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Preface

This volume includes some selected contributions from the conference Trends in
Logic XI, which was held on 3–5 June 2012 at Ruhr University Bochum. The topic
of the conference was Advances in Philosophical Logic, and indeed all the con-
tributions (more than 80) proved to share two important features. First, they placed
themselves in the methodology and topics that philosophical logic has developed
in the last 20 years. Second, they pushed this methodology further: they attempted
(quite successfully, in our opinion) at a solution to problems that indeed emerged
from the last years of research on philosophical logic and widened the scope of
application of philosophical logic to new topics and problems.

The conference proved an occasion for stimulating discussions, intellectual
exchange, comparing and merging different views, reflecting on established
methodology, and revealing perspectives on new directions. Also, it proved an
incredible source of research outputs and results, which call for the livelihood of
philosophical logic and the research in the area.

Eight out of the 12 invited papers were recently collected in Studia Logica’s
special issue Advances in Philosophical Logic. In this volume, we present a
selection of the contributed papers. All of them show the high quality of current
research on philosophical logic and prove a good example of the interesting
directions philosophical logic may take today. Last but not least, they seem to be
persuasive proof that there is progress in something philosophical. Even if we
confine to the latter, that is not a bad achievement at all! We are sure that the
papers collected here will give the reader a flavor of the lively and stimulating
atmosphere that the contributors and participants impressed at the conference.

Finally, we thank the Ruhr University Bochum, Alexander von Humboldt
Foundation, Deutsche Vereinigung für Mathematische Logik und für Grundla-
genforschung der exakten Wissenschaften (DVMLG), and Gesellschaft für Ana-
lytische Philosophie (GAP). Also, we thank Judith Hecker, Andrea Kruse, Lisa
Dierksmeier, and Tobias Koch for their assistance in the organization of Trends in
Logic XI.

Bochum, June 2013 Roberto Ciuni
Heinrich Wansing

Dresden Caroline Willkommen
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Semantic Defectiveness: A Dissolution
of Semantic Pathology

Bradley Armour-Garb and James A. Woodbridge

Abstract The Liar Paradox and its kin appear to show that there is something wrong
with—something pathological about—certain firmly held principles or beliefs. It is
our view that these appearances are deceiving. In this paper, we provide both a diag-
nosis and a treatment of apparent semantic pathology, explaining these appearances
without semantic or logical compromise.

Keywords Truth · Falsity · Liar Paradox · Semantic pathology · Pretense · Defla-
tionism ·Meaninglessness · Truth-conditions ·Anaphora · Truth teller ·Open pair ·
Yablo’s paradox · Understanding · Revenge problems · Pathology · T-schema ·
Curry’s Paradox · Logical values

1 Introduction

The Liar Paradox and its kin appear to show that there is something wrong with—
something pathological about—certain firmly held principles, or beliefs, that are
either semantic, regarding the proper treatment of our aletheic predicates, or logical,
regarding certain (and usually fairly entrenched) patterns of reasoning. In general,
a diagnosis will attempt to reveal the semantic or logical principles, or beliefs, that
give rise to the impending pathology, and a treatment will involve a modification of
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2 B. Armour-Garb and J. A. Woodbridge

those principles, or beliefs, which avoids the clearly unacceptable conclusions that
the principles, or beliefs, tend to yield.1

It is our view that these appearances are deceiving. Although there are certain
firmly held principles or beliefs that appear to give rise to impending semantic (or
logical) pathology—a condition that threatens to manifest itself in a resultant incon-
sistency or indeterminacy—in fact, there is no such pathology. In this paper, we
provide both a diagnosis and a treatment of apparent semantic pathology, explaining
these appearances away without semantic or logical compromise.

2 Pretense and Meaninglessness

The starting point for our dissolving diagnosis of the putative cases of semantic
pathology is our pretense account of “truth-talk”,2 a central aspect of which is
that truth-talk (which includes the use of the falsity-predicate, as well as the truth-
predicate) functions quasi-anaphorically, as a device of content-inheritance. But
since this central aspect can be (and has been) postulated independently of a pre-
tense account,3 our proposed diagnosis of putative semantic pathology should be
available to some other accounts of truth-talk (e.g., many deflationary accounts4).

The best-known instance of apparent semantic pathology is the Liar Paradox,
so we will begin with this case. Our approach to the Liar Paradox is a version
of the “meaningless strategy”, according to which liar sentences lack content in a
certain sense.5 This status, and the reasons it applies, is what dissolves the apparent
pathology of liar sentences, by blocking the threatening resultant inconsistency from
ever manifesting. Given our pretense-based approach to truth, we do not hold that
the content of any sentence is constituted by, or is explained in terms of, its truth-
conditions. But we do maintain that there is an important sense of content that a
sentence can have that involves the sentence specifying objective, worldly conditions
that can obtain or not. We call such conditions, M-conditions. Truth-conditions are
related to M-conditions, in some respects, but the former have only a thin, derivative
status, as conditions for the appropriate application of the truth-predicate. On our
view, the truth-conditions for a sentence are a by-product of its meaning, of which
M-conditions are a significant component. This is in line with the meaning-to-truth
conditional schema,

(MTC) If S means that p, then S is true iff p,

no instance of which we reject.

1 See Chihara [10] on the notions of diagnosis and treatment for semantic pathology.
2 The original version of the pretense account appears inWoodbridge [23]. For the current, improved
version, see our [5, 8].
3 See [9, 15], for explicitly anaphoric accounts.
4 For instance, in addition to the accounts cited in Footnote 2, see the deflationary accounts given
in [11, 18]. For a general account of deflationary accounts of truth, see Armour-Garb [3].
5 See [1, 6, 12, 13] for discussion of the meaningless strategy in dealing with the Liar Paradox.
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Now, while a sentence like

(1) Snow is white,

specifies M-conditions directly, others specify M-conditions only indirectly. Indeed,
one of the consequences of our pretense account of truth-talk is that anyM-conditions
specified by an instance of truth-talk (employing either the truth-predicate or the
falsity-predicate) must be a function (positive or negative) of conditions specified by
the supposed content-vehicle that is putatively denoted in that instance of truth-talk.

To see this, consider a straightforward instance of truth-talk like

(2) ‘Snow is white’ is true.

On our view, (2) specifies indirectly just the M-conditions that (1) specifies directly.
As we will show, this has an interesting consequence for liar sentences (and their
putatively pathological kin): They do not specify any M-conditions.

Indeed, in the case of a liar sentence like

(L) (L) is not true,

any M-conditions that (L) specified would have to be a (negating) function of the
M-conditions specified by the content-vehicle that this instance of truth-talk puta-
tively denotes. But in this case that is “another” instance of truth-talk (in fact, it is
(L) itself). This means that in order to determine the M-conditions that (L) would
specify, wemust look to what content-vehicle this “other” instance of truth-talk puta-
tively denotes. This multi-step determination process can “ground out”, but in the
case of (L) it repeats endlessly, with the result that (L) never manages to specify any
M-conditions. In a sense, we get instructions that can never be completed. Accord-
ingly, in the “specification of M-conditions” sense of content that we intend here, no
content ever manages to attach to a liar sentence like (L).

The foregoing analysis of (L) extends immediately to another familiar case of
apparent semantic pathology, viz., that exhibited in the truthteller sentence

(K) (K) is true.

Here too we get an endless looping in the M-conditions determination process, with
the result that (K) never manages to specify any M-conditions. In addition, because
we take the falsity-predicate to involve the same sort of indirect specification of
M-conditions as the truth-predicate (albeit with a negating function), the same analy-
sis of meaninglessness also applies to what we might call a “simple liar” sentence,
such as

(SL) (SL) is false.

More complicated “multi-sentence” cases get the same diagnosis. In the familiar
case of a liar loop, such as

(A) (B) is false
(B) (A) is true,
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each sentence is an instance of truth-talk, and so each looks to another content vehicle
for any M-conditions it might specify. As it turns out, (A) and (B) each look to the
other to provide M- conditions, with the result of more endless looping—albeit with
a slightly wider loop—and a failure of either sentence to specify any M-conditions.6

The same explanation applies to the related truthteller pair,

(A’) (B’) is true
(B’) (A’) is true,

as well as to the basic case of what we call “open pairs”,7

(I) (II) is false
(II) (I) is false,

and to the strengthened open pair,

(III) (IV) is not true
(IV) (III) is not true.

While all of the cases considered thus far involve a kind of looping, it should be clear
that looping is just one way in which a failure to determine M-conditions can arise.
Because the truth- and falsity-predicates serve only to effect indirect specifications
of M-conditions, any circumstances in which attempts to specify M-conditions indi-
rectly do not “ground out” in some direct specification of M-conditions will generate
a failure to specify M-conditions. Thus, our evaluation of liar sentences as mean-
ingless extends beyond just other looping cases, to non-looping cases, such as the
truthteller sequence,8

(S’1) Sentence (S’2) is true
(S’2) Sentence (S’3) is true

...

(S’n) Sentence (S’n+1) is true

...

as well as to Yablo’s [25] paradox,

(S1) For all k > 1, sentence (Sk) is false
(S2) For all k > 2, sentence (Sk) is false

...

6 See Grover [14] for the inspiration for this explanation. As should be clear, the loop may be made
as wide as one pleases.
7 See our [4, 6, 8, 24]. Sorensen [19–21] calls this sort of case “the no-no paradox”.
8 Kripke [16, p. 693] and Grover [14, p. 597].
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(Sn) For all k > n, sentence (Sn) is false

...

In both of these examples, all of the sentences in both series fail to specify any
M-conditions. This situation arises from the fact that any M-conditions specified by
any sentence in either series would have to be inherited from sentences later in the
series. In the truthteller sequence, each sentence looks to inherit the M-conditions
of the next sentence in the series, but the series never ends, so no sentence in it ever
specifies any M-conditions. In Yablo’s paradox, each sentence could only specify
M-conditions that are a function of M-conditions specified by all of the sentences
that come after it in the series. Again, because the series has no end, no sentence in
it ever specifies any M-conditions. Thus, the same explanation also applies to these
non-looping cases of M-conditions determination failure.9 As such, we endorse a
version of the “meaningless strategy” for dealing with putative cases of semantic
pathology in general.

3 Meaninglessness and Understanding

Any meaningless strategy for dealing with the Liar Paradox and other apparent cases
of semantic pathology faces an immediate objection, which arises once we recognize
that, in some sense, we understand the apparently problematic sentences. To simplify
our discussion of this objection, we will again focus on liar sentences. Now, while
we do not deny that we can understand a liar sentence like (L), it is important to
note that we only understand (L) in a sense. We claim that there are (at least) two
modes of understanding and that, while we understand (L) in one sense, we do not
understand it in another. Call the sense in which we do not understand (L), the sense
that would require knowing what M-conditions (L) specifies, ’understanding1’. Call
the sense in which we do understand (L) ’understanding2’.

We claim that if you know the form of a sentence, the meanings of the words
that are contained therein and how the sentence could be used to make a genuine
assertion, then you can be said to “understand2” that sentence. But if you do not know
the M-conditions specified by the sentence, or whether there are any or not, then,
while you may understand2 the sentence, you do not understand1 that sentence.

We contend that, although we understand2 a liar sentence like (L), we do not
understand1 that sentence, since it fails to specify M-conditions and, thus, is mean-
ingless in the way that we have indicated. The same explanation applies to the other
cases of apparent semantic pathology that also fail to specify any M-conditions.

9 We will explain how to apply the diagnosis to Curry’s Paradox below.
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4 Meaninglessness, Denial, and S-Defectiveness

One consequence of our view that apparently semantically pathological sentences
are contentless is relevant to those who propose a speech-act solution to the Liar
Paradox, according to which we can deny liar sentences non-assertorically—that is,
by performing a speech act, opposite (or: dual) to affirming.10 In general, the speech
act of denial is used to express rejection, where to reject something is to be in a
mental state, opposite (or: dual) to accepting. But since rejection is a mental state,
what gets rejected is not the sentence one wishes to deny; rather, one rejects what
the sentence says, or what it expresses. Now, since, on our view, liar sentences lack
content, it follows that they do not have anything one can reject. So, on our view,
one cannot deal with liar sentences by postulating non-assertoric denial of them.

Suppose that we are right and that we cannot either deny or affirm liar sentences
and their allegedly semantically pathological kin, since there is nothing that they
express and, hence, nothing to accept or reject. We still face the question of how
we will characterize such sentences. And, as is familiar from attempted consistent
solutions to the Liar Paradox, it is at this point that revenge problems generally
emerge. While we believe that we can address these issues and avoid the usual
problems they appear to generate, due to space considerations, we shall only sketch
a way of dealing with them here.

We avoid the “first wave” of revenge problems because we take no positive or
negative attitude towards the putatively pathological sentences, andwe neither reason
to or from them, or evaluate them, in the sense of ascribing them either a logical value
or a truth-value. On our account of truth-talk, liar sentences do not admit of these sorts
of evaluations. In particular, given our understanding of how truth-talk functions, it
does not follow, from the fact that a sentence has no content, that the sentence is not
true. Rather, it follows that it is not aletheically evaluable at all.

Keeping in mind that, on our view, liar sentences (and their kin) cannot, in the
relevant sense, be understood1 and, thus, cannot be evaluated in the standard ways,
we then face the question of how we will (semantically) characterize them. In reply,
we propose the following.11

As a means for characterizing putatively pathological sentences, we introduce a
predicate, ’is semantically defective’ (henceforth, ’s-defective’), which, for present
purposes, is to apply to those sentences, which, while perhaps understood2, have
no content. More specifically, we are inclined to claim the following, by way of
clarifying ‘s-defective’:

(i) If a sentence, S, is s-defective, then it has nothing, by way of content, which we
can accept or reject.

And, as a result,

(ii) If S is s-defective, then S is not understood1.

10 For a speech act solution to the Liar Paradox, see [17, 22].
11 For more on this, see our [7, 8].
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Moreover,

(iii) If S fails to specify any M-conditions—either directly or indirectly—then S is
s-defective, and it is appropriate to attribute s-defectiveness to S.

Finally,

(iv) If S is s-defective, then, since S will not be understood1, it is not aletheically
evaluable, where, if S is not aletheically evaluable, it cannot (correctly) be
assigned or denied a truth-value.

Although there is more that we might say about s-defectiveness, which we are
importing into our vocabulary, there are two crucial points to note. First, note that
’s-defective’ applies directly to sentences that do not possess content, though such
sentences may be understood2. (Actually, it applies to sentence tokens, though the
view will not end up looking like a tokenist view, at least in any interesting sense.)
Second, note that, for a given sentence, S, if it does not specify any M-conditions
at all, then S is s-defective. This does not count as an analysis of the notion of
s-defectiveness, as it leaves open the possibility that there are other ways in which
a sentence may be deemed s-defective, but it will do, for what follows. Let us now
apply this approach to sentences that putatively exhibit semantic pathology. Once
again, we will begin by focusing on how it applies to liar sentences.

5 S-Defectiveness, Apparent Semantic Pathology, and Revenge
Worries

Aswe saw, (L) does not specify anyM-conditions, whichmeans that, by (iii), (L) will
be deemed s-defective. Given the relevant instance of the T-schema, it then follows
that

(3) (L) is s-defective

will be true, and, thus, given the relevant identity,

(4) ‘(L) is not true’ is s-defective

will also be true.However, because an s-defective claim like (L) is not truth-evaluable,
from the evaluation of (L) as s-defective, it does not follow that (L) is not true (and
consequently, true) because the sentence ‘(L) is not true’ is itself s-defective. The
same explanation applies to the other cases of putatively pathological sentences
discussed above as well.

The pressing issue for our proposed dissolving treatment of apparent semantic
pathology is whether our characterization of (L) as s-defective, and the correctness
of ascribing truth to a statement of that characterization, generates other revenge
problems for us. To see that it does not, consider a familiar sort of revenge problem,
as found in
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(λ) (λ) is not true or is s-defective,

which, without contradiction, cannot be evaluated as true, false or not true. (We
leave it as an exercise to the reader, how any aletheic evaluation of (λ) results in
contradiction.)

Now, we would characterize (λ) as s-defective prior to any threat of inconsistency.
But if we do, further paradox appears immanent. For if we maintain that (λ) is
s-defective then, as we have seen, we will also accept that ‘(λ) is s-defective’ is true.
But now, given that evaluation, by disquotation, or-introduction, and enquotation,
we seem to be committed also to the truth of ‘(λ) is not true or (λ) is s-defective’,
from whence inconsistency appears to be unavoidable. So, are we, then, mired in
paradox, having attributed s-defectiveness to (λ)?

We are not, for paradox is avoided in the case our evaluation of (λ), in virtue of
the fact that (λ) does not possess any content. This—rather than ad hoc stipulations
geared at avoiding contradiction—is why we evaluated (λ) as s-defective in the first
place. Our argument for the claim that paradox is avoided in this evaluation relies on
two features: (a) that (λ) is without content; and (b) that if a standard, aletheically
evaluable sentence is disjoined (or conjoined or otherwise extensionally connected)
with a sentence that is without content then contentfulness cannot be preserved in
the resulting complex sentence. We shall now motivate both (a) and (b).

Beginning with (a), in order for our attribution of s-defectiveness to (λ) to generate
paradox, (λ) would have to have content, in the sense of specifyingM-conditions. But
it does not have content, and here is why. For any content that (λ) would have, both
disjuncts are relevant and would have to contribute. This is so because the meaning
of a disjunction is a function of the meanings of its parts. So, the meaning—and,
thus, the meaningfulness—of (λ) relies, at least in part, on that of its disjuncts. If one
of the disjuncts lacks content, then (λ) itself does, too. Accordingly, we will show
that (λ) lacks content, by explaining why the left-hand disjunct of (λ) lacks content,
where, recall, a given sentence lacks content if it fails to specify M-conditions.

As was the situation with respect to (L), any M-conditions specified by the left-
hand disjunct of (λ) would have to be a product of M-conditions specified by the
putative content-vehicle that the disjunct denotes—which in this case is (λ) itself.
Thus, in order for the left-hand disjunct of (λ) to specify M-conditions, it is required
that (λ) already has determined M-conditions. But, of course, M-conditions cannot
be settled for (λ) unless, or until, M-conditions are determined for its left-hand
disjunct. So, for any overall M-conditions to get specified by (λ), there would have
to be an impossible sort of semantic bootstrapping, which means that the process for
determining what M-conditions (λ) specifies never finishes. Since (λ) fails to specify
M-conditions, it follows that the left-hand disjunct does not possess any content, and,
so, neither does (λ) itself. (Notice, though, that both sentences can be understood2.)

Turning to feature (b) of our response to the revenge argument, here we claim that
only contentful sentences may be disjoined with other contentful sentences to yield
a disjunction that is, itself, contentful and thus aletheically evaluable. We will now
provide support for this claim.
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Although a conjunction gets its logical value from that of its conjunctive parts
and a disjunction gets its logical value from at least one of its disjunctive parts, since
the content of a complex sentence is a function from the contents of its parts, a
disjunction gets its content from both of its respective parts. What this means is that
the M-conditions for a disjunctive sentence will be a function of the M-conditions
for each of its disjuncts. And if one of its disjuncts specifies no M-conditions, then
the disjunction itself will fail to specify any M-conditions and, because of this, will
possess no content.

Since the sentence, ‘(λ) is not true’, lacks M-conditions and, thus, has no content,
disjoining it with another sentence yields a disjunctive string with no content. So,
even though ‘(λ) is s-defective’ has content and is true, disjoining this sentence with
‘(λ) is not true’, in order to form (λ) itself, yields a sentence that has no content
and, thus, is not aletheically evaluable. In the terminology that we favor, because (λ)
fails to specify M-conditions, we claim, by (iii) above, that (λ) is s-defective. Thus,
the revenge argument cannot bootstrap (λ) into contentfulness and thereby make it
evaluable as true or false (or even as not true or not false).

Our analysis of (λ) points the way to extending the diagnosis and treatment we
have given to several familiar cases of putative semantic pathology to deal with
Curry’s Paradox and other similarly complex cases. In a Curry sentence, such as

(C) If (C) is true, then 1 = 0,

what we have is a complex sentence involving an extensional connective, here, the
conditional.12 As in the case of (λ), any content this complex sentence might have
(in particular, any M-conditions it might specify) would have to be a product of
M-conditions specifiedbybothparts of the complex sentence—byboth the antecedent
and the consequent. These sub-sentential parts would both have to contribute to the
content (and meaningfulness) of the whole sentence, (C). The antecedent of (C) is
the sentence ‘(C) is true’. Because this is an instance of truth-talk, for it to specify
any M-conditions, it would have to inherit them from the putative content-vehicle
picked out in this instance of truth-talk. That putative content-vehicle is the sentence,
(C), itself. So, in order for the antecedent to specify any M-conditions and thereby
have the relevant sort of content to contribute to the content of (C) as a whole, (C)
as a whole would have to already have content to pass on to its antecedent, so that
the antecedent could then contribute that content to the content of (C) as a whole.
In short, the antecedent and the sentence as a whole are each looking to the other
to provide content. But this is just another attempt at semantic bootstrapping, so the
goal cannot be fulfilled. As a result, the antecedent of (C) specifies no M-conditions
and is s-defective. Since the antecedent of (C) is s-defective, the result of putting it
into a complex sentence via application of an extensional operator (the conditional)
results in another, complex, s-defective sentence (just as disjoining the s-defective
sentence ‘(λ) is not true’ with the non-defective sentence ‘(λ) is s-defective’ results
in an s-defective complex sentence). Thus, (C), along with any other example of a
Curry sentence, also specifies no M-conditions and, so, is s-defective.

12 We are assuming the conditional is the material conditional, both here and in what follows.
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The same result arises for multi-sentence cases involving Curry-like conditionals,
for example, what we have elsewhere called the Curry open pair,13

(C1) If (C2) is true, then ⊥
(C2) If (C1) is true, then ⊥,14

as well as the asymmetric versions of the open pair we have developed, e.g.,

(V) (VI) is not true
(VI) If (VI) is not true, then (V) is not true.15

In each of these kinds of cases, both members of the pair end up being s-defective. In
the first pair, (C1) relies in part for any content it might have on M-conditions being
specified by its antecedent. But its antecedent would have to get any content it might
contribute to the content of (C1) from (C2). (C2) relies in part for any content it might
have on its own antecedent specifying M-conditions, but that antecedent would have
to get any content it might contribute to the content of (C2) from (C1). But we have
already seen that (C1) relies ultimately for any content it might have on (C2). In the
second pair, (V) looks to specify (negatively) M-conditions indirectly, by inheriting
them from (VI), but (VI) ends up lacking content for the same reasons that Curry
sentences do, thereby leaving (V) contentless as well. Once again, in both pairs, each
sentence (and sub-sentence) is looking for M-conditions to get specified somewhere
else, with the result that none ever get specified. This makes the antecedents of the
complex sentences s-defective, thereby making the complex sentences as a whole
s-defective, and, as a result, making any sentences looking to inherit content from
them s-defective as well.

6 Closing Remarks

Our analysis of the familiar cases of putative semantic pathology diagnoses them as
contentless and treats them by introducing a new way of semantically characterizing
them—as s-defective. This characterization is different from assigning the relevant
sentences a logical value or a truth-value, at least as those notions are standardly
understood. Our approach avoids revenge-problem worries via our understanding of
s-defective sentences as neither aletheically nor logically evaluable, which is to say
that they cannot be assessed either for truth or falsity, or for any logical values. We
shall briefly explain why this is so.

In general, we ascribe truth to a sentence when we accept what it “says” and we
ascribe falsity to a sentence when we reject what it “says”. As noted, acceptance and
rejection are mental states and are directed at the contents of sentences. We can thus
express our acceptance of what a sentence “says” by asserting a truth-attribution to
it. And we can express our rejection of what a sentence “says” either by asserting

13 Armour-Garb and Woodbridge [6].
14 The symbol ‘⊥’ here can be read as an expression of trivialism, i.e., “everything is true”.
15 Woodbridge and Armour-Garb [24] and Armour-Garb and Woodbridge [4, 6, 8].
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the negation of the sentence or by attributing falsity to it. But, for sentences that do
not possess any content, there is nothing that can be accepted or rejected. Hence,
and for the other reasons that we have provided, we cannot (correctly) assertorically
attribute either the truth- or the falsity-predicate to such sentences.

Within a logic, we also talk about “logical values”, which, if we stick with two-
valued logic, will be the values, 1 and 0. Now, there are important questions about
whether a sentence’s having the logical value of 1 or 0 is to be identified with its
having the truth-value of true or false. But these are not questions that we can address
here. What is important, for present purposes, is that, whatever we take the logical
values to be, we maintain that the only sentences that can have any of those values
are the aletheically evaluable ones. Since we also contend that s-defective sentences
are not aletheically evaluable, we therefore conclude that none of them possesses a
logical value either.

Thismightmake it seem thatwe are committed to two-valued logic.Butwe are not.
It is compatiblewith everything thatwe have said that the appropriate logic to endorse
has more than two logical values. But, since s-defective sentences are not aletheically
evaluable, they will not be among those sentences that will be assigned any logical
value. Indeed, someone concerned, for example, with the indeterminacy presented
in quantum mechanics may find a reason for assigning 1

2 to certain sentences. But
she will still assign 1

2 only to meaningful sentences—only to sentences that are
understood1. (This is so, even if we assign 1

2 only to sentences about which we are
aletheically indifferent.) So, our current proposal does not involve taking a view on
which logic to endorse.

A number of consistent solutions to the liar paradox attempt to unearth or uncover
some features of a natural language that had not been adequately, or correctly, recog-
nized. Thus, one finds, for example, that the existence of sentence tokens is taken by
some theorists to indicate that there is a means for semantically characterizing liar
sentences without falling victim to paradox.16 Whatever the merits of such accounts,
the important point is that those theorists claim to have discovered a way of provid-
ing a consistent solution to the paradoxes, given only the resources that are already
available in, or for, a natural language.

We are not trying to do that. Rather than claiming to have found, in a language like
English, an expression that can be used consistently to characterize liar sentences,
we are proposing a new expression, which people should or could use, in order
to describe sentences that fail to yield or possess any content. Thus, we are not
claiming to have solved the Liar Paradox by discovering and calling attention to this
or other under-appreciated features of a natural language like English. In fact, it is
completely compatiblewith everythingwehave said here that, given certain linguistic
demands (e.g., regarding expressibility), our language, or, at least, our current use of
that language, results in inconsistency. Understood in this way, one of our aims in
this paper was to attempt to satisfy certain expressibility demands, while dissolving
the apparent threat of impending inconsistency or indeterminacy, without logical or
semantic compromise.

16 See Goldstein [13].
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Emptiness and Discharge in Sequent
Calculus and Natural Deduction

Michael Arndt and Luca Tranchini

Abstract We investigate the correlation between empty antecedent and succedent of
the intutionistic (respectively dual-intuitionistic) sequent calculus and discharge of
assumptions and the constants absurdity (resp. dischargeof conclusions and triviality)
in natural deduction. In order to be able to express andmanipulate the sequent calculus
phenomena, we add two units to sequent calculus. Depending on the sequent calculus
considered, the units can serve as discharge markers or as absurdity and triviality.

Keywords Sequent calculus ⋅ Natural deduction ⋅ Dual intuitionistic logic ⋅
Pseudo-constants

1 Introduction

In this article, we are interested in the correspondence between the structural features
of the sequent calculus that are often neglected in comparisonswith natural deduction,
namely the features of empty antecedent or empty succedent of sequents.While these
features are completely symmetric in the classical sequent calculus LK, this is not
the case for the intuitionisitc calculus LI. This becomes apparent when considering
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the correspondence between intuitionistic sequents and derivations in intuitionistic
natural deduction NI.

In general, the correspondence of natural deduction and sequent calculus is based
on the idea that formulae in the antecedent (resp. succedent) correspond to assump-
tions (resp. conclusions) in natural deduction derivations. Natural deduction intro-
duction rules, those inwhich the logical constant figures in the conclusion, correspond
to sequent calculus right rules, in which the logical constant figures on the right hand
side of the conclusive sequent. Natural deduction elimination rules, in which the
logical constant figures in one of the premises, correspond to sequent calculus left
rules, in which the logical constant figures on the left hand side of the conclusive
sequent.

In the intuitionistic case, sequents are restricted to at most one formula in the
succedent (Fig. 1). We thus have:

Sequent λ ⇒ A is derivable in LI if and only if λ ⊢ A holds in NI.

However, this does not exhaustively express the correspondence, because there is
the critical case of deriving absurdity in natural deduction.

Sequent λ ⇒ is derivable in LI if and only if λ ⊢ � holds in NI.

To have a perfect correspondence, the sequent calculus is usually modified by
introducing the constant � as governed by particular axioms. Although this suffices
to establish a correspondence between NI and LI we will argue that a more fine-
grained correspondence can be attained.

The introduction of � usually goes together with the definition of negation as
A → �. In this paper, we will rather take negation as primitive (not only in sequent
calculus, but in natural deduction as well).

In contradistinction to the empty succedent, the empty antecedent expresses the
fact that all the assumptions of the corresponding natural deduction derivation have
been discharged. The empty succedent corresponds to the obtaining of a specific
conclusion (i.e. �), whereas the empty antecedent corresponds to an agglomerate of
discharges.

In order to obtain the complete picture, we consider also the sequent calculus
and natural deduction systems for dual-intuitionistic logic LDI and NDI. Dually to
what happens in LI, the antecedent of sequents of LDI are restricted to at most one
formula (cf. [1, 8]). A natural deduction formulation of dual-intuitionistic logic can
be obtained by considering a single-premise multiple-conclusion setting in which
derivation trees branch downward, as described in Tranchini [5, 6]. The correspon-
dence between LDI and NDI can be roughly stated as follows:

Sequent A ⇒ ι is derivable in LDI if and only if A ⊢ ι holds in NDI.

In this dual case, it is the empty succedent that corresponds to an agglomerate of
discharges, specifically, conclusion discharges, side effects of the application of some
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Fig. 1 The intuitionisitc calculus LI

Fig. 2 The dual intuitionisitc calculus LDI

rule. The empty antecedent corresponds to the obtaining of a specific assumption,
namely triviality ⊺:

Sequent ⇒ ι is derivable in LDI if and only if ⊺ ⊢ ι holds in NDI.

Apart from ⊺ playing the dual role of �, in NDI and LDI implication and intuition-
istic negation are replaced by co-implication ‘−�’ and dual-intuitionistic negation ‘⨼’
(Fig. 2).
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Fig. 3 The logical rules of LK

2 Emptiness in the Sequent Calculus

The rules of the sequent calculus which actually bring forth the features of empty
antecedent or empty succedent have the following characteristic: they are single
premise rules and: (i) in either the antecedent or succedent of their premise some for-
mula A occurs in some context and (ii) on that side of the sequent in their conclusion
the context figures alone.

If we restrict ourselves to the (classically representative) {∧,∨,∼}-fragment of
the calculus LK (Fig. 3), there are two rules that satisfy this characterization, namely
(∼R) and (∼L):

λ ⇒ A, ι
(∼L)

λ,∼A ⇒ ι

λ, A ⇒ ι
(∼R)

λ ⇒ ∼A, ι

The result of applying the right rule is that the formula A is removed from the
antecedent and—suitably amended by negation—placed in the succedent. Clearly,
an application of this rule in the case of λ = ∅ yields a sequent which has an empty
antecedent.

Apparently, emptiness of the antecedent is simply a contextual residue. Formula
A is shifted into the succedent, and the resulting emptiness of the antecedent is due
to the fact that contextλ in which A occurred was already empty. In this formulation
of the sequent calculus it is impossible to retain the nature of the local void that is
due to the removal of A, call it an ‘occurrence’ of emptiness. This is the reason why
emptiness of the antecedent is generally an agglomerate phenomenon in the classical
calculus.

The same phenomenon can be observed also in the implication right rule as soon
as the language is opportunely enriched. In the classical case, this is however not
particularly significant, due to the definability of implication as ∼A ∨ B.

Conversely, an application of (∼L) results in a formula A being removed from its
context in the succedent. Thus, the phenomenon of emptiness can also occur in the
succedent of a sequent as described for the antecedent case.
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3 The Corresponding Phenomena in Natural Deduction

In sequent calculus, at each node of a derivation all assupmtions and conclusions are
written anew in the sequent labelling the node. In conrast to this, each node of natural
deduction derivations is labelled with just one formula. Thus in natural deduction it
is not possible to move or remove formulae from assumption or conclusion position
apart by incrementally developing the derivation tree by adding nodes. Consequently,
there is no notion of ‘no assumptions’ or of ‘no conclusions’ that directly corresponds
to the features of emptiness in the sequent calculus. Instead, natural deductionmimics
these phenomena of the sequent calculus by means of two devices: discharge of
assumptions and a special propositional constant.

3.1 Assumption Discharge

In the intuitionistic case, a derivation of a sequent with empty antecedent corresponds
to a closed derivation, that is a derivation in which the conclusion does not depend on
any assumptions. One of the features of natural deduction is the fact that derivations
originate in one or more assumptions. Thus, the closure of a derivation has to be
obtained by successively discharging those assumptions. This is obtained by means
of what Prawitz [2] calls ‘improper’ inference rules, that is inference rules that not
only yield some new conclusion, but that additionally allow for the discharge of
one or more of the assumptions from which the derivation started. This side effect
of assumption discharge is displayed most prominently in the rule that governs the
introduction of implicative formulae, (→I), whose applications look like:

[A]

D

B (→I)
A → B

The rule expresses the fact that a derivation of B that may be based on zero or
more assumptions of A can be turned into a derivation of A → B by cancelling
any number of those assumptions. Prawitz uses the notation ⟨⟨λ, B⟩/⟨Θ, A → B⟩⟩,
where Θ = λ − {A}, for this deduction rule.

This rule is very similar to the sequent calculus’ (→R), although the latter removes
exactly one occurrence of A from the antecedent. Of course, the sequent calculus’
structural rules of weakening and contraction allow the introduction of a formula A
or the successive contraction of multiple occurrences of A into a single one before
the application of the linear (→R).

However, while the application of (→R) in the sequent calculus makes a formula
disappear from the antecedent, the application of (→I) in natural deduction (properly
speaking) does not make any assumption disappear, but rather changes the status of
the assumptions by marking it as discharged .
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For example, compare the following derivation in NI and its corresponding LI
derivation.

[A]1
(→I)

B → A
(→I)1

A → (B → A)

A ⇒ A (WL)
A, B ⇒ A

(→R)
A ⇒ B → A (→R)

⇒ A → (B → A)

(†)

In natural deduction, negation is usually defined by means of absurdity and impli-
cation. In order to establish clear correspondences, we instead use the following rule
of (¬I) as primitive:

[A]
�

(¬I)
¬A

This rule obviouslymatches the structure of (→I) for the special case of B being the
absurdity �, i.e. in Prawitz’s notation the deduction rule is simply ⟨⟨λ,�⟩/⟨Θ,¬A⟩⟩,
where Θ = λ − {A}.

With the same caveat as was given for (→I), this corresponds to the intuitionistic
sequent calculus’ (¬R).

For the correspondence to properly work, we have to assume that a sequent with
an empty succedent corresponds to a natural deduction derivation of conclusion �.
We now turn to this.

3.2 Absurdity

It is perhaps too strong to say that natural deduction’s absurdity outright mimics
the empty succedent. For, contrary to the somewhat subtle mechanic of discharge
which marks a formula occurrence as ‘actually being absent’, absurdity is a much
more forthright signal. It occurs as a propositional constant that is actually inferred
at some point in the construction of a derivation. However, absurdity has been treated
with justified suspicion since the rule governing it, the so-called ex falso quodlibet
rule, breaks the harmony that is exhibited between introduction and elimination rules
for the other logical signs. Indeed the ex falso looks like an elimination rule for which
there is no corresponding introduction:

�
(efq)

C

Thus, there is some reason to not regard absurdity as a proper proposition. Tennant
[4] proposed to treat � as ‘a sort of punctuation mark’, registering that ‘the derivation
has reached a dead end’. Tennant’s suggestion is indeed very natural if we look at
� from the sequent calculus perspective, where the empty succedent indeed marks
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an extremal point in a derivation. Rules requiring the presence of some formula in
the succedent can no longer be applied. Therefore, in a sense, the attention must be
shifted to the formulae of the antecedent.

As mentioned previously, in sequent calculus one may end up with an empty
succedent by applying negation left rule. If in the intuitionistic case this has to
correspond to a derivation having the constant � as its conclusion, it must be due to
an application of the natural deduction rule that corresponds to (¬L), namely (¬E)1:

D1

¬A
D2

A (¬E)
�

However, only an application of cut yields the derivation corresponding to an
application of (¬E).

λ1 ⇒ ¬A
λ2 ⇒ A

(¬L)
¬A,λ2 ⇒ (cut)

λ1,λ2 ⇒

An application of the ex falso quodlibet rule following immediately (¬E) would
correspond to extending the sequent calculus derivation with an application of right
weakening.

3.3 The Dual Perspective

We restrict ourselves to a brief exhibition of the natural deduction system for dual-
intuitionistic logic NDI; for further details we recommend Schroeder-Heister [3],
Wansing [9], Tranchini [5, 6]. The system NDI is a single assumption and mul-
tiple conclusions calculus in which derivations are built bottom-up.2 Implication
is replaced by co-implication ‘−�’ which, instead of discharging assumptions, is a
operator that can discharge conclusions.

Co-implication is governed by the following elimination and introduction rules:

A −� B (−�E)
B
[A]

B (−�I)
A −� B A

1 As already mentioned, negation could also be understood as a defined notion, in which case the
rule is simply an instance of (→E).
2 The terminology of ‘assumption’ and ‘conclusion’ is employed for the purpose of retaining the
correspondences to antecedent and succedent of sequents. The terminology of ‘introduction’ and
‘elimination’ rules follows this perspective and is thereby counter-intuitive to the direction in which
derivations are constructed.
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As intuitionistic negation is usually viewed as implication of �, dual-intuitionistic
negation can be defined as co-implication of ⊺, where ⊺ denotes the universal tri-
vial statement, governed by the following rule:

C
⊺

As intuitionistic negation, we will however take dual-intuitionistic negation as
primitive and governed by the following rules:

⨼A (⨼E)
⊺

[A]

⊺
(⨼I)

⨼A A

Note that in dual-intuitionistic logic the picture we described concerning the
relation between emptiness in the sequent calculus and natural deduction is reversed.
In LDI, empty succedents correspond toNDI derivations in which all conclusions are
discharged, and empty antecedents correspond to NDI derivations in which the only
assumption is the propositional constant ⊺. This means that the passage from sequent
calculus to natural deduction introduces again an asymmetry in how emptiness on
the left and on the right side of a sequent are rendered.

4 Units in the Sequent Calculus

We have referred to the phenomena of empty antecedent and empty succedent as
structural features of the sequent calculus. We have also mentioned that assumption
discharge in NI can be viewed as closely mimicking this structural feature of the
emptiness of sequents, in the sense that it can be seen as a structural feature of
natural deduction, at least as far as it is only a side effect of an improper inference
rule. On the other hand, the absurdity constant � provides an entirely propositional
correlation to the structural feature of empty succedent.

In NDI, the situation is reversed with discharge of conclusions being a structural
feature and triviality ⊺ being a propositional constant.

If we were to follow Tennant’s suggestion of giving � (resp. ⊺ in the dual case)
a structural meaning (and if that were feasible without incurring other problems),
both calculi would address these extremal phenomena in a purely structural manner.
For the remainder of this article, we shall rather go in the opposite direction. We
shall present the empty spaces as having a propositional nature already in sequent
calculus.

To do this we define in each sequent calculus an infinite set of pseudo-constants,
nullary constants labelled with formulae. We will refer to pseudo-constants as units.
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In LK, LI and LDI, the units are uniformly defined as follows (we use �, � and ∗
as meta-symbols for the units and for the negation of each system):

�A =def A ∨ ∗A �A =def A ∧ ∗A

In LK, where ∗ is ∼, � and � are respectively � and �. In LI, where ∗ is ¬, � and
� are respectively ⋎ and �. In LDI, where ∗ is ⨼, � and � are respectively ⊺ and ⋏.
The choice of symbols will become clear in the next sections.

Themain reason for labelling pseudo-constants with formulae is that it will permit
to interpret them as representing the discharge of some formula A in the correspond-
ing natural deduction derivations.3

While the set of formulae is supplemented by the infinitely many units, one for
each formula, the units must remain distinct from proper formulae. We enforce the
following restriction on the use of the units in the sequent calculi we will consider:
Units cannot be connected to other formulae through applications of left and right
rules for the connectives. Therefore, formula variables A and B that occur in the
premises of rules of the calculi and are connected by a connective in the conclusion
must never be instantiated by units. Note that this does not apply to the cut rule,
since the cut formula does not occur in the conclusion. That is why cuts on units are
permitted.

We now face the task of adding the two units to the sequent calculus. We will not
add the units to the intuitionistic and the dual-intuitionistic calculi right away, but
instead consider their effects on the classical calculus LK. Only afterwards will we
move on to LI and LDI.

4.1 Units and Negation Rules in LK

We consider LK with conjunction and disjunction rules formulated in the multiplica-
tive fashion.

Given the definition of �, instances of (∧R) with principal formulae A and ∼A
read as follows:

λ ⇒ A, β Θ ⇒ ∼A,τ
(∧R)

λ,Θ ⇒ �A, β,τ

3 In this we follow Gentzen’s example in the second part of the Untersuchungen, where he suggests
the formula p ∧ ¬p (for some arbitrary propositional variable p) as propositional representation
of � in the sequent calculus as part of his translation of derivations in NI into derivations in LI.
Gentzen’s choice of some arbitrary p is however a merely utilitarian ad hoc choice. If one wished
to abstract over the choice of p, one could define units as second-order formulae.

� =def ∃α.α ∧ ¬α 	 =def ∀α.α ∨ ¬α

However, we will actually profit from labels and thereby we chose to stay within the propositional
setting.
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According to the definition of the pseudo-constant �A, the consequence of this
inference is actually the sequent λ,Θ ⇒ A ∧ ∼A, β,τ. Note the special case of
a right premise that is an instance of the axiom:

λ ⇒ A, β
(ax)

∼A ⇒ ∼A
(∧R)

λ,∼A ⇒ �A, β

Accordingly, we can define negation left rule through simultaneous introduction of
a unit into the succedent:

λ ⇒ A, β
(∼L
�
)

λ,∼A ⇒ �A, β

This definition is simply a special case of the more general unit introduction into the
succedent.

Dually, negation right rule can be defined by introducing the dual unit into the
antecedent. This time the introduction of the unit is the result of a disjunction left
rule.

λ, A ⇒ β
(∼R�)

λ,�A ⇒ ∼A, β
=def

λ, A ⇒ β
(ax)

∼A ⇒ ∼A
(∨L)

λ,�A ⇒ ∼A, β

Applications of (∼L�) and (∼R�) in which ι and λ are empty yield sequents in
which emptiness no longer occurs. In a sense, the rules give a propositional content
to the empty succedent and antecedent. (In this sense we do the opposite of what
Tennant suggests.)

More precisely, call LK�
�

the result of replacing (∼L) and (∼R) with (∼L�)
and (∼R�) and let �� =de f {�A ∶ A ∈ �} and �� =de f {�A ∶ A ∈ �}

for any set of formulae �. The following holds:

Theorem 1 (Units as emptiness)

1. If λ ⇒ is derivable in LK then�Θ,λ ⇒�τ for some Θ,τ (τ ≠ ∅) is derivable
in LK�

�
.

2. If⇒ β is derivable in LK then�Θ ⇒ β,�τ for some Θ,τ (Θ ≠ ∅) is derivable
in LK�

�
.

Proof By induction on the structure of the derivation. The critical cases are those in
which negation rules are applied. Details are left to the reader. ⊓⊔

4.2 Units and (Co-)Implication Rules in LK

As already mentioned, in classical logic implication is defined as ∼A∨B. In standard
LK the implication right rule is derived as follows:
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λ, A ⇒ B, β
(→R)

λ ⇒ A → B, β
=def

λ, A ⇒ B, β
(∼R)

λ ⇒ ∼A, B, β
(∨R)

λ ⇒ ∼A ∨ B, β

By replacing the application of (∼R) with one of (∼R�), we can derive an alter-
native right implication rule in which the movement of A from one side to the other
leaves a unit as its trace:

λ, A ⇒ B, β
(→R�)

λ,�A ⇒ A → B, β
=def

λ, A ⇒ B, β
(ax)

∼A ⇒ ∼A
(∨L)

λ,�A ⇒ ∼A, B, β
(∨R)

λ,�A ⇒ ∼A ∨ B, β

It should be observed that also in this case, the “real” shift of side taking place in
(→R) is replaced by an only “apparent” shift of side in (→ R�). The occurrence of
the formula A in the premise of the rule gets locked into the unit. The occurrence of
A as sub-formula of A → B in the conclusion comes from the axiom which acts as
premise of (∨L).

It is also worth noticing that the definition of (→ R�) is essentially classical, in the
sense that putting β = ∅ would not make the rule intuitionistically derivable: One
needs multiplicity of formulae in the succedent in order to apply the multiplicative
disjunction right rule. However, this does not forbid to take an intuitionistic version
of (→ R�) as primitive. Given the correspondence of NI and LI, this would enable to
view the occurrence of the unit in the rule as corresponding to the discharge of the
assumption A in applications of the natural deduction (→I) rule. In the next section,
we will develop this suggestion in a fully-fledged manner.

Dual considerations apply to co-implication. Given the classical definition of
A−�B as ∼A ∧ B, the co-implication left rule can be derived by means of (∼L) and
(∧L):

λ, B ⇒ A, β
(−�L)

λ, A−�B ⇒ β
=def

λ, B ⇒ A, β
(∼L)

λ,∼A, B ⇒ β
(∧L)

λ,∼A ∧ B ⇒ β

By replacing the application of (∼L) with one of (∼L�), an alternative co-
implication left rule (−�L�) can be derived in which the (now only apparent) shift of
A from the succedent to the antecedent leaves a unit as trace.

λ, B ⇒ A, β
(−�L

�
)

λ, A −� B ⇒ �A, β
=def

λ, B ⇒ A, β
(ax)

∼A ⇒ ∼A
(∧R)

λ,∼A, B ⇒ �A, β
(∧L)

λ,∼A ∧ B ⇒ �A, β

Again, in a dual-intuitionistic version of the rule, the unit may be viewed as
standing for the discharge of a conclusion of form A resulting by applications of
(−�E) in NDI. This will be properly spelled out in the next sections.
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5 Introducing Units into LI and LDI

The sequent calculi LI and LDI for intuitionistic logic and its dual are obtained by
imposing an asymmetric restriction on sequent contexts. These substructural restric-
tions can be viewed as modifying the meaning of the empty spaces on the side of the
sequent arrow to which the restriction applies.

5.1 Units in LI

In Sect. 2 the rules (∼R) and (∼L) have been identified as the causes for emptiness
into the antecedent or succedent in the classical system. In the previous section, we
showed how these rules, as well as the defined rule (→R) can be derived using the
units.

We now do the same in LI. As already remarked, both (→R) and its modified
version displaying the unit cannot be derived in the intuitionistic system due to
the restriction on the succedent of sequents. To overcome this, we will simply take
implication rules as primitive.

In LI negation is denoted by ¬. We also use different symbols for the units,
namely, ⋎ and �. The choice of � is motivated by the fact that applying (∧I) to the
same premises of (¬E) yields the formula defining the unit:

D1

A
D2

¬A (¬E)
�

D1

A
D2

¬A (∧I)
A ∧ ¬A

A direct correspondence of the inference on the right is obtained through the
replacement of (¬L) by the following rule that both shifts a negated A into the
antecedent and at the same time introduces an instance of the pseudo-absurdity �A:

Θ ⇒ A (¬L


)

Θ,¬A ⇒ �A

In serving as a marker for the empty succedent, the unit �A strengthens the intu-
itionistic requirement of sequents having to contain no more than one succedent
formula to that of sequents having to contain exactly one succedent formula or oth-
erwise a unit.

This strengthened condition entails a complication, however. In LI, an instance
of weakening of the succedent enables the transition from a sequent with empty
succedent to a corresponding one that contains an arbitrary succedent formula C .
With �A filling in a formerly empty succedent, a weakening of the succedent is no
longer possible, rendering (WR) obsolete. A possible remedy of the situation would
be to introduce an ex falso quodlibet rule:
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Θ ⇒ �A (efq)
Θ ⇒ C

Following Troelstra and Schwichtenberg [7], we use an axiom instead that allows
the derivation of the rule above by means of a cut on the unit:

(
L)
�A ⇒ C

In the previous section we suggested to view the units in (∼R�) (→ R�) as dis-
charge markers. This is fully substantiated in their intuitionistic versions, given the
correspondence between LI and NI:

Θ, A ⇒ B
(→R⋎)

Θ,⋎A ⇒ A → B
Θ, A ⇒ �C

(¬R⋎)
Θ,⋎A ⇒ ¬A

In both rules, the unit⋎A is retained in place of an antecedent (assumptive) formula
that is shifted (discharged) in the usual intuitionistic rule. In the case of negation
introduction, a further modification of the premise guarantees that its succedent
contains the unit �C for some formula C .

Let LI⋎
�
be the calculus that is obtained from LI through the replacement of (→R),

(¬R) and (¬L) by, respectively, (→ R⋎), (¬R⋎) and (¬L�) as well as the replacement
of (WR) by the axiom (�L).

Note that instances of the unit that serves as cancellation marker can simply
accumulate in the antecedent of sequents over the course of a derivation. For example,
compare the following LI⋎

�
derivation to the LI derivation (†):

A ⇒ A (WL)
A, B ⇒ A

(→R⋎)
A,⋎B ⇒ B → A

(→R⋎)
⋎A,⋎B ⇒ A → (B → A)

The formula A → (B → A) is no longer derivable in the usual sense (i.e. as the
succedent of a sequent with an empty antecedent), since the antecedent contains
discharge markers ⋎A and ⋎B .

An interesting correspondence is obtained, however, when we modify the deriv-
ability relation of NI in such a way that discharged formulae are not simply dropped
from themultiset of assumptions. Instead, a single instance of the discharged assump-
tions (regardless of whether it is a vacuous or a multiple discharge) is collected
into a second multiset that keeps track of discharged assumptions. As the derivabil-
ity relation for NI is merely a notational tool, this does not change the calculus.
Thus, [Θ]λ ⊢

∗ A expresses that A is derivable from λ in NI with discharged
assumptions collected in Θ in the manner just described. A closed derivation of A in
NI is then a derivation [Θ] ⊢∗ A for some Θ . Hence the fact that closed derivations
are seen as relative to a set of discharged assumptions makes ‘⊢∗’ more fine grained
than ‘⊢’.
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Theorem 2 Let the formulae in λ , Θ and formula A be formulae of NI, i.e. unit-
free, and let ⋎Θ = {⋎A ∶ A ∈ Θ}. Then the following holds:

1. [Θ]λ ⊢
∗ A holds in NI if and only if ⋎Θ,λ ⇒ A is derivable in LI⋎

�
.

2. [Θ]λ ⊢
∗
� holds in NI if and only if ⋎Θ,λ ⇒ �A is derivable in LI⋎

�
.

Rather than establishing this result directly, we first relate derivations in LI⋎
�
to

derivations in LI and thus, via the well-known correspondence, to derivations in NI.
We will describe the correspondence stated by the theorem in some more detail
further below.

To establish such a relation we have to get rid of residual discharge markers
occurring in sequents. This can be done by adding the following axiom to the rules
and the axioms that comprise LI⋎

�
:

(⋎R)
⇒ ⋎A

Through applications of cut, this axiom allows for the removal of all units ⋎A that
were introduced by means of (→R⋎) or (¬R⋎). This allows us to state the following
correspondence between the intuitionistic sequent calculi with and without units.

Lemma 1 Let the formulae in λ and formula A be formulae of LI, i.e. unit-free.
Then the following holds:

1. λ ⇒ A is derivable in LI if and only if λ ⇒ A is derivable in LI⋎
�
+ ( ⋎R).

2. λ ⇒ is derivable in LI if and only if λ ⇒ �A is derivable in LI⋎
�
+ ( ⋎R).

Proof The direction from left to right is rather straightforward. In order to translate
a LI derivation into a LI⋎

�
derivation, translate and compose the subderivations by

following this procedure:

1. Replace every application of a critical rule (¬R) or (→R) by, respectively, (¬R⋎)
and (→ R⋎), followed by a cut with the axiom (⋎R).

2. Replace every application of (¬L) by an application of (¬L�), and, while trac-
ing the derivation downwards from that point on, replacing empty succedents
by the corresponding unit. Replace any application of (RW) by a cut with the
corresponding instance of (�L).

3. If any application of a rule in the LI derivation has two premises with empty
succedent, and their translations into LI⋎

�
have succedents �A and �B , let the

conclusion have the succedent �A∨B . This applies to the rule (∨L) the only one
that can merge empty succedents.

The reverse direction is somewhat more involved, because formulaeC introduced
via the axiom (�L) can be side formulae of further logical rules that are applied before
�A is eventually cut. For this reason, all cuts on units �A have to be pushed upwards
in the derivation by following the usual cut elimination procedure until a cut that
has an instance of (�L) as its premise is obtained. Only then can subderivations of
the resulting LI⋎

�
derivation be translated and composed. In doing this, the following

points have to be observed:
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1. Whenever one of the new rules (¬R⋎), (→ R⋎) or (¬L�) is applied in the LI⋎
�

derivation, simply employ the original LI rules.
2. Any application of cut that has one of the new axioms as one of its premises is

simply dropped. ⊓⊔

Corollary 1 Let the formulae in λ and formula A be formulae of NI, i.e. unit-free.
Then the following holds:

1. λ ⊢ A holds in NI if and only if λ ⇒ A is derivable in LI⋎
�
+ ( ⋎R).

2. λ ⊢ � holds in NI if and only if λ ⇒ �A is derivable in LI⋎
�
+ ( ⋎R).

Proof This follows from the preceding lemma by means of the well-known corre-
spondence result between derivability in LI and NI. ⊓⊔

Proof of Theorem 2 The correspondence between the modified derivability inNI and
derivability in LI⋎

�
without axiom (⋎R) is established analogously to Corollary 1.4

The difference is that in the direction from NI to LI⋎
�
, applications of (→ R⋎) and

(¬R⋎) are not followed by the cuts removing the units. ⊓⊔

5.2 Units in LDI

In LDI negation is denoted by ⨼. We also use different symbols for the units, namely,
⋏ and ⊺. The choice of ⊺ is motivated by the fact that applying (∨E) to the same
conclusions of (⨼I) yields the formula defining the unit:

⊺
(⨼I)

A
D1

⨼A
D2

A ∨ ⨼A (∨E)
A
D1

⨼A
D2

As in LI ⋎ is properly interpreted as an assumption discharge marker, in LDI ⋏ is
a proper conclusion discharge marker.

Let LDI⊺
⋏
be the calculus that is obtained from LDI through the replacement

of (−�L), (⨼L) and (⨼R) by, respectively, (−�L⋏), (⨼L⋏) and (⨼R⊺) as well as the
replacement of (WL) by the axiom (⊺R). Furthermore, the additional axiom (⋏L)
can be used to remove markers for discharged conclusions:

(⋏L)
⋏A ⇒

We can state the dual correspondence results.

4 If one wished a direct correspondence between discharged formulae in the ∗-red derivability and
formulae (and not just labelled units) in sequent calculus, one could introduce a sequent calculus
LI∗ which instead of introducing units labelled with the discharged formulae, just put the latter ones
in a special “discharge” context.
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Fig. 4 The roles of the four
units in the two calculi

Theorem 3 Let the formulae in β, τ and formula A be formulae of NDI, i.e. unit-
free, and let ⋏τ = {⋏A ∶ A ∈ τ}. Then the following holds:

1. A ⊢∗ β[τ] holds in NDI if and only if A ⇒ β,⋏τ is derivable in LDI⊺
⋏

.
2. ⊺ ⊢∗ β[τ] holds in NDI if and only if ⊺A⇒ β,⋏τ is derivable in LDI⊺

⋏
.

Lemma 2 Let the formulae in β and formula A be formulae of LDI, i.e. unit-free.
Then the following holds:

1. A ⇒ β is derivable in LDI if and only if A ⇒ β is derivable in LDI⊺
⋏
+ ( ⋏ L).

2. ⇒ β is derivable in LDI if and only if ⊺A⇒ β is derivable in LDI⊺
⋏
+ ( ⋏ L).

Corollary 2 Let the formulae in β and formula A be formulae of NDI, i.e. unit-free.
Then the following holds:

1. A ⊢ β holds in NDI if and only if A ⇒ β is derivable in LDI⊺
⋏
+ ( ⋏ L).

2. ⊺ ⊢ β holds in NDI if and only if ⊺A⇒ β is derivable in LDI⊺
⋏
+ ( ⋏ L).

6 Summary

Adding the two units to the intuitionistic and dual-intuitionistic sequent calculi has
shed some light on the status of emptiness in antecedent and succedent of those
calculi through the axioms that are required to guarantee interderivability of sequents
between LI and LI⋎

�
and derivability statements for NI on one hand and between LDI

and LDI⊺
⋏
and derivability statements for NDI on the other hand. Units as discharge

markers are addressed by axioms which mention the units alone and may thus be
viewed as purely structural. The axioms for units that represent constants relate the
unit to some arbitrary formula and thus represent the ex falso quodlibet and its dual
in the sequent calculus.

We employed four units to emphasize the difference in behaviour that depends
on the impact of the structural restrictions imposed on the intuitionistic and dual-
intuitionistic sequent calculi. This is summarized in Fig. 4. Note, however, that,
strictly speaking, (⋎R) is not an axiom of LI⋎

�
, nor is (⋏L) an axiom of LDI⊺

⋏
.
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The Knowability Paradox in the Light
of a Logic for Pragmatics

Massimiliano Carrara and Daniele Chiffi

Abstract The Knowability Paradox is a logical argument showing that if all truths
are knowable in principle, then all truths are, in fact, known. Many strategies have
been suggested in order to avoid the paradoxical conclusion. A family of solutions—
called logical revision—has been proposed to solve the paradox, revising the logic
underneath, with an intuitionistic revision included. In this paper, we focus on so-
called revisionary solutions to the paradox—solutions that put the blame on the
underlying logic. Specifically, we analyse a possibile translation of the paradox into
a modified intuitionistic fragment of a logic for pragmatics (KILP) inspired by Dalla
Pozza and Garola [4]. Our aim is to understand if KILP is a candidate for the logical
revision of the paradox and to compare it with the standard intuitionistic solution to
the paradox.

