
Cesar Gonzalez-Perez

Information
Modelling for
Archaeology and
Anthropology
Software Engineering Principles for
Cultural Heritage

Information Modelling for Archaeology
and Anthropology

This book contains multiple diagrams expressed in ConML. See www.conml.org
for more information on ConML. This book also makes extensive reference to the
Cultural Heritage Abstract Reference Model (CHARM). See www.charminfo.org
for more information on CHARM. ConML and CHARM are research outcomes of
Incipit CSIC (www.incipit.csic.es) and can be used freely under a Creative
Commons Attribution 4.0 International License (https://creativecommons.org/
licenses/by/4.0/).

Most of the many examples used throughout this book have been made up by the
author to better illustrate the different modelling techniques. No particular state-
ments or views on the world should be assumed from them.

Interior photographs correspond to Praza das Praterías in Santiago de
Compostela, Spain; excavation at 95 George Street, Sydney, Australia; the National
Museum of China in Beijing, China; a river mill in Begonte, Lugo, Spain; and Maes
Howe in Orkney, Scotland. They were taken jointly by the author and Isabel Cobas.

This book was prepared by the author using Microsoft Word 2016 for editing
and layout, and Microsoft Visio 2016 for the figures. The ConML diagrams were
composed by using the Visio stencil at http://www.conml.org/Resources_
Templates.aspx.

There is a Spanish language edition of this book, titled “Modelado de
Información para Arqueología y Antropología: Principios de Ingeniería de Software
para Patrimonio Cultural”, and with ISBN 978-1537766706.

http://www.conml.org
http://www.charminfo.org
http://www.incipit.csic.es

Cesar Gonzalez-Perez

Information Modelling
for Archaeology
and Anthropology
Software Engineering Principles for Cultural
Heritage

123

Cesar Gonzalez-Perez
Incipit, CSIC
Santiago de Compostela, A Coruña
Spain

ISBN 978-3-319-72651-9 ISBN 978-3-319-72652-6 (eBook)
https://doi.org/10.1007/978-3-319-72652-6

Library of Congress Control Number: 2017961095

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To the memory of my father, for his curiosity,
idealism, and passion.

Preface

This book is the result of over 20 years of research and practice in the interdisci-
plinary area of information technologies and cultural heritage. In the 1990s, we had
not heard yet of the “digital humanities”, but we were aware that archaeology,
anthropology and other areas in the humanities desperately needed proposals to
help manage the increasing amounts of information that they were generating, and
sustain the associated knowledge-generation practices. Today, this trend has only
intensified, and the application of solid, high-quality engineering principles to the
construction of information systems and knowledge-generation approaches in the
humanities is paramount. In particular, research in the humanities depends very
much on the information that is managed, how it is shaped and structured (i.e.
“modelled”), and how knowledge is generated from it through interpretive pro-
cesses. In the absence of a rigorous approach, we may end up being unable to use
our valuable information for the intended goals.

The software and knowledge engineering disciplines have been using conceptual
modelling for a while and exporting it to other fields such as biomedicine or
business organization. However, robust applications of conceptual modelling to the
humanities are scarce. In this book, we apply proven principles and techniques from
the software and knowledge engineering fields to the problems of cultural heritage.
Also, we show how these principles and techniques have been adapted and
extended to cope with the peculiarities of the humanities and, specifically,
archaeology and anthropology.

This book is primarily aimed at students and teachers of data management,
information modelling and related areas in any field related to cultural heritage,
such as archaeology, anthropology, art, museology, geography, history, architec-
ture, archival science, literature, and even sociology or soil sciences. Other spe-
cialists in cultural heritage such as researchers, heritage managers or heritage
professionals working in industry can also use this book in a self-paced manner to
learn about the topic.

This book assumes no previous exposure by the reader to information tech-
nologies and no knowledge whatsoever of conceptual modelling, ontologies or
other topics in software or knowledge engineering. Technical detail is kept low or

vii

moderate, and special technical asides used to provide highly specialized or com-
plex details only when needed are marked “Technical”. You can safely skip these
sections if not interested in the philosophical or engineering underpinnings of
things. Specific words or phrases being discussed are shown in double quotes, like
“this”. Single quotes, like ‘this’, are used to refer not to the words but to the
underlying concepts. Bibliographic references mentioned in the text are indicated
by numbers in brackets, like this [15]. There is a reference list at the end of each
chapter. In addition, most of the chapters in this book end with a summary of the
contents presented, as well as some exercises that you can use to verify how well
you have understood them. Solutions to the exercises are provided at the end of this
book.

This book is organized into five parts of increasing complexity. First, a general
philosophical introduction to conceptual modelling is provided, to develop a con-
textual feel of the approach and a better understanding of the technical issues that
are described later. Secondly, the basics of conceptual modelling are introduced,
using the ConML (www.conml.org) language as an infrastructure, and employing
examples from everyday life and, as often as possible, cultural heritage. Then,
advanced topics in conceptual modelling are presented, in order to fully cover the
necessary aspects of ConML that will allow the reader to develop and understand
complex conceptual models. After this, a proposed conceptualization of cultural
heritage is presented, using the Cultural Heritage Abstract Reference Model
(CHARM, www.charminfo.org) as a reference, so that conceptual models of cul-
tural heritage can be easily constructed. Finally, various usage scenarios and
applications of cultural heritage modelling are described, giving practical tips on
how to use different techniques to solve real-world problems. You are free to read
only the first few parts if you are only interested in an overview of the topic, or
jump to the last parts if you are already familiar with it. If you are learning about
conceptual modelling in cultural heritage for the first time and you are interested in
obtaining a comprehensive view, then I suggest that you read this book cover to
cover.

Finally, I would like to acknowledge the contributions that many people have
made to the materials presented in this book. Most specially, the ConML modelling
language has benefited from the input of Charlotte Hug and Patricia Martín-Rodilla.
Parts of Chap. 19 have been co-written with César Parcero-Oubiña, and his input, as
well as David Barreiro’s, has been crucial to the whole chapter. The definitions of
culture, cultural heritage, cultural value and heritage value that are discussed in
Part IV have been refined from the results of a series of internal workshops at
Incipit CSIC (www.incipit.csic.es), with contributions by Ana Ruiz-Blanch, A.
César González-García, César Parcero-Oubiña, Cristina Sánchez-Carretero, David
Barreiro, Felipe Criado-Boado, Joan Roura-Expósito, Juan Castro-Cal, Patricia
Martín-Rodilla and Ruth Varela. In turn, the initial version of the Cultural Heritage
Abstract Reference Model (CHARM) was developed by a core team led by the
author plus Alejandro Güimil-Fariña, Camila Gianotti, César Parcero-Oubiña,
Charlotte Hug, Patricia Martín-Rodilla, Pastor Fábrega-Álvarez and Rebeca

viii Preface

http://www.conml.org
http://www.charminfo.org
http://www.incipit.csic.es

Blanco-Rotea, with additional input from Cristina Mato-Fresán, Lucía Meijueiro
and Rocío Varela-Pousa. The whole manuscript was revised by Isabel Cobas.

In addition, my co-workers at Incipit CSIC have been courageous enough as to
not only accept a stranger between them, but also provide a challenging and
exciting environment where truly transdisciplinary research can be carried out. My
collaborators at the Centro de Investigación en Métodos de Producción Software
(PROS) of the Universitat Politècnica de València, the Centre de Recherche en
Informatique (CRI) of the Université Paris 1—Panthéon-Sorbonne, and the Centre
for Object Technology Applications and Research (COTAR) of the University of
Technology, Sydney, have opened many doors and shaped the results of my
research very significantly. Also, the community around the Computer Applications
and Quantitative Methods in Archaeology (CAA) association and annual confer-
ence has also been an endless source of inspiration and problems waiting to be
solved. The users of ConML and CHARM, including the students of our regular
postgraduate courses at the University of Santiago de Compostela and elsewhere,
have also provided very useful feedback. And, last but not least, the boundless
conversations with my dear Isabel have delivered both uncompromising support
and powerful insights into the conceptual modelling of cultural heritage like nobody
else’s. Thank you all.

Santiago de Compostela, Spain Cesar Gonzalez-Perez

Preface ix

Contents

Part I Introduction to Conceptual Modelling

1 What Is Conceptual Modelling? . 3
Summary . 8

2 Premises and Foundations of Conceptual Modelling 9
Premises . 9
Linguistic Connections . 11
Conceptual Modelling Languages . 11
What Are Conceptual Models Made Of? . 14
Summary . 14

3 Benefits and Applications of Conceptual Modelling 17
Exploration . 18
Documentation . 18
Communication . 19
Design . 19
Interoperability . 20
Summary . 21

Part II The Basics of Conceptual Modelling

4 Objects . 25
Objects . 26
Values . 29
Links . 31
Instance Models . 32
Summary . 33
Exercises . 33

5 Classes . 35
Classes . 36

xi

Definition . 37
Invariants and Variables . 39
Properties . 40
Cardinality . 41
Limitations of Classes . 43
Objects as Instances of Classes . 45
Summary . 46
Exercises . 47

6 Attributes . 49
Attributes . 50
Data Types . 52
Boolean . 52
Number . 53
Time . 54
Text . 54
Data . 55

Values as Instances of Attributes . 55
Summary . 56
Exercises . 56

7 Enumerated Types . 57
Enumerated Types and Enumerated Items . 58
Hierarchical Enumerated Types . 60
Summary . 63
Exercises . 63

8 Associations . 65
Associations and Semi-Associations . 66
Roles . 71
Whole/Part Semantics . 73
Self-Associations . 74
Links as Instances of Associations . 76
Summary . 78
Exercises . 78

9 Generalization and Specialization . 79
Generalization/Specialization Relationships Between Classes 80
Discriminants . 83
Generalization and Class Definitions . 85
Inheritance . 86
Abstraction . 88
Generalization and Objects . 89
The Is-A Confusion . 90
Avoiding Multiple Specialization . 91

xii Contents

Abstract Classes . 93
Type Models . 95
Summary . 96
Exercises . 96

Recap of Part II

Part III Advanced Conceptual Modelling

10 Advanced Enumerated Types . 101
Generalization/Specialization Relationships Between
Enumerated Types . 101
Summary . 104
Exercises . 104

11 Advanced Features . 105
Sorted Features . 106
Strong Semi-Associations . 107
Symmetric Self-Associations . 108
Compact Notation for Associations . 110
Summary . 114
Exercises . 114

12 Advanced Generalization . 115
Multiple Generalization . 115
Dominant Generalizations . 119
Other Inheritance Issues . 121
Summary . 122
Exercises . 122

13 Model Architecture . 123
Packages . 124
Summary . 127
Exercises . 127

14 Vagueness . 129
Ontological and Epistemic Vagueness . 130
Null and Unknown Semantics . 132
Using Abstract Enumerated Items . 134
Using Arbitrary Time Resolution . 136
Modelling Vagueness Explicitly . 138
Summary . 140
Exercises . 141

15 Temporality . 143
Phases . 145

Contents xiii

Temporal Features . 148
Temporal Aspect . 150
Modelling Temporality Without Aspects . 153
Summary . 154
Exercises . 154

16 Subjectivity . 157
Theoretical Framework . 158
Perspectives . 159
Subjective Features . 163
Subjective Aspect . 165
Modelling Subjectivity Without Aspects . 168
Combining Temporality and Subjectivity . 169
Summary . 170
Exercises . 171

17 Feature Redefinition . 173
Redefinition of Features . 173
Redefinition Rules . 177
All Feature Kinds . 177
Attributes . 178
Semi-Associations . 178

Summary . 179
Exercises . 179

18 Metainformation . 181
Metainformation as Information . 183
Specific Uses of Metainformation . 186
Expressing Uncertainty . 186
Implementing Transaction Time . 187

Summary . 187
Exercises . 188

Recap of Part III

Part IV A Model of Cultural Heritage

19 An Ontology for Cultural Heritage . 195
What Is CHARM? . 196
Motivation and Benefits of CHARM . 197
Objections to CHARM . 198
Approaches to Cultural Heritage . 199
Cultural Heritage as a Process . 200
Cultural Heritage as Things . 201

Infrastructural Concepts . 203

xiv Contents

The Basic Concepts of CHARM . 214
Summary . 214

20 Overview of CHARM . 217
Top View of CHARM . 217
Summary . 221
Exercises . 222

21 CHARM General Concepts . 223
Measures . 223
Locations . 225
Summary . 228
Exercises . 228

22 Tangible Entities . 229
Places . 229
Material Entities . 232
Structure Entities . 233
Object Entities . 236

Stratigraphic Entities . 238
Samples . 242
Example Model . 243
Summary . 243
Exercises . 244

23 Agents . 245
Expressing Points of View with Agents . 247
Example Model . 248
Summary . 249
Exercises . 249

24 Manifestations and Performative Entities . 251
Performative Entities . 252
Expressive Designs . 254
Social Acts . 256
Understandings . 257

Manifestations . 258
Manifestations of Expressive Designs . 259
Manifestations of Social Acts . 262
Manifestations of Understandings . 262

Example Model . 263
Summary . 264
Exercises . 264

25 Occurrences . 267
Absolute Occurrences . 269

Contents xv

Circumstances . 270
Situations . 271
Activities . 272
Expressing Time with Occurrences . 274
Example Model . 275
Summary . 275
Exercises . 276

26 Abstract Entities . 277
Norms . 279
Example Model . 281
Summary . 282
Exercises . 283

27 Representations . 285
Representations, Contents and Embodiment . 286
Other Relational Connections . 288
Example Model . 288
Summary . 289
Exercises . 289

28 Valorizations . 291
Expert Valorizations . 293
Non-expert Valorizations . 294
Example Model . 295
Summary . 296
Exercises . 296

29 Derived Entities . 297
Expert Derived Entities . 299
Non-expert Derived Entities . 302
Example Model . 303
Summary . 304
Exercises . 304

Recap of Part IV

Part V Applying Conceptual Modelling

30 Modelling Patterns . 309
Hierarchical Aggregation Patterns . 311
Descriptive Aggregation . 312
Reference Aggregation . 314

Hierarchical Subsumption Patterns . 315
Descriptive Subsumption . 316
Reference Subsumption . 318

xvi Contents

Composite Patterns . 319
State Patterns . 326
Summary . 331
Exercises . 332

31 Constructing Quality Models . 333
Quality Factors . 334
Functional Quality Factors . 334
Correctness . 335
Robustness . 336
Non-functional Quality Factors . 337
Usability . 337
Efficiency . 337
Maintainability . 338
Readability . 338

Modularity . 338
Meyer’s Five Criteria . 340
Decomposability . 341
Composability . 341
Understandability . 342
Proportion . 342
Protection . 343

The Cost of Quality . 343
Summary . 343
Exercises . 344

32 The Modelling Process . 347
Creating a Model from Scratch . 348
Modifying an Existing Model . 351
Specific Techniques . 353
Word Highlighting . 353
Refactoring Cues . 355
Striving for Symmetry and Coverage . 356

Implementing Models . 357
Summary . 359
Exercises . 360

33 Extending Models . 361
Reasons for Extension . 362
Adding Extra Model Elements . 362
Modifying Existing Model Elements . 363
Removing Existing Model Elements . 363

Liskov Compatibility . 364
Extension Mechanisms and Reinterpretation Rules 366
Adding Enumerated Types and Items . 366

Contents xvii

Adding Classes . 367
Adding Features . 369
Modifying Packages, Enumerated Types, Enumerated
Items and Classes . 369
Modifying Features . 370
Hiding Attributes . 370
Deleting Enumerated Types or Items . 371
Deleting Classes . 371
Deleting Features . 371

Worked Example . 372
Creating a Particular Model . 372
Using the Particular Model . 374
Interoperating with Other Models . 376

Summary . 378
Exercises . 378

34 Developing Database Systems . 379
Notions of Relational Database Systems . 380
Tables . 380
Columns . 381
Rows . 382
Databases and Models . 383
Primary Keys . 383
Relationships and Foreign Keys . 385
Additional Database Concepts . 388

Mapping Guidelines . 389
Implementing Enumerated Types and Items 389
Implementing Classes and Attributes . 391
Implementing Specialization Hierarchies . 394
Implementing Associations . 399

Worked Example . 402
Summary . 403
Exercises . 404

Recap of Part V

Solutions to Exercises . 407

References . 437

List of CHARM Model Elements . 441

Index . 445

xviii Contents

About the Author

Cesar Gonzalez-Perez is a Staff Scientist at the
Institute of Heritage Sciences (Incipit, www.incipit.
csic.es), Spanish National Research Council (CSIC),
where he leads a co-research line in software engineer-
ing and cultural heritage. The ultimate goal of his work
is to develop the necessary theories, methodologies and
technologies to help understand how meaning is con-
structed in relation to cultural heritage. Previously,
Cesar has worked at a number of public and private
organizations in Spain and Australia, both in industry
and academia, and in the fields of conceptual modelling,
metamodelling and situational method engineering. He
has started three technology-based companies, is active
in the international standards community through ISO
and AENOR, is an elected member of the steering
committee of the Computer Applications and
Quantitative Methods in Archaeology (CAA) associa-
tion and has authored or co-authored over 80 publica-
tions.

xix

Part I
Introduction to Conceptual Modelling

This part provides a straightforward philosophical introduction to the modelling of
information and knowledge. Some premises and linguistic connections are dis-
cussed, and the benefits of using conceptual modelling are described.

Chapter 1
What Is Conceptual Modelling?

Abstract In this chapter, we describe what modelling is from a general perspec-
tive. We start by explaining that models represent something in the world in a
simplified manner, so that we can reason on the model and then apply the con-
clusions back to the modelled subject. We define the notions of model scope and
purpose and describe how they work as guides to decide what to keep and what to
discard when modelling. Then we move on to explain what conceptual models are,
and the fact that they are composed of concepts rather than physical things. These
concepts can be of two kinds: the individual entities in the world, as well as the
categories that we use to organize them. In this manner, conceptual models work as
ontologies of the world.

We all build and use models. We do it in many different contexts, from the most
sophisticated technical settings to our daily routine. We create mental models of the
world in which we live, we sketch something on a piece of paper to explain an idea
to someone else, and we use our hands to signal how large or small something is. In
the specific field of cultural heritage, we also build and use models for technical
reasons. For example, we use maps to locate sites or other relevant places, we
construct Harris matrices to describe stratigraphic sequences, and we record
information in databases for later use. Sketches, maps, Harris matrices and database
records are models, because they purposefully represent something of interest to us.

Every model has three interesting properties:

• It represents something. For example, a map represents a portion of the territory.
• It simplifies the represented subject. For example, the lines and shapes on a map

are much simpler than the real territory.
• It allows us to reason on the representation and then apply the conclusions back

to the modelled subject. For example, we can carry out measurements on a map
and then we expect that they will hold on the terrain.

Models can represent anything. Whatever is supposed to be represented by a
model is called its scope. Architects sometimes make cardboard models of the
buildings they plan to construct or modify. A map is a model of the territory.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_1

3

A table listing data about pottery fragments in a report is also a model. The scopes
of these models are the buildings to be constructed, the territory and the pottery
fragments, respectively. Also, and in all these cases, the models are physical things,
being made of cardboard, lines and shapes on a sheet of paper, or letters printed or
displayed on screen. Models like these are very convenient because, being physical,
they can be perceived and interacted with by us with little effort. However,
sometimes they fall short of satisfying some of our needs. For example, very
abstract things may be difficult to represent physically. Also, and more importantly,
a model that is purely physical is difficult to verbalize and describe to someone else;
for example, giving directions to someone by using a map as a reference is no much
simpler than giving the same directions by using the actual terrain as a reference.
For these reasons, models are more convenient if they are strongly grounded on our
linguistic ability and, in consequence, on our cognitive mechanisms. A model that
is made of ideas or concepts instead of physical things is called a conceptual model.

Technical
There is some debate in the conceptual modelling community as to whether
conceptual models are models made of concepts (as proposed in this book) or
models about concepts. A discussion on this topic can be found in [1].

As any other model, conceptual models possess the three properties described
above. In particular:

• A conceptual model represents something by using concepts.
• It does so in a simplified manner, so that only the relevant details are captured in

the model, and the others discarded.
• By doing so, we or others can reason on the representation and then apply the

conclusions back to the modelled subject.

There are a few things that need further exploration. First, when we say “by
using concepts” this includes various possible situations. Sometimes, conceptual
models represent the ideas held by a particular individual; some other times, they
represent the ideas shared and agreed upon by a group. In this sense, “concepts”
may refer to the concepts of a particular individual or to concepts shared by a
group. As we will see throughout this book, both scenarios are common and
extremely useful.

Second, and since a model is necessarily simpler than the modelled subject, a
conceptual model keeps only the relevant details and discards the rest. But, relevant
for what? You may remember that we defined “model” above as something that
purposefully represents something else that is of interest to us. The words “pur-
posefully” and “interest” point to the fact that a model always has a purpose. When
we create a model, conceptual or otherwise, we need to have a clear goal in mind.
This goal will guide us in the decision process of what to keep and what to discard.
For example, an architect creating a model of a small village in order to study its

4 1 What Is Conceptual Modelling?

urban configuration will probably record the distances between buildings and the
materials they are made of, but will probably discard details such as the names of
the house owners or the folk tales associated to particular buildings. However, an
anthropologist trying to learn about the social practices of the villagers is likely to
include the folk tales but perhaps discard the distances and materials. Having a clear
purpose is crucial when constructing models, and we will come back to this idea
regularly. Similarly, knowing the purpose that the model creator had in mind when
they built it is important when using a model. The statistician George Box is usually
credited as having said “all models are wrong; some models are useful”. This means
that all models are significantly different to the reality they aim to represent (and,
hence, “wrong”); still, many may still be useful since we can reason on them and
apply the results back to the represented subject.

