mend using Equations 4.9 or 4.11. Also, we observe that in estimating acvfs at small

values of lag, numerical differences between the two pairs of formulas will be small.

4.2.4 Acfs for analog and digital data

In parallel with Equations 4.9 and 4.10, the sample acfs for analog data are

rðuÞ ¼ cðuÞ
cð0Þ ¼

cðuÞ
s2

; uj j�T ð4:23Þ

r0ðuÞ ¼ c0ðuÞ
c0ð0Þ ¼

c0ðuÞ
s2

; uj j�T ð4:24Þ

where the sample variance is given by

s2 ¼ 1

T

ð T

0

ðxðtÞ � xÞ2 dt:

For digital data the sample acfs are

rðkÞ ¼ cðkÞ
cð0Þ ¼

cðkÞ
s2

; kj j ¼ 0; 1; 2; � � � ð4:25Þ

and

r0ðkÞ ¼ c0ðkÞ
c0ð0Þ ¼

c0ðkÞ
s2

; kj j ¼ 0; 1; 2; � � � ð4:26Þ

where the sample variance is given by

s2 ¼ 1

N

XN�1

i¼ 0

ðxi � xÞ2:

4.3 The acvf and acf for stationary digital processes

In Chapter 2, which dealt mainly with analog signals, we saw that a linear time-

invariant system consists of an input signal that is modified to produce an output

signal as expressed through the convolution integral

yðtÞ ¼
ð1

�1
hðuÞ xðt� uÞ du: ð2:1Þ
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That the system is stable requires that the integral of the absolute system function

|h(u)| be finite (Section 2.1). Nowwe replace the analog input signal x(t) in Equation

2.1 by a stationary digital process, Zt, to yield an output process, Xt, as shown in

Figure 4.3. We will use this notation in both this chapter and Chapter 5. In parallel

with analog data, the equivalent criterion for the output process for digital data to be

stationary again requires that the sum of the sequence of absolute weights be finite;

that is, X1
t¼�1

htj j � K < 1

where K is a constant. For physical realizability, that is, the current output value

cannot depend on future input values, the expression for the output process is, by

analogy with Equation 2.1,

Xt ¼
X1
i¼ 0

hi Zt�i

¼ h0 Ztþ h1 Zt�1þ . . . : ð4:27Þ
Taking the expectation of Equation 4.27 yields

E Xt½ � ¼ mX ¼
X1
i¼ 0

hi E Zt�i½ � ¼ mZ
X1
i¼ 0

hi

which shows that the mean of the output process is equal to the product of the mean

of the input process and the sum of the system function weights.

By substituting Equation 4.27 into Equation 4.2 we obtain the relationship

between the acvf of the output process and the acvf of the input process

cXðkÞ ¼ E½ðXt � mXÞ ðXtþ k � mXÞ�

¼ E
X1
i¼ 0

hi ðZt�i � mZÞ
X1
j¼ 0

hj ðZtþ k�j � mZÞ
" #

¼
X1
i¼ 0

X1
j¼ 0

hi hj E½ðZt�i � mZÞ ðZtþ k�j � mZÞ�

cXðkÞ ¼
X1
i¼ 0

X1
j¼ 0

hi hj cZðk � jþ iÞ: ð4:28Þ

X
t

Z
t

h
t

Figure 4.3 Input digital stationary process Zt passing through system function ht to yield

output process Xt.
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In the special case when Zt is white noise, that is, E[Zt]¼ 0 and Var½Zt� ¼
E Z2

t

� � ¼ s2Z, Equation 4.27 becomes the expression for the general linear process.

It is a stationary random process defined by

Xt � mX ¼
X1
i¼ 0

hi Zt�i ð4:29Þ

in which Zt is white noise. It is referred to as a “general linear” process because it

comprises a linear combination of, potentially, an infinite number of white noise

random variables multiplied by appropriate weights to create Xt with virtually any

valid statistical structure. Note that the left-hand side now represents departures

from the population mean mX, the value of which is arbitrary. This is in contrast to

Equation 4.27, wherein the output process mean is directly related to the input

process mean. The form of Equation 4.29 simply allows the output process to have

any desiredmean, with the departures from this mean determined by the zero-mean

white noise input. The acvf for white noise process Zt, as it would be applied in

Equation 4.28, is

cZðk � jþ iÞ ¼
s2Z; k � jþ i ¼ 0

0; k � jþ i 6¼ 0

(
ð4:30Þ

since the autocorrelation at any nonzero lag is zero for awhite noise process. The acvf

for the general linear process is then

cXðkÞ ¼ s2Z
X1
i¼ 0

hi hiþ kj j; kj j ¼ 0; 1; 2; . . . : ð4:31Þ

Equation 4.31 can be verified by substituting values of k into Equation 4.28.

Similarly, the acf is

rXðkÞ ¼
cXðkÞ
cXð0Þ

¼
P1
i¼ 0

hi hiþ kj j

P1
i¼ 0

h2i

; kj j ¼ 0; 1; 2; . . . : ð4:32Þ

What we have done in this section is to expand the input–output relationship for

linear systems developed in Chapter 2 to input–output stationary randomprocesses.

Equation 4.28 shows the relationship between the output and input acvfs. When the

input process is restricted to white noise, the resulting output process is called the

general linear process. The output acvf in Equation 4.31 is the product of the white

noise variance and the sum of the products of the weights. The data model in

Equation 4.29 has many practical applications in science and econometrics. In the
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next section we derive the acvfs and acfs for two data models and apply a white noise

test to each acf.

4.4 The acvf and acf for selected processes

4.4.1 White noise

The simplest model for data is digital white noise. In Equation 4.29 let h0¼ 1 and

hi¼ 0 for i 6¼ 0 so that

Xt � m ¼ Zt ð4:33Þ

where m is understood to be the population mean of Xt (previously mx), since the
population mean of Zt is zero. From Equation 4.31,

cXðkÞ � E½ZT Ztþ k� ¼
s2Z ¼ s2X; k ¼ 0

0; k 6¼ 0

	

resulting in the acf

rXðkÞ ¼
cXðkÞ
s2X

¼ 1; k ¼ 0

0; k 6¼ 0
:

	
ð4:34Þ

The population acf in Equation 4.34 is plotted in Figure 4.4 along with the acf

(using Equation 4.25) from a realization of 100 white noise values (which will be

discussed in Section 4.4.4).

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

white noise process

95% confidence limits

realization

(k)

r(k)

lag k

Figure 4.4 The acf r(k) for a white noise process (dashed line) and the observed acf r(k)

from a realization of 100 values of white noise for k� 20 (solid line). The 95% confidence

limits are also shown.
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4.4.2 First-order autoregression

The second model selected for discussion is a first-order autoregressive process,

denoted AR(1), given by

Xt � m ¼ a Xt�1 � mð ÞþZt ð4:35Þ
where Zt is white noise as defined above and a is a constant such that |a|< 1. The

current value, Xt – m, is some proportion of the previous value, Xt–1 – m, plus a
random component. It is through a that the process and, hence, a realization of it

exhibit autocorrelation. Furthermore, a is similar to the slope coefficient in

conventional simple linear regression y¼mx þ b, where a corresponds to m. The

analogy to simple linear regression is complete when Xt – m replaces y, Xt–1 – m
replaces x, and Zt replaces b, except that rv Xt is regressed onto itself at the previous

time step; thus the prefix “auto.” The random process defined by Equation 4.35 is

equivalent to a linear filter (see Equation 3.3) and has been found to be useful as a

data model in many fields of science because of its simple autocorrelation structure

and the capability to control the magnitude of autocorrelation with parameter a.
To find the acvf and acf of Equation 4.35 we first show that the AR(1) is a linear

process so that we can use Equations 4.31 and 4.32. By recursively solving for

(Xt–1 –m), (Xt–2 – m), (Xt–3 – m), and so on, as shown below with m¼ 0 for conve-

nience, Equation 4.35 acquires the form of Equation 4.29. Since Equation 4.29 is a

linear process, so also is Equation 4.35.

Xt ¼ aXt�1þZt

Xt ¼ a aXt�2 þZt�1ð ÞþZt

Xt ¼ a aðaXt�3þZt�2ÞþZt�1ð ÞþZt

..

.

Xt ¼ a0Zt þa1Zt�1þa2Zt�2þ . . . :

The recursion can be expressed by Equation 4.29 where hi¼ai (i� 0). Thus, from

Equation 4.31,

cXðkÞ ¼ s2Z
X1
i¼ 0

ai aiþ kj j

¼ s2Z a kj jX1
i¼ 0

a2i :

ð4:36Þ

It should be observed that, for stationarity

X1
i¼ 0

aj ji

must be a convergent series, thus |a|< 1.
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Using Equation 4.31, an alternative form of Equation 4.36 is

cXðkÞ ¼ cXð0Þ a kj j ¼ s2X a
kj j ð4:37Þ

so that using Equation 4.32, the acf for an AR(1) process becomes

rXðkÞ ¼ a kj j ð4:38Þ

and, therefore

a ¼ rXð1Þ: ð4:39Þ

Furthermore, it follows fromequatingEquation4.36 andEquation4.37 and summing

an infinite geometric series that

s2X ¼ s2Z
1� a2ð Þ ¼

s2Z
1� r2Xð1Þð Þ : ð4:40Þ

We see immediately that as |a| approaches one, the variance of the AR(1) process will
become very large.

The acf of the Xt process with a¼ 0.75 is plotted in Figure 4.5 along with the acf

from a realization of 100 values. As in Figure 4.4, the actual values in each curve are

connected with straight-line segments. Note that in Figure 4.5 the sample acf shows

an oscillatory structure. This is characteristic of realizations of acfs when the parent

acf (that of the random process) does not rapidly damp out to zero, and occurs

because the sample acf is itself serially correlated in the lag domain.
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Figure 4.5 The acf r(k) for an AR(1) process with a¼ 0.75 (dashed line) and the observed

acf r(k) for a realization of 100 values from the same process (solid line). Only acf values for

lags � 20 are shown. The 95% confidence limits for white noise are also shown.
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An alternative way to get Equations 4.37 and 4.38 is to multiply both sides

of Equation 4.35 by (Xt–k – m) and take the expectation, using Equation 4.7 as a

guide. Thus,

cXðkÞ ¼ E½ðXt � mÞ ðXt�k � mÞ� ¼ E½aðXt�1 � mÞ ðXt�k � mÞþZtðXt�k � mÞ�; k ¼ 1; 2; . . . :

Since the current value of white noise rv Zt is uncorrelated with past values of the

output random variables Xt–k, k¼ 1, 2, . . . ,

cXð1Þ ¼ acXð0Þ
cXð2Þ ¼ acXð1Þ ¼ a2cXð0Þ
cXð3Þ ¼ acXð2Þ ¼ a3cXð0Þ
..
.

cXðkÞ ¼ a kj jcXð0Þ; kj j ¼ 0; 1; 2; . . . ;

ð4:41Þ

from which the population acf is

rð1Þ ¼ a

rð2Þ ¼ a2

rð3Þ ¼ a3

..

