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Series foreword

Advances in weather and climate

Meteorology is a rapidly moving science. New developments in weather forecasting,
climate science and observing techniques are happening all the time, as shown by
the wealth of papers published in the various meteorological journals. Often these
developments take many years to make it into academic textbooks, by which time the
science itself has moved on. At the same time, the underpinning principles of atmo-
spheric science are well understood but could be brought up to date in the light of the
ever increasing volume of new and exciting observations and the underlying patterns
of climate change that may affect so many aspects of weather and the climate system.
In this series, the Royal Meteorological Society, in conjunction with
Wiley—Blackwell, is aiming to bring together both the underpinning principles and
new developments in the science into a unified set of books suitable for under-
graduate and postgraduate study as well as being a useful resource for the profes-
sional meteorologist or Earth system scientist. New developments in weather and
climate sciences will be described together with a comprehensive survey of the
underpinning principles, thoroughly updated for the 21st century. The series will
build into a comprehensive teaching resource for the growing number of courses in
weather and climate science at the undergraduate and postgraduate levels.

Series Editors
Peter Inness
University of Reading, UK

William Beasley
University of Oklahoma, USA



Preface

Time series analysis is widely used in meteorological and climatological studies
because the vast majority of observations of atmospheric and land surface variables
are ordered in time (or space). Over the years we have found a continuing interest by
both students and researchers in our profession (and those allied to it) in under-
standing basic methods for analyzing observations ordered in time or space and
evaluating the results. The purpose of this book is to respond to this interest. We’ve
done this by deriving and interpreting various equations that are useful in explaining
the structure of data and then, using computer programs, applying them to
meteorological data sets. Overall, the material we cover serves as an introduction
in the application of statistics to the analysis of univariate time series. The topics
discussed should be relevant to anyone in any science where events are observed in
time and/or space. To demonstrate a procedure, we use scalar atmospheric variables,
for example, air temperature. Anyone who completes the five chapters, including
working the problems at the end of each chapter, will have acquired sufficient
understanding of time series terminology and methodology to confidently deal with
more advanced spectrum analysis, for example, that found in radar and atmospheric
turbulence measurements, analysis, and theory.

Chapter 1 deals with Fourier analysis and is divided into five sections. In the first
three sections, mathematical formulas for representing a time series by Fourier sine
and cosine coefficients are developed and their inherent symmetry emphasized.
These formulas are applied to three data sets, two of which are actual observations.
The three sections provide the background necessary to apply Fourier analysis to a
time series, and one of the end-of-chapter problems invites the reader to write a
computer program designed to accomplish this.

In the fourth section of Chapter 1 we investigate statistical properties of the
Fourier spectrum. These statistical properties arise because time series from the phys-
ical world are usually nondeterministic, that is, no two data sets are alike. We explore
the concept of a random variable, a realization, a population, stationarity, expec-
tation, and a probability density function. The goal is to understand how random
data produce a distribution of variances at each harmonic frequency and the
statistical properties of this distribution. Armed with this information, the last part
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of this section involves testing the hypothesis that a particular data set, as viewed
through the Fourier spectrum, is a sample from a population of white noise, that is,
random numbers.

The fifth section of Chapter 1 is an examination of various topics relevant to
time series analysis. We discuss aliasing, spectrum folding, and spectrum windows,
phenomena that are a direct consequence of digital sampling, and show examples
of each. In addition, we develop the Fourier transform, the mathematical for-
mula that in one step converts a time series into its Fourier components in the
frequency domain.

Chapter 1 is the longest of the five chapters because it encompasses both
theory and application of Fourier analysis, relevant statistical concepts, and
the foundation of methods of time series analysis developed in the remaining
chapters.

The subject of Chapter 2 is linear systems. This chapter is the study of the
relationships between two time series, an input series and an output series, and the
associated input and output spectra. What links the two time series is a physical
system, as in the case of measurement of some physical variable (for example, a
thermometer to measure temperature), or a mathematical system, as in the case of
filtering an observed time series to remove unwanted noise in the data.

Fundamental to Chapter 2 is the convolution integral. Whether a system is
physical or mathematical, the convolution integral provides the mathematical
connection between the input and output series, and its Fourier transform provides
the connection between the input and output spectra.

Most variables of interest in the physical sciences are continuous in time (or
space). Nevertheless, we practically always analyze digital time series. We investigate
the relationship between analog and digital time series using a generalized function
called the Dirac delta function. Through its application we can explain how the
structure of an output time series that has passed through a linear system is altered
relative to the input time series in terms of modified Fourier coefficients and phase
angles. Two examples are discussed, a first order linear system and an integrator,
both of which have practical use in meteorology and climatology, and the physical
sciences in general.

Chapter 3 is principally about nonrecursive data filtering; that is, a filtered output
time series is related only to the input time series — there is no feedback (as in
recursive filtering). Time series that are to be filtered are viewed as data that already
have been collected as opposed to real time filtering.

The primary objective of this chapter is to design and apply a two-parameter filter
called the Lanczos filter. The two design parameters are the number of weights and
the frequency that separates the Fourier spectrum into harmonic variances that
remain unchanged and those that are suppressed. This filter provides its designer
much more control of the filtering process than simple one-parameter filters, for
example, the running mean. The theory of Lanczos filtering is developed, examples of
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its use are shown, and a computer program is provided so that the reader can apply
the procedure to a data set.

One of the goals of a physical scientist is to understand the morphology of natural
events. An obvious step that must be taken is to obtain samples in time and/or space
of variables that characterize the physical properties of an event over its lifetime.
The fact that an event has a lifetime implies that it evolves in time and/or space, a
consequence of which is that successive observations of its properties are related.
This is called autocorrelation, the title of Chapter 4. To realize the importance of
autocorrelation in analyzing time series, we compare the formula for calculating the
variance of the mean of a random variable with autocorrelation to that without
autocorrelation. The latter formula is the form seen in typical undergraduate
statistics texts while the former formula takes into account the degree of dependence
in the time series.

In Chapter 4 we are interested in finding the best formula for estimating the mean,
variance, autocovariance function, and autocorrelation function of a population of
time series based, typically, on a single observed time series taken from that
population. We examine populations of independent as well as autocorrelated data.
Among the five chapters, this one is the most statistically oriented.

The lagged-product method discussed in Chapter 5 is an alternative to Fourier
analysis. Quite often, Fourier analysis of geophysical data yields noisy-looking
spectra. When this occurs, it is common to smooth a spectrum to make it more
visually interpretable. In the lagged-product method, a smoothed variance spectrum
can be obtained directly from the Fourier transform of the product of the auto-
covariance function with another function that alters its shape. The degree of
smoothing is controlled entirely by the latter function. The term lagged-product
is used because the autocovariance function comprises time-lagged (or spatially-
lagged) products and it is the autocovariance function that is being transformed.

This book was written for students and scientists who have a background in
calculus and statistics, and familiarity with complex variables. Prior in-depth study
of complex variables is not required.

The authors wish to thank the many students who have provided valuable com-
ments and corrections over the years the material was used as lecture notes.
Chapters 2, 4, and 5 were inspired by the book Spectral Analysis and its Applications
(1968) by G.M. Jenkins and D.G. Watts, a classic volume in time series analysis.

Claude Duchon and Rob Hale
22 May 2011



Fourier analysis

It is often the case in the physical sciences, and sometimes the social sciences as well,
that measurements of a particular variable are collected over a period of time. The
collected values form a data set, or time series, that may be quite lengthy or otherwise
difficult to interpret in its raw form. We then may turn to various types of statistical
analyses to aid our identification of important attributes of the time series and their
underlying physical origins. Basic statistics such as the mean, median, or total
variance of the data set help us succinctly portray the characteristics of the data set as
a whole, and, potentially, compare it to other similar data sets.

Further insight regarding the time series, however, can be gained through the use
of Fourier, harmonic, or periodogram analysis — three names used to describe a single
methodology. The primary aim of such an analysis is to determine how the total
variance of the time series is distributed as a function of frequency, expressed either
as ordinary frequency in cycles per unit of time, for example, cycles per second, or
angular frequency in radians per unit of time. This allows us to quantify, in a way that
the basic statistics named above cannot, any periodic components present in the data.
For example, outside air temperature typically rises and falls with some regularity
over the course of a day, a periodic component governed by the rising and setting of
the sun as the earth rotates about its axis. Such a periodic component is readily
apparent and quantifiable after applying Fourier analysis, but is not described well by
the mean, median, or total variance of the data.

In the first two sections of Chapter 1, we will learn some essential terminology of
Fourier analysis and the fundamentals of performing Fourier analysis and its inverse,
Fourier synthesis. Example data sets and their analyses are presented in Section 1.3 to
further aid in understanding the methodology.

As with other types of statistical analyses, statistical significance plays an impor-
tant role in Fourier analysis. That is, after performing a Fourier analysis, what if we

Time Series Analysis in Meteorology and Climatology: An Introduction, First Edition. Claude Duchon and Robert Hale.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.



2 CH 1 FOURIER ANALYSIS

find that the variance at one frequency is noticeably larger than at other frequencies?
Is this the result of an underlying physical phenomenon that has a periodic nature?
Or, is the larger variance simply statistical chance, owing to the random nature of the
process? To answer these questions, in Section 1.4 we examine how to ascribe
confidence intervals to the results of our Fourier analysis.

In Section 1.5, we take a more detailed look at particular issues that may be
encountered when using Fourier analyses. Although not generally requisite to
performing a Fourier analysis, the concepts covered are often critical to correct
interpretation of the results, and in some cases may increase the efficacy of an
analysis. An understanding of these topics will allow an investigator to pursue
Fourier analysis with a high degree of confidence.

1.1 Overview and terminology
1.1.1 Obtaining the Fourier amplitude coefficients

The goal of Fourier analysis is to decompose a data sequence into harmonics
(sinusoidal waveforms) such that, when added together, they reproduce the time
series. What makes sinusoidal waveforms an appropriate representation of the data is
their orthogonality property, their ability to successfully model waves in the
atmosphere, oceans, and earth, as well as phenomena resulting from solar forcing,
and the fact that the harmonic amplitudes are independent of time origin and time
scale (Bloomfield, 1976, p. 7).

Harmonic frequencies are gauged with respect to the fundamental period, the
shortest record length for which the time series is not repeated. In most practical
cases, this is the entire length of the available record, since the record typically
does not contain repeated sequences of identical data. The harmonic frequencies
include harmonic 1, which corresponds to one cycle over the fundamental
period, and higher harmonics that are integer multiples of one cycle. Thus each
harmonic is always an integer number of cycles over the length of the funda-
mental period.

To establish a sense of Fourier analysis, consider a simple example. The heavy line
in Figure 1.1 connects the average monthly temperatures at Oklahoma City over
the three-year period 2007-2009. By looking at the heavy line only, it is quite evident
that there is a strong annual cycle in temperature. It is equally clear that one sinusoid
will not exactly fit all the data, so other harmonics are required. The fundamental
period, or period of the first harmonic, is the length of the record, three years. The
third harmonic has a period one-third the length of the fundamental period, and
consequently represents the annual cycle. The thin line in Figure 1.1 shows the third
harmonic after it has been added to the mean of all 36 months, that is, the
0-th harmonic. As expected, the third harmonic provides a close fit to the observed
time series.
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Figure 1.1 Mean monthly temperatures at Oklahoma City 2007-2009 (heavy line), and
harmonic 3 (light line) of the Fourier decomposition.

1.1.2 Obtaining the periodogram

The computation of variance arises in elementary statistics as a defined measure of
the variability in a data set. When the computation of variance is applied to a time
series, it is similarly defined. Now, though, the variance in the data set can be
decomposed into individual variances, each one related to the amplitude of a
harmonic. Just as adding the sinusoids from all harmonics reproduces the original
time series, adding all harmonic variances yields the total variance in the time series.
How the decomposition is achieved and how variance is related to harmonic
amplitude are discussed in Section 1.2.

A periodogram is a plot of the variance associated with each harmonic (usually
excluding the 0-th) versus harmonic number and shows the contribution by each
harmonic to the total variance in the time series. Henceforth, the term periodogram
will be used to refer to the calculation of variance at the harmonic frequencies.
The term Fourier line variance spectrum is synonymous with periodogram, while
the generic term spectrum generally means the distribution of some quantity
with frequency.

The variance at each harmonic frequency is given by the square of its amplitude
divided by two, except at the last harmonic. Figure 1.2 shows the periodogram
(truncated to the first 10 harmonics) of the data in Figure 1.1 where we see that
harmonic 3 dominates the variability in the data. The small variances at harmonics 6
(period = 6 months) and harmonic 9 (period =4 months) are easily observed in
Figure 1.2, but, in fact, there are nonzero variances at all 18 possible harmonics
(excluding the 0-th) and their sum equals the total variance of 75.23 °C? in the
2007-2009 Oklahoma City mean monthly temperature time series.
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Figure 1.2 Variance at each harmonic through 10 for the data in Figure 1.1.

The periodogram in Figure 1.2 was computed using the computer program
given in Appendix 1.A. This program, written in Fortran 77, performs a ‘fast’ Fourier
analysis of any data set with an even number of data and has been used throughout
this chapter to compute the periodograms we discuss.

1.1.3 Classification of time series

We can classify time series of data into four distinct types of records. The type
of record determines the mathematical procedure to be applied to the data to obtain
its spectrum.

The 36 values of temperature x,,, in Figure 1.1, connected by straight-line segments
for ease in visualization, constitute a finife digital record. Digital time series arise in
two ways (Box and Jenkins, 1970, p. 23): sampling an analog time series, for example,
measuring continuously changing air temperature each hour on the hour; or
accumulating or averaging a variable over a period of time, for example, the previous
record of monthly mean temperatures at Oklahoma City. With respect to the latter
case, if N is the number of months of data and At the time interval between successive
values, the record length in Figure 1.1 is NAt = 36 months. In this case, as well as with
all finite digital records, all data points can be exactly fitted with a finite number of
harmonics. This is in contrast to a finite analog record of length T, such as a pen trace
on an analog strip chart, for example, a seismograph, for which an infinite number of
harmonics may be required to fit the signal.

Figure 1.3 is an example of a finite analog record. Sampling the time series at
intervals of At yields the finite digital record shown in Figure 1.4. The sample values
again have been connected by straight-line segments to better visualize the variations
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Figure 1.3 An example of a finite analog data record.

in x,,. The sampling interval, At, associated with each datum can be shown on a time
series plot to the left or right of, or centered on, each datum — it is a matter of choice.
In Figure 1.4, At is to the right of each datum. One might think that there should
be a fifteenth sample point at the very end of the curve in Figure 1.3. However,
because of the association of each sampled value with one At, the length of the digital
record would be one sample interval longer than the analog record. Conceptually,
the fifteenth sample point is the first value of a continuing, but unavailable,
analog record.

The concept of an infinite analog record is often used in theoretical work.
An example would be the trace in Figure 1.3 extended indefinitely in both directions
of time. For this case a continuum of harmonics is required to fit the signal, thereby
resulting in a variance density spectrum. Note, however, that a variance density
spectrum can be created also with a finite digital record. How this comes about is

I N S £ SE—

_|’|At|‘_| |

[
n=0 1 2 3 567891011121314

Figure 1.4 Anexample of a finite digital data record obtained by sampling the finite analog
record in Figure 1.3. There are N =14 data.
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discussed in Chapter 5. An infinite digital record would be obtained by sampling the
infinite analog record at intervals of At. We will use infinite analog and digital
records in Section 3.1.4 (Chapter 3) to determine the effects on the mean value of a
time series after it is filtered.

By far the type of record most commonly observed and analyzed in science and
technology is the finite digital record. With a few exceptions, this is the type of data
record we will deal with in the remainder of Chapter 1, and for which the formulas for
computing a periodogram are presented.

1.2 Analysis and synthesis
1.2.1 Formulas

If one of the data sets collected in your research is a time series of atmospheric
pressure, Fourier “analysis” can be used to derive its periodogram and to examine
which harmonics dominate the series. Conversely, once the analysis has been done,
the original time series of pressure can be reconstructed purely from knowledge of
the harmonic amplitudes. Thus Fourier “synthesis” is the inverse process of analysis.
Note that the title of this chapter employs the more generic meaning of analysis and
includes both the analysis and synthesis terms just described.

The formulas in Table 1.1 are those needed to perform analysis and synthesis. The
equations under Fourier Analysis are used to calculate the Fourier coefficients or
harmonic amplitudes. The equations under Fourier Synthesis express the time series
x, as the sum of products of cosines and sines with amplitudes A, and B,
respectively, or, alternatively, the sum of products of cosines only with amplitudes
R, and phase angles 0,,,. Notice that the expressions are slightly different depending
on whether the time series has an even or an odd number of data. The synthesis
equations are equivalent to the forms introduced by Shuster around 1900
(Robinson, 1982).

The arguments of the cosine and sine terms associated with the A, and B
coefficients are of the form

2rtmnAt
NAt

where m is harmonic number and nAt a point in time along the time axis of total
length NAt. Thus, 27tm is the number of radians in the m-th harmonic over the total
length of the time series. The product of 25tm and the ratio nAt/NAt provide location
along the sinusoid in radians. Because the time increments (At) cancel, they are not
shown in Table 1.1. In Fourier synthesis, the summation is over all harmonics at a
given location nAt, while in Fourier analysis the summation is over all data locations
for a given harmonic m.
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Table 1.1 Formulas used in Fourier synthesis and analysis for an even or odd number of data.

Fourier Analysis

N-1
A() = ﬁ Xn B() =0
n=0
N-1 2mtmn N-1 . 2mmn
An =2 > xcos Bn=%> x, sin
n=0 N n=0
m=[1,5-1](Neven); m=[1,"|(Nodd)
N-1
Anja = % D Xn cos(7n) By, = 0 (Neven)
n=0

B
Rn = /A2 +B% 0, = tan™! (—m)
Am

Fourier Synthesis

N/2 2 2 N/2 2
Xn= > (Amcos nlilnnJersin J'[;Inn) = Z:OR“‘COS( nlilnnfem), n=[0,N—1] (N even)

m=0
N-1 N-1
2 27 27 2 27
xp= Y. | Amcos mn—i—Bmsin may >~ Rpcos rnn_em , n=[0,N—1] (N odd)
m=0 N N m=0
Variance at Harmonic m
A2 4 B?
S2 = % m=[1,5—1] (Neven); m=[1,%!] (Nodd)

SZN/2 = Af\l/z (N even)
Total Variance

N-1
N/2

2
§* = > S% (Neven) § = > 8 (Nodd)
m=1 m=1

The variance at each harmonic for even and odd data lengths is given in Table 1.1
under the heading Variance at Harmonic m. Note that the only exception to the
general formula for harmonic variance occurs at m=N/2 when N is even. The
cosine coefficient at N/2 is squared but not divided by two (the sine coefficient is
zero). The formulas for the total variance S* under the heading Total Variance yield
the same variance estimates as the formula

§? = Nz:(xn—i)z (1.1)

for computing total variance directly from the data, in which X is the series mean.
The two formulas in Table 1.1 are nearly the same, the only difference being that the
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expression for the upper limit of each summation depends on whether N is even
or odd.

1.2.2 Fourier coefficients

The method for obtaining the Fourier coefficients is based on the orthogonality of
cosine and sine functions at harmonic frequencies, where orthogonality means that
the sum of the products of two functions over some interval equals zero. The method
entails multiplying both sides of a Fourier synthesis equation by one of the cosine or
sine harmonic terms, summing over all n, and solving for the coefficient associated
with the harmonic term.

For example, consider multiplying both sides of the first Fourier synthesis equa-
2ntkn
N
second summation on the right-hand side will have the form and result

tion in Table 1.1 (using the A,,,, B, form) by cos and summing over all n. The

N 2amn 27tkn
Z sin cos =0 (1.2)
= N N

where m and k are integers. That this sum is zero can be shown with two examples as
well as mathematically. The sine and cosine terms for m=k=1 are shown in
Figure 1.5 and for m =1 and k=2 in Figure 1.6. The algebraic signs of the sum of
cross products within each quadrant are shown at the base of each figure. Because of
symmetry, the absolute magnitude of each sum is the same for each quadrant in

|

<

W
IS N

| | s
NN AR

n=0 n=N

Figure 1.5 Signs of sums of cross products of cosine and sine terms for m=k=1.
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Figure 1.6 Signs of sums of cross products of cosine and sine terms for m=1 and k=2.

Figure 1.5 and similarly for Figure 1.6. Thus the waveforms are orthogonal because
the sum of their cross products is zero over the interval 0 to N in each illustration.

It can be surmised from these figures that the sum of the cross products is zero over
the fundamental period for any combination of the m and k integers. But how could
this be shown mathematically? Firstly, we put the sine and cosine terms in complex
exponential form, and then expand the summation above using Euler’s formula
to obtain

N-—-1
Zsin(ZJ‘ﬁmn/N) cos(2mkn/N)
n=0
N1 A 1
_ 7(e12nmn/N _ eﬂZI:mn/N) 7(612nkn/N + efznkn/N)
=21 2
1 N—-1 (1 3)
— i2 k)n/N i2 —k)n/N —i2 —k)n/N —i2 k)n/N .
_ E (el 7t(m+k)n/ +e1 t(m—Kk)n/ _ el nt(m—Kk)n/ _ i t(m+k)n/ )
n=0

A procedure is developed in Appendix 1.B for finding the sum of complex
exponentials. The final two formulas, Equations 1.B.3 and 1.B.4, are very useful
for quickly finding the sums of sines and cosines over any range of their arguments.
An example of using the first formula follows.

Consider just the first summation on the right-hand side in Equation 1.3. Let

Q= eiZn(m-‘rk)n/N.

(1.4)
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Using Equation 1.B.3, Q becomes

1— ei23‘[(rn+k)

Q =

1 — ei2n(m+k)/N

1 —cos[2m(m + k)] —isin[27(m + k)]
1 — cos[2a(m + k)/N] — isin[27t(m + k) /N]

0, m+k#0,N. (1.5)

The numerator is zero for all integer values of m and k while the denominator is
nonzero except when (m+k)=0 or N, in which cases the denominator is 0 and
Equation 1.5 is indeterminate. To evaluate Equation 1.5 for these cases we can apply
I'Hopital’s rule. The result of taking the first derivative with respect to (m +k) in
both the numerator and denominator yields a determinate form with value N. That is

27 sin[27t(m + k)] — i 27w cos[27t(m + k)]

Q= (2t/N) sin[27t(m + k) /N] — i (27t/N) cos[27t(m + k) /N]

=N, m+k=0,N. (1.6)

The same result also can be obtained by substituting 0 or N for (m-+k) in
Equation 1.4. We observe that the first and fourth summations in Equation 1.3
cancel each other for these values.

We can apply the above procedure to the second term in Equation 1.3. The
summation will be zero again, except when (m — k) is 0 or N. Employing I'Hopital’s
rule yields a determinate form with value N for these cases, similar to Equation 1.6.
And again, the same results can be obtained from Equation 1.4. Accordingly, when
(m —k) =0 or N, the second and third summations in Equation 1.3 cancel. Thus
Equation 1.2 is valid for any integer k or m. This includes the possibility that (k + m)
is an integer multiple of N.

Now that we have shown that the summed sine—cosine cross product terms akin
to Equation 1.2 must be zero, let us consider the sums of sine—sine and cosine—
cosine products resulting from multiplying the first Fourier synthesis equation
by cos% and summing over all n. Following the procedure in Appendix 1.B we

find that

0, k#m

— . 2mmn , 2mkn N, k=m#0,5 (Neven); k = m#0(Nodd)
Zsm sin—— = (1.7)
n=0 0, k=m=0,5 (Neven);k =m = 0(Nodd)
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and

0, k#m

= 2mmn  2mkn N, k=m#0,5 (Neven);k =m+#0(Nodd)
Zcos cos—— = (1.8)
=0

N, k=m=0, 5 (Neven);k =m = 0(Nodd).

Thus multiplying the synthesis equation for N even by the k-th sine harmonic term
and summing yields

N-1 N/2 N—1 N—1
2wk 2mk 27 2mk 27
ansin Nn: Z (Astin Nncos IiIml%—Bstin anin I;nn)
n=0 m=0 n=0 n=0
(1.9)
which reduces to
N-1
27tk N
Y xusin T =ByN/2, k= {1,—1} (1.10)
— N 2
n=0
so that
N-1
. 27mkn N
Bk:(Z/N);anm 5 k= [1,21]. (1.11)

Observe that the sine coefficients for k=0, N/2 (N even) are always zero.

The Fourier cosine coefficients, Ay, are obtained in a similar manner, but A, and
Ay, are, in general, nonzero. As is evident from Table 1.1, Ay is the mean of the time
series. For N odd, an expression similar to Equation 1.9 is used to obtain the Fourier
coefficients, the only difference being that the range of harmonics extends from 0 to
(N —1)/2. Table 1.1 shows the resulting formulas for all Fourier coefficients.

The coefficients A, and B,, represent the amplitudes of the cosine and sine
components, respectively. As shown in the left-hand panel of Figure 1.7a, the cosine
coefficient is always along the horizontal axis (positive to the right), and the sine
coefficient is always normal to the cosine coefficient (positive upward). In the right-
hand panel we see how the cosine and sine vector lengths determine the associated
cosine and sine waveforms (ignore the dashed line for the moment). Figures 1.7b—d
show various possibilities of waveform relationships depending on the sign of A,
and the sign of B,,. More discussion of Figure 1.7 is given in Section 1.2.4.
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(c) 6y, is in the third quadrant.
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(d) 6, is in the fourth quadrant.

Figure 1.7 (a)-(d) The magnitude and sign of each Fourier coefficient determines the
quadrant in which the phase angle lies. Geometric vector lengths in the left hand panels are
twice the lengths of the Fourier coefficients in the right hand panels.
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An alternative approach can be taken to solve for the Fourier coefficients.
As shown by Bloomfield (1976, p. 13), the As and Bs above are identical to the
coefficients from a least-squares fit of individual harmonics to the data.

1.2.3 Total and harmonic variances

The standard formula for the total variance of a time series of length N

Z
L

82—1

= < ) (1)

~~
ol
=1
|
o]

n=0

was given in section in Section 1.2.1. The total variance is identical to the sum of
the variances at the individual harmonics as shown in Table 1.1 for N even and
N odd. The variance at an individual harmonic can be derived from Equation 1.1
by first substituting the Fourier synthesis equations for N even or N odd in
Table 1.1 into Equation 1.1 for x, and X. The substitution for X is A,. After
expanding the synthesis equation inside the parentheses in Equation 1.1,
squaring the result, and performing the required summation, the cross product
terms vanish (see Equation 1.2) and, using Equations 1.7 and 1.8, the remaining
squared terms will reduce to the equations for variance at any harmonic seen in
Table 1.1. With one exception, a harmonic variance is the sum of the squares of
the Fourier cosine and sine coefficients divided by two. The exception occurs at
harmonic m =N/2. The expansion of Equation 1.1 into the sum of harmo-
nic variances is a good exercise in the application of orthogonality in time
series analysis.

1.2.4 Amplitude and phase representation

Instead of representing a time series by the appropriate sums of both sines and
cosines, an alternative representation is to use either sines or cosines alone and
include phase angles, as seen in the right-hand equations in Table 1.1 under Fourier
Synthesis. Because of orthogonality, the cosine term is shifted by 90° or 7t/2 radians
from the sine term for any harmonic. As a result, a single sinusoid can be represented
by two amplitude coefficients (A, and B,,) or, equivalently, by a single amplitude
coefficient R, and a phase angle 0,,,. The advantages of the latter are a slightly more
compact representation of x, and only one waveform for each harmonic.

Figure 1.7a illustrates the connection between the two forms of Fourier synthesis.
The dashed sinusoid with amplitude Ry, in the right-hand panel has been decom-
posed into a cosine term and a sine term. Their respective amplitudes A, and B,
depend on the location of the dashed sinusoid relative to the origin n =0, that is, its
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phase angle 0,,,. As noted earlier, the left-hand panel shows the vector relationship
among the three amplitudes and the phase angle. Thus

Ry = (/AL + B
A, = Ry cosO,

and
B, = Ry, sinf,,

so that
Om = tan '(Bp/Am), —7<0, <

Substituting the middle two equations above into a cosine—sine synthesis results in the
amplitude phase synthesis. We see that phase angle 0, is determined by the sign and
magnitude of A, and B.,. The sign of each coefficient, not merely the sign of the
ratio, determines the quadrant in which the phase angle lies. The left-hand panels in
Figures 1.7a—d show the amplitude and phase angle in the quadrant associated with the
right-hand panels. We observe in each right-hand panel that, given the dashed line and
the origin, we can immediately determine the magnitudes of the cosine and sine
coefficients: the cosine coefficient is available at the origin and the sine coefficient 90°
to the right.

1.3 Example data sets
1.3.1 Terrain heights

Table 1.2 contains the data set for this example. The formulas in Table 1.1 are used
to perform a Fourier analysis and synthesis. Consider h to be the variation of
terrain height above some datum with distance d along a specified direction.
Furthermore, let the data in the table represent a finite digital subset of analog
periodic data. The data are plotted in Figure 1.8 and connected by straight-line
segments. After looking at Figure 1.8 and the tabled data, it should become
clear that the waveform repeats itself every 3000 m. Thus one may as well
work with 15 values (n =0, . . ., 14). Or should one use 16 values? Let us determine
the difference. Since Ad=200m and the length of the fundamental period
L=3000m, N=15. Every datum must have a space increment Ad associated
with it. Although 16 points subtend L, the Ad associated with the sixteenth point
would make the fundamental period 3200, which it clearly is not. In short, the
sixteenth point is the first point of the next period and similarly for the thirty-first
point in the table.
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Table 1.2 Height (h) versus distance (d =nAd =n200 m).

n nAd(m) h(m) n nAd(m) h(m) n nAd(m) h(m)
0 0 100.00 10 2000 98.25 20 4000 101.75
1 200 129.02 11 2200 110.73 21 4200 117.30
2 400 127.14 12 2400 97.55 22 4400 110.59
3 600 102.45 13 2600 72.86 23 4600 89.41
4 800 89.27 14 2800 70.98 24 4800 82.70
5 1000 101.75 15 3000 100.00 25 5000 98.25
6 1200 117.30 16 3200 129.02 26 5200 110.73
7 1400 110.59 17 3400 127.14 27 5400 97.55
8 1600 89.41 18 3600 102.45 28 5600 72.86
9 1800 82.70 19 3800 89.27 29 5800 70.98
30 6000 100.00

Further examination of the first 3000 m in Figure 1.8 suggests odd symmetry in the
data. That is, if a vertical line were drawn at 1500 m, the heights of any two points
equidistant from this line will appear to be a reflection about a horizontal line
at 100 m elevation. Consequently, except for the mean, only sine terms will be needed
in the Fourier synthesis. Lastly, we notice that the time series exhibits only
comparatively slow fluctuations, so that most of its variance should be
“explained” (i.e., accounted for) by low harmonic frequencies.

Based on this insight, we first compute the mean and find that Ay = 100 m. Over
the first 3000 meters we can easily identify three peaks and three troughs, indicating
we should calculate the magnitude of harmonic 3, that is

Z

—1
B; = (2/15)) h,sin(2m3n/15) = 20m, N = 15.
0

=
I

: . :
AT AN A AW
SRV A \_/\x
PN N

: N ]

Distance (km)

Figure 1.8 Plot of terrain height data connected by straight-line segments.
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Figure 1.9 Plot of the mean plus harmonic 3 fitted to the data in Figure 1.8 from 0 to 3 km
and repeated from 3 to 6 km.

Thus, its varianceis S; = B3/2 = 200 m*. The third harmonic added to the mean is
plotted in Figure 1.9 from 0 to 3000 m and then repeated to include the entire length
of the data set.

Since the average value of the height departures from A, for the first 1500 m is
positive and for the second 1500 m is the same magnitude but negative in sign,
harmonic 1 should be nonzero. This is illustrated in Figure 1.10, in which it can be
seen that harmonic 1 will have to be a sine wave to account for heights above the
mean from 0 to 1500 m and heights below the mean from 1500 m to 3000 m.

Using the formula for B; we get B, = 10, so that 2 = 50 m?. The first harmonic
added to the mean is plotted in Figure 1.11, again over the entire time series. The
accumulated variance from harmonics 1 and 3 is 250 m” in comparison to the total
variance of 282m?” computed from Equation 1.1. As there is no apparent high
frequency variance in Figure 1.8, we would expect much of the remaining variance to
be at a low harmonic frequency. If we try harmonic 2 we find that B, =8 m and
S3 = 32 m?. The waveform is shown in Figure 1.12. Since the first three harmonics

Departure from mean

R B |
0 500

Ll
1000

M |
1500

P e B
2000 2500 3000

Distance (m)

Figure 1.10 Harmonic 1 results from above average and below average heights as shown.
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Figure 1.11 Same as Figure 1.9 except for harmonic 1.

account for 100% of the variance in the data, there is no need to make further
calculations (obviously, the data were generated using just the above coefficients!).
Figure 1.13 shows the sum of the three harmonics plus the mean, drawn as a smooth
curve that passes through all the observations in Figure 1.8.

It is interesting to consider what would happen if a 16-point data length (3200 m)
were used, an earlier consideration. Instead of computing the three sine coefficients
above to explain 100% of the variance, it would take eight cosine and eight sine
nonzero coefficients to account for all the variance. The addition of the one point
destroys the symmetry present in the 15-point data length (3000 m).

In Figures 1.9-1.13 the waveforms from 0 to 3000 m were repeated over the
interval 3000-6000 m. This is allowed since the data are periodic. By extending the
Fourier synthesis using the 15-point record, namely

h, = 100 + 10sin(27tn/15) + 8 sin(4mn/15) + 20 sin(67tn/15)

Height (m)

Distance (km)

Figure 1.12 Same as Figure 1.9 except for harmonic 2.
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Figure 1.13 Plot of the mean plus harmonics 1, 2, and 3 fitted to the data in Figure 1.8 from
0 to 3 km and repeated from 3 to 6 km.

the series will exactly match that in Figure 1.8 for 15 <n <29, and, more generally,
repeat the observed data for any n replaced by n & 15k where k is an integer. With a
16-point record, values of the computed series will be repeated every £16k points but
will not match the observed record for k# 0. For example, the first value in the
extended series will be 100 m compared to 129.02 m in the observed series.

Clearly, it is important to determine the correct number of data points when
working with periodic data. Many observed variables in meteorology and other
physical sciences are externally forced by the sun, so that there are strong diurnal
and annual components in the data. These components serve to define the funda-
mental period.

1.3.2 Paradrop days

Table 1.3 shows the mean number of days in January that “paradrop” criteria are met
for each hour of the day at Seymour-Johnson Air Force Base, Goldsboro, North
Carolina. A paradrop is the insertion of troops or equipment into a site via parachute
from an airplane. For a safe paradrop, three meteorological criteria should prevail:
ceiling > 2000 feet (610 m), horizontal visibility > 3 miles (4.8km) and surface
winds < 10 knots (5.1 m/s). Although “ceiling” has a specific definition, it can be
taken here to mean there is good vertical visibility between the surface and the height
of the ceiling. As an example of paradrop days, from Table 1.3 we see that at 0700,
19.2 days of the 31 days in January meet the safety criteria, on average.

The results of performing a Fourier analysis of the data given in Table 1.3 are
shown in Table 1.4. Only the results for the three largest harmonics are presented as
they account for 97.8% of the total variance and the remaining variances are all small.
Figure 1.14 is a plot of the mean number of days of occurrence versus time, the three
largest harmonics (about the mean), and their sum. As expected, their sum provides
a good fit to the data.
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Table 1.3 January paradrop days at Seymour-Johnson Air Force Base, North Carolina.

Hour Mean Hour Mean
number of days number of days
0000 21.6 1200 15.6
0100 21.1 1300 15.7
0200 21.2 1400 16.2
0300 20.8 1500 16.5
0400 20.3 1600 18.3
0500 20.4 1700 20.5
0600 20.0 1800 23.0
0700 19.2 1900 23.1
0800 19.5 2000 23.4
0900 18.0 2100 224
1000 17.4 2200 224
1100 17.5 2300 21.5

We can also establish the time or times of the peaks in each harmonic. To do this,
we use the formula

H = F X (phase angle 0 in degrees)

where H is the time in hours after 0000 local time and F is the ratio of the harmonic
period to 360°. Thus, from Table 1.4 for the second harmonic

H = (12/360) x (—143.3) = —4.78 h.

Converting this value to local time, we get 0713 and 1913. Similarly, the peaks for
the third harmonic are at 0223, 1023, and 1823 and for harmonic one at 2305.

In Problem 6 at the end of this chapter you are asked to write a Fourier analysis
computer program, apply it to the data in Table 1.3, compare your results with
those in Table 1.4 and Figure 1.14, and try to ascribe physical meaning to the
main harmonics.

Table 1.4 Results of Fourier analysis of the data in Table 1.3.

Harmonic Cosine Sine Variance Percentage of Phase angle
coefficient  coefficient total variance in degrees

0 19.817 0 0 0

1 2.8188 —0.6848 4.2072 74.9 —13.7

2 —1.1965 —0.8919 1.1136 19.8 —143.3

3 —0.1743 0.5623 0.1733 3.1 107.2
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Figure 1.14 Mean number of days that meet paradrop criteria versus time of day at Seymour-
Johnson Air Force Base, Goldshoro, North Carolina for the month of January. Three harmonics
explain 98% of the variance in the data.

1.3.3 Hourly temperatures

Even if there is a substantial amount of variance at a number of harmonics, one
should not believe, in general, that the variance at each harmonic is the conse-
quence of a different physical cause. Instead, often a band of harmonics can be
related to a physical phenomenon. Figure 1.15 is an example of a spectrum that
shows variance at particular harmonics and at broad bands of frequencies. The data
from which the spectrum was computed are hourly temperatures taken at the
Norman, Oklahoma Mesonet site (McPherson et al. 2007; http://www.mesonet.
org) from 1 December 2006 through 31 March 2007 at a height of 1.5m. Each
hourly temperature is a five-minute average at the top of the hour. The logarithmic
x-axis is in frequency in cycles/h converted from harmonic number and the y-axis is
proportional to the product of variance and frequency. In contrast to the period-
ogram with line variance in Figure 1.2, the spectrum amplitudes here are connected
by straight-line segments, the usual method of presentation. There are two broad
frequency bands of interest. One contains periods from about 12 to around 30 days
(0.0035-0.0014 cycles/h) and the other from about four to eight days
(0.0104-0.0052 cycles/h). The variances in these two bands are due to the passage
of long waves in the westerlies (major ridge—trough systems, i.e., Rossby-type
waves) and short waves (minor ridge—trough systems and fronts), respectively.
Their largely aperiodic nature results in the distribution of variance across a band of
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Figure 1.15 Temperature spectrum at 1.5m height for December 2006-March 2007 at
Norman, Oklahoma.

frequencies, the width of which can vary from year to year. Variance at periods
longer than 30 days is not shown because there are too few cycles over the 121 days
of data to yield satisfactory estimates.

The two well-defined peaks at periods of 24 and 12 hours are due to the daily cycle
of solar heating. Similar to the paradrop data in the previous section, the diurnal
temperature variation is a deformed sinusoid such that a semi-diurnal component is
also required. In fact, close inspection of Figure 1.15 shows a small amount of
variance at a period of six hours (0.1667 cycles/h), the fourth harmonic of the daily
cycle of temperature. Thus all three variances are required to explain the variance in
the daily cycle.

As a final comment about Figure 1.15, we point out that when the product of
variance density and frequency is plotted against the logarithm of frequency, the
result is an equal-area representation. Thus this is the plot design to use when the goal
is to compare variances from different frequency bands. Although we mentioned in
Section 1.1.3 that variance density would be discussed in Chapter 5, here it is only
necessary to know that variance and variance density are directly proportional to
each other to understand Figure 1.15.

1.3.4 Periodogram of a rectangular signal

Fourier analysis necessarily fits sinusoids to a time series; thus it is interesting to
observe what happens when data are intrinsically not comprised of sinusoids. The
heavy solid line in Figure 1.16a shows a periodic rectangular signal that might
represent, for example, whether it is raining or not or the occurrence and non-
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Figure 1.16 (a) A hypothetical rain - no rain analog signal, f(t), showing the first three
nonzero cosine harmonics. (b) Resulting periodogram with fundamental period shown in (a).

occurrence of some periodic phenomenon. Because of the location of the time origin,
the signal is an even function and, therefore, only Fourier cosine coefficients will be
required. By analogy with Fourier analysis for digital data, the expression for the
Fourier cosine coefficients for this periodic analog record is

Apn = J x(t) cos(2mmt/T)dt, m = 0,1,2,...
T) 1)

where T is the fundamental period. The periodogram in Figure 1.16b shows that only
odd-numbered harmonics are needed to synthesize the signal. The two light solid
lines and dashed line in Figure 1.16a are the waveforms of the first, third, and fifth
harmonics.

Given the waveform of the first harmonic, the waveforms of the third and fifth
harmonics serve to improve the Fourier synthesis. The positive and negative over-
shoots of the rectangular signal by the first harmonic are compensated by the
addition of the associated negative and positive peaks, respectively, in the third
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harmonic. However, as can be seen in Figure 1.16a, the addition results in
overcompensation that, in turn, is compensated by the fifth harmonic. In this way,
adding the waveforms of successive odd harmonics better approximates the flat
peaks and troughs in the rectangular signal and sharpens the change in value from 1
to —land —1 to 1. In practice, if you computed a periodogram that showed evidence
of decreasing variance at alternate harmonics, you should be wary of the presence of a
rectangular wave. Other special signals (for example, triangular and saw-tooth) also
show characteristic spectra.

In summary, we are reminded that Fourier analysis fits sinusoids to data regardless
of the signal being generated by the physical (or mathematical) process. It is up to the
analyst to keep this in mind when interpreting a periodogram.

1.4 Statistical properties of the periodogram

Section 1.4.1 provides basic statistical concepts and terminology needed to under-
stand the remainder of Section 1.4. Section 1.4.2 discusses the term expectation and
shows how it is used to find statistical properties, for example mean, variance, and
covariance, of digital and analog data. Expectation is used in Appendix 1.C to derive
the formulas for the distribution of variances at the Fourier harmonics. Section 1.4.3
deals with the main result of Appendix 1.C, namely, that the frequency distribution of
variance at any harmonic is proportional to a chi-square variable. This conclusion
requires that the data we analyze come from a normal white noise process. That is, the
data have a normal distribution and the periodogram of the data shows no preference
forlarge or small variance at any harmonic. In practice, we assume the data are at least
approximatelynormally distributed and, ifthe dataare not white noise, the datalength
is sufficiently long that the properties of the chi-square distribution of variance at a
harmonic and their independence from one harmonic to the next are effectively met.

Knowing that the statistical distribution of variances at a harmonic is chi-square
opens the window to finding confidence limits for the underlying variance spectrum
from which a sample periodogram has been computed as well as testing the null
hypothesis that the periodogram came from a white noise process. To put these ideas
into practice, we will deal with two data sets: one a 100-year record of autumn
temperatures; the other a five-year record of monthly mean temperature, both from
central Oklahoma, USA. The theory and application of confidence limits are
presented in Sections 1.4.4-1.4.6.

1.4.1 Concepts and terminology

The computation of a periodogram is purely an algebraic manipulation of the data.
The interpretation of a periodogram depends on how one views the data. If one views
a data set as resulting from a physical phenomenon or mathematical process that
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produces an identical data set each time the phenomenon or process is initiated, the
data set is considered deterministic. Each data set produced is identical to every other
data set, and likewise for the associated periodograms. If one views a data set as
resulting from a physical phenomenon or mathematical process that produces a
different data set each time the phenomenon or process is initiated, however small
the differences, the data set is nondeterministic, or equivalently, the data are stochastic
or random. Because no two data sets are alike, there is, conceptually, a population of
data sets, with each data set a member or realization of the population. The
population can be finite or infinite. The periodogram of a nondeterministic data
set is also one realization of a population of periodograms. In this concept, each
realization, whether a data set or a periodogram, represents an equally valid statistical
representation of the physical phenomenon or mathematical process being analyzed.
Observed time series in natural science are typically nondeterministic, although
deterministic components can exist in the series. In Section 1.4 we focus our
attention on nondeterministic data sets and the statistical properties of the resulting
periodograms. As part of this effort, we need certain additional terminology.

A random variable (rv) is a variable that has associated with it a range of values and
either a probability distribution (pd) if the variable is digital, or a probability density
function (pdf) if the variable is analog. For example, random variable (rv) X might take
on any integer value from 151 to 250, inclusive. The probability distribution gives the
probability of occurrence assigned to each of the 100 possible values, with the sum of
the probabilities equal to one. Alternatively, rv X might take on any real value within
the range 151 to 250, of which there are infinitely many possibilities. In this case the
probability of X exactly assuming any particular value (say, exactly 200) is zero.
However, there exists a finite probability that X will lie within a range of values
(say, 199.99-200.01) that is a subset of the overall range of possibilities. Thus,
in the case of analog data, it is necessary to describe probabilities using pro-
bability densities, the relative likelihoods of the values within the overall range. The
probability density function describes these relative likelihoods and, in parallel with
the case of digital data, the integral of the probability density function over the range of
rv X is one.

Now we develop the concept of a time series of random variables. Imagine a time
series of data from time t, to time tt collected from an experiment. Continue to
repeat the experiment, thereby forming successive data sets (realizations) of x(t)
from tg to tr. The values of x at, say, time t’, where t, <t’ <t form random variable
X(t'). This concept is illustrated in Figure 1.17, which shows a selection of
realizations stacked one upon the other with t, and tr lying beyond the ends of
the time axis shown. The intersection of the left-hand vertical dashed line with each
realization provides the range of values that comprise rv X at time t'. A random
variable also can exist at any other point along the time axis (for example, X(t”) at
t”). In the experiment above, the time axis was finite (t, to tt). In general, both the
time axis and the number of realizations can be infinite. Whether the time axis X(t”)
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Figure 1.17 A selection of realizations from a random process. Function X(t') denotes

random variable X at any time t'. The light horizontal lines have the same reference value of X
for each realization.

and number of realizations is finite or infinite t, to tt, the collection of random
variables comprise a random process or stochastic process.

Before continuing with additional concepts we comment on the notation for
random variables. Throughout the text we will use only upper case letters to indicate
random variables. However, all upper case letters are not random variables; they can
be standard mathematical variables, parameters, or constants. We’ve seen this, for
example, with Fourier coefficients in Table 1.1. It is always easy to understand
whether or not an upper case letter represents a random variable by the context in
which it occurs.
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When the data are nondeterministic, we need to consider another attribute:
whether the random process is stationary or nonstationary. If a time series is
stationary, the statistical properties of the pd or probability density function do
not change with time; a time series is nonstationary if the opposite is true. A simple
example of a nonstationary time series is a record of air temperature from winter to
summer at a typical middle latitude station. The nonstationarity results from the
increasing value of mean daily temperature, that is, a trend. In order to make the
series stationary, a low-order polynomial can be fitted to the data set and then
subtracted from it. Another common type of nonstationarity occurs when the
magnitude of the fluctuations, the population variance, changes with time. An
example is the greater variability (gustiness) of the surface wind speed during
daytime than nighttime due to the vertical mixing of air as the surface is differentially
heated during daylight hours.

If a time series is nonstationary and it is not clear how to remove nonstationary
effects, it may be necessary to resort to special analyses using many realizations,
divide the data into stationary segments, or apply other methods, such as wavelet
analysis (Daubechies, 1992). With the exception of Section 4.1, all mathematical
statistics in this text apply to stationary random processes; that is, the population
mean and population variance are independent of time. The data sets we analyze can
be considered realizations of a stationary random process or can be filtered in such a
way to make them stationary or approximately so.

An additional underlying concept needed to derive the statistical properties of a
periodogram is a particular random process called Gaussian (or normal) white noise.
There are two attributes of this process. With reference to Figure 1.17, the first is that
the probability density function of rv X(t') (or X(t”)) is Gaussian. The second
attribute is that rv X(t') and rv X(t”) are independent of each other. In practice, this
means that knowledge of the value of one member of the population at time t'
provides no predictability of the value of the same or any other member at any other
time. In statistical parlance, the covariability or covariance between X(t') and X(t”),
t' £ t”, is zero, a condition that implies the underlying random process is white noise.
The equivalent mathematical statement is derived in the next section.