Third, conceptual models are about knowledge. By using concepts in our minds,
we can represent what we know in quite sophisticated ways. A conceptual model
can represent statements about the world at various abstraction levels, notably
describing what entities we believe to exist in the world, what properties they have
and how they are organized. Being made of concepts, conceptual models are
abstract things in our heads. We can draw them on a piece of paper or describe them
in words, but the lines on the paper or the words that we speak are simply repre-
sentations of the conceptual model in our head, and not the model itself. In other
words, conceptual models are purely mental constructs and, as such, not commu-
nicable but through other models which are physical and thus perceivable, such as
drawings or textual descriptions.

Fourth, the fact that conceptual models are about knowledge places them quite
high up in the Ackoff hierarchy [2]. This hierarchy proposes a conceptualization
where data lies at the bottom, as the simplest and most primary form of contents
that we can find; information exists on top of data; knowledge is based on infor-
mation; and wisdom is at the top, based on knowledge. Although this hierarchy
involves a substantial simplification of the relationships between these notions, it is
still useful to delineate significant differences between them. By using the Ackoff
hierarchy, we would say that conceptual models consist of knowledge rather than
information or data. This contrasts with other forms of representation oriented
towards data or information, such as linked data or other approaches related to the
semantic web. These approaches work at a lower level of abstraction than con-
ceptual modelling and, in fact, are better considered mechanisms for data encoding
rather than information modelling. Consequently, they do not describe the world in
terms of knowledge, but organize and record data with a given structure.

Technical
According to most sources, data consists of simple, isolated and uninterpreted
quantities or qualities such as numbers, texts or images. In other words, data
is about naked symbols that have the potentiality to be interpreted.
Information, in turn, is composed of data but also involves a sender and a
meaning to be conveyed; in other words, information is about telling others

1 What Is Conceptual Modelling? 5

about things by using data, and for this reason it entails a particular inter-
pretation of the underlying raw quantities or qualities.

In turn, knowledge is usually defined as justified true belief [3, “The
Analysis of Knowledge”]. This is a classical definition dating back to
Socrates and Plato, which requires that something is believed by someone is
true and is justified by the holder in order to constitute knowledge. On the
first requirement, someone must believe something before we can call it
knowledge; that is, knowledge cannot exist outside a mind. Secondly,
knowledge must be true; a false statement cannot constitute knowledge even
if we believe it. For example, we should not say that “I know it’s raining” if it
is not raining. This classical definition of knowledge, though, is disputed by
some philosophers, although there is no consensus on a better definition. In
particular, some works in cultural heritage, such as [4], have challenged the
idea that knowledge must be true. Finally, knowledge must be justified; that
is, the holder must be able to explain why or how they believe it, in order to
rule out lucky coincidences and other uncommon situations.

It is also worth noting that knowledge can be encoded as information in order to
be communicated. Since knowledge is a mental process, it cannot be perceived by
anyone but its owner; the only way we have to communicate knowledge to others
is, precisely, to encode it as information and let others interpret this information to
construct knowledge in their own heads that, hopefully, will resemble our own. We
do this when we speak, write or draw diagrams on a whiteboard.

Fifth, not every collection of concepts in our mind constitutes a conceptual
model. A conceptual model needs to be simple, created with a clear purpose, and be
expressed in such a way that is easy to convey to others. This means that concepts
in conceptual models must be simple, crisp and neatly organized, showing some-
thing that we will call formality in Chap. 2.

Finally, conceptual models allow us or others to reason on the model and then
apply the conclusions back to the modelled ideas. This means that we can use a
conceptual model as a surrogate of whatever is being represented, and then apply
the consequences of our reasoning back to the modelled subject. We do this, for
example, when we construct a spatial model in a geographical information system,
carry out some analysis on it and then apply our findings to the real landscape.

Technical
Modelling, as such, is an old concept. For a brief introduction to modelling
and model theory, see [3, “Model Theory”].

Conceptual modelling, as a discipline, originated around the 1980s within
the field of software engineering. However, its connection to software is only
historical, and conceptual modelling has since been applied to various areas

6 1 What Is Conceptual Modelling?

such as business organization or genomics. A good introduction to conceptual
modelling in software engineering is [5].

We must also realize that not all ideas are of the same kind. A very basic
distinction can be made between ideas about particulars and those about universals.
This is an old and usually accepted way to describe the ontology of the world,
dating back to ancient Greece. According to this distinction, particulars are concrete
things, usually situated in space and time. The chair I am sitting on as I type this,
the computer I am using, the word processor software that it is running, and the
company who developed this software are all particulars. Universals, on the other
hand, are abstract concepts that describe the common properties shared by a set of
particulars. For example, the concept of ‘chair’ in my mind is a universal, as it
captures the properties that something must have for us to call it a chair. In other
words, the chair I am sitting on, plus the identical chair next to me, plus any other
chairs I remember having seen or can imagine are all particulars of the ‘chair’
universal.

Usually, we say that particulars refer to things, whereas universals refer to
categories. This is easily seen through language use. When we point, physically or
mentally, to a chair and say “that chair” or “the chair that was in your room last
Sunday”, we are referring to particulars. However, when we speak about chairs in
general, saying for example “chairs give me back ache” or “some chairs have
armrests”, we are referring to a universal.

Technical
The difference between particulars and universals dates back to Plato and
Aristotle. A more recent treatment is that of the type versus token distinction
originally made by Peirce in the late nineteenth century, under which a token
model is one representing particulars, and a type model is one representing
universals. See [3, “Types and Tokens”] for a detailed account.

Even more recently, the issue has received attention in the conceptual
modelling community, and three (rather than two) ways of representing have
been defined: isotypical (corresponding to tokens), prototypical and
metatypical (corresponding to types). See [6] for more details.

The words “particular” and “universal” are common in philosophy, but in
conceptual modelling in general, and in this book in particular, we prefer to use
“entity” and “category”. Both pairs of words mean the same thing: a particular is an
entity, and a universal is a category. The distinction between entities and categories
is relevant to conceptual modelling because, as we will see in detail, some con-
ceptual models represent entities while others represent categories. In other words,
some models focus on the specific things that exist in the world, while others

1 What Is Conceptual Modelling? 7

describe the world in terms of what kinds of things there are. Although entities and
categories can be mixed together in the same model, this is not very usual.

Conceptual modelling has been linked to philosophy, and to ontology in par-
ticular, in many ways. In fact, the word “ontology” is often seen in the software
engineering and computing literature as a close synonym for “conceptual model”.
This usage is quite different to the typical usage of “ontology” in philosophy, where
it is almost always used in singular and refers to the branch of philosophy con-
cerned with being. In computing, however, “ontology” is often used in plural and
refers to a shared conceptualization of the world. If you have heard of ontologies in
the sense of computer representations of a portion of reality, then you have prob-
ably heard about conceptual models. Works like those of Partridge [7] provide an
excellent take on how conceptual models work as ontological stances on the world.

Technical
In the computing literature, an ontology is usually defined as “a formal
specification of a conceptualization”, following Gruber’s seminal work [8].

The similarities and differences between ontologies and conceptual models
are a subject of debate. They are probably very similar things, but conceptual
models originated within the software engineering discipline whereas
ontologies started in the artificial intelligence field. A good summary of
commonalities and differences can be found in [9].

Summary

Conceptual models represent something by using concepts in our minds.
They do it in a simplified manner, so that only the relevant details are captured.
Conceptual models are determined by their scope (the portion of the world being

modelled) as well as the purpose for which they are constructed.
We can reason on a model and then apply the conclusions back to the modelled

subject.
Conceptual models can represent the entities in the world as well as the cate-

gories that we use to organize them.
In this manner, conceptual models work as ontologies of the world.

8 1 What Is Conceptual Modelling?

Chapter 2
Premises and Foundations of Conceptual
Modelling

Abstract This chapter starts by presenting the ontological (in the philosophical
sense) premises for conceptual modelling. These involve agreeing that reality can
be discretized into separate entities, and that these entities can be organized into
categories. Then we move on to describe the connections between conceptual
modelling and natural language, and how by using conceptual models we can
express different linguistic constructs, including existence (“there is a person”),
identity (“Isabel is my wife”), predication (“Isabel is tall”), classification (“Isabel is
a person”) and subsumption (“A dog is an animal”). Finally, we explain that models
are usually expressed by using modelling languages, such as ConML (www.conml.
org), which are quite formal, comprising very strict lexical, syntactical and semantic
rules, and even affecting the way in which we conceptualize the world.

This chapter presents the ontological (in the philosophical sense) premises for
conceptual modelling, the connections between conceptual modelling and natural
language and the need for formality.

Premises

In order for conceptual modelling to work, we need to commit to two basic
ontological premises. Without this commitment, we would not be able to create or
use conceptual models.

Premise 1
Reality can be discretized into separate things.

This premise means that reality, in whatever way we understand it, can be “cut
up” into separate things. In other words, we don’t conceive reality as a continuous,
uninterrupted phenomenon, but as something made of distinct things.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_2

9

This premise does not mean that everyone cuts reality along the same seams, or
that we must always cut it up in the same manner; in fact, different people, espe-
cially when they come from different cultures, usually organize reality into things
by cutting it along different seams, and even the same individual may want to
consider different “cutting” approaches at different moments and for different
purposes. This premise only means that reality can be cut up, in whichever ways, as
opposed to being a single monolithic and continuous thing.

Also, the fact that we perceive reality in the form of separate things does not
mean that these things cannot be interconnected. As we will see, they often are.

The things that we perceive as distinct, arising from this cutting up of reality, are
called entities in Chap. 1, and roughly correspond to the particulars of classical
philosophy.

Premise 2
Things can be categorized in a meaningful way.

This premise means that the things that we perceive as making up reality can be
assigned to categories according to some reason. In other words, things can be
classified into kinds, types or whatever other groupings, so that we can describe the
world in terms of categories instead of the specific things that make it up.

A direct consequence of this is that things must have properties that allow us to
decide what category to assign each to at any given moment. That is, our under-
standing of the things that we perceive as making up the world must be such that
meaningful categories can be used to organize things.

Like in the previous case, this premise does not mean that everyone assigns the
same things to the same categories, or that everyone assigns one thing to the same
category all the time. In fact, different people categorize things differently, and even
the same person may categorize something in different manners depending on
purpose or other factors. This premise only means that things can be categorized, in
whichever way.

The groupings that we use to arrange entities are called categories in Chap. 1,
and roughly correspond to the universals of classical philosophy.

Technical
The emphasis on categories comes from the fact that categorization is often
agreed to be a natural and unavoidable phenomenon in the human mind. The
linguist George Lakoff pointed out that “There is nothing more basic than
categorization to our thought, perception, action, and speech” [10].

10 2 Premises and Foundations of Conceptual Modelling

Linguistic Connections

We mentioned the connection between language and conceptual modelling in
Chap. 1, in relation to the distinction between particulars and universals. This
connection is also strong with regard to the basic kinds of facts about entities and
categories that we can express when we speak. There are five of them:

• Existence. We can state that something exists. For example, “There is a person”.
This allows us to state what entities exist and are relevant to us.

• Identity. We can state that two things are the same one. For example, “Isabel is
my wife”. In this example, “Isabel” and “my wife” refer to the same entity. This
allows us to express what constitutes a distinct entity that is different to any
other, and detect those cases where multiple words or descriptions refer to the
same entity.

• Predication. We can assign a property to an entity. For example, “Isabel is tall”.
In this example, we are assigning the property ‘tall’ to the entity referred to by
“Isabel”. This allows us to characterize entities by describing their features.

• Classification. We can assign a category to an entity. For example, “Isabel is a
person”. In this example, the ‘Isabel’ entity is said to belong to the ‘person’
category. This allows us to classify entities according to whatever scheme we
may find useful.

• Subsumption. We can state that a category subsumes another category. For
example, “A dog is an animal”. In this example, the ‘dog’ category is said to be
subsumed by the wider encompassing ‘animal’ category. This allows us to
organize categories into meaningful structures.

Interestingly, these five kinds of statements are expressed by using the verb “to
be” in English, and the equivalent verbs in many other languages. Conceptual
models, however, allow us to represent these kinds of statements by using very
different mechanisms, as we will see in Part II.

Conceptual Modelling Languages

Natural language is powerful and intuitive. We can express all sorts of things in
English, French or any other language, with little effort and great flexibility.
However, natural language is also highly ambiguous. Or, rather, we should say that
meaning is highly underspecified in natural language. This means that the meaning
of a sentence like “I don’t think her parents should come over for dinner” resides
not only in the words that we use (lexicon), and the ways in which we inflect and
combine them (grammar), but also in other contextual elements, such as the

Linguistic Connections 11

particular situation where the sentence is uttered, the tone employed or the back-
grounds and expectations of the speaker and listeners. The fact that meaning in
natural language is highly underspecified is a valuable resource; thanks to it, we can
make shortcuts and speak very economically, and we can write literature that
suggests and evokes. However, it also means that understanding this kind of lan-
guage entails great complexity. Our minds can cope most of the time, and since
most spoken language is used in interactive settings, we can always ask for clari-
fications when something is ambiguous. However, written sources are more difficult
to interpret, since usually we cannot ask the author if something is unclear.

As we mentioned in Chap. 1, models must be simpler than the reality that they
represent. Also, models are usually expressed in some form of writing rather than
orally, so meaning must be clear from the start in order to minimize ambiguity. For
these reasons, expressing a model in natural language is rarely a good idea. If we
expressed a conceptual model in natural language, the inherent ambiguity would
add complexity to the model, which would be a contradiction. For this reason,
conceptual models (and most models in general) are usually expressed in special
languages called, precisely, modelling languages.

A modelling language is an artificially constructed language that is much simpler
than a natural language. But, like a natural language, a modelling language has a
lexicon, a syntax and some semantics. The lexicon is the set of “words” or basic
language units that we can use. The syntax is the set of rules that we must obey
when putting lexicon elements together in order to compose meaningful “sen-
tences”. And the semantics is the collection of relationships between these “words”
and the things in the world they refer to. Most modelling languages are extremely
simple as compared to natural languages, having at most a few dozen “words” and
very straightforward syntactic rules. Also, modelling languages are usually, but not
always, depicted in graphical form, through diagrams or icons, instead of sequences
of characters like we do for natural languages.

Also as a consequence of greater simplicity and the need of as little ambiguity as
possible, modelling languages are highly formal. This means that their lexicon,
syntactic rules and semantics are usually specified with great detail and must be
mandatorily followed. With a natural language, we can get poetic and create new
words, use awkward constructions or, in general, play with the language to express
irony or provoke others. With a formal language, however, what elements exist is
absolutely fixed, the meaning of each element is very clear and must be respected,
and the manners in which they can be combined are strictly established. There is no
room for wordplay. This is the price we pay to remove complexity.

Technical
You may have heard of the Unified Modeling Language (UML). This is a
well-known modelling language in the software engineering community,
which has been standardized by the Object Management Group (OMG) and

12 2 Premises and Foundations of Conceptual Modelling

by ISO as ISO/IEC 19505. Although some people use UML for conceptual
modelling, it is heavily oriented towards the specification of computing
systems rather than conceptual modelling, so we won’t be discussing it much
in this book. If you are interested in UML, you can start by looking at [11].
The technical specification can be found in [12].

Finally, we must bear in mind that a modelling language, very much like a
natural language, allows us to express knowledge encoded as information. In other
words, by using a modelling (or natural) language we can represent the concepts in
our mind and put them to paper or screen so that others can read and understand.
Like the sentences we utter, the diagrams that we draw constitute information.
When we write a sentence or draw a diagram on a piece of paper, we are encoding
the concepts in our head as information, and conveying this information with the
hope that someone else (or even ourselves), by reading and interiorizing what
we’ve written or drawn, can reconstruct in their mind some concepts that are as
similar to the ones in ours as possible. If we attain this, we have communicated
successfully. Also like natural languages, modelling languages influence the way in
which we can conceptualize things; in other words, whatever modelling language
we “speak”, it will certainly introduce a bias in the way in which we discretize and
categorize the things in the world.

Technical
The fact that the language that one speaks affects the manner in which they
conceptualize the world has been called linguistic relativity and is often
linked to the work by linguistic anthropologists Sapir and Whorf in the early
and mid-twentieth century. See [3, “Culture and Cognitive Science”] for a
brief introduction to linguistic relativity.

Figure 2.1 shows the major elements and relationships that are involved in
conceptual modelling. According to the figure, we first perceive the entities in the
world that fall within a given scope, and then we conceptualize them informally,
perhaps for a particular purpose. A conceptual model is then created in our mind by
formalising our conceptualizations, this time with a clear purpose in mind. Then,
models can be depicted as diagrams or other information forms for communication
or visualization purposes.

Conceptual Modelling Languages 13

What Are Conceptual Models Made Of?

Conceptual models are made of discrete but interconnected model elements.
A model element is a formal construct that corresponds to a particular part of the
modelling language being used, very much like a word in English (such as “book”
or “run”) is a lexical unit that corresponds to a particular part of speech (such as
nouns or verbs). Like the English language, through its syntax, establishes how
words may be combined to compose meaningful sentences, a conceptual modelling
language establishes how model elements of different kinds may be combined to
produce meaningful models. Part II describes the major types of model elements
that we will use throughout this book.

Summary

In order to do conceptual modelling, we need to accept that reality can be dis-
cretized into separate entities.

We also need to accept that the resulting entities can be organized into
categories.

Through conceptual modelling, we can express existence, identity, predication,
classification and subsumption.

We can communicate conceptual models by “writing them down” using a par-
ticular modelling language.

Modelling languages are quite formal, since they comprise very strict lexical,
syntactical and semantic rules.

A

B

En ty A

En ty B

perceive

depict
conceptualize

Formal
concept A

Formal
concept B

Informal
concept A

Informal
concept B

formalize

Fig. 2.1 The process of conceptual modelling. The large grey arrows indicate representation
processes

14 2 Premises and Foundations of Conceptual Modelling

Modelling languages, in addition to dictating how we may depict things in
diagrams, also influence how we may conceptualize reality.

Conceptual models are composed of model elements, each of them corre-
sponding to a given construct in the associated modelling language.

Summary 15

Chapter 3
Benefits and Applications of Conceptual
Modelling

Abstract In this chapter, we explain why conceptual modelling should be used,
what interest it has for archaeology and anthropology, and benefits can be derived
from using it. First, we explain how conceptual modelling can help us to explore
areas of the world that we do not understand very well, that is, we can try to model a
small part of the world in various manners and explore which one makes more
sense. In this regards, conceptual models can help us to “organize our minds”. Then
we explain that conceptual modelling can also help us to document the world for
later reference. Instead of taking notes in English or other natural language, or
carrying out any other form of informal recording, we can create a conceptual
model as a way to document a part of the world, with the aim that others, or even
ourselves, will use this information in the future to learn about what was described.
This is particularly relevant, for example, when the documented entities are to be
destroyed, like with many archaeological interventions. After that, we explain that
conceptual modelling is useful to communicate our ideas to others. We can sketch
formal diagrams on paper or a whiteboard, or we can use a computer-stored con-
ceptual model, as a way to disseminate information or share our ideas. Given the
formal nature of conceptual modelling, this is especially useful when trying to
communicate with specialists from very different backgrounds. Then we explain
that conceptual models can work as guidelines to design tools or methodologies.
For example, a conceptual modelling that is shared within an organization can be
easily employed as the basis to develop a company-wide database system or a
common fieldwork methodology. Finally, we conclude the chapter by explaining
that conceptual modelling can help us to make our information interoperate with
other sources. By establishing shared conceptual frameworks of reference, data-
bases and data sets can be interpreted by external agents with less effort.

You may be wondering why you should use conceptual modelling after all. Is it
useful for cultural heritage? What benefits can you obtain by using it? In this
chapter, we describe the major advantages of conceptual modelling in five areas:

• Exploring areas of the world that are not well understood.
• Documenting things or phenomena for later reference.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_3

17

• Communicating information to others.
• Designing tools and techniques for your work.
• Interoperating between data sets or information sources.

The following sections describe each of these in detail.

Exploration

Cultural heritage is a complex phenomenon, and we often struggle to understand it
to its full extent. Whether you are an archaeologist digging up a site, a historian
trying to explain some events, or an anthropologist putting together an interpreta-
tion, you are likely to be faced with vague ideas that resist pinning down and
connections between things that are too complex to handle.

Conceptual modelling can help you explore a relevant fragment of the world by
letting you state the ideas that are clearest in your mind with the most precision,
while staying uncertain about others. You can even try various approaches to
express the same ideas and see how well each one works, for example, by selecting
different details to capture in the model. Very often, when you start modelling a
tricky situation, you will notice that the modelling process helps you “organize your
mind” and adds a lot of clarity to your thoughts. This is a consequence of using a
modelling language, which, as we discussed in Chap. 2, is necessarily simple; it
removes complexity from the subject of your cognition and makes reasoning about
things much easier and more efficient.

Some examples of conceptual modelling being used to explore a research field
can be found in [13–16].

Documentation

We often want to document things or phenomena because we need to come back to
them later. Sometimes, it is because policies or standards at work expect us to do it.
Sometimes, as usual in anthropology, it is because what we are documenting
constitute ephemeral processes that will not leave much tangible trace by them-
selves if not properly described. And even sometimes, like very often in archae-
ology, you need to document something because you are destroying it by the very
process of studying it, so the information that you record is the only thing that will
survive.