.

rðkÞ ¼ a kj j; kj j ¼ 0; 1; 2; . . . :

ð4:42Þ

An AR(1) process with positive a is sometimes called a red noise process in

comparison to a white noise process. The reason is that, as Figure 4.5 shows, the

correlation is higher at low-numbered lags than at high-numbered lags. The resulting

slowly varyingfluctuationsmean that the periodogramof anAR(1) processwill show

greater variance at low frequencies or long wavelengths, analogous to red light

occurring at the low frequency or long wavelength end of the optical spectrum. In

comparison, there is no preferred structure in the acf for white noise (Figure 4.4) for

|k|> 0, so that its periodogramwill show no preference for variance at any frequency

in analogy to white light showing no color preference.

An AR(1) process includes the possibility of a having a negative value, although it

is difficult to imagine a physical process that has a negative lag 1 autocorrelation. If

such a process exists, we can see fromEquation 4.42 that its autocorrelation function

would exhibit alternating positive values at even lags and negative values at odd lags

with theirmagnitudes decreasing toward zerowith increasing lag. A similar regime of

alternating positive and negative values will tend to occur in an observed time series

as well.
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4.4.3 Second-order autoregression

A second-order autoregression has two regression coefficients. The first coefficient is

associated with the output variable one time-step back, as in an AR(1), and the

second coefficient is associated with the output variable two time-steps back. Thus

the equation of an AR(2) process is

Xt � m ¼ a1ðXt�1 � mÞþa2ðXt�2 � mÞþZt: ð4:43Þ

AnAR(2) is useful for modeling phenomena that exhibit quasi-periodic behavior.

While the autoregressivemodel can be of any order (third-order has three regression

coefficients, fourth-order has four, etc.), only the AR(1) and AR(2) appear to be

useful models for physical processes. Problems 7 and 9 at the end of this chapter ask

you to derive the variance for an AR(2) process, generate a realization, and compute

both the process acf and sample acf.

4.4.4 White noise test on an acf

The objective is to test the null hypothesis that a data set, as viewed through the acf,

comes from a population of white noise. This test is complementary to the white

noise test developed in Chapter 1 that was applied to periodogram variances. If the

null hypothesis is rejected, there is significant autocorrelation in the data set. If the

hypothesis cannot be rejected, the data set can be considered to be a realization from

a white noise or “purely” random process.

It has been shown by Anderson (1942) that for a normal white noise process the

estimator of the autocorrelation function R(k)¼C(k)/C(0) has a normal distribu-

tion with variance

Var RðkÞ½ � � 1

N
; 0 < kj j � m 	 N ð4:44Þ

where N, the number of data in the realization, is moderate to large. Note, further,

that this relation applies only for lags m 	 N.

The short dashed lines in Figure 4.6 are 
1 and 
1.96 standard deviations in

which R(k), representing the estimator of the population acf, has been replaced by

r(k), the acf of a realization, since the latter would be plotted in practice. The wider

pair of limits corresponds to the a priori 95% confidence interval. The interpretation

is that there is only one chance in 20 that any randomly selected r(k) will lie outside

this interval under the white noise null hypothesis.

WhenEquation 4.44 is applied to Figures 4.4 and 4.5, inwhich the 95%confidence

limits for sample size N¼ 100 are
1:96=
ffiffiffiffi
N

p ¼ 
0:196, the null hypothesis that the
realization in Figure 4.4 comes from a Gaussian white noise hypothesis cannot be

rejected, but the same hypothesis applied to Figure 4.5 is easily rejected, as expected.
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Even though only a priori limits are shown, the latter conclusion is reasonable

because 12 of the autocorrelation values lie outside the 95% confidence interval,

many more than expected by chance, and there is a systematic variation of

autocorrelation with lag.

In general, rejection or nonrejection of the white noise null hypothesis using

only the a priori confidence limits may not be as obvious when real data are

tested. Consequently, it is appropriate to develop a posteriori confidence limits

(Section 1.4.6) for a white noise test applied to a correlation function. A practical

a posteriori test can be derived from the statistical property that a x2 variable with m
dof can be created from the sum of the squares of m standard normal variables

(Appendix 1.C).

Consider the x2 variable with one dof

x21 ¼
ðRðkÞ � 0Þ2
Var ½RðkÞ� � NR2ðkÞ ð4:45Þ

in which Equation 4.44 is the source of the standard normal variable. If we sum over

m similar chi-square variables, then, from Equation 1.C.11,

x2m ¼ N
Xm
k¼ 1

R2ðkÞ: ð4:46Þ

Based on Equation 4.46, Box and Jenkins (1970, p. 291) proposed a test statistic

Q ¼ N
Xm
k¼ 1

r2ðkÞ ð4:47Þ

to test for randomness.

0 1 2 3 4 5 6 7

-1.96/ N

-1/ N

1.96/ N

1/ N

0

95%

conf.

int.

r(k)

Lag k

Figure 4.6 Schematic representation of the approximate a priori 95% confidence interval

for sample autocorrelation coefficients for white noise.
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As illustrations of using the Q-statistic, consider the computer-generated white

noise and AR(1) realizations in Figures 4.4 and 4.5, respectively, each of which have

N¼ 100 values. Using the first m¼ 20 values of r(k) we find

Q ¼ 13 for white noise

and

Q ¼ 155 for ARð1Þ:

Employing a one-tail test (because the concern is not with observing small values

of r, but large values) with a¼ 5% results in nonrejection of the white noise

hypothesis applied to Figure 4.4 and rejection when applied to Figure 4.5, where

x219 1� að Þ ¼ 30:1 The reason for using 19 dof is that the sample mean was used

in estimating R(k). In general, whether one uses m or m – 1 dof will have

little consequence if m is at least as large as 20. Ljung and Box (1978) discuss a

modified version of the Q-statistic that provides a better test for cases of small

sample size.

4.5 Statistical formulas

In introductory texts in statistics, the formula we usually see for the variance of the

mean of rv X is

s2
X
¼ s2X

N
:

In this formula N is the number of independent data or degrees of freedom (dof)

used in calculating themean. The greater the sample size, the smaller the variance of

the mean relative to the variance of the population random variable. Also,

introductory texts in statistics usually do not analyze variables that are ordered

in time or space, a situation for which the assumption of independent data is often

unrealistic.We know from experience that when physical data are collected in time

or space, they are typically serially correlated and, therefore, not independent.

Dependence or correlation in a time series can substantially increase the variance of

the mean relative to assuming independent data. The goal of the next section is to

derive the formula for the variance of the estimator for the sample mean when the

data are serially correlated. The formula will show us the connection between

the number of independent data or degrees of freedom in a realization and the

amount of serial correlation present. Then we will determine formulas for

unbiased estimators of the mean and variance of a realization in relation to its

serial correlation.
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4.5.1 Variance of the mean

Consider the running mean process in which

Xt ¼
XN�1

i¼ 0

1

N
Xt�i: ð4:48Þ

We can link Equation 4.48 to Equation 4.27 by replacing rv Xt with rv Xt and rv Zt–i

with rv Xt–i, where

hi ¼
0; i < 0

1

N
; 0 � i � N� 1

0; i > N� 1

8>><
>>:

and apply Equation 4.28 to obtain

cXðkÞ ¼
X1
i¼ 0

X1
j¼ 0

hi hj cXðk � jþ iÞ: ð4:49Þ

For k¼ 0 (and a stationary process),

cXð0Þ ¼ Var½Xt� ¼ Var½X�

¼ 1

N2

XN�1

i¼ 0

XN�1

j¼ 0

cXði� jÞ: ð4:50Þ

If we consider a plane delineated by orthogonal axes i and j, the double summation is

over the area outlined in Figure 4.7 by the limits of the summations. Since cX is

constant along any diagonal (i – j¼m), the double sum reduces to the single sum

Var½X� ¼ 1

N2

XN�1

m¼�ðN�1Þ
ðN� mj jÞ cXðmÞ

¼ 1

N
cXð0Þþ

2

N

XN�1

m¼ 1

ðN�mÞ cXðmÞ
" #

: ð4:51Þ

Now that we’ve lost connection to the k notation in Equation 4.49 in developing the

above relation, we can revert back to its previous use of being identified with lag

number. Thus,

Var X
� � ¼ s2X

N
1þ 2

N

XN�1

k¼ 1

ðN� kÞ rXðkÞ
" #

: ð4:52Þ
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We see that the variance of the mean is given by the product of the variance of the

mean for independent data and a scale factor that accounts for their lack of

independence. The scale factor is one when the autocorrelation function is every-

where zero for all lags greater than zero. We can preserve the form of the traditional

expression for the variance of themean by introducing a new termNe that wewill call

the effective or equivalent dof and rewrite Equation 4.52 as

s2
X
¼ s2X

Ne

ð4:53Þ
where

Ne ¼ N 1þ 2

N

XN�1

k¼ 1

ðN� kÞrXðkÞ
" #�1

: ð4:54Þ

The divisor in Equation 4.54 is always greater than or equal to one so that Ne�N.

The greater the autocorrelation in a realization, the smaller Ne is relative toN and the

fewer the number of independent data. Fewer independent data (equivalent dof)

result in a wider distribution of mean values among realizations.

Equation 4.54 shows the link between number of data, N, in a realization and the

equivalent dof, Ne. The link is the autocorrelation function rX(k) of the random
process. Unfortunately, it is never known except inmodeling studies or simulations.

Therefore, in practice, one option is to approximate rX(k) with rx(k) as determined

from a realization. Another option is to fit a smooth curve, say r�xðkÞ, to the observed
rx(k) with the constraint that r�xð0Þ ¼ 1. If physical considerations provide some

insight as to an appropriate r�xðkÞ, so much the better.

i

(N-1,N-1)

(0,0)

Region of Summation

j

m
 =

0m
 =

 -
 (
N

-1
)

m
 =

 (
N

-1
)m - axis

(N-m)
X

(m)

Figure 4.7 Region covered by the double summation in Equation 4.50.
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4.5.2 Mean and variance

To refresh our understanding of the population mean and population variance, we

can return to Figure 4.1.When we take the expectation of random variable X(t) for a

stationary process, we get E[X(t)]¼ m, which is obtained by averaging vertically at

any time t across allmembers of the population of time series. For stationary data,m is
independent of time. Similarly, if we want the population variance, we average

the square of the departures from m, again, vertically across all members of the

population; that is, Var[X(t)]¼ E[(X(t) – m)2]. Although Figure 4.1 strictly applies

to analog data, the discussion above applies equally well to digital data.

In practice, however, we are confronted with estimating these population

measures from a single, or perhaps a few, time series. Nevertheless, we would like

to develop a formula for estimating the population mean and population variance

using estimators that, in the expected sense, will be unbiased in the presence of

autocorrelated data. This is where we begin.

For autocorrelated data, the estimator for the population mean is the same as for

uncorrelated data. That is,

X ¼ 1

N

XN
i¼ 1

Xi ð4:55Þ

where N is the number of data. Taking the expectation of Equation 4.55 yields

E X
� � ¼ E Xi½ � ¼ m and, consequently, the usual estimator for the mean is unbiased.

