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PREFACE

There are many physical phenomena which lead to nonlinear vibra-
tion problems. Modern structures are increasingly being built using
more sophisticated materials that have a range of nonlinear material
properties, some of which can be designed into the system. In some
cases there are clear advantages in deliberately including nonlinear ef-
fects into the design of a structure. An obvious example are structural
dampers. The most effective dampers contain highly nonlinear pro-
cesses such as friction, fluids and most recently magneto-rheological
fluids. Understanding and modelling the behaviour of these nonlinear
effects is not a trivial process. However, there has been a dramatic in-
crease in our understanding of nonlinear systems in the past 20 years,
which has led to the realisation that beyond just modelling nonlinear
effects, engineers can also use them to their advantage.

Nonlinearity arises from a range of phenomena. For example, ge-
ometric nonlinearity, including the effects of large deformations, com-
bined stretching or compressing with vibration and nonlinear align-
ment of structural elements. Another source of nonlinearity is ex-
ternal forces acting on a linear system, such as fluid or magnetic
forces. Nonlinear behaviour also comes from constraints in the sys-
tem, freeplay, backlash, impact and friction.

Control forces can be added to a structural system in order to
control the behaviour in some way and make it an adaptive structure.
For example to reduce unwanted vibrations, detect damage, harvest
energy or to shape change (morph) the structure. However, to create
adaptive structures, the structure needs to have some awareness of its
condition and/or the environment it is in. This is achieved by having
a series of measurement sensors mounted on (or integrated into) the
structure. Information from the sensors is then used by the global
control system. This is where the smart (or intelligent) behaviour is
generated.

This volume is a direct result of a course on “Exploiting Nonlinear
Behaviour in Structural Dynamics” held at the International Centre
for Mechanical Sciences (CISM) Udine, Italy Sep 13-17, 2010. Each
chapter corresponds to a summary of the content of the lectures pre-
sented by each of the expert speakers who participated in the course.



Chapter 1 by Virgin & Wagg gives an overview and introduc-
tion to nonlinear phenomena in structural dynamics. The analysis
of nonlinear effects using state space and bifurcation analysis is in-
troduced, followed by an introduction to nonlinear control techniques.
Chapter 2 by Neild covers material on so called approximate meth-
ods for analysing nonlinear systems where the level of nonlinearity
is assumed to be relatively small. Examples include a device for har-
vesting mechanical energy, where the nonlinear effects are exploited to
increase the useful energy which can be extracted. Chapter 3 by Virgin
is devoted to the topic of vibration isolation. In particular, buckled
structures and structures with large amounts of geometric nonlinear-
ities are used as nonlinear vibration absorbers, to reduce significant
unwanted vibrations in the systems under consideration. Chapter 4
by Shaw focuses attention on the mitigation of undesirable torsional
vibration in rotating systems utilizing specifically nonlinear features
in the dynamics. Reducing vibration in automotive motors is a prob-
lem of considerable practical relevance. Tunable vibration absorbers
require careful design with the role of nonlinearities of particular rel-
evance. Chapter 5 by Ribeiro discusses the vibration of nonlinear
(beam) structures in which the motion is sufficiently large amplitude
that elasto-plastic effects are induced. Both free and forced situations
are analyzed including practical (numerical) solution procedures. Ul-
timately, more accurate modeling of these types of systems will assist
in a more complete understanding of nonlinear vibration and its rela-
tionship with material failure. Finally in Chapter 6 by Wagg, struc-
tural systems with control are considered. These include nonlinear
systems with active control, as well as morphing structures, where
snap-through mechanisms are exploited as hinges so the structure can
change its shape between two stable states.

We would like to thank all those at CISM who helped to make the
course and the production of this volume such a enjoyable experience,
in particular Mrs P. Agnola, Elsa Venir and Carla Toros who dealt
with the administration of the meeting. In addition we would like to
thank the Rectors of CISM: G. Maier, J. Salençon, W. Schneider
and the Secretary General, B.A. Schrefler. Finally, we would like to
thank Prof. Serafini for his assistance with the preparation of this
book.

Lawrie Virgin (Duke University, USA)
David J. Wagg (University of Bristol, UK)

June 2011
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Introductory Material

Lawrie Virgin and David Wagg

Duke University and University of Bristol.

Abstract This book is based on a one-week worksop at CISM.

In order to fully appreciate the benefits of nonlinearity in certain

engineering systems it is important to understand the underlying

behavior of linear systems, and this first chapter provides a general

overview of linear dynamical systems and then begins to explore the

effect of nonlinearities.

1 The Linear Oscillator

In mechanics we are primarily interested in the time evolution of systems
governed by odes

ẋ = F (x, λ, t) xεRn, tεR, (1)

where x is a state vector which describes the evolution of the system under
the vector field, F . Given an initial condition x0 at time t = 0 we can seek
to solve system 1 to obtain a trajectory, or orbit, along which the solution
evolves with time. We will then seek to ascertain the stability of the system,
generally as a function of the (control) parameter, λ (Guckenheimer and
Holmes (1983)).
The cornerstone of dynamics in a mechanics context is, of course, New-

ton’s second law, and thus sets of second-order, ordinary differential equa-
tion are dominant:

ẍ+ ω2
nx = 0, (2)

where an overdot represents a derivative with respect to time, and the sys-
tem has two initial conditions x(t = 0), ẋ(t = 0), from whence the dynamics
develops. This is the equation of motion governing the dynamic response of
the spring-mass system shown in Figure 1 with ωn =

√
k/m and all other

parameters set equal to zero. We can write the solution as

x(t) = Aeλt. (3)
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Figure 1. A spring-mass damper.

Placing 3 in to 2 we find that λ = iωn and thus the general form of the
solution is given by

x(t) = aeiωnt + be−iωnt. (4)

Alternatively, using Euler’s identities we can write:

x(t) = c cos(ωnt) + d sin(ωnt). (5)

In order to determine a and b, (or c and d), we make use of the initial
conditions to get

x(t) = x(0) cos(ωnt) +
ẋ(0)

ωn

sin(ωnt). (6)

This system can be converted in to a pair of coupled, first-order ordinary
differential equations (in state variable format) by introducing a new vari-
able

y = ẋ (7)

and substituting in equation 2 gives:

ẋ = y, ẏ = −ω2
nx (8)

and in matrix notation:[
ẋ
ẏ

]
=

[
0 1
−ω2

n 0

] [
x
y

]
. (9)

The solutions to this type of equation are harmonic, with oscillation occur-
ring about the origin (the unique equilibrium position), Inman (1994). The
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form, and frequency, of the resulting motion is independent of the initial
conditions.

2 A Nonlinear Spring

Now suppose we have a spring whereby the applied force and corresponding
deflection are related via a cubic expression:

F = k(x) = Ax +Bx3. (10)

Adding a small amount of inertia and a little damping we obtain a standard
nonlinear oscillator known as Duffing’s equation (Virgin (2000)):

ẍ+ 0.1ẋ+Ax+Bx3 = 0. (11)

We still have a spring that initially responds the same way in compression
and extension, but now the nonlinearity depends on the signs of A and B.
Superposition no longer holds. Suppose we have A = 1 and B > 0. In
this case we have a hardening spring, i.e., it becomes disproportionately
stiffer as the deflection increases. This is shown schematically in Figure 2.
Also shown is the softening case A = 1, B < 0, indicated by the dashed
line. Furthermore, if A = −1 and B > 0 we get a (still symmetrical, and

Figure 2. Force-deflection relations for some typical springs.

shown by the dotted line) system in which the origin is now unstable (to
be shown later), and the spring, given a typical load will take up one of
two available equilibrium positions. The force-deflection characteristic need
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not be symmetric, and in fact, this will typically be the case under some
pre-loading.
When incorporated into the dynamics context (equation 11) we find that

the frequency as well as the amplitude depends on the initial conditions.
Equation 11 is of course a nonlinear ordinary differential equation and does
not submit to standard methods. However, we can gain considerable insight
into the behavior of such systems, and we start by ignoring damping. As
such, the total mechanical energy is now conserved and using ẍ = ẋdẋ/dx
we can separate variables, integrate, and write

ẋ = ±
√
−Ax2 − (B/2)x4 + C, (12)

in which C is determined from the initial conditions. For A = 1 and B = 0
we obtain ellipses in the phase space corresponding to simple harmonic
motion. However, for other combinations of A and B we obtain behavior
that may be very different from simple harmonic.
We can also obtain the natural period of motion in a related way. It can

be shown that the period is equal to four times the time it takes to move
from the maximum amplitude (x̄) to zero, and rearranging equation 12 we
can evaluate the period of motion, T , (and hence natural frequency) from
Jordan and Smith (1977); Stoker (1992)

T = 4

∫ x̄

0

dx√−Ax2 − (B/2)x4 + C
. (13)

However, this integral is not easy to solve, but whereas the linear oscillator
has a natural frequency that is independent of the amplitude of motion, the
nonlinear oscillator will have a period that depends on the initial conditions
and hence the amplitude of motion. In Figure 2 was shown typical hardening
and softening spring systems. The natural frequencies, often referred to as
’backbone curves’ corresponding to these two case are shown schematically
in Figure 3. These mildly nonlinear cases are centered on an equilibrium
position. In some cases, e.g., when A = 1 and B = −1 and the motion
exceeds x = 1 the behavior can become unbounded. In general, this type
of behavior has to be investigated numerically, and we shall see that these
backbone curves have a profound resonance effect when incorporated into
the context of (harmonically) forced oscillators.

2.1 Linearization

With no force applied the ’rest length’ of the linear spring is the unique
position of equilibrium, which we consider without loss of generality to be
the origin. For a nonlinear spring, for example, the dotted line in Figure 2
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ω
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linear

Figure 3. The frequency relation for mildly nonlinear oscillators.

we see two ’remote’ equilibrium positions. These happen to be stable: their
local slopes are positive and any deviation from the position will be opposed
by the (restoring) force. In the vicinity of equilibrium (indicated by the three
shaded regions) we see that the force-deflection relation is practically linear.
More formally, we can take a Taylor series expansion about equilibria. The
equilibria are found from Ax+Bx3 = 0, from which have xe = 0 (sometimes
referred to as the trivial equilibrium) but there may also be other roots. For
example with A = −1, B = +1 we get two more real roots at xe = ±1, but
if A and B have the same sign then the origin is the only real root. Consider
a small perturbation, δ about an equilibrium, xe:

x = xe + δ. (14)

Placing this into equation 10 and assuming A = −1, B = +1 we obtain:

F = −xe − δ + x3e + 3x
2
eδ + 3xeδ

2 + δ3. (15)

Since δ is small we neglect terms in δ higher than linear, and −x + x3e = 0
to satisfy equilibrium, and thus we have

F = δ(3x2e − 1), (16)

which is valid in the vicinity of the equilibria. For xe = 0 we have a locally
negative slope and the force tends to move the system further away with
deflection. For xe = ±1 we have a locally positive slope and a restoring
force. If the spring undergoes ’large’ deflections then the system becomes
progressively more nonlinear.
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In terms of dynamic response we can still use the approach of the first
part of this chapter, but now the motion local to the equilibrium at the
origin is described by

ẍ− ω2
nx = 0. (17)

The solution again has the form x(t) = Aeλt where λ = ±ωn, and thus

x(t) = aeωnt + be−ωnt, (18)

and using the definition of hyperbolic functions we also have

x(t) = x(0) coshωnt+ (ẋ(0)/ωn) sinhωnt. (19)

In this case we do not have a periodic solution: the positive exponential
indicates that typically x→∞ as t→∞. Hence, this behavior is unstable
(Virgin (2007)). However, we also observe that we can choose very specific
initial conditions (unlikely but nevertheless important cases), where the
trajectory will end up at the origin, i.e., where the positive exponential term
is completely suppressed, as well as the case where the negative exponential
term in equation 18 dominates for a short time before the trajectory is
swept away. For all practical purposes, i.e., arbitrary initial conditions, the
motion is clearly unstable.
Thus, the key stability information is contained in (the sign of) λ in

equations 3. If it is negative then the motion will decay with time, otherwise
it will grow (Thompson and Stewart (1986)). It is convenient to introduce
a more general (state) matrix of the form:[

ẋ
ẏ

]
=

[
a b
c d

] [
x
y

]
, (20)

and extract the determinant, Δ, and trace, T :

Δ = (ad− bc), T = a+ d, (21)

and recast stability given the fact that these relate to the system eigenvalues:

λ1,2 =
1
2

(
T ±√T 2 − 4Δ)

, Δ = λ1λ2, T = λ1 + λ2. (22)

Hence for stability (negative eigenvalues) we require T negative and Δ pos-
itive (Strogatz (1994)). In the case of the two systems considered earlier
both times the trace is zero (Newton’s laws provide certain restrictions for
typical mechanical systems), but for the system in equation 2 we have a
positive Δ and hence stability, and a negative Δ for the system described
by equation 17. We will now refine this to take account of damping.
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2.2 Damping

Most real systems undergo a form of energy dissipation. With the in-
evitable presence of damping the question of stability becomes less ambigu-
ous. Typical motion will then consist of a transient followed by some kind
of recurrent long-term behavior, e.g. the motion will die out and the mass
position is maintained at equilibrium.
Suppose we now allow for some energy dissipation in the form of linear

viscous damping, i.e., c �= 0 in Figure 1. The equation of motion is now
ẍ+ 2ζωnẋ+ ω2

nx = 0, (23)

in which a nondimensional damping ratio, ζ = c/(2mωn) has been intro-
duced. Solutions to this equation now also depend on the value of ζ. For
lightly damped systems we have ζ < 1 and solutions of the form

x(t) = e−ζωnt

(
ẋ(0) + ζωnẋ(0)

ωd

sinωdt+ x(0) cosωdt

)
(24)

where the damped natural frequency ωd is given by

ωd = ωn

√
1− ζ2. (25)

A typical underdamped response (ζ = 0.1) is shown in Figure 4(a) and (b)
as a time series and phase portrait. The origin in Figure 4 (b) indicates the
position of asymptotically stable equilibrium. The trajectory gradually spi-
rals down to this rest state: we can imagine a family of trajectories forming
a flow as time evolves. Since this equilibrium is unique, the whole of the
phase space is the attracting set for all initial conditions and disturbances.
Damping in this range, e.g., ζ ≈ 0.1, is quite typical for mechanical and
structural systems.
For a heavily (or overdamped) system ζ > 1, and in this case the form

of the solution is

x(t) = Ae(−ζ+
√

ζ2
−1)ωnt + Be(−ζ−

√
ζ2
−1)ωnt (26)

where

A =
ẋ(0) + (ζ +

√
ζ2 − 1)ωnx(0)

2ωn

√
ζ2 − 1 (27)

and

B =
−ẋ(0)− (ζ −

√
ζ2 − 1)ωnx(0)

2ωn

√
ζ2 − 1 . (28)

The motion is a generally monotonically decreasing function of time and
may take a relatively long time to overcome relatively heavy damping forces
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Figure 4. Time series and phase portraits for underdamped (oscillatory)
motion. x(0) = 1.0; ẋ(0) = 0.0; ζ = 0.1.

on the way to equilibrium. The boundary between these two cases is the
critically damped case, i.e., ζ = 1 when the eigenvalues are equal.
Returning to the state variable matrix format of the linear oscillator and

adding damping we therefore have[
ẋ
ẏ

]
=

[
0 1
−ω2

n −2ζωn

] [
x
y

]
. (29)

We can also write the solution in terms of the eigenvalues of the state matrix,
i.e., the roots of the characteristic equation

λ2 + 2ζωnλ+ ω2
n = 0. (30)

Now, the only difference with the expressions given in equation 9 is that the
trace, T , becomes −2ζωn, i.e., negative.
Given the scenario of a system losing stability we can usefully view all the

response possibilities of this type of linear system according to the location
of the roots in the complex plane. For example, having two complex roots
with negative real parts corresponds to an exponentially decaying oscilla-
tion. Summarizing these outcomes in terms of the trace and determinant
leads to Figure 5. In general we will have a system with positive stiffness
and damping and thus a root structure corresponding to the lower right
quadrant. Critical damping corresponds to the dashed parabola, and phase
portraits and eigenvalues are indicated for various combinations of (T,Δ)
and hence the natural frequency and damping.

3 A Nonlinear Damper

Another basic nonlinearity sometimes occurring in mechanical vibration is
the appearance of energy dissipation in which the damping force is not
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Figure 5. The root structure of a linear oscillator.

necessarily proportional to the velocity of motion. The adoption of linear
viscous damping in our spring-mass-damper model is partly motivated by
relevant damping processes, for example, the mechanism by which a dashpot
(and other related devices) utilizes this type of energy dissipation. However,
it is also used because of its relative analytic simplicity, i.e., assumption of
linear viscous damping does not violate the rules of linearity, and this also
has certain advantages in the study of dynamics in continuous dynamical
systems.

3.1 Coulomb Damping

Friction commonly occurs in mechanical systems in which rubbing, or
contact, between two dry surfaces causes the dissipation of energy (often in
the form of heat). The assumption here is that the damping force is equal
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to the product of the normal force and a material-dependent coefficient of
friction, Thomson (1981). The free response consists of a linear (as opposed
to an exponential) decay of motion (with a frequency of oscillation the same
as the underlying undamped system), and the mass may come to rest with
a slight static offset if the static force of friction is greater than the restoring
force of the spring. A typical example is shown in Figure 6. This type of

Figure 6. Time series for a mass subject to Coulomb damping.

energy dissipation can lead to a variety of interesting behavior especially
in the context of forced vibrations. For example, stick-slip occurs in many
mechanical systems.

3.2 Motion-dependent Damping

Another type of nonlinear energy dissipation is the mechanism underly-
ing the appearance of certain types of limit cycle. The classic example is
the van der Pol equation (van der Pol (1934)):

ẍ− μ(1 − x2)ẋ+ x = 0. (31)

The parameter μ has a profound effect on the behavior of this system. For
positive μ, we see that if x2 > 1 then the damping term is positive and
energy is dissipated. However, again for positive μ the damping becomes
negative when x2 < 1. Using the same linearization process as detailed in
section 2.1 we consider small perturbations about equilibrium (the origin)
which leads to: [

ẋ
ẏ

]
=

[
0 1
−1 μ

] [
x
y

]
, (32)

The eigenvalues of this system are

λ =
μ

2
± 1
2

√
μ2 − 4. (33)
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The determinant Δ = 1 and the trace T = μ. Thus, we have real negative
roots when μ ≤ 0 indicating stable behavior. If 0 < μ < 2 the roots are
complex with positive real parts indicating an unstable spiral. Thus, we
locate these possible responses within Figure 5. This behavior is only valid
in the vicinity of equilibrium. Solving equation 31 numerically for various

Figure 7. Time series and phase portraits for van der Pol’s equation, (a)
and (b) μ = 0.1; (c) and (d) μ = 0.5; (e) and (f) μ = 1.5

positive values of μ leads to the results shown in Figure 7 as time series
and phase projections. These are sometimes called relaxation oscillations,
and since transients are attracted from within and without the oscillation
this type of behavior is called a limit cycle oscillation (LCO). A pertur-
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bation approach (see chapter 2) and Jordan and Smith (1977), assuming
μ is relatively small, can be used to show that the amplitude of the LCO
remains close to 2 and that the frequency of oscillation is approximately
ω = 1− (1/16)μ2.
We conclude this section by showing a couple of flows in phase space.

An unforced Duffing system of the form ẍ+ 0.1ẋ− x+ x3 = 0 is shown for
a variety of initial conditions in phase space in Figure 8(a). Likewise, the

Figure 8. Flows in phase space: (a) Duffing’s equation, (b) van der Pol’s
equation.

behavior of van der Pol’s equation of the form ẍ − 1.5(1 − x2)ẋ + x = 0
is displayed in part (b). In both cases, for these parameter values, we see
an unstable origin. In part (a) we have (Δ, T ) = (−1,−0.1) indicating a
saddle point and motion is swept away (and ultimately settles about one
of the two stable equilibria at xe = ±1), whereas in part (b) we have
(Δ, T ) = (+1,+1.5) and motion spirals away from the origin and settles
onto the stable periodic orbit.
We thus observe what will typically happen when the stiffness or damp-

ing of the system changes, and especially where one of these parameters
drops to zero, corresponding to an instability. The important issue here is
that linear scenarios occur naturally within the context of nonlinear oscilla-
tors. The geometric view afforded by a consideration of the root structure
and phase portraits of families of solution about equilibrium points is very
useful.
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4 Bifurcations

In many practical situations the forces acting on a system change. For
example, the spring force in equation 10 might be subject to changing values
of A and B, and this of course has a fundamental impact on the nature
of solutions. Bifurcation theory (Doedel (1986); Seydel (1994)), classifies
the generic ways in which an equilibrium loses its stability. Under the
action of a single control parameter, for example, the stiffness or damping
in an oscillator, we have already seen how the instability corresponds to
an eigenvalue moving into the positive half-plane. The behavior of the
linear oscillator provides an informative local view of behavior, but in a
practical situation we might expect nonlinear effects to influence, or limit,
the response in some way. As a parameter is varied the response of a system
changes, and often gradually, but it is the qualitative change in the dynamics
that is classified as a bifurcation. The elementary bifurcations are essentially
one-dimensional but since the focus here is dynamics, we embed these (four
elementary) bifurcations within the context of oscillations (Guckenheimer
and Holmes (1983)).

4.1 Bifurcations from a Trivial Equilibrium

There are some systems in which some kind of initial symmetry is present,
e.g., Euler buckling (Virgin (2007)). They represent an important class of
instability in structural mechanics: super- and sub-critical pitchfork bifur-
cations. For the super-critical pitchfork bifurcation we can consider the
oscillator:

ẍ+ 0.1ẋ+ x3 − μx = 0. (34)

Again we observe the fundamental xe = 0 solution, which is stable for
μ < 0. We immediately see how the example of Duffing’s equation de-
scribed earlier is a specific example with positive μ. At μ = 0 a secondary
equilibrium intersects the fundamental and it can be shown that the two
(symmetric) non-trivial solutions are stable (see Figure 9(a)). The stability
of equilibrium is determined using the (linearization) approach of section
2.1. This corresponds to the classic ‘double-well’ potential which is also
shown superimposed for a specific (positive) value for μ.
The corresponding sub-critical pitchfork bifurcation is given by:

ẍ+ 0.1ẋ− x3 − μx = 0, (35)

and is shown in Figure 9(b). In this case, starting from a negative value of
μ the trivial equilibrium is again stable but becomes completely unstable
at the critical point, i.e., there is no local stable equilibrium to gradually
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Figure 9. (a) A super-critical pitchfork bifurcation, (b) A sub-critical pitch-
fork bifurcation.

move onto. Furthermore, as the critical point is approached, the adjacent
saddle points (associated with the unstable equilibria) start to erode the
size of allowable perturbations. Although these two bifurcations have the
same stable trivial equilibrium and critical point they have quite different
consequences if encountered in practice. Hence, they are sometimes charac-
terized as ’safe’ or ’unsafe’ according to whether a local post-critical stable
equilibrium is available.
Another elementary bifurcation is the transcritical, or asymmetric, bi-

furcation:
ẍ+ 0.1ẋ+ x2 − μx = 0, (36)

and illustrated in Figure 10(a). Here, a fundamental (trivial) equilibrium
for negative μ loses stability as μ passes the through the origin. The other
equilibrium becomes stable at this point and deflection occurs in the positive
x direction.
Figure 10(b) shows the final example of an elementary bifurcation. It

is also perhaps the most fundamental, since later we will show that the
symmetry of the bifurcations already described is unlikely to be exactly
observed in practice. The saddle-node bifurcation is characterized by the
control parameter μ and coordinate x linked quadratically:

ẍ+ 0.1ẋ+ x2 − μ = 0. (37)

Equilibrium corresponds to the rest state and thus

xe = ±√μ. (38)
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Figure 10. (a) A transcritical bifurcation, (b) A saddle-node bifurcation.

and we see either two co-existing solutions (one stable and the other sta-
ble) or no (real) solutions, depending on the sign of μ. The fundamental
path is nonlinear, rather than the trivial initial path exhibited by the other
bifucations.
We conclude this section by relating these situations to the changing

potential energy (Bazant and Cedolin (1991)). For example, the potential
energy associated with the saddle-node can be written as

V =
x3

3
− μx+ C, (39)

and equilibrium from
dV

dx
= x2 − μ = 0. (40)

The sign of the curvature of the potential energy governs stability:

d2V

dx2
= 2x, (41)

which is evaluated about equilibrium. When xe =
√

μ the second derivative
of the potential energy function is positive indicating that this is a minimum
and hence is stable. The opposite conclusion can be drawn from the other
equilibrium branch thus confirming the results of the stability properties
based on the decay or growth of local perturbations. As the value of μ is
reduced the two equilibria come together (the frequency of small oscillations
will decrease and effective damping increases) as the potential surface flat-
tens out. Just prior to coalescence the stable equilibrium can be thought of
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as a node, and the unstable equilibrium is a saddle. Hence their approach
(at the critical point) is called a saddle-node bifurcation. No equilibria exist
for negative μ and trajectories would simply be swept away. This instability
is also sometimes referred to as a fold or limit point. The potential energy
is shown in Figures 9 and 10 (shown dotted) for a given value of the control
parameter.

4.2 Initial Imperfections

Initial geometric imperfections or load eccentricities that tend to break
the symmetry may have a relatively profound effect on stability (Virgin
(2007)). We shall consider this type of effect and its influence on the sub-
critical pitchfork. Incorporating a small offset causes equation 35 to be
altered to

ẍ+ 0.1ẋ− x3 − μx+ ε = 0, (42)

where ε is a small parameter which breaks the symmetry. Figure 11 shows
how the instability transition is changed. We see that for large negative μ

Figure 11. A perturbed sub-critical pitchfork bifurcation.

we have an equilibrium slightly offset from x = 0, and this grows as μ ap-
proaches the underlying critical value for the perfect geometry, but then falls
off and the system completely loses stability. There is also a complementary
(remote) solution for negative x but this wouldn’t ordinarily be accessed as
μ is monotonically increased (and it is unstable in any event). However,
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the fundamental solution does posses a critical point, and this is actually
a saddle-node bifurcation. We also note the small tilt in the potential en-
ergy function. This behavior is termed ’imperfection-sensitive’ (Thompson
and Hunt (1973)) since the maximum value of the control parameter dimin-
ishes with the magnitude of the initial imperfection. The saddle-node and
super-critical bifurcations are not imperfection sensitive.

4.3 Hopf Bifurcation

The other way in which an equilibrium can lose its stability under the
operation of a single control parameter is the Hopf bifurcation (Thompson
and Stewart (1986)). We have already seen this in van der Pol’s equation, in
which a complex conjugate pair of eigenvalues changes from having negative
real parts to positive. That is, given a positive value of the determinant, the
trace becomes positive (see figure 5). This instability is inherently dynamic,
and is the main mechanism by which limit cycle oscillations occur. This also
occurs in both the sub- and super-critical forms.
Figure 12 shows some typical transitions through these elementary bi-

furcations, in which the control is made a linear (ramp) function of time.
Part (a) is a sub-critical pitchfork bifurcation in which the control parame-
ter evolves with time according to μ = 0.01t− 1 and thus the (quasi-static)
critical point is reached after 100 time units. A slight delay in the realization
is observed since the system remains somewhat in the vicinity of the un-
stable equilibrium after the critical point, before losing stability completely.
The initial conditions for this case are x(0) = 0.2, ẋ(0) = 0.0. In part (b)
is shown the corresponding super-critical case where the post-critical path
follows one of the two available non-trivial (but stable) equilibrium paths.
Part (c) is the saddle-node. Since there is no trivial equilibrium in this
case the simulation was initiated at x(0) = 1.2, i.e., not far from equilib-
rium at xe = 1 when μ = −1. Finally part (d) illustrates a realization of
a super-critical Hopf bifurcation. In this case μ = 1 − 0.5t and thus the
quasi-static critical point is reached after approximately 20 time units, and
again a delay is observed. Also seen in this figure is the lengthening of the
period for larger t (and hence μ) anticipated from the initial post-critical
approximation ω = 1− (1/16)μ2, as well as the motion becoming gradually
less sinusoidal.

5 Forced (Linear) Oscillators

This section will focus on externally-excited systems, i.e., where F (t) �= 0
in Figure 1. An important class of forcing function is harmonic excitation:
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Figure 12. Examples of transitions through generic instabilities, (a) sub-
critical pitchfork, (b) super-critical pitchfork, (c) saddle-node, (d) Hopf.

F (t) = F0 sinωt, or y(t) = Y0 sinωt, where this latter expression relates to
a base movement that transmits motion to the mass via the support system
(Thomson (1981); Inman (1994)). This latter situation is an important
practical aspect of vibration and underlies the concept of vibration isolation
to be considered from a nonlinear perspective in chapter 3.
For the case when the force is applied directly to the mass we have a

governing equation of motion of the form

mẍ+ cẋ+ kx = F0 sinωt, (43)

or in nondimensional terms

ẍ+ 2ζωnẋ+ ω2
nx = f0 sinωt, (44)

where f0 = F0/m. The solution of equation 44 consists of the summation
of two parts: a homogeneous solution, obtained from the free vibration
(obtained in the previous section); and the particular solution, which is
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related primarily to the forcing. Its general solution has the form:

x(t) = X1e
−ζωnt sin(

√
1− ζ2ωnt+ φ1) +

f0
k

sin(ωt− φ)√
[1− (ω/ωn)2]

2
+ [2ζω/ωn]

2
,

(45)
where trigonometric identities have been used to combine the harmonic
terms from equation 24, and X1 and φ1 depend on the initial conditions.
The first (transient) part of the solution decays with time leaving the sec-

ond part as the steady-state oscillation. Some sample responses are shown
in Figure 13 in which the (lightly damped) system is started from rest at
three different forcing frequencies. Parts (a) and (b) show that for a forc-
ing frequency, ω = 0.3, which is less than the system natural frequency,
ωn = 1.0, the transient is relatively mild compared with the steady-state
response and is quickly attracted to the harmonic oscillation. When the
forcing frequency is equal to the natural frequency, as in parts (c) and (d)
resonance occurs, i.e., a significant magnification effect (the denominator in
the second term in equation 45 becomes small for ω ≈ ωn). Note the much
larger amplitude of the response. In parts (e) and (f) the forcing frequency
is increased to a value of 1.6, and now the transient solution is on the same
order of magnitude as the steady-state, and the steady-state amplitude is
back down to a lower level. Thus we observe that both parts of the solution
depend quite strongly on the frequency ratio. The rate, and hence duration,
of the transient decay is primarily a function of the damping. In all these
cases the final steady-state motion is independent of the initial conditions
(the choice of the origin in Figure 13 is arbitrary). This will not necessarily
be the case for nonlinear systems, and indeed transients may be repelled by
an unstable solution, as for example one of the cases shown in Figure 2.
It is useful to summarize how the maximum amplitude of the (steady-

state) response (A = xmaxk/F0) varies with the frequency ratio Ω, where
Ω = ω/ωn. The normalized amplitude of response can also be written as
A = xmaxω2

n/f0 (Inman (1994)). The response scales linearly with the
forcing amplitude f0. Figure 14 (a) shows a typical amplitude response
diagram for four different damping values. The phenomenon of resonance
is apparent, i.e., a significant amplitude magnification when the forcing
frequency is close to the natural frequency (i.e., Ω ≈ 1). In fact we see for
zero damping a growth to infinite amplitudes. The resonant peak is thus
very sensitive to damping (Ares ≈ 1/2ζ, for light damping), and since many
of the nonlinearities of interest are related to larger amplitude motion, we
might anticipate interesting behavior in the vicinity of resonantly forced,
lightly damped systems.
When the system is subject to y(t) = Y sinωt (a displacement applied
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Figure 12. Examples of transitions through generic instabilities, (a) sub-
critical pitchfork, (b) super-critical pitchfork, (c) saddle-node, (d) Hopf.

F (t) = F0 sinωt, or y(t) = Y0 sinωt, where this latter expression relates to
a base movement that transmits motion to the mass via the support system
(Thomson (1981); Inman (1994)). This latter situation is an important
practical aspect of vibration and underlies the concept of vibration isolation
to be considered from a nonlinear perspective in chapter 3.
For the case when the force is applied directly to the mass we have a

governing equation of motion of the form

mẍ+ cẋ+ kx = F0 sinωt, (43)

or in nondimensional terms

ẍ+ 2ζωnẋ+ ω2
nx = f0 sinωt, (44)

where f0 = F0/m. The solution of equation 44 consists of the summation
of two parts: a homogeneous solution, obtained from the free vibration
(obtained in the previous section); and the particular solution, which is
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Figure 14. Amplitude response diagrams for linear oscillators, (a) direct
mass excitation, (b) support motion (relative response), (c) support motion
(absolute response). The same damping values as used in (a).
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to the supporting frame in Figure 1) we obtain a related resonant effect. If
the position of the mass is measured relative to the moving base, then the
governing equation of motion takes the form

mz̈ + cż + kz = mY ω2 sin(ωt+ φ), (46)

where z(t) = x(t)− y(t). Thus, the forcing frequency enters into the forcing
amplitude, which is also proportional to the amplitude of the base motion.
This is familiar from rotating machinery with mass eccentricity in shafts
Thomson (1981). The steady-state amplitude is given by the second part of
equation 45 but with an additional ω2 in the numerator, and the response
amplitude is adjusted to take account of the fact that the force now arises
via a transmitted base movement (A = |Z/Y |, where Z is the amplitude of
z). This is shown in Figure 14(b).
A third form of resonant response (Figure 14(c)) is also found for base-

excited systems where the absolute motion of the mass is measured (here
A = |X/Y |, where Y and X are the input and response amplitudes re-
spectively (Thomson (1981)). We note that the resonant condition can be
considered as practically the same in all three cases. In this third case the
amplitude response includes an interesting independence of damping when
the forcing frequency is close to Ω =

√
2. At high excitation frequencies the

mass is practically stationary, and this is often a desirable characteristic for
vibration isolation.
There are many other aspects of forced vibration of linear systems that

are important in a practical sense, e.g., random vibrations, shock loading,
etc. However, at this point we move on to focus on the nonlinear behavior
of periodically forced oscillators.

6 Forced (Nonlinear) Oscillators

The forced response of the Duffing system in its three-dimensional phase
space allows for the full spectrum of nonlinear behavior (Thompson and
Stewart (1986)). We will restrict ourselves to harmonic excitation and start
by considering the simplest case in which the magnitude of excitation is
relatively small, such that the system responds in a mildly nonlinear manner.
Adding a harmonic forcing to Duffing’s equation 11 gives

ẍ+ 2ζẋ+Ax+Bx3 = F sin(ωt+ φ). (47)

Equation 47 is by no means easy to solve in the general case. However, we
clearly expect to see an approximately linear response for small amplitude
motion (or when B = 0).
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For small F and typical lightly damped systems (e.g., β = 0.1), we can
use a variety of approximate analytic methods to obtain solutions, and these
are the subject of chapter 2. We focus at this point on the typical qualita-
tive behavior and specifically how this relates to resonance (but with some
important differences from the linear case). The softening and hardening
spring cases introduced in section 2 causes a bending over of the resonance
response curve and thus the appearance of co-existing solutions. Exam-
ples are shown in Figure 15. For relatively heavy damping we expect to

Figure 15. Schematic amplitude response diagrams for linear and nonlinear
spring restoring forces. Dashed lines indicate an unstable branch.

see the single-valued case. However, under light damping (and moderately
large forcing magnitude), a region of hysteresis is encountered. Thus, under
slowly changing forcing frequency a jump up or down occurs (depending on
the direction of sweep). These jumps occur via the cyclic analogue of the
saddle-node bifurcation and are associated with a characteristic multiplier
(CM) of the system penetrating the unit circle in the complex plane at +1
(associated with a vertical tangency in the response) Strogatz (1994). This
is one of the three generic mechanisms of instability under the action of a
single control parameter and will be revisited a little later (see Figure 17
and Guckenheimer and Holmes (1983)).
However, the stability of the steady-state solutions must in general be

determined using some kind of additional analysis based on behavior of
small perturbations, Jordan and Smith (1977), e.g., Floquet theory, and will
also be considered in more detail in chapter 2. Figure 16 also shows some
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resonance response curves for Duffing’s equation in which the damping and
forcing magnitude are varied. Here, in part (a), the dashed line corresponds
to the free (undamped) vibration case. The continuous curves correspond
to different levels of damping (for a fixed level of forcing). With c = 0 we

Figure 16. Resonance response curve based on a harmonic balance solution
of Duffing’s equation with α = β = F = 1. (a) Various damping levels for
fixed forcing magnitude (F = 1), (b) Various forcing magnitudes for a fixed
level of damping (c = 0.2).

get the outer curve. When the damping is increased to a level of c = 0.4
we obtain a response that has a maximum amplitude close to A = 1.5 that
occurs in the vicinity of ω = 1.6. For the more heavily damped case (c = 1)
the response hardly exhibits resonance at all and is similar to the linear
response. This can still be considered underdamped (ζ = 0.5) according to
the linear description in an earlier part of this chapter.

6.1 Bifurcation of Maps

We finish this section with a brief consideration of the stability of cycles
(Jordan and Smith (1977); Guckenheimer and Holmes (1983)). The ampli-
tude jumps observed in Figure 16 are the cyclic equivalent of the saddle-node
bifurcation described earlier. The analytic determination of the stability of
periodic orbits is complex, and details are covered in chapter 2. As we have
seen, nonlinear oscillators may suffer bifurcations in their periodic behavior
as a system parameter is changed. Analogous to the behavior of small per-
turbations in the vicinity of equilibria, we can consider the behavior of small
perturbations about a periodic orbit. Again linearization is a key concept
and use will be made of Poincaré sampling and fixed points of maps. It can
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be shown that the behavior of small perturbations is typically governed by
a variational equation of the form

ẍ+G(t)x = 0, (48)

where x(t) represents motion about an oscillation and G(t + T ) = G(t).
This equation does not, in general, submit to closed-form analytical solu-
tions. However, Floquet theory has been developed to determine the general
behavior of solutions to this equation. It is related to a discrete (Poincaré)
map, the stability of which depends on the system eigenvalues, the charac-
teristic multipliers (CM’s) of the system. Rather than requiring negative
real parts for stability, we now require eigenvalues with magnitude less than
one. In this event, any disturbances from the periodic orbit can be shown
to decay back onto the original orbit, and thus we have a periodic attrac-
tor. As a system parameter is changed we may have the possibility of an
eigenvalue exceeding one in magnitude.
The three typical ways in which multipliers leave the unit circle are shown

in Figure 17, with R and I signifying real and imaginary, respectively. We
note that the Neimark bifurcation is less commonly encountered in practice.

Figure 17. The generic routes to instability (in terms of CM’s) for system
under the action of a single control parameter.

6.2 Subharmonic Behavior

The response shown in the previous section is relatively close to primary
resonance. Another commonly encountered behavior in nonlinear systems
is a subharmonic, i.e., a period-n oscillation which takes n forcing periods to
complete a full cycle. This may also occur over a variety of parameter values,
and a typical output of a numerical simulation of equation 47 (n = 5),
is shown in Figure 18 as a time series (a) and phase projection (b) after
transients have been allowed to decay. For other parameters various types
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Figure 18. A typical subharmonic response from Duffing’s equation with
A = −1, B = 1, ζ = 0.15, F = 1, ω = 1.2, φ = 0.

of subharmonics occur. Also, it is possible to obtain responses that repeat
n times within a single forcing cycle and these are called superharmonics.
Subharmonics are also often associated with peaks in the resonance curve
at one-half the frequency of the main resonant peak for n = 2, etc.

6.3 Quasi-periodic Behavior

In nonlinear dynamics it is also not uncommon to encounter quasi-
periodic behavior. In similarity to subharmonic behavior, quasi-periodicity
occurs when two or more frequencies are present, but in this case they are
incommensurate, i.e., their ratio is a non-integer. The important conse-
quence is that a time series series will not appear repetitive, and a typical
example is shown in Figure 19. The somewhat random-like response is par-
ticularly apparent in the phase portrait shown in part (b). The behavior of
both subharmonic and quasi-periodic motion can be usefully visualized as
shown in Figure 20. In the case of a subharmonic response, the orbit closes
after a finite number of traverses around the surface of the torus. For the
quasi-periodic response, the trajectories keeps wandering around the surface
and it slowly fills out.
The Poincaré section is a stroboscopic sampling technique that reveals

the periodic nature of a response, facilitates stability considerations, and
is especially useful in the characterization of chaos. If we have an n-
dimensional phase space, we can extract data at regular intervals to obtain
an n−1-dimensional discrete map. This is shown schematically in Figure 21.
In this example the sampling is achieved by extracting the penetrations of a
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Figure 19. (a) A time series of a quasi-periodic response, (b) a conventional
phase projection, (c) a reconstruction using time-delay coordinates.
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Figure 20. (a) In a response with two frequencies the trajectories can
be envisioned as wrapping around the surface of a torus, (b) a frequency
spectrum.
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surface of section. For periodically forced systems it is natural to choose a
given forcing phase to trigger the Poincaré section, since a periodic response
will then result in a repeating point (after transients have been allowed to
decay). Taking a Poincaré section of the data from Figure 18 results in

Figure 21. A Poincaré section reduces a continuous flow to a discrete map
by examining a surface of section.

a repeating set of 5 data points, whereas taking a Poincaré section of the
data from Figure 19 results in points that eventually form a closed curve, a
characteristic of quasi-periodicity.
Also shown in Figure 19(c) is an example of using time-lag, or time-

delay, embedding. Often, in an experimental context for example, it is only
practical to measure a single state variable. It has been shown that the
original phase space can be recovered by plotting this single state variable
versus itself at later times. The phase space, when reconstructed in this
way, is topologically equivalent to the original system. This also has the
added advantage of obviating the need to perform numerical differentiation
(e.g., when extracting velocity from a time series of position), which has the
effect of adding noise.
Another diagnostic tool that is very useful in nonlinear dynamics is the

frequency spectrum (Newland (1984)). This has a firm basis in linear signal
processing of course (based on Fourier analysis), but can shed light on the
differences between various types of periodic and non-periodic behavior.
A sine wave is represented as a single delta function located at the single
frequency of the signal. White noise has a broadband spectrum, etc. A
subharmonic response is reflected in a finite number of peaks, as is quasi-
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periodic behavior, despite the incommensurate relation between frequencies.
An example of a frequency spectrum for the time series shown in Figure 19
is shown in Figure 20(b).

6.4 Chaos

One of the most interesting features of nonlinear dynamics is chaos.
That is, a low-order, deterministic dynamical system is capable of exhibiting
random-like behavior that exhibits an extreme sensitivity to initial condi-
tions. Chaos is characterized by a broadband power spectra, i.e., motion in
which a multitude of frequencies actively participate. However, although a
similar response might be obtained from a very high-order system or one in
which noise were present, these types of responses are examples of low-order
deterministic chaos. This is a feature of nonlinear dynamical systems that
has received considerable attention recently.
Again, using Duffing’s equation we now change the parameters, such

that we obtain
ẍ+ 0.3ẋ− x+ x3 = 0.5 sin 1.2t. (49)

Numerically integrating equation (49) leads to the results shown in Figure

Figure 22. A typical chaotic response from Duffing’s equation, (a) Time
series, (b) Phase projection.

22. The time series in part (a) shows a random-like traversing around and
between the equilibria (at ±1). Again, a convenient alternative form for
displaying this response is the phase projection (velocity vs. position), and
this is shown for the same data in part (b).
However, despite the apparent randomness of this response, it is deter-

ministic with significant underlying structure. The corresponding Poincaré
section is shown in Figure 23, with an interesting sequence of points mapped
due to the folding and stretching evolution of the chaotic attractor. This
is persistent behavior and perturbations will decay as any transients are
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Figure 23. A Poincaré section revealing the chaotic attractor corresponding
to the response shown in Figure 22.

attracted back onto this strange shape (about 10,000 points are plotted
here). This fine structure shows some fractal characteristics and displays
an extreme sensitivity to initial conditions. Many numerical tools have
been developed to shed light on chaos. The broadband nature of the fre-
quency spectrum has been mentioned (Newland (1984)), but the complex
geometry of the attractor can also be described in terms of dimension, see
Strogatz (1994) (and this is where certain fractal features are apparent).
For a chaotic response the sensitivity to initial conditions is extreme. There
is a local exponential divergence of adjacent points on a trajectory and this
feature is described by a positive Lyapunov exponent (LE) Ott (1993).
In a system with multiple attractors, each attractor will possess its own

basin of attraction (for a linear system with a unique attractor, all initial
conditions end up on the steady state). Hence there is some dependence
on initial conditions, but sometimes there appear fractal basin boundaries,
such that under certain ranges of initial condition it is practically impossible
to predict where the trajectory will end up. Figure 24 illustrates just such
a situation in which, even though the attractors are periodic, the basins are
intermingled in a very complex manner. The black and white regions corre-
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spond to those initial conditions (basins of attraction) that lead to periodic
motion in the vicinity of the +1 and -1 equilibrium positions, respectively
Virgin (2007). The fractal nature of these basin boundaries remain no

Figure 24. Fractal basin boundaries based on the numerical simulation of
Duffing’s equation from a fine grid of initial conditions. ζ = 0.168, A =
−0.5, B = 0.5, ω = 1, F = 0.15.

matter how fine the grid, and of course, in an experimental context there
is always a degree of imprecision. Thus, we see that sensitivity to initial
conditions in terms of basin boundaries may occur even when steady-state
chaos is not present, since only periodic solutions are present in Figure 24.
The is kind of sensitivity may also occur in terms of the parameter space.
Often the broad characteristics of chaotic attractors are quite similar,

and certain universal behavior has been observed. For example, chaos can
often occur after a sequence of period-doubling bifurcations (Feigenbaum
(1978)), i.e., an accumulating sequence of super-critical pitchfork bifurca-
tions. Chaos can also occur as a result of other standard sequences including
intermittency, and quasi-periodicity (Strogatz (1994)).
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7 Control of Nonlinear Vibrations

An increasing number of applications in structural dynamics require the
application of some form of control. The most usual form of control for low
frequency vibration applications is feedback control. The areas of “dynam-
ics” and “control” have tended to grow as separate subjects which can make
it difficult for the interested reader who is familiar with one discipline to
understand the concepts of the other. This text is written from a nonlin-
ear dynamics viewpoint, and for those who already have a good grounding
in the concepts of nonlinear dynamics the following introductory literature
may be useful. Firstly, there are a series of texts which discuss the appli-
cation of control techniques to linear vibration problems (Inman (2006);
Beards (1981); Fuller et al. (1996); Moheimani et al. (2003)). There are
also texts which discuss the (predominately linear) vibration and control of
smart structures, see Clark et al. (1998); Srinivasan and McFarland (2001);
Preumont (1997); Worden et al. (2003); Leo (2007); Vepa (2010). A good
overview of linear control theory is given by Goodwin et al. (2000), and a
good introduction to nonlinear control can be found in Khalil (1992). The
concepts discussed here follow the approach of Wagg and Neild (2009) who
apply both linear and nonlinear control techniques to nonlinear vibration
problems.
The basic idea of feedback control is to use information from the system

response in order to change the input and achieve an improved or otherwise
desirable behaviour. The response of the system is obtained from measure-
ments taken using sensors to record system variables such as displacements,
accelerations or forces. These measurements are then fed back and used to
update the control forces via a control algorithm. The control algorithm is
designed to give an improved system performance based on the requirements
of the task at hand.
A block diagram of a typical feedback control system is shown in Fig. 25.

This type of block diagram shows the logic of the feedback system, from
an input demand signal to a system response output. The input demand
is also known as a setpoint or reference signal, and this is specified by the
control designer as the desired system output. In the example shown here,
the output from the system is subtracted from the demand signal to form
an error signal, e(t) = r(t) − x(t), which is used by the controller in order
to give an improved response. It is important to note that the feedback is
negative, and as a general rule positive feedback will cause the system to
become unstable.
In control terminology, the system to be controlled is usually referred to

as the plant. If there is just one input demand and one response output
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Figure 25. Feedback control block diagram.

from the plant, the control system is said to be a single-input, single-output
(SISO) system. If there is more than one input or output, the control system
is said to be multiple-input, multiple-output. (MIMO).
Adding feedback introduces additional complexity to the stability of the

combined controller and system behaviour. Feedback controllers can desta-
bilise a system in certain situations, and the design and application of these
types of system is a large subject in its own right. The problem is usually
split into two parts. Firstly design the system to be stable in a perfect (no
noise) environment, and second design the stable system to be as robust
as possible to noise and other disturbances (shown in Fig. 25 acting on the
plant) and to uncertainty which may occur under operating conditions, this
is the robustness problem.