Conceptual modelling helps you document anything in a precise, accurate and
efficient way. Since any model needs a scope and a purpose (see Chap. 1), you will
need to decide (and often write down clearly) what the purpose of your work is, and
this will guide you to select which details of the modelled subject are going to be
included in the model and which ones are going to be discarded. Since you will be a

18 3 Benefits and Applications of Conceptual Modelling

using a modelling language, its low ambiguity and high simplicity will help you
state what you want to state in an extremely clear fashion, so that you will easily
understand what you meant when you come back to your model months or years
later, and others will understand what you mean when you are not there to explain.
Also, the model will serve as a perfect source of information for further reasoning,
computer processing or any other kind of elaboration.

Communication

We rarely work alone. More and more, we tend to work in teams, often composed
of people from different disciplines and backgrounds, and collaborate with other
teams in even more distant fields. We need to be able to discuss complex ideas not
only with our colleagues but also with specialists in chemistry, mathematics,
sociology, soil science or astronomy. In addition, some of us need to teach students
at various levels about cultural heritage, providing a clear and affordable view of the
key concepts and phenomena.

Conceptual modelling can help you bridge the gap between the different
mindsets and working styles of the different disciplines, by establishing a lingua
franca that everyone can understand. This does not mean that everyone must agree
on the same ideas; it means that everyone will be able to speak the same language
when discussing ideas, even if it is to defend different points of view. Using
conceptual modelling to interact in a heterogeneous group is like using English to
interact at an international gathering; you may or may not agree with other people’s
ideas, but you can understand them and make yourself understood, regardless of
everyone’s native tongue. This is especially valuable in multidisciplinary settings
where you must understand and be understood by specialists in other areas, and also
in educational settings, where conceptual models of cultural heritage (or a subset of
it) can work as crucial resources when designing lesson plans.

Some examples of conceptual models being used for communication between
professionals of different backgrounds can be found in [17, 18]. A good example of
conceptual modelling being used in an educational setting can be found in [19].

Design

No matter how good our conceptualizations of cultural heritage are if the tools that
we use to record and manage information are misaligned with them. For example,
we often use forms that we fill up in the field to document things, and reports that
we generate, manually or through a computer, to summarize relevant data.
Methodological tools like these need to be in sync with our conceptualizations; by
being in sync, we mean that the tools we use must be designed to record and report
the details that we are interested in, avoid other details that we do not consider

Documentation 19

relevant, and express information at the appropriate level of abstraction. If our tools
do not work well, the recorded or reported information will not be properly
understood and will probably be incomplete or even contain errors.

Conceptual modelling can help you design tools that are optimally adapted to the
way you work. For example, a conceptual model can work as a guide to develop a
survey form, helping you decide which fields need to be included, what kinds of
answers are possible for each one, and how they relate to each other. Similarly, a
conceptual model would make a perfect foundation for the construction of a
database, no matter how simple or how complex. Having a good model in place will
help you determine what tables and columns you need, and how they must be
interconnected.

An example of a cultural heritage conceptual model being used to guide the
design of a software system can be found in [15].

Interoperability

We may be able to explore, document, communicate and design successfully but, at
some point, unexpected needs will come up for the information that we have been
gathering. It is impossible to think in advance of every possible situation that
involves sharing our information, comparing it to the information from other
sources, or integrating our information with that of others. Also, we tend to express
ourselves in the manner that is best adapted to the task at hand when we work; for
example, when we design a database to store and manage information, we usually
design it so that it is specifically fit for the task at hand. This makes a lot of sense,
but also makes it very unlikely that other teams, working elsewhere and unknown to
us, express their information in a similar fashion and following similar information
structures; in turn, this means that your data and theirs will most certainly be of a
different shape and incompatible. And, still, it is possible that we will need to
collaborate with them.

Conceptual modelling helps you by making sure that everyone can discuss your
information in a meaningful way. Similarly, you will be able to understand and
reason about information expressed by others, following conceptualizations that are
unfamiliar to you. In this manner, you will be able to compare and relate your
information to other sources much more easily. You will also be able to reconcile
the conceptual discrepancies between different databases or other sources in a
simpler way, and with a greater degree of certainty that what you are understanding
from the data is what the authors actually intended to state.

A good example of a conceptual model that is often used for interoperability in
cultural heritage is that of the CIDOC Conceptual Reference Model (CRM) [20],
also known as ISO 21127 [21]. Some application examples of CIDOC CRM can be
found in [22, 23]. Also in this regard, see [24] and Part IV.

20 3 Benefits and Applications of Conceptual Modelling

Summary

Conceptual modelling can help us to explore areas that we do not understand well.
It can also help us document reality for later reference.
Conceptual modelling is also useful to communicate our ideas to others.
Also, conceptual models can work as guides to design tools or methodologies.
Finally, conceptual modelling can help us make our information interoperate

with other sources.

Summary 21

Part II
The Basics of Conceptual Modelling

In this part, we introduce the basic concepts and language elements for conceptual
modelling, using ConML (www.conml.org) as an infrastructure. Examples from
everyday life and cultural heritage are used throughout. Objects, classes, attributes,
enumerated types, associations and generalizations are described and explained.

Once you finish this part, you will be able to create and understand simple
conceptual models of cultural heritage.

Chapter 4
Objects

Abstract In this chapter, we introduce the notion of objects, which are elements in
a conceptual model which represent relevant entities in the world. We describe the
key ideas of object identifier, which works as an arbitrary proper name, and object
category, which classifies the object. Then, we move on to describe how the
characteristics of an entity can be expressed in a model by using values within an
object. Each value is expressed as a name plus contents, such as in Age = 37. If no
contents exist for a particular value, the special word null must be used, such as in
Description = null. After that, we explain how objects can be connected in a model
by using links, in order to describe how entities are interrelated in the world. Each
link is labelled with a name, such as BelongsTo or IsLocatedIn. We close the
chapter by explaining that a collection of interrelated objects with their values and
links constitute an instance model. Instance models can be used to represent sets of
relevant entities, their characteristics and the connections between them.

In previous chapters, we said that conceptual models can represent both entities and
categories. We start in this chapter by looking at how entities are represented, and
Chap. 5 and the following will look at the representation of categories.

In Chap. 1, we said that entities, or particulars, as they are known in philosophy,
are concrete things, usually situated in space and time. Also, we said in Chap. 2 that
entities correspond to the chunks that we make out of reality. Since we have
accepted that our perceived reality is not continuous but discrete and that portions
of it can be delimited, each of these portions is an entity. Note that the concept of
entity is extremely abstract; it encompasses anything that we can point to, literally
or metaphorically; it also includes both real and imaginary things. The most evident
kinds of entities are physical things such as books, buildings, hammers or trees. But
immaterial things are entities too, including songs, laws or beliefs. People are
entities too, and processes and events, such as wars, rituals or earthquakes, are also
entities. Fictional things such as Excalibur or Atlantis are also entities. Actually,
anything that we can think of is an entity.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_4

25

Technical
Since everything is an entity, you may argue that categories are entities too.
And, according to many authors, you would be right. Although in previous
chapters we have defined entities and categories as two separate kinds of
things, categories can in fact be considered to be a specific type of entity,
albeit immaterial and abstract. This may make them abstract objects in the
philosophical sense, which would mean that they cannot cause effects in the
world.

Still, and for practical purposes, we will keep discussing entities and
categories as separate and somehow opposed kinds of things.

Objects

In order to represent an entity in a conceptual model, we use an object. An object is
a formal construct that stands for an entity. The word “object” is very common in its
dictionary sense, and different fields of knowledge assign different nuances to its
meaning. For example, an archaeological object is something very specific in the
mind of most archaeologists. But the objects we are talking about here are different.
In conceptual modelling, an object is a special kind of concept having two prop-
erties: first, it is formal; that is, it is defined according to the strict rules of con-
ceptual modelling; second, it represents an entity in a non-ambiguous way.

Technical
Objects are what give name to the object-oriented paradigm, a popular
approach to conceptual modelling and computer programming. Object-
orientation is a particular way to conceive information systems in terms of
objects and their features. A classic text on object-oriented modelling is [25].
Other approaches are possible for conceptual modelling, although not as
common.

We define an object as follows:

Definition
An object is the formalization of an entity that is relevant to the model.

26 4 Objects

Let us imagine that we want to represent this book as an object in a model. We
can draw the object like in Fig. 4.1. Here, the rectangle (or “box”, as we usually call
it) stands for an object. The upper section of the rectangle contains a line of text of
the following form:

identifier: Category

As a convention, identifiers are written in lower case and categories with an
initial capital. To separate both, we use a colon. In our example in Fig. 4.1, the
object depicted has b as identifier, and Book as category. The identifier of an object
works as a proper name, or unique label, that we give an object in order to dis-
tinguish it from any other in the model. In our example, we have chosen to label our
object b, but we could have called it xyz, ab123, or anything else that works for us,
as long as it is different from any other object identifier in the model.

You may recall from Chap. 2 that conceptual models allow us to express, among
other things, existence, identity and classification. Existence is expressed by the
mere fact of having included an object in our model. In the context of conceptual
modelling, existence must be understood in a very ample sense; for example,
imaginary entities such as Atlantis or the sword Excalibur do exist, and we can
definitely represent them in a model.

Technical
Contemporary philosophers disagree on whether existence is a property of
things like their colour or weight. Some like Russell believe it is not, whereas
others like Meinong claim it is, and there are existing as well as non-existing
entities. A summary of current positions on existence can be found in [3
“Existence”].

In any case, existence in conceptual modelling is rather informal. We say
that something exists if we can discuss it and we find it relevant to our
models.

Identity, in turn, is expressed, precisely, by the object’s identifier; we could add a
second object to the model, like in Fig. 4.2, giving it a different identifier to signal
that it represents a different entity in the world. In Fig. 4.2, each object depicted has
a different identifier. This means that each object represents a different entity in the
world. If two boxes were labelled with the same identifier, we should assume that

b: Book
Fig. 4.1 Diagrammatic
representation of an object
named b of category Book

Objects 27

both of them refer to the same entity in the world. In the example, our model
represents three entities named b, c and p.

Also, bear in mind that object identifiers are arbitrary; that is, they do not
convey any meaning about the underlying entity. In terms of philosophy of lan-
guage, they designate without describing. We are not supposed to infer any
information from an object’s identifier, no matter how informative it may look to
us. If we want to convey an actual description of the entity, we must use values, as
explained in the next section.

Technical
Object identifiers are what philosophers of language would call rigid desig-
nators; they are able to “pick out” one object without providing any
descriptive information about it. A comprehensive view on rigid designators
can be found in [3 “Rigid Designators”].

The category of an object, finally, is what we use to express classification. When
we say in Fig. 4.2 that object b has Book as category, we are saying that b is a book.
Similarly, c is a book too, and p is a person. We can name categories as we please,
using a conceptualization that makes sense to us and helps with the purpose of the
model.

Both identifier and category are crucial pieces of data about an object; they
declare how we refer to it, and how we have classified it. However, both are
properties that we assign to the object as a concept in our mind, rather than being
properties of the represented entity. In other words, entities in the world do not have
identifiers or categories; it is us, during the conceptualization and formalization
processes, who assign these to the entities.

We must make a very important note here. Note that the boxes shown in
Figs. 4.1 and 4.2 are not objects, but graphical representations of objects. As we
said in previous chapters, conceptual models reside in our minds, since they are
made of concepts. Objects are a particular kind of concepts, and therefore, they are
intangible and not perceivable outside our own mind. In order to remember or
communicate objects, we can draw diagrams like those in the figures. We can
informally talk about “the object b in the figure” as a short cut for “the object in my
mind represented by the box labelled b in the figure” as long as we remember that
the diagrams are not conceptual models, but just a visual representation of them.

b: Book c: Book p: Person

Fig. 4.2 Diagrammatic representation of three objects. Each object has a different identifier

28 4 Objects

Values

Objects like those in Fig. 4.2 say very little about the entities that they represent. In
fact, they say nothing, since the only information that they carry is the identifier and
the category, both of which pertain to the objects themselves rather than the rep-
resented entities. In order to actually capture properties of the represented entity, we
need to use values. We define a value as follows.

Definition
A value is the formalization of an atomic characteristic of an entity that is
relevant to the model.

By “atomic characteristic” we mean a simple property of the entity, such as its
name, colour or weight. How simple something must be in order to be modelled as
a value is a matter of judgment. As a rule of thumb, a property that can be given as a
single number or piece of data should be approachable as a value. However, there is
no hard rule on this. For example, we can express the colour of something as a
simple piece of data, such as in “sky blue” or #3399FF in RGB notation. But we
could also express the same colour as separate pieces of data for the red, green and
blue channels; if we wished to do so, each of the colour channels would be
modelled as a separate value. Similarly, a long description of something may
constitute a value too, despite the fact that it may contain multiple sentences.

We can use values to represent the properties of an entity. Figure 4.3 shows our
example from Fig. 4.2 with some values added. In Fig. 4.3, each value is depicted
as a line of text inside the lower section of the object boxes. For example, object
b (a book) has values Title = “Cathedral” and Year = 1983. Values take the fol-
lowing form:

Name ¼ Contents

The value name is a word or phrase that tells us what the value is about. By
convention, it is written with an initial capital and, if composed of multiple words,
no spaces are left between them and initial capitals are used for all, like GivenName.

b: Book

Title = “Cathedral”
Year = 1983

c: Book

Title = “Furious Seasons”
Year = 1977

p: Person

GivenName = “Raymond”
FamilyName = “Carver”
Nationality = “American”

Fig. 4.3 Values have been added to the objects from Fig. 4.2. Each value is displayed as a line of
text inside the corresponding object box

Values 29

In the example, we have captured the title and year of each of the books, and the
family name, given name and nationality of the person. After the value name, and
separated by an equal sign, we write the value contents. The contents express the
data corresponding to the value. For example, the book b in our example has the
text “Cathedral” as title, and 1983 as year. As a convention, texts are written in
double quotes, but numbers are not.

In Chap. 2, we said that conceptual models allow us to express predication
among other things. Precisely, values constitute the mechanism by which we can
predicate properties on entities. In our example, we are stating that book b has
“Cathedral” as title and 1983 as year, by placing these values inside its box. In this
manner, we can describe the entities represented by the objects in as much detail as
we want, depending on the purpose of the model.

Sometimes, the entities that we are modelling are such that multiple values exist
with the same name. For example, we can have a house made of multiple materials,
or a person with multiple phone numbers. Also, sometimes entities lack a value
altogether. Figure 4.4 shows examples of both situations. In Fig. 4.4, person
q shows two quoted texts as contents for Job, separated by a semicolon: “Writer”
and “Teacher” . This means that person q is both a writer and a teacher. Each of the
two quoted texts actually constitutes a separate value, but we do not write them in
two lines repeating the value name; rather, we string them together as shown in
Fig. 4.4 for greater simplicity.

Object r in Fig. 4.4 shows a different situation; here, the word null appears in
place of the value contents for Job. The word null is a special word, and it means
that no contents exist for a value. That is to say, person r in our example has no job.
You can use null anytime that you wish to express the fact that an entity lacks a
property where one would be expected. You may argue that a simple way to capture
this fact would be to omit the Job line altogether from the diagram. However, we
did include it for person q, so we should also include it for other person objects for
the sake of consistency.

Technical
The consistency rule that makes us include a Job line even if there is no job
for some person objects is given by the fact that we must describe every
object of the same category through the same list of values. That is, it is
impossible to represent a person having values for GivenName and Job, and
another person having values for GivenName and Age, for example.

q: Person

GivenName = “John”
Job = “Writer”; “Teacher”

r: Person

GivenName = “Liz”
Job = null

Fig. 4.4 Two person objects
showing different options for
the Job value. Person q has
two jobs, whereas person
r has none

30 4 Objects

Whatever values we decide to express, we must stick to them for all objects of
the same category. We explain why at the end of Chap. 6.

Note that null indicates that no fact exists about the corresponding value. For
example, Job = null means that there is no job for this person. It does not mean that
we do not know what the job is but that there is no job at all. If we knew that the
person has a job but and we did not know about it, then there would be a fact, and
we would ignore it. These are very different situations; we describe how to deal
with unknowns in Chap. 14.

Finally, remember that we said in Chap. 1 that a model always has a purpose and
that this purpose works as a guide to decide what details we should keep in the
model, and which we should discard. The details to which we refer in saying so are,
among other things, the values that we include in our objects. Depending on our
purpose, we may decide to capture the given name, family name and job of persons
if we were constructing a model to assist us with project-management, for example.
But if we were designing a model for the management of a library, we would
probably discard the job value and keep instead the nationality or birth date.
Ultimately, you document what you want; a clear purpose will guide you to con-
sistent and useful models.

Links

So far, we have learnt how to represent entities in a model by using objects, and
how to describe their characteristics by using values. But this is not enough. Entities
do not exist in isolation, but are connected to each other in a multitude of ways. In
order to represent the connections that exist between entities, we use links. We
define a link as follows:

Definition
A link is the formalization of a connection between two entities that is rel-
evant to the model.

We may want to connect entities for many different purposes. For example, we
may want to show in our model that a person is reading a book, that a person has
written a book or that a book is stored in a particular library. In any case, a link
always connects two entities, so in order to capture a link in our model, we need to
capture the two involved entities first. Figure 4.5 shows our example from earlier
sections with some added links.

Values 31

In Fig. 4.5, each link is shown as a line that connects the corresponding object
boxes. For example, there is a line connecting person p and book b to indicate that
these two entities are related. Furthermore, the line is labelled Wrote, and a small
black arrowhead points in the intended reading direction, to indicate that it is
Raymond Carver who wrote Cathedral, rather than Cathedral who wrote Raymond
Carver (which would be nonsense). Similarly, there is a line between person q and
the book to indicate that Liz is reading the book now. The text on each line is called
the link name. You can write anything as a link name as long as it fits the model
purpose. Like with value names, link names are written without space between
words and with initial capitals for each word.

Instance Models

An instance model is a collection of related objects, values and links. An instance
model, therefore, represents a set of relevant entities, their characteristics and the
connections between them. We can use instance models, for example, to represent,
describe and document specific material or immaterial entities, agents, events or
ideas.

Instance models are abstract constructs in our minds, as any other kind of
conceptual model. In order to visualize and communicate them, we often depict
instance models as object diagrams, such as those shown in the figures in this
chapter. However, instance models can grow potentially very large, with object
counts in the range of thousands or even millions. For this reason, and for practical
purposes, we rarely draw instance models in the form of diagrams if they are too
big. For very large instance models, a database or other software-based tool does a
better job than diagrams on paper or screen. Still, bear in mind that an instance

b: Book

p: Person

q: Person
Title = “Cathedral”
Year = 1983

GivenName = “Raymond”
FamilyName = “Carver”
Nationality = “American”

GivenName = “Liz”
FamilyName = “Mayhew”
Nationality = “Australian”

Fig. 4.5 Model of two persons connected to the same book; person p wrote the book, and person
q is reading it now

32 4 Objects

model stored in a database is still an instance model, so everything you have read in
this chapter still applies. Chapter 34 introduces the construction of databases and
related tools.

Summary

Objects model elements that represent relevant entities.
Every object has an identifier, which works as an arbitrary proper name, plus a

category, which classifies the object.
The characteristics of the entity can be captured in the model by using values.
Each value is expressed as a name plus contents. The contents consist of one or

more pieces of data.
If no contents exist for a particular value, the special word null must be used.
The connections between entities can be captured in the model by using links.
Each link is labelled with a name.
Instance models can be used to represent sets of relevant entities, their char-

acteristics and the connections between them.

Exercises

1. Find a picture of the painting Automat by Edward Hopper on the Web. Imagine
you want to describe the painting to someone who does not know about it. Draw
a diagram showing three objects that represent entities in the painting. Do not
forget to give the objects meaningful identifiers and categories.

2. Complete the objects from Exercise 1 by adding some values to them. Focus on
values related to the appearance of the entities in the painting. You can make up
some characteristics if you want. Remember that objects of the same category
must be described having the same list of value names.

3. Further complete the previous model by adding links between the objects. You
may add as many links as needed. Focus on the physical and spatial relation-
ships between entities in the painting.

Instance Models 33

Chapter 5
Classes

Abstract In this chapter, we move the focus from individuals to categories. Here,
we introduce the notion of classes, which are model elements that represent relevant
categories of things. We explain that classes have a name, which differentiates the
class from others, such as Building or Person, as well as a definition, usually in the
form of “genus plus differentia”. In relation to class definitions, we introduce the
two complementary mechanisms to characterize classes: invariants, corresponding
to the criteria that every member of the category must fulfil, plus variables, cor-
responding to the aspects that pertain to every member of the category, but which
may take different quantities or qualities. Then, we describe how class variables can
be formalized in a model as properties within a class. We explain that every
property has a name that distinguishes it from others of the same class, such as Age
or Description, as well as a cardinality, which establishes how many things may
exist for the property for each individual entity. We finish the chapter by estab-
lishing a connection between classes and objects (introduced in the previous
chapter): classes are the types of objects, and objects are instances of classes.

The previous chapter looked at how entities are represented in a conceptual model.
In this chapter, we will introduce how categories are captured. Subsequent chapters
will explore category modelling in further detail.