An examination of the periodogram of any selected time series (a realization) from
a Gaussian white noise process would indicate no preference for large or small
variances in any part of the spectrum. The average over all possible realizations of the
variances at any one harmonic would be identical to that at any other harmonic
(with the exception of the highest harmonic for an even number of data, where the
variance would be reduced by one-half relative to the other harmonics). That is,
the periodogram variances would be uniform with harmonic frequency (less the
exception), a condition referred to as “white” by loose analogy with white light
wherein no one of the component colors is preferred (there is also acoustic white
noise). It is through this connection that the process that produces the uniform
variance spectrum is referred to as “white.” When we subsequently deal with a white
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noise process, it will be assumed to be normal or Gaussian, so that use of either
qualifier will be dropped.

1.4.2 Expectation

The term expectation is of fundamental importance to understanding the statistical
properties of the periodogram. The synonym for expectation is average. When
expectation is indicated, the average is taken over the entire population, whether it is
finite or infinite. The indicator for expectation is the symbol or operator E. When the
operator E is applied to a random variable (or a function of a random variable),
the question being asked is, “What is the average value of the random variable (or
the function of the random variable).” We will see examples of both in
subsequent sections.

In the first subsection formulas for the expectation of rv X and general function
g(X) for digital data are developed, followed by, in the second subsection, a parallel
development for analog data. In the third subsection the expectation of the product
of two random variables is developed. The results are formulas for the covariability
or covariance between these variables. For those readers familiar with expectation,
it may be necessary only to skim through this section to become familiar with
the notation.

1.4.2.1 Digital data

Let the sample space S in Figure 1.18 contain a population of N elements, some of
which may be the same. Denote distinct elements of S by x, X5, . . ., Xk. In Figure 1.18
N =10 and K = 6; two x, elements are alike, three x, elements are alike, and two x4
elements are alike.

The symbol for expectation is E and the expectation of random variable X is

defined by

K

Z Xk Nk

k=1

EX] = ux = N

(1.12)

where X is a digital random variable, ny is the number of elements with value x, and

K
N = an.
k=1

The expectation operator asks the question — What is the mean value of the
quantity in brackets when the entire population is considered? Thus the summation
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Figure 1.18 Sample space S with N=10 elements, some of which are alike.

in Equation 1.12 must include all elements. Since the probability of getting value x in
a random selection of one of the N elements in S is given by

ng
pxk = ﬁ

an equation equivalent to Equation 1.12 is
K
EX] = g = ) xipy. (1.13)
k=1
In the example above
6
N=)> m=2+3+1+2+1+1=10
k=1
and

6
k=1

2 3 1 2 1 1
=36X—4+21X——24X——51Xx——0.1X—408 x—
10 10 10 10 10 10

= 0.16.
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Equation 1.13 is good for both finite and infinite populations. In the case of the
latter, no empirical determination of the probabilities can be made; they must be
known a priori.

Now replace digital rv X by a general function of X, namely, g(X). Then,

Elg(X)] = D 8(x)py,- (1.14)

k=1

Consider two example functions. Let g(X) = X! for i> 1. Then, by analogy with
Equation 1.12,

EXT = xp, (1.15)

k=1

is the i-th moment of rv X! about zero. Of course, i = 1 results in the mean . For
the second example function, let g(X) = (X — E[X])" for i> 1. The expectation
becomes

E[(X —EX])'] = D (xe—my)' by, (1.16)

M~

>~—
Il
—_

which is the i-th moment about the mean, or the i-th central moment.
A common central moment is the second moment or variance. Accordingly, for
i=2 we have

Ngle

E[(X—EX])’] = D (s —ux)’py, (1.17)

=~
Il
—_

or, what is the same,

Var(X) = 0% = E[(X — E[X])’] =E[X?] - 2E[X]-E[X] + (E[X])’
= E[X?] — (E[X]). (1.18)

The last form for the variance in Equation 1.18 shows that it is equivalent to the
“mean of the squares minus the square of the mean.”
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For the S space example, substituting Equation 1.13 and Equation 1.15 into
Equation 1.18 yields

o = [(3.6)* x 24 (2.1)* x 3 + (—2.4)* x 1J;(§—5.1)2 X2+ (=0.1)" x 14 (0.8)° x1] (0.16)

= 9.732.

1.4.2.2 Analog data

The expected value of analog random variable X is given by

EX] = uy = JJrocxf(x) dx (1.19)

—00

where f(x) is the probability density function of rv X. Integration is involved for an
analog variable as opposed to discrete summation for a digital variable. The limits on
X extend over the range —oo to +o00 and include the case in which the probability
density function is zero over some portion of this range. For the general analog
function g(X),

E[g(X)] = J+OC g(x) f(x) dx. (1.20)

Consider two analog example functions following those for digital data. Let
g(X) =X for i> 1. Then
EX] = J x' f(x) dx (1.21)

—0o0

is the i-th moment of rv X! about zero. Again, when i =1, we obtain the population
mean [x. Now let g(X) = (X — E[X])" for i > 1. Parallel to Equation 1.16,

Bloc—Ex] = [ - n ) d (122)

—00

is the i-th central moment. The second moment, i =2, is the variance. Thus, for
analog data

Var(X) = o2 = E[(X - EX])?] = Jm (x — 1) £(x) dx. (123)
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1.4.2.3 Covariance

Consider two analog random variables X, and X,. We can find the variance of each
using Equation 1.23. We now inquire about how these two random variables covary
in time. That is, do they tend to track each other? When X increases, does X, also
tend to increase (or decrease), or does X, just as likely increase as decrease? The
measure of this relationship is called covariance. If, when X increases (decreases)
X, also tends to increase (decrease), the sign of the covariance (or covariability) will
be positive; if, when X, increases (decreases) X, tends to decrease (increase), the
sign of the covariance (or covariability) will be negative; and, lastly, if, when X;
increases or decreases X, is just as likely to increase as decrease, the expected
covariance is zero and the variables are independent of each other. Stated math-
ematically, we have

+00

+00
J (%1 — ) (2 — 3)F (31, 52) oy

(1.24)

E[(X1 — ) (Xe = ,)] = Cov[X,,X,] = J

—00

where Cov[X,,X,] means covariance between random variables X; and X, and
f(x1, x,) is the joint probability density function between random variables X; and X..

If X; and X, are independent, f(x;, X,) = f(x;) - f(x,); that is, the joint probability
density function is equal to the product of the individual probability density
functions. With this condition,

chngJﬂm—mﬁmmmJﬂm—mﬁ@m&
=E[X; — ] EX; — ] = 0. (1.25)

Because the expectation operator is linear, it can be taken inside the brackets of
each term in the product on the right, so that E[X; — u;] =W, — u; =0, and similarly
for the second term. The expected value of a constant is, of course, the same constant.
The formulas for digital data similar to Equations 1.24 and 1.25 are

K
E[(X1 — ) (X2 — )] = Cov[Xy, Xo) = > Z (X1k = 1y) (X2m = W) P,y o

k=1m=1
(1.26)

where K=M and, for independent variables,

K M
Cov[X;,X,] = memZmumm
k=1 m=

= E[X; — ] E[X; —p,] = 0. (1.27)



32 CH 1 FOURIER ANALYSIS

1.4.3 Distribution of variance at a harmonic

Let us now shift our focus from comparing variances among harmonics in
Section 1.4.1 to examining how variance is distributed at a single harmonic across
the population of realizations. The detailed and somewhat lengthy derivation of
this distribution is the subject of Appendix 1.C. In this section we present only the
results. Our recommendation is that readers complete this section before studying
Appendix 1.C.

Basic knowledge of the properties of a chi-square distribution is essential from this
point forward. Sufficient background usually can be found in an undergraduate text
in statistics. We will expand on this basic knowledge as needed.

In Appendix 1.C it is shown that, for a normal white noise process, the covariance
between the sine and/or cosine coefficients at any two harmonics is zero (a result that
might have been anticipated from Equations 1.4 and 1.5) and the coefficients are
normally distributed. Squaring the coefficients and standardizing them by dividing
by their variances yields random variables with a chi-square distribution. Using the
additive property of chi-square variable results in harmonic variances that are
independent and proportional to a %3-distribution (a chi-square distribution with
two degrees of freedom) except at the frequency origin (harmonic 0) and, for an even
number of data N, at harmonic N/2.

In analyzing geophysical data, we are usually concerned with an underlying
stochastic process that is other than white noise. For this situation, the sinusoids at
the harmonic frequencies are likewise orthogonal (see Equations 1.4 and 1.5) but it
is only in the limit as the number of data N in a realization becomes infinite
that their variances are independent and have a chi-square distribution. Koop-
mans (1974, Section 8.2) provides further discussion of the properties of
nonwhite noise.

In obtaining the frequency distribution of variance for a general stochastic
process, we will assume N is sufficiently large that it is reasonable to apply the
results for white noise given in Appendix 1.C. The magnitude of N required to make
this assumption reasonable depends on the departure of the random process from
white noise. The greater the departure, the larger the value of N, but no specific value
can be given. Thus, in accepting a conclusion from statistical analysis of a realization
that depends on it being from a normal white process, it is important to express some
caution. Assuming that N is sufficiently large, the variances at the interior harmonics
are independently distributed according to

fm 2 0 <m < N/2, N
Cltn) _, % { m <N/ even (1.28a)

0<m< (N—-1)/2, Nodd

where random variable C(f,,) is the variance at the m-th harmonic frequency f,,,
I'(f,,) is the process variance at f;,, the arrow indicates “is distributed as,” and,
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therefore, the above variance ratio is distributed as a chi-square variable with two
degrees of freedom divided by two. In general, the value of I'(f,,) is unknown. The
next section shows how to determine a confidence interval for I'(f,). The two degrees
of freedom (dof) at each harmonic are a consequence of a sine and a cosine being
fitted to the data. There is only one dof at the 0-th harmonic (the mean), regardless
of whether N is even or odd. In cases where N is even, there also is only one dof at the
N/2-th harmonic. As Table 1.1 shows, the calculations at these harmonics require
only a cosine term. That is,

C(fo) _ .»
N dd 1.28b
T(fo) = X1 even or o ( )
and
C(fN/Z) 2
=%, N even. 1.28¢c
r(fN/z) Xl ( )

For N odd, the variance at the highest frequency [(N — 1)/2] has two dof as noted
in Equation 1.28a. For N even or odd the total number of dof in the periodogram
equals the number of data N.

It should be noted that C(f,,) is analogous to an in Table 1.1. One reason for
changing notation is because C(f,), unlike an, is a random variable. Another reason
is that in Section 1.5.6 we will be calculating variance at any frequency, f, and it will be
convenient to simply drop the subscript m. For now, our interest remains in dealing
with variance at the harmonic frequencies, f,, only.

1.4.4 Confidence intervals on periodogram variances

In this and the following section, the underlying stochastic process is unspecified.
It may or may not be white noise, but we assume that the number of data, N, is
sufficiently large to justify application of independent chi-square distributions
derived from a white noise process to the harmonic variances, as discussed in the
previous section. In addition, we assume the data follow a normal distribution.

Given that the variance ratio C(fy,)/I'(f,) follows a chi-square distribution
according to Equation 1.28a, we can determine a confidence interval for the ratio
using the probability expression

or {xzoz/z) Scrzgzi szuza/z)} —1—a, m#0(lN), m#N/2(Neven)

(1.29)
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where a. is the level of significance. In this equation observed values of C(f,,)/T"(f,)
vary between confidence limits 3 (/2)/2 and x5(1 — @/2) /2 in 100(1 — @)% of the
observations. The term (5 (0/2) is a particular value of the random variable such that
the area beneath its probability density function to the left of this value is 0/2.

We consider the case in which we have an observed value of C(f,,) and the
objective is to find the limits of the confidence interval for the population variance
I'(f,,). By rearranging Equation 1.29, the 100(1 — a.)% confidence interval for I'(f;,)
can be obtained from the probability statement

& M =1- m even
Pel ooy ST S ) = 1o m A0 N2 (o)

(1.30)

The interval between 2C(f,,)/x3(1 — @/2) and 2C(f,,) /3 (/2) is the 100(1 — )%
confidence interval for I'(f,,,). By taking the logarithm of the limits of the confidence
interval for log I'(f,,), the lower and upper limits become, respectively,

log C(f) +log(2/73(1 —/2))  and  logC(f,) +log(2/73(e/2)).

The logarithmic form of expressing the confidence interval is particularly useful in
graphical representations of the periodogram. The reason is that the width of the
confidence interval will be fixed regardless of frequency when the variances are
plotted on a logarithmic axis.

We now apply Equation 1.30 to a set of data. Figure 1.19 is a plot of the data in
Table 1.5 covering 100 consecutive years (1906—-2005) of average autumn (Septem-
ber, October, November) temperatures from Climate Division 5 in Oklahoma.
Climate Division 5 comprises 13 counties in central Oklahoma. Temperatures are in
their original units of degrees Fahrenheit.
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Figure 1.19 One hundred years of mean autumn temperature (September, October,
November) for central Oklahoma (Climate District 5) from 1906 to 2005.
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Table 1.5 One hundred years (1906-2005) of autumn mean temperature (°F) for Oklahoma
Climate Division 5 (central part of the state). (Source: Oklahoma Climatological Survey.)

Decade down/ 0 1 2 3 4 5 6 7 8 9
Year across

1900-1909 58.1 60.8 59.8 63.2
1910-1919 63.2 619 60.5 607 626 626 61.1 59.7 59.7 60.1
1920-1929 60.7 642 629 596 622 593 61.1 638 61.8 583
1930-1939 62.4 673 595 636 622 588 60.7 60.1 632 64.1
1940-1949 60.9 62.1 612 606 626 62.0 61.6 64.0 60.7 60.7
1950-1959 61.2 593 603 625 651 61.6 637 579 62.6 584
1960-1969 63.5 599 61.6 655 613 633 61.1 59.7 599 60.3
1970-1979 60.1 622 60.1 630 59.1 609 569 638 638 6l.1
1980-1989 62.1 615 612 629 609 60.7 605 60.0 605 60.9
1990-1999 63.6 593 60.1 57.7 61.6 608 59.1 612 657 63.0
2000-2009 61.3 619 595 60.7 62.6 63.8

The periodogram is shown by the solid line in Figure 1.20 and was computed
using subroutine Foranx in Appendix 1.A. The 95% confidence interval for the
population variance is shown on the right-hand side of the figure (solid line) where
the dot is to be placed over each sample variance c(f;,) as shown, for example, at
harmonic 39. Note that c(f,,,) is used to denote a sample value of the rv C(f,). That
the dot with constant width confidence interval around it may be placed at any
harmonic is a direct consequence of the logarithmic plot, as described above.
Because the periodogram varies wildly, it is not easy to discern bands of small or
large variance or a trend in variance with harmonic number. Correspondingly, the
95% confidence interval (o =0.05) for I'(f,,,) is very wide. The variability in c(f;,)
seen here is typical of periodograms of many kinds of geophysical data and is the
chief reason that periodograms of observed data are often smoothed, as discussed
in the next section.

1.4.5 The smoothed periodogram

To better distinguish bands of large and small variance or a trend in the spectrum, a
common practice is to smooth the spectrum by weighting together a number of
contiguous variances. The simplest smoothing is the running mean of length n (odd)
given by

_ 1 m+(n—1)/2
() = ~ c(f) (1.31)

1‘ljsz n—1)/2
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Figure 1.20 Periodogram of the data in Table 1.5 and Figure 1.19 (solid line). Averaged
periodogram using 5-point running mean (dashed line). The respective 95% confidence
intervals for the population mean variance at each harmonic are shown to the right and the
respective bandwidths at the top of the figure.

in which average variance is calculated only for those harmonics that do not include
fy and fy;» (N even) in the summation. Random variable C is used in Equation 1.31
to indicate we are determining the effects of smoothing on the distribution of
variances; in application, however, harmonic variances from a single realization
would be smoothed, and lower case variable ¢ would be used as in the previous
section. Because of the inability to include the correct number of terms, there will
be a loss of (n—1)/2 harmonic variances at either end of the smoothed
periodogram.

If we assume, as prescribed earlier, that the number of data in a realization is
sufficiently large that the variance ratios C(f;)/I'(f;) can be approximated by inde-
pendent ¥ variables with two dof divided by two and, furthermore, that I'(f) is
effectively constant over the length n, then, using Equation 1.31, the smoothed
variance ratios C(f,)/T(f,) are approximately %x? random variables with 2n dof
(Hoel, 1962, p. 268) divided by 2n and are independent every n harmonics.

The dashed line in Figure 1.20 is the result of a five-point running mean and
provides an improved picture of the structure of the variance. There are now
2n = 10 dofassociated with each variance ratio. For this realization, periods from 5 to
10 years contain more variance than periods shorter than five years except near the
two-year period. This comparison suggests the data should comprise sharp year-to-
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year fluctuations superimposed on long-period fluctuations. The plot of the data in
Figure 1.19 clearly indicates that there are short period variations; long period
variations, though, are less obvious. Thus the need for a periodogram to show the
not-so-obvious.

By analogy with the limits of the confidence interval for log I'(f,,,), the limits for
log T'(fy,) are

logC(fm) +log(2n/y3,(1 — a/2)) and logC(fy) + log(2n/%3,(0t/2)).

For n =5 and a = 0.05, the values for the constant terms above are —0.31 and 0.49.
The 95% confidence interval is shown by the dashed vertical line on the right of
Figure 1.20 and its reduced length relative to that for no smoothing (n = 1) reflects its
application to an averaged spectrum, namely, to log I'(f,,,), which, by our previous
assumption, is approximately log I'(f,,).

To take into account smoothing of the periodogram by other than a running
mean, an approximate general formula for the dof r in ¥ distributions is, for n odd,

-1

K*(f5) (1.32)

(n—1)/2
r =2
j=

—(n—1)/2

where K(f;) is a symmetric weight function centered at frequency f; such that the
sum of the weights is unity (Koopmans, 1974, p. 273). Maintaining unity
preserves the total variance in the spectrum. When K(f;) = 1/n, the running
mean, r =2n.

Associated with dof is bandwidth f3, the frequency interval between independent
adjacent estimates of variance. In the case of a periodogram with no smoothing it is

1

b= Nac

(1.33)

which is the frequency difference between harmonics i and i+ 1. Rewriting Equa-
tion 1.33 in the form

BNAt = 1 (1.34)

we see that the product of 3 and NAt is constant. This means that as the length N of
a time series increases (At remains fixed), the bandwidth of each independent
periodogram estimate will proportionately decrease and the total number of
spectrum estimates will proportionately increase. Because there are two dof asso-
ciated with each spectrum estimate, increasing the length of a time series in and of
itself does not reduce the variability of periodogram estimates.
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Equation 1.33 is exact for white noise and approximate for nonwhite noise when N
is large. For a five-point running mean the bandwidth would be five times as wide.
The bandwidths are shown in Figure 1.20 for their associated spectra. An approx-
imate general formula for the bandwidth is (Koopmans, 1974, p. 277)

-1
. (n—1)/2

— — 2(¢.
B = A = NAtjz_%;sz (f;) (1.35)

which reduces to f =n/NAt for a running mean of length n.

As an example of a simple nonrunning mean filter, consider a three-point
smoother (a triangular filter) whose weights are Y4 Vo, Y4 (sum of weights = 1).
From Equation 1.32 the dof will be 5'/; whereas the number of dof for a three-point
running mean is six. From Equation 1.35 the bandwidth of the former is 8/9 as wide
as that of the latter. It is of interest to know that the periodogram used to produce the
spectrum of hourly temperatures in Figure 1.15 was smoothed with this triangular
filter prior to creating the product of variance density and frequency. The purpose
was to magnify the two broad frequency bands that were discussed relative to the
main peak of the daily cycle of temperature.

1.4.6 Testing the white noise null hypothesis

In this section we examine the problem of testing the null hypothesis that a sample of
data comes from a random process that is white noise. This is equivalent to the null
hypothesis that the expected values of the spectrum variances are uniform with
frequency. A white noise test can be an important tool in analyzing spectra of
geophysical data. If we observe in a given spectrum a single variance, multiple variances,
or a band of variance that seems to be unexpectedly large, the question arises whether
these features are a consequence of an underlying physical process or whether they
occurred by chance. If the white noise null hypothesis applied to the spectrum cannot
be rejected, there is then doubt that the observed large variance or variances are
anything more than natural fluctuations in a realization from a white noise process.

In the previous section a method was developed to place a confidence interval for
the population variance surrounding each sample variance (variance at a harmonic
from a single realization). In contrast, in this section we will place confidence
intervals for the sample variances about the estimated population variance, hypoth-
esized to be uniform with frequency. Here, however, it is necessary to consider two
types of confidence intervals. These will be demonstrated with two examples, the first
of which employs the 100-year record of central Oklahoma temperature data seen in
the previous two sections. How these confidence intervals are used in making a white
noise test requires some background knowledge, to which we now turn.
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Figure 1.21 The probability density function (pdf) of a random variable that has a chi-
square distribution with two degrees of freedom. Confidence limits for the 95% a priori
confidence interval are shown by the vertical dashed lines. The area under the curve has
unit value.

Figure 1.21 shows the probability density function (or, equivalently, the frequency
distribution) of a ¥* random variable with two dof. The probability density function
is given by:

f(i3) = eXP(_XZZ). (1.36)

The two vertical dashed lines encompass what is called the a priori 95% confidence
interval. Figure 1.21 is the typical way of presenting a probability density function or
frequency distribution with confidence limits. When a confidence interval is applied
to a spectrum, the width of this interval is oriented in the vertical, as we did in
Figure 1.20.

Let us imagine successively withdrawing 29 samples from a population that has the
distribution shown in Figure 1.21. Prior to the first withdrawal, the probability that
its value will lie outside the interval (0.05, 7.38) is 0.05. Prior to the second
withdrawal, the probability that its value will lie outside the same interval is also
0.05. Repeat this 27 more times. Because each withdrawal is independent of any
other, the probability is 0.05 that any sample value of 3 will lie outside the interval
(0.05, 7.38).

Now arrange the sample values of x5 as shown in Figure 1.22, except that each
value withdrawn is divided by two (with this adjustment we can apply the results
of this section directly to the distribution of periodogram variance ratios). Before
even looking at the sample values of %3 /2, we would not be surprised to find one
or two lying outside the confidence interval. This follows from the calculation
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Figure 1.22 A plot of 29 random withdrawals from a chi-square distribution with 2 degrees
of freedom after dividing the value of each withdrawal by 2. The chi-square distribution
function is shown in Figure 1.21. 95% a priori and a posteriori confidence intervals are
also shown.

29 x 0.05 = 1.45, where 29 is the number of withdrawals and 0.05 is the level of
significance or the probability of rv %3/2 being greater than 3.69 (7.38/2 from
Figure 1.21) or less than 0.025 (0.05/2) per withdrawal. (If we had 100 such data
sets we would expect 145 of the 2900 values to lie outside the confidence interval.)
In fact, Figure 1.22 shows that one value or point lies very close to the upper
confidence limit (withdrawal 1 is 3.501) and the value of withdrawal 24 (0.038) is
slightly above the lower confidence limit.

To show the probability, o, of observing one or more values from a 3/2
distribution outside the a priori confidence interval, we make use of the binomial
distribution

Mm! M-Z
ZIM—2z)~ pi(1-p)
where: p = probability that the value of a randomly selected point will lie outside the
a priori confidence interval (0.05 for a 95% confidence interval); M = total number
of points (29 in this example); and Z = the number of the M points that lie outside
the a priori confidence limits.

The probability of one or more points lying outside the confidence interval is one
minus the probability of no points lying outside the confidence interval, or, in
general, o =1—(1 — p)M. Thus, if p=0.05 and M =29, then a=1— (0.95)%° =
1 —0.2259 =0.7741. Instead of having a 5% chance of finding at least one value of
%5/2 outside the confidence interval, we actually have a 77% chance when consid-
ering the group of 29 values or points.
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In practice, we are sometimes faced with the following dilemmas. In a given data
set the number of values that lie outside the a priori confidence interval is about as
expected, but one of the values is very large. Is the very large value significantly greater
than expected? In another case, a few more values than expected lie outside the
confidence interval. Is the difference between the expected number and observed
number significant?

The solution to both dilemmas is as follows. We really want o to be 0.05. That is,
when we consider all the points in the group (29 in this example), we want to find the
two particular values of (3 /2 such that there is only a 5% chance that any one or more
points will lie outside the associated interval. This is called the a posteriori confidence
interval. With the meaning of p the same as that given previously, except that it now
applies to the confidence interval for the group of points, the determination of the
limits of this interval follows.

From above, and using the binomial theorem, for p <1

a = Mp,
so that
p = o/M.
With
o = 0.05, M = 29,
then

p = 0.00172.

If we now integrate the probability density function (Equation 1.36) between 0
and y3* and between y3** and oo where * and ** indicate particular values of x3,
and equate both results to p/2, we obtain y3*/2 = 0.00086 and y3**/2 = 7.06.
These are the lower and upper limits for the a posteriori 95% confidence interval
and are plotted in Figure 1.22 (however, the lower limit is off the graph). The a
posteriori confidence interval deals with all 29 values at one time and the a priori
confidence interval deals with one value at a time. There is only one chance in 20
that any one or more of the 29 values would lie outside the 95% a posteriori
confidence interval, and as Figure 1.22 shows none do. This result is in accord
with our withdrawal of 29 random samples from a %* distribution with two dof
divided by two.

In periodogram analysis we typically use a posteriori confidence limits because we
want to observe the entire spectrum of harmonic variances after the fact of calculating
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the spectrum. If we wanted to know whether the variance at a particular harmonic
exceeded the confidence limits before the fact of observing the variance at the
harmonic in question, we would use the a priori confidence interval. Interest in
the latter approach is uncommon. Nevertheless, obtaining a priori confidence limits
is always a natural first step because if none of the spectrum variances exceed these
limits, there is no need to proceed to the next step of computing a posteriori
confidence limits.

To better understand white noise testing we examine two applications to
real data.

1.4.6.1 White noise test: Example 1

We revisit the 100-year record of mean autumn temperatures for central Oklahoma
(Climate Division 5) given in Table 1.5 and plotted in Figure 1.19. Figure 1.20
showed confidence intervals for the population variance I'(f,) and smoothed
population variance T'(f,,) at each harmonic given samples of C(fy,) and C(fy,),
respectively. The underlying random process was unspecified, but the number of
data was assumed sufficiently large to justify using independent chi-square dis-
tributions of the harmonic variances derived for a normal white noise process. In this
example we will use the same data to find a different kind of confidence interval; that
is, we will find confidence limits for observations of rv C(f,) common to all
harmonic frequencies given an estimate f(fm) of the population variance under the
white noise hypothesis. Because a white noise process is hypothesized, there is no
restriction on the size of a data set.

The variance of the data set in Table 1.5 is 3.4201°F>. As a consequence, our
estimate of the population variance at each of the 49 interior harmonics (m =0
and m =50 excluded) in the periodogram under the white noise hypothesis is
[(fn) = 3.4201°F%/49.5 = 0.0691°F>. The symbol A means “estimate of” and the
reason we make this distinction is that variance of the realization (3.4201°F?) is
just an estimate of the population variance. In general, we do not test the
variance at the highest harmonic for N even, here m = 50, because its variance,
under a white noise hypothesis, is one-half the interior variances; it is a unique
harmonic. The reason for its uniqueness is that its bandwidth is one-half the
bandwidth associated with each of the interior harmonics. That the divisor is 49.5
instead of 49 is because the variance of the data set included the variance at
m = 50. Thus, for the general case of an even number of data, N, the white noise
variance at the interior harmonics is determined from the total variance in the
data set divided by (N/2 — 1) +0.5=(N/2) — 0.5. In the general case of an odd
number of data, N, the white noise variance at all the harmonics (except m =0) is
the total variance in the data set divided by (N — 1)/2. The highest harmonic has
full bandwidth.



1.4 STATISTICAL PROPERTIES OF THE PERIODOGRAM 43

To find the a priori confidence interval for the sample variances about their
estimated expected value, we rewrite Equation 1.29 to obtain the form

pef ) B2 o) < M) B0 - /2)

> <
=1-—0a, m=#0(lN); m=#N/2(Neven). (1.37)

To be consistent with Figure 1.20, we take logarithms of the limits of the
confidence interval and obtain

log[[(fm) x3(/2)/2] and  log[T'(fm) y3(1 — t/2)/2]

which, for aa=0.05 and f‘(fm) =0.0691°F%, are —2.76 and —0.59, respectively.
We expect, on average, 2v2 (0.05 x 50) variances to exceed these limits; in Figure 1.23
we note that the variances at three harmonics (12, 42, and 47) fall outside either the
upper or lower limit. Should the white noise null hypothesis be rejected? This is a
good example in which the answer can be found by calculating the a posteriori
confidence limits.
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Figure 1.23 Periodogram of the datain Table 1.5 and Figure 1.19 (see also Figure 1.20). The
inner two dashed lines are the 95% a priori confidence limits; the upper dashed line is the
upper 95% a posteriori confidence limit. The lower 95% a posteriori confidence limit is located
below the graph and has value —4.45.
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The a posteriori confidence interval is determined by replacing 0/2 in Equa-
tion 1.37 and the expressions for the limits of the confidence interval by p/2 where
p~ a/M and M =49. Therefore, the parallel equations for a posteriori confidence
limits are

Pr{F(fm) >2<§<p/2) < C(f,) < ['(fr) xﬁgl - p/2)}

=1—p, m#0(alN); m#N/2(Neven) (1.38)
and logarithms of the limits of the confidence interval are

log[['(fm) %3(p/2)/2] and log[[(fw)%3(1 —p/2)/2].

Equation 1.36 can be integrated, as in the previous example, to obtain the values of
x5 for area p/2=0.0005102 at the left and right extremes of the chi-square
distribution (refer to Figure 1.21). The results are )5(p/2) = 0.0010207 and
%3(1 —p/2) = 15.161, so that the logarithms of the lower and upper limits of the
95% a posteriori confidence interval are —4.45 and —0.28. We observe in Figure 1.23
that no variance lies outside this range and, therefore, we cannot reject the null
hypothesis that the data are a realization from a white noise process. Thus there
appears to be no useful statistical predictability of mean autumn temperature at
Oklahoma City other than using its long-term mean as the predictor.

1.4.6.2 White noise test: Example 2

For our second example, we investigate five years of mean monthly temperature at
Oklahoma City from 2003-2007. The data are given in Table 1.6 and plotted in
Figure 1.24a. As expected, the time series shows a strong annual solar influence.
We can consider the annual solar cycle for each year to vary in a different way about a
long-term mean annual temperature cycle. Ideally, it is the long-term cycle we would
like to remove from the time series before we apply a white noise test. The best we can
do, however, is to estimate this cycle using the five years of data available to us. Except
for the solar cycle, the approach to obtain confidence limits is similar to that in the
first example.

We can estimate the long-term annual cycle by averaging the five years of data
month-by-month and then subtracting the appropriate five-year average from each
observed monthly mean. The set of residuals, also given in Table 1.6, form a sequence
of 60 values from January 2003 through December 2007 and comprise the time series
for which the white noise null hypothesis will be tested. The time series is shown in
Figure 1.24b.
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Table 1.6 (a) Monthly mean temperatures (°C) at Oklahoma City Will Rogers Airport
from 2003 to 2007. The bottom row shows monthly means averaged over the five-year
period. (b) Monthly mean residuals, i.e., the appropriate five-year monthly average has been
subtracted from each monthly mean. (Note: All monthly means in (a) have been converted
to Celsius from the original monthly means in Fahrenheit. Source: National Climatic Data
Center, Asheville, NC.)

(a)

Month/ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Year

2003 2.67 317 9.72 15.78 20.61 23.28 29.06 28.22 20.78 17.56 10.28 6.17
2004 439 439 1294 16.22 22.17 24.11 26.06 24.78 23.94 18.11 10.33 6.39
2005 422 822 1094 16.28 20.67 25.56 26.89 27.22 25.06 17.50 12.11 3.83
2005 872 539 12.83 19.61 22.56 26.67 30.11 29.94 21.83 17.11 11.61 6.39
2007  2.67 5.61 15.67 14.11 21.67 25.06 27.06 29.00 24.50 18.61 11.61 3.94
Mean 4.53 536 12.42 16.40 21.53 24.93 27.83 27.83 23.22 17.78 11.19 5.34

(b)

Month/ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Year

2003  —1.87 —2.19 —2.70 —0.62 —0.92 —1.66 1.22 0.39 —2.44 —0.22 —0.91 0.82
2004  —-0.14 -0.97 0.52 —0.18 0.63 —0.82 —1.78 —=3.06 0.72 0.33 —0.86 1.04
2005  —0.31 2.87 —1.48 —0.12 —0.87 0.62 —0.94 —0.61 1.83 —0.28 0.92 —1.51
2006 419 0.03 041 321 1.02 173 228 211 —1.39 —-0.67 042 1.04
2007 —1.87 0.26 3.24 —2.29 0.13 0.12 -0.78 1.17 1.28 0.83 0.42 —1.40

Before applying the test, a few comments are in order concerning the method of
removing the annual cycle. The total variance of the annual cycle is the sum of
variances from harmonics with periods of 12, 6, 4, 3, 2.4, and 2 months. When the
periodogram of the residuals is computed (an exercise we recommend), one will
discover the variance is zero at these six harmonics. The reason is that we have
removed the variances at all harmonics of the annual cycle from the original time
series. In fact, had we computed a periodogram of the original data, it would
have included the identical variances at the harmonics corresponding to the periods
of the estimated annual cycle. In this example, we will replace the zero variances at
periods of 12, 6, 4, 3, and 2.4 months by the average of the two adjacent variances.
While these replacement values are artificial and are not part of the white noise test,
for the sake of appearance they will provide a smoothly varying periodogram in the
vicinity of the harmonics of the annual cycle. From Equation 1.28¢, the distribution
of the variance ratio at the harmonic corresponding to a period of two months is 2.
As in Example 1, the white noise test is applied only to the interior harmonics.

The variance of the residual data shown in Figure 1.24b is 2.3160 °C*. Under the
null hypothesis that this data set is a realization of a white noise process, we can
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Figure 1.24 (a) Mean monthly temperatures at Oklahoma City Will Rogers Airport from 2003
to 2007 (solid line) and average mean monthly temperatures (dashed line). (b) Residual mean
monthly temperatures (actual - average).

estimate the population variance I'(f,) at each of the 29 interior harmonics
(harmonics m =0 and m =N/2 are excluded) in the Fourier spectrum using the
equation I'(f,,) = (2.3160/24) °C* = 0.0965 °C2. The reason for dividing by 24 is that
the residual variance does not include any variance from the six harmonic frequen-
cies previously discussed. Since there are a total of 30 harmonic frequencies
(60 samples of data), and the variance has been removed from the six harmonics
associated with the annual cycle, the residual variance is distributed equally among
the remaining 24 harmonics to estimate the population variance.

Uponreplacing I'(f,,,) by its estimate f(fm), we conclude from Equation 1.28a that
the variance ratio C(fy,)/T'(f,) varies approximately as %2/2. Figure 1.25 shows the
sample variance ratios versus harmonic number where the ratios at harmonics 5, 10,
15, 20, and 25 are the averages of adjacent ratios. Since no ratio lies outside the a
posteriori confidence interval, the null hypothesis that the sample data come from a
random process that is white noise cannot be rejected at the 5% level of significance.
Stated another way, this realization can be viewed as a member of a population of
similar random time series, the totality of which comprises a white noise random
process. In this particular example, computing the a posteriori confidence interval
was not necessary since none of the variance ratios lie outside the a priori confidence
interval. The goal of this example was to derive the 95% a posteriori confidence limits
for variance ratios as opposed to variances in the first example.
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Figure 1.25 Observed variance ratio versus harmonic frequency for the residuals in
Figure 1.24b. The population variance I'(f,,) is estimated from the sample variance. Harmonic
frequency f,, has been converted to harmonic number. 95% a priori and a posteriori confidence
intervals are also shown.

A keen observer will recognize that the plot in Figure 1.22 is identical to that in
Figure 1.25. In fact, the same data set was used to produce the plot in Figure 1.22.
Thus withdrawing 29 values from a chi-square distribution in the discussion in
Section 1.4.6 was a little “white” lie! But whether one literally withdrew samples from
a chi-square distribution was immaterial to developing an understanding of the
mechanics of a white noise test.

Practically speaking, if the data set in this example is representative of other five-
year intervals at Oklahoma City, then there is no skill in attempting to forecast mean
monthly temperature beyond what can be accomplished by employing the average
annual cycle. Had the white noise hypothesis been rejected, there would have been
potentially useful skill in mean monthly temperature forecasts apart from the average
annual cycle. In conclusion, if there is interest on the part of an investigator to make
statistical forecasts of any variable represented by a time series, a good first step is to
perform a white noise test of the original data or, if appropriate, the residual data,
that is, the original data less the deterministic components.

1.5 Further important topics in Fourier analysis

At this juncture, we are able to (i) compute the Fourier coefficients of a data set,
(ii) calculate its spectrum or periodogram, (iii) determine a confidence interval for
the population variance at each harmonic frequency, and (iv) perform a prioriand a
posteriori white noise tests. Now we consider selected topics that will extend our
understanding of Fourier analysis. As we have already seen in Table 1.1, the number
of harmonics at which variance is computed is directly related to the number of data.
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Section 1.5.1 explains why. The second topic, covered in Section 1.5.2, shows,
mathematically, why variance calculated at a given harmonic frequency includes not
only the variance at that harmonic but also variance from frequencies between
nearby harmonics. Thus variance in one part of a spectrum can “bleed” or “leak” to
another part of the spectrum. In short, we always view a spectrum through
a “window.”

Sometimes we are faced with a signal and noise problem. For example, we might be
suspicious that there is a 60 Hz signal, say, from a power source, corrupting a data set
we collected. That is, a deterministic signal may be embedded in otherwise random
data. In Section 1.5.3 we investigate how averaging spectra from a number of data
records, each of which contains the deterministic signal, smooths the averaged
spectrum so the deterministic signal is more easily discernible. Another approach is
discussed in Section 1.5.4, where we examine the effect that increasing the length of a
time series has on discriminating a sinusoid from random components. The fifth
topic shows how to convert the formulas in Table 1.1 for Fourier synthesis and
analysis to complex form; this is developed in Section 1.5.5. Because of trigonometric
symmetry, a complex representation is very compact. Using complex forms makes it
easy to compute variance at frequencies between harmonics. This is the subject of
Section 1.5.6. One interesting result is that the variance at a nonharmonic frequency
is uniquely related to the variances at all the harmonic frequencies. The seventh and
last topic, in Section 1.5.7, is concerned with adding zeroes to a data set, why we
might do that, and how to interpret the resulting spectrum

1.5.1 Aliasing, spectrum folding, and the Nyquist frequency

Aliasingis a direct consequence of digitally sampling an analog signal. Aliasing has no
relevance to purely analog data records. To show how aliasing works, consider the
three cases in Figure 1.26. In example (1) an analog sinusoidal wave with frequency
10 Hz is sampled at intervals of 0.1 s as indicated by the arrowheads. The dashed line
connects the sample values. Based on just the sample values, we would likely
(mistakenly) conclude the underlying signal has constant value. In example (2)
there is a 9 Hz sinusoid sampled every 0.1s. After fitting the sample values with a
smooth line, we would likely (mistakenly) conclude that the underlying signal is a
1 Hz sinusoid. Example (3) indicates that for 0.1 s sampling, a 6 Hz sinusoid could
just as well be interpreted as a 4 Hz sinusoid. These examples show that in digital
sampling there is an inherent ambiguity in the frequency at which the true
fluctuations are occurring. This is reflected in their line spectra shown in Figure 1.27.
In example (1), all the variance in the true spectrum (solid bar) is at 10 Hz, but the
observed spectrum indicates a nonvarying signal, that is, no variance at all.
In example (2), the variance in the true spectrum is at 9 Hz while the observed
spectrum (open bar) shows variance at 1 Hz. The true and observed spectra in
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Figure 1.26 Three examples of aliasing indicated by dashed lines. (1) A 10 Hz sinusoid is
sampled as a constant signal. (2) A 9 Hz sinusoid is sampled as a 1 Hz sinusoid. (3) A 6 Hz
sinusoid is sampled as a 4 Hz sinusoid.

example (3) follow the same pattern as above. Another way to look at aliasing is that
more than two observations per cycle are required to unambiguously define a sinusoid.
Otherwise, it can be interpreted also as a sinusoid of lower frequency.

The picture that emerges from Figure 1.27 is that the calculated value of variance is
folded about 5 Hz. This frequency is called the folding or Nyquist frequency, f,, the
latter named after Harry Nyquist who did pioneering work in signal analysis
(Nyquist, 1928). In general, the Nyquist frequency is determined by the sampling
interval At, that is, f, = 1/(2At); in the example just discussed, f, =5 Hz.
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Figure 1.27 The true and observed spectra corresponding to the three examples in
Figure 1.26. In each example above, the true spectrum is indicated by a solid bar and the
observed spectrum by an open bar.

Furthermore, it is easy to conclude that the spectrum will repeat itself at frequency
intervals of +i/At,i=1, 2, ... . As an illustration, consider time series 1 given by

Xin = cos(27mfnAt + ) (1.39)

in which the series represents digital sampling of a sinusoid with frequency f,,, data
point number n, and phase shift ¢ at intervals of At. Then define time series 2 as

Xon = cos[2m(fy, £1/At) nAt + ¢). (1.40)
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That is, time series 2 is digitally sampled in the same way as time series 1, except
the frequency of the signal being sampled has been increased or decreased by
integer multiples of twice the Nyquist frequency. Time series 2 can be expanded as a
standard trigonometric angle-sum relation and then, because cos(2min) =1 and
sin(2min) =0, reduced to

Xon = cos(2afy,nAt + ¢) (1.41)

the same formula as for time series 1. As a consequence of digital sampling, the x;,,
and x,, time series are identical, despite the fact that the underlying signals being
sampled are different. Thus the same variance will be computed at f,, f,, £ 1/At,
fm £ 2/At, and so on. We notice that negative frequencies are allowed. This is purely a
mathematical convenience. While employing a spectrum that has both positive and
negative frequencies is especially helpful in understanding aliasing, the “two-sided”
spectrum concept also will be used later in Sections 1.5.5-1.5.7. In these sections we
will find that mathematical formulas for spectra are more compact and easier to
interpret when they include variance at both positive and negative frequencies.
Figure 1.28a summarizes aliasing from a schematic viewpoint. The aliased
spectrum extends across all negative and positive frequencies with the spectrum
repeated at intervals of 2f, = 1/At. In the jargon of spectrum analysis, the band of

Figure 1.28 (a) The complete aliased spectrum and its principal part. f, is the Nyquist
frequency. (b) In atwo-sided spectrum, one-half the variance appears at f and one-halfat —f
and each is aliased to frequencies +i/At from +f where i is an integer.
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frequencies between —f,, and +f,, is called the principal part of the aliased spectrum.
In practice, only the principal part is needed because the spectrum is repeated every
2f,, or 1/At; that is, the principal part contains all the variance in the time series.
Further insight into aliasing can be obtained by considering an input sinusoid with
frequency greater than f,,. Let us use the same frequency scale in Figure 1.28b and
place the variance at ' between 2f,, and 3f,,. Because we are using both positive and
negative frequencies, the total variance at f' is split so that one-half the variance of the
sinusoid is at f’ and one-half at —f’. Figure 1.28b shows the solid vertical bars; their
sum is the total variance. From Equations 1.40 and 1.41 the variances will be
distributed to the open bars at frequencies +i/At relative to -f’ as shown by the lines
and pointers. If the input frequency happens to be a multiple of f,,, no variance will
appear at any frequency in accord with example (1) in Figure 1.27.

The repetition of the variance distribution in the principal part of the aliased
spectrum in the remainder of the aliased spectrum is evident. If your preference is to
deal only with variances at positive frequencies from 0 to f,,, simply fold the spectrum
from 0 to —f,, around the origin from 0 to f, and add the variances.

It should be clear by now that it is important to know whether you are working
with a two-sided (—f,, to f,,) spectrum or a one-sided spectrum (0 to f,) to get the
correct total variance of the time series. In the former the total variance resides
between —f,, and f,, while in the latter between 0 and f,,. The variances at positive
and negative frequencies in the former spectrum are one-half those in the latter.
In the periodogram or Fourier analysis in previous sections, including Table 1.1,
the harmonic variances were calculated at positive frequencies only, that is, from
0 to f,.

Let us return to example (2) in Figure 1.26 to create a new analog time series that
is the sum of the original 9 Hz sinusoid and the 1 Hz aliased sinusoid (dashed line)
and sample it at At=0.1 s as shown. The value at each sample point will be twice as
large (negative or positive) as in the original 9 Hz sinusoid. As a consequence, the
observed variance at 1 Hz in the principal part of the aliased spectrum will be four
times larger than that with only the original 9 Hz sinusoid. With a 180° phase shift of
either wave (flip either sinusoid about the horizontal axis), the value at each At of
the sum waveform is zero, and thus the variance is zero. In a word, this is why we
have to be concerned with the effects of aliasing; variance at frequencies greater than
f, will alter the true variance present at frequencies less than f, and produce an
erroneous picture of variance. The seriousness of aliasing is in proportion to the
ratio of the variance at frequencies outside the principal part to the true variance in
the principal part.

Consideration of the potential for aliasing is critical to effective experiment design
and proper analysis of results. To minimize aliasing, the sample rate should be such
that practically all the variance will be at frequencies less than 1/(2At). If the general
structure of the spectrum is unknown before sampling, experimentation may be
required with different sampling rates to observe spectrum changes. If, for a given
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Figure 1.29 A four-spoke wagon wheel.

sampling rate, the potential exists for serious aliasing and the sampling rate cannot be
increased, then one must filter the variance at frequencies > 1/(2At) before sampling.
There is no effect on aliased variance if filtering is performed after digitizing. That is,
the analog signal must be filtered.

A visual example of aliasing as seen in Western cowboy movies is the familiar
changing of the direction of rotation of a wagon wheel as the wagon increases its
speed from rest. The digital sampling is done by the camera shutter opening and
closing 24 times each second.

Consider the four-spoke wheel in Figure 1.29. One cycle means rotation of the
wheel Y/, revolution. When the wheel turns slowly, we see a continued forward
rotation of the set of four spokes because there are many samples (shutter openings
and closings) for the small angular rotation. As the wheel rate of rotation increases,
the angular separation between successive samples also increases until the separation
reaches a0 =45° or % cycle or f,=0.5cycle/At, where At=(1/24)s. This is the
maximum observable frequency or rate of rotation of the wheel and is shown in
Figure 1.30a. As the rate of rotation or actual frequency f increases beyond f,, the
observed frequency will be negative. This can be understood by referring to
Figure 1.30b, keeping in mind that the sampling rate is fixed. Since a > 45°, it is
apparently easier for our brain to think the wheel has rotated not through angle a

t=2 t=2 t=2

t=2
> 1 \
AN 4 \ =
\\ //\ ~ ”m o Vo At 2
J o _ ~__} _ L -~ \Wp
t=1 ~~7F t=1 p====f=—="==t=1 = t=1
7 ! ~JB \ Phs \
w I o w \
7 N / \
/ \

(a) (®) (© (d)

Figure 1.30 Successive positions of the four-spoke wagon wheel at timest=1and t =2 for
an increasingly higher rate of rotation from case (a) to case (d).




54 CH 1 FOURIER ANALYSIS

A~ AN S

B' C' D' B C D E
| ' | ' |
—0.5 cycles 0 0.5 cycles 1.0 cycles 1.5 cycles
At At At At
=—fy =fy =2fy =3f,

Frequency (rate of rotation) f ——=

Figure 1.31 The aliased spectrum for frequency of rotation greater than the Nyquist
frequency.

from position t = 1 to position t = 2, but through smaller angle 3 from positiont =1
to position t =2'. (Of course, the appearance of the wheel is identical at t =2 and
t=2'.) In the spectrum in Figure 1.31 this corresponds to the variance at frequency B
aliased to frequency B'. As the wheel rotates faster, o. = 90° and it appears that there is
no motion (Figure 1.30c). Each spoke advances !/, revolution or one cycle each time
the shutter opens. In the spectrum this corresponds to variance at frequency C aliased
to frequency C’ (the origin). From B’ to C' it appears that the wheel rotation rate is
decreasing, that is, becoming less negative.