7.1 Feedback control of linear systems

As an example, consider the single-degree-of-freedom oscillator shown in
Fig. 1, when there is a single control input, u, such that the equation of
motion is given by

mẍ+ cẋ+ kx = F = pu. (50)

Here x is the displacement of the mass m, with damping constant c, stiff-
ness coefficient k and p is a scalar constant which can be thought of as a
control gain (where parameters are chosen with suitable units). Note that
dividing by m, with u = 0, gives Eqn. (23), from which an analysis of the
type of damping can be carried out. Here we assume that the oscillator is
underdamped, ζ � 1. Control system analysis of linear systems is often
undertaken using Laplace transform techniques. For example, we can anal-
yse the steady state response by taking the Laplace transform of Eq. (50),
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which, assuming zero initial conditions gives

X(s) =
p

(ms2 + cs+ k)
U(s) = G(s)U(s), (51)

where s is the Laplace variable, and G(s) is the transfer function for the
single-degree-of-freedom oscillator given in Eq. (50). Note we use the con-
vention that a capital letter denotes the Laplace transform of the variable
i.e. x(t)→ X(s).
Assuming that the control task is to make the displacement x(t) follow

a predetermined reference signal r(t) such that x(t) → r(t) in the steady
state, the error is defined as e(t) = r(t)−x(t). Now the error can be used as
a feedback, so that when e �= 0, some control effort is applied to the system
as shown in Fig. 25.
Using the Laplace transform variables shown in Fig. 25, U(s) = kpE(s) =

kp(R(s)−X(s)), and by using the logic of the block diagram in Fig. 25 (as-
suming no disturbance), it can be shown that the steady state relationship
for the closed-loop feedback system is

X(s)

R(s)
=

G(s)kp

1 + kpG(s)
, (52)

where kp is known as a proportional control gain. The process of choosing
the best kp is the control design, and for the design process the Laplace
parameter s is related to a generalised frequency parameter, such that s =
iω. Then the relationship between the input function R(iω) and the output
X(iω) is governed by G(iω)kp/(1 + kpG(iω)), which is otherwise known as
the closed-loop transfer function, which is denoted as L(iω).
Note from Fig. 25 that the system has negative feedback. However,

assuming the signals are sinusoidal, if the output signal becomes so far phase
shifted, while maintaining a high enough amplitude, it will have the same
effect as positive feedback and the system will become unstable. For this to
happen the amplitude of the closed-loop transfer function must be |L(iω)| ≥
1 and the phase arg(L(iω)) ≥ −π. Notice that only half a wavelength is
required because the negative feedback inverts the signal to look like the
input signal after only π phase lag. These conditions are known as the
Nyquist stability criterion, and the use of this criterion is a fundamental
design technique for linear control systems, see Goodwin et al. (2000) for
details. For any selected kp value, the frequency can be varied from 0 ≤
ω ≤ ωmax to see if L(iω) remains stable.
Now let’s consider an example of how the stability analysis would work

for the controlled oscillator given by Eq. (50). We need to find the stability
of the closed-loop transfer function, and we will take parameter values when
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mass m = 1kg, stiffness k = 100N/m, damping is c = 2.0kg/s and p =
1N/V. First, using the mass and stiffness values, the natural frequency is
ωn =

√
100/1 = 10rads/s. Then G(s) = 1/(s2 + 2s+ 100), which has poles

of −1± i9.95. The poles are in the left-hand side of the complex plane which
means that the uncontrolled, open-loop, system is stable.
For this example, the poles for the controller system the closed-loop poles

are found from the poles of

L(s) =
kp

s2 + 2s+ 100 + kp

, (53)

which gives poles of s1,2 = −1± 0.5
√
4− 4(100 + kp), which for positive kp

are always complex and in the left-hand plane and therefore stable. Note
also that the effect of kp is analogous to adding stiffness to the oscillator.
Substituting s = iω gives

L(iω) =
kp

100 + kp − ω2 + i2ω
. (54)

Multiplying top and bottom of Eq. (54) by (100+kp−ω2− i2ω) allows the
real and imaginary parts to be found, from which

|L(iω)| = kp√
(100 + kp − ω2)2 + (2ω)2)

, (55)

and

arg(L(iω)) = − arctan
(

2ω

(100 + kp − ω2)

)
. (56)

The Nyquist stability criterion defines the ω values at which instability
occurs as when |L(iω)| = 1, so for example computing Eq. (55) when kp = 50
gives two points at which |L(iω)| = 1. Of these, the value closest to the
instability point is ω ≈ 13.8rad/s, from which arg(L(i13.8)) ≈ −2.47 (using
Eq. (56) minus π). So in this example the system is stable by a margin of
−π − (−2.47) ≈ −0.6 radians or 34 degrees. This stability margin is called
the phase margin for the system. It can usually be inferred that the larger
the stability margin, the more robust the system will be to disturbances and
modelling uncertainty. The Bode plot showing the phase margin computed
using Matlab function ‘margin’ is shown in Figure 26.
Now consider the example of a multi-degree-of-freedom linear system,

where control forces have been added to the equation of motion so that

M ẍ+ Cẋ +Kx = FE + FC ,
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Figure 26. Bode plot of the complex frequency response function of
Eq. (53) with kp = 50 using the Matlab margin command. Note that
the phase margin is indicated as the solid portion of the vertical line.

where x represents the displacements, M is an N × N mass matrix, C is
the N × N damping matrix and K is the N × N stiffness matrix, FE is
the dynamic forcing vector and FC is the vector of control forces. N is
the number of degrees-of-freedom. To carry out state space analysis we
put the differential equations into first-order form, and to do this we let
x = [xT , ẋT ]T , FE = 0 (unforced) and FC = Pu such that

ẋ = Ax +Bu, (57)

where

A =

[
0 I

M−1C M−1K

]
, B =

[
0

M−1P

]
,

and where u = {u1, u2, ..., uN}T is the vector of control signals ui, I is
the identity matrix and P is a constant matrix representing the control
mechanism/hardware. Equation (57) represents the state space form of
the controlled system. It is typically written with an output equation y =
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Figure 27. Schematic diagram of state feedback controller for a linear
system.

C̄x, which represents the case when the state vector, x, cannot be directly
observed, and instead y are the observations from the sensors. Note that to
avoid confusion with the damping matrix, C̄ is used as the control output
matrix representing the relationship between x and y.
Now using the Laplace transform approach on Eqn. 57 (assuming zero

initial conditions) we obtain

sX(s) = AX(s) +BU(s), � X(s) = (sI −A)−1BU(s) (58)

and taking the Laplace transform of the output relationship gives Y (s) =
CX(s) so that

Y (s) = C̄(sI −A)−1BU(s) = L(s)U(s) (59)

where L(s) represents the dynamics of the closed loop system.
There are multiple ways to choose the control signal, U(s), here we show

a state feedback approach, shown schematically in Fig. 27. In this case
U(s) = R(s)−KX(s) so that

Y (s) = C̄(sI −A)−1BU(s) = C̄(sI −A)−1B(R(s)−KX(s)), (60)

from which
Y (s) = C̄(sI −A+BK)−1BR(s). (61)

Now the control design can be used to choose values of the feedback
gain matrix K to give the desired response. One of the most common ways
of doing this is to use pole placement, or in other words to choose a set of
poles which would make the system suitably stable. For example Ackermans
formula can be used

K = [0, 0, ..., 1]M−1
c φd(A), (62)
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where Mc = [B | AB | .... An−1B], and φd is the characteristic equation for
the closed loop poles at s = A.
Let’s take the example where

ẋ =

[
0 1
−10 −2

]
x+

[
0
7

]
u. (63)

Then

det(sI −A) =

∣∣∣∣ s −1
10 s+ 2

∣∣∣∣ = s(s+ 2) + 10 = 0 (64)

and
s2 + 2s+ 10 = 0 � s = −1± 3i, (65)

which means that the open loop system in this case is stable.
Now we define u = r −Kx so that

u = r − [k1 k2]

[
x1
x2

]
. (66)

Now let us assume that we are required to place the poles at s1,2 = −5,−6.
Then

(s+ 5)(s+ 6) = s2 + 11s+ 30 = φd(s). (67)

Now

Mc = [B|AB] =

[[
0
7

] ∣∣∣ [ 0 1
−10 −2

] [
0
7

]]
=

[
0 7
7 −14

]
. (68)

From which

K = [0 1] =

[
0 7
7 −14

]
−1

([[
0 1
−10 −2

]2
+ 11

[
0 1
−10 −2

]]
+ 30I

)

= [2.8571 1.2857]. (69)

This type of computation can be carried out using the ‘place’ or ‘acker’ com-
mands in Matlab. When considering nonlinearity the frequency response
becomes even more complex to such an extent that nonlinear control design
requires a different approach.

7.2 Feedback control of nonlinear systems

Nonlinear control systems can be written in the general form of

ẋ = f(x) + g(x)u, (70)



Introductory Material 39


H&3

-1


D&3

0

D&3

1

H&3

2

0 10 20 4D ND 3D 5D 70 ID LD 100

2
��

��
��

��
��

�	]
�

_

Time (s)

Figure 28. Simulation of feedback linearization control of the Duffing os-
cillator given in Eqn. 49. The control u = (x31 − kpx1)/p is turned on
at time t = 40s. Parameter values kp = 2 and p = 4. Initial conditions
(x1(0), x2(0)) = (0, 0).

where f is the nonlinear system function (as in Eqn. 1 with lower case f), g
is the nonlinear controller function and x is the state vector x = [xT , ẋT ]T .
This is a nonlinear version of Eq. (57). In the case where system states
cannot be observed directly, y = h(x) is used, where h is the output function
which may or may not be nonlinear.
For some systems, the nonlinear functions can be approximated as linear,

such that f(x) ≈ Ax and g(x)u ≈ Bu and h(x) ≈ C̄x. In this situation the
nonlinear system can be approximated by Eq. (70), for a very limited range
of system parameters, for example close to an equilibrium.
For systems where nonlinearities cannot be ignored there are a range of

possible techniques including (but not exclusively); gain scheduling; optimal
control; adaptive control; sliding mode control. See Isidori (1995); Krstić
et al. (1995); Slotine and Li (1991); Åström and Wittenmark (1995); Khalil
(1992) for an in depth discussion of nonlinear control. Here we consider
an introductory example to demonstrate some of the main features of these
problems.
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One of the simplest ways of dealing with nonlinear systems is to use
the control signal to cancel the nonlinear part of the system and effectively
turn it back into a linear system. Consider the Duffing oscillator (similar
to that defined in Eqn. (47)) with a control input which can be written in
first-order matrix form as[

ẋ1
ẋ2

]
=

[
0 1
−ω2

n −2ζωn

] [
x1
x2

]
+

[
0

−γx31

]
+

[
0
p

]
u(t). (71)

In vector form this becomes

ẋ = Ax +N (x) +Bu, (72)

where the nonlinear function, f(x), has been split into a linear part, Ax, and
a vector of nonlinear terms, denoted by N (x) such that Ax+N (x) = f(x).
Note also that B = g(x) and x = [x1, x2]

T in this example.
It can be seen by inspection of Eq. (71), that if one sets u = γx31/p

then N (x) +Bu → 0 as t→∞, ignoring the possibility of transient effects
destabilising the system. The system then reduces to ẋ = Ax, which is
linear, and, providing A has stable eigenvalues, it is also stable.
However, although this has removed the nonlinearity, it has applied no

additional control to the linear part of the system. To apply proportional
control, one could set u = (γx31 − kpx1)/p, which would remove the nonlin-
earity and apply proportional control to the resulting linear system, as now
N (x) + Bu → kpx1 as t → ∞, providing in this case that the closed-loop
proportional controller is stable. However, during the transient phase, there
will be both linear feedback and nonlinear effects present, which will make
the assessment of stability and robustness difficult.
A numerical simulation of the Duffing example is shown in Fig. 28. Here

the Duffing system given by Eqn. 49 is forced with a sinusoidal forcing, and
has a chaotic response without control. This can be seen in the displacement
response from time zero to t = 40 in Fig. 28. After t = 40 when the control
is turned on, the response rapidly becomes linear. Note that in this case, the
underlying linear system is unstable, and therefore the kp value is selected
to stablize the linearized system.
Rather than subtracting off the nonlinearity, an alternative approach is

to try to establish a linear relationship between the output and input to the
system. In general, the output from the nonlinear system is represented as
a vector y = h(x). In practice this will be one or more measurements of
displacement, velocity or acceleration which may or may not be a nonlinear
function of the system states. For example, assume that the output from
the Duffing system in Eq. (71) is the velocity, x2 so that y = x2. The input
to the Duffing system is the control signal, u. If a linear relationship can be
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Figure 29. Simulation of input-output linearization control of the Duffing
oscillator given in Eqn. 49. The control 1

p
[v(t)− x1 + 0.3x2 + x31] is turned

on at time t = 40s, where v(t) = −2x− ẋ, with p = 4 and initial conditions
(x1(0), x2(0)) = (0, 0).

established between y and u, then the system will have been input-output
linearized.
Now consider an example where we are required to design a feedback

linearization controller for the Duffing system defined by Eq. (71), assuming
that the output is the velocity, x2. To tackle this problem we first take the
output and differentiate with respect to time, t, to give ẏ = ẋ2. From
Eq. (71), the expression for ẋ2 can be used to write

ẏ = ẋ2 = −ω2
nx1 − 2ζωnx2 − αx31 + pu(t). (73)

If the control signal is chosen as

u =
1

p
[v(t) + ω2

nx1 + 2ζωnx2 + αx31], (74)

then the effect is to subtract off all the terms and replace them with a new
control signal v(t), giving an input-output relationship of the form ẏ = v(t).
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Then a linear expression can be chosen for v(t) to give the required control
effect.
A numerical simulation of this input-output linearization approach is

shown in Fig. 29. After t = 40 when the input-output linearization control
is turned on, the response rapidly becomes linear. Note that as before,
the underlying linear system is unstable, and therefore the v(t) function is
selected to stablize the linearized system. Note however that v(t) also allows
us to increase the damping in the controlled system.
It should be noted in this example that although only x2 is the measured

output, both states are required to form the control signal. Compared with
the more basic feedback linearization discussed above, this approach has not
just cancelled the nonlinear dynamics, the linear part of the ẋ2 dynamics
has been removed as well and replaced with v(t). The whole process can be
formalised by using Lie derivatives, and will be described in Chap. 6.
The usefulness of feedback linearization is that once the system has been

linearized addition linear control tasks can be included using well known
techniques. Typically the control tasks of interest are to remove unwanted
vibration and/or get the system to follow some predefined reference signal.
This and other nonlinear control techniques are discussed in more detail in
Chap. 6.

7.3 Adaptive control of a scalar linear system

In Chap. 6 we will consider adaptive control techniques for nonlinear
systems, and as a final part of this introductory discussion of control tech-
niques we outline an adaptive approach for a simple scalar linear system.
The type of adaptive control we will consider is that which uses a model
reference. So we have a (scalar) plant

ẋ = −ax+ bu (75)

which we assume has the output y = x, and a reference model

ẋm = −amxm + bmr (76)

where we assume the output ym = xm and r is the reference signal. We
assume that the reference model is stable, so am > 0 and we also assume
that bm > 0. A schematic diagram of this type of control is shown in Fig.
30.
It is usual (see for example Åström and Wittenmark (1995)) to use a

control signal which consists of a feedback and feedforward component

u = kx+ krr (77)
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where k is the feedback gain, and kr is the feedforward gain. Substituting
equation 77 into equation 75 gives

ẋ = (bk − a)x+ bkrr. (78)

If (bk − a) = −am and bkr = bm, the systems match perfectly. These
conditions are called the Erzberger conditions. We can now write

k =
a− am

b
= k∗,

kr =
bm
b
= k∗r .

(79)

We define the error as the difference between the model and plant xe =
xm − x ⇒ ẋe = ẋm − ẋ. Then if we subtract equation 78 from 76 and add
amx− amx to the result of the subtraction we obtain

ẋe = −amxe + (a− am − bk)x+ (bm − bkr)r. (80)

From equation 79 we see that a− am = bk∗ and bm = bk∗r which enables us
to write

b(k∗ − k) = am − a− bk,
b(k∗r − kr) = km − bkrr.

(81)

Then we define the parameter errors as the difference between the Erzberger
value and the actual value φ = (k∗ − k) and ψ = (k∗r − kr), then equation
80 can be written as

ẋe = −amxe + b(φx+ ψr). (82)
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Note also that φ = −k̇ and ψ = −k̇r, because k∗ and k∗r are constants.
Equation 82 is now a first order differential equation in terms of the error
between the the plant and the reference model.
For general model reference adaptive control, the adaptive gains are

commonly defined as

k = α

∫ t

0

yex(τ)dτ + βyex(t), kr = α

∫ t

0

yer(τ)dτ + βyer(t). (83)

where α and β are control weightings representing the adaptive effort, and
ye = Cexe where Ce can be chosen to ensure the stability of the feed forward
block Landau (1979). Eq.83 has been shown to satisfy hyperstability theory
(i.e. the Popov Criteria), see Åström and Wittenmark (1995); Popov (1973)
for a detailed derivations.
By using the fact the k∗ is a constant, φ̇ = −k̇, and by using Eq. 83

we can obtain expressions for φ̇ and ψ̇. These expressions can be combined
with the equation for the error dynamics, so that we can write

ẋe = −amxe + b(φx + ψr)

φ̇ = −αCexex− βCe(ẋex+ xeẋ)

ψ̇ = −αCexer − βCe(ẋer + xeṙ)

(84)

In Eq.84, x is implicitly defined in xe, so we must substitute via the relation
x = xm − xe, Khalil (1992), which gives

ẋe = −amxe + b[φ(xm − xe) + ψr]

φ̇ = −αCexe(xm − xe)− βCe[ẋe(xm − 2xe) + xeẋm]

ψ̇ = −αCexer − βCe(ẋer + xeṙ)

(85)

A further substitution for ẋe in the expressions for φ̇ and ψ̇ can be made to
give

ẋe = −amxe + b[φ(xm − xe) + ψr]

φ̇ = −αCexe(xm − xe)− βCe[(−amxe + b[φ(xm − xe) + ψr])(xm − 2xe) + xeẋm]

ψ̇ = −αCexer − βCe((−amxe + b[φ(xm − xe) + ψr])r + xeṙ)
(86)

This substitution means that we have a dynamical system of the form ξ̇ =
f(ξ, t). The parameters am, b, α, β and Ce are constant and r, ṙ, xm, ẋm

are time varying signals.
The numerical example of a step input for this system is shown in Fig.31.

Here we have computed the response of the system, Eq.86, to the unit step
input of the form

t < t0 r = 0, ṙ = 0
t > t0 r = 1, ṙ = 0

. (87)
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Figure 31. Example of unity step input. Parameters are α = 10, β = 1,
ts = 1.0, am = 1, b = 1. Initial conditions xe(0) = 0.0, k(0) = 0.9,
kr(0) = 0.5. (a) The solid line shows xm and the dashed line xe. (b) The
solid line shows k and the dashed line kr.

where we take t0 = 0. In Fig.31 (a) we show the output from the reference
model, xm, and the error signal xe. The error signal tends to zero within
five seconds, so that the steady state condition is reached x = xm = r = 1.
The adaptive gains are shown in Fig.31 (b), and both settle to steady state
values within five seconds.
For this example we find that we can identify a set of steady state gain

values which satisfy the control problem and define an exact matching man-
ifold, Γ, which gives a set of gain values {k, kr : x = xm as t → ∞}. By
examining Eqs. 85 and 86, we note that if the system parameters are iden-
tical, am = a and bm = b, and the system has reached steady state such
that x = xm = r = 1, then

k + kr = 1 (88)

provides exact matching. This infinite set of steady state gain values forms
the set Γ which is the exact matching set for this example, with the Erzberger
gain at k = 0, kr = 1.
Considering the local dynamics of any of the infinite number of equi-

librium points in Γ we find that each point has three eigenvalues, λ1 = 0
and

λ2,3 = −1
2
(am + bφ̃+ βCeb(x

2
m + r2))± 1

2
D, (89)

where D2 = (am+bφ̃+βCeb(x
2
m+r2))2−4Ceb[α(x

2
m+r2)+β(xmẋm+rṙ)].

We should emphasize at this point that λ1 is time invariant, and indicates
neutral (i.e. non-asymptotic) stability in the eigen-direction which is given
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Figure 32. Evolution of the system states onto the gain set Γ. The solid
line shows the evolution of the gains in the example shown in Fig.31. The
dashed line represents the gain set Γ. The start point of the trajectory is
marked with a square, �, and the end point with a triangle, �.

by

e1 = [0,−xm/r, 1]T . (90)

From Eq.90 with xm = r = 1, the steady state eigenvector, e1 is given by,
e1 = {0, 1,−1}. If we transform the set Γ from k, kr coordinates into the
system space, Σ, where Σ = {R×R×R : (xe, φ, ψ)}, then Γ = {xe = 0 : φ =
−ψ}, with the Erzberger gain at xe = φ = ψ = 0. Therefore the eigenvector
e1 is tangent to the set Γ for all values of φ = −ψ.
In Fig. 32 we show the adaption of the system onto the exact matching

set, Γ, in the reduced state space, Σ. Here the solid line shows the evolution
of the trajectory from the example in Fig.31, where Γ is shown as a dashed
line. In Fig.33 we show the the projections of the trajectory in Fig.32 onto
the φ, ψ plane and the xe, φ plane. In Fig.33 (a) the solid line denotes the
system trajectory projected into the φ, ψ plane, the dashed line is Γ and
the triangle represents the steady state value. We see that as xm → r a
diagonal line occurs in Fig.33 (a). This indicates that movement in the e1
direction occurs when xm �= r — i.e. in this case the initial adaption. In
Fig.33 (b) we see that the system trajectory is a spiral which settles onto Γ
in φ, xe space.
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Figure 33. Example trajectory in phase space. The controller parameters
are am = 1, b = 1, C = 4/ts, α = 10, β = 1 and settling time ts =
1.0. Initial conditions (xe(t0), φ(t0), ψ(t0)) = (0.0, 0.9, 0.5). (a) Shows φ, ψ,
(b)Shows xe, φ. The start point of the trajectory is marked with a square,
�, and the end point with a triangle, �.

In the steady state x → r = 1 and ẋ → ṙ = 0. For the case when
xe, φ, ψ → 0, such that the steady state gains match the Erzberger gains,
the system goes to equilibrium point ξ̃0, thenD2 → [(am+2βCeb)

2−8Cebα],
and the non-zero eigenvalues become

λ2,3 = −1
2
(am + 2βCeb)± 1

2

√
(am + 2βCeb)2 − 8Cebα. (91)

Because of the invariance of λ1 the fixed point will always be neutrally
stable along e1. We can see from Eq.91 that if (am+2βCeb)

2 > 8bCeα, then
λ2 and λ3 are real, and for (am+2βCeb) > 0 and 8Cebα > 0, asymptotically
stable. In addition, if (am + 2βCeb)

2 < 8bCeα, then the eigenvalues are
complex, and Reλ2 = Reλ3 = −(am + 2βCeb)/2, so as before this is stable
if (am + 2βCeb) > 0 and 8Cebα > 0. Thus we can say that if

(am + 2βCeb) > 0, 8Cebα > 0 (92)

the steady state motion will be locally asymptotically stable in the e2 and
e3 directions. Thus for ξ̃0 to lose local stability either (am + 2βCeb) = 0 or
8Cebα = 0 — conditions entirely dependent on constant system parameters.
For any other equilibrium point ξ̃ �= ξ̃0 Eq.92 becomes

(am + bφ̃+ 2βCeb) > 0, 8Cebα > 0 (93)

For this case local stability can be lost if (am+bφ̃+2βCeb) = 0 or 8Cebα = 0
— conditions which now include the arbitrary equilibrium point value φ̃.
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Note that although we could select the system parameters so that the point
ξ̃0 was locally stable via Eq.92, this point will always be neutrally stable in
the e1 direction. This means that we cannot guarantee to stay on ξ̃0 without
some additional condition. Note that for excitation signal signals other than
a step, the system dynamics are to move along Γ towards ξ̃0. An example
of this is shown in Fig. 34, where we have plotted simulations with a square
wave demand signal of amplitude ±1 and frequency 1 Hz. Two cases are
shown in Fig. 34, the first (Fig. 34 (a) and (b)) with initial conditions which
lead to an initial intersection with Γ below ξ0. In the second case (Fig. 34
(c) and (d)), the initial conditions lead to a first intersection with Γ above
ξ0. In both cases the additional excitation at each step progressively moves
the system trajectory towards the Erzberger equilibrium point at ξ0.
It is possible that a set of arbitrary fixed points ξ̃ �= ξ̃0, are local unstable

because the φ̃ value means that condition Eq. 93 is not satisfied. It is easy to
see that for a set of finite parameter values, then in general the set of φ̃ values
which violate the stability condition given by equation 93 will not be empty.
We split Γ into two subsets, Γu = {xe = 0, φ̃ = −ψ̃ : φ̃ < −(am + 2βCb)/b}
and the complement Γs — the part of Γ which is locally stable. However,
if we define the set of initial conditions which lead to unstable steady state
φ̃ values as U = {(xe(0), φ(0), ψ(0)) ∈ Σ : φ̃ < −(am + 2βCb)/b}, then it is
possible that U = ∅. Numerical simulations of the global dynamics indicate
that system trajectories starting in the region near Γu evolve towards the
locally stable part of the manifold, Γs. An example is shown in Fig. 35,
where the initial conditions (xe(t0), φ(t0), ψ(t0)) = (0.0,−10.0, 10.0) have
been used. In Fig. 35 (a) the system trajectory can be seen to move
significantly along Γ, finally settling on to a point well inside the Γs region.
The eigenvalue plot shown in Fig. 35 (c) indicates how λ1 = 0, and λ2 and
λ3 are initially unstable.
We will return to adaptive systems in Chap. 6 where we will consider

how adaptive control techniques can be applied to feedback linearization
methods for nonlinear systems. As a final comment, it should be noted that
the type of linear MRAC discussed here has robustness problems, and the
interested reader can find more information in Neild et al. (2008).
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Figure 35. Initial conditions on Γu showing system trajectory evolving to
Γs. Parameters; am = 1, b = 1, C = 4/ts, α = 10, β = 1 and settling time
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of Σ; (c) eigenvalues showing how λ2 and λ3 are initially unstable, e1 de-
noted by a circle ◦. The start point of the simulation is marked with a �,
and the end point with a �.
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Abstract

The dynamics of the majority of nonlinear structures cannot be

solved exactly. In this chapter, approximate methods for solving the

equations of motion of weakly nonlinear structures are presented.

Common types of nonlinear response behaviour are identified using

an example structure. Perturbation techniques and the method of

second-order normal forms are then discussed and used to analyse

three applications in which the nonlinear behaviour is exploited.

1 Introduction

The presence of nonlinearity in a dynamic system is often viewed as unde-
sirable and historically the emphasis has been to design systems ensuring
that nonlinear behaviour regimes are avoided. However, with ever more
ambitious design envelopes it is becoming more common for structures to
behave nonlinearly. This nonlinearity may be a consequence of pushing ex-
isting design solutions beyond their linear limit. Increasingly however, it
is because of engineers deliberately designing a structure to have nonlinear
dynamic properties. The motivaton being to exploit some characteristic of
the nonlinear dynamic response to maximise the structure’s performance
envelope. One example of this is the design of passive vibration suppression
systems for buildings. It has been reported that nonlinear devices, such
as tuned-mass dampers with nonlinear stiffness characteristics, can operate
effectively over far wider frequency ranges than the equivalent linear devices
(see, for example, Soong and Dargush, 1997 or Reed et al., 1998).
Alternatively, the desire for more efficient structural solutions can result

in structures operating in nonlinear regimes. For example, large deflections
of more flexible structures can result in geometric nonlinearites and the use
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of novel materials can introduce nonlinear stress-strain behaviour. Beyond
this, “intelligent” structures which react to their surroundings can poten-
tially be designed. These structures could, for example, sense motion and
actively suppress their vibration response using arrays of piezo-electric actu-
ators or change their shape in response to their surroundings. Intelligence, in
the form of structural health monitoring, can also be added to a structure.
The structure could monitor its own structural integrity and potentially
even self-repair or reconfigure themselves in response to the prognosis.
To understand and optimise the nonlinear behaviour of such structures,

it is helpful to be able to study them either numerically or analytically. To
find steady-state solutions, numerical time-stepping studies can be time-
consuming especially if damping is light or if, due to the presence of non-
linearities, there are multiple possible solutions. In this second case many
simulation runs with different initial conditions would be needed at each
parameter set to ensure that all the multiple solutions have been identified.
Alternatively, approximate analytical solutions to the nonlinear dynamics
can often be found, particularly if the nonlinearity is relatively small, as is
often the case in structural dynamics. It is some of these techniques that will
be discussed in this chapter. More detailed analysis of nonlinear systems
can be achieved through numerical continuation. Once a valid solution to
the system dynamics has been identified, the continuation technique numer-
ically tracks the solution as system parameters change allowing a picture
of the full system response to be built up, see for example Krauskopf et al.
(2007).
In Section 2 the dynamic response of an example nonlinear structure, an

inclined cable, is discussed. Using this example, typical dynamic response
features introduced by the nonlinearity are discussed. These features are
the possibility of multiple stable solutions for a single parameter set, sudden
jumps in the response amplitudes as the excitation amplitude or frequency
is changed, the generation of harmonics of the forcing frequency in the re-
sponse and the parametric excitation of modes of vibration that are not
directly influenced by the external forcing. Two analytical approaches for
studying the response of weakly nonlinear systems, perturbation methods
and normal forms, are then discussed in Sections 3 and 4 respectively. In
Sections 5–7, example applications that involve the exploitation of nonlin-
ear dynamics are analysed using these analytical methods. In Section 5 the
Duffing oscillator, which has applications in vibration-based energy harvest-
ing and vibration suppression, is analysed. In Section 6 the generation of
harmonics of the forcing frequency due to the presence of material nonlin-
earity is exploited for non-destructive monitoring of a structure subjected
to acoustic excitation. In this section a combination of two perturbation
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techniques, the regular perturbation theory and multiple scales analysis, is
used to examine the generation of a response at the second harmonic of the
excitation frequency as the excitation propagates through the structure.
Finally, in Section 7, the use of parametric excitation to increase modal
damping in a target mode is examined using the normal forms technique.

1.1 Equations of Motion

Before considering the dynamics of nonlinear structures it is helpful to
define some notation. In this chapter both one- and multi-degree-of-freedom
systems will be examined. The general form of nonlinear equation of motion
for a one-degree-of-freedom system used here is

ẍ+ 2ζωnẋ+ ω2
nx+ γx(x, ẋ, p) = p = P cos(Ωt+ φ).

The nonlinearity is captured by the γx function and the external forcing is
p. When discussing the normal form technique, in Section 4, an N -degree-
of-freedom matrix version of the equation of motion will be used.
In considering the response of systems with small nonlinear terms, it is

useful to define three frequencies;

ωn the natural frequency of the linear undamped system

Ω the excitation (or forcing) frequency

ωr the dominant frequency of the response

The frequency of the response is equal to the nonlinear natural frequency if
the system is unforced. If the system is forced close to resonance then the
response frequency matches the forcing frequency, so ωr = Ω in this case.
Finally, in the discussion of the perturbation and normal form tech-

niques, a small parameter, ε, will be used. This parameter will be added
to small terms such as the nonlinear term and often the damping term by
writing for example γ = εγ̂. The ε parameter can be viewed as a book-
keeping aid (Nayfeh, 1993) which allows the tracking of small terms such
that when, during algebraic manipulations, they are combined with other
small terms (resulting in ε2 terms) they can be ignored or at least be easily
identified as very small terms.

2 Nonlinear Behaviour

An example of a nonlinear structure will now be considered. Using this
structure some common forms of nonlinear dynamic response behaviour
will be identified. In later sections these behaviour types will be examined
in more detail.
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2.1 A Nonlinear Structure

The example structure is a taut inclined cable excited through vertical
motion of the lower support, as shown in Figure 1. The application is a
cable-stayed bridge with vertical deck motion. The case where the cable
is excited via the support motion at frequencies close to the second in-
plane natural frequency will be considered. To understand this motion
three modes must be modelled; the second in-plane mode and the first and
second out-of-plane modes (Gonzalez-Buelga et al., 2008). Note that in- and
out-of-plane motion refers to motion in the vertical x− z and the sideways
x− y planes respectively.

�

������

�

�

� 	����� 


�

Figure 1. An inclined cable subject to vertical support motion, δ, that can
result in in-plane and out-of-plane motion.

To show where the nonlinearity arises in this structure, a few key aspects
of the derivation of the modal equations of motion are now discussed briefly.
The full methodology behind these equations is described by Warnitchai et
al. (1995) and a detailed description of their derivation is given in Wagg
and Neild (2010). The partial differential equations governing the motion
of the cable are found by considering the forces on a small element of cable
and are given by

(Ts + Td)
∂2vd

∂x2
= ρA

∂2vd

∂t2
, (1)

Td

∂2ws

∂x2
+ (Ts + Td)

∂2wd

∂x2
= ρA

∂2wd

∂t2
, (2)

for the out-of- and in-plane directions respectively. Here the subscripts d
and s indicate dynamic and static terms and the cable tension T is defined
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as the tension component acting along the x-axis. Note that in the static
state gravity causes the cable to sag (albeit only by a small amount as the
cable is taut) resulting in a deflected shape defined by ws.
There are two main sources of nonlinearity. Firstly, the dynamic tension

is a function of cable deflection. This function can be calculated with refer-
ence to Figure 2. The dynamic tension is proportional to the dynamic strain
Td = AEεd, which itself may be written in terms of the element lengths

Td = AE
Δsd −Δss

Δss

� Td = AE
dsd

dx − dss

dx
dss

dx

, (3)

where Δss and Δsd are the static and dynamic element lengths respectively.
In the second equation the limit as Δx → 0 has been applied (such that
Δss/Δx → dss/dx etc). With reference to Figure 2, the static element
length may be written as

Δss =
√
Δx2 +Δw2

s �

dss

dx
=

√
1 +

(
dws

dx

)2

. (4)

Likewise, the dynamic deflection may be written as

dsd

dx
=

√(
1 +

dud

dx

)2

+

(
dvd

dx

)2

+

(
dws

dx
+
dwd

dx

)2

, (5)

where the deflections are defined in Figure 2. Substituting these expressions
into Equation 3 and then using the Taylor series expansions

√
1 + Δ =

1+Δ/2−Δ2/8+ . . . and −1
√
1 + Δ = 1−Δ/2+ . . . for the numerator and

denominator terms respectively gives

Td = AE

[
∂ud

∂x
+
dws

dx

∂wd

∂x
+
1

2

(
∂vd

∂x

)2

+
1

2

(
∂wd

∂x

)2

+O
(

∂

∂x

3)]
. (6)

The second main source of nonlinearity arises from the dynamic mo-
tion of the lower support and affects just the in-plane modes. In-plane, the
dynamic motion is split into two components to account for the support
motion. One component is the dynamic response of the cable, taking the
cable to be simply supported at both ends. The other component ensures
that the true boundary conditions are met and so accounts for the motion of
the lower support. This is achieved by considering how the cable deflection
and tension changes as the support moves quasi-statically, i.e without con-
sidering inertial effects (which are accounted for in the dynamic response
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Figure 2. Deflection of a small element of cable away from the chord posi-
tion due to static and dynamic loading. Reproduced from Wagg and Neild
(2010).

component). The second in-plane mode is not affected by this source of non-
linearity and so we do not discuss it in detail here (instead see, for example,
Wagg and Neild, 2010).
Equations 1 and 2 along with the expression for the dynamic tension,

Equation 6, can now be used to generate modal equations of motion by
applying the Galerkin technique. The mode shapes for a linearised version
of the system are first identified by assuming that both the modal and quasi-
static motions of the cable are small in comparison with the static sag. From
these assumptions it follows that the dynamic tension is small in comparison
with the static tension. Hence the out-of- and in-plane equations of motion,
Equations 1 and 2, may be written as

Ts

∂2vd

∂x2
= ρA

∂2vd

∂t2
, Td

∂2ws

∂x2
+ Ts

∂2wd

∂x2
= ρA

∂2wd

∂t2
, (7)

where the dynamic tension, Td, is given by

Td = AE

[
∂ud

∂x
+
dws

dx

∂wd

∂x

]
. (8)

These equations are linear and can be solved to find the linear mode
shapes and corresponding natural frequencies by using the separation of
variable technique, with the dynamic displacements in the out-of- and in-
plane directions being represented in the form vd =

∑
n ψn(x)yn(t) and

wd =
∑

n φn(x)zn(t), where ψ and φ are the mode shapes in the two planes.
The nonlinear version of these equations, in which the assumptions are

relaxed such that the dynamic deflections are not taken to be small com-
pared to the static deflections, are considered next. This is done by apply-
ing the Galerkin technique based on the linear mode shapes found using
the separation of variable technique. Since these mode shapes are not the
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true mode shapes for the nonlinear system, the resulting modal equations
contain cross-coupling terms.
The resulting equations of motion for the first two in-plane modes and

the second out-of-plane mode, in the case where the support excitation is
close to the resonance of the second in-plane mode, are given by

ÿ1 + 2ζy1ω1ẏ1 + ω2
1y1 +W11y

3
1 +W12y1

(
y22 + z22

)
+N1δy1 = 0,

ÿ2 + 2ζy2ω2ẏ2 + ω2
2y2 +W21y2y

2
1 +W22y2

(
y22 + z22

)
+N2δy2 = 0, (9)

z̈2 + 2ζz2ω2ż2 + ω2
2z2 +W21z2y

2
1 +W22z2

(
y22 + z22

)
+N2δz2 = Bδ̈.

In these equations modal damping, ζ, has been introduced and two types
of nonlinearity exist: cubic terms which have coefficients Wab and para-
metric excitation terms which have coefficients Nc. The equations for the
coefficients B, Wab and Nc are not important for our discussion but can
be found in Gonzalez-Buelga et al. (2008). It can be seen that the linear
undamped natural frequency for each second modes is the same, namely ω2.
The natural frequency for the first in-plane mode is half of the second mode
natural frequencies, i.e. ω1 = ω2/2. These natural frequency relationships
are important as they govern the nonlinear interaction between the modes.

2.2 Nonlinear Response Behaviour

Considering the equations of motion for the three cable modes, Equation
9, it can be seen that for both the out-of-plane modes, a trivial solution to
the modal equations of motion exists, namely y1 = 0 and y2 = 0. How-
ever, the second in-plane mode is directly excited by the support excitation
through the Bδ̈ term so a zero-solution does not exist for this mode. Note
that the other in-plane modes also contain direct excitation terms, but, as
the support motion is close to the second mode, the only significant response
will be in the second mode. With y1 = 0 and y2 = 0 the system reduces to

z̈2 + 2ζz2ω2ż2 + ω2
2z2 +W22z

3
2 +N2δz2 = Bδ̈. (10)

Figure 3 shows the amplitude of response of this mode, Z2, at the forcing
frequency for a range of frequencies around the second natural frequency.
The data was generated from a time-stepping simulation using the Matlab
ode45 routine. The points are the steady-state responses as the excita-
tion frequency is (a) stepped from below the natural frequency to above it,
shown as dots, and (b) stepped back down to below the natural frequency,
shown as circles. It can be seen that the resonance curve bends over to the
right. This is because the natural frequency of the nonlinear equation of
motion is a function of the amplitude of response. This relationship will be
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discussed for a simpler but related system in Section 2.3. A consequence of
this relationship is that, as the frequency increases or decreases across the
resonance peak, a jump in the amplitude of oscillation occurs. For increasing
and decreasing frequencies this jump is from point A to B and from point
C to D respectively. Between these jumps, the simulations highlight two
steady-state amplitudes that might be observed, one on the upper solution
curve from D to A and one on the lower curve from C to B. There is also a
third solution that is unstable and so is not observed in the simulation. The
curve for this third solution joins point C to point A. This type of unstable
solution is studied in more detail in Section 5.

Figure 3. Steady-state response amplitude, Z2, of the second in-plane
mode, z2, at the forcing frequency for a range of excitation frequencies
and an excitation amplitude of 0.4mm. The simulation uses the same cable
parameters as Gonzalez-Buelga et al. (2008): a 0.8mm diameter, 1.98 long,
steel cable of mass 0.67kg/m inclined at 200 to the horizonal with a damping
ratio of ζ = 0.2% and a static tension of 205N.

Across the frequency range between points C and B in Figure 3, the
multiple solutions can also be seen by considering a constant excitation
frequency and varying the excitation amplitude. This is shown in Figure
4, where jumps occur as the excitation amplitude is increased from points
A to B and as the excitation amplitude reduces from points C to D. The
phenomena of multiple solutions is examined in Section 5.
As well as an amplitude-dependent natural frequency and multiple solu-
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Figure 4. Steady-state response amplitude, Z2, of the second in-plane
mode, z2, for a range of excitation amplitudes and a excitation frequency
of Ω = 1.1ω2.

tions, the nonlinear terms present in the pure z2 response (i.e. with no other
modes present) produces a response that contains harmonics of the forcing
frequency. This is shown in Figure 5, where the frequency content of the
steady-state response is shown for the case where the excitation frequency
matches the second natural frequency and the amplitude of excitation is
0.4mm. In addition to the dominant response at the excitation frequency,
there is a response at frequencies 0, 2Ω and 3Ω and a much smaller response
at 4Ω. One application of the generation of harmonics caused by the pres-
ence of a nonlinearity is in structural health monitoring. An example of this
is studied in Section 6.
Finally, the response of the out-of-plane modes is considered. In the

previous simulations it has been assumed that the two out-of-plane modes do
not respond to the excitation. The zero-response solution is a valid solution
to both of the out-of-plane equations of motion (see Equation 9). However,
it is not always a stable solution due to parametric forcing terms (see, for
example, Cartmell, 1990, for a discussion on parametric vibration). These
are nonlinear terms where the forcing is multiplied by the modal co-ordinate
and are present here in the form Naδya. There are also auto-parametric
forcing terms consisting of nonlinear terms in which the modal co-ordinate
is multiplied by a different modal co-ordinate, for example W12y1z

2
2 in the
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Figure 5. Frequency content of the steady-state response of the second
in-plane mode for the case where the excitation amplitude is 0.4mm and
the excitation frequency is Ω = ω2. Note that, for consistency with the
other Figures, the frequency content is in terms of sinusoidal amplitudes
rather than the standard complex exponential amplitudes used in Fourier
transforms.

y1 equation of motion. At low amplitudes of excitation the zero steady-
state response solution for the cable system is stable. However, as the
excitation amplitude increases one or both of these zero-response solutions
can become locally unstable. If the zero solution is locally unstable and the
mode is subjected to any unmodelled excitation, such as a gust loading or
some sway motion of the deck, the modal response will settle at a non-zero
steady-state response solution. This is demonstrated in Figure 6, where
the system is left to settle with no out-of-plane excitation and then at 50
s a pulse is applied to the out-of-plane modes. In Figure 6(a), the out-of-
plane modal response decays away to the zero solution, which is stable. In
Figure 6(b) the excitation amplitude has been increased to the point where
the zero-response solution is unstable for the first out-of-plane mode. The
result is a non-zero steady-state response after the pulse has been applied.
This parametric excitation of cable modes using these equations of mo-

tion is discussed in detail in Gonzalez-Buelga et al. (2008) and Macdonald
et al. (2010a). Based on these studies, design guidelines to avoid para-
metric excitation have been proposed (Macdonald et al., 2010b). These
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Figure 6. Response of the three modes for the case where the excitation
frequency is Ω = 0.98ω2 and the amplitude of excitation is (a) 2 mm and
(b) 4 mm.
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studies use an approximation technique termed averaging (discussed in, for
example, Verhulst, 1989, Bakri et al., 2004 and Wagg and Neild, 2010), but
the equations have also been studied using numerical continuation. This
allows the prediction of the response amplitudes for the various modes in
the more complex multi-mode response regions (Marsico et al., submitted).
Parametric excitation will be discussed in Section 7.

2.3 Extension of Linear Analysis

To understand further some of the behaviour exhibited by the second
in-plane cable mode, a slightly simpler but related equation of motion, the
Duffing oscillator equation, will now be analysed. The analysis will be based
on standard linear techniques. So, first, consider a sinusoidally-excited one-
degree-of-freedom linear system such as

ẍ+ 2ζωnẋ+ ω2
nx = P cos(Ωt). (11)

To solve the equation of motion, it is usual to make a trial solution of the
form x = X cos(Ωt−φ), where the response frequency ωr (the frequency at
which the system responds to the excitation) matches the forcing frequency
Ω and φ is the phase lag of the system at frequency Ω. Alternatively, by
shifting the time origin we can write the forcing as p = P cos(Ωt+φ) and the
response as x = X cos(Ωt), where time has undergone the shift t→ t+φ/Ω.
Now consider the Duffing oscillator, with the time-shifted forcing

ẍ+ 2ζωnẋ+ ω2
nx+ γx(x, ẋ, p) = P cos(Ωt+ φ), γx = αx3,

where the nonlinear term is small compared with the linear stiffness term.
Since the nonlinear term is a cubic function of the response amplitude,
the effect of the nonlinear term is most significant near resonance, where
the response amplitude is large. Therefore we shall study the case where
the forcing frequency is close to the natural frequency. Initially, as with
linear systems, a trial solution to the steady-state response of the form
x = X cos(ωrt) is considered. Since the forcing is close to resonance, the
dominant response frequency, ωr, is taken to be at the forcing frequency.
Substituting this trial solution into the equation of motion gives

(ω2
n − Ω2)X cos(Ωt)− 2ζωnΩX sin(Ωt) + αX3 cos3(Ωt) = P cos(Ωt+ φ).

It can be seen that using a time-shift such that the response is a pure
cosine, at the expense of introducing a sinusoidal component to the forcing,
is algebraically beneficial since the nonlinear term requires the response to
be cubed. Using the trigonometric expansion

cos3(ωrt) =
1

4
[3 cos(ωrt) + cos(3ωrt)]
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gives

(ω2
n − Ω2)X cos(Ωt)− 2ζωnΩX sin(Ωt) +

α

4
X3 [3 cos(Ωt) + cos(3Ωt)]

= P cos(Ωt+ φ).

The cos(3Ωt) term means that this equation cannot be satisfied exactly
without setting X = 0 and hence P = 0. To satisfy the equation approxi-
mately, the coefficients of the cos(Ωt) and sin(Ωt) terms are equated (while
ignoring the cos(3Ωt) term). This gives

cos(Ωt) terms: (ω2
n − Ω2)X + 3α

4 X3 ≈ P cos(φ),

sin(Ωt) terms: 2ζωnΩX ≈ P sin(φ).

The phase, φ, can be eliminated by squaring and adding the expressions,
giving

X2

[(
ω2

n − Ω2 +
3α

4
X2

)2

+ 4ζ2ω2
nΩ

2

]
≈ P 2, (12)

which leads to

X

P
≈ 1√

(ω2
n − Ω2 + 3α

4 X2)2 + 4ζ2ω2
nΩ

2
.

The phase can be found from the ratio of the sine and cosine balance equa-
tions, which gives

φ = arctan

(
2ζωnΩ

ω2
n − Ω2 + 3α

4 X2

)
.

Hence for this nonlinear system the phase is also dependent on the amplitude
of response.
The process adopted in this example is the most basic form of harmonic

balance. This technique involves assuming a harmonic (sine and cosine
wave) solution for the steady-state response. Then, having substituted the
assumed solution into the governing equation, the second part of the process
is to balance the coefficients of the harmonic terms that are included in the
trial solution. This does not give an exact solution to the equation of motion,
since the harmonic terms that are absent from the trial solution but do
appear in the equation of motion are not balanced. In the Duffing oscillator,
for example, the cos(3ωrt) term remained unbalanced. The general form of
the trial solution with a primary response at frequency ωr is

x = a0 +
∑

an cos(nωrt) + bn sin(nωrt) n = 1, 2, 3...,
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where an and bn are coefficients. The accuracy of the harmonic balance
approximation is dependent on the number of these terms that are included
in the trial solution. Often the trial solution is limited merely to terms at
frequency ωr as was the case in the example.
To plot the response curve predicted using the harmonic balance tech-

nique, Equation 12 can be rewritten as a quadratic in Ω2, which gives

(Ω2)2 + (Ω2)

(
4ζ2ω2

n − 2ω2
n −

3α

2
X2

)
+

(
ω2

n +
3α

4
X2

)2

−
(

P

X

)2

= 0.

The two solutions for the quadratic in Ω2 can be found for a range of values
ofX . Real positive values of Ω2 are valid solutions and make up the response
curve. Figure 7(a) shows the prediction of the response curve using the
harmonic balance technique compared to time-stepping simulation results.
The corresponding prediction of the phase φ is shown in Figure 7(b).
As with the cable example, it can be seen that the resonance curve bends

over. This is due to an amplitude-dependent natural frequency, which can
be derived by considering the unforced, undamped, version of the Duffing
oscillator

ẍ+ ω2
nx+ αx3 = 0.

Making the substitution x = X cos(ωrt), where the response frequency is
now the nonlinear natural frequency, and balancing the cos(ωrt) terms,
while again ignoring the cos(3ωrt) term, yields

(ω2
n − ω2

r)X +
3αX3

4
≈ 0 � ωr ≈ ωn

√
1 +

3αX2

4ω2
n

. (13)

This equation gives an approximate value for the response frequency as a
function of the response amplitude, which defines the backbone curve,
plotted as a dashed line in Figure 8(a). Note that ωr = ωn when X = 0. As
a comparison, resonance peaks for the forced system are also plotted, using
a range of forcing amplitudes in conjunction with equation 12. Again for
comparison, the linear equivalent system (where α = 0) is shown in Figure
8(b).
The response will also have content at three times the forcing frequency,

as is indicated by the presence of the cos(3Ωt) term that was previously
ignored. In the case of the in-plane cable equation, it was seen that signifi-
cant harmonics exist at 0Ω, 2Ω and 3Ω (see Figure 5). The reason for this
is that in addition to a cubic nonlinear term, W22z

3
2 , which results in the

3Ω harmonic, there is a parametric term N2δz2. Upon substitution of a re-
sponse trial solution at the forcing frequency, this parametric term contains
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Figure 7. Response of the Duffing oscillator with (a) amplitude of response
at the forcing frequency, Ω, and (b) phase lag of the response relative to the
excitation as a function of forcing frequency, using the harmonic balance
prediction with parameters P = 0.03, α = 1, ωn = 1, ζ = 0.03.
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Figure 8. Amplitude of response at the forcing frequency, Ω, as a function
of forcing frequency for the range of forcing amplitudes from P = 0.01 to
P = 0.06 along with the backbone curves, for (a) the Duffing oscillator and
(b) a linear oscillator with α = 0.

cos2(Ωt) = (1 + cos(2Ωt))/2 type sinusoidal relationships which result in
harmonic content at 0Ω and 2Ω. The harmonic at 4Ω and higher frequen-
cies (not shown in the figure) are over 100 times smaller. They are due to
mixing between the response and the larger harmonics and can be observed
if a higher order trial solution is used. Response content at harmonics of the
forcing frequency are examined further using the normal forms technique
in Sections 5 and 7.
In this analysis, the response frequency is assumed to be at the forcing

frequency. This is a realistic assumption for the case where the forcing is
around the natural frequency, as the Figures show. For most frequencies
away from resonance, the assumption is also reasonable as the nonlinear
term will be insignificant due to the cubic relationship with the response,
which is small away from resonance. However, there will be regions in which
this assumption is less plausible, an example being when the forcing is at
a frequency close to one-third of the natural frequency. Here, the cos(3Ωt)
term is likely to be significant as its frequency will be close to resonance.
For this type of response, the normal form technique can be used as it
handles the forcing in a systematic way. This is especially beneficial for
more complex nonlinear equations of motion such as the cable equations
considered earlier.
Finally, note that no transient information is available when using the

harmonic balance technique. The multiple scales technique gives transient
information, which is useful as it provides a convenient way of examining the
stability of the solutions. This will be demonstrated in Section 5 where the
unstable steady-state solutions for the Duffing oscillator will be identified.
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3 Perturbation Techniques

The perturbation method for analysing weakly nonlinear systems is based
on the idea that the response consists of a series of terms of reducing signif-
icance, or increasing order of small parameter ε. The response is therefore
represented as a power series in ε describing increasingly less significant
components of the response

x = x0 + εx1 + ε2x2 + ε3x3 . . . . (14)

It is usual for the most significant term in the series, x0, to represent the
response of the linearised system, ie the system if all the nonlinear terms
were removed. The less significant terms xi, for i = 1, 2, . . . , then describes
perturbations away from the linear response with reducing significance as i
increases as indicated by the εi multiplier.
In this section two approaches will be discussed. The first is regular per-

turbation theory in which Equation (14) is substituted into the equation of
motion. It will be demonstrated that this technique can produce erroneous
results in some circumstances, but it can also work well under the right
conditions and will be used in Section 6. Secondly, the multiple scales tech-
nique will be examined. It will be shown that this technique, which utilises
the observation that often a response consists of terms that change rapidly
with time and others that change slowly, overcomes the shortcomings of the
regular perturbation technique.
The multiple scales technique is powerful since it provides transient as

well as steady-state response information, so can be used to assess the sta-
bility of steady-state solutions. In addition, it can provide information
regarding the response of the harmonics of the forcing frequency. These
features will be demonstrated when the multiple scales technique is used
in the first case study on energy harvesting in Section 5. The second case
study on detecting nonlinear material properties, Section 6, will use the
perturbation technique, followed by a form of multiple scales analysis, to
predict the amplitude of harmonic response the material generates due to
its nonlinear stress-strain relationship.