You may wonder why it is so important to represent categories in our models,
and why we can’t simply represent entities, since entities constitute the most direct
and simple piece of evidence that we can have about the world. This is true, but it is
also true that categorization, at least in part, is an innate mechanism in our minds, as
described by Harnad [26] or Lakoff [10]. This means that we organize the world
and are able to reason about things through inductive generalization. For example,
once we have interacted with a few dogs as children, we know what to expect from
the next dog we come across: if all the dogs we have found are friendly and nice,
we will assume that any other entity that resembles a dog will also be friendly and
nice. We can do this because we categorize some entities in the word as dogs, and
by doing so we assign common properties to them. This does not always work, of

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_5

35

course, and we continuously revise our category systems as we gather more
knowledge about the world.

By representing categories in our models, we can express what the world is like
in terms of general concepts instead of specific examples. For example, by using
categories in a model we can say that, in general, dogs are four-legged furry
friendly animals, without the need to describe any particular dog.

Classes

In order to represent a category in a conceptual model, we use a class. A class is a
formal construct that stands for a category. Like in the case of objects, the word
“class” is very wide in its dictionary sense, and different people may understand
different things by “class”. The classes we are discussing here have no other special
connotation than being formal, that is, defined according to the strict rules of
conceptual modelling, and representing a category in a non-ambiguous way.

We define a class as follows:

Definition
A class is the formalization of a category that is relevant to the model.

Let us imagine that we want to represent the concept of books in our model. We
are not referring to a particular book, but to the overall category of books, or
bookness, if you wish. We can draw this class like in Fig. 5.1. Here, the box stands
for a class. The upper section of the box contains a line of text with the class name.
This notation is very similar to that for objects; however, we can tell apart a class
from an object because objects carry a two-part text in the top section, composed of
the identifier plus the category, whereas classes carry a simple text expressing the
class’ name. The name of a class works as a unique label that allows us to find and
identify the class within a model; for this reason, we cannot have two classes in a
model with the same name. As a convention, class names are written without spaces
(if they consist of more than one word) and with initial capitals.

Class names must be chosen carefully. A class name should always be a
countable noun in singular form. It must be a noun because it designates a category,
and nouns are the kinds of words that we use to designate things. It must be

Book
Fig. 5.1 Diagrammatic
representation of a class
named Book

36 5 Classes

countable because the existence of a category, by definition, implies that there are
things that belong to that category, and therefore each of these things would be
named with that word, and a collection of these things, with the plural form of the
word. For example, the Book class is called “Book” because there are books in the
world, we can refer to each book through expressions like “a book” or “that book
over there”, and we can refer to collections of books with expressions such as “a
few books” or “all the books in the library”. Finally, it is conventional to write class
names in singular.

As a rule of thumb, a class name is good if you can plug it into the following
sentence:

This is a ___, and these are a few ___s.

Words such as “Book”, “Building” or “Song” are good class names, whereas
words such as “Time”, “Soil” or “Heritage” are bad class names. You may argue
that we can use these words in plural as, for example, in “different soils were
found”, but uses like this are quite metaphorical, really meaning “different types of
soil were found”.

Also, class names convey the conceptualization of the world that we make. For
example, we can use “Person” as a class name, but we could use “Individual” as
well. Whether we choose one over the other is a matter of accuracy, familiarity and
personal preference. As opposed to object identifiers, which are arbitrary labels,
class names are meant to be interpreted by people looking at our model and thus
carry powerful semantics. Do not choose your class names lightly.

Finally, and like we did in the case of objects, we must make the point here that
the boxes in diagrams such as Fig. 5.1 are not classes, but pictures of classes. The
classes, like the objects, are purely conceptual and reside in your mind. We
informally talk about “the Book class in the figure”, but we must understand that the
Book class is actually in your mind, and the figure only shows a convenient
graphical representation of it.

Definition

A class name, if well chosen, conveys a lot about the class it designates. However, a
class cannot be fully characterized through its name alone; a definition is needed.
The definition of a class is a full sentence specifying the membership criteria of the
underlying category. For example, take the Book class. What criteria should we use
to determine whether something is a book or not? This question should be answered
by the class definition.

A class definition is usually constructed through an approach called genus plus
differentia. According to this approach, a definition has two parts:

Classes 37

• The genus, i.e. a part that states of what kind this category is. “Genus” is Latin
for “kind” or “type”. For example, we could say that “a book is a document”. In
this example, “document” is the genus of “book”.

• The differentia, i.e. a part that states how the category differs from other
categories of the same genus. “Differentia” is Latin for “difference”. For
example, we could say that books are documents “composed of a collection of
leaves fastened together at one side”; this would be the differentia, distin-
guishing books from other kinds of documents such as letters or leaflets.

In general, we can think of a class definition as a sentence with the following
form:

A Class is a Genus that Differentia

where Class stands for the class being defined, Genus for its genus and
Differentia for its differentia. For example,

A book is a document that is composed of a collection of leaves fastened together
at one side.

Or, possibly,

An archaeological site is a spatial region having an abnormally high density of
primary entities that are considered to be relevant.

In the previous definition, the ArchaeologicalSite class is defined as being of the
“spatial region” genus and “having an abnormally high density of primary entities
that are considered to be relevant” being its difference. As mentioned above, the
difference lets us distinguish between archaeological sites and other spatial regions
that are not sites, such as administrative regions or natural places. It does not matter
if you agree or not with our definition of archaeological site; we are only trying to
illustrate how class definitions work.

The genus plus differentia approach is not the only one you can use to define
categories. For example, you can use an approach based on similarity and contrast,
according to which you define a category as being similar to another, but having
some divergence from it. For example:

A bicycle is like a motorbike, but has no engine and uses pedals and a chain to
propel itself.

This approach works by using sentences with the following form:

A Class is like a SimilarClass but Contrast

Although this approach can produce some practical definitions, it is much more
limited than the previous one, so we do not recommend it for general use.

When you create a conceptual model containing classes, you should write down
their definitions for future reference. Definitions can be a bit long, so they are not
included in the diagrams that we draw. You should use a separate document to keep
a list of class names and their definitions.

38 5 Classes

Invariants and Variables

Class definitions are useful not only to determine what things belong to the category
being represented. They also work to provide a foundation for class structure. This
means that definitions are an excellent starting point to explore a deeper charac-
terization of classes, especially in two aspects:

• The class invariants, i.e. those characteristics of a category that never vary
regardless of which category member we look at.

• The class variables, i.e. those characteristics of a category that are always
present, but may take different qualities depending on which category member
we look at.

Consider the previous definition of Book:

A book is a document that is composed of a collection of leaves fastened together
at one side.

According to this, we can expect every book:

• to be a document and
• to be composed of a collection of leaves fastened at one side.

These are the invariants of the Book class. If you read them carefully, you will
see that they make up a condensed and “essential” form of the class definition, since
they capture the criteria that anything needs to satisfy in order to be a member of the
underlying category. For this reason, we can say that class invariants comprise the
canonical definition of a class, that is a definition from which nothing can be
removed without significantly changing its meaning. When we said above that class
definitions are not shown in diagrams but are often recorded as text in a separate
document, we were referring to these canonical definitions.

In addition to invariants, the class definition also alludes to some characteristics
that are not fully specified. In our example:

• Each book will have leaves, but how many is not said.
• The pages of each book will be fastened at one side, but the particular side of the

fastening is left unsaid.

These are the variables of the Book class. They correspond to aspects of vari-
ability of the category; we know that every book has pages, but the definition
allows for a varying quantity. Similarly, we know that every book is fastened at one
side, but which side may also vary.

Class variables can often be inferred from the definition, like we did in our
example. There may be other variables “hidden” in the definition, and we are free to
be creative with regard to which ones to elicit depending on our modelling purpose.

Invariants and Variables 39

For example, if we were constructing a model to describe a second-hand book
seller’s business, we may want to consider one more variable:

• The pages of each book will be fastened at one side, but the particular kind of
fastening (glued, spiral, stitched, etc.) is unsaid.

In any case, class variables constitute the starting point for the modelling of
properties.

Properties

We said above that class invariants, taken as a canonical definition of the class, are
not shown in diagrams but separately documented. Variables, on the other hand, are
shown in diagrams in the form of properties. A property is a formal construct that
stands for a characteristic of a category. Like in previous occasions, the word
“property” can be interpreted in quite a number of ways; the meaning that we use
here has no other special connotation than being formal, that is, defined according
to the strict rules of conceptual modelling, and representing a characteristic of a
category in a non-ambiguous way.

We define a property as follows:

Definition
A property is the abstract formalization of a characteristic of a category that
is relevant to the model.

Let us retake the previous example of theBook class, and let us assume that wewant
to represent some relevant characteristics of books in our model. What characteristics
are relevant and which are not, again, is given by the model’s purpose. If we imagine
that thepurpose is the cataloguingof books in a library,wecould draw theBook class as
shown in Fig. 5.2.Here, we can see the sameBook class as in Fig. 5.1, but this timewe
have added some properties. Each property is depicted as a line of text inside the lower
section of the class box. For example, theBook class has properties such as Title: ? and
Author: ?. Properties take the following form:

Book

Title: ?
Author: ?
Year: ?
Publisher: ?

Fig. 5.2 Diagrammatic
representation of the Book
class containing properties
Title, Author, Year and
Publisher

40 5 Classes

Name: ?

The property name is a word or phrase that tells us what characteristic the
property is representing. By convention, it is written with an initial capital and, if
composed of multiple words, no spaces are left between them and initial capitals are
used for all, like in previous occasions. In the example, we have captured the fact
that the title, author, year and publisher are relevant characteristics in our model.
Please bear in mind that we are representing the category of books rather than any
particular book, so this statement merely means that, in general, books have these
four characteristics, and we are interested in them.

After the property name, and separated by a colon, we write a question mark.
This means that we have not decided yet how to fully express the property. For
example, Fig. 5.2 shows the fact that we are interested in documenting the author of
books, but we have not decided yet whether we will just record author names, or
perhaps names and nationalities, or even perhaps a full author record with lots of
personal details for each one. In this regard, and as stated in the definition, prop-
erties are abstract features; that is, they provide only some details and defer some
decisions to a later moment (which we will discuss in Chap. 6).

Finally, we must notice that a property always belongs to a particular class. In
Fig. 5.2, properties Title or Author belong to the Book class, and in consequence,
they are shown inside the corresponding box. It does not make sense to talk about a
property without putting it in the context of its owner class, since a property
represents a characteristic of some given category. In order to provide this context,
we often write the property name prefixed by the class name and using a dot as
separator when we quote the property in text, for example Book.Title or Book.
Author. A class cannot have two properties with the same name; however, a
property in a different class may have the same name as a property in this class, and
perhaps mean something very different. For example, Book.Title and Person.Title
mean very different things.

Cardinality

Properties are useful to describe what characteristics we are interested in for a class.
So far, we have seen that properties refer to the represented characteristic by their
name, such as Book.Title or Book.Author. However, properties can (and should) be
described with more detail. A crucial aspect that we can add to properties is that of
their cardinality. The cardinality of a property describes how many things can exist
for this property for each individual entity. For example, the cardinality of Book.
Title specifies how many titles there may be for any given book. Similarly, the
cardinality of Book.Author specifies how many authors a book may have.

Sometimes, expressing how many things may exist for a given property is very
easy; in our example, we could probably agree that only one title may exist for any

Properties 41

given book, although you may argue that some books could have multiple titles,
and even that some books have no title at all. This logic can be useful in some
scenarios, but since the purpose of our sample model is to catalogue books in a
library, we can safely assume that every book will have one and only one title.
Hence, the cardinality of Book.Title is one. Regarding authors, we can probably
agree that every book will have at least one author, and some books will have
multiple authors. You may argue here that some books are anonymous and
therefore no author is known. However, the fact that we do not know who the
author is does not mean that the book lacks an author, as we said in Chap. 4 when
discussing values. Ontologically, a book always has an author, since a book is an
intentional product that someone must have written. However, we cannot easily set
an upper limit for how many authors a book may have. In situations like this, we
use a range to express that books have a minimum of one author and a maximum of
many authors. This is expressed as follows:

1::�

The previous expression is read as “from one to many”. The number 1 corre-
sponds to the minimum cardinality, and the asterisk, meaning “many” or “multi-
ple”, corresponds to the maximum cardinality. Minimum and maximum
cardinalities are separated by two consecutive dots.

Using this rule, we can easily add cardinalities to the previous example, like in
Fig. 5.3. Here, we can see the same Book class as in Fig. 5.2, but this time we have
added cardinalities. Notice that cardinalities are written right before the question
mark for each property. In this manner, each property line takes the following form:

Name: Cardinality ?

Note also that cardinalities may be expressed as a single value when a specific
number of things can be established for a property, or as a range when not. For
example, we agreed that there can be one title only for any given book, and
therefore, Book.Title has a cardinality of 1. Similarly, Book.Year has cardinality 1
too, since any book has been published in a particular year, whatever it is. The
cardinality of Book.Author, on the other hand, is 1..*, because there must be at least
one author, and potentially many. Finally, the cardinality of Book.Publisher is
interesting; note that a range of 0..1 is used for this property in Fig. 5.3. This means
that zero publishers can exist for a book, or 1 publisher as a maximum. In other

Book

Title: 1 ?
Author: 1..* ?
Year: 1 ?
Publisher: 0..1 ?

Fig. 5.3 Diagrammatic
representation of the Book
class containing properties
Title, Author, Year and
Publisher. Cardinalities are
shown

42 5 Classes

words, we are stating that each book will necessarily have either no publisher or one
publisher at most.

Properties like Book.Publisher, which have a minimum cardinality of zero, and
no matter what their maximum cardinality is, are called nullable properties, because
they leave the door open to null values as we described in Chap. 4 when discussing
values. In other words, a nullable property allows situations where there is no fact to
be represented at all.

Limitations of Classes

Classes constitute a powerful mechanism through which we can represent the
categories that are relevant to us, and in this manner describe the world in terms of
categories instead of individual entities. We will see over most of the sections in
this book that classes, in fact, comprise the core notion for conceptual modelling.

However, classes also have some limitations. To start with, a class represents a
category, but one that can be named through a noun. As we said at the beginning of
this chapter, a class must always be named with a countable noun in singular form.
This allows us to model classes representing all sorts of things, but representing
categories related to, for example, actions, becomes much more difficult. For
example, we can easily conceptualize actions such as walking or running. But we
should not have a Walking class or a Running class in our model, because these
words are not countable nouns. Please remember the rationale behind this rule: a
countable noun is needed because, since a class represents a category, we are
expected to be able to name the members of that category by using the same noun.
Thus, a Book class allows us to point to individual books. But a Running class does
not work because we cannot point to individual “runnings”.

Representing actions or other things that are usually linguistically expressed
through verbs is possible in an indirect manner. For example, we could have a
RunningSession or RunningActivity class in our model, if this fits its purpose. Still,
you should assume that conceptual modelling, at least the conceptual modelling
variant that is described in this book, is eminently geared towards representing
noun-things rather than verb-things.

A second limitation of classes relates to the fact that classes usually cannot
represent concepts that we refer to through mass nouns. A mass noun, or
uncountable noun, is one that refers to things without differentiated units. Examples
are “water” or “time”. We can say things like “water is scarce”, but we cannot refer
to “one water” or “those waters”, as we do with nouns such as “chair” or “song”.
For this reason, we should not have classes such as Water or Time in a model.
Again, this is due to the fact that categories represented by classes are supposed to
have instances, and mass categories such as ‘water’ or ‘time’ do not possess
instances.

You may argue that nouns such as “water” or “time” can indeed be used as
countable nouns, like in “there was a time…” or “this water is better than that one”.

Cardinality 43

However, these uses correspond to different meanings of the words. In “there was a
time”, we are using “time” to mean “moment” or “period” rather than ‘the con-
tinuous flow of existence’; similarly, in “this water is better than that one”, we are
using “water” to mean “water type” or “amount of water” rather than ‘the substance
with chemical formula H2O’. We may have a model with a Moment or Period class,
or a WaterType or WaterAmount class, but not Time or Water. Be aware of
overloaded semantics, and always try to use the most precise terminology that you
can find.

Finally, classes can represent only classical categories. A classical category is
one that is defined by a set of criteria; the things that fulfil the criteria are considered
to be members of the category, whereas things that do not are left out. Following
this, the invariants of a class specify the class’ definitional criteria. This is very
convenient and works very well in most occasions. However, not all the categories
that we use in our daily lives are classical. For example, Lakoff [10] describes
radial categories, which cannot defined by a set of shared criteria but constructed
through similarities between their members. An example used by Lakoff is that of
‘mother’. We use the word “mother” to refer to biological mothers, foster mothers,
adoptive mothers, stepmothers, surrogate mothers, etc. All these fall into the cat-
egory of ‘mother’, but there is no single set of criteria that is common to all of them.
Lakoff argues that the ‘mother’ category started with the basic concept of mother,
probably a biological mother, and was later and gradually extended through the
incorporation of related concepts such as foster mother or stepmother, each one
being closely related to the previous, but with no overall shared criteria. Since a
class needs a definition based on common criteria (its invariants), classes cannot
successfully represent radial categories.

We can still have a Mother class in our model if needed. However, we must be
aware that this class does not stand for the complex and encompassing radial
category of ‘mother’ as Lakoff describes it, but to a more reduced conceptualization
which, perhaps, includes only biological mothers or some other kinds of mothers.
Class names and definitions must be chosen always carefully, and more especially
so when radial categories are involved, in order to avoid ambiguity.

Technical
A definition that specifies a category through a set of shared criteria is called
an intensional definition (not “intentional” but “intensional”). This is opposed
to an extensional definition, which specifies a category by enumerating each
of its members. Some authors, such as Partridge [7], highlight the importance
of extensional definitions in conceptual modelling and point out that classes
must be extensionally defined. This can be philosophically elegant and would
definitely allow us to represent radial categories in conceptual models, but
entails significant problems when trying to define classes in a brief and
convenient manner. For the sake of feasibility, most conceptual modelling
approaches, including the one in this book, use intensional definitions of
categories.

44 5 Classes

Also, an extensional definition of a category alludes to what philosophers
of language, and especially Frege [3, “Gottlob Frege”], would call the ref-
erence of the category name, that is the actual entities in the world pointed at
by the name. Contrarily, an intensional definition, being based on the char-
acterization of the member entities through criteria, which are dependent on
the model’s purpose, alludes to the sense of the category name in Fregean
terms. See [27, Chap. 1] for a good introduction to these concepts and the
differences that they entail.

Objects as Instances of Classes

In Chap. 4, we described objects as formal representations of relevant entities in the
world. We also said that an object is always characterized through an identifier plus a
category. Now that we have learnt about classes, we can add some information about
the connection between classes and objects. In fact, classes and objects are closely
related in multiple ways. To start with, an object’s category is a class. In other words,
the category that we assign to an object, and which we display in a diagram as a short
text after the object’s identifier, actually refers to a class name. See Fig. 5.4 for an
example. In Fig. 5.4, object p is connected to the Person class in two ways. First, the
class name “Person” appears as part of the object’s characterization in the top section of
the box. Secondly, there is a line connecting the object box to the class box. Note that
this line bears an open arrowhead that points from the object to the class. This arrow
represents an instantiation relationship, which stands for the fact that object p is an
instance of thePerson class. “Instance”means “particular case” or “example”; in fact,
an object’s category is the particular piece of information that, as we said in Chap. 4,
implements the classification mechanism.

b: Book c: Book p: Person

Book Person

Fig. 5.4 Objects and their classes. Objects b and c are instances of class Book; object p is an
instance of class Person. The arrows are read as “is an instance of”

Limitations of Classes 45

The inverse of “instance” is “type”. That is, we can say that the type of object
p in Fig. 5.4 is Person. This is the same as saying that object p is an instance of
Person, but expressed the other way around.

There are two rules about instantiation that are very important. First, every object
has one, and exactly one, class as its type. This means that an object cannot lack a
type class or have multiple type classes. If we want to describe something that looks
like two or more things at once, we cannot do it by saying that this thing is an
instance of two or more classes; rather, we would need to create a class in the model
that captures this special hybrid situation. For example, a calculator-watch cannot
be modelled by an object that is an instance of both Calculator and Watch. Rather,
it should be modelled as an instance of a CalculatorWatch class.

Second, the type class of an object cannot vary over time. Once an object is
created as an instance of a particular type class, this relationship is forever. Classes
are supposed to capture essential categories in the world, and objects are supposed
to describe entities in terms of their essential characteristics, rather than accessory or
accidental ones. For these reasons, moving an object from one type to another is
rarely needed if the model is good. If you find the need or the potentiality, revise
your classes and your overall conceptualization of the model scope.

Finally, and as shown in Fig. 5.4, objects b and c are both instances of the Book
class, so each of them shows its own instantiation arrow. Notice that the instanti-
ation arrow and the class name inside the object box are redundant. That is, they
both express the same thing. For this reason, they must be in sync; it would be an
error to draw a diagram having an object b, for example displaying the class name
“Book” inside its box, but at the same time connected to the Person class by an
instantiation arrow. You need to be consistent. In practice, you will rarely see
diagrams where objects and classes are shown together, unless for educational
purposes or to emphasize the fact that objects are instances of classes. Most usually,
classes are depicted in class diagrams, and objects in object diagrams. When we do
so, the redundancy disappears and the only mechanism that we can (and must) use
to describe an object’s type is to use the class name as part of the object’s char-
acterization in the top section of the object box.

You may be wondering about values and links, and whether they are related to
classes. They are, and we will go into the details over the next few chapters.

Summary

Classes are model elements that represent relevant categories of things.
Every class has a name, which differentiates the class from others.
Class names must be countable nouns in singular.
A class also needs a definition, usually in the form of genus plus differentia.
A class definition can be simplified by removing non-essential parts, thus giving

the class’ canonical definition.