An increasing forward rate of rotation occurs for o >90°. For example, the
variance at frequency D in Figure 1.31 is aliased to D'. As seen in Figure 1.30d, it
is, again, apparently easier for our brain to accept rotation of the wheel through
angle [} at apparent time t =2’ rather than larger angle o at real time t =2. As the
wheel rotates still faster, say at rate E in the spectrum, the rotation rate will be
aliased back to frequency E' = B/, as shown by the heavy lines. Thus, as the rate of
rotation of the wheel increases from zero it reaches a maximum forward rate,
which instantaneously becomes the maximum backward rate, which then
decreases to zero and the cycle starts all over again — all because of digitally
sampling an analog signal.

1.5.2 Spectrum windows

Consider the “idealized time series” of 36 consecutive values of temperature at
Phoenix, Arizona, during fair weather shown in Figure 1.32a. Because Phoenix is
located in the southwestern desert of the United States, we expect a strong diurnal
variation in air temperature. It is idealized because other harmonics that would
normally contribute to the daily temperature variation, such as the semi-diurnal
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Figure 1.32 (a) Idealized time series of temperature at Phoenix, Arizona, during fair
weatherin July. (b) Periodogram to harmonic 6 of idealized time series of temperature in (a).

component seen in Figure 1.15, have been ignored. In a periodogram of this time
series, the diurnal variation would occur at a nonharmonic frequency midway
between harmonic 1 (fundamental period =36 hours) and harmonic 2 (period
=18 hours). The purpose of this section is to show how the input variance at a
nonharmonic frequency (the daily cycle here) gets distributed to the harmonic
frequencies.

Apart from the constant offset value of 35 °C, the time series in Figure 1.32a is
given by the sinusoid

x, = acos(wnAt—¢), n =0,1,...
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where x represents temperature, At = 1 hour, amplitudea =7 °C, datalength N = 36
hours, phase angle ¢ = 0°, and angular frequency ® = 27t x 1.5/N. That is, there are
1.5 cycles over the 36-hour record. Changing to angular frequency is merely a
convenience to reduce the number of symbols in each equation. Figure 1.32b is the
resulting periodogram in the form of a line spectrum out to harmonic 6. Harmonics
1 and 2, which are adjacent to the frequency of the input wave, account for about 80%
of the variance of x,; the higher harmonics account for the remaining variance.
The big question is: How did the variance from the input wave get distributed to the
various harmonics?

To find the answer, we first substitute x,, above into the equations for A, and B,
(N even) in Table 1.1. Carrying out the summations is a tedious exercise in
trigonometry, and the general procedure is shown in Appendix 1.D. We are really
interested in the variance at harmonics, so the Fourier coefficients need to be squared
according to S = (A2 + B2)/2. This step is also given in Appendix 1.D, with the
result that

(o) =

a? [ sin’[N(w + 0m)/2] | sin*[N(o — 0m)/2]
2 | N%sin®[(0 + wn)/2]  NZsin?[(0 — 0)/2]

+2 cos[(N — 1)w — 2¢] sin[N(® + o) /2] % sin[N(w — wr)/2] }’

Nsin[(w 4+ 0y)/2]  Nsin[(0 — 0y)/2]
m # 0, N/2. (1.42)

It is not necessary to work through Appendix 1.D at this time. It is important,
though, to be able to properly interpret Equation 1.42, and there are two ways. In the
first way, an(w) gives the variance at harmonic numbers m, where 0 < m < N/2, due
to an input sinusoid of amplitude a at angular frequency w. Figure 1.32b is an
example. In short, the equation shows how input variance a*/2 is distributed among
the harmonic frequencies.

The second way to interpret Equation 1.42 is to consider fixing m successively at
1,2,3,...,where w, =2mm/N, and, then, for each m, allow the input frequency w to
vary continuously over the range of frequencies in the spectrum. A plot of the ratio
S (w)/(a?/2) for each m provides the “window” through which the spectrum is
viewed at that harmonic for input variance at any w. Figure 1.33 shows the spectrum
window, that is, the part of Equation 1.42 in braces, for harmonics m = 1, 2, and 3 for
a cosine input (¢ =0°). The heavy solid line shows the location of the input wave at
harmonic 1.5. To get the variance at harmonic 2, we multiply the variance of an
integer number of cycles of the input wave, a%/2 =24.5°C>, by 0.5277, the amplitude
of the window associated with harmonic 2 (i.e., center curve) at the input frequency.
The product is the variance at harmonic 2 in Figure 1.32b. The product of 0.2641,
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Figure 1.33  Spectrum windows from Equation 1.42 centered at harmonics 1, 2, and 3 for
a cosine wave input. The product of the variance (24.5°C%) in Figure 1.32a and the
intersection of the spectrum windows yields the observed variance at harmonics 1, 2,
and 3 in Figure 1.32b.

the amplitude of the window associated with harmonic 1 (i.e., left-hand curve) at the
input frequency, and 24.5 °C? is the value of variance at harmonic 1 and, similarly,
the variance at harmonic 3 is the product of 24.5 °C?and 0.0804 (right-hand curve).
The windows for sine wave inputs (¢ =90°) are shown in Figure 1.34; their indi-
vidual shapes tend to be a reverse image of those in Figure 1.33. We conclude that the
spectrum window depends on harmonic number and phase angle for a given N.

The spectrum window for the mean squared value standardized by the input
variance is, from Equation 1.D.4,

sin(Nw/2)

A(Z)/(az/Z) = 2cos’[(N — 1)(w/2) — ] N st (w/2) (1.43)

Figure 1.35 shows the spectrum windows for a cosine input (¢ =0°) and a sine
input (¢ =90°). For the Phoenix example (¢ =0°) the value of the window at
harmonic 1.5 is 0.001543, so that with a=7°C, Ay = 0.1944 °C (to get the mean of
the time series in Figure 1.32a, add back 35°C). That A,, the mean of the time
series, is not zero is because the Phoenix time series does not have an integer
number of cycles. In fact, if A, is multiplied by N =36, the number of data, the
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Figure 1.34 Spectrum windows (Equation 1.42) centered at harmonics 1, 2, and 3 fora sine
wave input.

result is 7 °C, the amplitude of the sinusoid. By matching positive departures from
35 °C with negative departures, we see that only one of the two maximum positive
values of temperature has a negative equivalent. At the Nyquist frequency, where
m=N/2, S}, /2(w) can be obtained directly from Equation 1.42 by dividing the
right-hand side by two.

In general, the window shape is dependent on harmonic number, the number of
data, and the phase angle of the input. When the number of data in a sample is

T T
i \Ratio=2at origin
1.0 A ;
f sine input
0.8 S R SRR cosine input
g |
S
~

"
"

0.0 . \\ AN I N

0 0.5 1 1.5 2 25 3 35 4 4.5 5

Harmonic (cycles/data record length)

Figure 1.35 Spectrum windows (Equation 1.43) at the 0-th harmonic for sine and cosine inputs.
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Figure 1.36 The spectrum window (Equation 1.44) at general harmonic m, when m is away
from the low and high frequency ends of the periodogram.

N =2 100 or higher, the main and adjacent lobes at the interior harmonics can be quite
accurately modeled by simplifying Equation 1.42 to
a? sin’[N(w — wy)/2]

Sm(w) = = N —on)/2 (1.44)

which is dependent only on the number of data and the difference between the input
frequency and the harmonic where the calculation is made. The maximum error in
using Equation 1.44 in place of Equation 1.42 for interior harmonics is about £3%
for N=100. This formula is the square of the familiar “diffraction function”
common in optics and is plotted in Figure 1.36.

Assuming N is sufficiently large, we can think of the variance computed at a given
harmonic frequency as the integral over the frequency range in the spectrum of a
weight function (Equation 1.44) centered at that harmonic times an underlying, but
unknown, spectrum. This process is repeated at all harmonics and results in variance
“leaking” from one part of the spectrum to other parts of the spectrum. The variance
observed at a particular harmonic does not necessarily mean that the data contain a
pure tone at that harmonic. To find the variance of the Phoenix diurnal temperature
cycle in a periodogram, a record length that is a multiple of 24 hours should
be selected.

1.5.3 Detecting a periodic signal by averaging spectra

If we were to average together periodograms of equal length realizations from the
same random process, harmonic by harmonic, we expect the averaged periodogram
would be smoother than any individual periodogram. If a deterministic signal is
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present, its magnitude should not be affected by averaging. In this section we use the
idea of averaging to investigate the particular problem of detecting a sinusoid
embedded in white noise when multiple realizations are available.

The average of the two periodogram random variables C,(f,,) and C,(f,,) from
realizations of equal length N (even) of a white noise process is

Ci(fm) + Co(fm)

2
so that
E(fm) 1, 5 2 X2
or, in general, averaging u spectra, u=1, 2, ..., yields

Culfm) _ %

T () u (1.45a)
for the interior harmonics, and

Cu(fm) X121

)~ ¢ (1.45b)

for the 0-th and Nyquist frequencies, that is, fy and f, = fiy/,, respectively.

In parallel with Equation 1.30 we can use Equation 1.45a to determine the
confidence interval for the population variance at the interior harmonics given the
sample variance. Thus,

Culf) g o Colfu)

P e < T < a1 ot

where o is the significance level. The interval between

711 fm 7[1 fm
2u 2C(7) and 2u 5(7)
Kou(1—0/2) X3u(@/2)
is the 100(1 — a)% confidence interval for I'(f,,). By taking logarithms of the lower
and upper limits of the confidence interval for log I'(f,,), they become, respectively,

— 2
logCy(fm) + log[ 5 4

x2<1—a/2)] and  logCy(fm) + log [2‘1} .

X2u(®/2)
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As noted in Section 1.4.4, the width of the confidence interval will remain constant
regardless of frequency. For example, consider averaging three Fourier spectra so
that u=3. The 95% (a = 0.05) confidence interval for log I'(f,,,), f,,, # fo, f,,, extends
from log C(f,,) +log (0.415) to logC(f,) +log (4.85). In a similar manner,
Equation 1.45b can be used to find the confidence interval for the population
variance at the exterior harmonics.

If there are deterministic components in the spectrum, they will remain
unchanged by spectrum averaging. Looking at this method in another way, averaging
spectra can be used to detect deterministic components.

Consider the following computer simulation of

x, = bsin(2nfn — ¢) +&,, n=1,2,...,N

where b = 1/2, N =32, f=6.25/N, ¢ is phase angle (0 < ¢ < 360°), and &, is white
noise with population variance 6> = 5. If the signal-to-noise variance ratio (SNR) is
defined to be

b2

SNR= % (1.46)

(N—-1)/2

the ratio of the variance of the sinusoid to the white noise variance at an interior
harmonic frequency, its value is 3.1.

Each realization of length 32 comprises computer generated normal white noise,
€, added to the sinusoid with a different value of ¢. If we make the null hypothesis
that the variance spectrum comes from a white noise process and rewrite the two-
sided equation for the confidence interval for the population variance in the form for
a one-sided test only, namely,

Pr{ogéu(fm) gxgu(l_z—?r(fm)} —1l-a (1.47)

we can use this formula to obtain the a priori upper confidence limit for the
distribution of the observed harmonic variances. That we are dealing with only the
upper confidence limit is because we are interested in the possible existence of a
sinusoid, the indication of which is a peak in the spectrum. Figure 1.37 shows the
spectra for six realizations of 32 data each for harmonics 3-9. The lower dashed line
in each realization is the average variance for the interior harmonics and the arrow
indicates the input frequency of the sinusoid. The upper dashed line shows the 95%
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Figure 1.37 Periodograms of six realizations of a sinusoid plus white noise with signal-to-
noise ratio (SNR) = 3.1 (solid line). The input sinusoid is 6.25 cycles over data length N = 32.
The upper dashed lineis the 95% a priori confidence limit. The lower dashed line is the average
variance of the 15 interior harmonics for N=32.

upper confidence limit for the observed variance of each individual realization
(u=1) and is computed from:

x%(02-95)r(fm)

where I'(f,,) is estimated by summing all of the harmonic variances (signal plus
noise) of a realization and dividing by (N — 1)/2. Realizations (1) through (6) of
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Figure 1.38 Average of the six periodgrams in Figure 1.37 (solid line). The upper two
dashed lines are the a priori and a posteriori 95% confidence limits, the bottom dashed line is
the average variance across all interior harmonics.

white noise yielded variances 6.72, 4.12, 5.60, 4.92, 6.77, and 4.25, respectively,
compared to the population variance 0* = 5.

Figure 1.37 shows that the spectra vary considerably from one sample to the next,
as expected, and that with a signal-to-noise ratio slightly greater than three, one
may very well not detect the sinusoid using a single realization. Figure 1.38 shows
the results of averaging the six spectra in Figure 1.37. The a priori 95% upper
confidence limit is computed from x3,(0.95)'(f,,)/12 = 0.61, where the estimate
of I'(f,,) =0.348 is obtained by averaging the estimates from all six realizations.
The upper confidence limit occurs at a lower value of variance and closer to the
mean than for any single periodogram. The result is the variance at harmonic 6 now
clearly stands out.

Let us assume that the six realizations are actual data. Whether we would conclude
that there is a significant oscillation at or near harmonic 6 depends on what we know
from physical considerations may be occurring there and the likelihood the peak
could have occurred by chance. With regard to the latter, we expect to observe, on
average, 1 in 20 harmonic variances that exceed the a priori upper confidence limit.
[tis appropriate then to find the 95% a posteriori upper confidence limit, so that there
is only a 5% chance that any one or more of the 15 harmonic variances will exceed
this limit.

Following the procedure in Section 1.4.6, we divide a. = 0.05 by 15, the number of
interior harmonics, the result being 0.0033. Next we find (estimate) from a chi-
square table the abscissa of a 3, distribution such that the area to the left is 0.9967.
Thus, %3,(0.9967)/12 = 2.46. Given the above estimate of I'(f,,), the 95% a
posteriori upper confidence limit is 0.86. Assume further that there is physical
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Figure 1.39 When the white noise null hypothesis is inadequate, it may be advantageous to
fit a smooth curve or, as shown above, a straight line to the harmonic variances in the
neighborhood of the possible sinusoid. A white noise test can be applied to the departures
from the fitted curve.

evidence for a sinusoid close to harmonic 6. Since the white noise null hypothesis has
been rejected, the variance in the sinusoid should have been removed from the
estimate of I'(f,,), the consequence being the correct a posteriori upper confidence
limit would be even lower. Therefore, the test is conservative in that if the null
hypothesis is rejected at some value of o using the preceding method, the actual value
of a is even less.

When the spectrum of random data is not white noise, the estimation of I'(f,,) in
Equation 1.47 must be made at the frequency at which a sinusoid is suspected. One
way to do this is to apply a straight-line fit to the surrounding periodogram values
and use the value of the straight line at f, as the estimate of I'(f,,,), as illustrated in
Figure 1.39. Confidence limits for the observed variance then can be computed if the
departures from the straight line are suitably white. Another way is to model the
underlying stochastic process using an appropriately smooth function and deter-
mine the white noise confidence limits with respect to the departures from the
model. Crowley, Duchon, and Rhi (1986) show an example of the latter in which they
searched for potential solar cycles in annual varve data.

We conclude this section by saying that if one were fortunate enough to have six or
more realizations from a random process in which there is a deterministic sinusoid
with the signal-to-noise ratio of three or greater, there is a good chance of detecting
the sinusoid in the averaged periodogram. The determination of the minimum SNR
required for detection and statistical confirmation of a sinusoid, in general, is
complicated because the outcome depends on its proximity to the nearest harmonic
and the spectrum of the noise. For example, if the sinusoid is located between
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harmonics, the spectrum window will distribute its variance to a number of
harmonics (Section 1.5.2). If the noise spectrum falls or rises sharply where it
is located, we expect that the SNR would have to be very large in order to detect a
pure sinusoid.

1.5.4 Effect of data length on detecting a periodic component

As noted in Section 1.4.5, the Fourier spectrum of random data can be viewed as an
“unstable” spectrum because increasing the data length does not reduce the
variability of variance computed at any harmonic from one realization to the next.
Rather, an increase in data length results in an increase in frequency resolution; if the
data length is doubled, the bandwidth or frequency separation between adjacent
harmonic frequencies is halved. The dof for each approximately independent
variance estimate is still two; as a result, the statistical distribution of each variance
ratio C(f,,,)/T'(f,,) remains %3 /2.

As in the previous section, consider a sinusoidal signal to which is added white
noise. In this case let the signal have an integer number m cycles. The variance at the
harmonic of the sinusoid is the sum of three terms: the variance of the sinusoid, the
variance of the random component, and the covariance between the two harmonics—
one from the sinusoid, the other from the noise. This can be understood by
considering the sample variance of the sum of two sinusoids x;,, = a; cos (2mwmn/
N+ ¢;) and x,, =a, cos (2mmn/N-+¢,), where x;,, is the sinusoid and x,, the
Fourier component of random noise at the frequency of the sinusoid. It can be shown
that the variance of the sum

N
Sz(Xln +X2n - 1/I\I Z Xln"f'XZn

n=1

reduces to
S*(xin + xon) = (af +23)/2 + aja, cos(Pp; — P,). (1.48)

A convenient way to prove Equation 1.48 is to express X, and X,, in terms of
complex exponentials using Euler’s formula and then apply the summation
procedure in Appendix 1.B — similar to the way it was applied it in Section 1.2.2.
We see from Equation 1.48 that, depending on the magnitudes of a, and ¢, in a
particular realization of noise, the variance at the harmonic of the sinusoidal
signal could be larger or smaller than the variance of the sinusoid itself. In an
expected sense there is no preference for the covariance term in Equation 1.48 to
be either positive or negative because a, has no sign preference and is uncor-
related with ¢,.
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The important point to remember is that if the data length is doubled, the white
noise variance will be distributed over twice as many frequencies and, on average,
reduced by a factor of two at the frequency of the sinusoidal signal. The variance of
the sinusoid will remain unchanged but occurs at twice the original harmonic
number. Of course, there will be a proportional reduction in white noise at any
harmonic for other integer multiple increases in data length.

If the sinusoid is not at a harmonic frequency, the most likely case in practice, the
results are more complex, but in the expected sense can be qualitatively inferred from
multiplying the spectrum window with the sinusoidal input variance, as discussed in
Section 1.5.2. For example, if the frequency of the sinusoid lies midway between
adjacent harmonics in the periodogram, the variance at the same frequency after
doubling the data length will contain all the variance of the sinusoid. Considering
only the variance of the sinusoid, its value will be more than twice the values at the
adjacent harmonics in the original periodogram because the spectrum window
spreads the variance of the sinusoid to all harmonics, not just the two adjacent
harmonics. If the sinusoid is nearer to one or the other adjacent harmonics in the
original periodogram, the variance will be mostly contained in the two harmonic
frequencies that surround it in the spectrum for the case of twice the original data
length. In summary, increasing the length of a time series that is stationary and
contains a deterministic component results in improved ability to distinguish the
variance of the deterministic component from the surrounding harmonic variances.
At an appropriate stage, one can test for statistical significance of a possible sinusoid
using one of the approaches given in Section 1.4.6.

As an example, consider the simulated time series bsin(2mtft —m/4), where
b=+v2 and t=1, 2,..., N, to which white noise is added. The white noise has
a population variance 0” = 5.0. In Figure 1.40, curve (a) shows the distribution of
percentage of total variance for harmonic numbers three through nine for the
sinusoid plus a realization of white noise for N =32 and f=6/N. The signal-to-
noise ratio, as defined by Equation 1.46, is 3.1. Percentage of total variance is used
as the ordinate so that comparisons between realizations are not affected by varying
amounts of total sample variance. Curve (a) indicates that the periodogram
estimates vary considerably and that there would be no reason to expect an input
sinusoid at harmonic 6. The periodogram of the white noise by itself (not
presented) shows that, by chance, the value of variance at harmonic 6 is small
compared to the adjacent variances and the phase angle between the component of
white noise at harmonic 6 and the sinusoidal signal is about 30°. The combination
of these two factors yields the value shown at harmonic 6 as dictated by
Equation 1.48.

Curve (b) in Figure 1.40 results from extending the sinusoid and the realization of
white noise associated with curve (a) to double their lengths. That is, the seed for the
white noise random number generator was the same for curves (a) and (b).
As expected, the periodogram values are generally reduced in magnitude as the
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Figure 1.40 Partial periodograms for sinusoidal input plus white noise. (a) For signal-to-
noise ratio (SNR) =3.1 and data length N=32. (b) For SNR=6.2 and N =64.

white noise variance is now distributed across twice the number of harmonics in (a).
The presence of an input sinusoid is more in evidence with a SNR = 6.2, double that
in (a) (ignoring the —1 contribution in the denominator of Equation 1.46). Even
with this higher SNR, there is still considerable variance at harmonic 8.

Figure 1.41 is similar to Figure 1.40 with two exceptions: the input sinusoid is at
harmonic 6.25 in the 32-point data set and there is a second doubling of the initial
data length to yield a 128-point data set. The highest peak in curve (a) occurs at
harmonic 7 with a comparatively small value at harmonic 6. By chance,
the component of white noise at harmonic 6 is nearly out of phase (~170°) with
the component of the input sinusoid at harmonic 6 (negative covariance term).
At the same time, there is only about a 70° phase difference between the component
of white noise at harmonic 7 and the component of the input sinusoid at harmonic 7
(positive covariance term). The result is that the contribution of the input sinusoid to
the variance at harmonic 7 is about 1.5 times greater than that at harmonic 6.
This, coupled with the much larger variance of the random component at harmonic
7 than at harmonic 6, yields the magnitudes shown. Curve (b) shows the spectrum
when the data are extended to twice the original length so that the SNR is 6.2.
Generally, the periodogram values are less than those in (a), as anticipated.
The frequency of the input sinusoid now lies midway between adjacent harmonics.
The phase differences between the components of white noise and the input sinusoid
at harmonics 12 and 13 and the magnitudes of the components account for the
similar percentages of total variance at these harmonics. Other large percentages of
total variance occur at harmonics 8, 14, and 17, due mainly to the strength of the
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Figure 1.41 Partial periodograms for sinusoidal input plus white noise. (a) For signal-to-
noise ratio (SNR) =3.1 and data length N=32. (b) For SNR=6.2 and N=64. (c) For
SNR=12.4 and N=128.

component of white noise as leakage of variance from the input sinusoid diminishes
with distance from harmonic 12.5.

In curve (c) in Figure 1.41, the data have been extended to four times the original
length, the SNR thus being 12.4. From Table 1.7, which applies to curve (c), the phase
difference between the input sinusoid and the sinusoid of noise at harmonic 25 is
about 95°. In the “worst case” that could have arisen, the phase angle difference
would be 180°, with the result that the ordinate would have been 9.4%. This figure is
not too different from the values of 7.3% and 8.6% that were found at harmonics 2
and 10 (not shown), in which situation there would be little evidence for the
deterministic component at harmonic 25. The figure of 9.4% can be calculated from
values in the total variance and variance columns of Table 1.7 and Equation 1.48. The
calculation is a good exercise to demonstrate understanding of how periodogram
variances can change due to phase angle differences when two sinusoids are summed.

Now we can adapt Equation 1.47 to the ordinate in Figure 1.41 in order to find the
100(1 — a)% a priori confidence interval. Dividing each term by the total variance,
such that the confidence interval is expressed as a percentage, yields

2(1 —
Pr{O < Clfm) <%l a)m‘“)} =1-a.
5.882 2 x 5.882

(1.49)

The white noise estimate for I'(f,,) is 5.882/((N —1)/2) =2 x 5.882/127 = 0.0926.
The resulting upper limit of the 95% a priori confidence interval is 4.7%. Among the
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Table 1.7 Statistical properties of signal v/2 sin (27 25 n/128 — 7t/4) and a realization of a
time series of 128 values of white noise.

Time Total Variance at Percentage of total Phase angle
series variance harmonic 25 variance (degrees)
signal 1.000 1.000 100.00 135.0
noise 4.936 0.084 1.70 39.6
signal + 5.882 1.030 17.51 118.5
noise

63 interior harmonics there are four with values outside this limit. These include
harmonic 25 for both the observed (95°) and “worst case” (180°) phase differences.
On average, one would expect about three (63 x 0.05) rejects under the white noise
null hypothesis. Using only the a priori confidence limit, it is unclear whether to
reject or not reject the white noise null hypothesis that the data set comes from a
white noise process. Accordingly, we calculate the 95% a posteriori confidence
interval from Equation 1.49 after replacing the argument of y; by 1-—
0/63=0.99921. Integrating Equation 1.36 between 0 and the upper limit of
integration results in %3(0.99921) = 14.278. The upper limit of the a posteriori
confidence interval is, therefore, 11.2%. The only harmonic whose percentage of
total variance exceeds this limit is that at harmonic 25 for the 95° phase angle
difference case. There are no harmonics with values exceeding this limit for the 180°
“worst case.”

We conclude that even with a SNR as large as 12, it can be difficult, in general, to
not only detect a sinusoidal signal in the presence of white noise in a given realization,
but to show also that it is statistically significant. Factors that contribute to this
difficulty are (i) the occurrence of the sinusoid between harmonics and the attendant
spectrum window effects and (ii) the chance occurrence of a combination of
amplitude and phase angle of random noise at the same harmonic as the signal
that significantly cancels the signal variance.

To briefly summarize Sections 1.5.3 and 1.5.4, we can state that the detection of a
sinusoidal signal embedded in noise will be enhanced by either increasing the data
length (with resultant increase in the SNR) or averaging a number of periodograms
(with resultant narrowing of the spectrum confidence interval). Increasing the data
length forces the periodic component to be closer to a harmonic frequency.

1.5.5 Complex representation of Fourier series

The most compact expression of a Fourier synthesis is that written in complex
exponential form. The purpose of this section is to develop complex exponential
forms for Fourier synthesis and analysis producing what is called a Fourier transform
pair. The periodogram is then expressed in terms of complex coefficients. We shall
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Figure 1.42 Fourier coefficents A, and B, computed at harmonics (N/2) + 1toN — 1 can be
exactly matched to Fourier coefficients computed at harmonics 1 to (N/2) — 1 with appro-
priate change in sign. N is even.

see that one of the features of the periodogram in complex form is that, with a couple
exceptions, the Fourier coefficients are one-half the magnitude given in Table 1.1.
The exceptions occur at the zero harmonic (N even or odd) and the Nyquist
frequency (N even), in which cases there is no change of magnitude. The compact-
ness also can result in an amplitude spectrum that includes both positive and
negative harmonics (or frequencies), as described in Section 1.5.1 and Figure 1.28.

Figure 1.42 shows the locations of the harmonic coefficients A, and B, along a
harmonic axis that has been extended to twice its usual length. If the range of m in the
synthesis formula

g1

Xn:AO—'—i

m=1

2 2m
<Am cos Iilnn + By, sin Iznn) + Ay/z cosmn (1.50)

from Table 1.1 for N even were to be extended beyond N/2, what would happen to the
values of A, B,,,, cos

2mmn and sin 222? Using trigonometric identities for the sum

and difference of two angles, the results for the sine terms will be

sinzn@lgm)n = sin(7tn) cos(2mwmn/N) + cos(mtn) sin(2emn/N)  (1.51)
and
sinw = sin(mtn) cos(2memn/N) — cos(mtn) sin(2emn/N).  (1.52)

Because the first term on the right-hand side in both equations is always zero and
the second term is the same except for sign, it follows that

N N _
in G tmn 2 - m)n (153)
N N
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In a similar manner it can be shown that

CO§ ——"— = COS——"—. (1.54)

Thus, the sine terms show odd symmetry about harmonic N/2 and the cosine terms
show even symmetry. For N odd, the location of the Nyquist frequency is between
adjacent harmonics that surround the Nyquist frequency. Nevertheless, the same
pattern of symmetry about the Nyquist frequency holds for N odd as for N even.

Continuing with N even, since A, and B,, both involve the cosine and sine
terms above,

A%er = Agfm and Bg+m = —Bx (1.55)

S —m

Thus, noting the even and odd symmetry of the Fourier cosine and sine
coefficients, respectively, x,, can be written

N—1
2mmn 27Tmn
X, = Z <A’mcos N + B/, sin N > (1.56)
m=0

where A, = A,/2 and B, = B,,,/2, except A'y = Ay (N even or odd) and Ay, = Anpo
(N even). Fourier coefficients A, and B,, are the original coefficients defined in
Table 1.1. From this point forward, whenever a primed Fourier coefficient is observed,
it means that its value is one-half the value of an unprimed coefficient, except as noted.
Primed coefficients have been used already in Appendix 1.D.

Before rewriting the expression above in terms of complex numbers, let us briefly
review what we mean by a complex number. A complex number is given by

z =x+1y

and its complex conjugate by

N *
|

X — iy

where x and y are real numbers and i the imaginary unit defined by

i=+V-1

The real number x is called the real part of z (or its conjugate) and the real number
y is called the imaginary part of z (or its conjugate). (Note that the x notation here is
distinct from notation x,, for the time series above.) The complex number z can be
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easily interpreted as a vector in the complex plane shown in Figure 1.43 extending
from the origin to the intersection of x and y.
The length of vector z is given by

o = VY

and its direction by

Since
X = |z]cos® and y = |z|sinO
it is apparent that z=x+ iy can be written in the equivalent form
z = |z| cosO +1ilz| sin® = |z| (cosO + isin0)
which, from FEuler’s formula, can be written
z = |z €.

This is called the polar or trigonometric form of a complex number.
As for now, we represent the Fourier coefficients using complex numbers in order
to rewrite the synthesis formula in complex exponential form. That is,

N-1
27 27
X, = mzzo (Al — iBp) (cos ;Inn + isin ;Inn) (1.57)

The cross product terms will vanish in the summation because of their odd symmetry
about m = N/2. For example, the product of A’ ,, with sin(27tmn/N) for 0 < m < N/2
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will be identical to the same product at harmonic N — m, but of opposite sign since
A’., is an even function about N/2 and sin(2tmn/N) is an odd function.

If we let §', = A’ — iB’,,, then, from Table 1.1 and the Fourier coefficients there
divided by two, as required earlier,

1 3 2mmn 1 2Tmn
Sh :—an cos — i—an sin
NDZO N Nn:() N

1= 2mmn . . 2mmn
:ﬁan cos N —isin N ) 0<m< (N—1), Neven.

n=0

(1.58)

S/, is the complex Fourier coefficient at the m-th harmonic frequency.
Using Euler’s formula, expressions for x, and S',, can be expressed very compactly
and symmetrically as

N—-1

1
S, = ﬁr;xn exp(—i2nmn/N), m = 0,1,...,N—1 (1.59)
and
N-1
X, = Z St exp(i2emn/N), n = 0,1,...,N— 1. (1.60)
m=0

These equations constitute a digital Fourier transform pair, are valid whether N is
even or odd, and could be written also

N—-1

1
Sh==Y x,exp(—i2tmn/N), m=-[N-1)/2],...,0,...,[N/2
Nr;) ( /N) [( )/2] [N/2] (161)
orm=—[N/2],...,0,...,[(N—1)/2]
and
IN/2]
Xy = > Shexp(i2znmn/N), n=0,1,...,N—1
m=—[(N-1)/2]
or
[(N-1)/2]
X, = Z Shexp(i2nmn/N), n =0,1,...,N—1 (1.62)

m=—[N/2]
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where [q] means truncation of q. The new limits on m follow from the easily proved
relation Sy, & 1y = Shn, wherek is an integer. Equations 1.60 and 1.62 are referred to as
inverse Fourier transforms of Equations 1.59 and 1.61, respectively. Whenever there
is a Fourier transform pair, the equation for the time or space function in terms of the
frequency function is considered the inverse Fourier transform.

If the variance in the periodogram is denoted by C},, then

Cho = Sy X S = (Al — iBln)(Aln + iBln) = A2 + B,
m=—[(N-1)/2],...,0,...,[N/2]  (1.63)

where the asterisk again indicates complex conjugate. Ordinarily, variance is not
computed at m = 0. Notice the periodogram here is two-sided; that is, there are
variances at both negative and positive harmonics. Their use is a mathematical
convenience. Recall that the primed Fourier coefficients are one-half the values given
inTable 1.1 exceptatm = 0 and m = N/2 (N even). To match the one-sided spectrum
in Table 1.1 for N even or odd, the variances have to be doubled according to

2 =Cp=Chn+C.p=2C, m=#0; m#N/2(Neven)
and (1.64)
SZN/2 = Cyj2 = Cyj2, (Neven).

1.5.6 The spectrum at nonharmonic frequencies

It was pointed outin Section 1.2 that the total variance in a data set can be shown to be
the sum of the variances at the harmonic frequencies. In terms of accounting for total
variance, there is no need to examine the spectrum at a frequency resolution higher
than the spacing between adjacent harmonics. Nevertheless, a value of variance can be
computed at any frequency by changing the cosine and sine arguments in the
spectrum formulations from 2mwmnAt/(NAt) to 2mnfnAt where f is frequency (in
cycles per time interval between samples). In this section we derive a formula from
which we conclude that the variance spectrum C'(f), available at a continuum of
frequencies, is uniquely related to the variances at the harmonic frequencies C,,.

Define S'(f) to be the complex amplitude coefficient at frequency f. Then, by
analogy with Equation 1.61,

N

S(f) = Z aexp(—i2mfAtL),  —1/(2At) < f < 1/(2At). (1.65)
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Now substitute the first form of Equation 1.62 for x, to get
N/2)

S'(f) = Z S NZ (%) exp [iZJ‘E (g - fAt) n} (1.66)

—1
m=-[N-1)/2]  n=0

where [q], as earlier, means the truncated value of q in the summation limits.
Using Equation 1.B.4 to obtain the second summation yields

S'(f) = [NZ/Z] Sm X En(f), —1/(At) <f <1/(2At) (1.67)
m=—[(N~1)/2]
where
sin [(% - fAt) Nn}
Nsin[(% — fAt) n} '

Em(f) = exp [i(N— 1)(9—fm)n} X

N (1.68)

Equation 1.67 tells us that each complex Fourier coefficient at a frequency between
two adjacent harmonics is a weighted sum of the S}, harmonic coefficients. This
means that calculating Fourier coefficients at nonharmonic frequencies yields no
additional insight into the variance structure of the data; all of the variance
information is revealed by the harmonic coefficients.

If S}, and E,,(f) are replaced by their conjugates, the conjugate companion of

Equation 1.67 will result and the weighted sum relation will apply to S/(f). Because
the periodogram is the product of S}, and S/, we conclude that at any frequency, f,
the variance spectrum

*

C/(f) = S'(f) x S(f), —1/(2At) < f < 1/(2At) (1.69)

is a weighted sum of the variances at the harmonic frequencies. When f is at a
harmonic frequency, the weight function is zero at all other harmonics except the one
under consideration.

Let us re-examine Equation 1.68 for the case when m =0. Then,

sin(TNfAt)

(1.70)

Note that the limit of Ey(f) is one as f tends to zero. If S, the mean of the series, is large,
the product of Eq(f) and Si will provide a large contribution to S'(f) when fis in the
neighborhood of the origin. The variance C'(f) will then include a large contribution
from the mean. Since it is the second moment about the mean that is desired, this



76 CH 1 FOURIER ANALYSIS

LIS e B e B e [ e T B B e B B B B
1

10 E i 3
s | 3
2L /\\ i
L i E

§.5: : ]

3 2/ . :

s 2 F ! S

> I
il e Y
05 F : \/ ]
02l ]
01 L ; £

11 1 1 1111 N I T I T - [ .|
3 4 5 6 7 8 9

Harmonic | Number
input sinusoid

Figure 1.44 Spectrum of sinusoid with frequency 6.25 cycles over data length N =32 with
added white noise. The ratio of the signal variance to the white noise variance at an internal
harmonic (SNR) is 3.1 (see Equation 1.46).

contribution must be deleted. Therefore, in applying Equation 1.69 it is to be
understood that the sample mean has been removed before computing S'(f) or C'(f).

One might expect that C'(f) could be used to find the exact frequency of a
deterministic signal embedded in noise. Unfortunately, this is not true, and an
illustration of this fact is shown in Figure 1.44. The spectrum here is the same as
spectrum (5) in Figure 1.37, except that the variances were calculated at frequency
increments corresponding to 1/20 the harmonic spacing using Appendix 1.A. Due
mainly to the leakage of noise variance from surrounding harmonics, the peak in the
spectrum occurs not at the frequency of the input sinusoid (harmonic 6.25) but
slightly to the left of harmonic 6.

If the noise is reduced to zero, however, the input frequency can be accurately
determined, as shown in Figure 1.45. Why is this? In the first place there is no noise to
contend with and, therefore, no noise leakage. In the second place, for interior
frequencies and sufficiently large N, the frequency at which the peak in the spectral
window in Equation 1.42 occurs when 2stf; is substituted for w,, is close to the
frequency of the input sinusoid f;. Recall from Figures 1.33 and 1.34 that the peak in
the spectrum window at harmonic 1 is displaced from harmonic 1 for a pure cosine
or sine input. It was found from simulations that when N > 100 a reasonably
accurate estimate of the frequency of an input sinusoid away from the ends of the
spectrum can be made because the window is nearly symmetric and its peak is close to
the center of the window. This parallels the earlier finding in Section 1.5.2 that the
squared diffraction function in Equation 1.44 provides a good approximation to the
window function in Equation 1.42 away from the spectrum ends for N > 100.
Of course, the larger the value of N, the greater the accuracy. From Figures 1.44
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Figure 1.45 Spectrum of sinusoid with frequency 6.25 cycles over data data length N =32.

and 1.45 we conclude that the higher the ratio of the deterministic signal variance to
the noise variance, the more accurately one can estimate the frequency of the signal.

The various equations developed in this and the previous sections typically are not
used in computing a periodogram. Instead, we use a straightforward algorithm
employing the formulas in Table 1.1 or a fast algorithm as in the computer program
in Appendix 1.A. The latter algorithm permits us to evaluate the Fourier coefficients
and variances at as high a resolution in frequency as we wish. When we do this, we
now know that the variance computed at an off-harmonic frequency is a weighted
sum of all harmonic variances, and the closer they are to a given off-harmonic
frequency, the greater their influence.

1.5.7 Padding data with zeroes

In this section we investigate a topic of practical interest wherein a time series with
zero mean is modified by appending zeroes to it in order to obtain a desired length.
The procedure is called “padding data with zeroes” and a common purpose is to
match the length of a record with that required when using an FFT (fast Fourier
transform) algorithm to analyze many and/or long data sets. As an example, if we had
an 83 point sequence and were using a simple FFT requiring 2 points, we could add
45 zeroes to obtain 27 = 128. We will show that the periodogram of the padded data is
identical to the variance spectrum (Equation 1.63) of the original data computed
at intervals in frequency of 1/128, except for a multiplicative constant. It may seem
odd that one would add a sequence of zeroes to a time series (after removal of the
mean) and compute a periodogram that has any meaning. The interesting aspect
is that in calculating the Fourier coefficients, the padded series can be partitioned
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into the original series and the sequence of zeroes, the latter contributing nothing to
the coefficients. The result is a spectrum with higher resolution than the period-
ogram of the original data.

Let us begin by considering a time series of data and subtract its mean from each
datum to get data set A. Next consider data set B. It is the same as data set A except
that zeroes have been appended in order to apply an FFT. The means of data sets
A and B are zero. The variances of both are the same if, for set B, the coefficient of the
sum in the expression for variance is the same as that for set A —a condition that we
now investigate.

The formula for the Fourier coefficients in data set A is, following Equations 1.58
and 1.59,

1N—1
Shy = Al —iBl, = ﬁan exp(—i2mmn/N), m = —[(N—1)/2],...,0,...,[N/2]
n=0

(1.71)

where m is harmonic number, x,, is the n-th datum, N is the number of data and [q]
indicates truncated value, as before.

Of course, we know from the previous section that we can calculate Fourier
coefficients at higher resolution in frequency than the harmonic frequencies
(Equation 1.65) and they are completely dependent on those at the harmonic
frequencies (Equation 1.67). Consider increasing the number of complex coeffi-
cients N in set A by a factor R, such that RN is the number of data needed by an FFT.
Then the new formula for the high resolution coefficients in data set A is

S, = AL—iB, %Z:Ox exp(—i27trn/(RN)),
= —[(RN=1)/2],...,0,...,[RN/2]. (1.72)

To distinguish padded data set B from data set A, we will use bold notation, for
example, x,,. Data set B has RN data and, by analogy with Equation 1.71, noting that
x, =0 beyond n =N — 1, its Fourier coefficients are

| RN-
S, =A, —iB, = RN an exp|—i27mrn/RN]
n=0

1 N-1 1 RN-1
=— ) xyexp(—i2nrn/RN) +— » x, exp(—i2nrn/RN)
RN 2 P
1 N-1
= ﬁan exp(—i2mm/RN), r = —[(RN—1)/2],...,0,...,[RN/2].
n=0

(1.73)
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Except for the coefficient of the summation, Equation 1.73 is the same as Equa-
tion 1.72. If it were desired that the Fourier coefficients of padded data set B be the
same as the high resolution coefficients of data set A, the former coefficients need to
be multiplied by R.

Whether one uses padding (Equation 1.73) or direct calculation (Equation 1.72),
the total variance derived from the Fourier coefficients must equal the variance in the
data. The variance at a Fourier harmonic frequency can be obtained by forming the
product S, X S > in which the asterisk means complex conjugate. Accordingly, from
Equations 1.61 and 1.63,

N— 2

Z n exp(—i2memn/N)| |

S X S = A2 +B7 =

m = —[(N—-1)/2],...,0,...,[N/2] (1.74)
the total variance of which is

N/2
(A’fn + B’fn) . (1.75)
— -2

When variances are computed at a higher resolution in frequency than that
associated with just the harmonic frequencies, they must be scaled by 1/R. The reason
for scaling is that the variances computed at aresolution in frequency greater than the
harmonic resolution are not independent (as are the harmonic variances). The
dependence is taken into account by reducing the bandwidth associated with each
high resolution spectrum variance by 1/R.

Using padding for FFT purposes, with the consequent increase in spectral
resolution, the expression for the periodogram variance is

2

. N—
SixS = A?+B? = Z » exp(—i2mrn/RN)| |

r = —[(RN—1)/2],...,0,...,[RN/2]. (1.76)

However, as mentioned earlier, to match the variances associated with high
resolution data set A, the Fourier coefficients in data set B have to be multiplied
by R, or, what is the same, the variances in Equation 1.76 have to be multiplied
by R®. Thus,

A7 +B? = R?A” + R?B". (1.77)
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It follows that for high-resolution data set A, the total variance is given by

T
R > (A7 +BY) (1.78)
r=—((RN-1)/2]
and, for data set B, by
| Ry L RNR
= R2<A’r +B’r> =R Y @A?+B)) (1.79)
r=—[(RN-1)/2] r=—[(RN-1)/2]

If the variances at the nonharmonic frequencies in Equation 1.77 are treated as
random variables, they have the same asymptotic (as N tends to infinity) mean,
variance, and distribution as those at the harmonic frequencies (Koopmans, 1974,
pp. 261-265).

The consequences of padding a time series with zeroes to accommodate analysis
with an FFT can be illustrated with a typical example in which the number of data
does not match the requirements of the FFT that is to be used. Consider spatially
averaged sea surface temperature (SST) in an area bounded by 10° south latitude on
its southern edge, the equator on its northern edge, and 80 and 90° west longitude on
its eastern and western edges, respectively. This area comprises Nifio Regions 1 and 2,
which are often used as indicator regions of the current state of the El Nino Southern
Oscillation (ENSO). Figure 1.46 shows Nino Region 1 + 2 monthly SST anomalies
for the 30-year period of 1981-2010. These values were derived by subtracting the
1981-2010 monthly means from each month’s actual SST in a manner identical to
that used in Section 1.4.6.2. The original monthly values of SST were obtained from

~ 3 ‘ ]
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Figure 1.46 Mean monthly SST (sea surface temperature) anomalies in Nifio Region 1+ 2
for the 30-year period of 1981-2010.
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Figure 1.47 Periodogram to harmonic 60 of SST anomalies in Figure 1.46. Total anomaly
variance is 1.440°C%.

the National Weather Service Climate Prediction Center (http://www.cpc.ncep.
noaa.gov/data/indices/).

If one were not concerned with computational speed, the SST anomaly data
could be analyzed without implementation of an FFT by using standard Fourier
analysis techniques, as in Appendix 1.A, where the number of data is N = 360. The
first 60 harmonics of the periodogram resulting from such an analysis are
presented in Figure 1.47, where these harmonics explain over 96% of the total
variance in the time series. Notice that harmonics 30 and 60 necessarily have zero
variance, since the 30-year mean was removed from the data. There is a
concentration of variance at harmonics 20 and lower, corresponding to periods
of 1.5 years and longer, and of particular interest are the peak variances that occur
at periods of 3.75 and 5.0 years (harmonics 8 and 6, respectively). The period-
ogram provides an informative depiction of the cyclic nature of El Nifio and
La Nifa.

Suppose, however, that many thousands of such analyses needed to be performed
as rapidly as possible. The computational efficiency of FFTs then becomes necessary,
and it may be the case that the FFT requires N =2" data points as previously
described. By augmenting the 30 years of monthly data with 152 zeroes, we obtain a
time series that is 512 (2°) data points in length. An FFT was used to compute the
folded version (positive harmonics only) of the Fourier coefficients in Equation 1.73
and the folded version of the periodogram variances in Equation 1.76 where
RN =512. The ratios (in percentage) of the individual variances to their sum are
shown in Figure 1.48 for the first 85 harmonics to account for the inherently
narrower bandwidth of the analysis.

In comparing Figures 1.47 and 1.48 to each other, we can make the general
statement that they are different for two reasons. One is that the period (in years)
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Figure 1.48 Periodogram to harmonic 85 of SST anomalies in Figure 1.46 after padding with
152 zeroes. Total anomaly variance is 1.440 °C%.

versus harmonic relation is different in each figure; the other is that the bandwidth
or width of the spectrum window associated with the variance estimates in each
figure is different. To explain these differences, consider an example. As mentioned
earlier, Figure 1.47 shows two strong peaks: the first at a period of 5 years
(harmonic 6) and the second at a period of 3.75 years (harmonic 8). In Figure 1.48,
the periodogram of the padded data, the variance in the first peak lies between
harmonic 8, corresponding to a period of 5.333 years, and harmonic 9, corre-
sponding to a period of 4.741 years. The spectrum windows centered at harmonics
8 and 9 transfer most of the variance in the first peak in Figure 1.47 to these
two harmonics. Because the location of the first peak is approximately midway
between the surrounding harmonics 8 and 9 in Figure 1.48, the variances there are
quite similar.

An analogous situation occurs with the second peak in variance in Figure 1.47.
This peak, at a period of 3.75 years (harmonic 8), lies between harmonics 11 (period
of3.879 years) and 12 (period of 3.556 years). Again, the spectrum windows centered
at these harmonics redistribute the variance that lies between them in Figure 1.47 to
these harmonics, as shown in Figure 1.48.

The opposite situation occurs in Figure 1.48 at harmonic 15 and period 2.844
years. The peak at this harmonic falls between harmonics 10 (period of 3 years) and
11 (period of 2.727 years) in Figure 1.47. In this case, a redistribution of a peak in
variance in the padded spectrum occurs in the unpadded spectrum. In any period-
ogram, variance that is intrinsically located between harmonics is distributed to
surrounding harmonics by a spectrum window centered at each harmonic, as we
learned in Section 1.5.2. In addition, the two periodograms of the SST anomaly data
illustrate the effect of data length on finding periodicities, a subject discussed in
Section 1.5.4.
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Appendix 1.A Subroutine foranx

subroutine foranx (s, n, var, nf, tvar, frl, fr2, iprnt)
dimension s(1), a(400), b(400), pvar(400), phi(400), var(400),
freg(400)
C*********************‘k**********‘k**********************‘k**‘k‘k‘k
c
c This subroutine performs a fast Fourier analysis of an even
number of data points at as
c many frequencies as desired. The frequency span is between 0.0
and 0.5 cy/data interval,
c inclusive. The algorithmused is that given at the end of
Chapter 9 of Spectral Analysis
(Jenkins & Watts, 1968, Holden-Day, San Francisco, 525 pp.)
* Input *
s input data array.
n lengthof s. n is an even number.
nf number of frequencies (including zero) at which variance
is to be computed.