3.1 Regular perturbation theory

Regular perturbation theory involves making the substitution for the
response trial solution given in Equation (14) into the equation of motion.
As with the trial solution, the equation of motion includes ε multipliers to
indicate terms with reduced significance. For an unforced single-degree-of-
freedom nonlinear system this results in

ẍ+ 2εζ̂ωnẋ+ ω2
nx+ εγ̂x(x, ẋ) = 0,
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where the damping and the nonlinear terms have been taken to be small,
hence γx = εγ̂x and ζ = εζ̂.
Making the trial solution substitution gives

ẍ0+εẍ1+2εζ̂ωnẋ0+ω2
n(x0+εx1)+εγ̂x(x0+εx1+. . . , ẋ0+εẋ1+. . . )+O(ε2) = 0.

(15)
The nonlinear term can be simplified using a Taylor series expansion, noting
that the ε1 terms are small, giving

εγ̂x(x0 + εx1 + . . . , ẋ0 + εẋ1 + . . . ) = εγ̂x(x0, ẋ0) +O(ε2)
Now Equation 15 can be satisfied up to order ε1 by balancing the ε0 and
the ε1 terms, giving

ε0 : ẍ0 + ω2
nx0 = 0,

ε1 : ẍ1 + ω2
nx1 = −2ζ̂ωnẋ0 − γ̂x(x0, ẋ0).

Higher order terms of ε could also be balanced but, for a technique to be
useful, it is desirable to get a reasonably accurate system response estimate
using a low number of terms in the power series expansion.
The order ε0 equation represents the linear undamped response. Note

that if the damping was taken to be order ε0 then this equation would
represent the linear damped response. The order ε1 equation provides in-
formation regarding the first perturbation from the linear response, x1. The
response of x1 is governed by the x0 terms which can be viewed as forcing
terms in this equation. Importantly, this equation is also linear in x1 and
hence can be solved straightforwardly once the x0 forcing terms on the
right-hand side have been calculated.
To demonstrate the potential difficulty with this technique, the vibration

response of a lightly-damped, unforced, linear oscillator will be considered.
The initial conditions are taken to be that the system is at rest with dis-
placement x(0) at time zero. The equation of motion is given by

ẍ+ 2εζ̂ωnẋ+ ω2
nx = 0.

Applying the substitution power series trial solution for the response, Equa-
tion 14, and balancing the ε0 and ε1 terms gives

ε0 : ẍ0 + ω2
nx0 = 0,

ε1 : ẍ1 + ω2
nx1 = −2ζ̂ωnẋ0.

To solve these equations, the first step is to write the linearised response
as x0 = x(0) cos(ωnt), noting that the initial displacement x(0) = x0(0) +
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εx1(0) is valid for all ε such that x0(0) = x(0) and x1(0) = 0. Secondly, in
the ε1 equation, the x0 solution to the ε0 equation can be substituted into
the forcing-like term, giving

ẍ1 + ω2
nx1 = 2ζ̂ω

2
nx(0) sin(ωnt).

Inspecting the right-hand side, the trial solution x1 = A cos(ωnt)+B sin(ωnt)
might be selected. However, when substituted into the left-hand side of the
differential equation, both these terms cancel out. Therefore, the substi-
tution x1 = At cos(ωnt) + Bt sin(ωnt) must be made. This results in the
response for x1 as

x1 = −x(0)ζ̂ωnt cos(ωnt).

Hence the full response (to order ε1) is

x = x0 + εx1 = x(0) (1− ζωnt) cos(ωnt),

where ε has been eliminated using εζ̂ = ζ. This predicted response can be
compared to the actual response

x = x(0)e−ζωnt cos(ωn

√
1− ζ2t).

It can be seen that there is a slight error in the natural frequency but,
more significantly, that the exponential decay term in the accurate solution
has been replaced with the first two terms of its Taylor series expansion
in the perturbation solution. This is acceptable at low values of ζωnt but,
however small ζ is, as time increases this approximation will break down. In
summary, this analysis has generated secular terms, which are terms that
are unbounded with time – in this case t cos(ωnt).
There are two timescales occurring in this solution, namely a fast timescale

due to the oscillations and a slow timescale due to the exponential decay.
When using the regular perturbation technique the slow timescale is poorly
described, with the exponential decay being represented as 1− ζωnt. This
leads to the question: how can we obtain a good approximation for the dif-
ferent timescale present in the response? The answer is often to use multiple
scales analysis.
Further discussion of regular perturbation theory is given in Verhulst

(1989) and Strogatz (2000).

3.2 Multiple scales method

As was seen in the perturbation analysis discussion, the dynamic re-
sponses often consist of terms that are functions of different timescales.
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Typically these are fast oscillations with slowly changing amplitude en-
velopes such as the exponential decay envelope. In multiple scales this is
reflected by writing the trial solution in the form

x = Xc(εt) cos(ωrt) +Xs(εt) sin(ωrt). (16)

Here ε is used to indicate that the amplitude terms Xc and Xs vary slowly
over time. This type of solution could also be expressed in the amplitude-
phase form x = X(εt) sin(ωrt+φ(εt)) (this representation is often easier for
free vibration, but can be algebraically intensive for forced vibration).
The two timescales can be labelled separately, fast-time over which os-

cillations occur tf = ωrt and slow-time over which the amplitudes evolve
ts = εt. Both terms on the right-hand side of Equation 16 now take the
form fs(ts)ff (tf ), and can be differentiated using the chain rule to give

d

dt
{fs(ts)ff (tf )} = ωrfs

dff

dtf
+ ε

dfs

dts
ff .

It is perhaps easier to view tf and ts as independent variables, such that
the derivative with respect to t can be expressed as

d

dt
{x(ts, tf )} = ωr

∂x

∂tf
+ ε

∂x

∂ts
,

which gives the same result. The second derivative with respect to time is
then

d2x

dt2
= ω2

r

∂2x

∂t2f
+ 2ωrε

∂2x

∂tf∂ts
+ ε2

∂2x

∂t2s
.

In addition to this separation of the response into slow and fast timescales,
the power series representation of the solution, Equation 14, is used to give

x = x0 + εx1 +O(ε2),
dx

dt
= ωr

∂x0
∂tf

+ ε

(
ωr

∂x1
∂tf

+
∂x0
∂ts

)
+O(ε2), (17)

d2x

dt2
= ω2

r

∂2x0
∂t2f

+ ε

(
ω2

r

∂2x1
∂t2f

+ 2ωr

∂2x0
∂tf∂ts

)
+O(ε2).

These expressions can be used to analyse free and forced vibration.
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Free Vibration: Consider the unforced nonlinear system

ẍ+ 2εζ̂ωnẋ+ ω2
nx+ εγ̂x(x, ẋ) = 0,

where the nonlinearity and damping are taken to be small. Since the damp-
ing is small, the linear response has a natural frequency of ωn and therefore
the fast-time is set to tf = ωrt = ωnt. Substituting the expressions for the
derivatives of x, Equation 17, into the equation of motion gives(

ω2
n

∂2x0
∂t2f

+ ε

(
ω2

n

∂2x1
∂t2f

+ 2ωn

∂2x0
∂tf∂ts

))
+ 2εζ̂ωn

(
ωn

∂x0
∂tf

)
+

ω2
n

(
x0 + εx1

)
+ εγ̂x

(
x1, ωn

∂x0
∂tf

)
+O(ε2) = 0.

Here the nonlinear function has been subject to a Taylor series expansion
yielding

εγ̂x

(
x1 + εx0 +O(ε2), ωn

∂x0
∂tf

+ ε

(
ωn

∂x1
∂tf

+
∂x0
∂ts

)
+O(ε2)

)
=

εγ̂x

(
x1, ωn

∂x0
∂tf

)
+O(ε2).

Now the order ε0 and ε1 terms are balanced to give

ε0 : ω2
n

∂2x0
∂t2f

+ ω2
nx0 = 0, (18)

ε1 : ω2
n

∂2x1
∂t2f

+ ω2
nx1 = −2ωn

∂2x0
∂tf∂ts

− 2ζ̂ω2
n

∂x0
∂tf

− γ̂x(x0, ωn

∂x0
∂tf

).(19)

Note that higher orders of ε can also be balanced for higher accuracy so-
lutions. However, in practice, this is rarely done as these terms are very
small.
As with the regular perturbation technique, both these equations are

linear in terms of x0 and x1 respectively and, in the case of the second
equation, the x0 terms can be viewed as forcing terms acting on x1. A
solution to Equation 18 is

x0 = X0c(ts) cos(tf ) +X0s(ts) sin(tf ),

which matches the form of Equation 16. This expression is now substituted
into the right-hand side of the ε1 equation, Equation 19, to find the forcing
applied to x1. This substitution may generate A(ts) sin(tf ) or B(ts) cos(tf )
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type terms on the right-hand side, where typically A(ts) and B(ts) are
differential expressions in terms of X0c and X0s. To ensure that the multiple
scales method does not result in the secular terms that are the limitation of
the regular perturbation method, A(ts) and B(ts) must be set to zero. This
results in conditions on X0c and X0s in the form of (typically) first-order
differential equations. Satisfying these conditions such that A(ts) = B(ts) =
0 has the effect of ensuring that the response at the resonant frequency,
(or the forcing frequency for the forced vibration case), is captured by x0.
Solving these conditions gives the x0 response. The resulting ε1 equation
can then be solved to find x1, which gives information about harmonics of
the resonant (or forcing) frequency.
Reconsider the damped, unforced oscillator that caused difficulties for

the regular perturbation technique

ẍ+ 2εζ̂ωnẋ+ ω2
nx = 0,

which is initially at rest with displacement x(0). For this method, the
response is in the form x(t) = x0(ts, tf ) + εx1(ts, tf ), where x0 and x1 can
be found using Equations 18 and 19, which in this case simplify to

ε0 : ω2
n

∂2x0
∂t2f

+ ω2
nx0 = 0,

ε1 : ω2
n

∂2x1
∂t2f

+ ω2
nx1 = −2ωn

∂2x0
∂tf∂ts

− 2ζ̂ω2
n

∂x0
∂tf

.

The first equation is satisfied by the expression

x0 = X0c(ts) cos(tf ) +X0s(ts) sin(tf ). (20)

Substituting this equation into the ε1 expression gives

ω2
n

∂2x1
∂t2f

+ ω2
nx1 = 2ωn

(
dX0c

dts
+ ωnζ̂X0c

)
sin(tf )

−2ωn

(
dX0s

dts
+ ωnζ̂X0s

)
cos(tf ). (21)

To avoid secular terms in the x1 response, the cos(tf ) and sin(tf ) terms on
the right-hand side must be removed by setting

dX0c

dts
+ ωnζ̂X0c(ts) = 0,

dX0s

dts
+ ωnζ̂X0s(ts) = 0.
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These can be solved to give

X0c = X0c(0)e
−ωnζ̂ts , X0s = X0s(0)e

−ωnζ̂ts .

Hence the expression for x0, Equation 20, becomes

x0 = e
−ζωnt (X0c(0) cos(ωnt) +X0s(0) sin(ωnt)) ,

where ζ̂ts = ζt (since ζ̂ = ζ/ε and ts = εt) and tf = ωnt have been used.
The initial conditions that the system is at rest with displacement x(0)
results in

x0 = x(0)e−ζωnt cos(ωnt),

where the initial conditions are satisfied by x0 and hence the x1 initial
conditions are zero. Revisiting the ε1 equation, Equation 21, the sin(tf )
and cos(tf ) on the right-hand side are zero. Since the initial conditions are
also zero, this gives x1 = 0. The multiple scales technique prediction of the
response is therefore

x = x(0)e−ζωnt cos(ωnt).

It can be seen that, in contrast to the general perturbation technique, the
exponential decay term has now been captured accurately. There is, how-
ever, still a slight error in the resonant frequency. This could be improved
by including very slow timescale terms, see for example Strogatz (2000) or
Glendinning (1994). Further discussion on multiple scales is also provided
in Verhulst (1989)

Forced Vibration For the case where forcing is present, the equation of
motion can be written as

ẍ+ 2εζ̂ωnẋ+ ω2
nx+ εγ̂x(x, ẋ) = εP̂ cos(Ωt). (22)

Here, the forcing has been assumed to be small in comparison to the re-
sponse, such that P = εP̂ . This is consistent with forcing close to resonance,
the region in the frequency domain of most interest.
Before the power series and slow and fast timescale expansions for x,

ẋ and ẍ, Equation 17, can be substituted into the equation of motion, a
detuning parameter must be introduced. Without the introduction of such
a parameter, if Equation 17 is substituted into Equation 22 and the ε0 and
ε1 terms are balanced, the resulting ε0 equation is

ω2
r

∂2x0
∂t2f

+ ω2
nx0 = 0. (23)
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The solution to this is x0 = X0c(ts) cos(ωnt) + X0s(ts) sin(ωnt) (where
tf = ωrt has been used). However, for forced vibration at a frequency
close to the natural frequency, the dominant response should be at the ex-
citation frequency, Ω, rather than at the natural frequency ωn. A detuning
parameter ensures that the x0 response is at the excitation frequency.
The forcing frequency Ω can be written as Ω = ωn(1+μ), where μ is the

frequency detuning parameter. This detuning parameter is small since the
forcing is near resonant and therefore μ can be written as μ = εμ̂. Setting
the response frequency to equal the excitation frequency, ωr = Ω = ωn(1 +
εμ̂), and substituting this into Equation 17 gives the following expansions
for the derivatives of x

x = x0 + εx1 +O(ε2),
dx

dt
= ωn

∂x0
∂tf

+ ε

(
μ̂ωn

∂x0
∂tf

+ ωn

∂x1
∂tf

+
∂x0
∂ts

)
+O(ε2), (24)

d2x

dt2
= ω2

n

∂2x0
∂t2f

+ ε

(
2μ̂ω2

n

∂2x0
∂t2f

+ ω2
n

∂2x1
∂t2f

+ 2ωn

∂2x0
∂tf∂ts

)
+O(ε2).

Substituting these expressions into the equation of motion for the forced
system, Equation 22, yields[

ω2
n

∂2x0
∂t2f

+ ε

(
2μ̂ω2

n

∂2x0
∂t2f

+ ω2
n

∂2x1
∂t2f

+ 2ωn

∂2x0
∂tf∂ts

)]
+

2εζ̂ωn

[
ωn

∂x0
∂tf

]
+ ω2

n [x0 + εx1] + εγ̂x

(
x0, ωn

∂x0
∂tf

)
+O(ε2) = εP̂ cos(tf ).

As with the unforced case, a Taylor series expansion has been applied to
the nonlinear term εγ̂x.
Balancing the ε0 and ε1 terms produces

ω2
n

∂2x0
∂t2f

+ ω2
nx0 = 0 (25)

and

ω2
n

∂2x1
∂t2f

+ ω2
nx1 = −2μ̂ω2

n

∂2x0
∂t2f

− 2ωn

∂2x0
∂tf∂ts

−2ζ̂ω2
n

∂x0
∂tf

− γ̂x(x0, ωn

∂x0
∂tf

) + P̂ cos(tf ), (26)
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respectively.
The ε0 equation can be solved to give

x0 = X0c(ts) cos(tf ) +X0s(ts) sin(tf ).

Note that using the detuning parameter has resulted in the oscillatory com-
ponent of the x0 response being at the desired frequency, namely the exci-
tation frequency, with tf = ωrt = Ωt. This expression can then substituted
into the ε1 equation. As with the unforced case, the resulting sin(tf ) and
cos(tf ) terms on the right-hand side of the equation are then set to zero,
to ensure that the solution for x1 is not secular and that the response at
frequency Ω is contained completely in x0. Once this has been done, the re-
maining equation can be used to find the harmonic content of the response.
An example of the use of this technique is given in Section 5.

4 Normal Forms

The method of normal forms can be used to transform the equations of
motion of weakly nonlinear systems into a form which is easier to solve.
Specifically, the aim is to apply a nonlinear transformation that removes,
for each mode, all terms in the equation of motion that result in harmonics of
the natural frequency (in the case of the unforced system) or the dominant
response frequency (in the case of forced systems). Transforming these
terms out of the equations of motion, for, say, the nth mode, allows the use
of a trial solution of the form Un cos(ωrnt−φn) to solve the equation exactly,
thereby removing the need for a harmonic balance type approximation.
Until recently, the method of normal forms was only formulated for sys-

tems of first order differential equations. Thus the first step was to transform
the equations of motion into their state-space representation. However, re-
cent work by Neild andWagg (2011) has demonstrated that the normal form
technique can be carried out on second-order nonlinear oscillators directly.
This has several potential advantages, especially for problems relating to
mechanical or structural vibration where linear analytical techniques are
traditionally carried out in a second-order formulation. The discussion here
will be limited to second-order normal form. For information on the first-
order normal form see, for example, Nayfeh (1993), Jezequel and Lemarque
(1991) and Wagg and Neild (2010).
In the following discussion, the normal form technique is applied to an

N degree-of-freedom system expressed in the matrix form

M ẍ+ Cẋ +Kx+ Γx(x, ẋ, r) = Pxr,
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where x is the N × 1 displacement vector. The N ×N mass, damping and
stiffness matrices are represented as M , C and K respectively and Γx is
a N × 1 vector of nonlinear terms, which are assumed to be small. If the
forcing is assumed to be sinusoidal, it can be represented as Pxr, where Px is
a N×2 forcing amplitude matrix and r = {rp rm}T is a 2×1 forcing vector
with rp = eiΩt and rm = e−iΩt. The subscripts p and m indicate the sign
of the complex exponential term, plus and minus respectively. In contrast
to the multiple scales analysis, here forcing at any frequency is considered,
not just near-resonance forcing.
In the following analysis, while it is not essential, it is convenient to

assume that the damping terms are small. Grouping the damping matrix
term with the nonlinear term Γx gives

M ẍ+Kx+Nx(x, ẋ, r) = Pxr, (27)

where Nx = Γx(x, ẋ, r) + Cẋ. Note that Nx is small, and will later be
written as order ε1.
In the normal forms technique we use a series of transformations:

• Modal transformation using modes for the unforced linear equivalent
system: x→ q.

• Force transformation: q→ v.

• Nonlinear near-identity transformation: v→ u.

The first of these transforms results in the linear modal representation of
the equations of motion. In the modal form, the linear terms in these
equations contain no cross-coupling. However, typically, cross-coupling does
exist between the nonlinear terms. The second transform is also linear
and, for each mode, removes any forcing terms in the modal equation of
motion that are away from the modal resonance and places them in the
q→ v transform. The third transformation moves the non-resonant terms
that are present in the nonlinear terms and places them in a nonlinear
transformation.

4.1 Linear modal transformation: x→ q

First the undamped linear terms are decoupled using a linear modal
transform. The unforced linear form of the equation of motion is

ẍ+M−1Kx = 0.

This can be expressed as an eigenvalue/vector equation for matrix M−1K,

ω2
nnXn = M−1KXn,
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where the eigenvalues are the squares of the undamped natural frequencies
and the eigenvectors their corresponding mode shapes X. Taking the mode
shape matrix Φ, in which the nth column isXn, this equation can be written
as

ΦΛ =M−1KΦ, (28)

where Λ is a diagonal eigenvalue matrix, in which the nth diagonal element
is ω2

nn. By applying the transform x = Φq, where q are the modal co-
ordinates, and pre-multiplying by ΦT , Equation 27 may be written as

(ΦTMΦ)q̈+ (ΦT CΦ)q̇+ (ΦT KΦ)q+ΦTNx(Φq,Φq̇, r) = ΦTPxr.

Rearranging, and noting that by definition M−1KΦ = ΦΛ, gives

q̈+ Λq+Nq(q, q̇, r) = Pqr, (29)

where

Nq(q, q̇, r) = (ΦT MΦ)−1ΦTNx(Φq,Φq̇, r)

Pq = (Φ
T MΦ)−1ΦTPx.

Here the original equations of motion were for discrete locations, as are
typical when using FE or spring-mass models. If, instead, the Galerkin
technique is applied to partial differential equations (as was the case for
the cable example), the resulting equations of motion are in the form of
Equation 29, so this first transformation is unnecessary.

4.2 Force transformation: q→ v

Now a transform is applied to remove non-resonant forcing terms, i.e. for
the nth mode remove forcing terms that are at frequencies well away from
ωnn. The transform takes the form

q = v + [e]r,

where [e] has size N × 2. Substituting this into the modal equation of
motion, Equation 29, gives

v̈ + [e]WWr+ Λv + Λ[e]r+Nq(v + [e]r, v̇ + [e]Wr, r) = Pqr.

Here W is a 2× 2 diagonal matrix with the first and second diagonal values
being iΩ and −iΩ respectively (recall that r = [eiΩt e−iΩt]T ). This gives
the dynamic equation in terms of v

v̈ + Λv +Nv(v, v̇, r) = Pvr,
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where the nonlinear term has been transformed using

Nv(v, v̇, r) = Nq(v + [e]r, v̇ + [e]Wr, r).

The relationship between the forcing and the transformation matrix is

[e]WW + Λ[e] + Pv = Pq,

which can be rewritten as

[ẽ] + Pv = Pq. (30)

Recalling that Λ is a diagonal matrix with the nth diagonal element taking
the value ω2

nn, the nth row (n = 1, 2 . . .N) and kth column (k = 1, 2) of [ẽ]
may be written in terms of the corresponding element in [e] using

en,k = ẽn,k/(ω
2
nn − Ω2). (31)

One of two options are now chosen to satisfy Equation 30 element by ele-
ment. For the (n, k)th element, if the forcing is close to the natural frequency
(i.e. Ω ≈ ωnn), option 1 is used to keep the forcing in the equation of motion.
This gives

Option 1: en,k = 0, Pv,n,k = Pq,n,k, (32)

where the n, k subscripts indicates the (n, k)th element. If, however, the
(n, k)th element corresponds to a forcing term that is away from resonance
then option 2 is used to remove the forcing term from the equation of motion
by writing

Option 2: en,k = Pq,n,k/(ω
2
nn − Ω2), Pv,n,k = 0, (33)

which satisfies Equations 30 and 31.

4.3 Nonlinear near-identity transformation: v → u

To reflect the assumption that the nonlinear and damping terms are
small, Nv can be expressed as a power series of ε starting with an ε1 term,
giving

v̈ + Λv +Nv(v, v̇, r) = Pvr,

with: Nv(v, v̇, r) = εnv1(v, v̇, r) + ε2nv2(v, v̇, r) + . . . (34)

Now the equation of motion is in a form in which the near-identity nonlinear
transform can be applied. This transform takes the form v = u+h(u, u̇, r).
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To reflect the fact that this transform is near-identity, h is written as a
power series of ε starting with an ε1 term, yielding

v = u+ h(u, u̇, r),

with: h = εh1(u, u̇, r) + ε2h2(u, u̇, r) + . . . . (35)

The purpose of applying this transform is to simplify the dynamic equation,
Equation 30, into a form that can be solved using a single frequency trial
solution for each mode, thereby eliminating the need for a harmonic balance
type approximation. The transformed dynamic equation is expressed as

ü+ Λu+Nu(u, u̇, r) = Pur,

with: Nu(u, u̇, r) = εnu1(u, u̇, r) + ε2nu2(u, u̇, r) + . . . . (36)

Again the nonlinear and damping terms have been expressed as a power
series of ε starting with ε1 to reflect the assumption that they are small.
Ideally Nu = 0, such that the equation is linear, but usually this can not
be achieved without invalidating the assumption that the transform is near-
identity.
Consider these three equations: the dynamic equation in v, Equation 34;

the transform equation, Equation 35; and the resulting dynamic equation,
Equation 36. State vector v can be eliminated from Equation 34 using
Equation 35 and then ü can be eliminated using Equation 36, to produce

Pur− εnu1(u, u̇, r) + ε
d2

dt2
(h1(u, u̇, r)) + εΛh1(u, u̇, r))+

εnv1(u, u̇, r) = Pvr+O(ε2).

Note that in deriving this equation the Taylor series expansion

nv1(u+ εh1 + . . . , u̇+ ε
d

dt
(h1) + . . . , r) = nv1(u, u̇, r) +O(ε1)

has been used. Equating the zero and first-order powers of ε produces

ε0 : Pur = Pvr, (37)

ε1 : nu1(u, u̇, r)− d2

dt2
(h1(u, u̇, r)) = Λh1(u, u̇, r) + nv1(u, u̇, r).

The ε0 equation is satisfied by setting Pu = Pv. To satisfy the ε1 equa-
tion, the form of the response of the states u1, u2 . . . uN needs to be consid-
ered. The aim of the v → u transform is to remove non-resonant nonlin-
ear terms from the equation of motion (their effects are represented in the
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transform), such that the response for each state u1, u2 . . . uN is at a single
response frequency, ωr1, ωr2, . . . ωrN . Since the differential equation in u is
second-order, the trial solutions for the states must consist of both positive
and negative complex exponential terms. The state vector u is therefore
split into components u = up + um allowing the trial solutions for the nth

state to be

un = unp + unm : unp = (Une
−iφn/2)eiωrnt, unm = (Une

iφn/2)e−iωrnt,
(38)

for 1 ≤ n ≤ N where the ωrn terms are positive. This results in the form
of solution un = Un cos(ωrnt− φn) and therefore Un is taken to be real to
ensure a real response to the real excitation. The time derivatives of u may
now be written as u̇ = Υ(up − un) and ü = Υ2(up + un), where Υ is a
diagonal matrix with the nth diagonal element being iωrn.
Since, after applying the forcing transformation q → v, only the reso-

nant forcing terms are present in the dynamic equation, it is expected that
the response of un will be close to the nth natural frequency (i.e. it will be
resonant). Therefore, we can say ωrn ≈ ωn. A frequency detuning param-
eter can be introduced with the result that, to order ε, Λ = −Υ2 can be
written (see Neild and Wagg, 2011, for more details). This allows the order
ε1 equation to be expressed as

nu1(u, u̇, r)− d2

dt2
(h1(u, u̇, r)) = −Υ2h1(u, u̇, r) + nv1(u, u̇, r). (39)

This detuning approximation does not effect the form of the dynamic equa-
tion in u, but it does improve the prediction of the response amplitudes at
harmonics of the response frequency – this is discussed in Xie et al. (2011).
To proceed, a vector u∗ (of length L) is specified. It contains all the

combinations of unp, unm (1 ≤ n ≤ N), rp and rm terms that are present
in nv1(u, u̇, r). This allows the following matrix expressions to be defined

nv1(u, u̇, r) =[nv]u
∗(up,um, r),

nu1(u, u̇, r) =[nu]u
∗(up,um, r),

h1(u, u̇, r) =[h]u∗(up,um, r),

(40)

where [nv], [nu] and [h] are of size N × L and [nu] and [h] are currently
unknown. This results in the ε1 equation (from Equation 39)

[nu]u
∗ − [h]d

2u∗

dt2
= −Υ2[h]u∗ + [nv]u

∗. (41)
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To simplify the double derivative term, the form of u∗ is considered. The
general form of the �th element in vector u∗ may be written as

u∗� = r
m�p

p rm�m

m

N∏
n=1

{
u

s�np

np us�nm

nm

}
.

The derivative of u∗� is therefore

du∗�
dt

= iΩ

(
∂u∗�
∂rp

rp − ∂u∗�
∂rm

rm

)
+

N∑
n=1

iωrn

(
∂u∗�
∂unp

unp − ∂u∗�
∂unm

unm

)

= i

[
(m�p −m�m)Ω +

N∑
n=1

{(s�np − s�nm)ωrn}
]

u∗� = Υ̃�u
∗

� . (42)

The key feature of this equation is that the derivative of u∗� is linearly related
to u∗� . Hence the double time derivative of u

∗ can be written as

d2u∗

dt2
= Υ̃2u∗

where Υ̃ is a diagonal matrix of size L×L in which the �th diagonal element
is given by Υ̃� (see Equation 42).
Using this information, Equation 41 may now be written as

[nu] = [nv]− [h̃] where [h̃] = Υ2[h]− [h]Υ̃2. (43)

In this equation, as with [h], [h̃] is size N × L. The element in the nth row
and �th column of [h̃] may be written as

h̃n,� =

⎛
⎝
[
(m�p −m�m)Ω +

N∑
n=1

{(s�np − s�nm)ωrn}
]2
− ω2

rn

⎞
⎠hn,� = βn,�hn,�,

(44)
using Equation 42 and recalling Υ is a diagonal matrix with the nth diagonal
element being iωrn. In this equation hn,� and βn,� are the elements in the nth

row and �th column of matrices [h] and [β] respectively. Note [h̃] �= [β][h],
instead h̃n,� = βn,�hn,�.
Now [nu] and [h] can be selected by considering the size of the βn,�

terms. It is desirable for [nu] to contain as many zeros as possible so that
the dynamic equation in u is as simple as possible. The restriction on this
is that the nonlinear terms in the near-identity transform must be small, of
order ε1 or higher.
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There are, therefore, two options to satisfy Equation 43. Where possible
each term in [nu] is set to zero:

Option 1 (preferred): nu,n,� = 0, hn,� = nv,n,�/βn,�, (45)

in which, for example, nu,n,� is the (n, �) element in [nu]. However, in the
cases where the term in u is near-resonant, βn,� is small and hence hn,�

would be large if nu,n,� = 0 is set. To avoid breaking the near-identity
constraint, these terms are kept in the equation of motion by setting

Option 2 (near-resonant terms): nu,n,� = nv,n,�, hn,� = 0, (46)

i.e. these terms are not affected by the transform.
By adopting this method, the equation of motion for u can be solved

exactly using the trial solution in the form un = Un cos(ωrnt − φn) for
the nth mode. Information regarding the response of each mode at other
frequencies is contained within the transform equation v = u+ h(u, u̇, r).
In the next section the normal form technique will be applied to the

Duffing oscillator and then in Section 7 to a two-degree-of-freedom system.

5 Duffing Oscillator

The Duffing oscillator dynamics, which contain a cubic stiffness nonlinearity,

ẍ+ 2ζωnẋ+ ω2
nx+ αx3 = P cos(Ωt+ φ), (47)

appear in many different nonlinear systems. Two closely related example
applications, in which this cubic stiffness nonlinearity is deliberately intro-
duced into a system to improve performance, are in energy harvesting and
passive structural control.
Energy harvesting is where energy is extracted from the environment

and used to power devices. The energy source might be for example heat,
light or structural vibration. In the case of structural vibration, one method
of extracting energy from a vibrating structure is to attach a tuned mass
oscillator to the structure. Being tuned, the motion of the mass will be large
and, if the mass is attached to a set of magnets, this motion can be used
to induce voltage in a nearby coil, thereby extracting energy. A schematic
of such a device is shown in Figure 9, in which the magnets are arranged
such that there is a full reversal of magnetic flux once every oscillation of
the cantilever (see Barton et al., 2010). By using an iron-core stator the
magnet interacts with the stator with the effect of reducing the effective
stiffness at low amplitudes. This gives an equation of motion in the form

mÿ + cẏ + ky + γ(y, ẏ) = −mδ̈, (48)
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where y is the displacement of the mass relative to the structure, δ is the
displacement of the structure and c and k contain both cantilever and lin-
ear magnetic effects (including the coupling with the coil which has the
effect of introducing additional damping). The term γ(y, ẏ) describes the
nonlinear magnetic interaction with the coil and may be approximated to
γ(y, ẏ) = αy3. Hence the system is a forced Duffing Oscillator with a sup-
port excitation (see Barton et al., 2010). It is desirable to have large relative
motion y as the current induced in the coil is proportional to ẏ. Note this
assumes that the motion of the structure is unaffected by the presence of
the energy harvesting device, a reasonable assumption for a large structure
containing an energy harvester designed to extract energy for, say, powering
a structural monitoring transducer. The nonlinear term, which can be al-
tered via redesign of the stator, is potentially beneficial to the performance
of the harvesting device as the bandwidth of the device can be increased in
its presence.

Figure 9. Schematic of a cantilevered vibrating mass energy harvester at-
tached to a structure.

A second application, in which the presence of a cubic stiffness nonlin-
earity can potentially be beneficial to the performance of a system, is in
the field of vibration isolation. It is often desirable for a mount between an
oscillating structure and a device to be designed such that, despite the mo-
tion of the structure, the motion of the device is minimised. Typically, this
isolation mount will have stiffness and damping properties which, coupled
with the device’s mass, will result in resonant behaviour. In steady-state
operation, the mount will be designed such that it does not resonate at the
oscillating frequency of the structure. However if, for example, the source of
the structural vibration is a machine and the mount is designed to have low
natural frequency for good high frequency performance, then at start-up or
shut-down of the machine the excitation of the mount will pass through its
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resonance. Close to resonance it is desirable for y to be small such that
the overall motion of the device is small. A cubic nonlinearity can poten-
tially reduce the effects of passing through this resonance, as discussed, for
example, in Kovacic et al. (2008).
To show how the presence of nonlinearity can be beneficial in both these

applications, consider the standard Duffing equation, Equation 47. Figure
10 shows the response of the system when linear and when nonlinear. For
illustrative purposes, arbitrarily defining the bandwidth as being limited to
the region where the response exceeds 0.5, it can be seen that the presence
of nonlinearity affects the bandwidth. If the solution remains on the up-
per curve then the bandwidth is increased. This is useful for the energy
harvesting application, where it is desirable to have a large response over
a reasonable bandwidth so that, in the event of detuning of the excitation
frequency, the device will still operate well. In contrast, for vibration iso-
lation it is desirable to be on the lower curve, because it results in only a
small relative motion across the resonance peak.

Figure 10. Response of the Duffing oscillator showing the potential band-
width for the two cases of α = 0 and α = 0.7, with ωn = 1, ζ = 0.03 and a
forcing amplitude of 0.06.

Here, aspects of the forced Duffing oscillator are studied as an example of
a typical nonlinearity that can be introduced into structures to improve their
performance. Both the multiple scales and the normal forms techniques are
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considered.

5.1 Application of Multiple Scales

The equation of motion for a forced Duffing oscillator is given by

ẍ+ 2εζ̂ωnẋ+ ω2
nx+ εγ̂x(x, ẋ) = εP̂ cos(Ωt), γ̂x = α̂x3,

where we assume that the forcing is close to resonance such that P = εP̂
and a small detuning term can be introduced: Ω = ωn(1 + μ) with μ = εμ̂.
In addition, since the forcing is near resonance, the response frequency, ωr,
is set to equal the forcing frequency, Ω.
The time derivatives of x that have been generated by introducing (1)

the power series expansion of x, x = x0(t) + εx1(t) + . . . , (2) the fast and
slow timescales, x0(t) = x0(tf , ts) etc with tf = Ωt and ts = εt respectively,
and (3) the detuning parameter, may now be substituted into the equation
of motion. These time derivatives, Equation 24, can be substituted into the
equation of motion to yield

[
ω2

n

∂2x0
∂t2f

+ ε

(
2μω2

n

∂2x0
∂t2f

+ ω2
n

∂2x1
∂t2f

+ 2ωn

∂2x0
∂tf∂ts

)]
+

2εζ̂ωn

[
ωn

∂x0
∂tf

]
+ ω2

n [x0 + εx1] + εα̂
[
x30

]
+O(ε2) = εP̂ cos(tf )

Balancing the ε0 and ε1 terms and ignoring higher order terms, produces

ε0 : ω2
n

∂2x0
∂t2f

+ ω2
nx0 = 0,

ε1 : ω2
n

∂2x1
∂t2f

+ ω2
nx1 = −ω2

n2μ̂
∂2x0
∂t2f

− 2ωn

∂2x0
∂tf∂ts

−2ζ̂ω2
n

∂x0
∂tf

− α̂x30 + P̂ cos(tf ),

The solution to the ε0 equation is

x0 = X0c(ts) cos(tf ) +X0s(ts) sin(tf ).
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Substituting this solution for x0 into the ε1 equation, gives

ω2
n

∂2x1
∂t2f

+ ω2
nx1 =

(
2ω2

nμ̂X0s + 2ωn

dX0c

dts
+ 2ω2

nζ̂X0c − 3
4
α̂X2

0X0s

)
sin(tf )

+

(
2ω2

nμ̂X0c − 2ωn

dX0s

dts
− 2ω2

nζ̂X0s − 3
4
α̂X2

0X0c + P̂

)
cos(tf )

+
α̂

4
(3X2

0s −X2
0c)X0c cos(3tf ) +

α̂

4
(X2

0s − 3X2
0c)X0s sin(3tf ),

(49)

where X0 =
√

X2
0c +X2

0s is the amplitude of the x0 response.
To ensure the response at the forcing frequency Ω is contained entirely

in x0, the amplitudes of the cos(tf ) and sin(ts) terms on the right-hand side
of Equation 49 must be set to zero. This results in the following conditions
on X0c and X0s

dX0c

dts
= − 1

ωn

(
ω2

nμ̂X0s + ω2
nζ̂X0c − 3

8
α̂X2

0X0s

)
,

dX0s

dts
=

1

ωn

(
ω2

nμ̂X0c − ω2
nζ̂X0s − 3

8
α̂X2

0X0c +
1

2
P̂

)
.

To find the steady-state solution, the left-hand side of each of these equa-
tions is set to zero. This produces(

ω2
nμ̂− 3

8
α̂X2

0

)
X0s +

(
ω2

nζ̂
)

X0c = 0,(
ω2

nμ̂− 3
8
α̂X2

0

)
X0c −

(
ω2

nζ̂
)

X0s = −1
2
P̂ .

Note that all the terms contain one constant with a circumflex. These can
all be replaced with the original constants by multiplying both equations
by ε. Squaring and adding these two equations gives an equation relating
the amplitude of response to the forcing amplitude and frequency:

X2
0

[(
ω2

nμ− 3
8
αX2

0

)2

+
(
ω2

nζ
)2]

=
1

4
P 2. (50)

This can be solved by considering a range of X0 values and finding the
corresponding P for a given μ (if the response to excitation amplitude re-
lationship is wanted), or solving the quadratic in μ, which has either two
or no real solutions, for a given P (to give a resonance curve for a given
excitation amplitude).
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Since the multiple scales technique results in first-order differential equa-
tions for the amplitudes of the response X0c and X0s, these equations can
also be used directly to study the stability of the solutions. Expressing the
differential equations in matrix form gives

d

dts

{
X0c

X0s

}
=

1

ωn

{ −ω2
nμ̂X0s − ω2

nζ̂X0c +
3
8 α̂X2

0X0s,

ω2
nμ̂X0c − ω2

nζ̂X0s − 3
8 α̂X2

0X0c +
1
2 P̂

}

or:
dX

dts
= f(X, t).

To study the local stability of a steady-state solution of a system, the system
is perturbed a small amount away from the solution and, if locally stable,
the system will be attracted back to the solution. Taking the steady-state
solution to be X = X̄, then consider the system perturbed by a small
amount, Xp, away from the solution such that X = X̄+Xp. We can then
write

d

dts

{
X̄+Xp

}
= f(X̄+Xp, t) = f(X̄, t) +Dfx(X̄, t)Xp,

where a Taylor series expansion has been used and where Dfx(X, t) is the
Jacobian of f evaluated at X. By definition dX̄/dts = f(X̄, t), hence this
can be removed from the equation to give

dXp

dts
= Dfx(X̄, t)Xp.

Therefore the eigenvalues of the Jacobian,Dfx(X̄, t), determine the stability
of the steady-state solution X̄. For a stable solution, the real part of the
eigenvalues must be negative such that the perturbation decays away and
the system returns to the solution X̄. The Jacobian is given by

Dfx(X, t) =
1

ωn

[ −ω2
nζ̂ + 3

4 α̂X0cX0s −ω2
nμ̂+ 3

8 α̂(3X
2
0s +X2

0c)

ω2
nμ̂− 3

8 α̂(3X
2
0c +X2

0s) −ω2
nζ̂ − 3

4 α̂X0cX0s

]
,

recalling that X2
0 = X2

0c + X2
0s. The eigenvalue equation for the Jacobian

matrix is

λ2 + 2ωnζ̂λ1 +

[
ω2

n(ζ̂
2 + μ̂2)− 3

2
μ̂α̂X2

0 +
27

64ω2
n

α̂2X4
0

]
λ0 = 0,

where λ is an eigenvalue. Since the λ2 and λ1 coefficents are positive, the
boundary of stability is when the λ0 coefficent is zero giving

(ζ2 + μ2)ω4
n −

3

2
μω2

nαX2
0 +

27

64
α2X4

0 = 0,
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Consider the case where the frequency is kept constant and the excita-
tion is increased. If the excitation frequency is slightly above the natural
frequency, multiple solutions can exist and the shape of the response is sim-
ilar to that for the cable example shown in Figure 4. Using Equation 50,
the fold points can be identified (points A and C in Figure 4) by finding
∂P 2/∂X2

0 and setting it to zero. This yields

∂P 2

∂X2
0

= (ζ2 + μ2)ω4
n −

3

2
μω2

nαX2
0 +

27

64
α2X4

0 = 0.

This is identical to the equation for the points where the local stability of
the solution is lost. Hence the fold points correspond to the points where
solution stability is reversing. This analysis has used the condition that if
∂P 2/∂X2

0 = 0 then ∂P/∂X0 = 0.
In addition, multiple scales gives information regarding the response at

other frequencies. Since the cos(tf ) and sin(tf ) terms on the right-hand side
of Equation 49 have been set to zero, the equation simplifies to

ω2
n

∂2x1
∂t2f

+ω2
nx1 =

α̂

4

(
(3X2

0s −X2
0c)X0c cos(3tf ) + (X

2
0s − 3X2

0c)X0s sin(3tf)
)
,

which is a linear differential equation in x1 that can be solved in the usual
way.

5.2 Application of Normal Forms

Reconsider the system

ẍ+ 2εζ̂ωnẋ+ ω2
nx+ εα̂x3 = P cos(Ωt) = Pxr,

where both the damping and the nonlinearity αx3 are small and Px =
[P/2 P/2]. Since the system has a single degree-of-freedom, the linear
modal transform x→ q is a unity transform giving

q̈ + 2εζ̂ωnq̇ + ω2
nq + εα̂q3 = Pqr,

where q = q and Pq = Px.
Now the forcing transform q = v+[e]r is applied, where for this example

[e] is a 1 × 2 matrix. Using Equation 31, it can be seen that if the forcing
is near resonance then [e] = [0 0] and Pv = Pq (i.e. option 1, Equation
32). Otherwise, with forcing away from resonance, [e] = Pq/(ω

2
n − Ω2) and

Pv = 0 (i.e. option 2, Equation 33). So, considering near-resonant forcing
produces

v̈ + 2εζ̂ωnv̇ + ω2
nv + εα̂v3 = Pvr,
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with q = v where v = v and Pv = Pq.
The near-identity transformation, u = v + h(u, u̇, r), is now applied.

The nonlinear and damping terms are given by

nv1(v, v̇, r) = 2ζ̂ωnv̇ + α̂v3. (51)

To select a suitable transformation, nv1(u, u̇, r) is considered. From Equa-
tion 40, it is rewritten as

nv1(u, u̇, r) = [nv]u
∗(up,um, r),

where u = up + um. Considering the terms in nv1, [nv] and u
∗ are

[nv] =
[
i2ζ̂ωnωr −i2ζ̂ωnωr α̂ 3α̂ 3α̂ α̂

]
,

u∗ =
{

up um u3p u2pum upu
2
m u3m

}T
.

From Equation 44, matrix [β] is

[β] = ω2
rn

[
0 0 8 0 0 8

]
.

This matrix is used to select whether option 1, Equation 45, is used to
transform the nonlinear terms out of the equation of motion, or whether
option 2, Equation 46, is used to avoid contravening the assumption that
the transform is a near-identity one. Option 1 is selected for the 3rd and
6th elements, for the other elements option 2 must be selected as [β] is zero
for these elements. This gives

[h] =
[
0 0 α̂

8ω2
rn

0 0 α̂
8ω2

rn

]
[nu] =

[
i2ζ̂ωnωr −i2ζ̂ωnωr 0 3α̂ 3α̂ 0

]
A new equation for the dynamics can now be written (from Equation 36

and the definition of [nu], Equation 40) as

ü+ 2ζωnu̇+ ω2
nu+ 3α

[
u2pum + upu

2
m

]
= Pur,

where Pu = Pv = Pq = Px = [P/2 P/2]. Combining the transformations,
using Equations 35 and 40, yields

x = q = v = u+
α

8ω2
r

[
u3p + u3m

]
Concentrating on the dynamic equation, algebraically it is convenient to

introduce a linear time-shift, such that, rather than having a response

u = up + um : up = (
U

2
e−iφ)eiωrt, um = (

U

2
eiφn)e−iωrt
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from Equation 38, the response is a pure cosine. This can be achieved by
shifting the time origin using t→ t+ φ/ωr, to give

u = up + um : up =
U

2
eiωrt, um =

U

2
e−iωrt,

Applying the same time-shift to the forcing results in p = P cos(Ωt)→ p =
P cos(Ωt+ φ), or

Pu =
[

P
2

P
2

] → Pu =
[
eiφ P

2 e−iφ P
2

]
.

Substituting the time-shifted expressions for the forcing and response into
the equation of motion gives

[ω2
n − Ω2]

U

2
[eiΩt + e−iΩt] + i2ζωnΩ

U

2
[eiΩt − e−iΩt] +

3αU3

8
[eiΩt + e−iΩt]

=
P

2
[eiφeiΩt + e−iφe−iΩt].

It can be seen that, owing to the nonlinear transform, there are no higher
frequency terms. Hence the equations can be balanced exactly by consider-
ing the eiΩt and e−iΩt terms:

[ω2
n − Ω2]

U

2
+ i2ζωnΩ

U

2
+
3αU3

8
=

P

2
eiφ,

[ω2
n − Ω2]

U

2
− i2ζωnΩ

U

2
+
3αU3

8
=

P

2
e−iφ.

Noting that these equations are a complex conjugate pair, the real and
imaginary components can be taken, which yields

[ω2
n − Ω2]

U

2
+
3αU3

8
=

P

2
cos(φ), 2ζωnΩ

U

2
=

P

2
sin(φ).

Squaring and adding these equations eliminates φ to give(
[ω2

n − Ω2]
U

2
+
3αU3

8

)2

+ (ζωnΩU)
2
=

(
P

2

)2

,

which can be used to calculate the response amplitude based on the forcing
amplitude and frequency.
The transformation contains the additional frequency terms. This can

be seen by substituting in for u to give

x = U cos(Ωt) +
αU3

32ω2
r

cos(3Ωt).
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Figure 11. Amplitude of response at the forcing frequency, Ω, as a function
of forcing frequency for the nonlinear oscillator – a comparison between the
normal form prediction and a time-stepping simulation (P = 0.03, α = 1,
ωn = 1, ζ = 0.03).

This implies that the response amplitude at the driving frequency is unaf-
fected by the transform – it remains U .
Hence, the normal forms technique provides expressions for the ampli-

tude of response at the driving frequency and at the harmonics, in this
example at three times the driving frequency.
The predictions given by these equations can be compared to a time-

stepping simulation of the dynamics of the system. Figures 11 and 12 show
the amplitude of response at the driving and at three times the driving
frequency respectively. It can be seen that the agreement is very good.

6 Acoustics Based Damage Detection

Another example of utilising nonlinear behaviour is the detection of damage
in structures. Various techniques exist, or are being developed, to monitor
the state of structures either globally using low frequency vibration or more
locally using acoustics or ultrasonic excitation.
Research has been conducted on vibration-based nonlinear damage de-

tection where, for example, cracks can open and close during vibration.
During bending, when open the cracks reduce the stiffness of the structure
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Figure 12. Amplitude of response at 3 times the forcing frequency, 3Ω, as
a function of forcing frequency for the nonlinear oscillator – a comparison
between the normal form prediction and a time-stepping simulation (P =
0.03, α = 1, ωn = 1, ζ = 0.03.)

whereas when closed the cracks are in compression and so do not affect
the stiffness. If statically the cracks are partially open (or closed), due to
self-weight or loading, then the proportion of an oscillation in the open and
closed regions will depend on the amplitude of oscillation: in the extremes
at small amplitudes of oscillation the crack will not close whereas at large
amplitudes the crack will be closed for nearly half the oscillation (see, for ex-
ample, Neild et al., 2001). The average stiffness (and hence the natural fre-
quency) is therefore amplitude dependent and so the degree of cracking can
be monitored by measuring the amplitude-frequency relationship. Alter-
natively, harmonics in the response, generated from the stiffness-amplitude
relationship, can be monitored. As well as these nonlinear techniques, lin-
ear techniques such as monitoring the natural frequency over the lifetime
of the structure also exist. However it is often reported that these are very
sensitive to environmental conditions such as temperature and humidity.
Linear ultrasonic and acoustic methods can be used to detect cracks or

delaminations in structures, as these features cause partial reflection of the
incident signals. However, they are relatively insensitive to pre-cracking
damage such as early-stage fatigue. Prior to cracking, fatigue often results
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in materials exhibiting a small amount of strain nonlinearity. One result
of the presence of this material bulk nonlinearity is that, when a specimen
is excited at one frequency, harmonics of this frequency are present in the
response. This nonlinear behaviour is often quantified in terms of the the
amplitude of response to the fundamental (or driving) frequency, A1, and
the amplitude of the second harmonic of the driving frequency, A2, which is
generated via the material nonlinearity. It is this example we will consider
here. Perturbation analysis is used to gain an understanding of how the
nonlinearity will vary as the excitation passes through the sample.
The one-dimensional linear wave equation is formed by combining partial

differential equations relating to the dynamics and the load-strain relation-
ship, which are given by

ρ
∂2u

∂t2
=

∂P

∂x
, P = E

∂u

∂x

respectively. Here u denotes the particle displacement, x is particle location,
P is the dynamic pressure, ρ is the density and E is the Young’s Modulus.
The underlying stress-strain behaviour of most materials will contain

a small degree of nonlinearity, such that the stress-strain relationship will
often exhibit quadratic behaviour. The effect, along with damping, can be
included in the wave equation by writing

ρ
∂2u

∂t2
=

∂P

∂x
, P = E

∂u

∂x
+ E∗

(
∂u

∂x

)2

+B
∂2u

∂x∂t
,

using the stress-strain relationship, σ = Eε + E∗ε2, and introducing the
linear viscous damping parameter B. Eliminating P gives

∂2u

∂t2
= c2

∂2u

∂x2

(
1 +

2E∗

E

∂u

∂x

)
+ B̄

∂3u

∂x2∂t
(52)

where c =
√

E/ρ and B̄ = B/ρ. More generally, for waves travelling across
a material c is taken to be the travelling wave velocity. The damping param-
eter B̄ is normally measured experimentally using linear techniques. It is
the nonlinear parameter E∗/E that is measured using nonlinear ultrasonic
techniques and it is this parameter which is monitored over the life-time of
the structure to indicate early-stage fatigue.
To develop an analytical solution to this partial differential equation,

the perturbation method is used first. In this example a truncated two-
term power-series expansion of the response is examined. The first term to
be the linear response, that is, the response if the nonlinearity was set to
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zero, while the second term is a perturbation away from the linear response,
namely:

u = ul + unl = ul + εûnl. (53)

The subscripts l and nl indicate the linear and nonlinear components, while
unl = εûnl has been used to indicate that unl is small compared with ul.
Making the assumption that the nonlinear term in Equation 52 is small,

order ε, and substituting Equation 53 gives

∂2ul

∂t2
+ ε

∂2ûnl

∂t2
= c2(

∂2ul

∂x2
+ ε

∂2ûnl

∂x2
)

(
1 + ε

2Ê∗

E
(
∂ul

∂x
+ ε

∂ûnl

∂x
)

)

+B̄(
∂3ul

∂x2∂t
+ ε

∂3ûnl

∂x2∂t
),

where E∗ = εÊ∗ reflects the assumption that the nonlinear term is order
ε. Note this assumption is that 2E∗

E
∂u
∂x
is much smaller than unity, but this

does not require that E∗ itself is small (typically it will not be). Here, the
damping has not been assumed to be small, this ensures that the linear
component response captures the decaying nature of the overall response.
In reality, the damping is small compared to the undamped linear terms
but it is large relative to the nonlinear terms. Balancing the order ε0 and
ε1 terms gives

ε0 :
∂2ul

∂t2
= c2

∂2ul

∂x2
+ B̄

∂3ul

∂x2∂t
, (54)

ε1 :
∂2unl

∂t2
= c2

∂2unl

∂x2
+ 2c2

E∗

E

∂2ul

∂x2
∂ul

∂x
+ B̄

∂3unl

∂x2∂t
. (55)

Equation 54 is identical to the case where the system is linear (i.e. setting E∗

to zero in Equation 52). The result of applying Equation 53 is to incorporate
the assumption that as the nonlinearity is small it does not influence the
linear response. Equation 55, which contains the nonlinear response, is a
linear equation in terms of unl with excitation terms provided by the linear
response. Physically, the approximation that has been made here is that
the amplitude of the nonlinear response is sufficiently small that nonlinear
terms containing unl can be ignored.