Consider the following estimator for the population variance:

S2 ¼ 1

N

XN
i¼ 1

ðXi � XÞ2: ð4:56Þ

To determine if Equation 4.56 is biased, we take its expected value

E S2
� � ¼ 1

N
E

XN
i¼ 1

ðXi � XÞ2
" #

: ð4:57Þ

The summation can be written

XN
i¼ 1

ðXi � XÞ2 ¼
XN
i¼ 1

ðXi � m� Xþ mÞ2

¼
XN
i¼ 1

ðXi � mÞ2 � 2ðX� mÞ
XN
i¼ 1

ðXi � mÞþ
XN
i¼ 1

ðX� mÞ2

¼
XN
i¼ 1

ðXi � mÞ2 � 2NðX� mÞ ðX� mÞþN ðX� mÞ2
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which reduces to

XN
i¼ 1

Xi � X
� �2 ¼ XN

i¼ 1

Xi � mð Þ2 � N X� m
� �2

: ð4:58Þ

The expected values of the terms on the right side of Equation 4.58 are Ns2X and

Ns2
X
¼ Ns2X=Ne, respectively. Thus, Equation 4.57 becomes

E S2½ � ¼ 1

N
Ns2X � N

Ne

s2X

� �

¼ s2X
Ne � 1

Ne

: ð4:59Þ

Therefore, Equation 4.56 is a biased estimator. However, from Equation 4.59 we can

rewrite estimator Equation 4.56 in an unbiased form as

S2 ¼ 1

N

Ne

Ne � 1

� �XN
i¼ 1

ðXi � XÞ2: ð4:60Þ

This shows that Equation 4.56 is biased on two accounts. In the first place, even if the

data were uncorrelated (Ne¼N), the unbiased estimator would be

S2 ¼ 1

N� 1

XN
i¼ 1

ðXi � XÞ2: ð4:61Þ

The effect of the coefficient 1/(N – 1) in Equation 4.61 relative to the coefficient

1/N in Equation 4.55 is to increase the sample variance. This is necessary because

the use of X constrains the variability of the sum of squares relative to the sum of

squares if mwere used. Remember that X is derived from Xi, whereas this is not the

case when m is known. When N is large, the effect of not accounting for the loss of

one degree of freedom is small, which implies that X� m. We’ve used this

argument in Section 4.2.3 to find the bias squared portion of the mean square

error of the acvf estimators and will use it again in section 4.7 to find the variance

of the acvf estimator portion.

Secondly, when the data are autocorrelated, the variability of the sum of

squares is further constrained. Adjacent values in a time series, and hence the

mean, vary less the greater the autocorrelation for a given population variance.

This reduction is compensated for by Ne/(Ne – 1) in Equation 4.60 with respect to

N/(N – 1) for the case of uncorrelated data. It is through adjustment of the

coefficient of the sum of squares term that improved estimates of the population

variance are achieved.
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We now have three formulas to apply when want to find the mean and variance of

a realization denoted by xi, i¼ 1, . . ., N. The sample mean is

x ¼ 1

N

XN
i¼ 1

xi: ð4:62Þ

The sample variance is

s2 ¼ 1

N

Ne

Ne � 1

� �XN
i¼ 1

ðxi � xÞ2 ð4:63Þ

which reduces to

s2 ¼ 1

N� 1

XN
i¼ 1

ðxi � xÞ2 ð4:64Þ

when the data are uncorrelated.

4.6 Confidence limits for the population mean

Given a data set or realization from which we are trying to gain some insight about

the properties of the population time series fromwhich it came, a natural question to

ask is, “How representative is the samplemean of the populationmean?” Confidence

limits for the population mean can be determined from the data set itself. Qual-

itatively speaking, if the confidence interval is wide, as defined by the confidence

limits, the observed mean can be very different than the population mean; if the

confidence interval is narrow, the opposite is true. To understand the procedure for

obtaining the confidence limits, we consider two computer generated data sets: a

realization of white noise and a realization of anAR(1) process. The acf of the process

fromwhich the former time series was taken is everywhere zero except at lag 0, while

the acf associated with the latter process is everywhere nonzero.Wewill see the effect

of autocorrelation on the width of the confidence interval.

4.6.1 Example of white noise

Let rv X represent normally distributed white noise with standard deviation sX and
mean m. Then the distribution of X, the estimator for the mean, given by

X ¼ 1

N

XN
i¼ 1

Xi ð4:55Þ
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is also normal. We can create a standard normal variable Z according to

Z ¼ X� m

sX
ð4:65Þ

and rewrite Equation 4.65 as

X ¼ ZsX þ m: ð4:66Þ

Therefore, the expression for the (1 –a)% confidence interval applied to the

distribution function for X is

Pr Z
a

2

� �
sX þm � X � Z 1� a

2

� �
sX þ m

n o
¼ 1� a ð4:67Þ

where a is the level of significance.

Equation 4.67 can be rearranged to yield the (1 –a)% confidence interval on m
such that

Pr X� Z 1� a

2

� �
sX � m � X� Z

a

2

� �
sX

n o
¼ 1� a: ð4:68Þ

The corresponding (1 –a)% confidence limits are

X
 Z 1� a

2

� �
sX ð4:69Þ

where, in practice, X is replaced by sample mean x, and sX by sample standard

deviation sx.

Figure 4.8 shows a normal white noise realization generated from Equation 4.33

with Xt ¼ Zt þ m. That is

xt ¼ zt þ m; t ¼ 1; 2; . . . ;N ð4:70Þ
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Figure 4.8 A realization of a sequence of 100 values of Gaussian white noise showing

the sample mean and variance and the 95% confidence limits for the population mean

(dashed lines).
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in which a randomnumber generator was used to create samples of white noise from

a normal distribution with zero population mean and unit variance so that sX¼
sZ¼ 1. Appendix 4.A discusses a method to create a realization of normal white

noise. The population mean of Xt was set to m¼ 2.5. Using the formula

x
 Z 1� a

2

� �
sx ð4:71Þ

or

x
 Z 1� a

2

� �
sx=

ffiffiffiffiffiffiffiffiffiffiffiffi
N� 1

p
ð4:72Þ

with N¼ 100, sx¼ 0.999, anda¼ 0.05, the 95% confidence limits on the population

mean m are

2:551
 1:960� 0:999=9:950 ¼ 2:551
 0:197

or 2.354 and 2.748, as shown also in Figure 4.8. For this particular realization, both

the sample mean and sample variance are very close to their population values.

Strictly speaking, a Student’s t-distribution should have been used instead of a

normal distribution because the population variance was estimated. However, since

the number of dof is large (N – 1¼ 99), the resulting error in the confidence limits for

m is negligible. Therewas a loss of one dof due to using the samplemean in calculating

sx (you can also review the explanation following Equation 4.61). As is apparent in

this example, the loss of one dof could have been ignored with no significant

consequence.

4.6.2 Example of a first-order autoregression

Equation 4.35 written in the form Xt¼a(Xt–1 – m) þ Zt þ m is the source of data in

this example. The form for creating a realization is

xt ¼ aðxt�1 � mÞþ zt þ m: ð4:73Þ

To initiate the autoregression, let x1¼ z1 þ m, then let x2¼a(x1 – m) þ z2 þ m,
x3¼a(x2 – m) þ z3 þ m, and so on. The realization is driven by generating samples

of white noise from a normal distribution with zero population mean and unit

variance as in the example above. The difference here is that, in addition, an

autoregression has to be generated. Figure 4.9 shows a realization of an AR(1) with

a¼ r(1)¼ 0.90, m¼ 2.5, and sZ¼ 1. In fact, the time series shown in the figure

begins at t¼ 25 in the data generation procedure, the reason being the need to

minimize the “beginning effect.” The meaning of this term is that the value x1 is in

error because there is no x0. The error propagates forward in time but decreases with
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each time step. Momentarily, we will see that starting the realization to be used at

t¼ 25 is conservative.

We can easily see the difference between a time series that has zero autocorrelation

and one that has high autocorrelation. The white noise has closely spaced (in time)

ups and downs, while the autocorrelated data show large persistent swings in high

values and low values, and only occasional rapid changes in value. The sample mean

x¼ 2.88 and sample variance s2x ¼ 2.49. The latter figure is considerably less than

the population value s2X ¼ 5.26 calculated from Equation 4.40. We will find out later

(Section 4.7.3) that, statistically, the observed variance is reasonable given the

population variance and lag 1 correlation.

The procedure to establish the confidence limits for the populationmean forwhite

noise in the previous example was straightforward, the reason being that the

realization comprised independent data. The equivalent dof, Ne, was equal to

the number of data, N. In this example Ne is less than N. We can no longer use

N as in Equation 4.72. To find Ne we begin by expanding the summation term in the

brackets in Equation 4.54 for an AR(1) process to get

N

Ne

¼ 1þ 2

N

XN�1

k¼ 1

ðN� kÞrkXð1Þ

¼ 1þ 2
XN�1

k¼ 1

rkXð1Þ �
2

N

XN�1

k¼ 1

k rkXð1Þ: ð4:74Þ

Through further expansion, the first summation is a finite geometric series that

results in

2
XN�1

k¼ 1

rkXð1Þ ¼ 2
rXð1Þ � rNX ð1Þ
1� rXð1Þ

 �
: ð4:75Þ
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Figure 4.9 A realization of a sequence of 100 values of a first-order autoregressive process

with r(1)¼ 0.9 showing the sample mean and variance and the 95% confidence limits for the

population mean (dashed lines).

4.6 CONFIDENCE LIMITS FOR THE POPULATION MEAN 209



Expansion of the second summation results in

� 2

N

XN�1

k¼ 1

k rkXð1Þ ¼ � 2

1� rXð1Þð Þ2 rNþ 1
X ð1Þ � rNXð1Þþ

rXð1Þ � rNþ 2
X ð1Þ

N

 �
:

ð4:76Þ

If N is sufficiently large and rX(1) is somewhat less than one, terms with exponents

of N, N þ 1, and N þ 2 will be small. Within these constraints, Equations 4.75

and 4.76 become, respectively,

2
XN�1

k¼ 1

rkXð1Þ �
2rXð1Þ

1� rXð1Þ
ð4:77Þ

and

� 2

N

XN�1

k¼ 1

k rkXð1Þ � � 2

N

rXð1Þ
1� rXð1Þð Þ2 : ð4:78Þ

With N large, the summation in Equation 4.78 is small compared to the summation

in Equation 4.77 so that Equation 4.74 becomes

N

Ne

� 1þ 2rXð1Þ
1� rXð1Þ

ð4:79Þ

or, more usefully, the estimated equivalent dof for an AR(1) is

Ne � N
1� rXð1Þ
1þ rXð1Þ

� �
ð4:80Þ

and, from Equation 4.53, the variance of the mean is

s2
X
� s2X

N

1þ rXð1Þ
1� rXð1Þ

 �
: ð4:81Þ

Using Equation 4.23, we find the lag 1 autocorrelation for the realization to

be rx(1)¼ 0.77 in comparison to the population value rX(1)¼a¼ 0.90. Replacing

r(1) by rx(1) in Equation 4.80 to obtain an estimate of the equivalent dof in the

sample yields

Ne � 100
1� 0:77

1þ 0:77

� �
� 13: ð4:82Þ
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Thus, among the 100 data points there are effectively only 13 independent “pieces of

information.” Another way to express this result is that only about every eighth point

is essentially uncorrelated. Using, again, rx in place of rX in Equation 4.42 we have

rx(8)¼ rx
8(1)¼ (0.77)8¼ 0.12. Apparently, when the autocorrelation drops to about

0.12 in an AR(1) process, another effective dof is created. That we waited until time

t¼ 25 to begin the actual realization shown in Figure 4.9 is reasonable, as the

“beginning effect” should be negligible. Note, however, that the number of data

points required before the beginning effect becomes negligible is directly related to

the degree of autocorrelation present.