QO Q0 Q0 Q0

nf.gt.n/2 and is an odd number.
nf =n/2 + 1 for standard periodogram.
frl frequency at which printing begins.
fr2 frequency at which printing ends.
frl and fr2 are less than or equal to 0.5 and frl < fr2.
* OQutput *
var the array of spectrum variances at the nf frequencies.
tvar the total variance in the data.
* Other *
iprnt user supplied output device unit number.

the synthesis formis x(t) = a*cos(wt) + b*sin(wt)
= c*cos (wt - phi) phi = phase angle in program

R R R R R R R R R R R R R R EE RS EEEEEEEREEEEEEEEEEEEEEEEES

** get constants, variancescale factor, and frequency array **

Q0 Q0000000000000

datapi /3.1415926536/
anf = nf
an =n
rddg = 180.0/pi
frfac =an/ (2.0*%anf - 2.0)
bb=0.5/(anf - 1.0)
do10i=1, nf
aa=1

10 freg(i) = (aa-1.0)*bb
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** get Fourier coefficients at 0 and Nyquist frequencies **

a(l) =0.0
b(l) =0.0
a(nf) =0.0
b(nf) =0.0
e=n

tvar =0.0
do20i=1,n
c=1-1
r=s(i)/e

a(l) =a(l) +r
a(nf) =a(nf) + r*cos(c*pi)

** get variance in data, start accumulation of variance in
spectrum **

do30i=1,n

s(i) =s(i) -a(l)
tvar = tvar + s(i) **2/e
var (nf) = a(nf) **2
pvar (nf) =var (nf)*100.0*frfac/tvar
var(l) =0.0

pvar(l) =0.0

wvar = var (nf) *frfac
g=n/2

phi(l1) =0.0

phi(nf) =0.0
do40i=1,n

s(i) =s(i)/g

** J & Walgorithm **

nfml =nf -1

do 503 =2, nfml

ang = 2.0*pi*freqg(j)
co = cos (ang)

si = sin(ang)

v0=0.0
vl=0.0
z0=0.0
z1=0.0

do60i=2,n
ii=n-1+2
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v2 =2.0%co*vl -v0 + s(ii)
z2 =2.0*co*zl - z0 + s(11)
v0 =vl
vl =v2
z0 =z1
z1l =22
60 continue
a(j) =s(l) +vli*co -vo
b(j) =zl*si
var(j) = (a(j)**2 +b(j)**2)/2.0
pvar (j) =var (j)*frfac*100.0/tvar
wvar = wvar + var (j) *frfac
50 phi(j) = atan2(b(j), a(j)) *rddg

**print results **

ki = 0
ihlf =1
ih2f = nf

if(frl1.1t.0.0.0r.frl.gt.0.5) goto 11l
if(fr2.1t.frl.or.fr2.gt.0.5) goto 111
if(frl.eqg.0.0.and.fr2.eq.0.5) goto 109
ihlf =2.0*frl1*(anf -1.0) +1.01
ih2f =2.0*fr2*(anf - 1.0) + 1.01

109 do 70 j =ihlf, ih2f
wn = freg(j) *an
kj=ki+1
if(((kj-1)/25)*25.eq.(kj-1)) write(iprnt, 102)
70 write(iprnt,103) wn, freqg(j), a(j), b(3), var(j), pvar(j),

phi (3)
write (iprnt,104) tvar, wvar

102 format(//9x%x, 'har-', 6x, 'freq’, 7x, 'cosine’, 9%, '‘sine’,
*10x, 'line’, 7x, 'percent of’, 5x, ’‘phase’, /8x, 'monic’,
*5x, 'cy/di’, 2(3x,'coefficient’), 5x, 'variance’, 6x,

"total var’, *5x, 'angle’, /)

103 format (5x, £8.3, 4x, £6.3, 4(2x,gl2.5), 4x, £6.1)
104 format(///21x, 'variance in data set’, gl2.5//8x,
*/variance explained by periodogram’, gl2.5)

go to 99
111 write(iprnt, 112)
112 format(//, 10x, 'frl or fr2 or both out of range’)
99 return

end
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Appendix 1.B  Sum of complex exponentials
Let

b
Q = ) exp(ion) = e 4 0@ ... 4 0P (1.B.1)

n=a
where a and b are integers and b > a. Multiply Equation 1.B.1 by e to get
eQ = W@t lo@t2) 1y elolbrl) (1.B.2)
Subtract Equation 1.B.2 from Equation 1.B.1 to obtain

(eiwa _ eim(b+1))

Q= (1—el@)

(1.B.3)

Now multiply the numerator and denominator of Equation 1.B.3 by exp(—iw/2).
Then successively withdraw exp(iaw/2) and exp(ibw/2). The result is

b
Q= Z exp(imn)

eiw(b7a+1)/2 —io(b—a+1)/2

— €

- exp[i(a + b)(l)/Z] el0/2 _ o—iw/2

which, using Euler’s formula, reduces to

sinjo(b —a+1)/2]

Q = expli(a +b)w/2] sin(w/2)

(1.B.4)

In application of Equations 1.B.3 and 1.B.4 it is important to test sin (w/2) to verify
that it is not zero for any values of the argument. If sin (/2) is zero, then 'Hopital’s
rule can be applied to these equations to obtain a determinate form. Equation 1.B.1
can be used, also.

Appendix 1.C Distribution of harmonic variances

The purpose of this appendix is to develop relationships for the statistical
distribution of the harmonic variances. Because the chi-square () distribution
plays a prominent role in the development that follows, it is important to be
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familiar with its properties. We begin with the forms for the Fourier cosine and sine
amplitudes given in Table 1.1, now treated as random variables, for an even number

of data N, namely

pR 2tmn
A, = N;Xn cos N
and
PR . 2mmn
B :EHZ:Oanm N m =

o3

(1.C.1a)

(1.C.1b)

Making use of linear expectation operator E and assuming a purely random process
(white noise) represented by random variable X, with E[X,,] =0 so that E[A,] =

E[B,,] =0, we obtain:

Var[A,] = E[A2]

4 2mm0  27tm0 2mm0  2;mwml
= — 1 E[XoX] cos cos +E[XoX,] cos cos
N N
2om0  2mm(N—1) 2mml  27Tm0
+- -+ E[XoXn-_1] cos cos + E[X;Xo] cos cos
N N N
LEXOXd] 2eml  2mml e B[Xi X ] 2nml  2mm(N—1)
cos cos e _1] cos 0s
1Xq N N 1XN-1 N N
b E[Xa o) 2nm(N—1)  2mmo0
_1Xo] cos cos
N-1Xo N N
FEXy X 2nrm(N—1)  2mml
_1X1] cos cos
N-1X1 N N
2rm(N -1 2rm(N -1
+ - +E[Xn-1Xn-1] cos ( ) ( ) (1.C.2)

N Ccos N

The expectation E[X;X;] = 0 for i # j because the random variables are uncorrelated;
similarly, E[X;Xj] = 0% for i=j because the random variables are completely
correlated. The latter relation follows from Equation 1.18 and noting from above
that E[X,,] = 0. Therefore, Equation 1.C.2 becomes
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4 R 2mmn 4 N 2 N
N2 GXZ COS N = ﬁ(}iz = ﬁ(jg(, m = 1,5—1
Var[An] = (1.C.3)
2J'£mn 1 2 1, N
OXZ = oxN = NOX, m = O’E
and for the sine coefficients
4 , R ,2mmn 4 LN 2, N
ok sin %7 N0 m= Lyl
n=0
Var[By] = Lo N (1.C.4)
aTmn
NG OXZ sin’ N =0, m = O’E'

The sums of the cosine-squared and sine-squared terms can be determined from
Equations 1.4 and 1.5.

The covariance between the coefficients at different harmonics may be calculated
in a similar manner. For m #Kk,

I 27tmn 2rtkn
Z cos

Cos

4 2
COV[1ﬁm7 Ak] = W Ox
n=0
o (1.C.5)

since the cosine terms are orthogonal to each other, as demonstrated in the
derivation of Equation 1.8. Similarly, for the sine coefficients

Cov[Bpn, Bi] = 0. (1.C.6)
Lastly, for all m, k,

Cov[Am, B = 0 (1.C.7)

because over their length, any integer number of sine waves is orthogonal to any
integer number of cosine waves.

Now assume that each rv X,, from our white noise process has a normal
distribution with population mean zero and population variance 0%. Since random
variables A, and B,, are linear functions of normal random variables from
Equation 1.C.1, they also are normally distributed. From statistical theory, the
square of a normal random variable with zero mean and unit variance (i.e., a
standard normal variable) is distributed as a chi-square variable with one degree of
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freedom. Thus, if we square the Fourier coefficients and standardize them by
dividing by their variance, we have

A? AZ [N ]
M= M=yt m= |l,——1 (1.C.8)
VarlAn] ~ 0%/(N/2) 2
B? B2 [N ]
n_ = Myt m= [1,——1 (1.C.9)
VarlB,] — 0%/(N/2) 2
and
AL A2 5 N
= = =0,— 1.C.10
VarAn]  oi/N 0 TG (1.C.10)

in which the arrow indicates “is distributed as.” Notice that no equation compa-
rable to Equation 1.C.10 is given for B, when m = 0, N/2; the reason is that B, is
always zero for these two values of m. There is another relevant relationship
involving ? variables: the sum of any number of mutually independent %> variables
whose degrees of freedom sum to v is itself a %* variable with v degrees of freedom;
that is,

erl +X\2/2 + . +X3’k = X\Z/ (I.C.ll)

where v=v; +v,+ - - +vi. Thus, dividing Equations 1.C.8 and 1.C.9 by two and
then summing yields

A§H+Bfn X2 N
2 2

—— = = [1,=——1]. 1.C.12

/N2 20 ! { 12 ] ( )

The reason for dividing by two is to match the expression for variance at a
harmonic given in Table 1.1. The denominators in Equations 1.C.12 and 1.C.10
distribute the population variance 0% among the harmonic frequencies in such a
way that the variance at the interior harmonics is uniform and twice the value at the
frequency origin (m=0) and the highest frequency (m =0N/2). The variance at
m = 0 is the variance of the sample mean (i.e., the mean of a realization) about the
population mean, the latter value of which is zero in this development.

Now simplify the notation by letting

m = [172]— 1} (1.C.13a)
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and

C(fm) = AL, m=0 (1.C.13b)

N
2
where f;;, = m/NAt is the harmonic frequency for harmonic m. Next, replace the
white noise variance 0%/(N/2) at the interior harmonics and 0%/N at the two exterior
harmonics, by I'(f,,) in Equations 1.C.12 and 1.C.10. Taking their expectations, and
noting that E[y2] =, yields

E[?Eﬁ:?] = E[Xj] =1, m= [1,2]—1] (1.C.14)
and
E{igﬂ =Exj] =1, m= o,g (1.C.15)

with the result that
N
E[C(fn)] = T'(fn), m = [O,} (1.C.16)

We now introduce the term estimator. An estimator is a random variable used to
estimate a population parameter. For example, in Equation 1.C.13, spectrum
estimator C(f,,), as an appropriate function of the Fourier coefficients, is used to
estimate the population variance at frequency f,,,. Equation 1.C.16 shows that C(f,,,)
is an unbiased estimator of the white noise variance at the harmonic frequencies
because its expected value is equal to the population variance I'(f,,). If the expected
value were something other than I'(f,,), C(f,) would be a biased estimator. It is
usually desirable that an estimator be unbiased. However, if the calculation of an
unbiased estimator requires information that is otherwise unavailable, or if repeated
calculations are needed that consume significant computation time, it may be more
advantageous to employ a biased estimator.
Since Var[y2] = 2v, we have, following Equations 1.C.14 and 1.C.15,

Var[C(fn)] = T(fn), m — [1,?- 1} (1.C.17)

and

(1.C.18)
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showing that the variance of the estimator is uniform at the interior harmonics
and twice that value at the exterior harmonics (note the definitions of I'(f,)).
That we are dealing with the variance of harmonic variances simply means
that each harmonic variance C(f,,) is itself a random variable and thus has
a probability distribution function based on an infinity of realizations. Equa-
tions 1.C.16-1.C.18 are the expressions for the mean and variance of the
probability distribution function.

It is significant that the variances of the harmonic variances are independent of
sample size. The collection of additional data does not increase the stability of
the estimator. That this is the case is not unexpected because as the length, N, of the
time series increases, the number of Fourier harmonics increases accordingly and
the separation between them, that is, the bandwidth or frequency averaging distance
associated with each harmonic, decreases. The number of data (degrees of freedom
for white noise) consumed in a variance estimate remains the same. To effect
increased stability of the spectrum estimator requires some form of spectrum
averaging.

In the case of N odd, the analysis parallels that above, except that the highest
harmonic is (N —1)/2. To get I'(f,,) at all harmonics except the frequency origin
divide the population variance by N/2; at m =0 divide 0% by N.

The above derivations have been done under the assumption that the pop-
ulation mean is known, and in this case equal to zero. The derivation could have
been done with a known nonzero mean, but the procedure is more tedious. More
generally, the population mean is unknown and the total variance in a given time
series is taken with respect to the sample mean. If the time series is hypothesized
to be a realization of white noise (with mean unknown), the total variance is
similarly distributed as above but without any variance contribution at m =0.
This is because the total variance must be perforce computed about the sample
mean.

For the case of an even number of data, the estimate of the total variance, 6)2(, is
divided by (N — 1)/2 to obtain white noise variances at the interior harmonics and
by N — 1 to obtain the white noise variance at the highest harmonic, N/2. There is
no contribution of variance at m = 0. In the case of an odd number of data, the total
variance is divided by (N — 1)/2 to obtain estimates of the harmonic white noise
variances and, again, there is no contribution of variance at m =0.

In summary, for N even and the mean of the white noise process known,
variances at the interior harmonics have a distribution proportional to 3/2.
Variances at the two exterior harmonics (0 and N/2) have a distribution propor-
tional to %2/1. For N odd and the population mean known, the distributions of
variance at all harmonics are proportional to ¥3/2, except at the 0-th harmonic
where the distribution is proportional to %?/1. When the population mean is
unknown, the variances have similar distributions except that no variance is
generated at the origin.
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Appendix 1.D Derivation of Equation 1.42

The problem is to find the variance at any harmonic frequency when the inputisata
nonharmonic frequency. Consider the general input sinusoid acos(wn — ¢) and take
its Fourier transform. From Equation 1.63 for a two-sided spectrum,

Sn = Ay — B, = ;II;, acos (on — ¢) exp(—immyn)
m=—[(N-1)/2],...,0,...,[N/2] (1.D.1)

where m is harmonic number and w,,, = 2tm/N is angular frequency. It is assumed
that the time step At=1.

Using Euler’s formula, the input sinusoid can be put in complex exponential form
such that:

(A — iB’m)g = exp(—i) z:: exp[i(w — wy )n] + exp(id) z:: exp[—i(w+ oy, )n].

a

(1.D.2)

From Equation 1.B.4,

sin[N(w — 0y, )/2]
sin[(w — 0y)/2]

(A = Bp) 2 = exp{i{(N - 1) (0~ 0) /2~ 9]}

sin[N(w+ wy,) /2]
sin[(w+wy)/2]

(1.D.3)

+exp{—i[(N—1)(0w+wmn)/2— ]}

We can make use of Euler’s formula, again, to rewrite the exponential terms of
Equation 1.D.3. Equating the real portions of the resulting equation allows us to solve
for A',, and, similarly, equating the imaginary portions yields B, so that

sl (o) Jamte e

2 Nsin[(w+ wp)/2]

tcos {(N— 1) <‘”‘“’m> —qﬂ Sin[N(‘”_“’m)/z]} (1.D.4)

2 Nsin[(® — wy,)/2]
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and

Bm = ;{sin[(N— 1) (‘“‘”m) _(p} sin[N(0 + wm) /2]

2 Nsin[(w + o) /2]

—sin{(N—l)(U)_mm> _qn} SinN[(“’_‘”m)/z]}. (1.D.5)

2 Nsin[(® — wy,)/2]

These results apply for N even or odd and to a two-sided spectrum. In reference to
Equation 1.42, where N is even and the periodogram is one sided, the A’,, and B/,
above have to be doubled except at m =0, N/2. Thus the variance at positive
harmonic m is

S2(w) = [(2Am)* + (2Bm)?] /2 = 2A2, +2B2,

a? { sin?[N(0+0m) /2] sin?[N(0 — o) /2]
2

2| N2sin?[(0+0m) /2] N2sin®[(0 — o) /2]
sin[N(w+ wy,) /2]
Nsin[(w+ wy) /2]

sin[N(w — wy,)/2] N
% Nsin[((o—(x)m)/z]}7 m7é075

+2cos[(N—1)w —2¢]

(1.D.6)

which is Equation 1.42.

Problems

1 On graph paper, carefully sketch at least one complete cycle of the sinusoid
given by

y(t) = 1 —2cos(0.57t + 7t/4)

starting at t=—1. (Suggestion: First find the period and location of the
maximum or minimum of the cosine term alone without the phase angle.
Then adjust the plot to take into account phase and vertical
displacement.)
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2 The figure below shows a sinusoid that is digitally sampled according to

27tmk

Xk:a+ccos< q>m) k =0,£1,+2,...

From the above figure determine:

(a) a
(

b) ¢
(c) an appropriate m=____ for an appropriate N =
(d) ¢m=___ degrees

3 Use Appendix 1.B to show that

NZ (2nkn> _ g

where N is an even integer and 0 <k <N/2.

4 A time series of length NAt where N = 50 is obtained. It then is discovered
that the last half of the series, 25At, is a repeat of the first 25At. How does the
variance of the time series of length 50At compare with the variance of the
time series of length 25At?

5 Manual Fourier Analysis: use only paper, pencil, and a nonprogrammable
hand-held calculator.

The data below are 30-year normal monthly precipitation values for
1971-2000 at San Francisco International Airport (SFO AP), California
(37.62 N, 122.40 W) and Oklahoma City Will Rogers Airport (OKC AP),
Oklahoma (35.38 N, 97.60 W).
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(a) Plot the data on separate graphs and comment on differences you
observe between the time series. Can you provide a meteorological
explanation for the differences in annual total precipitation regimes?
(b) Choose one of the time series and perform a Fourier analysis of the data
sufficient to detect both amplitudes and phase angles of the significant
harmonics present (i.e., find enough harmonics to explain at least 95%
of the variance in the data).

(c) Ona separate graph, plot the significant waves in (b) in the form of the
amplitude and phase representation discussed in Section 1.2.4.

(d) Plot the sum of the significant waves (plus the mean) on the time series
graph in (a).

(e) What percentage of the variance of the observed series does each
harmonic explain?

(f) Compare the observed variance (that of the data set itself) with the
explained variance to obtain residual variance.

Month San Francisco Oklahoma City
International Airport Will Rogers Airport
Precipitation (mm) Precipitation (mm)

January 113.0 32.5

February 101.9 39.6

March 82.8 73.7

April 30.0 76.2

May 9.7 138.2

June 2.8 117.6

July 0.8 74.7

August 1.8 63.0

September 5.1 101.1

October 26.4 92.5

November 63.2 53.6

December 73.4 48.0

Fourier Analysis Using a Computer Program

In this problem we use the paradrop days data in Table 1.3 that were
discussed in Section 1.3.2.

(a) Write a computer program that will find the cosine amplitudes, sine
amplitudes and phase angles for the largest harmonics that explain at
least 95% of the variance.

(b) Convert the phase angles into actual times of the maximum amplitude
for the various harmonics.

95
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(c) Plot () the original data, (2) each of the largest harmonics, the sum of
which explains at least 95% of the variance, and (3) the sum of these
harmonics, all on one graph. Compare your results with Figure 1.14.

(d) Canvyou attach any physical meaning to the individual harmonics? You
might consider the typical cycle of daily wind, for example. Does it have
a sinusoidal shape?

Recall that the variance of rv X is given by

Var[X] = JOO (x — w)*f(x)dx.

—0o0

Let rv X have a uniform probability density function f(x) between a and b
and zero elsewhere. If b — a =1, find the variance of rv X for this rectangular
distribution.

The observed variance in a periodogram at harmonic k is 8 °C*. The goal is to
find the limits of the 95% a priori confidence interval for the population
variance I'(fy) at harmonic k. Assume that

re) ~ %

(a) Write down the appropriate probability statement(s) of the form
Pr{__}=__for the confidence limits on the population variance

(b) What are the upper and lower limits of the 95% a priori confidence
interval? Recall that

1 —X,
fe(x) = 5¢ &

The observed variance in a periodogram of a time series with N =41 data
is found to be 12 m”. The null hypothesis is made that the sample of data
comes from a white noise process. Find the limits of the 95% a posteriori
confidence interval for the observed variances at the harmonic
frequencies.

Consider a time series comprising N = 51 data with variance = 40 Pa®. The
null hypothesis Hy is made that the realization is from a data population that
is white noise. A periodogram of the time series is calculated and the largest
value in the periodogram is 10.45 Pa® and the smallest is 0.0065 Pa®. Show
whether H,, will be rejected or not rejected.
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APPENDIX 1.D DERIVATION OF EQUATION 1.42

If a signal can be described by x,, = A sin (2nfnAt) in which At=10.1sand
f=12 Hz, at which frequencies in the principal part of the complete aliased
spectrum will the variance be observed and what will be the variance at each
frequency?

Suppose you have a data set that comprises 100 values of wind speed in
which the sampling interval is two seconds. Unbeknownst to you, there
was a strong sinusoid with period 1.6 seconds introduced into the
analog signal (i.e., before digitization) because of a defective electronic
component. A periodogram analysis of the data set is performed.

(a) What is the Nyquist frequency in Hz?

(b) At what positive frequency (in Hz) in the principal part of the aliased
spectrum will the erroneous variance occur?

(c) What is the corresponding harmonic number for the frequency found
in (b)?

(d) What can be done or what should have been done to eliminate the
unwanted signal from appearing in the periodogram? Explain.

An analog temperature signal is sampled once every second. The number
of data collected is 40. Unfortunately, a nearby transmitter has added an
unwanted frequency of 1.125Hz.

(a) Atwhat frequencies (Hz) in the principal part of the (two-sided) aliased
spectrum will the unwanted variance appear?

(b) What are the corresponding harmonics in the principal part of the
aliased spectrum at which the variances occur?

Consider a stagecoach scene in a motion picture (e.g., How the West
Was Won). The wheels of the stagecoach have a radius r=0.6 m and
each has eight spokes. Assume the camera shutter speed is 24 frames
per second.

Plot the perceived (which may be the actual) angular speed (radians/
second) of one of the wheels versus the speed of the stagecoach as it
increases from 0 m/s to the speed at which the wheels are perceived to be
stationary, that is, not rotating. (Hint: Sketch an eight-spoke wheel, write
down the equation for the stagecoach speed in terms of the angular speed
of a wheel, then adapt it to the conditions of the problem.)

Under certain conditions the spectrum window function of the form
[(sin x)/x]? can be used to estimate the variance at harmonic frequencies
due to variance in the data at nonharmonic frequencies.
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(a) What are the two primary conditions?

(b) Assume the conditions of (a) are met. Sketch at least one spectrum
window centered at a harmonic and calculate the variance at harmonics
m — 1, m, and m + 1 based on the figure below. The one-sided variance
input shown in the figure is 10 m®s™* located midway between har-
monics m —1 and m.

1

variance

m-3 m-2 m-1 m m+1 m+2

harmonic

16 The objectives of this problem are to compare periodograms of hourly

temperature for January and July, 2009 at Oklahoma City, OK, and
determine whether the hourly temperatures in these months can be
modeled as a white noise process after removal of the daily cycle.

Data

The data are available on the website http://www.wiley.com/go/duchon/
timeseriesanalysis. The filenames are OKC_200901_hrly_temp.xls and
OKC_200907_hrly_temp.xls. The data are hourly temperatures in degrees
Celsius for January and July 2009. The first column is the sequential hour
count, the second column is the date, the third column is the time the
temperature was observed in Central Standard Time, and the fourth
column is the temperature. The only data needed to work this problem
are the hourly temperatures in the fourth column.

(a) Plot the times series of hourly temperature for each month on separate
sheets of paper, using the same size for all your plots. Show on each plot
frontal passages, cloudy days, clear days, and any other meteorological
events that you believe to be present.

(b) Use the Fourier Analysis computer program you designed in problem 6
or subroutine FORANX in Appendix 1.A to compute the periodogram
of the 744 points for each month. Plot the log,, variance (or variance on
a log;, axis) versus frequency, period, or harmonic for all harmonics.
On each plot show the total variance and bandwidth associated with
each plot. Place the plots on separate pages.

(c) Compute and plot the average daily cycle of temperature for each
month. Briefly discuss the principal differences between the two
months and their causes.
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(d) Remove the daily cycle from the original hourly data for each month to
form two new time series (the “uncontaminated” data). Plot the two
time series of “uncontaminated” data. Comment on the presence or
absence of the daily cycle of temperature.

(e) Plot the periodograms of the uncontaminated hourly data, replacing
the variance estimates at the harmonic frequencies of the daily cycle
with the average of surrounding variances. On each plot show the
total variance and the bandwidth associated with each estimate.

(f) Apply a white noise test to each periodogram in (e). Compute the a
prioriconfidence limits and a posteriori confidence limits. Place them on
the periodograms of variance in which the vertical axis is log; ¢ variance.
Do you accept or reject the white noise null hypothesis? If you reject the
hypothesis that the sample comes from a population of white noise,
what physical phenomenon or phenomena do you think led to its
rejection?
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Linear systems

The analysis of linear systems is fundamentally the study of the connection between
two time series, one mathematically or physically created from the other. The com-
plete system comprises an input time series, an output time series, and a physical
system or mathematical system that provides the linkage between the input and
output. A simple example of a physical system is an ordinary liquid-in-glass
thermometer: it converts a change in temperature of its surroundings to a change
in length of the column of liquid due to the expansion or contraction of the liquid
in the bulb or reservoir. The complete system includes the air temperature (input),
the thermometer (physical system), and the temperature lines or etched markings on
the thermometer (output). Another example of a complete system is the amplifier
(first part of the physical system) in a stereo receiver that magnifies a weak electrical
signal (input) to sufficient strength to drive a speaker (second part of the physical
system) that produces sound waves (output). A mathematical system consists of
a filter or set of weights applied to a time series in order to alter its character in a
predictable way. A common example is a running mean, which, when applied to a
varying input time series, reduces the magnitude of fluctuations in the output time
series. In addition to the mathematical system, the complete system includes the
unfiltered input time series and the filtered output time series. While these are exam-
ples of simple systems, other examples consist of multiple systems linked in series or
parallel. Their study can be very demanding.

No matter how simple or complex, the systems studied in this chapter are linear.
Linear systems are much easier to analyze than nonlinear systems because of
superposition; this is discussed in Section 2.1.
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2.1 Input-output relationships

The motivation for this section is the schematic diagram in Figure 2.1, in which the
wind speed x(t) is being sensed by an anemometer (a device to measure the speed of
moving air) whose electrical output is amplified and recorded as a digital signal y(t)
in a data logger. The physical system comprises the sensor, a signal adapter, and data
logger, and its purpose is to provide an output signal y(t) that faithfully reproduces
the input signal x(t) within the limitations of the sensor. In the development that
follows, the electronic components of the physical system are assumed to function
perfectly, so that differences between the input and output signals are due only to the
properties of the sensor. In short, there is no electronic noise in the physical system.
From a mathematical viewpoint, input—output relations can be more easily under-
stood if both input and output are treated as analog time series, which will be the
approach used here.
Possible questions we might ask about a complete system are:

(1) What will be y(t) given x(t) and the properties of the sensor?

(2) What was x(t) given y(t) and the properties of the sensor?

(3) What are the properties of the sensor, given x(t) and y(t)?

In many situations the properties of the sensor can be described mathematically as a
time invariant linear ordinary differential or integro-differential equation. By time

invariant is meant that the coefficients in the equation are constant with time. The
general solution to this type of equation and the answer to question (1) is

y(t) = ch h(u) x(t — u) du (2.1)
or, equivalently,
y(t) = JOC ‘X(u) h(t — u) du (2.2)

where h(u) is the system function responsible for converting x(t) into y(t) and
mathematically explains what happens inside the box in Figure 2.1. Each of the above

input output
(atmospheric (recorded
wind speed) wind speed)

physical system
(e.g., sensor, amplifier, > y(t)
and recorder)

x()

\

Figure 2.1 Schematic diagram of signal flow for a complete physical system.
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expressions is called a convolution integral because of the location of variable t on
the left side of the equation and inside the integral, where it is fixed with respect
to integration. That Equations 2.1 and 2.2 are equivalent can be shown through
a simple transformation of variables demonstrating that convolution obeys the
commutative law.

What is meant by linear system? If we let x;(t) and x,(t) represent input signals,
y1(t) and y,(t) output signals, and the signal flow by arrows, then in the two
signal paths

x1(t) — [system function] — y,(t)
and
x2(t)  —  [system function] —  y,(t)
the system is linear if
ax;(t) +bxy(t) — [system function] — ay,(t) + by,(t)

where a and b are arbitrary constants. If the last relationship is not true, the system is
nonlinear. Concomitant with a linear system is the term superposition, which states
that the output of a linear system having any number of inputs can be computed by
determining the output of each input separately and then summing the individual
outputs to obtain the total output as in the illustration above.

An example of a nonlinear system is the system equation

y(t) = bx*(t) (2.3)

where x(t) is the input signal, y(t) the output signal, and b is a constant. To test for
superposition let the combined input at time t be (x; + x,); that is, there are two
sources of input. Thus,

y (combined input) = b(x} + 2x;x, + X3). (2.4)

The sum of the individual outputs, one from x;, the other from x,, and both passing
through the system, is

y (individual inputs) = b(x] + x3). (2.5)

Outputs y for the combined and individual inputs are not the same; thus, super-
position does not hold and the system is nonlinear. Of course, the system equation is
obviously nonlinear because Equation 2.3 is a quadratic form.

The practical analysis of a system requires that it be stable. This means that if
we have an input x(t) which is bounded according to |x(t)| < k; < oo, where k;
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is a constant, the output y(t) is also bounded according to |y(t)| < k, < oo, where
k, is also a constant. It can be shown that a sufficient condition for system stability
is that the integral of the magnitude of the system function is finite. Expressed
mathematically,

J Ih(u)] du < ks < oo

—00

where k3 is a third constant.

2.2 Evaluation of the convolution integral

Consider the convolution of two time-dependent functions g;(t) and g,(t), where
g1(t) corresponds to h(u) and g,(t — u) to x(t — u) in Equation 2.1. The convo-
lution operation is given formally by

oo

B0 =800 = | aat-wd (.
—00

wherein the asterisk is often used as the convolution operator. The value of g5(t) for
any particular time, t, is thus the area under the curve of the product of g;(u) and
g,(t — u) over all time u. In addition, the arguments of g; and g, inside the integral
sign are interchangeable. To understand the convolution technique, it is useful to
visualize or sketch the relationship between g;(u) and g,(t — u) as time t changes.
We do this in the next section for some simple functions, and for a first-order linear
system in the subsequent section. Some of these illustrations are similar to convo-
lution figures in Cooper and McGillem (1999, 1967).

2.2.1 Interpretation

There is no difficulty understanding g,(u) in Equation 2.6 because it is the same
function as g;(t), except for a change in argument notation from t to u. However,
understanding the function g,(t—u) requires some thought. Mathematically,
g,(t—u) is a combination of reflection and translation of the original function
g,(u). The process can be visualized through examples.

Consider the function g,(u) shown in Figure 2.2a. The function g,(—u) shown in
Figure 2.2b is simply a reflection of g,(u) about the x = 0 axis. The function g,(t — u)
or g;(—u + t) is g,(—u) translated to the right by the amount t (t positive) along the
u-axis. The function g,(t — u) is plotted in Figure 2.2c.

The combination of reflection and translation can be further illustrated with an
exponential function given by

y(x) = exp(ax)
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(a) g2(u) /\

0 a b

u —»

; %
ot |

-b t=b 0 t-a

u —»

Figure 2.2 The function g,(u) in (a) is reflected in (b) and translated in (c).

where a is a positive constant. The function y(x) is shown in Figure 2.3a witha = 1.01.
Next consider the new function z(x) such that

2(x) = y(=x) = exp(—ax)

which is plotted in Figure 2.3b. The function z(x) is y(x) reflected about the vertical
axis through the origin. Consider a third function, w(x), given by

w(x) =y(—x+t) = exp[a(—x + t)]

and shown in Figure 2.3c, where it can seen that w(x) is z(x) translated
t=-0.375 units, or y(x) reflected about the origin and translated to the left
0.375 units.

The convolution integral as given by Equation 2.1 is the result of reflecting one
of two functions about the vertical axis at the time origin, displacing it a given
distance, multiplying the two functions and integrating the product over the
entire range of the abscissa. As the reflected function is moved to the right or left
for each allowable value of t, the multiplication and integration is repeated.
Figures 2.4 and 2.5 provide two examples that show, step-by-step, how convo-
lution works.
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5 —_
y(x) = el0lx

(a) 4

© 4T
3 4 w(x) = y(-0.375—x)
= e-1.01(x+0375)
2 4

-15 -1 -05 O 0.5 1 L5

Figure 2.3 Reflecting and translating an exponential function.

2.2.2 A first-order linear system

First-order linear systems have easily understandable properties and can be used
to model certain physical systems. In general, physical systems can be thermal,
mechanical, electrical or chemical, and each contains some form of resistance or
friction. When the system properties are limited to resistance, the behavior of the
system can be described by the general first-order linear differential equation with
constant coefficients given by

a dz(tt) + a0y (t) = box(t) (2.7)
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(a) g](t)
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g,(2.5-u) e
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g,(4-u)
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(2 g1(t) * g(1)
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Figure 2.4 Convolution of two rectangular signals. (a) and (b) show the two signals.
(c) shows g, reflected and g, unchanged. (d) shows the reflected g, translated to the right
2.5 units, then 4 units in (e) and 6 units in (f). The product of the two functions with time
after reflection and translation of g, relative to g; is shown in (g).

where x(t) represents the input to the system and y(t) the output from the system.
It is convenient to divide both sides by a, and rewrite Equation 2.7 in the form

T (g) +y(t) = x(1) (2.8)



108 CH 2 LINEAR SYSTEMS

g(t) (a)
gz(t)
I | T T T
0 T 0 T T
{—
(b)
g,(w)
I N A T
T T 0o | T 2T
]u_>
; ©
g*g, \
T T T T T T T T T 1
T T 0 T T
t—>

Figure 2.5 Convolution of a rectangular signal with an exponential signal.(a) The two
functions. (b) Reflection and translation of the exponential function. (c) The result of the
multiplication of the two functions after complete translation.

where T = a,/a, is a system parameter and b,/a, = 1 when the input and output have
the same scale (as assumed in Equation 2.8). A simple example of a first-order linear
system is our previously mentioned liquid-in-glass thermometer in which y(t) is the
indicated temperature, x(t) is the environment temperature, and parameter T is the
time constant. The glass bulb and liquid in the bulb have mass and, therefore, thermal
resistance (that is, it takes time for heat to be conducted into or out of the bulb), as
manifested in its time constant. Mathematically, time constant T is the time required
for the thermometer to respond to 1 — (1/e) ~0.632 of a step change in temper-
ature. For example, if the environment temperature suddenly increases 1 °C, T is the
time it takes for the thermometer to register a 0.632 °C rise.

The analytic solution to Equation 2.8 can be obtained independently of any
prior discussion of convolution. After we have the solution, though, we will recog-
nize that it is in the form of a convolution integral. Multiplying Equation 2.8 by the
integrating factor ¢”" and integrating results in

t=z t=z
J d(yte'/T) = J x(t)e"/* dt
t=-—0o0

t=—00
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which becomes

Replacing variables t by u and z by t to match previous notation yields

t—u)/t

t o
y(t) = J x(u) Tdu. (2.9)

Equation 2.9 is in the form of Equation 2.2 with system function

e—(t-w)/T

h(t—u)zT, u<t. (2.10)
The only difference is in the upper limit, which is now t. The integration extends from
all past time up to the present time only. This is because a physical system (the
thermometer is an example) “remembers” the past but cannot anticipate the future.
More generally, we cannot know values of the input time series x(u) for any time u later
than the current time t. This maxim is called physical realizability. Physical realiz-
ability is always connected to the input time series, not the system function. Had we
known the system function at the outset, we could have written down Equation 2.9
immediately using the convolution integral and physical realizability without having
to formally solve the differential equation.

Let us apply Equation 2.9 to an ordinary thermometer and ask, What is the
temperature at time t,? Figure 2.6 depicts the situation. In general, system func-
tion h(t — u)=e~ =Tt describes how the measurement of the environment
temperature is modified (filtered) by the thermometer to produce the output series of
temperature measurements. When adapted to time t; it has the form h(t; — u) =
e~ (1=/T /1 which is the same form as g,(t, — u) in Figure 2.5. Thus Figure 2.6 shows
the environment temperature function x(u) and system function h(t; — u) from
which we conclude that y(t;), the measured temperature at t = t;, is the exponentially
weighted sum of all values of x(u) prior to t;, and is given mathematically by

Figure 2.6 Convolution of the weight function h(u) of a liquid-in-glass thermometer with
the environment temperature x(u) at time u=t;.
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Equation 2.9. Recent values of environment temperature are weighted the most and
distant values the least.

2.2.3 More on physical realizability

As noted in Section 2.1, there are two general forms of the convolution integral,
Equations 2.1 and 2.2, that can be applied to the analysis of linear systems. Consider
the latter first. As discussed above, for physical systems we can perform integration of
the input time series x(u) only up to the present time t, beyond which future values of
x(u) are unknown. Thus the upper limit of integration is the current time, t, so that
for physical systems, in general, Equation 2.2 becomes

y(t) = Ji x(u) h(t — u) du. (2.11)

It can be noted further that only when the value of the argument of the system
function is greater than zero is there a contribution to the integration. This is a
characteristic of physical systems so that system functions have meaning only when
their time argument is greater than or equal to zero.

The limits of integration for Equation 2.1 are somewhat different. Since the
argument of the input function is now (t — u), and future values of x(t — u) are not
available, it must be that (t — u) <t; that is, u cannot be negative. Thus, for physical
realizability, Equation 2.1 becomes

y(t) = JOO h(u) x(t — u) du. (2.12)

Although the argument of the system function is different than in Equation 2.11, the
only contribution to integration occurs, again, when its argument is greater than or
equal to zero. Equation 2.12 with correct limits can be derived directly from
Equation 2.11 by substituting z=t — u. Thus both equations are equivalent forms
of the convolution integral under the constraint of physical realizability.

2.3 Fourier transforms for analog data

In Chapter 1 our primary interest was in analyzing digital signals of finite record
length. One of the more important results was the digital Fourier transform pair
given by Equations 1.61 and 1.62 that was derived in Section 1.5.5. In this section we
will derive two new Fourier transform pairs, the first for a finite analog record and
the second for an infinite analog record. The starting point for both transforms is the
equation for the complex amplitude spectrum.
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We first insert At into the numerator and denominator of the summation
coefficient and the exponential term of Equation 1.61 to obtain

n=[(N-1)/2] ‘
XpAt e FmRAYNAt gy IN/2) L0, (N = 1)/2]
n=—[N/2]

1
S =
™ NAt

(1.61')

where S}, is the complex amplitude of the m-th harmonic and the prime indicates the
implied Fourier coefficients are one-half the values defined in Table 1.1, except that
Aj=A, and A{,, = Ay, (N even). In addition, for convenience, the limits of the
summation have been changed so that x,, is centered about n=0 for N odd and
displaced one time unit for N even where [q] means truncation of g.

Next, let At tend to zero and N tend to infinity in such a way that NAt =T, where
T is the finite temporal length of the record. Simultaneously, let nAt tend to a point
in time denoted by t, x,At tend to x(t)dt, and the summation tend to an integral.
The result of applying these limits to Equation 1.61" is

| (12 _
S = TJ x(t) e /Tt — 00 <m < oo (2.13)
~T/2

Correspondingly, Equation 1.62 tends to

x()= ) s T _T/2<t<T/2 (2.14)

m=-—-o0

thereby completing the Fourier transform pair for a finite analog record. Equation 2.14
is the inverse Fourier transform of Equation 2.13. We can think of x(t) as an original
analog signal that could have been digitally sampled to produce x,.

Extension of Equations 2.13 and 2.14 to an infinite record length can be approached
in the following way. The difference in frequency between adjacent harmonic fre-
quencies is given by

m+1 m 1
Af = T ToT
As T tends to infinity, Af tends to df, and the harmonic frequencies m/T tend to a con-
tinuous variation in frequency denoted by the variable f. By dividing Equation 2.13
by 1/T, the left side becomes S};,/(1/T), which accounts for the amplitude variation
in the frequency width 1/T, that is, amplitude per unit bandwidth or amplitude
density, which, as T tends to infinity, is written X(f), as in Equation 2.15 below. The
concept of amplitude density may be difficult to grasp. That we are forced to deal
with amplitude density is a consequence of having finite amplitudes becoming
increasingly closely spaced along the frequency axis as T increases without bound.
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However, having finite amplitudes at frequencies with infinitesimal separation
losses mathematical meaning. The solution is to have a continuum of amplitudes
resulting in an amplitude density spectrum in the same way that a continuum of
harmonic variances resulted in a variance density spectrum, briefly discussed in
Section 1.1 (and that will be developed further in Chapter 5). Amplitude density is
analogous to probability density. We cannot realize a value of probability at a par-
ticular value of the independent variable, but we can realize a value of probability
if we integrate the probability density function over a range of the independent
variable. Similarly, we cannot realize a value of amplitude at a particular frequency,
but we can realize a value of amplitude if we integrate the amplitude density
function over a range in frequency.

To provide a consistent transform pair we divide S}, in Equation 2.14 by 1/T
and multiply the exponential term by 1/T, and, again, let T tend to infinity. The
result of these limiting operations is the Fourier transform pair for an infinite
analog record:

X(f) =] x(t)e@Mdt, —oo<f<oo (2.15)
and
x(t)=| X(f)e?™df. —oo<t< 0. (2.16)

Equation 2.16 is the inverse Fourier transform of Equation 2.15.

Comparable derivations of Equations 2.13 through 2.16 can be found in Koopmans
(1974, pp. 19-21, 23-25) and Jenkins and Watts (1968, pp. 23—-24), among other
sources. In order that these Fourier integrals exist it is assumed that [ |x(t)|dt < oo
and [*_|X(f)|df < oo (Koopmans, 1974, p. 24). Equations (2.15) and (2.16) are
commonly used in theoretical investigations, an example of which is given in the
next section.

Equivalent expressions for Equations 2.15 and 2.16 using angular frequency instead
of ordinary frequency can be written down directly by substituting w = 2ntf. Thus,

X(w) = J x(t) e ®tdt, —oo<m< oo (2.17)
and
1 (> :
X(t) = EJ X(0) ™ do.  — o0 < t < 0. (2.18)

Of course, either amplitude density function Equation 2.15 or 2.17 can be used and
the relation between them is X(f) =27 X(w).
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2.4 The delta function

In this section we derive one example of a class of functions called generalized
functions. In dealing with generalized functions, one is not so much concerned with
their behavior on a point-by-point basis but rather with their effect on the values of
integrals and other functionals in which they appear. All generalized functions have
derivatives of all orders and each has a Fourier transform (Lumley, 1972, p. 159). One
of these generalized functions is the Dirac delta function or simply delta function
[after P.A.M. Dirac, renowned English atomic physicist; see Dirac (1947, pp. 58-62)
for additional details on the development of this function]. The delta function is very
useful in the mathematical analysis of physical systems.

We begin the derivation by obtaining the Fourier transform of a rectangular
function of amplitude as shown in Figure 2.7a. From Equation 2.15 we have

b
X(f) = aJ e 2t gt (2.19a)
b
which, because of even symmetry about t =0, reduces to

b
X(f) = aJ cos(2mft) dt
b (2.19b)
5 bsin(anb)
T o

From this equation we see that the amplitude density function X(f) = 0 at f = k/(2b),
k=41, £2, ..., while at f=0, X(0) =2ab following application of I'Hopital’s
rule. Equation 2.19b, plotted in Figure 2.7b, is the familiar diffraction function, a
bi-directional damped sinusoid.

X(f)
— 2ab
(a) O )
—a
/\ AN
4 A
S o0 v 1 NJ N T
(—w 3 221 0 1 2 3 4 5
2b 2b 2b 2b 2b 2b 2b 2b
f —

Figure 2.7 A rectangular function (a) and its Fourier transform (b).
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Consider the case where x(t) has unit height, that is, a= 1. Then Equation 2.19b
becomes
sin(27tfb)
T
Similar to Figure 2.7, the rectangular function and its Fourier transform are
shown in Figure 2.8a. Now increase the width of the rectangular function by, say,
a factor of three and compute its Fourier transform. The results are shown in
Figure 2.8b, in which the increased width of the time function results in reduced
separation between consecutive zero crossings. In the limit as b — oo, that is, the
time function extends indefinitely in either direction, the spacing between
consecutive zero crossings approaches zero so that X(f) =0 everywhere except
at =0, where X(0) — oco. Figure 2.8c shows the result of this process: a time
function of unit height and infinite extent and a frequency function of infin-
itesimal thickness and infinite height, the latter function represented by the
vertical line and arrow. This is a common definition of the delta function and has
the special notation &(f).

The above result is not too surprising. As b increases without bound in Figure 2.8,
x(t) approaches a constant value, the frequency of which is zero. Simultaneously, the
area under x(t) increases without bound so that, in the limit, the amplitude density is
concentrated at =0 and X(f=0) is infinite. From Figure 2.8¢c we conclude that,
mathematically,

X(f) = 2b (2.20)

X(f) = J 1-e 2 dt = §(f). (2.21)

—00

We can anticipate that the Fourier transform of Equation 2.21 is

X(t) = JOO 8(F) e df — 1. (2.22)

—0o0

Equations 2.21 and 2.22 comprise the Fourier transform pair between a function of
unit value in the time domain and a delta function in the frequency domain.

To determine the area under the diffraction function we integrate X(f) in
Equation 2.20 from —oo to oo and make use of the known integral

0o
sinz
—dz=m

z

—0o0

to show that the result is unity and independent of b. Since 8(f) is formed in the
limit as b tends to co, the area under d(f) is also unity. Thus,

e [ sin(afb)

—00 —00
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Figure 2.8 Evolution of x(t) toward a constant (unit value) simultaneously with X(f) toward
a delta function 8(f).

and

jx S(F)df = 1. (2.23b)

Next, consider the case in which the area under x(t) in Figure 2.7 is one, that is,
2ab=1.Ifb — 0 in such a way that the area remains at unit value, a must increase
without bound. This evolution can be followed in Figure 2.9. Panel (a) shows a
rectangular function with unit area and its Fourier transform with unit amplitude
density at f=0. Panel (b) shows a narrower and taller time function with unit area
and associated amplitude density function but with much wider separation between

115
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(@ X0,

T T T T E/\I I I/\{
-b, 0 b -3 _'2\/_I1 0 1\/2 3

t — 2b, 2b, 2b, 2b, 2b, 2b,

5(1) X®

Figure 2.9 Evolution of x(t) toward a delta function 6(t) simultaneously with X(f) toward a
constant (unit value). The area under x(t) =1, i.e., 2a;b; =1.

zero crossings and, again, unit amplitude density at f=0. In the limiting case in
panel (c), the time function has infinitesimal width and infinite height such that
unit area is preserved while the amplitude density function has infinite separation
between zero crossings and unit value everywhere. We conclude from the process in
Figure 2.9 that

X(f) = JOQ §(t) e Mt dt = 1. (2.24)
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Thus it takes an amplitude density constant with frequency to reconstruct a delta
function in the time domain. The Fourier transform of Equation 2.24 is

[e.¢]
x(t) = J 1.2 df = §(t) (2.25)
—00

so that Equations 2.24 and 2.25 provide the Fourier transform pair between a delta
function in the time domain and a constant in the frequency domain. An important
implication of Equation 2.24 is that if a data set contains a very large glitch or spike
[x(t) tends to O(t)], the periodogram will contain approximately uniform variance
(called noise) across all frequencies due to the spike.