Keywords Knowability · Logic for pragmatics · Assertion

1 Introduction

Church-Fitch’s Knowability Paradox shows that from the assumptions that all truths
are knowable and that there is at least an unknown truth (i.e. that we are non-
omniscient) follows the undesirable conclusion that all truths are known. The paradox
of knowability is considered a problem especially for antirealists on truth.
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An antirealist way of answering the criticisms consists in revising logic, assuming
(for example) the intuitionistic logic as the right logic, thus blocking the paradox
through the adoption of a revision of the logical framework in which the derivation
is made.

We take for granted that a revision of the logical framework can be considered as
the right solution to the paradox. Aim of the paper is to analyse if the paradox is repro-
ducible within a logic for pragmatics (LP), specifically into a modified intuitionistic
fragment of a logic for pragmatics (KILP) inspired by Dalla Pozza and Garola [4].
The basic idea of the paper is that if some epistemic aspects associated with the
notion of assertion, which are merely implicit in some philosophical conceptions of
intuitionistic logic (on this aspect see Sundholm [23]), can be explicated in a proper
way in the pragmatic language, then KILP seems to be—at least prima facie—as
good as other logical frameworks for the solution of the knowability paradox.

The paper is divided into eight sections. Section2 is devoted to briefly outlining
the structure of the knowability paradox. In Sect. 3, we sketch the intuionistic solu-
tion to the paradox. Then, an analysis of the difficulties of the intuionistic solution,
specifically the Undecidedness paradox of Knowability, is sketched in Sect. 4. In
Sect. 5, LP and ILP are introduced. Section6 deals with an analysis of the paradox in
KILP. Section7 is devoted to a comparison between our solution and the intuitionistic
one. Some provisional conclusions of the paper are outlined in Sect. 8.

2 Knowability Paradox

The Knowability Paradox is an argument showing that, if every truth is knowable,
then every truth is also actually known. Such a paradox is based on two principles:
the principle of knowability and the principle of non-omniscience. The principle of
knowability KP can be expressed in the following way:

(KP)⊥p(p → ♦K p)

while non-omniscience (Non-Om) is formulated as:

(Non-Om)∃p(p ∧ ¬K p)

The expression ′K p′ reads “p is, has been or will be known by somebody”.
Assume the following two properties of knowledge:

1. the distributive property over conjunction (Dist), i.e. if a conjunction is known,
then its conjuncts are also known, and

2. the factivity of knowledge (Fact), i.e. if a proposition is known, then it is true.

Assume the following two unremarkable modal claims, which can be formulated
using the usual modal operators♦ (“it is possible that”) and� (“it is necessary that”).
The first is the Rule of Necessitation:
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(Nec) If p is a theorem then �p

The second rule establishes the interdefinability of themodal concepts of necessity
and possibility:

(ER)�¬p is logically equivalent to ¬♦p

From KP and Non-Om a contradiction follows. Fitch [7] and Church (we follow
here [21]) proved that

(∗)⊥p¬♦ K (p ∧ ¬K p )

is a theorem. But if (*) and Non-Om hold, then KP has to be rejected, since the
substitution of p ∧ ¬K p for p in KP leads to a contradiction.

On the other hand, if KP is accepted, then Non-Ommust be denied. However, the
negation of Non-Om is equivalent to the formula asserting that “⊥p(p → K p)”.

Therefore, from KP it follows that every sentence is known and this fact seems
to be particularly problematic for the holders of antirealism who accept KP. This
argumentation shows that in the presence of (relatively unproblematic) principles
Dist and Fact, the thesis that all truths are knowable KP entails that all truths are
known. Since the latter thesis is clearly unacceptable, the former must be rejected.
We must conclude conceding that some truths are unknowable.

The proof of the theorem is based on the two following arguments that hold in
any minimal modal system.

First argument:

(1) p ∧¬K p Instance of Non − Om
(2) (p ∧¬K p) → ♦K (p ∧¬K p) Substitution of“ p ∧¬K p” for p in KP
(3) ♦K (p ∧¬K p) From(1)and(2)and modus ponens

Second independent argument:

(4) K (p ∧ ¬K p) Assumption
(5) (K p ∧ K¬K p) Distributivity of K
(6) (K p ∧ ¬K p) Factivity of K
(7) ≤ Contradiction
(8) ¬ (K (p ∧ ¬K p)) Reductio, discarging (4)
(9) �¬ (K (p ∧ ¬K p)) (Nec)
(10) ¬♦ (K (p ∧ ¬K p)) (ER)

From (3) and (10) a contradiction follows. The result of the paradox can be
summarized in the following theorem:

(T1) ∃q(q ∧ ¬K q) → ¬⊥q(q → ♦K q)
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Furthermore, notice also that the converse of (T1) can be easily demonstrated; in
fact, by the principle that what is actual is possible, we obtain the theorem:

(T2)⊥q(q → K q) → ⊥q(q → ♦K q).

which is provably equivalent to the theorem:

(T3)¬⊥q(q → ♦K q) → ∃q(q ∧ ¬K q)

(T1) and (T3) validate the following theorem:

(T) ∃q(q ∧ ¬K q) ↔ ¬⊥q(q → ♦K q)).

If T is a theorem, by applying the Rule of Necessitation to T, we obtain:

(TN)�(∃q(q ∧ ¬K q) ↔ ¬⊥q(q → ♦K q)).

Now, notice that Non-Om ∃p(p ∧ ¬K p)—the non-omniscience thesis—is the
result of a commonsensical observation according to which, de facto, actually there
are true propositions that we do not know. It is not a logical principle of the paradox,
nor it is introduced through a logical argument.

3 The Revision of the Logical Framework: On the Intuitionistic
Solution to the Knowability Paradox

Different ways to block the knowability paradox have been proposed. They are
usually grouped into three main categories:

• Restriction of the possible instances of KP.
• Reformulation of the formalization of the knowability principle.
• Revision of the logical framework in which the derivation is made.

As mentioned, we only concentrate on the last set of proposals, specifically on
the intuitionistic proposal of revising the logical framework. Intuitionistic logic is
considered as the right logic in an antirealistic conception of truth, a conception
embracing an epistemic point of viewon truth.Aversion of this epistemic conception,
compatible with intuitionism, is the following one:

(A) A is true if and only if it is possible to exibit a direct justification for A.

If a justification is something connected to our linguistic capacities, namely not
transcending our epistemic capacities, an antirealist can infer that:

(B) If it is possible to exhibit a direct justification for A, then it is possible to know

that A.
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Putting (A) and (B) together we get the knowability principle:

(KP) If A is true, then it is possible to know that A.

But, as said, from KP, every sentence turns out to be known. Supporters of an
intuitionistic solution to the knowability paradox argue that

(KP) IfAis true, then it is possible to know that A

can be weakened and formulated as a valid intuitionistic formula:

(KPI)⊥p (p → ¬¬K p)

obtaining in this way a formula blocking the paradox [24]. Indeed, consider the
conclusion of the paradox, i.e.:

¬∃p(p ∧ ¬K p).

From the conclusion we may intuitionistically derive

⊥p¬(p ∧ ¬K p).

But if the double negation is not eliminated, then an instance of the above formula:

¬(p ∧ ¬K p)

does not entail

(p → K p).

It only entails KPI. An anti-realist is ready to accept KPI, provided that the logical
constants are understood in accordance with intuitionistic rather than classical logic.
Following Dummett [6], an anti-realist will prefer KPI to KP as a formalization of
his view concerning the relation of truth to knowledge.

4 Difficulties in the Intuitionistic Solution to the Knowability
Paradox

There are two connected difficulties regarding the intuitionistic revision of the logic
for the treatment of the knowability paradox.

Firstly, according to Dummett [6], the consequent of KPI means, from an
intuitionistic point of view, that “there is an obstacle in principle to our being able
to deny that p will ever be known”, or, in other words “the possibility that p will
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come to be known always remains open”. From an anti-realistic point of view, the
last claim holds good for every propositions p. In Dummett’s opinion this is what
(KPI) expresses. Observe that anti-realists (or justificationists) do not deny that there
are true proposition that in fact will never be known,

... But that there are true propositions that are intrinsically unknowable: for instance one
stating the exact mass in grams, given by a real number, of the spanner I am holding in my
hand ([6], p. 52).

Now, although intrinsically unknowable propositions are difficult to be thought,
one may consider the following sentence due to Pap [13] as a possible objection to
Dummett’s thesis (a similar sentence can be found in Poincaré’s works1):

Every body in the universe, including our measuring rods, is constantly expanding, the rate
of expansion being exactly the same for all bodies” (p. 37).2

Pap’s sentence is not verifiable, even if it has a definite truth-condition; namely
we know how the world should be in order to make the sentence true. This point was
also envisaged by Russell (in [22]).3 If we accept such analysis of Pap’s sentence we
obtain a case where it does not happen that it is possible to known a certain sentence
p, even if we know its truth-conditions.

Let us focus on the intuitionistic revisionproposedbyDummett [6] andWilliamson
[24]. Is their solution satisfactory? Marton [11, p. 86] observes that to answer this
question, one should notice that any verificationist theory should include empirical
propositions. So, Marton reformulates the question in the following way:

Can Williamson’s solution be extended to empirical propositions? This is certainly a highly
problematic question, as Williamson repeatedly emphasized (e.g. 1994, 135–137), the intu-
itionistic approach to the paradox can onlywork if the intuitionistic semantics is also granted.
No such generally accepted semantics of empirical propositions seems to be available, how-
ever.

This same fact was already pointed out by Prawitz [17] when he observed that the
serious obstacles to the project of generalizing a verificationist theory to empirical
discourse concern sentences for which there are no conclusive verifications (2002,
p. 90). Thus, if knowability is an essential feature of the antirealist paradigm in
philosophy, when applying antirealist theses to empirical sentences, things become
at least complex. Mathematical truths are necessary, while empirical truths can
be contingent and this is considered a problem for the antirealist thesis, since
empirical sentences can hardly be proven conclusively, and sometimes not just de

1 See [15], Sect. II.1.
2 An interesting analysis of the issue can be found in Dalla Pozza [3].
3 “My argument for the law of excluded middle and against the definition of “truth” in terms of
“verifiability” is not that it is impossible to construct a system on this basis, but rather that it is
possible to construct a system on the opposite basis, and that this wider system, which embraces
unverifiable truths, is necessary for the interpretation of beliefs which none of us, if we were sincere,
are prepared to abandon” (p. 682).
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facto but because they are intrinsically unknowable.4 Thus, it seems that the anti-
realist notion of truth cannot be easily associated with knowability in the case of
empirical statements, since empirical sentences may be not decidable.5

A second problem for the antirealist concerns undecidedness: a stronger
knowability paradox named undecidedness paradox is derivable from the intuitionis-
tic revision. Percival [14] argues that the intuitionistic revision of the paradox involves
a further paradox stating that there are no necessary undecided statements, which
seems absurd also from the verificationist perspective. Consider the assumption that
there are undecided statements in the intuitionistic and epistemic calculus:

(1) ∃p(¬K p ∧ ¬K¬p) Assumption(undecidedness)
(2) (¬K p ∧ ¬K¬p) From(1); instantiation
(3) ⊥p(¬K p → ¬p) Intuitionistically equivalent to the denial of Non − Om
(4) (¬K p → ¬p) Instantiation of(3)
(5) (¬K¬p → ¬¬p) Substitution of p with ¬p
(6) ¬p ∧ ¬¬p Contradiction from(2), (4)and(5)
(7) ¬∃p(¬K p ∧ ¬K¬p) From(1)and(6)

In the above argument an intuitionistic contradiction follows. Thus, the antirealist
using intuitionistic logic cannot hold that there are undecided statements and this
seems absurd.A possibleway to escape the conclusion is to useWilliamson’s strategy
by formalizing undecidedness as:

¬⊥p(K p ∨ K¬p).

The above is classically, but not intuitionistically, equivalent to (1). So, it is only
classically, but not intuitionistically, inconsistent with the result at line (6).

Has the logic of pragmatics LP some good points when handling the above
problems?

4 [18] points out that empirical and mathematical assertions can be justified by means of different
grounds. He remarks that “a ground for the assertion of a numerical identity would be obtained by
making a certain calculation, and outside of mathematics, a ground for asserting an observational
sentence would be got by making an adequate observation”. Dummett [5], in fact, points out that:
“The intuitionist theory of meaning applies only to mathematical statements, whereas a justifica-
tionist theory is intended to apply to the language as a whole. The fundamental difference between
the two lies in the fact that, whereas a means of deciding a range of mathematical statements, or any
other effective mathematical procedure, if available at all, is permanently available, the opportunity
to decide whether or not an empirical statement holds good may be lost: what can be effectively
decided now will no longer be effectively decidable next year, nor, perhaps, next week” (p. 42).
5 See also Hand [9].
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5 An Outline of the Logic for Pragmatics LP

Dalla Pozza and Garola [4] proposed a pragmatic interpretation of intuitionistic
propositional logic as a logic of assertions. They were mainly inspired by the logics
of Frege and Dummett and by Austin’s theory of illocutory acts.

Roughly speaking, the idea is to follow Frege distinguishing propositions from
judgements. To briefly recapitulate Frege’s distinction: the proposition has a truth
value, while a judgement is the acknowledgement of the truth by a proposition.
Propositions can be either true or false, while the act of judgement can be expressed
through an act of assertion, which can be justified (hereafter “J”) or unjustified
(hereafter “U”).

The idea of a pragmatic analysis of sentences/propositions has been developed
by Reichenbach [19]. Following Frege and Reichenbach, in Dalla Pozza and Garola
the assertion sign ⊆ consists of two parts: the horizontal stroke is a sign showing that
the content is judgeable, the vertical stroke is a sign showing that the propositional
content is asserted.6 Differently from Frege’s logical system, where assertive sen-
tences cannot be nested, in Dalla Pozza and Garola’s system pragmatic connectives
are introduced to build complex formulas out of expressions of assertion.

Moreover, following Reichenbach’s observations on assertions, i.e. that (i) asser-
tions are part of the pragmatic aspects of language and (ii) assertions cannot be con-
nected with truth-functional operators, in LP there are two sets of formulas: radical
and sentential formulas. Every sentential formula contains at least a radical formula
as a proper subformula. Radical formulas are semantically interpreted by assigning
them with a (classical) truth value, while sentential formulas are pragmatically eval-
uated by assigning them a justification value (J, U), defined in terms of the intuitive
notion of proof. Assertive connectives have a meaning which is explicated by the
BHK (Brouwer, Heyting, Kolmogorov) intended interpretation of logical constants.
Namely, atomic formulas are justified by a proof, while the justification of an impli-
cation is a method transforming a justification of the antecedent into a justification
of the consequent, and so on.

The pragmatic language LP is the union of the set of radical formulas RAD and
the set of sentential formulas SENT, which can be recursively defined:

RADγ ::= p; ¬γ ; γ1 ∧ γ2; γ1 ∨ γ2; γ1 → γ2; γ1 ↔ γ2.

SENT (i) atomic assertive: η ::=⊆ γ

(ii) Assertiveδ ::= η;∼ δ; δ1 ∩ δ2; δ1 ∪ δ2; δ1 ⊃ δ2; δ1 ≡ δ2.

As proved by Dalla Pozza and Garola [4], classical logic is expressed in LP by
means of those valid pragmatic assertions that are elementary (i.e. the sentential for-
mulas that do not include pragmatic connectives). This classical fragment is called

6 From this perspective, notice that an assertion is a “purely logical entity” independent of the
speaker’s intentions and beliefs. For a different perspective see [10].
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CLP). In this way, the corresponding radical formulas are tautological molecular
expressions. On the other hand, intuitionistic logic is obtained by limiting the lan-
guage of LP to complex formulas that are valid with atomic radical, even if the
metalanguage is still classical. This intuitionistic fragment is called ILP.

The semantic rules for radical formulas are the usual Tarskian rules that specify
the truth-conditions by means of a semantic assignment-function σ . Let γ1, γ2 be
radical formulas, then:

(i) σ(¬γ1) = 1 iff σ(γ1) = 0
(ii) σ(γ1 ∧ γ2) = 1 iff σ(γ1) = 1 and σ(γ2) = 1
(iii) σ(γ1 ∨ γ2) = 1 iff σ(γ1 = 1) or σ(γ2) = 1
(iv) σ(γ1 → γ2) = 1 iff σ(γ1) = 0 or σ(γ2) = 1

There are also justification rules formalized by the pragmatic evaluationπ govern-
ing the justification-conditions for assertive formulas in function of theσ assignments
of truth-values for the radical atomic formulas (namely, π depends on the semantic
function σ for radical atomic formulas). A pragmatic evaluation function is such that

π : δ ∈ E N �−→π δ ∈ {J, U }

Proposition 1 Let γ be a radical formula. Then, π(⊆ γ ) = J iff there is a proof
that γ is true, i.e. σ assigns to γ the value “true”. Hence, π(⊆ γ ) = U iff no proof
exists that γ is true.

Proposition 2 Let δ be a sentential formula. Then, π(∼ δ) = J iff a proof exists
that δ is unjustified, namely that π(δ) = U.

Proposition 3 Let δ1, δ2 be sentential formulas, then:

• π(δ1 ∩ δ2) = J iff π(δ1) = J and (δ2) = J
• π(δ1 ∪ δ2) = J iff π(δ1) = J or (δ2) = J
• π(δ1 ⊃ δ2) = J iff a proof exists that π(δ2) = J whenever (δ1) = J
• π(δ1 ≡ δ2)) = J iff π(δ1 ⊃ δ2) = J and π(δ2 ⊃ δ2) = J

Proposition 4 Let γ ∈ RAD. If π(⊆ γ ) = J then σ(γ ) = 1

Modus Ponens rule is provided for both (CLP) and ILP, respectively

[MPP] If ⊆ γ1,⊆ γ1 → γ2 then ⊆ γ2

and

[MPP’] If δ1, δ1 ⊃ δ2 then δ2
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where δ1 and δ2 contain only atomic radicals. Moreover, note that the justification
rules do not always allow for the determination of the justification value of a complex
sentential formula when all the justification values of its components are known. For
instance, π(δ) = J implies π(∼ δ) = U , while π(δ) = U does not necessary imply
π(∼ δ) = J .

In addition, a formula δ is pragmatically valid or p.valid (respectively invalid or
p.invalid) if for every π and σ , the formula δ = J (respectively δ = U ). Note that if
δ is p.valid, then ∼δ is p.invalid and if ∼δ is p.valid then δ is p.invalid. This is the
criterion of validity for the pragmatic negation. We insert them just for completeness
of exposition but we will not make use of them here, the same as for other pragmatic
criteria of validity presented in [4].

Hence, no principle analogous to the truth-functionality principle for classical
connectives holds for the pragmatic connectives in LP, since pragmatic connectives
are partial functions of justification.

The set of radical formulas correspond to propositional formulas of classical logic,
while the set of sentential formulas is obtained by applying the sign of assertion ⊆
to radical formulas. An assertion is justified by means of a proof and it cannot be
iterated: so ⊆⊆ γ is not a wff of LP. Nonetheless ⊆ �γ , with � in a S4 modality, is a
wff of an extended pragmatic language with modal operators in the radical formulas.
We will follow this suggestion when we will introduce the modal and epistemic
operators in the intuitionistic fragment of LP. This fragment ILP is obtained limiting
LP to complex formula valid with radical atomic formula. The axiom of ILP are:

A1. δ1 ⊃ (δ2 ⊃ δ1)

A2. (δ1 ⊃ δ2) ⊃ ((δ1 ⊃ (δ2 ⊃ δ3)) ⊃ (δ1 ⊃ δ2))

A3. δ1 ⊃ (δ2 ⊃ (δ1 ∩ δ2))

A4. (δ1 ∩ δ2) ⊃ δ1; (δ1 ∩ δ2) ⊃ δ2
A5. δ1 ⊃ (δ1 ∪ δ2); δ2 ⊃ (δ1 ∪ δ2)

A6. (δ1 ⊃ δ3) ⊃ ((δ2 ⊃ δ3) ⊃ (δ1 ∪ δ2) ⊃ δ3))

A7. (δ1 ⊃ δ2) ⊃ ((δ1 ⊃ (∼ δ2)) ⊃ (∼ δ1))

A8. δ1 ⊃ ((∼ δ1) ⊃ δ2)

The assertion sign is not a predicate and asserted sentences cannot be embedded,
for instance, in the antecedent of an implication.As observed, this is a classical feature
of assertion and it is what Geach [8] calls Frege’s point. Moreover, an assertion sign
cannot be within the scope of a classical (truth conditional) connective, since it works
in what is called “pragmatic capacity” [19].

Sentential formulas have an intuitionistic-like behaviour and can be translated
into modal system S4, where ⊆ γ can be translated as �γ , meaning that “there is an
(intuitive) proof of the truth of γ ” in the sense of empirical or logical procedures of
proof.
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Briefly put, the modal meaning of pragmatic assertions is provided by the
following semantic translation of pragmatic connectives. Sentential formulas can
be translated into the classical modal system S4 as in the following table:

(⊆ γ ) / �γ

∼⊆ γ / �¬�γ

(⊆ γ1∩ ⊆ γ2) / �(γ1) ∧ �(γ2)

(⊆ γ1∪ ⊆ γ2) / �(γ1) ∨ �(γ2)

(⊆ γ1 ⊃ ⊆ γ2) /�(�(γ1) → �(γ2))

Classical and intuitionistic formulas are related bymeans of the following “bridge
principles”:

(a) ⊆ (¬γ ) ⊃∼⊆ (γ )

(b) (⊆ γ1∩ ⊆ γ2) ≡ ⊆ (γ1 ∧ γ2)

(c) (⊆ γ1∪ ⊆ γ2) ⊃ ⊆ (γ1 ∨ γ2)

(d) (⊆ γ1 → γ2) ⊃ (⊆ γ1 ⊃ ⊆ γ2)

The formula (a) states that from the assertion of not-γ , the non-assertability of
γ can be inferred. (b) states that the conjunction of two assertions is equivalent to
the assertion of a conjunction; (c) states that from the disjunction of two assertions
one can infer the assertion of a disjunction. Finally (d) expresses the idea that from
the assertion of a classical material implication follows the pragmatic implication
between two assertions. Note that such principles hold in an extension of ILP with
classical connectives. We name such fragment ILP+.

6 A Pragmatic Treatment of the Knowability Paradox

Let us present the Knowability Paradox in the framework of ILP enriched with a
knowledge operator K and aletheic modality. Notice that such a logic cannot be
ILP or ILP+ because, as mentioned, intuitionistic logic is obtained by limiting the
language of LP to complex formulas that are valid with atomic radical, even if the
metalanguage is still classical. Given the above characterization of ILP, the formula
⊆ ♦ K p is not a wff of ILP. We extend ILP with a knowledge operator K and alethic
modality. Concerning modality: we have already observed that ⊆ � γ , with � in an
S4 modality, is a wff of an extended pragmatic language with modal operators in
the radical formulas. Regarding the knowledge operator K : it is possible to treat it
using some analogous invariance principles given by Ranalter in [20] for the ought
operator.7 Moreover, for the sake of simplicity we will not make use of quantifiers.
We start with a suitable formulation of the Knowability Principle in KILP:

7 A similar intermediate logic has been developed in [1].
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(KP’) : (⊆ p ⊃⊆ ♦K p). (instance of knowability in KILP)

(KP’) is a wff of KILP and states that there exists a method transforming a proof
of p into a proof of the possibility of knowledge that p, which is a stronger claim
with respect to (KP), i.e. “for every p, p → ♦K p”. In (KP’) one claims that there
is a proof of the knowability of p. The principle of non-omniscience in KILP is—
again—stronger than (Non-Om), namely:

(Non-Om’): ⊆ p∩ ∼⊆ K p (instance of Non-Omniscience in KILP).

Non-Om’ states that there is a proof of p without knowing to know that p. If
so, Non-Om’ says something different form the fact it should express: i.e. non-
omniscience.

Observe that the arguments leading to the knowability paradox cannot be formu-
lated in KILP, first of all for syntactic reasons. Let us consider the first argument:

(1’) ⊆ p∩ ∼⊆ K p

the substitution of “p” with “p ∧ ¬K p” cannot be executed, since formulas with
classical connectives are not wff of KILP. Again, the substitution of the radical
formula “p” with “⊆ p ∩ ∼⊆ K p” in KP’ does not work, since the sign of assertion
cannot be nested. Moreover, from the substitution “⊆ p” with “⊆ p ∩ ∼⊆ K p” in
KP’, it merely follows:

(2’) (⊆ p ∩ ∼⊆ K p) ⊃ ⊆ ♦K p
(3’) ⊆ ♦K p modus ponens from (1′) and (2′).

Let us now consider the second independent argument of the paradox. It is worth
noting that it is impossible to state the assumption for the reductio in KILP; namely
both

(4*) ⊆ K (p ∧ ¬K p)
(4**) ⊆ K (⊆ p ∩ ∼⊆ K p)

are not wff of KILP, since (4*) contains classical connectives, while in (4**) the sign
of assertion is nested. Moreover, consider a semantic reading of (4*): there is a proof
that we know that p is true and that we do not know that p is true. It does not make
any sense! Hence, there is no way to reproduce the paradox in the language of KILP.
Consequently, the argument leading to the paradox is stopped at the early inferential
steps.
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7 A Comparison with the Intuitionistic Solution

One could argue that the result just obtained in KILP is not surprising if KILP is
an adequate extended fragment of intuitionistic logic. We have argued that in the
intuitionistic solution KP can be weakened and formulated as a valid intuitionistic
formula. Does KILP has any chances to supersede the antirealist difficulties skected
in the paper, in Sect. 4? First, consider a preliminary remark. Observe that, differently
from intuitionism, in KILP:

(A) A is true if and only if it is possible to exibit a direct justification for A

does not hold.
Indeed, for an antirealist truth is epistemically constrained,while subscribers ofLP

hold thatwhat can be properly justified in LP are (assertive) acts, and propositions can
be true or false.Notice,moreover, that the use of logical constants in themetalanguage
of KILP is classical. That is why (A) is false in LP. In LP we have to distinguish a
semantic and a pragmatic level. From the fact that a certain sentance is true it does
not mean that the same sentence is justified. If (A) is false in LP then KP does not
follow. In fact, KP is the result of:

(A) A is true if and only if it is possible to exibit a direct justification for A.

and

(B) If it is possible to exhibit a direct justification for A, then it is possible to know

that A.

As already beenmentioned, in putting (A) and (B) together, we get the knowability
principle:

(KP) IfAis true, then it is possible to know that A.

This result is in accordance with the syntactic translation given above: In KP’ we
have observed that we have a proof of the knowability of p whereas in KP we just
claim its knowability. If KP’ holds then KP holds but not vice versa.

Consider what happens in KILP with undecidedness.
First, notice that the argument leading to the paradox of undecidedness cannot

be replicated in KILP, since we cannot even express an instance of undecidedness:
Merely from a syntactical point of view

(∼⊆ K p ∩ ∼⊆ K¬p)

is not, in fact, a wff of KILP. A slightly different notion of undecidedness can be
expressed by the formula:

there is a p such that ∼ (⊆ K p ∪ ∼⊆ K p)
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namely, there is a p such that it is not provable that the assertion of K p holds or that
the assertion K p does not hold. Let us consider the formula

there is a p such that (⊆ p ∩ ∼⊆ K p)

which expresses non-omniscience in KILP. An instance of the denial of non-
omniscience can be now expressed in the following way:

(0) ∼ (⊆ p ∩ ∼⊆ K p)Negation of an instance of (Non-Om’).

Observe that, also with the above version of undecidenss plus Non-Om’ the argu-
ment leading to the Undecidedness Paradox of Knowability cannot be expressed in
KILP. In fact, let us consider the following steps:

(1) ∼ (⊆ K p ∪ ∼⊆ K p) Assumption (instance of undecidedness)
(2) (∼⊆ K p ⊃∼⊆ p) Equivalent to (0)
(3*) (∼⊆ K¬p ⊃∼⊆ ¬p) Substitution of “p” with “¬p” not allowed in KILP

(1) can be assumed in order to express a stronger form of undecidability, under-
stood as a the existence of a proof of the impossibility of obtainingdecidability.Notice
that the negation of the excluded middle is a contraddiction in intuitionistic logic,
whereas the justification value of (1) might be undeterminate in KILP, according to
the justification rules of ILP expanded to KILP. Indeed, there is a formal equivalence
only among theorems of intuisionistic logic and the corresponding p.valid formula
of ILP (expanded in the obvious way to KILP), while it does not follow for formulas
different from theorems.

(2) can be derived and a reading of (2)—suggested by the BHK interpretation of
logical constants—is the following one: there is a method which transforms a proof
that Kp cannot be proven into a proof that p cannot be proven. While a classical read-
ing of (2), namely ¬K p → ¬p, means that ignorance entails falsity, the pragmatic
reading of (2) deals with the conditions of provability of K. Finally, (3*) cannot be
obtained in KILP, since it is not possible to substitute “p” with “¬p” (the negation
is classical).

Perhaps, if one wants to express undecidedness by means of conjunction as in
the original paradox, the following might do. Consider the undecidedness paradox
of knowability expressed in an extension of KILP with classical negation. We name
it KILP+. In KILP+, undecidedness can be expressed with

there is a p such that (∼⊆ K p ∩ ∼⊆ K¬p).
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Consider the following steps:

(1)’ ∼⊆ K p ∩ ∼⊆ K¬p Assumption(instance of undecidedness)
(2)’ (∼⊆ K p ⊃∼⊆ p) Equivalent to (0)
(3)’ (∼⊆ K¬p ⊃∼⊆ ¬p) Substitution of “ p” with “¬p” allowed in KILP+
(4)’ ∼⊆ p ∩ ∼⊆ ¬p Application of the conjuncts of(1)′to(2)′and(3)’

Notice that (4)’ does not involve a paradoxical consequence. The fact that we do
not have a proof of p, but also we do not have a proof of ¬p is rather common for
empirical sentences which are not decidable.

Unlike the treatment of the undecidedness paradox of knowability in intuitionistic
logic, KILP in its extension KILP+ does not involve the denial of undecided sen-
tences. So one could argue either that the paradox is not formalizable in KILP or that
it is not paradoxical in one extension (KILP+) of it. This seems to be an advantage
of KILP over intuitionistic logic.

8 Conclusions

In this paper paper we have analysed the paradox of knowability asking if it is
reproducible within a logic for pragmatics (LP), especially in an extension of an
intuitionistic fragment of it, KILP.We have shown the strict limits of the proposal, but
also some advantages: the most important one concerns undecideness of contingent
sentences.

Notice that the negation of a sentence in intuitionistic logic means that the
proposition implies the absurd and this makes sense in mathematics, while—
pretheoretically—the negation of a contingent empirical proposition does not imply
the absurd. On the contrary, the pragmatic negation means that there is a proof that
a certain proposition is not (or cannot be) proved. The formal behaviour of the prag-
matic negation can be properly understood when one take into consideration the
excluded middle. It can be written as (⊆ p ∪ ∼⊆ p). p is an atomic formula atomic
and it allows only an empirical procedure of proof; the following situation is possi-
ble: we do not have an empirical proof procedure for asserting p and we do not have
any empirical procedure of proof for not asserting p. Therefore, (⊆ p ∪ ∼⊆ p) is
not justified (see Proposition 3).

This property of the pragmatic negation combined with the possibility to express
empirical procedures of proof in the language of LP shows some possible advantages
with respect to intuitionistic logic when dealing with empirical sentences.
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A Dialetheic Interpretation
of Classical Logic

Massimiliano Carrara and Enrico Martino

Abstract According to classical logic, the acceptance of a dialetheia, a proposition
that is both true and false, entails trivialism the output that every sentence is true.
One way to accept dialetheias but avoid trivialism is to reject the general validity
of classical logic, which is the view held by dialetheists, supporters of the existence
of dialetheias. In The Logic of Paradox (LP), Priest adopts the material conditional,
identifying A ⊥ B with ¬A → B. He argues that this is not a genuine conditional
because it invalidates modus ponens (MP), an essential rule governing the use of
the conditional. In subsequent works he introduces a genuine conditional and tries
to avoid Curry’s paradox by invoking a highly problematic modal semantics. The
aim of our paper is to argue that a dialetheist can stick to the material conditional
and recover the whole of classical logic without falling into trivialism. Our strategy
sets forth a way of understanding the notion of assumption suitable for the dialetheic
perspective.We show the inadequacy of formal classical logic to capture the intended
exclusivity of negation. Finally, we argue that the material conditional is adequate
to provide a dialetheic solution to semantic paradoxes.

Keywords Dialetheism · Classical logic · Curry’s Paradox

1 Introduction

Dialetheism holds the thesis that there existdialetheias (i.e., propositions that are both
true and false). Priest (for example, in Priest [4–6]) claims that dialetheism supplies
the best solution to all the self-reference paradoxes. The paradigmatic example of a
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self-reference paradox is the strengthened liar paradox, having the form

(a) : (a) is not true,

which is solved, according to Priest, by holding that (a) is both true and not true.
In classical logic, the presence of a dialetheia entails trivialism—the truth of

all sentences—through the classical rule of ex contradictione quodlibet (ECQ).
Dialetheism avoids trivialism by rejecting the general validity of classical logic.
We want to argue that a dialetheist can accept the general validity of classical logic
without falling into trivialism. We do it by refining the notion of assumption and by
exploiting a relevant feature of the material conditional.

2 The Dialetheic Meaning of Logical Constants

Priest maintains that if dialetheism is to be a tenable view, the dialetheic meaning of
logical constants must be adopted even in the meta-language:

(MLC) The meaning of logical constants is to be the same in the object language
and in the meta-language.

Consider the language L of first-order logic. According to MLC, the meaning of
logical constants can be translated from the meta-language into the object language
bymeans of the usual homophonic Tarskian clauses, where themetalinguistic logical
constants are understood dialetheically. The clauses are the following:

1. ¬A is true ifd f A is not true.
2. A ♦ B is true ifd f A is true and B is true; similarly for the universal quantifier

(∃).
3. A → B is true ifd f A is true or B is true; similarly for the existential quantifier (∧).
4. A ⊥ B is true ifd f A is not true or B is true.

Clause (4) defines the so-called material conditional, which was adopted by Priest
in The Logic of Paradox (LP) [4]. In subsequent works (for example, [5]), Priest
introduces other kinds of highly problematic conditionals (see last section). However,
we are here mainly interested in the language of LP.

What is the dialetheic meaning of the logical constants? The dialetheic meaning
of conjunction, disjunction and quantifiers seems to be the usual classical one. What
seems to be highly problematic, however, is how to understand dialetheic negation.
The understanding of a dialetheia seems to presuppose a non exclusive meaning of
negation, suitable for making a sentence compatible with its negation, in contrast to
the classical (and intuitionistic) meaning. Priest denies, however, that the acceptance
of dialetheias depends on the adoption of some anomalous negation. In his discussion
of Boolean negation (i.e. exclusive negation), [6, Part II, Sect. 5] argues that no
negation can rule out, by virtue of its very meaning, the existence of dialetheias.
According to his view, this would be a “surplus” that no understanding of negation
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can preclude. He maintains that every attempt to defend the existence of Boolean
negation has been a petitio principii and draws the following conclusion:

Boolean negation negated (BNN) The dialetheist is at liberty to maintain that
Boolean negation has no coherent sense [5, p. 98].

BNN is of crucial importance for the dialetheic solution to semantic paradoxes. In
fact, if a dialetheist recognized a legitimate sense to Boolean negation, he could
use it in the meta-langage and translate it into the object language through clause (1)
mentioned above. In that case, the paradoxes would be reproduced, and the dialetheic
solution would fail.

We think that BNN—as a general claim about the use of negation in natural
language—is untenable: no one can avoid the use of Boolean negation in natural
language. Priest himself, when claiming that certain classical rules are not valid,
must use an exclusive “not”, on pain of nullifying his own claim. The thesis itself
(that an exclusive negation does not exist) exploits the notion of exclusivity. If this
notion is defined in terms of the dialetheic negation, it doesn’t reach the intended
meaning and the distintion between exclusive and non-exclusive negation collapses.
On the other hand, if exclusivity is taken as primitive in the intended sense, then the
exclusive negation can be defined in the object language through the clause:

(1∗) ¬A is true ifd f the truth of A is excluded.

Anyway, we concede, for the sake of argument, that the meaning of negation, both
in the object language and in themeta-language, is the dialetheic one (i.e., compatible
with the existence of true contradictions, both linguistic and meta-linguistic).

Let us consider the semantics of LP. Let L be the language of first-order logic.
A dialetheic interpretation of L consists of a pair (D, a) where D is a non-empty
domain of individuals and a is an assignment (intended as a one-many relation) that
assigns to every atomic sentence one or both the truth-values 1, 0. Suppose, for the
sake of simplicity, that L has a name for every member of D. We say that an atomic
sentence is true (is false) if it is assigned the value 1 (the value 0). The truth-values
of a compound sentence are inductively defined as follows:

(a) ¬A is true ifd f A is false; it is false ifd f A is true.
(b) A ♦ B is true ifd f A is true and B is true; it is false ifd f A is false or B is false;

similarly for the universal quantifier (∃).
(c) A → B is true ifd f A is true or B is true; it is false ifd f A is false and B is false;

similarly for the existential quantifier (∧).
(d) A ⊥ B is true ifd f A is false or B is true; it is false ifd f A is true and B is false.

The adoption of this semantics, together with MLC, suggests that clauses (1)–(4)
should be equivalent to clauses (a)–(d). So we assume that the meta-linguistic nega-
tion used in clause (1) is understood in such away that clauses (1) and (a) characterize
the same notion of negation in the object language. That is in agreement with Priest’s
inter-definability of falsity and negation [6, p. 46]:

T (�¬A�) ∗ F(�A�), F(�¬A�) ∗ T (�A�)
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(where T and F are the truth and the falsity predicate respectively).
Therefore,we consider clauses (1)–(4) and clauses (a)–(d) as equivalent. It follows

that falsity and untruth are identified. In formal semantics, this means that the fact
that an assignment assigns to an atomic sentence A the value 0 is to be understood as
a convention to the effect that A represents an untrue (possibly also true) proposition.
In other words, to say that A is untrue does not mean that the assignment does not
assign to A the value 1, but that it assigns to A the value 0.

Priest actually seems to be puzzled about the identification of untruth and falsity.
He observes that the principle F(�A�) ⊥ ¬T (�A�) could, at least prima facie,
be rejected on the ground that the falsity of A does not exclude its truth. We think,
however, that dialetheists should not worry about that since, according to their view,
negation is nonexclusive: ¬T (�A�) is compatible with T (�A�). This distinction
between falsity and untruth seems to be appropriate to gap-theorists: for them an
untrue sentence may be neither true nor false. But, since for the dialetheist any
proposition is true or false, it is hard to see what can distinguish a false proposition
from an untrue one.

Moreover, consider the formalization of the strengthened liar paradox. Let k =
�¬T (k)�. The paradox is solved by assigning to the atomic sentence T (k) the values
1 and 0. So, according to clause (a), ¬T (k) is false; and in order to read ¬T (k)
as “T (k) is untrue”, falsity and untruth must be identified. In other words, for the
dialetheist there is no room for distinguishing the strengthened liar from the simple
liar.

For these reasons we consider the following principles dialetheically valid:

(2∗) F(�A�) ∗ T (�¬A�) ∗ ¬T (�A�)
Priest observes that, when dealing with dialetheias, certain rules of classical logic

are invalid. For instance, the material conditional invalidates modus ponens (MP).
Indeed, if A is a dialetheia, A and¬A→ B (i.e, A ⊥ B) are true for any B, so that, by
MP, B would follow. For this reason he claims that MP is quasi-valid. In general, he
calls quasi-valid the classical rules that are valid as far as no dialetheia is involved.

One might observe, as Priest does, that the material conditional is not a genuine
conditional because “any conditional worth its salt should satisfy the modus ponens
principle”. However, we will show that, in a dialetheically intelligible sense, the
material conditional satisfies all classical inference rules, so it can be considered a
genuine conditional.

3 Material Validity

Consider the general notion of logical validity:

An inference rule is valid if it preserves truth from the premises to the conclusion.

However, the definition of truth-preservation involves, in turn, a meta-linguistic
conditional.An inference rule is truth-preserving if it satisfies the following condition:
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If the premises are true so is the conclusion.

Let us adopt the material conditional even in the meta-language. Since such con-
ditional is used in LP, that is in agreement with MLC. So, the truth preservation of
MP is expressed as follows:

(3.1) A is false or (¬A → B) is false or B is true.

(3.1) is satisfied even if A is a dialetheia because in this case A is false. Observe that
if A is a dialetheia and B is false, then (3.1) is a meta-linguistic dialetheia: since the
first disjunct is true, the disjunction is true; and since all three disjuncts are false,
the disjunction is false. Despite some counterexamples to the truth preservation of
MP, a dialetheist can nevertheless conclude that MP is always truth-preserving. In
other words, the meta-linguistic proposition “the material conditional satisfies MP”
is always true; sometimes it is a dialetheia. Thus, the dialetheist cannot reject the
validity ofMP for thematerial conditional. In general, wewill show that, by adopting
the material conditional in the meta-language, dialetheists can accept the entirety of
classical logic, maintaining their solution to the paradoxes and avoiding trivialism.

Let ND be the classical system of natural deduction for first-order logic. We want
to prove the following theorem:

Material validity (MV) For every formal proof of ND, either the conclusion is true
or some assumption is false.

Let I = (D, a) be a dialetheic interpretation. A classical interpretation I ≤ = (D, a≤)
is a sub-interpretation of I if, for every sentence A, the I ≤-value of A is one of the
I -values of A. Since the above clauses (a)–(d) hold both classically and dialetheically,
a classical sub-interpretation of I is obtained through any assignmenta≤ that, for every
atomic sentence A, chooses one of the a-values of A.

Lemma 1 Let I be a dialetheic interpretation for first-order logic, and let I ≤ be any
classical sub-interpretation of I . If a formula A is only I -true (only I -false), then it
is I ≤-true (I ≤-false).

Proof By an easy induction on the complexity of A. ↔∨
Proof (of MV) By way of reduction, let p be a proof of B from the assumptions
A1, . . . , An , and let I be a dialetheic interpretation that makes A1, . . . , An only
true and B only false. By the lemma, any classical sub-interpretation of I makes
A1, . . . , An true and B false, against the classical soundness theorem. ↔∨

One may wonder if this proof is dialetheically correct. Indeed, the proof uses
the notion of only true and proceeds by reduction to absurdity. Now, a well-known
criticism to dialetheism concerns the difficulty of expressing the notion of exclusive
truth dialetheically. In fact, only true is usually understood as “true and not false”with
the exclusive not, which fails to be available to a dialetheist. However, a dialetheist
needs the possibility of expressing such a notion. For instance, having held that a
sentence may be true, false or both, the dialetheist should be able to reason by cases
to distinguish three possible cases: true only, false only, true and false.
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Let us consider two of Priest’s arguments for defending the possibility of express-
ing dialetheically the notion of true only. The first is simply that a dialetheist can
express the fact that a sentence is only true by using these very words, just as a classi-
cist does. According to this claim, only true should be defined as “true and not false”
even dialetheically. In fact, as already observed, Priest maintains that dialetheism
does not alter the classical meaning of negation. The difference between a classicist
and a dialetheist would be solely that the first pretends to guarantee consistency but
the second does not:

What the dialetheist cannot do, whether the topic is paradox or anything else, is ensure that
views expressed are consistent. The problem then, for a dialetheist—if it is a problem—is
that they can say nothing that forces consistency. But once the matter is put this way, it is
clear that a classical logician cannot do this either. Maybe they would like to; but that does
not mean they succeed. Maybe they intend to; but intentions are not guaranteed fulfilment.
Indeed, it may be logically impossible to fulfil them, as, for example, when I intend to square
the circle [6, p. 106].

We think that this argument misses the point. Expressivity has nothing to do with
warranty. The problem is not how to say something that forces consistency; it is
rather how to say what consistency is. The comparison to the problem of squaring
the circle is misleading. Concerning that problem, it is not in question what squaring
the circle means. On the contrary, the problem we are dealing with is what it means
for a dialetheist to say that a sentence A is only true. The answer that it simply means
that A is true and not false makes “only true” collapse into “true tout court”. Since
from T (�A�) it follows¬¬T (�A�) and, by (2∗),¬F(�A�), any true sentence is true
and not false.

Priest’s second argument is more plausible. He tries to make up for the lack of
exclusive negation by introducing the notion of rejection of a proposition, to be clearly
distinguished from the acceptance of negation ([5, 7]; for a general introduction to
the topic see [8]). Acceptance and rejection are cognitive states corresponding to the
linguistic acts of asserting and denying respectively. According to Priest, while one
can accept both a proposition and its negation, one cannot accept and reject the same
proposition. Thus, when recognizing that a proposition is a dialetheia, dialetheists
cannot reject either it or its negation. Besides, when rejecting a proposition, they
must accept its negation, excluding it from being a dialetheia. No connective, by
virtue of its logical meaning, can serve the purpose of expressing the exclusion of
the truth (or the falsity) of A, but one can express that by denying A (or ¬A).

Although Priest does not say anything, as far as we know, about the notion of
assumption, we think that this can be treated, in turn, as an illocutory act. We propose
to legitimate the possibility of assuming, in the course of a proof, that a sentence is
only true (only false), where such assumptions are to be dialetheically understood as
illocutory acts. Just as people can assert or deny something, they can also assume it.
Furthermore, they can assume or assert something in an exclusive mode. In this vein,
even if dialetheists reject exclusivity as part of the meaning of a proposition, they
can accept it as a mode of an illocutory act. In this way, in accordance with the claim
that a proposition may be true, false or both, a dialetheist can recover the possibility
of distinguishing the three possible cases assuming, in turn, that it is (i) only true,
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(ii) only false or (iii) both true and false. In this sense we think that the use of the
notion of truth only in MV is dialetheically acceptable.

As to the procedure by reduction to absurdity, dialetheists can recognize that all
classical inference rules are truth preserving under the assumption that all atomic
sentences are only true or only false. In this way they can recover the classical
soundness theorem. Similarly, they can rightfully suppose that the assumptions of a
classical proof are only true and that the conclusion is only false and then reject such
supposition in virtue of the soundness theorem. For these reasons we conclude that
the proof of MV is dialetheically acceptable.

Of course, one can object that, according to dialetheism, material validity is not
genuine validity because the truth of the assumptions does not guarantee the truth
of the conclusion. However, material validity is adequate to formalize hypothetical
reasoning even from a dialetheic perspective. When reasoning under certain assump-
tions, mathematicians do not generally know whether their assumptions are actually
true. So what even a classical mathematician can know from a formal proof is that the
conclusion is true or some assumption is false. Indeed, a classicist who knows that
the assumptions are true can—unlike the dialetheist—assert the conclusion. How-
ever, a dialetheist can explain this fact by holding that, when the classicists know
that the assumptions are true, they erroneously believe themselves to be in a position
of rejecting the negations of the assumptions. And such a rejection is the appropriate
ground for asserting the conclusion. In fact, even dialetheists, when they are in the
position of rejecting the negations of all assumptions, can assert the conclusion.

By virtue of the possibility of assuming that a proposition is only true, a dialetheist
may reformulate the meta-theorem MV as follows:

(MV∗) Given any dialetheic interpretation of L , a classical proof leads to a true
conclusion under the assumption that the hypotheses are only true.

Priest himself tries to recapture classical logic by introducing the notion of a
quasi-valid inference rule (see in Priest [5, Sect. 8.5]). However, he puts the question
in terms of extra-logical notions such as that of rational acceptability and rational
rejectability.

An example is the way he explains the quasi-validity of the disjunctive syllogism
(DS). He introduces the following principle about rational rejection:

(Principle R) If a disjunction is rationally acceptable and one of the disjuncts is
rationally rejectable, then the other is rationally acceptable.

Then he justifies DS as follows:

Suppose that A ♦ (¬A → B) is rationally acceptable. This entails (A ♦ ¬A) → B, which is
therefore rationally acceptable. But provided A ♦¬A is rationally rejectable (as it often will
be…), then, by principle R, B is rationally acceptable. In other words, it is reasonable to
accept the conclusion of a DS argument provided the contradiction involved is reasonably
rejectable [5, p. 114].

The drawback is that since it is generally not decidable whether A ♦ ¬A is
rejectable, it is not decidable whether an application of a DS argument is correct
or not.
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In contrast, in our approach the dialetheic justification of DS is that B is true under
the assumptions that A♦(¬A→ B) is true and A♦¬A is only false. Observe that this
formulation is purely logical since the act of assuming (possibly in exclusive mode)
is essential to logical reasoning. Besides, logic allows us to assume any proposition,
quite independently of its plausibility.

4 Classical Logic and Boolean Negation

We believe, unlike dialetheists, that Boolean negation is essential for thought and
reasoning. But (MV*) is a meta-logical result of some interest even for a classical
logician. It shows a remarkable limitation of formal logic. The classical inference
rules are inadequate to capture the intended exclusivity of negation. In fact, aswe have
seen, any formal proof can be interpreted in a dialetheic model (with a non exclusive
negation) under the assumption that all hypotheses are only true. In other words, the
use of Boolean negation can be confined to themeta-language. Onemay compare this
inadequacy with that concerning the notion of finiteness. Formal Peano arithmetic
is inadequate for capturing the notion of finiteness even though this is essential for
grasping the concept of a natural number. Similarly, formal logic is inadequate for
capturing the notion of exclusive negation even though this is essential for reasoning
and, more generally, for the understanding of natural language.

5 Semantic Paradoxes

The semantic paradoxes can be solved in our framework by holding that, although
all instances of Tarski’s schema are true, some of them are nevertheless dialetheias.

Consider, for example, Curry’s paradox. The paradox is derived in natural lan-
guage by proving sentences such as the following:

(b): If sentence (b) is true, then Santa Claus exists.

Proof Suppose that the antecedent of the conditional in (b) is true. This means
that sentence (b) is true. Then, by MP, Santa Claus exists. So, we have proved the
consequent of (b) under the assumption of its antecedent. In other words, we have
proved (b). It follows, by MP, that Santa Claus exists. ↔∨

Of course, we could replace “Santa Claus exists” with any arbitrary sentence. As
a result, every sentence can be proved, and trivialism follows.

Let us formalize the paradox in the language of first-order arithmetic extended
with a truth predicate T satisfying Tarski’s schema:

T (�A�) ∗ A.
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Given any sentence A, by means of the usual method of diagonalization, one can
find a number k such that

k = �T (k) ⊥ A�.

We can derive A as follows:

1 (1) T (k) ∗ (T (k) ⊥ A) Tarski’s schema
2 (2) T (k) Assumption

1, 2 (3) T (k) ⊥ A 2 (MP)
1, 2 (4) A 2, 3 (MP)
1 (5) T (k) ⊥ A 2, 4 (I⊥)
1 (6) T (k) 1, 5 (MP)
1 (7) A 5, 6 (MP)

According to MV, a dialetheist can conclude that either (7) is true or (1) is false.
Thus the dialetheist can escape trivialism by holding that some instances of Tarski’s
scheme are dialetheias. Observe that trivialism follows if, instead of using Tarski’s
schema in the biconditional form

T (�A�) ∗ A

we adopt the following inference rules:

(*)
T �A�

A
(**)

A
T �A�

In this case one can derive A as follows:

1 (1) T (k) Assumption
1 (2) T (k) ⊥ A 1 and (*)
1 (3) A 2, 3 (MP)
(4) T (k) ⊥ A 1, 3 (I⊥)
(5) T (k) 4 and (**)
(6) A 4, 5 (MP)

Notice that the result is not a counterexample toMV. In fact, according to Tarski’s
theorem about the inexpressibility of the truth predicate in a language that allows
self-reference, the rules (*) and (**) cannot count as classical logical rules.
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6 Some Concluding Remarks

In works subsequent to LP, Priest leaves the material conditional and tries to recover
a “genuine” conditional. This is conceived of as a conditional that, by virtue of its
logical meaning, the truth of the antecedent (independently of its possible falsity)
implies the truth of the consequent (for a detailed discussion of such conditional,
see [1, 2]).

We believe that the behaviour of the material conditional is, in some respects,
more satisfactory than such genuine conditionals even for a dialetheist. In dealing
with his genuine conditional, Priest tries to avoid Curry’s paradox by means of a
highly sophisticatedmodal semantics that invalidates the classical rule of contraction.
This rule can be derived, in the system of natural deduction, from the basic rules of
introduction and elimination of the conditional. So, by acceptingMP, Priest is forced
to reject the general validity of (I⊥). That seems a rash move: it strikes at the
heart of hypothetical mathematical reasoning. Any working mathematician, when
attempting to prove a conditional statement A ⊥ B, assumes A and tries to prove
B. If the attempt succeeds and you agree that her proof of B from A is correct but
object that it does not count as a proof of A ⊥ B, the most probable reply is that
you do not understand the intended meaning of “if …then”.

Observe, in passing, that the rule (I⊥) is also fully valid for an intuitionist, who
understands a proof of A ⊥ B as a method of transforming a proof of A into a proof
of B. In cognitive terms, a proof of A ⊥ B must convince someone that, in order
to recognize that B is true, it is sufficient to recognize that A is true. Nor does the
rejection of (I⊥) seem to be dialetheically motivated by the possible presence of
dialetheias. In fact, the understanding of A ⊥ B as expressing the condition that
truth is preserved from A to B is by no means affected by the possibility that A or
B could be a dialetheia. It seems, therefore, that accepting any proof of B from A
as a proof of A ⊥ B is in accordance even with a dialetheic understanding of the
conditional. It is of no use to object that some conditionals studied in certain branches
of logic (strict, relevant or otherwise) do not validate (I⊥). Our point is that the usual
understanding of the conditional occurring inmathematical sentences validates (I⊥)
and is dialetheically intelligible. In addition, we have argued in Carrara et al. [1] that
Priest’s solution to Curry’s paradox has nothing to do with dialetheism since no
dialetheia plays any role in his solution. In contrast, our approach aims to recover a
dialetheic interest for the material conditional. This provides a solution to Curry’s
paradox that exploits the presence of dialetheias and reduces it to the liar paradox.
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Strongly Semantic Information as Information
About the Truth

Gustavo Cevolani

Abstract Some authors, most notably Luciano Floridi, have recently argued for a
notion of “strongly” semantic information, according to which information “encap-
sulates” truth (the so-called “veridicality thesis”). We propose a simple framework to
compare different formal explications of this concept and assess their relative merits.
It turns out that the most adequate proposal is that based on the notion of “partial
truth”, which measures the amount of “information about the truth” conveyed by a
given statement. We conclude with some critical remarks concerning the veridical-
ity thesis in connection with the role played by truth and information as relevant
cognitive goals of inquiry.

Keywords (Strongly) Semantic information · Truth ·Misinformation ·Veridicality
thesis · Verisimilitude · Truthlikeness · Partial truth · Informative truth · Cognitive
decision theory

1 Introduction

In recent years, philosophical interest in the concept of information and its logical
analysis has been growing steadily (cf., e.g., [1, 2, 9, 13, 14, 22]). Philosophers
and logicians have proposed various definitions of (semantic) information, and tried
to elucidate the connections between this notion and related concepts like truth,
probability, confirmation, and truthlikeness. While classical accounts, both in phi-
losophy [4] and in (mathematical) information theory [32], define information in
terms of (im)probability, more recent proposals try to link together information and
truth (see, in particular, [10]). According to these proposals, the classical notion of
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information should be replaced, or at least supplemented with, a notion of “strongly
semantic” information (henceforth, SSI), construed as well-formed, meaningful and
“veridical” or “truthful” data about a given domain. This so-called “veridicality the-
sis”would imply “that ‘true information’ is simply redundant and ‘false information’,
i.e., misinformation, is merely pseudo-information” [13, p. 82].1 In this paper, we
shall survey different formal explications of SSI, explore their conceptual relation-
ships, and highlight their implications for the debate about the veridicality thesis
triggered by Floridi’s definition of SSI.

In Sect. 2, we review the “classical” definition of semantic information due to
Carnap and Bar-Hillel [4] in the light of the critiques that it has received. The notion
of SSI, and the related veridicality thesis, is discussed in Sect. 3. In Sect. 4, we
survey three recent proposals, including Floridi’s one, that define SSI in terms of
different combinations of truth and information. We introduce a simple framework
which allows us to compare these proposals, and argue in favor of one of them,
which identifies SSI with the amount of information about “the truth” conveyed by a
given statement. On this basis, in Sect. 5 we conclude that, in order to define sound
notions of (true) information and misinformation, one can safely dispense with the
veridicality thesis, that can be however accepted as a thesis concerning the epistemic
goals guiding rational inquiry and cognitive decision making.

2 Information and Truth

The classical theory of (semantic) information [4, 32] is based on what Jon Barwise
[1, p. 491] has called the “Inverse Relationship Principle” (IRP), i.e., the intuition
that “eliminating possibilities corresponds to increasing information” [1, p. 488].2 If
A is a statement in a given language, IRP amounts to say that the information content
of A can be represented as the set of (the linguistic descriptions of) all the possible
state of affairs or “possible worlds” which are excluded by, or incompatible with, A.
Accordingly, the amount of information conveyed by A will be proportional to the
cardinality of that set. For the sake of simplicity, let us consider a finite propositional
languageLn with n logically independent atomic sentences p1, . . . , pn.3 An atomic
sentence pi and its negation ¬pi are called “basic sentences” or “literals” of Ln.
WithinLn, possible worlds are described by the so-called constituents ofLn, which
are conjunctions of n literals, one for each atomic sentence. Note that the set C of
the constituents ofLn includes q = 2n elements and that only one of them, denoted
by “Cλ”, is true; thus, Cλ can be construed as “the (whole) truth” in Ln, i.e., as the
complete true description of the actual world w.