6.1 Order ε0 equation

To solve Equation 54, the linear damped equation, the damping is now
assumed to be light and the input signal is a forward travelling cosine wave.
At x = 0 the excitation may be written as

ul(0, t) = U0 cos(−kct)
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where k = ω/c is the wave number, c is the travelling wave velocity, U0 is
the input signal amplitude and ω is the excitation frequency. Note that ω
is of order 106 and c is of order 103.
Next consider when x > 0. Given the condition that the damping is

light, attenuation in the medium would make the wave decay exponentially
with distance. Hence a trial solution of the following form is adopted:

ul(x, t) = U0e
−αx cos (k(x− ct)) , (56)

where α is the (currently unknown) exponential decay rate with distance
travelled. Because α is much smaller then k, slow and fast distance scales
are introduced, as used in the multiple scales technique (although the scales
are normally in terms of time rather than distance). Writing the slow scale
(xs) and the fast scale (xf ) as

xs = αx, xf = kx,

we can write Equation 56 as u(x, t) = u(xs, xf , t), where, in line with the
multiple scales method, we assume that xs and xf can be treated as inde-
pendent variables due to there different scales. Note that typically α and k
are of order 100 and 103 respectively. Hence we can write

∂ul

∂x
= k

∂ul

∂xf

+ α
∂ul

∂xs

, (57)

∂2ul

∂x2
= k2

∂2ul

∂x2f
+ 2kα

∂2ul

∂xs∂xf

+ α2 ∂2ul

∂x2s
. (58)

Using these relationships, Equation 54 becomes

∂2ul

∂t2
= c2(k2

∂2ul

∂x2f
+ 2kα

∂2ul

∂xs∂xf

+ α2 ∂2ul

∂x2s
)

+B̄
∂

∂t
(k2

∂2ul

∂x2f
+ 2kα

∂2ul

∂xs∂xf

+ α2 ∂2ul

∂x2s
). (59)

By considering the form of the trial solution, given in Equation 56, it can
be seen that the term on the left-hand side of Equation 59 cancels with the
first term on the right-hand side. Since α � k, the third, fifth and sixth
terms on the right-hand side are small in comparison to the second, fourth
and fifth terms respectively and so are removed resulting in

0 = 2c2kα
∂2ul

∂xs∂xf

+ B̄k2
∂3ul

∂x2f t
. (60)
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When the multiple scales is applied to vibration problems, it is usual to
ignore only the α2∂2ul/∂x2s term, taking xs as order ε smaller than xf and
maintaining accuracy to order ε1. However, in this example, additional
simplifications have been made, since the decay rate α is expected to be
multiple orders smaller than the wave number k.
Substituting Equation 56 into Equation 60, gives

ul = U0e
−αx cos (k(x− ct)) , α =

k2

2c
B̄. (61)

The main physical effect of making the α � k approximation is that the
wave velocity for the damped response has remained the same as that for
the undamped response.

6.2 Order ε1 equation

Now consider the nonlinear perturbation from the linear response, as
described by Equation 55. This equation can be reordered to resemble a
linear equation in unl with a forcing in terms of ul

∂2unl

∂t2
− c2

∂2unl

∂x2
− B̄

∂3unl

∂x2∂t
= 2c2

E∗

E

∂ul

∂x

∂2ul

∂x2
. (62)

The right-hand side of Equation 62 can be simplified using Equations 57
and 58 to give

2c2
E∗

E

∂ul

∂x

∂2ul

∂x2
= 2c2

E∗

E
k3

∂ul

∂xf

∂2ul

∂x2f
= c2

E∗

E
k3U2

0 e
−2αx sin (2k(x− ct)) ,

(63)
where again α � k has been used to eliminate small terms and Equation
61 has been used to eliminate ul.
The terms on the left-hand side of Equation 62 are identical to those in

Equation 54, albeit in terms of unl rather than ul. Splitting the response
into fast and slow scales and using Equation 63, Equation 62 can be written
as

∂2unl

∂t2
− c2

(
k2

∂2unl

∂x2f
+ 2kα

∂2unl

∂xs∂xf

+ α2 ∂2unl

∂x2s

)

−B̄
∂

∂t

(
k2

∂2unl

∂x2f
+ 2kα

∂2unl

∂xs∂xf

+ α2 ∂2unl

∂x2s

)

= c2
E∗

E
k3U2

0 e
−2αx sin (2k(x− ct)) (64)
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By inspecting the form of the right-hand side, it can be seen that the re-
quirement is for the trial solution to have a fast scale function (itself a
function of xf and t) in the form of a summation of a sin (2k(x− ct)) and a
cos (2k(x− ct)) term. In this way the first two terms on the left-hand side
of Equation 64 cancel out. Now simplify the equation further using α � k
to give

−2c2kα
∂2unl

∂xs∂xf

− B̄k2
∂3unl

∂x2f∂t
= c2

E∗

E
k3U2

0 e
−2αx sin (2k(x− ct)) . (65)

From inspection of this equation the trial solution

unl(x, t) = Unlf(αx) cos (2k(x− ct)) (66)

is selected, where f(αx) is a, as yet unknown, slow scale function. Substi-
tuting this solution into Equation 65 results in the amplitude relationship

Unl =
E∗

E

k2U2
0

4α
, (67)

along with the following differential equation in terms of xs = αx

4f(xs) +
df

dxs

= e−2αx.

This can be solved, remembering that the harmonic content at x = 0 is
zero, to give

f(xs) =
1

2

(
e−2αx − e−4αx

)
(68)

Now the linear solution and the nonlinear perturbation can be combined
using Equation 53 together with Equations 61, 66, 67 and 68 to produce

u = U0e
−αx cos (k(x− ct)) +

E∗

E

k2U2
0

8α

(
e−2αx − e−4αx

)
cos (2k(x− ct)) .

(69)

6.3 Nonlinear Parameter

It is common to use the dimensionless measure of material bulk nonlin-
earity, β, given as

β =
8

k2x

A2

A2
1

, (70)

where k = ω/c is the wave number and dividing by A2
1 and the propagation

distance, x, removes the dependence on these two parameter on the as-
sumption that the material is undamped (see, for example, Melngailis and
Maradudin, 1963).
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However based on the perturbation analysis, the assumption that the
material is undamped can be removed. Firstly E∗/E can be related to β by
considering the case were the damping tends to zero in Equation 69. Using
a Taylor series expansion for the harmonic term, this gives

A1 = U0, A2 =
E∗

E

k2U2
0

4
x

Substituting these amplitude relationships into Equation 70 gives β = 2E∗/E.
Taking this to be the definition of β, eliminating E∗/E using the harmonic
amplitude A2 from Equation 69 and then eliminating U0 using Equation 61
gives an equivalent expression for β for a damped structure, βd:

A2 =
E∗

E

k2U2
0

8α

(
e−2αx − e−4αx

)
, A1 = U0e

−αx
� βd =

16α

k2 (1− e−2αx)

A2

A2
1

.

This relationship potentially gives a more accurate way of extracting the
true nonlinear stess-strain parameter E∗/E from an experimental measure-
ment of A1 and A2. This analysis is extended to include the effects of
excitation windows in Liu et al. (submitted), where experimental and nu-
merical validation is also given, and related work discussing the effects of
transducer dynamics is presented by Liu et al. (in press).

7 Parametric excitation

In the presence of a nonlinearity, energy can move between modes of vi-
bration. This has already been demonstrated in Section 2 where a cable
excited in the vertical in-plane direction can result in non-zero responses in
out-of-plane modes. The final example to be studied in this chapter involves
exploiting parametric excitation in order to dissipate energy. If a system is
vibrating in one mode, parametric excitation can be used to excite a differ-
ent mode and hence reduce the amplitude of response in the original mode.
An overview of such techniques is given in Ecker (2010) and many theo-
retical and numerical studies are also available, for example Dohnal (2007,
2009).
To motivate this study the example of a cantilever with a controllable

axial tip force will be considered. The first two modes of the system will
be derived and the parametric terms, which are introduced by the presence
of tip forcing, identified. A normal form analysis will then be performed
on a slightly simplified version of the equations using arbritrary parameter
values to show the potential of using parametric excitation to increase the
effective damping of a mode.
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Consider a vertical cantilever which is subject to external forcing ψ(x)p(t),
where ψ defines the distribution of the forcing spatially, and a vertical tip
forcing f(t), then

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
+ f

∂2w

∂x2
= ψ(x)p(t). (71)

First, the unforced response (f = p = 0) of this Euler-Bernoulli beam
is investigated. The response can be written as a summation of modal
responses:

w(x, t) =
∑
k

φk(x)qk(t). (72)

The modeshapes φk(x) can be found using the Separation of Variable tech-
nique. The orthogonality conditions for these modeshapes can be found by
substituting Equation 72 into the unforced version of Equation 71:

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
= 0,

multiplying the result by the modeshape φn (where n is arbitrary) and
integrating over the length of the beam. Decoupling of the modes (which is
achieved in the Separation of Variable technique) requires∫ l

0

φnφkdx = 0 and

∫ l

0

φnφ′′′′k dx = 0 for k �= n, (73)

where a dot and a prime indicate differentiation with respect to time and
x respectively. This results in the uncoupled modal equation of motion for
the nth mode ∫ l

0

φ2
ndx q̈n = c2

∫ l

0

φnφ′′ndx qn.

Next, the full equation of motion is considered, to which the Galerkin
technique is applied. Firstly, Equation 72 is substituted into Equation 71,
the result is multiplied by the modeshape φn (where n is arbitrary) and
integrating over the length of the beam to give the following equation for
the nth mode:

EI

∞∑
k=1

∫ l

0

φn(x)φ
′′′′

k (x)dx qk(t) + ρA

∞∑
k=1

∫ l

0

φn(x)φk(x)dx q̈k(t)

+f

∞∑
k=1

∫ l

0

φn(x)φ
′′

k(x)dx qk(t) =

∞∑
k=1

∫ l

0

φn(x)ψ(x)p(t)dx,
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To evaluate this equation, modeshapes are needed. As the modeshapes for
the nonlinear system are not known, the modeshapes of the unforced linear-
equivalent Euler-Bernoulli beam are used. The result of using these mode-
shapes is that the modal equations of motion have cross-coupling terms.
Using the orthogonality conditions for the unforced linear-equivalent beam,
Equation 73, the equation for the nth mode becomes

EI

∫ l

0

φnφ′′′′n dx qn+ρA

∫ l

0

φ2
ndx q̈n+f

∞∑
k=1

∫ l

0

φnφ′′kdx qk = p
∞∑

k=1

∫ l

0

φnψdx.

(74)
Taking the first two modes and making the simplifying assumption that

the external forcing p is applied at the node of the second mode gives

q̈1 + 2ζ1ωn1q̇1 + ω2
n1q1 + fα11q1 + fα12q2 = γ1p(t),

q̈2 + 2ζ2ωn2q̇2 + ω2
n2q2 + fα21q1 + fα22q2 = 0, (75)

where modal damping has been added. The parameter γ1 represents a
modal distribution of the forcing for the first mode, the equivalent term for
the second mode is zero as the forcing is applied to a node of the second
mode. The values of ωn1, ωn2, γ1 and the α coefficients can be found by
comparing these equations with Equation 74.
The case where the frequency of the external forcing is close to the first

natural frequency, that is where γ1p(t) = P cos(Ωt) with Ω ≈ ωn1, is now
considered using the normal form technique. Since the equations are in
modal form (using the linear unforced modes), the first transform x → q

is not required. The second transform q → v modifies the forcing. In this
example, this transform is a unity transform as the forcing term is applied
only to the first mode and is close to the natural frequency of the first mode:

P cos(Ωt) = Pvr, where: Pv = P

[
1/2 1/2
0 0

]
, r =

{
eiΩt

e−iΩt

}
.

The transform is given by

q = v + [e]r, where: [ẽ] + Pv = Pq, en,k = ẽn,k/(ω
2
nn − Ω2).

For this example, the potential values for [e] are written as

potential values: [e] =

[
ẽ1,1/(ω

2
n1 − Ω2) ẽ1,2/(ω

2
n1 − Ω2)

0 0

]
.

As both terms on the top row are divided by ω2
n1−Ω2 and Ω ≈ ωn1, Option

1, Equation 32, is selected for these terms. Hence [e] = 0 and Pv = Pr
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resulting in v = q. This gives

v̈+Λv+Nv(v, v̇, f) = Pvr, Nv(v, v̇, f) =

{
α11fv1 + α12fv2 + 2ωn1ζ1v̇1
α21fv1 + α22fv2 + 2ωn2ζ2v̇2

}
,

where Nv is a function of f as well as the states.
Once the nonlinear near-identity transform has been applied the modal

responses will not contain harmonics, these will have been transformed out
of the dynamic equations, and may be written as

u1 = U1 cos(Ωt− φ1), u2 = U2 cos(ωr2t− φ2).

The response of the first mode has been taken to be at the forcing frequency,
since the forcing frequency is close to the natural frequency of the first
mode, and the response on the second mode is at an, as yet, undetermined
frequency. The tip, or parametric, forcing is controlled by the user. Consider
the case where it is set to f = F cos([ωn2 − Ω]t − φ). These forcing and
response terms can be written in exponential form resulting in

u1 = u1p + u1m with u1p =
U1

2
ei(Ωt−φ1), u1m =

U1

2
e−i(Ωt−φ1)

u2 = u2p + u2m with u2p =
U2

2
ei(ωr2t−φ2), u2m =

U2

2
e−i(ωr2t−φ2) (76)

f = fp + fm with fp =
F

2
ei([ωn2−Ω]t−φ), fm =

F

2
e−i([ωn2−Ω]t−φ).

With reference to Equation 34, the nonlinear term in the equation of
motion can be written as Nv = εnv1. Using Equation 40, the function nv1

is now written in vector matrix form, but in terms of u rather than v. This
yields nv1(u, u̇, f) = [nv]u

∗(up,um, fp, fm) where

[nv]
T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α11 α21

α11 α21

α11 α21

α11 α21

α12 α22

α12 α22

α12 α22

α12 α22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fpu1p
fmu1p
fpu1m
fmu1m
fpu2p
fmu2p
fpu2m
fmu2m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Note that in Section 4 the damping terms were also included in these matri-
ces. In this example, as the damping is modal, the damping terms will all be
resonant and so will remain in the equations of motion after the nonlinear
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transform has been applied. They have therefore been excluded from [nv]
and u∗ for brevity.
Using Equation 44, the matrix [β] can now be calculated as

[β]T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω2
n2 − Ω2 ω2

n2 − ω2
r2

(−ωn2 + 2Ω)
2 − Ω2 (−ωn2 + 2Ω)

2 − ω2
r2

(ωn2 − 2Ω)2 − Ω2 (ωn2 − 2Ω)2 − ω2
r2

ω2
n2 − Ω2 ω2

n2 − ω2
r2

(ωn2 − Ω + ωr2)
2 − Ω2 (ωn2 − Ω+ ωr2)

2 − ω2
r2

(−ωn2 +Ω+ ωr2)
2 − Ω2 (−ωn2 +Ω + ωr2)

2 − ω2
r2

(ωn2 − Ω− ωr2)
2 − Ω2 (ωn2 − Ω− ωr2)

2 − ω2
r2

(−ωn2 +Ω− ωr2)
2 − Ω2 (−ωn2 +Ω− ωr2)

2 − ω2
r2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ωr1 = Ω has been used as the first mode is directly forced at frequency
Ω which is close to the natural frequency. Given that the response frequen-
cies are close to the natural frequencies, ωr2 ≈ ωn2 and ωr1 = Ω ≈ ωn1.
Using this, it can be seen that the [1, 6], [1, 7], [2, 1] and [2, 4] terms in [β]
are close to zero. For these terms option 2, Equation 46, is selected and the
terms remain in the equations of motion. Other terms can also be close to
zero if one of the following relationships between the two natural frequencies
are met:

ωn2 = aωn1 where: a = 0,
1

3
, 1, 3.

Assuming none of these conditions are met, for all the other terms option
1, Equation 45, can be selected. This prefered option results in the terms
being removed from the equation of motion.
Applying the relevant option to each term results in the transformed

equations of motions:

ü1 + 2ζ1ωn1u̇1 + ω2
n1u1 + α12(fmu2p + fpu2m) = P cos(Ωt),

ü2 + 2ζ2ωn2u̇2 + ω2
n2u2 + α21(fpu1p + fmu1m) = 0.

Addressing the second equation first, the α21 terms may be viewed as a
forcing and may be written as

α21(fpu1p + fmu1m) =
α21

2
U1P cos(ωn2t− φ− φ1).

With this forcing, inspecting the trial solution for u2, Equation 76, it can
be seen that ωr2 = ωn2. The equation of motion for the second mode can
now be solved yielding

u2 = U2 cos(ωn2t− φ2), where φ2 = φ+ φ1 − π

2
, U2 =

α21U1F

4ζ2ω2
n2

.
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Now considering the equation of motion for the first mode, the paramet-
ric α12 terms may be rewritten as

α12(fmu2p + fpu2m) = −F 2α21α12

8ζ2ω2
n2

U1 sin(Ωt− φ1) =
F 2α21α12

8ζ2ω2
n2Ω

u̇1.

Since this term is proportional to u̇1, it can be viewed as an additional
damping term. Therefore the parametric forcing has the effect of increasing
the damping of the first mode. Interestingly, the analysis indicates that the
phase of the tip forcing, φ (see Equation 76), does not effect this result.
Figure 13 shows the response of the first mode of a system, with dynamics

governed by Equation 75 using arbitrary parameter values, when excited
close to resonance. It can be seen that time-stepping results compared very
closely to the normal forms prediction. In addition it can be seen that the
response peak is lower and hence the damping is higher than the case where
the parametric excitation is not present, F = 0. Simulations for a range
of tip forcing phases, φ, were conducted and as indicated by the normal
forms analysis no changes to the degree of additional damping added was
observed.
While this result looks promising, for a practical system, it does not tell

the full story. Often it is the displacment response of the system, rather
than the modal response, that is important. One example of where this may
affect the result is that it appears desirable for the modal damping of the
second mode, ζ2, to be as small as possible such that the added damping
to the first mode is maximised. However, as the second mode is responding
at resonance (recall that ωr2 = ωn2) a reasonable level of modal damping,
ζ2, is needed to ensure the response amplitude, U2, is not excessive. The
displacement results may be further affected by the presence of harmonic
responses in both modes due to the nonlinear behaviour. These can be
calculated using the normal forms technique by considering the nonlinear
v→ u transform.
Promising experimental results from the cantilever beam system, de-

scribed at the start of this section and used to motivate the normal forms
analysis, have been performed by Pumhossel and Ecker (2007) and Ecker
and Pumhossel (2009). These confirm that axial tip forcing can result in
higher modal damping for a targeted mode through parametric excitation
of a second mode.

8 Conclusions

In this chapter two approximate methods for studying the response of
weakly nonlinear systems have been discussed. In addition, three exam-
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Figure 13. Response of the first mode of a two-mode system with paramet-
ric nonlinearity for the case where the excitation is close to the first natural
frequency. The system parameters used are ωn1 = 1, ωn2 = 4.3, ζ1 = 0.02,
ζ2 = 0.05, α11 = α12 = α21 = α22 = 10 and the external and parametric
forcing amplitudes, P and F respectively, are P = F = 0.03.

ples of systems, in which nonlinear dynamic behaviour can be exploited,
have been discussed and analysed using the approximate methods.
Considering perturbation methods, it was shown that using regular per-

turbation theory can result in a poor prediction of the vibration response
in certain circumstances such as when different timescales are present. The
multiple-scales technique overcomes this limitation and was shown to pre-
dict the response of the Duffing oscillator well. In addition to predicting
the steady-state response, the stability of the various response solutions
were examined using the technique. Then both regular perturbation theory
and multiple scales was used to analyse how harmonics of acoustic signals
are generated as the signals propagate through a material with a nonlinear
stress-strain relationship – the application being detection of early fatigue
damage.
The normal forms technique, in which a series of transforms are applied

to the equations of motion, was also discussed. It was shown that, through
the application of these transforms, all the non-resonant terms can be re-
moved from the equations of motion allowing it to be solved using a straight-
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forward trial solution at the response frequency. Information regarding the
response at other frequencies can be extracted from the nonlinear trans-
formation. The technique was shown to accurately predict the response of
the Duffing oscillator at the forcing frequency and at three times the forc-
ing frequency. In addition, the technique, which can conveniently handle
multiple modes, was successfully used to analyse parametric excitation be-
tween modes. This analysis demonstrated the potential use of parametric
excitation as a means to increase modal damping.
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Abstract The ability to isolate a structure or machine from the un-
desirable effects of applied motion (especially vibration) has wide
application. Suspension systems are incorporated into large build-
ings to protect them from earthquake excitation, mountain bikes
and vehicles in general are designed to minimize the transfer of
unwanted accelerations from the terrain to the occupants, and sen-
sitive equipment often needs to be isolated from ambient vibrations
in the surrounding environment. This chapter explores the ways in
which specifically nonlinear components can be utilized to advan-
tage in vibration isolation in the context of steady excitation (Platus
(1991); Rivin (2006); Virgin and Davis (2003); Virgin et al. (2008)).
There have been other attempts to take advantage of nonlinearity
in a vibration isolation context. A zero-spring-rate suspension sys-
tem (Woodard and Housner (1991)) was developed in which a clever
arrangement of (linear) springs acted together such that, under pre-
load, they behaved in a nonlinear geometric sense. The system is
essentially the same as a negative-stiffness mechanism described by
Platus (1991) and developed commercially. In most design situa-
tions there is a trade-off between constraints, and in the case of
vibration isolation, the springs need to sufficiently soft for dynamic
transmissibility requirements but sufficiently stiff that they can pro-
vide static support. Other approaches have been studied by Virgin
and Davis (2003); Winterflood et al. (2002); Zhang et al. (2004);
and Carrella et al. (2006).

1 Introduction

Conventional vibration isolation systems are based on the classical (linear)
harmonic oscillator and the avoidance of resonance. Consider the simple
schematic shown in Figure 1(a). Here, we assume the ’supporting surface’
moves, and we wish to prevent as much of this motion as possible from being
transmitted to the ’object’. If we assume that the supporting surface moves
in a purely vertical direction, it is harmonic, and that the ’vibration isolator’
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Figure 1. (a) A schematic of a supported mass, (b) the spring-mass-damper
model.

consists of components that can be modeled as a spring and damper, then
we have the classical system shown in Figure 1(b). Given a harmonic input
of the form y(t) = Y sinωt, the mass responds according to the well-known
transmissibility expression:

X

Y
=

[
1 + (2ζΩ)2

(1− Ω2)2 + (2ζΩ)2

]1/2
. (1)

This is plotted in Figure 2 as a function of the frequency ratio Ω = ω/ωn,
where ωn =

√
k/m, for a number of representative damping ratios, ζ. In

terms of vibration isolation the goal is unambiguous: minimize the ratio
|X/Y |.
Thus, the transmissibility is small for relatively high frequency ratios,

i.e., for Ω >
√
2, X/Y < 1.0. Given a forcing frequency, ω, a typical design

option would be to mount the device on a soft spring to induce a low natural
frequency, ωn, and thus a large Ω. However, the spring should obviously
be stiff enough to support the mass statically (since typically mg = kx
when the weight of the mass needs to be supported), and this often places
practical limits on the spring stiffness. Furthermore, the stiffness associated
with a linear spring is fixed, and thus an isolator that is effective for certain
forcing frequency ranges may not be effective under changing conditions,
and in fact may lead to enhanced transmissibility associated with resonance
effects. It is clearly advantageous to be able to alter, or tailor, the stiffness
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Figure 2. Displacement transmissibility of a spring-mass-damper as a func-
tion of frequency ratio.

in order to maintain a high frequency ratio. This is where nonlinear effects
can be taken advantage of.
Figure 3 shows how the stiffness of a nonlinear spring (the local slope

of the force, F , versus - deflection, δ, relation) can be tuned, even to the
extent that a (near) zero stiffness can be achieved, as illustrated in part (c).

Figure 3. The changing stiffness associated with a pre-loaded, nonlinear
spring.

In this chapter we shall present two cases in which this concept is ex-
plored. The first involves the use of post-buckled struts. In this the case
the axial stiffness of the strut depends on the degree of (post)-buckling.
This concept is then extended to very heavily deformed (but still elastic)
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structural components, whose stiffness can be altered quite easily.

2 Elastically buckled isolator elements

2.1 Axial stiffness of a post-buckled strut

Axially loaded structures typically possess nonlinear characteristics, es-
pecially close to, or beyond, initial buckling. Usually, buckling is viewed
as an undesirable feature, in particular when this precipitates a total loss
of stiffness and collapse (Virgin (2007)). However, certain structural forms,
e.g., plates, possess a significant amount of post-buckled strength which can
be utilized in design. For example, thin panels comprising the stressed skin
components of aircraft fuselage or wings may be allowed to undergo mild
elastic buckling and still retain their load-carrying capacity. In this section
we develop the notion of using post-buckled struts as the spring components
in a vibration isolation system, as indicated schematically in Figure 4. In
their post-buckled state they are axially soft and yet able to support at least
their buckling load statically. This concept will also be extended to the use

Figure 4. Schematic showing the post-buckled strut as an isolator spring.

of plate-like spring components.
Consider a thin elastic structural element, pinned at both ends and sub-

ject to constant axial loading as shown in Figure 5. Any structure exhibiting
stable post-buckled behavior can be used in this situation. This is the clas-
sic Euler strut (elastica) with flexural rigidity EI, length L, and P is the
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Figure 5. Schematic of a continuous buckled strut.

axial load. For moderately large deflections an approximate energy analysis
can be used to obtain the axial force versus end shortening relation. The
postbuckled equilibrium configuration is given by

P

Pe
= 1 +

π2

8

(
Q

L

)2

, (2)

where

Pe = EI
(π
L

)2

. (3)

Pe is the classical Euler critical load, and provided the axial load remains
greater than this value, the strut deflects into one of two symmetrically
located equilibria as given by equation 2.
However, we need to consider stiffness in the axial direction since this is

the direction in which the force acts. Based on the lowest buckling mode
shape w(x) = Q sin (πx/L), the geometric relation between the lateral de-
flection Q and the end shortening δ can be established:(

δ

L

)
=

π2

4

(
Q

L

)2

+
3π4

64

(
Q

L

)4

, (4)

i.e., the end shortening is approximately related to the square of the lateral
deflection. Eliminating Q in Equations 2 and 4 leads to

P

Pe
=
1

3

[
2 +

√
1 + 3

(
δ

L

)]
≈ 1 + 1

2

(
δ

L

)
. (5)

This is a result based on moderate lateral deflections, i.e., up to about 20%
of the length, where the half-sine mode shape is appropriate. The analysis
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can be extended to much larger deflections, and this will be covered using
an elastica formulation later in the chapter. Equations 2 and 5 are shown
by the solid curves in Figure 6 (a) and (b) respectively.
The post-buckled stiffness is only mildly influenced by the presence of

initial imperfections (unlike in the vicinity of the critical point), and adopt-
ing a single-mode initial geometry (w0(x) = Q0 sin (πx/L)) leads to the
dashed lines in Figure 6(a) and (b). If we load the strut axially to just
above its elastic critical load, for example, P/Pe = 1.05 then (for Q0 = 0)
we have Q/L ≈ 0.2 and δ/L ≈ 0.1. If we use this point as our basic equilib-
rium datum, we observe a (low slope) linear relation for small oscillations
about this point based on new local coordinates:

p̄ =
P

Pe
− 1.05, δ̄ = δ

L
− 0.1, (6)

and indicated in Figure 6(b). This strut then, is able to support a relatively
high axial load (sufficient to cause buckling) but exhibits the desirable soft
spring characteristic. It is also noted that adjusting the pre-load can be used
to tune the stiffness depending on achieving a desirable frequency ratio.

2.2 A simple experiment

An experimental verification using a variable speed vertical shaker, with
a mass (dead weight) and two thin steel struts confirms the analysis. The
measured post-buckled response is shown in Figure 6(c) and (d) in terms of
lateral and axial deflection. The two struts were 268 mm long, 19 mm wide,
0.66 mm thick (and thus I = 4.55 x 10−13m4), and taking a typical value
for Young’s modulus of 200 GPa, an Euler critical elastic buckling load of
25N ≡ 2.55kg is computed (based on Pcr = EIπ2/L2). The experimental
result indicates a critical load in this vicinity, and a Southwell plot (Virgin
(2007)) can be used to recast the data from Figure 6(c) to estimate a critical
load of approximately 23 N. Due to initial geometric imperfections, the
”critical load” is manifest as a relatively rapid increase in the deflection due
to additional load, i.e., the stiffness reduces but then increases as the load
passes through the range of the underlying critical load of the geometrically
perfect system. The quadratic relation between lateral deflection and end
shortening established by equation 4 is thus confirmed, as well as the locally
linear relation between axial load and end shortening.
Suppose we choose a point on this (imperfect) curve (Figure 6(d)) as

the base (buckled) equilibrium position: P = 23.5N → (P/Pe ≈ 1.0) and
δ = 15.2mm → (δ/L = 0.057), This is the (operating) point about which
transmissibility is measured. Locally the stiffness is approximately 195 N/m
(i.e., the slope of P/Pe v δ/L about the chosen operating point) and since
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Figure 6. Deflection of the strut as a function of axial load. Analysis:
(a) midpoint lateral deflection, (b) end shortening. Experimental data: (c)
midpoint lateral deflection, (d) end shortening.
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the mass is 2.4 Kg we would thus expect a natural frequency of free vibration
close to 9 rad/s ≡ 1.43 Hz. A free decay of this system gave a natural period
of approximately 0.68 seconds (and hence ωn = 1.47Hz), which corresponds
quite closely to the estimated value, although we would expect damping to
reduce the measured frequency slightly. However, we anticipate effective
isolation for forcing frequencies ω/ωn = Ω >

√
2 ≈ 2.2 Hz. It is worth

noting that replacing the buckled struts with conventional linear springs of
the same stiffness would result in a static deflection of approximately 60
mm, i.e., four times the deflection of the struts. Furthermore, any number
of struts could be used if a different supported mass was needed, and these
results would generalize.
When the base excitation is applied to the strut-supported mass, we

desire the transmissibility ratio (X/Y , given by equation 1) to be small.
This should be the case for Ω >

√
2. Experimental results, confirming

low transmissibility, are shown in Figure 7 for a range of frequency ratios.
Three responses are shown as insets for different frequency ratios. The time
series occurring when the forcing frequency is exactly twice the natural
frequency (indicated by the star) shows an interesting subharmonic of order
two (a parametric response). In general we see a highly attenuated response
for higher frequencies, i.e., in this frequency range the mass is effectively
isolated from the motion of the base.
An example of a modification to using thin steel struts is the use of 4

symmetrically placed polycarbonate panels as shown in Figure 8. This con-
figuration has the capability of being adjusted in order to provide isolation
from rotational sources of excitation.

2.3 Beyond Initial Buckling

The schematic shown in Figure 8 displays a deflected configuration for
which the initial post-buckling analysis (e.g., equation 2) has ceased to be
applicable. In this case, we can obtain equilibrium configurations for highly
deflected shapes using an elastica analysis. This is based on an arc-length
description of the deflected shape as shown in right hand part of Figure
8. We can also account for the effects of higher modes and self-weight of
the struts, in addition to the single mode analysis, with pinned boundary
conditions, given in the previous section.

The Elastica The equations governing the elastic behavior of slender
systems are cast in terms of arc-length coordinates (S, θ), with appropriate
boundary conditions. Referring to the configuration shown in Figure 9 the
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Figure 7. Transmissibility for the displacement of the strut-supported
mass.

governing equations can be written as

∂X/∂S = cos θ, ∂Y/∂S = sin θ,
∂θ/∂S =M/EI, ∂M/∂S = Q cos θ − P sin θ,
∂P/∂S = −W sinβ, ∂Q/∂S = −W cosβ,

(7)

where the orientation is accounted for by β such that β = π/2 corresponds
to a vertical configuration, and the component weight per unit length due to
gravity is W . The last two equations can then be augmented for dynamics
by including inertia and damping terms.
It is convenient to nondimensionalize the governing equations, and in

order to do this we introduce the following variables

w =WL3/EI, x = X/L, y = Y/L, s = S/L,
p = PL2/EI, q = QL2/EI, m =ML/EI,

(8)
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Figure 8. Using four symmetrically placed polycarbonate panels as stiffness
elements.

Figure 9. The geometry of an elastica.
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and thus the equations become

∂x/∂s = cos θ,
∂y/∂s = sin θ,
∂θ/∂s = m,
∂m/∂s = q cos θ − p sin θ,
∂p/∂s = −w sinβ − ∂2x/∂t2 − c∂x/∂t,
∂q/∂s = −w cosβ − ∂2y/∂t2 − c∂y/∂t.

(9)

where the additional nondimensional parameters have been introduced:

c = CL2
√
g/WEI,

t = (T/L2)
√
EIg/W, Ω = ωL2

√
W/EIg.

(10)

These equations can be solved by assuming small amplitude (harmonic)
vibration about an equilibrium configuration. A convenient approach is
based on the shooting method (Stoer and Bulirsch (1980)) incorporating
the appropriate boundary conditions.
For use as spring elements in a vertical vibration isolator context it is also

convenient to introduce a non-dimensional end-shortening parameter, δ =
Δ/L, resulting from the static deflection due to the mass load, which itself
can also be non-dimensionalized using f = MgL2/EI. For the clamped-
clamped column configuration we have the boundary conditions

x(0, t) = u(t), y(0, t) = y(1, t) = θ(0, t) = θ(1, t) = 0,

p(1, t) = f + f ∂2x(1,t)
∂t2 .

(11)

Some typical equilibrium configurations are shown in Figure 10 in terms of a
load-end shortening relation in part (a) for values of the ’weight’ parameter
ranging from w = 0 for the uppermost curve to w = 50 for the lowest curve.
We see the familiar critical load for a clamped beam at fcr = 4π2, i.e.,
four times greater than the pinned-pinned case. Part (b) shows some post-
buckled equilibrium configurations for f = 40.5 to f = 62.5 when w = 0.

Figure 11 shows both theoretical and experimental results for a specific
column. Here, the parameters of the problem result in a value of w = 1.23
for which it can be shown that pc = 38.86. The effect of a small initial
geometric imperfection can be seen in the vicinity of the critical load. The
two different symbols for the experimental data represent deflections in both
directions (the system is nominally symmetric). Some sample free vibration
mode shapes are also shown in Figure 11 for the specific case f = 40 and
w = 0, again slightly buckled, but assuming negligible self-weight. At this
value of the force-deflection relation (the operating point) these mode shapes
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Figure 10. The static behavior of a strut based on an elastica analysis, (a)
force-deflection, (b) deflected shapes.

correspond to the natural frequencies Ω1 = 0.698,Ω2 = 44.73 and Ω3 =
75.26.
If the system is then subjected to base excitation of the form u(t) =

u0 sinΩt, in which u0 = U0/L, and a little linear viscous damping is in-
corporated, the transmissibility can be computed (again using the shooting
method), and Figure 12 shows a typical frequency response for the case
w = 0, f = 40. The resonant peaks at the natural frequencies can be clearly
seen, together with the anti-resonances at Ω = 4.13 and Ω = 103.81.
An equivalent experimental result can be found by placing a mass of

M = 2.537 Kg on the end of the strut (in this case 4 identical struts for
practical reasons) such that f = 50.25. For an underlying natural frequency
of 0.85 Hz (again corresponding to w = 1.23) we then sweep through a
range of forcing frequencies to obtain the results displayed in Figure 13.
Three numerical curves are shown (for c = 5, 15 and 25). The agreement
is not especially good. This is probably due to the inherent sensitivity of
the strut geometry as well as issues concerning the differences between the
struts used in the experimental configuration. However, the basic concept
of using a nonlinear stiffness to provide a tunable vibration isolation system
is not limited to buckled structures, and the next section opens the scope to
consider the use of highly deflected structural configurations for potential
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Figure 11. The force-deflection of a strut with experimental data superim-
posed. The inset shows equilibrium (continuous lines) and vibration mode
shapes (dashed lines).

use as suspension elements.

3 Highly deformed elastic elements

The buckled elements described in the previous section have the limita-
tion that the axial load must remain greater than the buckling load, other-
wise ’stroke-out’ will occur. This is true, of course, for conventional helical
springs used in suspension systems. It was also shown in the previous sec-
tion that the stiffness of an axially loaded element may change (too) rapidly
in the vicinity of critical loading. However, we can extend the concept of
utilizing highly nonlinear equilibrium configurations of elastic structures
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Figure 12. Transmissibility for the clamped-clamped strut, continuous line
c = 1, dashed line c = 5.

not necessarily associated with post-buckling. In this case it is strictly nec-
essary to use an elastica analysis so that no restrictions are placed on the
deformation (assuming elastic material behavior), and configurations can be
explored that exploit vibration isolation features. Again the local stiffness
(defined by a given pre-load and geometry) can be adjusted rather easily.
There are a number of equilibrium configurations in which an elastic

strip can be deformed in order to provide a spring support for an isolation
system. Some examples are shown in Figure 14. In each of these cases
the nonlinear P v δ relation allows some freedom in the choice of stiffness,
such that a low stiffness is obtained even with a relatively large pre-load.
From this point we shall focus on the specific shape of a ’pinched loop’ as
indicated by the lower right picture in Figure 14. In this case, the isolator is
a thin strip that is bent so that the two ends are clamped together, forming
a loop. It will be shown that the stiffness of the system can be conveniently
altered. The clamped ends are attached to an excitation source and the
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Figure 13. Transmissibility for the clamped-clamped strut with experi-
mental data superimposed.

supported system is attached at the loop midpoint directly above the base.
The strip is modeled as an elastica, and the resulting nonlinear boundary

value problem is again solved numerically using a shooting method (San-
tillan et al. (2005)). First the equilibrium shapes of the loop with varying
static loads and lengths are obtained. The analysis reveals a large range
of stiffness tunability; the stiffness is dependent on the geometric configu-
ration, which itself is determined by the supported mass, loop length, and
loop self-weight. Free vibration frequencies and mode shapes are also found.
Finally, the case of forced vibration is studied, and the displacement trans-
missibility over a large range of forcing frequencies is determined for varying
parameter values. Experiments using polycarbonate strips are conducted
to verify equilibrium and dynamic behavior.
The basic equations of the loop are the same as in equation 9. How-

ever, the boundary conditions are different, and since the length is used
as a control parameter it is convenient to introduce a new nondimensional
parameter a = (EI/W )1/3, and thus ′L′ is effectively replaced by ′a′ in
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Figure 14. Some potential supporting springs based on highly deformed
elastica.

Figure 15. Schematic of the pinched loop spring.
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equations 8, and this also simplifies the time scaling to:

t = T
√
g/a, Ω = ω

√
a/g, (12)

where ω is a dimensional vibration frequency. To this is added a nondimen-
sional mass load (applied to the top of the loop)

f = Fa2/EI, (13)

where F = Mg. Due to symmetry only half the loop is analyzed, (0 ≤
s ≤ l/2, where the point load at s = l/2 is f/2). The governing elastica
equations using the defined nondimensional parameters are similar to those
given in equations 9. The boundary conditions are given by

x(0, t) = u(t), y(0, t) = θ(0, t) = 0,
y(l/2, t) = 0, θ(l/2, t) = −π/2,

p(l/2, t) = f/2 + (f/2)∂2x(l/2, t)/∂t2.
(14)

3.1 Stiffness in the vertical direction

For the equilibrium solution, the nondimensional length, l, and sup-
ported system mass parameter, f , are specified, and numerical integration
is performed together with the shooting method. The resulting vertical
mass deflection (or vertical deflection at the top of the loop at s = l/2) is
called δ, where

δ = xe(l/2)|f=0
− xe(l/2). (15)

Solving the boundary value problem with f = 0 (for the case l = 2)
results in the equilibrium configuration given by the uppermost curve in
Figure 16. The other curves in Figure 16 show static shapes for increasing
load increments of f = 10, 20, 30, ..., 90, 98.6. The final curve corresponding
to f = 98.6 gives the static configuration just before self-contact. Intuitively
we expect the stiffness to be relatively low near this operating point. The
second curve from the top in Figure 16 corresponds to this case (l = 2) in
a plot of f vs. δ. The other curves correspond to loops of varying lengths.
Each curve is continued until self-contact occurs. As can be seen, the local
vertical stiffness (the slope of the curve about any point in Figure 16(b))
varies from a high value, near the origin, to a low value for a relatively long
loop with a pre-load.
Load-deflection results for l = 1.7416 are shown in Figure 17, where the

data points represent experimental data. Note that upward (stretching)
loads (i.e., f < 0) are included. Fixing the pre-load f then determines the
static deflection δ and thus the loop spring constant is defined as the local
slope about this (operating) point.
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Figure 16. Numerical equilibrium results. (a) Static configurations for
l = 2 and f = 0 (uppermost curve), 10, 20, . . ., 90, 98.6. (b) Force-deflection
curves for lengths l = 1.5 (uppermost curve), 2, 2.5, 3.

Figure 17. Force-deflection curve for l = 1.7416. Solid curve: numerical
results; data points: experimental results.
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Figure 18. Vertical stiffness (k = df/dδ) as a function of length, l, for
(from left to right) f = 90, 50, 20, 10.

Figure 18 shows the computed initial spring constant, k, where now the
vertical stiffness k = df/dδ is variable, determined by the length of the loop.
Results are plotted for four specific pre-load values f . Not surprisingly, the
longer the loop, the less stiff it is (in the vertical direction) for a given point
force. Thus, the pre-load (which would typically correspond to additional
dead-weight of the system to be isolated) can be used to tailor the stiffness
to a value suitable for isolation. Alternatively, and more realistically, the
stiffness may be tailored by changing the length of the loop. Also shown in
this figure (in the inset) is the specific equilibrium shape when f = 50, l = 2.
It should also be mentioned here that the nonlinear nature of the stiffness

characteristics can also be problematic if taken too far. For example, if we
continue plotting the force-deflection behavior for even larger deflection we
get the result shown in Figure 19. However, the final part of this curve is
not physical, since self-contact would have occurred by then. It is also likely
that the material would suffer plasticity effects if deformed to this extent.
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Figure 19. Loss of stiffness for grossly deformed geometry.

3.2 Free Vibration

Extending the analysis for dynamics, free vibration frequencies and mode
shapes for the system are found using the equilibrium solution (for given
values of l and f and c = 0) and adding frequency as an additional unknown
parameter in the shooting procedure. The lowest (symmetrical) frequency
is plotted in Figure 20 for the four nondimensional lengths l = 3, 2.5,
2, and 1.5. For each length, the fundamental frequency is found up to
self-contact, which, for l = 3 and 2.5, occurs before the system becomes
unstable. When this occurs, the frequency drops to zero, and the structure
is unable to statically support the mass. Without the mass load (f = 0)
and a nondimensional length of l = 2 the fundamental natural frequency is
Ω = 21.1, and it can be shown that the higher (symmetric) frequencies can
be found at Ω = 59.6 and 120.6, and they generally reduce with increasing f .
Within this figure (in the inset) is an example of the corresponding mode
shape for the specific case of l = 2.5, f = 10,Ω1 = 6.1. The symmetric
constraint prevents the appearance of the even number modes. We also see
from this figure that, unlike the buckled springs from earlier, this system
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Figure 20. Lowest frequency as a function of f for (from left to right)
l = 3, 2.5, 2, 1.5.

does not need a minimum load (mass) to be effective.

4 Transmissibility

Forced vibration is again considered by assuming a vertical base excitation,
u(t), that is sinusoidal, i.e.,

u(t) = uo sinΩt. (16)

The nondimensional forcing amplitude, uo, is defined as uo = Uo/a, where
Uo is the dimensional excitation amplitude. Again the forced elastica equa-
tions are solved numerically using the shooting method. The resulting dis-
placement transmissibility is then defined as

Tr =
|xd(l/2)|

uo
. (17)

Numerical and experimental transmissibility results in the vicinity of the
first resonant frequency are shown in Figure 21, where the smooth curve
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represents numerical results. The dashed horizontal line represents a trans-
missibility value of unity, i.e, where the amplitude of the input and output
are equal. In Figure 21 the results correspond to a nondimensional length

Figure 21. Experimental and numerical transmissibility result for l =
1.987, f = 29.29.

l = 1.987, where f = 29.3. The natural frequency for this case is found
numerically using the free vibration equations, giving 3.33 Hz. The ex-
perimental transmissibility peaks occur at 3.68 Hz. Clearly there is some
discrepancy in the damping model.
There are of course higher frequencies and mode shapes present in the

response. If we extend the frequency range for both theory and experiment
we get the results shown in Figure 22. The anti-resonances are difficult to
detect in the experiments due to the effects of noise.
In both the numerical and experimental results, there is a degree of

attenuation of the transmissibility for forcing frequencies above the first
resonance, and this resonant frequency can be tuned by either altering the
loop length or static mass of the system.
While in this case the mass motion is constrained to be purely verti-

cal, the pinched loop isolator system is one that may also be studied as a
horizontal motion isolator or even a system that isolates motion in both di-
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Figure 22. Experimental and numerical transmissibility result for l =
1.479, f = 29.29, including the higher frequency range.

rections simultaneously. This system characteristic makes the pinched loop
isolator particularly advantageous over a helical spring system, where the
stiffness is fixed, and the motion must be limited to be exclusively in one
direction.
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Abstract We consider issues related to the design of mechanical
systems that feature nonlinear vibratory behavior. Designs that ac-
count for, and also exploit, nonlinear dynamics are considered. The
chapter provides a brief overview of general considerations related
to these issues, and then considers in detail the case of vibration
absorbers that are used to reduce torsional vibrations in rotating
systems. These absorbers, which are being developed for use in
automotive engines, consist of centrifugally driven masses that ride
on user-specified paths relative to a rotor that is being driven by
a fluctuating torque. The absorbers are used to reduce the tor-
sional vibrations of the rotor by providing a torque on the rotor
that counteracts, at least partially, the applied torque. The mathe-
matical model of this system represents, under assumptions on the
system parameters consist with practical applications, a system of
N identical nonlinear oscillators with weak damping, weak global
coupling, and weak near-resonant excitation. The nonlinearity in
the oscillators depends on the path, and the goal of this nonlinear
dynamic design problem is to select a path that provides good vi-
bration reduction over a specified range of torque amplitudes. The
desired response has all N absorbers behaving identically, that is, in
a synchronous manner. However, the structure of this system leads
to two distinct types of dynamic instabilities, and both must be
avoided for a given design to be feasible. In this work we examine
the synchronous absorber response in terms of vibration reduction,
torque range, and stability. It is shown that a particular epicycloidal
path provides good performance, and can be made stable. These
results are a summary of previous work described in (30).
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1 Accounting for Nonlinear Behavior in the Design of
Vibratory Systems

The engineering design of mechanical systems can be based on static prin-
ciples when inertial effects are not important, but in many applications
one must account for dynamic effects. In some of these applications, linear
models provide sufficient information about important dynamic behavior,
for example, for determining resonant frequencies and modes of vibrations
in structures (11). In such cases, two very convenient properties hold: (i)
superposition, which allows one to view each vibrational mode as inde-
pendent, and thus one can predict behavior near resonances using linear
single degree of freedom models, and (ii) scaling of response, so that the
response amplitude is directly proportional to the level of excitation driving
the system. These principles allow for the use of powerful analytical and
computational tools, but they also limit the types of response behaviors
that can be predicted by models. In fact, in many cases, linear models
break down in terms of predictive capabilities, and nonlinear effects must
be taken into account. In these cases, one must turn to more sophisticated
analysis tools, since superposition and scaling no longer hold. The ultimate
tool for evaluating any engineering system is an experimental study, but
these are typically costly, time consuming, not very useful for developing
fundamental understanding, and usually not viable for extensive parameter
studies. Simulation studies share many of these shortcomings, and while
less expensive to run, require the development of a reliable mathematical
model. When available, analytical tools, applied to idealized models, are
very useful for developing physical insight into general features of system
response, and how it depends on system and input parameters. The insight
gained about nonlinear system responses from such studies is analogous to
that developed by analyzing simple linear systems, and it forms the basis
for much of the insight one can use when designing with nonlinear behavior
in mind.
A dynamic system responds in a time-varying manner, typically to some

type of inputs. These inputs include impulses, such as those that arise in
impact problems, harmonic and other time-periodic forces, such as those
that arise in rotating systems, and random forces, such as those that arise,
for example, from turbulent fluid loading or earthquakes. These inputs cause
system responses that must satisfy certain specifications in order to perform
as desired. Common types of undesirable responses to dynamic loading
include: excessive amplitudes, fatigue failure, and instabilities leading to
behavior such as flutter or chaos. In order to design systems that meet
the response specifications, one must understand the system input-output
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characteristics. For linear systems, the understanding of system response to
simple inputs, coupled with the superposition principle, provides a powerful
tool for determining these characteristics. Similarly, for nonlinear systems,
a lot can be learned about what is possible, in terms of system responses, by
considering simple examples. However, superposition does not hold, which
leads to more rich, and interesting, possibilities for the response. Still,
simple examples demonstrate many of the most important, and general,
features of nonlinear system response, including behavior near resonance,
energy exchange between modes, bifurcations, chaos, etc.
Here we focus on the nonlinear vibratory response of mechanical systems

that can be described by a few degrees of freedom. Of primary interest here
are nonlinear resonant behaviors in these systems when they are subjected
to periodic excitation. In order to design such systems to meet response
specifications, one must be able account for nonlinear resonant behavior in
some predictive manner. Following a general discussion along these lines,
we provide detailed results for a practical example that allows for a thor-
ough investigation of its nonlinear response, and tailoring that response by
selection of system parameters, to achieve a certain goal. The systems of
interest are centrifugal pendulum vibration absorbers, or CPVAs. The re-
sults for CPVAs presented here include modeling, analysis, and simulations;
the reader is referred to (32; 23; 24; 29) for experimental results on these
systems.