46 5 Classes

A canonical definition is composed of the class’ invariants, that is the criteria
that every member of the category must fulfil.

A class also may have variables, that is aspects that pertain to every member of
the category but which may take different quantities or qualities.

Variables can be formalized in a model as properties.
A property belongs to a class.
Every property has a name that distinguishes it from others of the same class.
Also, every property has a cardinality, which describes how many things may

exist for the property for each individual entity.
Classes are the types of objects; objects are instances of classes.

Exercises

4. Imagine that you want to study how buildings are organized to make up towns.
Draw a diagram showing two or three classes that describe this situation. Give
the classes good names, and define them. Add some properties to the classes to
represent the relevant characteristics.

Summary 47

Chapter 6
Attributes

Abstract In this chapter, we explain that properties (from the previous chapter)
corresponding to atomic and simple characteristics can be developed in a model in
the form of attributes within a class. We explain that every attribute has a name that
distinguishes it from others of the same class, as well as a cardinality, which
describes how many things may exist for the attribute for each individual entity. We
also introduce the fact that every attribute has a type, which describes what kind of
quantities or qualities may be used to express the corresponding values. Then, we
move on to explain that the type of an attribute is expressed as a data type, and there
are five pre-defined data types: Boolean, Number, Time, Text and Data. Boolean
attributes only admit true or false values. Number attributes admit any number,
whatever their magnitude or sign. Time attributes admit any expression of time,
regardless of its precision. Text attributes admit text values of any length. Finally,
Data attributes admit any other kind of data that is not contemplated by the previous
data types. We finish the chapter by linking back to the concept of object and
explaining that the values in an object, how many there are, and the kinds of their
contents, are determined by the attributes of the corresponding class.

In the previous chapter, we learnt how to use properties to represent characteristics
of a category in a model. Properties, as we discussed, are abstract features, and
provide only some details about the characteristic being described, deferring some
decisions to a later moment. This means that, at some point, properties need to be
resolved into concrete features. The way to accomplish this varies depending on
what kind of characteristic we are trying to model.

Some characteristics are simple and describe the associated category through
atomic quantities or qualities, such as numbers or text strings. This is the case, for
example, of a book’s title (a simple text) or a person’s age (a number). Other
characteristics are more complex and describe the associated category by associ-
ating it to other categories. This is the case, for example, of a person’s mother
(another person) or a building’s location (a place). In this chapter, we discuss the
former, and in Chap. 8, we discuss the latter.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_6

49

Attributes

In order to represent a simple and atomic characteristic in a conceptual model, we
use an attribute. An attribute is a formal construct that stands for an atomic char-
acteristic of a category.

We define an attribute as follows:

Definition
An attribute is the formalization of an atomic characteristic of a category that
is relevant to the model.

You may recall the Book example in the previous chapter, reproduced here as
Fig. 6.1. Some of the properties depicted in Fig. 6.1 may be developed into simple,
atomic features. Let us consider each in turn.

• A book’s title is usually provided as a text string. This qualifies as simple and
atomic.

• A book’s author (or authors) may be given as a name (such as “Raymond
Carver”), but it may also be given by pointing to a full record of the author
including, for example, their name, nationality, place of birth and biographical
notes. In the former case, a book’s author would qualify as simple and atomic,
but not in the latter case.

• A book’s year of publication is often given as a simple number, which clearly
qualifies as simple and atomic.

• Finally, a book’s publisher may be given as a text (such as “Oxford University
Press”), or as a record with full details of the publisher, for example, its name,
location and contact details. Like in the case of the book’s author, the publisher
would qualify as simple and atomic in the former case but not in the latter.

For the sake of illustration, let us assume that we wish to represent publishers as
simple texts, but authors through complete records containing various pieces of
information. According to this, we may reach a model like that depicted in Fig. 6.2.
Note that properties and attributes are shown together inside the lower section of the
class box. Each attribute is depicted as a line of text, very much like a property.

Book

Title: 1 ?
Author: 1..* ?
Year: 1 ?
Publisher: 0..1 ?

Fig. 6.1 Diagrammatic
representation of the Book
class containing properties
Title, Author, Year and
Publisher. This is identical to
Fig. 5.3

50 6 Attributes

However, the form of attribute lines is different. For example, the Book class in
Fig. 6.2 has attributes such as Title: 1 Text and Year: 1 Number. Attributes take the
following form:

Name: Cardinality Type

The attribute name is a word or phrase that tells us what characteristic the
attribute is representing. By convention, it is written with an initial capital and, if
composed of multiple words, no spaces are left between them and initial capitals are
used for all, like in previous occasions. In the example, we have captured the fact
that the title, year and publisher are relevant atomic characteristics in our model and
modelled them as attributes. The author has been left as a property.

After the attribute name, and separated by a colon, we write the attribute’s
cardinality, following the same rules we described for properties. In our example,
every book must have one title and one year, as indicated by the 1 cardinalities, and
may have a publisher or not, as indicated by the 0..1 cardinality.

After the cardinality, and instead of the question mark that we used for prop-
erties, we write the attribute’s type. This indicates what kind of quality or quantity
may be used for this attribute to describe instances of the associated class. For
example, we said that a book’s title is usually given as a text string, and that is why
we write Text for the Book.Title attribute. Similarly, we write Number for the Book.
Year attribute because years are usually given as simple numbers. What we can
write in a diagram as an attribute’s type is limited to a few options, which are
described in the next section.

Even though it is not reflected in the diagram, every attribute must have a
definition. An attribute’s definition helps you and others understand what the
attribute is meant to represent. Do not trust the attribute name as the only source of
information. For example, look at the Book.Year attribute in Fig. 6.2. Is it supposed
to mean the publication year or the writing year of the book? What if the book has
been published at different times in different countries? You need to clarify issues
like these through the attribute definition. For example, you could write something
like “Book.Year: The year of the earliest publication of the book, in any country.”
You should keep attribute definitions on a separate sheet of paper or document for
easy reference.

Finally, we must note that attributes are quite similar to properties, with the
major difference that attributes have a type whereas properties do not. This is a
consequence of the fact, which we already discussed, that properties constitute

Book

Title: 1 Text
Author: 1..* ?
Year: 1 Number
Publisher: 0..1 Text

Fig. 6.2 Diagrammatic
representation of the Book
class containing attributes
Title, Year and Publisher, as
well as property Author

Attributes 51

deferred features for which a suitable implementation has not been devised yet,
while attributes are fully specified features. Also like properties, a class cannot have
two attributes with the same name.

Data Types

As we said in the previous section, we cannot write anything as an attribute’s type,
but are constrained to a few options that we describe below, and which we call data
types.

We define a data type as follows:

Definition
A data type is a specification of what kind of quantities or qualities may be
used to represent atomic values.

The pre-defined base data types are the following:

• Boolean. Values may only be true or false.
• Number. Values are numbers; integer or not; positive, zero or negative. For

example, 17, 0.061 or −321.87.
• Time. Values are time points of any precision, and not limited to the usual

scheme of days, months, years, hours, minutes and seconds. For example, 8
June 1917 at 17:30, May 2012 or late 12th century.

• Text. Values are character strings of any length, including zero. For example,
“John Horton Conway”, “PX127”, or “”.

• Data. Values are raw, uninterpreted data of any length, including zero. See
below for examples.

The following sections describe each data type in turn.

Boolean

Boolean attributes may only take the values true or false. These two words are
special keywords and can be used with Boolean attributes only. A Boolean attribute
always represents a characteristic that may be true for some instances of the class,
and false for others. For example, the attribute Person.IsMarried would be Boolean,
since it may only take true or false values.

Please note that not all attributes that involve two mutually exclusive values are
Boolean; for example, an attribute such as Person.Gender, assuming that only male
and female genders are considered, would not be Boolean, since “male” and

52 6 Attributes

“female” are different to true and false. Only attributes for which true and false are
the only possible answers should be modelled as Boolean.

Technical
The word “Boolean” is taken from Boolean algebra, which is named after
George Boole. In Boolean algebra, the values that variables may take are
restricted to true and false.

Values of Boolean attributes are written with no quotations and in lower case,
simply as true or false.

Number

Number attributes may take any number as value, whether it is integer or decimal,
and whether it is positive, zero or negative. For example, Person.Age or Building.
Height should be modelled as of type Number, since a person’s age or the height of
a building are commonly given as numbers. Most number attributes fall within the
following categories:

• Counts, such as Building.NumerOfFloors or Book.NumberOfPages.
• Measures, such as Artefact.Weight or Building.Orientation (expressed as an

angle).
• Time spans, such as Process.Duration or Meeting.Length.

In general, only characteristics on which we perform mathematical operations
such as addition or division should be modelled as of the Number type. For
example, phone numbers or social security numbers are usually composed of fig-
ures, but this does not mean that we should model Person.PhoneNumber or Person.
SSN as numbers. This is so because we never carry out additions, multiplications or
other mathematical operations on phone numbers or social security numbers. Even
though they are made of numbers, they lack a mathematical nature, and for this
reason, we should model them as texts. In fact, non-numeric characters such as
letters could perfectly be part of phone numbers or social security numbers and they
would still work. This is not the case with counts, measures or time spans.

Values of number attributes are written with no quotations, using figures, the
minus sign if applicable, and a decimal separator if needed. All the following are
valid number values:

• 17
• 0.061
• −321.87
• 0

Data Types 53

Time

Time attributes may take time points of any precision as values. This means that we
are not limited to the usual scheme of days, months, years, hours, minutes and
seconds to express a point in time. In fact, any expression of a point in time,
regardless of its precision, works as a time value. For example, we should model
Building.ConstructionDate or Person.DateOfBirth as of type Time.

Values of time attributes are written with no quotations, using the necessary
characters to express the time point. All of the following are valid time values:

• 8 June 1917 at 17:30
• May 2012
• The 1950s
• Late 12th century
• First millennium BCE

Text

Text attributes may take any text string as value, of any length, including zero
length. For example, Person.Name or Book.Summary should be modelled as of type
Text, since a person’s name or the title of a book is commonly given as texts. Most
text attributes fall within the following categories:

• Labels, such as Person.Name or Book.Title. They are short and non-discursive.
They are often useful to identify the thing that they describe.

• Facts, such as Person.Address or Building.Style. They are usually longer than
labels, also non-discursive, and descriptive. They do not identify the thing that
they describe.

• Narratives, such as Book.Summary or Site.Description. They can be very long,
composed of free text, and usually involving multiple sentences.

The Text data type is the most common, since it can easily represent a wide
range of characteristics. As we mentioned above in relation to the Number type,
characteristics that are given as numbers but lack a mathematical nature (such as
phone numbers) should also be modelled as of the Text type.

Values of text attributes are written in double quotation marks. Any characters,
except double quotation marks, are allowed between the quotation marks. All the
following are valid text values:

• “John Horton Conway”
• “PX127”
• “The theory is based around the purported empirical observation that it is

possible to think about something…”
• “”

54 6 Attributes

Data

Data attributes take raw and uninterpreted data of any length as values, including
zero-length data. This means that they can hold anything at all. For this reason, the
Data data type is the most flexible and generic of all. However, its usage is rare,
being only employed for those cases where none of the other data types can be
applied. The Data type can be used, for example, to represent images, sound clips or
other multimedia entities that we usually store as computer files and cannot be
easily described as either Boolean, Number, Time or Text. For example, Person.
Photo or Interview.AudioRecording should be modelled as of type Data.

Due to their nature, values of data attributes can rarely be written down. We
usually employ an ellipsis to stand for them: …

Values as Instances of Attributes

At the end of Chap. 5, we explained that objects are instances of classes, and we
finished on a mysterious note by saying that further chapters would describe how
values and links are also related to classes. Now that we have learnt about attributes,
we can state that values are instances of attributes. In other words, values, which we
introduced back in Chap. 4, are directly related to attributes through the classifica-
tion mechanism. See Fig. 6.3 for example. Figure 6.3 is an elaboration of Fig. 5.4,
with attributes and values added. Note how, in Fig. 6.3, the values of objects follow

b: Book

Title = “Cathedral”
Year = 1989
Publisher = “Vintage”

c: Book

Title = “Marked Up”
Year = 2001
Publisher = null

p: Person

GivenName = “Frederick”
FamilyName = “Rooster”
Nationality = “American”; “French”

Book

Title: 1 Text
Year: 1 Number
Publisher: 0..1 Text

Person

GivenName: 1 Text
FamilyName: 1 Text
Nationality: 1..* Text

Fig. 6.3 Objects and their classes. Objects b and c are instances of class Book; object p is an
instance of class Person

Data Types 55

the pattern established by the attributes of the corresponding classes. For example,
object b, of class Book, has values named Title, Year and Publisher, as dictated by
the attributes of its class. The number of values for each attribute is also controlled by
the corresponding cardinalities. For example, the cardinality for Book.Title is 1,
meaning that every book must have exactly one title. There could not be a Book
object in the diagram with null for a title. Similarly, the cardinality for Person.
Nationality is 1..*, meaning that every person must have at least one, but possibly
more nationalities. Object p, a Person, has two, which is compatible with this.

Note also that Book.Title is of type Text, and therefore, the contents of its values
are texts and shown in double quotes. The type of Book.Year is Number, and values
are therefore numbers and shown without quotes.

In summary, every object must obey the attribute names, cardinalities and types
expressed by its class.

Summary

Properties that pertain to atomic, single characteristics can be developed in a model
as attributes.

An attribute belongs to a class.
Every attribute has a name that distinguishes it from others of the same class.
Also, every attribute has a cardinality, which describes how many things may

exist for the attribute for each individual entity.
Every attribute also has a type, which describes what kind of quantities or

qualities may be used to express the corresponding values.
The type of an attribute is expressed as a data type.
There are five pre-defined data types: Boolean, Number, Time, Text and Data.
What values there are in an object, how many, and the kinds of their contents,

are determined by the attributes of the corresponding class.

Exercises

5. Look again at the diagram you created for Exercise 4, and convert as many
properties as possible into attributes. Use the best data types and rethink the
cardinalities.

6. Draw a diagram showing some objects instantiated from the classes in the
previous exercise for some particular town that you are familiar with.

56 6 Attributes

Chapter 7
Enumerated Types

Abstract In this chapter, we continue working with data types and introduce the
notion of enumerated types as model elements that comprise collections of enu-
merated items. An enumerated item, in turn, is a label with specific semantics, such
as France or Green. We explain that enumerated types allow us to specify lists of
semantically related labels that can be used to characterize entities, and that, con-
sequently, an attribute of an enumerated type is restricted to taking the values given
by the associated enumerated items. We also explain that the enumerated items
within an enumerated type may be arranged hierarchically to represent subtyping or
aggregation. For example, a Colours enumerated type may have items Red, Green
and Blue, and then NavyBlue as a subtype of Blue.

In Chap. 6, we said that only five data types are available: Boolean, Number, Time,
Text and Data. Each of these data types establishes the rules to apply to the value
contents of attributes; for example, an attribute of type Number means that only
numbers can be used for this attribute in any instance of the associated class. Data
types, however, are open, in the sense that a Number attribute, for example, may
take any number, and a Text attribute may take any text. In other words, by using
these simple data types we cannot restrict the range of possible values that an
attribute may take. Imagine an attribute Building.Style of Text type. Being a text,
we can assign any textual value to this attribute for any instance of the Building
class. Some texts may make sense, such as “Gothic” or “Neoclassical”, but some
others would not, such as “Light red” or “All human beings are born free and equal
in dignity and rights”. Enumerated types can help to mitigate this problem.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_7

57

Enumerated Types and Enumerated Items

In order to represent a list of possible values in a conceptual model, we use an
enumerated type. An enumerated type is a formal construct that contains a list of
well-known enumerated items or possible values that an attribute of this type may
take.

We define an enumerated type as follows.

Definition
An enumerated type is a data type that defines a list of named items that can
be associated to a value of this type.

Enumerated types, in contrast with the simple data types described in the pre-
vious chapter, are “smart” data types capable of specifying what individual values
are valid for the associated data. These individual values are determined by enu-
merated items.

We define an enumerated item as follows.

Definition
An enumerated item is a unique name within a given enumerated type.

We can easily extend the Book example from previous chapters to illustrate
enumerated types. Let’s consider that the books we are interested in may be of any
of the following genres: short story, crime, satire and memoir. We would like to add
an attribute to the Book class that allows us to describe a book’s genre, and
guarantee that whatever value it takes, it will always be one of the above. To do
this, we follow a two-step process:

1. First, we define an appropriate enumerated type that will hold the necessary
enumerated items.

2. Then, we add an attribute to the class of the enumerated type created above.

For the first step, we would define an enumerated type named, for example,
BookGenres, having the following enumerated items:

BookGenres: ShortStory
Crime
Satire
Memoir

Note that the names of enumerated types and enumerated items follow the same
rules that we discussed for other names: they are phrases of one or more words,
avoid spaces between words and use initial capitals for each word.

58 7 Enumerated Types

Once this is done, we would add the necessary attribute to the Book class, as
shown in Fig. 7.1. In Fig. 7.1, the Genre attribute is shown as being of type enum
BookGenres. You may recall from the previous chapter that attributes are written by
using the following form.

Name: Cardinality Type

In the case of attributes of enumerated types (rather than simple data types), the
special word enum is written followed by the name of the enumerated type. This
clearly conveys the message that the attribute is of a type that has been created by
us as part of the model, rather than a pre-defined simple data type such as Number
or Text. In Fig. 7.1, the Genre attribute captures the fact that a book may have no,
one or multiple genres (according to the 0..* cardinality), and that each of the
genres is a value taken from the list given by the BookGenres enumerated type. This
allows us to control with great precision what genres we want to consider and
which we do not. Consider the example in Fig. 7.2. This example shows two Book
instances; book b is a short story, and book c is a crime and satire work. Note that
enumerated items, unlike texts, are shown without quotes.

Book

Title: 1 Text
Year: 1 Number
Genre: 0..* enum BookGenres
Publisher: 0..1 Text

Fig. 7.1 The Book class
containing attributes Title,
Year, Genre and Publisher

b: Book

Title = “Cathedral”
Year = 1989
Genre = ShortStory
Publisher = “Vintage”

c: Book

Title = “Marked Up”
Year = 2001
Genre = Crime; Satire
Publisher = null

Book

Title: 1 Text
Year: 1 Number
Genre: 0..* enum BookGenres
Publisher: 0..1 Text

Fig. 7.2 The Book class and
two of its instances, b and c

Enumerated Types and Enumerated Items 59

The definition of an enumerated type and its associated enumerated items is not
shown in the diagrams. You will need to write them down in a separate document,
perhaps together with the definitions of your classes and other additional material.
Still, the keyword enum in the diagrams makes clear that an attribute is expected to
take a controlled range of values which are listed elsewhere.

Also, note that an enumerated type can be reused by multiple attributes. For
example, imagine that we add a Movie class to our model, and this class has a
Genre attribute as well. We may rename our BookGenres to simply Genres and
make Book.Genre and Movie.Genre both of the enum Genres types.

Finally, bear in mind that the name of an enumerated item may not be unique in
your model. For example, object c in Fig. 7.2 shows Crime as a genre. Since this
model is very simple, we can safely assume that every time that we mention Crime
we are referring to the enumerated item named “Crime” within the BookGenres
enumerated type. However, there may be another enumerated type in the model,
say, for types of unlawful acts, like this.

UnlawfulActs: Crime
Contraband
Misdemeanour

If the two enumerated types coexist in the same model, mentioning Crime is not
clear anymore, since we may be referring to crime as an unlawful act or crime as a
book genre. To resolve ambiguities like this, we often prefix the enumerated item
name with the name of the enumerated type, using a dot as separator. We would
have:

• BookGenres.Crime refers to the crime genre.
• UnlawfulActs.Crime refers to the crime unlawful act.

Hierarchical Enumerated Types

We said in the previous section that an enumerated type contains a list of enu-
merated item. This is a half-truth. Actually, the items in an enumerated type may be
arranged as a list but can also be hierarchically arranged, which is much more
interesting. Consider the following example.

BookGenres: Fiction
ShortStory
Crime
Comic

Comedy
Satire

NonFiction
Memoir
TextBook

60 7 Enumerated Types

Here, enumerated items are arranged so that some of them are nested under
others. For example, ShortStory, Crime and Comic are nested under Fiction, and
Comedy and Satire are nested, in turn, under Comic. Items that are not nested are
called root items, and items having no nested items are called called leaf items. Root
items are said to be at depth 0, items nested under them are at depth 1 and so on. In
our example above, the hierarchy established by the nesting reflects the types and
subtypes of book genres that are familiar to us. In fact, both comedies and satires
are considered to be subtypes of comic works, and comic works, in turn, are
considered to fall inside fiction.

Technical
Enumerated types exist in other modelling languages, such as UML, as well
as in many programming languages such as Java, Python or C#. However,
enumerated types in mainstream languages are always linear rather than
hierarchical. The ability to define and use hierarchical enumerated types is a
peculiarity of the conceptual modelling approach that we present in this book.

Another example of a hierarchical enumerated type is the following.

WorldRegions: Europe
France
Germany
Spain

Galicia
Lugo
Pontevedra

Andalusia
Asia

China
Japan

In this example, world regions are arranged according to their location, and
nesting indicates which regions are located within others.

We can use hierarchies in enumerated types for two major purposes.

• To represent types and subtypes, like in the example with book genres. This
constitutes a particular case of subsumption, of the major linguistic devices
introduced in Chap. 2.

• To represent containment or aggregation, like in the example with world
regions.