Because the effective dof, Ne, is so small, a Student’s t-distributionmust be used in

calculating confidence limits. In parallel with Equation 4.72, the formula for the

confidence limits on the population mean m is

x
 t 1� a

2

� �
sx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne � 1ð Þ

p
ð4:83Þ

inwhich the loss of one dof is due to using the samplemean in calculating sx, just as in

the example of white noise. Therefore, the 95% confidence limits are

2:88
 2:18� 1:58=
ffiffiffiffiffi
12

p
¼ 2:88
 0:99

or 1.89 and 3.87. The much wider confidence interval in this example than in the

white noise example reflects the many fewer degrees of freedom used in estimating

the populationmean,m, and population variance,s2X, that, in turn, are a consequence
of autocorrelation in the data. As a general statement, we can say that for time

series with the same population or sample variance, the greater the serial correlation,

the wider the (1 –a)% confidence interval for the population mean about the

sample mean.

4.7 Variance of the acvf and acf estimators

4.7.1 Derivation

In Section 4.2.3 we studied the bias squared portion of the mean square error of the

acvf estimators C(k) and C0(k). We concluded that, in anticipation of the results of

this section, the preferred estimator for the acvf is the biased estimator C(k) because

of the smaller mean square error with increasing lag. In this section we derive

expressions for the variance of the biased and unbiased acvf estimators, use them to

find the variance of the acvf and acf estimators for white noise and a first-order

autoregression, and then consider an example of each. To make the derivations

tractable we consider the case in which the population mean mX¼ 0. In addition, we

assume the number of data, N, in a realization is sufficiently large that the

distribution of rv X is narrow enough that any value in the distribution is

approximately zero. With these conditions, only the first term on the right-hand
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sides of Equations and 4.18 contributes significantly to the expectation on the left-

hand side.

For C(k) we have

Var½CðkÞ� ¼ E ðCðkÞ � E½CðkÞ�Þ2� �
¼ E CðkÞ � N� kj j

N

� �
cðkÞ

� �2
" #

¼ E C2ðkÞ½ � � N� kj j
N

� �2

c2ðkÞ ð4:84Þ

where C(k) is the biased acvf estimator and N is the number of data in a realization.

Expanding the first term on the right yields

E C2ðkÞ½ � ¼ E
1

N

XN� kj j�1

i¼ 0

XiXiþ kj j
1

N

XN� kj j�1

i¼ 0

XiXiþ kj j

" #

¼ 1

N2

XN� kj j�1

i¼ 0

XN� kj j�1

j¼ 0

E XiXiþ kj jXjXjþ kj j
� �

: ð4:85Þ

As shown in Bendat and Piersol (1966, p. 94), the expectation of the product of four

random variables that follow a four-dimensional normal distribution with possibly

different nonzero means is given by

E½X1X2X3X4� ¼ E½X1X2� E½X3X4� þ E½X1X3� E½X2X4�
þ E½X1X4� E½X2X3� � 2mX1

mX2
mX3

mX4
: ð4:86Þ

Therefore, for our case with all means being zero

E C2ðkÞ½ � ¼ 1

N2

XN� kj j�1

i¼ 0

XN� kj j�1

j¼ 0

�
E½XiXiþ kj j� E½XjXjþ kj j�

þ E½XiXj� E½Xiþ kj jXjþ kj j� þ E½XiXjþ kj j� E½Xiþ kj jXj�
�

ð4:87Þ

and

Var CðkÞ½ � ¼ 1

N2

XN� kj j�1

i¼ 0

XN� kj j�1

j¼ 0

c2ðkÞþ c2ðj� iÞþ cðjþ k � iÞ cðj� k � iÞ� �

� N� kj j
N

� �2

c2ðkÞ: ð4:88Þ
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Similarly, the variance of the unbiased estimator is

Var C0ðkÞ½ � ¼ 1

ðN� kj jÞ2
XN� kj j�1

i¼ 0

XN� kj j�1

j¼ 0

c2ðkÞþ c2ðj� iÞþ cðjþ k � iÞ cðj� k � iÞ� �
� c2ðkÞ: ð4:89Þ

Equations 4.88 and 4.89 are the equations for the variance of the biased and unbiased

acvf estimators, respectively, for any stationary normal random process, and require

knowledge of the process acvf. In comparing the two variances, we can see that as |k|

increases, their ratio Var½C0ðkÞ�=Var½CðkÞ� will also increase, indicating the increas-
ing variability of estimator C0ðkÞ relative to estimator C(k). To repeat the conclusion

in Section 4.2.3, “It is thought that for most acvfs the effect of increasing variance of

C0ðkÞ overwhelms the bias squared effect associated with C(k) (Jenkins and

Watts, 1968, pp. 179–180).” The result was our recommendation to use the biased

estimator C(k).

Now let us consider the casewhen k¼ 0wherein Equations 4.88 and 4.89 reduce to

Var Cð0Þ½ � ¼ Var C0ð0Þ½ � ¼ 2

N2

XN�1

i¼ 0

XN�1

j¼ 0

c2ðj� iÞ: ð4:90Þ

The procedure following Equation 4.50 can be applied to Equation 4.90 to yield the

variance of the variance of a stationary random process, namely

Var S2X
� � ¼ 2s4X

N
1þ 2

N

XN�1

k¼ 1

ðN� kÞ r2XðkÞ
" #

ð4:91Þ

which parallels the variance of the mean given by Equation 4.52.

4.7.2 White noise

For white noise and for |k|> 0, both c2(k) and the product c(j þ k – i) c(j – k – i) in
Equations 4.88 and 4.89 are always zero. Thus, for the biased acvf estimator

Var CðkÞ½ � ¼ 1

N2

XN� kj j�1

i¼ 0

XN� kj j�1

j¼ 0

c2ðj� iÞ

in which the argument of the double summation is nonzero only when i¼ j. This

reduces to

Var CðkÞ½ � ¼ N� kj j
N2

s4X ð4:92Þ
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while for the unbiased estimator

Var C0ðkÞ½ � ¼ 1

N� kj js
4
X: ð4:93Þ

Note that the variance of C(k) decreases with increasing lag while the variance of

C0(k) increases with increasing lag. However, if |k|	N then

Var CðkÞ½ � � Var C0ðkÞ½ � � s4X
N

; 0 < kj j 	 N: ð4:94Þ

By dividing C(k) and C0(k) by c(0)¼ s2X, the variance of the acf estimator becomes

Var RðkÞ½ � � Var R0ðkÞ½ � � 1

N
; 0 < kj j 	 N: ð4:95Þ

It should be remarked that if the samplemean had been used in the derivation, the

variance of the acf and acvf estimators would be somewhat larger than those given

due to the added variability of the sample mean. The procedures to find the variance

of the acvf estimator when the sample mean is used and the variance of the acf

estimator when it is standardized with C(0) are very complex. The problem has been

attacked by Anderson (1942) using a circular acf, which is a consequence of

considering periodic processes. His results were cited in Section 4.4.4.

For white noise, r2Xðk > 0Þ ¼ 0 in Equation 4.91, so that

Var S2X
� � ¼ 2s4X

N
: ð4:96Þ

If we generate white noise with population variance s2X, the sample variance should

reasonably lie within two standard deviations about the population variance, so that

from Equation 4.96

ð1� 2
ffiffiffiffiffiffiffiffiffiffiffi
2=NÞ

p
s2X < s2x < ð1þ 2

ffiffiffiffiffiffiffiffiffiffiffi
2=NÞ

p
s2X:

Let’s see if this is true for the white noise example in Section 4.6.1 and shown in

Figure 4.8. In that example, s2X ¼ 1 and N¼ 100, so the limits of two standard

deviations about the population variance are 1
 0.28 or 0.72 and 1.28. Since the

observe variance s2x ¼ 0.998, it is clearly within these limits. In fact, it is well within

one standard deviation of the population variance.

4.7.3 First-order autoregression

A procedure similar to that beginning with Equation 4.74 can be followed to show

that for a first-order autoregressive process, Equation 4.91 reduces to

Var S2X
� � � 2s4X

N

1þ r2Xð1Þ
1� r2Xð1Þ

 �
: ð4:97Þ
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Equation 4.97 shows that, as expected, the more autocorrelated the data, the more

variable are estimates of the process variance for a given N. This is because as the

serial correlation increases the degrees of freedom (dof) decrease.

We apply Equation 4.97 to the example of a first-order autoregression in

Section 4.6.2 and shown in Figure 4.9. As in the white noise example above,

we should reasonably expect the observed variance s2x ¼ 2.49 to lie within two

standard deviations about the population variance s2X ¼ 5.26. From Equation 4.97

these limits are

5:26
 2
ffiffiffiffiffiffiffiffiffi
2=N

p
� 5:26� 1þ r2Xð1Þ

1� r2Xð1Þ
 �1=2

¼ 5:26
 0:28� 5:26� 3:09 ¼ 0:71 and 9:80

in which N¼ 100 and rX(1)¼ 0.9. The observed variance is well within two

standard deviations of s2X. The respective limits for one standard deviation are

2.98 and 7.54, so we see that s2x lies between the lower one and two standard

deviation limits. Thus the variance of the realization is consistent with the

population variance and lag 1 autocorrelation.

Appendix 4.A Generating a normal random variable

Let X1; X2; X3; . . . ;Xn be a sequence of n independently and identically distributed

(iid) random variables each having expectation m and variance s2. If we form the

sum rv S¼X1 þ X2 þ � � � þ Xn, the central limit theorem tells us that the distri-

bution of rv

Z ¼ S� nm

s
ffiffiffi
n

p ð4:A:1Þ

approaches the standard normal distribution N(0,1) as n tends to 1. N(0,1) is a

Gaussian or normal distribution with zero mean and unit variance. The denom-

inator on the right-hand side of Equation 4.A.1 is a consequence of iid; that is, the

variance of S is n times the variance of each rv or Var [S]¼ ns2.
To specify a population variance v2 other than unit variance, scale (i.e., multiply)

the right-hand side of Equation 4.A.1 by v, the standard deviation. To specify a

population mean d other than zero, add the desired mean to the right-hand side of

Equation 4.A.1. To change both the populationmean and variance of Equation 4.A.1

from zero and one to d and v2, respectively, rewrite Equation 4.A.1 as

Z� ¼ S� nm

s
ffiffiffi
n

p vþ d: ð4:A:2Þ

Equation 4.A.2 approaches the normal distribution N(d, v2) as n tends to 1.
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Now consider an application of Equation 4.A.1. Let us say we have n¼ 50 random

variables, X1; X2; . . . ;X50, each having a uniformdistribution between zero and one.