1.1 Nonlinear Resonances

For our general discussion, we focus on the following features of nonlinear
resonant behavior: effects of nonlinearities on isolated resonances, nonlinear
modal interactions, and transients leading to resonant steady state response.
Some fundamental knowledge about nonlinear vibrations, as outlined in
Chapter One of this volume, is assumed on the part of the reader.
For an isolated resonance to occur the following conditions must hold:

the excitation must have a frequency component near an isolated natural
(modal) frequency of the system, the excitation must be able to put energy
into that mode, and dissipation must be relatively small. For linear sys-
tems operating near such a resonance, dissipation plays the essential role
in limiting the response amplitude. However, in lightly damped systems,
the effects of frequency pulling that arise from nonlinear stiffness, either
hardening or softening, will limit the amplitude above a certain excitation
level. In addition to limiting the response near resonance, this frequency
pulling, which derives from the fact that nonlinear stiffness generally causes
the frequency of free oscillation to depend on amplitude, causes the res-
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onance curve to bend over, thereby widening the range over which large
amplitude responses occur. This bending can be large enough to cause
bistability in the frequency response, that is, the existence of two (or more)
stable steady-state responses coexisting over a certain frequency range, in
which case the steady state response ultimately achieved depends on initial
conditions. One of these steady states is essentially that of the linearized
system, and the other is a large amplitude nonlinear response in which the
nonlinear (amplitude dependent) natural frequency roughly matches the
driving frequency. These stable operating states are separated, in a par-
ticular sense that delineates the initial conditions, by an unstable response.
This unstable response is of saddle type, and its stable manifold, also known
as its separatrix, or inset, provides the boundary between initial conditions
that lead to the two possible stable steady state responses. The details of
this frequency response can be found in any text on nonlinear vibrations,
e.g., (22; 9)
Of interest here are the features of such a response that affect the design

of systems operating near such a nonlinear resonance. One such feature
is that in systems with noise or other disturbances, the bistability can be
problematic, since a well-behaved system with a linear-looking response
away from the linear resonance, can be bumped by the disturbance, via a
transient, into a large amplitude, sustained response. In fact, this nonlinear
resonant response will persist if one changes the excitation amplitude and/or
frequency. The only way to get the system back to the linear response is
to provide another disturbance, in which case it may or may not go to the
desired response, or to vary the excitation parameters, until the system
reaches the point where the nonlinear response branches meet in a saddle-
node bifurcation (9). In some systems, with very light damping, this may
be at a value that is twice the resonant frequency, in fact, in a frequency
range where other modes come into play.
In a linear system model, individual modes are uncoupled. In discrete

systems with distinct natural frequencies (eigenvalues) and a special form
of damping (4), the modeshapes (eigenfunctions) are independent of the
damping and represent standing waves of vibration of the structure, that is,
the nodal points are fixed. For more general forms of damping, the modes
are traveling waves. For all such cases, each system mode is described by
a damped single degree of freedom system. When driven by external ex-
citation, if the frequency (or frequency content) of the excitation is near a
natural frequency, the response is dominated by that mode, but will contain
small amounts of other system modes. When a system has repeated fre-
quencies, the response near that resonance is typically composed of a linear
combination of the associated natural modes, with each mode participat-
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ing substantially. If the system is nonlinear, such repeated frequencies can
result in responses not predicted by linear theory; this occurs in the pen-
dulum absorber example considered below. Also, under some conditions,
described in more detail below, system modes with well separated frequen-
cies can interact through nonlinear effects, and the resulting response may
involve more than one mode in a substantial way (21).
To make these notions more specific, consider a system with two modes

with repeated natural frequencies. Classic examples of this occur in the vi-
brations of taut strings, square and circular plates, and beams with square
or circular cross-section. Let the system modal amplitudes and frequencies
be denoted by xi i = 1, 2 and ω1 ≈ ω2, respectively, and suppose that the
response of each mode is harmonic at a frequency ω ≈ ω1. If nonlinear
coupling between modes exists such that mode j has terms of the form
xix

2
j , then mode j will see a resonant forcing from mode i through this

term. Generally, these terms arise from nonlinear coupling, arising from a
potential, that allows cross-talk between the modes, which can result in re-
sponses not predicted by linear models (21). Similarly, if there exist modes
with a 3:1 frequency ratio, the same nonlinear terms, when considered in
terms of their Fourier components, generate harmonics that promote energy
exchange. Another common internal resonance encountered in mechanical
systems is that of a 2:1 frequency ratio, in which case quadratic modal cou-
pling terms lead to the conditions needed for internal resonance. Indeed,
there are a multitude of such possibilities for internal resonances, involving
multiple modes for which the ratios of natural frequencies are close to ratio-
nal numbers, p/q, where p and q are positive integers. Generally, resonances
with higher values of p+ q have smaller basins of attraction, and are easily
suppressed by dissipation. Thus, from a mechanical design point of view,
the resonances discussed above are the most relevant, and even these occur
only in lightly damped systems. A common class of systems where they
are encountered are those with specially symmetries, such as the absorber
problem considered in detail below.
We now turn to a practical example in which one can design the system

nonlinearity to avoid both bistabiliy and modal interactions, either of which
leads to undesirable system behavior.

2 Centrifugal Pendulum Vibration Absorbers

Many rotating systems experience engine-order excitation, which are loads
that are synced with the rate of rotation in such a manner that the fre-
quency of excitation is proportional to the rotor spin rate, denoted Ω. The
excitation order n is the constant of proportionality, so that the frequency of
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excitation is nΩ. Rotor systems are designed to minimize such loads, for ex-
ample, by dynamic balancing, but in many cases such loads are unavoidable.
For example, internal combustion engines experience engine-order torsional
loading on the crankshaft, arising primarily from cylinder gas pressure fluc-
tuations that act on the crankshaft through the piston/connecting rod link-
age. In some applications it is essential to reduce these torsional vibrations.
For example, in light aircraft engines, these fluctuating loads cause wear
and fatigue on the gearing between the engine and propellor. Until quite
recently, these torsional vibrations have not been an issue for automotive en-
gines, where torque converters, multi-cylinder engines, flywheels, etc., help
soften their effects. However, pressures for improved fuel economy, without
sacrificing performance or comfort, have pushed engine designers into more
aggressive operating regimes, specifically, those with higher in-cylinder gas
pressures and lower engine speeds, both of which improve engine efficiency,
but also result in more severe vibrations, caused primarily by powertrain
torsionals.
Several methods exist for mitigating the effects of these torsional loads,

including simple flywheels, so-called harmonic balancers, and dual-mass
flywheels (DMFs). The first of these simply adds DC inertia to the ro-
tor, thereby lowering the levels of vibration, but at the highly undesirable
price of more sluggish system responsiveness. The harmonic balancer and
DMF are frequency tuned devices that address torsional vibrations only at
a specific engine speed corresponding to a troublesome resonance, or, in the
case of very soft spring DMFs, they isolate powertrain components down-
stream from the engine torsional vibrations at low engine speeds. These
have proved satisfactory for several decades, but it is becoming increasing
clear that more sophisticated methods will be needed to push engine oper-
ating envelopes. Passive vibration suppression is the only practical solution
for these applications, due to power and reliability requirements.
CPVAs have been around for about 100 years and are widely used for

reducing engine-order torsional vibrations in the aerospace industry, specif-
ically light aircraft engines and helicopter rotors (13; 34; 15). Over the
past ten years these devices have started to receive attention for use in au-
tomotive engines (25; 33). A primary target application are engines that
utilize cylinder deactivation, wherein cylinders are shut down when the en-
gine can provide the needed power with fewer cylinders. While the amount
of fuel per cylinder must be increased to meet torque demand, efficiency is
improved by reductions in engine pumping losses. In a preliminary study
on a V8 engine that could cut off four cylinders, the addition of CPVAs
allowed the engine to operate all the way down to fully loaded idle condi-
tions, a significant improvement (25). It is expected that CPVAs will find
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many automotive applications in the next few years.Another application is
for boosted engines, which have relatively high cylinder compression and
operate with higher efficiency, but also generate strong torsional vibrations.
Fuel saving enhancement is also aided by widening the operating range for
torque converter lockup; a torque converter is a rotational coupling device
between the engine and transmission that is generally quite dissipative. It
becomes much more efficient if locked into a rigid connection by a clutch,
and the conditions for lockup include low levels of engine torsional vibra-
tions. So, by expanding this range improves fuel economy. While many
of these implementation have yet to be realized, the LuK Corporation has
developed a combined DMF/CPVA system that smoothes out vibrations,
and is now available in some production vehicles (12; 33).

2.1 Basic Operation of Pendulum Absorbers

In its essence, a CPVA is a passive device that, when properly tuned,
functions like a torsional tuned mass damper (TMD). Specifically, it is a
secondary inertia, in this case a centrifugally driven pendulum, attached to
a primary device, in this case a rotor, designed so that when the primary
device is subjected to fluctuating loads, in this case engine-order torques,
the pendulum responds in such a manner that it cancels, at least partially,
the resulting fluctuations of the rotor speed. A key difference between CP-
VAs and the usual TMD is that the pendulum restoring force is provided by
centrifugal effects, not an elastic spring. This restoring force scales like Ω2,
where Ω is the mean rotor spin rate, and thus the natural frequency of the
pendulum is proportional to Ω. The constant of proportionality, denoted
here by ñ, sets the linear tuning for the pendulum absorber, that is, its
small oscillation tuning. For excitation of order n, tuning ñ ≈ n allows the
absorber address this excitation at all rotor speeds. When considering en-
gine order excitation, these order-tuned absorbers have a distinct advantage
over frequency tuned devices. Typical TMDs, of which the DMF and har-
monic balancer are examples, are effective only at one specific engine speed,
typically corresponding to a powertrain torsional mode natural frequency.
When implemented as a simple pendulum, a CPVA has limited pack-

aging space, and the center of mass (COM) necessarily follows a circular
path. This path leads to a softening nonlinear response that is highly un-
favorable in several aspects, as is well known (10; 26; 2), and described in
detail below. An appealing aspect of these absorbers is that their nonlinear
response can be altered, even tailored, by changing the path followed by the
absorber COM. This is achieved by utilizing a bifilar (two point) suspen-
sion, like that shown for a helicopter rotor absorber in Figure 1, in which
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the absorber mass rides on a pair of rollers such that the absorber mass does
not rotate relative to the rotor (13; 15; 8; 20). The surfaces along which the
rollers ride, on both the absorber mass and the flange attached to the rotor,
can be machined to realize a wide variety of paths for the absorber COM.
In addition, this arrangement is very convenient for packaging absorbers,
since the desired linear tuning is fixed solely by the diameter of the rollers
and the curvature of the path at zero amplitude (8; 20).

Figure 1. (a) Top view of a helicopter rotor with four CPVAs, consisting of
masses suspended by pairs of rollers. (b) A CPVA with bifilar suspension in
which thin steel bands wrap on cheeks such that the absorber mass follows
a user-defined path, in this case a particular epicycloid; the encoder is used
for measuring absorber position.

The absorber works by reacting to speed fluctuations of the rotor, which
cause the absorber to oscillate along its path, and this motion generates a
torque on the rotor that cancels, at least partially, when properly designed,
the applied fluctuating torque. The torque from the absorber acting back
on the rotor scales like Ta mcAΩ2 where m is the absorber mass, c = Ro

is the maximum distance from the absorber COM to the rotor center, A is
the peak absorber COM amplitude along its path, and Ω is the rotor speed.
In practical designs the product mc is limited by hardware constraints, and
thus one would like to push A to large amplitudes. However, one typically
wants to achieve a maximum Ta with a minimum inertia mc, hence A will
be large. This necessitates designing for nonlinear responses.
Another feature that makes these systems additionally rich is that, in

order to realize substantial total absorber mass, and to dynamically balance
these masses, several identical absorbers are placed around and/or along the
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rotor, as seen in the helicopter rotor of Figure 1. If the rotor is considered
rigid, which is a valid assumption for most of these systems, this leads to
a system with a high level of symmetry and repeated natural frequencies.
When analyzing the system response, one must account for this internally
resonant structure, in addition to the nonlinear behavior of individual ab-
sorbers.

2.2 Mathematical Model

In order to develop useful design guidelines, specifically, to select ab-
sorber inertia and path parameters to meet target response specifications,
it is useful to have a predictive mathematical model for the response of a
rotor fitted with multiple absorbers, expressed in terms of general system
parameters. The essential model for evaluating absorber performance con-
sists of equations of motion for a rotor and N identical absorbers, taken to
be point masses riding on paths relative to the rotor. This model neglects
the rollers used in many bifilar configurations, but these can be accounted
for (8; 20). The system equations of motion, details of which can be found
in other works, e.g. (8; 30; 19), are developed using the idealized model
shown in Figure 2a. These are nondimensionalized to reduce the problem
to a set of dimensionless variables and parameters. The model consists
of: (i) a rigid rotor spinning at a normalized mean rate < ν >= 1 where
ν = θ̇/Ω is the nondimensional rotor speed, and θ is the rotor angle; (ii)
the rotor is subjected to a torque with constant and fluctuating compo-
nents ε(Γo + Γ(θ)) = (To + T (θ))/(JΩ2), where T ’s are the the physical
torques, J is the rotor inertia, and ε is a scaling parameter defined below;
(iii) a set of N identical absorbers each of mass m, modeled as point masses
riding on identical paths relative to the rotor, where Si is the arc-length
displacement of absorber i along its path and si = Si/c where c = R(0)
is the distance from the rotor center to the furthest point on the absorber
path; and (iv) dissipation effects for the absorber and rotor are modeled as
equivalent viscous damping. The path for the absorbers is specified by a
function r(s) = R(cs)/c, which is the non-dimensional radial distance from
the rotor center to the absorber when it is at a displacement S = cs. Com-
mon paths for absorbers include circles (26), which are easy to manufacture,
cycloids, proposed and used for helicopter rotors (15), and the tautochronic
epicycloid, a path that makes the absorber linear in terms of nonlinear de-
tuning (8). More details about absorber paths follows subsequently.
The equations of motion are derived with a Lagrangian approach using

generalized coordinates θ and si, for i = 1, . . . , N . The effects of damping
on the rotor and absorber, and the torques acting on the rotor, are modeled
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using generalized forces. The applied torque is modeled as a DC component
plus a single harmonic of order n, expressed as ε(Γ = Γo+Γcos(nθ)). This
is a valid assumption for many automotive operating conditions, since many
higher harmonics cancel each other in multi-cylinder engines. The dominant
excitation order for a four-stroke engine with K cylinders is n = K/2, that
is, there are n forcing cycles per 2π rotation. Note that this torque, since it
depends explicitly on the crank angle, rather than time, could be modeled
using a potential. However, since the rotor never reverses direction, we use θ
as the independent variable, in place of time, rendering this applied torque as
a periodic perturbation in the independent variable. This change of variable
results in the torque playing the role of a small perturbation, and makes
the system amenable to perturbation analyses; see, for example, (5; 2; 30).
Another important feature of the equations of motion in this formula-

tion is that the rotor speed is a dynamic state, whereas the rotor angle is
the independent variable. With θ as the independent variable, the system
states are the absorber displacement and speed and the rotor speed, that is,
(si, s′i, ν), where (·)′ = d(·)/dθ. Thus, the basic system is a rotor spinning
at nearly constant speed, subjected to a torque that is small (when scaled
by the rotor kinetic energy), with a relatively small absorber mass riding on
a specified path, with small absorber and rotor dissipation. We use a small
parameter ε to conveniently scale these effects, such that when ε = 0 the
system collapses to a rotor running freely at constant speed with absorbers
of zero mass riding on their paths. For ε << 1 these effects are accounted for
by the perturbation analysis described below. For ε we use the ratio of the
rotational inertia of an absorber mc2 to the rotor inertia J , i.e., ε = mc2/J .
For the perturbation scheme to be valid, Nε << 1 must hold, that is, the
total absorber inertia must be relatively small. Additional small parameters
in the model are εμ, the absorber equivalent viscous damping coefficient,
εμo, the rotor equivalent viscous damping, and, as described above the ap-
plied torque acting on the rotor. In terms of these states and parameters,
the model equations for the absorbers are given by,

νs′′i +
(
g(si) + s′i

)
ν′ + εμs′i − ν

1
2
dr2(si)
dsi

= 0 i = 1, . . . , N, (1)

and that for the rotor is,

νν′ + ε
{ N∑
j=1

[
g(sj)(νν′s′j + ν2s′′j ) +

dg(sj)
dsj

ν2s′2j + (2)

+
dr2(sj)
dsj

ν2s′j + νν′r2(sj)
]
+ μoν − Γo − Γ cos(nθ)

}
= 0,
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where g(s) is a path function, specifically, it is r(s) times the cosine of
the angle between the local path tangent at s and a line perpendicular to
the radial line passing from the rotor center to s. This function, given
by g(s) = r(s)

√
1− (dr(s)/ds)2, describes the kinematic rotor/absorber

coupling, by specifying the angle of the contact force acting between the
rotor and the absorber.
Note that for the rotor mean speed to be ν = 1, the bearing resistance

and mean torque must balance to leading order, that is, μo − Γo = O(ε),
which will be assumed to hold. Then, since the absorber/rotor coupling is
small and the rotor speed is nearly constant, as seen since νν′ = O(ε), the
dynamics can be uncoupled to leading order in ε, as follows. We express
the rotor speed as ν(θ) = 1 + εw(θ) +O(ε2), substitute this into equations
(1) and (2), and expand in ε. The result for the leading order term of the
rotor acceleration is,

w′ = Γcos(nθ)−
N∑
j=1

[
g(sj)s′′j +

dg(sj)
dsj

s′2j +
dr2(sj)
dsj

s′j
]
, (3)

where the first term is direct result of the fluctuating torque, and the re-
maining terms are the effects arising from the dynamics of the absorbers.
Note that the goal of the absorbers is to use their dynamics, that is, the
terms in the summation, to cancel the effect of the torque, thus minimiz-
ing this quantity. As w′ is reduced by some measure, so too are the rotor
torsional vibrations.
The expanded form of the rotor speed, ν = 1+ εw+O(ε2), using equa-

tion (3), is substituted into the absorber equation and the result expanded,
yielding a set of equations governing the response of the absorbers that is
uncoupled from the rotor dynamics to leading order in ε (5; 30). These
equations, which include the nonlinear effects arising from the specified ab-
sorber path r(s), as well as the effects of the rotor acceleration, are given
by,

s′′i − 1
2
dr2(si)
dsi

= εf̂i(S,S ′,S ′′, θ) +O(ε2) i = 1, . . . , N, (4)

where S is the vector of si’s and the f̂i’s will be specified below, after
providing some details about the absorber path.
These equations represent a set of N identical nonlinear oscillators with

weak damping, weak near-resonant forcing, and weak coupling. The cou-
pling between absorbers stems from their common interactions with the
rotor, and when described in this form, which hides the rotor dynamics, the
absorbers are globally coupled, that is, each absorber is affected by all ab-
sorbers, including itself; these effects are described more fully below. This
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coupling leads to a symmetry in the problem that will be exploited for sta-
bility calculations, as in (6; 2; 30). This symmetry also raises the possibility
for energy to flow between the absorbers, through nonlinear coupling terms,
which cannot be ignored, since the absorbers are lightly damped and driven
near resonance. These features set the stage for a variety of interesting dy-
namic interactions, most of which are undesirable from the point of view of
absorber performance.
In terms of determining the system dynamics using this model, we em-

ploy a perturbation method to solve for the response of the absorbers using
equation (4), and then use equation (3) to determine the corresponding rotor
dynamics. Note that rotor torsional vibrations are conveniently described
by the magnitude of the angular acceleration, which is given, in terms of
the physical and nondimensional variables, by θ̈ = Ω2νν′ = εΩ2w′ +O(ε2).
Thus, w′ captures the rotor vibrations to leading order. It is worth noting
that due to nonlinear coupling effects arising from the kinematics of the ab-
sorber path, even when the absorber response is nearly harmonic at order
n, equation (3) shows that the rotor vibrations can contain significant har-
monics at orders n, 2n, 3n (14). Since the goal of the absorber is to reduce
the order n vibrations, when we plot the nondimensional rotor acceleration,
it will be in terms of the order n harmonic component of w′.
Before proceeding further, we need to describe a parameterization of the

absorber path function r(s) that is useful for design.

2.3 Nonlinear Design: The Absorber Path

The path is selected to provide reduction of rotor torsional vibration over
a range of torque loads, while avoiding undesirable behaviors. The primary
effects of concern are: (i) bistability that can lead to jumps and hystere-
sis in the response as the torque amplitude or rotor speed are varied; (ii)
symmetry-breaking instabilities that lead to nonsynchronous responses in
systems of multiple absorbers; and (iii) large amplitude transient responses.
All of these can be achieved by simply making mc2 large, which keeps the
absorber in its linear response range, but this leads to undesirable added
mass and rotational inertia. Thus, in order to achieve good performance
with minimal added inertia, one must consider nonlinear effects when se-
lecting the absorber path.
A convenient form for paths of interest was originally presented by Den-

man (8) (who credited Borowski), and used in many subsequent studies by
the authors, e.g., (30). This formulation is expressed in terms of the local
radius of curvature, ρ(s) =

√
ρ2o − λ2s2 (all lengths are normalized by c),

where the radius of curvature at the path vertex s = 0 sets the linear tuning
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by ρo = 1/(1 + ñ2) (8; 30). The parameter λ affects the path at moderate
and large amplitudes, that is, it specifies the absorber nonlinearity arising
from its path. For λ = 0, the path is a circle, which is strongly soften-
ing; for λ = 1, the path is a cycloid, which is mildly hardening; and for
λ = λe = ñ/

√
1 + ñ2, the path is the tautochrone, which is neither harden-

ing or softening, that is, it is essentially linear, as described in more detail
below. Figure 2b depicts sample absorber paths for various ñ and λ values.
While the differences in these paths appear slight, they have a dramatic
effect on the nature of the response when the absorber is driven beyond its
linear range, as demonstrated below.
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Figure 2. (a) Schematic of a rotor with absorbers riding on user-defined
paths, shown in red. (b) Left: three tautochronic paths with λ = λe ≡√
ñ2/(1 + ñ2) for ñ = 1.5, 1.55, and 1.6. Right: three paths with ñ = 1.53

for λcircle = 0, λ = λe = .8371, λcycloid = 1. Note that Ro = c.

The nonlinear path designations are based on a system model in which
the rotor runs at constant speed and the absorber has no damping. A
convenient way to view this situation is to consider the ε = 0 version of
the equations of motion, equations (1-2), which yields ν = 1, a constant
rotor speed, and s′′ − 1

2
dr2(s)
ds = 0, a conservative oscillator for the absorber

motion, where − 1
2r

2(s) plays the role of an effective potential that gives the
absorber restoring force. The tautochrone is precisely the path that renders
this oscillator as linear for all feasible amplitudes of s. To specify symmetric
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paths that are near the tautochrone, we take r2(s) = 1− ñ2s2 + εγs4. For
γ = 0 the oscillator response is a pure harmonic of frequency ñ, so that
the absorber tuning order is ñ.1 This response is valid out to the absorber
amplitude at which the epicycloidal path has a cusp, which is described by
the condition g(sm) = 0 that yields the maximum (cusp) amplitude, derived
below. Thus, for absorber paths that are near the tautochrone, one does
not need to carry out amplitude expansions to achieve a weakly nonlinear
system. In this case, the weak nonlinearity from the path is captured in
the parameter γ, and additional nonlinearities arise from the rotor absorber
coupling, described in detail below.
The influence of the path type on the absorber dynamics are made evi-

dent by considering an amplitude expansion of the restoring term and exam-
ining the leading order terms. This calculation, using the path parameters
ñ and λ, is given in detail in (30), and it yields,

−1
2
dr2(s)
ds

= ñ2s − 2εγs3 + (λ2 − λ2e)
(
1
6
(1 + ñ2)3s3 +O(s5)

)
, (5)

which clearly shows the role of the linear tuning parameter ñ, and the how
the leading order nonlinear path term depends on γ and the value of λ
relative to λe (8; 30). Note that when γ = 0, circular paths with λ = 0
are softening, since the leading order nonlinear term from the path has a
negative coefficient. In contrast cycloidal paths with λ = 1 are hardening,
since λe < 1, and the leading order nonlinear coefficient is positive. In both
cases the level of softening/hardening from the path nonlinearity increases
as the linear tuning order ñ increases, due to the coefficient. The parameter
γ provides a convenient way to tune the path away from the tautochrone,
where γ > 0 (< 0) gives a softening (hardening) effect. In this work we will
take λ = λe and use (ñ, γ) to tune the path.
This near-tautochronic formulation allows one to retain the effects of

the nonlinearities that arise from the rotor/absorber coupling, which are
important for absorbers riding out to large amplitudes. If the absorbers ride
on non-tautochronic paths with moderate amplitudes, the path nonlinearity
will dominate that of the rotor/absorber coupling, which greatly simplifies
the model, since the resulting absorber equations are essentially a set of
globally coupled Duffing oscillators. That case has been considered in detail
in (2; 17).
In summary, the absorber design problem boils down to selecting the

maximum absorber mass m and placement c allowed by hardware and re-

1
Note that in this rescaled version of the system model the mean rotor speed is unity,

so that order and frequency are identical.
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sponsiveness constraints (i.e., total system rotational inertia), and then se-
lecting the absorber path parameters (ñ, γ). For all absorbers, selection of
the linear tuning order ñ is crucial, since it sets the baseline response, even
out to large absorber amplitudes, as shown below. For the nonlinear path
characteristic, we use the cubic path coefficient γ to move away from the
perfect tautochrone.
For these nearly tautochronic paths, the absorber dynamics are essen-

tially harmonic over their entire feasible range, and thus the perturbation
method outlined below can be applied to absorbers moving with large am-
plitudes.

2.4 Scaling and Perturbation Analysis

The absorber system represents a set of nonlinear oscillators that are
weakly coupled through the rotor, each responding to a common applied
harmonic force. The scaling and analysis are geared towards bringing out
the effects of absorber coupling, damping, excitation, and detuning from
resonance to leading order in ε. In order to achieve a form for the absorber
equations that is convenient for this perturbation analysis, we employ the
ε scaling assumptions outlined above, use the path formulation given in
equation (5), and replace the S ′′ terms in the f̂i in equation (4) with −n2S,
which is valid to leading order in ε for the (nearly harmonic) responses
of interest. These substitutions lead to the desired form of the absorber
equations, expressed as follows,

s′′i + ñ2si = εfi(S,S ′, θ) +O(ε2) i = 1, . . . , N (6)

where

fi(S,S ′, θ) = 2γs3i + f̂i(S,S ′,S ′′, θ)|S′′=(−n2S)

= 2γs3i − μs′i − (
s′i + go(si)

)(
Γ cos(nθ) (7)

+
1
N

N∑
j=1

[
2ñ2sjs′j + n2sjgo(sj)− s′2j

dgo(sj)
dsj

])
,

where g0(s) =
√
1− ñ2(1 + ñ2)s2 is the ε = 0 version of g(s).

These equations form the basis of the analysis, whose aim is to predict
the response of the absorbers in terms of the system parameters, and use the
results to select absorber path parameters. Of interest here are the steady-
state amplitudes and phases, and the local stability of these responses. Once
the absorber responses are obtained, the rotor acceleration, and thus the
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level of torsional vibration, can be reconstituted to leading order from w′

as given in equation (3), as described above.
It is important to note that the absorbers are tuned such that they

addresses the order n excitation, and thus the linear tuning is selected to be
ñ ≈ n. To make this precise for the perturbation calculations, we introduce
the (small) absorber detuning parameter, εΔ = n2 − ñ2, which will be used
in the following section.
The absorber equations (6) are amenable to the method of averaging.

The process starts with the assumption of a nearly harmonic response at
the forcing order, motivating the following coordinate transformation to
amplitude Ai and phase ψi variables,

si(θ) = Ai(θ) cos(nθ + ψi(θ)) (8)
s′i(θ) = −nAi(θ) sin(nθ + ψi(θ)).

This transformation is substituted into the absorber equations (6), rendering
an equation involving A′

i and ψ
′
i, that is, the rates of change of the amplitude

and phases with respect to θ. Note that the transformation requires, by
direct differentiation of si and a comparison with s′i in equation (8), the
following condition to hold,

A′
i cos(nθ + ψi)− Aiψ

′
i sin(nθ + ψi) = 0. (9)

This equation and the absorber equation with A′
i and ψ′

i can be solved
for (A′

i, ψ
′
i). All terms in these equations are O(ε), except for one term

in ψ′
i that is proportional to n

2 − ñ2, for which we substitute εΔ. Thus,
for ε << 1, (A′

i, ψ
′
i) = O(ε) and (Ai, ψi) will be slowly varying. These

terms will contain oscillating terms of order (frequency) n in θ, which cause
relatively rapid oscillations to be superimposed on the slow drift in (Ai, ψi).
In order to isolate the slow drift, one averages the (A′

i, ψ
′
i) equations over one

forcing period, 2π/n, yielding a set of equations for (ai, φi), which are the
θ-averages of (Ai, ψi) (9). For ε << 1, the expressions for (a′i, φ

′
i) are O(ε)

and, importantly, do not depend on θ to leading order. Here the averaging
process is more cumbersome than is the case for textbook examples, due
to the presence of square root terms in go, which appear in the fi’s in
equation (7). Thus, some terms in the resulting averaged equations must
be evaluated numerically, or expressed in terms of amplitude expansions in
the ai’s.
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The result of the averaging process, to leading order in ε, takes the form,

a′i =
ε

n

[
− 1
2
μnai + Γ sin(φi)F1(ai) + Pi(Z)

]

φ′
i =

ε

nai

[
aiñ

2

8N
(
4− a2i

(
3ñ2(ñ2 + 1) + n2(ñ2 + 3)

))
(10)

− 1
2
aiΔ− 3

4
γa3i + Γcos(φi)F2(ai) +Qi(Z)

]

where Z represents the vector of all (aj , φj)’s, and the coupling functions
(Pi, Qi) are given by,

Pi(Z) =
1
N

N∑
j=1

[
−1
4
ñ2n2aia

2
j sin(2(φj − φi)) + ñ2ajG1 + ñ2n2(ñ2 + 1)a3jH1

]
,

Qi(Z) =
1
N

N∑
j=1

[
1
4
ñ2n2aia

2
j cos(2(φj − φi)) + ñ2ajG2 + ñ2n2(ñ2 + 1)a3jH2

]
,

which are expressed in terms of functions F1, F2, G1, G2, H1, and H2,
which depend on the amplitudes ai and the phase difference αji = φj − φi,
as follows,

F1(ai) =
1
2π

∫ 2π

0

sin2x[1− ñ2(1 + ñ2)a2i cos
2x]

1

2 dx,

F2(ai) =
1
2π

∫ 2π

0

cos2x[1− ñ2(1 + ñ2)a2i cos
2x]

1

2 dx,

G1(ai, aj , αji) =
1
2π

∫ 2π

0

cos(x)sin(x − αji)[1− ñ2(1 + ñ2)a2jcos
2x]

1

2

× [1− ñ2(1 + ñ2)a2i cos
2(x − αji)]

1

2 dx,

G2(ai, aj , αji) =
1
2π

∫ 2π

0

cos(x)cos(x − αji)[1− ñ2(1 + ñ2)a2jcos
2x]

1

2

× [1− ñ2(1 + ñ2)a2i cos
2(x − αji)]

1

2 dx,
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H1(ai, aj , αji) =
1
2π

∫ 2π

0

cos(x)sin2(x)sin(x − αji)

× [
1− ñ2(1 + ñ2)a2i cos

2(x − αji)
1− ñ2(1 + ñ2)a2jcos2x

]
1

2 dx,

H2(ai, aj , αji) =
1
2π

∫ 2π

0

cos(x)sin2(x)cos(x − αji)

× [
1− ñ2(1 + ñ2)a2i cos

2(x − αji)
1− ñ2(1 + ñ2)a2jcos2x

]
1

2 dx.

This completes the averaging process.
These averaged equations are capable of capturing a wide range of be-

haviors. They have also proven to do an excellent job at predicting re-
sponses in experimental studies (32; 18). Steady state absorber responses
correspond to constant amplitudes and phases, which are found by locating
the (ai, φi) values for which (a′i, φ

′
i) = (0, 0). The stability of these fixed

points correspond to the stability of the attendant periodic responses in
the si’s (9). These including steady state synchronous responses, in which
all absorbers move with identical amplitudes and phases (6; 30), as well as
nonsynchronous steady state responses (5; 1). These equations also describe
transient responses, which are important for determining amplitudes during
system startup (31; 17).
Note that in the averaged equations we do not replace ñ everywhere by

n, as is often done in order to simplify terms in the following expressions,
in which case the difference is pushed out to higher orders in ε. In con-
trast, here we keep n, ñ, and Δ as they appear in the averaging process,
even though any two of these three parameters would suffice to specify the
absorber and excitation orders. The reason for this approach is that it is
generally observed that one obtains more accurate results by keeping these
terms in this form, rather than simplifying them, and it does not intro-
duce any inconsistencies (9; 28). In this work we will focus on ñ and n for
parameter studies, since these have clear physical meanings.

The Synchronous Response

The desired response of the absorbers has all absorbers moving in a
synchronous manner with constant amplitude and phase, that is, (ai, φi) =
(a, φ), ∀i. This is dynamically equivalent, in terms of vibration reduction,
to the case of a single absorber of total mass Nm. However, as shown below,
the stability characteristics of this response are affected by the presence of
multiple absorbers.
For the synchronous response, equations 10 collapse into a single form,
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that of a single absorber, as found in (32), and many of the functions
simplify. Specifically, for ai = aj = a and αji = 0, one can show that
G1(a, a, 0) = 0, H1(a, a, 0) = 0, G2(a, a, 0) = (4 − 3a2ñ2(1 + ñ2))/8, and
H2(a, a, 0) = 1/8. Functions F1,2’s can be determined by numerical integra-
tion, or expressed in terms of elliptic functions (17); here we evaluate them
numerically.
Evaluating equations (10) for the synchronous response and setting the

result equal to zero, one can solve for the following steady-state phase con-
ditions,

Γ sin(φ) =
μna

2F1(a)
(11)

Γ cos(φ) =
aE(a)
8F2(a)

.

where

E(a) = 4(Δ− ñ2) + a2
(
6γ − n2ñ2(3 + ñ2) + 3ñ4(1 + ñ2)

)
.

A convenient expression for the steady state synchronous amplitude, uncou-
pled from the phase, is found by computing Γ2 sin2(φ) + Γ2 cos2(φ) = Γ2,

Γ2 =
a2

64

{(
4μn
F1(a)

)2

+
(
E(a)
F2(a)

)2
}

(12)

which relates a to the system and excitation parameters. In order to avoid
solving for roots a for given parameters, one can set a, compute F1,2(a),
for example, by numerical integration, and then compute the corresponding
torque level Γ using equation (12). The corresponding phase can then be
determined using equation (11). This allows for relatively easy plotting
of (a, φ) vs. Γ, which will be presented for examples after we complete a
stability analysis.
One can determine the maximum possible absorber amplitude, dictated

by the cusp on the epicycloidal path, by solving g(am) = 0 for am. The
result for γ = 0 is simply amo = 1/(ñ

√
1 + ñ2), and an approximation for

the more general path can be found by expanding g(s) in εγ, which results
in,

am = amo

[
1 + εγ

(
1 + 4ñ2

2ñ4(1 + ñ2)2

)
+O(ε2)

]
, (13)

which is quite accurate for a wide range of path parameters. Note that for
γ > 0 (< 0) the maximum absorber amplitude is increased (decreased) from
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amo, consistent with direct examination of the paths shown in Figure 2b.
This expression of the limit for the amplitude of the synchronous response
is used in the calculations below.
Here we consider the local dynamic stability of the synchronous response.

Only stable responses are viable for operation, and, in fact, one should not
design a system to operate near an instability, since parameter uncertainties
and/or small disturbances can result in the system venturing far from the
desired response. Local stability of the synchronous response is determined
by linearizing the averaged equations about that response. The synchronous
response is represented by a fixed point of the autonomous averaged equa-
tions, and thus stability is dictated by the eigenvalues of the corresponding
Jacobian.
For convenience we express the averaged equations in the form,

z′ = εH(z) +O(ε2) z ∈ RN × SN , (14)

where elements of z are the averaged amplitudes ai and phases φi of the
absorbers. A fixed point with (ai, φi) = (a, φ) ∀i the synchronous response,
denoted as zs, satisfies H(zs) = 0. Note that other types of steady state
responses can occur, most notably, those in which subsets of theN absorbers
are mutually synchronous (5; 1). The synchronous response is the most
symmetric of these, in that every absorber is interchangeable with every
other absorber, leading to a global symmetry of the response. Responses
with lower orders of symmetry exist (5; 1), and arise from the synchronous
response in a generic way, described by symmetric bifurcation theory (16;
5; 1).
The local stability of the synchronous response is determined by lineariz-

ing the averaged equations about zs, leading to the 2N × 2N Jacobian,

J =
∂H

∂z

∣∣∣∣
z=zs

(15)

which depends on (a, φ) and the system and excitation parameters. This is
a tedious, but worthwhile, calculation, since the symmetry of this response
allows one to determine the eigenvalues of J by evaluating the eigenvalues
of a pair of 2 × 2 matrices, as described below. This Jocabian J , due to
symmetries, is a block circulant matrix (7; 6; 27) of the form,

J =

⎡
⎢⎢⎢⎣

A B . . . B B
B A B . . . B
...

...
...

...
...

B B . . . B A

⎤
⎥⎥⎥⎦ (16)
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where entries of the 2×2 block matrices A and B can be found in (30). This
structure occurs since the (p, q) 2× 2 block describes how the synchronous
response of absorber p is affected by small deviations from the synchronous
response in absorber q. Of course, in the synchronous response, each ab-
sorber has the same effect on itself, hence all diagonal entries are identical,
and are labeled A. Similarly, each absorber has the same effect on all other
absorbers, except itself, so all off-diagonal terms are the same, and labeled
as B.
The computation of J is quite tedious, and involves taking dervatives

of the functions (F1, F2, G1, G2, H1, H2) and evaluating them on the syn-
chronous response. For the present results, these are done by using ampli-
tude expansions in a, which provides accurate results for absorber ampli-
tudes nearly up to the cusp. Details of this calculation and further discussion
are given in (30).
Given the circulant structure of J , one can prove that the eigenvalues

of J are the two eigenvalues of [A+ (N − 1)B], plus the two eigenvalues of
[A−B] repeated N − 1 times (6; 2). Thus, the stability of the synchronous
response boils down to determining the eigenvalues of two 2×2 matrices. For
the absorber system, it can be shown that that the traces of both matrices
of interest are equal and negative, specifically,

Trace[A − B] = Trace[A+ (N − 1)B] = −μ, (17)

where μ > 0, since the absorbers dissipate energy as they move along their
paths (30). A consequence of this fact is that no Hopf bifurcations can occur,
which would result in traveling wave types of responses. Therefore, the only
types of bifurcations that can occur correspond to an eigenvalue of one of
these matrices passing through the origin from negative to positive. These
can be found by finding conditions for zero eigenvalues of the determinants.
In this system, the instabilities associated with the eigenvalues of the

two 2× 2 matrices are qualitatively different. When an eigenvalue of [A+
(N − 1)B] moves through zero, this corresponds to a single zero eigenvalue,
leading to a saddle-node bifurcation of synchronous responses, that is, the
merging of two synchronous branches, one of which is stable (since the
trace is negative). Note that this bifurcation preserves the symmetry of the
synchronous response, and, in fact, this bifurcation can occur in systems
with one a single absorber, N = 1, in which case J = A and the eigenvalues
of interest are those of A, consistent with [A + (N − 1)B] = A for N = 1.
(Of course, in the case N = 1, matrix B is meaningless.) These instabilities
will be labeled “J” for the jumps that occur as parameters are varied near
these instabilities, as described below.
If an eigenvalue of [A − B] goes through zero, the situation is more



156 S.W. Shaw

complicated, since this implies an instability involving N − 1 eigenvalues of
J simultaneously moving through zero. This situation is directly related to
the symmetry of the synchronous response, and such instabilities correspond
to symmetry breaking that give birth to non-synchronous responses, hence
we label these as “NS” instabilities. Symmetric bifurcation theory tells us
that in these cases one can expect multiple response branches emerging
from the synchronous response, and in generic situations these branches
will correspond to responses with one order of symmetry lower than the
synchronous response (16). For the present system, these responses have
two groups of absorbers moving in a mutually synchronous manner (5; 1).
For N = 2 absorbers, the situation is simple, the two absorbers simply
become non-synchronous. For N = 3 absorbers, these non-synchronous
responses have a group of two absorbers that remain mutually synchronous,
and one absorber moving on its own. Of course, the synchronous response
still exists, but is dynamically unstable, and none of the absorbers follow
that response. Also, note that by permutation considerations, there exist
three such responses. For N = 4 absorbers, there exist responses with
groups of three and one (four of these) as well as groups of two and two (six of
these) (1). While many of these branches can be unstable when they emerge
from the synchronous response in a subcritical manner, in some cases, for
example, with circular path absorbers, many branches are stable over some
parameter ranges, in fact, at low torque levels, leading to the possibility of
multiple stable steady states of different types coexisting, with the response
observed depending on initial conditions (1). For absorbers with nearly
tautochronic paths, the most common situation is that one branch emerging
from the NS bifurcation is supercritical and stable, and it corresponds to the
non-synchronous response that has N − 1 absorbers mutually synchronous
and one absorber moving on it own (5). In fact, if one tunes the system very
close to the perfectly tuned tautochrone, (ñ, λ) = (n, λe), and the system is
lightly damped, μ << 1, this instability can occur at very low torques (6; 5).
This response is undesirable, since the amplitude of the absorber moving on
its own grows quickly as the torque is increased, resulting in a significantly
smaller operating range.
Evaluation of the determinants of [A + (N − 1)B] and [A − B] involve

the system parameters, and the amplitude and phase of the synchronous
response, (a, φ), which also are determined by the system parameters. The
stability of the synchronous response for a given set of parameter values is
conveniently found by first setting a value for a and computing the corre-
sponding torque amplitude Γ using equation (12), using equation (11) to
compute the phase, and then using those results to evaluate the determi-
nants. This is done by numerical computation for the examples considered
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below.
It is interesting to note that the values of the determinants is independent

of the number of absorbers, for N > 1. This follows since the terms in the
summation over absorbers are identical, when evaluated on the synchronous
response, and since the summations carry a common factor of 1/N , N
cancels out. This implies that the synchronous response and its stability
characteristics are independent of the number of absorbers, but depend on
the total amount of absorber inertia. However, the absorber damping no
doubt depends on how the absorber inertia is divided up, and this will
affect the features of the synchronous response. This issue requires further
modeling and experimental verification, and is left for future work.
Experimental results obtained using the absorber shown in the right

panel of Figure 1 can be found in (32) for steady state dynamics and (18)
for transient dynamics. The experimental investigations have proven the ac-
curacy and utility of the mathematical model and analysis described above.

2.5 Examples

The results presented here will consist of response curves and local sta-
bility results for synchronous responses. The path parameters γ and ñ will
be varied in order to assess absorber performance in synchronous operation,
in terms of rotor torsional vibration, stability, and torque range, which is
limited by absorber amplitude. The goal is to find path parameters that
lead to stable operation over the largest torque range, while maintaining
acceptable rotor vibration. For these purposes, one can evaluate the sta-
bility of the synchronous response at some maximum amplitude that will
be allowed during operation. To this end we define a maximum allowable
absorber amplitude, in terms of the cusp amplitude, as follows,

ao = α am, (18)

where am is given in equation (13) and the parameter α, 0 < α ≤ 1, sets
the maximum amplitude of operation. The goal is to select path parameters
that yield stable response at a = ao and provide favorable rotor vibration
reduction over the range 0 < a < ao. For the present system, stability at a =
ao insures that the response will be stable and perform as desired for all a <
ao. The actual value selected for α will depend on hardware considerations,
since no absorbers can actually attain the cusp on the epicycloid (32); here
we use α = 0.9.
In order to assess the effectiveness of the absorbers we consider the rotor

angular acceleration as described by w′, recalling that θ̈ = Ω2(εw′+O(ε2)).
When the absorbers are working, this will be small, but since it is a function
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of θ, it is convenient to have a measure of its magnitude. Since the absorbers
are designed to reduce order n rotor vibrations, we take as our measure of
rotor vibration amplitude the order n Fourier component of w′, computed
as

|w′| = n

π
Abs[

∫ 2π
n

0

e−inθw′(θ)dθ],

where Abs[y] is the magnitude of the complex number y. For the analyti-
cal predictions we use equation (3) for w′, with the absorber synchronous
response given by s = a cos(nθ + φ). It is worth noting that when the
absorbers are working well, the order n component of w′ is reduced to a
magnitude that is comparable with those of harmonics at 2n and 3n. This
rich harmonic content will be demonstrated in the examples to follow.
To quantify the effectiveness of the absorbers on the rotor system, it is

useful to compare the order n rotor angular acceleration with the absorbers
locked at their respective vertices, denoted |w′|o, with the w′ resulting when
the absorbers are free to move, computed as outlined above. This normalizes
w′ to account for the flywheel effect of the absorbers, that is, the reduction
in torsional vibration due to the added inertia of the absorbers. A simple
estimate of |w′|o can be found by assuming an oscillating torque Tn cos(nΩt)
applied to a rotor with inertia J , resulting in |w′|o = Γ, which is accurate to
leading order in ε. Thus, this reference response is the diagonal line when
plotted versus the torque level Γ, and this line separates rotor vibration
reduction (below the reference) from amplification (above the reference).
The latter is, of course, highly undesirable, but can occur for softening
paths, when the response jumps to an in-phase response after a type J
instability (26; 2; 23; 24).
We now turn to results for systems with excitation orders n = 3/2 and

n = 2. These are chosen since they represent the torques experienced in
four-stroke engines with three and four cylinders, respectively. Due to har-
monic cancellation in four-stroke engines with M cylinders, the oscillating
component of the applied torque is dominated by the order n = M/2 har-
monic. In these situations, the arrangement of cylinders fixes the excitation
order, n, and the designer selects the absorber inertia ε, the path parame-
ters ñ and γ, and the number of absorbers N . The absorber damping μ is
difficult to model, and, in fact, will vary depending on many factors that are
beyond the control of the designer, for example, the viscosity of lubricants,
which depend on operating temperature. So, in order to assess the perfor-
mance of a system with a given absorber path, one sets these parameters
and considers the system response over a range of torque amplitudes Γ.
Two examples are considered, both with N = 2 absorbers, since this



Designing Nonlinear Torsional Vibration Absorbers 159

is sufficient to capture the NS instability. Detailed results about the syn-
chronous response, including its stability characteristics, how these depend
on the path parameters, and assessment of absorber performance are shown
for n = 3/2. In addition, the analytical predictions are compared against
numerical simulations of the equations of motion. Finally, we show stability
results in the (ñ, γ) path parameter space for synchronous absorber ampli-
tude am, which clearly shows how the two types of instability are influenced
by the path. This plot provides important information for the selection of
path parameters, and is shown for both n = 3/2 and n = 2.
We first consider the synchronous response over a range of torque am-

plitudes, in the form of response curves depicting the absorber amplitude
a and the order n harmonic of the rotor angular acceleration, |w′|, ver-
sus the torque amplitude Γ. The phase φ is close to π in all cases, since
the absorber, when working properly, is out of phase with respect to the
fluctuating torque, and is therefore not shown. Here stable synchronous re-
sponses are indicated by solid lines and unstable synchronous responses are
shown as dashed lines. Instabilities associated with jump J, or saddle-node
bifurcations, are evident since they occur at points of vertical tangency in
the response curve, that is, where two response branches, one stable and
the other unstable, merge and annihilate one another. Symmetry-breaking
NS bifurcations are observed on synchronous response branches that simply
become unstable as Γ is varied. Note that emerging from these branches
at NS instabilities are multiple non-synchronous response branches, as de-
scribed above. Based on previous work (5), it is expected that these will
be supercritical for paths near the tautochrone, but this has not been thor-
oughly examined. Finally, note that since these examples have only N = 2
absorbers, the non-synchronous responses are relatively simple, in that the
two absorbers simply separate in terms of amplitude and/or phase.
Figure 3 considers the effects of the nonlinear path tuning parameter

γ on the synchronous response, for a system with a linear absorber tuning
order ñ = 1.48. Such linear undertuning of absorbers (ñ < n) is not of prac-
tical interest, for a variety of reasons, but is used here since this example
demonstrates both types of instability. For the most softening of the paths
considered here, γ = 3, the absorber experiences a J instability. For torque
levels above this instability point, absorber encounters with amplitude lim-
iting stops will occur, leading to highly undesirable impact dynamics. In
fact, if such motions are initiated, there will be hysteresis in the response,
and the torque amplitude will need to be lowered to a level well below the
J point in order to recover the desired response. For γ = 2 the response is
very close to the softening/hardening transition, as seen by the near-vertical
part of the absorber response curve, but no instabilities occur. For γ = 1
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Figure 3. System response versus torque amplitude: absorber amplitude
a and order n component of the rotor angular acceleration |w′|. The linear
tuning is set to ñ = 1.48 and nonlinear tuning takes on values γ = 0, 1, 2, 3,
varying from neutral towards increased softening. In the plot of a the largest
amplitude is for the most softening path, γ = 3, and decreasing γ reduces
the amplitude; the other curves can be correlated by noting stability and
termination points, which occur when the absorber nears the cusp. The
dotted line in the |w′| plot depicts the rotor torsional vibration reference
line, |w′| = Γ, indicating the vibration level if the absorbers are fixed.
System parameter values: ε = 0.1, n = 1.5, μ = 0.3, N = 2, and the γ = 0
cusp amplitude is given by acusp,0 ≈ 0.38.

the response is similarly stable, but slightly hardening, while for γ = 0 the
response is more hardening and experiences an NS instability, leading to
nonsynchronous responses. It is interesting to note for the lower values,
γ = 0 & 1, the hardening nature of the kinematic coupling between the ro-
tor and absorber dominates the softening of the path nonlinearity. This can
be understood by considering that, as the absorber rides along its path, the
torque produced by the absorber on the rotor is generated by the normal
force between the absorber and rotor, acting along a line of action that is
locally perpendicular to the path. The kinematics of this interaction are
described in the function g(s) and result in the reduction of the effective
torque at large amplitudes. Thus, the absorber has a reduced effect when
pushed to large amplitudes by large torques, which is dynamically equiva-
lent to a hardening effect (17). For absorbers with strongly nonlinear paths,
e.g., circles, the dominant nonlinear effects arise from the path (2). It is also
of interest to note that the synchronous response of circular path absorbers
can experience both J and NS instabilities on the same branch (1).
Figure 4 shows results from a case in which we fix γ = 0 (perfect tau-

tochrones) and vary the linear tuning order ñ, taking values 1.5, 1.51, 1.52,
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Figure 4. System response versus torque amplitude: absorber amplitude
a and order n component of the rotor angular acceleration |w′|. The
nonlinear tuning is set to γ = 0 and the linear tuning takes on values
ñ = 1.50, 1.51, 1.52, 1.53, varying from perfect tuning towards increased
overtuning. The topmost a curve is for perfect tuning, ñ = 1.5 and overtun-
ing, shown in the other curves, extends the response out to larger torques.
The linear tuning for the other curves can be correlated by considering the
termination points. The dotted line in the |w′| plot is the reference line,
|w′| = Γ. System parameter values: ε = 0.1, n = 1.5, μ = 0.3, N = 2, and
the γ = 0 cusp amplitude is given by acusp,0 ≈ 0.38.

and 1.53. This is a practical situation, in which a designer linearly detunes
a tautochronic absorber to gain robustness and extend the torque range,
as shown below. The torque range is increased as the absorber detuning is
moved away from perfect tuning, that is, away from resonance. Intimately
related to this observation is the fact that the slope of the absorber as a
function of Γ decreases with detuning, allowing it to remain close to linear,
and away from am, for a larger torque range. While an NS instability occurs
for perfect tuning, it quickly disappears and has vanished by ñ = 1.51. This
instability disappears in subtle manner near the cusp value as ñ is varied,
but the details of this transition are not important in applications, since the
transition happens in a very small parameter window. The most important
observation about these results is that the order n rotor vibration response
amplitude is quite insensitive to the linear detuning. While there is a slight
degradation in performance, in terms of vibration reduction, this effect is
insignificant compared to the benefits of the extended torque range.
We now demonstrate the validity of the analysis via simulations of the

full equations of motion, equations (1) and (2). In these plots we show
absorber and rotor responses versus the rotor angle θ, which plays the role
of time. For the rotor we plot w′, and for the absorbers we use coordinates
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1
2 (s1 + s2) and 1

2 (s1 − s2), which allow one to clearly distinguish between
synchronous and non-synchronous responses (5). The system is started with
initial conditions based on the synchronous steady state response predicted
from the averaging analysis, with a small difference in initial conditions of
the two absorbers, in order to allow the non-synchronous response to grow,
should the synchronous response be unstable.
For the parameters used in Figure 5, the synchronous response is stable,

as seen by the fact that 1
2 (s1 − s2) decays towards zero, while 1

2 (s1 + s2)
approaches the predicted synchronous response. A short segment of the the
steady state rotor angular acceleration is shown in the fourth panel of Figure
5, where the thick solid line is the simulated result, the thin solid line is the
result reconstructed using the simulated absorber motion and equation (3),
and the dashed line is the result using the predicted steady state absorber
response in equation (3). It is seen that the analytical prediction, the dashed
line, is quite accurate, thus validating the various approximations used.
Also, note the rich harmonic content of the rotor vibrations, as described
above.
Figure 6 shows similar results for a slightly larger torque level, which

takes the system across an NS instability, and thus a nonsynchronous steady
state response results. This is seen by the growth of 1

2 (s1 − s2) during the
initial transient, as shown. Eventually, one absorber continues to grow in
amplitude and reaches the maximum amplitude allowed, am. This is shown
by the longer time behavior of the individual absorbers, shown in the last
panel of Figure 6, where the absorbers are drifting apart, and eventually
one absorber will reach the cusp amplitude. Note that the absorber sum
coordinate 1

2 (s1+s2) and w
′ both settle into steady state responses close to

the synchronous response. This indicates that somehow the sum of the two
absorbers is close to invariant, even while moving differently, thus leading
to an equivalent level of rotor vibration reduction. However, this situation
will be destroyed once one of the absorbers reaches its amplitude limits.
With this confidence in the analytical predictions, we focus on the se-

lection of the path parameters to avoid both types of instability. Figure
7 depicts the stability of the synchronous response at a = ao = 0.9am for
points in the path parameter space (ñ, γ) near the perfectly tuned tau-
tochronic path (n, 0). White regions represents paths which experience no
instabilities for a < ao, gray regions correspond to absorbers that experience
symmetry-breaking NS bifurcations, and black regions are for absorbers that
undergo saddle-node J instabilities. Note that the most desirable operating
point in this space, from the point of view of vibration reduction, is the
origin, but an NS instability occurs for this path, as known from previous
work (6; 5). Perhaps the simplest way to avoid this NS instability, without
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Figure 5. Simulation results for the absorbers and rotor versus the rotor
angle θ for system parameter values: ε = 0.1, n = 1.5, μ = 0.3, N = 2, Γ =
0.679, γ = 0. The first panel depicts 1

2 (s1+s2) along with two reference lines:
the cusp amplitude and the steady state amplitude predicted by averaging.
The second panel shows 1

2 (s1 − s2), which is decaying, indicating the local
stability of the synchronous response. The third and fourth panels show
w′, first over the entire run, and then a segment of the steady state from
simulation and reconstructed in the two ways described in the text.