In terms of angular frequency, w, expressions parallel to Equations 2.21, 2.22, 2.24,
and 2.25 are:

X(w) = Joo 1-e ™t dt = 27 () (2.26)
X(t) = %Jm 27 8(w) €' dov — 1 (2.27)
X(w) = JOO d(t)e @ dt =1 (2.28)
and
x(t) = r@ 1-e®do = §(t). (2.29)

These equations can be derived in a manner similar to those involving frequency
by applying the Fourier transform of Equation 2.17 to the rectangular function in
Figure 2.7. The comparable zero crossings will occur at integer multiples of
27t/(2b) = /b and the amplitude will be 2ab/(2m) = ab/m. Increasing the width
of the rectangle indefinitely while keeping its height at unit value and taking its
Fourier transform, as in Figure 2.8, yields Equations 2.26 and 2.27; fixing the area of
the rectangle at unit value as its width approaches zero and taking its transform, as in
Figure 2.9, yields Equations 2.28 and 2.29.

Three properties that are a consequence of the definition of the delta function are:

0, t#0

o F—0 (dimension is time ') (2.30)

0 8-

2) JOO S(t)dt = 1 (2.31)
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and

(3) Joo g(t) 0(ty — t) dt = g(to). (2.32)

—00

Property (2) is a direct consequence of applying property (1) to Equation 2.24 and
recalling that the area under the rectangle in Figure 2.9 was unity. The third property
is called the “sifting” or “sampling” property and is simply a convolution integral.
It can be used to sample the value of a function, here g(t), at time t,. Note that
property (3) includes properties (1) and (2). There are a number of other properties
(Dirac, 1947; Cooper and McGillem, 1967) but only those above are used in this
chapter. Because the argument of a delta function is arbitrary, the properties above
apply as well to delta functions in the frequency domains (fand ). In the f-domain
the dimension of the delta function is inverse ordinary frequency and in the
w-domain it is inverse angular frequency.

In application to a finite record of digital data, the following can be observed
through simulation. A single finite spike or glitch located anywhere in a data
sequence that is otherwise constant in value results in a periodogram of essentially
constant variance, as mentioned above and in agreement with Equation 2.24. If there
are two finite spikes in the data set, the periodogram is no longer flat but contains a
pattern of small and large variances that is dependent on phase angle relationships of
the two sinusoids at each harmonic in accord with Equation 1.48. As the number of
spikes increases, the periodogram becomes more chaotic. Thus one cannot remove a
portion of the observed variance at each harmonic in order to rid the spectrum of the
effect of the spikes in the data. The solution is to remove the spikes directly through
the use of some type of nonlinear filter, for example, the median filter investigated by
Brock (1986).

2.5 Special input functions

One way to determine the properties of a linear system in the time domain is to input
one of two special functions called the impulse function and the step function. In an
experimental set up it is usually more practical to introduce a step change in input to
a measurement system than an impulse. Here we consider the mathematical aspects
of these functions as inputs to a system and the resulting outputs.

2.5.1 Impulse function

Let the input x(t) = kd(t) be defined as an impulse function in which k serves to scale
the unit area that results from integration of a delta function (Equation 2.31) to other
than unit value, that is, to value k. If k is unity, then kd(t) = 1-9(t) is the unit impulse
function and is equivalent to the delta function.
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Now let 0(t) be the input to a linear system. From Equation 2.1 the output is
y(t) = J h(u) 8(t —u)du=h(t) (2.33)

making use of the sampling property (Equation 2.32) of a delta function. Thus y(t)
is the response to a unit impulse. Because h(t), referred to earlier as the system
function, is identical to y(t), it is called the impulse response function; that is, h(t) is
the response to introducing an impulse into the system. From a theoretical
viewpoint a unit impulse could be introduced into any linear physical system
to yield its impulse response function without knowing the integro-differential
equation that describes the system. It is usually desirable, though, to know the
mathematical form of h(t). While it is possible, in principle, to model h(t) given the
numerical output from the unit impulse function, it is better to know, in advance,
the integro-differential equation for the system. Then the form of h(t) can
be determined directly and only the system parameter values (coefficients) need
to be estimated.

We apply this idea to the first-order linear differential equation given by
Equation 2.8, the solution of which is Equation 2.9. If x(u) in Equation 2.9 is
replaced by 8(u) then, from Equation 2.33,

y(t) =h(t) = (1/1) eV, t>0 (2.34)

as shown in Figure 2.10. To determine T, we find h(t) = (1/1) e~ 1'=0.368(1/1) on
the vertical axis of Figure 2.10b, move to the right until it intersects the curve, then
drop to the horizontal time axis where t = T, the time constant. Alternatively, T can be
determined directly from y(0) =h(0) = 1/7, but this is less useful experimentally.
The use of the unit impulse function in determining 7t is not possible for physical
systems because of the requirement for a pulse of infinite amplitude. The unit
impulse input approach can work in certain electronic systems in which the pulse is
of sufficiently large magnitude.

1/t

y(t) =h(t) = (L/r) e,
t=0

(a) x(t) = d(t) (b)

0368 x t1d--------

t — t —»

Figure 2.10 (a) Impulse input to a first-order linear system. (b) Output from system.
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2.5.2 Step function

A more satisfactory approach to estimate parameter values of a system function from
an application viewpoint is to use a step function. Although it also demands an
instantaneous change, the change is finite.

The unit step function is defined as

0, t<0
U(t) = 2.35
v {17 o (233)

Let x(t) = qU(t) where q is a constant with dimensions of x(t) and which serves
to scale the unit step function to the desired level. If x(t) is the input to the system,
the output is then

t

y(t) = qL U(u) h(t — u) du (2.36)

where the lower limit is a consequence of U(u) = 0 for u < 0 from Equation 2.35 and
the upper limit is a consequence of physical realizability. Following a change in
variable, Equation 2.36 can be equivalently written

t

y(t) = qL h(u) U(t — u) du. (237)

Substituting Equation 2.35 into Equation 2.37 yields

t

y(t) = qJO h(u) du. (2.38)

To find y(t) we differentiate the output so that

dy
— = gh(1). 2.39
T = ah(o (239)
Experimentally, y(t) would have to be modeled to allow mathematical
differentiation.

In the case of a first-order linear system, h(t) is given by Equation 2.34 so that we
can write the output y(t) in Equation 2.38 as

y(t) = q(l - e—t/T), t>0. (2.40)

Equations 2.35 and 2.40 are plotted in Figure 2.11.
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Figure 2.11 (a) Step input to first-order linear system. (b) Output from system.

Now consider a numerical example in which a step function is used to determine
the time constant of a liquid-in-glass thermometer. Let the thermometer initially be
at room temperature = 23 °C. It is then instantly immersed in a water bath at 43 °C
with attentive eyes reading the temperature scale to produce the solid curve shown
in Figure 2.12. We need to take into account that the reference value is nonzero and
that U(t) represents the departure from this value. Therefore, from Equation 2.40,
the output can be written

y(t) = q(l - e*”) +To (2.41)
or, in °C,

y(t) — 23 = 20(1 - e*‘/T). (2.42)

From Equation 2.42 we see that the time constant T is the time required for the
difference between the thermometer temperature and the water bath temperature to
reach (1 — e ') =0.632 of the initial difference. That is,

y(t=1)=20(1—¢"')+23
=12.64 +23
y(t = 1) = 35.64°C.

45xwxw[xwxwxxxx{xxxx{xwxw{xwxw[xwxw
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Figure 2.12 Response of a thermometer to a 20 degree Celsius step change in temperature.
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If one draws a horizontal line from 35.64 °C until it intersects the temperature curve
and from there a vertical line downward to the time axis, the latter intersection
corresponds to the time constant, that is, t=13s.

2.6 The frequency response function

The Fourier transform of the input of a linear system yields the amplitude density
spectrum of the input as given by Equation 2.15, and similarly for the output. The
Fourier transform of the system function h(t) shows how the Fourier amplitudes and
phase angles of input signal x(t) are modified by the system to produce the Fourier
amplitudes and phase angles in the output signal y(t). Accordingly, the Fourier
transform of system function h(t) is given by

H(f) = JOO h(t) exp(—i2mft) dt (2.43)

—00

where H(f) is called the frequency response function and is, in general, complex and
contains information about changes in amplitude and phase angle between the input
and output of a linear system. The above integral applies to mathematical systems; in
the case of physical systems, the lower limit of integration is zero due to physical
realizability. Equation 2.43 can be written also as

H(f) = G(f) ) = G(f)[cosd(f) + i sind(f)] (2.44)

where G(f) is called the gain function or gain factor or simply gain and ¢(f) is called
the phase function or phase shift. We can think of H(f) as a vector in the complex
plane as shown in Figure 2.13, where Im is the imaginary axis and Re is the real axis.
G(f) is the modulus or absolute value of H(f), which can be determined by
multiplying H(f) by its complex conjugate and taking its square root. Thus,

G(f) = [H(f)| = [H(f) H*(f)]"/*. (2.45)

To understand the meanings of gain and phase shift, consider an input sinusoid
given by

x(t) = a cos(2mft). (2.46)

Let us pass this signal through a first-order linear system, the output of which is
given by

¢ e (t-u)/T
y(t) = J_ x(u) du (2.9)
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H(f)

Figure 2.13 The gain G(f) and phase ¢(f) components of the frequency response function
H(f) in the complex plane.

as derived in Section 2.2.2. Inserting the input sinusoid into Equation 2.9 and
integrating yields

y(t) = [1+(;cfr)2] [cos(2rft) + (2mtfr) sin(2mft)]
= mcos [27ft — tan ™" (27f) ] (2.47)
— a G(f) cos2atft + ¢(f)]
where
G(f) = [1 + (2nfr)?] /?
and

¢(f) = —tan™! (2zfT).

From Equation 2.47 it is evident that the gain G(f) is the ratio of the amplitude of the
output sinusoid to the amplitude of the input sinusoid at frequency f, and the phase
shift ¢(f) is the angle by which the phase angle of the input signal (here 0) is shifted
in the output signal at frequency f. Figure 2.14 shows the input and output sinusoids
in Equations 2.46 and 2.47.

2.6.1 First-order linear system

In this section we will derive H(f), G(f) and ¢(f) for the first-order linear system in
Equation 2.8. The impulse response function is already known. Therefore, from
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y(t) = G(f) a cos(2mft + ¢(f))
i
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t

Figure 2.14 Anexample thatillustrates the meaning of gain G(f) and phase angle ¢(f). The
solid curve is input x(t) and the dashed curve is output y(t).

Equations 2.43 and 2.34, the frequency response function is

H(f) = ro h(t) e 72 dt

0

= (1/7) ro SR (2.48)
0

H(f) = (1 + i2mfr) .

From Equation 2.45,

*

G(f) = [H(f) H(f)]'/
:[ 1 1 Tﬁ (2.49)

X
1+12nft 1 —1i2nft

G(f)=[1+ (anr)z]_m.
From Equation 2.44,
(o) _ HE)
G(f)
so that
1+ (2mfr)?]
cos¢(f) + ising(f) = M

1 + (i2mfT)
After equating real and imaginary parts on the left to those on the right, we obtain
¢(f) = —tan™' (2mfr). (2.50)

As expected, the formulas for the gain and phase functions derived here are identical
to those we derived in the previous section by way of an example. A summary of the
response characteristics of a first-order linear system is given in Table 2.1.
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Table 2.1 Responses for a first-order linear system.

Unit impulse  Unit step Frequency Gain Phase

response response response function function

y(=h(t)=y(t)= H(f) = G(f) = o(f) =
(Uoe s, 1 —e ', (+izafy”'  [1+ @afn)’]” Y —tan” '(2nfr)
(t=>0) (t>0)

The gain and phase functions are plotted in Figures 2.15 and 2.16, respectively.
It should be noted that the phase shift cannot be less than —90° and approaches this
value asymptotically as frequency increases. When the period of the input sinusoid
is equal to 27t times the time constant (1/f=2mt) the phase angle is — 45° and the
gain is 0.707 (i.e., 1//2). Also, when the input period is equal to the time constant
(1/f=r) the phase angle is —81°, almost its maximum negative value. Simultaneously,
the gain is reduced to 0.157.

Asanumerical example, let us say that we are observing ocean temperature ata depth
of two meters and we want to know how a thermometer will respond to a sinusoidal
water temperature oscillation with a one-second period if the thermometer’s time
constant is 0.5s. From Table 2.1 G(f=1s")=[1+ (2nfr)’] "> =1+
(2m0.5)%]7"/* =0.303 and ¢(f=1s"')=-72.34°. The actual and observed

Lr ]
0.707 } ]
G(f) C ]
0.5 [~ 1/t ]
0.157 + : ]
. ‘ T
o 1 3 5 1
2nt 2nt 2nt 27t

Frequency f

Figure 2.15 Gain function G(f) for a first-order linear system.

Frequency f
o L 3. 5 1
21t 2nt 2nt 21t
0
o)
-n/4
—81° - :
—n/2 :

1/t

Figure 2.16 Phase function ¢(f) for a first-order linear system
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Figure 2.17 Example of a sinusoidal input with period 1 s and amplitude A and resulting
outputs from a first-order system for two different time constants t given in parentheses.

temperature variations are shown in Figure 2.17. As is evident from this figure, the
response to a one cycle per second sinusoid is quite small; the output amplitude is only
30% of the input amplitude and there is a large lag relative to the period of the sinusoid.

Alternatively, consider the case when the time constant is 0.1s. Then
G(f=1s"')=0.850 and O(f=1s" N =-32.14°. Figure 2.17 shows the response is
much more favorable. One might consider as a rule-of-thumb that to obtain a good
representation of the signal at a desired frequency for a first-order linear system, the
time constant should be at most one-tenth the period of the oscillation.

2.6.2 Integration

Another example of a linear system is an integrator. This could be an electronic
or mechanical integrating device or mathematical integration. For an integrating
system, the output has the simple form

t
¥(t) = J x(u) du. (2.51)
—0
To find the impulse response function for an integrator, we substitute the unit
impulse function &(u) for x(u) in Equation 2.51 and obtain
h(t) {1’ =9 (2.52)
t) = .
0, t<0

which is identical to the unit step function in Equation 2.35.
The frequency response function is

H(f) = JOOO h(t) exp(—i2mft) dt (2.53)
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from which the gain is
G(f) = [H(f) H*(f)]"? = (2nf) . (2.54)
From Equation 2.44, the phase angle is
o(f) = —m/2. (2.55)

Regardless of the frequency, there is always a phase shift of 90° between the input
and output (because one is a sine and the other a cosine). The frequency
response function, gain, and phase angle are undefined for zero frequency. This
is because Equation 2.53 is infinite, reflecting continuous integration of a
constant input, which, if not zero, would result in an infinite value as t tends
to infinity.

Now consider a particular case of a rain gauge that measures accumulated rain
with time. The input signal x(t) to the rain gauge is rain intensity or rain rate
in mm/h. Let

«(6) = a{ 1 — cos(2mt/T), 0<t<3T (2.56)

0, elsewhere

with T =1 hour. The dashed line in Figure 2.18 is the rain rate with a=25mm/
h. Thus Equation 2.56 represents a rain event occurring over a three-hour
period, in which the peak intensity of 25 mm/h repeats itself at the midpoint of
each hour and the rain rate decreases to zero on the hour in a sinusoidal manner.
Of course, no real meteorological event would yield an analytical rain rate such
as Equation 2.56; it is employed only to illustrate system integration. From the

75 F T T
o) = -90°

50 ] |<—_

x(mm/h) ‘

I I
accumulation y(t)

y(mm) g

%, rain rate x(t)

A ARERN.

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (hours)

Figure 2.18 Example of input to and output from an integrating device, in this case,
a weighing rain gauge. The input rain rate x(t) is accumulated according to y(t). ¢(f) is
phase angle.
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convolution formula Equation 2.1, the system output, or accumulated rain, at
time t is

= th(u) du

0

= aJt[l — cos(2mu/T)] du

0

t
aJ [1 — cos(2mu/T)] du, 0<t<3T
0

3T ¢
aJ [1 — cos(2mu/T)] du + aJ Odu, t>3T
0 3T

o(0) a{ t — (T/2m) sin(2mt/T), 0 <t <3T | (257

3T, t> 3T

The same result would be obtained with the first integrand being h(u) x(t — u).

The heavy solid line in Figure 2.18 is the accumulation y(t) with, again,
a=25mm/h. To verify the gain and phase relationships, we first subtract the
nonfluctuating components. Thus, we subtract a from x(t) and at from y(t) over
the range 0 <t < 3T and find that the ratio of the amplitude of the output sinusoid
to the amplitude of the input sinusoid, that is, the gain, is T/2m as predicted by
Equation 2.54 and [y(t) — at] lags [x(t) — a] by 90° (i.e., ¢(f)=-m/2) as
predicted by Equation 2.55. The phase angle is shown in Figure 2.18 along with
light solid line at.

2.7 Fourier transform of the convolution integral

Recall from Section 2.1 that the solution to a linear integro-differential equation is
given by the convolution integral

y(t) = JOC x(u) h(t — u) du. (2.1)

—00
Consider now the Fourier transform (denoted by FT) of Equation 2.1. From

Equation 2.15,

FT[y(t)] = Y(f) x(u) h(t — u) du|e 2™ dt. (2.58)

I
g
2
T
8



2.7 FOURIER TRANSFORM OF THE CONVOLUTION INTEGRAL 129

After interchanging the order of integration we have

oo

Y(f) = J x(u) e~ 27 UZ h(t — u) e MW d(t — u) | du

—00

= Joo x(u) e M H(f) du (2.59)

—00

Y(£) = X(f) H(f)

or
Y(f)
H(f) = —=. 2.60
O =3 (2.60)

That is, the ratio of the output amplitude spectrum to the input amplitude spectrum
at frequency f is the frequency response function.

Convolution in the frequency domain parallels convolution in the time domain
and is given by

o0

Z(f) = J Q(v) W(f — v) dv (2.61)

—00

where f and v are ordinary frequency variables. If we apply Equation 2.58, except we
take the inverse Fourier transform and integrate with respect to frequency, we have

FT-! [Z(F) —z(t)—JOC UOC QW) W(f — v) dv| &2t df. (2.62)

—00 —00

The sign of the exponent in the inverse Fourier transform is positive. After inter-
changing the order of integration and following Equation 2.59, except in the
frequency domain, Equation 2.62 reduces to

z(t) = q(t) w(t) (2.63)

where q(t) and w(t) are the inverse Fourier transforms of Q(f) and W(f),
respectively.

Equations 2.1 and 2.59 tell us that the Fourier transform of the convolution
integral in the time domain is equivalent to the product of the Fourier transforms of
the individual terms in the frequency domain. Equations 2.61 and 2.63 tell us the
opposite also is true: the inverse Fourier transform of the convolution integral in the
frequency domain is equivalent to the product of the inverse Fourier transforms of
the individual terms in the time domain. Expressed mathematically, and using now
the notation in Equation 2.6, we have the general relations

FT [g,(t)*g, (t)] = FT[g, ()] FT [g,(1)] = Gi(f) Ga(f) (2.64)
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FT7YG (f) Ga(f)] = g,(1)* g, (1) (2.65)

and
FTYG(f)* Gy(f)] = FT![G\ (F)] FT [ G,(f)] = g, (t) g,(t) (2.66)
FT [g,(t) 8,(1)] = Gi(f)* Ga(f). (2.67)

These results show that Fourier transformation converts convolution (multiplica-
tion) in one domain to multiplication (convolution) in the other domain.

If physical realizability is involved, the upper limit of integration in Equation 2.1
is t and Equation 2.59 becomes

Y(f) = X(£, ) H(f) (2.68)

where

X(f,t) = Jt x(u) e7 27 dy, (2.69)

The above derivation has been done between the time and ordinary frequency
domains. If the convolution integral in Equation 2.1 had been transformed to the
w-domain, the formula equivalent to Equation 2.59 would be

Y(0) = X(00) H(w). (2.70)

Replacing the ordinary frequencies f and v in Equation 2.61 by angular frequency
variables provides the formula for convolution in the angular frequency domain.
Taking its inverse Fourier transform using Equation 2.18 results in Equation 2.63 but
with the multiplicative coefficient 25t on the right-hand side. The derivation is an
interesting and useful exercise.

2.8 Linear systems in series

So far we’ve dealt with an input signal passing through a linear physical system
resulting in an output signal as described in Figure 2.1. In this section we consider the
possibility that the input signal passes through more than one physical system, in
fact, any number of systems. As long as the properties of each system are known, we
can find the output signal given the input signal and vice versa providing that overall
system noise is negligible. The signal flow for a sequence of n systems is shown in
Figure 2.19, where the first input x(t) = x, (t) passes through the system with impulse
response or system function hy, its output y;(t) becomes the input to the next system
with impulse response h, and so on, until the final output y(t) = y,(t) is realized.
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system 1 system 2 system n
X(0) = (1) 10 o= Yo () Yal0) = y(©)

Figure 2.19 The signal flow for a sequence of n systems.

From Equation 2.58, for two systems in series
system 1 Y (f) = Hy(f) - X(f)
system2 Y, (f) = Hy(f) - Y (f)

or

system2 Y, (f) = Hy(f) - Hy(f) - X(f).

Repeated application of Equation 2.58 will show that for n linear systems in series
Y(f) = H;(f) - Hy(f) .. . Hy(f) - X(f) (2.71)

in which the overall frequency response function is the product of the individual
frequency response functions, that is,

H(f) = IT H(f). (2.72)

From Equation 2.44 we conclude further that the overall gain function is the
product of the individual gains, that is,

G(f) = II G;(f) (2.73)

and that the overall phase shift is the sum of the individual phase shifts, or

) (2.74)

i=1

To find the output y(t) from the n systems in series it is necessary only to transform
Equation 2.71 back to the time domain. Thus,

y(t) = JDC H, (f) - Hy(f) . .. Hy(f) - X(£) €27 df. (2.75)

—00
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This approach to obtain y(t) is more straight forward than using the convolution
integral approach wherein y(t) is found in terms of x(t) and the sequence of impulse
response functions hy, hy, ..., hy,.

2.9 Ideal interpolation formula

The goal of the last section of this chapter is to show that there is a way to reconstruct
an analog time series given only its digitally sampled version. As we might expect,
there are important restrictions, but if they could be fully met the reconstruction
would be exact. In practice, however, one of the two restrictions cannot be com-
pletely met, so only an approximate reconstruction is possible. The formula that
performs the reconstruction is called the ideal interpolation formula and is in the
form of a convolution integral (look ahead to Equation 2.89). Our objective is to
develop this formula.

The first step is to derive the Fourier transform of an infinite train of unit impulse
functions (refer to Section 2.5.1) given by

x(t) = i d(t—kAt), —oo<t< oo (2.76)

k=-00

and shown in Figure 2.20. The sequence of vertical lines and arrows represents a train
of delta functions (Section 2.4). The superscript i (unrelated to the imaginary unit i)
is used throughout this section to indicate we are dealing with a generalized function,
namely, the delta function. Because the impulses are periodic with period At, as
delineated by the dashed line, we need only transform a finite portion of the signal,
from — At/2 to At/2, rather than the infinite series. Following Equation 2.13, the
Fourier transform of the delta function in the delineated section is

1 At/2 )
Q,, = Ktj o d(t) e oMt gt — 00 <m < oo (2.77)
—At
T

xi(t) “fC
|
|

—4At -3At -2At —1At 0 -—1At 2At 3At 4At

t— At =

Figure 2.20 An infinite train of unit impulse functions. The area under each impulse has
unit value.
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where Q,,, =S}, and f, = 1/At = 1/T. Using Equation 2.24, the Fourier amplitude at
harmonic m reduces to
1

Qm:E, — o0 <m < o0. (2.78)

From Equation 2.14 and its periodic extension, the infinite train of delta functions
can be alternatively written
) 01 .
X (t) = — M50 <t < o0 2.79
m=> ~ <i< (279)

m=—00

Using Equation 2.15 to obtain the Fourier transform of Equation 2.79 results in

o0

. © 1
XM=Y J e gy (2.80)

m=-oo"Y ™

which, from Equation 2.21, reduces to

o

1 o0
Z (f — fom) = Atm;ooé(f—z‘t). (2.81)

Equation 2.81 is shown in Figure 2.21. Function X‘(f) is the amplitude density
spectrum of an infinite train of unit impulses or delta functions, either of which is
sometimes referred to as an “infinite Dirac comb” (after P.A.M. Dirac). The co-
efficient 1/At serves to scale the unit area that results from integration of each delta
function.

In summary, we have

k=—00
1 & 1 & m (2.82)
= X/(f).
X'(f) ‘ ‘ Ao
-4 3 =2 4 0 1 2 3 4
At At At At At At At At
f—> 1
— E le—

Figure 2.21 Amplitude density spectrum of an infinite train of unit impulse functions. The
area under each delta function is 1/At.
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The Fourier transform of an infinite train of unit impulses in the time domain pro-
duces an infinite train of impulse functions in the frequency domain, each of which
has magnitude 1/At after integration. Using Equations 2.16 and 2.22, the inverse
Fourier transform of Equation 2.82 will lead directly to Equation 2.79, the original
train of unit impulse functions, xi(t).

The second step in obtaining the ideal interpolation formula is to apply Equa-
tion 2.82 to an infinite digitized time series. We begin by multiplying an infinite
analog time series, s(t), by the infinite train of unit impulses, xi(t), then transforming
the product to obtain the amplitude density spectrum. Mathematically,

si(t) = s(t) x'(t) (2.83)

where s'(t) is the infinite train of digitally sampled values along the time axis. The
function s'(t) is itself an infinite train of impulse functions, each impulse function of
the form s, 8(t — kAt), where s, is the magnitude of s(t) at the sampled locations.
The magnitude of each s, corresponds to the integral over s, 0(t — kAt) as given by
Equation 2.32. Figure 2.22 shows s(t), s'(t), and s, in which s'(t) is the same as x'(t)
(not explicitly shown) except for the scale factor sy. The Fourier transform of
Equation 2.83 can be written schematically as

FT[s(t)] = FT[s(t) x'(t)]. (2.84)
Recalling that the Fourier transform of a product is equivalent to the convolution

of the Fourier transform of each quantity in the product, we obtain the amplitude
density spectrum of the digitally sampled infinite time series, s’(t), that is,

* | m A 1o
J_ms(f)At 6(f_ﬁ_f)df
(2.85)

[
-

f— At— t —- 3

Figure 2.22 Continuous time series s(t) sampled by x(t) yielding s'(t).
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where S(f’) is the infinite continuous transform of s(t) and the Fourier transform
of x(t) is given by Equation 2.81. It is interesting to observe that while s'(t) is an
infinite train of impulse functions, its Fourier transform is not. This is because
the amplitudes of s'(t) are variable as determined by s(t). If this were not the case and
s(t) were constant with time, then its transform would be a delta function (see
Equation 2.21) and Equation 2.85 would be the convolution of an impulse function
with a train of impulse functions. S'(f) is an aliased spectrum such that the amplitude
density at any frequency is the sum of the amplitude densities at that frequency and
all frequencies that are positive and negative integer multiples of 1/At away from
that frequency.

In the third step, Equation 2.85 is transformed back to the time domain with the
following restriction: S(f) =0 for |f| >1/(2At); that is, the amplitude density
spectrum is zero beyond the Nyquist frequency. With this restriction, S'(f) is simply
the periodic version of S(f). A hypothetical S(f) and the resulting S¥(f) are shown in
Figure 2.23 in which the heavy line corresponds to the principal part of the complete
aliased spectrum (as shown in Figure 1.28). Mathematically, we can multiply both
sides of Equation 2.85 by the rectangular window, W(f), where

1
Atv ‘f’ S T
W(f) = M (2.86)
0 -
T

as seen by the dashed line in Figure 2.23.
Multiplying S'(f) by W(f) results in a spectrum in which only the principal part
is nonzero, yielding the amplitude density functions of the analog time series. Thus,

W(f) S'(f) = S(f). (2.87)
Applying the inverse Fourier transform to the product, we have

FT~![W(f) S'(£)] = FT~" [S(f)]. (2.88)

W) ————————~ — At

— _1 — T
=3 =2 -1 0 1 2
2At 2At 2At 2At 2At 2At

Figure 2.23 Amplitude density spectrum S(f), complete aliased spectrum S'(f), and
rectangular window W(f).
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The Fourier transform on the left side of Equation 2.88 becomes the convolution of
the Fourier transforms of each term in the brackets, while the transform on the right
side is simply s(t). Recalling that the Fourier transform of the rectangular function
W(f) has the form of a diffraction function (sin z)/z (see Equations 2.19a and 2.19b),
Equation 2.88 becomes

* L sinfm(t — u)/At]

s'(t—u)du= J s'(u)

s(t) = JOO sin(u/At) . T du (2.89)

o Tu/At
where s'(u) is the infinite train of impulse functions with the amplitude of each
impulse function after integration equal to the value of the sampled signal at intervals
of At and zero elsewhere. The only contributions from the integration to s(t) result
when the argument of s'(u) or s'(t — u) is nonzero — and nonzero values occur only
at locations in time that are a multiple of At. The convolution process in the right-
hand integral of Equation 2.89 is illustrated in Figure 2.24. For example, each
nonzero value of s'(u) during integration (the magnitudes s, in Figure 2.22) is
multiplied by the appropriate value of the diffraction function centered at t =ty; the
completed integral for t =t, yields the value of s(t =t;). Figure 2.24 shows that s(t;)
is slightly positive. Repeating this process for all t yields s(t). The same result follows
from the left-hand convolution integral but it is more difficult to demonstrate
because the diffraction function is symmetric whereas s'(t — u) is not. In application,
the integrals in Equation 2.89 would be replaced by summations.

The same steps can be carried out in the w-domain. Because w,=27/At, delta
functions in the plot of X‘(w) occur at integer multiples of 27t/At. The relevant basic
Fourier transform pair in the w-domain is given by Equations 2.17 and 2.18 and
other formulas in Section 2.4.

Assuming there is interest in reconstructing an original analog signal from
its digital representation, the fidelity of the reconstruction will depend on the
degree to which the two underlying restrictions in the above development are met.
The restrictions were that the analog time series is band limited, that is, its amplitude

siw) A A A 4 A
'\ sin[ ALE (tl_u)]
@ JoEe L
/]

-1 0 1
[—At—|

ut — 3

Figure 2.24 Application of the ideal interpolation formula. The diffraction function is
convolved wth s'(u) to yield s(t).
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density is zero beyond the Nyquist frequency, and that it has infinite record length.
In practice, the former can be met exactly or quite closely if the amplitude density or
variance beyond the Nyquist frequency is sufficiently small. For the latter restriction,
it is, of course, not possible to have an infinite record. Nevertheless, even a
moderately long time series can be quite satisfactory because the magnitude of the
side lobes of the diffraction function decreases with distance from the main lobe.
On the other hand, there will consequences near the ends of the time series. The
situation is analogous to that discussed in Section 1.5.2 concerning spectrum
windows. Near the middle of a periodogram the spectrum window could be
accurately modeled as the square of the diffraction function (there in the frequency
domain). This was not the case near the zero and Nyquist frequencies.

Finally, it should be noted that in addition to Equation 2.89 being referred to as
the ideal interpolation formula it is known also as Whittaker’s sampling formula
and the cardinal interpolation formula (Jenkins and Watts, 1968). The diffraction
function alone, sin(mwu/At)/(;tu/At), is sometimes referred to as the “ideal inter-
polation function.”

Problems

1 For a steady-state first-order linear system with input x(t) = A cos (2mft),
show that the output y(t) intersects x(t) at the extrema of y(t).

2 Show, mathematically, that the general convolution integral

£5(t) = JOO £1(0) f2(t — u) du
and the form
(1) = J_OO £5(u) £y (t — ) du

are equivalent.

3 Consider the following physical linear system:

() =™ h(t) %o

input output

(a) What are the two alternative equations for the convolution integral
relating output x, to input x;? Be sure to include the appropriate limits.
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(b) Select one of the two equations and explain the connection between the
limits on the integral and “physical realizability.”

4 Write down the three principal properties of the delta function 8(t).

5 Recall that we can find the value of a function at a given point in time using
the sifting property

+o0
J 8(t — tg) s(t) dt = s(to).
Similarly, it is possible to define the m-th derivative of a delta function,
namely, 6(m)(t), that can be used to select the m-th derivative of a function
at a given point. The formula is

+00
J M (t—to) s(t) dt = (—=1)™s™ (1)), m > 1.
—00
Here, we will use this result to determine the frequency response function
of a system that serves as a differentiator. In real life this could be a device
that differentiates position with respect to time to obtain speed. The signal

flow is:
x(t) ————— h(t) —=y()
input differentiation output
device

The impulse response function is h(u) = 6(1)(u). Derive the following:

(a) H(f), the frequency response function.
(b) G(f), the gain function.
(c) ¢(f), the phase function.
6 A practical application of a first-order linear system is the resistance—

capacitance circuit, or R—C filter, shown in the figure below. Here, v;(t) and
vo(t) are the time varying input and output voltages, respectively.

» Recording

|
! |

vi(H) | 1 v >
| |
T

indicating
- device

R-C filter
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(a) Giventhat the product of the resistance, R (ohms), and capacitance, C
(farads), is equal to the time constant (in seconds) of this one-
parameter physical system, write down the differential equation that
governs its performance.

(b) Determine the value of the time constant if R=1 x 10° ohms and
C=1x 10" ° farads.

(c) Write down the impulse response function, h(t), for this system.

(d) Based on the illustration below, sketch h(t) indicating its value at time
t=0, where the heavy line with an arrow represents a unit impulse
function (delta function).

A

0

(e) Write down the Fourier transform pair between H(w) and h(t). Note
that w = 27tf and dow = 2xdf.

(f) The expression for the voltage gain is

~1/2

G(w) = = [1+ (0RC)’]

Compute the gain for values of (WRC) = 0.01, 0.1, 1, 10, 100, and 1000.
Based on these values, sketch the gain function on a log-log graph with
G(w) on the y-axis and ®wRC on the x-axis.

(g) Derive the mathematical expression for the slope of log [G(w)] versus
log (wRC).

(h) What is the asymptotic value of this slope as WRC becomes large? Make
sure your plot of the gain function in (f) is in agreement with this value.
(This kind oflog-log plot is known as a Bode plot in electronic network
analysis.)

7 Consider a propeller anemometer that is assumed to obey a first-order
linear differential equation. Thus, we already know the system function (or
impulse response function). An experiment is performed with the objective
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of determining the anemometer’s time constant. The experiment involves
placing the anemometer in a wind tunnel in which the speed is set at 2 m/s.
The propeller is prevented from rotating until time t = 0, at which time it is
released. The recorded data are given below, where y(t) is the measured
anemometer speed:

(a)

(b)

(c)

(d)

(e)

t (sec) y(t) (m/s)

0.00
0.66
1.10
1.60
1.82
1.92
10 1.96

0 NN = O

Plot y(t) on linear axes. Apply a smooth fit to the points (showing
them) using, for example, a spline fit available in some graphics
packages.

Write down the convolution integral for the recorded anemometer
speed that includes the formal expression for the step function,
justifying your selection of limits on the integral. Then, carry out the
integration to obtain an analytic expression for the output y(t) for the
given input.

Obtain an analytic expression for the time constant. Using the
above data and the analytic expression, obtain a value for the
time constant.

The time constant can be determined graphically given the expres-
sion for the ratio of the anemometer speed to the tunnel speed
when t is equal to the time constant. Determine the numerical value
of the ratio and then use this ratio and the graph in (a) to find the
time constant.

If the anemometer is placed in an atmospheric environment, what will
happen to an input sinusoid at a frequency f; =0.2 Hz? That is,
determine the gain G(f;) and phase angle ¢(f;). Plot on a graph with
linear axes an input sinusoid of amplitude 3 m/s (with, say, a mean
wind speed of 10 m/s) and its associated output sinusoid. Show also the
phase angle.

At what angular frequency, ', will the output variance of the sinusoid
be one-half the input variance for a general first-order system? What is
o' for the conditions of this problem?
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Given that Y(w) =H(w) X(w) for a general linear system, take its inverse
Fourier transform to show that y(t) = h(t)*x(t), where the asterisk notation
has the usual meaning of convolution.

(a) Given a continuous stationary time series x(t) that is digitally
sampled with time interval At, thereby yielding x,, under what two
conditions can the original time series x(t) be exactly reconstructed
from x¢

(b) Which of these conditions can be met in practice?

(c) Suppose you were given a realization of 100 values from a stationary
process that met the condition in (b) and you reconstructed the time
series using the ideal interpolation formula and the sample values.
For which portion(s) of the realization would the reconstructed time
series, x.(t), provide the best approximation to x(t)? For which
portion(s) would it provide the poorest approximation to x(t)? Explain
your reasoning.

Let us say that your trusted friend gives you a long digital time series that
resulted from sampling (digitizing) an analog signal every 0.1 second.
What is the highest frequency beyond which there can be no variance in the
analog signal in order for you to use the ideal interpolation formula to
reconstruct — reasonably well — the analog signal?

Given the following continuous signal flow where h;(t) and h,(t) are
linear filters:

X (O —m= hy() %) —= by — x50

input output

(a) Write down the convolution integral relating output x5(t) to input
x(t). Be careful with the dummy variables of integration.

(b) Let h; and h, be the impulse response functions for two first-order
linear systems in which the time constant for h, is T, and that for h, is 1,.
Write down the convolution integral for x;(t) that contains the specific
expressions for these two impulse response functions.

(c) By finding X;5(f) and then transforming it back to x5(t), derive the
relationship

x;3(t) = J+OO { [1 +i(2xmft))] [1 + i(2nfrz)} }_lxl(f) oi2ft qf

—00
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Filtering data

In this chapter we investigate the properties of selected filters that can be applied to
one-dimensional time series. To begin the investigation, we can think of the time
series to be filtered as an input signal to which we apply a weight function, thereby
yielding an output signal. The result of our action is embodied in the frequency
response function that comprises a gain function and a phase function. The gain
function tells us how the amplitude spectrum of the input will be modified by the
weight function to yield the amplitude spectrum of the output. The phase function
tells us how the phase spectrum of the input will be altered to yield the phase
spectrum of the output; that is, it gives us the frequency-dependent phase angle
changes, if any, that occur between the input and output signals. These functions and
their analytical development were discussed in Chapter 2 (in particular, Equation
2.44) and provide the background needed in this chapter. Recall that the emphasis in
Chapter 2 was on input—output relationships for a general linear physical system
followed by applications to a system that obeyed a first-order linear differential
equation and to an integrating device. What is different here is that we are dealing
with data from a physical system that already have been collected or that are real-time
data we wish to filter. The physical system per se is not of interest, only its output,
which now becomes our input. In Chapter 2 we used the terms system function and
impulse response function because we were dealing directly with physical systems.
Here we use the term weight function in their place but carry over the term frequency
response function.

An important aspect of this chapter is how to design a filter for application to
digital data. By this is meant finding the number of weights and their values, that is,
the weight function, needed to achieve a desired frequency response. We apply these
design properties to a particular filter known as the Lanczos filter.

Time Series Analysis in Meteorology and Climatology: An Introduction, First Edition. Claude Duchon and Robert Hale.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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3.1 Recursive and nonrecursive filtering

There are two general types of data filters. A recursive filter is one in which the current
output is related to the input and to the previous output; a nonrecursive filteris one in
which the output is related only to the input. We begin our investigation by
examining these two general types of filters for analog and digital data.

3.1.1 Analog data
When the input to the filtering process is an analog signal, we have

oo

y(t) = JOO w(u) x(t — u) du—I—J gy (t—1)dr, —oco<t<oo (3.1)

—00 0
in which y(t) = output signal, x(t) = input signal, w(u) = weight function applied
to the input signal, and g(t) = weight function applied to the output signal.
The second convolution integral on the right-hand side accounts for Equation 3.1
being a recursive filter. As shown in Figure 3.1, a recursively filtered signal comprises
the output from its weighted past (the recursive part) and the output from the

weighted input (the nonrecursive part). If there is no recursion (no feedback),
Equation 3.1 reduces to the familiar convolution integral

y(t) = JOO wi(u) x(t — u) du. (3.2)

—00

Equation 3.2 is the general form of a nonrecursive filter.

3.1.2 Digital data

For the case when the input data to the system are digital

YV, = Z Wik Xe—k + Z 8 Viems —00<t< o0 (3.3)

k=-o0 m=1

I 1 1 1
: Nonrecursive : : Recursive :
' Part b Part i
1 1 1 1
x®) —  wo (+) — 3

Figure 3.1 Schematic diagram of an analog recursive filter.
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Recursive
Part

Nonrecursive
Part

Xt — Wy e e yt
At At

Figure 3.2 Schematic diagram of a digital recursive filter.
in which the notation parallels that for Equation 3.1. An example is
Yi = WoXe +8 Vi1 T8 Vo (3.4)

This example is shown schematically in Figure 3.2, where a single weight is used in the
nonrecursive portion of the filter and the recursive portion of the output y, is the sum
of the output two time steps back multiplied by g, plus the output one time step back
multiplied by g;.

When g, =0, Equation 3.3 becomes the nonrecursive filter

o0
YV, = Z Wk Xk, —00 <t< o00. (3.5)

k=-c0

One application of recursive filters is in generating random processes, often for
prediction purposes in science, engineering, and economics. We provide a simple
illustration using Equation 3.4 and write it in the form of a prediction, one time step
ahead. Thus,

Yegr = WoXep1 + 8 Ve T8 Vg

Iftisthe current time, the next value of variable y (v, ;) is predicted using the current
value of y (y,) and the previous value of y (y,_;). The error of the prediction is the term
WoXc1 1 because future values of the input are unknown. A similar calculation can be
used to predict the value of y at time t + 2 given the predicted value y,, ; and current
value y,. You will have an opportunity to study the error of prediction for a simple
statistical data model in problem 12 at the end of Chapter 4.

In the remainder of this chapter, our interest lies in nonrecursive filtering.

3.1.3 Low-pass, high-pass and band-pass filters

In nonrecursive data filtering it is common to refer to one of the three names given in
the section title in order to identify which part of the frequency spectrum the Fourier
amplitudes are to be retained or passed. Hence a low-pass filter is one in which the
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1+

0.5+

Response

Frequency

Figure 3.3 Ideal (dashed lines) and actual (solid lines) responses for (a) a low-pass filter,
(b) a high-pass filter, (c) a band-pass filter, and (d) a band-stop filter. The quantity f, is the
Nyquist frequency and f. is a ‘cut-off’ or ‘cut-in” frequency.

amplitudes at the low frequency end of the Fourier spectrum, starting at the origin,
are retained, while amplitudes at the high frequency end, toward the Nyquist
frequency, are removed or suppressed. An example is shown in Figure 3.3a. A
high-pass filter has the opposite result in the frequency domain, an example of which
is shown in Figure 3.3b. A band-pass filter is one in which only amplitudes away
from both the low and high frequency ends of the spectrum are retained as seen in
Figure 3.3c. Its companion is the band-stop filter shown in Figure 3.3d, in which
amplitudes in the interior of the spectrum are deleted. In each of the four examples in
Figure 3.3 there is a dashed line and a solid line. The former represents what might be
thought of as an ideal filter; that is, there is a 0-th order discontinuity or transition
from unit response to zero response or vice versa. The frequency at which the
discontinuity occurs is denoted by f_ for low- and high-pass filters and by f_, and f.,
for band filters because two discontinuities are involved. Frequencies f, for low-pass
and ., and f, for band-pass and band-stop filters, respectively, are often referred to
as the “cut-off” frequency (unit response to zero response), while f, for high-pass and
f.; and f,, for band-pass and band-stop filters, respectively, are appropriately referred
to as the “cut-in” frequency (zero response to unit response). The solid lines are more
appropriate to reality wherein a continuous transition from unit response to zero
response, or the opposite, can be expected. In fact, none of the ideal response
functions are achievable in practice.

Ilustrations of the results of applying a high quality low-pass filter and a high
quality high-pass filter to a time series are shown in Figure 3.4. Panel (a) shows
a slowly varying noisy-looking data sequence y,. Panel (b) is y, after applying the
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Figure 3.4 Atimeseriesof 100 valuesisshownin panel (a). Panel (b) is the same time series
after applying a lowpass filter and panel (c) after applying a high-pass filter.

low-pass filter and panel (c) is y; after applying the high-pass filter. The smoothly
varying signal in Figure 3.4b reflects the trend visually evident in Figure 3.4a; with the
trend removed, Figure 3.4c shows that time series y, is distributed about zero.
The high-frequency fluctuations in panels (a) and (c) can be easily matched.

Examples of specific simple low-pass and high-pass filters are described in
Section 3.2. In the next section we discuss the connection between a low-pass filter
and a high-pass filter and the mean value of the filtered data.

3.1.4 Preserving and removing the mean value of a time series

In applying a low-pass or band-stop filter to a data set, one wishes to preserve, as best
one can, the mean of the time series. Similarly, in using a high-pass filter or band-pass
filter, one desires to remove the mean of the time series. In this section we derive the
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criteria for meeting these objectives, first for an infinite analog time series, then for an
infinite digital time series. Then we look at the application of these criteria to
preserving or removing the mean for a time series of finite length, whether it is analog
or digital.

3.1.4.1 Infinite analog time series

Consider the infinite input series x(t) to which is applied the nonrecursive filter
function w(t). From Equation 3.2 the convolution integral has the form

L/2
y(t) = JL/Z wu)x(t—u)du, —o0o<r<oo (3.6)

where L is the filter length and y(t) the filtered output. The mean value of the
output is obtained by taking the limit of the time-dependent average of y(t)
according to

~l
I

1 (172
lim J y(t) dt

1 (T2 (L2
= lim J J w(u) x(t — u) du dt
~1/2 J-12

y = JL/Z w(u) [ lim IJW x(t — u) dt] du (3.7)

T—=ool ) 1y

where T is the length of the averaging interval. In the limit as the averaging interval
tends to infinity, the term in the brackets becomes X, so that

L/2
y = XJ wi(u) du. (3.8)
-L/2
This result implies that
L/2
J w(u)du = {1, mean preserved' (3.9)
_1)2 0, mean removed

Thus, when the integral of the weight function is one, the mean after filtering is the
same as the mean before filtering. When the integral is zero, the mean after
filtering is zero regardless of the mean before filtering.
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3.1.4.2 Infinite digital time series

For digital data we apply the nonrecursive filter weight function wy to the time series
x. From Equation 3.5 the expression for the convolution summation is

Yo = D WiXex, t=0,%1,£2, - (3.10)
k=-n

where (2n + 1) is the length of filter wy and y, is the filtered output. By analogy with
the analog case above, the mean value of the output is given by

(N=1)/2
G 1 1 v
y = N t
NHOONt:—(N—l)/Z
(N-1)/2 n

Sm S Y
t=—(N-1)/2k=—n

(N=1)/2

- - !
y = Z Wi ngnooﬁ Z Xi—k (3.11)
K= n t=—(N-1)/2

where N is the number of data in the averaging interval, and N is odd. In the limit as
the averaging length approaches infinity, the term in brackets becomes X. Thus,

F=%X)> w (3.12)

implying that

E 1, mean preserved
= ’ . .1
Z Wk { 0, mean removed (3.13)

Therefore, identical to the infinite analog case, when the sum of the weights is one,
the mean after filtering is the same as the mean before filtering. When the sum of the
weights is zero, the mean after filtering is zero. Note that Equations 3.8 and 3.12 show
no restriction on the value of individual weights, only their sum.

3.1.4.3 Finite time series

In practice, the length of the time series is always finite, regardless of whether
the data are analog or digital. In Figure 3.5 the heavy line is a time series of length
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TorN -]

Figure 3.5 The length of a filtered time series relative to the length of the original finite
time series is reduced by the length of the filter.

T (analog) or N (digital) and a triangular filter (discussed in Section 3.2.2) of
corresponding length L or (2n+1) is shown at both ends of the time series.