In either case, an object described in terms of an enumerated item can also be
described in terms of its parent item, albeit at a higher abstraction level. In other
words, the higher the depth, the more specific an item is, and the lower its depth, the
more abstract it is. For example, a place having Region = China (depth 1) can also
be described as being in Asia (depth 0), since China is nested under Asia in our
example.

Hierarchical Enumerated Types 61

We can refer to enumerated items in a hierarchy in two ways. If there is no
chance of ambiguity, we may use the enumerated item name, as in China or Lugo in
the previous example. However, sometimes there may be a chance of ambiguity.
For example, consider the following enumerated type.

Colours: Red
Light
Dark

Blue
Light
Dark

A reference to Red would be clear, but a reference to Dark would not. Are we
referring to dark red or dark blue? To resolve this, we employ the enumerated
item’s absolute name, which is composed of its name prefixed with the absolute
name of its parent item, if it has one, and using a slash as separator. For example,
Red has no parent item, so its absolute name coincides with its simple name: Red.
However, the Dark item under Red has a parent item, so its absolute name is Red/
Dark. A reference to Red/Dark would be unambiguous. Absolute names can be
used even if they are not strictly necessary. For example, we can refer to Lugo in
our previous example as simply Lugo (since there is no chance of ambiguity), or as
Europe/Spain/Galicia/Lugo if we wish to be clearer. Bear in mind that the enu-
merated type name can be added at the front, as we described in the previous
section, if needed: Colours.Red/Dark or WorldRegions.Europe/Spain/Galicia/
Lugo. This is exemplified in Fig. 7.3.

b: Book

Title = “Cathedral”
Year = 1989
Genre = Fiction/ShortStory
Publisher = “Vintage”

Book

Title: 1 Text
Year: 1 Number
Genre: 0..* enum BookGenres
Publisher: 0..1 Text

p: Person

GivenName = “Frederick”
FamilyName = “Rooster”
Nationality = “American”; “French”
BirthPlace = Europe/Spain/Andalusia

Person

GivenName: 1 Text
FamilyName: 1 Text
Nationality: 1..* Text
BirthPlace: 1 enum WorldRegions

Fig. 7.3 The Book and Person classes and two of their instances, b and p, using absolute names
for enumerated items

62 7 Enumerated Types

Finally, consider the statement that we made at the beginning of this section. We
said that items in an enumerated type may be organized as a list or as a hierarchy. In
fact, there is no difference between both options: a list is just a hierarchy having a
single level. Enumerated types are hierarchical by nature, and we are free to use
nesting to express subtyping or aggregation if we wish.

Summary

Enumerated types are model elements that comprise collections of enumerated
items.

Enumerated types can be used to express attribute types, very much like simple
data types.

An attribute of an enumerated type is restricted to taking the values given by the
associated enumerated items.

Enumerated items within an enumerated type may be arranged hierarchically to
represent subtyping or aggregation.

Exercises

7. Look back at the diagram you created for Exercise 6 and add an attribute to
describe the style of the buildings, if you do not have it yet. Use an enumerated
type for this attribute, and update the corresponding values. Document the
enumerated items separately.

Hierarchical Enumerated Types 63

Chapter 8
Associations

Abstract In this chapter, we focus on the fact that classes do not exist in isolation,
but are semantically connected. We explain that class properties corresponding to
complex and relational characteristics can be developed in a model in the form of
associations. An association is composed of two semi-associations, which are
inverse of each other. Every semi-association belongs to a class, called the par-
ticipant class, and connects it to the opposite class. We also explain that every
semi-association has a name that distinguishes it from others of the same class, such
as LivesIn or BelongsTo, as well as a cardinality, which describes how many
instances of the opposite class may exist for the semi-association for each instance
of the participant class. Finally, we explain that a semi-association may have a role,
which works as an alternative name for the opposite class in the context of the
association, such as Residence or Owner. Then, we move on to two particular
association cases. The first is that of whole/part semantics and explain that some
associations represent the fact that some things are composed of others. This is the
case, for example, of a forest and its trees, or a town and its houses. The second case
is that of self-associations, that is, associations that connect a class with itself,
representing situations where things of the same type are connected to each other.
This is the case, for example, of a person and his/her children (who are also
persons), or a land division and its subdivisions (which are also land divisions). We
close the chapter by linking back to the concept of object and explaining that the
links that an object may have, how many, and to which other objects, are deter-
mined by the associations of the corresponding class.

In Chap. 5, we learnt how to use properties to represent characteristics of a category
in a model. Properties, as we discussed, are abstract features, and provide only some
details about the characteristic being described, deferring some decisions to a later
moment. As we said in Chap. 6, this means that, at some point, properties need to
be resolved into concrete features. The way to accomplish this varies depending on
what kind of characteristic we are trying to model. Some characteristics are simple
and describe the category through atomic quantities or qualities, such as numbers or
text strings; in this case, they become attributes. But other characteristics are more

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_8

65

complex, and describe the category by associating it to other categories, like in the
case of a person’s mother (another person) or a building’s location (a place). In this
chapter, we discuss these situations.

Associations and Semi-Associations

In order to represent a complex and relational characteristic in a conceptual model,
we use an association. An association is a formal construct that stands for a rela-
tional characteristic of a category.

We define an association as follows.

Definition
An association is the formalization of a structural connection relationship
between categories that is relevant to the model.

In other words, an association relates a class to another class. You may recall the
Book example in Chap. 6, reproduced here as Fig. 8.1. The Author property was
not modelled as an attribute because we said that a book’s authors should be
represented through complete author records containing various pieces of infor-
mation, rather than a simple text. Now we can turn the Author property into an
association. Look at Fig. 8.2. Here, the line connecting the two classes stands for an
association. Associations are always binary, that is, they have two ends. This means
that an association can be seen from either of them. In our example, we can describe
the association from the perspective of the Book class or from the perspective of the
Person class. It is the same association, but seen from different viewpoints. Each of
these viewpoints or perspectives corresponds to a semi-association. We define a
semi-association as follows.

Definition
A semi-association is the description of an association from the viewpoint of
one of the classes that participate in it.

Book

Title: 1 Text
Author: 1..* ?
Year: 1 Number
Publisher: 0..1 Text

Fig. 8.1 Diagrammatic
representation of the Book
class containing attributes
Title, Year and Publisher, as
well as property Author. This
is identical to Fig. 6.2

66 8 Associations

Let’s describe the association in Fig. 8.2 from each of its two viewpoints. From
the perspective of Book, we can say that every book has been written by someone,
perhaps multiple people. Look at Fig. 8.3. By following the large grey arrow, it is
easy to read that “every book was written by one or more persons”. Note that the
sequence of words in this sentence matches the sequence of elements in the dia-
gram: first the Book class, then the name “WasWrittenBy”, then the cardinality 1..*,
and finally the Person class. A small black arrowhead is added to the name in order
to make the reading direction clear. In the context of this semi-association, Book is
called the participant class, and Person is called the opposite class.

Let’s now look at the same association but from the opposite end. From the
perspective of Person, we can say that every person may have written any number
of books. Look now at Fig. 8.4. Again, by following the large grey arrow, we can
read that “every person wrote zero or more books”. Like in the previous case, note
that the sequence of words in this sentence matches the sequence of elements in the
diagram: first the Person class, then the name “Wrote”, then the cardinality 0..*,
and finally the Book class. A small black arrowhead is added to the name in order to
make the reading direction clear. And also like in the previous case, in the context
of this semi-association, Person is the participant class, and Book is the opposite
class.

The “WasWrittenBy” and “Wrote” names in the figures are semi-association
names. They convey the semantics of each semi-association, very much like a class
name conveys the meaning of a class. Semi-association names follow the usual
rules for names: they are written with initial capitals and no spaces between words.

Book

Title: 1 Text
Year: 1 Number
Publisher: 0..1 Text

Person

GivenName: 1 Text
FamilyName: 1 Text
Nationality: 1..* Text

Wrote *..1*..0

Fig. 8.2 The Book and Person classes, connected by a Wrote association

Book

Title: 1 Text
Year: 1 Number
Publisher: 0..1 Text

Person

GivenName: 1 Text
FamilyName: 1 Text
Nationality: 1..* Text

WasWrittenBy 1..*

Fig. 8.3 The association in Fig. 8.2, as seen from Book. The large grey arrow, which is not part of
the model, can be read as “Every”

Associations and Semi-Associations 67

Semi-association names, as opposed to class names, are not nouns but verbal
phrases. This is a consequence of the fact that an association represents a con-
nection relationship, and these are usually described in language as verbs or verbal
phrases. For example, “Owns”, “HasWritten” or “IsLocatedOn” are good
semi-association names, whereas “In” or “Owner” is not. Make sure you use good
semi-association names that contain a verb for the sake of clarity in your models.
Like in the case of properties and attributes, a class cannot have two
semi-associations with the same name. And, like in the case of properties and
attributes, we often write semi-association names prefixed by the participant’s class
name and using a dot as separator when we quote the semi-association in text; for
example, Book.WasWrittenBy or Person.Wrote.

In addition to its name, each semi-association also has a cardinality. Like in
previous cases, this indicates how many things may exist for each instance of the
corresponding class. In the particular case of semi-associations, cardinalities indi-
cate how many objects of the opposite class there may be linked to an object of the
participant class through the semi-association. For example, Fig. 8.3 shows that
there may be from one to many persons linked to a book through the WasWrittenBy
semi-association, and Fig. 8.4 shows that there may be from zero to many books
linked to a person through the Wrote semi-association.

Like in the case of attributes, and even though it is not reflected in the diagram,
every semi-association must have a definition. A semi-association’s definition helps
you and others understand what the semi-association is meant to represent. Do not
trust the semi-association name as the only source of information. For example,
look at the Person.Wrote semi-association in Fig. 8.4. Since it is expressed in past
tense, should we assume that only books written in the past are to be considered?
What if someone is currently writing a book? Can’t we describe that situation with
this semi-association? You need to clarify issues like these through the
semi-association definition. For example, you could write something like “Person.
Wrote: Indicates the books written by the person in the past”. You should keep
semi-association definitions on a separate sheet of paper or document for easy
reference.

Book

Title: 1 Text
Year: 1 Number
Publisher: 0..1 Text

Person

GivenName: 1 Text
FamilyName: 1 Text
Nationality: 1..* Text

Wrote0..*

Fig. 8.4 The association in Fig. 8.2, as seen from Person. The large grey arrow, which is not part
of the model, can be read as “Every”

68 8 Associations

Two inverse semi-associations together comprise a complete association. By
inverse, we mean that the participant class of one is the opposite class of the other,
and the other way around.

If you look back at Fig. 8.2, you will see that cardinalities for both
semi-associations are shown on the association line, each on the corresponding end.
Only one name is shown, however. We could have shown both, one in each
direction, but very often only one is depicted, especially when the inverse name is
easily inferred, like in our example. In situations like this, the semi-association that
is easier to remember or has a clearer meaning is used to name the whole associ-
ation and is called the primary semi-association. The inverse is called the sec-
ondary semi-association.

Remember that reading associations is easy if you follow these rules. First, look
at the small black arrowhead in the association name to determine which is the
reading direction for the primary semi-association. Then start at the class behind the
arrowhead and construct a sentence as follows.

1. Begin your sentence with “Every”.
2. Add the name of the class you are starting at; in our case, “person”.
3. Add the semi-association name, “wrote”.
4. Follow the black arrowhead and add the cardinality, “zero to many”.
5. Finish with the name of the opposite class, in plural if needed; “books”.

Note that the cardinality next to the starting class is not used when reading an
association like this. This makes sense; you would use it when reading the asso-
ciation backwards, that is, from the inverse viewpoint.

1. Begin your sentence with “Every”.
2. Add the name of the class you are starting at; in our case, “book”.
3. Infer the secondary semi-association name from the name shown; we could say

“was written by” as a linguistic inverse of “wrote”.
4. Going against the black arrowhead, add the cardinality, “one to many”.
5. Finish with the name of the opposite class, in plural if needed; “persons”.

Remember that we said at the beginning of this section that associations are
always binary. This means that there cannot be associations with three or more
ends; if we wanted to connect three classes together, for example, we would need to
find a way to use multiple binary associations to achieve it. For example, imagine
that we want to represent the fact that people participate in projects that carry out
archaeological excavations. It seems that three classes are involved here: Person,
Project and Excavation, and that the three of them are inextricably connected, as
shown in Fig. 8.5. The way to resolve cases like this is to use two or more asso-
ciations, bearing in mind that you do not need to connect every class to every other.
Figure 8.6 shows a possible solution. Note that, in Fig. 8.6, there is no association
between Person and Excavation; in other words, there is no direct way to know
who participated in a particular excavation or to what excavations a particular

Associations and Semi-Associations 69

person contributed. You can get most of this information indirectly, because you
can know what projects someone participated in, and which excavations these
projects carried out. Still, you may need to add a third association, between Person
and Excavation, to address some specific needs. For example, the solution in
Fig. 8.6 does not allow us to know whether a given person was at an excavation or
not; we can know what excavations were carried out by the projects this person was
in, but that’s all. If we wanted to address this specific need, a third association
would be needed.

Finally, bear in mind that multiple associations can exist between any number of
classes, even between a given pair of classes. Consider the example in Fig. 8.7.
Here, two different associations connect Book and Person, since two different facts
need to be represented in the model: the fact that people write books and the fact
that people read books. Each needs a separate association. At the same time, a third
association connects Book and Publisher, representing the fact that books are

Person

Project

Excavation

Fig. 8.5 The Person, Project and Excavation classes need to be connected together

Person

Project

Excavation

ParticipatesIn

CarriesOut

0..*

1..*

0..*

1

Fig. 8.6 The Person, Project, and Excavation classes connected together by two associations

70 8 Associations

published by publishers. Complex models can easily have dozens or hundreds of
classes interconnected in large meshes by numerous associations.

Roles

As we just described, a class may participate in multiple associations. Figure 8.7,
for example, shows the Person class having two associations to Book. Each of these
has different meanings; in one case, we are representing the persons who write
books, and in another case, we are representing those people who read books. We
can say, in fact, that a person may play different roles in relation to books: you can
be the author of a book, which is represented by the Wrote association; and you can
be the reader of a book, which is represented by the Read association. This can be
formalized as shown in Fig. 8.8. Here, roles are explicitly shown in the diagram.
The role of a semi-association is a label that provides a specific name for the
opposite class in the context of the semi-association. For example, the Person class
can be referred to as Author whenever we are discussing the Book.IsWrittenBy
semi-association. That is to say, the person who wrote a book is called its author.
Similarly, the book written by a person is called their work, which is captured in the
diagram by the Work role next to Book. Finally, the person who reads a book is

Book

Title: 1 Text
Year: 1 Number

Person

GivenName: 1 Text
FamilyName: 1 Text

Wrote *..1*..0

Read *..0*..0

Publisher

Name: 1 Text
Country: 1..* Text

WasPublishedBy 0..1

0..*

Fig. 8.7 Classes Book, Person and Publisher interconnected by multiple associations

Book

Title: 1 Text
Year: 1 Number

Person

GivenName: 1 Text
FamilyName: 1 Text

Wrote *..1*..0

Read *..0*..0
Reader

AuthorWork

Fig. 8.8 Classes Book and Person interconnected by two associations, and showing roles Work,
Author and Reader

Associations and Semi-Associations 71

called a reader. Note that not all semi-associations carry roles; you should only
write roles for those semi-associations where a role name comes up easily and adds
information to the model. For example, the book being read by a person does not
receive any particular name, so we have not added a role here.

When you do use roles, please bear in mind the following. First of all, roles
follow the same rules as other names: they are written with initial capitals and
without spaces between words. Second, they must be phrased as countable nouns in
singular form, very much like class names, since they are, after all, alternative
names for classes in the very specific context of an association. Third, roles are
written in the diagram next to the class that they refer to. In Fig. 8.8, for example,
Author and Reader are placed next to Person, signalling that they are alternative
names for Person in specific contexts.

Also, note that roles can be easily incorporated into the semi-association reading
mechanism that we described in the previous section. For example, if we look at the
Wrote semi-association in Fig. 8.8, we can read it as “every person wrote zero to
many books, which are their works” or, alternatively, “every person wrote zero to
many works, which are books”. Finally, bear in mind that roles cannot be dupli-
cated within any given class, very much like semi-association names.

Roles provide additional information to your models. In general, you do not
need to use them for every semi-association, but you need to choose good role
names if you want to use them. If you do not find a good role name, leave it out; no
role is better than a poorly named one.

Technical
Some modelling languages do not differentiate between attributes and asso-
ciations. If you have used UML, you will have noticed that in UML an
attribute of a class is, in many respects, considered to be an association from
that class to the corresponding data type. For example, an attribute such as
Book.Title: 1 Text would be indistinguishable from an association from Book
to a Text class. Similarly, if you are familiar with the CIDOC Conceptual
Reference Model (CRM) [20], you will have noticed that in CIDOC CRM
classes only have “properties”, which may be connections to other classes or
to data types such as E26 String or E60 Number.

Mixing together attributes and associations may seem to produce a simpler
modelling language, but it has serious drawbacks. Conceptually, a class
represents a category that is relevant to the model, and therefore will make
sense in the specific domain of discourse that you are dealing with, such as
French medieval poetry or Iron Age settlements. Data types, contrarily, are
independent of the domain being modelled, being universally valid for all of
them: text is text in any domain, and numbers are numbers in any domain too.

72 8 Associations

A language that mixes both together must necessarily use the same modelling
primitive (such as “properties” in UML or CIDOC CRM) for both, producing
a suboptimal solution. In this book, we use different modelling mechanisms
for different things, each one finely adjusted to its needs.

Whole/Part Semantics

So far, we have learnt that associations represent structural connections between
classes, and that these connections can mean anything, depending on the names that
we use. For example, we can have an association Wrote between Person and Book,
or an association WorksFor between Person and Organization. If you do a lot of
modelling, you will observe that the range of meanings for associations is very
large. However, there is one particular meaning that keeps reappearing very often,
that of aggregation, also called whole/part. A whole/part (or aggregation) associ-
ation means that something, called a whole, is composed of parts. For example,
consider the situation depicted in Fig. 8.9. Here, the IsComposedOf
semi-association has whole/part semantics; that is, it means that books are com-
posed of pages. In this model, Book is a whole, and Page defines the parts that make
up this whole. You can usually identify whole/part associations because they have
names like “IsComposedOf”, “ConsistOf” or “Contains”. Sometimes, the associa-
tion may be named from the opposite viewpoint, and names may be similar to
“IsPartOf” or “BelongsTo”. In either case, whole/part semantics are very common,
because representing reality in terms of things and their parts is a very natural
approach to us. You can find many situations where whole/part associations appear:

• A city and its buildings.
• A community and its members.
• A wall and the stones that make it up.
• A text and its sentences, or words.

Since whole/part associations are so common, we can use a specific notation to
depict them in a more compact form, as shown in Fig. 8.10.

Book

Title: 1 Text
Year: 1 Number

Page

Number: 1 Number

IsComposedOf *1

Fig. 8.9 Classes Book and Page connected by an association with whole/part semantics

Roles 73

In Fig. 8.10, the plain association line that we usually employ has been replaced
by a line with a small diamond shape on one end. Note that the diamond is placed
next to the whole class, Book in our example. This diamond indicates that this is a
whole/part association, and therefore the association name may be omitted, since its
meaning can be readily inferred from the diamond.

Whole/part associations are asymmetric by nature: one class is the whole, and
the other is the part. This means that we cannot have diamonds on both ends of a
line; that would mean that one thing is composed of another, and this is, at the same
time, composed of the former, which is impossible.

Technical
The study of whole/part relationships in general is the concern of the science
of mereology. For more information, see [3, “Mereology”].

Self-Associations

At the beginning of this chapter, we said that associations are binary, that is, they
always have two ends. So far, all the associations that we have shown connect two
classes, but this does not need to be the case. We can easily have associations that,
while having two ends, connect a class to itself. They are called self-associations.
Consider the example in Fig. 8.11. Here, Person has an association that loops back
to itself. The association still has two “ends”, but both are attached to the same
class. Let’s observe what this association means.

Book

Title: 1 Text
Year: 1 Number

Page

Number: 1 Number

*1

Fig. 8.10 Classes Book and Page connected by a whole/part association. This is equivalent to the
diagram in Fig. 8.9, but here the “whole” notation is used

Person

GivenName: 1 Text
FamilyName: 1 Text

IsParentOf

0..*

Child

2Parent

Fig. 8.11 Class Person
connected to itself by a
self-association

74 8 Associations

• Reading in the primary direction, “every person is a parent of zero to many
children, which are persons”.

• Reading in the secondary direction, “every person is a child of 2 other persons,
who are called the parents”.

As you can see, self-associations are useful to describe relationships between
instances of the same class, in our case, persons. This does not mean that one
particular person will be parent of themselves; what it means is that one person will
be parent of some other persons.

Technical
An association that permits that one thing is related to itself is called reflexive
in mathematics. For example, you can brush someone else’s hair, but you can
brush your own hair too; Person.BrushesHairOf would be reflexive.
However, this is not what self-associations are about. Self-associations may
or may not be reflexive, and there is no way to indicate this in our diagrams.
What makes self-associations special is that they connect things of the same
type, rather than things of two different types. From a mathematical point of
view, self-associations correspond to binary relations.

Self-associations are very common. For example:

• A village may be visible from other villages.
• A person may be friends, or family, to another person.
• An author may influence other authors.

Except for the fact that self-associations involve only one class, they work
exactly like regular associations. They are composed of two semi-associations, each
one with a name and a cardinality. Role names, in this case, are highly recom-
mended, since they help in distinguishing the different parts that the only class
involved plays in each direction.