1 As a terminological remark, note that while “misinformation” simply denotes false or incorrect
information, “disinformation” is false information deliberately intended to deceive or mislead.
2 This idea can be traced back at least to Karl Popper [27, in particular Sects. 34 and 35, and
Appendix IX, p. 411, footnote 8]; cf. also [3, p. 406].
3 Nothing substantial, in what follows, depends on such assumption.
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Given an arbitrary statement A ofLn, let R(A) be the the “range” of A, i.e., the set
of constituents which entail A, corresponding to the set of possible worlds in which
A is true (cf. [3, Sect. 18]). Then, the (semantic) information content of A is defined
as:

Cont(A)
df= C \ R(A) = R(¬A). (1)

A definition of the amount of information content of A can be given assuming that a
probability distribution p is defined over the sentences of Ln [4, p. 15]:

cont(A)
df= 1 − p(A) = p(¬A). (2)

In agreement with IRP, the information conveyed by A is thus inversely related to
the probability of A.4

Two immediate consequences of definitions in 1 and 2 are here worth noting.
First, if ⊥ is an arbitrary logical truth of Ln, then

Cont(⊥) = ∅ and cont(⊥) = 0 (3)

since ⊥ is true in all possible worlds (R(⊥) = C ) and hence p(⊥) = 1. Second, if
→ is an arbitrary logically false statement of Ln, then

Cont(→) = C and cont(→) = 1 (4)

since→ is false in all possible worlds (R(→) = ∅) and hence p(→) = 0. In short, tau-
tologies are the least informative, and contradictions themost informative, statements
of Ln.

As D’Agostino and Floridi [7, p. 272] note, results 3 and 4 point to “two main
difficulties” of the classical theory of semantic information as based on IRP. The
first one is what Hintikka [20, p. 222] called “the scandal of deduction”: since in
classical deductive logic conclusion C is deducible from premises P1, . . . , Pn if and
only if the conditional P1 ♦ · · · ♦ Pn ∃ C is a logical truth, to say that tautologies
are completely uninformative is to say that logical inferences never yield an increase
of information. This is another way of saying that deductive reasoning is “non-
ampliative”, i.e., that conclusion C conveys no information besides that contained
in the premises Pi.5 In this paper, we shall be concerned only with the second diffi-
culty, called “the Bar-Hillel-Carnap semantic Paradox (BCP)” by Floridi [10, p. 198].

4 In the literature, it is usual to say that Eqs. (1) and (2) define the (amount of) “substantive
information” or “information content” of A, as opposed to the “unexpectedness” or “surprise value”
ofA, which is defined as inf(A) = − log p(A) [4, p. 20]. On this distinction, see for instanceHintikka
[18, p. 313] and Kuipers [22, p. 865].
5 Tohush up this “scandal”,Hintikka [19] developed a distinction (for polyadic first-order languages)
between “depth” and “surface” information, according towhich logical truthsmay contain a positive
amount of (surface) information (cf. also [31]).
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Already Carnap and Bar-Hillel [4, pp. 7–8], while defending result 4 as a perfectly
acceptable consequence of their theory, pointed out that it is prima facie counterin-
tuitive:

It might perhaps, at first, seems strange that a self-contradictory sentence, hence one which
no ideal receiver would accept, is regarded as carrying with it the most inclusive information.
It should, however, be emphasized that semantic information is here not meant as implying
truth. A false sentence which happens to saymuch is thereby highly informative in our sense.
Whether the information it carries is true or false, scientifically valuable or not, and so forth,
does not concern us. A self-contradictory sentence asserts too much; it is too informative to
be true.

As made clear in the above quote, BCP follows from the assumption that truth
and information are independent concepts, in the sense that A doesn’t need to be true
in order to be informative—the so-called assumption of “alethic neutrality” (AN)
[11, p. 359].6

Many philosophers (e.g. [9, pp. 41 ff]) have noted that AN is at variance with the
ordinary use of the term “information”, which is often employed as a synonym of
“true information”. In fact, we are used to say that “[a] person is ‘well-informed’
when he or she knows much—and thereby is aware of many truths” [24, p. 155].
On the other hand, AN appears more acceptable as far as other common uses of this
term are concerned, for instance when we speak of the “information” processed by
a computer [24]. Thus, linguistic intuitions are insufficient to clarify the question
whether information and truth are or not independent. Some scholars, most notably
Luciano Floridi [10–13], have forcefully argued that AN should be rejected in favor
of the so-called “veridicality thesis” (VT), according to which genuine information
has to be (at least approximately) true. According to VT, BCP would be solved since
contradictions, being a paradigmatic case of false statements, are not informative at
all. What exactly VT implies for the classical definition of semantic information is
however unclear, and will be discussed in the next section.

3 What is “Strongly” Semantic Information?

Under its weakest reading, VT simply says that truth and information are not inde-
pendent concepts, as the classical theory of semantic information assumes, and that
an adequate theory of strongly semantic information (SSI) has to take both con-
cepts into account. According to Floridi, VT says, more precisely, that “information
encapsulates truth” [10, p. 198] in the sense that A has to be “truthful” [11, p. 366]
or “veridical” [13, p. 105] in order to be informative at all. The underlying intuition
is expressed by Dretske [9, p. 44–45] in these terms:

6 This does notmean that this assumption is the only culprit. As noted during discussion at theTrends
in Logic XI conference, a way of avoiding BCP would be to adopt a non-classical logic according to
which contradictions do not entail everything and hence are not maximally informative. Systems of
this kind are provided by those “connexive logics” that reject the classical principle ex contradictione
quodlibet (for all A, → entails A) in favor of the (Aristotelian) intuition that ex contradictione nihil
sequitur (cf. [33, Sect. 1.3]).
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If everything I say to you is false, then I have given you no information. At least I have given
you no information of the kind I purported to be giving. […] In this sense of the term, false
information and mis-information are not kinds of information—any more than decoy ducks
and rubber ducks are kinds of ducks.

Taking this idea at face value, VT would imply that only true statements are
informative. In turn, this would amount to define SSI as follows (cf. [12, p. 40]):

A is a piece of SSI iff A is true. (5)

By definition, A is true iff Cλ ∧ R(A). The (amount of) SSI conveyed by A would be
still defined by Cont(A) and cont(A), but only true statements would be allowed to
occur within (1) and (2).

Condition (5) is a straightforward formulation of the thesis that “information
encapsulates truth”, but it is doubtful that supporters of VT would be ready to sub-
scribe to it. In fact, it implies that all false statements are plainly uninformative. As
a consequence, (5) provides a solution of BCP, but too a strong one, which is at least
as counterintuitive as BCP itself. In fact, both in science and in ordinary contexts
any piece of information at disposal is arguably at best approximate and, strictly
speaking, false. For example, if one says that “Rudolf Carnap was an influential
philosopher of science born in Germany in 1890”, while the correct date of birth is
1891, it seems strange to say that this false statement conveys the same amount of
information as “Carnap was German or not German” and “Carnap was German and
not German”, i.e., no information at all. Examples of this kind seems sufficient to
exclude (5) as a possible definition of SSI.

Sequoiah-Grayson [30] has argued that the crucial intuition underlying the notion
of SSI is that A has to provide some “factual” or “contingent” information to count
as a piece of information at all. This would amount to define SSI in terms of the
following “contingency requirement” [30, p. 338]:

A is a piece of SSI iff A is factual. (6)

Note that A is factual or contingent iff ∅ �= R(A) ∗ C . According to this view, only
tautologies and contradictions are completely uninformative. Thus, BCP is solved by
defining SSI not as true, but as factual information. It follows that both false and true
contingent statements are informative after all. In particular, as Floridi [10, p. 206]
notes7:

two [statements] can both be false and yet significantly more or less distant from the event or
state of affairs w about which they purport to be informative, e.g. “there are ten people in the
library” and “there are fifty people in the library”, when in fact there are nine people in the
library. Likewise, two [statements] can both be true and yet deviate more or less significantly
from w, e.g. “there is someone in the library” versus “there are 9 or 10 people in the library”.

7 In the following, we replace, without any significant loss of generality, Floridi’s talk of “infons”—
“discrete items of factual information qualifiable in principle as either true or false, irrespective of
their semiotic code and physical implementation” [10, p. 199]—by talk of sentences or statements
in the given language Ln.
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This implies that a falsehood with a very low degree of discrepancy may be pragmatically
preferable to a truth with a very high degree of discrepancy [28].

The above quotation highlights the strict link between the notion of SSI and
that of verisimilitude or truthlikeness, construed, in Popperian terms, as similarity or
closeness to “thewhole truth” about a given domain (cf. also [2, pp. 90–91]) . The idea
of defining SSI in terms of verisimilitude has been indeed proposed (ante litteram)
by Frické [15] and independently by D’Alfonso [8]; indeed, as Frické [15, p. 882]
notes, this proposal explains how true and false statements can be both informative:

With true statements, verisimilitude increaseswith specificity and comprehensiveness, so that
a highly specific and comprehensive statement will have high verisimilitude; such statements
also seem to be very informative. With false statements, verisimilitude is intended to capture
what truth they contain; if false statements can convey information, and the view taken
here is that they can, it might be about those aspects of reality to which they approximate.
Verisimilitude and a concept of information appear to be co-extensive.

Thus, the amount of SSI that a (true or false) contingent statement A conveys
will depend on how good an approximation A is to the actual world w (or to the
true constituent Cλ). To make this idea precise, Floridi [10, Sect. 5, pp. 205–206 in
particular] has proposed five conditions that an adequate notion of SSI should fulfil.
Departing a little fromFloridi’s original formulation, they can be phrased as follows:

(SSI1) the true constituent Cλ is maximally informative, since it is the complete
true description of the actual world w

(SSI2) tautologies are minimally informative, since they do not convey factual
information about w

(SSI3) contradictions are minimally informative, since they do not convey, so to
speak, valuable information about w

(SSI4) false factual statements are more informative than contradictions
(SSI5) true factual statements are more informative than tautologies.

Note that SSI3 is required in order to avoid BCP. From SSI1 and SSI5 it follows that
Cλ is the most informative statement among all factual truths. Another requirement
that can be defended as an adequacy condition for a notion of SSI is the following:

(SSI6) some false factual statements may be more informative than some true
factual statements.

In fact, as made clear by Floridi’s quotation above, a false statement may be a better
approximation to the truth about w than a true one. Characterizing SSI by means
of requirements SSI1–6 still leaves open the problem of how to define a rigorous
counterpart of this notion, and in particular of how to quantify the amount of SSI
conveyed by different statements. In the next section, we shall review and compare
different measures of SSI proposed in the literature to address this issue.
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4 A Basic Feature Approach to Strongly Semantic Information

Some authors have recently proposed different formal explications of the notion of
SSI, in the form of measures of the degree or amount of SSI conveyed by statements
ofLn [5, 8, 10, 13]. According to all these proposals, the degree of SSI of A is high,
roughly, when A conveys much true information about w. A simple way of clarifying
and comparing these measures is given by the so-called “basic feature” approach to
verisimilitude [6] or “BF-approach” for short.

4.1 The Basic Feature Approach to Verisimilitude

According to the BF-approach, the “basic features” of the actual world w are
described by the basic sentences or literals of Ln. A conjunctive statement, or c-
statement for short, is a consistent conjunction of k literals of Ln, with k ≤ n.8

The “basic content” of a c-statement A is the set b(A) of the conjuncts of A: each
member of this set will be called a “(basic) claim” of A. One can check thatLn has
exactly 3n c-statements, including the “tautological” c-statement with k = 0 and the
2n constituents with k = n. Indeed, note that Cλ itself is a c-statement, being the
conjunction of the true basic sentences inLn, i.e., the most complete true description
of the basic features of w.

When A is compared to Cλ, b(A) is partitioned into two subsets: the set t(A, Cλ)

of the true claims of A and the set f (A, Cλ) of the false claims of A. Let us call each
element of t(A, Cλ) a match, and each element of f (A, Cλ) a mistake of A. Note that A
is true when f (A, Cλ) = ∅, i.e., when A doesn’t make mistakes, and false otherwise.
Moreover, A is “completely false” when t(A, Cλ) = ∅ , i.e., when A makes only
mistakes. For the sake of notational simplicity, let us introduce the symbols kA, tA,
and fA to denote, respectively, the number of claims, of matches, and of mistakes, of
A—i.e., the cardinalities of b(A), t(A, Cλ), and f (A, Cλ), respectively. The degree of
basic content contb(A), of true basic content contt(A, C), and of false basic content
contf (A, C), of A is defined as follows:

contb(A)
df= kA

n
and contt(A, Cλ)

df= tA
n

and contf (A, Cλ)
df= fA

n
(7)

i.e., as the normalized number of claims, of matches, and of mistakes, made by A.
The number of matches of A divided by the total number of its claims represents

an adequate measure for the (degree of) “accuracy” acc(A) of a c-statement A:

acc(A)
df= tA

kA
= contt(A, Cλ)

contb(A)
. (8)

8 In logical parlance, a c-statement is a statement in conjunctive normal form such that each of
its clauses is a single literal. Following Oddie [26, p. 86], a c-statement may be also called a
“quasi-constituent”, since it can be conceived as a “fragment” of a constituent.
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Conversely, the (degree of) “inaccuracy” of A can be defined as

inacc(A)
df= fA

kA
= contf (A, Cλ)

contb(A)
. (9)

As one can check, inacc(A) = 1 − acc(A). Moreover, if A is true, then tA = kA and
acc(A) receives its maximum value, i.e., 1; conversely, inacc(A) is 0.WhenA is com-
pletely false, acc(A) = 0 and inacc(A) = 1. In sum, all true c-statements are maxi-
mally accurate, while all completely false c-statements are maximally inaccurate.

As Popper notes, the notion of verisimilitude “represents the idea of approaching
comprehensive truth. It thus combines truth and content” [28, p. 237, emphasis
added].9 Thus, accuracy is only one “ingredient” of verisimilitude, the other being
(information) content. In other words, we may say that a c-statement A is highly
verisimilar if it says many things about the target domain, and if many of these
things are true; in short, if A makes many matches and few mistakes about w. This
intuition is captured by the following “contrast measure” of the verisimilitude of
c-statements A [6, p. 188]:

vsι(A)
df= contt(A, Cλ) − ιcontf (A, Cλ) (10)

whereι > 0.10 Intuitively, different values ofι reflect the relativeweight assigned to
truths and falsehoods, i.e., to the matches andmistakes of A. Some interesting feature
of this definition are the following. First, while all true A are equally accurate, since
acc(A) = 1, they may well vary in their relative degree of verisimilitude. More
precisely, vsι satisfies the Popperian requirement that verisimilitude co-varies with
logical strength among truths11

If A and B are true and A entails B, then vsι(A) ↔ vsι(B). (11)

Thus, logically stronger truths aremore verisimilar thanweaker ones. This condition,
however, doesn’t hold amongst false statements, since logically stronger falsehoods
may well lead us farther from the truth. In particular12

9 For different accounts of verisimilitude, see [21, 24, 26, 29].
10 One may note that measure vsι is not normalized, and varies between −ι and 1. A normalized
measure of the verisimilitude of A is (vsι(A) + ι)/(1 + ι), which varies between 0 and 1.
11 Proof note that, among c-statements, A entails B iff b(A) ∨ b(B). If both are true, this implies
t(A, Cλ) ∨ t(B, Cλ) and hence vsι(A) = contt(A, Cλ) ↔ contt(B, Cλ) = vsι(B). For discussion
of this Popperian requirement, see [24, pp. 186–187, 233, 235–236]. Note also that vsι satisfies
the stronger requirement that among true theories, the one with the greater degree of (true) basic
content is more verisimilar than the other; i.e., if A and B are true and contt(A, C) > contt(B, C)

then vsι(A) > vsι(B). ⊆∼
12 Proof if A entails B and both are completely false, then f (A, Cλ) ∨ f (B, Cλ) and hence
contf (A, Cλ) ↔ contf (B, Cλ). Since ι is positive, it follows that vsι(A) = −ιcontf (A, Cλ) ≤
−ιcontf (B, Cλ) = vsι(B). ⊆∼
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If A and B are completely false and A entails B, then vsι(A) ≤ vsι(B). (12)

Inwords, logicallyweaker complete falsehoods are better than stronger ones. Finally,
note that a false c-statement may well be more verisimilar than a true one; however,
completely false c-statements are always less verisimilar than true ones.13

4.2 Quantifying Strongly Semantic Information

Measures of true (basic) content, of (in)accuracy, and of verisimilitude, or combina-
tions of them, have all been proposed as formal explicata of the notion of SSI. For
instance, according to Floridi [10], SSI may be construed as a combination of content
and accuracy. More precisely, among truths, SSI increases with content, or, better, it
decreases with the degree of “vacuity” of A, defined as the normalized cardinality of
the range of A:

vac(A) = |R(A)|
|C | . (13)

Among falsehoods, SSI increases with accuracy, and decreases with inaccuracy.
Moreover, Cλ is assigned the highest degree of SSI, and contradictions the lowest.
In sum, Floridi’s measure of SSI is defined as follows [10, pp. 208–210]:

contS(A)
df=

⎧
⎪⎪⎨

⎪⎪⎩

1 − vac(A)2 if A is true and A �∩ Cλ

1 − inacc(A)2 if A is factually false
1 if A ∩ Cλ

0 if A is contradictory.

(14)

One can easily check that Floridi’s measure satisfies all requirements SSI1–6 (SSI1
and SSI3 are fulfilled by stipulation). In particular, since tautologies have maximal
degree of vacuity, their degree of SSI is 0 (cf. SSI2). Moreover, contS satisfies the
Popperian requirement (11): if A and B are true and A entails B, then contS(A) ↔
contS(B).

A simpler formulation of (14) is given by the following measure:

cont∪S(A)
df=

{
contb(A) = contt(A, Cλ) if A is true
acc(A) if A is false.

(15)

13 Proof If A is true, then vsι(A) = contt(A, Cλ); if B is completely false, then vsι(B) =
−ιcontf (B, Cλ); since ι is positive, it follows that vsι(A) > vsι(B). ⊆∼
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One can check that cont∪S and contS are ordinally equivalent in the sense that, given

any two c-statements A and B, cont∪S(A) � cont∪S(B) iff contS(A) � contS(B).14

Thus, also the cont∪S measure satisfies requirements SSI1–6.15

According to (15), cont∪S increases with the degree of (true) basic content among
truths, and with accuracy among falsehoods. In this connection, it may be worth
noting that acc(A) is a straightforward measure of the “approximate truth” of A,
construed as the closeness of A to being true [24, pp. 177, 218]. In fact, if A is true,
then acc(A) = 1; while if A is false, then acc(A) is smaller than 1 and increases
the closer A is to being true. Recalling that, if A is completely false, inacc(A) = 1,
inacc can be construed as a measure of the closeness of A to being completely false.
Since all completely false c-statements are equally (and maximally) inaccurate, if A
is completely false then contS(A) = 0, i.e., A conveys no SSI about w.

Following the idea that SSI is a combination of content and accuracy, D’Alfonso
[8] has proposed to usemeasures of verisimilitude for quantifying SSI. An immediate
advantage is that a unique measure vsι is used to assess the degree of SSI of both true
and false statements. One can check that vsι satisfies requirements SSI1—vsι(Cλ)

is maximal, since “nothing is as close as the truth as the whole truth itself” [26,
p. 11]—, and SSI4–6. Moreover, since vsι is undefined for contradictions, one can
just stipulate that their degree of SSI is 0, in agreement with SSI3 (but see [8, p. 77]) .
However, as D’Alfonso acknowledges [8, p. 73], vsι violates SSI2, since tautologies
are more verisimilar than some false statements. In particular, all completely false
statements are less verisimilar than tautologies: in fact, when conceived as an answer
to a cognitive problem, a tautology corresponds to suspending the judgment, which
is better than accepting “serious” falsehoods. Another problemwith vsι as a measure
of SSI is that, among completely false c-statements, vsι decreases with content. This
is perfectly natural as far as verisimilitude is concerned, but it seems at variance with
the idea that “SSI encapsulates truth”. In fact, a completely false c-statement is not
“veridical” at all, in the sense that it conveys no true factual information about the
world; accordingly, its degree of SSI should be 0.

In order to overcome these difficulties, Cevolani [5] suggested contt , the degree
of true basic content, as a measure of SSI. Note that this amounts to ignore, in (15),
the second half of Floridi’s (rephrased) measure cont∪S and to use contt as a mea-
sure of SSI for both true and false statements. The latter measure was proposed by
Hilpinen [17] as an explication of the notion of “partial truth”, measuring the amount
of information about the truth conveyed by a (true or false) statement A (see also
[24, Sects. 5.4 and 6.1]). Since all requirements SSI1–6 are satisfied by contt ,

14 Proof sketch When A is a c-statement, the constituents in its range are 2n−kA ; it follows that
vac(A) = 2n−kA/2n, i.e., 1/2kA . Thus, among true c-statements, contS(A) = 1 − 1/2kA co-varies
with the degree of basic content of A, b(A) = kA/n. As far as false c-statements are concerned,
since inacc(A) = 1 − acc(A), contS co-varies with the accuracy of A. ⊆∼
15 Note that, by definition, a c-statement can not be contradictory; hence, cont∪S is undefined for
contradictions. Of course, it is always possible to stipulate, as Floridi does, that contradictions have
a minimum degree of SSI.
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this is in fact an adequate measure of SSI.16 In particular, it delivers a minimum
degree of SSI for both tautologies and completely false statements, in agreement
with Floridi’s measure contS . Moreover, contt increases with content among truths,
whereas for false statements it depends on how much true information they convey
(cf. [24, p. 176]).

While contS and contt are ordinally equivalent as far as true statements are con-
cerned, they differ in assessing the degree of SSI conveyed by false statements. IfA is
a false c-statement, contS(A) measures the accuracy or closeness to be true of A, i.e.,
increases with tA/kA, whereas contt(A, Cλ) increases with the amount of information
about the truth conveyed by A, i.e., increases with tA/n. As an example, assume that
Cλ ∩ p1 ♦ · · · ♦ pn and let A and B be, respectively, the c-statements p1 ♦ ¬p2 and
p1 ♦ p2 ♦ ¬p3 ♦ ¬p4. Then, contS(A) = contS(B) = 1

2 : according to Floridi, the
degree of SSI of A and B is the same, since they are equally accurate. In this sense,
contS is, so to speak, insensitive to content as far as false statements are concerned (cf.
[24, p. 219]). On the other hand, contt(A, Cλ) = 1

n is smaller than contt(B, Cλ) = 2
n ,

since B makes two matches instead of one, i.e., conveys more information about the
truth thanA. Thus, contt appears as amore adequate informationmeasure than contS .

In this connection, onemay note that contt is insensitive to the number ofmistakes
contained in a false c-statement.17 For instance, assume again that Cλ ∩ p1♦· · ·♦pn

is the truth and that A is the false c-statement p1 ♦ ¬p2. If B is obtained from A by
adding to it a false claim, for instance ifB ∩ p1♦¬p2♦¬p3, its degree of partial truth
does not change, since contt(A, Cλ) = contt(B, Cλ) = 1

n . However, B is now less
accurate than A: accordingly, contS(B) = 1

3 < 1
2 = contS(A). While it may appear

counterintuitive that contt(A, Cλ) does not decrease when the number of mistakes
made by A increases, this is just another way of saying that contt measures informa-
tiveness about the truth and not accuracy (nor verisimilitude). In other words, in the
example above it is only relevant that both A and B make one match, independently
from the number of their mistakes. At a deeper level, this depends on the following
feature of contt :

If A entails B, then contt(A, Cλ) ↔ contt(B, Cλ). (16)

This result says that strengthening a c-statement (i.e., adding to it true or false new
claims) never yields a decrease of its degree of partial truth (cf. [24, p. 220]). In turn,
comparing result (16) with the Popperian requirement (11) explains the difference
between a measure of information about the truth, like contt , and a measure of
closeness to the whole truth like vsι (for which, of course, (16) does not hold).

To sum up, we considered three ways of quantifying SSI: Floridi’s contS measure,
the verisimilitude measure vsι , and the partial truth measure contt . We argued that

16 Note again that contt is undefined for contradictions, which can be assigned a minimum degree
of SSI by stipulation. Interestingly, an argument to this effect was already proposed by Hilpinen
[17, p. 30].
17 I thank Gerhard Schurz for raising this point in discussion during the Trends in Logic XI
conference.
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both contS and vsι are inadequate, for different reasons, in evaluating the SSI of false
c-statements. Indeed, contS cannot discriminate among differently informative but
equally (in)accurate c-statements, while vsι favors less informative completely false
c-statements over more informative ones, despite their being on a par relative to their
true basic content (none). Thus, we submit that the notion of partial truth, as defined
by the contt measure, provides the most adequate explication of the concept of SSI,
which should be conceived as the amount of information about the truth conveyed
by a given statement.

4.3 Generalizing the Basic Feature Approach

One may complain that the approach presented in this section is unsatisfactory since
it is restricted to a very special kind of sentences in a formal language, i.e., “con-
junctive” statements. Indeed, all the notions considered in the previous discussion,
including the contt measure, are undefined for statements which can not be expressed
as conjunctions of literals. However, our approach can be easily generalized to any
language characterized by a suitable notion of constituent—or state description in
the sense of Carnap [3]—including first-order monadic and polyadic languages [24]
and second-order languages [26]. In such “languages with constituents”, any non-
contradictory sentence A can be expressed as the disjunction of the constituents
entailing A (describing the possible worlds where A is true), i.e., in its so-called
normal disjunctive form:

A ∩
∨

Ci∧R(A)

Ci. (17)

If one assumes that a “distance function” Θ(Ci, Cj) is defined between any two
constituents Ci and Cj,18 one can (re)define the notion of partial truth for arbitrary
statements as follows [24, pp. 217 ff.]:

pt(A)
df= 1 − Θmax(A, Cλ) = 1 − max

Ci∧R(A)
Θ(Ci, Cλ). (18)

Intuitively,pt(A) is highwhenA excludes possibleworldswhich are far from the truth.
Note that, if A is a c-statement, pt(A) = contt(A, Cλ): i.e., partial truth as defined
above generalizes the notion of degree of true basic content as defined in (7).19

18 Usually, Θ(Ci, Cj) is identified with the so-called normalized Hamming distance (or Dalal
distance, as it is also known in the field of AI), i.e., with the number of literals on which Ci and Cj
disagree, divided by the total number n of atomic sentences.
19 Proof Note that, if A is a c-statement, all constituents Ci in the range of A (which are c-statements
themselves) are “completions” of A in the sense that b(A) ∗ b(Ci). The constituent in R(A) farthest
from Cλ will be the one which makes all possible additional mistakes besides the mistakes already
made by A: this means that Θmax(A, Cλ) = 1 − tA

n . It follows by (7) that pt(A) = 1 − (1 − tA
n ) =

contt(A, Cλ). ⊆∼
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5 Conclusions: Information and Truth Revisited

Should only true contingent statements count as pieces of information after all? The
recent debate on the veridicality thesis, triggered by Floridi’s definition of SSI, has
not reached a consensus on this point (see [14, Sect.3.2.3], for a survey of the main
contributions).

The supporters of VT argue “that ‘true information’ is simply redundant and
‘false information’, i.e. misinformation, is merely pseudo-information” [11, p. 352].
According to this view, to come back to our example in Sect. 3, the statement “Rudolf
Carnap was an influential philosopher of science born in Germany in 1890” would
not be a piece of information at all, but may perhaps be split in two parts: an infor-
mative one—i.e.,“Rudolf Carnap was an influential philosopher of science born in
Germany”—and a non-informative one—i.e., “Rudolf Carnap was born in 1890”
(cf. [11, p. 361]). In short, this would amount to introduce a distinction between
“information” and (say) “semantic content”, the latter being the alethically neutral
concept analized by Carnap and Bar-Hillel [4]. Accordingly, “information” would
denote true semantic content and “misinformation” false semantic content (with
tautologies and contradictions construed as extreme special cases of this twofold
classification). Such a strategy would be perhaps in line with some analyses in the
pragmatics of natural languages, like Paul Grice’s study of “conversational implica-
tures” (cf. [11, p. 366]). In particular, the so-called “maxim of quality” of effective
communication—“Do not say what you believe to be false” [16, p. 26]—apparently
implies that “false information is not an inferior kind of information; it just is not
information” [16, p. 371].

In this paper, we followed the opposite strategy of rejecting VT, and treat informa-
tion and truth as independent notions, in agreement with the classical view of Carnap
and Bar-Hillel [4]. The guiding idea of our discussion has been that SSI should not
be construed as a new, more adequate explication of the notion of semantic infor-
mation, but expresses the amount of (classical) semantic information about the truth
conveyed by a given statement. According to this view, contingent statements are
always informative but may be more or less successful in conveying true information
about the world. This becomes especially clear as far as c-statements are concerned.
In fact, (true and false) c-statements are the more informative about the truth the
more true claims, or matches, they make about the world. In particular, completely
false c-statements do not convey any information about the truth, and, in this sense,
are plainly uninformative since they are not even “partially” true. This is a way of
making sense of Dretske’s remark that “If everything I say to you is false, then I
have given you no information” [9, p. 44, emphasis added]. Finally, tautologies are
also uninformative about the truth, since they do not convey any amount of factual
information.

In this connection, one should note that the present approach also provides
a straightforward quantitative definition of misinformation, a task that Floridi
[10, p. 217] left for subsequent research. In fact, an adequate measure misinf (A)

of the misinformation conveyed by a c-statement A is given by its degree of false



72 G. Cevolani

basic content defined in (7):

misinf (A)
df= contf (A, Cλ) = fA

n
(19)

i.e., by the normalized number of the mistakes made by A. Since contt(A, Cλ) +
contf (A, Cλ) = contb(A), misinformation and partial truth (or information about the
truth) are, so to speak, “complementary” notions.20

Finally, the fact that truth and information are here treated as independent concepts
should not obscure an important point. As emphasized by philosophers of science and
cognitive decision theorists—like Popper [28], Levi [23], Hintikka [18, 20], Kuipers
[21], and Niiniluoto [24, 25], among others—both truth and information are impor-
tant goals of rational (scientific) inquiry [25, Sect. 3.4]. In other words, at least
according to any minimally realist view of science and ordinary knowledge, among
the “epistemic utilities” guiding inquiry both truth and information have to play a
prominent role. As Niiniluoto [25] notes, if “truth and nothing but the truth” were the
only relevant aim of inquiry, then one should accept, as the best hypotheses at dis-
posal, those statements which are more likely to be true—i.e., more probable—given
the available evidence. This recommendation would lead to the “extremely conserv-
ative policy” of preferring tautologies, as well as statements logically implied by the
evidence, over any other available hypothesis. On the other hand, if information were
the only relevant epistemic utility, then, due to BCP (cf. Eq. 4), one should always
accept contradictory hypotheses. Thus, as Levi [23] made clear, an adequate account
of the cognitive goals of inquiry requires some notion of informative truth—i.e.,
some combination of both the truth value and the information content of alternative
hypotheses.

The different measures considered in Sect. 4 can all be construed as different
explications of this notion of informative truth. Accordingly, SSI can be conceived
as a particular kind of epistemic utility combining truth and information, i.e., partial
truth. In turn, one can interpret VT as a thesis concerning not information itself, but
a corresponding appropriate notion of epistemic utility. In other words, while VT
can be safely rejected as far as the definition of semantic information is concerned,
the idea that “information encapsulates truth” can be accepted as a thesis about the
ultimate cognitive goals guiding rational inquiry.

Acknowledgments This paper is based on presentations delivered at the Fourth Workshop on the
Philosophy of Information (University of Hertfordshire, 10–11 May 2012) and at the Trends in
Logic XI conference (Ruhr University Bochum, 3–5 June 2012). I thank the participants in those
meetings, and in particular Luciano Floridi and Gerhard Schurz, for valuable feedback. This work
was supported by Grant CR 409/1-1 from the Deutsche Forschungsgemeinschaft (DFG) as part of
the priority program New Frameworks of Rationality (SPP 1516) and by the Italian Ministry of

20 This is still clearer if one consider the generalization of the definition above to arbitrary
(non-conjunctive) statements A. Given (18), the misinformation conveyed by A is given by
1 − pt(A) = Θmax(A, Cλ), that reduces to misinf (A) as far as c-statements are concerned (the
proof is straightforward, see footnote 19).



Strongly Semantic Information as Information About the Truth 73

Scientific Research within the FIRB project Structures and dynamics of knowledge and cognition
(Turin unit: D11J12000470001).

References

1. Barwise, J. (1997). Information and impossibilities. Notre Dame Journal of Formal Logic,
38(4), 488–515.

2. Bremer, M., & Cohnitz, D. (2004). Information and information flow: An introduction. Frank-
furt: Ontos Verlag.

3. Carnap, R. (1950). Logical foundations of probability. Chicago: University of Chicago Press.
4. Carnap, R., & Bar-Hillel, Y. (1952). An outline of a theory of semantic information. Technical

Report 247, MIT Research Laboratory of Electronics.
5. Cevolani, G. (2011). Strongly semantic information and verisimilitude. Ethics & Politics, 2,

159–179. http://www2.units.it/etica/
6. Cevolani, G., Crupi, V., & Festa, R. (2011). Verisimilitude and belief change for conjunctive

theories. Erkenntnis, 75(2), 183–202.
7. D’Agostino, M., & Floridi, L. (2009). The enduring scandal of deduction. Synthese, 167(2),

271–315.
8. D’Alfonso, S. (2011). On quantifying semantic information. Information, 2(1), 61–101.
9. Dretske, F. (1981). Knowledge and the flow of information. Cambridge: MIT Press.
10. Floridi, L. (2004). Outline of a theory of strongly semantic information. Minds and Machines,

14(2), 197–221.
11. Floridi, L. (2005). Is semantic informationmeaningful data?Philosophy and Phenomenological

Research, 70(2), 351–70.
12. Floridi, L. (2007). In defence of the veridical nature of semantic information.European Journal

of Analytic Philosophy, 3(1), 31–1.
13. Floridi, L. (2011a). The philosophy of information. Oxford: Oxford University Press.
14. Floridi, L. (2011b). Semantic conceptions of information. In E. N. Zalta (Ed.), The Stan-

ford encyclopedia of philosophy (Spring 2011 ed.). http://plato.stanford.edu/archives/spr2011/
entries/information-semantic/

15. Frické, M. (1997). Information using likeness measures. Journal of the American Society for
Information Science, 48(10), 882–892.

16. Grice, H. P. (1989). Studies in the way of words. Cambridge: Harvard University Press.
17. Hilpinen, R. (1976). Approximate truth and truthlikeness. In M. Przełecki, K. Szaniawski &

R. Wójcicki (Eds.), Formal methods in the methodology of the empirical sciences (pp. 19–42).
Dordrecht: Reidel.

18. Hintikka, J. (1968). The varieties of information and scientific explanation. In B. V. Rootselaar
& J. Staal (Eds.), Logic, methodology and philosophy of science III (Vol. 52, pp. 311–331).
Amsterdam: Elsevier.

19. Hintikka, J. (1970). Surface information and depth information. In J. Hintikka & P. Suppes
(Eds.), Information and inference, (pp. 263–297). Dordrecht: Reidel.

20. Hintikka, J. (1973). Logic, language-games and information. Oxford: Oxford University Press.
21. Kuipers, T. A. F. (2000). From instrumentalism to constructive realism. Dordrecht: Kluwer

Academic Publishers.
22. Kuipers, T. A. F. (2006). Inductive aspects of confirmation, information and content. In R. E.

Auxier & L. E. Hahn (Eds.), The philosophy of Jaakko Hintikka (pp. 855–883). Chicago and
La Salle: Open Courts.

23. Levi, I. (1967). Gambling with truth. New York: Alfred A. Knopf.
24. Niiniluoto, I. (1987). Truthlikeness. Dordrecht: Reidel.
25. Niiniluoto, I. (2011). Scientific progress. In E. N. Zalta (Ed.), The Stanford encyclopedia of

philosophy (Summer 2011 ed.). http://plato.stanford.edu/entries/scientific-progress/

http://www2.units.it/etica/
http://plato.stanford.edu/archives/spr2011/entries/information-semantic/
http://plato.stanford.edu/archives/spr2011/entries/information-semantic/
http://plato.stanford.edu/entries/scientific-progress/


74 G. Cevolani

26. Oddie, G. (1986). Likeness to truth. Dordrecht: Reidel.
27. Popper, K. R. (1934). Logik der Forschung. Vienna: Julius Springer [revised edition: The logic

of scientific discovery. London: Routledge, 2002 (Hutchinson, London, 1959)].
28. Popper, K. R. (1963). Conjectures and refutations (3rd ed.). London: Routledge and Kegan

Paul.
29. Schurz, G., & Weingartner, P. (2010). Zwart and franssen’s impossibility theorem holds for

possible-world-accounts but not for consequence-accounts to verisimilitude. Synthese, 172,
415–436.

30. Sequoiah-Grayson, S. (2007). Themetaphilosophy of information.Minds and Machines, 17(3),
331–44.

31. Sequoiah-Grayson, S. (2008). The scandal of deduction. Journal of Philosophical Logic, 37(1),
67–94.

32. Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal,
27, 379–423, 623–656.

33. Wansing, H. (2010). Connexive logic. In E. N. Zalta (Ed.), The stanford encyclopedia of
philosophy (Fall 2010 ed.). http://plato.stanford.edu/entries/logic-connexive/

http://plato.stanford.edu/entries/logic-connexive/


Priest’s Motorbike and Tolerant Identity

Pablo Cobreros, Paul Egré, David Ripley and Robert van Rooij

Abstract In his chapter ‘Non-transitive identity’ [8], Graham Priest develops a
notion of non-transitive identity based on a second-order version of L P . Though we
are sympathetic to Priest’s general approach to identity we think that the account
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1 Priest’s Motorbike and L P-Identity

1.1 Priest’s Motorbike

Priest motivates his account of identity based on the following case:

Suppose I change the exhaust pipes on my bike; is it or is it not the same bike as before? It
is, as the traffic registration department and the insurance company will testify; but it is not,
since it is manifestly different in appearance, sound, and acceleration.

Dialecticians, such asHegel, have delighted in such considerations, since they appear to show
that the bike both is and is not the same. A standard reply here is to distinguish between the
bike itself and its properties. After the change of exhaust pipes the bike is numerically the
same bike; it is just that some of its properties are different. Perhaps, for the case at hand,
this is the right thing to say. But the categorical distinction between the thing itself and its
properties is one which is difficult to sustain; to suppose that the bike is something over and
above all of its properties is simply to make it a mysterious Ding an sich. Thus, suppose
that I change, not just the exhaust pipes, but, in succeeding weeks, the handle bars, wheels,
engine, and in fact all the parts, until nothing of the original is left. It is now a numerically
different bike, as even the traffic office and the insurance company will concur. At some
stage, it has changed into a different bike, i.e. it has become a different machine: the bike
itself is numerically different. [8, 406]

Other cases of this sort seem to show that identity fails to be transitive. There is
an implicit link in the literature between the ideas that identity is transitive and that
indeterminacy associated to vagueness is purely semantic. As David Lewis puts it:

The reason it’s vague where the outback begins is not that there’s this thing, the outback,
with imprecise borders; rather there are many things, with different borders, and nobody has
been fool enough to try to enforce a choice of one of them as the official referent of the word
‘outback’. Vagueness is semantic indecision [6, 213].

In the following section we review Priest’s strategy to define a non-transitive
notion of identity based on L P .

1.2 Second-Order L P and Identity

L P is a paraconsistent logic with a natural dialetheist interpretation: for some prop-
erty P and thing a, a is both P and not-P . We can formulate L P’s semantics in a
very straightforward way making use of three values and a Strong-Kleene valuation
schema (our presentation is different in style, but equivalent to Priest’s [8]). More
specifically, for a first-order language (just unary predicates and no complex terms)
L :

Definition 1 An MV-model is a structure ⊥D, I→ such that:
• D a non-empty domain of quantification.
• I is an interpretation function:
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– For a name or variable a, I(a) ♦ D
– For any predicate P , I(P) ♦ {1, 1

2 , 0}D

– For an atomic formula Pa, I(Pa) = I(P)I(a)

– I(¬A) = 1 − I(A)

– I(A ∃ B) = min(I(A), I(B))

– I(A ∧ B) = max(I(A), I(B))

– I(∃x A) = max({I∗(A) : I
∗ is an x-variant of I})

– I(≤x A) = min({I∗(A) : I
∗ is an x-variant of I})

Definition 2 We say thatΓ �L P Δ iff there is no MV -model M such that I(A) > 0,
for every A ♦ Γ and I(B) = 0 for every B ♦ Δ.

The material conditional (A ↔ B) is defined as (¬A ∧ B) and the material
biconditional (A ∨ B) as (A ↔ B) ∃ (B ↔ A).

Consider now the expansion of L to a language L2 including second-order
variables and quantifiers. Our semantics should now take care of these, including a
domain of possible values of second-order variables. More specifically:

Definition 3 An MV2-model is a structure ⊥D1, D2, I → such that:

• D1 is a non-empty domain of quantification.
• D2 is a set of functions in {1, 1

2 , 0}D1

• I is an interpretation function identical to that of MV -models except for second-
order quantified statements:

– I(∃X A) = max({I∗(A) : I
∗ is an X -variant of I})

– I(≤X A) = min({I∗(A) : I
∗ is an X -variant of I})

We might want to impose certain constraints on D2, like that for each A ⊆ D1
there is an f ♦ D2 such that f (a) > 0 for each a ♦ A. However, we won’t force D2
to contain all functions from D1 to {1, 1

2 , 2} [8, 408].
Definition 4 Wesay thatΓ �L P

2 Δ iff there is no MV2-model M such that I(A) > 0,
for every A ♦ Γ and I(B) = 0 for every B ♦ Δ.

Identity may now be defined in a standard way:

Definition 5 (Identity) (a =L P b) =d f ≤P(Pa ∨ Pb)

1.3 Assessment

Priest’s characterization of identity in second-order L P has the effect of “relaxing”
some of the properties of classical identity. Consider the following toy model, where
for all functions f ♦ D2, f (a) = f (b) = f (c) except for a function f ∼ that f ∼(a)

= 1, f ∼(b) = 1
2 and f ∼(c) = 0. In Priest’s dialetheist reading of the semantics,

this corresponds to a situation where all the properties are shared similarly by a, b
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Table 1 Dialetheist
interpretation of 1

2

P∗
¬P∗

a b c

and c except for a property P∗ that a has (but not its complement), b has (just as its
complement) and c lacks (but does have its complement), see Table1.

N
Identity is both reflexive and symmetric (as it should be). The non-transitivity of

identity is inherited from the non-transitivity of L P’s material conditional. In the
case at hand, for all substitution of P by a predicate interpreted by a function in D2:
Pa ≡ Pb and Pb ≡ Pc although it is not the case that for all substitutions of P
(Pa ≡ Pc). A second feature is inherited from L P’s material conditional. L P’s
material conditional is not detachable, in the sense that modus ponens can fail. This
leads, in the case of identity, to a failure of substitutivity. The toy model above is a
countermodel showing that b =L P c, P∗b ∅L P P∗c.

Although we find the general approach reasonable, we think the last feature of
Priest’s proposal is not particularly pleasing. Think of the definition of identity: that
is based on the Leibnizian idea according to which identity is a matter of sharing all
properties. But the failure of substitutivity clashes with the spirit of the Leibnizian
idea. It might be objected that the failure of transitivity is a particular case of failure
of substitutivity. That’s true, but identity has been defined as sharing all “relevant”
properties (note that D2 need not equal {1, 1

2 , 0}D1 ). Substitutivity should work at
least for “relevant” properties.

In the next section we develop two notions of identity built on ideas close to
Priest’s. Our first notion of identity is non-transitive but substitutivity works. That’s
already, we think, an improvement over Priest’s notion. Second, we develop a notion
of identity that is fully transitive. Despite its classicality, this second notion of identity
is sensitive to expressions of (in)definiteness; we want to argue, against the wide-
spread opinion, that a transitive notion of identity is compatible with a metaphysical
reading of indefiniteness.

2 Two Notions of Tolerant Identity

2.1 Second-Order ST

In Ripley [9] and Cobreros et al. [2, 3] we investigate a logic that retains some
affinities with L P while remaining faithful to classical logic in many respects. The
semantics for our logic ST (as we shall call it) is exactly that of L P above. The
difference concerns the definition of logical consequence:
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Definition 6 We say that Γ �ST Δ iff there is no MV -model M such that I(A) = 1,
for every A ♦ Γ and I(B) = 0 for every B ♦ Δ.

The logic ST sets different standards for satisfaction in premises and in conclu-
sions. A “good” premise (a premise good enough to produce a sound argument) is one
that takes value 1. A “good” conclusion, on the other hand (a conclusion that is not
false enough to produce a counterexample) is one that takes value greater than 0. This
definition might be viewed as setting a permissive relation of logical consequence
(see [3], Sect. 2.2). For the classical vocabulary (no expressions for indefiniteness or
the like) the logic L P coincides with classical logic in its theorems: A is classically
valid just in case it is L P-valid. A striking feature of ST is that, for the classical
vocabulary, the logic is fully classical: Δ is a classical consequence of Γ just in case
Δ is an ST -consequence of Γ . However, the logic is sensitive to expressions that
do not belong to a purely classical first-order vocabulary (in Cobreros et al. [1] we
investigate this logic in connection to the sorites paradox where similarity relations
are around; in Cobreros et al. [2] we investigate ST -logic in combination with a
transparent truth predicate and self-reference). When non-classical expressions are
around, the logic ST might lead to failures of transitivity, thereby blocking inferences
that would otherwise trivialize the theory.

The definition of ST carries over from MV to MV2-models to provide a second
order version of this logic:

Definition 7 We say thatΓ �ST
2 Δ iff there is no MV2-model M such that I(A) = 1,

for every A ♦ Γ and I(B) = 0 for every B ♦ Δ.

For all that was pointed out above it can be seen that second-order ST is equivalent
to (a version of) second-order classical logic.

2.2 Tolerant Identity, First Try

Our first notion of tolerant identity is defined making use of the machinery of MV2-
models above:

Definition 8 (T ol id. 1st ). I(a ∩ b) = 1 just in case for every f ♦ D2, | f (a)

− f (b)|< 1

The expression | f (a) − f (b)| < 1 states that a and b are similar with respect to
property f . Thus, this definition states that similarity in all properties is sufficient in
order to have a corresponding statement of identity good enough to produce a sound
argument.

It’s easy to see that ‘∩’ is both reflexive and symmetric; and a toy model as the
one employed above suffices to show that the relation is not transitive. Recall, that is
a model where for all functions f ♦ D2, f (a) = f (b) = f (c) except for a function
f ∼ that f ∼(a) = 1, f ∼(b) = 1

2 and f ∼(c) = 0. The ST -reading of the semantics
is different from the L P reading, though. Now values are relative to the position of
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Table 2 ST interpretation of
1
2

P∗
¬P∗

a b c

corresponding sentences in premises or conclusions of an argument. In Table2, the
upper oval indicates a “good conclusion” (cannot produce a counterexample) and
lower oval a “bad premise” (cannot produce a sound argument).

This notion of identity does retain substitutivity in the sense that the following
properties hold:

(Subst1) �ST
2 ≤x≤y≤P((Px ∃ x ∩ y) ↔ Py)

(Subst2) Px, x ∩ y �ST
2 Py

Note that in order for (Subst1) to fail, the conditional should take value 0. This
occurs just in case the antecedent is 1 and the consequent is 0. But if ‘Px ∃ x ∩ y’
takes value 1, then Py should take at least value 1

2 . Similarly for (Subst2): for that
inference to fail there must be a model where premises are 1 and conclusion is 0. But
the value 1 of ‘Px, x ∩ y’ guarantees a value greater than 0 for Py.

2.3 Tolerant Identity, Second Try

Our second definition of identity directly mirrors Priest’s strategy but within the
(second-order) ST -logic.

Definition 9 ( T ol id. 2nd ). (a = b) =d f ≤P(Pa ∨ Pb)

Despite the affinities in the semantics, the classicality of ST ’smaterial conditional
makes this notion of identity fully transitive. This notion of identity is, however, sen-
sitive to non-classical expressions. Consider Priest’s motorbike once again. At each
stage, the resulting motorbike is similar in all its properties to the previous one. That
is, for each of the stages an of the motorbike we have an ∩ an+1 (‘∩’ understood as
defined in the previous section). Although the notion of identity introduced in Defi-
nition 9 is classical, it is tolerant in connection to the similarity relation introduced
in Definition 8. That is, the following tolerance principles for identity hold in ST :

TPI1 �ST
2 ≤x≤y((P M = x ∃ x ∩ y) ↔ P M = y)

TPI2 a ∩ b, a = P M �ST
2 b = P M
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Table 3 Evans’ argument

1 ∪(b = a) (Assumption)
2 λx[∪(x = a)]b (From 1, by abstraction)
3 ¬∪(a = a) (Assumption, since a = a is a logical truth!)
4 ¬λx[∪(x = a)]a (From 3, by abstraction)
5 ¬(a = b) (From 2, 4, by LL and Contrap)
6 ¬∪(a = b) (Assuming premises are definite)

In short, although identity is fully classical, it is a tolerant relation (unlike standard
classical identity). This fact can be used to explain our intuitions about non-sharp tran-
sitions in cases like that of Priest’s motorbike. At the same time, the non-transitivity
of the ST -logic is what prevents the unwelcome conclusion of the sorites paradox.

3 Transitivity and Metaphysical Indeterminacy

In the previous section we argued that Priest’s approach to identity can be refined.
First, the failure of substitutivity deprives the Leibnizian definition of identity of its
intended force.Within the ST -logic, we can define a non-transitive notion of identity
for which substitutivity works. Second, within the ST -logic, we can define a notion
of identity that is fully transitive (and, naturally, for which substitutivity works) but
that is tolerant, and so it makes still room for indeterminacy. In this section we want
to argue that the indeterminacy associated to this notion of identity need not be
understood in a purely semantic way. Thus, against a widespread opinion, we argue
that transitivity of identity and metaphysical indeterminacy are compatible.

In order to show this, we consider Evans’ famous argument (in [4]), under Lewis’
interpretation (in [7]). Evans’ argument is a reductio from the assumption of a true
statement of indefiniteness of identity (‘∪ A’ means ‘it is indefinite whether A’). See
Evans’ arguement in Table3.

Naturally, this argument must be fallacious, since it is perfectly agreed that there
might be indefinite identity statements. Lewis’ interpretation of Evans’ argument is
that while the defender of indeterminacy as semantic can easily point out where the
fallacy lies, the same is not the case for the defender of indeterminacy asmetaphysical.
In particular, one can say that the steps from 1 to 2 and 3 to 4 are not valid, in much
the same way as the inference from the true statement,

‘It is contingent whether the number of planets is eight’

does not entail the false statement,

‘the number of planets is such that it is contingent whether it is eight’.
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Now this analogy makes perfect sense if indeterminacy is understood in terms
of a variation of the denotation of a term across precisifications (that is the super-
valuationist reading). In that case, ‘contingency’ and ‘indeterminacy’ are formally
identical and the mentioned inference is not valid. But for the defender of indeter-
minacy as metaphysical, indeterminacy cannot be explained in terms of variation of
the denotation across anything. The terms a and b in the argument “rigidly denote”
(to follow the modal analogy) an object that is intrinsically vague.

We take Evans’ argument (under Lewis’ interpretation) as a criterion for the
availability of a metaphysical reading of indeterminacy associated to identity. Given
notions of identity and of indeterminacy, if the only way to block the argument is
the invalidity of abstraction into the scope of the ∪ operator, then that notion of
indeterminacy has just a semantic reading.

Let now definiteness (‘it is definite that’) be defined as follows:

Definition 10 (Definiteness)

I(D(a = b)) =
{
1 if for all f ♦ D2 | f (a) − f (b)| = 0
0 otherwise

Indefiniteness (‘it is indefinite whether’) as expressed by ‘∪’ can be defined thus:

∪(a = b) = ¬D(a = b) ∃ ¬D¬(a = b),

and consider again Evans’ argument. Each step in the argument is ST -valid. How-
ever, (5) is only tolerantly true and (6) is not even tolerantly true. Thus, though each
step is valid we cannot validly chain premises in this case.

4 Conclusion and Outlook

Priest argued that to account for substantial change, one must admit that identity is
non-transitive.Making use of the logic L P , he defines such a notion of identity,which
also fails to satisfy substitutivity. Making use of our alternative logic ST , we have
shown that we can not only define a non-transitive notion of identity that preserves
substitutivity, but also a notion of identity that is transitive. The latter is particularly
interesting, because even though transitive, it is still a tolerant relation which allows
for substantial change. Addressing Evans’ argument, we have also shown that the
transitivity of identity is compatible with ontological vagueness.

In this chapter we have focussed on logical issues. However, we believe that our
proposed analyses of identity have interesting ontological implications. We men-
tioned already the issues of substantial change and ontological vagueness. But both
deserve more extensive discussion: how is substantial change compatible with the
transitivity of identity from a conceptual point of view, and what does it mean to
be a vague object? Identity is crucial for counting, but what is the consequence for
counting when our notions of identity are used? Last but not least, there is Geach’s
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[5] notion of ‘relative identity’ and Unger’s [10] problem of the Many. We feel that
for both a fresh perspective becomes available when use is made of the notions
introduced in this chapter. We hope to address these issues in a subsequent chapter.
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the difference between topic and focus articulationwithin a sentence. I will show that
whereas articulating the topic of a sentence activates a presupposition, articulating the
focus frequently yields merely an entailment. Based on analysis of topic-focus artic-
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1 Introduction

Natural language has features not found in logically perfect artificial languages. One
such feature is redundancy; another feature is its converse, namely ambiguity. In
this paper I will deal with the sort of ambiguity that is pivoted on whether the topic
or the focus of a sentence is highlighted. For instance, ‘John only introduced Bill to
Sue’ lends itself to two different kinds of construal: ‘John did not introduce other
people to Sue except for Bill’ and ‘The only person Bill was introduced to by John
was Sue’.1 There are two sentences whose semantics, logical properties and logical
consequences only partially overlap.

Based on analysis of sentences that differ as for their topic-focus articulation I
propose a solution to the almost hundred-year old dispute over Strawsonian versus
Russellian definite descriptions.2 The point of departure is that sentences of the form
‘The F is a G’ are systematically ambiguous.3 Their ambiguity is, in my view, not
rooted in a shift of meaning of the definite description ‘the F’. Rather the ambi-
guity stems from different topic-focus articulations of such sentences. My analysis
assumes that whereas articulating the topic of a sentence activates a pre- supposition,
articulating the focus frequently yields merely an entailment.4 The point is this. If
‘the F’ is the topic phrase then this description occurs with de re supposition and
Strawson’s analysis appears to be what is wanted. On this reading that corresponds
to Donnellan’s referential use of ‘the F’ the sentence presupposes the existence of
the descriptum of ‘the F’. The other option is ‘G’ occurring as topic and ‘the F’
as focus. This reading corresponds to Donnellan’s attributive use of ‘the F’ and the
description occurs with de dicto supposition. On this reading the Russellian analysis
gets the truth-conditions of the sentence right. The existence of a unique F is merely
entailed.

The received view still tends to be that there is room for at most one of the
two positions, since they are deemed incompatible. But there is no incompatibility
between Strawson’s and Russell’s positions, because they simply do not talk about
one and the same meaning of the sentence ‘The King of France is bald’. My novel
contribution is to point out this ambiguity which yielded the false dilemma. Russell
argued for attributive use of ‘the King of France’ whereas Strawson for its referential
use. In this paper I will propose a logical analysis of both Russellian and Strawsonian
reading of sentences of the form ‘The F is a G’.

Tichý’s Transparent Intensional Logic (TIL) will serve as background theory
throughout my exposition.5 Tichý’s TIL was developed simultaneously with Mon-
tague’s IL (Intensional Logic). The technical tools of disambiguation will be familiar

1 See Hajic̆ová [7].
2 See for instance Refs. [2, 13–16, 18, 21].
3 The sentence that triggered the dispute was ‘The King of France is bald’.
4 This assumption is based on [7], and supported by other linguists as well. See, for instance
[6], Gundel and Fretheim, in press, http://www.sfu.ca/~hedberg/gundel-fretheim.pdf, and [17, esp.
p. 173ff].
5 For details on TIL, see, in particular [5, 19, 20].

http://www.sfu.ca/~hedberg/gundel-fretheim.pdf
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from IL, with two exceptions. One is that we λ-bind separate variablesw, w1, . . . , wn

ranging over possible worlds and t, t1, . . . , tn ranging over times. This dual binding is
tantamount to explicit intensionalization and temporalization. The other exception
is that functional application is the logic both of extensionalization of intensions
(functions from possible worlds) and of predication.6 Application is symbolized by
square brackets, ‘[...]’. Intensions are extensionalized by applying them to worlds
and times, as in [[Intension w] t], abbreviated by subscripted terms for world and
time variables: Intensionwt is the extension of the generic intension Intension at
⊥w, t→. Thus, for instance, the extensionalization of a property yields a set (possibly
an empty one), and the extensionalization of a proposition yields a truth-value (or
no value at all). A general objection to IL is that it fails to accommodate hyperinten-
sionality, as indeed any formal logic interpreted set-theoretically is bound to unless
a domain of primitive hyperintensions is added to the frame. Any theory of natural-
language analysis needs a hyperintensional semantics in order to crack the hard nuts
of natural language semantics. In global terms, divested of its hyperintensional pro-
cedural semantics TIL is an anticontextualist (i.e., transparent), explicitly intensional
modification of IL. With its hyperintensional procedural semantics added back on,
TIL rises above the model-theoretic paradigm and joins instead the paradigm of
hyperintensional logic and structured meanings.7

The rest of the paper is organized as follows. Section2 is a brief summary of the
bones of contention between Russsellian and Strawsonian conceptions of definite
descriptions. The relevant foundations of TIL are introduced in Sect. 3. Finally, in
Sect. 4 I propose my unification of elements drawn from Strawsonian and Russellian
theories of definite descriptions.