Filtered values y(t) or y; cannot be calculated any closer than one-half the filter
length, L/2 or n, to either end of the time series of x(t) or x,. Any attempt to compute
a filtered time series beyond L/2 or n at either end of the time series in the
illustration will yield an incorrect filtered time series. Thus, when the objective is to
have y equal to either X or 0, this will occur, in general, only in the limit as T or N
tend to infinity. Good approximations to y =X or y =0, however, can be realized
when the length of the filter is small relative to the length of the data record, that is,
when the “end effect” is small.

3.2 Commonly used digital nonrecursive filters

In this section we examine the weight function and resulting frequency response
function of several low-pass filters and one high-pass filter that are often used
because their weights are easy to calculate. These filters belong to the category of
one-parameter filters; that is, the only quantity that can be varied is the number
of weights.

In Chapter 2 we established the relationship between the frequency response
function H(f) and the system or unit impulse response h(t). This was done in
Section 2.6 for analog data and resulted in the Fourier transform

H(f) = J h(t) exp(—i2ft) dt. (2.43)

—00

Before we investigate the properties of easy-to-apply filters, we need to use Equation
2.43 to determine the formula for the transform where the system function is a digital
weight function rather than a general analog function. As opposed to integration, we
will need a summation over the weight function with the exponential term occurring
only at the instances in time of the digital weights. Making use of the d-function
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(Section 2.4) to isolate these instances, we have

H(f) = > wa 8(t — kKAL) exp(—i2mft) dt, k = 0,+1+2,...

k=-00 o0

which reduces to
H(f) = ) wiexp(—i2mfkAt). (3.14)
k=—-00

H(f) contains all the information about amplitude and phase angle changes that
result from filtering a time series with weight function wy.

3.2.1 Running mean filter

The weight function for the running mean or rectangular filter is

{ 1/2n+1), 0<|k|]<n
Wi = (3.15)

0, k| >n

and is shown in Figure 3.6 for the total number of weights 2n+ 1) =11.
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Figure 3.6 Weight value versus weight number for the running mean filter in Equation 3.15,
the triangular filter in Equation 3.19, and the cosine filter in Equation 3.23. The number of
weights for each filter is (2n+1) =11.



152 CH 3 FILTERING DATA

From Equation 3.14 we have

n

Z exp(—i2mfkAt).

=-n

H(f)

- 2n—|—1k

Using Equation 1.B.4 this becomes

sin[rtf (2n + 1)At]
(2n + 1) sin(nfAt)

H(f) = (3.16)
According to Equation 3.16, the first zero crossing (i.e., the argument in the
numerator is equal to ) occurs at the frequency that is inversely proportional to
the length of the filter; subsequent crossings occur at multiples of this frequency. As
an example, let’s use the weight function in Figure 3.6 and let the sampling or data
interval At equal one week. Figure 3.7 shows that the first zero crossing is at a
frequency of 0.091 cycles/week. The second zero crossing is at a frequency of 0.182
cycles/week or a period of 5.5 weeks, and so on. Although the running mean is easy to
apply, it has large negative and positive side lobes. Waveforms at frequencies with
negative responses are inverted in the filtered data relative to the original data.
Figure 3.7 also shows the frequency response functions for two other simple filters
that will be discussed shortly.
For sufficiently large n, Equation 3.16 can be approximated by

sin(2mfnAt)

H(f) =
(F) 2ntfnAt

(3.17)

T T T T T T T [ T T T T T T T T T T T

0.4 \
0.2 ; \ E
=\ N

0 0.1 0.2 0.3 0.4 0.5
Frequency (cycles/week)

running mean
......... triangular
cosine

PRI B

Frequency Response H(f)

Figure 3.7 The response functions associated with the weight functions in Figure 3.6. The
respective equations for the response functions are Equation 3.16, Equation 3.20, and
Equation 3.26. The sampling interval At is one week.
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Equation 3.17 has an absolute error of less than 0.05 for n>10. For n < 10,
Equation 3.16 should be used (as in Figure 3.7). We notice that Equation 3.17 is
a diffraction function. This is not surprising because we saw in section 2.4 that
the Fourier transform of an analog rectangular function (Equation 2.19) is a
diffraction function.

If we replace the approximate filter length 2nAt by L and frequency f by 1/T,
where T is the period, Equation 3.17 becomes

sin(wtL/T)

H) = = (3.18)

Equation 3.18 is plotted in Figure 3.8. The zero crossings are located at L/IT=k =1,
2, ..., when the numerator in Equation 3.18 is zero. Each integer k is the number of
complete cycles in the length of the running mean filter. Averaging an integer
number of sinusoids always yields zero. Figure 3.8 provides a general way to assess the
frequency response of simple filters as a result of altering the number of weights, data
interval, and frequency.

Each of the frequency response functions Equations 3.16-3.18 could be placed in
an alternative form involving gain and phase functions following Equations 2.43 and
2.44. Thus the absolute values of Equations 3.16-3.18 become their respective gain
functions G(f). The phase function of each is the arctangent of the ratio of the
imaginary part of H(f) to its real part. The imaginary part is zero because the running
mean as defined above is an even function; the real part is nonzero and varies in
algebraic sign with frequency. Furthermore, the angle defined by the arctangent of
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Ratio of Filter Length to Period, L/T

Figure 3.8 Approximate frequency response functions for a running mean or rectangular
filter (Equation 3.18) for n > 10, a triangular filter (Equation 3.22) for n > 15, and a cosine
filter (Equation 3.27) for n > 1. The number of weights is 2n+1.
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the ratio is either 0 or 180 degrees, as shown in Figures 3.7 and 3.8. Positive response
corresponds to 0 degrees and negative response to 180 degrees.

3.2.2 Triangular filter

The weight function for the triangular filter can be derived from convolving two
identical running mean filters. The derivation is carried out in Appendix 3.A with the
result that

Lo(y- M 0< [kl <
— n
wg = ¢ n+1 n+1) ~— T (3.19)

0, k| >n

The weight sequence is plotted in Figure 3.6 for 2n 4 1 = 11 weights. The response is
derived in Appendix 3.B where it is shown that

sin[nuf (n + 1)At]
(n +1)%sin?(nfAt)

H(f) = (3.20)

The response function Equation 3.20 for 11 weights is shown in Figure 3.7. With
At =1 week, the first zero crossing is at 0.167 cycles/week, nearly double that for the
running mean. At the same time, the side lobes are reduced relative to the running
mean and always positive. Thus there is a trade-off between the rate of descent of the
frequency response from the frequency origin and the absolute amplitude of the side
lobes when both filters have the same number of weights.

Similar to Equation 3.16, an approximate form of Equation 3.20 is

sin’ (mtfnAt)

H(f) = (nfnAt)?

(3.21)

for which the absolute error is less than 0.05 for n > 15. If we again let L = 2nAt and
f=1/T, Equation 3.21 becomes

_sin’[nL/(2T)]
H(f) = =R (3.22)

Equation 3.22 is plotted in Figure 3.8, in which the zero crossings are at L/T = 2k,
k=1, 2, .... Because of the triangular shape of the weight function, two complete
cycles of a sinusoid, or multiples thereof, over the filter length are required to yield
zero response after convolution. A useful exercise is to show this graphically.
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3.2.3 Cosine filter

Another easy-to-use filter is the cosine or raised-cosine or von Hann filter
(Hamming, 1977, pp. 88-90). As with the running mean and triangular filters, it
has one parameter, the number of weights. It is defined by

1 + cos(mtk/n)
wp = 2
=
0, k| >n

C <
kf<n (3.23)

Because the sum of the 2n + 1 weights must equal one, using Appendix 1.B we find
that the expression for the standardized weight function is

1 + cos(mtk/n) K <n
Wi = 2n ’ - (3.24)
0, k| >n

which is shown in Figure 3.6 for 2n + 1 = 11 weights. We notice that the two end-
weights are zero so that, effectively, they contribute nothing to a filtered value. That
is, there are 2n—1 “working weights.”

The derivation of the response function is initiated by

H(f) = zn: wy, exp(—i2mtfkAt)
k=-n
- (4111) Z [exp(imk/n) + 2 + exp(—imk/n)] exp(—i2m tk At).
k=-n

The completion of the derivation is lengthy and is given in the previous reference.
The result is

H(f) — sin(ZJ'cnf.At) cos(mfAt) 1 i (3.25)
2n sin(mtfAt) 1— [ sin(wfAt) }
sin(rt/(2n))

which can be approximated by

sin(2ntnfAt)
2mnf At

1
1 — (2nfAt)?

H(f) = . (3.26)

The absolute error of Equation 3.2.6 is less than 0.03 for n > 1. Equation 3.26 for
2n+ 1 =11 weights is plotted in Figure 3.7, which shows that the main lobe of the
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cosine filter is somewhat broader than that of the triangular filter while the side lobes

are reduced in amplitude and are alternately positive and negative.
If we let L=2nAt and f=1/T as in the previous filters, Equation 3.26 becomes

H(f):sin(nL/T)l 1 ] (527)

AL/T {1 (L/T)?

Equation 3.27 is plotted in Figure 3.8. The zero crossings coincide with the second
and subsequent zero crossings of the running mean filter. Based on Figures 3.7
and 3.8 for these three simple filters, we conclude that, for the same number of
weights, the smoother the weight function, the lower the side lobes in the frequency
response function and the less rapid the descent in the main lobe.

3.2.4 Difference filter

The fourth and last one-parameter filter we examine is a high-pass difference filter.
Among the four filters, it is the only one that has a complex response function H(f).
It is complex because its weight function is not symmetric about the time origin.
The previous filters we studied each had a symmetric weight function, resulting in
real response functions.

The high-pass difference filter we investigate has weight function

wo = 1/2, w; = —1/2; wix = 0 elsewhere. (3.28)

The sum of the weights is zero so that the mean of a filtered time series will be
removed. The formula for convolution is, from Equation 3.5,

Ve = (% —Xe1)/2. (3.29)

Since the filter is asymmetric, there will be nonzero phase angle differences between
the input and the output. The response function is

1
H(f) = ) wi exp(—i2mfkAt)
k=0

which reduces to

H(f) = =[1 — exp(—i2nfAt)]. (3.30)

N | —
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After extracting exp(—imfAt) from the right-hand side, we obtain
H(f) = isin(nfAt) exp(—infAt)

or

H(f) = sin(mfAt) exp [—m (f - zlAt> At} .

From Equation 2.44
H(f) = G(f) explip(f)]
so that
G(f) = [sin(nfAt)|
and

—n(f —L>At, 0<f<1/(2A0)
P(f) =

) .
—n|lf+— |A —1/(2At) < f
u< +2At) t, /(2At) <f <0

157

(3.31)

(3.32)

(3.33)

Because G(f) is always positive, Equation 3.33 validates Equation 3.31 by taking
into account that sin(mtfAt) is negative for —1/(2At) <f< 0. The gain and phase
functions for wo = '/, and w; =-'/, are shown in Figures 3.9 and 3.10 for positive
frequency. As can be seen in Figure 3.9, the difference filter is a high-pass filter,

1.0 e

0.8f
0.6F /
0.4F

0.2F

Gain G(f)

0'00 01 02 03 04 05
Frequency (cycles/data interval)

Figure 3.9 Gain function for the difference filter in Equation 3.29.
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Figure 3.10 Phase function for the difference filter in Equation 3.29.

eliminating the mean and passing unchanged the amplitude at the Nyquist frequency.
Figure 3.10 shows that as the frequency of a sinusoid approaches zero (wavelength
tends to infinity), digital differencing is similar to taking the derivative of a sine
function, resulting in a cosine function and a phase difference of 90°. At the Nyquist
frequency, the filtering amounts to differencing successive maximum and minimum
values which leaves the sinusoid unchanged. Equation 3.33 shows that there is a
discontinuity in ¢(f) at the frequency origin where its value is +90° as the origin is
approached from the positive side and —90° as the origin is approached from the
negative side. Phase function ¢(f) increases linearly from —90 to 0° as the frequency
decreases from —0 cycles per data interval to the negative Nyquist frequency.

3.2.5 Relationship between high-pass and low-pass filters

As noted in Section 3.1.4, when the sum of the filter weights is one, the mean of
the time series is preserved, and when the sum of the weights is zero, the mean
is removed. The respective frequency response functions are low-pass, with
H(f=0) =1, and high-pass, with H(f=0) = 0. Intuitively, we should expect that
a high-pass filter H'(f) could be derived from a low-pass filter H(f) by subtraction
according to

H'(f) = 1 - H(f). (3.34)

That is, where the response was high in a low-pass filter it will be low in the high-
pass filter, and vice versa. Using Equation 3.14 and assuming a finite number of
weights, the frequency response function for the high-pass filter (Equation 3.34)
becomes

-1 n
H/(f) =1—wy— Z Wi efiZJrﬂ(At _ Zwk efi2nkat (3.35)
k=1

k=-m
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in which allowance has been made for an asymmetric filter. The weights for the
high-pass filter are then

wo=1—wy and wi = —wy, k#DO0. (3.36)

When the filter is symmetric, m = n, and the high-pass frequency response function
(Equation 3.34) reduces to

H'(f) = wp+2 ) wi cos(2mfkAt) (3.37)
k

=1

where we see that H'(f) has no imaginary component since the sine term sums to
zero. This form will be used again in Section 3.4.3 in discussing filter design.

In this section we examined the conversion of a low-pass filter to a high-pass filter,
the result of which was the set of Equations 3.34-3.37. We could just as well have
applied this equation set to the conversion of a high-pass filter to a low-pass filter.
Moreover, these same equations apply to conversion of a band-pass filter to a stop-
band filter and vice versa.

3.3 Filter design

In the previous section we examined a selection of commonly used filters and their
response functions. A specific set of weights resulted in a specific response function.
In this section we investigate the reverse problem. Given a desired response function,
what is the required set of weights? Thus, the first step in designing a digital filter is to
decide the shape of the frequency response function. The second step is to Fourier
transform this function to the time domain to obtain the weight function or digital
filter weights. Typically, to achieve the desired response function requires a greater
number of weights than are practical, so the weight function must be truncated.
The third step is to Fourier transform the truncated weight function back to the
frequency domain to get the actual response function.

It is useful to think of the frequency response function as an analog periodic data
series with frequency instead of time as the independent variable and whose period is
1/At, the frequency interval between the Nyquist frequencies —f, and f,. That we can
view the frequency response function as a periodic function is because it comprises
the principal part of the complete aliased spectrum. In this context, we represent the
response function by a Fourier synthesis whose Fourier coefficients become the filter
weights in the time domain.

Thus, by steps 1 and 2 we have, following Equations 2.13 and 2.14,

1\ (©
S <2f) J H(f) exp(—i2mfkAt) df, —oo <k < o0 (3.38)
v —fy
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and

H(f) = Z wy exp(i2nfkAt)
k=—o00

N N (3.39)
= Z wi cos(2mfkAt) + i Z wi sin(27 fkAt).

k=-00 k=-00

In the framework of filter design, H(f) can be appropriately called the design response
function; as in previous sections, wy is the weight function. Comparing Equa-
tions 3.38 and 3.39 with Equations 2.13 and 2.14, respectively, we see that wy
corresponds to S'y,, 2f, to T, H(f) to x(t), df to dt, and fAt to t/T in the exponent.

After parsimonious truncation of the weight function, the filtered series takes the
usual form of digital convolution (see Equation 3.5):

n
Y, = Z Wk Xk, —o00 <t<oo. (3.40)

k=-m

What is meant by “parsimonious” here is that the number of weights should be small
compared to the length of the time series but large enough to provide good fidelity of
the response function. The actual values of m and n are decided by the investigator.

Next, we anticipate the results of applying a Fourier transform to a convolution
integral (or summation here) that we found in Section 2.7. Accordingly, we Fourier
transform Equation 3.40 to the frequency domain to obtain the amplitude spectra of
the filtered series y,, the original time series x,, and the weight function wy. Thus,

Y(f) = EOO: l i Wi xtk] exp(i2mtftAt)

t=—-00 |k=-m

=y wkl > xex exp(i2mftAt) (3.41)
k=-m t=—00
= ) wic exp(i2nfkAt) | Y x i expli2nf(t — k)Ad]
k=-m t=—o0
which reduces to
Y(f) = Hpa(f) X(f). (3.42)

Except for the interchange of variables, Equations 3.41 and 3.42 are similar to
Equations 2.58 and 2.59 for analog data.
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The actual response function

Hpa(f) = i wi exp(i2mfkAt) (3.43)

k=-m

can be expanded into its real and imaginary parts as

Hunn(f) = ) wiccos(2nfkAt) +i > wy sin(2mfkAt). (3.44)

9

k=—-m k=-m
Equation 3.44 can be written also

Hun(f) = ;Eg (3.45)
in which form it is the same as Equation 2.60 for analog time series and expresses the
ratio of the output to the input complex amplitudes as a function of frequency f.
Similar to Equation 2.44, the response function H,, ,(f) can be written as the product
of a gain function and an exponential term involving the phase function.

If the design response function H(f) in Equation 3.39 is real and symmetric about
f=0, then the weight function wy is real and symmetric about k = 0. Only cosines are
needed in the synthesis of H(f). The same can be said of H,,, ,(f) if m =n. In fact,
we will limit our investigation to symmetric filters with the result that their response
functions are always real and Hy,, ,(f) = H,,(f). Because the phase angle will be either
0° or 180° (as in the running mean), we will usually not use the terms gain function
(or gain) or phase function (or phase), but instead, frequency response function or
response function or, simply, response.

3.4 Lanczos filtering

In this section, we describe a Fourier filtering method called Lanczos filtering. Its
principal feature is the use of “sigma factors,” which significantly reduce the
amplitude of the Gibbs phenomenon, an oscillation that occurs when a function
is approximated by a partial sum of a Fourier synthesis. The Gibbs phenomenon or
oscillation can result in considerable error in the vicinity of the discontinuity in an
ideal response function, for example, the cut-off . in Figure 3.3a. The filter is a two-
parameter symmetric filter, one parameter being the number of weights, the other
the cut-off frequency. In the one-parameter filters in Section 3.2 the number of
weights completely determined the frequency response function. Here we have an
additional degree of flexibility. Using these parameters as entries to a pair of graphs,
the frequency response function can be estimated. The simplicity of calculating the
weights and the adequate response for many needs make Lanczos filtering an
attractive filtering method.
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Figure 3.11 (a) An ideal low-pass response function with cut-off frequency f.. (b) The
smoothed ideal response function given by Equation 3.49. The transition band is 2Af = 2f,/n
(Duchon, 1979).

3.4.1 Mathematical development

The material provided in this and the following two sections is based on a paper by
Duchon (1979). Application of Lanczos filtering to data sets in two dimensions is
also discussed in this paper. We begin by considering an ideal low-pass response
function shown by the solid line in Figure 3.11 (or dashed line in Figure 3.3a) where f,
and £, are the cut-off and Nyquist frequencies, respectively. Mathematically, we have

(1, Jf <t
H(f)_{()’ ot (3.46)

Using Equation 3.38, we Fourier transform H(f) to get its weight function

LN R in(27f.kA
W, = (-) J exp(—izntkAt) df — SHCTKAY <. (3.47)

26,) )¢ 2f kAL

In application, we have to limit the number of weights. Lanczos (1956, p. 219)
showed that when the finite set of weights is transformed back to the frequency
domain by Equation 3.43 where m =n, the departure from the ideal response
function has the form of a “modulated carrier wave.” The carrier frequency is equal
to the frequency of the first term neglected in the Fourier synthesis and its amplitude
contributes significantly to the Gibbs oscillation. Thus, as proposed by Lanczos, the
carrier frequency should be filtered. This can be done using a “sigma factor.” An
example of Gibbs oscillation and its suppression is shown in Figure 3.12 and
described in the next section.

In the mathematical development in this section, a nonstandard formula for
the total number of weights in a filter is employed. The standard formula is 2n + 1,
where n is the number of weights to the right and left of the central weight. The
formula for the total number of weights used in Lanczos filtering is 2n—-1. For
example, if there are a total of seven weights, the central weight (w,) and three
weights to the right (w;, w,, w3) and three to the left (w_;, w_,, w_3), n=4.
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The reason for choosing the nonstandard formula is because n is equal to the first
term truncated in synthesizing H(f) and corresponds to n cycles over 2f,. In this
example, the carrier frequency is n =4 cycles over 2f,.

Therefore, to suppress the Gibbs oscillation for the general case of using 2n-1
weights, we convolve the ideal response function Equation 3.46 with the rectangular
function

by — 4 260 =R
0, If| > fy/n

(3.48)

The width of rectangular filter h(f) corresponds to the width of one cycle of a Gibbs
oscillation and would result in its complete suppression were there no modulation.
Due to the modulation (we no longer have a pure sinusoid) we can anticipate some
residual oscillation after filtering. The area under h(f) has unit value so that the mean
of the function being filtered is unchanged.

The smoothed version of H(f) is produced by the convolution integral

. fy/n
Hi = | n(eH( -5 de

n fy/n
= <2fv> va/n H(f —g) dg (3.49)

where h(g) =h(f). H(f) is shown by dashed curve (b) in Figure 3.11. We note that,
as expected, the width of the frequency band from unit response to zero response is
the same as the width of the nonzero part of h(f), that is, 2Af = 2f,/n. The narrow
band from unit to zero response or vice versa is commonly referred to as the
transition band.

Using Equation 3.38 again, the Fourier transform of Equation 3.49 yields the
smoothed weight function

1\ (&
Wi = <2f) J H(f) exp(—i2mfkAt) df, —oo <k < 0. (3.50)
v —fy

For the case of a partial sum of Fourier synthesis we have, following Equation 3.43,

n—1
Hi(f) = ) Wi exp(i2afkAv)
k=—(n—1)

n—1

= Wo +2) Wi cos(2mfkAL). (3.51)
k=1
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Equation 3.51 shows the actual response function as a consequence of smoothing
(convolving) the ideal response function with a rectangular function that is tuned to
the number of weights used, (2n—1), to minimize the Gibbs oscillation. Now we need
to find the values of the weights.

The result of substituting Equation 3.49 into Equation 3.50 and interchanging the
order of integration is

n fy/n
Wi = (—> J exp(—i2mgkAt)
va —fy/n

« [(%) JfoVH(f— ¢) expl—i2n(f — kAU d(f—g)| dg  (3.52)

where the term in brackets is weight function wy in Equation 3.47. Because H(f) is
periodic (Section 3.3) with period 2f,, Equation 3.52 reduces to

in(2nkf, A
_— Wksm( nkfyAt/n)

2ntkf,At/n
sin(2nf kAt) sin(2mtkfyAt/n)
2mf kAt 2mkf,At/n

(3.53)

If we let At=1 and £, =0.5 so that f has units of cycles/data interval, then

sin(2nf k) sin(mk/n)
ik nk/n

Wi = k=—-(n-1),...,0,...,(n—1). (3.54)
We see that the weight function for the smoothed response function is the product of
that for the ideal response function and the term

sin(mtk /n)

o= in (3.55)

called the “sigma factor” by Lanczos. A second smoothing of the ideal response
function (Equation 3.46) with Equation 3.47 yields 0 in Equation 3.54 and sub-
sequent smoothing by a corresponding increase in power of the sigma factor.
Typically, only one smoothing is performed.

There is one caveat in the above derivation. In carrying out the integration of the
interior integral on the right-hand side of Equation 3.52 it was assumed that H(f)
in Equation 3.49 or the dashed line in Figure 3.11 became zero before =f,.
Mathematically, this can be expressed as f. + f,/n < f,. If this criterion is not met,
then Equation 3.53 is incorrect. The practical result is that the response function for a
low-pass filter will never pass through zero.



3.4 LANCZOS FILTERING 165

3.4.2 Results

Curve (a) in Figure 3.12 isan ideal response function in which the cut-off frequency f,
is 0.2 cycles/data interval; curve (b) is the response function computed from
Equation 3.45 in which there are 2n—1 = 19 weights computed from Equation 3.47
in which the limits of integration are £ 0.2. Curve (b) is an example of Gibbs
oscillation and we observe that, in this case, it has 10 cycles over the frequency span
from —f, to +f, (Figure 3.12 shows one cycle per 0.1 cycles/data interval) corre-
sponding to n = 10, the first term truncated in the Fourier series. Curve (c) is the
response function from Equation 3.51, where weights Wy are computed using
Equation 3.54. The quantity Afy (Afy) is the bandwidth between f. and the nearest
unit (zero) response. The advantage in using the sigma factor to reduce the Gibbs
oscillation is plainly evident. The trade-off with the reduced Gibbs oscillation in
curve (¢) is the increased width of the transition band, the frequency interval between
the nearest unit and zero responses surrounding f.. This trade-off is such that there is,
in general, no advantage to using a sigma factor to a power greater than one.

1.2 ———
i (b)
I A
VANV
. =~ *
| (a)
08
r (c)
1 Af;
£ 06 o
s o
[}
Z
(=]
o
g 04
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00 \ N\
: | G_T N
0.2 b T -
0.0 0.1 02 0.3 04 0.5

Frequency (cycles/data interval)

Figure 3.12 (a) Ideal response function. (b) Lanczos filter for f.=0.2, 2n—1 = 19 weights,
and sigma factor=0. (c) Same as (b) but for sigma factor=1. The Gibbs oscillation
associated with (c) is denoted by G, and G_.
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The approximate properties of the maximum Gibbs oscillation (G, or G_ in
Figure 3.12) can be summarized by examining three areas in Figure 3.13, in which it
should be noted that the vertical axis is the number of weights given by 2n+ 1. We
can return to using the traditional formula for total number of weights because if we
extend the limits of k from + (n—1) to & n in Equation 3.54, the weights w,, = 0.
We just need to recognize that the weights at the extrema of the more familiar
formula for the total number of weights are zero. To the right of the dashed line,
where the number of weights is small or the cut-off frequency is close to the Nyquist
frequency, the response function never crosses zero response (i.e., G_ is negative).
This is a consequence of f,/n + f_ > f,. In the large area inside the solid and dashed
curved lines the Gibbs oscillation is about 0.01, Afy and Af; are approximately equal
to 1.3/(2n), and H(f,) = 0.5. The best fidelity is found here. Larger values of Gibbs
oscillation occur in an irregular pattern along the border of this area and especially at
low cut-off frequencies.

In the small area between the solid and dashed curves on the left side of Figure 3.13
the magnitude of G, is zero, since the response function decreases toward zero
directly from the origin. Simultaneously, Af; =f.. The magnitude of G_ can be
substantially greater than 0.01 when the number of weights is small. In this region
H(f.) > 0.5. Regardless of the area in which the intersection of the cut-off frequency f,
and number of weights (2n + 1) lies, increasing the number of weights always results
in a narrowing of the transition band and the associated steepening of the response
from unity toward zero.

For high-pass filters, Afy (Afg) is the bandwidth between f. and the nearest
zero (unit) response. With the convention that G, (G_) is the maximum value of

5] e T

|
\\ G,, G_=0.01
_13
39 \ Afy, A==

\ H(f,) = 0.50 '

Number of Weights (2n + 1)
(3]
~
L

11 1G+=0 .

1o =20 G .
SETID BT i I ki
0 0.1 0.2 03 0.4 05

Cut-off Frequency f; (cycles/data interval)

Figure 3.13 The magnitudes of the maximum positive (G,) and negative (G_) Gibbs
oscillations and the left (Af,) and right (Afg) bandwidths (Figure 3.12).
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the Gibbs oscillation below zero (above unit) response, Figure 3.13 can be applied
directly to high-pass filters. In this case, G_ (negative) means that the response
function never passes through one. These relations follow from Section 3.2.5, in
which a high-pass filter response is one minus the low-pass filter response.

3.4.3 An application

In this section we apply low-pass, high-pass and band-pass filters to hourly
temperature data at St. Louis, Missouri, USA, for February 2010. These data are
available on the website http://www.wiley.com/go/duchon/timeseriesanalysis. The
filenameis STL_201002_hrly_temp.xls. See problem 16 in Chapter 1 for information
on the data structure. The weight sequences and responses are obtained from a
computer program provided in Appendix 3.C for Lanczos filtering in which the
required inputs are the cut-off frequency (two frequencies in the case of a band-pass
filter), the number of weights, and the type of filter (low-, high-, or band-pass). The
power of the sigma factor is set to one but can be easily changed in the program.

The 672 values of temperature are plotted in Figure 3.14. There are five distinct
cold front passages with two extended warming trends, one beginning 15 February
and the other 25 February. First we examine periods longer than one day. Since one
cycle per day =0.0417 cy/h we would like the ideal low-pass response function to
drop from one to zero at this frequency. However, we observed from Figures 3.10
and 3.11 that the value of H(f) or H,,(f) at the cut-off frequency f. using the Lanczos
filter is about 0.5. Consequently, f. needs to be adjusted such that it is to the left of one
cycle per day in order to achieve zero response at the daily cycle. In addition, because
f.is so close to the origin, we can anticipate using a large number of weights if we wish
to reasonably approximate the ideal response. Let us say that we can afford to lose one
day at either end of the month. In this case, to stay to the right of the solid line in

Day of Month
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Figure 3.14 Hourly air temperature for February 2010 at Lambert-St. Louis (Missouri)
International Airport.
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Figure 3.15 Frequency response functions for low-pass and high-pass Lanczos filters for
2n+1=51 weights and f.=0.016 cycles/hour.

Figure 3.13, we can choose 2n + 1 = 51 weights. Since the response at f. is about 0.5
we can estimate f. from

f.220.042 — Afy = 0.042 — 1.3/(2n) = 0.042 — 1.3/50 (5.56)
= 0.042 — 0.026 = 0.016 cy/h. '
The quantity Afg (Figure 3.12) in this equation has the approximate value 1.3/2n
throughout most of the good fidelity region in Figure 3.13. With 2n+ 1 =51 and
f.=0.016 cy/h, the response is essentially zero at 0.042 cy/h, as seen in Figure 3.15
(the low-pass filter response). The low-pass filtered data in Figure 3.16 show mainly
the influence of synoptic-scale features: frontal passages and warming and cooling
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Figure 3.16 The data in Figure 3.14 after applying the filter having the low-pass response
H(f) in Figure 3.15. The dashed line is the mean of the filtered data.
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trends. Next, we examine periods one day and shorter. The response function for the
high-pass filter used here is obtained by subtracting the low-pass filter (Equa-
tion 3.51) from one to get

Hy(f) = Wo+2 ) Wi cos(2afk) (3.57)
k=1
where Wy = 1 — Wy and Wi = —Wy (see Figure 3.15 for high-pass filter response).

Figure 3.17 is the result of high-pass filtering. The daily cycle is obvious, in addition
to disturbances whose duration is less than a day.

Lastly, consider a band-pass filter. The objective is to obtain a clearer picture of the
daily cycle in temperature by eliminating the high frequency fluctuations in
Figure 3.17. In order to determine the width of the pass-band it is helpful to
examine a variance spectrum of the data. Figure 3.18 shows the periodogram of the
St. Louis data out to harmonic 120. The spectrum beyond harmonic 120 is similar to
that between about harmonics 100 to 120 with a small average decrease. Judging by
the magnitude of the peaks that are a multiple of harmonic 28 (24 hour period), it
should be satisfactory to include just those harmonics between 28 and 56 or 0.042
and 0.083 cy/h. The variance at harmonics 84 (eight hour period) and 112 (six hour
period) are about two orders of magnitude less than that at harmonic 56 and are
comparable to some nearby peaks.

A simple way to create a band-pass filter is to subtract one low-pass filter from
another. For example, Figure 3.19a shows the response functions for two low-pass
filters with 2n+1=43 weights and f.,; =0.2 and f.,=0.3 cycles/data interval;

Day of Month
15:1...5...9...13...17...21...25. :
) ;
7 ]
§ OEJMA!. A‘d/ hhwrsj%ﬁ”\ UMMMTEmean
e PRI I
Ry — ]

0 96 192 288 384 480 576 672
Hour of February 2010

Figure3.17 ThedatainFigure 3.14 afterapplying thefilter having the high-pass response
H(f) in Figure 3.15 and adding back the mean of the unfiltered data shown by the
dashed line.
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Figure 3.18 Periodogram of the data in Figure 3.14 for harmonics 1-120.
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Figure 3.19 (a) Response functions for two low-pass Lanczos filters with f.=0.2 cy/di,
fc=0.3cy/di and 2n+1=43 weights. (b) The band-pass filter that results from the
difference of the two response functions in (a).
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Figure 3.19b shows the difference. The band-pass smoothed response function is
given by

n
H,(f) = W +2) Wy cos(2mfk) (3.58)
k=1
where Wy = Wy — Wi, k=0,1, .., n.

As the width of the pass-band becomes narrower for a given number of weights,
the response at the center of the band approaches zero (the two curves in Figure 3.19a
move closer together). To keep the response around the center of the band very close
to one, the following criterion can be deduced from Figure 3.19a:

Afgy + Afyy < fop — £ (3.59)
Using the approximation Afy, = Af;; =1.3/(2n), an equivalent criterion is
n>13/(fo —fa). (3.60)

Thus the narrower the band between cut-off frequencies, the greater n must be to
maintain unit response at the band center.

When the objective is to pass essentially a single frequency or a very narrow band of
frequencies, Equation 3.59 or Equation 3.60 is especially valuable, in which case the
equal sign is used. More generally, we want to pass a band of frequencies with
essentially unit response so that the problem then is to select the f; and f, that will
yield such a response. This is the case for the St. Louis data in which the pass-band is
from 0.042 to 0.083 cy/h. Thus,

faq = 0.042 — Afp; =20.042 — 1.3/2n (3.61a)
and
fo = 0.083 + Afy, 2 0.083 + 1.3/2n. (3.61b)

We are free to choose n insofar as (i) the above relationship between Afg; and Af;,
and n holds (this means staying away from the frequency origin and the Nyquist
frequency when n is small) and (ii) f.; > 0.0 and f, < f,. The greater the number of
weights, the narrower the transition bands.

Employing a total of 2n+1 =71 weights should provide a good response. From
Equation 3.61 the cut-off frequencies are

fq = 0.042—1.3/70 = 0.023cy/h (3.62a)
and

fo = 0.083 4 1.3/70 = 0.102 cy/h. (3.62b)
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Figure 3.20 Response function for Lanczos band-pass filter with f., =0.023cy/di,
f.o=0.102 cy/di, and number of weights 2n+1=71.

Using the above values in the computer program in Appendix 3.C produces the
band-pass frequency response in Figure 3.20.

The band-pass filtered data are shown in Figure 3.21. The high frequency
fluctuations seen in Figure 3.17 have been removed. Even though the variance
associated with the semi-daily cycle is an order of magnitude less than that of the
daily cycle (Figure 3.18), its impact can be seen in the decreasing portion of the daily
cycle for days 18, 19, and 20, for example. The change in shape relative to the nearly
straight line (on the scale of the plot) during the increasing portion is brought about
by the difference in phase angles between the daily and semi-daily sinusoids.

Problem 7 provides an opportunity to apply Lanczos filtering to the January and
July 2009 temperature data at Will Rogers Airport, Oklahoma City, Oklahoma, that
were analyzed in problem 16 of Chapter 1.

Day of Month
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Figure 3.21 The data in Figure 3.14 after applying the bandpass filter having the response
H(f) in Figure 3.20 and adding back the mean of the unfiltered data shown by the dashed line.
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Appendix 3.A Convolution of two running mean filters

In this appendix we show how to create a triangular filter by convolving two
identical running mean digital filters. The weights for the first running mean filter
are given by

1
, 0<m<n
Wiy = n+1 (3.A.1)
0, m>n
and for the second by
1
—) 0<m<n
Woim = n+1 (3A2)
0, m >n

for n> 0.
Following Equation 3.5 we can write the convolution summation for the weights
of the triangular filter as

oo
I Z Wim Wak-m), — 00 <k < o0, (3.A.3)

m=—00

Because we are convolving two weight functions to produce a third weight function,
we use the symbol w for all three weight functions.

To demonstrate the convolution, panel (a) below shows two three-weight running
mean filters, wy, and w,,,,, outlined by the solid and dashed lines, respectively, for
n =2, with weights 1/(n + 1). Running mean filter w,,,, has been reflected about the
axis m = 0 and is coming from the left and moving to the right to k =-1. There is no
overlap of wy(_1_m) with wyp,.

(a)
| Wo(-1-m) Wim !
e © ntl
: :
! 1
! 1
] i
I T I T T T
-3 -2 -1 0 1 2 3 4
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Next, translate wy(_;_p,) to the right one time step as shown in panel (b). Now there is
overlap.

(b) 1 W2 (-m) Wim !
ntl YT v n+1
[}
I
|
1
T I T T T T
-3 -2 -1 0 1 2 3 4
m—»

and the weight at k=0 as a consequence of convolution is

] 1 "
D)+ (41} (3-A.4)

Wk=0 =

Now translate w,_y,,) to the right one more time step as shown in panel (c).

(c) ! W2(1-m) Wim !
S , n+l
l :
! 1
! 1
T T i 1 i T T
-3 2 -l 0 1 2 3 4
m—»
From panel (c) we see that
2 (3.A.5)
Wk = ——. A,
(n+1)°

If we were to continue with k=2, k=3, and so on, we would conclude the
corresponding weights would be

3
Wgey = ———
T (n+1)
2
Wke3 = ————
k=3 (n+1)2
1
Wiey = ————
k=4 (n—|—1)2
0
Wk=5 =

(n+1)*
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and so on, for n = 2. For the general case of n being a positive integer > 1, we surmise
the relation between wy and n is

0
(n+ 1)2
1
(n+1)°
2
(n+1)°

Wk=—1 =
Wk=0 —

Wk=1 =

(n+1)°
n+1
(n+1)°
(n+1)*

Wk=n-1 =
Wk=n =

Wk=n+1 =

2
(n+1)°
1
(n+1)°
0
(n+1)°

Wk=2n-1 —
Wk=2n =

Wk=2n+1 =

If we offset the location of the central weight at k =n above to k=0, we obtain a
convenient formula for the triangular filter given by

(n+1)— |k
Wk = (n+1)°
0, k| >n

, 0<|k[<n
(3.A.6)

which simplifies to

! 1-— i 0<|kl<n
wi = ¢ (n+1) (m+1))" — 7 (3.A.7)

07 |k| >n
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which is the same as Equation 3.19. The length of the filter is (2n+1) and the sum of
the weights is one.

Appendix 3.B Derivation of Equation 3.20

In this appendix we outline a procedure to derive the response function
for a triangular filter. We begin with the weight function for the triangular
filter, namely

1 k|
1— , |kl <n
wie={dn+l n+1 . (3.19)

0, k| >n
The corresponding frequency response function is

n

H(f) = nil 3 <1 —n‘f 1>exp(—12nﬂ<)

k=-n

(3.B.1)

1 & 2
= —2mfk) —
n+1k;neXP( i2fk) (n+1)*

Z k cos(2mtk)
k=0

where At=1 and the sine term that might otherwise be expected in the final
summation is zero since sine is an odd function.
The second summation can be written

n 1 d n )
I;k cos(2mtk) = 3 <kzo sm(2nﬂ<)>

El

- ﬁ jf(l;) [exp(i2mufk) — exp(—imfk)]/(zo) (3.B.2)
~ 1 d |sin(sfn) sin[rf(n + 1)]
© 2w df sin(7f)

in which Equation 1.B.4 has been used.
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Substituting Equation 3.B.2 into Equation 3.B.1 and differentiating yields

1 sin[nf(2n+ 1)] 1 (n+ 1) sin(stfn)cos[nf(n + 1)]
HE) = n+1 sin(af) (n+1)° sin(tf)

nsin[nf(n 4 1)] cos(ntfn)  sin(ntfn) sin[nf(n 4 1)] cos(xtf)
sin(7tf) sin?(tf)

Expanding the first term on the right to match the form of the second and third
terms, then reducing, results in

B 1 cos(oefi) sinlf (0 sin(ztfn) sin[ztf (n + 1)] cos(mf)
H(f) = —(n T sin(nt) (efn) sin[nf(n + 1)) + sin() .

With additional manipulation, we obtain

sin?[ntf (n + 1)]

H(D) = (n + 1)%sin?(zf)

(3.B.3)
which is the same as Equation 3.20 for At=1.

Appendix 3.C Subroutine sigma

subroutine sigma (nwt, wt, wtbp, fca, fcb, resp, freqg, ihp)
dimensionwt (1), resp(l), freg(l), wtbp (1)
data pi, topi /3.1415926536, 6.2831853072/

c*********‘k*‘k************‘k*‘k‘k************‘k**‘k**‘k*********‘k**‘k**‘k***

Q

This subroutine computes the weight sequence and response
function for low-pass, high-pass and band-pass Lanczos
filters.

*Input*

nwt Total number of weights, 2n+l1. n is the num-
ber of weights to the right and left of the central
weight. The end weights (n, -n) will always be zero
when the sigma factor is greater than 0.

fca The cut-off frequency of the ideal high or low-pass
filter.

Q0 0 a0 o0 a0 000000
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fcb Used only when a band-pass filter is desired, in which
case it is the cut-off frequency for the second low-pass
filter. fcb is greater than fca.

ihp If low-pass filter ihp =0, if high-pass filter ithp =1,
if band-pass filter ihp = 2.

*Output*

wt The array of low-, high-, and band-pass computed weights
including the central weight and those on either side.
Its length is (nwt+1) /2.

wt resp The array of responses at frequency intervals of 0.005
cycles/data interval from the origin to the Nyquist
frequency. Its length is 101.

freq The array of frequencies at intervals of 0.005 cycles/
data interval at which the responses are calculated.

Its length is 101.

*Other*

. wtbp The array of weights for the first low-pass filter

used in computing a band-pass filter. Its length is
(nwt + 1) /2.

. .nsigma The power of the sigma factor. It can be greater than or

equal to zero. It is currently set to one.

R R R R R R

nsigma = 1

arg = topi*fca
argb = topi*fcb
nw= (nwt - 1) /2
anw = nw

kk =0

wt (1) =2.0*fca

.......... Compute weights

kk =kk +1
do1l01i =1, nw
ai=1

knw=1+1
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a=sin(arg*ai) / (pi*ai)

b = anw*sin(ai*pi / anw) / (pi*ai)
b =b**nsigma

wt (knw) = a*b

10 continue

............... Standardize weights

sum = wt (1)
do 201 =2, knw

20 sum = sum + 2.0*wt (1)
do 301 =1, knw
30 wt (1) =wt (i) / sum

if (kk.ge.2) go to 81
if (ihp-1) 1, 2, 3

............... Alter weights to get high-pass filter

2 wt(l) =1.0 -wt (1)
do 701 =2, knw

70 wt (1) = -wt (1)
go to 1

............... Computeweights of 2nd low-pass filter for band-pass filter

do 801 =1, knw
80 wtbp (1) = wt (1)

arg = argb

wt (1) =2.0*fcbh

go to 91

............... Alter weights to get band-pass filter

81 do 901 =1, knw
90 wt (i) =wt (i) - wtbp (i)

............... Compute response function
1 nf =101

frgint = 0.5 / float (nf - 1)
freg(l) =0.0

d=0.0
do 60 j =2, knw
60 d=d+2.0*wt (3)

resp(l) =d+wt (1)
do 401 =2, nf
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ai=1-1

freq(i) = ai*frgint

fr = freg(i)

d=0.0

do 50 j =2, knw

bi=3j-1

d=d+wt(j)*cos(topi*fr*bi)
50 continue

resp (i) =wt (1) +2.0*d
40 continue

return

end

Problems

1 On a graph of response versus frequency, sketch an example of a high-pass
filter, a low-pass filter, and a band-stop filter, labeling each. Each curve
should extend from 0 to 0.5 cycles per data interval. What is the sum of the
weights for each filter?

2 Show, mathematically, that if the mean of a stationary infinite analog time
series is to be preserved after applying a filter of finite length, the area of
the weight function must be one.

3 Starting with

m
V. = thxt,k, t:1,2,'-'N
k=-m
where m << N, show that if hy is a filter with the sum of the weights equal
to zero, then
720

in which the overbar represents the mean value of the realization. Explain
any approximations you make. Use a sketch to aid you in your analysis.

4 (a) Write down the formula for the weights wy for a running mean

(rectangular) digital filter.

(b) Using the appropriate Fourier transform and Equation 1.B.4, show that
the frequency response function for the running mean filter is given by

sin[mtf (2n + 1)At]

H(E) = (2n + 1) sin(sfAt)

where At=1.
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(c) Now convert H(f) above into a high-pass filter. Sketch the associated
high-pass frequency response H'(f) for frequencies from 0 to 0.5 cycles
per data interval.

(d) What is the formula for the high-pass weights w{? Also, calculate the
value of each of the high-pass weights if the total number of weights
is five.

5 The following is a sequence of digital data from a time series.

ys = 2 Ve = 3 y; = —1 ys =0 Yo =1 Yio = 4

(a) Ifthe data are to be smoothed with a high-pass filter that is a five-point
triangular filter (total number of weights is five), determine the weights
and show your method of determination.

(b) Compute the value of the high-pass filtered time series y/, at all times for
which it is feasible.

(c) Plot H(f) for frequencies extending from 0 to 0.5 cycles per data interval
for At=1. Calculate H(f) at a sufficient number of frequencies to
clearly define H(f).

(d) On the same graph as in (c), plot the companion low-pass frequency
response function using a dashed line.

6 A cosine filter with (2n+1) weights where n =3 is applied to a digital time
series. The central weight wy=1/3, w; =w_; =0.75/3, and ws; =w_3=0.

(a) What is the value of w, =w_, for this low-pass filter?

(b) What is the value of x| at all times for which it is calculable given
X6:4 X7:5 Xg:6 X9:3 X]QZO

X111 — —1 X12 = -3 X13 — —1 X114 = 2

7 This problem deals with the application of high-pass and low-pass filters to
Oklahoma City, Oklahoma, hourly temperature data for January and July
2009. These data are available on the website http://www.wiley.com/go/
duchon/timeseriesanalysis. The filenames are OKC_200901_hrly_temp.xls
and OKC_ 200907_hrly_temp.xls. See problem 16 in Chapter 1 for infor-
mation on the data structure.

(a) Design a low-pass Lanczos filter to pass only periods longer than one
day. That is, periods one day and shorter should be removed. Use 51
weights and a sigma factor to power 1. Discuss your design procedure,
particularly your selection of f, and plot the filter response function to
verify that the daily cycle will be removed.
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(b) On a single graph with a common temperature scale, plot both the
original January 2009 data and the data passed by the filter.

(c) Useahigh-pass Lanczos filter to pass only periods 24 hours and shorter.
That is, periods 24 hours and shorter should be essentially completely
passed. Plot the filter response function.

(d) Plotthe data passed by the high-pass filter and the original January 2009
data on one graph. Use a continuous temperature scale for both time
series so that the two curves are separate from each other.

(e) What do the low-pass filtered data show? Indicate the times of the cold
front passages on the plot of the low-pass filtered data in (b). What is the
average number of days between cold front passages (if that’s what you
see) over the course of the month?

(f) What do the high-pass filtered data show? Comment on the causes of
the variable amplitude of the daily cycle. What accounts for the
nighttime temperatures often being noisier-looking than the daytime
temperatures?

(g) Use thelow- and high-pass filters from (a) and (c) to filter the July 2009
data. Create plots of the original and filtered data similar to those you
created in (b) and (d).

(h) Compare and contrast the July time series with the January time series,
particularly from a meteorological standpoint.

8 Repeat problem 7, but using data from the January and July 2010 files for
San Francisco, California. These data are available on the website http://
www.wiley.com/go/duchon/timeseriesanalysis. The filenames are SFO_
201001_hrly_temp.xls and SFO_201007_hrly_temp.xls. See problem 16
in Chapter 1 for information on the data structure.
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Autocorrelation

One of the goals of a physical scientist is to understand the morphology of natural
events. An obvious step that must be taken is to obtain samples in time and space of
variables that characterize the physical properties of an event over its lifetime. The
fact that an event has a lifetime implies that it evolves in time and/or space, a
consequence of which is that successive observations of its properties are related.
This is called autocorrelation, the term “auto” meaning “with itself.” The degree of
autocorrelation depends on the physical nature of the phenomenon being sampled
and the time and/or space separation between successive observations. Sometimes
the term “serial correlation” is used in place of autocorrelation. While both terms
have the same meaning, we tend to use the latter term.