164 S.W. Shaw

0 50 100 150 200 250 300
�D&4

�0.2

�0.1

0.0

0.1

0.2

D&4

θ

1 2
�s

1
�
s 2
�

0 50 100 150 200 250 300

�D&DN

�0.02

0.00

0.02

D&DN

θ

1 2
�s

1
�
s 2
�

0 50 100 150 200 250 300
�D&5

�D&N

�0.2

0.0

0.2

D&N

θ

w
�

290 292 294 296 298 300

�D&5

�D&N

�0.2

0.0

0.2

D&N

θ

w
�

290 292 294 296 298 300
�D&4

�0.2

�0.1

0.0

0.1

0.2

D&4

θ

s 1
,2

Figure 6. Simulation results versus the rotor angle θ for system parameter
values: ε = 0.1, n = 1.5, μ = 0.3, N = 2, Γ = 0.813, γ = 0. The first
four panels are similar to those shown in Figure 5, and here the response of
1
2 (s1−s2) is growing, indicating the instability of the synchronous response.
The final panel shows the two individual absorbers near the end of the run,
as they drift apart; one absorber eventually approaches the cusp amplitude.
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Figure 7. Stability zones in path parameter space, γ vs. ñ, for a < ao =
αacusp with α = 0.9 for excitation orders n = 3/2 (left panel) and n = 2
(right panel). White regions represent absorber systems with stable syn-
chronous steady state response up to a = ao. Absorbers with paths corre-
sponding to the gray regions experience NS instability to non-synchronous
response at some amplitude a ≤ ao, and black regions represent absorbers
that experience J instabilities, corresponding to jumps, at some amplitude
a ≤ ao. System parameter values: ε = 0.1, μ = 0.3, N = 2.

sacrificing absorber performance, is by slight linear overtuning. As indi-
cated in Figure 4, this approach is seen to provide additional benefits in
terms of torque range. From Figure 7 it is observed that one can also avoid
the instability by moving γ to a value less than zero, that is, to a hardening
path, similar to the cycloid, as used in helicopter applications (15). Thus,
in general, it appears that a good strategy for selecting the path is to select
a path that is overtuned, either linearly, nonlinearly, or both. For a given
design, the amount of overtuning will depend on the inertia ratio ε, the
absorber damping μ, and other factors, such as the required torque range.
Finally, it is worth noting that if the damping μ is sufficiently large, no NS
instabilities will occur near (ñ, γ) = (n, 0), but that, correspondingly, the
absorbers may not function as well.
The results for excitation order n = 2 are very similar to those for

n = 3/2, so we show only the path stability result. The right panel of Figure
7 shows the NS and J instability regions in the (ñ, γ) path parameter space,
again for a = ao = 0.9am. The qualitative structure of the instability zones,
and the suggested tuning strategy, are similar to the n = 3/2 case. However,
note that in this case, nonlinear detuning, that is, moving to negative γ
values, is not as effective in this case as it was for n = 3/2, since the NS
instability region extends further downward. In this case, linear overtuning
appears to be the better way to stabilize the synchronous response.
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3 Discussion and Closing

The system considered here demonstrates how one can make use of, and
even exploit, nonlinear dynamics to push operating limits of a vibratory
system of practical relevance. This example is particularly attractive since
a reliable mathematical model exists, it experiences interesting bifurcations,
it is amenable to analysis, and there exists a clean way to tailor the most
important system nonlinearities, in this case by altering the absorber path.
While most systems will not offer these features, in the present case a fun-
damental understanding of nonlinear dynamics plays an important role in
the design of the system so that it meets desired specifications.
Based on the results described above, and our experience with these

absorbers, the following design guidelines are offered:
• The linear tuning order ñ should be taken to be at, or slightly above,
the excitation order n, and the level of detuning depends on how much
absorber inertiamc2 is available relative to the fluctuating torque that
needs to be addressed. The closer ñ is to n, the better the absorber will
perform, but the less torque range it will have. If mc2 is large enough
to keep the absorbers from reaching amplitude limits during transient
and steady state responses over the entire torque range encountered,
one can tune close to the ideal case.

• The path nonlinearity should be tautochronic, or slightly hardening.
As in the case of the linear tuning parameter, one gets the best perfor-
mance for λ = λe, but one can extend the operating range by detuning
away from λe, towards hardening.

• Systems with multiple absorbers can have rich dynamics, even when
the absorbers are identical, and the high level of system symmetry can
lead to high sensitivity to imperfections, especially when the system
is close to perfect tuning (23; 3; 24). In these cases, non-synchronous
responses can occur, a common one being that in which a subset of the
absorbers, even one, do all of the vibration reduction. One can avoid
these types of responses by detuning away from ñ = n and λ = λe, as
described above. However, this is necessary only for absorber systems
with very light damping.

• The level of damping, in both the absorber and rotor, also affects the
response, and it plays a similar role to detuning, in that it inhibits the
absorber response. If the absorbers have substantial damping, even
a few percent of critical, many of the nonlinear instabilities described
above are avoided. And, since damping is highly varied and difficult to
model, one should consider parameter studies that cover the estimated
range of damping values in a practical situation.
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• Finally, as in any real system, there are unmodeled dynamics not
captured by the idealized model. Whether these allow one to be more
or less aggressive in terms of tuning is a case-by-case situation, and
there is no substitute for physical testing.
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Vibrations of Beams in the Elasto-Plastic and
Geometrically Nonlinear Regime

Pedro Ribeiro
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Abstract This chapter presents models for beams vibrating with
moderately large displacements and with elasto - plasticity. The
beams are initially straight, homogeneous and isotropic, and os-
cillate always in one plane. A method to solve the equations of
motion in the time domain, with computation of plastic strains in a
mixed hardening situation, is described. Forced oscillations under
harmonic excitations are analysed using this method. A frequency
domain procedure to analyse free vibrations with existing plastic
strains is also introduced. Free vibration oscillations are then anal-
ysed, with particular attention to the combined influence of large
displacements, i.e., geometrical nonlinearity, and plastic strains on
the shapes assumed during the period of vibration and on the nat-
ural frequencies.

1 Introduction

1.1 Chapter Objectives

Often the design of a structural or machine element requires an analysis
in order to predict stresses and strains. A major goal of this analysis is
to avoid failure in operation. Due to uncertainties - as not anticipated
variations in the material properties, slight changes in the geometry, or
unexpected loads - designers do not know exactly what stresses and strains
the element will endure in practice. In addition, the physical/mathematical
models used to represent reality are idealised approximations. The common
way that engineers have to account for these uncertainties is to use a factor
of safety in design.
There are usually many feasible designs, where the element performs

its function without failure, but it is desirable to choose a design that ap-
proaches objectives such as minimizing cost, minimizing weight or maxi-
mizing the natural frequency without increasing weight. The realization of
such a goal generally contradicts a large safety factor. In order to achieve
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a close to best design, whilst maintaining safety, it is important to reduce
uncertainties and therefore it is desirable that the physical/mathematical
model of the structural/machine element is close to reality.
Vibrations with large amplitude, which may cause large strains and

stresses, occur in a few systems due to large loads or to loads with a
frequency component close to a resonance frequency. This is a particu-
lar important issue in thin structures. For example in aircraft there is an
obvious desire for thin-walled structural components, which are likelier to
experience vibrations with amplitude of the order of their thickness (Ama-
bili (2008), Sathyamoorthy (1987), Smith et al. (1961), Teh (1982), White
(1978)). Moreover, systems that in current engineering practice are not de-
signed to experience nonlinear vibrations, may, if modelled more accurately,
be designed more efficiently and still in such a way that they perform their
function safely, taking advantage of nonlinear dynamic analysis.
In spite of the popularity of linear models in engineering, the study of

oscillations with large amplitudes requires geometrically nonlinear models
(there are numerous publications on this issue that corroborate the former
sentence, including Amabili (2008), Bennouna (1982), Kadiri et al. (2002),
Han (1993), Mei (1973, 1976), Murphy et al. (1996), Ribeiro (2001, 2004b),
Sarma and Varadan (1984a), Sathyamoorthy (1987), Touzé et al. (2004),
Wolfe (1995), Zavodney and Nayfeh (1989) and other works quoted in the
remainder of this section). The solution of the nonlinear systems of equa-
tions of motion is quite often achieved by iterative methods, with repeated
update of the nonlinear model. Additional difficulties of nonlinear analyses
result from the facts that the superposition principle is not applicable and
multiple solutions for the same parameter (e.g., same excitation frequency)
can exist.
Even when geometrical type nonlinearity is considered in the literature,

it is often assumed that the oscillations occur in the linear elastic regime,
with the stresses and strains related by generalised Hooke’s law. However,
Hooke’s law is not valid in all circumstances. In many materials plasticity
occurs after a certain stress level. In contrast with elastic deformation,
plastic deformation is not reversible and depends on the deformation history
(Dieter (1986), Kojić and Bathe (2005)). In this case, an incremental strain
computation is advisable.
The knowledge of the natural modes of vibration is of undisputable sig-

nificance. This is not only due to modal analysis (of particular importance
in linear systems), but also because if vibrations are excited at a particular
natural frequency, they tend to be of large amplitude. Naturally, larger
amplitude vibrations may more easily cause fatigue induced damage and
even abrupt failure. Moreover, and related with modal analysis, one can
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understand a system through its modes.
The goals of this chapter are: to present models that, within certain

limits, accurately approach structural elements by considering nonlinear ef-
fects; to introduce methods to solve the equations that result from such
models; to discuss some of the features that vibrating nonlinear structural
elements possess. The text focuses on geometrical nonlinearity and elasto-
plasticity. Forced oscillations and free vibrations are analysed, the latter
with particular interest on variations of shapes and natural frequencies of
vibration. Beams that are initially straight and that oscillate in one plane
are used to introduce and discuss the concepts, because with this simple
structure one is able to analyse the chief aspects of interest here. More-
over, beams are widely used as structural or machine elements; they can be
employed alone, assembled to other beams, or to reinforce other structural
elements, as plates or shells, and are found in industries such as aircraft,
civil and mechanical. This text is mainly based on references Ribeiro (1998,
2004a, 2010), and Ribeiro and van der Heijden (2009).

1.2 A Review on Geometrically Nonlinear and Elasto-Plastic Vi-

brations of Beams

Many studies on beam vibrations have been carried out to date and this
section cannot provide a complete review, even if a somewhat large number
of references is here recalled. We start with large amplitude displacements,
where more studies have been published, and proceed in the last paragraphs
of the section to elasto-plastic behaviour.

Geometrically nonlinear vibrations. Experimental and theoretical
analyses of beams vibrating with large amplitudes, thus, in the geomet-
rically nonlinear regime, have been presented since, at least, the middle of
the 20th century (Woinowski-Krieger (1950)). Many of the theoretical ap-
proaches assume that the solution is the product of independent time and
displacement functions.
Let us first regard free vibration. For a linear conservative system, nat-

ural frequencies exist at which the system vibrates in such a way that the
ratio between the amplitude of displacement of any two points is constant,
thus defining a mode shape of vibration that remains unchanged during the
period of vibration and is not amplitude dependent. In linear vibration,
modes of vibration are of paramount importance and researchers have been
interested in extending the concept to nonlinear systems. The definition of
nonlinear mode constitutes a conceptual difficulty of nonlinear analysis and
the origin of different approximations.
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As the displacement amplitude increases, the stiffness increases due to
the effect of the longitudinal forces. Consequently, the shape of most vi-
brating beams and the natural frequency actually change with the vibration
amplitude, and a mode of vibration concept should accommodate for this
amplitude dependency (Bennouna and White (1984), Benamar et al. (1991),
Ribeiro and Petyt (1999), Szemplinska-Stupnicka (1983)). Another distinc-
tion with respect to linear vibrations, is that the natural frequencies of a
nonlinear structure may become commensurable at certain vibration ampli-
tudes, creating conditions for the strong interaction of vibration modes with
energy interchange. This is a very interesting phenomenon known as inter-
nal resonance (Szemplinska-Stupnicka (1990), Nayfeh and Mook (1995)). In
Nayfeh and Balachandran (1989) a review on the influence of modal interac-
tions on the nonlinear response of harmonically excited structural systems
was carried out. One of the conclusions of that review is that different ex-
periments have shown the existence of internal resonances and that these
are responsible for “interesting, unusual and dangerous phenomena”.
Rosenberg (1966) introduced the concept of nonlinear normal mode of

discrete conservative systems with n degrees of freedom, as a motion where
all masses execute periodic vibrations with the same period, reach their
maximum amplitudes and pass their static equilibrium points simultane-
ously.
In two milestone works, Shaw and Pierre (1993, 1994) extended the

concept of nonlinear normal modes to continuous, not necessarily conser-
vative, systems and studied the vibration of a linear beam on a nonlinear
elastic foundation. The problem was formulated in terms of first order
differential equations, including displacements and velocities as dependent
variables. A normal mode was defined as a motion which takes place on a
two-dimensional invariant manifold in the system’s phase space. This man-
ifold has the following properties: it passes through the stable equilibrium
point of the system and at this point it is tangent to a plane which is an
eigenspace of the system linearized about the equilibrium point. In a normal
mode the system behaves like a one degree of freedom system. The validity
of the solution procedure proposed is limited to weak nonlinearities; this
might explain why Burton and Hamdan (1996) comparison of Shaw and
Pierre’s technique with a procedure involving the harmonic balance method
(HBM) resulted in quantitative disagreement.
It has been assumed that the solution can be expressed as a function of

the linear mode shapes. In some cases, a Duffing type equation has been
derived, and an exact solution in the form of a cosine elliptic function with
the period or frequency of the oscillation given by an elliptic integral has
been found (Woinowski-Krieger (1950)). In the absence of exact analytical
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solutions, perturbation methods, such as the method of multiple scales or
the method of averaging, are often used (Nayfeh and Mook (1995)).
Other authors express the time function in the form of a Fourier series

and apply the harmonic balance method (Benamar et al. (1991), Ribeiro
(1998); Ribeiro and Petyt (1999), Lewandowski (1987, 1991, 1994a,b, 1997a,b,
2003)) or the incremental harmonic balance method (Cheung and Lau (1982)).
Approximation methods such as the Rayleigh-Ritz and Galerkin methods,
or the finite element method (Cheung and Lau (1982), Ribeiro (1998);
Ribeiro and Petyt (1999), Lewandowski (1987, 1991, 1994a,b, 1997a,b),
Qaisi (1993)) are commonly used to discretise a continuous structure before
applying harmonic balance procedures. This leads to ordinary nonlinear dif-
ferential equations in the generalized coordinates, from which, via harmonic
balance, result the frequency and the shape of vibration. The shapes associ-
ated with each harmonic change with the maximum amplitude of vibration
and with the period of vibration, but do not change during the period of vi-
bration. However, the shape of the structure is defined by the series contain-
ing all harmonics, hence if more than one harmonic is considered in the so-
lution and is not zero, then the vibration shape changes during the period of
vibration. By using several harmonics in the time series, bifurcation points
and secondary branches due to internal resonances (Szemplinska-Stupnicka
(1990)), have been found (see for example Cheung and Lau (1982), Ribeiro
and Petyt (1999), Lewandowski (1994a,b, 1997a,b)).
An approach that, although different, has similarities to a one term har-

monic balance procedure was followed by Bhashyam and Prathap (1980),
Prathap and Varadan (1978), Qaisi (1993) and Sarma and Varadan (1983,
1984b): the problem was reduced to an eigenvalue problem, by the assump-
tion that

..
w (x, t) = −ω2w (x, t) at the point of maximum amplitude of the

transverse displacement w(x,t). Parameter -ω2 was hence interpreted as a
coefficient of proportionality between the acceleration ẅ and the displace-
ment w at that point. The solution of the eigenvalue problem defines ω2

and a shape of vibration.
Yet another alternative is to directly integrate the equations of motion.

Runge-Kutta methods are rather popular with first-order-differential equa-
tions, and other methods, such as Newmark’s method and a symplectic
integration scheme, have been applied to second order differential equa-
tions (Leung and Mao (1995), Shi and Mei (1996)). Numerical integration
demands a large computational effort, particularly in a free vibration and
conservative problem, where one wishes to establish the relation between the
vibration amplitude and the vibration frequency. Therefore, the equations
of motion are usually derived by expressing the displacement as a function
of a reduced number of linear modes.
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Experimental analysis has also been utilised to verify the variation of
shapes and natural frequencies of beams vibrating with large amplitudes.
Bennouna (1982); Bennouna and White (1984) experimentally determined
the spectral components of the transverse vibration displacements of a
clamped-clamped beam. The first harmonic was clearly the most impor-
tant, but the first three harmonics influenced the response of the beam. It
was verified that the shape of a clamped-clamped beam changes during the
period of vibration and that its curvature increases near the clamps with
increasing amplitude.
A large amount of research has as well been conducted in the study of

the nonlinear steady-state oscillation of beams under harmonic transverse
excitation. In steady-state nonlinear vibrations, it is common to find more
than one solution. Because only the stable solutions are physically meaning-
ful, it is important to carry out a stability study. Usually Floquet’s theory
is followed for that purpose (Bolotin (1964), Hayashi (1964), Nayfeh and
Mook (1995), Ribeiro (2009), Szemplinska-Stupnicka (1990)).
In forced as in free vibration, the beam displacement is generally assumed

to be given by a function that is a product of separated functions of space
and time, or a sum of such products. Several authors used a limited number
of linear modes to express the space dependence of the transverse displace-
ment and applied Galerkin’s method. For example, Tseng and Dugundji
(1970) applied Galerkin’s method and the harmonic balance method to
derive the equation of motion of a beam with fixed ends, excited by the
periodic motion of its supporting base. Only one linear mode was consid-
ered. The stability of the solutions was analysed by solving a variational
Hill-type equation. Bennet and Eisley (1970) followed a similar approach,
but considering a two and three linear modes expansion, in an investigation
of the nonlinear forced response of a clamped-clamped undamped beam
subjected to a concentrated harmonic force. Atluri (1973) studied a beam
with one end free to move longitudinally. The Galerkin method was used in
conjunction with the perturbation procedure of multiple scales. The effect
of middleplane stretching was excluded and the effects of large curvature,
longitudinal and rotatory inertia included. In these conditions, the non-
linearity tends to be of the softening type. Takahashi (1979) studied the
steady-state response of an undamped nonlinear clamped-clamped beam
under periodic excitation. Using two-degrees of freedom, the Galerkin and
the harmonic balance methods were applied to derive a set of nonlinear al-
gebraic equations. The stability of the solution was studied by investigating
the behaviour of a small perturbation to the steady state response.
The finite element method (FEM) is based on approximating the solu-

tion of a problem by means of admissible functions and has also been used
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to construct geometrical nonlinear beam models in forced vibration. One of
the first applications of the h-version of the finite element method, version
in which better approximations are achieved by refining the mesh, to study
nonlinear oscillations of beams was carried out by Mei (1973), who pro-
ceeded to an extensive application of the finite element method to investigate
nonlinear oscillations of different structures. In another early publication,
Busby and Weingarten (1972) applied the FEM to examine the response of
simply supported and clamped-clamped beams. The equations of motion
were solved by the averaging method. Modal coupling was detected at large
amplitudes of vibration. In (Mei and Decha-Umphai (1985)) a finite element
method, including a harmonic force matrix, was presented for nonlinear vi-
brations of undamped beam structures subjected to harmonic excitation.
Longitudinal deformation and inertia were included in the formulation. For
beams with an axially movable support it was found, as by Atluri (1973),
that the nonlinearity can be of the soft spring type. Leung and Fung (1989)
applied the finite element method and the harmonic balance method to de-
termine the steady state response of beams and frames. The response curve
due to a harmonic excitation was constructed using the Newton method
and the phase angle as a parameter. A 1:3 internal resonance was detected
in a clamped-hinged beam and resulted in looping characteristics of the
response curve. Lewandowski (1994a,b, 1997a,b) applied Newton method
but with the arc-length as a parameter, to obtain the relation between the
amplitude of vibration and the natural frequency (free vibration studies),
and the response to harmonic excitations of diverse beams. 1:3 internal
resonances were found and resulted in secondary branches or in an increase
of the curvature of the backbone-curves and response curves.
In order to gain a better understanding of the variation of the shape of

vibration with the amplitude and during the cycle of vibration, Ma et al.
(1995) applied the FEM to derive the equations of motion in an incremen-
tal form in time. The equations were integrated in the time domain and,
in every integral step, the system was assumed to be linear. Thus, the
orthogonality properties of the eigenvectors could be used to decouple the
incremental equations of motion. The principal problem with this method
is the computational time required, mainly because, for each nonlinear state
of the structure, the eigenvalues and eigenvectors have to be calculated.
The p-version of the FEM - in which the mesh is not changed, but the

number of generalized coordinates of each element is - has also been ap-
plied to geometrically nonlinear vibrations of beams. In Ribeiro and Petyt
(1999), a p-version - hierarchical according to the definition of Meirovitch
and Baruh (1983) - Bernoulli-Euler finite element was presented and the
free and steady-state forced vibrations of simply supported and clamped-
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clamped beams were studied in the frequency domain, by the harmonic
balance and continuation methods. Internal resonances were found and the
variation of the shape of vibration, not only with the vibration amplitude
but also along a vibration period, was shown. A similar element, but com-
paring diverse sets of shape functions, was used for time domain analysis,
using Newmark’s method, of beams and plane frames in Ribeiro (2001). A
Timoshenko, or First Order Shear Deformation (FOSD), type of element for
straight and curved beams was developed in Ribeiro (2004a), where non-
linear vibrations were investigated again using Newmark’s method. This
FOSD element was employed in Ribeiro (2004b) to investigate forced peri-
odic vibrations via shooting method. A more recent study where a p-version
FOSD formulation is also employed is presented in Zhu and Leung (2009).
This historical review of works on large amplitude beam vibrations, is

concluded with references where experiments are prominent. References
Bennouna (1982) and Bennouna and White (1984) were already mentioned
in relation with the shape of vibration. Tseng and Dugundji (1970) and
Yamamoto et al. (1981) experimentally showed that subharmonic and su-
perharmonic oscillations occur. Yamamoto et al. (1982a,b) experimentally
detected so called super-summed and differential harmonic oscillations of
beams when the excitation frequency ω satisfies the condition: 2ω = ωi±ωj ,
where ωi and ωj are natural frequencies of the beam. Wolfe (1995) anal-
ysed a clamped-clamped aluminium alloy beam and a clamped-clamped
beam in CFRP (carbon fibre reinforced plastic). The geometrically nonlin-
ear vibration of an aluminium beam hinged at both ends was investigated
by Ribeiro and Carneiro (2004). The beam was excited transversely with
a harmonic excitation and the amplitudes of the first and higher harmon-
ics analysed. It was demonstrated that internal resonances occur between
the first and higher order modes, and between the second and higher order
modes. In these works, the fundamental resonance frequency increased as
the excitation level increased. Jump phenomena were observed by a large
drop in amplitude over a small increase in frequency, when the excitation is
increased slowly during sinusoidal excitation. Jump phenomena were also
observed when the frequency is above resonance and slowly swept to lower
frequencies. Yagasaki (1995) analysed a beam excited by two forces with
different frequencies near the first mode frequency. The averaging method
was applied to a single-mode Galerkin approximation. The theoretical pre-
dictions were in qualitative good agreement with experimental results. It
was concluded that for a more precise description, higher order modes must
be included in the model.
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Vibrations with plastic strains. One of the approaches employed to
analyse oscillations with plasticity consist in the application of Shanley-type
models. In this type of model a beam is approximated by rigid links (rigid
bars) joined by a linear elastic-perfectly plastic element; it is also admitted
that the yield stress in tension and compression are equal. Shanley-type
models simplify the continuous elasto-plastic beam problem, reducing the
system to a low dimensional discrete one. Symonds and Yu (1985) employed
a one degree of freedom Shanley-type model to analyse the response of
an elasto-plastic beam to a pulse load applied transversely to the beam.
The authors found that the beam may rest in the opposite direction of the
applied load and achieved similar results with finite element procedures.
Lee et al. (1992) investigated the response of a beam in more or less similar
lines, but using a two-degree-of-freedom model to represent the beam. The
presence of chaos is indicated by positive Lyapunov exponents. Xu and
Hasebe (1997) used a Shanley-type model is used, a co-dimension three
bifurcation problem is defined and the method of normal forms employed.
A three degree of freedom Shanley-type model was used to investigate the
dynamic instability of elastic plastic beams by Liu et al. (2004) and Ma
et al. (2005). Motions with power spectra, phase space trajectories and
Poincaré maps typical of chaotic motions were found.
Naturally, other types of models have been used to investigate elasto-

plastic beam vibrations. Manoach and Karagiozova (1993) used the linear
modes to discretize the system and integrated numerically the equations of
motion. Lepik (1995) discussed vibrations of a buckled beam under har-
monic excitation using Galerkin’s method. Han and Lu (1999) propose a
Space Time FEM scheme for elasto-plastic dynamic analysis of Timoshenko
beams, but considering small displacements. Gerstmayr et al. (2001) devel-
oped an algorithm to investigate a vibrating thin beam with guided rigid-
body motion. Small displacements are again assumed; actually it appears
that geometrical nonlinearity is often not considered in analyses that involve
plasticity. In Gerstmayr and Irschik (2003) the analysis of Gerstmayr et al.
(2001) was extended to a linear elastic/perfectly plastic beam performing
rotatory motions about a fixed hinged end.
A first-order-shear deformation theory, p-version finite element with hi-

erarchical basis functions was proposed in (Ribeiro and van der Heijden
(2009)). In the later reference, numerical tests are carried out to demon-
strate that the p-version may be applied with advantages to analyse elasto-
plastic problems; static problems and forced oscillations are addressed.
Ribeiro (2010) applies the same element to investigate how plastic strains
affect the modes of vibration, i.e. a steady-state periodic free vibration
problem is investigated.
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1.3 Structure of this Chapter

This chapter has seven main sections. In Section 2 nonlinear equations of
motion of vibrating beams, with large displacements and in the presence of
elasto-plasticity are developed. The geometrically nonlinear only situation
is not presented, since it is a particular case of the former.
Section 3 addresses the solution of the equations of motion in the forced

vibration regime and with yielding. The equations are solved in the time
domain using a Newmark method and iterating in each time step, in order
to compute the plastic strains and to correct the terms that depend upon
plastic strains and geometrical nonlinearity.
In Section 4, studies on forced vibrations of beams with geometrical

nonlinearity and large amplitude displacements are presented. The influence
of the plastic strains on the displacements, velocities, strains and stresses of
a thin and a moderately thick beam is discussed.
Section 5 presents the equations of motion of periodic free oscillations

with large displacements and with a constant plastic strain field, previously
imposed by a force. The equations obtained are algebraic and should ideally
be solved by a continuation method.
In Section 6 the formulation previously presented is employed to carry

out numerical tests that aim at illustrating the effects of large displacement
amplitudes and of plastic strains on the shapes and natural frequencies of
vibration.
Section 7 provides, in the guise of conclusions, a short summary of the

more important points addressed.

2 Equations of Motion of Beams With Geometrical

Nonlinearity and Elasto-Plasticity

In this section the equations of motion of beams vibrating in one plane, that
may experience large displacements and elasto-plasticity, are introduced.
Reference (Ribeiro and van der Heijden (2009)) and references therein are
mostly followed. In what concerns plasticity, the book of Kojić and Bathe
(2005) provides a description of the concepts here employed. Nevertheless,
readers interested in inelastic problems may wish to additionally consult
other books, including (Owen and Hinton, 1980) and (Simo and Hughes,
1998).

2.1 Displacements Field and Strain-Displacement Relations

Displacements are here defined with respect to a stationary reference
frame, i.e., in a “total Lagrangian” approach. The displacement field is
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based upon the following assumptions:
- the beam vibrates only in one plane (we designate this plane as x1x3,

represented in Figure 1);
- the beam is initially straight;
- the beam cross sections remain plane;
- cross sections are free to rotate about an axis perpendicular to the

plane where motion takes place;
- the beam thickness is moderately small in comparison with the length,

agreing with the definition of a beam as an elemental structure, but it is
not necessarily very small, because rotations of the transverse section are
considered.
The assumptions above lead to a first order shear deformation - also

known as Timoshenko - model and the displacement field is given by

u1 (x1, x3, t) = u01 (x1, t) + x3θ
0 (x1, t) (1)

u3 (x1, x3, t) = u03 (x1, t) (2)

where ui(x1, x3, t) represents the displacement component along axis xi and
θ0 (x1, t) represents the cross section rotation about x2. Superscript

0 in-
dicates the longitudinal axis, x1, which passes through the cross sections
centroids, when the beam is straight. The three reference axes and beam
dimensions (length �, width b and thickness h) are represented in Figure 1.

��

�� 

�� 

��
�

θ 0
��

�

� 

� 
� 

Figure 1. Coordinate axis, reference displacements and beam dimensions.

In addition, it is assumed that the displacements are moderately large
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and Green strain tensor (Chia (1980), Fung and Tong (2001))

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi
+
∂uk

∂xi

∂uk

∂xj

)
, i, j, k = 1, 2, 3 (3)

is employed. In the case at hand, the most important nonlinear term is(
∂u3

∂x1

)2

and only this will be considered (a von Kármán approach, Chia

(1980)). Hence, the longitudinal strain and the transverse shear engineering
strain, γ13 (x1, t), which is twice the tensorial shear, are the following

ε11 (x1, x3, t) =
∂u01 (x1, t)

∂x1
+
1

2

(
∂u03 (x1, t)

∂x1

)2

+ x3
∂θ0 (x1, t)

∂x1
(4)

γ13 (x1, t) = 2ε13 (x1, t) =
∂u03 (x1, t)

∂x1
+ θ0 (x1, t) (5)

The longitudinal strain can be written in the following form, which is
advantageous to define the stiffness matrices (Ribeiro (2001)):

ε11 (x1, x3, t) =
⌊
1 x3

⌋({ ε�
L (x1, t)
εb
L (x1, t)

}
+

{
ε�
NL (x1, t)

0

})
(6)

In equation (6) three strain components appear: the linear longitudinal
strain, ε�

L (x1, t), the bending strain, ε
b
L (x1, t), and the geometrically non-

linear longitudinal strain, ε�
NL (x1, t). These three strain components are

given by

ε�
L (x1, t) =

∂u01 (x1, t)

∂x1
(7)

εb
L (x1, t) =

∂θ0 (x1, t)

∂x1
(8)

ε�
NL (x1, t) =

1

2

(
∂u03 (x1, t)

∂x1

)2

(9)

2.2 Constitutive Relation

The relation between stresses and strains adopted is the result of some
simplifying assumptions. To start with, and coherently with the planar
beam oscillations of interest here, it is assumed that the direct stresses, σ22
and σ33, and that the shear stresses, σ12 and σ23, are negligible. Moreover,
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it is assumed that the material is isotropic and homogeneous before plas-
ticity occurs. Finally, a bilinear stress-strain relation is adopted and mixed
hardening, with a mixed hardening parameter M, is considered.
The elastic constitutive relation for an isotropic material is adapted to

give the stress-strain relation in the presence of plasticity as follows:

{
σ11 (x1, x3, t)
σ13 (x1, x3, t)

}
=

[
E 0
0 G

]{
ε11 (x1, x3, t)− εp

11 (x1, x3, t)
κγ13 (x1, t)− γp

13 (x1, x3, t)

}
(10)

E is the Young modulus and G is the shear modulus of elasticity, which
is equal to E/(2 (1 + ν)) . εp

11 (x1, x3, t) represents the longitudinal plastic
strain and γp

13 (x1, x3, t) the shear plastic strain. The letter ν is used to
represent the ratio of Poisson and κ the shear correction factor.
Different values have been suggested for the shear correction factor,

which actually depends on the beam’s cross section (Timoshenko (1922),
Kaneko (1975), Hutchinson (2001)). Kaneko (1975) conclude that the value
apparently suggested by Timoshenko (reference Timoshenko (1922) is quoted
by Kaneko (1975)) gives results closer to experiments. For rectangular
beams, this value is κ = (5 + 5ν)/(6 + 5ν) and is the one adopted here.
Hutchinson (2001) suggested a more elaborated formula, where κ is a func-
tion of the aspect ratio. However, in the particular case of rectangular
beams, the same author arrived at the conclusion that “the experimental
results neither confirm nor negate the dependence of the new shear coeffi-
cient on the aspect ratio”.

2.3 Discretization and Equations of Motion

The displacements of points on the centroidal axis of the beam can be
written as⎧⎨

⎩
u01 (ξ, t)
u03 (ξ, t)
θ0 (ξ, t)

⎫⎬
⎭ =

⎡
⎢⎣ Nu1 (ξ)

T
0 0

0 Nu3 (ξ)
T

0

0 0 Nθ (ξ)
T

⎤
⎥⎦
⎧⎨
⎩

qu1
(t)

qu3
(t)

qθ (t)

⎫⎬
⎭ (11)

where the vectors of longitudinal, transverse and rotational basis functions
(the names here employed to distinguish the sub-categories of basis func-
tions relate directly with the generalised displacements those functions are
connected to. In FEM nomenclature, these are all displacement type “shape
functions” or “element displacement functions” - Petyt (1990), Szabó and
Babuska (1991)) - are, respectively, given by

Nu1 (ξ)
T
= {g1 (ξ) , g2 (ξ) , · · · gpi (ξ)} (12)
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Nu3 (ξ)
T
= {f1 (ξ) , f2 (ξ) , · · · fpo (ξ)} (13)

Nθ (ξ)
T
= {Θ1 (ξ) ,Θ2 (ξ) , · · ·Θpθ (ξ)} (14)

The displacement shape functions gi(ξ), fi(ξ) and Θi(ξ) can be found
in (Ribeiro (2001)). The local coordinate,ξ, varies from -1 to 1 and the
following relation holds: x1 = ξ�/2. Letter q is employed for time dependent
generalised displacement vectors.
This text follows work developed in the area of the p-version of the

finite element method (Han (1993), Szabó and Babuska (1991)), so we may
designate the results that are presented later as p-version FEM results.
One of the characteristics of this method is that the number of elements is
defined much more by geometry than by accuracy requirements. Actually,
in all case studies of the present text only one element is used and therefore
the displacement shape functions (12)-(14) must respect the geometrical
boundary conditions of the full beam. Further details on the p-version
FEM and its application in nonlinear vibrations of beams in one plane
can be found in Ribeiro (1998); Ribeiro and Petyt (1999); Ribeiro (2001,
2004a,b); Ribeiro and van der Heijden (2009); Ribeiro (2010), Zhu and
Leung (2009). Applications of this method with more than one element to
nonlinear vibrations are shown in Ribeiro (2001) and Ribeiro et al. (2010),
although the latter work is on shells, not on beams.
Applying the virtual work principle to our problem, we arrive at the

following expression∫
Ω
δε11σ11dΩ+

∫
Ω
δγ13σ13dΩ−

∫
Ω
ρ (δu1 ü1 + δu3ü3) dΩ

− ∫
Ω
(δu1 Fu1

+ δu3 Fu3
+ δθM) dΩ = 0

(15)

where Fui represents external forces with direction xi andM now represents
an external moment about x2. Letter Ω is used to denote three-dimensional
region occupied by the beam. Employing the constitutive relation (10), the
first two terms of equation (15) are written as∫

Ω

δε11σ11dΩ =

∫
Ω

δε11Eε11dΩ−
∫
Ω

δε11Eε
p
11dΩ (16)

and ∫
Ω

δγ13σ13dΩ =

∫
Ω

δγ13κGγ13dΩ−
∫
Ω

δγ13Gγ
p
13dΩ (17)

The last term of equation (16) generates the following vectors
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Fplast
u1

(εp
11 (ξ, η, t)) = E

bh

2

∫ 1

−1

∫ 1

−1

Nu1

,ξ (ξ) ε
p
11 (ξ, η, t) dηdξ (18)

F
plast
θ (εp

11 (ξ, η, t)) = E
bh2

4

∫ 1

−1

∫ 1

−1

ηNθ
,ξ (ξ) ε

p
11 (ξ, η, t) dηdξ (19)

and matrix

Kplast (εp
11 (ξ, η, t)) = E

bh

�

∫ 1

−1

∫ 1

−1

Nu3

,ξ (ξ)N
u3

,ξ (ξ)
T
εp
11 (ξ, η, t) dηdξ (20)

Fplast
u1

and F
plast
θ are vectors of generalized forces that exist because of

the longitudinal plastic strains;Kplast is a matrix that appears due to the in-
teraction between the plastic strains and the large displacements. Equations
(18)-(20) were written for the particular, but quite common, case where E,
b and h are constant. Letter η represents the dimensionless coordinate in
direction x3: x3 = ηh/2. The plastic shear strains originate the following
force vectors:

Fplast
γu3

(γp
13 (ξ, η, t)) =

bh

2
G

∫ 1

−1

∫ 1

−1

Nu3

,ξ (ξ) γ
p
13 (ξ, η, t) dηdξ (21)

F
plast
γθ (γp

13 (ξ, η, t)) =
bh�

4
G

∫ 1

−1

∫ 1

−1

Nθ (ξ) γp
13 (ξ, η, t) dηdξ (22)

Forces and matrix defined by equations (18)-(22) involve plastic strains,
and numerical integration (Davis and Polonsky (1972)) is employed to com-
pute them.
The remaining terms in equation (15) are not related with plasticity and

originate: (1) mass matrices that will be represented by Mi, i = u1, u3, θ;
(2) the often called linear - linear because they appear in a linear system,
the matrices are actually constant - stiffness matrices, that will be written as
Kk

�ij , where i, j are 1, 2 or 3, and k can be p, γ or b (respectively standing for
longitudinal, shear and bending); (3) the stiffness matrices Kn�ij , i, j=1,2,
that represent the isolated effect of geometrical nonlinearity; and the vectors
of generalized external forces Fi, i = u1, u3, θ. These terms are computed
resorting to analytical, exact, integration. Within the actual formulation,
these matrices were defined in Ribeiro (2004a) and their expressions are
given in the following paragraphs.
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In the case of the beams analysed in this text, which have constant
rectangular cross sections, the longitudinal stiffness matrix K

p
�11 can be

written as:

K
p
�11 = E bh

2

�

∫ 1

−1

Nu1

,ξ N
u1T
,ξ dξ (23)

and the bending matrix Kb
�33 is given by

Kb
�33 = E

bh3

12

2

�

∫ 1

−1

Nθ
,ξN

θT
,ξ dξ (24)

The shear stiffness matrix is

[
K

γ
�22 K

γ
�23

K
γ
�32 K

γ
�33

]
= λGbh

∫ 1

−1

[
4
�2N

u3

,ξ N
u3T
,ξ

2
�N

u3

,ξ N
θT

2
�N

θNu3T
,ξ NθNθT

]
�

2
dξ (25)

where the shear modulus is G = E
2(1+ν) .

There are three nonlinear stiffness matrices equal to the thin straight
beam ones, which are given in Ribeiro and Petyt (1999). These are matrix
Kn�12 , which depends linearly on the generalised transverse displacements
qu3

, matrix Kn�22 , which is a quadratic function of qu3
, and matrix Kn�21 ,

which is equal to 2KT
n�12 .

Kn�12 is given by

Kn�12 = Ebh
2

�2

∫ 1

−1

u3,ξN
u1

,ξ N
u3T
,ξ dξ (26)

Matrix Kn�22 is a quadratic function of the transverse displacement u3.
Unlike Kn�12 , Kn�22 is not affected by the longitudinal displacement of the
reference line; it is defined as:

Kn�22 = Ebh
4

�3

∫ 1

−1

Nu3T
,ξ Nu3

,ξ u
2
3,ξdξ (27)

A consistent mass matrix (Ribeiro (2004a)) is employed.
Using the just defined force vectors and matrices, the equations of mo-

tion are written in the following form (not all function arguments are rep-
resented):
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⎡
⎣ Mu1

0 0
0 Mu3

0
0 0 Mθ

⎤
⎦
⎧⎨
⎩

q̈u1
(t)

q̈u3
(t)

q̈θ (t)

⎫⎬
⎭+

⎡
⎣ K

p
�11

0 0
0 K

γ
�22

K
γ
�23

0 K
γ
�32

K
γ
�33
+Kb

�33

⎤
⎦×

×
⎧⎨
⎩

qu1
(t)

qu3
(t)

qθ (t)

⎫⎬
⎭+

⎡
⎣ 0 Kn�12 0

Kn�21 Kn�22 −Kplast 0
0 0 0

⎤
⎦
⎧⎨
⎩

qu1
(t)

qu3
(t)

qθ (t)

⎫⎬
⎭ =

=

⎧⎨
⎩

Fu1
(t)

Fu3
(t)

Fθ (t)

⎫⎬
⎭+

⎧⎪⎨
⎪⎩

Fplast
u1

(εp
11)

Fplast
γu3

(γp
13)

F
plast
θ (εp

11) + F
plast
γθ (γp

13)

⎫⎪⎬
⎪⎭

(28)

3 Time Domain Solution of the Equations of Motion

and Computation of Plastic Strains

In the presence of external forces and yielding, it is natural to solve the
equations of motion in the time domain. If the plastic strains are constant,
Equations (28) are simpler ordinary differential equations and there are a
number of established methods that can be used for the numerical solution
of these ODEs. These methods can be adapted to a situation where the
plastic strains change. Here a procedure based on Newmark method with
Newmark’s parameters Bathe (1996), which has proven to be reliable and
efficient in a wide number of tests, will be employed. The method is implicit,
a feature that is understood to be important, as it allows correcting the
nonlinear terms.
Because the plastic terms change whenever there is yielding and due to

the geometrical nonlinearity, some stiffness matrices and vectors of equation
(28) are unknown in each time step. This combined problem will be solved
in a rather simple way using two cycles. Instead of using the “consistent
elastic-plastic tangent matrix” (Kojić and Bathe (2005)), direct substitution
and iteration on the original equations are employed. A method that em-
ploys a tangent matrix likely requires fewer iterations for convergence and
may, eventually, converge in cases where the method here proposed fails.
But since the determination of a consistent elastic-plastic tangent matrix
requires an additional effort and the simper method here proposed worked
out quite effectively in our case studies, we will pass without the tangent
matrix.
In a first cycle of the solution algorithm, the plastic strains from the

previous time step - either zero or not - are used to compute the forces
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and matrix given by Equations (18)-(22). The generalized displacements
are computed by solving equation (28) iteratively with correction of the
geometrically nonlinear stiffness matrix. When convergence is achieved in
the former cycle (i.e., convergence has been achieved in the computation of
generalized displacements without updating the plastic strains. It is also
always verified that the equation of motion (28) is satisfied), the stresses
are computed at the Gauss points using Equations (10) and a yield criterion
employed to verify if yielding occurred at any point. Here von Mises yield
criterion with mixed hardening is used. It has been confirmed that von Mises
criterion provides results close to experimental results in metals (Kojić and
Bathe (2005)). The yield function f is thus defined as

fy =
1

2

(
t+ΔtSij

t+ΔtSij − t+Δtαij
t+Δtαij

)− 1
3

t+Δtσ2
y i, j = 1, 2, 3

(29)

where the summation convention applies. αij are the components of the
back stress tensor α which are zero until plasticity takes place and define
the position of the yield surface; t+Δtσy is the yield stress, which depends
upon the degree of plasticity of the particular point within the domain. Sij

are the deviatoric stress components which are given by

Sij = σij − σmδij (30)

with σm the mean stress and δij Kronecker delta. In the case of beams that
obey the assumptions stated in the beginning of sub-section 2.2 we have:
S11 = 2σ11/3, S22 = S33 = −σ11/3 , S13 = S31 = σ13 , S12 = S21 = S23 =
S32 = 0.
The nine deviatoric stress components - a second order tensor - are here

written in vector form, i.e., S = {S11, S12, S13, S21, . . . S33}. This vector
form is also employed here for the other second order tensors related with
stresses and strains.
When yielding occurs at any point, the plastic strains and the plastic

dependent variables, including the yield stress, must be updated. It is as
well necessary to re-calculate the generalized displacements. These are the
tasks of a second cycle. The procedure here suggested to compute the plastic
strains is the governing parameter method with the increment of effective
plastic strain, ΔeP , as governing parameter (Kojić and Bathe (2005)). This
procedure is described in the following paragraphs.
The von Mises yield function, our governing function, cannot be greater

than zero. A bilinear stress-strain relation with mixed hardening is here
assumed, Figure 2, and, therefore, the yield function can be written as
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fy

(
ΔeP

)
=

t+ΔtσE

t+Δtσy + [3G+ (1−M)EP ] ΔeP
− 1 (31)

When yielding takes place, ΔeP is calculated such that the governing
function fy

(
ΔeP

)
is zero.

ε 

σ 

σ�

�	

σ�

�σ�

�σ�

−σ�

Figure 2. Bilinear uniaxial stress-strain curve. In mixed hardening the
yield stress in compression, −σC , is smaller than σB − 2σA and larger than
−σB .