2 Russell Versus Strawson on Definite Descriptions

There is a substantial difference between proper names and definite descriptions. This
distinction is of crucial importance due to their vastly different logical behaviour.
Independently of any particular theory of proper names, it should be granted that a
proper proper name (as opposed to a definite description grammatically masquerad-
ing as a proper name) is a rigid designator of a numerically particular individual. On
the other hand, a definite description like, for instance, ‘the King of France’, ‘the
highest mountain on earth’, ‘the first man to run 100 m in under 9 seconds’, etc.,
offers an empirical criterion that enables us to establish which individual, if any,
satisfies the criterion in a particular state of affairs.

The contemporary discussion of the distinction between names and descriptions
was triggered by [14]. Russell’s key idea is the proposal that a sentence like

(1) ‘The F is a G.’

containing a definite description ‘the F’ is understood to have, in the final analysis,
the logical form

6 For details, see Jespersen [8].
7 For a detailed critical comparison of TIL and IL, see [5, §2.4.5].
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(1♦) ∃x(Fx ∧ ∀y(Fy ∗ x = y) ∧ Gy)

rather than the logical form G(ιxFx).
Though Russell’s quantificational theory remains to this day a strong rival of

referential theories, it has received its fair share of criticism. Russell’s opponents
claim that he simply gets the truth-conditions wrong in important cases of using
descriptions when there is no such thing as the unique F.8

This criticism was launched by Strawson who in 1950 objected that Russell’s
theory predicts the wrong truth-conditions for sentences like ‘The present King of
France is bald’. According to Russell’s analysis, this sentence is false. In Strawson’s
view, the sentence can be neither true nor false whenever there is no unique King
of France. Obviously, in such a state of affairs the sentence is not true. However, if
the sentence were false then its negation, ‘The King of France is not bald’, would be
true, which entails that there is a unique King of France, contrary to the assumption
that there is none. Strawson holds that sentences like these not only entail, but also
presuppose, the existence of a unique King of France. If ‘the present King of France’
fails to refer, then the presupposition is not satisfied and the sentence fails to have a
truth value.9

Russell, in response to Strawson’s criticism, argues that, despite Strawson’s
protests, the sentence is in fact false:

Suppose, for example, that in some country there was a law that no person could hold public
office if he considered it false that the Ruler of the Universe is wise. I think an avowed atheist
who took advantage of Mr. Strawson’s doctrine to say that he did not hold this proposition
false would be regarded as a somewhat shifty character [15].

Donnellan [2] observes that there is a sense in which Strawson and Russell are
both right, and bothwrong, about the proper analysis of definite descriptions, because
definite descriptions can be used in two different ways. On a so-called attributive
use, a sentence of the form ‘The F is a G’ is used to express a proposition equivalent
to ‘Whatever is uniquely F is a G’. Alternatively, on a referential use, a sentence of
the form ‘The F is a G’ is used to pick out a specific individual, a, and to say of a
that a is a G. Donnellan suggests that Russell’s quantificational account of definite
descriptions might capture attributive uses, but that it does not work for referential
uses. Ludlow in 2007 interprets Donnellan as arguing that in some cases descriptions
are Russellian and in other cases Strawsonian.

Kripke [11] responds to Donnellan by arguing that the Russellian account of
definite descriptions can, by itself, account for both referential and attributive uses,
and that the difference between the two cases is entirely amatter of pragmatics. Neale
[13] supports Russell’s view by collecting a number of cases inwhich intuitions about
truth conditions clearly do not support Strawson’s view. On the other hand, a number

8 Besides, many hold against Russell’s translation of atomic sentences like ‘The F is a G’ into the
molecular form ‘There is at least one F and at most one thing is an F and that thing is a G’, because
Russell disregards the standard constraint that there must be a fair amount of structural similarity
between analysandum and analysans.
9 Nevertheless, for Strawson, sentences are meaningful in and of themselves, independently of
empirical facts like the contingent non-existence of the King of France.
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of linguists have recently come to Strawson’s defence on thismatter. See Ludlow [12]
for a detailed survey of the arguments supporting Strawson’s view and arguments
supporting Russell’s. Here it might suffice to point out that Strawson’s concerns have
not delivered a knock-out blow to Russell’s theory of descriptions, and so this topic
remains very much alive. von Fintel [21], for instance, argues that every sentence
containing a definite description ‘the F’ comes with the existential presupposition
that there be a unique F.

In this paper I am not going to take into account Kripke’s pragmatic factors like
the intentions of a speaker, for they are irrelevant to a logical semantic theory. So I am
disregarding Donnellan’s troublesome notion of having somebody in mind. Instead,
I will propose a logical analysis of sentences of the form ‘The F is a G’. What I
want to show is this. First, definite descriptions are not deprived of a self-contained
meaning and they denote one and the same entity in any context. Thus they are
never Russellian. Second, Russells insight that a definite description ‘the F’ does not
denote a definite individual is spot-on. According to TIL, ‘the F’ denotes a condition
to be contingently satisfied by the individual (if any) that happens to be the F. I will
explicate such conditions in terms of possible-world intensions, viz. as individual
roles or offices to be occupied by at most one individual per world/time pair. Third, I
am going to show that Donnellan is right in holding that sentences of the form ‘The
F is a G’ are systematically ambiguous. However, their ambiguity does not concern
a shift of meaning of the definite description ‘the F’, as Fregean or other theories
maintain. Instead the ambiguity concerns different topic-focus articulations of these
sentences.

There are two options. The description ‘the F’ may occur as the topic of a sen-
tence and property G (the focus) is predicated of the topic. This case corresponds
to Donnellan’s referential use. Using medieval terminology I will say that ‘the F’
occurs with de re supposition. The other option is ‘G’ occurring as topic and ‘the F’
as focus. This reading corresponds to Donnellan’s attributive use of ‘the F’ and the
description occurs with de dicto supposition. Consequently, and crucially, such sen-
tences are ambiguous between a de dicto and a de re reading. On their de re reading
they presuppose the existence of a unique F. Thus Strawson’s analysis appears to
be adequate for de re cases. On their de dicto reading they have the truth-conditions
as specified by the Russellian analysis. They do not presuppose, but only entail, the
existence of a uniqueF. However, the Russellian analysis, though being equivalent to
the one I am going to propose, is not an adequate literal analysis of de dicto readings.

I am going to bring out the semantic nature of the topic-focus difference by means
of a literal logical analysis. As a result, I will be furnishing sentences differing only
as for their topic-focus articulation with different structured meanings producing
different possible-world propositions.10 Since our logic is a hyperintensional logic
of partial functions, I am able to analyse sentences with presuppositions in a both
natural and principledmanner. It means that I associate themwith hyperpropositions,

10 For details on structured meanings, see [4, 10] for a survey.
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which in TIL are abstract logical procedures that produce partial possible-world
propositions, which occasionally yield truth-value gaps.11

We need to work with properly partial functions and propositions with truth-
value gaps. On Strawsonian reading the sentence ‘The King of France is bald’ talks
about the office of the King of France (topic) ascribing to the individual (if any)
that occupies this office the property of being bald (focus). Thus it is presupposed
that the King of France exist, i.e., that the office be occupied. If the office is vacant
the proposition denoted by the sentence lacks a truth-value. On our approach this
does not mean that the sentence is meaningless. The sentence has a sense, namely
an instruction how in any possible world w at any time t to execute the procedure
of evaluating its truth-conditions. Only if we evaluate these conditions in such a
state-of-affairs where there is no King of France does the process of evaluation yield
a truth-value gap.

3 Foundations of TIL

Formally, TIL is an extensional logic of hyperintensions based on the partial, typed
λ-calculus enriched with a ramified type structure to accommodate hyperintensions.
The syntax of TIL is the familiar one of the λ-calculus, with the addition of a hyperin-
tension called Trivialization (symbolized by a superscripted nought). The semantics
is a procedural (as opposed to denotational) one. Thus, functional application, in
TIL, is not the result of applying a function to an argument, but instead the very
procedure of applying function to argument; and functional abstraction, in TIL, is
not the result of forming a function, but instead the very procedure of sorting two
domains of entities into functional arguments and values, respectively. The TIL con-
cept of procedurally construed hyperintensions is construction. The three definitions
below constitute the logical heart of TIL.

Definition 1 (Types of order 1.) Let B be a base, where a base is a collection of
pair-wise disjoint, non-empty sets. Then:

(i) Every member of B is an elementary type of order 1 over B.
(ii) Let α, β1, . . . , βm (m > 0) be types of order 1 over B. Then the collection (α β1

. . . βm) of all m-ary partial mappings from β1 × · · ·×βm into α is a functional
type of order 1 over B.

(iii) Nothing is a type of order 1 over B unless it so follows from (i) and (ii). ≤↔
Remark For the purposes of natural-language analysis,we are currently assuming the
following base of ground types, each of which is part of the ontological commitments
of TIL:

o: the set of truth-values {T, F};
ι: the set of individuals (a constant universe of discourse);
τ : the set of real numbers (doubling as temporal continuum);

11 For an introduction to the notion of hyperproposition, see [9].



How to Unify Russellian and Strawsonian Definite Descriptions 91

ω: the set of logically possible worlds (the logical space).

Constructions construct objects of appropriate types dependently on valuation of
variables; they v-construct, where v is the parameter of valuation.With the difference
that we construe variables as extra-linguistic objects and not as expressions, our
theory of variables is otherwise identical to Tarski’s. Thus, in TIL variables construct
objects of the respective types dependently on valuation in the following way. For
each type α there are countably infinitely many variables x1, x2, . . . . The members
of α (unless α is a singleton) can be organised in infinitely many infinite sequences.
Let the sequences be given (as one is allowed to assume in a realist semantics). The
valuation v takes a sequence ⊥s1, s2, . . . → and assigns s1 to the variable x1, s2 to the
variable x2; and so on.

When X is an object of any type (including a construction), the Trivialization of
X, denoted ‘0X’, constructs X without the mediation of any other constructions. 0X
is the unique atomic construction of X that does not depend on valuation: it is a
primitive, non-perspectival mode of presentation of X. The other constructions are
compound, as they consist of other constituents apart from themselves. These are
Composition and Closure. Composition is the procedure of applying a function f
to an argument a to obtain the value (if any) of f at a. Closure is the procedure
of constructing a function by abstracting over variables; i.e., the procedure of ab-
stracting, or extracting, a function from a context, as when abstracting λx(φx) from
φ(a).12

Definition 2 (construction)

(i) The variable x is a construction that constructs an object O of the respective
type dependently on a valuation v: x v-constructs O.

(ii) Trivialization: Where X is an object whatsoever (an extension, an intension or
a construction), 0X is the construction Trivialization. It constructs X without
any change in X.

(iii) TheComposition [X Y1 . . . Ym] is the following construction. IfX v-constructs a
function f of type (α β1 . . . βm), andY1, . . . , Ym v-construct entitiesB1, . . . , Bm

of types β1, . . . , βm, respectively, then the Composition
[X Y1 . . . Ym] v-constructs the value (an entity, if any, of type α) of f on the
tuple argument ⊥B1, . . . , Bm→. Otherwise the Composition [X Y1 . . . Ym] does
not v-construct anything and so is v-improper.

(iv) The Closure [λx1 . . . xm Y ] is the following construction. Let x1, x2, . . . , xm

be pair-wise distinct variables v-constructing entities of types β1, . . . , βm and
Y a construction v-constructing an α-entity. Then [λx1 . . . xm Y ] is the con-
struction λ-Closure (or Closure). It v-constructs the following function f of the
type (αβ1 . . . βm). Let v(B1/x1, . . . , Bm/xm) be a valuation identical with v at
least up to assigning objects B1/β1, . . . , Bm/βm to variables x1, . . . , xm. If Y is
v(B1/x1, . . . , Bm/xm)-improper (see iii), then f is undefined on ⊥B1, . . . , Bm→.

12 There are two other compound construction; Execution and Double Execution. Since I do not
need them in this paper, they are not incorporated in Definition 2.
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Otherwise the value of f on ⊥B1, . . . , Bm→ is the α-entity v(B1/x1, . . . , Bm/xm)-
constructed by Y .

(v) Nothing is a Construction, unless it follows from (i) through (iv). ≤↔
The definition of the ramified hierarchy of types decomposes into three parts. Firstly,
simple types of order 1, which were already defined by definition 1. Secondly, con-
structions of order n, and thirdly, types of order n + 1.

Definition 3 (Ramified Hierarchy of Types)
T1 (types of order 1). See Definition 1.
Cn (constructions of order n)

(i) Let x be a variable ranging over a type of order n. Then x is a construction of
order n over B.

(ii) Let X be a member of a type of order n. Then 0X, 1X, 2X are constructions of
order n over B.

(iii) Let X, X1, . . . , Xm (m > 0) be constructions of ordernoverB. Then [X X1 . . . Xm]
is a construction of order n over B.

(iv) Let x1, . . . , xm,X (m > 0) be constructions of ordernoverB. Then [λx1 . . . xm X]
is a construction of order n over B.

(v) Nothing is a construction of order n over B unless it so follows fromCn (i)–(iv).

Tn+1 (types of order n + 1). Let ∨n be the collection of all constructions of order
n over B. Then

(i) ∨n and every type of order n are types of order n + 1.
(ii) If m > 0 and α, β1, . . . , βm are types of order n + 1 over B,then (α β1 . . . βm)

(see T1(ii)) is a type of order n + 1 over B.
(iii) Nothing is a type of order n + 1 over B unless it so follows from (i) and (ii). ≤↔

Empirical languages incorporate an element of contingency that non-empirical
ones lack. Empirical expressions denote empirical conditions that may or may not be
satisfied at some empirical index of evaluation. We model these empirical conditions
as possible-world intensions. Intensions are entities of type (βω): mappings from
possible worlds to an arbitrary type β. The type β is frequently the type of the
chronology ofα-objects, i.e. amapping of type (ατ ). Thusα-intensions are frequently
functions of type ((ατ )ω), abbreviated as ‘ατω’. I shall typically say that an index of
evaluation is a world/time pair ⊥w, t→. Extensional entities are entities of some type
α where α ⊆= (βω) for any type β.

Examples of frequently used intensions are: propositions of type oτω, properties
of individuals of type (oι)τω, binary relations-in-intension between individuals of
type (oιι)τω, individual offices of type ιτω. Thus individual offices are simply partial
functions which, relative to a world/time pair ⊥w, t→, return at most one individual as
value.

Our explicit intensionalization and temporalization enables us to encode construc-
tions of possible-world intensions, by means of terms for possible-world variables
and times, directly in the logical syntax. Where w ranges over ω and t over τ , the
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following general logical form characterizes the logical syntax of constructions of
intensions: λwλt[. . . w . . . t . . . ]. For instance, if King_of is a function of type (ιι)τω

and France an individual of type ι, the office of the King of France is constructed
like this: λwλt[0King_ofwt

0France].
Logical objects like truth-functions and quantifiers are extensional: ∧ (conjunc-

tion),∼ (disjunction) and ∗ (implication) are of type (ooo), and ¬ (negation) of type
(oo). Quantifiers ∀α , ∃α are type-theoretically polymorphous, total functions of type
(o(oα)), for an arbitrary type α, defined as follows. The universal quantifier ∀α is a
function that associates a class A of α-elements with T if A contains all elements of
the type α, otherwise with F. The existential quantifier ∃α is a function that associates
a class A of α-elements with T if A is a non-empty class, otherwise with F.

Below all type indications will be provided outside the formulae in order not to
clutter the notation. Furthermore, ‘X/α’ means that an object X is (a member) of
type α. ‘X ∩v α’ means that the type of the object valuation-constructed by X is
α. Throughout, it holds that the variables w ∩v ω and t ∩v τ . If C ∩v ατω, then
the frequently used Composition [[C w] t], which is the intensional descent (a.k.a.
extensionalization) of the α-intension v-constructed by C, will be encoded as ‘Cwt’.
When using constructions of truth-functions, we often omit Trivialization and use
infix notation to conform to standard notation in the interest of better readability.
Also when using constructions of identities of α-entities, =α /(oαα), we omit Triv-
ialization, the type subscript, and use infix notion when no confusion can arise.

We invariably furnish expressionswith procedural structuredmeanings, which are
explicated as TIL constructions. The analysis of an unambiguous empirical sentence
thus consists in discovering the logical construction encoded by a given sentence.
The TIL method of analysis consists of three steps:

(1) Type-theoretical analysis, i.e., assigning types to the objects that receivemention
in the analysed sentence.

(2) Type-theoretical synthesis, i.e., combining the constructions of the objects ad (1)
in order to construct the proposition of type oτω denoted by the whole sentence.

(3) Type-theoretical checking, i.e. checking whether the proposed analysans is type-
theoretically coherent.

To illustrate the method, we analyse the stock example ‘The King of France is
bald’ à la Strawson.

First, type-theoretical analysis. The sentence mentions these objects. King_of /
(ιι)τω is an empirical function that dependently on ⊥w, t→-pairs assigns to one
individual (a country) another individual (its king); France/ι; King_of_France/ιτω;
Bald/(oι)τω.

For the sake of simplicity, I will demonstrate the steps (2) and (3) simultaneously.
In the second step we combine the constructions of the objects obtained in the first
step in order to construct the proposition (of type oτω) denoted by the whole sen-
tence. Since we intend to arrive at the literal analysis of the sentence, the objects
denoted by the semantically simple expressions are constructed by their Trivializa-
tions: 0King_of , 0France, 0Bald. In order to construct the officeKing_of _France, we
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have to combine 0King_of and 0France. The function King_of must be extension-
alized first via the Composition 0King_ofwt ∩v (ιι), and the result is then applied to
France; we get [0King_ofwt

0France] ∩v ι. Abstracting over the values of w and t
we obtain the Closure that constructs the office: λwλt[0King_ofwt

0France] ∩ ιτω.
But the property of being bald cannot be ascribed to an individual office. Instead it is
ascribed to the individual (if any) occupying the office. Thus the office has to be sub-
jected to intensional descent first: λwλt[0King_ofwt

0France]wt ∩v ι. The property
itself has to be extensionalized as well: 0Baldwt . By Composing these two construc-
tions, we obtain either a truth-value (T or F) or nothing, according as the King of
France is, or is not, bald, or does not exist, respectively. Finally, by abstracting over
the values of the variables w and t, we construct the proposition:

λwλt[0Baldwtλwλt[0King_ofwt
0France]wt]

This construction is assigned as itsmeaning to the Strawsonian variant of the sentence
‘The King of France is bald’. So much for the basic notions of TIL and its method
of analysis.

4 Definite Descriptions: Strawsonian or Russellian?

Now I am going to propose a solution to the Strawson-Russell standoff. In other
words, I am going to analyse the phenomena of presupposition and entailment con-
nected with using definite descriptions with supposition de dicto or de re, and I will
show how the topic-focus distinction determines which of the two cases applies.

4.1 Topic-Focus Ambiguity

When used in a communicative act, an atomic sentence communicates something
(the focus F) about something (the topic T ). Thus the schematic structure of an
atomic sentence is F(T). The topic T of a sentence S is often associated with a
presupposition P of S such that P is entailed both by S and non − S. On the other
hand, the clause in the focus usually occasions a mere entailment of some P by S.13

To give an example, consider the sentence ‘Our defeat was caused by John’. There
are two possible readings of this sentence. Taken one way, the sentence is about our
defeat, conveying the snippet of information that it was caused by John. In such a
situation the sentence is associated with the presupposition that we were defeated.
Indeed, the negated form of the sentence, ‘Our defeat was not caused by John’, also
implies that we were defeated. Thus ‘our defeat’ is the topic and ‘was caused by
John’ the focus clause. Taken the other way, the sentence is about the topic John,

13 See Refs. [6, 7].
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ascribing to him the property that he caused our defeat (focus). Now the scenario of
truly asserting the negated sentence can be, for instance, the following. Though it is
true that John has a reputation for being rather a bad player, Paul was in excellent
shape and so we won. Or, another scenario is thinkable. We were defeated, only not
because of John but because the whole team performed poorly. Hence, our being
defeated is not presupposed by this reading, it is only entailed.

Schematically, if |= is the relation of entailment, then the logical difference
between a mere entailment and a presupposition is this:

P is a presupposition of S : (S |= P) and (non-S|= P)

Thus if P is not true, then neither S nor non-S is true. Hence, S has no truth-value.

P is only entailed by S: (S |= P) and neither (non-S|= P) nor (non-S|= non-P)

Hence if S is not true we cannot deduce anything about the truth-value of P.

4.2 The King of France Revisited

Above we analyzed the sentence ‘The King of France is bald’ on its perhaps most
natural reading as predicating the property of being bald (the focus) of the individual
(if any) that is the present King of France (the topic). Yet there is another, albeit less
natural reading of the sentence. Imagine that the sentence is uttered in a situation
where we are talking about baldness, and somebody asks ‘Who is bald?’ The answer
might be ‘Well, among those who are bald there is the present King of France’. If you
receive such an answer, you most probably protest, ‘This cannot be true, for there is
no King of France now’. On such a reading the sentence is about baldness (topic)
claiming that this property is instantiated, among others, by the King of France
(focus). Since there are no rigorous grammatical rules in English to distinguish
between the two variants, the input of our logical analysis is the result of a linguistic
analysis, where the topic and focus of a sentence are made explicit.14 In this paper I
mark the topic clause in italics. The two readings of the above sentence are:

(S) ‘The king of France is bald’ (Strawsonian)
(R) ‘The king of France is bald’ (Russellian)

The analysis of (S) is as above: λwλt[0Baldwtλwλt[0King_ofwt
0France]wt].

The meaning of ‘the King of France’, viz. λwλt[0King_ofwt
0France], occurs

in (S) with de re supposition, because the object of predication is the unique
value in the chosen ⊥w, t→-pair of evaluation of the office.15 To construct this value

14 For instance, in the Prague Dependency Treebank for the Czech language, the tectogrammatical
representation contains the semantic structure of sentences with topic-focus annotators. For details,
see http://ufal.mff.cuni.cz/pdt2.0/
15 For details on the analysis of de dicto vs. de re supposition within TIL framework, see [5, esp.
§§1.5.2 and 2.6.2] and also [3].

http://ufal.mff.cuni.cz/pdt2.0/


96 M. Duží

(if any), the office must be extensionalized. This is achieved in (S) by Composition
λwλt[0King_ofwt

0France]wt .
The following two de re principles are satisfied: the principle of existential

presupposition and the principle of substitution of co-referential expressions. Thus
the following arguments are valid (though not sound):

The King of France is (not) bald
The King of France exists

The King of France is bald
The King of France is Louis XVI

Louis XVI is bald

To prove the validity of the first argument, we need to analyse its conclusion ‘The
King of France exists’. In TIL (non-trivial) existence is explicated as a property of
intensions to be instantiated in a given ⊥w, t→-pair of evaluation.16 Thus to say that
unicorns do not exist is tantamount to saying that at the given world w and time t the
property of being a unicorn has empty class of individuals as its extension. Similarly,
that the King of France does not exist means that the office of the King of France is
vacant at the world and time of evaluation.

Thus in our casewe haveExist/(oιτω)τω, the property of an office’s being occupied
at a given world/time pair that is defined as follows:

0Exist =of λwλtλc[0∃λx[x =i cwt]]

Types: ∃/(o(oι)); c ∩v ιτω; x ∩v ι; =of /(o(oιτω)τω(oιτω)τω): the identity of
properties of individual offices; =i /(oιι): the identity of individuals, x ∩v ι.

We introduce Louis/ι, Empty/(o(oι)): the singleton containing the empty set
of individuals, and Improper/(o∨1)τω: the property of constructions of being v-
improper at a given ⊥w, t→-pair; the other types are as above. Then for any ⊥w, t→-pair
the following proof steps are truth-preserving:

(a) existence:

(1) (¬)[0Baldwtλwλt[0King_ofwt
0France]wt] ∅

(2) ¬[0Improperwt
0[λwλt[0King_ofwt

0France]wt]] by Def. 2, iii)

(3) ¬[0Empty λx[x =i [λwλt[0King_ofwt
0France]]wt]] by Def. 2, iv)

(4) [0∃λx[x =i [λwλt[0King_ofwt
0France]]wt]] EG

(5) [0Existwt[λwλt[0King_ofwt
0France]]] by def. of Exist

16 For details see [5], 2.3.
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Remark Note that in step (2) the property of being Improper of type (o∨1)τω is applied
to the construction [λwλt[0King_ofwt

0France]wt] of type ∨1 that is supplied here by
its Trivialisation 0[λwλt[0King_ofwt

0France]wt] belonging to type ∨2. On the other
hand in step (3) Empty of type (o(oι)) is applied to the set of individuals constructed
here by λx [x =i [λwλt[0King_ofwt

0France]]wt]. These two steps are necessary in
order to existentially generalize in step (4). In the logic of partial functions such as
TIL we cannot carelessly generalize before proving that the set to which existential
quantifier is applied is non-empty.

(b) substitution:

(1) [0Baldwtλwλt[0King_ofwt
0France]wt] ∅

(2) [0Louis =i λwλt[0King_ofwt
0France]wt] ∅

(3) [0Baldwt
0Louis] substitution of identicals

As explained above, the sentence (R) is not associated with the presupposition
that the present King of France should exist, because ‘the King of France’ occurs
now in the focus clause. The truth and falsity conditions of the Russellian ‘The King
of France is bald’ are as follows:

• True, if and only if among those who are bald there is the King of France.
• False, if and only if among those who are bald there is no King of France (either
because the King’s office is not occupied, or its occupant is not bald).

Thus the two readings (S) and (R) have different truth-conditions, and they are
not equivalent, albeit they are co-entailing. The reason is this. Trivially, by definition
a valid argument is truth-preserving from premises to conclusion. However, due to
partiality, the entailment relation may fail to be falsity-preserving from conclusion to
premises. As a consequence, ifA,B are constructions of propositions such thatA |= B
and B |= A, then A, B are not necessarily equivalent in the sense of constructing the
same proposition. Though the propositions take the truth-value T at exactly the same
world/times, they may differ in such a way that at some ⊥w, t→-pair(s) one takes the
value F while the other is undefined. The pair of meanings of (S) and (R) is an
example of such co-entailing, yet non-equivalent hyperpropositions.

Next I am going to analyse (R). TILmakes it possible to avoid the other objections
against Russell’s analysis as well. The Russellian rephrasing of the sentence ‘The
King of France is bald’ is this: ‘There is a unique individual such that he is the King
of France and he is bald’. This sentence expresses the construction17

(R*) λwλt[0∃λx[x =i [λwλt[0King_ofwt
0France]wt] ∧ [0Baldwtx]]].

TIL analysis of the ‘Russellian rephrasing’ does not deprive ‘theKing of France’ of its
meaning. The meaning is invariably, in all contexts, the Closure
λwλt[0King_ofwt

0France]. Moreover, even the main objection that Russell simply

17 Note that in TIL we do not need the construction corresponding to ∀y(Fy ∗ x = y) specifying
the uniqueness of the King of France, because it is inherent in the meaning of ‘the King of France’.
The meaning of definite descriptions like ‘the King of France’ is a construction of an individual
office of type ιτω occupied in each ⊥w, t→-pair by at most one individual.
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gets the truth-conditions wrong if there is no King of France is irrelevant, because
in (R∨) the Closure λwλt[0King_ofwt

0France] occurs intensionally (that is de dicto)
unlike in the analysis of (S) where it occurs extensionally (de re).18 The existential
quantifier ∃ applies to sets of individuals rather than a particular individual. The
proposition constructed by (R∨) is true if the set of individuals who are bald contains
the individual who occupies the office of King of France, otherwise it is simply false.
The truth conditions specified by (R∨) are Russellian. Thus we might be content with
(R∨) as an adequate analysis of the Russellian reading (R). Yet we should not be.
The reason is this. Russell’s analysis has another defect; it does not comply with
Carnap’s principle of subject-matter, which states, roughly, that only those entities
that receive mention in a sentence can become constituents of its meaning.19 In other
words, (R∨) is not the literal analysis of the sentence ‘The King of France is bald’,
because existence and conjunction do not receivemention in the sentence. I am going
to propose this literal analysis below. Yet before doing so, I must tackle still another
issue in which Russell and Strawson differ, namely the problem of negation.

From a logical point of view, the two readings differ in the way their respective
negated form is obtained. Whereas the Strawsonian negated form is ‘The King of
France is not bald’, which obviously lacks a truth-value at those ⊥w, t→-pairs where
the royal office is not occupied, the Russellian negated form is ‘It is not true that the
King of France is bald’, which is true at those ⊥w, t→-pairs where the office is not
occupied. Thus in the Strawsonian case the property of not being bald is ascribed
to the individual, if any, that occupies the royal office. On the other hand, in the
Russellian case the property of not being true is ascribed to the whole proposition
that the King is bald, and thus (the same meaning of) the description ‘the King of
France’ occurswith de dicto supposition. In order to ascribe the property of being true
to the whole proposition, we apply the propositional property True/(ooτω)τω defined
as follows: Let P be a propositional construction (P/∨n ∩ oτω). Then [0TruewtP]
v-constructsT iffPwt v-constructsT, otherwiseF.20 Now the analysis of the sentence
(R) is this construction:

(R’) λwλt[0Truewtλwλt[0Baldwtλwλt[0King_ofwt
0France]wt]]

Neither (R’) nor its negation

(R’_neg) λwλt¬[0Truewtλwλt[0Baldwtλwλt[0King_ofwt
0France]wt]]

entails that theKing of France exists, which is just as it should be. (R’_neg) constructs
the proposition non-P that takes the truth-value T if the proposition that the King

18 For the definition of extensional, intensional and hyperintensional occurrence of a construction,
see [5, §2.6].
19 See [1, §24.2, §26] and [5, §2.1.1.].
20 There are two other propositional properties of the same type, namely False and Undefined:
[0FalsewtP] v-constructs the truth-value T iff [¬Pwt] v-constructs T, otherwise F. [0UndefwtP]
v-constructs the truth-value T iff [¬[0TruewtP] ∧ ¬[0FalsewtP]] v-constructs T, otherwise F.
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of France is bald takes the value F (because the King of France is not bald) or is
undefined (because the King of France does not exist)

To adduce a more natural example of topic/focus ambiguity, consider another
sample sentence:

(2) ‘The King of France visited London yesterday.’

The topic phrase of (2) is ‘the King of France’. Hence the sentence ascribes to the
holder (if any) of the royal office at the world/time pair of evaluation the property
of having visited London yesterday (the focus). Thus both (2) and its negation share
the presupposition that the King of France actually exist now (that is, at the time of
evaluation). If this presupposition fails to be satisfied, then neither of the propositions
expressed by (2) and its negation ‘The King of France did not visit London yesterday’
has a truth-value.

The situation is different in the case of the sentence (3):

(3) ‘London was visited by the King of France yesterday.’

Now the property (the focus) of having been visited by the King of France yes-
terday is predicated of London (the topic). The existence of the King of France at
the time of evaluation is presupposed neither by (3) nor by its negation. The sen-
tence can be read as ‘Among the visitors of London yesterday was the then King of
France’. The existence of the King of France yesterday is only entailed by (3) and
not presupposed.21 My analyses respect these conditions.

Let Yesterday/((oτ )τ ) be the function that associates a given time t with the time
interval that is yesterday with respect to t; Visit/(oιι)τω; King_of /(ιι)τω; France/ι;
∃/(o(oτ )).

The analysis of (2) comes down to

(2*) λwλt[λx[0∃λt∨[[[0Yesterday t]t∨] ∧ [0Visitwt∨x 0London]]]
λwλt[0King_ofwt

0France]wt]
In (2∨) the royal office is extensionalized with respect to the world w and the time
t of evaluation. At such ⊥w, t→-pairs at which the office is not occupied the propo-
sition constructed by (2∨) has no truth-value, because the extensionalization of the
office yields no individual, the Composition λwλt[0King_ofwt

0France]wt being v-
improper. We have the Strawsonian case of the King’s existence being presupposed.
On the other hand, the sentence (3) expresses

(3*) λwλt[0∃λt∨[[[0Yesterday t]t∨] ∧ [0Visitwt∨
λwλt[0King_ofwt

0France]wt∨ 0London]]]
In (3∨) the royal office is extensionalized with respect to world w and time t∨
belonging to the interval [0Yesterday t]. If the office goes vacant for all such t∨
the Composition λwλt[0King_ofwt

0France]wt∨ is v-improper for any t∨ belonging to

21 [21] disregards this reading, saying that any sentence containing ‘the King of France’ comes with
the presupposition that the King of France exist now. In my opinion, this is because he considers
only the neutral reading, thus disregarding topic-focus ambiguities.
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[0Yesterday t]. Hence the time interval v-constructed by the Closure λt∨[[[0Yesterday
t]t∨]∧[0Visitwt∨λwλt[0King_ofwt

0France]wt∨ 0London]] is empty and the existential
quantifier takes this interval to F. On the other hand, at such a ⊥w, t→-pair at which the
proposition constructed by (3∨) is true, the Composition [0∃λt∨[[[0Yesterday t]t∨] ∧
[0Visitwt∨λwλt[0King_ofwt

0France]wt∨ 0London]]] v-constructs T. This means that
the second conjunct v-constructs T as well and the Composition λwλt[0King_ofwt
0France]wt∨ is not v-improper. Thus the royal office is occupied at some time t∨
belonging to [0Yesterday t]. This is as it should be, because (3∨) only entails the
existence of the King of France yesterday. We have the Russellian case: the meaning
of ‘the King of France’ occurs with de dicto supposition with respect to the temporal
parameter t.

5 Conclusion

In this paper I demonstrated that both the proponents of Russell’s quantificational
analysis and of Strawson’s referential analysis of definite descriptions are partly right
and partly wrong, because sentences of the form ‘The F is a G’ are systematically
ambiguous. Their ambivalence stems from different topic-focus articulation, and I
brought out the semantic, as opposed to pragmatic, character of this ambivalence.
I showed that a definite description occurring in the topic of a sentence with de re
supposition corresponds to the Strawsonian analysis of definite descriptions, while
a definite description occurring in the focus with de dicto supposition corresponds
to the Russellian analysis. While the clause standing in topic position triggers a
presupposition, a focus clause usually only entails rather than presupposes another
proposition. The procedural semantics of TIL provides rigorous analyses such that
sentences differing only in their topic-focus articulation are assigned different con-
structions producing different propositions (truth-conditions) and having different
consequences.

Moreover, the proposed analysis of theRussellian readingdoes not deprive definite
descriptions of their meaning. Just the opposite; ‘the F’ receives a context-invariant
meaning, which is the construction of an individual office.What is dependent on con-
text is the way this (one and the same) construction is used. Thus I also demonstrated
that Donnellan-style referential and attributive uses of an occurrence of ‘the F’ do
not bring about a shift of meaning of ‘the F’. Instead, one and the same context-
invariant meaning is a constituent of different procedures that behave in logically
different ways.

Acknowledgments This research was funded by the internal grant agency of VSB-TU of Ostrava,
project No. SP2014/157, ‘Knowledge modelling, process simulation and design’. The present paper
is a revised and improved version of a part of the book chapter, see http://www.intechopen.com/
books/semantics-in-action-applications-and-scenarios/resolving-ambiguities-in-natural-language.
I am grateful to an anonymous reviewer for valuable comments that improved to quality of the paper.

http://www.intechopen.com/books/semantics-in-action-applications-and-scenarios/resolving-ambiguities-in-natural-language
http://www.intechopen.com/books/semantics-in-action-applications-and-scenarios/resolving-ambiguities-in-natural-language


How to Unify Russellian and Strawsonian Definite Descriptions 101

References

1. Carnap, R. (1947). Meaning and necessity. NULL: The University of Chicago Press.
2. Donnellan, K. S. (1966). Reference and definite descriptions. Philosophical Review, 75(3),

281–304.
3. Duz̆í, M. (2004). Intensional logic and the irreducible contrast between de dicto and de re.

ProFil 5(1), 1–34. ISSN 1212–9097. http://profil.muni.cz/01_2004/duzi_de_dicto_de_re.pdf
4. Duz̆í, M., Jespersen, B., & Materna, P. (2010a). The logos of semantic structure. In Stal-

maszczyk, P. (Ed.) Philosophy of language and linguistics (Vol. 1, pp. 85–102). Frankfurt: The
Formal Turn, Ontos Verlag.

5. Duz̆í, M., Jespersen, B., & Materna, P. (2010b). Procedural semantics for hyperintensional
logic. Berlin: Springer.

6. Gundel, J. K. (1999). Topic, focus and the grammar pragmatic interface. In J. Alexander, N.
Han &M. Minnick (Eds.), Proceedings of the 23rd Annual Penn Linguistics Colloquium (Vol.
6.1, pp. 185–200). Penn Working Papers in Linguistics.

7. Hajic̆ová, E. (2008). What we are talking about and what we are saying about it. In A. Gel-
bukh (Ed.), Computational linguistics and intelligent text processing (pp. 241–262). Berlin,
Heidelberg: Springer.

8. Jespersen,B. (2008). Predication and extensionalization. Journal of Philosophical Logic,37(5),
479–499.

9. Jespersen, B. (2010). How hyper are hyperpropositions? Language and Linguistics Compass,
4(2), 96–106.

10. Jespersen, B. (2012). Recent work on structured meaning and propositional unity. Philosophy
Compass, 7(9), 620–630.

11. Kripke, S. A. (1977). Speaker’s reference and semantic reference. In P. French, T. E. Uehling &
H. K. Wettstein (Eds.), Contemporary perspectives in the philosophy of language (pp. 6–27).
Minneapolis: University of Minnesoty Press.

12. Ludlow, P. (2007). Descriptions. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy.
http://plato.stanford.edu/entries/descriptions

13. Neale, S. (1990). Descriptions. Cambridge, MA: MIT Press.
14. Russell, B. (1905). On denoting. Mind, 14(4), 479–493.
15. Russell, B. (1957). Mr. Strawson on referring. Mind, 66(263), 385–389.
16. Strawson, P. F. (1950). On referring. Mind, 59(235), 320–334.
17. Strawson, P. F. (1952). Introduction to logical theory. London: Routledge.
18. Strawson, P. F. (1964). Identifying reference and truth-values. Theoria, 30(2), 96–118.
19. Tichý, P. (1988). The foundations of Frege’s logic. Walter de Gruyter.
20. Tichý, P. (2004). Collected papers in logic and philosophy. In V. Svoboda, B. Jespersen &

C. Cheyne (eds.), Prague: Filosofia, Czech Academy of Sciences, and Dunedin: University of
Otago Press.

21. von Fintel, K. (2004). Would you believe it? The king of France is back! (presuppositions and
truth-value intutions). In M. Reimer & A. Bezuidenhout (Eds.), Descriptions and beyond (pp.
315–341). Oxford: Clarendon Press.

http://profil.muni.cz/01_2004/duzi_de_dicto_de_re.pdf
http://plato.stanford.edu/entries/descriptions


Tableau Metatheorem for Modal Logics

Tomasz Jarmużek

Abstract The aim of the paper is to demonstrate and prove a tableau metatheorem
for modal logics. While being effective tableau methods are usually presented in
a rather intuitive way and our ambition was to expose the method as rigorously as
possible. To this end all notions displayed in the sequel are couched in a set theoretical
framework, for example: branches are sequences of sets and tableaus are sets of these
sequences. Other notions are also defined in a similar, formal way: maximal, open
and closed branches, open and closed tableaus. One of the distinctive features of the
paper is introduction of what seems to be the novelty in the literature: the notion of
tableau consequence relation. Thanks to the precision of tableau metatheory we can
prove the following theorem: completeness and soundness of tableau methods are
immediate consequences of some conditions put upon a class of models M and a
set of tableau rules MRT. These conditions will be described and explained in the
sequel. The approach presented in the paper is very general and may be applied to
other systems of logic as long as tableau rules are defined in the style proposed by
the author. In this paper tableau tools are treated as an entirely syntactical method of
checking correctness of arguments [1, 2].

Keywords Modal logics · Possible world’s semantics · Tableau rules · Branch ·
Open branch · Closed branch · Maximal branch · Open tableau · Closed tableau ·
Tableau metatheorem

1 Basic Notions

In this part of the paper we remind some standard semantic notions and we introduce
some new ones that will be necessary to formulate and prove facts about tableaus.
The traditional focus of modal logic has been completeness with respect to classes
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e-mail: jarmuzek@umk.pl

R. Ciuni et al. (eds.), Recent Trends in Philosophical Logic, 103
Trends in Logic 41, DOI: 10.1007/978-3-319-06080-4_8,
© Springer International Publishing Switzerland 2014



104 T. Jarmużek

of structures. Somewhat differently, we concentrate on completeness with respect to
classes of models, since from the point of view of our approach it is more convenient
to carry out proofs and define notions for classes of models rather than of structures.
However, it should be emphasized that the former, more traditional approach can be
easily translated into ours.1

It was our intention not to include in the paper any decidability issues whatsoever.
This topic of utmost importance for tableau methods theory is simply too complex
to be developed in one paper. Nevertheless, our opinion is that tools we define can
be useful in treating decidability problems, since with formal definitions of the key
notions at hand in infinite cases we are able to define cycles of branches—sequences
of applications of tableau rules that result in infinite branches. For this reason, we
find a formal theory of tableaus as a necessary condition of precise approach to the
problem of tableau decidability.

1.1 Semantics

Let For be the set of all modal formulas build over the alphabet: Var ⊥ {¬,→,♦,∃
,∧,♦,�}. Let M = 〈W, R, V, w∗ be a possible world model.2 Here we have a
standard definition of being true in a model.

Definition 1.1 (Truth in model) Let M = 〈W, R, V, w∗ be a model and A ≤ For.
We say that A is true inM (in short:M |= A) iff for all B, C ≤ For

1. if A ≤ Var, then V (A, w) = 1
2. if A := ¬B, then B is not true in M (in short:M ↔|= B)
3. if A := (B → C), then M |= B and M |= C
4. if A := (B ♦ C), then M |= B or M |= C
5. if A := (B ∃ C), then M ↔|= B or M |= C
6. if A := (B ∧ C), then M |= B iffM |= C
7. if A := �B, then ∨u≤W (wRu =⊆ 〈W, R, V, u∗ |= B)

8. if A := ♦B, then ∼u≤W (wRu & 〈W, R, V, u∗ |= B).

Let X be a set of formulas andM be a model. We say that X is true in M (in short:
M |= X ) iff for all A ≤ X ,M |= A. We say that a set of formulas is inconsistent iff
for any model M ↔|= X . Otherwise, we call X consistent.3

Fact 1.2 For any formula A and any set of formulas X, if {A,¬A} ∩ X, then X is
inconsistent.

1 The author would like to thank an anonymous reviewer for many valuable comments and sugges-
tions that have allowed to improve the paper.
2 In the literature this kind of model is usually called a pointed model, but we will shortly call it
model.
3 We use a word inconsistent instead of—for example—contradictory, since it enables us to do a
direct transition between semantic and tableau notions.
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We define a consequence relation |=M on 2For×For, whereM is a class ofmodels.

Definition 1.3 Let A ≤ For and X ∩ For. Let M be a class of models. We say that
A is a consequence of X modulo M (in short: X |=M A) iff ∨M≤M(M |= X =⊆
M |= A).

1.2 Tableau Rules

In order to define precise notions of tableau proofs we need some auxiliary notions.
First of all, we define a language of tableau proofs, the set of expressions.

Definition 1.4 (Expressions) The set of expressions Ex is the smallest set that
includes all elements of:

• Cartesian product: For × N

• {ir j : i, j ≤ N}
• {∪ ir j : i, j ≤ N}
• {i = j : i, j ≤ N}
• {∪ i = j : i, j ≤ N}
where N is the set of natural numbers. The elements of N we call indexes.

To define modal tableau rules we need a definition of similar sets of expressions.
Firstly, we define some function choosing indexes from the set of expressions Ex.

Definition 1.5 (Function choosing indexes) The function choosing indexes we call
a function ⊃ : P(Ex) −∃ P(N) defined for any X ∩ Ex, A ≤ For and i, j ≤ N by
conditions:

• ⊃(≡) = ≡
• ⊃({〈A, i∗}) = {i}
• ⊃({ir j}) = {i, j}
• ⊃({∪ ir j}) = {i, j}
• ⊃({i = j}) = {i, j}
• ⊃({∪ i = j}) = {i, j}
• ⊃(X) = ⋃{⊃({x}) : x ≤ X}, if |X | > 1

For any subset of Ex function ⊃ collects all indexes occurring in expressions in
this set.
We now introduce a notion of similar sets of expressions. Shortly speaking, two sets
of expressions are similar iff exactly the same formulas occur in their expressions
and all expressions in both sets are structurally similar on indexes.

Definition 1.6 (Similar sets of expressions) For any two sets of expressions X , Y ,
we say that X is similar to Y iff there is a bijection g : ⊃(X) −∃ ⊃(Y ) (where ⊃(X),
⊃(Y ) are the sets of indexes occurring in expressions of X and Y ) such that for any
A ≤ For, i, j ≤ N:
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• 〈A, i∗ ≤ X iff 〈A, g(i)∗ ≤ Y
• ir j ≤ X iff g(i)rg( j) ≤ Y
• ∪ ir j ≤ X iff ∪ g(i)rg( j) ≤ Y
• i = j ≤ X iff g(i) = g( j) ≤ Y
• ∪ i = j ≤ X iff ∪ g(i) = g( j) ≤ Y.

Corollary 1.7 The relation of being similar defined on sets of expressions is an
equivalence relation, i.e. reflexive, transitive, and symmetrical.

Definition 1.8 (Tableau inconsistent sets of expressions) Let X ∩ Ex. We say that
X is tableau inconsistent iff for some A ≤ For, i, j ≤ N one of the conditions is
fulfilled:

1. 〈A, i∗, 〈¬A, i∗ ≤ X
2. ir j , ∪ ir j ≤ X
3. i = j , ∪ i = j ≤ X .

Otherwise, we call set X tableau consistent. We shortly say that X is t-consistent or
respectively t-inconsistent.

Corollary 1.9 For any two sets of expressions X, Y , if X is similar to Y , then X is
t-inconsistent iff Y is t-inconsistent.

Moreover, we require some notion that connects models with sets of expressions.

Definition 1.10 (Model satisfying a set of expressions) LetM = 〈W , R, V, w∗ and
X ∩ Ex. We say that M satisfies X iff there is a function f : N −∃ W such that
for any A ≤ For, i, j ≤ N:

• if 〈A, i∗ ≤ X , then 〈W, R, V, f (i)∗ |= A
• if ir j ≤ X , then f (i)R f ( j)
• if ∪ ir j ≤ X , then it is not that f (i)R f ( j)
• if i = j ≤ X , then f (i) is equal to f ( j)
• if ∪ i = j ≤ X , then f (i) is different from f ( j).

Fact 1.11 Let X be a tableau inconsistent set of expressions. Then there is no model
M satisfying X.

Proof By definitions of tableau inconsistent set of expressions 1.8, model satisfying
set of expressions 1.10 and definition of truth in model 1.1. ∈�

Now, we can give a very general notion of a modal tableau rule. However, we first
comment some example of the rule:

R→ : X ⊥ {〈(A → B), i∗}
X ⊥ {〈(A → B), i∗, 〈A, i∗, 〈B, i∗} , where X ⊥ {〈(A → B), i∗} is a t-

consistent

set of expressions and {〈A, i∗, 〈B, i∗} ↔∩ X .
The rule can be applied only to t-consistent sets of expressions, the output set

is a proper superset of the initial set, and the rule captures all possible sets that
are instances of this schema. The additional properties of rules are expressed in the
following general definition.
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Definition 1.12 (Tableau rule) Let P(Ex) be a power set of Ex. Let P(Ex)n be an
n–ary Cartesian product P(Ex) × · · · × P(Ex)

︸ ︷︷ ︸
n

, for some n ≤ N.

• A tableau rule is any subset R ∩ P(Ex)n , for some n ≥ 2, such that if
〈X1, . . . , Xn∗ ≤ R, then:

– X1 ⊂ Xi , for all 1 < i ≤ n
– X1 is t-consistent4

– if k ↔= l, then Xk ↔= Xl , for all 1 < k, l ≤ n
– (Closure under Similarity) for all sets of expressions Y1 such that Y1 is similar
to X1:
1. there are sets of expressions Y2, …, Yn , such that 〈Y1, . . . , Yn∗ ≤ R
2. and for all 1 < i ≤ n, Yi is similar to Xi

– (Existence of Core) for some finite Y ∩ X1
1. there exists exactly one such n-tuple 〈Z1, . . . , Zn∗ ≤ R that Z1 = Y
2. there is no proper subset U1 ⊂ Y and n-tuple 〈U1, . . . , Un∗ ≤ R
3. for any 1 < i ≤ n, Zi = Z1 ⊥ (Xi \ X1)

– (Closure under Expansion) for any t-consistent set of expressions Z1 such that
X1 ⊂ Z1 and for all 1 < i ≤ n, Xi is not similar to any subset of Z1:
if for some finite Y ∩ X1:

1. there exists exactly one such n-tuple 〈W1, . . . , Wn∗ ≤ R that W1 = Y
2. there is no proper subset U1 ⊂ Y and n-tuple 〈U1, . . . , Un∗ ≤ R
3. for any 1 < i ≤ n, Wi = W1 ⊥ (Xi \ X1)

then:
1. there are exactly n − 1 such sets of expressions Z2, …, Zn that

〈Z1, . . . , Zn∗ ≤ R
2. and for all 1 < i ≤ n, Wi is similar to W1 ⊥ (Zi \ Z1)

– (Closure under Finite Sets) if X1 is a finite set, then for all 1 < i ≤ n, Xi is a
finite set

– (Closure under Finite Subsets) if X1 is an infinite set, then
1. there are finite sets of expressions Y1, …, Yn , such that

〈Y1, . . . , Yn∗ ≤ R
2. Y1 ⊂ X1
3. and for all 1 < i ≤ n, Yi = Y1 ⊥ (Xi \ X1).

• By saying that a rule R was applied to X1, we mean that for some 1 < i ≤ n,
exactly one Xi of 〈X1, . . . , Xn∗ was chosen.
Now, we need a definition of a proper part of a rule, called a core of rule.

4 When we impose the condition of t-consistency, it seems we are not able to capture the sound rule
{A,¬A} |= B. This is not the case, because—aswewill see—starting froma set of tableau premisses
{〈A, i∗, 〈¬A, i∗, 〈¬B, i∗}, for some formulas A, B ≤ For and some index i ≤ N, immediately we
have a closed tableau, so the rule is sound.
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Definition 1.13 (Core of rule) Let R ≤ MRT and 〈X1, . . . , Xn∗ ≤ R, for some
n ≤ N.We say that 〈Z1, . . . , Zn∗ ≤ R isa core of the rule R in the set 〈X1, . . . , Xn∗ iff
1. Z1 ∩ X1
2. there is no proper subset U1 ⊂ Z1 and n-tuple 〈U1, . . . , Un∗ ≤ R
3. for any 1 < i ≤ n, Zi = Z1 ⊥ (Xi \ X1).

By definition of tableau rules 1.12 (Existence of Core) we have a corollary.

Corollary 1.14 Let R ≤ MRT and 〈X1, . . . , Xn∗ ≤ R, for some n ≤ N. There exists
exactly one n-tuple 〈Y1, . . . , Yn∗ that is a core of the rule R in the set 〈X1, . . . , Xn∗.

Now, we define some more technical terminology. Let X ∩ Ex be a set of expres-
sions and R be a set of tableau rules. By RX we denote a set of all rules in R
that can be applied to X . Formally, R ≤ RX iff R ≤ R and there is some n-tuple
〈Y1, . . . , Yn∗ ≤ R, such that Y1 = X .

Let R ≤ RX , by RX we denote a set of all n-tuples in R, such that their first
member is X and if other members of two n-tuples in RX differ, than the rule has
two different cores. Formally, for any n ≤ N, 〈Y1, . . . , Yn∗ ≤ RX iff:

• 〈Y1, . . . , Yn∗ ≤ R and Y1 = X
• for any Z1, …, Zn ∩ Ex, if:

– 〈Z1, . . . , Zn∗ ≤ RX

– 〈Y1, . . . , Yn∗ ↔= 〈Z1, . . . , Zn∗
– 〈Y ℵ

1, . . . , Y ℵ
2∗ is a core of R in 〈Y1, . . . , Yn∗

– 〈Z ℵ
1, . . . , Z ℵ

n∗ is a core of R in 〈Z1, . . . , Zn∗
then Y ℵ

1 ↔= Z ℵ
1.

Now, we can define a notion of modal tableau rules.

Definition 1.15 (Modal Tableau Rules) Let R be a set of tableau rules. We say that
R is a set of modal tableau rules (in short: MRT) iff

1. R is finite5

2. for any set X ∩ Ex, if X is finite, then for any R ≤ RX , RX is finite.

1.3 Examples of Rules

Here, we shall give some examples of MRT rules. They are well-known, but written
in new forms. Let X ∩ Ex, A, B ≤ For, i, j ≤ N. Examples of MRT rules are rules
defined by these schemas, where initial sets are t-consistent.

5 It does not mean that the set of all instances of any rule in R is finite.
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1.3.1 Classical Rules

R→ : X ⊥ {〈(A → B), i∗}
X ⊥ {〈(A → B), i∗, 〈A, i∗, 〈B, i∗}

R♦ : X ⊥ {〈(A ♦ B), i∗}
X ⊥ {〈(A ♦ B), i∗, 〈A, i∗}|| X ⊥ {〈(A ♦ B), i∗, 〈B, i∗}

R∃ : X ⊥ {〈(A ∃ B), i∗}
X ⊥ {〈(A ∃ B), i∗, 〈¬A, i∗}|| X ⊥ {〈(A ∃ B), i∗, 〈B, i∗}

R∧ : X ⊥ {〈(A ∧ B), i∗}
X ⊥ {〈(A ∧ B), i∗, 〈A, i∗, 〈B, i∗}|| X ⊥ {〈(A ∧ B), i∗, 〈¬A, i∗, 〈¬B, i∗}

R¬¬ : X ⊥ {〈¬¬A, i∗}
X ⊥ {〈¬¬A, i∗, 〈A, i∗}

R¬→ : X ⊥ {〈¬(A → B), i∗}
X ⊥ {〈¬(A → B), i∗, 〈¬A, i∗}|| X ⊥ {〈¬(A → B), i∗, 〈¬B, i∗}

R¬♦ : X ⊥ {〈¬(A ♦ B), i∗}
X ⊥ {〈¬(A ♦ B), i∗, 〈¬A, i∗, 〈¬B, i∗}

R¬∃ : X ⊥ {〈¬(A ∃ B), i∗}
X ⊥ {〈¬(A ∃ B), i∗, 〈A, i∗, 〈¬B, i∗}

R¬∧ : X ⊥ {〈¬(A ∧ B), i∗}
X ⊥ {〈¬(A ∧ B), i∗, 〈¬A, i∗, 〈B, i∗}|| X ⊥ {〈¬(A ∧ B), i∗, 〈A, i∗, 〈¬B, i∗}

It may seem that our approach is similar to the approach offered by Hintikka
(so called Hintikka’s sets). However, when our rules are applied then all previous
elements are gathered together. Within Hintikka’s approach former elements are
finally abandoned. Within ours one goes through from one set to its extension.

1.3.2 Modal Rules

R¬� : X ⊥ {〈¬�A, i∗}
X ⊥ {〈¬�A, i∗, 〈♦¬A, i∗}

R¬♦ : X ⊥ {〈¬♦A, i∗}
X ⊥ {〈¬♦A, i∗, 〈�¬A, i∗}

R� : X ⊥ {〈�A, i∗, ir j}
X ⊥ {〈�A, i∗, ir j, 〈A, j∗}

The first variant of a rule for ♦:

R1♦ : X ⊥ {〈♦A, i∗}
X ⊥ {〈♦A, i∗, ir j, 〈A, j∗} , where:

1. j ↔≤ ⊃(X ⊥ {〈♦A, i∗})
2. for any k ≤ N, {irk, 〈A, k∗} ↔∩ X
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Within the range of Definition 1.12 we can define other modal tableau rules to
express different properties of the accessibility relation. For example we may want
to have a rule for models with an empty relation:
The second variant for ♦:

R2♦ : X ⊥ {〈♦A, i∗}
X ⊥ {〈♦A, i∗, 〈¬♦A, i∗}

There are many other examples of modal tableau rules that define properties
of relation R in a model. Below we have few examples. Let X ∩ Ex, A ≤ For,
i, j, k ≤ N:

(Symmetry)

X ⊥ {ir j}
X ⊥ {ir j, jr i} ∨w1,w2≤W (w1Rw2 ⊆ w2Rw1)

(Transitivity):

X ⊥ {ir j, jrk}
X ⊥ {ir j, jrk, irk} ∨w1,w2,w3≤W (w1Rw2 &w2Rw3 ⊆ w1Rw3)

(Reflexivity):

X ⊥ {〈A, i∗}
X ⊥ {〈A, i∗, ir i} ∨w1≤W (w1Rw1)

(Irreflexivity):

X ⊥ {ir i}
X ⊥ {ir i, 〈B, i∗, 〈¬B, i∗, } , for some B ≤ For ∨w1≤W (∪ w1Rw1)

(Antisymmetry):

X ⊥ {ir j, jr i}
X ⊥ {ir j, jr i, 〈B, i∗, 〈¬B, i∗} , for some B ≤ For ∨w1,w2 ≤W (w1Rw2 ⊆∪w2Rw1)

There are many ways of defining some set of MRT. Its content depends only
on our decisions and intentions, but all members of each MRT should satisfy the
conditions of general Definitions 1.12 and 1.15.

1.4 Modal Branches and Tableaus

Given a set MRT we are able to define precisely notions of: branch, maximal branch,
open branch, closed branch, tableau, complete tableau, closed tableau, and finally
tableau consequence �MRT. Each of those notions is determined by some set MRT.