An example of a meteorological event is an isolated thunderstorm, the lifetime of
which, from birth through maturity to death, may last around an hour and move
50 km. A variable that is used to characterize storm intensity is the maximum speed
in the updraft located inside the storm. Initially it is small, reaches a peak at maturity
and then decreases. Successive values of the maximum updraft speed are clearly
related; that is, they are autocorrelated. Another example is the changing river stage
(water level) at a location along a river fed by basin runoff in response to rainfall in
the basin. The river stage rises, reaches a maximum, and then falls as the runoff
ceases, the record of which is called a hydrograph. Thus the magnitudes of successive
measurements of river stage are related.

From a statistical viewpoint, a positive value of autocorrelation for a time
separation of 10 minutes, for example, means that a higher-than-average observation
tends to be followed by another higher-than-average observation 10 minutes later,
and similarly for lower-than-average observations. A negative value means that a
higher-than-average observation tends to be followed by a lower-than-average

Time Series Analysis in Meteorology and Climatology: An Introduction, First Edition. Claude Duchon and Robert Hale.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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observation 10 minutes later, and vice versa. The greater the tendency for any two
successive departures from the mean to be of the same or opposite sign for a given
time separation, the greater the positive or negative autocorrelation, respectively.
The sequence of autocorrelation values associated with increasing time separation is
called the autocorrelation function. While the autocorrelation function is dimen-
sionless, it has a companion function called the autocovariance function, the units of
which are the squared units of the variable of interest. The autocorrelation function is
a standardized autocovariance function.

Any statistical property that involves the number of independent data or degrees
of freedom (dof) will be altered by the presence of autocorrelation in the data used to
calculate that property. Common examples are the variance, variance of the mean,
variance of the variance, and confidence intervals for the population mean, each of
which is discussed in this chapter.

Before proceeding further, it may be appropriate to review Section 1.4.1, wherein
various statistical concepts and terms are discussed. A number of them will be used
throughout this chapter.

4.1 Definition and properties

The autocovariance function (acvf) of arandom process denoted by random variable
(rv) X(t) is given by

v(ta — t;) = Cov[X(ty), X(t2)]
= E[(X(t1) — u(t1))(X(t2) — u(t2))] (4.1)

where Cov means covariance, E is the expectation operator, and W is the time-
dependent population mean. In order to understand Equation 4.1 we consider the
vertically stacked array of time series shown in Figure 4.1(which is nearly identical to
Figure 1.17). The realizations shown are examples from the population of time series
comprising a random process. Taking the expectation in Equation 4.1 means we are
finding the average of products of the departures of rv X(t;) about its population
mean u(t;) with those of rv X(t,) about its population mean u(t,). Each population
mean results from taking the average across all members of the population of time
series at the respective times and is equivalent to taking the expectation.
Equation 4.1 is the most general form for the population autocovariance function.
It allows for nonstationary time series, as reflected by the time dependence of the
population means. However, analysis of data with time varying statistical properties
can present an enormous challenge. In Section 1.4.1 we discussed the need to
transform nonstationary time series to stationary time series by any appropriate
method. Accordingly, we continue our investigation of autocorrelation for
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Realizations

X(t,) X(t)

Figure 4.1 A selection of realizations from a random process. X(t;) is random variable X at
time ty, X(t,) is random variable X at time t,. The light horizontal lines are the same reference
value of x for each realization.

stationary random processes only. Under this proviso, the expected value of
products of the departures from the mean for a given time separation, At=t, — t;
in Figure 4.1, is independent of location along the time axis. That is, the
autocorrelation function depends only on time difference, not actual time. As
a consequence, we can write the equations for the autocovariance and autocor-
relation for a stationary random process directly from Equation 4.1 for both
analog and digital time series.
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4.1.1 Analog data

For an analog stationary random process X(t), the population autocovariance
function given by Equation 4.1 reduces to

v(u) = Cov[X(t), X(t+ u)]
= B[(X(t) = W) (X(t+u) — )] (4.2)

where u is referred to as the time lag or simply lag. For a stationary process the
population means are no longer dependent on time; they all have the same value.
Thus, the expectation in Equation 4.2 depends only on time separation u, not on
actual time.

As stated earlier, the population autocorrelation function (acf) is the standardized
population autocovariance function, so we can write

plu) = 12 = (43)

where 0% is the population variance.
Three common properties of the acf are:

(1) p(0)=1
(2) p(u)=p(—u) (also y (u) =7y (—u))
(3) Ip(w)I<1, forallu.

Property (1) is a consequence of the definition of p given by Equation 4.3 and the fact
that the autocovariance at lag 0 is identical to the variance, as seen in Equation 4.2.
Property (2) follows from the interchangeability of X(t) and X(t + u) in Equation 4.2
because of the stationarity assumption. Thus the acvf and acf are even functions.

Property (3) can be proved by considering the variance of the linear combination
(0,Z, + a,7Z,), where ., and o, are coefficients and Z, and Z, are random variables.
Then, from Equation 1.18,

Var[OLlZl + (1222] = E[{(OL121 + (1222) — E[OL]Z] + (1222}}2]

= E[{a1(Z; — uy,) + 02(Zy — py)) )]
= o Var[Z,] + 2010, Cov[Zy, Z,] + a3 Var[Z,] - (4.4)

Because Equation 4.4 is positive or zero, dividing both side by o yields

f((ll/(lz) = Var[Zl] ((11/(12)2 + ZCOV[Zl, Zz] (0(1/(12> + Var[Zz] (45)
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which is likewise positive or zero. This is a quadratic equation in (0,/a,;), thus
f(a,/0,) will form a parabola if plotted on real axes. If f(a,/a.,) is everywhere positive,
then there are no zero crossings and thus no real roots; the two roots of the equation
must be complex. This means that the discriminant of Equation 4.5 must be less
than zero. If f(0,/02) =0, the parabola intersects the (a,/a,) axis at a single point
(a double root) and the discriminant of Equation 4.5 is equal to zero. Consequently,
for Equations 4.4 and 4.5 to always be positive or zero requires the discriminant in
Equation 4.5 to be <0, resulting in

(Cov[Z1,Z,))°
Var[Z,] Var|Z,] =1 (4.6)

Replacing Z; by X(t) and Z, by X(t + u) and taking the square root yields

Cov[X(1), X(t+w)
(Var[X(t)] Var[X(t+ u)])l/z

Cov[X(t), X(t+ u)]
Var[X(t)]

~ r(w)

==
0%

= [p(u)] <1

which is property (3). This is the approach taken by Jenkins and Watts (1968) to
prove property (3). In practice, it is possible to compute sample values of the acf that
exceed unity, but this is an artifact of the formulas used for computation and occurs
with nonrandom time series, for example, a sinusoid.

4.1.2 Digital data

Expressions parallel to Equation 4.2, Equation 4.3, and the acf properties for digital
data follow. The population autocovariance function is

Y(k) = Cov[X¢, X+
= E[(Xt - l"‘) Xk — M)]a |k| =0,1,2,... (4'7)

where k is the lag for unit increments in time. The population autocorrelation
function is

p<k)_“;8;§_yé?, k| =0,1,2,.... (4.8)

The three common properties are:
(1) p(0)=1
(2) p(k) =p(=k) (also vy (k) =y (=k))

(3) Ip(k)I <1, forallk.
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4.2 Formulas for the acvf and acf
4.2.1 Acvfs for analog data

When performing statistical analyses in Chapter 1 we used upper case symbols to
represent random variables and lower case symbols to represent samples or
realizations. We followed this convention in the previous section and will continue
to do so throughout this chapter. Thus c(u) and c/(u) below identify working
formulas for calculating the acvf of a realization x(t). The structure of Equation 4.2
suggests there are two formulas for analog data. The first is

1 T—|u] B B
c(u) = TL (x(t) = X)(x(t+[u]) = x)dt, 0<|u|<T (4.9)

0, lu| >T

and the second is

T—|u|
) T_IML (x(0) D+ ) ~Ddt, 0< Pl <T (g

0, lu| > T

where

Figure 4.2 demonstrates one way to understand how c(u) or ¢/(u) is calculated.
There is but one time series x(t) extending from 0 to T. It is represented by the upper
rectangle in the figure. The identical time series is represented by the lower rectangle,
but is shifted u units of time relative to the upper rectangle. Cross-multiplication of
the overlapping time series (shaded rectangles) as expressed by the integrals in
Equations 4.9 and 4.10 leads to either value of autocovariance c(u) or ¢’(u). The
coefficient 1/(T — lul) of the integral in Equation 4.10 takes into account the

0 T-|u T

i //4/////4 i
x(t S,
© ?WW// /ﬁ//f/’/,f/

S //A A
e
x(t+u|) .’/ 7// //

Figure 4.2 Schematic representation of an autocovariance calculation. The shaded area
represents the portion of each series involved in the integration of ¢(u) or c(u).
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continual reduction in the overlap of the two time series as the lag u increases. In
Equation 4.9 no accounting is made for the reduction in overlap.

4.2.2 Acvfs for digital data

The form of Equation 4.7 suggests similar formulas for digital data. Expressions
parallel to Equations 4.9 and 4.10 are

—[k|—
1
N Z XtJr‘k‘ ), |k|:0,1,,N—1 (411)
0, k| >N-—1
and
| N
d(k)=1{ N[k ; (e = X)(xerpg =%),  [K[=0,1,... . N=1 15
0, k| >N-—1
where
R
X =— Xt'
N

t=20

Similar to analog data, the coefficient 1/(N — |kl) takes into account the continual

reduction in the number of products as the lag k increases. In calculating the

coefficient in the first formula, no accounting is made for the loss of products. In

either Equations 4.11 or 4.12, the acvf is proportional to the sum of the products of a

given time series with the same time series lagged k units in time. Figure 4.2 is also a

schematic representation of this process if T is replaced by N—1, T —lul by
— Ikl — 1, x(t) by x, x(t + lul) by x; ; 4, and lul by Ikl.

4.2.3 Mean square error of acvf estimators

As given above, c(k) and ¢/(k) are formulas to use with realizations of digital data. If
we now consider c(k) and ¢’ (k) to be estimators (which are random variables) of the
population acvfy, then x;, X; 1y and X must be treated as random variables. By our
convention, upper case notation is used for random variables. Hence, sample
c(k) becomes random variable C(k), sample ¢(k) becomes random variable C'(k),
sample x, becomes random variable X, and sample X becomes random variable X.

A logical question to ask is which estimator is better to use. The answer can be
approached by comparing their mean square errors. The general expression for the
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mean square error of an estimator 0 of parameter © is given by

E[(6 — ©)] = E[{(6 — E[0]) + (E[0] — ©)}]
= Var[0] + B*(0) (4.13)

where B represents bias. Thus, the mean square error of an estimator is the sum of
the variance of the estimator about its expected value and the square of the bias.
The cross-product term is zero.

If we treat Equations 4.11 and 4.12 as estimators for the acvf and apply
Equation 4.13 to each, where C(k) or C'(k) corresponds to 6 and vy(k), the
autocovariance function for a stationary random process, corresponds to ©, the
results are

E[(C(k) — y(k))’] = Var[C(k)] + B*[C(K)] (4.14)
and
E[(C'(k) — y(k))?] = Var[C'(k)] + B*[C' (k)]. (4.15)

We first determine the bias of Equation 4.11 by taking its expectation
1 — —
E[C(k)] = E N > (X =X)(Xerp —X)|, [kl=0,1,2,...,N—1
t=0

(Xe—p) = X =) (Xeyp —w) = (X=w)| (4.16)

in which the population mean (1, has been introduced. Expanding the summation
and taking the expectation yields

[ 1 N—|k|-1
—E (X—M)m > (Xt—M)]}' (4.17)
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The comparable expression for the other choice of estimator is

E[C'(K)] = (k) + Var[X]

—E

N—[k|-1
(X - H>N——|k| Z Xy — M)]

—E

N—[k|—1
=g > m—m]. (418)

t=0

The two expectations on the right-hand sides of Equations and 4.18 are equal to
each other and when k = 0 their sum is =2 Var[X] in each equation. Thus, for k=0
and removal of the curly brackets in Equation , the sum of the last three terms on the
right-hand sides of Equations and 4.18 is —Var[X]. As Ikl increases, the sum of the
same terms will become less negative but will be always less than Var[X]. Therefore,
in general, both C'(k) and C(k) are biased. However, if N is sufficiently large, such
that X~ , the sums of the three terms will be small, resulting in

E[C(K)] ~ <1 - ;) v(K) (4.19)

and

E[C' (k)] ~ y(k). (4.20)

The corresponding bias squared terms are

SCOIR ) (21)

and

B%[C'(k)] =~ 0. (4.22)

As seen in Equation 4.19, the effect of bias is to systematically reduce the magnitude
of the expected acvf relative to the process acvf as Ikl increases. There is no
dependence of bias on lag in Equation 4.20. With the assumption of N suf-
ficiently large, C(k) and C'(k) are referred to as biased and unbiased estimators,
respectively.

At this point we’ve determined the bias squared portion of the mean square error.
Because the determination of the variance of each acvf estimator is complex, its
development is postponed until Section 4.7. In summary of that section, it is
shown that the variance ratio Var[C'(k)]/Var[C(k)] is approximately N*/(N — Ikl)?
so that the variability of the C'(k) estimator relative to that of C(k) becomes
increasingly unstable as lag k increases. It is thought that for most acvfs the
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effect of the increasing variance of C'(k) overwhelms the bias squared effect as-
sociated with C(k) (Jenkins and Watts, 1968, pp. 179—180). Consequently, we recom-
mend using Equations 4.9 or 4.11. Also, we observe that in estimating acvfs at small
values of lag, numerical differences between the two pairs of formulas will be small.

4.2.4 Acfs for analog and digital data

In parallel with Equations 4.9 and 4.10, the sample acfs for analog data are

_c(w) _ c(uw)
r(u) = ) " lu|<T (4.23)

Yu) =2 =D y|<T (4.24)

For digital data the sample acfs are

r(k)-ZEk;—CS{), k|l =0,1,2, --- (4.25)
and

iy S (k) (k) _

r'(k) = 0 s k| =0,1,2, - (4.26)

4.3 The acvf and acf for stationary digital processes

In Chapter 2, which dealt mainly with analog signals, we saw that a linear time-
invariant system consists of an input signal that is modified to produce an output
signal as expressed through the convolution integral

y(t) = JOC h(u) x(t — u) du. (2.1)

—00
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Z———w il By il ey

Figure 4.3 Input digital stationary process Z; passing through system function h; to yield
output process X:.

That the system is stable requires that the integral of the absolute system function
Ih(u)! be finite (Section 2.1). Now we replace the analog input signal x(t) in Equation
2.1 by a stationary digital process, Z;, to yield an output process, X, as shown in
Figure 4.3. We will use this notation in both this chapter and Chapter 5. In parallel
with analog data, the equivalent criterion for the output process for digital data to be
stationary again requires that the sum of the sequence of absolute weights be finite;
that is,

oo
Y ] <K<oo

t=—00

where K is a constant. For physical realizability, that is, the current output value
cannot depend on future input values, the expression for the output process is, by
analogy with Equation 2.1,

Xe = ihi Zi
i=0

=hZi+hZi o+ ... (4.27)

Taking the expectation of Equation 4.27 yields

o0 [o¢]
EX] =pux = hi E[Zi] = uy Zhi
i=0 i=0
which shows that the mean of the output process is equal to the product of the mean
of the input process and the sum of the system function weights.
By substituting Equation 4.27 into Equation 4.2 we obtain the relationship
between the acvf of the output process and the acvf of the input process

Vx (k) = E[(Xe = ty) Keic = biy)]

hi (Ze—i — ) Z by (Ze s —uz)
i=0

]2

E

M 1M -

Il
o
Il
o

hi by E[(Zewi — uy) (Zevk—j — uz)]

M 10
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In the special case when Z, is white noise, that is, E[Z,] =0 and Var[Z] =
E[th] = 0%, Equation 4.27 becomes the expression for the general linear process.
It is a stationary random process defined by

X — iy = Zhi Zisi (4.29)
i=0

in which Z; is white noise. It is referred to as a “general linear” process because it
comprises a linear combination of, potentially, an infinite number of white noise
random variables multiplied by appropriate weights to create X; with virtually any
valid statistical structure. Note that the left-hand side now represents departures
from the population mean Uy, the value of which is arbitrary. This is in contrast to
Equation 4.27, wherein the output process mean is directly related to the input
process mean. The form of Equation 4.29 simply allows the output process to have
any desired mean, with the departures from this mean determined by the zero-mean
white noise input. The acvf for white noise process Z;, as it would be applied in
Equation 4.28, is

" ) 0z, k—j+i=0 (430)
Yz(k—j+1) = 4.30
g 0, k—j+i#0

since the autocorrelation at any nonzero lag is zero for a white noise process. The acvf
for the general linear process is then

YX(k):O%Zhihi-Hk\a |k| =0,1,2,.... (431)
i=0

Equation 4.31 can be verified by substituting values of k into Equation 4.28.
Similarly, the acf is

3 hi by
gy R
el = =0 g0, (4.32)
x(0) S h2
i=0

What we have done in this section is to expand the input—output relationship for
linear systems developed in Chapter 2 to input—output stationary random processes.
Equation 4.28 shows the relationship between the output and input acvfs. When the
input process is restricted to white noise, the resulting output process is called the
general linear process. The output acvf in Equation 4.31 is the product of the white
noise variance and the sum of the products of the weights. The data model in
Equation 4.29 has many practical applications in science and econometrics. In the
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next section we derive the acvfs and acfs for two data models and apply a white noise
test to each acf.

4.4 The acvf and acf for selected processes
4.4.1 White noise

The simplest model for data is digital white noise. In Equation 4.29 let ho=1 and
h; =0 for i 0 so that

X, —u=2 (4.33)

where p is understood to be the population mean of X; (previously u,), since the
population mean of Z is zero. From Equation 4.31,

2 _ 2 —
0, =0%, k=0

1) = Blzr Zead = { | e

resulting in the acf

Yx (k) {1’ k=0 (4.34)

k) = = )

Px(k) == 0, k#0
The population acf in Equation 4.34 is plotted in Figure 4.4 along with the acf
(using Equation 4.25) from a realization of 100 white noise values (which will be
discussed in Section 4.4.4).

L e L A B A
1.0 ‘ ;
""""" white noise process
0.8 e realization
K = === 05% confidence limits
0.6
p(k) ’\
0.4 _
o F
0.2 |+ ]
—0.2F .
0 5 10 15 20
lag k

Figure 4.4 The acf p(k) for a white noise process (dashed line) and the observed acf r(k)
from a realization of 100 values of white noise for k <20 (solid line). The 95% confidence
limits are also shown.
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4.4.2 First-order autoregression

The second model selected for discussion is a first-order autoregressive process,
denoted AR(1), given by

Xi—pu=aX_; —w+7 (4.35)

where Z, is white noise as defined above and o is a constant such that lal < 1. The
current value, X;—U, is some proportion of the previous value, X,_; — U, plus a
random component. It is through o that the process and, hence, a realization of it
exhibit autocorrelation. Furthermore, o is similar to the slope coefficient in
conventional simple linear regression y=mx + b, where a corresponds to m. The
analogy to simple linear regression is complete when X;—u replaces y, X._;—u
replaces x, and Z, replaces b, except that rv X, is regressed onto itself at the previous
time step; thus the prefix “auto.” The random process defined by Equation 4.35 is
equivalent to a linear filter (see Equation 3.3) and has been found to be useful as a
data model in many fields of science because of its simple autocorrelation structure
and the capability to control the magnitude of autocorrelation with parameter a.

To find the acvf and acf of Equation 4.35 we first show that the AR(1) is a linear
process so that we can use Equations 4.31 and 4.32. By recursively solving for
X1 —w), (Xez—w), (Xi_3—w), and so on, as shown below with u=0 for conve-
nience, Equation 4.35 acquires the form of Equation 4.29. Since Equation 4.29 is a
linear process, so also is Equation 4.35.

Xy = X1 +7Z;
Xy = a(‘lxt—Z +Zi1) +Z
Xi = a(o(0Xi—3 +Zi—2) + Zi—1) + Z¢

Xt = OLOZt + U.lzt71 + (X.zzt72 + e

The recursion can be expressed by Equation 4.29 where h;=a' (i > 0). Thus, from
Equation 4.31,

vx(k) = 0% ala M
i=0

- [o.°]
— 2 ok 2
=05 o E a’.
i=0

It should be observed that, for stationarity

(4.36)

o0

> laf

i=0

must be a convergent series, thus lol < 1.
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Using Equation 4.31, an alternative form of Equation 4.36 is
Yx (k) = vx(0) al = ox al (4.37)
so that using Equation 4.32, the acf for an AR(1) process becomes
px(k) = o (4.38)
and, therefore
a = px(1). (4.39)

Furthermore, it follows from equating Equation 4.36 and Equation 4.37 and summing
an infinite geometric series that
2 2
2 0z 0z
oy = = . (4.40)
- (1-pg(1)

We see immediately that as lal approaches one, the variance of the AR(1) process will
become very large.

The acf of the X process with o= 0.75 is plotted in Figure 4.5 along with the acf
from a realization of 100 values. As in Figure 4.4, the actual values in each curve are
connected with straight-line segments. Note that in Figure 4.5 the sample acf shows
an oscillatory structure. This is characteristic of realizations of acfs when the parent
acf (that of the random process) does not rapidly damp out to zero, and occurs
because the sample acf is itself serially correlated in the lag domain.

A\ s AR(1) process ]

0.8 :‘" - realization 7

0.6 r == == 095% confidence limits (white noise) ]

pk) ]
04 -

1(k) r : ]
02 f— S PRV S ——

0.0 } ............... - A:
N e e T o=
e e ]

0 5 10 15 20

lag k

Figure 4.5 The acf p(k) foran AR(1) process with o =0.75 (dashed line) and the observed
acf r(k) for a realization of 100 values from the same process (solid line). Only acf values for
lags < 20 are shown. The 95% confidence limits for white noise are also shown.
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An alternative way to get Equations 4.37 and 4.38 is to multiply both sides
of Equation 4.35 by (X —W) and take the expectation, using Equation 4.7 as a
guide. Thus,

Yx(k) = E[(X; — ) (KXo —w)] = Ela(Xey =) Kok =) + ZiXex — W), k=1,2,....

Since the current value of white noise rv Z, is uncorrelated with past values of the
output random variables X, k=1, 2, ...,

Yx(2) = ayx(1) = a*yx(0)
Yx(3) = avx(2) = &’yx(0) (4.41)
vx(k) = allyy(0), k| =0,1,2,...,
from which the population acf is
p(l) = a
p2) =
p(3) = o’ (4.42)
p(k) = alkl, k| =0,1,2,....

An AR(1) process with positive o is sometimes called a red noise process in
comparison to a white noise process. The reason is that, as Figure 4.5 shows, the
correlation is higher at low-numbered lags than at high-numbered lags. The resulting
slowly varying fluctuations mean that the periodogram of an AR(1) process will show
greater variance at low frequencies or long wavelengths, analogous to red light
occurring at the low frequency or long wavelength end of the optical spectrum. In
comparison, there is no preferred structure in the acf for white noise (Figure 4.4) for
Ikl > 0, so that its periodogram will show no preference for variance at any frequency
in analogy to white light showing no color preference.

An AR(1) process includes the possibility of o having a negative value, although it
is difficult to imagine a physical process that has a negative lag 1 autocorrelation. If
such a process exists, we can see from Equation 4.42 that its autocorrelation function
would exhibit alternating positive values at even lags and negative values at odd lags
with their magnitudes decreasing toward zero with increasing lag. A similar regime of
alternating positive and negative values will tend to occur in an observed time series
as well.
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4.4.3 Second-order autoregression

A second-order autoregression has two regression coefficients. The first coefficient is
associated with the output variable one time-step back, as in an AR(1), and the
second coefficient is associated with the output variable two time-steps back. Thus
the equation of an AR(2) process is

Xe—w=01(Xeog — ) + 02 (X2 — 0) + Zt. (4.43)

An AR(2) is useful for modeling phenomena that exhibit quasi-periodic behavior.
While the autoregressive model can be of any order (third-order has three regression
coefficients, fourth-order has four, etc.), only the AR(1) and AR(2) appear to be
useful models for physical processes. Problems 7 and 9 at the end of this chapter ask
you to derive the variance for an AR(2) process, generate a realization, and compute
both the process acf and sample acf.

4.4.4 White noise test on an acf

The objective is to test the null hypothesis that a data set, as viewed through the acf,
comes from a population of white noise. This test is complementary to the white
noise test developed in Chapter 1 that was applied to periodogram variances. If the
null hypothesis is rejected, there is significant autocorrelation in the data set. If the
hypothesis cannot be rejected, the data set can be considered to be a realization from
a white noise or “purely” random process.

It has been shown by Anderson (1942) that for a normal white noise process the
estimator of the autocorrelation function R(k) = C(k)/C(0) has a normal distribu-
tion with variance

Var [R(K)] ~ % 0<[kl<m<N (4.44)
where N, the number of data in the realization, is moderate to large. Note, further,
that this relation applies only for lags m < N.

The short dashed lines in Figure 4.6 are £1 and £1.96 standard deviations in
which R(k), representing the estimator of the population acf, has been replaced by

r(k), the acf of a realization, since the latter would be plotted in practice. The wider
pair of limits corresponds to the a priori 95% confidence interval. The interpretation
is that there is only one chance in 20 that any randomly selected r(k) will lie outside
this interval under the white noise null hypothesis.

When Equation 4.44 is applied to Figures 4.4 and 4.5, in which the 95% confidence
limits for sample size N = 100 are +1.96/v/N = 4-0.196, the null hypothesis that the
realization in Figure 4.4 comes from a Gaussian white noise hypothesis cannot be
rejected, but the same hypothesis applied to Figure 4.5 is easily rejected, as expected.
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Figure 4.6 Schematic representation of the approximate a priori 95% confidence interval
for sample autocorrelation coefficients for white noise.

Even though only a priori limits are shown, the latter conclusion is reasonable
because 12 of the autocorrelation values lie outside the 95% confidence interval,
many more than expected by chance, and there is a systematic variation of
autocorrelation with lag.

In general, rejection or nonrejection of the white noise null hypothesis using
only the a priori confidence limits may not be as obvious when real data are
tested. Consequently, it is appropriate to develop a posteriori confidence limits
(Section 1.4.6) for a white noise test applied to a correlation function. A practical
a posteriori test can be derived from the statistical property that a % variable with m
dof can be created from the sum of the squares of m standard normal variables
(Appendix 1.C).

Consider the y* variable with one dof

,_ (Rk) —0)*

X = Var R ~ NR?(k) (4.45)

in which Equation 4.44 is the source of the standard normal variable. If we sum over
m similar chi-square variables, then, from Equation 1.C.11,

2 =N R(). (4.46)
k=1

Based on Equation 4.46, Box and Jenkins (1970, p. 291) proposed a test statistic

Q=N zm: r*(k) (4.47)

k=1

to test for randomness.
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As illustrations of using the Q-statistic, consider the computer-generated white
noise and AR(1) realizations in Figures 4.4 and 4.5, respectively, each of which have
N =100 values. Using the first m =20 values of r(k) we find

Q = 13 for white noise

and
Q = 155 for AR(1).

Employing a one-tail test (because the concern is not with observing small values
of r, but large values) with a.=5% results in nonrejection of the white noise
hypothesis applied to Figure 4.4 and rejection when applied to Figure 4.5, where
%3o(1 — @) = 30.1 The reason for using 19 dof is that the sample mean was used
in estimating R(k). In general, whether one uses m or m — 1 dof will have
little consequence if m is at least as large as 20. Ljung and Box (1978) discuss a
modified version of the Q-statistic that provides a better test for cases of small
sample size.

4.5 Statistical formulas

In introductory texts in statistics, the formula we usually see for the variance of the
mean of rv X is

0x = 0—54.
XTN

In this formula N is the number of independent data or degrees of freedom (dof)
used in calculating the mean. The greater the sample size, the smaller the variance of
the mean relative to the variance of the population random variable. Also,
introductory texts in statistics usually do not analyze variables that are ordered
in time or space, a situation for which the assumption of independent data is often
unrealistic. We know from experience that when physical data are collected in time
or space, they are typically serially correlated and, therefore, not independent.
Dependence or correlation in a time series can substantially increase the variance of
the mean relative to assuming independent data. The goal of the next section is to
derive the formula for the variance of the estimator for the sample mean when the
data are serially correlated. The formula will show us the connection between
the number of independent data or degrees of freedom in a realization and the
amount of serial correlation present. Then we will determine formulas for
unbiased estimators of the mean and variance of a realization in relation to its
serial correlation.
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4.5.1 Variance of the mean

Consider the running mean process in which

N-1

- 1

Xt - E N thi. (448)
i=0

We can link Equation 4.48 to Equation 4.27 by replacing rv X, with rv X; and rv Z,_;
with rv X_;, where

0, i<O0
1
hh=<—, 0<i<N-1
N
0, i>N-1

and apply Equation 4.28 to obtain

i ih hy vy (k —j+1). (4.49)

i=0 j=0

For k=0 (and a stationary process),

(4.50)

If we consider a plane delineated by orthogonal axes i and j, the double summation is
over the area outlined in Figure 4.7 by the limits of the summations. Since yx is
constant along any diagonal (i—j=m), the double sum reduces to the single sum

Var[X] =

S (N m)(m)

;Z N — m) vy (m )1 (4.51)

Now that we’ve lost connection to the k notation in Equation 4.49 in developing the
above relation, we can revert back to its previous use of being identified with lag
number. Thus,

Var[X] =

;NZN K) py(k ] (4.52)
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Figure 4.7 Region covered by the double summation in Equation 4.50.

We see that the variance of the mean is given by the product of the variance of the
mean for independent data and a scale factor that accounts for their lack of
independence. The scale factor is one when the autocorrelation function is every-
where zero for all lags greater than zero. We can preserve the form of the traditional
expression for the variance of the mean by introducing a new term N, that we will call
the effective or equivalent dof and rewrite Equation 4.52 as

2 _
0z =1 (4.53)

where
~1

N. = NZN K)pg(K) | . (4.54)

Z\N

The divisor in Equation 4.54 is always greater than or equal to one so that N. <N.
The greater the autocorrelation in a realization, the smaller N. is relative to N and the
fewer the number of independent data. Fewer independent data (equivalent dof)
result in a wider distribution of mean values among realizations.

Equation 4.54 shows the link between number of data, N, in a realization and the
equivalent dof, N.. The link is the autocorrelation function px(k) of the random
process. Unfortunately, it is never known except in modeling studies or simulations.
Therefore, in practice, one option is to approximate px (k) with r,(k) as determined
from a realization. Another option is to fit a smooth curve, say ri(k), to the observed
r«(k) with the constraint that r}(0) = 1. If physical considerations provide some
insight as to an appropriate r(k), so much the better.



204 CH 4 AUTOCORRELATION

4.5.2 Mean and variance

To refresh our understanding of the population mean and population variance, we
can return to Figure 4.1. When we take the expectation of random variable X(t) for a
stationary process, we get E[X(t)] = u, which is obtained by averaging vertically at
any time t across all members of the population of time series. For stationary data, [ is
independent of time. Similarly, if we want the population variance, we average
the square of the departures from W, again, vertically across all members of the
population; that is, Var[X(t)] = E[(X(t) - u)z]. Although Figure 4.1 strictly applies
to analog data, the discussion above applies equally well to digital data.

In practice, however, we are confronted with estimating these population
measures from a single, or perhaps a few, time series. Nevertheless, we would like
to develop a formula for estimating the population mean and population variance
using estimators that, in the expected sense, will be unbiased in the presence of
autocorrelated data. This is where we begin.

For autocorrelated data, the estimator for the population mean is the same as for
uncorrelated data. That is,

1N

X = NZ X; (4.55)

where N is the number of data. Taking the expectation of Equation 4.55 yields
E [K] = E[X;] = u and, consequently, the usual estimator for the mean is unbiased.
Consider the following estimator for the population variance:

1 -
== (X-X" (4.56)
N
To determine if Equation 4.56 is biased, we take its expected value

> X -X)?.

i=1

E[s] = %E (4.57)

The summation can be written

N N

Z(Xi -X) = Z(X1 —u—X+p)?’

i=1 i=1
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which reduces to

(X - X)* = > (Xi—w' - N(X- w)’. (4.58)

1 i=1

N
i=

The expected values of the terms on the right side of Equation 4.58 are No% and
NoZ = Nog /N, respectively. Thus, Equation 4.57 becomes

1 N
E[$?] = — ( Nog — — o3
57 = (Nok - ok
N, — 1
N, (4.59)

Therefore, Equation 4.56 is a biased estimator. However, from Equation 4.59 we can
rewrite estimator Equation 4.56 in an unbiased form as

52— % (NeNj 1) i (X — X)°. (4.60)

i=1

This shows that Equation 4.56 is biased on two accounts. In the first place, even if the
data were uncorrelated (N.=N), the unbiased estimator would be

o EN: (X, — X)°. (4.61)

i=1

The effect of the coefficient 1/(N—1) in Equation 4.61 relative to the coefficient
1/N in Equation 4.55 is to increase the sample variance. This is necessary because
the use of X constrains the variability of the sum of squares relative to the sum of
squares if L were used. Remember that X is derived from X;, whereas this is not the
case when u is known. When N is large, the effect of not accounting for the loss of
one degree of freedom is small, which implies that X~ u. We’ve used this
argument in Section 4.2.3 to find the bias squared portion of the mean square
error of the acvf estimators and will use it again in section 4.7 to find the variance
of the acvf estimator portion.

Secondly, when the data are autocorrelated, the variability of the sum of
squares is further constrained. Adjacent values in a time series, and hence the
mean, vary less the greater the autocorrelation for a given population variance.
This reduction is compensated for by N./(N.—1) in Equation 4.60 with respect to
N/(N-1) for the case of uncorrelated data. It is through adjustment of the
coefficient of the sum of squares term that improved estimates of the population
variance are achieved.
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We now have three formulas to apply when want to find the mean and variance of
a realization denoted by x;, i=1, ..., N. The sample mean is

1 N
X==3 x. (4.62)
Ni:l

The sample variance is

N
@=L (N (xi —%)? (4.63)
NANe — 1/ &
which reduces to
R 5
2 _ Z =
S = ﬁ (Xl X) (464)

when the data are uncorrelated.

4.6 Confidence limits for the population mean

Given a data set or realization from which we are trying to gain some insight about
the properties of the population time series from which it came, a natural question to
ask is, “How representative is the sample mean of the population mean?” Confidence
limits for the population mean can be determined from the data set itself. Qual-
itatively speaking, if the confidence interval is wide, as defined by the confidence
limits, the observed mean can be very different than the population mean; if the
confidence interval is narrow, the opposite is true. To understand the procedure for
obtaining the confidence limits, we consider two computer generated data sets: a
realization of white noise and a realization of an AR(1) process. The acf of the process
from which the former time series was taken is everywhere zero except at lag 0, while
the acfassociated with the latter process is everywhere nonzero. We will see the effect
of autocorrelation on the width of the confidence interval.

4.6.1 Example of white noise

Let rv X represent normally distributed white noise with standard deviation ox and
mean (1. Then the distribution of X, the estimator for the mean, given by

1
X:Nin (4.55)
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is also normal. We can create a standard normal variable Z according to

_X—u
-

V4 (4.65)

and rewrite Equation 4.65 as
X = Zog +u. (4.66)

Therefore, the expression for the (1—-a)% confidence interval applied to the
distribution function for X is

Pr{Z(%) og+u <X < Z(l - %) o + u} —1-a (4.67)

where a is the level of significance.
Equation 4.67 can be rearranged to yield the (1—0a)% confidence interval on p
such that

Pr{X—Z(1 —%)oi < ugi—z(%) g} —1-a (4.68)

The corresponding (1—a)% confidence limits are

X+2(1- %) o5 (4.69)

where, in practice, X is replaced by sample mean X, and oy by sample standard
deviation sz.

Figure 4.8 shows a normal white noise realization generated from Equation 4.33
with Xy = Z; + . That is

Xy = Z¢ + W, t=12,...,N (4.70)

6
g sk s2 = 0.998
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Figure 4.8 A realization of a sequence of 100 values of Gaussian white noise showing
the sample mean and variance and the 95% confidence limits for the population mean
(dashed lines).
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in which a random number generator was used to create samples of white noise from
a normal distribution with zero population mean and unit variance so that ox =
0z=1. Appendix 4.A discusses a method to create a realization of normal white
noise. The population mean of X; was set to u=2.5. Using the formula

7@2(1 —%)s; (4.71)

iiZ(l —%)sx/\/hﬁ (4.72)

with N =100, s, =0.999, and a0 = 0.05, the 95% confidence limits on the population
mean [ are

2.551 £ 1.960 x 0.999/9.950 = 2.551 & 0.197

or 2.354 and 2.748, as shown also in Figure 4.8. For this particular realization, both
the sample mean and sample variance are very close to their population values.
Strictly speaking, a Student’s #-distribution should have been used instead of a
normal distribution because the population variance was estimated. However, since
the number of dofislarge (N — 1 =99), the resulting error in the confidence limits for
w is negligible. There was a loss of one dof due to using the sample mean in calculating
s, (you can also review the explanation following Equation 4.61). As is apparent in
this example, the loss of one dof could have been ignored with no significant
consequence.

4.6.2 Example of a first-order autoregression

Equation 4.35 written in the form X, = a(X_; —u) + Z; + W is the source of data in
this example. The form for creating a realization is

Xy = (X1 — W) + 7+ U (4.73)

To initiate the autoregression, let x; =z; + W, then let x, =o(x;—W) + z, + W,
x3=0a(x,—W) + z3 + WU, and so on. The realization is driven by generating samples
of white noise from a normal distribution with zero population mean and unit
variance as in the example above. The difference here is that, in addition, an
autoregression has to be generated. Figure 4.9 shows a realization of an AR(1) with
a=p(1)=0.90, w=2.5, and 0z =1. In fact, the time series shown in the figure
begins at t=25 in the data generation procedure, the reason being the need to
minimize the “beginning effect.” The meaning of this term is that the value x, is in
error because there is no x,. The error propagates forward in time but decreases with
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Figure 4.9 A realization of a sequence of 100 values of a first-order autoregressive process
with p(1) = 0.9 showing the sample mean and variance and the 95% confidence limits for the
population mean (dashed lines).

each time step. Momentarily, we will see that starting the realization to be used at
t=25 is conservative.

We can easily see the difference between a time series that has zero autocorrelation
and one that has high autocorrelation. The white noise has closely spaced (in time)
ups and downs, while the autocorrelated data show large persistent swings in high
values and low values, and only occasional rapid changes in value. The sample mean
X =2.88 and sample variance s> = 2.49. The latter figure is considerably less than
the population value 0% = 5.26 calculated from Equation 4.40. We will find out later
(Section 4.7.3) that, statistically, the observed variance is reasonable given the
population variance and lag 1 correlation.

The procedure to establish the confidence limits for the population mean for white
noise in the previous example was straightforward, the reason being that the
realization comprised independent data. The equivalent dof, N, was equal to
the number of data, N. In this example N, is less than N. We can no longer use
N as in Equation 4.72. To find N, we begin by expanding the summation term in the
brackets in Equation 4.54 for an AR(1) process to get

N 2=
— =14 —k)pk(1
N LT Nl;(N )px(1)
N-1 2 N-1
= 142> pk(1) —=> kpk(1). (4.74)
k=1 Nk:l

Through further expansion, the first summation is a finite geometric series that
results in
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Expansion of the second summation results in

2N71 Kk _ 2 N+1 N pX(l)_ngrz(l)
7ﬁl;kpx(1)— L (1) = px (1) + N

(4.76)

If N is sufficiently large and px(1) is somewhat less than one, terms with exponents
of N, N + 1, and N + 2 will be small. Within these constraints, Equations 4.75
and 4.76 become, respectively,

ko L 2px(1)
zkz P = 5 (4.77)
and
25 Koy~ 2 px(1)
_NI;kpX(l) ~ _N—(l o DF (4.78)

With N large, the summation in Equation 4.78 is small compared to the summation
in Equation 4.77 so that Equation 4.74 becomes

N 2px(1
RPN px(1)

N T o (4.79)

or, more usefully, the estimated equivalent dof for an AR(1) is

1- px(1)>

T+ (1) (4.80)

Ne%N<

and, from Equation 4.53, the variance of the mean is

=Xl

o2 (4.81)

Using Equation 4.23, we find the lag 1 autocorrelation for the realization to
be r,(1) =0.77 in comparison to the population value px(1) = a =0.90. Replacing
p(1) by r (1) in Equation 4.80 to obtain an estimate of the equivalent dof in the

sample yields
1-0.77
Ne = 100( ————
1+0.77

~ 13. (4.82)
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Thus, among the 100 data points there are effectively only 13 independent “pieces of
information.” Another way to express this result is that only about every eighth point
is essentially uncorrelated. Using, again, 1, in place of px in Equation 4.42 we have
r,(8) =1,.5(1) = (0.77)® = 0.12. Apparently, when the autocorrelation drops to about
0.12 in an AR(1) process, another effective dof is created. That we waited until time
t=25 to begin the actual realization shown in Figure 4.9 is reasonable, as the
“beginning effect” should be negligible. Note, however, that the number of data
points required before the beginning effect becomes negligible is directly related to
the degree of autocorrelation present.

Because the effective dof, N, is so small, a Student’s t-distribution must be used in
calculating confidence limits. In parallel with Equation 4.72, the formula for the
confidence limits on the population mean W is

X+ t(l —%)sx/\/m (4.83)

in which the loss of one dofis due to using the sample mean in calculating s, just as in
the example of white noise. Therefore, the 95% confidence limits are

2.88 +2.18 x 1.58/v/12 = 2.88 £ 0.99

or 1.89 and 3.87. The much wider confidence interval in this example than in the
white noise example reflects the many fewer degrees of freedom used in estimating
the population mean, |, and population variance, 0%, that, in turn, are a consequence
of autocorrelation in the data. As a general statement, we can say that for time
series with the same population or sample variance, the greater the serial correlation,
the wider the (1-0a)% confidence interval for the population mean about the
sample mean.

4.7 Variance of the acvf and acf estimators
4.7.1 Derivation

In Section 4.2.3 we studied the bias squared portion of the mean square error of the
acvf estimators C(k) and C'(k). We concluded that, in anticipation of the results of
this section, the preferred estimator for the acvf is the biased estimator C(k) because
of the smaller mean square error with increasing lag. In this section we derive
expressions for the variance of the biased and unbiased acvf estimators, use them to
find the variance of the acvf and acf estimators for white noise and a first-order
autoregression, and then consider an example of each. To make the derivations
tractable we consider the case in which the population mean pux = 0. In addition, we
assume the number of data, N, in a realization is sufficiently large that the
distribution of rv X is narrow enough that any value in the distribution is
approximately zero. With these conditions, only the first term on the right-hand
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sides of Equations and 4.18 contributes significantly to the expectation on the left-
hand side.
For C(k) we have

Var[C(k)] = E[(C(k) — E[C(k)])’]

= [(cao - (5 vw) ]
— EC3(K)] - (N‘T'k')zﬂk) (4.54)

where C(k) is the biased acvf estimator and N is the number of data in a realization.
Expanding the first term on the right yields

lNkl L Nk

Z XXlﬂk\— Z XiXi 4 ||

N—|k|—1 N—|k|—1

N2 > Y E[XXi XX ). (4.85)
i=0  j=0

As shown in Bendat and Piersol (1966, p. 94), the expectation of the product of four
random variables that follow a four-dimensional normal distribution with possibly
different nonzero means is given by

E[X,XoXsXa] = E[X1Xa] E[X5Xa] + E[X1X5] E[X2Xa]
E[XiX4] E[X;Xs] — 2uy, Uy, Uy, My, - (4.86)

Therefore, for our case with all means being zero

E[C*(k)] = % > 2 {BXiXi 4 ] EXXj 4 ]
+ EXXj) E[Xiy X ) +EXiXj g ] EXivwXl}  (4.87)
and
| Nkl NZJK -1
VarlC)] = > > {v0)+v’(—i)+v(+k—)v(—k-1}

_ (N = |k|)2Y2(k)- wss)
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Similarly, the variance of the unbiased estimator is

Var[C'(k)] = Z Z (VW) +v(—D)+vi+k—i)y(—k—i)}
- Yz(k)~ (4.89)

Equations 4.88 and 4.89 are the equations for the variance of the biased and unbiased
acvf estimators, respectively, for any stationary normal random process, and require
knowledge of the process acvf. In comparing the two variances, we can see that as |kl
increases, their ratio Var[C'(k)]/Var[C(k)] will also increase, indicating the increas-
ing variability of estimator C' (k) relative to estimator C(k). To repeat the conclusion
in Section 4.2.3, “It is thought that for most acvfs the effect of increasing variance of
C'(k) overwhelms the bias squared effect associated with C(k) (Jenkins and
Watts, 1968, pp. 179-180).” The result was our recommendation to use the biased
estimator C(k).

Now let us consider the case when k = 0 wherein Equations 4.88 and 4.89 reduce to

Var[C(0)] = Var[C'(0 Z Z (j—1) (4.90)

The procedure following Equation 4.50 can be applied to Equation 4.90 to yield the
variance of the variance of a stationary random process, namely

Var[$3] = ﬁz 2 (k) (4.91)

which parallels the variance of the mean given by Equation 4.52.

4.7.2 White noise
For white noise and for Ikl > 0, both y*(k) and the product y(j + k—1) y(j—k—1) in
Equations 4.88 and 4.89 are always zero. Thus, for the biased acvf estimator

| Nlk1 Nk

Var|C N2 Z Z e G—1)

in which the argument of the double summation is nonzero only when i=j. This
reduces to

K,
N2 X

Var[C(k)] = N (4.92)
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while for the unbiased estimator

1

Var[C'(k)] = N[k Ox-

(4.93)
Note that the variance of C(k) decreases with increasing lag while the variance of
C'(k) increases with increasing lag. However, if |kl < N then

4

Var[C(K)] ~ Var[C'(k)] ~ % 0 < [k| < N. (4.94)

By dividing C(k) and C'(k) by y(0) = 0%, the variance of the acf estimator becomes
1

Var[R(k)] ~ Var[R' (k)] ~ N 0 < k] < N. (4.95)

It should be remarked that if the sample mean had been used in the derivation, the
variance of the acf and acvf estimators would be somewhat larger than those given
due to the added variability of the sample mean. The procedures to find the variance
of the acvf estimator when the sample mean is used and the variance of the acf
estimator when it is standardized with C(0) are very complex. The problem has been
attacked by Anderson (1942) using a circular acf, which is a consequence of
considering periodic processes. His results were cited in Section 4.4.4.

For white noise, p%(k > 0) = 0 in Equation 4.91, so that

20%

Var[S] = WX (4.96)

If we generate white noise with population variance 0%, the sample variance should
reasonably lie within two standard deviations about the population variance, so that

from Equation 4.96
(1 —24/2/N)o% < s < (14+24/2/N)o%.

Let’s see if this is true for the white noise example in Section 4.6.1 and shown in
Figure 4.8. In that example, 0)2( =1 and N =100, so the limits of two standard
deviations about the population variance are 1+ 0.28 or 0.72 and 1.28. Since the
observe variance si =0.998, it is clearly within these limits. In fact, it is well within
one standard deviation of the population variance.

4.7.3 First-order autoregression

A procedure similar to that beginning with Equation 4.74 can be followed to show
that for a first-order autoregressive process, Equation 4.91 reduces to

2o (1]

27
VarlS A~ =)

(4.97)
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Equation 4.97 shows that, as expected, the more autocorrelated the data, the more
variable are estimates of the process variance for a given N. This is because as the
serial correlation increases the degrees of freedom (dof) decrease.