Practically any computer that can be used for scientific purposes has a command to

generate a random number from a uniform distribution. We withdraw a sample

from each of the 50 distributions and add them to create a sample of the sum rv S.

Then, following Equation 4.A.1, we calculate a sample of rv

Z ¼ S� 25ffiffiffiffiffiffiffiffiffiffiffiffi
50=12

p : ð4:A:3Þ

Numerical values 25 and 12 on the right-hand side of Equation 4.A.3 were obtained

from the statistical properties of a uniform distribution. The mean is (a þ b)/2,

where a is its lower limit and b its upper limit, and the variance is (b – a)2/12. In

Equation 4.A.3, b¼ 1 and a¼ 0. The derivation of the variance of a uniform

distribution was problem 7 in Chapter 1.

Random variable Z has an approximate normal distribution with expected value

zero and expected variance one. From Equation 4.A.3 we see that by computing

successive samples of S and then Z we can simulate a normal time series. The actual

distribution ofZwill have amean different from zero (or d, if Equation 4.A.2 is used)

and a variance different from one (or v2, if Equation 4.A.2 is used). The larger n is,

on average, the closer the mean and variance will be to their expected values.

A respectable normal distribution can be obtained from a uniform distribution

with n as small as 12. An improved normal distribution can be obtained using n¼ 25

and greater. Of course, the tails of the distribution will always be truncated.

Problems

1 (a) Show that the variance of the sumof two independent randomvariables

X and Y is equal to the sum of the variances of the individual random

variables.

(b) Based on your answer for two random variables X and Y, can a more

general statement be made? If so, what is it?

2 (a) Using the biased estimator (i.e., where the coefficient is 1/N), calculate

the sample acvf at lag 3 of the mini-time series given by

x1 ¼ 3 x2 ¼ 7 x3 ¼ 9 x4 ¼ 5 x5 ¼ 2 x6 ¼ �2

(b) Calculate the sample autocorrelation function at lag 3.
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3 Show that the coefficient a in the AR(1) process

Xt � mX ¼ aðXt�1 � mXÞþZt

is identical to the value of the population autocorrelation function of the

process at lag 1.

4 (a) Given the sequence of six random numbers zn shown below from a

normal distribution N(0, s2), generate a sample sequence of xn of an

AR(1) process where r(1)¼ 0.5.

n zn xn

0 1

1 3

2 �1
3 2

4 �3
5 �2

(b) What is the earliest time step, n0, at which it would be reasonable to say
that the “beginning effect” is negligible? Explain your choice.

5 Derive the formula for the variance of the AR(1) process

Xt � mX ¼ aðXt�1 � mXÞþZt

6 (a) What is the equation for the population acvf for a stationary time series

using the expectation operator? Define each quantity.

(b) Write down the same equation except for a nonstationary time series

and explain why they are different.

7 Show that the variance of the AR(2) process

Xt � mX ¼ a1ðXt�1 � mXÞþa2ðXt�2 � mXÞþZt ð1Þ

in which

cXðkÞ ¼ a1cXðk � 1Þþa2cXðk � 2Þ; k � 1 ð2Þ

can be given by

s2X ¼ s2Z

1� a2
1

1þa2

1� a2

� �
� a2

2

 � : ð3Þ

Include any explanations that will clarify your derivation.
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8 Write a computer program to compute the sample acvf using the formula

cðkÞ ¼ ð1=NÞ
XN� kj j

t¼ 1

ðxt � xÞ ðxtþ kj j � xÞ; k ¼ 0;
1;
2; . . .

9 In this problem you will explore the acvf and acf for an analytical

function and realizations from three different random processes. For

each series in parts (a)–(d) below, compute the acvf and acf for a series

100 points long with a maximum lag of 25 points. For parts (c) and (d),

generate 50 to 100 points to stabilize the process before obtaining the

sample data set.

(a) A sinusoid given by

A1 cosð2pf 1rDtþw1ÞþB1

where w1 6¼ 0, B1 is a nonzero constant, f1¼m/(100Dt) where 4<m

< 20, and r¼ 0, 1, 2, . . ., 99.

(b) A white noise process given by

Xt ¼ Zt

where Zt is Gaussian white noise with E[Zt]¼ 0 and Var[Zt]¼ s2Z¼ 4.

[Note that Zt should be an independent sequence for each realization in

(b), (c), and (d).]

(c) An AR(1) process given by

Xt ¼ a1Xt�1 þZt

where Zt is as defined in (b) and, in general, 0<a1< 1. For this

particular case, use 0.5<a1< 1 in order to easily observe the auto-

correlation in the data.

(d) An AR(2) process given by

Xt ¼ a1Xt�1þa2Xt�2þZt

where Zt is as defined in (b), a1¼ 0.5, and a2¼ –0.7.

(e) Plot the data sets in (a)–(d). On each plot use a solid line to show the

time series, a dashed line to show the sample mean, and a dotted line to

show the population mean. Also, on each plot show the numerical

values of the sample and population means and variances.
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(f) Plot the sample acf (solid line) and the population acf (dashed line)

out to lag 25 for each of the four time series, with one sample acf and

the associated population acf per graph. For time series (a), assume

the “population” acf can be represented by an infinite continuous

sinusoid of the form described. For time series (d), the population

acf is given by

rðkÞ ¼ R kj j sinð2pf 0kþw0Þ
sinw0

where

R ¼ ffiffiffiffiffiffiffiffiffi�a2
p

cosð2pf 0Þ ¼ a1j j=ð2RÞ

tanw0 ¼ 1þR2

1� R2

 �
tanð2pf 0Þ

(g) For the data in (a), explain how the shape of the acf would have changed

if 1/(N – |k|) had been used instead of 1/N in its formula.

(h) Decide whether the sample mean you calculated for (b) is “reasonable”

by determining the 95% confidence interval for the sample mean.

(i) Decide whether the sample variance you calculated for (b) is

“reasonable” by determining the 95% confidence interval for the

sample variance. Use Equation 4.96 and assume that the sample

variances have a Gaussian distribution.

10 Give three examples of nonmeteorological time series and identify whether

those series would likely be stationary or nonstationary and why.

11 Consider the estimator for the mean given by

X ¼ ð1=NÞ
XN
n¼ 1

Xn

(a) Given thatm¼E[X], show that the above is an unbiased estimator of the

population mean m for the X-stationary random process in which the

random variables Xn are independent.

(b) How, if it all, would the above estimator for the mean change if the

random variables Xn were dependent?

(c) How, if it all, would the above estimator for the mean change if the

random variables Xn were nonstationary?
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12 Let us say that we have fitted a zero mean AR(1) process

Xt ¼ aXt�1þZt

to a realization of data comprising 500 hPa heights. Notation is

standard and a is positive. We then wish to use this stochastic model

to forecast values of X at times t þ 1, t þ 2, and so on, where t is the

current time. Thus,

X̂tð1Þ ¼ aXt

X̂tð2Þ ¼ aX̂tð1Þ ¼ a2Xt

X̂tð3Þ ¼ aX̂tð2Þ ¼ a3Xt

..

.

where the karat (^) indicates the forecast. The successive forecast

errors are given by

etð1Þ ¼ X̂tð1Þ � Xtþ 1 ¼ aXt � Xtþ 1

etð2Þ ¼ X̂tð2Þ � Xtþ 2 ¼ a2Xt � Xtþ 2

etð3Þ ¼ X̂tð3Þ � Xtþ 3 ¼ a3Xt � Xtþ 3

..

.

(a) Show that the error variance for the k-th forecast step ahead is

Var½etðkÞ� ¼ 1� a2k
� �

s2X

(b) Does the error variance increase or decrease with increasing k?

(c) What is the limiting value of the error variance as k increases indef-

initely? Why is this so?

(d) Show that

Cov½etðkÞ; etðkþ 1Þ� ¼ a 1� a2k
� �

s2X

(e) Are the errors associated with the forecasts serially correlated?

(f) What is the limiting value of the error covariance as k increases

indefinitely? Why is this so?

(g) Is the time series of errors stationary or nonstationary? Explain.
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5
Lagged-product spectrum
analysis

5.1 The variance density spectrum

A periodogram yields a high-resolution spectrum of the variance in a time series.

For some physical situations a periodogram is exactly what is needed to identify

periodicities that are thought to exist. An example is the daily cycle of temperature

that was studied in Chapters 1 and 3. In other situations, a physical phenomenon

may have considerable variation from one occurrence to the next. An example is the

time series of surface wind speed associated with Chinooks (USA) or Foehns

(Europe). The periodograms of wind speed from successive events may be very

noisy-looking, such that it is difficult to draw any conclusion of the general structure

of the variance of wind speed versus frequency. For this kind of situation there are

three options to consider. One is to smooth each periodogramby applying a running

average of harmonic variances as was done in Section 1.4.5. Another is to average an

ensemble of event spectra harmonic-by-harmonic, similar to the procedure in

Section 1.5.3. The third is to obtain inherently smooth spectra of the events through

lagged-product spectrum analysis. In this approach, the spectrum is the Fourier

transform of the autocovariance function (comprising lagged products) that was

derived in Chapter 4. The spectrum that results from the lagged-product method is

called a variance density spectrum because it has units associated with variance per

unit bandwidth. Common dimensions of bandwidth are cycles or radians per unit of

time. As we know, the periodogram has units of variance only.

The issue, though, is not variance or variance density versus frequency but the

degree of smoothing in either type of spectrum. The lagged-product method can

offer “instant” smoothing via Fourier transformation of the autocovariance function

Time Series Analysis in Meteorology and Climatology: An Introduction, First Edition. Claude Duchon and Robert Hale.
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(acvf). This happens in two ways. In the first way, simply truncating the acvf at some

lag less than (N� 1) and Fourier transforming the truncated acvf to the frequency

domain produces a spectrum that is smoother than a periodogram of the same data

set. Truncating an acvf is equivalent to multiplying the complete acvf by a

rectangular window. The narrower the window the smoother the spectrum. As

we learned in Section 2.4 (see Figure 2.7), the Fourier transform of a rectangular

function is a diffraction function with positive and negative side lobes. Recalling

that Fourier transformation of multiplication in the time domain leads to

convolution in the frequency domain, the smoothing that occurs in the variance

density spectrum will include the undesirable effects of the negative and positive

side lobes. To suppress these effects, instead of multiplying the complete acvf by a

rectangular window, some other window with a more gradual approach from zero

lag to the positive and negative lag where the window has zero value can be applied.

The result is an “improved” smooth variance density spectrum. The last section of

this chapter deals with a cosine window (as opposed to a rectangular window) and

the consequent effects on smoothing of the variance density spectrum.

Another reason to choose the lagged-product method instead of the periodogram

method is because in certain problems the autocovariance (or autocorrelation)

function plays a significant role and has to be computed anyway. For example, in

turbulence theory, the “Lagrangian integral time scale” (Tennekes and Lumley, 1972,

p. 46), a measure of the time a variable such as wind speed is correlated with itself, is

obtained by integration of the autocorrelation function. If this is an important

quantity to know, and if there is further interest in the spectrumof turbulence, which

is usually the case, it is then a simple matter to Fourier transform the acvf to obtain

the spectrum of turbulence. Alternatively, one might be given a spectrum and wish

to know the time (or space) correlation structure of the signal that produced it.