A branch is a sequence of extending sets of expressions.
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Definition 1.16 (Branch) • Let K = N or K = {1, 2, . . . , n}, for some n ≤ N. Let
X ∩ Ex and MRT be some set of modal tableau rules. A branch (a branch starting
from X) is any sequence φ : K −∃ P(Ex) that satisfies conditions:

– φ(1) = X
– for any i ≤ K , if i +1 ≤ K , then there is a rule R ≤ MRT and 〈Y1, . . . , Ym∗ ≤ R
such that φ(i) = Y1 and φ(i + 1) = Yk , for some m ≤ N and some 1 < k ≤ m.

• Branches will be denoted by small Greek letters: φ, ψ , while sets of branches by
big Greek letters: Φ, Ψ etc.

• Writing, for example, φK , ψM we will inform that a branch φ has a domain K , a
branch ψ has a domain M etc.

We see that any branch is always modulo some set MRT. Therefore, writing about
branches and more complex objects we should underline that fact. In further def-
initions we sometimes omit MRT, since those definitions are general, but in fact
we always have MRT-branches, MRT-branch consequence relation, MRT-tableaus
etc., always for some fixed set MRT. We can observe that any X ∩ Ex is a one-
member-branch, by Definition of branch 1.16.

Definition 1.17 (Addition of branches) Let φ : {1, . . . , n} −∃ P(Ex) and
ψ : {1, . . . , m} −∃ P(Ex) be branches, for some n, m ≤ N, and let φ(n) = ψ(1).
By φ ⊕ ψ we mean a function ϕ : {1, . . . , n, n + 1, . . . , n + m − 1} −∃ P(Ex)

defined as follows:

1. for any 1 ≤ i ≤ n, ϕ(i) = φ(i)
2. for any n + 1 ≤ i ≤ n + m − 1, ϕ(i) = ψ((i − n) + 1).

Corollary 1.18 Let φ : {1, . . . , n} −∃ P(Ex) and ψ : {1, . . . , m} −∃ P(Ex) be
branches, for some n, m ≤ N, and let φ(n) = ψ(1). Then φ ⊕ ψ is a branch.

Proof By Definition of branch 1.16. ∈�
A closed/open branch is a branch that has got a t-inconsistent member/all t-

consistent members.

Definition 1.19 (Closed/open branch) Let φ : K −∃ P(Ex) be a branch. We say
that φ is closed iff φ(n) is a t-inconsistent set for some n ≤ K . A branch is open iff
is not closed.

Fact 1.20 Let φ : K −∃ P(Ex) be a closed branch. Then K = {1, 2, 3, . . . , n},
for some n ≤ N (the branch is finite).

Proof We take any closed branch φ : K −∃ P(Ex). Since for some n ≤ K , φ(n) is
a t-inconsistent set of expressions, so no rule of MRT, by 1.12, can make φ longer.
In consequence, n ≤ N is the last member of φ and φ is finite. ∈�
A maximal branch—intuitively, a branch that can not be longer. However, we have
two variants, that we shall discuss. Formally, the first definition says:
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Definition 1.21 (Maximal branch—an initial definition) Let φ : K −∃ P(Ex) be
a branch. We say that φ is maximal iff

1. K = {1, 2, 3, . . . , n}, for some n ≤ N

2. there is no branch ψ such that φ ⊂ ψ .

This definition says that amaximal branch is finite and there is not a super branch. It is
good for those logics in which from a finite set of expressions applying tableau rules
always gives finite branches. Hence, it is not good for modal logics. For example,
applying to the formula¬(♦p ∃ ♦�p) rules for the boolean connectives,modalities
and transitivity we never end a branch, but it can be maximal in other sense.

Example 1.22 We take a formula ¬(♦p ∃ ♦�p). We shall show that a branch
obtained by use of rules for modal, boolean connectives and the rule for transitivity
does not end.

1. 〈¬(♦p ∃ ♦�p), 0∗

↓
2. 〈♦p, 0∗, 〈¬♦�p, 0∗ 1., R¬∃

↓
3. 〈�¬�p, 0∗ 2., R¬♦

↓
4. 0r1, 〈p, 1∗ 2., R♦

↓
5. 〈¬�p, 1∗ 3., 4., R�

↓
6. 〈♦¬p, 1∗ 5., R¬�

↓
7. 1r2, 〈¬p, 2∗ 6., R♦

↓
8. 0r2 4., 7., Rule for transitivity

↓
9. 〈¬�p, 2∗ 3., 8., R�

↓
10. 〈♦¬p, 2∗ 9., R¬�

↓
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11. 2r3, 〈¬p, 3∗ 10., R♦

↓
12. 0r3 8., 11., Rule for transitivity

We can repeat the last four steps, introducing the next new index. The branch is
not maximal according to Definition 1.21, because is infinite. However, we see that
we used all rules that could be used. If some rule could be applied at some successive
step, it was used at some stage of the branch. We then need a more general definition
that captures finite, as well as infinite cases—variant two, the final version.

Having the definition of a core of rule 1.13, we can define a notion of strong
similarity.

Definition 1.23 (Strong similarity) Let rule R ≤ MRT and 〈X1, . . . , Xn∗ ≤ R, for
some n ≤ N, and W ∩ Ex. We say that W is strongly similar to a set Xi , where
1 < i ≤ n, iff for some 〈Y1, . . . , Yn∗ that is a core of R in 〈X1, . . . , Xn∗:
1. W is similar to Xi

2. for some subset W ℵ ∩ W , Y1 ∩ W ℵ
3. W ℵ is similar to Y1 ⊥ (Xi \ X1).

Definition 1.24 (Maximal branch) Let φ : K −∃ P(Ex) be a branch. We say that
φ is maximal iff satisfies one of the conditions:

1. φ is closed
2. for any rule R ≤ MRT, any n ≤ N, and any X, X1, …, Xn ∩ Ex, if:

• n ≥ 1
• 〈X, X1, . . . , Xn∗ ≤ R
• X ≤ φ

then there is Y j ≤ φ, for some j ≤ N, and for some 1 ≤ i ≤ n, there is a set
W ∩ Ex strongly similar to Xi , such that W ∩ Y j .

Therefore, a maximal branch must be either closed or closed under rules (all
possible rules have been applied). A maximal branch can be finite or infinite. If a
branch is maximal in the sense of the former Definition 1.21, then it is also maximal
under the latter definition.

By Definitions 1.19 and 1.24 we have an obvious corollary.

Corollary 1.25 All closed branches are maximal.

In our metatheory one of the most important notions is a notion of branch conse-
quence relation:

Definition 1.26 (Branch consequence relation) Let X ∩ For, A ≤ For. We say that
A is branch consequence of X modulo MRT (in short: X �MRT A) iff there exists
some finite Y ∩ X , such that all maximal branches starting from a set {〈B, i∗ : B ≤
Y ⊥ {¬A}}, for some i ≤ N, are closed.
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1.5 Modal Tableaus

We intend to describe a general relationship between |=M and �MRT, for any class
of models M and any class of rules MRT. In our approach tableaus are only a way
of choosing a sufficient number of branches to confirm the fact that X �M RT A, for
some X ∩ For, A ≤ For. Now, we come to descriptions of tableaus.

We need an additional definition:

Definition 1.27 (Branch maximal in a set of branches) Let Φ be a set of branches
and ψ ≤ Φ. We say that ψ is maximal in the set Φ (in short: Φ–maximal) iff there
is no branch φ ≤ Φ such that ψ ⊂ φ.

A tableau is a set of branches, so it is a more complex object than a branch. A
tableau is a set of branches: (i) starting with the same set of expressions, and (ii) if
there exists a branching point, then a proper MRT-rule was applied.

Definition 1.28 (Tableau) Let X ∩ For, A ≤ For and Φ be a set of branches. An
ordered triple 〈X, A, Φ∗ we call a tableau for pair 〈X, A∗ (or shortly: tableau) iff the
following conditions are satisfied:

1. Φ is a non-empty set of branches
2. there is an index i ≤ N such that for any branch ψ ≤ Φ, ψ(1) = {〈B, i∗ : B ≤

X ⊥ {¬A}}
3. each branch belonging to Φ is Φ–maximal
4. for any n, i ≤ N and any branches ψ1, …, ψn ≤ Φ, if:

• i and i + 1 belong to domains of ψ1, …, ψn

• for any 1 < k ≤ n and o ≤ i , ψ1(o) = ψk(o)

then there exists a rule R ≤ MRT and m-tuple 〈Y1, . . . , Ym ∗ ≤ R, where 1 < m,
that for any 1 ≤ k ≤ n:

• ψk(i) = Y1
• and there exists such 1 < l ≤ m that ψk(i + 1) = Yl .

Now, having a general notion of a tableau, we can define complete and incomplete
tableaus. Intuitively, a tableau is complete iff all branches that are contained in the
tableau are maximal and horizontally all possible branches are added.

Definition 1.29 (Complete/incomplete tableau) Let a triple 〈X, A, Φ∗ be a tableau.
We say that 〈X, A, Φ∗ is complete iff the following conditions are satisfied:

1. every branch belonging to Φ is maximal6

2. there is no set of branches Ψ and tableau 〈X, A, Ψ ∗, such that Φ ⊂ Ψ .

A tableau is incomplete iff is not complete.

6 This condition is not redundant. In the general definition of a tableau 1.28 every branch must be
Φ-maximal (according to Definition 1.27), here must be just maximal.
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Intuitively, a tableau is closed iff all branches are closed and horizontally all possible
branches are added, so if it is a complete tableau with closed branches.

Definition 1.30 (Closed/open tableau) Let 〈X, A, Φ∗ be a tableau. We say that
〈X, A, Φ∗ is closed iff it satisfies the conditions:

1. 〈X, A, Φ∗ is a complete tableau
2. every branch belonging to Φ is closed.

A tableau is open iff is not closed.

From Definition 1.30 we obtain the following immediate corollary:

Corollary 1.31 All closed tableaus are complete.

2 Modal Tableau Lemmas

To prove that the relations |=M and�MRT cover the same set of pairs, wemust define
conditions thatM andMRT should satisfy.Moreover, we need to prove some helpful
facts that we will use in the proof of Tableau Metatheorem.

2.1 Lemma on Open Tableaus

Lemma 2.1 (On open tableaus) Let MRT be a set of modal tableau rules, X be
a finite subset of For, and A ≤ For. If there is a maximal and open MRT–branch
starting from {〈B, i∗ : B ≤ X ⊥ {¬A}}, for some i ≤ N, then all complete MRT-
tableaus 〈X, A, Ψ ∗ are open.

Proof Let us take a set MRT and assume that for some finite X ∩ For, A ≤ For, and
i ≤ N there exists a maximal and open MRT-branch starting from Xi = {〈B, i∗ :
B ≤ X ⊥ {¬A}}. This branch will be denoted by φ.

Since the branch φ is maximal, so it is closed under the rules of MRT in such a
sense that for any rule R ≤ MRT, any n ≤ N and any X ≤ φ, if 〈X, X1, . . . , Xn∗ ≤ R,
then exists some Y ≤ φ, such that for 1 ≤ i ≤ n, and some W ∩ Y that W is strongly
similar to Xi , by 1.24.

Since the branch φ is open, so no member of φ is t-inconsistent, by 1.19.
We assume that there is a complete and closed MRT-tableau 〈X, A, Ψ ∗.
Since the tableau 〈X, A, Ψ ∗ is complete, so Ψ is a set of all such branches that

together make 〈X, A, Ψ ∗ be a complete tableau, by 1.29.
Since the tableau 〈X, A, Ψ ∗ is closed, so all MRT-branches belonging to Ψ are

closed, by 1.30. For some k ≤ N each of those branches:

• starts from Xk = {〈B, k∗ : B ≤ X ⊥ {¬A}}, by 1.28
• ends with a t-inconsistent set, by 1.30.
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We are going to show that in Ψ exists some open branch ψ that contradicts the
assumption that 〈X, A, Ψ ∗ is closed. We start some induction on the members of
branches.

Let us consider the first member of all branches in Ψ . It is Y1 = Xk = {〈B, k∗ :
B ≤ X ⊥ {¬A}}. Y1 is similar to Xi = {〈B, i∗ : B ≤ X ⊥ {¬A}}, by 1.9. Because
φ is an open branch, so Xi , Xk and Y1 are t-consistent, by 1.6. Since Ψ is a set of
closed branches, so there must be a rule R ≤ MRT, such that 〈Y1, Z2, . . . , Zl∗ ≤ R,
where 1 < l and for any 1 < j ≤ l there is a branch in Ψ to which Z j belongs, by
1.29.

Some Zm—for 1 < m ≤ l—has to be t-consistent, because a set similar to Y1 is
equal to Xi = X1, so by 1.12 (Closure under Similarity), (Closure under Expansion)
and 1.24 there is 〈X1, X ℵ

2 . . . , X ℵ
l∗ ≤ R, X ℵ

m is similar to Zm , X ℵ
m is strongly similar

to some W ∩ Ex, and Zm is t-consistent as W ∩ U ≤ φ, for some U ∩ Ex, since φ

is open and closed under rules. We denote the member Zm by Y2 and W by Y ⊃
2 .

Therefore, for 1 there are φℵ, φℵℵ ≤ Ψ such that:

• Y1 ≤ φℵ
• Y2 is a consequence of some R ≤ MRT applied to Y1 that produces the branch

φℵℵ ≤ Ψ .
• Y2 ≤ φℵℵ
• Y1 ⊂ Y2
• for some U ∩ Ex, a set Y ⊃

2 ∩ U ≤ φ, where Y ⊃
2 is similar to Y2.

Now, we assume that for some n ≤ N there are φℵ, φℵℵ ≤ Ψ such that:

• Yn ≤ φℵ
• Yn+1 is a consequence of some R ≤ MRT applied to Yn that produces the branch

φℵℵ ≤ Ψ .
• Yn+1 ≤ φℵℵ
• Yn ⊂ Yn+1
• for some U ∩ Ex, a set Y ⊃

n+1 ∩ U ≤ φ, where Y ⊃
n+1 is similar to Yn+1.

Since the branch φ is open, so U , as well as Y ⊃
n+1, are t-consistent. As a conse-

quence, Yn+1 is also t-consistent, by 1.6.
Since the tableau 〈X, A, Ψ ∗ is complete and closed, so there must be a rule

R ≤ MRT and 〈X1, X2, . . . , Xk∗ ≤ R, where k ≥ 2, X1 = Yn+1 and for any
1 < j ≤ k, X j belongs to some branch in Ψ , by 1.29.

Some Xi—for 1 < i ≤ k—has to be t-consistent. If a set similar to Xi is not
included in U , then because by 1.12 (Closure under Similarity), (Closure under
Expansion) and 1.24 there is 〈Z1, . . . , Zk∗ ≤ R, where Z1 = U , Xi is similar to some
Wi ∩ Zi , Zi is strongly similar to some Z ℵ

i , and Xi is t-consistent as Z ℵ
i ∩ U ℵ ≤ φ,

for someU ℵ ∩ Ex, since φ is open and closed under rules. Themember Xi we denote
by Yn+2 and Z ℵ

i by Y ⊃
n+2.
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Hence, for any n ≤ N, there are φℵ, φℵℵ ≤ Ψ such that:

• Yn ≤ φℵ
• Yn+1 is a consequence of some R ≤ MRT applied to Yn that produces the branch

φℵℵ ≤ Ψ .
• Yn+1 ≤ φℵℵ
• Yn ⊂ Yn+1
• for some U ∩ Ex, a set Y ⊃

n+1 ∩ U ≤ φ, where Y ⊃
n+1 is similar to Yn+1.

The set of all sets Yn we denote by Y. In Y there is contained at least one branch ψ

such that for any n ≤ N, if Yn ≤ ψ , then there exists Yn ≤ Y.
Now, ifψ ↔≤ Ψ , then 〈Y, A, Ψ ∗ is not complete, sinceψ starts with Y k = {〈B, k∗ :

B ≤ X ⊥ {¬A}} and 〈X, A, Ψ ⊥ {ψ}∗ is also a tableau. If ψ ≤ Ψ , then 〈Y, A, Ψ ∗ is
not closed, since, by 1.20, ψ is not closed. ∈�

2.2 Rules Sound to Models

To formulate and prove our main result we must employ some more definitions. The
first one concerns so called sound tableau rules MRT for some class of models M.
The word “sound” means that applying the rules leads “from truth to truth”.

Definition 2.1 (Rules sound to models) For any set of modal tableau rules MRT
and any class of models M, we say that the set of rules MRT is sound to M iff for all
sets X1, . . . , Xi ∩ Ex (where 1 < i), all models M ≤ M and all rules R ≤ MRT,
if:

• 〈X1, . . . , Xi ∗ ≤ R
• and M satisfies X1,

then M satisfies X j , for some 1 < j ≤ i .

2.3 Lemma on Maximal and Open Branch

Lemma 2.2 (Existence of maximal and open branch) Let:

• M be a class of models
• MRT be any set of modal tableau rules that is sound to M
• M = 〈W, R, V, w∗ ≤ M
• X be any finite set of formulas and i ≤ N.

If M |= X, then there exists a maximal and open MRT-branch starting from Xi =
{〈A, i∗ : A ≤ X}.
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Proof LetM |= X . So, by definition 1.10, themodelM = 〈W, R, V, w∗ satisfies the
set of expressions Xi = {〈A, i∗ : A ≤ X}, since for all A ≤ X , 〈W, R, V, f (i)∗ |= A,
where f (i) = w.

We denote the set of all branches starting from Xi by X. We know that either (1)
all branches in X are finite, or (2) not all branches in X are finite.

We start from the case (1), assuming all branches in X are finite.
Now, we consider a branch starting from Xi—it is 1-member long and open, by

1.11. The branch is either maximal, or not. If it is maximal, so the lemma is proved.
If it is not maximal, then by 1.24 there exists such a rule R ≤ MRT and some n-tuple
〈X1, . . . , Xn∗ ≤ R, that X1 = Xi andM satisfies X j , for some 1 < j ≤ n, because
MRT is a set of modal tableau rules sound to the class of model M andM ≤ M. The
string X1, X j is an open branch, by 1.11.

We assume now, that there exists some open branch starting with Xi . It is m-
member long, but not maximal. By 1.24 there is such a rule R ≤ MRT and some
n-tuple 〈X1, . . . , Xn∗ ≤ R, that X1 = Xm andM satisfies X j , for some 1 < j ≤ n,
because MRT is a set of modal tableau rules sound to the class of model M and
M ≤ M. Hence, the branch X1, . . . , Xm+1 is open, by 1.11.

(†) In consequence, for any n ≤ N and any branch φ such that φ(1) = X1 = Xi ,
if φ is n-member long and not maximal, then for some branch ψ , φ ⊂ ψ , ψ is
n + 1-member long and ψ is open.

We assume towards contradiction that no branch of X is maximal. However, by
(†) it means that there exists an infinite branch: X1, X2, . . . , where

1. X1 = Xi

2. Xn+1 is the last set of an open branch φ ≤ X such that:

a. φ is n-member long
b. for all i ≤ n, some Xn ≤ φ.

But this is in contradiction with the fact that all branches in X are finite.
Now, we begin the case (2), assuming that not all branches in X are finite. Let all

finite branches in X be closed.
Let Y ∩ Ex be a finite set of expressions. By 1.15, the number of rules that can

be applied to Y is finite. So, the set MRTY has j members, for some j ≤ N. Each
of the rule in MRTY we denote by Ri (1 ≤ i ≤ j). By 1.15, for any Ri ≤ MRTY ,
there is a finite number of n-tuples 〈Y, X1, . . . , Xn−1∗ in Ri . Hence, any Ri

Y , where
Ri ≤ MRTY , is finite. Each of n-tuple in any Ri

Y we denote by rk (1 ≤ k). So in any
Ri

Y , where Ri ≤ MRTY , there is a finite number of n-tuples 〈Y, X1, . . . , Xn−1∗, that
can be listed: r i

1, . . . , r i
k , where 1 ≤ k.

Now, we make a list of all r i
l in all Ri

Y , giving them some type of lexicographical

order:r11 , . . . , r1m︸ ︷︷ ︸

R1
Y

, r21 , . . . , r2n︸ ︷︷ ︸

R2
Y

, . . . , r j
1 , . . . , r j

o
︸ ︷︷ ︸

R j
Y

, where 1 ≤ m, n, o.

Any list of n-tuples for Y we call a Y -list and denote by LY . Of course, there can
be many lists for Y .
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Having some LY and some ri ≤ LY , we know that ri ≤ Rk
Y ∩ Rk , for some

k ≤ j . Saying that r j is an expansion of ri we mean that:

• r j ≤ Rk

• ri = 〈X1, . . . , Xn∗, r j = 〈Z1, . . . , Zn∗ and for any 1 ≤ l ≤ n, Z1, . . . , Zn are
sets that satisfy the conditions:

1. Xl ⊂ Zl .
2. Xi is similar to X1 ⊥ (Zi \ Z1).

If r j is a given expansion of ri , we will write r ℵ
i instead of r j .

(⊃) By the definition of tableau rule 1.12 (Closure under Expansion), we know
that for any ri = 〈X1, . . . , Xn∗ belonging to some rule R and any Z1, if Z1 is t-
consistent, X1 ⊂ Z1, and for all 1 < i ≤ n, Xi is not similar to any subset of Z1,
then there is exactly one r j that is an expansion of ri , where r j = 〈Z1, . . . , Zn∗, for
some Z2, . . . Zn ∩ Ex.

Let LY be some Y -list. By induction we define a closure of Y under LY . LY (Y )

is a maximally long string Z1, . . . , Zo, for some o ≤ N, where for any 1 ≤ n ≤ o:

1. if n = 1, then Zn = Y
2. if n = 2, then Zn = X j , where

a. r1 is the first n-tuple in LY

b. r1 = 〈Y, X1, . . . , X j , . . . , Xn∗, for 1 ≤ n
c. X j is some t-consistent set in r1 different from Y

3. if n > 2 and

a. Zn−1 exists in the string
b. Zn−1 is t-consistent
c. Zn−1 is a consequence of an expansion of some m-tuple rl ≤ LY applied to

Zn−2, so r ℵ
l = 〈Zn−2, W1, . . . , Wm∗, for some 1 < m and Zn−1 = Wk , for

1 < k ≤ m

then Zn = X j , where:

a. there is rl+n and it is the first k-tuple in LY , where 1 ≤ n such that
b. r ℵ

l+n is an expansion of rl+n

c. r ℵ
l+n = 〈Zn−1, X1, . . . , X j , . . . , Xi ∗, for 1 ≤ i and 1 ≤ j ≤ i

d. X j is some t-consistent set in r ℵ
l+n different from Zn−1.

By definition of branch 1.16 any LY (Y ) := Z1, . . . , Zn , for some n ≤ N, is a branch.
Moreover, by the assumption that the rules of MRT are sound to M, if M ≤ M and
M satisfies Z1, then for some LY (Y ) := Z1, . . . , Zn ,M satisfies Zn .

Now, we take our initial set of expressions Xi and conclude:

• Xi is finite, so we have some branch L1
Xi (Xi ) := X1, . . . , Xk , for some Xi -list

and some k ≤ N, such that:
• since for some model M ≤ M, M satisfies Xi , so M satisfies also Xk and Xk is
t-consistent
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• by the assumption (2), L1
Xi (Xi ) is not a maximal branch, since there is no finite,

open and maximal branch in X
• since rules of MRT are closed under finite sets 1.12, hence Xk is finite, too.

We consider the string of closures under some lists L j — where j ≤ N—and
assume that set Xo is finite and M satisfies Xo:

L1
Xi (Xi ) := X1, . . . , Xk for some k > 1 ≤ N

L2
Xk

(Xk) := Xk, . . . , Xl for some l > k ≤ N

.

.

.

L j−1
Xl+m

(Xl+m) := Xl+m, . . . , Xn for some n and m, n > l + m ≤ N

L j
Xn

(Xn) := Xn, . . . , Xo for some o > n ≤ N

Now, we have:

• Xo is finite, so we have some branch L j+1
Xo

(Xo) := Xo, . . . , Xr , for some Xo-list
and some r ≤ N, such that:

• Since for some model M ≤ M, M satisfies Xo, so M satisfies also Xr and Xr is
t-consistent.

• By the assumption (2) and definition 1.18, the branch (((. . . (L1
Xi (Xi )⊕ L2

Xk
(Xk))

⊕ . . . ) ⊕ L j−1
Xl+m

(Xl+m)) ⊕ L j
Xn

(Xn)) ⊕ L j+1
Xo

(Xo) is not a maximal branch, since
there is no finite, open and maximal branch in X.

• Since rules of MRT are closed under finite sets 1.12, hence Xr is finite, too.

As a consequence, for any j ≤ N there is an open branch L j+1
Xm

(Xm), where L j
Xl

(Xl)

= Xl , . . . , Xm , L1
Xi (Xi ) = X1, . . . , Xk , for some k < l < m ≤ N, X1 ⊂ Xk ⊂

· · · ⊂ Xl ⊂ Xm and M satisfies Xm . We can list those branches:

X1 = Xi , . . . , Xk︸ ︷︷ ︸

L1
Xi (Xi )

, Xk, . . . , Xl︸ ︷︷ ︸

L2
Xk

(Xk )

, Xl , . . . , Xm︸ ︷︷ ︸

L3
Xl

(Xl )

, . . .

and as a result, omitting double occurrences of members, we obtain an infinite branch
starting from Xi : X1, X2, X3, . . . , by Definition 1.16. This branch is not closed, by
1.19.

Now, we check whether the branch is maximal. By 1.24 we take some rule R ≤
MRT and for 1 < n ≤ N some sets Y1, . . . Yn ∩ Ex such that:

• 〈Y1, . . . , Yn∗ ≤ R
• for some 1 ≤ i , Xi = Y1

The question is whether there is j ≤ N such that for some 1 < k ≤ n, some subset
of X j is strongly similar to Yk and X j is in the branch.

We know that Xi ≤ Lk
Xm

(Xm), for some 1 ≤ k and m ≤ i . By 1.15, (a) R ≤
MRTXm , or (b) not. If not, then there exists some Xo, where m < o ≤ l, Lk+1

Xl
, for
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some l ≤ N, and R ≤ MRTXl , by the construction of the Xi , its supersets-lists, and
the considered branch.

Firstly, we assume that R ≤ MRTXm . By construction of the Xi , its supersets-lists
and the considered branch there are three possibilities:

1. Xi+1 = Yk , for some 1 < k ≤ n
2. there is an n-tuple 〈W1, . . . , Wn∗ ≤ R, an expansion of 〈Y1, . . . , Yn∗, Xi+o = W1,

where o ≥ 1, Xi+o+1 = Wk , and some subset of Wk is strongly similar to Yk , for
some 1 < k ≤ n

3. there is a set Xi+o, where 1 ≤ o, and other rule Rℵ ≤ MRTXm , such that
〈Xi+o−1, Y1, . . . , Yr ∗ ≤ Rℵ, for some r ≤ N, Xi+o = Yr1 , where 1 ≤ r1 ≤ r , and
some subset of Xi+o is strongly similar to Yk , for some 1 < k ≤ n.

In the case (b) we have analogical possibilities. Therefore, we have an open and
maximal branch. ∈�

2.4 Model Generated by Branch

Definition 2.2 (Model generated by branch) Let MRT be any set of modal tableau
rules. Let φ be a MRT-branch and X = {〈A, k∗ : A ≤ Y } ∩ ⋃

φ, for some k ≤ N

and some nonempty Y ∩ For. We define a set AT (φ) as follows: x ≤ AT (φ) iff one
of the conditions holds

• x ≤ ⋃
φ ∩ ({ir j : i, j ≤ N} ⊥ {i = j : i, j ≤ N})

• x ≤ ⋃
φ ∩ (Var × N).

We say that M = 〈W, R, V, w∗ is a model generated by branch φ iff

• W = {i : i ≤ ⊃(AT (φ))}
• for any i, j ≤ N,

– 〈i, j∗ ≤ R iff ir j ≤ AT (φ)

– if i = j ≤ AT (φ), then in the model i is identical to j
– V (x, i) = 1 iff 〈x, i∗ ≤ AT (φ)

• w = k.

2.5 Open and Maximal Branch Generates Model

Corollary 2.3 (Open and maximal branch generates model) Let φ be an open and
maximal MRT-branch, for some set of modal tableau rules MRT. Let X = {〈A, k∗ :
A ≤ Y } ∩ ⋃

φ, for some k ≤ N and some nonempty Y ∩ For. Then there exists a
model M generated by φ.

Proof By definitions of open branch 1.19, maximal branch 1.24 andmodel generated
by branch 2.2. ∈�
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2.6 Models Sound to Rules

To formulate and prove Tableau Metatheorem we must employ one more definition.
It concerns so-called sound class of models M to some set of modal tableau rules
MRT. In practice, it means that if applying the rules generates a model, then it
belongs to M and the model satisfies an initial set of expressions.

Definition 2.4 (Models sound to rules) Let

• MRT be any set of modal tableau rules
• φ be any maximal MRT-branch and X × {i} ∩ ⊥φ, for some X ∩ For and some

i ≤ N

• M be any class of models.

We say that M is sound to rules of MRT iff for all models M generated by φ:

• M ≤ M
• M |= X .

2.7 Closure Under Rules

Definition 2.5 (Closure under rules) Let X ∩ Ex. We say that Y ∩ Ex is a closure
of X under MRT iff Y is a set that satisfies the conditions

• X ∩ Y
• for any rule R of MRT and any n-tuple 〈Z1, Z2, . . . , Zn∗ ≤ R, where n ≤ N, if

X ∩ Z1 ∩ Y , then Z j ∩ Y , for some 2 ≤ j ≤ n.

Any set Y that is a closure of X under MRT we denote by MRT(X)(Y ).

For any set of expressions we have at least one closure under rules, but sometimes
there can be more closures.

Lemma 2.3 (On existence of open and maximal branch) Let X ∩ For and i ≤ N. If
for all finite Y ∩ X exists a maximal and open branch starting with Y i = {〈A, i∗ :
A ≤ Y }, then there is some closure of Xi = {〈A, i∗ : A ≤ X} under MRT that is an
open and maximal branch.

Proof We take any X ∩ For, i ≤ N, and assume that (⊃) for any finite subset
Y ∩ X there exists an open and maximal branch starting from a set of expressions
Y i = {〈A, i∗ : A ≤ Y }.

We take the set of all maximal and open branches that start from a set Y i =
{〈A, i∗ : A ≤ Y }, for any finite Y ∩ X . We denote the set by X.
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Now, we define a set X with the conditions:

1. X ∩ X
2. for every two branches φ and ψ in X, if there exist such two numbers i, k ≤ N

that φ(i) ⊥ ψ(k) is a t-inconsistent set, then φ ↔≤ X or ψ ↔≤ X
3. X is a maximal set among those subsets of X that satisfy conditions 1. and 2.

There exists at least one set X such that ≡ ⊂ X ∩ X. We take one such set,
denoting it as X .

We consider the set
⋃{φ(1) : φ ≤ X}. We observe that (⊃⊃) Xi ∩ ⋃{φ(1) : φ ≤

X}. If Xi ↔∩ ⋃{φ(1) : φ ≤ X}, then there exists x ≤ Xi , x ↔≤ ⋃{φ(1) : φ ≤ X} and
for any branch ψ ≤ X, if x ≤ ψ(1), ψ(1) ∩ Xi and ψ(1) is finite, then ψ ↔≤ X . But
then for all finite sets Y i ∩ Xi there is no maximal and open branch starting from a
set Y i ⊥ {x}, which contradicts the assumption (⊃).

We put a condition:

U ≤ X iff there exists such a branch φ that φ ≤ X and U = ⋃
φ

defining a set X . Now, we can define a set Z = ⋃
X .

We claim that Z is a closure of Xi = {〈A, i∗ : A ≤ X} under MRT (Definition 2.5)
and Z is an open and maximal branch.

Firstly, we show that Z is a closure of Xi = {〈A, i∗ : A ≤ X}, so it satisfies the
conditions of 2.5.

Let us observe that Xi ∩ Z , since (⊃⊃) Xi ∩ ⋃{φ(1) : φ ≤ X}, and by
construction of Z ,

⋃{φ(1) : φ ≤ X} ∩ Z .
We take any rule R ≤ MRT and n-tuple 〈U1, . . . , Un∗ ≤ R, for some n ≤ N,

and assume that Xi ∩ U1 ∩ Z . By Definition 1.12 it follows that there exists such
n-tuple 〈U ℵ

1, . . . , U ℵ
n∗ ≤ R that:

• for any 1 ≤ j ≤ n, U ℵ
j is a minimal, finite set that, if U j is not a minimal, finite

set such that 〈U1, . . . , Un∗ ≤ R, then U ℵ
j ⊂ U j

• for any 1 < j ≤ n, U j \ U1 = U ℵ
j \ U ℵ

1.

In consequence, assuming that U ℵ
1 ∩ Z , we must show that for some 1 < l ≤ n,

U ℵ
l ∩ Z , since U ℵ

l ⊥ U1 = Ul . Because for the finite set of expressions U ℵ
1 it is the

case that U ℵ
1 ∩ Z , so there exists a finite number of branches φ1, φ2, . . . , φo in X

and for some k ≤ N, U ℵ
1 ∩ φ1(k) ⊥ φ2(k) ⊥ · · · ⊥ φo(k). Hence, to the set X belongs

such a branch ψ that ψ(1) = φ1(1) ⊥ φ2(1) ⊥ · · · ⊥ φo(1) i U ℵ
1 ∩ ψ(m), for some

m ≤ N, and since ψ is a maximal branch, φ1(k)⊥φ2(k)⊥ · · ·⊥φo(k) is t-consistent,
so—by Definition 1.24—for some 1 < l ≤ n, U ℵ

l ∩ ⋃
ψ . In consequence U ℵ

l ∩ Z ,
because by construction of Z ,

⋃
ψ ∩ Z .

Now, we show that Z is an open and maximal branch. We know—by definition
of branch 1.16—that Z is a branch.

By construction of Z , Z is an open branch, i.e. no subset of Z is t-inconsistent,
by definition of X .

We check now, if Z is a maximal branch. In the light of the definition of maximal
branch 1.24 we assume that there is a rule R ≤ MRT and n-tuple 〈X1, . . . , Xn∗ ≤ R,
for some n ≤ N, where X1 = Z . By definition of tableau rules 1.12 there exists
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such n-tuple 〈X ℵ
1 . . . , X ℵ

n∗ ≤ R that for any 1 < j ≤ n, X j \ X1 = X ℵ
j \ X ℵ

1 and

Xi ∩ X ℵ
1 ∩ Z . Since Z is a closure of Xi , so X ℵ

j ∩ Z , for some 1 < j ≤ n, by
Definition 2.5. Hence X j ∩ Z , because X j = X1 ⊥ X ℵ

j . But then X1 ↔⊂ X j , which
by definition of tableau rules 1.12 is impossible. In consequence there is not a tableau
rule and n-tuple 〈X1,. . . , Xn∗ ≤ R, where X1 = Z , for some n ≤ N. Therefore Z is
a maximal branch, by definition of maximal branch 1.24. ∈�

2.8 Modal Tableau Metatheorem

From those definitions and lemmaswe can conclude TableauMetatheorem formodal
logics defined by possible worlds’ semantics:

Theorem 2.6 (Modal Tableau Metatheorem) For any set of modal tableau rules
MRT and any class of models M, if:

1. set of rules MRT is sound to class of models M
2. class of models M is sound to rules of MRT

then for all X ∩ For, A ≤ For the following statements are equivalent:

• X |=M A
• X �M RT A
• there is a finite Y ∩ X and a closed tableau 〈Y, A, Φ∗.
Proof We assume the points 1., 2. and take any X ∩ For , A ≤ For . We must show
that three implications hold.

(a) X |=M A =⊆ X �M RT A
We assume X ↔�M RT A. Hence, for any finite Y ∩ X there exists some branch

that starts with {〈B, i∗ : Y ⊥ {¬A}}—for some i ≤ N—which is maximal and open,
by 1.26. By Lemma 2.3 (On existence of open and maximal branch), there exists
some closure of {〈B, i∗ : B ≤ X ⊥ {¬A}} under MRT that is a maximal and open
branch ψ . By the Collorary 2.3, Definition 2.4 and point 1., we know that there is a
modelM ≤ M generated by ψ andM |= X ⊥ ¬A. So,M |= X and X ↔|= A, by 1.1.
As a consequence X ↔|=M A.

(b) X �M RT A =⊆ there is a finite Y ∩ X and a closed tableau 〈Y, A, Φ∗
We assume that for any finite Y ∩ X all tableaus 〈Y, A, Φ∗ are open. We take

some complete tableau 〈Y0, A, Φ∗, for a finite Y0 ∩ X . Under the last assumption
the tableau 〈Y0, A, Φ∗ is open, too.

If 〈Y0, A, Φ∗ is open and complete, then toΦ belongs a maximal and open branch
φ that starts with {〈B, i∗ : B ≤ Y0 ⊥ {¬A}}, for any i ≤ N.

Since Y0 is any finite subset of X , so for any finite Y ∩ X there is some branch
ψ starting with some {〈B, i∗ : B ≤ Y ⊥ {¬A}}, for any i ≤ N that is maximal and
open.
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In consequence, there is no such finite subset Y ∩ X that all maximal branches
starting with {〈B, i∗ : B ≤ Y ⊥ {¬A}}, for any j ≤ N, are closed. Therefore,
X ↔�M RT A.

(c) There is a finite Y ∩ X and a closed tableau 〈Y, A, Φ∗ =⊆ X |=M A.
We assume that X ↔|=M A. Hence, there is such a modelM ≤ M thatM |= X and

M ↔|= A. Consequently,M |= X ⊥ {¬A}, so for any finite Y ∩ X ,M |= Y ⊥ {¬A}.
We take a finite Y0 ≤ X . From the lemma 2.2 (Existence of maximal and open

branch) and point 2. we obtain a corollary that for any i ≤ N there exists a maximal
and open branch starting with {〈B, i∗ : B ≤ Y0 ⊥ {¬A}}.

Therefore by 2.1 (On open tableaus) each tableau 〈Y0, A, φ∗ is open. Since Y0 is
any finite subset of X , so there is no finite Y ∩ X and closed tableau 〈Y, A, Φ∗. ∈�

3 Summary

According to metatheorem 2.6, if for a class of models M a set of rules MRT
satisfying conditions 1 and 2 is defined, then in consequence we obtain the complete
and sound modal tableau system.

The formal theory presented in the paper offers a simplification of a process of
defining all notions and proving particular facts while constructing a modal tableau
system.What is covered by the theory turns out to be all general features of anymodal
tableau system determined by possible world semantics. Moreover it allows to define
suitably some set of modal tableau rules in such a way that the sufficient condition
for completeness and soundness of the system is satisfaction of the aforementioned
conditions. In the standard approach—in contrast to the one presented—it seems to
be very difficult to prove general facts about the classes of logics, since we do not
have universal and precise notions that are constant and vary only from one set of
tableau rules to another.

A natural problem that emerges in this context is whether our approach is applica-
ble to strong/weak completeness with respect to structures. This problem seems to
be even more interesting in light of the fact that some traditional axiomatic structures
are only weekly complete with respect to certain classes of structures.7

In our opinion such generalizations are possible, but require further research and
we treat this work as a starting point towards them. Obviously, this kind of approach
can be extended to other types of logics, in order to capture relations between tableau
rules andmodels, since themetatheory contains no limiting features that could narrow
the scope of application to the range of modal logic only.

7 See Chap.4.4 of [3].



126 T. Jarmużek
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On the Essential Flatness of Possible Worlds

Neil Kennedy

Abstract The objective of this paper is to introduce and motivate a new semantic
framework for modalities. The first part of the paper will be devoted to defending
the claim that conventional possible worlds are ill-suited for the semantics of certain
types of modal statements. We will see that the source of this expressive limitation
comes fromwhatwill be dubbed “worldlyflatness”, the fact that possibleworlds don’t
determine modal facts. It will be argued that some modalities are best understood as
quantifiers over modal facts and that possible worlds semantics cannot achieve this.
In the second part of the paper, I will present a new semantic framework that allows
for such an understanding of modalities.

Keywords Possible worlds semantics · Epistemic logic ·Multidimensional frames

1 Flat Worlds

The basic observation underlying the work in this paper is that possible worlds are
flat: no possible world, as given by Kripke semantics, determines a modal fact.
I take this to be very uncontroversial claim, but since it is a crucial one to the present
analysis I will spell it out in more detail.

Recall that the celebrated notion of a Kripke model is a tuple ⊥W, R, I → consisting
of three things: (i) a set W of possible worlds, (ii) an accessibility relation R on W ,
and (iii) an interpretation function I assigning a set I (p) of worlds to each atomic
statement p. The set of worlds W is basically a basin of variation, where each
element in W can be understood as a way things could be in the “universe” under
consideration. R is an accessibility relation on W , one that essentially determines
all the modal properties of the model. And, for each atomic statement p, the set
I (p) is the proposition p defines. The binary relation R is the repository of all the
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fundamental modal facts of M . Without R, W and I can only determine the truth
conditions of the atomic statements at each world (and their Boolean combinations);
with R, the truth values of all the statements can be given. Most importantly, and
central to the present paper, no possible world determines the binary relation R in
any way, no world determines the fundamental modal features in the model. This is
what worldly flatness consists in.1

In a nutshell, I will argue that flat worlds translate into expressive limitations for
Kripke semantics. The truth conditions of certain types of modal discourse would be
considerably simplified if the modal facts were directly located in the world them-
selves, rather than the overlying structure. A proper semantic account for this modal
discourse would have worlds (or parts of these worlds) that determine accessibility
relations of a certain kind.

2 Worlds with Modal Parts

Inmanyways, the semantic framework Iwill be proposing canbe seen as a generaliza-
tion of Prior’s “Ockhamist” semantics ([9], Chap. 7). It will therefore be enlightening
to examine the latter in order to arrive at a general idea of what will be put forward
later on.

Prior develops a semantic framework for tense and possibility in the context of
a discussion of the problem of future contingents. The problem of future contin-
gents, as he sees it, can be understood as the problem of reconciling two seemingly
incompatible properties of time. On the one hand, tense operators presuppose a lin-
ear conception of time, but on the other, possibility presupposes forward temporal
branching.

Prior’s solution to this problem is to think of the truth of a statement as relative
not only to a moment in time but also to a world history. Relative to both a time
and history, a tensed statement has a determinate truth value; relative only to a time,
it can sometimes lack one. The entities at which statements are evaluated are thus
moment-history pairs, amoment being a sort of snapshot of the universe and a history
a sequence of such snapshots.

Formally, Prior employs the notion of an Ockhamist model to express this idea
([9], p. 126). An Ockhamist model is basically a tree T = ⊥T,<→.2 T is the set of
all moments and < the relation of temporal antecedence. Histories are construed as
paths in T of maximal length. If, at a given moment t ♦ T , two histories h and g
share the same past up to (and including) t , then both histories are possible from one
another at t . The meanings of the tense and metaphysical modalities in an Ockhamist

1 The term “flat” is sometimes used to mean that the modal facts supervene on the basic facts, as
Humean supervenience would have it (cf. [8], p. 14). It seems that in this usage of the term, “flat”
applies to the universe, whereas my flatness applies to single worlds.
2 T is a tree iff < is an anti-reflexive, transitive and connected relation < on T such that, for all
t ♦ T , its restriction to {s ♦ T : s ∃ t} is linear. In a tree, there is only one path from right to left
but possibly many from left to right.
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model are then defined in the following way. Relative to a history h and at moment
t : (a) Pφ is true iff there is a moment s of h occurring before t where φ is true, (b)
Fφ is true iff there is a moment s of h occurring after t where φ is true, and (c) ♦φ

is true iff there is history g possible from h at t where φ is true relative to g and at t .
The point worth highlighting here is that Priorean semantics uses a notion of

possible world that has modal parts. By possible world, I mean the thing at which we
evaluate statements, which in this case is a pair (t, h). The observation is that h is a
modal part of the possibility (t, h); h describes the way in which t stands in respect
to other moments, and it does so by determining an accessibility relation on the set
of moments T (the binary relation in question being < ∧ (h × h)).

Our own semantic proposal will retain this overall aspect of Prior’s idea. In this
framework, a possibility will be understood as a tuple of coordinates, each coordinate
corresponding to the value of a basic state type of the universe. Just like histories,
some of these states will be modal states in the sense that they will determine modal
facts about the universe; more precisely, this means that each modal state will deter-
mine an accessibility relation on a certain sub-product of the set of possibilities.

Let us illustrate how this general idea works out in a particular case. Suppose that
a universe U consists of an epistemic agent and a collection of objects that admit
properties like colour, shape, weight, size, etc. The idea is that U could be nicely
“factored” into three distinct components. First, a “worldly” state type f would
determine the worldly facts, with each worldly state f ♦ Wf corresponding to a
distribution of first-order properties on the objects of U . Second, an epistemic state
type e would determine the epistemic facts, with each epistemic state e ♦ We cor-
responding to the knowledge the agent has of the objects in the world. Technically
speaking, each e ♦ We would determine an epistemic accessibility relation on Wf.
Finally, an alethic state typepwould determine the type of possibility inU , with each
modal state p ♦ Wp corresponding to a kind of possibility, e.g., physical, metaphysi-
cal, conceivable, etc. Technically speaking, each element of Wp would determine an
accessibility relation on Wf × We. According to this picture, a possibility w is given
as a triplet ( f, e, p), with f ♦ Wf, e ♦ We and p ♦ Wp, it is a specific “position” in
the space generated by these state types.

3 The Semantic Inconvenience of Flatness

What is the need for a notion of possibility that has modal parts? The idea is to have
a simple means for representing variation in modal facts. We will examine in this
section a few examples that I claim will show the necessity for such possibilities.
This by no means entails that Kripkean possible worlds semantics cannot be used to
represent such variation; however, we will see that it does so very poorly.

Variation inmodal facts is especially useful for expressing themeanings ofmodal-
ities M1 and M2 that, like tense and possibility, have some element of subordination
between them. For example, if we think of knowledge and tense in the precise context
where knowledge evolves in time and concerns only atemporal facts, it would seem
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Fig. 1 Knowledge and tense

that knowledge is subordinate to tense in the following way: the world at time t is
constituted in part by knowledge at time t , so knowledge is indexed by t and is part
of what is being quantified over by a tense modality. When evaluating a statement
of the form F K p (e.g. “At some time in the future, Mary will know that smoking
is bad”), the modality F has this higher-order relation to K that makes it special.
The claim here is that the ideal way of understanding F is as a quantifier over possi-
ble accessibility epistemic relations for K , each one representing Mary’s knowledge
state at a given time. But this is not the way it is understood in Kripke semantics.

In a Kripke model, the meanings of modalities F and K are given in terms of a
frame ⊥W, R, E→, where W is a set of possible worlds (with enough variation for both
modal notions), andwhere R and E are temporal and epistemic accessibility relations
respectively. The truth of F K p at some world w0 is understood as the existence of
w ♦ W such that w is later than w0, i.e. R(w0, w), and K p is true at w. In turn, K p
is true at w iff p is true at all v’s accessible from w via E . The truth conditions of
F K p involve no quantification over various possible accessibility relations for K .
Variation in epistemic facts is accomplished by “relocating” to another region of W
where E’s behaviour is different, i.e. where Mary knows that smoking is bad. We
can picture the idea with the following diagram: In the region surrounding w0, E can
“see” worlds in which smoking is good; but in the region surrounding w, E only sees
worlds where smoking is bad. E is not just one epistemic profile but many; in fact,
it comprises all of Mary’s epistemic profiles across all times (Fig. 1).

Such examples are not hard to come by as they are fairly commonplace. In the
remainder of this section, we will show that epistemic modalities exhibit a simi-
lar behaviour, and will thereby also benefit from a semantics with explicit modal
facts. The reason for this is that epistemic modalities pertain to a very broad array
of facts, since we can have knowledge (and ignorance) about virtually anything.
Some of these facts will themselves be epistemic in nature, as in the case of knowl-
edge of knowledge, be it our own knowledge or that of others. Representing knowl-
edge of epistemic facts will require the same kind of modal variation in possible
worlds. However, modal variation will be difficult to provide for using flat worlds.
As a general rule, the more sophisticated the epistemic facts that are known, the
harder it will be to represent this knowledge in a clear and natural way.

Consider a universe consisting solely of a circle and a square. In this universe, the
circle can be either red or green, and the square either blue or yellow. Those are the
only properties these individuals can have.3 There are thus four distinct distributions

3 Note that “being a square” and “being a circle” are not properties of this universe.
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Fig. 2 Knowledge without
higher-order ignorance

Fig. 3 Knowledge with some
higher-order ignorance

of properties in this universe, one for each possible colouring of the circle and square,
giving rise to four distinct possible worlds: w = (r,b), x = (r,y), y = (g,b) and
z = (g,y), where the first coordinate specifies the colour of the circle and the
second the colour of the square. Let us add to this universe the epistemic agents
Alice and Bob, say a and b.4 Alice is red-green colour-blind (RGC) and Bob is
blue-yellow colour-blind (BYC). These epistemic states obviously give rise to the
following epistemic accessibility relations on W = {w, x, y, z}: Ea(u, v) iff the
circle has the same colour in u and v, and Eb(u, v) iff the square has the same colour
in u and v. In other words, Ea connects blue and yellow worlds and Eb connects red
and green ones. The resulting universe, say U , is depicted in Fig. 2.

A simple verification will show that, in the model of Fig. 2, Alice and Bob are
knowledgeable about each other’s colour-blindness. This simply results from the
fact that there is no possibility at which Alice or Bob’s colourblindness is different,
i.e. there is no possibility in U where Alice isn’t RGC or where Bob isn’t BYC.

What if Bob ignores the nature of Alice’s colour-blindness? Suppose he knows
that Alice is colour-blind but doesn’t know whether Alice is RGC or BYC, assuming,
for simplicity’s sake, that these are the only open possibilities. What modifications
must be brought to U to accommodate such assumptions? I claim that the simplest
way of doing this, in the context of Kripke semantics, is to resort to a copying strategy
of sorts. This strategy dictates that we give ourselves two copies V1 and V2 of W , one
for each colour-blindness profile of Alice. We then make Alice RGC on the first copy
and BYC on the second. On both copies, we make Bob BYC. Finally, we make Bob’s
accessibility relation join corresponding copies inV1 andV2 to reflect his higher-order
ignorance of Alice’s colour-blindness. The resulting model is represented in Fig. 3.

Alice’s epistemic accessibility relation is neitherRGC norBYC, it is both.Variation
in the modal facts, as was the case in the Mary example, is accomplished not by
multiplying the possible accessibility relations but by multiplying the world copies.

4 The reader can assume that the agents are immaterial and only have epistemic properties.
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Fig. 4 Knowledge with more
higher-order ignorance: part I

One may think that the added complexity of these models is acceptable, that it
is a fair price to pay for the prima facie conceptual simplicity of possible worlds. I
would like to demonstrate how high a price this is by showing how bad the copying
strategy scales when we add some more second-order assumptions to the situation.

Suppose we add to the preceding scenario second-order ignorance on Alice’s part.
Assume, as far as Alice knows, that Bob could be RGC, BYC or not colour-blind at
all (NC), and assume Bob has the same ignorance as before regarding Alice’s colour-
blindness. Obviously, the model defined in the previous paragraph will no longer do,
because there is no possibilitywhereAlice does not know that Bob isBYC (whichever
way we choose to represent this statement in the syntax). The copying strategy
dictates that we create a copy of W for each colour-blindness possible combination
between Alice and Bob: copy U1 will correspond to the combination (RGC,BYC)

in which Alice is RGC and Bob is BYC, U2 will correspond to (RGC,RGC), U3 to
(RGC,NC), U4 to (BYC,BYC), U5 to (BYC,RGC) and U6 to (BYC,NC). On these
various copies, we define the relations corresponding to Alice’s and Bob’s colour-
blindness. The result is illustrated in Fig. 4.

Wemust then take care of connecting the worlds in different copies so as to reflect
Alice’s and Bob’s higher-order ignorance/knowledge. Alice’s epistemic accessibility
relation on U (the union of the copies Ui ) must connect corresponding world copies
inU1,U2 andU3, and it must do the same for corresponding copies inU4,U5 andU6.
This will reflect Alice’s ignorance of Bob’s specific colour-blindness. Furthermore,
Bob’s epistemic accessibility relation on U must connect same-copy worlds in U1
and U4, as well as same-copy worlds in U2, U5 and U3, U6 respectively. The result
is illustrated in Fig. 5.

The intended take home message of all these examples is that conventional Krip-
kean semantics are ill-suited for the task of providing complex modal statements
with appropriate truth-conditions, where by “appropriate” I mean not only truth-
conditions that get the answer right but that do so in a principled and transparent
manner. Though it may be possible to satisfy higher-order modal statements in mod-
els using modally flat worlds, it is done at the price of simplicity.
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Fig. 5 Knowledge with more
higher-order ignorance: part II

4 Possibility Spaces

An appropriate semantics for such modal combinations, we will claim, must be
couched in terms of possibility spaces. A possibility space is based on the following
ideas: (i) the set of possibilities (or possible worlds) is a product space; (ii) each set
in this product is the set of (atomic) states of a certain type; (iii) some states, namely
modal states, determine modal properties on other states.

If we disregard (iii), we have what is basically some form of multidimensional
Kripke frame. Segerberg [10] first introduced this idea in the two-dimensional case,
which constitutes the formal backbone of the notion of two-dimensional semantics
as defended by Davis and Humberstone [2], and which has gained a considerable
following to this day (cf. [6]). But multidimensional Kripke frames need not be
exclusively thought of as devices for the expression of the contingent a priori or
meta-semantic notions. Quite independently of two-dimensional semantics, Gabbay
and Shehtman [3–5] use multidimensional Kripke frames to provide a semantics for
what they call “products” of modal languages, basically just a language combining
two or more modal languages but in a such a way that the modal notions don’t
“interact” with one another.5

In its simplest form, a multidimensional Kripke frame is a structure ⊥W, R→,
where W = W1 × · · · × Wn and R = {Rk : 1 ∃ k ∃ n} is such that Rk is a binary
relation on Wk , for each k. A language L comprising the modalities ♦k , for each
k, would be interpreted in the product structure as follows: (. . . , wk, . . .) � ♦kφ iff
(. . . , v, . . .) � φ, for some v ♦ Wk such that Rk(wk, v). Basically, the k-th modality

5 These product frames are just a special case of what Gabbay and Shehtman [3] call “fibered
semantics”, the general technique of mending two or more structures together to yield a further
structure. Not all such combined structures have the property that themodalities have no interactions
amongst themselves, thus some combined structures may actually turn out to have non-flat worlds.
In fact, there is even reason to suspect that possibility spaces can be described as a special case
of fibered semantics. However, since fibered semantics of this kind haven’t been explored to my
knowledge, thinking in those terms will not be especially useful.
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moves around the k-th coordinate via the k-th relation while the other coordinate
values stay fixed. However, despite being n-tuples of coordinates, these worlds are
nonetheless flat in the sensewe’ve defined, so they aren’t quitewhatwe’re looking for.

Adding (iii) to the picture is what makes possibility spaces stand apart concep-
tually from these multidimensional Kripke frames. A modal state type is more than
just another axis in the product space, the points of this axis determine properties on
a subspace of the possibility space.

4.1 Formal Definition

In its most general form, a possibility space S is defined as a triplet ⊥τ,Δ,Φ→, where
τ = ⊥N , M, μ→ is the type ofS,Δ the domain function, andΦ the modal assignment
function.

The type τ specifies the general structure S has. N is the set of basic or atomic
state types. Each state type n ♦ N is a place holder for some basic or atomic feature
of the underlying universe, an “axis” of the whole space, as it were. M ⊂ N is the
set of modal state types. Each modal state type pertains to a set of state types, which
is specified by the function μ : M ∗ ℘(N ).

Δ andΦ put meat on the bones of the skeleton τ describes.Δ assigns a domain of
values Wn to each state type n ♦ N . The domain of the entire universe is the product
space W = ⎧

n♦N Wn . If I ⊂ N is a subset of state types, then the sub-product
generated by I is defined as WI = ⎧

n♦I Wn . Φ assigns an accessibility relation of
the appropriate kind to each modal state. That is, if m ♦ M is a modal state type and
w ♦ Wm , then Φ(w) is an accessibility relation on Wμ(m).

4.2 Syntax and Semantics

We turn now to the definition of a propositional language L for possibly spaces. L
is given by a set Mod of modalities and a set Prop of propositional variables (or
atomic sentences). In order to interpret this language in a possibility space, some
additional information is required concerning the modalities. Since modalities are
in a sense the syntactic counterparts to modal features, and since there are typically
many modal features in a possibility space, the model will have to specify which
ones correspond to any given modality. Taking this into consideration, we define a
model of L as a possibility space S = ⊥τ,Δ,Φ→, where τ = ⊥N , M, μ→, together
with an interpretation function I such that:

I (♦) ⊂ M , for all ♦ ♦ Mod
I (p) ⊂ W , for all p ♦ Prop

The modal state types in I (♦) are the ones that will matter for the meaning of ♦.
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In order to elegantly present the semantics, we must adopt a few abbreviations.
Let w ♦ W and I ⊂ N . We define wI as the restriction of w to I , i.e. wI = w�I , and
define wn as the value w assigns to state type n. Furthermore, if v ♦ WI , the point
(w−I , v) is the element of W that is identical to w on N\I and identical to v on I .

Given a space S and interpretation function I , truth at a world w ♦ W is
defined recursively as follows. The propositional and Boolean clauses should be
straightforward. The semantic clause for modalities goes like this: w � ♦φ iff, for
all m ♦ I (♦), we have

(w−μ(m), v) � φ, for some v ♦ Wμ(m) such that Φ(wm)(wμ(m), v)

In other words, ♦ is interpreted at w with the relation “aggregating” all the relations
determined by the modal states wm at w, with m ♦ I (♦). (A crucial observation to
make here is that the meaning of ♦ at w is determined by the possibility w itself.)
The definition of validity in a model, in a possibility space and in a collection of
possibility spaces follows immediately.