We apply Equation 4.97 to the example of a first-order autoregression in
Section 4.6.2 and shown in Figure 4.9. As in the white noise example above,
we should reasonably expect the observed variance s> =2.49 to lie within two
standard deviations about the population variance 0% = 5.26. From Equation 4.97
these limits are

1+ p3(1)]"
526+2 2/N X 5.26 X [1)2((1)} =52640.28 x 5.26 X 3.09 = 0.71 and 9.80
— Px

in which N=100 and px(1) =0.9. The observed variance is well within two
standard deviations of 0%. The respective limits for one standard deviation are
2.98 and 7.54, so we see that s’ lies between the lower one and two standard
deviation limits. Thus the variance of the realization is consistent with the
population variance and lag 1 autocorrelation.

Appendix 4.A Generating a normal random variable

Let X;, X,, X3, ..., X, be a sequence of n independently and identically distributed
(iid) random variables each having expectation W and variance o°. If we form the
sumrv S=X; + X, + -+ + X,, the central limit theorem tells us that the distri-
bution of rv

S—nu
Z:
oyn

approaches the standard normal distribution N(0,1) as n tends to oo. N(0,1) is a
Gaussian or normal distribution with zero mean and unit variance. The denom-
inator on the right-hand side of Equation 4.A.1 is a consequence of iid; that is, the
variance of S is n times the variance of each rv or Var [S] =no™.

To specify a population variance v* other than unit variance, scale (i.e., multiply)
the right-hand side of Equation 4.A.1 by v, the standard deviation. To specify a
population mean d other than zero, add the desired mean to the right-hand side of
Equation 4.A.1. To change both the population mean and variance of Equation 4.A.1
from zero and one to d and v?, respectively, rewrite Equation 4.A.1 as

(4.A.1)

_ S—nu
=~vm

Equation 4.A.2 approaches the normal distribution N(d, v*) as n tends to oo.

Z*

v+d. (4.A.2)
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Now consider an application of Equation 4.A.1. Let us say we have n = 50 random
variables, X;, X;, ..., X5, each having a uniform distribution between zero and one.
Practically any computer that can be used for scientific purposes has a command to
generate a random number from a uniform distribution. We withdraw a sample
from each of the 50 distributions and add them to create a sample of the sum rv S.
Then, following Equation 4.A.1, we calculate a sample of rv

-2
7->-2 (4.A.3)

\/50/12

Numerical values 25 and 12 on the right-hand side of Equation 4.A.3 were obtained
from the statistical properties of a uniform distribution. The mean is (a + b)/2,
where a is its lower limit and b its upper limit, and the variance is (b—a)*/12. In
Equation 4.A.3, b=1 and a=0. The derivation of the variance of a uniform
distribution was problem 7 in Chapter 1.

Random variable Z has an approximate normal distribution with expected value
zero and expected variance one. From Equation 4.A.3 we see that by computing
successive samples of S and then Z we can simulate a normal time series. The actual
distribution of Z will have a mean different from zero (or d, if Equation 4.A.2 is used)
and a variance different from one (or v*, if Equation 4.A.2 is used). The larger n is,
on average, the closer the mean and variance will be to their expected values.

A respectable normal distribution can be obtained from a uniform distribution
with n as small as 12. An improved normal distribution can be obtained using n = 25
and greater. Of course, the tails of the distribution will always be truncated.

Problems

1 (a) Show that the variance of the sum of two independent random variables
X and Y is equal to the sum of the variances of the individual random
variables.

(b) Based on your answer for two random variables X and Y, can a more
general statement be made? If so, what is it?

2 (a) Using the biased estimator (i.e., where the coefficient is 1/N), calculate
the sample acvf at lag 3 of the mini-time series given by

X1:3 X2:7 X3:9 X4:5 X5:2 X6:—2

(b) Calculate the sample autocorrelation function at lag 3.
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3 Show that the coefficient o in the AR(1) process
Xe =ty = a(Xem1 — Uy) +Z

is identical to the value of the population autocorrelation function of the
process at lag 1.

4 (a) Given the sequence of six random numbers z, shown below from a
normal distribution N(0, s*), generate a sample sequence of x,, of an
AR(1) process where r(1) =0.5.

n Zn Xn
0 1
1 3
2 —1
3 2
4 -3
5 -2

(b) What is the earliest time step, n’, at which it would be reasonable to say
that the “beginning effect” is negligible? Explain your choice.

5 Derive the formula for the variance of the AR(1) process
Xe — ux = a(Xeo1 — py) +Z

6 (a) Whatis the equation for the population acvf for a stationary time series
using the expectation operator? Define each quantity.

(b) Write down the same equation except for a nonstationary time series
and explain why they are different.

7 Show that the variance of the AR(2) process
Xe — iy = o1 (Xemr — fy) + 02 (Xez — ux) +Z

in which

Yx(k) = aryx(k = 1) +apyg(k—2), k>1

can be given by

0y
1+a '
1— (03]

Include any explanations that will clarify your derivation.

2 _
Ox =
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8 Write a computer program to compute the sample acvf using the formula

N—[k|

(k) = (1/N) Y " (¢ = %) (xes 1 — %), k=0,%1,42,...

t=1

9 In this problem you will explore the acvf and acf for an analytical
function and realizations from three different random processes. For
each series in parts (a)—(d) below, compute the acvf and acf for a series
100 points long with a maximum lag of 25 points. For parts (c) and (d),
generate 50 to 100 points to stabilize the process before obtaining the
sample data set.

A sinusoid given by
A, cos(2nfirAt+ ¢,) + B,

where ¢, #0, B, is a nonzero constant, f; =m/(100At) where 4 <m
<20,andr=0,1,2,...,99.

A white noise process given by
Xt - Zt

where Z, is Gaussian white noise with E[Z,] =0 and Var[Z,] =0} = 4.
[Note that Z; should be an independent sequence for each realization in

(b), (c), and (d).]
An AR(1) process given by

Xi = oy Xe1 + 274

where Z; is as defined in (b) and, in general, 0 <0, < 1. For this
particular case, use 0.5 <0, <1 in order to easily observe the auto-
correlation in the data.

An AR(2) process given by
Xy = o X1 + X o +Z;

where Z, is as defined in (b), a; = 0.5, and a, =-0.7.

Plot the data sets in (a)—(d). On each plot use a solid line to show the
time series, a dashed line to show the sample mean, and a dotted line to
show the population mean. Also, on each plot show the numerical
values of the sample and population means and variances.
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(f) Plot the sample acf (solid line) and the population acf (dashed line)
out to lag 25 for each of the four time series, with one sample acf and
the associated population acf per graph. For time series (a), assume
the “population” acf can be represented by an infinite continuous
sinusoid of the form described. For time series (d), the population
acf is given by

_ RMsin(2nfok + )

sing,

p(k)

where
R =,/—a
cos(2mfy) = |oy|/(2R)

1+R?
tand)o = |:li>1{2:| tal’l(ZJTfo)

(g) Forthedatain (a), explain how the shape of the acf would have changed
if 1/(N —1kl) had been used instead of 1/N in its formula.

(h) Decide whether the sample mean you calculated for (b) is “reasonable”
by determining the 95% confidence interval for the sample mean.

(i) Decide whether the sample variance you calculated for (b) is
“reasonable” by determining the 95% confidence interval for the
sample variance. Use Equation 4.96 and assume that the sample
variances have a Gaussian distribution.

10 Give three examples of nonmeteorological time series and identify whether
those series would likely be stationary or nonstationary and why.

11 Consider the estimator for the mean given by

N

X=(1/N)> X,

n=1

(a) Given thatu = E[X], show that the above is an unbiased estimator of the
population mean p for the X-stationary random process in which the
random variables X, are independent.

(b) How, if it all, would the above estimator for the mean change if the
random variables X,, were dependent?

(c) How, if it all, would the above estimator for the mean change if the
random variables X,, were nonstationary?
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12 Let us say that we have fitted a zero mean AR(1) process
Xy = aXi—y +7Z;

to a realization of data comprising 500 hPa heights. Notation is
standard and a is positive. We then wish to use this stochastic model
to forecast values of X at times t + 1, t + 2, and so on, where t is the
current time. Thus,

Xt(l) - U.Xt

Xt(Z) - O(Xt(l) — OLZXt

where the karat (A) indicates the forecast. The successive forecast
errors are given by

ei(1) = X(1) = Xiq1 = 0Xy — X4
e(2) = X¢(2) — Xes2 = 02X — Xeg2
et(3) = Xt(?’) —Xiy3 = X — Xi+3

(a) Show that the error variance for the k-th forecast step ahead is
Varfe (k)] = (1 — o) o}

(b) Does the error variance increase or decrease with increasing k?

(c) What is the limiting value of the error variance as k increases indef-
initely? Why is this so?

(d) Show that

Covlec(k), er(k+1)] = a1 — a®*) oy

(e) Are the errors associated with the forecasts serially correlated?

(f) What is the limiting value of the error covariance as k increases
indefinitely? Why is this so?

(g) Is the time series of errors stationary or nonstationary? Explain.
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Lagged-product spectrum
analysis

5.1 The variance density spectrum

A periodogram vyields a high-resolution spectrum of the variance in a time series.
For some physical situations a periodogram is exactly what is needed to identify
periodicities that are thought to exist. An example is the daily cycle of temperature
that was studied in Chapters 1 and 3. In other situations, a physical phenomenon
may have considerable variation from one occurrence to the next. An example is the
time series of surface wind speed associated with Chinooks (USA) or Foehns
(Europe). The periodograms of wind speed from successive events may be very
noisy-looking, such that it is difficult to draw any conclusion of the general structure
of the variance of wind speed versus frequency. For this kind of situation there are
three options to consider. One is to smooth each periodogram by applying a running
average of harmonic variances as was done in Section 1.4.5. Another is to average an
ensemble of event spectra harmonic-by-harmonic, similar to the procedure in
Section 1.5.3. The third is to obtain inherently smooth spectra of the events through
lagged-product spectrum analysis. In this approach, the spectrum is the Fourier
transform of the autocovariance function (comprising lagged products) that was
derived in Chapter 4. The spectrum that results from the lagged-product method is
called a variance density spectrum because it has units associated with variance per
unit bandwidth. Common dimensions of bandwidth are cycles or radians per unit of
time. As we know, the periodogram has units of variance only.

The issue, though, is not variance or variance density versus frequency but the
degree of smoothing in either type of spectrum. The lagged-product method can
offer “instant” smoothing via Fourier transformation of the autocovariance function

Time Series Analysis in Meteorology and Climatology: An Introduction, First Edition. Claude Duchon and Robert Hale.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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(acvf). This happens in two ways. In the first way, simply truncating the acvfat some
lag less than (N — 1) and Fourier transforming the truncated acvf to the frequency
domain produces a spectrum that is smoother than a periodogram of the same data
set. Truncating an acvf is equivalent to multiplying the complete acvf by a
rectangular window. The narrower the window the smoother the spectrum. As
we learned in Section 2.4 (see Figure 2.7), the Fourier transform of a rectangular
function is a diffraction function with positive and negative side lobes. Recalling
that Fourier transformation of multiplication in the time domain leads to
convolution in the frequency domain, the smoothing that occurs in the variance
density spectrum will include the undesirable effects of the negative and positive
side lobes. To suppress these effects, instead of multiplying the complete acvf by a
rectangular window, some other window with a more gradual approach from zero
lag to the positive and negative lag where the window has zero value can be applied.
The result is an “improved” smooth variance density spectrum. The last section of
this chapter deals with a cosine window (as opposed to a rectangular window) and
the consequent effects on smoothing of the variance density spectrum.

Another reason to choose the lagged-product method instead of the periodogram
method is because in certain problems the autocovariance (or autocorrelation)
function plays a significant role and has to be computed anyway. For example, in
turbulence theory, the “Lagrangian integral time scale” (Tennekes and Lumley, 1972,
p- 46), a measure of the time a variable such as wind speed is correlated with itself, is
obtained by integration of the autocorrelation function. If this is an important
quantity to know, and if there is further interest in the spectrum of turbulence, which
is usually the case, it is then a simple matter to Fourier transform the acvf to obtain
the spectrum of turbulence. Alternatively, one might be given a spectrum and wish
to know the time (or space) correlation structure of the signal that produced it.
This requires back-transforming the variance density spectrum to get the acvf.

We now provide more detail to the procedure involved in lagged-product
spectrum analysis. The first step is to multiply the raw or unwindowed acvf by a
lag window to yield a windowed acvf. Then the windowed acvf is Fourier transformed
to the frequency domain to yield the smoothed spectrum. This is the procedure shown
in Figure 5.1a. Equivalently, the smoothed spectrum can be viewed as the convo-
lution of the Fourier transform of the unwindowed or raw acvf with the Fourier
transform of the lag window. The result of the former transformation is the
unsmoothed or raw spectrum; the result of the latter transformation is the spectrum
window. This procedure is shown in Figure 5.1b. Thus it is necessary to distinguish
between a raw (or unwindowed) acvf and a windowed acvf and a raw (or
unsmoothed) spectrum and a smoothed spectrum. A number of lag windows have
been designed to effect a varying degree of spectrum smoothing. The smoothing
is usually done to the acvf (as in Figure 5.1a) rather than to the raw spectrum (as
in Figure 5.1b) simply as a matter of convenience.

From a theoretical viewpoint, a variance density spectrum is required when the
underlying process for some geophysical phenomenon is continuous in time and
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(@)
unwindowed
or raw acvf
multipli- windowed Fourier smoothed
cation acvf transform spectrum
lag window
(®)
. . unsmoothed
unwmdow:d Fourlfer oF raw
Or raw acv transform spectrum
convo- smoothed
lution spectrum
. Fourier spectrum
lag window .
transform window

Figure 5.1 (a) The smoothed spectrum via the Fourier transform of the windowed acvf.
(b) The same smoothed spectrum via convolution of the spectrum window with the
unsmoothed or raw spectrum.

aperiodic, which is typically the case. Then the spectrum perforce must be contin-
uous in frequency, with its relationship to the acvf given by

+00
I'(f) = J v(u) exp(—i2 wtfu) du (5.1)
where I'(f) and y(u) are the population variance density spectrum and population
acvf, respectively. The inverse Fourier transform is

+00
y(u) = J I'(f) exp(i2 stfu) df. (5.2)
—00

The Fourier transform pair comprising Equation 5.1 and Equation 5.2 is known
as the Wiener—Khintchine relation (Koopmans, 1974, pp. 33-34). In consideration
of the dimensions associated with u and y(u) in Equation 5.1 it is evident that I'(f)
must have dimensions associated with variance per unit bandwidth, that is, variance
density. To compute variance it is necessary to integrate over some bandwidth. This
is analogous to the familiar probability density function from which probability is
obtained by integrating over some specified range of the independent variable.
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Equations 5.1 and 5.2 provide the motivation for the next section. Instead of
dealing with integrals and analog data, we will deal with summations and digital data
to find the relation between the variance density spectrum and the autocovariance
function. As a preliminary step, we recall the Fourier variance spectrum (Equa-
tion 1.69) and divide it by the separation between harmonic frequencies, that is,
bandwidth 1/(NAt), to obtain

S'(f) x S'(f)

0 == Nan

—1/(2At) < f < 1/(2A¢) (5.3)

where N is the number of data, At the sampling interval, S'(f) the complex Fourier

amplitude coefficient at frequency f, and S'(f) its conjugate. The purpose of the
primes on the right-hand side of Equation 1.69 was to indicate a two-sided spectrum
because of the need to distinguish between two-sided and one-sided spectra in
Chapter 1. Since all the mathematical development in this chapter is involved with
two-sided spectra, we can dispense with use of a prime attached to C(f) in
Equation 5.3 and at the same time create unique notation for a variance density
spectrum. While C(f) is an ordinary mathematical variable in Equation 5.3, in
Section 5.3 we will consider C(f) to be also a random variable. This will enable us to
understand certain properties of variance density spectra for random processes, the
results of which we will use in Section 5.4.

Equation 5.3 shows that a variance density spectrum and a variance spectrum
differ by the term for the bandwidth, 1/(NAt). To obtain the total variance in
spectrum C(f), products of C(f;)) and the frequency separation f;,; —f;=Af;
between adjacent estimates need to be summed over the range in frequency
— 1/(2At) to 1/(2At), that is, the principal part of the aliased spectrum. In short,
numerical integration must be performed.

5.2 Relationship between the variance density spectrum
and the acvf

In this section we derive the relationship between the variance density spectrum and
the autocovariance function. The derivation begins by substituting Equation 1.65
and its complex conjugate into Equation 5.3 to obtain

N— N—-1

At/N Z 12:rtant § :an e—iann’At’

n=0 n=0

—1/(2At) < f < 1/(2A1) (5.4)
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where x,, and x,y are, for ease in the derivation, departures from the sample mean.
Rearranging Equation 5.4 leads to

Z
Z

-1
C(f) = (At/N) Xy Xp € 2T AL (5.5)
0n=0

n’

=]
Il

Figure 5.2 shows the area of summation. Diagonals from the lower left to the
upper right represent lines for which n’ — n =k where k is a constant. Such lines
contain the products in an acvf calculation for lag k. Thus, by employing the
coordinate transformation k=n'-n and m =n, k becomes lag number and m is
the number of products for a given lag. The result of the transformation is that
products along a diagonal line in Figure 5.2 become products along a horizontal
line in Figure 5.3. For example, products along the main diagonal (corner C to
corner B) in Figure 5.2 become the same products along the horizontal line k=0
(corner C to corner B) in Figure 5.3. Products in diagonal lines above the main
diagonal in Figure 5.2 become products in horizontal lines above k=0 in
Figure 5.3, and, similarly, products in diagonal lines below the main diagonal
in Figure 5.2 become products in horizontal lines below k =0 in Figure 5.3. Thus,
Equation 5.5 can be written

Cf) = (A/N) D ) Xinpsc X e 27HAC (5.6)

k m

n
“A B
O,N-1) | (N-1, N-1)
cl-- o202l |D
- 1N
0.0 (N-1,0)

Figure 5.2 The area of summation in Equation 5.5.
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Figure 5.3 Transformation of Figure 5.2 to provide the two summations in Equation 5.7.

The specific limits are determined from Figure 5.3, which shows the field of
products, now in the k, m coordinate system. We have

N-1 [ Nkl A
C(f) = At E = E ik X | e 2 TRAL
(f) 2 \xN Xm+k Xm | €

m=0

—1 N-1
1 —i2 kAt
+ At Z (N Z xm+kxm> e ) (57)

k=—(N-1) m=—k

The first term on the right-hand side is the sum over the upper part of Figure 5.3 and
the second term is the sum over the lower part. The quantities inside the parentheses
are biased autocovariance functions. That is, in accord with Equation 4.11 and
recalling that we are dealing with departures from the sample mean,

lN—k—l
N Xmik Xm = ¢(k) =c(—k), k=0,1, ..., N—1
m=0
and
=
N Xm+k Xm = ¢(k) = ¢(=k), k=-(N-1), — (N —-2), , —1



5.2 RELATIONSHIP BETWEEN THE VARIANCE DENSITY SPECTRUM AND THE ACVF 229

so that

C(f) = At Ni:l c(k) e~ 12 kAL —1/(2At) < f < 1/(2At).  (5.8)

Equation 5.8 shows the relation between the variance density spectrum and the
acvf. We can expand Equation 5.8 to take advantage of the fact that the acvfis an even
function, thereby leading to

N-1
C(f)=At Y c(k) cos(2mfkAt)
k=—(N-1)

— At ) (5.9)

c(0) + ZI\fc(k) cos(2mtfkAt)
k=1

Equation 5.9 is an appropriate formula to calculate an analog variance density
spectrum from an autocovariance function. We can go one step further and calculate
a periodogram from Equation 5.9 by letting f = m/(NAt) and multiplying both sides
by 1/(NAt). The result is

C/

1
=— . 5.10

c(0) +2 sz c(k) cos(2tkm/N)
k=1

Equation 5.10 will yield the same periodogram variances as in Equation 1.63 for a
two-sided periodogram using Fourier coefficients. Recall that the amplitude A, of
the harmonic at m=0 is the mean of the time series. Consequently, there is
no variance at this harmonic; that is, C; = 0. By setting m =0 in Equation 5.10
we see that the sum of c(k) over its entire range, that is, from — (N —1) to (N — 1),
must be zero. The proof involves rearranging the terms in the acvf to form sums of
deviations of the data from the sample mean, each sum being zero. This is another
interesting exercise for the reader to consider. In summary, we see that just as the
Fourier transform of the acvf results in a variance density spectrum, with a simple
modification, we also can obtain a periodogram.

Equation 5.8 is one member of the Fourier transform pair between an analog
variance density spectrum and an acvf. We anticipate the other half to be

1/(2A0) _
q@:J C(F) 2 A gF k| < N — 1. (5.11)
~1/(2A0)

Verification is given in Appendix 5.A. In practice, we are unable to perform the
integration required in Equation 5.11, so that if we wish to obtain the acvf from the
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spectrum (i.e., compute the inverse or back transform of the spectrum) we need to
use summation instead of integration. Appendix 5.B shows that we can obtain the
acvf by applying a Fourier transform to the spectrum derived from the fully-lagged
acvf. Thus,

1 N ,
k) = — fn i2 wf kAt 12
W)= m D Clhe (5.12)

where f, =n/(2NAt). We observe that there are 2N frequencies and the separation
between frequencies is 1/(2NAt), one-half that we might have expected.

In summary, there is a strong parallel between periodogram analysis and Equa-
tions 5.8 and 5.12. The acvf c(k) can be thought of as a “time series,” so that its Fourier
transformation yields its spectral decomposition. The acvf contains squared and
cross-product terms and its Fourier transform leads to a variance density spectrum.
In periodogram analysis, the Fourier transform of a time series of data leads to a
Fourier amplitude spectrum. The product of the amplitude spectrum and its complex
conjugate yields a variance spectrum, as was demonstrated in Chapter 1.

5.3 Spectra of random processes
5.3.1 Population spectrum

As stated in Section 5.1, we now treat C(f) as a random variable. Furthermore, we
consider the upper-case version of c(k), namely C(k), to also be a random variable.
This allows us to take the expectation of Equation 5.8, yielding

E[C(f)] = At E[C(k)] e~ 12kt

e—12 J'kaAt’

= At Bl D Ky — X) (X —X)

—1/(2At) < f < 1/(2At). (5.13)

Using Equation 4.17, we have the result that

ElC(H)] = At Y <1_§|> (100 + Var[X]) e 2t
)

k=—(N-1
N—1 N [k|—1

k;] Z{ (X =) Xegpg — )]

t=

FE[(X = ) (X — w)] } o i2afkAT (5.14)
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Thus the expected spectrum is itself a function of the number of data N. This is
true even if the unbiased acvf estimator had been used. The definition of the
population spectrum requires taking the limit of an increasing number of data.
Accordingly,

[(f) = lim E[C(f)] = At > k) e AL 1/(2AL) < f < 1/(2A1).
e k=—-0
(5.15)
The inverse Fourier transform is
/(2At) )
y(k) = J [(f) e?™Adf k=0,4£1,42.... (5.16)
—1/(2At)

Equations 5.15 and 5.16 are the digital equivalent of the Wiener—Khintchine
relations (Equations 5.1 and 5.2). Both the analog and digital forms require record
lengths that tend to infinity to obtain the population spectrum.

5.3.2 Spectra of linear processes

In Chapter 4 we showed that

k):ii hm hy, vz (k —n + m) (4.28)

relates the acvf yx(k) of output process X to the acvf yz(k) of input process Z, after
the latter passes through a linear filter with weights or weight function hy,.
Substituting Equation 4.28 into Equation 5.15 yields

= io: [iZh hnYZ _n+m) —i2 ik At
k=—-00o |m=0n
— At mz::oh 12 nfmAt z::oh e —i2 wfnAt k;OCYZ —n+ m) —i2 7t (k—n-+m)At

(5.17)

which reduces to

2

Ix(f) = Ty(f) . —1/QAY) <f<1/2A1).  (5.18)

00

§ :h e—ianmAt
m

m=0
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Equation 5.18 shows that the input and output spectra of a linear filter are related
to each other through the modulus squared of the Fourier transform of the weight
function hy,. Applying Equation 3.14, we get

Ix(f) = T,(f) [HE)P, —1/(At) < f < 1/(2A¢). (5.19)

H(f) is the impulse or frequency response function originally defined in
Section 2.6. The square of its modulus is appropriately called the variance
transfer function in that it describes the transfer of variance from the input
spectrum of a random process that passes through a linear filter to the output
spectrum.

Now consider the general linear process discussed in Section 4.3 in which the input
process is white noise. From Equation 4.30 yz (k —n + m) =0 for all values of the
argument, except when k =n — m, in which case y,(0) = 0% and

I'x(f) = Atz [H(f)[?, —1/(2At) < f < 1/(2At). (5.20)

I'x(f) in Equation 5.20 is the variance density spectrum for a general linear
process. The variance transfer function serves to shape the output spectrum given an
input spectrum that is uniform with frequency. The output spectrum is a conse-
quence of the weight function applied to the white noise input.

5.4 Spectra of selected processes
5.4.1 White noise

In Section 4.4.1 we found that for the case of white noise, hy = 1 and all other weights
are zero. Therefore, IH(f)I* in Equation 5.20 has unit value and the variance density
spectrum is

Ix(f) = Atoj, —1/(2At) <f < 1/(2A¢). (5.21)

Integration of Equation 5.21 over the entire frequency range of the spectrum yields
the population variance, 0%.

5.4.2 First-order autoregression

The formula for a first-order autoregression or AR(1) was given in Section 4.4.2 as

Xe—u=a(Xe1 — W) +Z (5.22)
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but by expanding backward in time it can be written also in the form of the
nonrecursive filter (Equation 3.5)

m=0

where h,,= o™, m > 0.
Now let us introduce a complex sinusoid

7, = e12 nftAt (5.24)

in place of Z, in Equation 5.22. Observe that subscript t is a time increment counter
and, as such, is dimensionless. Firstly, consider Equation 5.22 to be, temporarily, the
working formula for calculating a realization, in which case the notation would be
lower case. Then, think of z, to be any sinusoidal component of the white noise input.
How its output amplitude changes as a consequence of the recursive filter is a
function only of frequency.

From Equation 5.23, the output is

[.°]
X — U= Z hyy el (t-m)AL (5.25)
m=0
Expanding Equation 5.25 yields

00
X — W= e12 nftAt § : hy, e—12 wfmAt
m=0

or
X — W = e2MAUH(f) (5.26)

where H(f), as noted earlier, is the impulse or frequency response function from
Equation 3.14.
The result of substituting Equation 5.26 into Equation 5.22 is

H(f) [eiz aftAt 0(eiZJ'tf(t—l)At} — ei2nftAt (5.27)
or
1
H(f) - 1 — e i2@fAt’ (5'28)
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In line with previous statements, we can think of the white noise process Z, as being
comprised of sinusoids, so that Equation 5.28 provides the response at any
frequency f. Therefore, from Equation 5.20, the variance density spectrum for an
AR(1) process is

Ato?
Ix(f) = [ (5.29)
or
Ato?
Ix(f) = %z “1QAY) < £ < 1/QAY).  (5.30)

[1+ a2 — 20 cos(2nfAt)]’

An example of a variance density spectrum for an AR(1) process is given in
Section 5.4.4.

5.4.3 Second-order autoregression

The equation for the second-order autoregression or AR(2) process was given in
Section 4.4.3 and is

XT. - M - al(Xt_l - “‘) + O(z(Xt_z - M) + Zt' (531)

As shown by Jenkins and Watts (1968, p. 228), for an AR(2) process

1
H(f) = 1 — o e AT _ ) e—i47fAC (5.32)

with the result that from Equation 5.20 its variance density spectrum is

_ AtoZ
1+ a2 + a3 — 20, (1 — ay) cos(2mfAt) — 20, cos(4nfAt)’ (5.33)

I(f)

~1/(2A1) < £ < 1/(2A1).

Obtaining Equation 5.33 is a rewarding exercise and the last of seven we have
recommended to enhance your understanding of various equations and other
developments that have been presented throughout this book.

In problem 5 at the end of this chapter you are asked to compute the population
variance density spectrum of an AR(2) process and the sample variance density
spectrum of the realization of an AR(2) process you computed in problem 9
of Chapter 4.
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5.4.4 An example of first-order autoregression

For the example in this section, we return to Figure 4.9, which shows a realization of
an AR(1) process with p(1) =0.9. Our goal is to compute and interpret the variance
density spectrum of this highly serially correlated time series. The first step toward
this goal is to calculate the sample acvf using Equation 4.11, the result of which is the
heavy solid line in Figure 5.4. We observe a strong peak around 40 lag units. If we
mentally fit a smooth curve to the time series in Figure 4.9, we see peaks at point 0
and in the neighborhood of points 40 and 80, and troughs in between. This
oscillation is accounted for in the acvf by the peak around k=40 (peak-to-peak
distance in the time series) and the trough around k = 20 (trough-to-peak or peak-
to-trough distance). Similarly, the trough in the acvf around 55 corresponds to the
peak in the time series around point 0 and the trough around point 55 and the peak
around point 40 and trough around point 95. There seems to be more than one
oscillation in the times series. You may recall from problem 9 in Chapter 4 that the
acvf of a time series that is a sinusoid is itself a sinusoid with the same period as in
the time series.

We can compare the observed acvf discussed above with the population acf
scaled to the variance of the realization. The dashed line in Figure 5.4 is the acf for
the AR(1) process, Equation 4.42, multiplied by the variance of the realization or

pX(1) x 2.4652

where k is lag number. While we would not have expected the shape of the observed
acvf to match the shape of the scaled population acf, it is surprising how unrelated
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Figure 5.4 Heavy solid line: observed acvf of the realization of 100 values from an AR(1)
process shown in Figure 4.9 where p(1) = 0.9. Dashed line: population acf p(k) multiplied by
acvf(0) = 2.4652. Light solid line: observed acvf multiplied by the Tukey lag window with
maximum lag equal to 60.
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Figure 5.5 The heavy line shows the variance density spectrum (variance/(cycles/data
interval)) of the raw or unwindowed acvf in Figure 5.4. The light line shows the population
variance density spectrum from Equation 5.30.

they are. From experience, it appears that the greater the population autocorre-
lation p(1), the greater the potential for a sample acvf to substantially deviate from
the population acvf.

The heavy line in Figure 5.5 is the variance density spectrum of the time series in
Figure 4.9 computed using Equation 5.9 multiplied by two to provide a folded
spectrum. Stated differently, the spectrum is one sided and contains all the variance
in the times series. The strong peak in Figure 5.5 occurs at 0.0275 cycles/data interval,
which is equivalent to a data length of 36 units, which is in accord with both the time
series in Figure 4.9 and the acvfin Figure 5.4. In addition, the spectrum exhibits other
nearby peaks but lesser in magnitude, in agreement with the acvf.

We can compare also the sample variance density spectrum to its population
spectrum given by Equation 5.30 and shown in Figure 5.5 by the light line. As with the
sample and population acvfs, there is considerable disparity between the sample and
population spectra. The area under the curve of the former spectrum is 2.4652, while
that under the latter spectrum is 5.2632. The variance in the realization is less than
one-half the population variance.

5.5 Smoothing the spectrum

In Section 5.1 we discussed the lagged product approach to smoothing “noisy-
looking” periodograms and in Figure 5.1 showed two ways to achieve this. The
procedure described in Figure 5.1a is the easier of the two. In this method, we
multiply the computed acvf (referred to as unwindowed or raw) by a lag window to
obtain a windowed acvf. The Fourier transform of the windowed acvf produces a
smoothed spectrum. The smoothing procedure is discussed in this section.
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As a first step we list desirable properties of the lag window, denoted by w(k).
They are:

(1) w(0) = 1. Because the total variance in a realization occurs at zero lag in the acvf,
this property preserves the total variance.
(2) w(=k) =w(k). This property results in a spectrum window that is real only.

(3) w(lkl) decreases smoothly as Ikl increases. This property helps to keep side lobes
of the spectrum window small. As we saw in Section 3.4.1, the spectral
decomposition of a rectangular function produced the Gibbs oscillation.

(4) w(lkl) becomes zero at some lag [kl < N. Apart from the shape of the lag
window the maximum lag also controls the degree of smoothing of the raw
spectrum.

From Equations 5.8 and 5.11, we conclude that the lag window and spectrum
window form a Fourier transform pair such that

W(f) = At EM: w(k) e 2TAL 1 /(2A1) < f < 1/(2At) (5.34)

where M < N and

1/(2At) )
w(k) = J W(E) ™A GE [k < M. (5.35)
~1/(2A0)

To satisfy property (1) of the lag window, that is, w(0) =1, we see from
Equation 5.35 it is required that

1/(2A1)
J W(E) df = 1. (5.36)
—1/(2At)

From Figure 5.1a, the Fourier transform pair for smoothed spectra is
C(f) = At Y wik)c(k)e ™A —1/QA) <f<1/2A1) (537
k=-M

and

1/(2A0) _
w(k) c(k) :J i, &0 2TAGE (k| < M (5.38)
- t
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which can be written also as

C(f) = At c(o)+zzM:w(k) () cos(2nfkAD) |, —1/(2A0) < £ < 1/(2A0)
k=1
(5.39)
and
wi(k) c(k)ZZMl DI i Y (5.40)
n=-(M-1)

where f,=n/(2MAt). Equation 5.40 follows from Appendix 5.B in which N is
replaced by M.

An example of a lag window that possesses the desirable properties given
earlier is

1
w(k) = E[cos(ﬂ:k/M) +1], k<M (5.41)

0, k| > M

and is called the cosine window or Tukey window (after John W. Tukey,
19152000, a famous mathematician). It is the same as the von Hann filter that
was discussed in Section 3.2.3, and its Fourier transform (Jenkins and Watts,
1968, p. 252) is

sin(2tfMALt) 1

W(f) = MAt X ,
(£) 2nfMAt 1 — (2fMAt)?

~1/(2At) < f < 1/(2A¢).
(5.42)

To understand the effect of spectrum smoothing, we can apply the Tukey window
to the acvf in Figure 5.4 with, say, a maximum lag M of 60. The result is the light
solid line in Figure 5.4. There is not much noticeable smoothing of the complete acvf
until lag 10, after which the acvf is increasingly damped up to lag 60, where it
becomes zero. The results of substituting the product of c(k) and w(k) from
Equation 5.41 into Equation 5.39 and carrying out the computations are shown in
Figure 5.6 by the heavy line. As in Figure 5.5 the variance density spectrum in
Equation 5.39 has been folded. For comparison, the light line shows the raw or
unwindowed spectrum from Figure 5.5. Also, to provide greater separation between
curves, the resolution of the vertical axis has been doubled relative to that in
Figure 5.5. We observe immediately the smoothing effect of multiplying the acvf
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Figure 5.6 The heavy line shows the variance density spectrum of the windowed acvf in
Figure 5.4. For reference, the light line shows the unwindowed variance density spectrum
in Figure 5.5. Note that the vertical scale here has twice the resolution of that in
Figure 5.5.

by the Tukey window before transformation (or the convolution of Equation 5.42
with the light line). The principal peak has been almost halved and the adjacent
peaks and troughs almost completely smoothed. The area under each curve (or
variance) is identical.

We can easily surmise that had we selected a smaller maximum lag M, say 30,
there would have been even more smoothing. In practice, the amount of smoothing
one should apply is somewhat arbitrary. If we think of a spectrum comprised of signal
plus noise, the goal would be to design a spectrum window that smooths the spectrum
in such a way that the noise is reduced but the primary features of the spectrum
are preserved. Another approach might be that we wish to smooth the sample
spectrum so that it better characterizes the population spectrum. Unfortunately,
we practically never know the underlying spectrum. Even if we thought we did, we
would conclude from the example just studied that there can be great divergence
between the population and sample variance density spectra. A lengthy discussion
of spectrum smoothing can be found in Jenkins and Watts (1968, pp. 274-284).

Appendix 5.A Proof of Equation 5.11
The goal of Appendix 5.A is to prove that

1/(2At) .
c(k) = J C(f) ™A Gf, k| < N — 1. (5.11)
~1/AY)
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We begin with Equation 5.8:
(N-1) _
CH)=At > clk)e ™M —1/2At) <f < 1/(2At). (5.8)

k=—(N-1)

Now substitute Equation 5.8 into Equation 5.11 and interchange the order of
summation and integration. The result is

c(k)

—1/(2At n=—(N-1)

1/(2At) (N-1) ' _
J At Z c(n) e—12 nfnAt e12 nfkAt df
)

N-1 1/(2At)
(n> J ei2 af (k—n)At df
—1/(2At)

| |
M 2
& &
a o

2

N-1 1/(2A0)
J cos[2mf(k — n)At] df
- 1/(2A0)
- sin[27tf (k — n)At
A
>, Atcln) 27k — At

~1/(2A1)

|

O
—~

=]
~

>
o~
=1

The function 8y, is the Kronecker delta in which
I, k=n
Orn = .
{ 0, k#n
Appendix 5.B Proof of Equation 5.12

The goal of Appendix 5.B is to prove that

1 N .
k)= — fn i2 wf kAt 12
W =g S Cli)e (5.12)
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where the summation is over the frequencies f,=n/(2NAt). Notice that the
frequency spacing is one-half the usual spacing associated with a periodogram of
length N. At these frequencies we have, from Equation 5.8,

N-1
Clfa) =At Y c(k)e 2k (5.B.1)
k=—(N-1)

Now substitute Equation 5.B.1 into Equation 5.12 and interchange the order of
summation. The result is

1 N N—-1 i )
C(k) — Z At Z C(p) e—12nfnpAt e12nfnkAt
2NAtnzf(Nfl) p=—(N-1) ]
_At i zN: g9
- c(p) oo
NAL SRy =R |
1 N-—-1
[ C(P) eirr(kfp)n/N
2 p=—(N-1) n=—(N-1)
LN ei(k—p)/(2N) sin[rt(k — p)] k+p
N sinf(k— p)/ (2N)]
p:7<N71) 2N k — p

=c(k), sincesin[rt(k — p)]is zero for the case of k # p. QED.

The penultimate equation is obtained using Equation 1.B.4 for the sum of complex
exponentials.

Problems

1 List two reasons why one might wish to compute a variance density spectrum
of a time series via the autocovariance function as opposed to computing a
periodogram.

2 List the four desirable properties of a lag window and explain why each is
important.

3 We derived the equation
Tx(f) = [H(f)[* Tz(f)

where H(f) is called the frequency response function.
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(a) What is IH(f)I? called?

(b) If the variance density spectrum I'z(f) is white noise, write down the
equation for I'x(f) in terms of the variance of the white noise process.

(¢) The equation for H(f) for an AR(1) process is H(f) =1/[1-ax
exp(—i2mfAt)]. Derive the equation for I'x(f) for an AR(1) process
reduced to its most utilitarian form.

Write a computer program that will compute a smoothed variance density
spectrum using the formula

C(f) = 2At|c(0) + 2Mz_lw(k) c(k) cos(2mfkAt) [, 0 <f <1/(2At)
k=1

where the notation is as usual.

In order to test the correctness of your spectrum, include in your program
the computation of the total variance from all the positive frequencies in
the spectrum and show that the total variance in the spectrum is equal to the
variance computed directly from the data. Insumming the spectrum variance,
make sure that you use a one-half bandwidth at f =0 and f= 1/(2At).

(a) Using the program you developed in problem 4, compute the sample
variance density spectrum for each of the four time series described in
Problem 9 of Chapter 4, using the same maximum lag and the Tukey lag
window. Let At=1 s and compute spectral estimates at increments in
frequency of 0.005 Hz.

(b) Plot the one-sided (total variance) sample spectrum and population
mean spectrum for each of the four time series on linear axes. For the
analytic sinusoidal time series the “population” mean spectrum would
be a delta function at the appropriate frequency with the appropriate
area. Put the sample and population mean spectra for each time series
on one graph so that they can be easily compared and include the
respective total variances on each graph.

(c) Forthe AR(1)and AR(2) cases, verify that the population mean variance
computed directly from the process (square the process formula and
take its expectation) is the same as the variance in the population mean
spectrum that you plotted in (b).

(d) Discuss each sample spectrum in relation to the associated time series.
For example, is its form or shape in agreement with the structure of the
time series?

(e) Discuss each sample spectrum in relation to the population mean
spectrum. For example, is it essentially coincident with the population
mean spectrum or are there substantial departures?
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206-8
184-5

acfs for analog and digital
data 192
acvfs for analog and digital
data 188-9
mean square error of acvf
estimators 189-92
selected processes
first-order autoregression
196-8
second-order autoregression
199
white noise 195
white noise test 199-201
statistical formulas 201
mean and variance 204-6
variance of the mean 202-3
variance of acvf and acf estimators
derivation 211-13
first-order
autoregression 214-15
white noise 213-14
autocorrelation function (acf) 184
properties 186
variance of estimators
derivation 211-13
first-order
autoregression 214-15
white noise 213-14
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autocovariance function (acvf) 184
analog data  188-9
digital data 189
variance of estimators
derivation 211-13
first-order
autoregression 214-15
white noise 213-14
mean square error of
estimators 189-92
relationship with variance density
spectrum 226-30
selected processes
first-order autoregression
196-8
second-order autoregression
white noise 195

199

146, 169-72
146
208-9, 211

band-pass filter
band-stop filter
beginning effect
cardinal interpolation formula 137
chi-square variable 23
chi-square distribution 32
circular autocovariance function
(acvf) 214
complex conjugate 71
complex exponentials, sum of 86
complex numbers 71-2
confidence intervals 33-5
convolution integral 103
evaluation 104
first-order linear system
106-10
interpretation 1046
physical realizability 110
Fourier transform 128-30
convolution of two running mean
filters 173-6
cosine filter 155-6
cosine window 238
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covariability 26
covariance 26
expectation 31

degrees of freedom (dof) 201
delta function 113-18
design response function
deterministic data sets 24

160

difference filter 156-8
diffraction function 113, 114,
136, 137
digital data
autocorrelation 187

autocovariance function 189
formulas 192

digital record, finite 4, 5

digital record, infinite 6
Dirac delta function see delta function
discrete Fourier transform pairs 73

effective degrees of freedom (dof)
203
equivalent degrees of freedom
(dof) 203
estimator 90-1
expectation 23, 27
analog data 30
covariance 31
digital data 27-30

filtering data 143
commonly used digital nonrecursive
filters 150-1

cosine filter 155-6
difference filter 156-8
running mean filter 1514
triangular filter 154

filter design 15961

Lanczos filtering 161
application 167-72
mathematical

development 162—4
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results 1657
low-pass, high-pass, and band-pass
filters 145-7
preserving/removing mean value of
time series 147-50
recursive and nonrecursive
filtering 144
analog data 144
digital data 144-5
relationship between low-pass and
high-pass filters 158-9
finite analog record 4,5
finite digital record 4,5
finite time series
preserving/removing mean
value 149-50
folding frequency 49
Fourier analysis 1-2
analysis and synthesis
amplitude and phase
representation 13-14
formulas 6-8
Fourier coefficients 8-13
total and harmonic variances 13
example data sets
hourly temperatures
paradrop days 18-20
rectangular signal
periodogram 21-3
terrain heights 14-18
further topics 47-8
aliasing, spectrum folding and
Nyquist frequency 48-54
complex representation 6974
padding data with zeroes 77-82
periodic signal detection
59-65
periodic signal detection, effect of
data length 65-9
spectrum at nonharmonic
frequencies 74-7
spectrum windows

20-1

54-9, 92-3

overview
amplitude coefficients 2
classification of time series 4-6
periodogram derivation 3—4
periodogram statistical
properties 23
concepts and terminology
23-7
confidence intervals 33-5
distribution of variance at a
harmonic 32-3
expectation 27-31
smoothed periodogram  35-8
testing white noise null
hypothesis 38-47
Fourier line variance spectrum 3
Fourier transform pairs 69-70
Fourier transform pairs, digital 73

frequency response function 122-3,
131
first-order linear system 123-6
integration 126-8

fundamental period 2

gain 122

gain factor 122

gain function 122, 131

Gaussian white noise 26-7

general linear process 194

generalized functions 113

Gibbs (oscillation) phenomenon
162, 163, 165-7

161,

harmonic analysis see Fourier analysis
harmonic frequencies 2

harmonic variance 13, 86-91
high-pass filter 146-7, 169

hourly air temperatures Lanczos

filtering 167-72
hourly air temperatures Fourier
analysis 20-1

hydrograph 183
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ideal filter 146
ideal interpolation formula 132-7
ideal interpolation function 137
imaginary part of a complex
number 71
impulse function 118-19
impulse response function 119
independent variables 31
infinite analog record 5-6
preserving/removing mean
value 148
infinite digital record 6
preserving/removing mean
value 149
infinite Dirac comb 133
integrating device 1268

joint probability density function 31

lag 186

lag window 224

lagged-product spectrum analysis
first-order autoregression 232—4
first-order autoregression

example 235-6

linear processes 231-2
population spectrum  230-1

relationship between variance density

spectrum and acvf 226-30
second-order autoregression 234
spectrum smoothing 236-9
variance density spectrum 223-6
white noise 232

Lagrangian integral time scale 224

Lanczos filtering 161
application 167-72
mathematical development
results 165-7

I'Hopital’s rule 10, 86, 113

linear process spectra 231-2

linear systems 101
definition 103

1624
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convolution integral 104
first-order linear system 106-10
Fourier transform 128-30
interpretation 104-6
physical realizability 110

Fourier transforms for analog

data 110-12
frequency response function
122-3
first-order linear system
integration 1268

ideal interpolation formula

in series 130-2

input—output relationships

special input functions 118

123-6

132-7

102-4

impulse function 118-19
step function 120-2
low-pass filter 145-7, 168-9

mathematical system 101

nondeterministic data 24, 26
nonrecursive filtering 144
analog data 144
commonly used digital filters
150-1
cosine filter
difference filter
running mean filter
triangular filter 154
digital data 144-5
low-pass, high-pass, and band-pass

155-6
156-8
151-4

filters 145-7
preserving/removing mean
value 147-50

relationship between low-pass and
high-pass filters 158-9
nonstationary process 26, 184

Nyquist frequency 49, 135, 137, 158

orthogonality of cosine and sine
functions 8
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padding data with zeroes 77-82
paradrop days Fourier analysis
periodic components in data 1
periodogram analysis see Fourier
analysis
periodograms
definition 3-4
concepts and terminology
confidence intervals 33-5
distribution of variance at a
harmonic 32-3
rectangular signal 21-3
smoothed periodogram  35-8
testing white noise null
hypothesis 38-47
phase function 122, 131
phase shift 122, 131
physical realizability
physical system 101
polar form of a complex number
population of data sets 24
principal part of aliased spectrum 52

18-20

23-7

109, 110

72

probability density 112

probability density function (pdf) 24,
26, 30

probability density function (pdf),
joint 31

probability distribution (pd) 24, 26

raised-cosine filter 155-6

random data 24

random process 25

random variable (rv) 24
generation 215-16
real part of a complex number 71
realization of a population 24, 25
records
finite analog 4, 5
finite digital 4,5
infinite analog 5-6
infinite digital 6

recursive filtering 144

analog data 144
digital data 144-5
red noise 198

reflection (mathematical)

running mean filter 151-4
convolution of two filters

running mean of length n 35-6

serial correlation 183
sigma factor 161, 162, 164, 165
smoothed weight function 163
spectrum, definition 3
spectrum smoothing 236-9
spectrum windows 54-9, 224
stable system 103—4
stationary process 26

acvf and acf for digital data
step function 120-2
stochastic data 24
stochastic process
superposition 103
symmetric weight function 37
system function 102

25

terrain heights Fourier analysis
time constant 108
time lag 186
time series
classification 4-6
definition 1
total variance 7, 13
transition band 163
translation (mathematical)
triangular filter 154, 173-6
response function derivation
trigonometric form of a complex
number 72
Tukey window 238-9
unit impulse function 118
unit step function 120
unwindowed acvf 224
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192-5

14-18

104-6
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variance 3
harmonic 7, 13
total 7,13

variance density spectrum 5, 223-6

relationship with acvf 226-30
variance transfer function 232
von Hann filter 155-6, 238

weight function 143
white noise 23, 26
acf test  199-201
acvf and acf 195
confidence limits for population
mean 206-8
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lagged-product spectrum
analysis 232
testing null hypothesis 38-42
mean autumn temperature
example 42-4
mean monthly temperature
example 44-7
variance of acvf and acf
estimators 213-14
Whittaker’s sampling formula
137
Wiener—Khintchine relation
225, 231
windowed acvf 224