This requires back-transforming the variance density spectrum to get the acvf.

We now provide more detail to the procedure involved in lagged-product

spectrum analysis. The first step is to multiply the raw or unwindowed acvf by a

lag window to yield awindowed acvf. Then the windowed acvf is Fourier transformed

to the frequency domain to yield the smoothed spectrum. This is the procedure shown

in Figure 5.1a. Equivalently, the smoothed spectrum can be viewed as the convo-

lution of the Fourier transform of the unwindowed or raw acvf with the Fourier

transform of the lag window. The result of the former transformation is the

unsmoothed or raw spectrum; the result of the latter transformation is the spectrum

window. This procedure is shown in Figure 5.1b. Thus it is necessary to distinguish

between a raw (or unwindowed) acvf and a windowed acvf and a raw (or

unsmoothed) spectrum and a smoothed spectrum. A number of lag windows have

been designed to effect a varying degree of spectrum smoothing. The smoothing

is usually done to the acvf (as in Figure 5.1a) rather than to the raw spectrum (as

in Figure 5.1b) simply as a matter of convenience.

From a theoretical viewpoint, a variance density spectrum is required when the

underlying process for some geophysical phenomenon is continuous in time and
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aperiodic, which is typically the case. Then the spectrum perforce must be contin-

uous in frequency, with its relationship to the acvf given by

CðfÞ ¼
ð þ1

�1
cðuÞ expð�i2pfuÞ du ð5:1Þ

where C(f ) and c(u) are the population variance density spectrum and population

acvf, respectively. The inverse Fourier transform is

cðuÞ ¼
ð þ1

�1
CðfÞ expði2pfuÞ df : ð5:2Þ

The Fourier transform pair comprising Equation 5.1 and Equation 5.2 is known

as the Wiener–Khintchine relation (Koopmans, 1974, pp. 33–34). In consideration

of the dimensions associated with u and c(u) in Equation 5.1 it is evident that C(f )
must have dimensions associated with variance per unit bandwidth, that is, variance

density. To compute variance it is necessary to integrate over some bandwidth. This

is analogous to the familiar probability density function from which probability is

obtained by integrating over some specified range of the independent variable.

multipli-

cation

(a)

(b)

Fourier

transform

Fourier

transform

Fourier

transform

smoothed

spectrum

smoothed

spectrum

convo-

lution

windowed

acvf

unwindowed

or raw acvf

lag window

unwindowed

or raw acvf

lag window

unsmoothed

or raw

spectrum

spectrum

window

Figure 5.1 (a) The smoothed spectrum via the Fourier transform of the windowed acvf.

(b) The same smoothed spectrum via convolution of the spectrum window with the

unsmoothed or raw spectrum.
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Equations 5.1 and 5.2 provide the motivation for the next section. Instead of

dealing with integrals and analog data, we will deal with summations and digital data

to find the relation between the variance density spectrum and the autocovariance

function. As a preliminary step, we recall the Fourier variance spectrum (Equa-

tion 1.69) and divide it by the separation between harmonic frequencies, that is,

bandwidth 1/(NDt), to obtain

CðfÞ ¼ S0
�
ðfÞ � S0ðfÞ
1=ðNDtÞ ; �1=ð2DtÞ � f � 1=ð2DtÞ ð5:3Þ

where N is the number of data, Dt the sampling interval, S0(f ) the complex Fourier

amplitude coefficient at frequency f, and S0
�
ðfÞ its conjugate. The purpose of the

primes on the right-hand side of Equation 1.69 was to indicate a two-sided spectrum

because of the need to distinguish between two-sided and one-sided spectra in

Chapter 1. Since all the mathematical development in this chapter is involved with

two-sided spectra, we can dispense with use of a prime attached to C(f ) in

Equation 5.3 and at the same time create unique notation for a variance density

spectrum. While C(f ) is an ordinary mathematical variable in Equation 5.3, in

Section 5.3 we will consider C(f ) to be also a random variable. This will enable us to

understand certain properties of variance density spectra for random processes, the

results of which we will use in Section 5.4.

Equation 5.3 shows that a variance density spectrum and a variance spectrum

differ by the term for the bandwidth, 1/(NDt). To obtain the total variance in

spectrum C(f ), products of C(fi) and the frequency separation fiþ 1� fi¼Dfi
between adjacent estimates need to be summed over the range in frequency

� 1/(2Dt) to 1/(2Dt), that is, the principal part of the aliased spectrum. In short,

numerical integration must be performed.

5.2 Relationship between the variance density spectrum
and the acvf

In this section we derive the relationship between the variance density spectrum and

the autocovariance function. The derivation begins by substituting Equation 1.65

and its complex conjugate into Equation 5.3 to obtain

CðfÞ ¼ ðDt=NÞ
XN�1

n¼ 0

xn e
i2pfnDt

XN�1

n0 ¼ 0

xn0 e
�i2pfn0Dt;

� 1=ð2DtÞ � f � 1=ð2DtÞ ð5:4Þ
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where xn and xn0 are, for ease in the derivation, departures from the sample mean.

Rearranging Equation 5.4 leads to

CðfÞ ¼ ðDt=NÞ
XN�1

n0 ¼ 0

XN�1

n¼ 0

xn0 xn e
�i2pfðn0�nÞDt: ð5:5Þ

Figure 5.2 shows the area of summation. Diagonals from the lower left to the

upper right represent lines for which n0 � n¼ k where k is a constant. Such lines

contain the products in an acvf calculation for lag k. Thus, by employing the

coordinate transformation k¼ n0 – n and m¼ n, k becomes lag number and m is

the number of products for a given lag. The result of the transformation is that

products along a diagonal line in Figure 5.2 become products along a horizontal

line in Figure 5.3. For example, products along the main diagonal (corner C to

corner B) in Figure 5.2 become the same products along the horizontal line k¼ 0

(corner C to corner B) in Figure 5.3. Products in diagonal lines above the main

diagonal in Figure 5.2 become products in horizontal lines above k¼ 0 in

Figure 5.3, and, similarly, products in diagonal lines below the main diagonal

in Figure 5.2 become products in horizontal lines below k¼ 0 in Figure 5.3. Thus,

Equation 5.5 can be written

CðfÞ ¼ ðDt=NÞ
X
k

X
m

xmþk xm e�i2pfkDt: ð5:6Þ

D
C

B

 n'

(0, N-1)

(0, 0)
(N-1, 0)

(N-1, N-1)

n

A

Figure 5.2 The area of summation in Equation 5.5.
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The specific limits are determined from Figure 5.3, which shows the field of

products, now in the k, m coordinate system. We have

CðfÞ ¼ Dt
XN�1

k¼ 0

1

N

XN�k�1

m¼ 0

xmþk xm

 !
e�i2pfkDt

þ Dt
X�1

k¼�ðN�1Þ

1

N

XN�1

m¼�k

xmþk xm

 !
e�i2pfkDt: ð5:7Þ

The first term on the right-hand side is the sum over the upper part of Figure 5.3 and

the second term is the sum over the lower part. The quantities inside the parentheses

are biased autocovariance functions. That is, in accord with Equation 4.11 and

recalling that we are dealing with departures from the sample mean,

1

N

XN�k�1

m¼ 0

xmþk xm ¼ cðkÞ ¼ cð�kÞ; k ¼ 0; 1; . . . ; N� 1

and

1

N

XN�1

m¼�k

xmþk xm ¼ cðkÞ ¼ cð�kÞ; k ¼ �ðN� 1Þ; � ðN� 2Þ; . . . ; � 1

BC

A

D

k

(N-1, 0)

(N-1, -N+1)

(0, 0)

m

(0, N-1)

Figure 5.3 Transformation of Figure 5.2 to provide the two summations in Equation 5.7.
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so that

CðfÞ ¼ Dt
XN�1

k¼�ðN�1Þ
cðkÞ e�i2 pfkDt; � 1=ð2DtÞ � f � 1=ð2DtÞ: ð5:8Þ

Equation 5.8 shows the relation between the variance density spectrum and the

acvf.We can expand Equation 5.8 to take advantage of the fact that the acvf is an even

function, thereby leading to

CðfÞ ¼ Dt
XN�1

k¼�ðN�1Þ
cðkÞ cosð2pfkDtÞ

¼ Dt cð0Þ þ 2
XN�1

k¼ 1

cðkÞ cosð2pfkDtÞ
" #

: ð5:9Þ

Equation 5.9 is an appropriate formula to calculate an analog variance density

spectrum from an autocovariance function.We can go one step further and calculate

a periodogram from Equation 5.9 by letting f¼m/(NDt) andmultiplying both sides

by 1/(NDt). The result is

C0
m ¼ 1

N
cð0Þ þ 2

XN�1

k¼ 1

cðkÞ cosð2pkm=NÞ
" #

: ð5:10Þ

Equation 5.10 will yield the same periodogram variances as in Equation 1.63 for a

two-sided periodogram using Fourier coefficients. Recall that the amplitude A0 of

the harmonic at m¼ 0 is the mean of the time series. Consequently, there is

no variance at this harmonic; that is, C0
0 ¼ 0. By setting m¼ 0 in Equation 5.10

we see that the sum of c(k) over its entire range, that is, from � (N� 1) to (N� 1),

must be zero. The proof involves rearranging the terms in the acvf to form sums of

deviations of the data from the sample mean, each sum being zero. This is another

interesting exercise for the reader to consider. In summary, we see that just as the

Fourier transform of the acvf results in a variance density spectrum, with a simple

modification, we also can obtain a periodogram.

Equation 5.8 is one member of the Fourier transform pair between an analog

variance density spectrum and an acvf. We anticipate the other half to be

cðkÞ ¼
ð 1=ð2DtÞ

�1=ð2DtÞ
CðfÞ ei2pfkDt df ; jkj � N� 1: ð5:11Þ

Verification is given in Appendix 5.A. In practice, we are unable to perform the

integration required in Equation 5.11, so that if we wish to obtain the acvf from the
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spectrum (i.e., compute the inverse or back transform of the spectrum) we need to

use summation instead of integration. Appendix 5.B shows that we can obtain the

acvf by applying a Fourier transform to the spectrum derived from the fully-lagged

acvf. Thus,

cðkÞ ¼ 1

2NDt

XN
n¼�ðN�1Þ

Cðf nÞ ei2pf nkDt ð5:12Þ

where fn¼ n/(2NDt). We observe that there are 2N frequencies and the separation

between frequencies is 1/(2NDt), one-half that we might have expected.

In summary, there is a strong parallel between periodogram analysis and Equa-

tions 5.8 and 5.12. The acvf c(k) canbe thought of as a “time series,” so that its Fourier

transformation yields its spectral decomposition. The acvf contains squared and

cross-product terms and its Fourier transform leads to a variance density spectrum.

In periodogram analysis, the Fourier transform of a time series of data leads to a

Fourier amplitude spectrum.Theproductof the amplitude spectrumand its complex

conjugate yields a variance spectrum, as was demonstrated in Chapter 1.

5.3 Spectra of random processes

5.3.1 Population spectrum

As stated in Section 5.1, we now treat C(f ) as a random variable. Furthermore, we

consider the upper-case version of c(k), namely C(k), to also be a random variable.