Also, self-associations exhibit a very interesting property. Look again at
Fig. 8.11. According to it, every person has two parents. Take any person you like;
he/she will have two parents. But each of these parents is also a person, so he/she
must have two parents too. And each of them will have two parents in turn. And so
on and so forth. This infinite regress is caused by the recursive nature of
self-associations. In our example, the regress cannot be stopped, since our model
states that every person must have two parents. Note that this does not happen in the
inverse direction: every person may have zero or more children. For any person that
you take, he/she may have children. Each of these children is a person too, so he/
she may have children in turn, and so on and so forth. But note the “may” word; it
allows us to stop the regression at any point, because, eventually, someone will not
have any children. The “may” word in the sentence, and the possibility to stop the
regression, are caused by the fact that the self-association has a zero minimum

Self-Associations 75

cardinality in this direction. A zero minimum cardinality allows us to have no
things connected, and hence stop. However, the cardinality in the opposite direction
is 2, so we are always obliged to have two persons connected as parents to any
person we pick. In summary, minimum cardinalities greater than zero in
self-associations mean that there will be an infinite regress. Sometimes this is
reasonable, like in our Parent example, because it represents a genuine character-
istic of the world that we are describing. However, dealing with infinite regress is
tricky, and for this reason you should think twice before defining a minimum
cardinality greater than zero in a self-association. Avoid them if not strictly
necessary.

A self-association may have whole/part semantics too. This is not infrequent.
Look at the example in Fig. 8.12. Here, the Region class is connected to itself by a
whole/part association. This association represents the fact that every region is
composed of zero or many subregions, and every region, in addition, may belong to
a super-region. Note that minimum cardinalities are zero in both directions, which
avoids an infinite regress.

Links as Instances of Associations

At the end of Chap. 5, we explained that objects are instances of classes, and in
Chap. 6, we described how values are also instances of attributes. Now that we
have learnt about associations, we can state that links are instances of associations.
In other words, links, which we introduced back in Chap. 4, are directly related to
associations through the classification mechanism. See Fig. 8.13 for an example. In
Fig. 8.13, classes Book and Person are shown connected by a Wrote association.
This means that instances of Book and instances of Person must be connected by
links as dictated by the corresponding cardinalities. In other words, any book must
have one or more connected author persons, and each person may have any number
(including none) of connected books. The example shows b, a book, connected to
two people, p and q. The diagram may perfectly show a person that is not connected
to any book, since this would be permitted by the zero minimum cardinality on the
side of Book. However, the diagram could not show a book with no connected

Region

Name: 1 Text
Area: 1 Number

0..1

SuperRegion

0..*SubRegion

Fig. 8.12 Class Region
connected to itself by a
whole/part self-association

76 8 Associations

authors, since the cardinality on the Person side indicates that there must
be one at least.

It is worth showing how self-associations get instantiated. Consider the example
in Fig. 8.14. Here, four instances of Person are shown. Objects p and q are parents
of object r, and object r is a parent of object s. As we said above, self-associations
involve different objects of the same type; here, each instance of the IsParentOf
association involves two Person instances. Note also that, according to the

b: Book

Title = “Marked Up”
Year = 2001
Publisher = null

p: Person

GivenName = “Sylvia”
FamilyName = “Viart”
Nationality = “French”

Book

Title: 1 Text
Year: 1 Number
Publisher: 0..1 Text

Person

GivenName: 1 Text
FamilyName: 1 Text
Nationality: 1..* Text

Wrote

Wrote

..1..0

AuthorWork

Work

Work
Author

Wrote
Author

q: Person

GivenName = “Frederick”
FamilyName = “Rooster”
Nationality = “American”; “French”

Fig. 8.13 Some objects connected to their classes. Links are shown for the association between
the classes

Person

GivenName: 1 Text
FamilyName: 1 Text

IsParentOf

0..*

Child

2 Parent

p: Person

GivenName = “Sylvia”
FamilyName = “Viart”

r: Person

GivenName = “Paul”
FamilyName = “Rooster”

q: Person

GivenName = “Frederick”
FamilyName = “Rooster”

...

...

s: Person

GivenName = “Étienne”
FamilyName = “Rooster”

Child

Parent

...

Fig. 8.14 Some objects connected to their class. Links are shown for the self-association

Links as Instances of Associations 77

cardinality on the Parent side of IsParentOf, two parent objects should appear in
the diagram for each person; however, this is impossible because of the infinite
regress issue we described in the previous section. In Fig. 8.14, we have used
ellipses to signal that missing objects should appear.

Summary

Properties that pertain to complex, relational characteristics can be developed in a
model as associations.

Each association is composed of two semi-associations, which are inverse of
each other.

A semi-association belongs to a class, called the participant class.
A semi-association connects its participant class to the opposite class.
Every semi-association has a name that distinguishes it from others of the same

class.
Also, every semi-association has a cardinality, which describes how many

instances of the opposite class may exist for the semi-association for each instance
of the participant class.

A semi-association may have a role, which works as an alternative name for the
opposite class in the context of the association.

Some associations have whole/part semantics; that is, they represent the fact
that some things are composed of others.

Self-associations relate a class to itself, representing situations where things of
the same type are connected to each other.

What links an object may have, how many, and to which other objects, are
determined by the associations of the corresponding class.

Exercises

8. Look back at the classes in the diagram that you created for the previous
exercise and add as many associations between them as you need in order to
represent the relationships between buildings and other entities. Use adequate
names, cardinalities and roles. Use plain associations or whole/part associations
if needed.

9. Working on the previous model add an association to represent the fact that
some buildings can be seen from other buildings.

10. Take the model from Exercise 9 and draw some objects that instantiate the
classes in it for a town you are familiar with. Include the necessary values and
links, as dictated by the attributes and associations.

78 8 Associations

Chapter 9
Generalization and Specialization

Abstract In this chapter, we dealwith the complex problem of category subsumption
and describe how it is implemented in conceptual modelling. To do this, we introduce
generalization relationships between classes, which can be used in a model to rep-
resent subsumption relationships between categories. The inverse notion of gener-
alization is specialization. Both words refer to the same relationship, but from
opposite perspectives. We describe that classes can be arranged in specialization
hierarchies of multiple levels, to represent how some categories in the world are
subtypes of other categories. For example, this is the case ofBuilding, having subtypes
House, Barn and ShoppingMall. The criteria that we use to decide what subclasses
exist for a given class are called a discriminant. In our example, the discriminant
would be Function. We also connect the notion of generalization to class definitions,
as the definition genus of subclasses makes a reference to the superclass in the gen-
eralization. As a consequence, everything that wemay say about a class also applies to
all its subclasses. We explain that this is called the rule of inheritance: a class inherits
all the properties, attributes and semi-associations from its superclass, and this hap-
pens recursively in a specialization hierarchy. We further explain that a consequence
of the rule of inheritance is that an object that is an instance of a class can be described
in terms of an ancestor class through abstraction. We also explain why a class cannot
have multiple specializations and introduce the notion of abstract classes, which may
be used in amodel when they are not intended to be instantiated directly.We finish the
chapter by explaining how a collection of inter-related classes with their attributes and
associations make up a type model. Type models can be used to represent sets of
relevant categories, their features and the connections between them.

So far, we have learnt how to represent categories by using classes and how to
characterize these categories through attributes and associations. In particular,
associations allow us to represent, at the type level, the many ways in which entities
can be related to one another. Categories, in addition, can themselves be related
through a very different mechanism, which we mentioned back in Chap. 2: that of
subsumption. In common language, we often say things like “an orange is a fruit”
or “a hillfort is a particular type of construction”. Of course, in these sentences, we

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_9

79

are not referring to a particular orange, which happens to be a fruit, or a particular
hillfort which happens to be a construction. On the contrary, we are stating the fact
that all oranges are also fruits, and all hillforts can also be considered constructions.
We are, in a nutshell, generalizing from a more concrete category (‘orange’,
‘hillfort’) to a more general one (‘fruit’, ‘construction’).

Generalization/Specialization Relationships Between
Classes

In order to represent a subsumption relationship in a conceptual model, we use a
generalization relationship. This is a formal construct that stands for a subsumption
relationship according to some specific criteria. The opposite of generalization is
specialization; both words refer to the same thing, but seen from opposite per-
spectives. If a concept generalizes another, then the latter specializes the former. For
example, since “fruit” generalizes “orange”, then we can say that “orange” spe-
cializes “fruit”.

Technical
In linguistics, a word or phrase subsumes another if the semantic field of the
latter is included in that of the former. The subsuming word or phrase is
called a hypernym, and the subsumed one is called a hyponym. The gener-
alization relationship that we describe here is very similar and linguistically
equivalent.

We define a generalization relationship as follows:

Definition
A generalization is the formalization of a subsumption relationship between
two categories that is relevant to the model.

Since subsumption occurs between categories, generalization occurs between
classes in a model. Consider the situation depicted in Fig. 9.1. Here, Person is
connected to Building and House through two different associations. On the one
hand, the model states that people may have visited buildings; on the other hand,
that people live in houses. Note, however, that the Building and House classes are
not explicitly related in any manner. But our knowledge about the world tells us that
houses are a particular type of buildings or, in other words, Building subsumes or
generalizes House. We can show this fact in the model by adding a generalization/
specialization relationship, as shown in Fig. 9.2.

80 9 Generalization and Specialization

Here, a generalization/specialization relationship has been added from House to
Building by drawing an arrow from the more concrete class (House) into the more
general one (Building). The arrow has a white triangular arrowhead, which can be
read as “is a kind of”. Note that the arrow flows from the more concrete to the more
general, that is, in the direction of the generalization. Specialization occurs in the
opposite direction, that is, against the arrow.

In the context of a generalization/specialization relationship, the general class is
often called the superclass, and the concrete class is called the subclass. In our
example, Building is the superclass of House, and House is a subclass of Building.

Note that, whereas associations represent connections between entities of
specific categories, generalization/specialization relationships represent relation-
ships between categories themselves. In Fig. 9.2, for example, the HasVisited
association represents the fact that some persons have visited some buildings, rather
than the (non-sensical) fact that the Person class has visited the Building class. To

Building

Height: 1 Number
Material: 1..* enum Materials

House

NumberOfOccupants: 1 Number

Person

GivenName: 1 Text
FamilyName: 1 Text

HasVisited

LivesIn

0..*

1

0..*

0..*

Fig. 9.1 Classes Building and House connected to Person through two associations

Building

Height: 1 Number
Material: 1..* enum Materials

House

NumberOfOccupants: 1 Number

Person

GivenName: 1 Text
FamilyName: 1 Text

HasVisited

LivesIn

0..*

1

0..*

0..*

Fig. 9.2 Classes Building and House connected to Person through two associations.
A generalization/specialization relationship has been added between Building and House

Generalization/Specialization Relationships Between Classes 81

the contrary, the generalization/specialization relationship in the diagram represents
the fact that the Building class subsumes the House class, not the (non-sensical) fact
that some buildings subsume some houses. Generalization/specialization happens
between categories (or classes), not between entities.

We know that other kinds of buildings exist in addition to houses, such as barns
or shopping malls. We can add them to the model, as shown in Fig. 9.3. Note how
the generalization arrows going out each of the subclasses are merged into a single
arrowhead connected to the superclass. This is because the three merged arrows, all
of them, correspond to one generalization/specialization relationship, not three. In
this example, the generalization/specialization relationship has one superclass and
three subclasses, but there could be other numbers.

Also, generalization/specialization relationships can happen in multiple levels.
For example, there are different types of houses, such as bungalows, farm houses or
villas. We can easily add them to the model too, as shown in Fig. 9.4. Class
structures such as this one are called specialization hierarchies, since they usually
have one “root” class (the one at the top), and branch out as a “tree” of subclasses,
sub-subclasses, etc., until the terminal or “leaf” classes. In practice, you can have
specialization hierarchies as deep as you want. Usually, we draw the root class at
the top, like in the previous figures, so that specialization extends downwards, but
this is a convention only, and you can arrange specialization hierarchies in any way
you like as long as they are meaningful and you keep a neat and tidy diagram.

All the classes that are “upstream” from a given class, following generalization
relationships, are called its ancestors, and the classes that are “downstream” from a
given class, following its specialization relationships, are called its descendants its
descendants. For example, the ancestors of FarmHouse in Fig. 9.4 are House and
Building; the descendants of Building are all the classes in the diagram except for
Building itself.

Building

Height: 1 Number
Material: 1..* enum Materials

House

NumberOfOccupants: 1 Number

ShoppingMall

OpeningHours: 1 Text

Barn

Capacity: 1 Number

Fig. 9.3 Class Building plus subclasses House, Barn and ShoppingMall, connected through a
generalization/specialization relationship

82 9 Generalization and Specialization

Discriminants

In the previous example (see Fig. 9.4), we said that there are three types of
buildings: houses, barns and shopping malls. This may make sense, but it would
also make sense to say that there are four types of buildings: existing, in con-
struction, planned for construction and destroyed, or that there are two types of
buildings: heritage protected and not protected. All of these specialization schemes
make sense, but they obey different purposes and rationales. In the first case (and in
Fig. 9.4), we are using the building’s function to determine the subclasses. In the
second case, we are using the building’s existence status, and in the third case we
are using the building’s heritage protection level. The criterion that help us deter-
mine what subclasses may exist is called a discriminant, because it refers to the
characteristic that allows us to discriminate instances of a superclass and assign
them to one subclass or another.

When we construct a specialization hierarchy, we must decide on a single dis-
criminant for each generalization/specialization relationship and be systematic
about it. The discriminant that we use for each level must be shown next to the
corresponding arrowhead in the diagram, as shown in Fig. 9.5. Here, the Building
class is first specialized according to function, which yields classes House, Barn
and ShoppingMall. This captures the fact that we should look at a building’s
function in order to classify it as a house, a barn or a shopping mall. Then, House is
specialized according to structure, which gives Bungalow, FarmHouse and Villa.

Building

Height: 1 Number
Material: 1..* enum Materials

House

NumberOfOccupants: 1 Number

ShoppingMall

OpeningHours: 1 Text

Barn

Capacity: 1 Number

Bungalow FarmHouse Villa

Fig. 9.4 Class Building plus subclasses House, Barn and ShoppingMall. House, in turn, has
subclasses Bungalow, FarmHouse and Villa. Two generalization/specialization relationships
connect the classes into a specialization hierarchy

Discriminants 83

Like before, this captures the fact that we should look at a house’s structure in order
to classify it as a bungalow, a farm house or a villa. Discriminants are named like
attributes, that is, with an initial capital and no spaces between multiple words.

In addition, note that the subclasses for any generalization/specialization rela-
tionship in the hierarchy represent categories with no overlaps. In other words, the
“sibling” subclasses in any generalization/specialization relationship in the hierar-
chy are mutually exclusive. For example, if a building is a house, then it cannot be a
barn or a shopping mall, and if a house is a farm house, then it cannot be a
bungalow or a villa. This is good, because it helps us to cleanly delimit the
semantics of each class in the hierarchy. Using clear discriminant with precise
semantics helps to achieve this, and vague or ill-defined discriminants, such as
“type” or “variety”, hinders it. If you are not careful with your discriminants, you
can end up with very awkward models. Look at the example in Fig. 9.6. Here, no
clear discriminant has been used and, consequently, the subclasses that arise keep
no relation to each other. The three of them are, technically speaking, genuine
subclasses of Building, but they do not work as a family, because they do not help
us organize buildings into clean separate categories. It is perfectly possible that a
particular building is, at the same time, a house, an ancient building and a protected
building, and this is not something we want in a model. Remember that we said at
the end of Chap. 5 that every object has one and exactly one class as its type; if we
had overlapping sibling classes like in Fig. 9.6, we may find an object that is, at the
same time, an instance of multiple subclasses, which is a contradiction. In sum-
mary, avoid overlapping subclasses and avoid vague discriminants.

Building

Height: 1 Number
Material: 1..* enum Materials

House

NumberOfOccupants: 1 Number

ShoppingMall

OpeningHours: 1 Text

Barn

Capacity: 1 Number

Bungalow FarmHouse Villa

Func on

Structure

Fig. 9.5 Specialization hierarchy based on the Building class. Discriminants are shown for each
generalization/specialization relationship

84 9 Generalization and Specialization

Generalization and Class Definitions

Generalization/specialization relationships are extremely useful to organize classes
in a model. In addition, they relate strongly to discussion on class definitions back
in Chap. 5. We said there that a class is usually defined through genus plus dif-
ferentia; the genus determines of what kind the class is, and the differentia distin-
guishes the class from others of the same kind. For example, when we define a Book
as “a document that is composed of a collection of leaves fastened together at one
side”, the word “document” refers to the genus and the rest of the phrase to the
differentia. Now that we have learnt about generalization, we can state that the
genus in a class definition constitutes a potential superclass. This means that we
may use the genus in a class definition to find a superclass for the class we are
defining. For example, since a Book is defined as “a document that is composed of a
collection of leaves fastened together at one side”, we can introduce a Document
class in our model and make it Book’s superclass.

This also works the other way around: when we are trying to define a class, we can
look at its superclass and the overall generalization involved in order to obtain the
genus in its definition. For example, sinceHouse specializes fromBuilding in Fig. 9.5,
we could start the definition of House with “a building that…” and complete it with
some differentia that distinguishes houses from instances of other sibling classes such
asBarn andShoppingMall. This difference should relate to thediscriminant beingused
for the associated generalization/specialization relationship. For example, we could
say that a House is “a building designed for people to live in” and define Barn as “a
building designed to keep livestock and store farm-related goods”.

In summary, generalization/specialization relationships are closely related to
class definitions, as the genus in the definition of a class refers to the same concept
as its superclass. Of course, some classes in your model will be defined in terms of a
genus that does not appear in the model at all; this is why we said above that the

Fig. 9.6 Generalization/specialization relationship rooted on the Building class and without a
clear discriminant. The asterisk indicates that this is a very poor model

Generalization and Class Definitions 85

genus in a class definition is a candidate superclass. The genus suggests a super-
class, but we are not obliged to introduce it into the model. If we did it, we would be
entering into an infinite regress, since each new class in the model would be
defined, and its genus would suggest a new class to be added, and so on and so
forth. You should expect that some classes, those that pertain to very abstract
categories, probably relating to common concepts that can be easily understood by
most people or are too abstract for the model scope, will not have a superclass,
becoming roots of a specialization hierarchy, like Building in Fig. 9.5.

Inheritance

The connection between class definitions and generalization relationships has a
very interesting consequence. Look again at Fig. 9.5 and consider the definition that
“a house is a building designed for people to live in”. When we say that “a house is
a building”, we are, in fact, expressing the core idea of generalization/specialization
and asserting that every house that we may observe or imagine is also a building. In
other words, if x is a house, then x is also a building. We can express this, formally,
as follows:

x:House ! x:Building

Now think of any characteristic of buildings. This can be anything that we agree
that applies to buildings. For example, all buildings are made of some materials, or
all buildings create an interior space. Anything that is a building will have this
characteristic. Let’s call this characteristic B. We can say then that if x is a building,
then x will have characteristic B. Formally,

x:Building ! B xð Þ

Now, let’s combine both formal expressions and apply some logic.

x:House ! x:Building
x:Building ! B xð Þ
x:House ! B xð Þ

By using a classic hypothetical syllogism on the two premises discussed above,
we conclude that houses will have the characteristic of buildings too. Note that our
reasoning is abstract, so that it applies to anything (represented by x above) that
happens to be a house and also to any characteristic of buildings that we can think
of (represented above by B). Also, we may replace any other two categories related
by a generalization relationship for House and Building, and the reasoning would
still hold. In simple English, we can state that:

86 9 Generalization and Specialization

Rule of inheritance
Anything that we may say about a class also applies to all its subclasses.

This is called the rule of inheritance because, through specialization, a class
“inherits” everything from its superclass. And when we say “everything”, we mean
the following:

• The definition of a class also applies to its subclasses. For example, if we agree
to define House as “a building designed for people to live in”, and we have
Bungalow as a subclass of House, then this definition also applies to Bungalow.
In fact, a bungalow is also a building designed for people to live in.

• The properties and attributes of a class also apply to its subclasses. For example,
if we have a Building class with attributes Materials and Height, then these
attributes should also make sense for House, Barn or ShoppingMall. And they
do make sense.

• The semi-associations of a class also apply to its subclasses. For example, look
back at Fig. 9.2; the semi-association Building.HasBeenVisited (inferred from
Person.HasVisited) also applies to House. In other words, if buildings can be
visited, so can houses.

Technical
The rule of inheritance is strongly based on Liskov’s substitution principle
[28], which states that if S is a subtype of T, then objects of type T may be
satisfactorily replaced with objects of type S. The word “subtype” here is
equivalent to “subclass” in our discussion.

Liskov’s substitution principle makes a lot of sense in the real world. It
means that if you ask me for a fruit and I give you an apple, you cannot
complain.

Inheritance is invisible. That is, we do not show it in diagrams, but we must
assume it is there, flowing in the opposite direction to generalization arrowheads.
Look at the example in Fig. 9.7. Here, the House class (as well as Barn and
ShoppingMall) inherits all the attributes from its superclass, Building. This means
that House will have the following attributes:

• Height: 1 Number, inherited from Building.
• Material: 1..* enum Materials, inherited from Building.
• NumberOfOccupants: 1 Number, defined by House itself.