M in equation (31) is a mixed hardening parameter, which is a characteristic
of the material and quantifies Bauschinger effect (Dieter (1986)). A mixed
hardening material model (0< M <1) is placed between isotropic (M=0)
and kinematic hardening material models (M=1). Only the isotropic part
of the effective plastic stress affects the size of the yield surface (Kojić and
Bathe (2005)). Another consequence of Bauschinger effect is the movement
of the yield surface, represented by the back stress, α, that was introduced
in equation (29).
The plastic modulus EP can be written as

EP =
EET

E − ET
(32)
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where ET is the tangent modulus and E Young modulus. Because we assume
that the stress strain relation is bilinear, ET and EP are constants.

t+ΔtσE , in equation (31), is the effective plastic stress when ΔeP = 0 ,
defined as

t+ΔtσE =

(
3

2
t+ΔtŜE · t+ΔtŜE

)1/2

(33)

with t+ΔtŜE the radius of the elastic stress surface, given by

t+ΔtŜE = t+ΔtSE − tα (34)

t+ΔtSE represents the deviatoric stress of the elastic solution, i.e., the
deviatoric stress of a solution with no plastic deformation in the current
step. To compute t+ΔtSE one uses the following four expressions:

t+Δte′ij =
t+Δtεij − t+Δtεm i = j (35)

t+Δte′13 =
1

2
t+Δtγ13 (36)

t+Δte′′ij =
t+Δte′ij − tεP

ij (37)

t+ΔtSE = 2G t+Δte′′ (38)

Terms t+Δte′ij and
tεP

ij are, respectively, the components of the deviatoric
strain tensor in the actual time step and of the plastic strain tensor in the
previous step. t+Δtεm is the mean strain.
Since σ22 and σ33 are neglected, the following relations hold

t+Δtε11 =
t+Δtσ11

E
+ t+ΔtεP

11 (39)

t+Δtε22 = − ν

E
t+Δtσ11 +

t+ΔtεP
22 (40)

t+Δtε33 = − ν

E
t+Δtσ11 +

t+ΔtεP
33 (41)

Moreover, the volumetric plastic strain is equal to zero (εP
V =

t+ΔtεP
11 +

t+ΔtεP
22 +

t+ΔtεP
33 = 0) and, consequently, the mean strain is given by

t+Δtεm =
1− 2ν
3

σ11
E

(42)
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Next we define adimensional parameter Δλ which relates the increments
of plastic strain and the total deviatoric stresses as

Δλ =
3

2

ΔeP

t+Δtσy
(43)

t+Δtσy is the yield stress at time step t+Δt and is given by

t+Δtσy = σyv +M EP

(
eP +ΔeP

)
(44)

where σyv represents the initial yield stress, meaning the yield stress before
any plastic hardening occurred.
The deviatoric stress t+ΔtS minus the back stress t+Δtα is designated as

stress radius and represented by t+ΔtŜ . In a bilinear stress-strain relation,
it can be obtained using the following expression

t+ΔtŜ =
t+ΔtŜE

1 + 2 [G+ (1−M)EP /3]Δλ
(45)

It is easier to deduct equation (45) if the deviatoric stresses (30) are
written in the following form:

t+ΔtS = t+ΔtSE − 2GΔλ t+ΔtŜ (46)

The increment of plastic strains is given by

Δt+ΔtεP = Δλ t+ΔtŜ (47)

which are the Prandtl-Reuss equations (3.2.28) of reference (Kojić and
Bathe (2005)), but where t+ΔtŜ are the deviatoric stresses, defined in equa-
tion (30), minus the back stresses t+Δtα (in equations (3.2.28) of (Kojić
and Bathe (2005)) there is no back stress). The total plastic strain at time
t+Δt is

t+ΔtεP =Δt εP +ΔεP (48)

and the back stress is given by

t+Δtα =Δt α+Δα (49)

Δα = 2 (1−M)EPΔε
P /3 (50)

Equation (50) is a form of Prager’s hardening rule (Kojić and Bathe
(2005)) where 2EP /3 is the kinematic hardening modulus.
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Figure 3. Flow chart showing procedure for computation of plastic strains
with mixed hardening.
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When the plastic strains are obtained, the forces and matrix given by
Equations (18)-(22) can be updated. After, one returns to the equations
of motion (28) and corrects the generalized displacements in an inner it-
erative procedure where the geometrically nonlinear terms are corrected.
After convergence has been achieved in this inner iterative procedure, the
new generalized displacements are used to compute the strains and stresses.
Then it is verified if convergence has also been achieved in the computation
of the plastic strains and back stresses. If it has, one proceeds to the next
time step, otherwise one returns to the computation of the plastic strains
using Equations (29) to (50) and the updated generalised displacements.
Hence, the iterations within a particular time step only stop when neither
the generalized displacements, nor the plastic strains vary more than pre-
defined threshold values. It is always enforced that the solution is inside or
on the yield surface.
The just presented algorithm for computation of plastic strains is further

illustrated in the flow chart of Figure 3.

4 Examples of Forced Elasto-Plastic Vibrations

This section employs the time domain procedure described in Section 3 to
investigate the oscillations of beams in the elasto-plastic regime and with
geometrical nonlinearity. The section starts by addressing the validation
of the formulation and computational codes employed, and proceeds to an
illustration of the dynamic behaviour of elasto-plastic and geometrically
nonlinear beams.
The approach described in the previous section has been put to test in

different examples, in order to verify the consistency of its results. The
geometrical nonlinear, linear elastic model has been often used with success
and some examples of this are given in (Ribeiro (1998)) and (Ribeiro and
Petyt (1999)). It was in addition tested by comparing displacements and
velocities with the ones computed by McEwan et al. (2001).
The elasto-plastic and geometrically nonlinear code has been more re-

cently developed and tested (Ribeiro and van der Heijden (2009)) and ap-
pears to be correct. In fact, it provided plastic strain distributions due to a
distributed, transverse, step force that agree (visual comparison) with data
published by Manoach and Karagiozova (1993). It also gave results that
agree with the ones of finite element software ANSYS (ANSYS (2007)).
Two ANSYS elements were employed in the comparisons, namely a beam
element with shear deflection, BEAM23, and a shell element, SHELL43.
Both ANSYS elements have plasticity and large deflection capabilities. The
ANSYS beam element obviously follows a beam theory and therefore pro-
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vides a fair term of comparison in what concerns the number of degrees of
freedom necessary for convergence. The shell element was used to obtain
reference results. It was verified that the p-version element provides lin-
ear natural frequencies, displacements in elastic and elasto-plastic regimes
closer to the ones of the shell element and with less degrees of freedom than
the beam h-version element (Ribeiro and van der Heijden (2009)). More-
over, the plastic strains are computed by the p-version beam finite element
within the whole beam domain with a distribution quite similar to detailed
shell models. Nevertheless, to obtain this detailed picture of plastic strains
a few Gauss points are required (remember: it is just one element for the
whole beam). Quite expectedly, more degrees of freedom are needed in the
presence of plasticity than when this is absent.
In the tests shown in (Ribeiro and van der Heijden (2009)) using the p-

version FEM, the same numbers of transverse, longitudinal and rotational
shape functions were employed, a restriction implemented to limit the num-
ber of numerical tests. Naturally, the number of shape functions could
have been chosen independently, and that would allow further reducing the
number of degrees of freedom.
The following test example is taken from McEwan et al. (2001). The

beam material properties are typical of steel; these are: ν = 0.3,E = 2.00×
1011 N m−2, ρ = 7.8 × 103 kg m−3. The geometric properties are b=0.03
m, �=1 m and h=0.01 �. The yield stress, σyv = 2.0 × 108 N m−2 is
as well appropriate for some steels and taken from reference (Kojić and
Bathe (2005)). The tangent modulus is either ET = 108 N m−2, which
is somewhat small, approaching the popular elastic-perfectly plastic model
(Kojić and Bathe (2005), Simo and Hughes (1998)), or ET = 10

9 N m−2,
a value from reference (Kojić and Bathe (2005)). M is in these tests equal
to 1, therefore Bauschinger effect is neglected.
Mass proportional viscous damping with a proportionality factor β equal

to one is assumed, as in (McEwan et al. (2001)). This means that the equa-
tions of motion (28) take the form (function arguments are not represented)

Mq̈+ βMq̇+K�q+ [Kn� −Kplast]q = F+ Fplast (51)

Figure 4 1 and Figure 5 show the steady state transverse displacements
as a function of time and displacements versus velocities of two points (ξ=0
and ξ =0,875). Only data computed with tangent modulus ET = 108 N

1The data shown in Figure 4 (a) was published in (Ribeiro and van der Heijden (2009)),

Copyright (2009), and is reprinted with permission from Elsevier. Figures 9, 10 and 13

on the present text are also similar to figures presented in the same reference, although

they use slightly different data here.
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m−2 is shown; computations with ET = 10
9 N m−2 were also carried out,

but there is no visible difference and hence are not included in the figures.
The oscillations are due to a transverse force, uniformly distributed in space
with amplitude 1000 N m−1 and sinusoidal in time, with frequency 117.8097
rad/s (18.75 Hz). The oscillations are periodic with the same period as
the excitation, but they are not harmonic. Data computed with different
numbers of shape functions and Gauss points agrees. It is clear that a
model with a small number of degrees of freedom (for example 15 DOF) is
sufficient. Actually, an exhaustive convergence study was not carried out, so
it is possible that fewer degrees of freedom would suffice in this example. As
said, this example is taken from reference (McEwan et al. (2001)), where a
linear elastic, geometrically nonlinear model is applied. The displacements
and velocities in direction x3 of the middle point (Figure 4) are similar to
those portrayed in Figure 7 of that reference.

Figure 4. (a) Transverse displacement; (b) displacement versus velocity.
Data computed at middle point of the beam with: 15 DOF, 20 × 10
Gauss points; −◦− 27 DOF, 40 × 20 Gauss points; −×− 75 DOF, 40 × 20
Gauss points; � 75 DOF 64 × 64 Gauss points.

The direct, σ11 (x1, x3, t), and transverse shear, σ13 (x1, x3, t), stresses at
t=0.1786 s computed with the geometrically nonlinear only model and with
the model that considers both geometrical nonlinearity and plasticity are
shown in Figure 6 and Figure 7. 75 degrees of freedom and a grid of 64 × 64
Gauss points were employed to compute the results shown in these figures
and in the following paragraphs. Because, in this example, plastic strains
are really only of importance closer to the boundaries, they are of small
consequence in displacements and velocities, and that is the reason why
displacements and velocities are similar to the ones of reference (McEwan
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Figure 5. (a) Transverse displacement; (b) displacement versus velocity.
Data computed at point ξ =0,875 of the beam with: 15 DOF, 20 × 10
Gauss points; - ◦ - 27 DOF, 40 × 20 Gauss points; -×- 75 DOF, 40 × 20
Gauss points; � 75 DOF 64 × 64 Gauss points.

et al. (2001)). On the other hand, it is apparent that it is needed to consider
them for accurate stress computation, since near the beam limits, which are
the critical areas in terms of stresses, the plastic strains experience steep
variations that lead to substantial changes in the stresses.

Figure 6. Direct stresses σ11 (x1, x3, t) at t=0.1786 s: (a) geometrically
nonlinear only (b) elasto-plastic and geometrically nonlinear model.
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Figure 7. Direct stresses σ13 (x1, x3, t) at t=0.1786 s: (a) geometrically
nonlinear only (b) elasto-plastic and geometrically nonlinear model.

In this example, transverse shear stresses are about two orders of mag-
nitude lower than direct stresses.
Figure 8 shows plastic strains computed with ET = 10

8 N m−2 (close to
perfect plasticity) and with ET = 10

9 N m−2. The plastic strains computed
with ET = 109 N m−2 differ only slightly from the ones computed with
ET = 10

8 N m−2 in this case. It is curious to notice the irregular pattern
that appears with sinusoidal excitations.
By increasing the excitation amplitude and/or changing the excitation

frequency, we can lead the same beam to oscillations where not only strains
and stresses, but also displacements and velocities that result from elastic
only and from elasto-plastic models differ visibly. An example where the
later occurs is shown in Figure 9. The excitation frequency is equal to
the first linear natural frequency, 326.827 rad/s, and the amplitude of the
distributed transverse force is 500 Nm −1. The figure shows the transverse
displacement of the middle beam point along two excitation cycles and the
projection of the trajectory on the phase plane defined by the transverse
displacement and velocity. Te represents the excitation period. In this
case, both models predict periodic oscillations dominated by the excitation
frequency but the elasto-plastic model predicts smaller displacement and
velocity amplitudes than the elastic model.
Figure 10 and Figure 11 show the longitudinal and shear stresses, σ11

and σ13, computed with the linear elastic model and with the elasto-plastic
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Figure 8. Plastic strains εplast
11 (x1, x3, t) at t=30.0 s: (a) ET = 10

8 N m−2

(b) ET = 10
9 N m−2.

Figure 9. (a) Transverse displacement of middle point and (b) projection
on a phase plane, excitation at first linear natural frequency with 500 N m−1

amplitude. elasto-plastic and geometrically nonlinear; • geometrically
nonlinear.



Vibrations of Beams in Nonlinear Regimes 199

model, both models geometrically nonlinear, at t= 0.7547 s. The difference
between values computed with the different models is higher near the clamps
and in the middle of the beam. Due to plasticity, the surfaces defined by σ11
and σ13 become uneven near the clamps (as occurred in the former example,
see Figure 8). Although plastic strains also alter the stresses in statics, this
unevenness effect was only found in dynamics and is due to the oscillations.
The initial yield stress of this particular steel is not high, but it is noted
that the stresses computed without considering plastic strains attain values
over 400 MPa and that, therefore, plasticity would as well take place in a
higher strength steel.

Figure 10. Stresses σ11 (x1, x3, t) computed with linear elastic model (a)
and with elasto-plastic model (b), when t=0.7547 s, excitation at linear
natural frequency with 500 N m−1 amplitude.

Transverse shear stresses are still about two orders of magnitude lower
than direct stresses, as occurred in the former example. Also as before, but
now in a rather more pronounced way, localised areas exist where transverse
shear stresses increase or decrease very sharply.
In the following lines, results on a thicker beam, h/�=0.05, are shown.

The force amplitude was increased to 10 000 N m−1 in order to achieve large
displacements in this thicker beam. The damping factor β was chosen so
that the nondimensional damping ratio, which is equal to the viscous damp-
ing coefficient divided by the critical damping coefficient (Kelly (1993)), of
a one degree of freedom system representing the beam does not change
with respect to the previous thin beam. The value hence obtained for β is
4.92206.
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Figure 11. Stresses σ13 (x1, x3, t) computed with linear elastic model (a)
and with elasto-plastic model (b), when t=0.7547 s, excitation at linear
natural frequency with 500 N m−1 amplitude.

The plastic strains at instant 0.1518 s are shown in Figure 12. In this
case, although those strains are large close to the boundaries, they are also
quite large in areas around the beam centre. The shear plastic strains are
about one order of magnitude smaller than the direct strains.

Figure 12. (a) Direct, εplast
11 (x1, x3, t), and shear plastic strains

(b)γplast
13 (x1, x3, t), at t=0.7547 s.

Figure 13 shows the transverse displacement and the projection of the
trajectory on a phase plane at later cycles. The geometrically nonlinear,
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linear elastic model over predicts the displacement and velocity amplitudes.
An explanation for this is that the plastic strains contribute to the variation
of the natural frequencies of the beam (illustrated in Section 6), therefore the
fundamental frequency becomes more distant from the excitation frequency.
In the cases here shown the displacements computed by the model that

included plasticity were almost equal or larger than the ones computed with
the geometrically nonlinear only model. It can also happen that the dis-
placements obtained by the elastic-plastic geometrical nonlinear model are
larger than the ones obtained by using only the elastic model, due to soft-
ening induced by plasticity. Reference (Ribeiro and van der Heijden (2009))
shows an example of this occurrence. We again recall that in a dynamic
problem the frequency content of the external excitation and its relation
with the resonance frequencies (generally close to the natural frequencies)
of the excited system are of paramount importance and, as we shall see in
an ensuing section, plastic strains affect the natural frequencies.

Figure 13. (a) Transverse displacement of middle point and (b) projec-
tion on a phase plane, excitation at first linear natural frequency of beam
h/�=0.05, with 10 000 N m−1 amplitude. elasto-plastic and geometri-
cally nonlinear; • geometrically nonlinear.
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5 Vibration Modes in Large Amplitude Vibrations

and With Plastic Strains - Equations of Motion

5.1 Mode of Vibration

The importance of natural modes of vibration in linear systems is widely
known (e.g. Ewins (2000), Kelly (1993), Thomsen (2003)), but, as an in-
troduction to this section, we recall the essential features of these modes.
Linear conservative systems have natural frequencies of vibration, where
they vibrate in such a way that the ratio between the vibration amplitude
of any two points is constant, thus defining a form of vibration of the system,
the natural mode shape of vibration. Hence, a natural mode of vibration of
a linear conservative system is as an oscillation at a natural frequency (i.e.,
a harmonic oscillation) and with a natural mode shape.
Three reasons make the linear modes very important: (1) the equations

of motion can be uncoupled using modal coordinates and the orthogonality
of the natural mode shapes with respect to the mass and to the stiffness
matrices; (2) the vibrations of a system often are defined by a reduced num-
ber of modes, therefore, modal reduction, which consists in expressing the
motion as a superposition of a selected number of modes, can be employed
to analyse vibrating systems with a reduced cost, good accuracy and allow-
ing for an easier interpretation of the system dynamic behaviour; (3) when
damping is small, resonance occurs close to the natural frequencies.
Whilst in a linear conservative system the natural frequencies and mode

shapes are constants that do not change with the vibration amplitude, in
a system experiencing geometrically nonlinear vibrations this is not true.
Periodic - therefore steady-state - oscillations in free regime can be ob-
tained that tend to the linear modes as the vibration amplitude decreases,
but the shape assumed by the system along a vibration period is generally
not constant and the oscillations are not exactly harmonic. A few studies
have been carried out on the variation of mode shape and vibration period
and on definitions of mode shapes for nonlinear systems. Rosenberg (1966)
suggested that a nonlinear natural mode of a discrete system could be inter-
preted as a motion where the masses execute periodic, but not necessarily
harmonic, vibrations, all masses vibrating with the same period, achieving
the maximum amplitude displacement and the equilibrium position simul-
taneously. The co-ordinates of the system are determined by the position of
any of the masses, as in linear modes, but the ratio between the vibration
amplitudes of any two points is not constant. This concept can be extended
to continuous systems, by considering and infinite number of infinitesimal
masses.
The natural modes of discrete (or discretized) linear systems are com-
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puted by solving eigenvalue problems. In discrete models of nonlinear sys-
tems an eigenvalue problem related with steady-state free vibration can - as
shown in the next section - also be defined, but the stiffness matrix depends
upon the unknown eigenvector. Hence, the eigenvalues and the eigenvectors
are, generally, amplitude dependent. We defend that these define frequen-
cies and shapes of vibration, which depend on the amplitude of vibration
displacement and that approximately represent nonlinear modes of vibra-
tion. Accordingly, the designation “natural frequency” will be attributed
to the square root of the eigenvalue that solves the nonlinear eigenvalue
problem and the “mode shape” of linear systems will be replaced by the
shape defined by the eigenvectors. In the presence of internal resonance, at
least two modes are involved.

5.2 Reduced Model Equations for Free Vibrations

In this text we will show the effect of plastic strains on the free vibration
modes and proceed now to the presentation of the model employed for
this purpose. In the case here considered the beam has been deformed
quasi-statically by an external force, in such a way that the yield stress is
passed at least in some points of the domain. After a desired deflection has
been achieved, the force is removed and free vibrations with displacement
amplitudes of the order of the static displacement that originated the plastic
strain, or lower, are analysed. This restriction on the vibration amplitude is
used to justify the assumption, here taken, that the stresses achieved during
oscillations are small enough for the plastic strains to remain constant.
Accordingly, in the following equations, the plastic strains εplast

11 (ξ, η, t) and

γplast
13 (ξ, η, t) become εplast

11 (ξ, η) and γplast
13 (ξ, η). If the former assumption

is not true, then the plastic strain field should be re-calculated.
We will only be concerned with beams where both ends are fixed and

analyse vibration modes that in the linear regime are bending modes. In
this case, the longitudinal inertia is generally of small significance (Ribeiro
(2001)) and can be neglected. The following two equations (Equations (52)
and (53)) are hence derived from Equation (28). Notice that the longitudi-
nal displacements were not neglected. They are important if the vibration
amplitude is not small (Ribeiro (1998)) and neglecting them leads to a too
stiff model.

qu1
(t) = K

p−1

�11
Fplast

u1
(εp

11 (ξ, η))−K
p−1

�11
Kn�12 (qu3

(t))qu3
(t) (52)
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Equations (53) can be otherwise written as follows
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where matrix K
plast
Gn�

(
εplast
11 (ξ, η)

)
obeys the following relation

K
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qu3
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)
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11

Fplast
u1

(
εplast
11 (ξ, η)

)
(55)

It is noted that although K
plast
Gn�

(
εplast
11 (ξ, η)

)
is a constant matrix that

remains in a linearized version of Equations (54) (Ribeiro (2010)), it only
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arises due to the nonlinearity of the system, since it is a consequence of
plastic strains and geometrical nonlinearity.

5.3 Harmonic Balance Method

The ordinary differential equations of motion (54), or (53), will be trans-
formed into algebraic equations by the harmonic balance method (HBM).
In the HBM the solution is expanded in a truncated Fourier series. Since
only undamped periodic motions are here analysed, a series only with co-
sine (sine) terms is used. Equations (54) contain linear and cubic terms in
the generalised displacements, and the beam is plastically deformed from
its straight configuration. Consequently, the Fourier series should contain
the constant term and, at least, the first two harmonics. In addition, previ-
ous experiences indicate that the third harmonic can be very important in
these oscillations (Ribeiro and Petyt (1999), Ribeiro (2004b), Lewandowski
(1994a), Lewandowski (1997b)). Therefore, the third harmonic will be also
included in the Fourier series and it is assumed that the solution of Equa-
tions (54) has the form:

{
qu3

(t)
qθ (t)

}
=
1

2

{
w0

θ0

}
+

3∑
i=1

{
wi

θi

}
cos (iωt)

⇔ q (t) =
1

2
Q0 +

3∑
i=1

Qi cos (iωt)

(56)

If the consideration of more harmonics may eventually lead to different
results, series (56) contains terms of all types (constant, odd and even) and
allows us to analyse the essential features of the beam vibrations. The fact
that the longitudinal inertia was neglected brings the benefit that the lon-
gitudinal displacements are automatically expressed by a truncated Fourier
series with the constant term and six harmonics. To verify that one just
needs to introduce series (56) in equation (52).
Inserting the truncated series (56) into Eqs. (54) and applying the har-

monic balance method (Lewandowski (1997a), Nayfeh and Mook (1995),
Ribeiro and Petyt (1999)), a set of algebraic equations which depend on the
fundamental frequency of vibration and on the coefficients of each harmonic
is obtained. The procedure to solve these algebraic equations is described
- in brief, but giving references where the missing details can be found - in
the next section. To facilitate the description that follows, Equations (54)
are written in a simplified manner as follows:
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M̄q̈ (t) + K̄�q (t) + K̄plast
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q (t) + K̄Gn� (qu3

(t))q (t)
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) (57)

Most matrices and the force vector in equation (57) are constant. Only
the nonlinear matrix K̄Gn�

(
qu3

(t)
)
is a quadratic function of qu3

(t).

5.4 Eigenvalue Problem

When the solution is given by equation (56), one can transform the
equations of motion into the following:
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0 0 0 0

0 I 0 0

0 0 4I 0

0 0 0 9I
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1
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0 0 I 0
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⎫⎪⎪⎬
⎪⎪⎭+
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⎪⎪⎩
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Fc1
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Fc3

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

F̄plast

0

0

0

⎫⎪⎪⎬
⎪⎪⎭

(58)

Time is not present in Equations (58), that are algebraic and have as
unknowns the fundamental frequency, ω, of Fourier series (56), and the
coefficients of the harmonics Q0, Q1, Q2, Q3. Although, for the sake of
simplicity, this is not explicitly written in Equations (58), K̄plast and F̄plast

are functions of the plastic strains and Fc0, Fc1, Fc2 and Fc3 are functions
of the coefficients of the harmonics. Vectors Fci, i=0-3, are given by

Fci =
2

T

∫ T

0

KGn�

(
qu3

(t)
)
qu3

(t) cos (iωt) dt i = 0, 1, 2, 3 (59)

where sub-vectors Fci involve all harmonic coefficients; for instance Fc0 is
a function of Q0, Q1, Q2 andQ3.
Equation (58) is equivalent to

R = 0 (60)

where vector R is defined as follows
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R =
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0

0

0
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(61)

Equations (60) and (61) define an eigenvalue problem where one of the
matrices depends on the eigenvector Q0, Q1, Q2, Q3 and the eigenvalue is
the fundamental frequency of the Fourier series squared ω2. This problem
may be solved by an arc-length continuation method ( Lewandowski (1994a,
1997a,b), Ribeiro (1998, 2010), Ribeiro and Petyt (1999)), which is basically
a Newton (also known as Newton-Raphson) procedure complemented by
a constraint equation. In a direct application of Newton method to this
problem the frequency or the amplitude of vibration would be used as a
parameter and turning points not passed. We employ instead the distance
between two points of the backbone curve as a parameter. The continuation
procedure converges in cases where a simpler Newton algorithm experiences
difficulties, but, with the aforementioned exception of turning points, if
Newton is coupled with a secant predictor it is also rather effective.
Other more or less efficient methods have been implemented to solve the

present problem. AUTO (Doedel (1981, 2006)) is a popular continuation
software. B. Cochelin and co-workers made available a procedure based on
the so-called asymptotic numerical method (ANM) continuation technique
(Arquier et al. (2006), Cochelin and Vergez (2009)).

6 Vibration Modes in Large Amplitude Vibrations

and With Plastic Strains - Illustrative Test Cases

In this section, numerical tests are presented in order to illustrate the effects
of large displacement amplitudes and of plastic strains on the shapes and
natural frequencies of vibration.
To achieve the goal of illustrating the effect of plasticity, beams with

different plastic strain fields are required. These will be obtained by apply-
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ing the same force, quasi-statically, to beams similar in everything except
in the yield stress. Appendix E of reference (Thomsen (2003)) states that
the yield stress, σyv, of steel ranges from 2×108 N m−2 to 16 ×108 Nm−2.
Values within these limits can be found elsewhere in the literature (Kojić
and Bathe (2005), Manoach and Karagiozova (1993)) and in material data
sheets. With this in mind, the four (academic but possible) steels with yield
stresses as written in Table 1 were considered.

Table 1. Initial yield stresses of steels 1-4 (in Nm−2).

Steel 1 2 3 4
Initial yield stress 2×108 3.5 ×108 5×108 6.5×108

The remaining material properties are the ones of Section 3: ν =0.3,
E=2.00 ×1011Nm−2, ρ = 7.8 ×103kg m−3. The geometric properties are
the ones of the thinner beam of that section: b=0.03 m, � =1 m and h=0.01
�. The shear correction factor is still κ =(5+5ν)/(6+5ν) and the tangent
modulus ET = 109 Nm−2, taken from an example of (Kojić and Bathe
(2005)) is once again employed.
The first six linear natural frequencies of vibration of the beam in the

plane x1x3 and without plastic strains, computed with the full model (i.e.,
not neglecting the longitudinal inertia, are shown in Table 2. The model
employed uses eleven symmetric bending shape functions and twenty one
longitudinal and rotational shape functions (po=11, pi=pθ=21).

Table 2. Linear natural frequencies of vibration, ω�(rad/s), of beam with-
out plastic deformation. SB - symmetric bending mode; L - longitudinal
mode.

Mode number 1 (SB) 2 (SB) 3 (SB) 4 (SB) 5 (SB) 6 (L)
ω� 326.83 1762.5 4337.9 8029.7 12809 15908

As written in a previous section, the convergence and accuracy of the
p-version model in elasto-plastic, geometrically nonlinear vibrations, were
investigated in (Ribeiro and van der Heijden (2009)). Further validating
analysis were developed in the preparation of (Ribeiro (2010)). The conver-
gence analysis demonstrates that 12 symmetric transverse, 23 longitudinal
and 23 rotational shape functions provide very accurate displacement and
sufficiently accurate plastic strains in the cases considered here where plas-
tic strains are larger. This set of shape functions will hence be used when
the plastic strains are not small. For the cases with smaller plastic strains, a
model with po=11, pi=pθ=21 is enough and will be employed. In the prob-
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lems at hand we can, and did, use only symmetric out-of-plane functions. A
reduction using the symmetry properties was some times also implemented
in the longitudinal and rotational generalised coordinates, but reduction of
these coordinates is not so important because the elastic nonlinear terms
are, in this model, only related with transverse generalized coordinates. A
set of 75×75 Gauss points, which is actually more dense than necessary in
most instances (Ribeiro and van der Heijden (2009)), was employed.
In the following case study, transverse, uniformly distributed forces are

first applied in a quasi-static fashion to beams in steels 1 to 4. The ampli-
tudes of the forces are such that the deflection of each beam in its middle
point is 1.50000 h. After the static force is removed the beams partially re-
cover, but plastic strains remain. In this way the plastic strain distributions
shown in Figure 14 were implemented. As would be expected, the plastic
strains are larger and the force amplitude required is smaller in steels with
lower yield stress. As we have seen in previous cases, the plastic strains de-
velop closer to the clamped ends, where stresses are larger. Plastic strains
also appear in the middle of the beam, although they are difficult to see
in the picture. The direct plastic strains, εplast

11 , are much larger than the

shear plastic strains, γplast
13 , in this thin beam.

Free vibration studies were carried out in these four beams assuming that
the plastic strains do not change and following the procedure described in
the previous section (Section 5). As explained, an eigenvalue problem is
actually solved, and eigenvectors and eigenvalues that provide approxima-
tions to the vibration modes in the nonlinear regime are computed. Since
the yield stress does not have any implication now, the beams are similar
in everything except the plastic strain field.
Curves that relate the frequency of each harmonic with the vibration dis-

placement amplitude (backbone curves) are shown in Figure 15, where the
vibration amplitudes were computed in the middle of the beam (ξ = x1=0).
A first noticeable difference with respect to elastic beams is that due to
the plastic strains there is a non-zero constant term. The amplitude of this
constant term decreases as the amplitudes of other harmonics grow, most
probably because an augmentation of the harmonics amplitudes corresponds
to larger vibration amplitudes and results in an increase of stiffness. Since
on the other hand, the constant force F̄plast does not vary and, obviously,
there is no inertia related with the constant term, the amplitude of the
constant term decreases.
In an elastic system with no plastic strains the natural frequency at which

the first harmonic amplitude is approximately zero is the linear natural fre-
quency, ω�1. But Figure 15 shows that the frequency at which the oscillation
amplitude is near zero varies significantly with the installed plastic strain
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Figure 14. Plastic strains: longitudinal (a) and shear (b), beam in steel 1;
longitudinal (c) and shear (d), beam in steel 2; longitudinal (e) and shear (f),
beam in steel 3; longitudinal (g) and shear (h), beam in steel 4. Reprinted
from Ribeiro (2010), Copyright (2010), with permission from Elsevier.
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field. In the case of beam in steel 1 (the beam where larger plastic strains
were achieved), this frequency is about 1.278 ω�1; in the case of beam in steel
2 (second larger plastic strains), the starting frequency is about 1.049 ω�1.
In these cases the significant deformation of the beam due to plastic forces
leads to large amplitude displacements with respect to the initial, straight,
configuration and stiffen the beam. On the other hand, the plastic strains
have a softening effect on the beam, represented in the present model by

the minus sign before matrix Kplast
(
εplast
11 (ξ, η)

)
in equation (54). This

softening effect competes with the hardening effect of the geometrical non-
linearity. In the case of the initial point of beam in steel 3, the plastic
strains are more important than the geometrically nonlinear terms, because
the amplitudes of the initial displacements are smaller. Therefore the ini-
tial natural frequency of vibration is lower than the one of the elastic beam
(0.813 ω�1). The plastic strains and initial displacements of beam in steel 4
are very small; therefore, the starting frequency is approximately equal to
the natural frequency of the linear elastic beam.
All oscillations related with Figure 15 are periodic and the larger har-

monic is the first, features that are common with oscillation of geometrically
nonlinear beams on the main branch (Ribeiro and Petyt (1999)), which is
the branch here analysed. What is not common with geometrically nonlin-
ear beams is the softening that beam in steel 1 shows, and the presence of
a constant term and second harmonic in all beams with plastic strains.
After the initial softening of beam in steel 1, the geometrical nonlinear

terms become preponderant and hardening appears. Beams in steels 2, 3
and 4 solely experience hardening spring effect: the frequency increases as
the amplitude of the first harmonic increases. In the beam in steel 4 the
constant term and the second harmonic are very small because the plastic
strains are also small ((g) and (h)). This means that the solutions are very
close to symmetric about an equilibrium configuration that almost does not
differ from the one of elastic beams (a configuration where the beam is
straight) because the plastic forces are approximately zero.
The normalized shapes of each harmonic of the nonlinear beam in steel

1 at some frequencies of vibration are shown in Figure 16. The shape of
harmonic i defined by

wi (ξ) = Nu3 (ξ)
T
Qi (62)

and the shapes represented in Figure 16 were normalized such that the
displacement amplitude in the middle of the beam, represented by wmi,
i=0-3, is 1.
The shape of the constant term, with an apparent rotation near the
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Figure 15. Backbone curves computed in the middle of the beam (point ξ
=0.0); � beam in steel 1; ◦ beam in steel 2; ♦ beam in steel 3; beam in
steel 4. Reprinted from Ribeiro (2010), Copyright (2010), with permission
from Elsevier.



Vibrations of Beams in Nonlinear Regimes 213

clamped ends, is initially similar to the first mode shape of a simply sup-
ported beam. This is due to the large plastic strains near the clamped ends,
which particularly soften the beam in these regions. Proceeding along the
backbone curve, the shape of the constant term changes, with a relative
increase of the displacement of points away from the central point. This
may be a consequence of stiffness increase in the centre of the beam, itself
a consequence of the larger amplitude of higher harmonics.
The shape of the first harmonic is very similar to the first linear bending

mode shape and changes very little with the fundamental frequency (i.e.
with the vibration amplitude). The second harmonic shape also remains
similar to the one of the first linear mode shape of vibration, but changes
more than the shape of the first harmonic. The third harmonic shape is
essentially a combination of the first and second symmetric mode shapes,
where the second symmetric mode becomes more important as we proceed
along the backbone curve.
In Figure 16 we can see normalised shapes assumed by each harmonic

of the beam in steel 3, at different fundamental frequencies of vibration.
This example is shown because the backbone curve of the beam in steel 3
is qualitatively different from the backbone curve of beam in steel 1 (in the
case of the beam in steel 3, there is no softening and the initial frequency of
vibration is smaller than the linear fundamental frequency). Nevertheless,
Figure 17 shows that the evolution of each harmonic shape is rather similar
to the one of beam 1. One should recall that for the same nondimensional
frequency the relative importance of each harmonic is different in the two
beams, and therefore the shape assumed by each beam at any particular
instant along the vibration period is actually quite different.
The trajectories on the phase plane defined by u03 (0, t) /h and u̇

0
3 (0, t)T/h,

where T represents the vibration period, are portrayed in Figure 18. The
oscillations occur about centres that do not coincide with the origin of the
phase plane, since these centres are defined by the plastic strains. The de-
viation is greater in beam 1, because it has larger plastic strains. Beam
in steel 1 also presents phase plots that are more visibly asymmetric with
respect to a vertical line that crosses the centre. This is a consequence of
the higher excitation of the second harmonic in beam in steel 1, and the
latter is another result of the asymmetry introduced by the plastic strains.

7 Conclusion

This text addressed the nonlinear vibrations of beams in one plane. An
overview of the large body of work carried to date on geometrically non-
linear, planar, vibrations of beams was presented. A shorter review on
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Figure 16. Shapes of constant term (a), first harmonic (b), second har-
monic (c) and third harmonic (c) of the response of beam in steel 1 at the
following fundamental vibration frequencies (ω/ω�1): � 1.2782, ♦ 1.2681,

1.2412, ◦ 1.2692, + 1.4250. Reprinted from Ribeiro (2010), Copyright
(2010), with permission from Elsevier.
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Figure 17. Shapes of constant term (a), first harmonic (b), second har-
monic (c) and third harmonic (c) of the response of beam in steel 3 at the
following fundamental vibration frequencies (ω/ω�1): � .81324, ♦ .82753,

.90822, ◦ 1.1077, + 1.2566. Reprinted from Ribeiro (2010), Copyright
(2010), with permission from Elsevier.
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Figure 18. Projections of trajectories on a phase plane at different fre-
quencies and vibration amplitudes (phase portraits): (a) beam in steel 1;
(b) beam in steel 3. Reprinted from Ribeiro (2010), Copyright (2010), with
permission from Elsevier.

the not so large number of papers on oscillations of the same structural
element with plasticity was also written. Equations of motion that model
the vibrations of beams with moderately large displacements and plastic
deformations were given.
Forced, with large displacements and with plastic strains, vibrations of

beams under harmonic excitations were investigated. The procedure used
to determine plastic strains is based on a ”governing parameter” and the
solution of the equations of motion entails the method of Newmark with
Newmark parameters. The latter, which can be replaced by other ordinary
differential equations of motion solver, performed rather well. Even in cases
where the plastic strains were not large on a particular beam, they had a
significant influence on the stresses. Moreover, by increasing the excitation
amplitude and/or changing the excitation frequency, a beam can experi-
ence oscillations where not only strains and stresses, but also displacements
and velocities that result from elastic only and from elasto-plastic models
significantly differ.
Free, large displacement, vibrations of beams with constant plastic strains

were also analysed. The harmonic balance and continuation procedures were
now employed to find periodic oscillations, which were interpreted as nonlin-
ear modes of vibration. These modes change with the vibration amplitude
and are not harmonic. Moreover, it is important to note that, due to plas-
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tic strains, the constant term and the second harmonic appear in the main
branch of solutions.
Models for nonlinear oscillations are expected to allow for a greater un-

derstanding of the behaviour of beams, an understanding that may be used
in engineering design. Even in structure or machine elements that do not
in today’s practice experience large amplitude oscillations, it is possible to
change the design to a more efficient/economic one and without compromis-
ing safety, if the engineer employs formulations that better approach nature
by taking into account nonlinear effects. Knowledge on how a structure will
behave in the plastic regime, perhaps before failure in a limit situation, is
also rather important. Finally, better understanding of the structure dy-
namics, including knowledge of its modes in free vibration, increases the
potential of vibration based structural health monitoring methodologies.
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Control and exploitation of nonlinearity in
smart structures

David Wagg∗

Department of Mechanical Engineering, University of Bristol, Bristol, UK

Abstract In this Chapter the control and exploitation of nonlin-

earity are considered when applied to so called ‘smart structures’.

Here we consider how active control can be applied to structures

particularly in the presence of nonlinearity. We also consider how

snap-through structures can potentially be exploited as hinges in

morphing applications.

1 Introduction

The phrase “smart structure” is increasingly used to describe structural sys-
tems which have characteristics which go beyond the traditional definition
of a structure (sometimes also called adaptive or intelligent structures).
These new “smart” characteristics include things such as: (i) monitoring
the structure for signs of damage, (ii) reducing unwanted vibrations, or (iii)
changing the shape of the structure. The general trend in structural design
is towards lighter structures, which typically leads to increased flexibility.
In order for structures to carry out the smart functions it is now possible
for structural elements to have actuator and sensor networks.
Nonlinear behaviour in structural dynamics arises naturally from a range

of common nonlinearities. In some cases nonlinearities either cannot be
avoided, or add some potential benefit, which leads to designing in the pres-
ence of nonlinearity. The most common form of nonlinearity for structural
dynamics is geometric nonlinearity. For example, in the design and con-
struction of bridges there has always been the desire to build longer spans,
and therefore more flexible bridges. Figure 1 shows the Sutong Bridge which
is a cable-stayed bridge that spans the Yangtze River in China. It is cur-
rently the cable stay bridge with the longest main span in the world, with
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Figure 1. The Sutong Bridge is currently (in 2011) the world’s longest
span cable-stay bridge. It spans the Yangtze River between Nantong and
Changshu in the People’s Republic of China. It has a main span of 1,088
metres, and two side spans are 300 metres each, and there are also four
small cable spans. Photo credit: Wikipedia.

a span of 1,088 metres (3,570 ft). In fact suspension bridges can be even
longer, and the Akashi Kaikyo bridge in Japan has a main span of 1.9 kilo-
metres, which is more than a mile long. Some of the structural elements for
these bridges, especially the cables, have very low damping, and as a result
large deflections become unavoidable.
There are also structures where flexibility occurs primarily as a result

of the requirement of low weight. For example, Figure 2 shows the NASA
Helios which was designed as an unmanned long-term, high-altitude air-
craft powered by solar and fuel cells. It suffered a structural failure and
crashed during a flight across the pacific on June 26, 2003. The cause of
the failure was due to higher than expected wind loads which led to an
unexpected, persistent, high deformation of the wing. This in turn led to
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Figure 2. The Helios was designed as a long duration solar powered aircraft.
An unexpected, persistent, high dihedral configuration during poor weather
on a test flight during June 26, 2003, led to unstable oscillations in a pitch
mode and structural failure. Photo credit NASA.

unstable oscillations in one of the vibration modes which grew in amplitude
until structural failure occurred. More recent aircraft being developed for
the same purposes include the European built Solar Impulse project.
All the structures mentioned so far are large, but smart structures can

also be very small. In fact there has been increasing interest in small micro
and nano scale structures. Figure 3, for example, shows the tip of an atomic
force microscope. In fact this is just a very small cantilever beam made from
silicon, and about as wide as a human hair, approximately 30 microns in
this case. The radius of curvature of the tip is of the order of nanometres.
The microscope works by dragging the tip across the surface of the material,
“feeling” the surface as it goes in order to create an image at the atomic
scale. However, vibrations caused by contact with the surface can distort
the image if the process is not adequately controlled. And getting rid of
unwanted vibrations is one of the most basic tasks of a smart structure. For
an atomic force microscope it is usually done using piezoelectric materials.
Space structures are another important area of structural design. Figure
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Figure 3. The atomic force microscope (AFM) consists of a cantilever with
a sharp tip (probe) at its end that is used to scan the specimen surface. The
cantilever is typically silicon or silicon nitride with a tip radius of curvature
on the order of nanometres. Photo credit Wikipedia

4 shows the concept of a solar sail, which is a futuristic idea for propelling
spacecraft using solar photon radiation onto large, highly reflecting sails.
This is a form of passive propulsion, very like wind pushing a sailing ship
along on earth. This idea is in the prototype stage, and several solar sails
are currently being designed and tested around the world.
In addition to large deformations, geometric nonlinearity also includes

the effects of combined stretching/compressing with vibration and nonlinear
alignment of structural elements. Geometric nonlinearity can be exploited in
some smart structures applications. For example, to design high performing
spring elements such as bi-stable structures with snap-through behaviour,
which will be discussed later in this Chapter.
Control forces can be added to a structural system in order to control
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Figure 4. Solar Sails are spacecraft which utilize the momentum transfer
of solar photons onto large, highly reflecting sails for passive propulsion.
This sail is being developed at the German Aerospace Centre (DLR). Photo
credit: DLR.

the behaviour in some way and make it an adaptive structure. However,
control of structural vibrations is different from the majority of control
problems, because there are typically multiple lightly damped resonances
in the system response. In addition, when an actuator is attached to the
structure, its effect will be coupled to some resonances much more strongly
than others. As a result, careful design is required to reduce particular
resonant responses.
Using feedback can induce instability in the system, and so ensuring any

control design is stable is of primary importance. The underlying ideas of
stability for nonlinear systems have been introduced in Chapter 1. In this
Chapter, these ideas are extended to include systems with feedback control,
and the stability analysis is carried out using a particular type of potential
function, called a Lyapunov function. The basic ideas of Lyapunov based
control design can be extended to a range of other approaches. The main
control method described here is how to effectively linearise the system
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Figure 5. Schematic diagram of a smart structure control system.

using feedback. Adaptive control, which can also be a useful method for
nonlinear or uncertain systems was introduced in Chapter 1, and will be
discussed briefly later in this Chapter.
In this Chapter we assume that the ultimate objective of adding control

capability to structures is to create smart structures. The key elements of a
smart structure are shown in Figure 5. The most important starting point is
that the structure needs to have some awareness of its condition and/or its
environment. This is typically achieved by having a series of measurement
sensors mounted on (or integrated into) the structure. Information from
the sensors is then used by the global control system. This is where the
smart behaviour is applied. The global control system will monitor the
condition of the structure and when required give command signals to a
series of actuators which act on the structure.
Understanding the nonlinear structural dynamics is very important for

many smart structures, because they typically have one or more of the
following characteristics: (i) the ability to have large deformations, (ii) non-
homogeneous material properties, (iii) material parameters which vary (or
can be varied), (iv) multiple stable states, (v) highly flexible elements, (vi)
very light damping, and (vii) need to be operated in a dynamic environment.
For the interested reader wishing to explore the background to this area,

there are a number of texts discuss linear vibration with control, such as
Beards (1981), Fuller et al. (1996), Moheimani et al. (2003) and Inman
(2006). There are also texts which discuss the vibration and control of
smart structures such as Preumont (1997), Clark et al. (1998), Srinivasan
and McFarland (2001), Worden et al. (2003), Leo (2007), Wagg and Neild
(2009) and Vepa (2010). A good overview of linear control is given by
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Goodwin et al. (2000). A good introduction to nonlinear control can be
found in Khalil (1992) and for adaptive control see Åström and Wittenmark
(1995). An excellent starting point for consulting background literature on
structural control in general is the review by Housner et al. (1997).

2 Control design for smart structures

One of the most common requirements in a smart structure is to reduce
unwanted vibrations. The traditional way to reduce vibrations is to design
the system with additional damping, by using special materials or adding
physical damping devices. This approach is called passive vibration control
(or sometimes redesign) and it is a well developed subject area for linear vi-
bration problems, see for example Soong and Dargush (1997), Mottershead
and Ram (2006) and Inman (2006). Passive techniques, such as the tuned
mass damper can be extended to structures with nonlinear behaviour —
see for example Alexander and Schilder (2009) and references therein. An
example of a tuned mass damper is shown in Figure 6. In some applications,
the nonlinear characteristics can be exploited to improve the vibration iso-
lation, see for example Semercigil et al. (2002), Vyas et al. (2003), Shoeybi
and Ghorashi (2006), Mikhlin and Reshetnikova (2006) and Milovanovic
et al. (2009).
Passive vibration solutions are normally preferred in practice as they can

be built into the system and there is no control element, which eliminates
any issues with control stability or robustness. Engineering applications
include helicopters (Panda et al., 1996), space structures (Nair and Keane,
2001), buildings/structures (Kasai et al., 1998; Wang et al., 2003; Ghosh
and Basu, 2008) and automotive applications (Cole and Cebon, 1996; Tam-
boli and Joshi, 1999). However, for a growing class of structures for which
reduced weight and flexibility are important features, passive vibration con-
trol is not an effective solution.
In recent years there has been growing interest in passive actuation meth-

ods, which have received considerable attention for use in morphing aircraft
structures (Bharti et al., 2004; Lucato et al., 2004; Spadoni and Ruzzene,
2007; Wang et al., 2007; Thill et al., 2008; Baker and Friswell, 2009; Daynes
et al., 2010). This type of application is typically related to flight control
surfaces which are designed such that they can morph (i.e. change shape)
in response to specific aerodynamic loads. In some of these designs tech-
niques the nonlinear characteristics of particular structures are deliberately
exploited, such as bi-stable shells see Chapters 4, 5 and 7 of Wagg et al.
(2007). This is still an active area of research, and in many cases the passive
actuation method is designed to work in conjunction with an active control
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Figure 6. Passive vibration reduction using a tuned mass damper (TMD).
This is the TMD for the Taipei 101 which is currently the world’s second
tallest building. The 660-tonne TMD acts like a giant pendulum to counter-
act the building’s movement–reducing sway due to wind by 30 to 40 percent.
Photo copyright J Aaron; Wikipiedia alternatives.
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Figure 7. Single-degree-of-freedom oscillator with semi-active vibration
control.

element Daynes et al. (2010).
The alternatives to passive vibration control are to use either active

control or semi-active vibration reduction techniques, which we consider
next.

2.1 Semi-active vibration control

Semi-active control is a technique for controlling a vibrating system
without using control actuators. Instead, a semi-active element, such as a
damper, is used to effect change in the system (Karnopp, 1995; Ahmadian,
1999). Within the semi-active element it is possible to vary one or sometimes
more system parameters. An important difference between semi-active and
active control is that, semi-active cannot add energy to the system, and
therefore is normally an unconditionally stable form of control.
Semi-active control methods have been used extensively in many struc-

tural engineering applications. A review of these techniques as applied to
structures such as bridges and tall buildings is given by Spencer and Na-
garajaiah (2003). Other comprehensive discussions of semi-active control
techniques can be found in Casciati et al. (2006) and Preumont and Seto
(2008)
An example of a single-degree-of-freedom oscillator with semi-active vi-

bration control and excitation by a moving support input of r(t), is shown
in Figure 7. Semi-active control design is based around how to select cv,
the damping value of the variable damper, to give the best vibration sup-
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pression. To do this, information is needed about the relative velocity of
the mass and the input. This can be obtained by using accelerometers to
measure the acceleration of the mass and the support, ẍ and r̈ respectively,
which can be integrated to give velocities ẋ and ṙ.
A commonly used semi-active control strategy is sky-hook control (Karnopp,

1995; Preumont et al., 2002; Hong et al., 2002). In this approach the control
objective is that the mass be isolated from the support input by getting the
semi-active damper to behave as if it is a grounded passive damper. When
this is achieved, a damping force which resists the absolute velocity of the
mass will be provided. To implement this in a semi-active element a typical
method is to switch between a high and a low damping value — see for
example Potter et al. (2010) and references therein. The high damping is
selected when the damper force is resisting the direction of motion of the
mass, and the low damping force is used when this is not the case. In prac-
tice, this can be achieved in various ways, for example by switching between
high and low viscosity in a magneto-rheological damper.
Now consider an example of designing a semi-active vibration control

strategy, for the mass-spring-damper system shown in Figure 7. In this
case, the feedback to the controller is the acceleration of the mass, ẍ, and
input, r̈, measured by accelerometers. We will assume that the semi-active
damper can be switched between two values, chigh and clow.
The acceleration signals are fed to a semi-active controller, which then

needs to decide when to switch between chigh and clow. The governing
equation of motion for the oscillator is given by

mẍ+ cv(ẋ− ṙ) + k(x− r) = 0,

where the displacement of the mass,m, is given by x, k is the spring stiffness
and cv is a variable damping parameter which can be controlled by the semi-
active controller. The control objective is to reduce vibration in the system
as much as possible, or in other words, to isolate the mass (or minimise the
absolute acceleration of the mass ẍ).
Using the sky-hook strategy to achieve this, the damper needs to be

in the high damping state when opposing the motion of the mass, and in
the low damping state when aiding the motion of the mass. This can be
defined by noting that when the relative velocity (ẋ− ṙ) has the same sign
as the absolute velocity ẋ then the damper is opposing the mass. So the
semi-active control law applied to the single degree-of-freedom system can
be written as

cv =

{
chigh (ẋ− ṙ)ẋ > 0,
clow otherwise.
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Figure 8. Time simulation of on-off sky hook control.

The semi-active control will act like additional damping in the linear oscil-
lator, which in turn will reduce the height of the resonance peak.
A time simulation for the example when r = sin(10t) is shown in Figure 8

with x(0) = 1.1 and ẋ(0) = 1.0, m = 1, k = 1 and cv = 0.1. Initially the
sky hook control is switched off, and then at time t = 15s the control is
switched on, with chigh = 0.7, clow = 0.1 and excitation signal r = sin(15t).
A dramatic reduction in vibration amplitude can be seen as soon as the
control is switched on.
That said, in some cases, the skyhook approach has been shown to be

non-optimal across a wide frequency range, and in fact it appears to work
best a lower frequencies (Potter et al., 2010). The switching relationship
for a skyhook damper is shown in Figure 9 (a), and this can be compared
with the more general switching surface controller proposed by Potter et al.
(2010), which is shown in Figure 9 (b). The control law for the switching
surface controller is given by

cv =

{
chigh (ẋ+ αṙ)(ẋ − βṙ) > 0,
clow otherwise.

In this context, the sky-hook controller is a special case of the switching
surface controller with β = 1 and α = 0. In the study carried out by Potter
et al. (2010) choosing α = 1 was shown to improve the damping effect over
standard skyhook for some parameter values.
Although on-off approaches offer simplicity, there are situations when a

variable level of damping is more advantageous. This can still be achieved
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Figure 9. Switching relationships for semi-active control. (a) skyhook, and
(b) switching surface controller.

in the context of semi-active control by applying a control law of the type
given by

cv =

{
max

[
clow,min

[
chighẋ

ẋ− ṙ
, chigh

]]
, (ẋ− ṙ)ẋ > 0,

clow, otherwise.