5 Back to Alice and Bob

We apply the preceding to Alice and Bob’s predicament. The possibility space we
will use is based on the set N = {n1, n2, . . . , n6} of basic state types, where:

n1 = “colour of circle”, with domain Δ(n1) = W1 = {r,g}
n2 = “colour of square”, with W2 = {b,y}
n3 = “Alice’s colour-blindness”, with W3 = {RGC,BYC}
n4 = “Bob’s colour-blindness”, with W4 = {RGC,BYC,NC}
n5 = “Alice’s higher-order ignorance”, with W5 = {HIa}
n6 = “Bob’s higher-order ignorance”, with W6 = {HIb}

The domains of n5 and n6 are singletons because, in the example above, Alice and
Bob are perfectly knowledgeable about each other’s higher-order ignorance. The
space of possibilities W therefore looks like

W =
⎪
r
g

⎨

×
⎪
b
y

⎨

×
⎪
RGC
BYC

⎨

×
⎩




RGC
BYC
NC

⎫
⎬

⎭
× {

HIa
} × {

HIb
}

The set M of modal state types of this space consists of n3 through n6, and it should
be clear that the modal state types n3 and n4 both modally pertain to {n1, n2}, and
the modal state types n5 and n6 both modally pertain to {n3, n4}.

Each of the pairs of values of W3 × W4 defines a pair of accessibility relations on
W1 × W2, one for each Alice and Bob, as illustrated in Fig. 6. Similarly, (HIa,HIb)

determines the pair of accessibility relations illustrated in Fig. 7.
We let Φ be the function that assigns these accessibility relations. The result is

the possibility space S = ⊥τ,Δ,Φ→.
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Fig. 6 Kripke frames determined by the possibility space: part I

Fig. 7 Kripke frames deter-
mined by the possibility space:
part II

At first glance, Figs. 4 and 6 look the same (modulo renaming), but there is a
crucial difference between them: only one frame in Fig. 4 is depicted whereas Fig. 6
has six of them, all based on the same set of possibilities W1 × W2. Furthermore,
Alice and Bob’s higher-order ignorance is directly represented in Fig. 7, whereas
in Fig. 5 it is accomplished only in a indirect way (via the curvy lines joining the
world copies).

We assume the language L contains at least an epistemic modality for each Alice
and Bob, say Ka and Kb. Let I be the interpretation implicit in this model. We
have that I (Ka) = {n3, n5} and I (Kb) = {n4, n6}. Let w ♦ W1 × · · · × W6
be a possibility. Following the modal semantic clause given above, we have that
w � Kaφ iff

(w−{1,2}, v) � φ, for all v ♦ W{1,2} such that Φ(w3)(w{1,2}, v)
(w−{3,4}, v) � φ, for all v ♦ W{3,4} such that Φ(w5)(w{3,4}, v).

(We abbreviate the composite state types {n1, n2} and {n3, n4} by {1, 2} and {3, 4}
respectively.). Similarly, we have that w � Kbφ iff.

(w−{1,2}, v) � φ, for all v ♦ W{1,2} such that Φ(w4)(w{1,2}, v)
(w−{3,4}, v) � φ, for all v ♦ W{3,4} such that Φ(w6)(w{3,4}, v).

These truth conditions for Ka and Kb highlight the way in which the various parts
of the world come together to define the agents’ knowledge.
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6 Concluding Remarks

I have defended the claim that possible worlds should be understood as structured
entities with modal parts. Possible worlds with modal parts allow for modal variation
in the semantics, and this variation leads to a more natural representation of the truth
conditions of complex modal statements. In particular, we have seen how epistemic
modalities (and other modal combinations) are well served by such a framework.
Applications are obviously not limited to that realm, however. One unsuspected
application of the system is to counterfactual conditionals. It can be shown that
systems of spheres (cf. [7]) are a special case of possibility space. Since we can
easily graft other modal features to any possibility space, the upshot is that this
provides us with a general semantics for tensed counterfactuals or counterfactual
knowledge.

It should also be mentioned that we can prove correspondence and completeness
results for possibility space semantics, but this goes well beyond the scope of the
present paper. To get a hold on the product structure and the modal properties, we
require a highly customized version of the language of hybrid logic. The axiom-
atization and completeness results are highly adapted from Blackburn et al. ([1],
pp. 434–445).
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Collective Alternatives

Franz von Kutschera

Abstract In the logic of agency individual alternatives of agents have been taken as
basic, so far, while the alternatives of groups of agents have been derived from the
alternatives of the group members. In many cases, however, groups have additional
possibilities. In the paper I propose a generalized theory of collective alternatives
that takes them as fundamental.

Keywords Collective agency · Collective alternatives · Logic of agency · T × W
frames

A logic of actions and of bringing about something by an action is useful in many
realms of philosophy, from moral philosophy to the philosophy of mind. The logic
of agency has been developed mainly by Lennart Åqvist [1, 2], Franz von Kutschera
[3, 4] and Nuel Belnap [5, 6]. In this logic individual alternatives of agents have
been taken as basic, so far, while the alternatives of groups of agents were derived
from those of the group members. In many applications this approach turns out to be
insufficient. Often groups have possibilities that are not combinations of the separate
possibilities of their members. A generalization of the logic of agency therefore is
called for, and that is the topic of my paper.

It is concerned only with the semantics of a logic of agency, not with its language
or axiomatics. The appropriate semantical framework is that of branching worlds or
world histories, especially T×W-frames with a universal time order for all histories.
I shall first present this framework and define individual and collective alternatives
in the usual way. I will then give two examples for the failure of this definition of
collective alternatives. They suggest a definition of alternatives that takes collective
ones as fundamental and permits the individuals to have alternatives in a group that
they dont have by themselves. A further example will then show that the collective
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alternatives of a group have to be defined relatively to coalitions among the other
agents.

1 T×W Frames and Tensed Possibilities

I assume knowledge of T×W frames and just present the definition.

(D1) A T × W frame is a quadruple U = (T,<, W,⊥) such that:

(a) T is a non-empty set of moments of time (t, t →, . . .).
(b) < is a linear ordering on T ; t < t → means that t is earlier than t →.
(c) W is a non-empty set of worlds (w,w→, . . .).
(d) For all t ♦ T , w ⊥t w→ is an equivalence relation on W , read as w coincides

with w→ in t , such that w ⊥t w→ ∃ t → ∧ t → w ⊥t → w→—worlds divide only
into the future.

(e) w ∗= w→ → ≤t↔t →(t → ∧ t ∨ w ⊥t → w→)—different worlds alsways have a
last point of coincidence.

Condition (e) corresponds to the intiuition that different choices make a difference
only for the future.

I shall use two abbreviations:

(D2) (a) P(t,w) := {w→ : w→ ⊥t w}—the set of worlds possible in w at t .
(b) C(t,w) := {w→ : ≤t →(t < t → ∃ w→ ⊥t w)}—the set of w and the worlds

departing from w only in the future.

In T×W frames states of affairs obtain in worlds at times. Therefore a state of
affairs can be represented by the set of pairs of times and worlds, in which it holds.
If and only if for one of these worlds w→ in P(t,w) the pair (t,w→) belongs to the
state of affairs A, A is possible in w and t . This possibility does not just depend on
worlds but also on times.

2 Individual Alternatives

An action of a person is a behaviour she can also refrain from. An action always
starts from a situation in which the agent has at least two alternatives. If we describe
the behaviour of a person as an “action” we always presuppose that she could do
otherwise. That is not always the case if it is possible that she behaves differently.
If somebody falls down the stairs, for instance, that is normally a contingent event.
Therefore it was possible that he would not fall. But this does not make his fall an
action. In the case of an action it has to be possible for the agent to do otherwise
and this possibility must consist in an alternative that was open to him. We have to
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distinguish therefore between event possibility as it was just defined, possibility, e.g.
by the laws of nature, and agent possibility, possibility for an agent.1

To represent actions we start from a T×W frame U and add a finite set G =
{g1, . . . , gn} of agents. In every world w and at each moment t every agent g has a
set A(g, t,w) of alternatives.
(D3) A system of individual alternatives based on U is a pair (G, A) such that:

(a) G is a set of agents, g1, ..., gn .
(b) For all g ♦ G, w, t : A(g, t,w) is the set of alternatives of the agent g in w

and t . These sets have the following properties:

(b1) w→ ♦ P(t,w) → A(g, t,w) = A(g, t,w→).
(b2) X ♦ A(g, t,w) → ⊆ ∗= X ∼ P(t,w).
(b3) w→ ♦ X ∃ X ♦ A(g, t,w) → C(t,w→) ∼ X .
(b4) X,Y ♦ A(g, t,w) → X = Y ∩ X ∪ Y = ⊆.
(b5) P(t,w) ∼ ⋃

A(g, t,w).
(b6) X1 ♦ A(g1, t,w) ∃ . . . ∃ Xn ♦ A(gn, t,w) → X1 ∪ . . . ∪ Xn ∗= ⊆.

Comments: (b1) Alternatives do not depend on the future. (b2–5) The sets of indi-
vidual alternatives in w at t are divisions (partitions) of the set P(t,w) of possible
worlds. (b3) Agents cannot discriminate between worlds that branch only at a later
moment. (b6) No alternative can be blocked by choices of the other agents.

Not every agent has a choice at every moment. Therefore sets of alternatives
A(g, t,w) are admitted containing P(t,w) as the only alternative. In this case I shall
say that g has no genuine alternative, no alternative he could refrain from realizing.
An agent has a genuine alternative only if he has at least two alternatives.

It is often useful to add the condition

(b7) w→ ♦ P(t,w) → ≤X1 . . . Xn(X1 ♦ A(g1, t,w) ∃ . . . ∃ Xn ♦ A(gn, t,w) ∃
X1 ∪ . . . ∪ Xn = C(t,w→)).

This is a completeness condition: The agents in G together can determine how the
world goes on after t . Generally this condition is tenable only if we count Mother
Nature, which is responsible for chance events, among the agents.

With respect to these alternatives we can define agent possibility: For the agent
g it is possible in w at t to bring about the state of affairs A, if g has a genuine
alternative in w, t for which A holds at t in all the worlds of this alternative. An agent
g brings it about in w at t that A holds at t , if the alternative g realizes in w at t is a
subset of the set of all worlds in which A holds at t .

1 On the relation of the statements “The agent X has the possibility to do F” and “It is possible, that
X does F”, and the relation between “X could have done otherwise” and “If X would have wished
differently he would have acted differently” there is a whole library of publications. Determinists
naturally misinterpret the first sentences in the sense of the latter. Cf. e.g. ([8], Chap.6).
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3 Collective Alternatives: The Usual Approach

Alternatives of groups of agents from G, are normally defined by individual alterna-
tives: If A({gi1, . . . , gim}, t,w) is the set of alternatives of the group {gi1, . . . , gim}
in w, t , we have:

(D4) A({gi1, . . . , gim}, t,w) :=
{X1 ∪ . . . ∪ Xm : X1 ♦ A(gi1, t,w) ∃ . . . ∃ Xm ♦ A(gim, t,w)}

The alternatives of a group, therefore, are the combinations of the individual
alternatives of its members.

We have for G →, G →→ ∼ G

(a) X ♦ A(G →, t,w)∃Y ♦ A(G →→, t,w)∃G →∪G →→ = ⊆ → X∪Y ♦ A(G →⊃G →→, t,w).
(b) X ♦ A(G →, t,w) ∃ G → ∼ G →→ → ≤Y (Y ♦ A(G →→, t,w) ∃ Y ∼ X).

4 Counterexamples

According toD4 the alternatives of a group result from the alternatives of itsmembers.
In realizing a collective alternative they do in coordination, what they can also do
separately. There are, however, many cases in which groups have new possibilities,
possibilities beyond those envisaged by D4. The following two examples show that
co-operation opens up new possibilities of action.

Case 1: Peak A
Two mountaineers can either climb peak B separately, a lower pinnacle in front of
peak A, or they can climb A together, as a team. Each of them has two individual
alternatives to stay in the camp or to climb peak B—but together they have the addi-
tional alternative of climbing A as a team. This alternative does not arise from the
separate possibilities in the way stated in D4.

Case 2: The Ruritarian Prison Cell
In Ruritania prison cells for two occupants are so small that there is only room for
one person to sit while the other has to stand. The occupants of such a cell have
no genuine individual alternative. They cannot sit or stand independently of what
the other does, so that, without cooperation, their positions will have to remain as
they are. Only in a coalition they have genuine alternatives and can determine, who
sits and who stands. These collective alternatives again do not result from individual
ones.

5 Collective Alternatives: A New Approach

These examples suggest that we conceive of collective alternatives not as combina-
tions of individual alternatives as in D4 but as fundamental. We cannot, however,
define alternatives of the type A(G →, t,w) where G → is a subset of G, the set of all
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the agents. Rather the alternatives of groups are sensitive to what co-operations are
possible between the other members of G. This is shown by the following example:

Case 3: The last glass of rum
John, Tom andMax each want to have what is left in a bottle of rum. John is stronger
than each of the other two but together they can hold him back. So if Tom and Max
cooperate John has no alternative, but if there is no co-operation between Tom and
Max, John may drink the rest of the rum or leave it to the others, as he pleases. His
alternatives depend on what co- operations are possible between the others.

We therefore have to define collective alternatives relatively to admissible
co-operations or coalitions among the rest of the agents. Coalitions are defined
by partitions D = {G1, . . . ,Gm} of the set G of agents. So we consider sets of
alternatives A(Gi , D, t,w) for Gi ♦ D. For the individual alternatives envisaged in
D3 we have

A(g, t,w) = A({g}, D0, t,w) for D0 = {{g1}, . . . , {gn}}
and the collective alternatives of D4

A({gi1, . . . , gim}, t,w) = A({gi1, . . . , gim}, (D0−{{gi1}, . . . , {gim}})⊃{gi1, . . . , gim}, t,w).

If we consider the groups G1, . . . ,Gm in a partition D of G as individuals we get
conditions corresponding to those of D3. The main difference is that the alternatives
in A(Gi , D, t,w) are partitions not of P(t,w), the set of all possible worlds, but of a
non-empty subset P(D, t,w) of P(t,w), the set of possible outcomes for coalition
structure D.

(D5) A system of collective alternatives based on a tree-universe U is pair
(G, A) such that:

(a) G is a set of agents, g1, . . . , gn .
(b) For all partitions D = {G1, . . . ,Gm} of G and all w, t : A(Gi , D, t,w) is the

set of alternatives of the group Gi relative to the partition D in w and t . For
P(D, t,w) := ⋃

1∧i∧m A(Gi , D, t,w), these sets have the following properties:

(b1) P(D, t,w) ∼ P(t,w).
(b2) w→ ♦ P(t,w) → A(Gi , D, t,w) = A(Gi , D, t,w→).
(b3) X ♦ A(Gi , D, t,w) → ⊆ ∗= X ∼ P(D,w, t).
(b4) w→ ♦ X ∃ X ♦ A(Gi , D, t,w) → C(t,w→) ∼ X .
(b5) X,Y ♦ A(Gi , D, t,w) → X = Y ∩ X ∪ Y = ⊆.
(b6) P(D,w, t) ∼ ⋃

1∧i∧m A(Gi , D, t,w).
(b7) X1 ♦ A(G1, D, t,w)∃ . . .∃ Xm ♦ A(Gm, D,w, t) → X1 ∪ . . .∪ Xm ∗= ⊆.
(b8) X ♦ A(Gi , D,w, t) ∃ Y ♦ A(Gk, D,w, t) → ≤Z(Z ♦ A(Gi ⊃ Gk, D −

{Gi ,Gk}) ⊃{Gi ⊃ Gk},w, t) ∃ Z ∼ X ∪ Y ).
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Comment: (b2–7) are taken over from D3. (b8) corresponds to D4; case 2 shows that
Z ∼ X ∪ Y cannot be replaced by Z = X ∪ Y . From (b8) we get

(c) X ♦ A(Gi , D, t,w) → ≤Y (Y ♦ A(G, {G}, t,w) ∃ Y ∼ X)

the biggest coalition G can bring about everything that smaller coalitions can bring
about.

The completeness condition corresponding to D3, (b7) is:

(b9) w→ ♦ P(t,w) → C(t,w) ♦ A(G, {G}, t,w).

If we count Mother Nature, n, among the agents we should only consider coalition
structure D such that {n} ♦ D, since there can be no cooperation with chance.

From (b9) we obtain P(t,w) ∼ P({G}, t,w), and in view of (b1)

(d) P(t,w) = P({G}, t,w) and
(e) P(D, t,w) ∼ P({G}, t,w).

Collective alternatives are more general than dependent alternatives obtained from
D3 by dropping (b6), as our case 1 shows.2
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da Costa Meets Belnap and Nelson

Hitoshi Omori and Katsuhiko Sano

Abstract There are various approaches to develop a system of paraconsistent logic,
and those we focus on in this paper are approaches of da Costa, Belnap, and Nelson.
Ourmain focus is daCosta, andwedealwith a system that reflects the idea of daCosta.
We understand that the main idea of da Costa is to make explicit, within the system,
the area in which you can infer classically. The aim of the paper is threefold. First, we
introduce and present some results on a classicality operator which generalizes the
consistency operator of Logics of Formal Inconsistency. Second,we show thatwe can
introduce the classicality operator to the systems of Belnap. Third, we demonstrate
that we can generalize the classicality operator above to the system of Nelson. The
paper presents both the proof theory and semantics for the systems to be introduced,
and also establishes some completeness theorems.

Keywords Paraconsistent logic · Paracomplete logic · Four-valued logic · Consis-
tency operator · Classicality operator
1 Introduction

“The notion of a theory’s being trivial must be distinguished from its being con-
tradictory.” This is the slogan for paraconsistent logic. Beyond this, paraconsistent
logicians disagree on many points. Consequently, many different approaches to sys-
tems of paraconsistent logic have been developed.
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Table 1 List of four-valued truth tables for logical connectives of BS4

The main subject of this paper is the notion of consistency operator which reflects
the idea of da Costa, and later introduced and studied intensively by Carnielli,
Coniglio,Marcos and their collaborators by developing a family of systems known as
Logics of Formal Inconsistency (LFIs hereafter). The idea of da Costa was to control
the behavior of contradictions by means of the notion of consistency operator so that
contradictions do not always explode. There are infinitely many systems of paracon-
sistent logic which reflect this idea, and many criticisms against those systems are
known.Wemay raise two of them. One is that its semantics is non-compositional and
is therefore difficult to grasp, and the other is that material conditional, which some-
times makes the system trivial together with other non-logical axioms, is present.

Before turning to these objections, let us clarify our understanding of da Costa’s
idea. One of the features of LFIs is that Law of ExcludedMiddle (LEM) with respect
to paraconsistent negation is always assumed in those systems. This is probably
influenced by one of the four criterions for paraconsistency given by da Costa
(cf. [6, p. 498]) in which he requires paraconsistent systems to “contain the most
part of the schemata and rules of C0” where C0 is the classical propositional calcu-
lus.1 In view of this criteria, it seems to be reasonable to assume LEM with respect
to paraconsistent negation since in many cases, though not always, validity of LEM
is independent of validity of ex contradictione quodlibet. But at the same time, it has
been realized especially by the system studied by Belnap and Dunn, that not only
inconsistency, but also incompleteness should be taken care of in certain situations.
In these cases, da Costa’s idea can be understood as follows: make explicit the cases
whenwe can apply inferences of classical logic. And if we accept this understanding,
it is more appropriate to refer to the characteristic connective reflecting da Costa’s
idea not as consistency but as classicality or normality. In this paper, we make use
of the former.

With these observations in mind, let us now consider the above two objections.
For this purpose, we start with a four-valued system BS4 introduced in [13] along the
lines of research of LFIs. BS4 is proved to be complete with respect to the following
truth tables (cf. Theorem 2) (Table 1):

Note here that the designated values are t and b (we denote byD the set of designated
values). In view of our understanding of da Costa’s idea, the above truth table for ⊥,
namely the classicality operator, must be reasonable. Indeed, it clearly distinguishes

1 Interestingly, a similar criteria is also considered by Jaśkowski (cf. [8, p. 38]) who is the other
founder of modern paraconsistent logic.
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(A1) ⊥A→(A ♦ ∃ A) (A5) ∃(A ♦ B)∧(∃ A ∧ ∃ B)

(A2) ⊥A→(A→(∃ A→ B)) (A6) ∃(A→ B)∧(A ∧ ∃ B)

(A3) (A→⊥A)∧(∃ A→⊥A) (A7) ∃∃ A∧ A
(A4) ∃(A ∧ B)∧(∃ A ♦ ∃ B) (A8) ∃(⊥A)∧(A∧ ∃ A)

‘classical’ values t and f from ‘non-classical’ values b and n. It is also possible to
consider a consistency operator as well. We shall consider this in Sect. 3.

Now, since the four-valued tables for conjunction, disjunction and negation coin-
cide with that of Belnap [1], this must settle, at least to a certain extent, the first objec-
tion that the semantics for systems following da Costa’s idea are non-compositional.2

However, this four-valued system still keeps the material conditional. This is
because the approach taken by da Costa and his followers accept the validity of
material conditional. But the challenge provided by the second objection is important
for the understanding of the notion of classicality operator. So the main question in
this paper is: Can the notion of classicality operator be introduced in systems without
the help of material conditional? This question may be interpreted at least in the
following two ways:

• Can the notion of classicality operator be introduced in systems in which the
material conditional is not definable?

• Can the notion of classicality operator be generalized to systems in which a con-
ditional different from material conditional is definable?

In the present paper, we will consider the following two questions which are special
cases of the above two questions.

• Can the notion of classicality operator be introduced in four-valued system of
Belnap and Dunn without material conditional being definable?

• Can the notion of classicality be generalized to Nelson’s system within which a
constructive conditional is deployed instead of the material conditional?

Note here that there is still a worry on what we mean by classicality operator, since
the semantic frameworks for Belnap-Dunn logic and Nelson logic are not necessarily
the same. Our original motivation was to begin with the system BS4, and shed some
light on the classicality operator introduced in that system. Therefore, to be more
precise, the question we deal with should be read as follows.

• Can the classicality operator of BS4 be introduced in a four-valued system of
Belnap and Dunn without the material conditional being definable?

• Can the classicality operator of BS4 be generalized to Nelson’s system within
which a constructive conditional is deployed instead of the material conditional?

2 Note here that BS4 is not the first many-valued system that reflects da Costa’s idea. Indeed,
there are systems such as LFI1 and LFI2, developed in [4], which are complete with respect to
three-valued semantics. Therefore, we may say that the first objection was already settled then. But
at the same time, we are widening our scope to deal with incomplete situations and therefore it must
(Footnote 2 continued)
be fair to say that the argument against the first objection becomes more widely acceptable by the
presence of the system BS4.
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Then, the purpose of the present paper is to answer these two questions in the affirma-
tive.3 In short, our results show that the idea of classicality operator does not necessar-
ily force us to accept material conditional. We also suggest a tentative understanding
of classicality based on the results we present in this paper.

The paper is organized as follows. After some preliminaries in the next section,
we review and generalize the LFIs, and present a thesis which characterizes the
classicality operator of BS4 in the third section. This will be a starting point for our
discussion. We also give the full proof of the completeness theorem for BS4 which
was roughly sketched in [13]. Then, we turn to two questions we addressed above
which will be taken up in sections four and five respectively. In particular, in order
to answer the second question, we make use of the characteristic thesis above also
in a constructive context. Finally, the sixth section concludes the paper.

2 Preliminaries

Before starting our discussion, let us provide some preliminaries. First, our syn-
tax consists of a finite set P of propositional connectives and a countable set Var
of propositional variables which we refer to as LP. Furthermore, we denote by
FormP the set of formulas defined as usual in LP. In this paper, we always assume
that {∃,∧,♦} ∗ P and just include the propositional connective(s) different from
{∃,∧,♦} in the subscript of LP. For example, we write L⊥ and Form⊥ to mean
L{∃,∧,♦,⊥} and Form{∃,∧,♦,⊥} respectively. Moreover, we denote a formula of LP
by A, B, C , etc. and a set of formulas of LP by Γ , Δ, Σ , etc.

Second, we need to specify our four-valued semantics. Given the set FormP of
the formulas ofLP, we define the notions of valuation and semantic consequence in
terms of the four-values t, b, n, and f . Intuitively speaking, a valuation is a ‘homo-
morphism’ from the ‘term algebra’ (FormP, P) to an algebra ({t, b, n, f}, P).

Definition 1 Define E := {t, b, n, f}. A four-valued valuation for FormP is the
unique extension v : FormP ≤ E of a mapping Var ≤ E that is induced by the
truth tables for connectives of P listed in Table 1.

Definition 2 Define the set D ∗ E of the designated values as {t, b}. Let Σ ↔
{A} be a subset of FormP. Then, A is a four-valued semantic consequence from
Σ (notation : Σ |=4 A) if, for all four-valued valuations v for FormP such that
v(B) ∨ D for all B ∨ Σ , v(A) ∨ D . A formula A ∨ FormP is a four-valued
tautology if ⊆ |=4 A, i.e., v(A) ∨ D always holds for any four-valued valuation v for
FormP.

Third, the following is a list of axioms which we make use of in the present paper.
Note here that A∧ B is defined as (A→ B) ∧ (B → A) as usual.

Fourth, the rules of Table 2 are the rules for the natural deduction systemwhichwe
refer to in the present paper. Then, we introduce the base system of natural deduction
in this paper as follows.

3 Note that two questions are quite different and thus our approaches to these questions will be also
quite different.
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Table 2 Natural deduction rules of this paper

Definition 3 N BD is a system of natural deduction which consists of the inference
rules (∃ ∃), (∃∧), and (∃ ♦) as well as all the introduction and elimination rules
of ∧ and ♦.

Note here that although there are some attempts of developing natural deduction
systems for da Costa’s systems Cn (e.g. [5], and some of the references therein),
Hilbert-style presentation has always been a preferred style to develop proof theories
in LFIs. But in the present paper, we develop the proof theory not only by Hilbert-
style system but also by natural deduction systems, following the presentation of
[15], with a hope of adding some new perspectives on the behavior of consistency
operator.

3 Logics of Formal Inconsistencies Revisited and Generalized

Following the pioneering works of da Costa and his collaborators on systems Cn

[6], important progress was made by Carnielli, Marcos, and Coniglio [2, 3]. Their
contribution is that they generalized the consistency so that the system has the notion
of consistency operator as a primitive connective not as a defined connective as
in da Costa’s systems Cn . This generalization enabled them to clarify the essence
of da Costa’s idea. However, the studies of LFIs were limited to systems which
are paraconsistent but not paracomplete, and the case when the systems are both
paraconsistent and paracomplete remained unexplored.4 Based on these, we first

4 Note here that there is an attempt [10] to develop systems which are both paraconsistent and
paracomplete, following the line of research of da Costa. Recall that a system is called paracomplete
when the law of excluded middle is not valid in the system.
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develop a new system which is both paraconsistent and paracomplete, and then
extend it to a four-valued system. Note here that we work with the languageL⊥,→ in
this section except in the considerations on consistency operator.

Definition 4 Let CPC+ be the extension of the negation-less fragment of intuition-
istic propositional calculus (IPC+) enriched by A ♦ (A → B).5 Then, systems cBS
and BS are obtained by adding axioms (A1)–(A3) to IPC+ and CPC+ respectively.
Furthermore, mbC, the base system in [2], consists of (A2) and A ♦ ∃ A together
with CPC+.

Definition 5 A unary operation ¬ called strong negation6 is defined as ¬A := A→
(⊥X ∧ X ∧ ∃ X) for some X in the language L⊥,→.

Some of the differences between mbC and BS are as follows. First, the law of
excluded middle with respect to ∃ holds without any restriction in mbC whereas it
is restricted in BS as above. This makes the system BS not only paraconsistent, but
also paracomplete. Second, (A3) does not hold in mbC whereas it does in BS. One
of the consequences of this fact is realized in the following theorem.

Theorem 1 The following formula, which can be regarded as a characterization of
classicality, is provable in cBS, and thus in BS, but not in mbC:

⊥ A ∧ (¬(A ∧ ∃ A) ∧ (A ♦ ∃ A)) (1)

where ¬ is the strong negation.

Proof An outline of the proof for (1) in cBS is as follows. Since the left-to-right
direction is immediate by the axioms (A1) and (A2), we outline the other way around.
Let us start with (¬(A∧∃ A)∧ (A∧∃ A))→⊥A, a special case of ex contradictione
quodlibet with respect to ¬, which is equivalent to (¬(A ∧∃ A)∧ A)→(∃ A→⊥A).
By the right-to-left direction of (A3), we obtain (¬(A ∧ ∃ A) ∧ A) → (A → ⊥A),
and then by the contraction of the premises, we obtain (¬(A ∧ ∃ A) ∧ A) → ⊥A.
Likewise, by taking the left-to-right direction of (A3), we obtain (¬(A∧∃ A)∧∃ A)

→ ⊥ A. Recalling that having (A ∧ B)→ D and (A ∧ C)→ D is equivalent to have
(A ∧ (B ♦ C)) → D in general, we thus get (¬(A ∧ ∃ A) ∧ (A ♦ ∃ A)) → ⊥A, the
desired result.

As for the non-provability of (1) in mbC, consider the ordinary two valued truth
tables for the classical propositional calculus, and always assign the value false to

5 We may of course add the Peirce’s law, i.e. ((A → B)→ A)→ A, in place of A ♦ (A → B) Indeed,
these two formulas are equivalent in negation-less fragment of classical propositional calculus as
A ♦ B and (A→ B)→ B are equivalent in general. The reason we employed A ♦ (A→ B) is because
we are simply following the convention in the study of LFIs. For an example of an axiomatization
of IPC+, see e.g. (1)–(9) of [6, pp. 498–499] which is the axiomatization given by Kleene.
6 Note here that in the study of Nelson’s systems, we also use the name strong negation to refer to
a different negation. But we will here follow the convention of LFIs, not of Nelson’s systems, since
our main focus is on the systems that generalize the framework of LFIs. Note further that strong
negation ¬ behaves as classical negation in BS.
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⊥A. Then, these truth tables validate the axioms ofmbC andmodus ponens preserves
the value true, but (1) takes the value false, as desired. ∼∩
Remark 1 First, note that the two valued truth tables deployed above show that (A3)
itself is not provable in mbC. Second, it also seems to be interesting to explore the
subsystem of BS that can be obtained by eliminating (A3) since it will enable us
to handle all the existing LFIs in a uniform perspective which is not possible by
BS. The further details on the system BS and its subsystems will be kept for another
occasion. Finally, although the main questions considered in this paper is classicality
operator of BS4, it seems that an important characterization from a proof theoretical
viewpoint can be given already in a weak system such as cBS. But again, further
examination of (1) will be kept for another occasion.

Now we extend the system BS into a four-valued system. This kind of system had
not existed and one of the reasons seems to be that the scope of LFIs was limited to
paraconsistent but not paracomplete systems, as we noted above.

Definition 6 The system BS4 consists of the axioms (A4)–(A8) added to BS.

Althoughwe focus on theHilbert-style presentation in this section,wemaypresent
BS4 in terms of natural deduction as follows. This should be useful for readers who
are more familiar with natural deduction.

Definition 7 N1BS4 is the expansion of N BD enriched by (⊥1), (⊥2), (⊥3), (⊥4),
(⊥ →1), (⊥ →2), (∃ ⊥ →), (→1) and (→2), together with the introduction and elimi-
nation rules of →.

Proposition 1 Given any set Σ ↔ {A} of formulas, Σ ∪N1BS4 A iff Σ ∪BS4 A.

The semantics we consider is given by the notion of four-valued valuation as in
Definition 1. Based on this, we prove the following theorem.

Theorem 2 A is four-valued tautology iff ∪BS4 A, for all formulas A of L⊥,→.

The soundness part, i.e. to prove that all the theses of BS4 are four-valued tau-
tology, is easy as usual. Indeed, we only have to check that all the axioms take the
designated values for any four-valued valuation for Form⊥,→, and that modus ponens
preserves the designated values. Therefore, we will focus on the harder direction,
completeness.

Themethodwe employ here is the so-calledKalmár’smethodwhich can be found,
for example, in [11, p. 42] for the case applied to classical propositional calculus.
There are also some examples applied to systems of paraconsistent logic, such as
[17] and [4]. In the former, the system known as P1 is proved to be complete with
respect to a three-valued semantics, and in the latter two systems LFI1 and LFI2 are
proved to be complete with respect to another three-valued semantics.

To begin with, we list some theses that are provable in BS4. Note here that ¬
defined inBS is already classical and so, any theses of classical propositional calculus
containing classical negation hold in BS4 as well.
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(1) ((A ∧ ¬∃ A) ♦ (¬A ∧ ∃ A))→⊥A (2) ⊥A→¬∃⊥A
(3) ((A ∧ ∃ A) ♦ (¬A ∧ ¬∃ A))→¬ ⊥ A (4) ¬ ⊥ A→∃⊥A
(5) ¬∃(A→ B)∧(¬A ♦ ¬∃ B) (6) ¬A→(A→ B)

(7) A→(B → A) (8) ¬(A→ B)∧(A ∧ ¬B)

(9) (A ∧ ¬∃ A) ♦ (A ∧ ∃ A) ♦ (¬A ∧ ¬∃ A) ♦ (¬A ∧ ∃ A)

Lemma 1 The following formulas are provable in the system BS4.

Proof For (1), it suffices to prove (A ∧ ¬∃ A) → ⊥A and (¬A ∧ ∃ A) → ⊥A.
But these can be proved easily in view of equivalences ⊥A ∧ (A ∧ ¬∃ A) and
⊥A∧(¬A∧∃ A) respectively which are both equivalent to the characteristic thesis
⊥A ∧ (¬(A ∧ ∃ A) ∧ (A ♦ ∃ A)). As for (3), it suffices to prove (A ∧ ∃ A)→¬ ⊥ A
and (¬A ∧ ¬∃ A)→¬ ⊥ A. But these can be proved easily in view of the classical
negation, defined in BS4, of the characteristic thesis. For (2) and (4), note first that
the characteristic thesis is equivalent to ⊥A ∧ ¬(A ∧ ∃ A), and therefore we have
¬ ⊥ A ∧ (A ∧ ∃ A). In view of this equivalence, (A8) of BS4 is equivalent to
∃ ⊥A ∧¬ ⊥ A which gives the desired results. (5) is easily proved by (A6) and the
properties of classical negation defined in BS4, and (6) to (8) are well-known theses
of classical propositional calculus. Finally, (9) is equivalent to the law of excluded
middle with respect to classical negation ¬ defined in BS4. Indeed, the disjunction
of the first two disjuncts are equivalent to A ∧ (¬∃ A ♦ ∃ A), hence equivalent to
A since ¬∃ A ♦ ∃ A is a special case of the law of excluded middle with respect to
¬. Likewise, the disjunction of the latter two disjuncts are equivalent to ¬A. Thus
(9) is equivalent to A ♦ ¬A, and therefore a thesis of BS4. ∼∩
Remark 2 Note that (1) and (3) is already provable in BS whereas the provability of
other formulas related to ∃ depends on axioms unique to BS4.

By making use of this lemma, we obtain the following lemma which is the key
for the completeness proof.

Lemma 2 Given a four-valued valuation v, we define for each formula A an asso-
ciated formula Av:

Av =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A ∧ ¬∃ A v(A) = t
A ∧ ∃ A i f v(A) = b
¬A ∧ ¬∃ A v(A) = n
¬A ∧ ∃ A v(A) = f

Now, let F be a formula whose set of atomic variables is {p1, p2, . . . , pn}, and let
Δv be the set {pv

1, pv
2, . . . , pv

n}. Then, Δv ∪ Fv.

Proof We proceed by induction on the number of connectives in F .
Base If n = 0, then F is pi , so we need to show that pv

i ∪ pv
i , but this holds in BS4.

Induction Step Suppose that the desired result holds for the cases where the number
of connective is less than n + 1. We show that it also holds in case of n + 1. We split
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the cases depending on the main connective. Here, we only deal with cases where
the main connectives are ⊥ and →.
Case 1 If F = ⊥G, then by induction hypothesis, we have Δv ∪ Gv. We split the
cases further depending on the value of G.

• If v(G) = t or f , then we have Δv ∪ G ∧ ¬ ∃ G or Δv ∪ ¬G ∧ ∃ G respectively,
and henceΔv ∪ ⊥G∧¬∃ ⊥G by (1) and (2). On the other hand, by the definition of
the valuation, we have v(⊥G) = t, namely v(F) = t. This shows that the desired
result holds. Indeed, Δv ∪ ⊥G ∧ ¬∃ ⊥G is Δv ∪ F ∧ ∃ ¬F , and therefore
Δv ∪ Fv.

• If v(G) = b or n, then we haveΔv ∪ G ∧∃ G orΔv ∪ ¬G ∧¬∃ G respectively,
and henceΔv ∪ ¬⊥G∧∃⊥G by (3) and (4). On the other hand, by the definition of
the valuation, we have v(⊥G) = f , namely v(F) = f . This shows that the desired
result holds. Indeed, Δv ∪ ¬ ⊥ G ∧ ∃ ⊥G is Δv ∪ ¬F ∧ ∃ F , and therefore
Δv ∪ Fv.

Case 2 If F = G → H , then by induction hypothesis, we haveΔv ∪ Gv andΔv ∪ Hv.
We split the cases further depending on the values of G and H .

• If v(G) = f or v(G) = n or v(H) = t, then we have Δv ∪ ¬G ∧ ∃ G or
Δv ∪ ¬G ∧ ¬∃ G or Δv ∪ H ∧ ¬∃ H respectively. Since the first two cases
imply Δv ∪ ¬G, we obtain Δv ∪ ¬G or Δv ∪ H ∧ ¬∃ H . Then, by (6) or
(7) respectively together with (5), we obtain Δv ∪ (G → H) ∧ ¬∃(G → H).
On the other hand, by the definition of the valuation, we have v(G → H) = t,
namely v(F) = t. This shows that the desired result holds. Indeed, Δv ∪ (G →
H) ∧ ¬∃(G → H) is Δv ∪ F ∧ ¬∃ F , and therefore Δv ∪ Fv.

• If v(G) = t or b, then we have Δv ∪ G ∧ ¬∃ G or Δv ∪ G ∧ ∃ G respectively,
but in both cases, we obtain Δv ∪ G.

– If v(H) = b, then we have Δv ∪ H ∧∃ H and therefore Δv ∪ H ∧ (G ∧∃ H)

which implies Δv ∪ (G → H) ∧ ∃(G → H) by (7) and (A6).
– If v(H) = n, then we haveΔv ∪ ¬H ∧¬∃ H and thereforeΔv ∪ (G ∧¬H)∧

¬∃ H which implies Δv ∪ ¬(G → H) ∧ ¬∃(G → H) by (8) and (5).
– If v(H) = f , then we have Δv ∪ ¬H ∧ ∃ H and therefore Δv ∪ (G ∧ ¬H) ∧

(G ∧ ∃ H) which implies Δv ∪ ¬(G → H) ∧ ∃(G → H) by (8) and (A6).

On the other hand, in each case, we have v(G → H) = b or n or f , namely v(F) =
b or n or f by the definition of the valuation respectively. These show that the
desired results hold. Indeed, for the case v(H) = b, Δv ∪ (G → H) ∧ ∃(G → H)

is Δv ∪ F ∧ ∃ F , and therefore Δv ∪ Fv.

This completes the proof. ∼∩
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By making use of this lemma, we prove the completeness part of Theorem 2.

Proof of Theorem 2 Let F be any four-valued tautologies and Δ be the set of propo-
sitional variables occurring in F . Then by the previous lemma, we have Δv ∪ Fv.
Furthermore, since F is a four-valued tautology, one of Δv ∪ (F ∧ ¬∃ F) or Δv ∪
(F ∧ ∃ F) holds. Therefore, in both cases, we obtain Δv ∪ F .

Now, let Δv
k be the set Δ

v \ pk , and suppose that four valuations v1, v2, v3 and v4
be those that satisfy Δ

v1
k = Δ

v2
k = Δ

v3
k = Δ

v4
k (=def. Δk) and v1(pk) = t, v2(pk) =

b, v3(pk) = n and v4(pk) = f . Then, for v1, Δv ∪ F is Δ
v1
k , {pk ∧ ¬∃ pk} ∪ F

by the definition of Av, and therefore, by the deduction theorem, we have Δ
v1
k ∪

(pk ∧ ¬∃ pk) → F . Similarly, we obtain Δ
v2
k ∪ (pk ∧ ∃ pk) → F , Δ

v3
k ∪ (¬pk ∧

¬∃ pk) → F and Δ
v4
k ∪ (¬pk ∧ ∃ pk) → F for v2, v3 and v4 respectively. Putting

these results together by the fact that Δ
v1
k = Δ

v2
k = Δ

v3
k = Δ

v4
k = Δk , we have

Δk ∪ ((pk ∧ ¬ ∃ pk) ♦ (pk ∧ ∃ pk) ♦ (¬pk ∧ ¬ ∃ pk) ♦ (¬pk ∧ ∃ pk))→ F . Since
we have (9), we may conclude that Δk ∪ F . And after repeating this procedure for
k − 1 more times, we obtain ∪ F which is the desired result. ∼∩

Before turning to further considerations on the classicality operator of BS4, we
will briefly consider a consistency operator in four-valued logic. The truth table for
the classicality operator ⊥ reflects our understanding of da Costa’s idea well, since it
clearly distinguishes ‘classical’ values t and f from ‘non-classical’ values b and n.
And in a similar manner, it is also possible to consider the notion of a consistency
operator as well. There are several possibilities, but a simple way to distinguish the
consistency and the inconsistency is to consider the following operation:

A ⊥⊃ A
t t
b f
n t
f t

This is because the only inconsistent value is b, and the above operator ⊥⊃ clearly
distinguishes the inconsistent value from other consistent values.

Then, what is the relation between the classicality operator ⊥ and the consistency
operator ⊥⊃? One of the answers is that their expressive power is equivalent if we
assume the truth tables for ∃,∧,♦ and →. This may be easily observed by the fact
that both truth tables are equivalent to the truth table enriched by ≡ that satisfies the
following:

A ≡
t f
b f
n f
f f
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Indeed, on the one hand, ⊥A ∧ A ∧ ∃ A and ⊥⊃ A ∧ A ∧ ∃ A define ≡ in both
expansions by ⊥ and ⊥⊃ respectively. On the other hand, if we have ≡, then we can
define the strong negation¬A of A by A→≡. By making use of this strong negation,
¬(A ∧ ∃ A) ∧ (A ♦ ∃ A) and ¬(A ∧ ∃ A) define ⊥ and ⊥⊃ respectively.

Another point to be noted is the relation between ⊥⊃ and the formula ∃(A ∧ ∃ A)

whichwas the key formula in daCosta’s systemC1. In some of the truth tables such as
one of the four-valued generalizations of the truth tables7 in [6, p. 499], ∃(A ∧∃ A)

indeed defines ⊥⊃. However, this is not the case in our truth tables, as one can easily
observe. The crucial point is that when the formula ∃(A ∧ ∃ A) is given a special
role to control the behavior of contradictions just as the consistency of A in LFIs,8

it is equivalent to the formula ¬(A ∧ ∃ A) where ¬ is strong negation.9 And if we
consider the latter formula, then this will define ⊥⊃ in our truth tables, as we have
observed above.

In view of these facts, we may develop the proof theory of systems with ⊥⊃ as
well, but we shall keep the detail for another paper. And instead, we will continue
our investigation on the classicality operator of BS4.

4 Do We Really Need the Material Conditional?

Now, having the systemBS4 above, one of the natural questions from those following
Belnap-Dunn tradition must be as follows: is the material conditional essential in
formalizing the idea of classicality operator?Recall here that the notion of classicality
helps us in clarifying the area where we can apply inferences of classical logic. Since
some of those including Priest and Beall do not hesitate to make use of classical
inferences when it is safe enough to do so, the idea of da Costamust be of interest. All
this being said, the answer to the above question is in the affirmative. In other words,
we can enrich the system of Belnap-Dunn with classicality operator without being
forced to accept the material conditional. Our plan for this section is as follows. First,
by making use of the natural deduction formulation of BS4, we introduce a system
without the material conditional in the systems. Second, we prove the completeness
of this systemwith respect to a semantics obtained by adding a classicality operator to
Belnap-Dunn’s four-valued semantics. Andfinally, we show thatmaterial conditional
cannot be defined in the semantics.

To begin with, we consider an alternative formulation of BS4 in terms of natural
deduction. While the rules (⊥ →1), (⊥ →2) and (∃⊥ →) of N1BS4 contain both the

7 The truth tables there are known as the truth tables for the system P1 of Sette studied in [17].
8 Namely, ∃(A ∧ ∃ A)→(A→(∃ A→ B)) holds, just like (A2) of cBS.
9 The outline of the proof for the equivalence is as follows. First, ¬(A ∧ ∃ A) → ∃(A ∧ ∃ A)

follows as a special case of ¬A → ∃ A, and this is equivalent to A ♦ ∃ A which is assumed in
concerned systems. For the other way around, we assume ∃(A ∧ ∃ A) and (A ∧ ∃ A). Then, by
the special role given to ∃(A ∧ ∃ A), the conjunction of the formulas are explosive. So, we have
∃(A ∧ ∃ A) ∧ (A ∧ ∃ A) → ¬(A ∧ ∃ A) in particular, and finally by reductio with respect to ¬,
we obtain the desired formula. For the stronger definition, see Theorem 1.
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connectives ⊥ and →, we can reformulate the rule set for ⊥ and → ofN1BS4 into the
rule set of N2BS4 where the behaviors of those connectives are modular.

Definition 8 N2BS4 consists of (⊥1), (⊥2), (⊥3), (⊥4), (⊥5), (→1) and (→2) from
Table 2 plus the rules of N BD and the introduction and elimination rules of →.10

Proposition 2 Given any set Σ ↔ {A} of formulas, Σ ∪N1BS4 A iff Σ ∪N2BS4 A.

Proof First, note that it follows from (⊥5) that ⊥A,∃ ⊥A ∪N2BS4 B (by (⊥1)) and
∪N2BS4 ⊥A♦∃ ⊥A (by (⊥2)). Then, the left-to-right direction is easy to establish, and
so, let us concentrate on the right-to-left direction here. The hardest part consists in
showing the derivability of (⊥5) ⊥ ⊥ A inN1BS4. In view of the characteristic thesis
(1) of ⊥, it suffices to demonstrate that ⊥A,∃ ⊥A ∪N1BS4 B and ∪N1BS4 ⊥A ♦∃ ⊥A.
The former is established as follows.

⊥A
A ♦ ∃ A

(⊥2)
∃⊥A [A]1

∃ A
(⊥3) [A]1 ⊥A

B
(⊥1)

∃ ⊥A [∃ A]2
A

(⊥4) [∃ A]2 ⊥A
B

(⊥1)
B

1, 2

Let us move to the latter. Since ¬ is the classical negation defined in BS4, note that
we can use (RAA). Then, we proceed as follows. Assume ¬(⊥A ♦ ∃ ⊥A). Then, we
can derive ¬ ⊥ A and ¬∃⊥A, since ¬ is the classical negation defined in BS4. By
Lemma 1 (6) and ¬ ⊥ A, we obtain ∃⊥A. Together with ¬ ∃ ⊥A, we get ≡. (RAA)
tells us that (⊥A ♦ ∃ ⊥A) by discharging the initial assumption ¬(⊥A ♦ ∃ ⊥A). This
finishes the proof of the right-to-left direction. ∼∩

This proposition allows us to obtain the natural deduction calculi which is the
conditional →-free fragment of the underlying syntax of BS4.

Definition 9 N BD⊥ consists of (⊥1), (⊥2), (⊥3), (⊥4), (⊥5) from Table 2 in addition
to all the rules ofN BD.

As for the semantics forL⊥, we make use of the notions of four-valued valuation
and semantic consequence fromDefinitions 1 and 2.Nowwe turn to the completeness
of N BD⊥.
Theorem 3 Given any set Σ ↔ {A} of formulas, Σ ∪N BD⊥ A iff Σ |=4 A.

Proof (Outline) For convenience, we reformulate our semantics based on truth tables
forL⊥ in terms of the positive and negative clauses as follows. We interpret t, b, n,
f as {1}, {0, 1}, ⊆, {0}, respectively. Then, we can rewrite the truth table of ⊥A by the
following two clauses:

1 ∨ v(⊥A) iff (1 ∨ v(A) and 0 /∨ v(A)) or (1 ∈∨ v(A) and 0 ∨ v(A))

0 ∨ v(⊥A) iff (1 ∨ v(A) iff 0 ∨ v(A))

10 More results on related systems of N2BS4 is proved in [16].
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Moreover, we can show that Σ |=4 B iff, for all valuations v such that 1 ∨ v(C)

for all C ∨ Σ , 1 ∨ v(B). Then, let us establish direction corresponding to the
completeness, i.e., the right-to-left direction.We show the contrapositive implication.
So, suppose that Σ ∈∪N BD⊥ A. Then, we can find a prime theory Σ+ (with respect
toN BD⊥) such that Σ ∗ Σ+ and A /∨ Σ+. Let us define vΣ+ : Var ≤ P({0, 1})
as follows:

1 ∨ vΣ+(p) iff p ∨ Σ+, 0 ∨ vΣ+(p) iff ∃ p ∨ Σ+.

Now, what remains to be proved is the equivalences:

1 ∨ vΣ+(C) iff C ∨ Σ+, 0 ∨ vΣ+(C) iff ∃ C ∨ Σ+.

Indeed, with this result at hand, we may conclude that 1 ∨ vΣ+(C) for all C ∨ Σ but
1 /∨ vΣ+(A), i.e.,Σ ∈|=4 A as desired. Here we only check the above equivalences for
the case where C is of the form ⊥B. For the positive clause, we proceed as follows.

1 ∨ vΣ+(⊥B) iff (1 ∨ vΣ+(B) and 0 /∨ vΣ+(B)) or (0 ∨ vΣ+(B) and 1 /∨ vΣ+(B))

iff (B ∨ Σ+ and ∃ B /∨ Σ+) or (∃ B ∨ Σ+ and B /∨ Σ+) (by I.H.)

We need to show that this last line is equivalent with ⊥B ∨ Σ+. Assume that the last
line holds. Consider the disjunct B ∨ Σ+ and ∃ B /∨ Σ+. Moreover, suppose for
contradiction that ⊥B /∨ Σ+. Since∪N BD⊥ ⊥B ♦∃⊥B, we have∃ ⊥B ∨ Σ+. Then,
the rule (⊥3) and B ∨ Σ+ jointly imply ∃ B ∨ Σ+, which contradicts ∃ B /∨ Σ+.
We can offer the similar argument for the other disjunct. Conversely, suppose that
⊥B ∨ Σ+. We need to demonstrate the last line of the displayed statements. Suppose
for contradiction that the last line fails, i.e., (B ∨ Σ+ implies ∃ B ∨ Σ+) and
(∃ B ∨ Σ+ implies B ∨ Σ+). By the rule (⊥2) and our assumption ⊥B ∨ Σ+, we
obtain B ♦ ∃ B ∨ Σ+, which implies B ∨ Σ+ or ∃ B ∨ Σ+. Here we concentrate
on the disjunct ∃ B ∨ Σ+. By our counterfactual assumption, we obtain B ∨ Σ+.
By the rule (⊥1) and B,∃ B, ⊥B ∨ Σ+, we get A ∨ Σ+, which contradicts A /∨ Σ+.

Let us move to the negative clause. First of all, note that 0 ∨ vΣ+(⊥B) iff 1 /∨
vΣ+(⊥B). Then, it suffices to show that ⊥B /∨ Σ+ iff ∃ ⊥B ∨ Σ+, in order to
establish the negative clause. However, this is an easy consequence of the following
inN BD⊥: ∪N BD⊥ ⊥B ♦ ∃ ⊥B and ⊥B,∃ ⊥B ∪N BD⊥ A. ∼∩

Finally, we prove that the material conditional is not definable in N BD⊥ by
making use of the semantics. As a first step, we make explicit what we understand
by classical negation and the material conditional with the help of the notion of
four-valued semantic consequence from Definition 2.

Definition 10 Let |=4 be a semantic consequence relation from Definition 2. Then,

(i) Any unary connective ¬ which satisfies A ∧ ¬A |=4 B and B |=4 A ♦ ¬A is
referred to as a classical negation,
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(ii) Any binary connective ≤ which satisfies A ∧ (A ≤ B) |=4 B and C |=4
A ♦ (A ≤ B) is referred to as a material conditional.

Remark 3 The intuitions behind the above definitions are as follows. First, in one
of the formulations of classical propositional calculus, ex contradictione quodlibet
and the law of excluded middle are the formulas characterizing classical negation,
and this fact is reflected in (i). Second, there are some formulations of classical
propositional calculus not having negation as a primitive connective, but defined by
the “arrow-bottom method” (cf. Lemma 3). And from such a viewpoint, conditions
in (ii) correspond to the conditions in (i). It is also worth noting that A ♦ (A ≤ B)

occurring in (ii) is the formula that fills the gap between IPC+ and CPC+ (cf.
Definition 4).

Remark 4 If we reformulate the above conditions for classical negation, then we
obtain the equivalence v(¬A) ∨ D iff v(A) ∈∨ D . As for the conditions for the
material conditional, we do not have the equivalence v(A → B) ∨ D iff v(A) ∈∨
D or v(B) ∨ D , since we do not have the implication if v(B) ∨ D then v(A →
B) ∨ D .

Remark 5 Note that, as we can easily verify, the negation ¬ and → in BS4 both
satisfy the above conditions respectively. But these two are only examples and there
are more connectives which satisfy the above conditions. In other words, the above
conditions do not necessarily determine the unary or binary connective uniquely.

Our purpose is to show the undefinability of material conditional in L⊥, but it is
actually sufficient to consider the definability of classical negation, according to the
following lemma:

Lemma 3 If a material conditional is definable in L⊥, so is a classical negation.

Proof Note that we have the bottom particle ≡ defined as ≡=def. ⊥X ∧ X ∧∃ X for
some X inL⊥. Therefore, the negation ¬ defined as ¬A =def. A→≡ will satisfy the
above conditions for the classical negations. ∼∩
Remark 6 First, note that the above lemma does not hold inL , i.e., the syntax with
∃, ∧, and ♦ alone, since the bottom particle is not definable inL . Second, one may
expect that, by following the convention in da Costa’s systems,∃ A∧⊥A will satisfy
the conditions for classical negations. However, this is not the case since the second
condition A |=4 B ♦ ¬B is not met when we assign the values n and t to A and B
respectively.

The key for our desired result is the following lemma.

Lemma 4 Let A(p) be a formula of L⊥ which contains p as the only propositional
variable in A. Then one of the following holds:

(i) v(A(p)) = f when v(p) ∨ {b, n} for any four-valued valuation v.
(ii) v(A(p)) = t when v(p) ∨ {b, n} for any four-valued valuation v.
(iii) v(A(p)) = v(p) when v(p) ∨ {b, n} for any four-valued valuation v.



da Costa Meets Belnap and Nelson 159

Proof We proceed by induction on the complexity of A(p).
Base If A(p) is p, then it satisfies the condition (iii).
Induction step We split into four cases depending on the main connective.

• If A(p) = ∃ B(p) or ⊥ B(p), then B(p) satisfies one of the three conditions by
induction hypothesis. And with the truth table for ∃ and ⊥ in mind, A(p) behaves
as in the table below.

• If A(p) = B(p)∧ C(p) or B(p)♦ C(p), then B(p) and C(p) both satisfy one of
the three conditions by induction hypothesis. And with the truth table for ∧ and ♦
in mind, A(p) behaves as in the table below.

This completes the proof. ∼∩
Theorem 4 Neither classical negation nor the material conditional is definable in
L⊥. In particular, ¬ and → of Table 1 are not definable in L⊥.

Proof In view of Lemma 3, it suffices to show that any of the classical negations
cannot be defined in L⊥. So, let us suppose that a classical negation ¬ is definable.
Then, in view of Lemma 4, ¬ will satisfy one of the three conditions (i)–(iii).

• If (i) is satisfied then we have in particular that if v(p) = n then v(¬p) = f ,
namely if v(p) ∈∨ D then v(¬p) ∈∨ D , which is impossible in view of Remark 4.

• If (ii) is satisfied then we have in particular that if v(p) = b then v(¬p) = t,
namely if v(p) ∨ D then v(¬p) ∨ D , which is impossible in view of Remark 4.

• If (iii) is satisfied then we have v(¬p) = v(p), which is impossible in view of
Remark 4.

Thus, classical negation is not definable in L⊥. ∼∩
Remark 7 Note that if we assume LEM with respect to ∃ in N BD⊥, then we can
define classical negation as ∃ A ∧ ⊥A. In other words, if we add classicality (or
consistency) to LP of Priest (cf. [14]), then we obtain the system equivalent to LFI1
of Carnielli, Marcos and de Amo.

Although our non-definability proof was given in a purely semantic manner, we
may also prove the result in terms of proof theory together with the completeness
result. For this purpose, we need a proof-theoretical version of Lemma 4.

Lemma 5 Let A(p) be a formula of L⊥ which contains p as the only propositional
variable in A. Then one of the following holds:



160 H. Omori and K. Sano

(i) ∃ ⊥p ∪N BD⊥ ∃ A(p) and ∃ ⊥p, A(p) ∪N BD⊥ ≡.
(ii) ∃ ⊥p ∪N BD⊥ A(p) and ∃⊥p,∃ A(p) ∪N BD⊥ ≡.
(iii) ∃ ⊥p, p ∪N BD⊥ A(p), ∃ ⊥p, A(p) ∪N BD⊥ p, ∃ ⊥p,∃ p ∪N BD⊥ ∃ A(p)

and ∃⊥p,∃ A(p) ∪N BD⊥ ∃ p.

Proof By rewriting Lemma 4 by the completeness result (Theorem 3), we obtain the
desired statement. Or, we may directly proceed by induction on the complexity of
A(p). ∼∩

And by making use of this lemma and the completeness result, we may prove the
non-definability as follows.

Alternative proof of Theorem 4 In view of Lemma 3, it suffices to show that any of
the classical negations cannot be defined in L⊥. So, let us suppose that a classical
negation ¬ is definable. Then, in view of Lemma 4, ¬ will satisfy one of the three
conditions (i)–(iii).