This allows us to take the expectation of Equation 5.8, yielding

E½CðfÞ� ¼ Dt
XN�1

k¼�ðN�1Þ
E½CðkÞ� e�i2pfkDt

¼ Dt
XN�1

k¼�ðN�1Þ
E

1

N

XN�jkj�1

t¼ 0

Xtþjkj � X
� �

Xt � X
� �" #

e�i2pfkDt;

�1=ð2DtÞ � f � 1=ð2DtÞ: ð5:13Þ
Using Equation 4.17, we have the result that

E½CðfÞ� ¼ Dt
XN�1

k¼�ðN�1Þ
1� jkj

N

 !
cðkÞ þ Var X

� �� �
e�i2pfkDt

�Dt
XN�1

k¼�ðN�1Þ

1

N

XN�jkj�1

t¼ 0

n
E X� m
� �

Xtþjkj � m
� �� �

þE
�
X� m
� �

Xt � mð Þ�o e�i2pfkDt: ð5:14Þ
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Thus the expected spectrum is itself a function of the number of data N. This is

true even if the unbiased acvf estimator had been used. The definition of the

population spectrum requires taking the limit of an increasing number of data.

Accordingly,

CðfÞ � lim
N!1

E CðfÞ½ � ¼ Dt
X1

k¼�1
cðkÞ e�i2pfkDt; � 1=ð2DtÞ � f � 1=ð2DtÞ:

ð5:15Þ
The inverse Fourier transform is

cðkÞ ¼
ð 1=ð2DtÞ

�1=ð2DtÞ
CðfÞ ei2pfkDt df ; k ¼ 0;�1;�2 . . . : ð5:16Þ

Equations 5.15 and 5.16 are the digital equivalent of the Wiener–Khintchine

relations (Equations 5.1 and 5.2). Both the analog and digital forms require record

lengths that tend to infinity to obtain the population spectrum.

5.3.2 Spectra of linear processes

In Chapter 4 we showed that

cXðkÞ ¼
X1
m¼ 0

X1
n¼ 0

hm hn cZðk � nþmÞ ð4:28Þ

relates the acvf cX(k) of output process Xt to the acvf cZ(k) of input process Zt after

the latter passes through a linear filter with weights or weight function hm.

Substituting Equation 4.28 into Equation 5.15 yields

CXðfÞ ¼ Dt
X1

k¼�1

X1
m¼ 0

X1
n¼ 0

hm hn cZðk � nþmÞ
" #

e�i2pfkDt

¼ Dt
X1
m¼ 0

hm ei2pfmDt
X1
n¼ 0

hn e
�i2pfnDt

X1
k¼�1

cZðk � nþmÞ e�i2pfðk�nþmÞDt

ð5:17Þ

which reduces to

CXðfÞ ¼ CZðfÞ
X1
m¼ 0

hm e�i2p fmDt

�����
�����
2

; �1=ð2DtÞ � f � 1=ð2DtÞ: ð5:18Þ
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Equation 5.18 shows that the input and output spectra of a linear filter are related

to each other through the modulus squared of the Fourier transform of the weight

function hm. Applying Equation 3.14, we get

CXðfÞ ¼ CZðfÞ jHðfÞj2; �1=ð2DtÞ � f � 1=ð2DtÞ: ð5:19Þ

H(f ) is the impulse or frequency response function originally defined in

Section 2.6. The square of its modulus is appropriately called the variance

transfer function in that it describes the transfer of variance from the input

spectrum of a random process that passes through a linear filter to the output

spectrum.

Now consider the general linear process discussed in Section 4.3 inwhich the input

process is white noise. From Equation 4.30 cZ (k� n þ m)¼ 0 for all values of the

argument, except when k¼ n�m, in which case cZð0Þ ¼ s2Z and

CXðfÞ ¼ Dt s2Z HðfÞj j2; �1=ð2DtÞ � f � 1=ð2DtÞ: ð5:20Þ

CX(f ) in Equation 5.20 is the variance density spectrum for a general linear

process. The variance transfer function serves to shape the output spectrum given an

input spectrum that is uniform with frequency. The output spectrum is a conse-

quence of the weight function applied to the white noise input.

5.4 Spectra of selected processes

5.4.1 White noise

In Section 4.4.1 we found that for the case of white noise, h0¼ 1 and all other weights

are zero. Therefore, |H(f )|2 in Equation 5.20 has unit value and the variance density

spectrum is

CXðfÞ ¼ Dts2Z; �1=ð2DtÞ � f � 1=ð2DtÞ: ð5:21Þ

Integration of Equation 5.21 over the entire frequency range of the spectrum yields

the population variance, s2Z.

5.4.2 First-order autoregression

The formula for a first-order autoregression or AR(1) was given in Section 4.4.2 as

Xt � m ¼ aðXt�1 � mÞ þ Zt ð5:22Þ
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but by expanding backward in time it can be written also in the form of the

nonrecursive filter (Equation 3.5)

Xt � m ¼
X1
m¼ 0

hm Zt�m ð5:23Þ

where hm¼am, m 	 0.

Now let us introduce a complex sinusoid

zt ¼ ei2pftDt ð5:24Þ

in place of Zt in Equation 5.22. Observe that subscript t is a time increment counter

and, as such, is dimensionless. Firstly, consider Equation 5.22 to be, temporarily, the

working formula for calculating a realization, in which case the notation would be

lower case. Then, think of zt to be any sinusoidal component of the white noise input.

How its output amplitude changes as a consequence of the recursive filter is a

function only of frequency.

From Equation 5.23, the output is

xt � m ¼
X1
m¼ 0

hm ei2pfðt�mÞDt: ð5:25Þ

Expanding Equation 5.25 yields

xt � m ¼ ei2pftDt
X1
m¼ 0

hm e�i2pfmDt

or

xt � m ¼ ei2pftDt HðfÞ ð5:26Þ

where H(f ), as noted earlier, is the impulse or frequency response function from

Equation 3.14.

The result of substituting Equation 5.26 into Equation 5.22 is

HðfÞ ei2pftDt � a ei2pfðt�1ÞDt
h i

¼ ei2pftDt ð5:27Þ

or

HðfÞ ¼ 1

1� a e�i2pfDt
: ð5:28Þ
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In line with previous statements, we can think of the white noise process Zt as being

comprised of sinusoids, so that Equation 5.28 provides the response at any

frequency f. Therefore, from Equation 5.20, the variance density spectrum for an

AR(1) process is

CXðfÞ ¼ Dts2Z

1� a e�i2pfDtj j2 ð5:29Þ

or

CXðfÞ ¼ Dts2Z
1þ a2 � 2a cosð2pfDtÞ½ � ; �1ð2DtÞ � f � 1=ð2DtÞ: ð5:30Þ

An example of a variance density spectrum for an AR(1) process is given in

Section 5.4.4.

5.4.3 Second-order autoregression

The equation for the second-order autoregression or AR(2) process was given in

Section 4.4.3 and is

Xt � m ¼ a1ðXt�1 � mÞ þ a2ðXt�2 � mÞ þ Zt: ð5:31Þ

As shown by Jenkins and Watts (1968, p. 228), for an AR(2) process

HðfÞ ¼ 1

1� a1 e�i2pfDt � a2 e�i4pfDt
ð5:32Þ

with the result that from Equation 5.20 its variance density spectrum is

CðfÞ ¼ Dts2Z
1þ a2

1 þ a2
2 � 2a1ð1� a2Þ cosð2pfDtÞ � 2a2 cosð4pfDtÞ ;

�1=ð2DtÞ � f � 1=ð2DtÞ:
ð5:33Þ

Obtaining Equation 5.33 is a rewarding exercise and the last of seven we have

recommended to enhance your understanding of various equations and other

developments that have been presented throughout this book.

In problem 5 at the end of this chapter you are asked to compute the population

variance density spectrum of an AR(2) process and the sample variance density

spectrum of the realization of an AR(2) process you computed in problem 9

of Chapter 4.
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5.4.4 An example of first-order autoregression

For the example in this section, we return to Figure 4.9, which shows a realization of

an AR(1) process with r(1)¼ 0.9. Our goal is to compute and interpret the variance

density spectrum of this highly serially correlated time series. The first step toward

this goal is to calculate the sample acvf using Equation 4.11, the result of which is the

heavy solid line in Figure 5.4. We observe a strong peak around 40 lag units. If we

mentally fit a smooth curve to the time series in Figure 4.9, we see peaks at point 0

and in the neighborhood of points 40 and 80, and troughs in between. This

oscillation is accounted for in the acvf by the peak around k¼ 40 (peak-to-peak

distance in the time series) and the trough around k¼ 20 (trough-to-peak or peak-

to-trough distance). Similarly, the trough in the acvf around 55 corresponds to the

peak in the time series around point 0 and the trough around point 55 and the peak

around point 40 and trough around point 95. There seems to be more than one

oscillation in the times series. You may recall from problem 9 in Chapter 4 that the

acvf of a time series that is a sinusoid is itself a sinusoid with the same period as in

the time series.

We can compare the observed acvf discussed above with the population acf

scaled to the variance of the realization. The dashed line in Figure 5.4 is the acf for

the AR(1) process, Equation 4.42, multiplied by the variance of the realization or

rkð1Þ � 2:4652

where k is lag number.While we would not have expected the shape of the observed

acvf to match the shape of the scaled population acf, it is surprising how unrelated
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Figure 5.4 Heavy solid line: observed acvf of the realization of 100 values from an AR(1)

process shown in Figure 4.9 where r(1)¼ 0.9. Dashed line: population acf r(k) multiplied by
acvf(0)¼ 2.4652. Light solid line: observed acvf multiplied by the Tukey lag window with

maximum lag equal to 60.
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they are. From experience, it appears that the greater the population autocorre-

lation r(1), the greater the potential for a sample acvf to substantially deviate from

the population acvf.

The heavy line in Figure 5.5 is the variance density spectrum of the time series in

Figure 4.9 computed using Equation 5.9 multiplied by two to provide a folded

spectrum. Stated differently, the spectrum is one sided and contains all the variance

in the times series. The strong peak in Figure 5.5 occurs at 0.0275 cycles/data interval,

which is equivalent to a data length of 36 units, which is in accord with both the time

series in Figure 4.9 and the acvf in Figure 5.4. In addition, the spectrum exhibits other

nearby peaks but lesser in magnitude, in agreement with the acvf.

We can compare also the sample variance density spectrum to its population

spectrumgiven byEquation 5.30 and shown in Figure 5.5 by the light line. Aswith the

sample and population acvfs, there is considerable disparity between the sample and

population spectra. The area under the curve of the former spectrum is 2.4652, while

that under the latter spectrum is 5.2632. The variance in the realization is less than

one-half the population variance.

5.5 Smoothing the spectrum

In Section 5.1 we discussed the lagged product approach to smoothing “noisy-

looking” periodograms and in Figure 5.1 showed two ways to achieve this. The

procedure described in Figure 5.1a is the easier of the two. In this method, we

multiply the computed acvf (referred to as unwindowed or raw) by a lag window to

obtain a windowed acvf. The Fourier transform of the windowed acvf produces a

smoothed spectrum. The smoothing procedure is discussed in this section.
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Figure 5.5 The heavy line shows the variance density spectrum (variance/(cycles/data

interval)) of the raw or unwindowed acvf in Figure 5.4. The light line shows the population

variance density spectrum from Equation 5.30.
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As a first step we list desirable properties of the lag window, denoted by w(k).