This allows the semi-active controller to apply a damping value between the
low and high values, see Liu et al. (2005) and references therein for further
details.
Sky-hook, and other semi-active approaches, can produce significantly

improved vibration isolation compared to passively damped systems. The
most common application is in automotive suspension systems, especially
low degree-of-freedom quarter-car models (Besinger et al., 1992; Hrovat,
1997; Zaremba et al., 1997; Fialho and Balas, 2000; Kitching et al., 2000;
Hong et al., 2002; Jalili, 2002; Sammier et al., 2003; Verros et al., 2005;
Shen et al., 2006; Giorgetti et al., 2006). They can also be applied to other
types of base isolation systems (Barbat et al., 1995; Papoulia and Kelly,
1997; Yoshioka et al., 2002; Ramallo et al., 2002; Bani-Hani and Sheban,
2006; Nagarajaiah and Narasimhan, 2007; Bahar et al., 2010). An example
of semi-active vibration control for reducing cable vibration in the Dongting
Lake bridge is shown in Figure 10
It is common for semi-active strategies to involve switching off the control

action when the conditions are not favourable for control. As a result the
system behaviour is uncontrolled for significant portions of time. We also
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Figure 10. Semi-active vibration reduction on the Dongting Lake Bridge,
which is a cable-stayed bridge crossing the Dongting Lake where it meets
the Yangtze River in China. The cables were observed to have rain-wind-
induced vibration, especially under adverse weather conditions and so a
magnetorheological (MR) damping system was introduced to reduce cable
vibration. Here you can see how the pair of MR dampers, at an inclined
angle are attached to the cable. Photo credit: Wikipedia.

note that systems with multiple degrees of freedom, such as continuous
structural elements it becomes increasingly difficult to apply semi-active
control methods like sky-hook, unless the behaviour is limited to a very
low number (usually one) of modes of vibration. Usually, active vibration
control is required to tackle these types of application.

2.2 Active control

An introduction to the basic ideas of feedback control has been given
in Chapter 1. The interested reader may also want to consult Preumont
(1997), or Vepa (2010) for an discussion on linear control methods applied
to smart structures or Wagg and Neild (2009) for a discussion of nonlinear
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Figure 11. A vibration control configuration for a cantilever beam with a
piezoelectric actuator. The acceleration is measured near the tip at point
x = b, and the control signal is a voltage, Va sent to the piezo from the
controller.

control methods for smart structure applications. The general governing
equation for a nonlinear control system is given by

ẋ = f(x) + g(x)u, (1)

where f is the nonlinear system function and g is the nonlinear controller
function, x is the state vector x = [xT , ẋT ]T and x is the displacement
vector. Note that to align with notation conventions of both nonlinear and
structural dynamics communities, there is a subtle but significant difference
between x which is the 2N × 1 state vector and x is the N × 1 displacement
vector. The control output is defined as y = h(x), where h is the nonlinear
output function.
To specify the governing equations of the system, a model of the smart

structure is required. A typical scenario is that the displacements and ve-
locities in the state vector represent an approximate modal model of a con-
tinuous structural element such as beam, cable or plate etc. Although the
idealised modal model is infinite, in practice it must be truncated to the
sum of N modal contributions.
An example of a structural control configurations for a cantilever beam

is shown schematically in Figure 11. The cantilever beam is being controlled
by a piezoelectric actuator. In addition the beam acceleration at a second
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point along the cantilever is measured by an accelerometer. In this case
the underlying vibrating system (i.e. the cantilever beam) is infinite dimen-
sional, but is acted on by only by a single actuator, and measured with a sin-
gle sensor. Piezoceramic materials have been used extensively in structural
control and other smart structure applications (Preumont et al., 1992; Kha-
jepour and Golnaraghi, 1997; Ashour and Nayfeh, 2002; Preumont et al.,
2003; Schultz and Hyer, 2003; Chen and Chen, 2004; Zhou and Wang, 2004;
Moheimani and Vautier, 2005; Preumont et al., 2005; Song et al., 2006; Mo-
heimani and Fleming, 2006; de Marneffe and Preumont, 2008; Harari et al.,
2009). Of particular note is the increasing development and use of Macro
Fibre Composite actuators (MFC) (Song et al., 2006; Deraemaeker et al.,
2009) which allow large curvature deflections to be measured and actuated.

2.3 Observability and controllability

Part of the control design is to determine the system observability and
controllability. For continuous structures where the control actuators are
located at a limited number of discrete points on the structure, when a
modal decomposition is carried out, the effect of the control actuators ap-
pear on the right-hand side of the modal equations multiplied by the modal
participation factor. As a result, in this type of modal model of a struc-
tural system controllability of a particular mode will depend directly on the
associated modal participation factor.
Using a sensor to measure at a discrete point has a similar effect on

observability, because the transverse displacement, w(x, t), at a point a

is typically approximated as w(a, t) ≈ ∑N

j=1 φj(a)qj(t), where the φj(a)
values are the mode shapes evaluated at point a and the qj(t) values are
the modal coordinates. Although N modes are taken in a truncated model
of the continuous system, observability and controllability is related only to
the controlled part of the system. If, for example, the control objective is
just to control the first mode of vibration of the structure, then it is only
of interest to know if this mode is controllable or observable. However, the
modes other than the controlled modes may still have significant dynamics.
For example, if the controlled modes run from 1, 2, ..., Nc and the un-

controlled modes from Nc + 1, ...∞, then when making a measurement at
point a, the response is actually given by w(a, t) ≈ ∑Nc

j=1 φj(a)qj(t) +∑
∞

j=Nc+1 φj(a)qj(t). As a result if the response of the uncontrolled modes
is significant the measurement of w(a, t) will be corrupted by their contribu-
tion to the measurement. This effect is called observation spillover. A simi-
lar effect occurs when the control force is applied at a single point, because
in general the modal participation factors are non-zero for the uncontrolled
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Figure 12. Modal control block diagram.

modes, so the effect of the control force is to excite the uncontrolled modes.
This is called control spillover (Balas, 1978, 1998). The scenario is shown
as a control block diagram in Figure 12.
The position of the sensors and actuators is important, because for modes

with node points, both the mode-shape function, φ, and the modal partici-
pation factor will be zero at some points along the beam. For linear modal
systems, in-depth analysis of the effect of actuator and sensor placement
has been developed, see for example Gawronski (2004).
Assume the state vector, x = [xT , ẋT ]T , consists of an equal number

of system displacements and velocities, for the controlled modes, and so
the vector length is 2Nc. Then for most systems it will be sufficient to
consider the observability and controllability of the underlying linearized
system. This can be derived from equation (1), by using the same approach
described in Chapter 1 for linearizing about equilibrium points and will
typically give a linearized system of the form

ẋ ≈ Ax +Bu,

with an output y ≈ Cx. Then the normal linear conditions for observability
and controllability that matrices O and R have full rank can be applied
Goodwin et al. (2000), where

O =

⎡
⎢⎢⎢⎣

C
CA
...

CA2N−1

⎤
⎥⎥⎥⎦ , R = [B AB A2B . . . A2N−1B].

A more general discussion on controllability and observability in nonlinear
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Figure 13. Single-degree-of-freedom oscillator with active vibration con-
trol.

systems, particularly those in which the underlying linear system is not
necessarily controllable or observable can be found in Nijmeijer and van der
Schaft (1990), Isidori (1995), Sastry (1999) and Vidyasagar (2002). The in-
terested reader may also want to investigate the related property of flatness
for nonlinear systems, see Fliess et al. (1995) and references therein.

2.4 Control law design

Control law design effectively means how to choose u. Control objec-
tives fall broadly into the two main classes of stabilization or tracking. A
stabilization problem is concerned with finding u such that the state vector
tends to a stable equilibrium point (typically zero) for any initial conditions
and parameter values in the required range. Tracking means getting a state,
or output variable, to follow a predefined reference trajectory.
For tracking control, accuracy in replicating the required reference sig-

nal and the speed of response are of primary interest. For active vibration
control, the amount of vibration reduction is the main performance mea-
sure. Cost is important both in terms of implementation and also limiting
excessive actuation which will quickly lead to wear and high maintenance
costs.
Now consider the system shown in Figure 13. The only feedback to the
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controller is the acceleration of the mass, measured by an accelerometer.
The mass is also acted on by an external excitation force, Fe, which is
a disturbance signal. The control force produced by the actuator can be
assumed to be Fc = bu(t), where b is a scalar constant. To design an active
vibration control law, u, for the mass-spring-damper system we can use
direct velocity feedback.
To do this we note that the governing equation of motion for the oscillator

is given by
mẍ(t) + cẋ(t) + kx(t) = Fe(t) + bu(t). (2)

The control objective is to reduce vibration in the system as much as pos-
sible, or in other words, increase the effective damping of the system. To
add damping, the control can be directly related to an extra velocity term
by integrating the acceleration feedback signal

u(t) = −κ

∫ t

0

ẍdt,

where κ is a control gain parameter. Now equation (2) becomes

mẍ(t) + (c+ bκ)ẋ(t) + kx(t) = Fe(t), (3)

which increases the damping by bκ and providing both b > 0 and κ > 0
the control will act like additional damping in the linear oscillator, which
in turn will reduce the height of the resonance peak.
This type of velocity feedback is sometimes called integral acceleration

feedback and needs careful implementation in practice to avoid noise being
amplified at higher frequencies, see for example Preumont (1997). It can be
directly applied to nonlinear oscillators with linear damping, such as this

mẍ(t) + cẋ(t) + k1x(t) + k2x
2 + k3x

3 = Fe(t) + Fc(t),

to give

mẍ(t) + (c+ bκ)ẋ(t) + k1x(t) + k2x
2 + k3x

3 = Fe(t), (4)

which is a forced nonlinear oscillator with increased damping.

3 Stability theory

The basic ideas of dynamic stability were introduced in Chapter 1. This sec-
tion extends the stability concepts to the case where a system, is subject to
a control signal. For more detailed discussion of these topics the interested
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Figure 14. Stability in the phase plane (a) neutral stability, and (b) asymp-
totic stability.

reader should consult, Slotine and Li (1991), Khalil (1992), Isidori (1995),
Krstić et al. (1995), Sastry (1999), Fradkov et al. (1999). An equilibrium
point, x∗, is stable if a solution, x(t), starting close to the equilibrium point
stays close for all time t, and there are two specific cases of interest: an
equilibrium point, x∗, is (i) Lyapunov or neutrally stable if trajectories stay
close to it, and (ii) asymptotically stable if nearby trajectories are attracted
to it. For systems with two states, such that x = [x1, x2]

T , where x1 = x is
displacement and x2 = ẋ is velocity, the two types of stability are shown in
the phase plane in Figure 14. In both cases the equilibrium point is at the
origin.

3.1 Lyapunov functions

A technique for analysing the stability of the system with a single equi-
librium point at the origin, is to use a Lyapunov function. To do this first
select a Lyapunov function, V (x, t), and then find the time derivative V̇ .
Then V̇ gives the rate of change of energy with time and there are three
possible cases which relate directly to the stability of the equilibrium point
at the origin:

• If V̇ is increasing → energy increasing → unstable

• If V̇ zero → energy stays the same →neutrally stable
• If V̇ decreasing → energy decreasing → asymptotically stable

It is important to note that this is only true if V is a positive definite
function, such that for x∗ = 0, V (0, t) = 0 and then V (x, t) > 0 must hold
for all x other than x = 0. Schematic phase portraits for the cases of neutral
and asymptotic stability are shown in Figure 14 with initial condition x(t0).
Note also that V is not unique for any particular system. In fact, the

main difficulty with using Lyapunov function analysis is deciding which
function to select. For oscillators with two states, x = [x1, x2]

T , a parabolic

potential function of the form V (x) =
x2

1

2 +
x2

2

2 , can often be used as a first-
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Figure 15. Parabolic Lyapunov function.

guess Lyapunov function. The parabolic function is shown in Figure 15
and, if the energy in the system is represented as a ball rolling on the inside
surface of the function, it is easy to see that the ball can only come to rest
at the origin. This is because V is positive definite, and therefore has a
single unique minimum at the origin.
Consider using a Lyapunov function to assess the stability of the con-

trolled Duffing equation, given by equation (4), for the case when only a
single equilibrium point at the origin exists in the system and Fe is zero.
The first step is to write the governing equations of motion for the oscillator
in first-order form

ẋ1 = x2

ẋ2 = −
(

c+ bκ

m

)
x2 − k1

m
x1 − k2

m
x21 −

k3
m

x31.
(5)

The state vector is x = [x1, x2]
T , and it will be assumed that the Lyapunov

function is

V (x) =
x22
2
+

k1
m

x21
2
+

k2
m

x31
3
+

k3
m

x41
4

.

differentiating via the chain rule gives

V̇ = x2ẋ2 +
k1
m

x1ẋ1 +
k2
m

x21ẋ1 +
k3
m

x31ẋ1.
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Then substituting for ẋ1 and ẋ2 from equation (5) gives

V̇ = x2

(
−

(
c+ bκ

m

)
x2 − k1

m
x1 − k2

m
x21 −

k3
m

x31

)
+

k1
m

x1x2+
k2
m

x21x2+
k3
m

x31x2,

which reduces to

V̇ = −
(

c+ bκ

m

)
x22,

and providing (c + bκ)/m is positive then V̇ is always negative definite
and the equilibrium point at the origin is asymptotically stable. Note this
assumes that the new Lyapunov function is positive definite, which in this
example is true.
This example demonstrates how a Lyapunov function analysis can be

carried out using an initial guess for V . However, notice that the form of
the Lyapunov function, V , is actually the sum of the kinetic energy and
the potential energy, all divided by the mass, m, i.e. V = Et/m where Et

is the kinetic plus potential energy. It is often the case that using energy
as a guess for the Lyapunov function analysis is often a good choice for
mechanical oscillators. It also possible to guess numerous functions and
still not be able to determine the sign of V̇ , a problem that increases with
the complexity of the system. It is also difficult to extend this technique to
multi-degree-of-freedom systems.

4 Linearization using feedback

Feedback linearization techniques are designed to linearise the nonlinear
system using the feedback control signal. Typically displacement control is
required for this approach and signals can be taken from transducers such
as an LVDT (linear variable differential transformer). A typical scenario is
shown in Figure 16 for a single-degree-of-freedom oscillator with a nonlinear
spring.
The governing equations for the system in Figure 16, with Fe = 0, can

be written as

ẋ1 = x2,

ẋ2 = − c

m
x2 − k1

m
x1 − k3

m
x31 +

p

m
u(t),

(6)

where Fc = pu(t). This can be written in the matrix form

[
ẋ1
ẋ2

]
=

[
0 1

−k1
m

− c

m

][
x1
x2

]
+

[
0

−k3
m

x31

]
+

[
0
p

m

]
u(t), (7)
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Figure 16. Single-degree-of-freedom oscillator with active vibration control
using accelerometer and LVDT.

or in general
ẋ = Ax +N (x) +Bu. (8)

By inspection of either equation (6) or (7), it can be seen that, by setting
u = k3

p
x31, then N (x) + Bu(t) → 0 as t → ∞. The system thereby reduces

to ẋ = Ax, which is linear and, providing A has stable eigenvalues, it is also
stable. For the general case, N (x) can be rewritten as N (x) = BN ∗(x) and
equation (8) becomes

ẋ = Ax+BN ∗(x) +Bu = Ax+B(N ∗(x) + u). (9)

Setting u = −N ∗ gives the feedback linearization control signal for the
system in the case where A is a stable matrix. This assumes that the system
states in the expression −N ∗ can be readily accessed for use in the control
signal u. So systems which can be expressed in the form of equation (9) can
be linearized using the feedback control signal.
The control signal can also include an additional control task, like adding

damping. For example, u = k3

p
x31 − κ

m
x2 means that N (x) + Bu(t) →

[0,− κ
m

x2]
T as t → ∞, and the damping increases by κ

m
. In general, the

control input is chosen as u = −N ∗(x) + c(x), where c(•) is the desired
control function.
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If the underlying linear system happens to be unstable, then the control
function needs to be designed to provide a stable linear control after the
nonlinear terms have been removed. Now consider an example of an oscil-
lator with nonlinear damping. We will use feedback linearization to remove
the nonlinear damping terms in the following nonlinear oscillator

mẍ+ cẋ(1 + δx) + kx = pu(t),

where u(t) is the control input.
First, write the governing equations of motion for the oscillator in the

form ẋ = A(x, t) +N (x) +Bu, to give

[
ẋ1
ẋ2

]
=

[
0 1

− k

m
− c

m

][
x1
x2

]
+

[
0

−cδ

m
x1x2

]
+

[
0
p

m

]
u(t).

The state vector is x = [x1, x2]
T , and u is the control input.

The control matrix is B = [0, p

m
]T , and the objective is to put the

problem into the form of equation (9). This can be achieved by setting
N ∗ = − cδ

p
x1x2, and to linearize the system set u = cδ

p
x1x2. Additional

damping can be obtained by setting u = cδ
p

x1x2 − κ
p
x2.

A numerical simulation of the example is shown in Figure 17, with nu-
merical parameters m = 1, k = 5, c = 0.1, δ = 30 and p = 10. In
each case the system is uncontrolled but forced sinusoidally with forcing
0.5 sin(1.2t) until time t = 15 seconds, when the feedback linearization con-
trol is switched on. In Figure 17 (a) and (b) the case of feedback linearization
response on its own is shown. A clear change can be seen from the distorted
non-harmonic response occurring before 15 seconds to a harmonic response
afterwards. In Figure 17 (c) and (d) the case of feedback linearization re-
sponse with additional viscous damping is shown. The additional viscous
damping parameter in this simulation is κ = 10.0. In this case, after 15
seconds the vibrations are significantly more damped than in the previous
case.

4.1 Input-output linearization

The main idea of input-output linearization is to obtain a relationship
between the output and the input by repeatedly differentiating the output
until the input appears. For example, in the case of the system in Figure 16,
with governing equation equation (6) assume the output is the displacement,
x1, so that y = h(x) = x1. Differentiating output y with respect to time t
gives ẏ = ẋ1 = x2 from equation (6). But the input, u, does not appear, so
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Figure 17. Feedback linearization for oscillator with nonlinear damping,
with control starting at time t = 15 s; (a) and (b) show feedback lineariza-
tion response, (c) and (d) show feedback linearization response with added
damping.

differentiate again to give

ÿ = ẋ2 = − c

m
x2 − k1

m
x1 − k3

m
x31 +

p

m
u(t),

which gives a relationship between the second derivative of the output
(which is the acceleration ÿ) and the control input u. It can be seen that
choosing

u(t) =
m

p

(
v(t) +

c

m
x2 +

k1
m

x1 +
k3
m

x31

)
,

leads to a linear input-output relationship

ÿ = ẋ2 = v(t),

where v(t) is an input signal which can be chosen to achieve an additional
control task.
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A more systematic approach is to consider how the output from the
nonlinear system y = h(x) varies with time. Then, differentiating the output
with respect to time gives

ẏ =
∂h(x)

∂x

∂x

∂t
⇒ ∂h(x)

∂x
ẋ, (10)

where ∂h(x)
∂x

is an 1×N row vector and ∂x
∂t
is aN×1 column vector. equation

10 means that the rate of change of the output with time can be expressed
as the rate of change of the output with the state multiplied by the system
velocity vector. Substituting for ẋ from equation (1) gives

ẏ =
∂h(x)

∂x
(f(x) + g(x)u) =

∂h(x)

∂x
f(x) +

∂h(x)

∂x
g(x)u,

which can be rewritten as

ẏ = Lfh(x) + Lgh(x)u, (11)

where Lfh(x) and Lgh(x) are the Lie derivatives of h(x) with respect to f(x)
and g(x). Effectively, the Lie derivatives are the the directional derivative
of the output function, h(x), along the vector fields f(x) and g(x).
Now, by choosing the control to remove the system dynamics and replace

them with a new control signal, v(t), results in a control input of the form

u =
1

Lgh(x)
(v(t)− Lfh(x)), Lgh(x) �= 0, (12)

to give ẏ = v(t). This gives a linear relationship between the new input v(t)
and the derivative of the output ẏ.
The number of times the equations need to be differentiated to get an

input-output relation corresponds to the relative degree of the system. In
other words, if the condition Lgh(x) �= 0 is true, the system is said to have
relative degree one and no more differentiation is required. However, if
the output does not appear directly in the expression Lgh(x) = 0, the Lie
derivative process needs to be iterated until it does (Slotine and Li, 1991).
Let us now consider using input-output linearization to linearize the

following nonlinear oscillator

mẍ+ cẋ(1 + δx2) + kx = pu(t), (13)

where u(t) is the control input. If we assume that the output is the dis-
placement so that y = x, then we first, write the governing equations of
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motion for the oscillator in the form ẋ = f(x) + g(x)u, to give

[
ẋ1
ẋ2

]
=

[
x2

− c

m
x2(1 + δx21) +

k

m
x1

]
+

[
0
p

m

]
u(t).

The state vector is x = [x1, x2]
T , and u is the control input. The other

vectors are

f(x) =

[
x2

− c

m
x2(1 + δx21) +

k

m
x1

]
, g(x) =

[
0
p

m

]
.

To compute the Lie derivative, the first step is to compute ∂h(x)
∂x

, which
in this case with h(x) = x1 gives

∂h(x)

∂x
= [1, 0].

Note that this is a row vector. Now the Lie derivatives can be computed

Lfh(x) = [1, 0]

[
x2

− c

m
x2(1 + δx21) +

k

m
x1

]
= x2, Lgh(x) = [1, 0]

[
0
p

m

]
= 0.

As Lgh(x) = 0, the Lie derivative process needs to be repeated.
To do this, first compute the derivative of Lfh(x) giving

∂Lfh(x)

∂x
= [0, 1].

Then compute the second Lie derivative to give

L2
fh(x) = [0, 1]

[
x2

− c

m
x2(1 + δx21)−

k

m
x1

]
= − c

m
x2(1 + δx21)−

k

m
x1,

and

LgLfh(x) = [0, 1]

[
0
p

m

]
=

p

m
.

So the system is relative degree two, and, as LgLfh(x) �= 0, a control input
can be formed using

u =
1

LgLfh(x)
(v(t) − L2

fh(x)), LgLfh(x) �= 0. (14)
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Figure 18. Feedback linearization for input-output example, with control
starting at time t = 15 s and v(t) = −x1 − 3x2 (a) shows x1 response and
(b) shows u.

to give

u =
m

p

(
v(t) +

c

m
x2(1 + δx21) +

k

m
x1

)
. (15)

When this control signal is used the input-output relationship becomes ÿ =
v(t), where v(t) is a new control signal which can be defined to give the
required linear behaviour.
A numerical simulation of this example is shown in Figure 18, with

numerical parameters m = k = 1, c = 0.1, δ = 30 and p = 10. In this case
the system is Eqn. 13 plus sine wave forcing 0.5 sin(1.2t). The system is
uncontrolled until time t = 15 seconds, when the input-output linearization
control given by Eqn. 15 is switched on. The control objective is to eliminate
nonlinear vibration, so v(t) is chosen to be v(t) = −x1 − 3x2, which is a
stable linear oscillator with large damping. The result is a very sudden
reduction in displacement response, leaving just sinusoidal linear response,
after the control is turned on.
Note we have not discussed the concept of zero dynamics which can

cause problems for these controllers. This is not a typical situation for
vibration control, but the interested reader can find a detailed treatment
of this and other related issues in Slotine and Li (1991), Khalil (1992) and
Sastry (1999).

4.2 Adaptive feedback linearization

It was shown in Chapter 1 how adaptive control can be applied to a linear
system. Now we consider nonlinear equations in the form of equation (9),

ẋ = Ax+B(N ∗(x) + u),
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where setting u = −N ∗ gives the feedback linearization control signal for
the system in the case when A is a stable matrix. If the parameters in N ∗
are time varying or otherwise difficult to identify, an adaptive control law
can be devised which allows variation over time, such that N ∗ + u = 0 for
all time, despite the uncertainty in N ∗. To do this, first redefine both N ∗
and u as

N ∗ = ξTa∗, u = −ξTa(t),

where ξ is a vector of nonlinear state terms, such as x21, x1x2, etc. a∗ is
a vector of parameters and a(t) is a vector of time-varying control gains.
Substituting these expressions into the governing equation gives

ẋ = Ax+B(ξT a∗ − ξTa(t)) = Ax +BξTφ, (16)

where φ = a∗− a(t) is the parameter error, meaning the difference between
adaptive gain ai and the uncertain parameter a∗i which it is trying to match.
Ideally a→ a∗ and so φ→ 0, which linearizes the system.
In Chapter 1 we assumed that the control law for the adaptive control

gains a were defined by using a proportional plus integral term. Here, we
outline how it can be done by using a form of Lyapunov function analysis
extended for multi-input, multi-output systems. First consider the following
Lyapunov function for the system defined by equation 16

V = xT Px+ φTΓ−1φ, (17)

where P and Γ are to be defined as part of the control design. Differentiating
with respect to time t gives the rate of change of V as

V̇ = ẋTPx+ xT P ẋ+ φ̇TΓ−1φ+ φTΓ−1φ̇. (18)

The expressions for ẋ and ẋT can be substituted from equation 16 and its
transpose to give

V̇ = (xT AT + φT ξBT )Px+ xT P (Ax+BξTφ) + φ̇TΓ−1φ+ φTΓ−1φ̇. (19)

Expanding the brackets and gathering terms relating to the matrix A, gives

V̇ = xT (PA+ATP )x+ φT ξBT Px+ xTPBξT φ+ φ̇TΓ−1φ+ φTΓ−1φ̇.

The matrix sum (PA+AT P ) can be made negative definite by the appro-
priate choice of P and is usually written as (PA+AT P ) = −Q so that

V̇ = −xT Qx+ φT ξBT Px+ xT PBξT φ+ φ̇TΓ−1φ+ φTΓ−1φ̇.
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Now choosing φ̇ = −ΓξBT Px results in

V̇ = −xTQx, (20)

which is negative definite with the appropriate choice of P . Note that this
result also assumes that PT = P and ΓT = Γ.
This shows what choice of φ̇ leads to a stable system, but the adaptive

control law for a(t) still needs to be defined. Integrating the expression for
φ̇ gives

φ = −
∫ t

0

ΓξBT Pxdx = a∗ − a(t),

so the time-varying adaptive gain is given by

a(t) = a∗ +

∫ t

0

ΓξBTPxdx. (21)

In other words, the adaptive gain is the initial value a∗ (or an initial estima-
tion) plus the variation due to the changes in the parameters. The variation
is an integral gain expression which involves the states, via ξ and x which
are assumed to be accessible. The matrix Γ can be selected as part of the
control design, and can be considered to be a control gain (sometimes also
called adaptive weightings) matrix, in which the amount of adaptive effort
can be selected by the control designer.
Consider the example where we have to use adaptive feedback lineariza-

tion to linearize the following nonlinear oscillator

mẍ+ cẋ(1 + δx) + kx+ μx31 = bu(t),

where u(t) is the control input and both δ and μ are uncertain parameters.
Assume that the mass, m = 1 kg, stiffness, k = 1 N/m2 and damping,
c = 0.1 Ns/m. The control gain has the value b = 10 N/volt. Both δ and
μ have some uncertainty and initial estimated values can be assumed to be
δ = 3 and μ = 7
First, write the governing equations of motion for the oscillator in the

form ẋ = A(x, t) +B(N ∗(x) + u), to give

[
ẋ1
ẋ2

]
=

[
0 1

− k

m
− c

m

][
x1
x2

]
+

[
0
p

m

](
−cδ

b
x1x2 − μ

b
x31 + u(t)

)
.

Where N ∗ is defined as N ∗ = − cδ
b
x1x2 − μ

b
x31. The nonlinear state terms

in N ∗ are x1x2 and x31, so form a vector ξ = [x1x2, x
3
1]

T so that N ∗ can be
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written. To do this, first redefine both N ∗ and u as

N ∗ = ξT a∗ = [x1x2, x31]

⎡
⎢⎢⎣
−cδ

b

−μ

b

⎤
⎥⎥⎦ ,

whilst defining u = −ξTa(t) gives an equation in the form of equation (16)

[
ẋ1
ẋ2

]
=

[
0 1

− k

m
− c

m

] [
x1
x2

]
+

[
0
b

m

]
[x1x2, x31]

[
φ1

φ2

]
.

The A matrix is stable, since m, c, k > 0, and the Lyapunov stability
analysis can be satisfied when matrices P and Q can be defined such that
PA+ATP = −Q with P and Q positive definite. In this example this leads
to the relationship

[
p11 p12
p21 p22

]⎡⎢⎣
0 1

− k

m
− c

m

⎤
⎥⎦+

⎡
⎢⎢⎣
0 − k

m

1 − c

m

⎤
⎥⎥⎦
[

p11 p12
p21 p22

]
= −

[
q11 q12
q21 q22

]
,

which, by assuming that p12 = p21 (a requirement of the Lyapunov analysis),
can be written as⎡

⎢⎣ −2p21 k

m
p11 − p21

c

m
− p22

k

m

p11 − p21
c

m
− p22

k

m
2p21 − 2p22 c

m

⎤
⎥⎦ = − [

q11 q12
q21 q22

]
.

For Q to be positive definite the conditions are that q11 > 0 and q11q22 −
q21q12 > 0. This means that p11 < (p21

c
m
−p22

k
m
) and p21 < p22

c
m
. For P to

be positive definite, the conditions are that p11 > 0 and p11p22−p21p12 > 0.
So selecting p21 = 0.025 gives q11 = 0.05, then choosing p22 = 0.5 gives

q22 = 0.05. Finally, selecting p11 = 0.5 gives q21 = q12 = 0.0025, and the
Lyapunov criteria, equation (20) is satisfied.
Now the adaptive control law can be found from equation (21). This

gives[
a1
a2

]
=

[
a∗1
a∗2

]
+

∫ t

0

[
γ11 0
0 γ22

] [
x1x2
x31

] [
0,

b

m

] [
0.5 0.025
0.025 0.5

] [
x1
x2

]
dx,

(22)
where the control gain matrix has been taken as diagonal, which satisfies
the condition that ΓT = Γ. This expression defines the adaptive gains, and
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Figure 19. Adaptive feedback linearization example, with control starting
at time t = 15 s; (a) shows the displacement response (b) shows the control
signal, (c) and (d) show the adaptive gains.

the weightings γ11 and γ22 can be chosen by the control designer to give the
required adaptive effort.
A numerical simulation of this is shown in Figure 19, with numerical

parameters m = k = 1, c = 0.1, δ = 13, μ = 12 and b = 10. The system is
uncontrolled until time t = 15 seconds, when the input-output linearization
control is switched on. The uncertain parameters have 5% error in the
initial value plus a 30% sinusoidal fluctuation. The adaptive weightings are
selected as γ11 = 0.05 and γ22 = 0.2. This leads to a rapid adaption when
the control is switched on at 15 seconds. As the parameter error is reduced,
the adaptive gains become steady state and oscillatory to compensate for
the fluctuating parameters. The system is also linearized after t = 15.
Note that the adaptive gain values are not unique, and they depend

to some extent on the arbitrary choices of the P and Q matrices. More
sophisticated adaptive control techniques (which are beyond the scope of
this chapter) can be used, so that the gains can be utilised as part of a
system identification process. Useful discussions on this are given in Å-
ström and Wittenmark (1995), Slotine and Li (1991), Khalil (1992) and
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Fradkov et al. (1999).

5 Control of multi-modal systems

In this section, the case of multi-modal vibrations is introduced, which
is the situation most commonly encountered in the practice of vibration
engineering.

5.1 Modal control

Transforming vibration problems into a modal space is a key modelling
technique, and the basic concept for linear multi-degree-of-freedom systems.
A similar approach can be applied to nonlinear systems. Control forces can
be included in the modal representation, and, if the control objective is
formulated in terms of modal quantities as well, the approach can be called
modal control.
For example, in Wagg and Neild (2009), assuming proportional damping,

it was shown that nonlinear vibrations in a particular class of beams result
in modal equations of the form

N∑
i=1

N∑
j=1

N∑
k=1

q̈j + ζjωnj q̇j + ω2
njqj + μijkqiqjqk = αjFc(t), (23)

where q(t) is the modal displacement, ωnj the modal natural frequency, ζj
the modal damping ratio, μijk the nonlinear coefficient, Fc(t) is the control
force and αj is the modal participation factor. The summations over i, j
and k and the coefficients μijk represent the nonlinear cubic terms, which
typically include coupling between the modes.
Consider an example when taking measurements from two sensors shown

in the schematic representation in Figure 20. The transverse displacement of
the beam is w(x, t), where x is the length along the beam. So the transverse
displacement at two points a and b is w(a, t) and w(b, t) respectively. These
physical displacements are taken as the control outputs for the system, ya =
w(a, t) and yb = w(b, t). The outputs are related to the modal displacements
q1 and q2 by a modal matrix, so that[

ya(t)
yb(t)

]
=

[
w(a, t)
w(b, t)

]
=

[
φ1(a) φ2(a)
φ1(b) φ2(b)

] [
q1
q2

]
,

where φ(x) is the beam mode-shape at point x along the beam. So, assuming
a negligible contribution to the response from modes 3, 4, ...,∞ (i.e. no
observation spillover) the output vector y = [Φ]q, where [Φ] is the 2×2
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Figure 20. Vibration control of a beam with two collocated actuators and
sensors.

modal matrix, and q = [q1, q2]
T . As a result the modal displacement vector

can be estimated directly from q = [Φ]−1y. If it is possible to place the
sensors so that φ2(a) ≈ 0 and φ1(b) ≈ 0, then a direct relationship can be
obtained between the outputs and the modal displacements. The modal
velocities, q̇1 and q̇2 also need to be estimated from the outputs, using the
fact that ẏ = [Φ]q̇.
Now consider the beam shown in Figure 20 where we want to use feed-

back linearization control techniques to linearize the two mode nonlinear
system defined by

d

dt

⎡
⎢⎢⎣

q1
q2
q̇1
q̇2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−ω2
n1 0 −ζ1ωn1 0
0 −ω2

n2 0 −ζ2ωn2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

q1
q2
q̇1
q̇2

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

0
0

μ1q
3
1 + δ1q

2
1q2

μ2q
3
2 + δ2q

2
2q1

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0
0

α1p1
0

⎤
⎥⎥⎦ u1 +

⎡
⎢⎢⎣

0
0
0

β2p2

⎤
⎥⎥⎦u2,

(24)

where δ1 and δ2 are constant terms which determine the level of nonlinear
cross-coupling between modes 1 and 2. Assume that both observation and
control spillover are negligible and that the outputs are the modal displace-
ments y1 = q1 and y2 = q2.
First, by inspection of equation (24), it can be seen that setting

u1 =
1

α1p1
(μ1q

3
1 + δ1q

2
1q2) and u2 =

1

β2p2
(μ2q

3
2 + δ2q

2
2q1)
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will linearize each mode directly. In fact, additional damping can also be
included by using velocity feedback (assuming q̇1 and q̇2 can be measured),
in which case the control signals become

u1 =
1

α1p1
(μ1q

3
1 + δ1q

2
1q2 − κ1q̇1) and u2 =

1

β2p2
(μ2q

3
2 + δ2q

2
2q1 − κ2q̇2).

To obtain an input-output linearization, first take the outputs y1 = q1
and y2 = q2, differentiate twice to get the relationship with the control
inputs given by

q̈1 = −ω2
n1q1 − ζ1ωn1q̇1 − μ1q

3
1 − δ1q

2
1q2 + α1p1u1,

q̈2 = −ω2
n2q2 − ζ2ωn2q̇2 − μ2q

3
2 − δ2q

2
2q1 + β2p2u2,

then choosing

u1 =
1

α1p1
(v1(t) + ω2

n1q1 + ζ1ωn1q̇1 + μ1q
3
1 + δ1q

2
1q2),

u2 =
1

β2p2
(v2(t) + ω2

n2q2 + ζ2ωn2q̇2 + μ2q
3
2 + δ2q

2
2q1),

will give an input-output linearization with the result that q̈1 = v1(t) and
q̈2 = v2(t), where v1(t) and v2(t) are the new control signals, which can be
chosen to give the desired linear system response.
Feedback linearization techniques can be applied to multi-modal systems

when the modes are decoupled (or very weakly coupled) via the control
forces. The modes themselves can be coupled, as has been shown in the last
example, although, to apply this control technique, detailed knowledge of
the modal equations is required, and access to all modal states needs to be
assumed. Note also that the nonlinear cross-coupling terms typically give
rise to nonlinear resonance phenomena, which can dominate the vibration
response — see Wagg and Neild (2009) and references therein for details.

6 Morphing structures

The concept of morphing is to get a structure to change between two (or
possibly more) different shapes. This shape change is required for the struc-
ture to perform a particular function. For example, many space structures
are required to be packed into small containers for travel into space, and
then they are required to deploy into their operating form. An example is
shown in Figs, 21 and 22. Deployment is also required for structures such



Control and Exploitation of Nonlinearity in Smart Structures 259

Figure 21. The International Space Station (ISS) showing the solar arrays.
Photo credit NASA.

as the solar sail shown in Figure 4. In this case the use of tape springs
is being developed in order to deploy the sail, see for example Seffen and
Pellegrino (1999) and references therein.
The other main morphing application which has been investigated to

date is that of control surface morphing for aerospace structures. This
type of morphing can be broadly divided into two categories. The fist
type is passive morphing, where the control surface is designed such that it
will morph (i.e. change shape) in response to specific aerodynamic loads.
These methods have received considerable attention for use in morphing
aircraft structures (Bharti et al., 2004; Lucato et al., 2004; Spadoni and
Ruzzene, 2007; Wang et al., 2007; Thill et al., 2008; Baker and Friswell,
2009; Daynes et al., 2010; Bae et al., 2005). In some of these designs the
nonlinear characteristics of particular structures are deliberately exploited,
such as bi-stable shells (Wagg et al., 2007). This is still an active area
of research, and the passive actuation method is often designed to work
in conjunction with an active control element (Daynes et al., 2010). An
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Figure 22. Deployment of solar arrays for the ISS. Each of the Solar Array
Wings are 34 m long by 12 m and they are folded for compact delivery to
space (shown in this figure). Once in orbit, they are deployed. Photo credit
NASA.

example of an aircraft which uses morphing is the Boeing X-53A shown in
Figure 23. This aircraft has a passive morphing system called the Active
Aeroelastic Wing. The objective is to avoid an undesirable phenomena
known as aileron reversal which can occur when the aircraft performs roll
manoeuvres. When higher aerodynamic forces occur, the control surfaces
are automatically deflected into the air stream in a manner that produces
favourable wing twist instead of the reduced control generally associated
with aileron reversal. This system combines passive morphing with an active
control trigger.
In general, when any form of active control is present, the system is

said to be an active morphing system. An example is shown in Figure
24 of a morphing aerofoil cross section developed by Continuum Dynamics
Inc/Lockheed Martin. This type of aerofoil (or wing) morphing has received
considerable attention in the literature (Gern et al., 2002; Bornengo et al.,
2005; Coutu and Brailovski, 2009; Hubbard, 2006; Inoyama et al., 2007;
Vos et al., 2007a,b; Wickenheiser and Garcia, 2007; Gandhi and Anusonti-
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Figure 23. Boeing X-53A Active Aeroelastic Wing. Photo credit Jim
Ross/NASA.

Inthra, 2008; Diaconu et al., 2008; Popov et al., 2008; Sofla et al., 2010),
with some inspiration from nature, especially the flight of the swift — see
for example Lentink et al. (2007).
There are considerable challenges in developing this type of system, not

least in implementing a robust actuation system. The use of SMAs has
been found to be particularly difficult and alternative methods are also
being developed. One of the most popular is to use piezoelectric materi-
als, which have been used extensively in structural control and other smart
structure applications (Preumont et al., 2003; Khajepour and Golnaraghi,
1997; Preumont et al., 1992; Schultz and Hyer, 2003; Ashour and Nayfeh,
2002; Chen and Chen, 2004; Zhou and Wang, 2004; Moheimani and Vau-
tier, 2005; Preumont et al., 2005; Song et al., 2006; Moheimani and Fleming,
2006; de Marneffe and Preumont, 2008; Harari et al., 2009). Of particular
interest is the increasing development and use of Macro Fibre Composite
actuators (MFC) (Song et al., 2006; Deraemaeker et al., 2009) which al-
low large curvature deflections to be measured and actuated, which is a
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Figure 24. Continuum Dynamics Inc/Lockheed Martin Continuously De-
formable shape memory alloy (SMA) wires are used to control the aerofoil
cross-section. Photo credit Continuum Dynamics Inc/Lockheed Martin .

particular benefit for morphing structures.
The ultimate aim of active morphing is to create structures with contin-

uous surfaces which can be morphed into multiple shapes for high perfor-
mance flight control. An example of NASAs concept morphing aircraft is
shown in Figure 25. Now we will discuss the concept of snap-through which
is being considered as a method for creating morphing structures.

6.1 Snap through mechanisms

A classic engineering example of nonlinear behaviour is the buckling of
an axially-loaded (planar) vertical column, as shown for example in Fig 26.
In Fig 26 (a) a perfectly straight, planar column is loaded with an axial load
p, and the mid-point transverse deflection is q. As the axial load reaches the
critical Euler buckling load a pitchfork bifurcation occurs, which is shown
in Figure 27 (a) and (b). Figure 27 (a) shows a supercritical pitchfork
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Figure 25. Future active/passive morphing. This artist’s impression shows
future concepts NASA anticipates for an aircraft of the future. Photo credit
NASA.

bifurcation, which corresponds to the physical case when the column adopts
a buckled shape but does not collapse — said to be the postbuckled state.
Figure 27 (b) shows a subcritical pitchfork bifurcation, which corresponds
to the physical case when the column fails catastrophically at the point of
bifurcation. The two dashed curves linking the bifurcation point to zero
correspond to the collapse solutions to the left or right.
In the supercritical case, Figure 27 (a), after the bifurcation point, the

original straight solution becomes unstable (shown as a dashed line) and
two stable solutions emerge corresponding to the column buckling either
to the left or the right. As the column is perfectly straight, there is an
equal chance of the column buckling in either direction. Physically, the
column is never perfectly straight, and so the case shown in Fig 26 (b) is
for an imperfect column, where the initial imperfection is represented by
the deflection ε. The initial imperfection means that the column will always
buckle in the same direction. The case for positive ε is shown in Figure
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Figure 26. Beam buckling (a) perfect column, (b) column with eccentricity.

27 (c), where it can be seen that there are now two disconnected solution
paths. Increasing p from zero always leads to a buckled shape to the right.
If the beam is forced into the opposite (left-hand) buckled shape, and loaded
above the Euler load, it can be held in this position, for example at point
A in Figure 27 (c). Physically, the axial load is holding the beam in the
buckled state which is opposite to its initial imperfection. Then if the axial
load is decreased, at the Euler load the beam will suddenly snap-through
to the other branch of solutions. The point of snap-through is a saddle-
node bifurcation where the stable branch joins an unstable branch which
corresponds to the original unbuckled solution.
Notice that in Figure 27 the solid lines indicate the paths of the stable

equilibrium points (node/spiral) as p is varied and the dashed lines indicate
the unstable equilibrium points (saddles). The unstable and stable branches
join at the bifurcation point.
The physical system shown in Figure 28 (a) has a geometric nonlinearity

due to the angle, θ, of the springs. This type of nonlinearity can be approx-
imated by a Duffing-type oscillator with nonlinear stiffness shown in Figure
28 (b). The equation of motion is given by

mẍ+ cẋ− μx+ αx3 = 0,

where μ and α are coefficients which depend on k, θ and L and c is (added)
viscous damping. The derivation of a Duffing oscillator from the snap-
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Figure 27. Pitchfork bifurcation (a) supercritical, (b) subcritical, and (c)
imperfect.

through system can be found from a number of sources — see for example
Virgin (2007).
Consider the case when m = 1 and α = 1, and we are asked to find

the change in behaviour which occurs as the linear stiffness parameter, μ,
is varied and changes sign. First, rewriting the system into first-order form

ẋ1 = x2 = f1,
ẋ2 = μx1 − x31 − cx2 = f2.

Then by inspection, the equilibrium points for this system can be found by
equating f1 = f2 = 0 which gives

μ < 0 x1 = 0 x2 = 0, one equilibrium point
μ = 0 x1 = 0 x2 = 0, one equilibrium point
μ > 0 x1 = 0 x2 = 0
and x1 = ±√μ x2 = 0, three equilibrium points.

To investigate the behaviour, the system is linearised locally close to the
equilibrium points. For all μ values the equilibrium point x∗a = (x1 =
0, x2 = 0) exists. For μ > 0 values, two additional equilibrium points exist
and are labelled as x∗b,c = (x1 = ±

√
μ, x2 = 0). In general, the Jacobian for

the system is

Dxf =
∂(f1, f2)

∂(x1, x2)
=

⎡
⎢⎣

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

⎤
⎥⎦ = [

0 1
μ− 3x21 −c

]
.

First for x∗a = (x1 = 0, x2 = 0), the Jacobian becomes

Dx∗
a

f =

[
0 1
μ −c

]
.
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Figure 28. Snap-through system showing, (a) schematic, and (b) nonlinear
stiffness function.

So for equilibrium point x∗a, tr(A) = −c and det(A) = −μ.
For equilibrium points x∗b,c = (x1 = ±

√
μ, x2 = 0), the Jacobian becomes

Dx∗
a

f =

[
0 1
−2μ −c

]
.

So in this case tr(A) = −c and det(A) = 2μ.
Note that the expression for tr(A) and det(A) are computed assuming

that μ > 0. In the case when μ < 0 the sign of μ terms will change. So for
equilibrium point x∗a (using Figure 5 from Chapter 1) when

μ < 0, tr(A) = −c, det(A) = −(−μ) = μ, stable node/spiral
μ = 0, tr(A) = −c, det(A) = 0, degenerate case
μ > 0, tr(A) = −c, det(A) = −μ, saddle

so this equilibrium point changes from a stable node/spiral to a saddle
point as μ passes through zero. In general, for μ > 0 the discriminant is
Δ = tr2 − 4det = c2 + 4μ. So the μ value at which Δ = 0 is μ = −c2/4,
marking the degenerate node case from Figure 5 from Chapter 1. So for
−c2/4 > μ > 0, x∗a is a stable node and for μ < −c2/4 a stable spiral.
For equilibrium points x∗b,c when

μ < 0, n/a, no equilibrium point
μ = 0, tr(A) = −c, det(A) = 0, degenerate case
μ > 0, tr(A) = −c, det(A) = 2μ, stable node/spiral

So, for μ < 0, there are no equilibrium points. In this case the discriminant
is Δ = tr2 − 4det = c2 − 8μ. So the μ value at which Δ = 0 is μ = 1/8,
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Figure 29. Change in stiffness function as μ varies for this example.

marking the degenerate node case from Figure 5 from Chapter 1. So for
0 < μ < c2/8, x∗b,c is a stable node and for μ > c2/8 it becomes a stable
spiral.
Physically changing μ from negative to positive corresponds to the sys-

tem in Figure 28 having positive linear stiffness. Geometrically, this corre-
sponds to the case when the support points are moved outwards, such that
θ → 0.
The physical interpretation of the snap-through can be seen from Figure

29, where in (a1) and (a2) the linear stiffness is negative, (b1) and (b2) shows
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the μ = 0 case and (c1) and (c2) shows the case where the linear stiffness
is positive. This corresponds to moving the end supports apart from (a1)
to (b1) and finally (c1). In (b1) there is no tension or compression in the
springs, whereas in (c1) the springs are in tension.
This type of transition is known as a cusp bifurcation, because if plots

(a2), (b2) and (c2) are combined into a surface plot with μ as the additional
coordinate, then the surface has a cusp at μ = 0. See Thompson (1982) for
further details of this phenomena.
By deliberately designing a structure to have snap-through characteris-

tics like (a1) (a2), we can create a hinge mechanism where the system can
switch, via snapping, between two different stable states. One way this can
be achieved in practice is using composite shells, and this is discussed next.

6.2 Multi-form shell structures

Composite shell structures made from a polymer-matrix, fibre-reinforced
composite can be made to be bi-stable (or even multi-stable) by combining
laminate design with a manufacturing process which involves cooling from
a high temperature. Thermally induced stresses occur during cooling, and
as a result of these stresses the plate is a cylindrical shell shape when fully
cooled. In fact, the cooled static equilibrium shape has been shown to be
the shape which minimizes the potential energy of the laminate, see Hyer
(1998) (see also Chap. 7. of Wagg et al. (2007)) during cooling. This
process is nonlinear, and the Kirchhoff strain assumptions are taken as an
appropriate model for the shell behaviour Wagg and Neild (2009). However,
the shell can also have other potential stable configurations. It should be
noted that bi-stability is not unique to composite materials, for example
steel arches and dome-like shells can have bi-stable behaviour. Typically,
there is one other stable configuration and so the shell is said to be bi-
stable. More generally, composite laminates can be manufactured which
have multi-stable states.
An example is shown in Figure 30, where a bi-stable plate has been

fabricated with a flat plate joined to the left-hand edge to form a rectangular
plate-like structure Mattioni et al. (2008). In Figure 30 (a) the bi-stable
plate (on the right of the sub-figure) is in the curvature up position, and in
Figure 30 (b) the bi-stable plate is in the down (or flatter) position. This
idea has been taken a stage further, and used to construct a small scale
prototype of a morphing winglet, as shown in Figure 31.
The moment required to make the bi-stable composite change state has

been found to be, for example, in the range 1.186–1.243 Nm for a 254 mm
× 254 mm [904/04]T specimen, see Schultz and Hyer (2003) (see also Chap.
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Figure 30. Flat plate and bi-stable plate manufactured together, (a) bi-
stable state 1, and (2) bi-stable state 2. Reproduced with kind permission
from Mattioni et al. (2006).

Figure 31. Bi-stable plate applied to a morphing wing concept (a) winglet
lowered, and (b) winglet raised. Reproduced with kind permission from
Mattioni et al. (2006).
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Figure 32. Change in stiffness function as μ varies for this example.

7. of Wagg et al. (2007)). When the change in state occurs, the behaviour
is almost identical to the snap-through system already discussed, shown in
Figure 28. This is because after a certain level of deflection, the sign of the
stiffness term appears to suddenly reverse, propelling the system into the
other state. This idea of negative linear stiffness is considered in the buckling
example, where the snap-through system is modelled as a Duffing oscillator.
If required, the model developed for the composite shell, can be applied to
the large deflection case which occurs physically with snap-through.
These types of bi-stable materials are being used to create future adap-

tive structures where multiple states are required. The process of a structure
changing from one shape to another is called morphing. In some aerospace
literature this is used to describe just hinged wing aircraft, but more re-
cently the term has become used more widely to describe any shape change
in a structure.
Techniques for actuating bi-stable plates using both piezoelectric actu-

ators and shape memory alloys have been described by in Hyer et. al. in
Chap. 7. of Wagg et al. (2007). These techniques are designed to over-
come the static moment required to change between the two stable states.
An example is shown in Figure 32, which shows a bistable plate with two
macrofibre composite (MFC) piezo actuators mounted along the diagonal
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axis of the plate. In this experiment, the MFCs where used to switch the
plate from one static stable state to another.
When operating these structures in a dynamic environment, it may be

possible to use some of the vibration energy to assist with the state change.
It is already known that repeated dynamic snapping (non-periodic) of the
laminate can be achieved by forcing it close to a resonance, see Diaz et al.
(2007). Deliberately operating near a resonance would significantly reduce
the moment required to actuate between states, but the high amplitudes
would be disadvantageous at other times. So, in this type of scenario active
vibration control would also be required. These and other similar applica-
tions of ‘smart’ structures offer an exciting new set of engineering challenges
in which nonlinear vibrations and control will play an major part.
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