• If (i) is satisfied then we have in particular that ∃ ⊥p,¬p ∪N BD⊥ ≡. On the
other hand, consider a four-valued valuation v0 such that v0(p) = n. Then, we
have v0(∃ ⊥p) = t ∨ D by the truth table and v0(¬p) ∨ D by Remark 4.
We also have v0(≡) = f ∈∨ D , so we obtain ∃ ⊥p,¬p ∈|=4 ≡, and therefore
∃ ⊥p,¬p ∈∪N BD⊥ ≡ by soundness. But this is a contradiction.

• If (ii) is satisfied then the proof is analogous to the previous case. In particular, we
find a contradiction with ∃ ⊥p ∪N BD⊥ ¬p.

• If (iii) is satisfied then we have in particular that ∃⊥p, p ∪N BD⊥ ¬p and
∃ ⊥p,¬p ∪N BD⊥ p. Since ¬ is a classical negation, the completeness result
enables us to obtain ∃ ⊥p ∪N BD⊥ ≡. However, by a similar argument using
soundness, we can establish ∃ ⊥p ∈∪N BD⊥ ≡ as well, which is a contradiction.

This completes the proof. ∼∩

5 Can We Place Classicality Operator in Constructive Context?

In view of the results obtained in the previous section, the classicality operator of
BS4 is not necessarily accompanied by any of the material conditionals we defined
(cf. Definition 10). But then, we may question if we can generalize the classicality
operator where the conditional is taken to be intuitionistic (or constructive). We
answer this question affirmatively by developing a system that has a close relation
to a system of constructive negation, whose origin can be traced back to the work
of Nelson (cf. [9, 12]). Note, however, that our attempt is not the very first in trying
to place the notion of classicality operator in a constructive setting. Indeed, there
is an attempt by Guillaume (cf. [7]) which considers a constructive counterpart of
the basic systems of LFIs. Still, his work does not touch the relation to the systems
of Nelson, so in this regard, the present paper will be the first to reveal the relation
between the ideas of da Costa and Nelson. We will start by revisiting the system of
Nelson.
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Definition 11 N4 consists of axioms (A4)–(A7) together with IPC+ (cf. Defini-
tion 4.), and N4≡ is obtained by adding two axioms ≡→ A and A → ∃ ≡ to N4.

The original idea was given by Nelson back in the forties, and various systems
within the idea of Nelson has been studied. Many of them were paracomplete but not
paraconsistent, though two systems,N4 and its extensionN4≡, are both paracomplete
and paraconsistent.

Now, in [13], a translation theorem between the system BS4 and an extension
of the system N4≡ enriched by Peirce’s law, referred to as B4≡, was established.
However, the problem of finding the relation between a constructive version of BS4
and N4≡ was left open. Note here that it must be of interest for those in the tradition
of Nelson to see if we can introduce the notion of classicality operator, which makes
clear the area we can apply the classical inference. Therefore the above questionmust
be quite natural and worth exploring. Based on these, the purpose of this section is
to show that we can prove a translation theorem between a constructive version of
BS4 and N4≡. For this purpose, we now introduce the constructive version of BS4.

Definition 12 The system cBS4 consists of the axioms (A4)–(A8) added to cBS (cf.
Definition 4.). Equivalently, cBS4 is obtained by adding axioms (A1)–(A3) and (A8)
to N4.

The translations to be made use of in the following are as follows:

Definition 13 Let τ1 be a translation from cBS4 toN4≡ which satisfies the following
conditions:

τ1(pi ) = pi τ1(∃ pi ) = ∃ pi
τ1(A→ B) = τ1(A)→τ1(B) τ1(∃(A → B)) = τ1(A) ∧ τ1(∃ B)

τ1(A ∧ B) = τ1(A) ∧ τ1(B) τ1(∃(A ∧ B)) = τ1(∃ A) ♦ τ1(∃ B)

τ1(A ♦ B) = τ1(A) ♦ τ1(B) τ1(∃(A ♦ B)) = τ1(∃ A) ∧ τ1(∃ B)

τ1(∃ ∃ A) = τ1(A) τ1(∃(⊥A)) = τ1(A) ∧ τ1(∃ A)

τ1(⊥A) = ((τ1(A) ∧ τ1(∃ A))→≡) ∧ (τ1(A) ♦ τ1(∃ A))

Also let τ2 be a translation fromN4≡ to cBS4which satisfies the following conditions
together with similar conditions for the translation of A ∗ B and ∃(A ∗ B) where
∗ ∨ {→,∧,♦}:

τ2(pi ) = pi τ2(∃ pi ) = ∃ pi τ2(∃∃ A) = τ2(A)

τ2(≡) = ⊥p1 ∧ p1 ∧ ∃ p1 τ2(∃≡) = p1→ p1

Remark 8 Compared to the translations employed in [13], the only difference lies in
the image of ⊥A under τ1 which was set to be as: τ1(⊥A) = (τ1(A)∧τ1(∃ A))→≡.
The two formulas are obviously equivalent inB4≡ but not inN4≡, and this difference
turned out to be the key in showing the desired result. Note that the translation here
reflects the characteristic thesis (1) more directly compared to the previous version.
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For the purpose of proving the desired result, the following lemma is the key.

Lemma 6 Let τ1 and τ2 be translations defined above. Then,

(i) If ∪cBS4 A then ∪N4≡ τ1(A) (iii) ∪cBS4 τ2(τ1(A)) ∧ A
(ii) If ∪N4≡ B then ∪cBS4 τ2(B) (iv) ∪N4≡ τ1(τ2(B)) ∧ B

Proof For (i) and (ii), it is sufficient to check that all the axioms of cBS4 and N4≡
translated by τ1 and τ2 are provable in N4≡ and cBS4 respectively, and that modus
ponens remains valid under translation. Since cBS4 and N4≡ share most of the
axioms, we only have to check few cases. Indeed, for the case of (i), we only have to
verify that images of axioms (A1) to (A3) and (A8) by τ1 are provable in N4≡. These
are straightforward; just note that both τ1(A→⊥A) and τ1(∃ A→⊥A) are equivalent
to (τ1(A)∧τ1(∃ A))→≡. For the case of (ii), we need to verify that images of axioms
≡→ A and A →∃ ≡ by τ2 are provable in cBS4, but these are obvious. As for (iii)
and (iv), the proof is by induction on the complexity of A and B respectively. ∼∩
Theorem 5 Let τ1 and τ2 be translations defined above. Then,

∪cBS4 A iff ∪N4≡ τ1(A) and ∪N4≡ B iff ∪cBS4 τ2(B).

Proof We only prove the former as the latter can be proved in a similar manner.
Now, the right to the left direction is already proved in (i) of the previous lemma.
For the other direction, suppose ∪N4≡ τ1(A). Then by (ii) of the previous lemma, we
obtain ∪cBS4 τ2(τ1(A)), but in view of (iii) of the previous lemma, we have ∪cBS4 A
which is the desired result. For the case of proving the latter, we need (ii), (i) and
(iv) instead of (i), (ii) and (iii) respectively. ∼∩

We now turn to the semantics of cBS4. Let W be a non-empty set, ≤ a pre-order
on W . Let V be a pair (V +, V −) of V +, V − : Var ≤ P(W ) that satisfy the
persistency: w ∨ V ∗(p) and w ≤ w⊃ imply w⊃ ∨ V ∗(p) for all w, w⊃ ∨ W and all
p ∨ Var (where ∗ is+ or−). Then, we say (W,≤, V ) is a Kripke model. Given such
a model, we define the satisfaction pair (|=+, |=−) as usual except11:

w |=+ ⊥A iff ∀w⊃ ≥ w ((w⊃ |=+ A and w⊃ ∈|=− A) or (w ∈|=+ A and w |=− A));
w |=− ⊥A iff ∀w⊃ ≥ w (w⊃ |=+ A iff w⊃ |=− A).

Let us say that A is a semantic c-consequence from Σ (notation : Σ |=c A) if, for
all Kripke models (W,≤, V ) and all w ∨ W such that w |=+ B for all B ∨ Σ ,
w |=+ A also holds. Then, based on Theorem 5 and the completeness result for N4
with respect to Kripke models (cf. Proposition of [18, p.425]) we also have:

11 The readers may wonder if we may define the semantic clause w |=− ⊥A as the equivalence:
w |=+ A iff w |=− A. However, this semantic clause will break the persistency requirement. This
is one reason why we employ the current version of the semantic clause.
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Proposition 3 Given any set Σ ↔ {A} of formulas, Σ |=c A iff Σ ∪cBS4 A.

With the help of soundness of cBS4, we obtain the following.

Proposition 4 Neither ⊥ ⊥ A nor A ♦ (A → B) is derivable in cBS4.

Proof Define W := {a, b},≤ := {(a, a), (a, b), (b, b)}, V +(p) := {b} and V −(p) :=⊆.
Then, a Kripkemodel (W,≤, V ) satisfies persistency.We first show that a ∈|=+ ⊥⊥ p.
Since b |=+ p and b ∈|=− p, we obtain a ∈|=− ⊥p. By a ∈|=+ p and a ∈|=− p, we
obtain a ∈|=+ ⊥p. Since we have established a ∈|=− ⊥p and a ∈|=+ ⊥p, we can obtain
a ∈|=+ ⊥ ⊥ p, which implies ∈∪cBS4 ⊥ ⊥ p, as desired. As for A ♦ (A → B), we reuse
the same (W,≤). Define V +(p) := {b} and V −(p) = V +(q) = V −(q) := ⊆. Then,
a ∈|=+ p. Since b |=+ p and b ∈|=+ p, a ∈|=+ p → q. Thus a ∈|=+ p ♦ (p → q), as
required. ∼∩

Proposition 4 suggests that, in order to obtain a natural deduction system cor-
responding to cBS4, we need to drop not only (→1) but also (⊥5) from N2BS4.
However, we do not know if the resulting system is equipollent with cBS4. On the
other hand, if we drop (→1) from N1BS4 (we refer to this system as N cBS4), we
can easily see that the resulting calculus is equipollent with cBS4. Based on these
considerations, we can also show that the classicality operator ⊥ of cBS4 can be
employed without the intuitionistic conditional →. A key idea is to reformulate the
rules (⊥ →1), (⊥ →2), and (∃⊥ →) of Table 2 containing both ⊥ and → into the rules
without → as follows.

Definition 14 N cBD⊥ consists of (⊥1), (⊥2), (⊥3), (⊥4), (c⊥1), (c⊥2), and (c ∃ ⊥)

of Table 2 in addition to all the rules ofN BD.

Theorem 6 Given any set Σ ↔ {A} of formulas, Σ ∪N cBD⊥ A iff Σ |=c A.

Proof (Outline) Here, we concentrate on the completeness direction, i.e., the right-
to-left direction. We show the contrapositive implication, so suppose Σ ∈∪N cBD⊥ A.
Similarly as before in the completeness proof ofN BD⊥, we can find a prime theory
Σ+ (with respect to N cBD⊥) such that Σ ∗ Σ+ and A /∨ Σ+. Let us define the
canonical Kripke model as follows: W is all the non-trivial prime theories (we say
that Γ is non-trivial if B /∨ Γ for some B), V +(p) = {Γ ∨ W | p ∨ Γ } and V −(p)

= {Γ ∨ W | ∃ p ∨ Γ } (p ∨ Var). Then, (W,∗, V ) is a Kripke model. Now we can
establish the following equivalences:Γ |=+ C iff C ∨ Γ andΓ |=− C iff ∃ C ∨ Γ .
Let us focus on the case where C is of the form of ⊥B. We can establish the positive
clause by (⊥1), (⊥2), (c⊥1), (c⊥2) and the negative clause by (⊥3), (⊥4), and (c ∃ ⊥).
Then, we have Σ+ |=+ C for all C ∨ Σ but Σ+ |=+ A, which implies Σ ∈|=c A, as
required. ∼∩
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6 Conclusion

Our original motivation was to introduce and generalize the notion of classicality
in BS4 to related systems such as those of Belnap-Dunn and Nelson. But it is not
obvious at all if the classicality operators in these three systems have any common
features. So, let us briefly consider this question from semantic and proof-theoretic
perspectives before closing the paper. For this purpose, note that the relation between
BS4 and cBS4 is just like classical logic and intuitionistic logic. And in such a case,
the latter provides the uniform perspective, and the former will be captured as a
degenerated case. This also applies to the following discussion.

Now, from the semantic viewpoint, what we kept in considering the semantics of
N2BS4 and N BD⊥ is the truth table for the consistency operator ⊥. But the truth
table can be reformulated into a pair of conditions that reflect relational semantics
provided by Dunn as follows12:

1 ∨ v(⊥A) iff (1 ∨ v(A) and 0 /∨ v(A)) or (1 ∈∨ v(A) and 0 ∨ v(A))

0 ∨ v(⊥A) iff (1 ∨ v(A) iff 0 ∨ v(A))

And comparing this with the semantic conditions for ⊥ in cBS4, we can see that
the above conditions are the degenerate cases of those for ⊥ in cBS4. Thus, we may
conclude that the classicality operator we dealt with in this paper can be characterized
by the semantic conditions for ⊥ in cBS4. Note here that (1) can be seen as the proof-
theoretical representation reflecting the first condition above.

On the other hand, from the proof-theoretic viewpoint, we worked with both
Hilbert-style systems and natural deduction systems. And for the basic observations,
we employed the former to see the connection with the existing results, whereas
we made use of the latter for considering the two question. The key was to provide
two kinds of natural deduction system N1BS4 and N2BS4 for BS4 which was the
base system of our work. And the systems N BD⊥ and N cBS4 that answer to our
questions have common rules related to ⊥. Those are (⊥1), (⊥2), (⊥3) and (⊥4). In view
of the semantic considerations, these rules reflect only the left-to-right directions of
the semantic conditions for ⊥ in cBS4, and the rules corresponding to the other
way around are not included as common rules. This is due to the lack of expressive
power of natural deduction compared to sequent calculus, and we may obtain the
corresponding proof-theoretical characterization through sequent calculus. Details
will be kept for another occasion.

In this way, we may summarized our understanding of the classicality opera-
tor considered in this paper by the semantic conditions for ⊥ in cBS4. But, this is
only a tentative characterization of the notion of classicality, and we hope to find
a better characterization that captures the notion in a more wide context by further
investigations.

Finally, aswenoted in the beginningof the paper, paraconsistent logicians disagree
onmany points. The only point onwhich they agree is in distinguishing theories being

12 We already made use of this kind of reformulation in the proof of Theorem 3.
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contradictory and trivial.However, there seems to be another implicit agreement. That
is, many of the paraconsistent logicians do not necessarily abandon classical logic
completely. Indeed, in consistent (and complete) cases, they do agree that classical
logic works well.13 And in view of this fact, it seems that the idea of classicality
operator is acceptable by many of the paraconsistent logicians. But, in the literature,
the notion of classicality has been always introduced together with the material
conditional and therefore its wide applicability seems to have been not recognized.
Our hope is that readers now have a different impression. Needless to say, however,
our result is just a first step, as we have only examined two special cases. Many
questions are left open. Those include investigations into various theories, such as
naive set theory and naive truth theory, based on systems with a classicality operator,
and philosophical justification of the notion of classicality. We shall leave these
topics, together with others mentioned in the paper earlier, for another occasion.

Acknowledgments The authors would like to thank the referees for their detailed and helpful
comments which improved the paper in many ways. We would also like to thank Michael De who
kindly proofread our final draft and made many helpful suggestions to improve our remarks related
to relevantists’ perspective as well as our English. Finally, we would like to thank the audiences
at the Trends in Logic XI conference who showed their interest, and encouraged us to pursue this
research. The first author is a postdoctoral fellow of Japan Society for the Promotion of Science
(JSPS), and the present work was partially supported by a Grant-in-Aid for JSPS Fellows. The
work of the second author was partially supported by JSPS KAKENHI, Grant-in-Aid for Young
Scientists (B) 24700146.

References

1. Belnap, N. (1976). How a computer should think. In G. Ryle (Ed.), Contemporary aspects of
philosophy (pp. 30–55). Stocksfield: Oriel Press.

2. Carnielli, W. A., Coniglio, M. E., & Marcos, J. (2007). Logics of formal inconsistency. In D.
Gabbay&F.Guenthner (Eds.),Handbook of philosophical logic (Vol. 14, pp. 1–93). Dordrecht:
Springer.

3. Carnielli, W. A., & Marcos, J. (2002). A taxonomy of C-systems. In W. A. Carnielli, M. E.
Coniglio & d’Ottaviano I. M. L. Marcel Dekker (Eds.), Paraconsistency: The Logical Way to
the Inconsistent, Proceedings of the II World Congress on Paraconsistency (pp. 1–94).

4. Carnielli, W. A., Marcos, J., & de Amo, S. (2000). Formal inconsistency and evolutionary
databases. Logic and Logical Philosophy, 8, 115–152.

5. de Castro, M. A., & d’Ottaviano, I. M. L. (2000). Natural deduction for paraconsistent logic.
Logica Trianguli, 4, 3–24.

6. da Costa, N. C. A. (1974). On the theory of inconsistent formal systems. Notre Dame Journal
of Formal Logic, 15(4), 497–510.

7. Guillaume,M. (2007). Da Costa 1964 logical seminar: Revisited memories. In J.-Y. Béziau,W.
A. Carnielli & D. Gabbay (Eds.), Handbook of paraconsistency (pp. 3–62). London: College
Publications.

13 Note that even though many of the relevant (relevance) logics are paraconsistent, relevantists
have a different view on classical logic in the sense that they will not necessarily agree to make use
of classical logic even in consistent cases.



166 H. Omori and K. Sano
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Explicating the Notion of Truth Within
Transparent Intensional Logic

Jiří Raclavský

Abstract Theapproachof Transparent IntensionalLogic to truth differs significantly
from rivalling approaches. The notion of truth is explicated by a three-level system of
notionswhereas the upper-level notions depend on the lower-level ones. Truth of pos-
sible world propositions lies in the bottom. Truth of hyperintensional entities—called
constructions—which determine propositions is dependent on it. Truth of expressions
depends on truth of their meanings; the meanings are explicated as constructions.
The approach thus adopts a particular hyperintensional theory of meanings; truth
of extralinguistic items is taken as primary. Truth of expressions is also dependent,
either explicitly or implicitly, on language (its notion is thus also explicatedwithin the
approach). On each level, strong and weak variants of the notions are distinguished
because the approach employs the Principle of Bivalence which adopts partiality.
Since the formation of functions and constructions is non-circular, the system is
framed within a ramified type theory having foundations in simple theory of types.
The explication is immune to all forms of the Liar paradox. The definitions of notions
of truth provided here are derivation rules of Pavel Tichý’s system of deduction.

Keywords Truth · Truth of propositions · Truth of expressions · Language · Trans-
parent intensional logic

1 Introduction

I suggest an explication of the notion true within the extensive logical framework of
Pavel Tichý’sTransparent Intensional Logic (TIL). The approach differs significantly
from other well-known approaches to truth such as the hierarchical and bivalent
proposal by Tarski (1933/1956), three-valued theories by Kripke [7] and others,
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paraconsistent dialetheism by Priest [8], revision theory by Gupta and Belnap [4],
paracompleteness by Field [3] and Beall [1], axiomatic approaches by Halbach [5]
and Horsten [6], etc. The brevity of space does not allow to provide a comparison of
the present approach with the aforementioned ones; nevertheless, some differences
can be read from the rest of this introduction and some other remarks in the paper.

The key feature of the present approach is that the truth of certain non-linguistic
entities is construed as primary, while the truth of linguistic entities, which represent
the non-linguistic ones, is defined as dependent on it.

The notion of truth, as explicated in TIL, splits in three kinds according to the
range of their applicability to:

a. propositions (which can be considered to be denotata of expressions),
b. (so-called) constructions of propositions (which can be considered to bemeanings

of expressions),
c. expressions.1

The notions of the kinds a. and b. are obviously independent on language and precede
the notion of the kind c.

Truth of propositions—where possible world propositions are classes of world-
time couples—is rather transparent: a proposition is true in a given possible world
W at a moment of time T iff its value for this ⊥W, T → is the truth-value T. Then,
truth of constructions is best definable in terms of truth of propositions constructed
by them.2

Constructions are abstract structured entities akin to algorithms; they construct
objects, e.g. propositions. Constructions are ‘intensional’ entities, thus they can aptly
serve for the recently urged hyperintensional individuation of meanings.

The notions of the kind c., truths of expressions, are dependent on, and relative
to language(s). The relativity is either explicit, or implicit. Truth of expressions is
defined in terms of truth of the expressions’ meanings (denotata). Thus unlike the
usual approach of Tarski and others, the proposed explication does not depend on
the notion of translation (recall that Tarski’s method requires that an expression
is translated to the theoretician’s metalanguage). On the other hand, the present
approach relies on the (explicated) notion of language.

It can be shown that the explication resists all forms of the Liar paradox. The
explication also confirms Tarski’s famous Undefinability theorem, though in a bit
supplemented form.

1 Such gradual construction was in fact suggested by Tichý in his remarks on truth [13, Chaps. 11
and 12]. There, certain (verbal) definitions of the notions can be found. Tichý’s investigations surely
inspired my approach. The present paper is an extract from a large manuscript on truth; some of
my results have been published in Raclavský [10].
2 It is in the spirit of intensional explication of our conceptual scheme to say that propositions can
be construed as facts and our world can be construed as a collection of (actual) facts. Then, the
proposal of TIL confirms a sort of correspondence theory of truth (true sentences correspond to
facts that obtain). However, these issues cannot be discussed here.
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It is also important to stress that the present approach is in some important sense
neo-classical. Classical rules, including the Principle of Bivalence,3 are preserved.
Because of partiality adopted in the system, however, the rules are appropriately
modified. It has a certain connection with the fact that, for each level of truth-notions,
there are distinguished total (strong) and partial (weak) variants of the notions.

Employing the truth of non-linguistic entities (propositions and constructions),
the approach is immune to well-known arguments of the philosophy of language
against ‘linguistic’ treatment of semantic matters. Moreover, the explication of truth
by TIL relies on a hyperintensional (procedural) way of explication of meanings.

TIL is based on λ-calculus accompanied by a particular ramified theory of types. It
means that it is a very expressive language within which various axiomatic theories
(systems) can be formulated (it is thus not an aim of this paper to state any such
particular theory or system, cf. also below).

Unfortunately, the lack of space does not enable us to discuss any such matter in
greater detail. Moreover, an explication of various particular notions of truth which
might come to one’s mind cannot be provided here, although the approach is capable
of such explication.

The paper is organized as follows. The Sect. 2 explains briefly the notion of con-
struction, deduction, type theory, and explication of meanings. The Sects. 3 and 4
suggest explications of the two kinds of language-independent notions of truth,which
are mentioned in titles. The penultimate Sect. 5 begins with an explication of lan-
guage, which is needed especially for the explication of truth of expressions which
are explicitly relative to language. Then, truth of expressions which is implicitly
relative to language is explicated and the resistance to the Liar paradox is shown.
Finally, the limitation of language and thus also the Undefinability Theorem will be
briefly discussed.

2 Elements of TIL

The basic ideas of TIL will best be introduced by the following, partly historical,
story. In the late 1960s, Tichý began to utilize Church’s simple theory of types (i.e.
typed λ-calculus) for logical analysis of natural language. To its basic sorts (atomic
types) of individuals and truth-values (T and F), Tichý added two other sorts—
those of possible worlds and moments of times/real numbers.4 Together with some

3 The Principle of Bivalence adopted here reads as: for any proposition P , P has at most one of
the two truth-values T and F in a given W and T . In other words, a proposition can be gappy; for
instance, the proposition “The king of France is bald” is gappy in the actual W and present T . (Note
that I use single quotation marks for quotation of expressions or, sometimes, for indication of a shift
in meaning; double quotation marks are used for indication of propositions and other extralinguistic
entities.)
4 In TIL, possible world intensions (i.e. propositions, properties, relations-in-intension, etc.) are
total or partial functions from world-time couples to certain entities (viz. truth-values, classes of
objects, classes of n-tuples of objects, etc.). Among non-intensions one can find in TIL, e.g., the
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semantic doctrines concerning ways to analyze the meaning of an expression, the
framework began to rival the much more popular system of Montague. Tichý also
soon adopted partiality and he mainly explicated a number of phenomena associated
with meaning: modalities, propositional attitudes, intensional transitives, descrip-
tions, temporal adjectives, verb tenses, verb aspects, etc.

The second important feature of TIL are its hyperintensional entities. In early
1970s, Tichý realized that possible world intensions are too coarse-grained to be
proper meanings of expressions; rather, one needs structured hyperintensions.5 Two
main kinds of λ-terms are usually understood as denoting values of functions or
functions as such, but Tichý noticed that they can be also understood as expressing
applications of functions to arguments or ways of obtaining functions. On the latter,
‘intensional’, reading of λ-terms, these stand for constructions, i.e. TIL’s hyperin-
tensional entities. Some constructions might also be understood as functions in the
older sense, i.e. functions as procedures (rules), which contrasts with the modern
notion of function as a mere mapping.

Constructions are procedural entities, akin to algorithmic computations (they are
not purely set-theoretical objects). Constructions are language independent; TIL
λ-terms serve only to depict constructions (in otherwords, the formal language of TIL
has fixed interpretation). Each object, e.g. a proposition, is constructed by infinitely
many equivalent but not identical constructions (constructions thus satisfy intensional
principle of individuation). Each construction C is specified by two things: i. the
object O constructed by C , ii. the way C constructs, dependently on valuation v, the
object O (by means of which subconstructions). Note that constructions are closely
connected with objects constructed by them.

For a defence of the notion of construction showing mainly its need, cf. especially
Tichý’s book [13]. For the application of TIL to natural language analysis, see Tichý
[14], Duží et al. [2], or Raclavský [10]. All these books also include various other
applications of TIL. For the rest of the paper, we need to bear in mind at least the
following matters concerning semantic scheme, specification of constructions, type
theory and deduction (consult the aforementioned books for technical details).

In order to explicate meanings of (natural) language, Tichý employed a semantic
scheme which can be précised as follows:

an expression E
| E expresses (means) in L:
a construction C = the meaning of E in L
| C constructs:
an intension/non-intension = the denotatum of E in L

(Footnote 4 continued)
well-known classical truth-functions ¬, ♦, ∃, and ∧, the well-known subclasses of classes of
ξ -objects ∃ξ and ∗ξ (for any type ξ ; the indication ‘ξ ’ will be usually suppressed), or the well-
known identity relation between ξ -objects, =ξ . Constructions are also non-intensions.
5 One of the notorious arguments for adoption of hyperintensions is that due to intensional analysis,
beliefs which are equivalent but non-identical are merged to one. On such use of possible world
propositions, an argument that one believes that 1+1 = 2 thus one believes Fermat’s Last Theorem
is wrongly rendered as valid.
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Empirical expressions (‘the Pope’, ‘tiger’, ‘It rains inNice’,…) denote intensions;
non-empirical expressions (‘not’, ‘3’, …) denote non-intensions. The value of an
intension in W at T is the referent in L , W and T of an empirical expression.
The denotatum in L and referent in L , W and T of a non-empirical expression are
construed as identical.

Constructions divide into six kinds according to the ways of their constructing.
Let X be any object or construction and Ci be any construction (of order k):

i. variable xk v-constructs the k-th object (of an appropriate type) of the valuation
v;

ii. trivialization 0X v-constructs (for any v) the object X directly,without any change
(0X takes X and leave it as it is);

iii. single execution 1X v-constructs the object (if any) v-constructed by X ;
iv. double execution 2X v-constructs the object (if any) which is v-constructed by

the construction (if any) v-constructed by X ;
v. composition [C C1 . . . Cn] v-constructs the value (if any) of the function F (if

any) v-constructed by C on the string of entities A1 . . . An (if any) v-constructed
by C1, . . . , Cn ;

vi. closure λxC v-constructs (for any v) a function which maps the objects in the
range of x to the objects which are v-constructed by C (a very much simplified
formulation).

Note that the constructions of the kinds iii–v can be abortive in the sense that they
v-construct nothing whatsoever, they are v-improper constructions. For instance,
a composition is v-improper when the partial function v-constructed by C is not
defined on the string of entities v-constructed by C1, . . . , Cn . Two constructions are
v-congruent iff they v-construct one and the same object or they are both v-improper.

The lack of space does not enable me to repeat here Tichý’s whole definition
[13, p. 66] of his unique ramified type theory. In the basis of the hierarchy, there are
atomic types. In case of TIL, for instance, these are types of individuals, truth-values,
possible worlds, and moments of times. The rest of first-order types cover all total
and partial n-ary functions over the objects belonging to the first-order types (i.e.
first-order objects). Higher-order types include especially types for constructions.
For instance, there is a particular type containing the k-order constructions, i.e. con-
structions of the k-order objects (for 1 ≤ k ≤ n). Moreover, functions from or to
constructions are classified by some higher-order types as well. It is readily seen that
the hierarchy of entities is very, very rich.6

In several of his papers (cf. [14]), Tichý also exposed a deduction system for his
type theory, thus also for TIL. Its derivation rules are made from sequents whereas
sequents are made from so-called matches; matches consist of constructions and
(trivializations of) objects v-constructed by them. Sequents and rules are thus not
expressions of a formal language. Derivation rules display properties of objects. To

6 The stratification of entities into such hierarchy is justified by four Vicious Circle Principles [10],
each of them being entailed by the Principle of Specification: you cannot fully specify an entity by
means of the entity itself.
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illustrate, the derivation rule Φ ↔ {0T : o1} ∨ 0T : o2 |= Φ ∨ 0T : [o1 0♦ o2],
where o1 and o2 are variables for truth-values, shows that the material conditional
♦ returns T for the couple ⊥T,T→.7

Constructions and derivation rules can be organized in derivation systems [9].
Roughly speaking, they are objectual correlates of axiomatic systems. It follows
from the very notion of derivation system that no derivation system can be separated
from its objectual area. Thus, if one has (say) a property of truth at one’s disposal,
it is not inevitable for one to build up a particular derivation system to single out
which particular object is the truth property in question. A derivation system is rather
a tool for proving facts about an object (say the truth property), whereas the facts are
implied by features of the object.

3 Truth of Propositions

Truth of propositions is a phenomenon dependent on circumstances, i.e. possible
worlds and moments of time. For a proposition to be true in W at T is nothing but
having T as a value for that world-time couple.

The notion splits in two variants: the partial and the total one. According to the
partial notion, a proposition P which is gappy in a given W and T is not true or false.
In this case—i.e. when the valuation v assigns such P to the variable p, W to the
variable w, and T to the variable t—the construction pwt ,8 and thus also [0TrueπP

wt p],
is v-improper:

[0TrueπP
wt p] ⊆o pwt (alternatively [pwt

0= 0T])

The extension of the property “TrueπP” in W at T , i.e. a characteristic function, is
undefined for P . The definitionmatches the deflationist intuition that there is a notion
of truth which adds nothing to a proposition.

According to the total notion, on the other hand, a proposition which is gappy in
a given W and T is assigned by the truth-value F (the variable o ranges over the type
of truth-values):

[0TrueπT
wt p] ⊆o [0∃ λo[[o 0= pwt ] 0∃ [o 0= 0T]]]

7 I view definitions as certain ⊆-rules (both ∨ and ⊆ concern satisfiability of sequents). Two
constructions flanking ⊆ξ are v-congruent for any v; the type of the object v-constructed by both
constructions will be indicated nearby ‘⊆’. Definitions can also be viewed as proposing an expli-
cation of the intuitive notion whose rigorous correlate occurs in the left hand side of the definition;
its right hand side shows in which sense the notion ‘is meant’, which objects ‘fall under’ it, cf. [10].
8 ‘Cwt ’ abbreviates ‘[[C w] t]’.
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In those W and T , a gappy proposition thus falls in the antiextension of the property
“TrueπT”. Every proposition is thus determinately assessed as true or not true.9

4 Truth of Constructions

The notions of truth of constructions form two groups. In the first group, there
are notions of truth independent on circumstances. A sample verbal definition: a
(k-order) construction is true (or rather: is a truth) iff it (v-)constructs the truth-value
T. In the definition, the variable ck ranges over the type of k-order constructions and
the double execution corresponds to the word ‘(v-)constructs’:

[0Truth∼kPck] ⊆o [2ck 0= 0T]

L-truths can be defined as truths v-constructing T on every v.10

In the second group, there are kinds of truths of constructions which are depen-
dent on circumstances. The sensitivity on circumstances can be traced back to the
circumstance sensitivity of truth of propositions which are (v-)constructed by the
constructions.

Of course, there is a plenitude of such particular (sub)kinds of truths of construc-
tions because of the plenitude of orders of constructions. (A hierarchy.) But there
are also various distinct notions of truth of constructions within one particular order,
which corresponds to the fact that there are various slightly distinct notions of truth.11

For instance, we have both partial and total notions of truth of constructions. In the
definition, 2ck

wt v-constructs the value (if any) of the proposition (if any) v-constructed
by the construction (if any) v-constructed by ck :

[0True∼kP
wt ck] ⊆o [0TrueπP

wt
2ck]

[0True∼kT
wt ck] ⊆o [0∃ λo[[o 0= 2ck

wt ] 0∃ [o 0= 0T]]]

But there are even other notions. To give at least one example from a range
of several similar notions definable within the framework, let us define a notion
according to which constructions of propositions are only determinately assessed as
true or not true, while all other constructions (of individuals, of classes of numbers,
…) are left unassessed:

[0True∼kPT
wt ck] ⊆o [0TrueπT

wt
2ck]

9 It is just this notion which should be deployed in appropriate reformulations of classical laws in
order to be valid within a framework adopting partiality.
10 For that purpose a bit richer type basis is needed.
11 Some of them might be defined also by other theoreticians (assuming here translatability of their
results to the present framework).
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As regards the constructing of the definiens, if 2ck does not v-construct a propo-
sition, the actual extension of the property “TrueπPT” cannot be applied, thus the
definiens is a v-improper construction (so is the definiendum). The classes (i.e. char-
acteristic functions) which are extensions of the property “True∼kPT” are thus partial.

5 Truth of Expressions

Truth of expressions is dependent on language(s).12 It is thus intuitively correct to
say that an expression E is true in L (in W at T ) iff it is true (in W at T ) what the
expression E means in L . My explication matches this natural definition. The truth
of expressions is apparently a semantic property or rather relation(-in-intension). In
order to explicate the relation, the explication of the notion of language thus has to
be undertaken.

Language is a normative system enabling speakers to communicate. It seems
sufficient for our purposes to restrict our attention to the expressive, coding aspect of
language in the synchronic sense and model it simply as a function from expressions
to meanings. In TIL, a k-order code Lk is a (partial) function from (Gödelized)
expressions to k-order constructions [13, p. 228].

But language such as English would be better modelled rather as a hierarchy
of codes L1, L2, …, Ln [10]. It corresponds to the existence of ‘commenting’,
‘reflective’ levels in language—language enables us to comment on its own parts.
On such construal, most of everyday communication takes place in the first-order
code of the hierarchy; higher-order coding means, which are used for commenting,
are not frequently utilized. A particular hierarchy of codes is a class such that i.
it involves n codes of n mutually distinct orders, ii. each expression E having a
meaning M in Lk has the same meaning M in Lk+m (1 < m), and iii. an expression
E lacking meaning in Lk can be meaningful in Lk+m . One naturally adds also iv.
compositionality within the codes of the hierarchy.

In consequence of this, every code of a particular hierarchy shares the same
expressions as any other code of the same hierarchy; quantification over all of them
is unrestricted. Due to order-cumulativity of functions, every k-order code is also a
k+1-order code; the type involving n-order codes thus includes nearly all codes of
the hierarchy; we can quantify over them. A hierarchy of codes is a certain class;
such classes form an n-order type and we can thus quantify over them.

However, every code is limited in its expressive power because no construction
of a k-order code Lk is codable in Lk , only in a higher-order code. Moreover, no
expression mentioning (precisely: referring to) Lk is endowed with meaning in Lk ,
only in a higher-order code. To illustrate it, consider the immediate construction of
Lk , viz. 0Lk , which is the meaning of ‘Lk’ (an expression referring to Lk). If 0L1

were a value of L1, L1 would not be specifiable.

12 Truth of expressions’ tokens can be defined as dependent on truth of expressions. It is entirely
omitted in this paper.
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There are two groups of notions of truth of expressions. Let us begin with the first
group. Each of its notions determines a relation(-in-intension) between expressions
and languages (codes).13 They are explicitly language relative notions.

A prototypical example can be defined as follows, note the perfect match of the
definitionwith the intuitive claim stated in the beginning of this section (e is a variable
for numbers/expressions, ln is a variable for n-order codes):

[0TrueInPTwt e ln] ⊆o [0True∼nPT
wt [ln e]]

The defined notion is such that only expressions denoting (in the respective lan-
guage) propositions are assessed as true or not true. This is not achieved in the case
of the total notion of truth of expressions—its definition is not difficult to come
by—which renders also all other expressions as not true.

Note that both the definiendum and the definiens are n+1-order constructions.14

Hence, they cannot be expressed already in an n-order code (the point can be surely
generalized also for n = 1). This is the reason why an appropriate version of the Liar
paradox is avoided (cf. [11]).

Each notion from the second group determines a semantic property of expressions,
not a relation(-in-intension). Unlike the preceding case, these notions are implicitly
language relative notions of truth of expressions. Let us consider an example of a
concrete definition:15

[0TrueLnT
wt e] ⊆o [0TrueInTwt e

0Ln]

The definiens removes the ambiguity of the intuitive notion in question. It is thus
quite clear that it is Ln rather than L’n (belonging to the hierarchy of, say, German),
or Ln rather than Ln−1, in which the semantic feature of an expression E should be
examined. It is perhaps just this ambiguity ubiquitously present in our ordinary and
even scientific thinking which is the source of the Liar paradox.

Unlike the definiens,which is an n+1-order construction, the definiendumalready
is, due to the order-cumulativity of constructions, an n-order construction. Itmay then
seem that a revenge of the Liar paradox is possible. Can be the k-order construction
(involving the total notion of truth of expression in Lk)

λwλtλe[0¬ [0TrueLkT
wt e]]

expressed already in the k-order code Lk?

13 To ask for an expression’s meaning in a hierarchy of codes amounts to ask for its meaning in the
(virtually) highest code of the hierarchy, i.e. Ln .
14 The typing technique within Tichý’s type theory is similar to that in Russellian ramified type
theories.
15 Recall that if properly closed by lambdas, both constructions flanking ⊆o v-construct one and
the same property. It can be proved that the property cannot be discussed by Ln , cf. our discussion
below.
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The Tarskian approach to this question would utilize the appropriate version of
the Liar paradox as a proof of the negative answer.16 The negative answer can rely
also on the intuitively valid fact—entailed, inter alia, by the proof based on the Liar
paradox—that no code with a sufficient expressive power enables us to discuss its
own semantic features.17

A very similar fact was concluded already by Tarski (1933/1956, the
Undefinability Theorem [12]) and also by Tichý [13, p. 231, 233]. As regards the dif-
ferences, note that on the present approach the lower-order semantic notions (seem-
ingly expressible in object language) are definable, yet they are not expressible in the
lower-order codes (object languages). In other words, the proper goal of logicians
who investigate truth—viz. to construct a language with a truth-predicate applicable
to the expressions of that very language—is not fully achievable if the language in
question is sufficiently rich.18

6 Conclusions

To stress the essential feature of the TIL approach to truth, the notion of truth is
explicated by a three-level system of notions. Truth of expressions is ‘supervening’,
dependent on the lower-level notions of truth which apply to extralinguistic items
serving as meanings/denotata of (some) expressions. The TIL approach thus differs
significantly from rivalling approaches.

On each level, some novelties with regard to the present understanding are pro-
posed. Truth of possible world propositions is a rather simple notion and it gives rise
to no (semantic) paradoxes. Truth of constructions, Tichý’s hyperintensional enti-
ties, splits into a number of variants along the regulations of the type theory which
is governed by a special version of the Vicious Circle Principle. A Liar-like paradox
does not ensue because of type restrictions. However, non-paradoxicality is not a
primary goal of the implemented type ramification but a product of a reasonable
formation of constructions. Truth of expressions depends on truth of constructions
they express/propositions they denote. This is dependent, either explicitly or implic-
itly, on language; thus one has truth as a relation between expressions and languages
and as a ‘relational’ property of expressions. The notion of language utilized here
results in a hierarchy because of the type hierarchy of constructions. In consequence,
the proposal is immune to all forms of the Liar paradox. Recall also that meanings
are treated by this approach quite explicitly and that they are explicated as certain
hyperintensional entities.

The approach may be seen as a certain ‘neo-hierarchical’ approach combining
Russellian, Tarskian and Kripkean approaches. As regards Russell, however, only

16 Cf. Tarski [12] and Tichý [13, pp. 292–293] or Raclavský [11] for such proofs.
17 In insufficiently expressive codes-languages, a partial truth-predicate can be meaningful without
a risk of the Liar paradox (cf. [11]).
18 Sufficient richness was an original Tarski’s condition, cf. his [12].
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some Tichý’s constructions roughly appear to be similar to the linguistic entities
called ‘propositional functions’ by Russell. Thus, also the hierarchy of constructions
only has an extraneous similarity to Russell’s hierarchy of propositional functions.
Further, note that Tichý’s particular version of the ramified type theory has foun-
dations in simple theory of types. Tarski’s hierarchy of languages provides a much
better example of a comparable proposal. But the essential difference is that the
present hierarchy is based on the hierarchy of constructions which are meanings of
expressions, while Tarski did not investigated meanings of the expressions belong-
ing to the languages he considered. The analogy with Kripke can be retained if one
ignores some important features of Kripke’s proposal, maintaining only that truth
comes in total and partial versions.
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Leibnizian Intensional Semantics for Syllogistic
Reasoning

Robert van Rooij

Abstract Venn diagrams are standardly used to give a semantics for Syllogistic
reasoning. This interpretation is extensional. Leibniz, however, preferred an inten-
sional interpretation, according to which a singular and universal sentence is true iff
the (meaning of) the predicate is contained in the (meaning of) the subject. Although
Leibniz’s preferred interpretation played a major role in his philosophy (in Leibniz
[16] he justifies his metaphysical ‘Principle of Sufficient Reason’ in terms of it)
he was not able to extend his succesfull intensional interpretation (making use of
characteristic numbers) without negative terms to one where also negative terms are
allowed. The goal of this paper is to show how syllogistic reasoning with complex
terms can be given a natural set theoretic ‘intensional’ semantics, where the meaning
of a term is not defined in terms of individuals. We will make use of the ideas behind
van Fraassen’s [6, 7] hyperintensional semantics to account for this.

Keywords Syllogisms · Leibniz · Intensional semantics · Negation
1 Introduction

Aritstotle made in his Prior Analytics a distinction between assertoric and modal
syllogistics. The crucial difference between the two syllogistics is that only the latter
makes use of two different types of predicative relations: accidental versus essential
predication. ‘Animal’ is essentially predicated of ‘mammal’, but ‘walking’ is not.
Although both (1) ‘Every man walks’ and (2) ‘Every man is an animal’ can be
true, it is natural to say that the ‘reasons’ for their respective truths are different.
Sentence (1) is true by accident, just because every actual man happens to (be able
to) walk. The sentence (2), on the other hand, is true because manhood necessarily
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involves being animate. In traditional terms it is said that (2) is true by definition,
although this notion of ‘definition’ should not be thought of nominalistically: it is
the real definition. A natural way to account for accidental predication is to say that
a sentence of the form ‘Every S is P’ is true just in case every actual S-individual is
also a P-individual. A natural way to account for essential predication, on the other
hand, is to say that a sentence of the form ‘Every S is P’ is true just in case the real
definition of S (the set of attributes one needs to have to be an S) includes the real
definition of P (the set of attributes one needs to have to be a P). We will say that
the first way to determine whether ‘Every S is P’ is true is extensional in nature,
the second way intensional. Especially due to the influence of the Port-Royal school
of logic, however, it became standard in the seventeenth century to assume that the
two come down to the same thing. Leibniz explicitly endorsed this position. Leibniz
gave an intensional semantics making use of characteristic numbers. Unfortunately,
he was unable to extend this system with both conjunctive and negative terms. The
main goal of this paper is to see how to make sense of the intensional interpretation
of syllogistic reasoning including both type of terms.

2 Traditional Syllogistic Reasoning

A categorical sentence always contains two terms. A categorical sentence is always
of one of four kinds: a-type: Universal and affirmative (‘All men are mortal’, with
the terms ‘men’ and ‘mortal’); i-type: Particular and affirmative (‘Some men are
philosophers’); e-type: Universal and negative (‘No philosophers are rich’), and
o-type: Particular and negative (‘Some men are not philosophers’). Thus, the syntax
of simple categorical sentences can be formulated as follows: If T and T ⊥ are terms,
TaT ⊥, TiT ⊥, TeT ⊥, and ToT ⊥ are categorical sentences. Syllogisms are arguments in
which a categorical sentence is derived as conclusion from two categorical sentences
as premisses. A valid syllogism is a syllogism that cannot lead from true premisses
to a false conclusion. It is well-known that with the help of Venn-diagrams one can
check which syllogisms are valid (cf. [4]). For some, its validity depends on whether
or not we assume existential import. The traditional (proof-theoretic) way to check
validity, however, was to see whether the syllogism could be reduced to the first four
valid syllogisms of the first figure (Barbara, Celarent, Darii, and Ferio) with the help
of conversion and reductio ad impossible.

The syntax of categorical sentences can be straightforwardly extended with con-
junctive and negative terms.1 Thus we say that if T and T ⊥ are terms, T and TT ⊥
are terms as well. In terms of Venn-diagrams it is still easy to see which syllogisms
are valid. Still, negative terms didn’t play an important role in traditional logic.
Arguably, this was no accident, and due to the fact that an interpretation in terms of
Venn-diagrams was foreign to traditional logicians. Making use of Venn-diagrams
assumes that terms are interpreted extensionally: as sets of individuals. According to

1 In the history of logic, negative terms are also known as indefinite or infinite terms.
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alternative interpretations, however, a sentence of the form ‘SaP’ is true if and only if
the essence, comprehension, or intension, of P is contained in the intension of S. The
intension of a term, or concept, consisted of all the essential attributes in it (those
that cannot be removed without ‘destroying’ the concept). Thus, the intension of
the term ‘triangle’ might include the attributes of being polygon, three-sided, three-
angled, and so on. It is not unreasonable to assume (at least according to Aristotle
and many other traditional and modern logicians) that a substantive term like ‘man’
has essential properties as well. Every manmust then have these properties. But what
would be the essential properties of a negative term like ‘not man’?2 It is well-known
that if we just extend syllogistic logic with negative terms, we have to add to our

proof system a double negation rule (T → T ) and contraposition (SaP ♦ PaS). To
be able to reason also with conjunctive terms does not mean that we have to assume
all axioms of Boolean algebra, for Aristotle did not assume the existence of ‘empty’
and ‘universal’ terms, i.e., terms which on an extensional interpretation denote the
empty set and the whole domain, respectively.

3 Leibniz’ Semantic Calculus

Just as some other scientists in the seventeenth century, also Leibniz conceived
of a characteristica universalis, an “algebra” capable of expressing all conceptual
thought. This algebra would include rules for symbolic manipulation, what he called
a calculus ratiocinator. His goal was to put reasoning on a firmer basis by reducing
much of it to a matter of calculation that many could grasp. The task of the universal
characteristic would not only be to express the formal structure of valid deductive
reasoning, but also to express the content of the ideas being reasoned about. Thus,
it should be a semantic calculus. The characteristic would build on an alphabet of
human thought, a set of unanalyzable primitive meaningful concepts. Moreover, the
characteristic should be compositional: any character representing a complex con-
cept should correspond to the composition of the complex concepts from its simpler
conceptual parts. In the late 1670s, Leibniz worked on a type of characteristics that
satisfies both of these requirements. It was partly inspired by Descartes’ dream of a
‘universal mathematics’ and Hobbes’ idea that reasoning was literally like numerical
calculation in arithmetic.

Leibniz had made several attempts to arithmetize the syllogism, i.e., to find arith-
metic translations of the four propositional types of the square of opposition that
would make all the valid assertoric moods into truths of arithmetic and all the invalid
ones into arithmetic falsities. In one of the first trials, he uses prime numbers to
symbolize elementary concepts. The reason why prime numbers are interesting is
that for each number there is a unique way of expressing it as a product of prime

2 For some adjectives (like ‘tall’ and ‘heavy’) it seems less unreasonable to propose that their
negative counterparts have essential properties, but it is perhaps no accident that in natural language
these negative counterparts are expressed positively by their antonyms (like ‘short’ and ‘light’).
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numbers. Let us say that an elementary concept T is symbolized, or interpreted,
by f (T). By ignoring negative concepts, and by representing ‘conjunctive’ concepts
in the form of products of elementary concepts, he so associated a numerical charac-
teristic with each concept. Leibniz wrote the universal affirmative proposition SaP in
the form f (S) = f (P)×y, i.e. ∃y(f (S) = f (P)×y), or f (P) divides f (S) (f (P)|f (S)),
and particular affirmative propositions (SiP) as ∃x, y[f (S) × x = f (P) × y].
Universally negative propositions (SeP) and particular negative propositions (SoP)
are negations of SiP and SaP, respectively. A major problem of this system was
that propositions of the form SiP are much too easily true (and propositions of
the form SeP much too easily false). One way to improve this system tried by
Leibniz was to say that SiP is true iff f (S) and f (P) have a greatest common divi-
sor greater than 1, i.e. gcd(f (S), f (P)) > 1. Look, for instance, at the syllogistic
argument MeP, SaM ♦ SeP. This reasoning is valid iff if gcd(f (M), f (P)) = 1
and (f (M)|f (S)), then gcd(f (S), f (P)) = 1. Because the latter sentence is a truth
of arithmetic, the argument is valid. Unfortunately, this new method mispredicts
for certain valid syllogisms. Consider Darii: MaP, SiM ♦ SiP, and assume that
f (M) = 2 × 3, f (P) = 3, and f (S) = 2 × 5. Although f (P) divides f (M) and f (S)

and f (M) have a common divisor larger than 1,f (S) and f (P) have no such common
divisor. Still, Darii is a valid syllogism.

As explained by Sotirov [26], the cause of the problem was Leibniz’ confusion
of intensional and extensional interpretations of terms. According to a set theoretic
extensional interpretation of terms, terms are just interpreted as sets of individuals.
A sentence of the form SaP is true iff all individuals in the extension of S are also
individuals in the extension of P. According to the (dual) set theoretic intensional
interpretation, terms stand for concepts, thought of as sets of attributes. A sentence
of the form SaP is considered to be true iff each attribute associated with P is also
associated with S. The extensional interpretation was favored by scholastic logicians
like Ockham, but Leibniz clearly favored the intensional interpretation (and claims
that Aristotle did so as well).3

Aristotle clearly assumes that essential predication is stronger than accidental
predication, and medieval logicians very much assumed the same.4 The problem

3 The intensional view is also explicitly discussed in Wittgenstein’s Tractatus, 5.1222: if p follows
from q, then the sense of p is contained in the sense of q.
4 According to Leibniz, Aristotle, in contrast to a nominalist like Locke, preferred the intensional
interpretation:

Philalethes (expressing Locke’s view) [. . .] it appeared to me preferable to reverse the order
of the premisses of syllogisms, and to say: All A is B, all B is C, so all A is C, rather than
saying All B is C, all A is B, so all A is C. [. . .]
Theophilus (expressing Leibniz’s view) [. . .] Aristotle may have had a special reason for
adopting [what is now] the common arrangement. For rather than saying ‘A is B’ he usually
says ‘B is in A’ [. . .]. And with that way of stating it he achieves, through the accepted
arrangements, the very connection which you insist upon. For instead of saying ‘B is C, A is
B, so A is C’, Aristotle will express it thus: ‘C is in B, B is in A, so C is in A’. For instance,
instead of saying ‘Rectangles are isogons (i.e. have equal angles), squares are rectangles,
so squares are isogons’, Aristotle will put the ‘middle term’ in the middle position with-
out changing the order of the propositions, by stating each of them in amannerwhich reverses



Leibnizian Intensional Semantics for Syllogistic Reasoning 183

of the above arithmetic analysis was that universal affirmative propositions were
interpreted intensionally (SaP is true iff f (P) divides f (S), meaning that every
attribute of P is also an attribute of S), while particular affirmative propositions
were interpreted extensionally (SiP is true iff f (S) and f (P) have a common divisor,
i.e., iff f (S) and f (P) have a non-empty intersection).5 Having noticed the problem,
it is easy to see that in principle there are two ways to solve it (cf. [26]): either to
give both types of sentences an extensional, or both types of sentences an intensional
interpretation. According to the first solution one says that SaP is true iff f (S) divides
f (P), i.e. (f (S)|f (P)), meaning that every divisor of f (S) is also a divisor of f (P).
The second solution is somewhat more complicated, because integers have a least
number—1, but not a largest number. To still give an intensional interpretation to
particular affirmative propositions, one can introduce an arbitrary integer n greater
than 1 such that the interpretation of each termT is a proper divisor of n, i.e., (f (T)|n).
Now Sotirov proposes to interpret SiP as true iff the least common multiple of f (S)

and f (P) is less than n. One can show that both of these solutions work: valid syllo-
gisms are turned into truths of arithmetic and invalid ones into arithmetic falsities.6

This proof is based on the fact that the operations of greatest common divisor, least
common multiple, and division into n (that is, x = n/x), can be shown to satisfy
all the Boolean laws when their arguments range over all sets of prime factors of n,
with union corresponding to least commonmultiple, intersection to greatest common
divisor, and complement to division into n. This is a standard result, if n is square-free
(i.e., n is not divisible by any square greater than 1).

Leibniz’s own solution to the problems of the earlier system was different,
but worked as well. His proposal was fully in the spirit of the intensional analy-
sis. He interpreted each term T by a pair of numbers,

〈
f1(T), f2(T)

〉
such that

gcd(f1(T), f2(T)) = 1 (the numbers f1(T) and f2(T) are called ‘relatively prime’).
Intuitively, T contains the set of basic attributes corresponding to the prime factors
of f1(T), while T does (definitely) not contain the set of basic attributes correspond-
ing to the basic factors of f2(T). The universal affirmative proposition of the form
SaP is now considered as true iff f1(P) divides f1(S), i.e. (f1(P)|f1(S)), and f2(P)

divides f2(S), i.e. (f2(P)|f2(S)). To illustrate, the sentence ‘All men are rational’ is
true iff every attribute that definitely belongs to ‘rationality’ definitely belongs to

(Footnote 4 continued)
the order of terms, thus: ‘Isogon is in rectangle, rectangle is in square, so isogon is in square’.
This manner of statement deserves respect; for indeed the predicate is in the subject, or rather
the idea of the predicate is included in the idea of the subject. [. . .] The common manner
of statements concerns individuals, whereas Aristotle’s refers rather to ideas or universals.
[. . .]
Leibniz, New Essays on Human Understanding, Book4, Chap.17, Sect. 8)

5 Having a non-empty intersection of the intensions of S and T is not enough for the sentence SiP
to be true: although both gold and silver clearly share a property (e.g. being a metal) this doesn’t
mean that there is something both pure gold and pure silver.
6 Glashoff [10] rightly complains that Sotirov’s solution is not completely in the spirit of Leibniz’s
assumptions: Leibniz asumed that the builiding blocks (the prime numbers) can be an infinite set.
This is impossible with Sotirov’s solution.
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‘manhood’ and every attribute that definitely doesn’t belong to rationality definitely
doesn’t belong to manhood either. The particular affirmative proposition SiP is said
to be true iff neither pair of non-corresponding numbers have a common divisor
greater than 1, i.e., iff gcd(f1(S), f2(P)) = 1 and gcd(f2(S), f1(P)) = 1. Intuitively
this means that the intensions of S and P are consistent with each other. Leibniz [13]
showed that under this method all the laws of conversion and of the square of oppo-
sition are predicted to be valid. Łukasiewicz [20] showed that all the valid moods of
the assertoric syllogism and the rule of Reductio per impossible are predicted to be
valid as well.7

After the 1670s Leibniz hardly ever came back to his arithmetization of logic. It
is not completely clear why. But there is room for speculation. The first speculation
(see [3]) concerns the necessity to use (prime) numbers in the first place. As said
above, Leibniz’ goal was to find arithmetic translations of all terms such as to reduce
validity to arithmetic truth. What he end up doing was not quite like that. To see
this, let us see when an argument should be counted as valid. That is, when should
we count λ1, . . . , λn/ι as a valid argument? Let λ be a sentence of the form SaP,
SiP, SeP, or SoP, and say, for instance, that f (SiP) = 1 iff gcd(f1(S), f2(P)) = 1
and gcd(f2(S), f1(P)) = 1. Then, λ1, . . . , λn|=ι iff for all f : if f (λ1) = 1 and
· · · and f (λn) = 1, then f (ι) = 1. Thus, it is not enough for a syllogism to be
valid if there exists an arithmetic interpretation according to which the premises are
true and the conclusion is true as well. In fact, Couturat [5] had reason to believe
that Leibniz himself found an arithmetic interpretation of an invalid syllogism that
corresponds to an arithmetic truth.8 Leibniz’ dilemma was then to either find the
correct unique arithmetic interpretation for which arithmetic truth would always
correspond to logical validity, or to give up on any uniqueness claim. The first horn
of the dilemma means that even before we can start to calculate, we first have to
work out the complete characteristica universalis. The second horn would involve
being content with a much more modest calculus ratiocinator. Although he never

7 Sommers [25] proposed an alternative numerical way to account for for syllogistic reasoning
without making use of prime numbers, and more in the spirit of the medieval distribution theory.
Unfortunately, Sommers’ numerical method alone doesn’t quite do the job. He needs an additional
non-numerical rule: the requirement that for a syllogism to be valid, the number of particular
conclusions must equal the number of particular premises. Friedman [8] improved on Sommers’
method by getting rid of this additional rule. In fact, he showed that there are at least two purely
numerical ways to account for syllogistic reasoning. According to the additionalmethod one should
replace SaP by −S + P, SiP by +S + P, SeP by −S − P − 1, and SoP by +S − P − 1. Let
λ⊥ be the result of the replacement of sentence λ. Then one can show that λ1, · · · , λn ♦ ι iff
λ⊥
1 + · · · + λ⊥

n = ι ⊥. According to the multiplicational method we replace SaP by P
S , SiP by

2SP, SeP by −1
SP , and SoP by −2S

P . If we denote the result of the replacement in this way by
λ", it follows that λ1, · · · , λn ♦ ι iff λ"1 × · · · × λ"n = ι". Both methods validate all and
only the valid syllogism, but the multiplicational method has an advantage because it allows for a
natural representation of negative terms: P is represented as 1

P . Not using prime numbers makes the
calculations easier, but note that the resulting systems are anything but a characteristics universalis.
In fact, the resulting systems cannot be thought of as semantic systems at all.
8 Let M be assigned ∧10, 3〉, S be ∧8, 11〉, and P be ∧5, 1〉. On this assignment, the syllogism MaP,
MoS/SoP is wrongly predicted to valid.
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seems to have given up hopes to find a fully universal characteristics, in later work
he practically limited himself to the more mundane project. But for working out the
second project, there is no essential reason to make use of (prime) numbers.