They are:

(1) w(0)¼ 1. Because the total variance in a realization occurs at zero lag in the acvf,

this property preserves the total variance.

(2) w(–k)¼w(k). This property results in a spectrum window that is real only.

(3) w(|k|) decreases smoothly as |k| increases. This property helps to keep side lobes

of the spectrum window small. As we saw in Section 3.4.1, the spectral

decomposition of a rectangular function produced the Gibbs oscillation.

(4) w(|k|) becomes zero at some lag |k| < N. Apart from the shape of the lag

window the maximum lag also controls the degree of smoothing of the raw

spectrum.

From Equations 5.8 and 5.11, we conclude that the lag window and spectrum

window form a Fourier transform pair such that

WðfÞ ¼ Dt
XM

k¼�M

wðkÞ e�i2pfkDt; �1=ð2DtÞ � f � 1=ð2DtÞ ð5:34Þ

where M < N and

wðkÞ ¼
ð 1=ð2DtÞ

�1=ð2DtÞ
WðfÞ ei2pfkDt df ; kj j � M: ð5:35Þ

To satisfy property (1) of the lag window, that is, w(0)¼ 1, we see from

Equation 5.35 it is required that

ð 1=ð2DtÞ

�1=ð2DtÞ
WðfÞ df ¼ 1: ð5:36Þ

From Figure 5.1a, the Fourier transform pair for smoothed spectra is

CðfÞ ¼ Dt
XM

k¼�M

wðkÞ cðkÞ e�i2pfkDt; �1=ð2DtÞ � f � 1=ð2DtÞ ð5:37Þ

and

wðkÞ cðkÞ ¼
ð 1=ð2DtÞ

�1=ð2DtÞ
CðfÞ ei2pfkDt df ; kj j � M ð5:38Þ
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which can be written also as

CðfÞ ¼ Dt cð0Þ þ 2
XM
k¼ 1

wðkÞ cðkÞ cosð2pfkDtÞ
" #

; �1=ð2DtÞ � f � 1=ð2DtÞ

ð5:39Þ

and

wðkÞ cðkÞ ¼ 1

2MDt

XM
n¼�ðM�1Þ

Cðf nÞ ei2pf nkDt; kj j � M ð5:40Þ

where fn¼n/(2MDt). Equation 5.40 follows from Appendix 5.B in which N is

replaced by M.

An example of a lag window that possesses the desirable properties given

earlier is

wðkÞ ¼

(
1

2
cosðpk=MÞ þ 1�; jk½ j � M

0; jkj > M

ð5:41Þ

and is called the cosine window or Tukey window (after John W. Tukey,

1915–2000, a famous mathematician). It is the same as the von Hann filter that

was discussed in Section 3.2.3, and its Fourier transform (Jenkins and Watts,

1968, p. 252) is

WðfÞ ¼ MDt
sinð2pfMDtÞ
2pfMDt

� 1

1� ð2fMDtÞ2
" #

; �1=ð2DtÞ � f � 1=ð2DtÞ:

ð5:42Þ

To understand the effect of spectrum smoothing, we can apply the Tukey window

to the acvf in Figure 5.4 with, say, a maximum lag M of 60. The result is the light

solid line in Figure 5.4. There is notmuch noticeable smoothing of the complete acvf

until lag 10, after which the acvf is increasingly damped up to lag 60, where it

becomes zero. The results of substituting the product of c(k) and w(k) from

Equation 5.41 into Equation 5.39 and carrying out the computations are shown in

Figure 5.6 by the heavy line. As in Figure 5.5 the variance density spectrum in

Equation 5.39 has been folded. For comparison, the light line shows the raw or

unwindowed spectrum from Figure 5.5. Also, to provide greater separation between

curves, the resolution of the vertical axis has been doubled relative to that in

Figure 5.5. We observe immediately the smoothing effect of multiplying the acvf
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by the Tukey window before transformation (or the convolution of Equation 5.42

with the light line). The principal peak has been almost halved and the adjacent

peaks and troughs almost completely smoothed. The area under each curve (or

variance) is identical.

We can easily surmise that had we selected a smaller maximum lag M, say 30,

there would have been even more smoothing. In practice, the amount of smoothing

one should apply is somewhat arbitrary. If we think of a spectrum comprised of signal

plus noise, the goalwould be to design a spectrumwindow that smooths the spectrum

in such a way that the noise is reduced but the primary features of the spectrum

are preserved. Another approach might be that we wish to smooth the sample

spectrum so that it better characterizes the population spectrum. Unfortunately,

we practically never know the underlying spectrum. Even if we thought we did, we

would conclude from the example just studied that there can be great divergence

between the population and sample variance density spectra. A lengthy discussion

of spectrum smoothing can be found in Jenkins and Watts (1968, pp. 274–284).

Appendix 5.A Proof of Equation 5.11

The goal of Appendix 5.A is to prove that

cðkÞ ¼
ð 1=ð2DtÞ

�1=ð2DtÞ
CðfÞ ei2pfkDt df ; kj j � N� 1: ð5:11Þ
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Figure 5.6 The heavy line shows the variance density spectrum of the windowed acvf in

Figure 5.4. For reference, the light line shows the unwindowed variance density spectrum

in Figure 5.5. Note that the vertical scale here has twice the resolution of that in

Figure 5.5.
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We begin with Equation 5.8:

CðfÞ ¼ Dt
XðN�1Þ

k¼�ðN�1Þ
cðkÞ e�i2p fkDt; �1=ð2DtÞ � f � 1=ð2DtÞ: ð5:8Þ

Now substitute Equation 5.8 into Equation 5.11 and interchange the order of

summation and integration. The result is

cðkÞ ¼
ð 1=ð2DtÞ

�1=ð2DtÞ
Dt

XðN�1Þ

n¼�ðN�1Þ
cðnÞ e�i2pfnDt

2
4

3
5ei2pfkDt df

¼
XN�1

n¼�ðN�1Þ
Dt cðnÞ

ð 1=ð2DtÞ

�1=ð2DtÞ
ei2pfðk�nÞDt df

¼
XN�1

n¼�ðN�1Þ
Dt cðnÞ

ð 1=ð2DtÞ

�1=ð2DtÞ
cos½2pfðk � nÞDt� df

¼
XN�1

n¼�ðN�1Þ
Dt cðnÞ sin½2pfðk � nÞDt

2pðk � nÞDt

������
1=ð2DtÞ

�1=ð2DtÞ

¼
XN�1

n¼�ðN�1Þ
cðnÞ sin½pðk � nÞ�

pðk � nÞ

¼
XN�1

n¼�ðN�1Þ
cðnÞ dkn

¼ cðkÞ QED:

The function dkn is the Kronecker delta in which

dkn ¼
1; k ¼ n

0; k 6¼ n
:

(

Appendix 5.B Proof of Equation 5.12

The goal of Appendix 5.B is to prove that

cðkÞ ¼ 1

2NDt

XN
n¼�ðN�1Þ

CðfnÞ ei2pf nkDt ð5:12Þ
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where the summation is over the frequencies fn¼ n/(2NDt). Notice that the

frequency spacing is one-half the usual spacing associated with a periodogram of

length N. At these frequencies we have, from Equation 5.8,

Cðf nÞ ¼ Dt
XN�1

k¼�ðN�1Þ
cðkÞ e�i2pfnkDt: ð5:B:1Þ

Now substitute Equation 5.B.1 into Equation 5.12 and interchange the order of

summation. The result is

cðkÞ ¼ 1

2NDt

XN
n¼�ðN�1Þ

Dt
XN�1

p¼�ðN�1Þ
cðpÞ e�i2pfnpDt

2
4

3
5ei2pfnkDt

¼ Dt

2NDt

XN�1

p¼�ðN�1Þ
cðpÞ

XN
n¼�ðN�1Þ

ei2pðk�pÞn=ð2NÞ

2
4

3
5

¼ 1

2N

XN�1

p¼�ðN�1Þ
cðpÞ

XN
n¼�ðN�1Þ

eipðk�pÞn=N

2
4

3
5

¼ 1

2N

XN�1

p¼�ðN�1Þ
cðpÞ

eipðk�pÞ=ð2NÞ sin½pðk � pÞ�
sin½pðk � pÞ=ð2NÞ� ; k 6¼ p

2N; k ¼ p

8><
>:

¼ cðkÞ; since sin½pðk � pÞ� is zero for the case of k 6¼ p: QED:

The penultimate equation is obtained using Equation 1.B.4 for the sum of complex

exponentials.

Problems

1 List two reasonswhy onemightwish to compute a variance density spectrum

of a time series via the autocovariance function as opposed to computing a

periodogram.

2 List the four desirable properties of a lag window and explain why each is

important.

3 We derived the equation

CXðfÞ ¼ HðfÞj j2 CZðfÞ
where H(f ) is called the frequency response function.
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(a) What is |H(f )|2 called?

(b) If the variance density spectrum CZ(f ) is white noise, write down the

equation for CX(f ) in terms of the variance of the white noise process.

(c) The equation for H(f ) for an AR(1) process is H(f )¼ 1/[1 –a�
exp(–i2pfDt)]. Derive the equation for CX(f ) for an AR(1) process

reduced to its most utilitarian form.

4 Write a computer program that will compute a smoothed variance density

spectrum using the formula

CðfÞ ¼ 2Dt cð0Þ þ 2
XM�1

k¼ 1

wðkÞ cðkÞ cosð2pfkDtÞ
" #

; 0 � f � 1=ð2DtÞ

where the notation is as usual.

In order to test the correctness of your spectrum, include in your program

the computation of the total variance from all the positive frequencies in

the spectrum and show that the total variance in the spectrum is equal to the

variancecomputeddirectly fromthedata. Insummingthespectrumvariance,

make sure that you use a one-half bandwidth at f¼ 0 and f¼ 1/(2Dt).

5 (a) Using the program you developed in problem 4, compute the sample

variance density spectrum for each of the four time series described in

Problem 9 of Chapter 4, using the samemaximum lag and the Tukey lag

window. Let Dt¼ 1 s and compute spectral estimates at increments in

frequency of 0.005Hz.

(b) Plot the one-sided (total variance) sample spectrum and population

mean spectrum for each of the four time series on linear axes. For the

analytic sinusoidal time series the “population” mean spectrum would

be a delta function at the appropriate frequency with the appropriate

area. Put the sample and population mean spectra for each time series

on one graph so that they can be easily compared and include the

respective total variances on each graph.

(c) For theAR(1) andAR(2) cases, verify that the populationmean variance

computed directly from the process (square the process formula and

take its expectation) is the same as the variance in the population mean

spectrum that you plotted in (b).

(d) Discuss each sample spectrum in relation to the associated time series.

For example, is its form or shape in agreement with the structure of the

time series?

(e) Discuss each sample spectrum in relation to the population mean

spectrum. For example, is it essentially coincident with the population

mean spectrum or are there substantial departures?
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