A second reason for why Leibniz might have given up on his arithmetization-
project is that he was unable to extend it so as to include negative terms [9]. He
realized, for instance, that in case T is a complex term represented by ∧n, m〉, T
cannot be represented simply by ∧m, n〉: that the complex term ‘white paper’ does
definitely not have the property of being black, doesn’t entail that being something
that is not a white paper means that it must be black. Leibniz tried other options for
representing negative terms by pairs of numbers that are relatively prime (i.e. have no
common divisor) in terms of his representation of positive terms, but failed. Glashoff
[10] recently showed that this is no coincidence: he could not succeed if he wanted
to satisfy the law of contraposition (SaP|=PaS). Glashoff [10] shows that Leibniz’s
artithmetical project can be saved, if we allow for ‘richer’ types of numbers.

Recall that what Leibniz did when he assigned numbers to terms was that he
thereby interpreted these terms, i.e. he gave them a semantics. Nowedays we are
more familiar with set theoretical models. Glashoff [11] recently provided a modern
set theoretic intensional interpretation of Syllogistics following the spirit of Leibniz’
final solution: interpreting terms by pairs. This solution is very interesting. Still, it
would be helpful to seewhetherwe can also give a ‘modern’ intensional interpretation
more in line with Leibniz’ earlier trials. Later in this paper I want to provide a natural
set theoretic intensional interpretation of terms along these lines.9 But before we do
that, let us first see what is really required to give a semantics for syllogistic reasoning
by looking at things algebraically.

4 Algebraic Semantics

Above, we have given an extensional and an intensional interpretation of terms.
Following Leibniz, these interpretations were arithmetic in nature. We have seen,
however, that interpretation was not essentially arithmetic at all. In fact, it doesn’t
matter much how terms are interpreted, as long as the interpretation is compositional.
The extensional arithmetic interpretation discussed above corresponds closely with
the standard set theoretic interpretation, according to which the extensional interpre-
tation function E assigns to each primitive term T a non-empty subset of the set of
objects D: ∗ ≤= EM(T) ↔ D. The sentence SaP is true iff E(S) ∨ E(P) = E(S) iff
E(S) ⊆ E(P), and SiP is true iff E(S) ∨ E(P) ≤= ∗. SoP and SeP are interpreted as
the negations of SaP and SiP, respectively.

Of course, set theory comes with al the axioms of Boolean algebra, and this much
structure is not at all required to model syllogistic reasoning. For the traditional
fragment without conjunctive and negative terms, for instance, a partially ordered set
∧U,∼〉, togetherwith a relation@which is reflexive andmonotonicw.r.t.∼ is already

9 My proposal is thus closer to Sotirov’s [26] approach.
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enough (in fact, ∼ need only be a quasi-ordering, i.e., reflexive and transitive).10 On
the extensional interpretation, SaP is true iff E(S) ∼ E(P) (with E(S) ∩ U being the
extensional interpretation of S) and SiP is true iff E(S)@E(P). For the intensional
semantics, we demand that SaP is true iff I(S) ∪ I(P) and SiP is true iff I(S)@I(P)

(with I(S) as the intensional interpretation of S). On the extensional interpretation
we assume that inf {x, y} ∩ U for all x, y ∩ U. On the intensional interpretation we
assume, instead, that sup{x, y} ∩ U for all x, y ∩ U. Alternatively, we can start for
the extensional interpretation with a meet semi-lattice ∧U, •〉, and determine ∧U,∼〉
by defining inf {x, y} as inf {x, y} = x • y. Of course, we can also start with a join
semi-lattice ∧U, ⊃〉 and determine ∧U,∼〉 by definition sup{x, y} = x ⊃y. To interpret
particular sentences, we can add a special element 0 to both types of semi-lattices.
For the extensional interpretation the special element 0 is such that ≡T ∩ Term :
0•E(T) = 0.Of course, SaP is true iffE(S) ∼ E(P) iffE(S)•E(P) = E(S) and SiP is
true iffE(S)•E(P) ≤= 0 (the truth-conditions of SoP and SeP are determined as usual
in terms of the truth-conditions of SaP and SiP). For the intensional interpretation,
we start with the join semi-lattice. SaP is true iff I(P) ∼ I(S) iff I(S) ⊃ I(P) = I(S)

and we say that SiP is true iff I(S) ⊃ I(P) ≤= 0, but now 0 should be thought of as the
greatest element: ≡T ∩ Term : 0⊃ I(T) = 0. For simplicity we have assumed that we
have only one 0-element. But this is not really required. Things would have worked
as well if we had a set of minimal, or maximal, elements (called ∈) and we would
have demanded that SiP is true on the extensional and intensional interpretation iff
E(S) • E(P) ∩ ∈ and E(S) ⊃ E(P) ∩ ∈, respectively.

Once we have ‘•’ and ‘⊃’ as operations between terms, we can also account for
conjunctive terms. Notice that on the intensional interpretation it is not ‘•’ but rather
‘⊃’ thatwe use to interpret conjunctive terms. Ifwe add term-negation to the language,
we take ∧U,∼〉 to be a distributive lattice and assume that for all x, y ∩ U : x = x
and x ∼ y → y ∼ x. Observe that this is exactly a DeMorgan algebra if we don’t
have to assume that we have a unique minimal (or maximal) element. If we also want
to interpret empty and universal terms, we assume that we have a whole Boolean
algebra with unique minimal and maximal elements.

5 Lenzen’s [18] Intensional Semantics

To give a set theoretic intensional semantics for syllogistics without negative terms,
we have to start at least with a primitive set of attributes A and an interpretation
function that assigns sets of attributes to terms. It is quite clear how to provide a
semantics for sentences of the form SaP: I(P) ⊆ I(S), but the problem is how to
provide a semantics for particular sentences: SiP. The first idea that came to Leibniz’s
mind given in set-theoretic terms would be to say that SiP is true iff I(S)∨ I(P) ≤= ∗.
But this idea is clearly non-sensical: some bike is red, but there is nothing in the
intension of ‘red’ that is also in the intension of ‘bike’, or so it seems. Or even more

10 This is very well known, see, for instance [21, 26].
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obviously, the sentence ‘No gold is silver’ is obviously true. According to the above
suggestion this is true iff there is no attribute, or property, that gold and silver share.
But there is obviously one: metal. What has to be assumed, rather, is the following
idea: for ‘Some bike is red’ to be true, the intensions of ‘red’ and ‘bike’ should not
be incompatible. On the other hand, for ‘No silver is gold’ to be true, the intensions
of ‘silver’ and ‘gold’ should be incompatible. How should we model the intension
of a term and of this notion of incompatibility?

Lenzen’s [18] idea was to think of attributes as sets of individuals, and thus
to think of the meaning of terms as sets of sets of (possible) individuals. He
counted SaP as true iff VL(P) (the intensional Lenzen-interpretation) is a subset
of VL(S) : VL(P) ⊆ VL(S). This is exactly as one would expect. For the interpre-
tation of particular sentences of the form SiP, however, Lenzen makes use of the
interpretation of the conjunctive term ‘SP’: SiP is true iff VL(SP) ≤= Θ(D), with D
the set of all possible individuals.11 The sentences SoP and SeP are interpreted as
usual, meaning that SeP is true iff VL(SP) = Θ(D). But how does Lenzen interpret
conjunctive terms? He interprets them as follows:

• VL(TT ⊥) = {X ⊆ D : ⋂
VL(T) ∨ ⋂

VL(T ⊥) ⊆ X}
Thus, for Lenzen [18], the interpretation of a conjunctive term is not the inter-

section of the interpretations of the two terms, but rather the intersection of their
intersections. Recalling that according to Lenzen SeP is true iff VL(SP) = Θ(D),
this means that SeP is true iff

⋂
VL(S) ∨ ⋂

VL(P) = ∗.
Let us now consider a language which also has negative terms. How should we

interpret this? It is straightforward to interpret such terms from an extensional point
of view: VE(T) = D − VE(T), with D a set of individuals and VE(T) the elements
of D that have property T . Things are more complicated when we look at things
from an intensional perspective. We have seen that Leibniz was never able to give
a satisfactory semantics for a language with both negative and conjunctive terms in
terms of characteristic numbers. But Lenzen [18] provided an intensional semantics
that is formally satisfactory.

The idea to intensionally interpret terms as sets of sets of individuals plays amajor
role. However, he demanded that not just any set of sets of individuals will do. If T
is a term, Lenzen requires that the intensional Lenzen-interpretation of T , IL(T), is
a proper filter: (i) IL(T) ≤= ∗, (ii) if X ∩ IL(T) and X ⊆ Y , then Y ∩ IL(T), and (iii)
if X ∩ IL(T) and Y ∩ IL(T), then (X ∨ Y) ∩ IL(T). We have seen already how he
interprets conjunctive terms and simple sentences, but here is the full definition:

• VL(T) = IL(T), if T is a primitive term.
• VL(TT ⊥) = {X ⊆ D : ⋂

VL(T) ∨ ⋂
VL(T ⊥) ⊆ X}.

• VL(T) = {X ⊆ D : ⋂
VL(T) ⊆ X}.

11 If we think of the extensional counterpart, this means that ‘some bike is red’ is true not because
there actually exists a red bike, but rather that it is possible that such a bike exists. And indeed, what
Leibniz considers to be the extension of a term (a set of individuals scattered around all worlds) is
very much what in possible worlds semantics is its intension (cf. [13] and [12, p. 49]).
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• VL(SaP) = 1 iff VL(P) ⊆ VL(S)

VM(SiP) = 1 iff VL(SP) ≤= Θ(D)

SoP and SeP are interpreted as usual.

Entailment is defined as usual. Lenzen [18] shows that this interpretation is in fact
equivalent to the set theoretic extensional interpretation in the sense that it validates
exactly the same inferences. This is very pleasing, just as the fact that for all terms
S and T their intension and extension behave as duals: VL(S) ⊇ VL(T) iff VE(S) ⊆
VE(T).

Still, I believe that there is reason to be unsatisfied with Lenzen’s intensional
semantics. The reason is that many authors (e.g. [3, 9, 11]) naturally assume that
for a semantics to be called intensional it should not be the case that we have to
make reference to individuals. But exactly this reference to individuals is crucial
for Lenzen’s interpretation of conjunctive and negative terms: he crucially thinks of
attributes as sets of individuals. What we would like to have instead is to assume
with Leibniz that basic attributes are just primitives. But how should we proceed?

6 Towards a Truly Intensional Semantics

6.1 An Intensional Semantics for Simple Syllogistics

Wehave seen in the previous section that to account for sentences of the form SiP and
SeP we have to make sense of intensions of terms being compatible or incompatible
with each other. Lenzen [18] idea to do this was to make use, in the end, of (possible)
individuals. But we have argued above that this is unsatisfying when one wants to
provide a ‘truly’ intensional semantics. In a truly intensional semantics, one rather
starts with a set of attributes, A , as being primitive, and not defined in terms of
sets of individuals. But once one does so, one also has to assume that the notion of
(in)compatibility is primitive as well.

The fact that we have to assume such a primitive notion of (in)compatibility
already suggests why Leibniz had a hard time to come up with a satisfying charac-
teristics for even simple syllogistic logic. Just like Wittgenstein when he was writing
his Tractatus, also Leibniz thought of his simple terms, or attributes, as being logical
independent of each other, i.e., their being mutually compatible with all other sim-
ples (cf. [12, p. 54]): only if the simples are logically independent of each other is
it possible to construct a language where inference and equivalence can be checked
‘from the surface’. To check validity we don’t have to knowwhat the interpretation of
the different terms is. But if all terms are interpreted by sets of these simple attributes
that are all mutually compatible with each other, a sentence like ‘No gold is silver’
can never be true.

In our first interpretation, we will intensionally interpret each term as a set of
attributes. However, these attributes need not all be simple, i.e., we don’t demand
that IM(T) ⊆ A , if I is the interpretation function. Rather, we assume a primitive
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operator ‘⊃’, such that ∧A ∗, ⊃〉 is a semi-lattice, i.e., the elements of A ∗ are closed
under ‘⊃’, and are generated by the set of primitive featuresA . We will assume that
each term denotes a subset ofA ∗ closed under ‘⊃’. Furthermore, we assume that we
have a primitive set of inconsistent (or impossible) attributes, called ∈. To accounts
for existential import we demands that ≡x ∩ IM(T) : x ≤∩ ∈ for all terms T .12

We interpret the language with respect to a model M = ∧A , ⊃, I,∈〉. As said
above, A is the set of primitive ‘simple’ attributes, and ‘⊃’ is an operator that is
commutative, associative, and idempotent. The set of attributes A ∗ is generated
by, and thus a superset of, A . I is an interpretation function which assigns to each
primitive term T a subset of A ∗ (i) closed under ⊃ and (ii) no element of IM(T) is
an element of ∈. We say that IM(SaP) = 1 iff IM(S) ⊇ IM(P) and IM(SiP) = 1 iff
¬∃x ∩ IM(S) : y ∩ IM(P) : x ⊃ y ∩ ∈. Thus, SiP is true iff S and P do not contain
mutually incompatible attributes. SoP and SeP are interpreted as true iff SaP and
SiP, respectively, are not.

We say, as usual, that β|=ι iff ≡M : if ≡λ ∩ β : VM(λ) = 1, then VM(ι) =
1. This semantics validates all and only all arguments in Aristotelian syllogistic
style if and only if they are counted as valid on the standard extensional semantics
where S and P denote non-empty sets of individuals, and SaP and SiP are true iff
E(S) ⊆ E(P) and E(S) ∨ E(P) ≤= ∗, respectively. The proof of this makes use of
the fact that this standard fragment can be axiomatised by the validity of (i) SaS, (ii)
SiS, and the syllogisms (iii) Barbara and (iv) Datisi (cf. [20]). But these validities
immediately follow because (a) the ‘⊆’-relation between sets of attributes gives rise
to a partial order and (b) the relation of ‘compatible union’ between the interpretation
of primitive terms is reflexive and downward monotonic with respect to ‘⊆’.

6.2 An Intensional Semantics for Syllogistics with Complex Terms

How can we provide an intensional interpretation of syllogistics with conjunctive
and negative terms without crucially referring to individuals? One way to go would
be to use a similar trick as in the previous section, but now don’t start with the
semi-order ∧A ∗, ⊃〉, but rather with a distributive lattice ∧A ∗, ⊃, τ〉, which also has
a complementation operaton, which satisfies (i) double negation, x = x, and the
DeMorgan laws: x ⊃ y = x τ y and x τ y = x ⊃ y. If we define x ∼ y as usual: x ∼ y
iff x ⊃ y = y iff x τ y = x, it is easy to prove that it follows that x ∼ y iff y ∼ x.13

This can then be used to account for interpreting conjunctive and negative terms.
Such an account would not really fulfill our goal to find a purely set-theoretic

semantics, however, because we still would have used an algebraic semantics. What
if we just want to work with attributes and sets thereof? The straightforward way
to go is to lift the interpretations of our earlier intensional model: terms should not

12 The idea behind these constraints is similar to [18] idea to assume that each term intensionally
denotes a proper filter.
13 Proof: x ∼ y iff x τ y = x iff x τ y = x iff x ⊃ y = x iff y ∼ x.
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be interpreted as sets of attributes, but rather as sets of sets of (simple) attributes.
In that case we don’t have to assume that the attributes themselves are closed under
some operators like ‘⊃’ or ‘τ’. Instead, we can now assume that we start with a model
M = ∧A , I,∈〉, where A is a set of simple attributes, I an interpretation function
which assigns to each primitive term T a consistent subset of A , and where ∈ is
now a primitive symmetric and irreflexive relation between elements ofA . We now
make the assumption that for every x ∩ A : ∃!y ∩ A : x∈y. We defineA ∗ as the set
of all consistent subsets ofA : {X ⊆ A : ¬∃x, y ∩ X : x∈y}. Let I an interpretation
function which assigns to each primitive term T an element of A ∗, i.e., a set of
mutually consistent attributes. In general, however, terms will be interpreted as sets
of sets of attributes. The intensional interpretation of terms T , VM(T), is recursively
defined as follows (inspired by van Fraassen [7]):

• VM(T) = {IM(T)}, if T is a primitive term.
• VM(TT ⊥) = {X ∪ Y : X ∩ VM(T) & Y ∩ VM(T ⊥)}
• VM(T) = ∧{X : X ∩ VM(T)}, with X = {{x} : x ∩ X},

and X ℵ Y = {X ∪ Y : X ∩ X & Y ∩ Y }

• F ⊕ G iff ≡X ∩ F : ∃Y ∩ G : Y ⊆ X
• F@G iff ∃X ∩ F : ∃Y ∩ G : X ∪ Y ∩ A ∗

• VM(SaP) = 1 iff VM(S) ⊕ VM(P)

VM(SiP) = 1 iff VM(S)@VM(P)

• β|=ι iff ≡M : if ≡λ ∩ β : VM(λ) = 1, then VM(ι) = 1.

Notice that the analysis implements a ‘truly’ intensional semantics because
(i) it doesn’t make use of individuals, and (ii) because of the (modified) ‘predi-
cate is in the subject’-analysis of universal statements. It is easy to prove that ‘⊕’
is both reflexive and transitive. Still, it does not give rise to a partial order, because
it is not antisymmetric. For instance: {{t}, {t, s}} ⊕ {{t}} and {{t}} ⊕ {{t} {t, s}}, but
obviously {{t}} ≤= {{t}, {t, s}}. As example discussed by Leibniz [15] we canmention
the terms triangle and trilateral. We have seen in Sect. 4 that the fact that ‘⊕’ is both
reflexive and transitive is enough to account for syllogistic logic without negative
terms, if the relation ‘@’ is both reflexive and monotone w.r.t. ‘⊕’. Is that the case?
It is easy to see that it is not, because ‘@’ is not reflexive. As we will see later, this
has important consequences.

But let us first try to understand the interpretation of terms a bit better. Let us
assume that we don’t have negative terms. In that case, the only complex terms that
exist are ‘conjunctive’ terms. Because primitive terms always denote singleton sets,
it follows that also all conjunctive terms denote singleton sets, and thus (without
term negation) all terms denote singleton sets. In that case, our lifted interpretation
is equivalent to our earlier intensional interpretation: If we would forget in that
earlier interpretation ‘closure under ‘⊃”, what we earlier had as VM(T) would now
be

⋂
VM(T). It follows that SaP is true iff

⋂
VM(P) ⊆ ⋂

VM(S), and SiP is true
iff

⋂
VM(P) ∪ ⋂

VM(S) ∩ A ∗. Thus, our new system is a conservative extension
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of our earlier system, and indeed, it is easy to prove that this semantics validates all
and only all valid syllogisms without negative terms. But what about the extension
with negative terms? What about double negation and contraposition?

To illustrate the treatment of negative terms, assume that A = {x, y, z, v}, and
x∈z and y∈v. We will denote z and v, respectively, by x and y, because we assume
that ≡x ∩ A : ∃!y ∩ A : x∈y. In that case, the set of compatible sets of attributes
is {{x}, {y}, {x}, {y}, {x, y}, {x, y}, {x, y}, {x, y}}. A term does not denote a consistent
set of attributes, but rather a set of consistent sets of attributes. The singleton sets
{{x}}, {{y}} can be thought of as (the denotations of) simple properties. Call them
X and Y , respectively. The compatible complex properties can then be denoted by
XY , XY , XY , and XY . Disjunctive properties typically denote non-singleton sets.
The disjunctive property consisting of X and Y , for instance, denotes {{x}, {y}} =
VM(X)∪VM(Y).Whether negative predicates denote singleton sets or not depends on
howmany incompatibles they have.Because x, for instance, is only incompatiblewith
x,X denotes the singleton sets {{x}}. It is differentwith conjunctive properties likeXY :
VM(XY) = {{x}, {y}} = VM(X)∪VM(Y). Notice that from thesewe can go back to the

original via double negation: VM(X) = {{x}} = VM(X) and VM(XY) = {{x, y}} =
VM(XY). As it turns out, this holds in general: for all terms T : VM(T) = VM(T).

On the analysis so far, although a sentence like ‘All square circles are circles’
comes out true, the sentence ‘All square circles are green’ need not. In fact, in what
we have now, much less follows than it does on an extensional semantics. This is
so, because we make distinctions that an extensional semantics cannot make. In par-
ticular, we make a distinction between two contradictory terms like PP and QQ,

and thus also to their ‘tautological’ disjunctive negations: VM(PP) ≤= VM(QQ).
Intuitively, the reason is that VM(T) ≤= Θ(A) − VM(T). In our toy model above
{x, x} ≤= {y, y}. This allows us to make a distinction between different inconsistent
concepts, like square circle and triangular circle. The one can denote {{x, x}} while
the other denotes {{y, y}}. Similarly, {{x}, {x}} ≤= {{y}, {y}}, meaning that two tau-
tological concepts need not have the same meaning. What this illustrates is that our
intensional analysis is more fine-grained than standard extensional semantics.14 But
allowing for contradictory concepts has two important consequences: one for our
notion of truth, and one for our notion of consequence. First, sentences like SiS are
not always true for all terms S, i.e., not if S is a contradictory term. This shows
that the relation ‘@’ is not reflexive. But this has as a consequence that syllogistic
inferences that rely on existential import are by our semantics not predicted to be
valid. Consider, for instance, Darapti, a syllogism of the third figure with the form
‘MaP, MaS/SiP’. Consider the example ‘All square circles are square, all square
circles are circles, thus some circles are square’. On our semantics given so far, both
premisses are true, but the conclusion is not.

To overcome the problem I propose that we just limit ourselves in reasoning to
non-contradictory terms. Limited to such terms, the relation ‘@’ becomes

14 In fact, we end up with something very close to the syllogistic counterpart of a semantics of
Anderson and Belnap’s [1] notion of tautological (or relevant) entailment. Indeed, I have based the
semantics on some ideas of van Fraassen [6], which is used to gives a semantics for this logic.
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immediately reflexive, and it is easy to see that it then also behaves monotonic w.r.t.
‘⊕’. Thus, by limiting ourselves to non-contradictory terms, we have proved that our
semantics validates all and only all valid syllogisms in the classic formulation. But
what about syllogisms which contain negative terms?Well, in that case double nega-
tion has to be valid, just as contraposition. We have mentioned already that double
negation holds. What about contraposition? Fortunately, one can prove (following
basically appendix 1 of [7])15 that for all terms T1 and T2: if VM(T1) ⊕ VM(T2),
then VM(T2) ⊕ VM(T1). Thus, we have reached our goal.

Notice that even if we limit ourselves to non-contradictory terms, our semantics
is still not Boolean. It does not even satisfy all of the DeMorgan laws. How can we
go from our semantics to a richer DeMorgan or even Boolean semantics? As it turns
out, we can follow van Fraassen [7] and assign to each term a somewhat different
interpretation, the closure of VM(T) under the superset relation: Vc

M(T) = {Y ∩
A ∗| ∃X ∩ VM(T) : X ⊆ Y}. It is clear that the closure of {{t}} and {{t}, {t, s}} is
the same. LetZ be a set of sets of attributes. We say thatZ is a closed property iff
Z = Z c, where Z c is the closure of Z . van Fraassen [7] shows that intersections,
unions, and complementations of such closed properties are closed again, and in
fact form a DeMorgan algebra. Now we can reformulate the truth conditions of our
categorical sentences in terms of our ‘closured’ interpretations:

• VM(SaP) = 1 iff Vc
M(S) ⊆ Vc

M(P)

VM(SiP) = 1 iff Vc
M(S) ∨ Vc

M(P) ≤= ∗
To go fully Boolean, what we need, obviously, is one contradiction and one tau-

tology. To establish this, we can limit ourselves to the maximal consistent elements
of the closures of the meanings of our terms as follows. First, we can define the set
of its maximal elements of the closure of VM(T) as follows:

• Max(Vc
M(T)) = {X ∩ Vc

M(T) : ¬∃Y ∩ Vc
M(T) : X ↔ Y}.

Next, we define the truth conditions of sentences in terms of maximal elements:

• VM(SaP) = 1 iff Max(Vc
M(S)) ⊆ Max(Vc

M(P))

VM(SiP) = 1 iff Max(Vc
M(S)) ∨ Max(VcM(P)) ≤= ∗.

Observe that although VM(PP) ≤= VM(QQ) and VM(PP) ≤= VM(QQ) and also

V∗
M(PP) ≤= V∗

M(QQ) and V∗
M(PP) ≤= V∗

M(QQ), still it holds that Max(V∗
M(PP)) =

Max(V∗
M(QQ)) = ∗ and Max(V∗

M(PP)) = Max(V∗
M(QQ)) = the set of all max-

imally consistent sets of attributes. Thus, there is only one contradiction and one
tautology.

15 See the same paper for a proof why double negation holds in our semantics.
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7 Conclusion and Outlook

In this paper I have given an intensional semantics of syllogistic logic: a semantics
for syllogistics logic which does not mention individuals. It is well established that
the intensional view is in some sense the ‘inverse’ of the extensional one. Still, two
challenges had to be met: (i) how to account for i- and e-sentences like ‘Some/No
philosophers are rich’, and (ii) how to account for the combination of negative and
conjunctive terms. To account for (i) we have taken a notion of (in)compatibility to
be primitive. To account for (ii) we have proposed to lift the intensional interpretation
of a term from a set of attributes to a set of sets of attributes. The latter idea was
mostly based on a (loose) analogy with van Fraassen [6] analysis of the tautological
entailment based on facts.

Syllogistic reasoning can be extended to relations (see e.g. [23–25]) and it is an
interestingquestionwhether also this extension canbegiven an intensional semantics.
It is obvious that we need more than just take features to be basic. To account for
this extension remains an interesting challenge for the future.
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Inter-Model Connectives and Substructural
Logics

Igor Sedlár

Abstract The paper provides an alternative interpretation of ‘pair points’, discussed
in [3]. Pair points are seen as points viewed from two different ‘perspectives’ and
the latter are explicated in terms of two independent valuations. The interpreta-
tion is developed into a semantics using pairs of Kripke models (‘pair models’).
It is demonstrated that, if certain conditions are fulfilled, pair models are validity-
preserving copies of positive substructural models. This yields a general soundness
and completeness result for a variety of (positive) substructural logics with respect
to multimodal Kripke frames with binary accessibility relations. In addition, an epis-
temic interpretation of pair models is provided.

Keywords Pair models · Substrucutral logics · Ternary semantics

1 Introduction

The recent paper [3] contains an interesting suggestion concerning the ternary seman-
tics of substructural logics. It is suggested that the ternary relation may be seen as
a binary relation between points and ordered pairs of points—pair points.1 This
paper develops the suggestion to a fully fledged semantics for (positive) substruc-
tural logics. The semantics dispenses with the ternary relation and uses a family
of binary relations instead.2 The paper is organised as follows. Section2 explains
the idea of pair points and explicates pair points by invoking a pair of valuations.
Section3 expands on the idea in a more formal manner. First, ‘pair models’ and ‘pair
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frames’ are introduced. It is explained that these correspond to pairs of binary Kripke
models and frames, respectively. Second, it is shown that, if certain conditions are
fulfilled, pair models are validity-preserving copies of positive substructural mod-
els. These conditions constitute the notion of a pair model (frame) representation
of a substructural model (frame). A general soundness and completeness result is
established: numerous (positive) substructural logics are sound and complete with
respect to specific classes of pair frames. Moreover, an independent characterisation
of pair representations is provided. Third, it is explained that the result opens a new
perspective on substructural connectives, in that the respective truth conditions refer
to various models ‘inside’ pair models. Hence, substructural connectives have an
‘inter-model’ nature. Section4 establishes an ‘independent’ completeness result for
some very weak substructural logics. It is argued that if a logic is characterised by the
class of all substructural frames, then it is characterised by the class of ‘substructural
pair models’. It is explained that the latter class is distinct from the class of pair model
representations. Section 5 offers a ‘philosophical’ story behind our semantics. The
story uses epistemic notions of communication and inference. Section6 concludes
the paper and points out the most important open problems.

2 Pair Points

We begin by explaining the idea of pair points in more detail. The motivation for
considering pair points in [3] as well as the related technical details are outlined in
Sect. 2.1. Afterwards, the original interpretation of pair points is explained and a new
one is offered in Sect. 2.2. The new interpretation is the background of the technical
work of Sect. 3.

2.1 Pair Points and Counterexamples

Beall et al. [3] observe that the substructural conditional, defined in terms of the
ternary relation, seemingly bucks the ‘no counterexample’ interpretation. According
to the interpretation,A ⊥ B is true at a point x iff there is no relevant counterexample
y such that A is true at y whilst B is false at y. Quite so, since we can have x →� A ⊥ B
where there are distinct points y, z such that Rxyz, y � A, and z →� B. In general,
no single counterexample point that makes A true and B false is required to make a
conditional A ⊥ B false at a given point.

Nonetheless, a simple way out is offered: the notion of a point is extended to
include ordered pairs of ‘old’ points as well. More precisely, pair points ♦xy∃ are
introduced, where x, y are ‘old’ points. In addition, R is rephrased as a binary relation
between points and pair points: Rxyz becomes Rx♦yz∃. Consequently, pair points may
serve as counterexamples for false conditionals.
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However, two points need clarification. First, the truth condition of A ⊥ B should
be explicitly restated in terms of pair points. This, in turn, requires a clear notion
of truth and falsity at pair points. The authors of Beall et al. [3] proceed as follows.
Truth |=T and falsity |=F at pair points are defined in terms of the original forcing
relation �:

• ♦xy∃ |=T A iff x � A
• ♦xy∃ |=F A iff y →� A

Hence, ♦xy∃ |=T A is in general consistent with ♦xy∃ |=F A. However, this is not
the case when one considers half points ♦xx∃, which can be identified with the ‘old’
points of the model. (A pair point ♦xy∃ where x →= y is called a duo point.)

The rephrased truth condition of A ⊥ B runs as follows:

• x |=T A ⊥ B iff there is no ♦yz∃ such that Rx♦yz∃ and ♦yz∃ |=T A, but ♦yz∃ |=F B
• x |=F A ⊥ B iff x →|=T A ⊥ B (x may be seen as ♦xx∃)
It is plain that the conditional is now susceptible to the ‘no counterexample’ interpre-
tation. If A ⊥ B is false at x, then there is a counterexample ♦yz∃, such that Rx♦yz∃,
♦yz∃ |=T A, but ♦yz∃ |=F B.

2.2 Pair Points and Perspectives

Pair points yield an interesting reading of the ternary semantics and they bring it closer
to the binarymodal semantics. However, pair points need to be given an ‘independent
interpretation’. Otherwise, they shan’t be anything more than a technical trick.

The original interpretation of pair points builds on the theory of situated inference,
see [8]. Half points (or, equivalently, the ‘old’ points) are seen as situations in the style
of [1] and duo points as information links. Examples of information links include
‘laws of nature, conventions, and any information that gives us a license to make
inferences’ [3, p. 602].

But other interpretations are conceivable as well. Let us begin by considering the
following example. Let T denote the statement that a given person a is tall. Now the
two statements T and ¬T may be seen as describing two different states of affairs
(a as an adult and a as a child, for example). But it is also possible to see these
statements as describing the same state of affairs from two distinct points of view.
For example, a might be tall when compared with the rest of her family, but not tall
when compared with the local basketball team.

The same observation applies to pair points. One approach is to see pair points as
pairs of two (possibly distinct) situations. But there is also a quite different angle: the
pair point ♦xy∃maybe seen as a single situation viewed from two distinct perspectives.
For example, x, y may correspond to belief sets of two distinct agents in the situation
♦xy∃ (their different ‘opinions’ about the situation).

There is a simple way to model the difference between the above approaches.
Let us, for the time being, consider only points and valuations without any reference
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Fig. 1 Pair points and their
simulation by means of two
valuations

to accessibility relations. Take a pair (P, V), where P is a set of points and V is a
valuation onP. The pair point model built on (P, V) is the pair (P2, V). If we decided
to extend (P, V) by a ternary relation, the relation could be simulated as a binary
relation on P2 in the pair point model.

But the pair point model might be simulated by a structure that does not include
P2. The key is to replace the somewhat vague ‘perspectives’ by valuations. The pair
representation of (P2, V) is a triple (P∧, V1, V2), such that there is a bijection σ from
P∧ to P2 and V1, V2 are valuations. Now w ∈ P∧ might be seen as a representation
of σ(w) iff the following holds: wi ∈ V(p) iff w ∈ Vi(p) for i ∈ {1, 2}, where wi is
the i-th member of σ(w). Put differently, the ‘binary nature’ of ♦xy∃ ∈ P2 might be
simulated by using two valuations V1, V2 ‘operating on’ points that are not explicit
pairs. For a simple example, see Fig. 1.

Now, obviously, we have an interesting twist in the story: pair representations
might be seen as pairs of models of the original form: (P∧, V1) and (P∧, V2). Thus,
pair point models correspond to pairs of ‘simple models’. The following section
develops this observation and applies it to substructural models.

3 Pair Representations

This section develops the interpretation of pair points, outlined in Sect. 2. Pair models
and pair frames are defined and the truth conditions of substructural formulas are
adapted to pair models. Pair model (pair frame) representations of substructural
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models (frames) are introduced in Sect. 3.1. Afterwards, a direct characterisation of
pair representations is provided (Sect. 3.2). A general soundness and completeness
result is then established: numerous (positive) substructural logics are sound and
completewith respect tomultimodalKripke frameswith binary accessibility relations
(Sect. 3.3). It is explained that the result opens a new perspective on substructural
connectives (Sect. 3.4).

3.1 The Basic Definitions

We shall be working with a positive substructural languageL +, built upon a count-
able set of propositional variables Φ. Formulas of the language are built upon Φ by
means of applying the binary operators ‘∗’ (extensional conjunction), ‘≤’ (exten-
sional disjunction), ‘⊥’ (implication), ‘↔’ (intensional conjunction, fusion) and ‘∨’
(converse implication).

Validity shall be defined for consecutions, i.e. expressions of the form

X ⊆ A

(read ‘A is a consequence of X’) where A is a formula and X is a structure built from
formulas bymeans of applying the binary operations ‘,’ (comma) and ‘;’ (semicolon).
For more details, see [10].

Definition 1 [10] A (positive) substructural frame is a triple

F = (P,∼, R)

where P is a non-empty set (of ‘points’), ∼ is a partial order on P and R ∩ P3.
A (positive) substructural model built on a frame F is a couple

M = (F,�)

where � is a forcing relation between points and members of Φ such that x ∼ y and
x � p imply y � p for all p ∈ Φ.

The forcing relation can be extended to every formula and structure in a familiar
way (see [10]). A consecution X ⊆ A is valid in M iff x � X implies x � A for all
x ∈ M, i.e. all x in P, where P belongs to M (notation: X ⊆M A). X ⊆ A is valid in
a frame F iff it is valid in every M built on F (notation: X ⊆F A). If C is a class of
substructural frames, then X ⊆ A is valid in C iff it is valid in every F ∈ C (notation:
X ⊆C A).

A (positive) substructural logic L is characterised by a class of frames C iff
the following holds: X ⊆C A iff X ⊆ A is provable in L. (In general, ‘logics’ are
seen as sets of consecutions and ‘provable in L’ is construed accordingly as ‘being a
member of L’. In what follows, we take the logics to be sets of consecutions derivable
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in specific natural deduction systems in the style of [10, Ch.2]. The systems are given
by a set of axioms (A ⊆ A for every formula A), introduction and elimination rules
for every connective and structural rules).

Definition 2 A pair frame is a triple

F = (W , R0, {Ri
j})i, j∈{1, 2}

where W is a non-empty set and R0, Ri
j are binary relations on W .

A pair model built on a frame F is a couple

M = (F, {Vi})i∈{1, 2}

such that F is a pair frame and Vi are valuations, i.e. functions from Φ to subsets of
W .

A pair model is a set of points together with five binary relations and two valua-
tions. Hence, a pair model M might be seen as a pair of multimodal Kripke models
♦M1, M2∃. For example:

• M1 = (W , R0, R1
1, R1

2, V1)

• M2 = (W , R2
1, R2

2, V2)

A pair frame is simply a multimodal Kripke frame. (But, on the other hand, it may
be seen as a pair of Kripke frames as well.)

Definition 3 The valuations V1, V2 give rise to two truth relations |=1 and |=2 (i ∈
{1, 2}):
• (M, w) |=i p iff w ∈ Vi(p)

• (M, w) |=i A ∗ B iff (M, w) |=i A and (M, w) |=i B
• (M, w) |=i A ≤ B iff (M, w) |=i A or (M, w) |=i B
• (M, w) |=i A ⊥ B iff Ri

1wv, (M, v) |=2 A and R0vu imply (M, u) |=1 B, for all
v, u ∈ W .

• (M, w) |=i A ↔ B iff there are v, u ∈ W such that Ri
1wv, R0uv, (M, u) |=1 A, and

(M, u) |=2 B.
• (M, w) |=i B ∨ A iff Ri

2wv, (M, v) |=1 A and R0vu imply (M, u) |=1 B, for all
v, u ∈ W .

These conditions are extended to structures similarly as it is done in the context
of substructural models (see [10]). Hence, ‘;’ mimics ‘↔’ while ‘,’ mimics ‘∗’. A
consecution X ⊆ A is valid in M iff (M, w) |=1 X implies (M, w) |=1 A, for all
w ∈ W (notation: X ⊆M A).

A consecution X ⊆ A is valid in a frame F iff it is valid in every M built on F
(notation: X ⊆F A). If C is a class of pair frames, then X ⊆ A is valid in C iff it is
valid in every F ∈ C (notation: X ⊆C A).

A (positive) substructural logic L is characterised by a class of pair frames C iff
the following holds: X ⊆C A iff X ⊆ A is provable in L.
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Definition 4 Apair frameF is apair frame representation (ap.f .r.) of a substructural
frame F iff there is a bijection σ : W ⊥ P2 such that (wi denotes the i-th member
of σ(w)):

• R0wv iff Rw1w2v1and
• Ri

jwv iff wi = vj

A pair model M = (F, {Vi})i,j∈{1,2} is a pair model representation (a p.m.r.) of a
substructural model M = (F,�) iff:

• F is a p.f .r. of F and
• w ∈ Vi(p) iff wi � p

IfS is a substructural model, frame or a class of frames, then the respective class of
pair representations of S is denoted Rep(S).

Note that Rep(F), Rep(M) are non-empty, for every F,M. In addition, observe
that if M is built upon F and F ∈ Rep(F), then M ∈ Rep(M) for some M built
on F.

A p.m.r. of M represents the information contained in M by means of a pair of
multimodal Kripke models. The first step is to rephrase the substructural model in
terms of pair points: the ‘new’ points are pairs ♦xy∃ of the ‘old’ points. From this
point of view, the ternary R may be replaced by a binary R∧ such that R∧♦xy∃♦zz∧∃
iff Rxyz. Now the points w ∈ M can be seen as representations of the pairs ♦xy∃, if
there is a bijection that preserves their properties and their ‘position’ among other
pairs. Of course, the position and properties are given by (i) the relation R∧, (ii) the
inner structure of the pairs and (iii) the valuation. Now R0 ‘models’ the binary R∧
and, therefore, the ternary R. The relations Ri

j are there to ‘keep track’ of the inner

structure of the modelled pairs. The notation itself suggests that Ri
jwv means that

the i-th member of the pair represented by w (i.e. of σ(w)) is identical with the j-th
member of the pair represented by v (i.e. of σ(v)). Last but not least, the valuations
reflect the ‘binary nature’ of pair points (the principle is explained in Sect. 2.2).

It is now obvious that the seemingly awkward truth conditions for formulas con-
taining ‘⊥’, ‘↔’, ‘∨’ are ‘mere’ reformulations of the corresponding truth conditions
in substructural models. As we shall see in Sect. 3.3, this yields a general result about
the characterisation of (positive) substructural logics by means of pair frames.

3.2 Implicit Pair Point Structures

But first, let us pause and consider the following question. Pair point (frame) represen-
tations of substructural models (frames) are, quite understandably, defined relatively
to substructural models (frames). However, one might ask if there are ‘independent’
means of identifying pair representations. This section answers affirmatively.
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Definition 5 A pair frame F is an implicit pair point frame (i.p.p. frame) iff there is
a bijection β : WF ⊥ S2 for some non-empty S such that Ri

jwv iff wi = vj. (wi (vj)
is the ith (jth) member of β(w) (β(v)), for i, j ∈ {1, 2}.)

A pair model M = (F, {Vi})i∈{1,2} is an implicit pair point model (i.p.p. model)
iff (i) F is an i.p.p. frame and (ii) Ri

jwv implies (w ∈ Vi(p) iff v ∈ Vj(p)) for all
p ∈ Φ.

Proposition 1 A pair frame is a p.f .r. of some F iff it is an i.p.p. frame. A pair model
is a p.m.r. of some M iff it is an i.p.p. model.

Proof First, let us consider frames. The implication from left to right is trivial. The
converse implication follows from the following construction. Let F be an i.p.p.

frame and let F = (S,∼, R) such that ∼ is a partial order on S and Rxyz iff x = w1,
y = w2, z = v1 and R0wv. Obviously, F is a p.f .r. of F.

Next, let us consider models. Again, the left-to-right implication is trivial. The
converse implication follows from considering a modelM = (S,∼, R,�) such that
R is defined as above, x � p iff x = wi and w ∈ Vi(p). Moreover, let ∼ be a partial
order on S such that x � p and x ∼ y imply y � p. ∪⊃

3.3 Pair Frames and Substructural Logics

Lemma 1 Let M be a p.m.r. of M. Then

(M, w) |=i A iff (M, wi) � A

for every bijection σ with the properties specified in Definition 4. The same holds for
structures.

Proof The basic case A = p holds by Definition 4. The cases A = B ∗ C, A = B ≤ C
are trivial.

Next, assume that w →|=i B ⊥ C. This means that there are v, u such that Ri
1wv,

R0vu, v |=2 B, but u →|=1 C. By the induction hypothesis and by Definition 4,
this amounts to wi = v1, Rv1v2u1, v2 � B, but u1 →� C. However, this holds iff
wi →� B ⊥ C. This completes the proof for case A = B ⊥ C. The cases A = B ↔ C
and A = C ∨ B are proved similarly. The cases for structures are virtually identical
to cases for ∗ and ↔. ∪⊃
Lemma 2

(a) X ⊆M A iff X ⊆Rep(M) A
(b) X ⊆F A iff X ⊆Rep(F) A
(c) X ⊆C A iff X ⊆Rep(C) A

Proof (a) Assume that X →⊆M A. There is a point x ∈ M such that (M, x) � X, but
(M, x) →� A. Let M be any p.m.r. of M and let σ(w) = ♦xy∃ for some y ∈ M. By
Lemma 1, (M, w) |=1 X, but (M, w) →|=1 A. Consequently, X →⊆Rep(M) A.
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Now assume that X →⊆Rep(M) A, i.e. there is a p.m.r. M of M such that (M, w)

|=1 X, but (M, w) →|=1 A for some w ∈ M. By Lemma 1, (M, w1) � X, but
(M, w1) →� A. Hence, X →⊆M A.

(b) Assume that X →⊆F A. There is a model M = (F,�) and a point x such that
(M, x) � X, but (M, x) →� A. By Lemma 1, every M ∈ Rep(M) invalidates X ⊆ A
as well. By Definition 4, if such M is built on a frame F, then F ∈ Rep(F). Hence
X →⊆Rep(F) A.

Assume X →⊆Rep(F) A. There is a model M built on a frame F and a point w
such that F ∈ Rep(F), (M, w) |=1 X, but (M, w) →|=1 A. By the remark following
Definition 4, there is a substrucutral M = (F,�), such that M ∈ Rep(M). By
Lemma 1, X →⊆M A. Consequently X →⊆F A.

(c) is an immediate consequence of (b). ∪⊃
Theorem 1 (General Pair-Frame Theorem) If a (positive) substructural logic L is
characterised by a class of substructural frames CL, then it is characterised by the
class of pair frames Rep(CL).

Proof Follows from Lemma 2 (c). ∪⊃
Hence, many well-known positive substructural logics are characterised by multi-
modal Kripke frames.

In conjunction with Proposition 1, Theorem 1 yields a specific soundness and
completeness result for some very weak substructural logics.

Theorem 2 A consecution X ⊆ A is valid in every F iff it is valid in every i.p.p.

model.

3.4 Inter-Model Connectives

Theorem 1 is not supposed to suggest that ‘⊥’, ‘↔’, ‘∨’ are ‘on a par’ with the
usual modal-like binary operators (e.g., see [4]). The truth conditions of formulas
containing ‘⊥’, ‘↔’, ‘∨’ are obviously not ordinary modal clauses. Note again that
pair models M can be seen as pairs of Kripke models ♦M1, M2∃. Moreover, observe
that, for example, the condition for |=1 A ⊥ B refers also to |=2 (similarly for ‘↔’,
‘∨’). This shows that, in general, formulas with ‘⊥’, ‘↔’, ‘∨’ ‘operate’ between
the models M1 and M2 in the pair model (or ‘pair of models’) M.3

This yields a ‘hierarchy of operators’: boolean operators operate ‘within’ points
in models; modal operators operate ‘between’ points, but always ‘within’ models;
substructural operators operate between points and between models.

3 A familiar example of similar ‘inter-model’ truth conditions are the conditions forpublic announce-
ment formulas [A]B in public announcement logic. See [11].
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4 An Independent Completeness Result

Section3 contains two characterisation results. Theorem 1 is quite general, but it
refers to structures that are ‘constructed from’ substructural frames. Theorem 2
establishes completeness of some very weak substructural logics with respect to
i.p.p. models and their definition does not directly refer to substructural models. We
demonstrate in this section that i.p.p. models are perhaps too restrictive: we obtain a
similar completeness result with respect to a broader class of pair models. Interest-
ingly, not every member of this broader class is a pair model representation of some
substructural model.

Definition 6 A pair model M is substructural iff (i, j, k ∈ {1, 2}):
(a) Ri

jwv implies (Rj
kvu iff Ri

kwu) and

(b) Ri
iww and

(c) ≡w∈vRi
jwv and

(d) Ri
jwv implies (w ∈ Vi(p) iff v ∈ Vj(p))

for all w, u, v ∈ M and p ∈ Φ.

Lemma 3 Every i.p.p. model is a substructural pair model. However, the converse
does not hold.

Proof By Def. 5, if M is an i.p.p. model, then there is a bijection β : WM ⊥ S2

for some non-empty S such that Ri
jwv iff wi = vj. Hence, if Ri

jwv and Rj
kvu, then

wi = vj = uk and, consequently Ri
kwu. The rest of item (a) is proved similarly.

Item (b) is a trivial consequence of the reflexivity of identity, and items (c), (d) are
immediate consequences of Def. 5.

To prove the remaining claim of the Lemma, assume that we have a substructural
pair model M such that WM = {w, v}. It is plain that, for arbitrary non-empty S,
there is no bijection from WM to S2, since |S2| →= 2 for every S. ∪⊃
Proposition 2 Every substructural logic L characterised by the class of all frames
is complete with respect to the class of substructural pair models.

Proof Follows from Proposition 1, Theorem 2 and Lemma 3. ∪⊃
Definition 7 An inference rule

X1 ⊆ A1, . . . , Xn ⊆ An =⇒ X ⊆ A

is admissible in a class of pair models iff every model in the class that validates the
consecutions X1 ⊆ A1, . . . , Xn ⊆ An validates the consecution X ⊆ A as well.

To prove soundness, we have to demonstrate that every introduction and elimination
rule for the connectives ofL + is admissible in the class of substructural pair models.
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Lemma 4 Let M be a substructural pair model. If Ri
jwv, then

(M, w) |=i A iff (M, v) |=j A

The same holds for structures.

Proof The basic case A = p holds by Definition 6. The cases A = B ∗ C and
A = B ≤ C are trivial.

Next, assume that w →|=i B ⊥ C. This amounts to: ∈uu∧ such that Ri
1wu, R0uu∧,

u |=2 B and u∧ →|=1 C. By Definition 6, if Ri
jwv, then Rj

1vu is equivalent to Ri
1wu.

Hence, w →|=i B ⊥ C iff v →|=j B ⊥ C. The cases A = B ↔ C and A = C ∨ B are
proved similarly (use case a) of Definition 6). ∪⊃
Lemma 5 Let M be a substructural pair model. If X ⊆M A and w |=2 X for some
w ∈ M, then w |=2 A.

Proof Assume that X ⊆M A and w |=2 X for some w ∈ M. By Definition 6, ∈v
such that R2

1wv. By Lemma 4, the assumption implies that v |=1 X. Consequently,
v |=1 A. By Lemma 4 again, w |=2 A. ∪⊃
In the following Lemma, Y(X) means that X occurs at least n times in Y as a sub-
structure (n ≤ 0). Y(X/A) is the result of replacing every occurrence of X in Y by
an occurrence of A (similarly for Y(A/X), see [10]).

Lemma 6 If X ⊆M A and (M, w) |=1 Y(X), then (M, w) |=1 Y(X/A).

Proof The proof is by induction on the complexity of Y . If Y does not contain X,
then the claim holds vacuously. If Y = X, then w |=1 Y(X) implies w |=1 Y(X/A)

according to the assumption X ⊆M A. Now assume that w |=1 Z(X); Z ∧(X). Hence,
we have points v, u such that R1

1wv, R0uv, u |=1 Z(X) and u |=2 Z ∧(X). By Lemma
5 and the induction hypothesis, u |=2 Z ∧(A). By another application of the induction
hypothesis, u |=1 Z(A). Hence, w |=1 Z(A); Z ∧(A). The claim for Z(X), Z ∧(X)

follows from the induction hypothesis. ∪⊃
Lemma 7 Every introduction and elimination rule for the connectives of L + (see
[10, Ch. 2]) is admissible in the class of substructural pair models.

Proof We shall prove the claim for ⊥-elimination

X ⊆ A ⊥ B, Y ⊆ A =⇒ X; Y ⊆ B

and ↔-elimination

X ⊆ A ↔ B, Y(A; B) ⊆ C =⇒ Y(A; B/X) ⊆ C

The other parts of the proof are analogous.
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Assume that X ⊆M A ⊥ B and Y ⊆M A for some substructural pair model M.
Moreover, assume that w |=1 X; Y for some w ∈ M. The latter assumption amounts
to: ∈vu such that R1

1wv, R0uv, u |=1 X and u |=2 Y . By the former assumption,
u |=1 A ⊥ B. By Lemma 5, u |=2 A. By Definition 6, R1

1uu. Consequently, v |=1 B.
By Lemma 4, w |=1 B.

Next, assume thatX ⊆M A↔B,Y(A; B) ⊆M C andw |=1 Y(A; B/X). ByLemma6,
the assumptions implyw |=1 Y(A↔B). However, this amounts tow |=1 Y(A↔B/A; B).
By the third assumption, w |=1 C. ∪⊃
Theorem 3 (Direct Characterisation Theorem) Every substructural logic L
characterised by the class of all substructural frames is sound and complete with
respect to the class of all substructural pair models.

Proof Follows from the obvious fact that A ⊆M A for every pair model M, Proposi-
tion 2 and Lemma 7. ∪⊃

5 An Interpretation of Pair Models

The pair model semantics seems to be rather awkward and in need of clarification.
This section offers a ‘philosophical story’ behind the semantics. The story uses
epistemic notions, mainly related to communication and inference. The story results
in an epistemic reading of the substructural connectives.

The presence of two valuations in pair models shall be our starting point. The
valuations can be given an epistemic reading as follows. (Subsequently, i, j ∈ {1, 2}.)
As usual, we can see points w ∈ W as situations (worlds, time instants etc.). The
valuations V1, V2 are seen as corresponding to two agents agent1 and agent2 (a1, a2
for short). More specifically, if w∗

i is the set {p |w ∈ Vi(p)}, then w∗
i is seen as the set

of atomic information available to ai at w. Consequently, the valuations Vi describe
the sets of atomic information available to the agents ai at situations w ∈ W .

The relations |=i are seen as specifying confirmation conditions for (complex)
bodies of information. More specifically, w |=i A may be read as ‘the information
available to ai at w confirms A’. (Notation: Coni(w) = {A | w |=i A}.)

From a more general perspective, the various w ∈ W correspond to different
‘set-ups’ in terms of the atomic information available to agents ai. Now assume that
a1, a2 are not proper names (rigid designators), but ‘situation-relative’ tags. Hence,
every situation w is assigned a pair of agents ai(w). Consequently, every w may be
seen as an interaction set-up: the order of the agents matters. In other words, it is
expected that the role of ai(w) in the interaction set-up w varies with different values
of i. This idea will be explored shortly.

The above reading of situations as interaction set-ups consisting of two agents
yields a natural interpretation of the relations Ri

j. These serve the purpose of ‘cross-

situational identification’ of agents. More specifically, Ri
jwv may be read as ‘the

agent ai(w) is identical with aj(v). This provides an interpretation of substructural
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pairmodels (seeDefinition 6) and, consequently, pairmodel simulations. In these pair
models,Ri

jwv impliesw∗
i = v∗

j . In otherwords, the set of atomic information available
to agents does not change across situations. And, as Lemma 4 witnesses, nor do the
sets of confirmed information Coni(w).

However, change and processing of available information plays a vital role in
our interpretation. The relation R0 may be seen as describing possible outcomes of
communication and inference. In other words,R0wvmay be read as follows: Suppose
that the agent a2(w) provides the information Con2(w) to the agent a1(w). The latter
agent processes the information Con1(w) ∪ Con2(w) and (by means of inference,
among others) arrives at the body of informationCon1(v). In other words, R0wv may
mean that the set-up v is a possible result of communication and inference ‘within’
the set-up w. We shall say in this case that w is a source of v.

The specific truth conditions are now easy to spell out. A proposition letter p is
confirmed by ai(w) iff p is among the atomic information available to ai(w) at w.
A conjunction A ∗ B is confirmed iff both conjuncts are confirmed. A disjunction
is confirmed iff at least one of the disjuncts is confirmed (i.e. the agents behave
‘intuitionistically’).

Let us call the agent a2(w) the sender (of w) and a1(w) the reasoner (of w). A
conditionalA ⊥ B is confirmed by ai(w) inw (let us name the agent a) iff the follow-
ing holds: if a was the reasoner in an interaction set-up v where the sender confirms
A and if a engaged in inference from the assumptions Con1(v) ∪ Con2(v), then a
would confirm B. In other words, we arrive at the familiar epistemic interpretation
of the substructural conditional (at least if we assume that we are working with sub-
structural pair models): A ⊥ B is confirmed with respect to a body of information iff
extending the body of information by A yields B.4 The interpretation of the converse
conditional B ∨ A is similar and may be easily derived from the interpretation of
A ⊥ B.

Fusion A↔B is confirmed by ai(w) in w (a again) iff there is a possible interaction
set-up v, where i) a is the reasoner and ii) v is the result of communication and
inferencewithin a set-up u (i.e.R0uv holds) such thatA ∈ Con1(u) andB ∈ Con2(u).
Observe that, if we are working with substructural pair models, this yields A ↔ B ∈
Con1(v) as well as A↔B ∈ Coni(w). In other words, A↔B is confirmed with respect
to a body of information iff there is a source of the information that confirms A as
well as B. (Of course, order does matter: commutativity does not hold in general.)

6 Conclusion

The paper developed the idea of pair points [3] into a fully fledged binary semantics
for (positive) substructural logics in terms of ‘pair frame (model) representations’ of
substructural frames (models). A general characterisation result has been provided:
if a (positive) substructural logic is characterised by a class of frames C, then it is

4 Needless to point out, the interpretation is rather close to the Ramsey Test.
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characterised by the class Rep(C) of pair frame representations of frames F ∈ C. As
an interesting aside, an ‘independent characterisation’ of pair representations as well
as an ‘independent characterisation result’ have been established: every substructural
logic characterised by the class of all frames is characterised by the class of substruc-
tural pair models. Hence, we have directly identified the class of pair models (and
frames) that characterises some very weak substructural logics. It has been pointed
out that these results indicate that substructural connectives fit in a hierarchy, along
with boolean and modal operators. The latter two operate inside points and ordinary
modal models respectively, while substructural connectives operate between modal
models. Hence, they have an inter-model nature.

However, many issues remain open. First, we should be able to incorporate nega-
tion into our semantics. This should not be very hard to do. In fact, it is expected that
such extensions will be dealt with in an extended version of this paper. Of course,
this advance would yield general characterisation results for a more comprehensive
class of substructural logics (not only the positive ones).

Second, as we have already noted, a characterisation result in the style of Theorem
1 is rather indirect. For everyL, the class of pair framesRep(CL) is ‘constructed from’
the frames inCL . Hence, ‘direct descriptions’ of classes of pair frames corresponding
to individual substructural logics are much desired.

Third, the ‘philosophical story’ behind the pair semantics may be seen as some-
what sketchy. Hence, a deeper and more comprehensive version should be provided.
However, these investigations are left for another occasion.
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