Also, if Building had an association to another class, House would inherit it too.
This may seem counterintuitive or difficult to grasp, because in the diagram, after
all, the House class is drawn with only one attribute inside the box. However, it has

Inheritance 87

three. You will become used to “reading inheritance” automatically after you have
worked with conceptual models for a short while.

Also, bear in mind that inheritance happens recursively in specialization hier-
archies with multiple levels. For example, in Fig. 9.5, House inherits all the attri-
butes from Building, and Bungalow then inherits all the attributes from House,
including those that House got from Building. In other words, we can say that a
class inherits every feature from all its ancestors and, together with its own,
propagates them down to all its descendants.

Inheritance is automatic and immediate. We do not need to do anything or show
anything special in a diagram to make it work. Since it is a logical consequence of
specialization, it simply works, whether we like it or not.

Abstraction

An additional consequence of subsumption is abstraction. This is the phenomenon
by which we can discard details and focus only on what is essential. In particular,
remember the statement that if something is a house, then it is also a building, or
more generically, everything that can be described in terms of a class can also be
described in terms of its superclass. For example, if we agree that something is an
apple, and describe it in terms of the Apple class, then we should agree that it is also
a fruit and be able to describe it as such. Of course, using a more abstract class to
describe something of a more concrete class means that some details are lost, since
a specialized class, by definition, adds details to its superclass (via the differentia in
its definition). As another example, look again at Fig. 9.7. Here, an object of type
Barn would be described as having a height, one or more materials and a capacity.
We could also describe this object as a building, without particularizing on what
kind of building it is; but in this case, the object would only be described as having

Building

Height: 1 Number
Material: 1..* enum Materials

House

NumberOfOccupants: 1 Number

ShoppingMall

OpeningHours: 1 Text

Barn

Capacity: 1 Number

Func on

Fig. 9.7 The Building class with three subclasses. The thick grey arrows, which are not part of the
model, represent the flow of inheritance

88 9 Generalization and Specialization

a height and a set of materials. No capacity could be possibly given, since build-
ings, according to the model, do not have a capacity. This removal of details when
we use a class that is more general than needed constitutes abstraction.

You may wonder why abstraction is useful, since we can always describe things
in terms of the most concrete class possible. But this is not always the most
convenient thing to do. Depending on purpose and context, we often decide to
describe things at higher abstraction levels. For example, a town council planning
department would probably employ very detailed classes to describe the relevant
buildings for preservation purposes. However, we rarely use such a large amount of
detail; we do not point at a building and say “look what a beautiful Queen Anne,
corner-towered, red brick detached house”. We simply say “what a beautiful
house”. Being able to abstract gives us the opportunity to be more economical when
describing things.

Generalization and Objects

In previous chapters, we explained that objects are instances of classes, that is, the
structure of classes dictate the shape and contents of objects. How do
generalization/specialization relationships between classes affect this? Essentially,
you need to bear in mind two important things.

• Specialization hierarchies work at the class level, and they have no counterpart
in the world of objects.

• Inheritance means that instances of a class will be regulated by that class plus all
its ancestor classes.

To start with, and as we described in a previous section, generalization/
specialization relationships pertain to classes, that is, they describe how categories
relate to each other. This is different to associations, which are also modelled
between classes, but describe how instances of those classes relate to each other.
Secondly, and as a consequence, class hierarchies get “flattened out” when we take
instances. Consider the case depicted in Fig. 9.8. Here, object h of type House is a
simple object like any other; the fact that its type is a subclass of another class is not
visible by looking at the structure of the object. In fact, if we had a single class
named House with attributes Height, Material and NumberOfOccupants instead of
the specialization hierarchy in Fig. 9.8, object h would look exactly the same. Also,
note the consequences of inheritance. Object h has values for three attributes: one
comes from its direct type class, House, and the other two are inherited by House
from Building. Again, we know this because we are looking at the class diagram,
but this fact is unrecognizable in the object h itself.

Abstraction 89

The Is-A Confusion

We need to make a parenthesis here. You may have heard of Is-A relationships.
Especially in the 1980s, a lot was written about them in the artificial intelligence
and knowledge engineering literature. Basically, an Is-A relationship is one where
the phrase “is a” is used to link two things, like in the sentence “Sydney is a city”.
However, using the Is-A terminology can be very confusing. As pointed out by
Guarino [29] and many others, Is-A mixes together different kinds of relationships
that we must distinguish if we want to construct useful conceptual models. For
example, consider the following statements:

• Sydney is a city
• A city is a human settlement

In the first case, “is a” means classification: Sydney is an entity that we classify
as being of the city category. In the second case, “is a” means subsumption: every
city is also a human settlement. Classification and subsumption are two of the five
linguistic devices that we discussed back in Chap. 2, and they should not be mixed
up. In conceptual modelling, we represent them through very different mechanisms:
instantiation in the first case and generalization in the second.

Do not use the Is-A terminology.

Building

Height: 1 Number
Material: 1..* enum Materials

House

NumberOfOccupants: 1 Number

ShoppingMall

OpeningHours: 1 Text

Barn

Capacity: 1 Number

Function

h: House

Height = 6.5
Material = Brick; Steel; Glass
NumberOfOccupants = 3

Fig. 9.8 A simple specialization hierarchy and one instance of a leaf class

90 9 Generalization and Specialization

Avoiding Multiple Specialization

You may wonder whether a class may be specialized multiple times, using different
discriminants. Look at the example in Fig. 9.9. As you can see, the figure shows an
asterisk, which means that it is illegal (or, in some cases, legal but not recom-
mended). A class can have at most one specialization; in other words, a class cannot
be specialized multiple times. The reason for this is the same as in the previous
case: if we allowed models like the one in Fig. 9.9, we may find an object that is an
instance of one class from the Function specialization and, at the same time, an
instance of one class from the ProtectionLevel specialization. Think, for example,
of a protected barn; it would be an instance of Barn and also of ProtectedBuilding.
As we said above, and also at the end of Chap. 5, every object has one and exactly
one class as its type; if we had models like the one in Fig. 9.9, we would be entering
into a contradiction.

Can’t we express then the fact that buildings are organized in terms of function
and also protection level? We can, but we need to take the following approach.
First, we need to decide which of the two (or more) discriminants is more relevant
for the model, or establishes a clearer and more prominent divide between types of
buildings, and specialize Building according to this discriminant. Then, we can
specialize the resulting subclasses, one by one, according to the second discrimi-
nant. Figure 9.10 shows the result.

You may think that this model is too cumbersome, because we have three
specializations at the second level having the same discriminant and too many
classes. However, this is the best way to model a double specialization of buildings.
In addition, diagrams like this can usually be simplified through the following
mechanisms. First of all, you may not need every specialization. For example,
perhaps you need to distinguish between protected and non-protected houses, but
you do not need that for shopping malls. In that case, you would omit the two
subclasses of ShoppingMall, simplifying the model.

Second, it is often possible to replace a specialization with a Boolean or enu-
merated attribute. For example, instead of having ProtectedHouse and

Building

Height: 1 Number
Material: 1..* enum Materials

House ShoppingMallBarn

Function

ProtectedBuilding NonProtectedBuilding

ProtectionLevel

Fig. 9.9 The Building class with two parallel specializations. The asterisk indicates that this is an
illegal model

Avoiding Multiple Specialization 91

NonProtectedHouse as separate classes, your model may work perfectly by
replacing them with an extra attribute in House to represent the difference.
Figure 9.11 shows the two options. In this case, the subclasses of House capture the
fact that a house may be protected or not. This can easily be represented, in a more
economical way, through a Boolean attribute. If you have three or more subclasses,
or two subclasses that did not refer to a yes/no status, you would need an enu-
merated rather than Boolean attribute. Also, note that the attribute solution is much
simpler than the one based on specialization, but it will not let you represent
specific characteristics of instances of the subclasses. For example, if you wanted to
add some attributes to ProtectedHouse in order to describe how a house is pro-
tected, you would need to keep the two separate subclasses ProtectedHouse and

Building

Height: 1 Number
Material: 1..* enum Materials

House

NumberOfOccupants: 1 Number

ShoppingMall

OpeningHours: 1 Text

Barn

Capacity: 1 Number

Function

ProtectedHouse NonProtectedHouse

ProtectionLevel

ProtectedBarn NonProtectedBarn

ProtectionLevel

Protected
ShoppingMall

NonProtected
ShoppingMall

ProtectionLevel

Fig. 9.10 The Building class with two consecutive specializations, first on Function, and then on
ProtectionLevel. This is perfectly valid

House

NumberOfOccupants: 1 Number

ProtectedHouse NonProtectedHouse

ProtectionLevel

House

NumberOfOccupants: 1 Number
IsProtected: 1 Boolean

(B)(A)

Fig. 9.11 In A, the House class has two subclasses. In B, the subclasses have been replaced by a
Boolean attribute to represent the same distinction

92 9 Generalization and Specialization

NonProtectedHouse instead of the Boolean attribute. Use attributes like this only
when you can treat all instances in the same manner, regardless of their type.

In summary, classes cannot have multiple specializations; you need to specialize
them one discriminant at a time. However, classes can have multiple generaliza-
tions, as we will discuss in Chap. 12.

Abstract Classes

In a specialization hierarchy, the root class is the least specific. This is so because
each level that we travel downstream, class definitions add details through their
differentiae, so that the more we part from the root class, the more details will be
contained in a class definition. Consider the example in Fig. 9.12.

Now consider the following definitions.

• A structure is a place with material boundaries that distinguish it from its
surroundings.

• A building is a structure that is intentionally produced for some particular
function.

• A house is a building designed for people to live in.

Building

House

Villa

Structure
Fig. 9.12 A specialization
hierarchy with four levels.
Structure is the least specific
class, and Villa, the most
specific

Avoiding Multiple Specialization 93

• A villa is a house for the residence of upper-class people and located in the
country.

Do not pay much attention to whether you agree or not with the definitions. The
point here is that each definition builds on top of the previous one, adding more
detail. In fact, we could replace the genus in each definition with its complete
definition to highlight how the level of detail keeps growing. For example,

• A structure is a place with material boundaries that distinguish it from its
surroundings.

• A building is a [place with material boundaries that distinguish it from its
surroundings], and that is intentionally produced for some particular function.

• A house is a [[place with material boundaries that distinguish it from its sur-
roundings], and that is intentionally produced for some particular function], and
designed for people to live in.

• A villa is a [[[place with material boundaries that distinguish it from its sur-
roundings], and that is intentionally produced for some particular function], and
designed for people to live in], specifically for the residence of upper-class
people and located in the country.

We have used square brackets above to signal the replaced fragments. As you
can see, the classes at the bottom of the hierarchy are much more specific, whereas
the root class is very open-ended in its definition. For this reason, specialization
hierarchies establish a specificity gradient, from the least at the top to the most at the
bottom.

Classes that are very unspecific are rarely useful to represent the world in
practical terms. For example, we do not go around pointing at houses and saying
“look, what a nice structure”. The concept of a structure, even if it is known and
more or less clear in our mind, is too vague for practical purposes. We tend to
describe our immediate reality in terms of more specific concepts, such as ‘house’
or perhaps ‘building’, which constitutes the well-known “basic level” categoriza-
tion mechanism described by Rosch [30]. This means that, sometimes, the top-most
classes in a specialization hierarchy are useful to provide structure to the model,
rather than as practical representations of anything. In these situations, we can mark
them explicitly as such. A class that is not meant to be used for direct represen-
tation, that is, instantiated, is called an abstract class. In turn, the classes that are
meant to be instantiated and thus represent our world directly are called concrete
classes. Look at the example in Fig. 9.13. Here, the Building class is marked with
an A in parenthesis after its name. This is called an abstract marker, and means that
Building is an abstract class, and thus not intended to be instantiated. The classes on
the “leaves” of the tree are not marked, so they are considered concrete classes and
intended for instantiation. The model in Fig. 9.13 allows us to create objects of type
House, Barn or ShoppingMall, which have an appropriate level of detail. However,
we could not possibly create an object of type Building. If we wanted to describe a

94 9 Generalization and Specialization

building entity that is not a house, a barn or a shopping mall (for example, a
factory), we would need to add a new class to the model.

Often, all classes in a specialization hierarchy are abstract except for the leaf
ones. This is more restrictive than leaving most classes as concrete. In your models,
mark as abstract only those classes that are clearly too vague or open-ended as to be
useful for the direct description of entities.

Type Models

A type model is a collection of related classes, generalization/specialization rela-
tionships, properties, attributes and associations. A type model, therefore, represents
a set of relevant categories, their characteristics and their connections to one
another. We can use type models, for example, to represent, describe and document
the major categories of material or immaterial entities, agents, events or ideas.

An instance model, in turn, always conforms to a type model. This is to say, an
instance model is always based on a particular type model, in the sense that the
objects in the instance model are instances of classes in the type model, and links in
the instance model are instances of associations in the type model. You cannot
create an instance model that is not based on an existing type model.

Type models, like instance models or any other kind of conceptual models, are
abstract constructs in our minds. In order to visualize or communicate them, we
often depict them as class diagrams like those in this and previous chapters.

Since type models work at the category instead of entity level, they rarely grow
too large to handle and usually stay in the range of dozens or hundreds of classes at
most. Still, using some automated tools can be useful to manage and depict large
type models. Some chapters in Part V deal with the use and application of tools like
these.

Building (A)

Height: 1 Number
Material: 1..* enum Materials

House

NumberOfOccupants: 1 Number

ShoppingMall

OpeningHours: 1 Text

Barn

Capacity: 1 Number

Function

Fig. 9.13 A specialization hierarchy with an abstract root class

Abstract Classes 95

Summary

Generalization relationships between classes can be used in a model to represent
subsumption relationships between categories.

The inverse of generalization is specialization. Both words refer to the same
relationship, albeit from opposite perspectives.

Classes can be arranged in specialization hierarchies of multiple levels.
The criterion that we use to decide what subclasses exist for a given class is

called a discriminant.
Generalization relationships are closely connected to class definitions, since the

definition genus of subclasses makes a reference to the superclass in the
generalization.

As a consequence, everything that we may say about a class also applies to all its
subclasses; this is the rule of inheritance.

A class inherits all the properties, attributes and semi-associations from its
superclass, and this happens recursively in a specialization hierarchy.

An object that is an instance of a class can be described in terms of an ancestor
class through abstraction.

A class cannot have multiple specializations. It may have one or none.
Classes may be marked as abstract in a model when they are not intended to be

instantiated directly.
Type models can be used to represent sets of relevant categories, their features

and the connections between them.

Exercises

11. Create a type model containing an ArchaeologicalSite class plus classes to
represent tumuli, hillforts and villages. Use generalization relationships with the
necessary discriminants.

12. Add attributes to the previous model to represent the sites’ coordinates and the
estimated population for hillforts and villages. Remember the rule of
inheritance.

13. Draw an instance model with some objects for the Village class in the previous
type model. Give them the necessary values.

96 9 Generalization and Specialization

Part 2
Recap of Part II

This is the end of Part II. So far, we have explored the basic mechanisms of
conceptual modelling, learning how to create models that represent the world at two
different levels: instance models to represent specific entities and their character-
istics, and type models to represent categories and their features. We have also
discussed a large number of concepts such as object, class, attribute, association,
generalization and inheritance; we have learnt how to depict models in the form of
diagrams by using a precise and rich notation.

The collection of concepts that we have introduced, as well as the graphical
notation that allows us to represent them, are part of the ConML conceptual
modelling language. ConML is a simple and affordable modelling language that
was designed with the humanities and social sciences in mind. It is oriented towards
people with no previous experience in information technologies or software engi-
neering, and our experience tells us that it can be successfully learnt and applied in
fewer than five days of full-time study [31].

ConML is defined semi-formally by using a metamodel, that is, a technical
specification of the language elements and how they can be combined. If you are
interested, you can find the complete metamodel in the ConML Technical
Specification [32], and you are encouraged to visit www.conml.org for additional
information and resources.

Part III
Advanced Conceptual Modelling

In the previous part, we introduced the basic mechanisms of conceptual modelling.
In this part, we complete the previous one by presenting some advanced concepts
and language elements in ConML (www.conml.org) and conceptual modelling in
general. Real-world examples in cultural heritage are used. Known concepts such as
enumerated types and attributes are enriched with new information, and new
concepts and techniques, such as multiple generalization and feature redefinition,
are described and explained. Also, we dedicate a few chapters to the discussion of
“soft” issues such as vagueness, temporality and subjectivity.

This part is significantly more challenging than the previous one, so be prepared.
Once you finish it, you will be able to create and understand rich and complex
conceptual models of cultural heritage.

Chapter 10
Advanced Enumerated Types

Abstract This chapter elaborates on enumerated types (introduced in an earlier
chapter) and describes the fact that an enumerated type can specialize from another
enumerated type. The specialized enumerated type inherits all the items from its
generalized type. We also explain why specialized enumerated types cannot
introduce root items, in order to preserve the semantics of the generalized type.

In Chap. 7, we introduced enumerated types. Remember that an enumerated type
defines a list of named items that can be associated to a value of this type. We
explained that these types are very useful in those occasions when we want to
provide a controlled list of options for an attribute. We also said that the items in an
enumerated type can be arranged in a hierarchy, in order to represent subsumption
or aggregation relationships.

In this chapter, we complete the discussion of enumerated types with some
advanced topics; in particular, we discuss the fact that, like classes, enumerated
types can participate in generalization/specialization relationships, which results in
the inheritance of items.

Generalization/Specialization Relationships Between
Enumerated Types

Imagine that we are creating a model for the classification of books. We want to
describe each book in terms of its genre, and we also want to describe the library
sections according to what genres of books they will contain. For example, we want
separate areas in the library for large genre categories such as biography, reference
or fiction. At the same time, we want to describe the genre of each book with more
detail, for example, as science fiction or dictionaries. In summary, we need to
classify both library sections and books, the latter with much greater detail than the
former. We can use two separate enumerated types for this, as shown in Fig. 10.1.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_10

101

Here, the LibrarySection class uses the SectionThemes enumerated type to
classify library sections. This enumerated type could look something like this:

SectionThemes: Fiction
Biography
Reference

At the same time, the Book class uses the BookGenres enumerated type to
classify books. This enumerated type could look something like this:

BookGenres: Fiction
Crime
Fantasy
ScienceFiction
Historical

Biography
Autobiography

Reference
TextBooks
Dictionaries

Note that, since we need to match book genres to library sections, the top-level
enumerated items in BookGenres coincide with the items in SectionThemes. For
example, a book described as Genre = Fantasy would go into the library area
described as Theme = Fiction. However, this approach presents two shortcomings.
First of all, and although we can quickly determine what books go into which
library sections by looking at their descriptions and the enumerated types, this is not
evident from a formal point of view. That is, the SectionThemes.Fiction and
BookGenres.Fiction enumerated items, despite both being named “Fiction”, are
different enumerated items, and the fact that their names are equal should not be
taken as indicative that their semantics are equal too; in fact, we may have enu-
merated items with similar or equal names and very different semantics, as dis-
cussed in Chap. 7 in relation to the Light and Dark colours. Secondly, if we modify
one of the two enumerated types at any time, for example by adding, renaming or
deleting items, we will need to manually make sure that the changes are correctly
applied to the other enumerated type. For example, if we wanted to add AudioBooks
to SectionThemes, then we would need to add a similar item to BookGenres. This
manual synchronization is tedious and error-prone.

Book

Title: 1 Text
Year: 1 Number
Genre: 0..* enum BookGenres
Publisher: 0..1 Text

LibrarySection

Name: 1 Text
Theme: 1 enum SectionThemes
Location: 1 Text

Fig. 10.1 Library sections and books are classified according to different enumerated types

102 10 Advanced Enumerated Types

In order to avoid these issues, we can use a generalization/specialization rela-
tionship between the enumerated types. You may recall from Chap. 9 that a gen-
eralization relationship between classes is the formalization of a subsumption
relationship between the underlying concepts, and a specialization is the opposite
relationship. These relationships can occur for enumerated types, too. In our
example, we can see the book genres as a specialization of section themes, because
book genres build on top of section themes and add extra detail to them without
altering their original meaning. Following this, we can reformulate the two inde-
pendent enumerated types that we illustrated above as follows:

SectionThemes: Fiction
Biography
Reference

BookGenres (specialized from SectionThemes):
Fiction (inherited)

Crime
Fantasy
ScienceFiction
Historical

Biography (inherited)
Autobiography

Reference (inherited)
TextBooks
Dictionaries

Now, BookGenres specializes SectionThemes. This has several consequences.
First of all, BookGenres inherits all the items in SectionThemes. Inheritance works
like we described in Chap. 9 in relation to classes: everything that we say about an
enumerated type applies also to all its subtypes. In our case, this means the col-
lection of items; that is why BookGenres contains items inherited from
SectionThemes. In addition, BookGenres is adding extra items and placing them
under the inherited ones. Very importantly, note that the Fiction item in
BookGenres (or any of the other inherited items) is the same thing as the Fiction
item in SectionThemes. We do not mean that they have the same name, but that they
are one same thing. This means that now we can formally infer that a book cate-
gorized, say, as Fantasy, should go into the Fiction-themed section. In addition,
altering items is much easier now. For example, if we added an AudioBooks item to
SectionThemes, it would automatically appear as an inherited item in BookGenres.
This means that no manual synchronization is necessary.

In general, generalization/specialization of enumerated types is useful when you
want to construct an enumerated type that is more detailed than, but similar to,
another. Bear in mind that the generalized enumerated type subsumes the special-
ized one, and, as a consequence, everything that we can say about the generalized
type also applies to the specialized one. Also as a consequence, anything described
in terms of the specialized one can also be described, with higher abstraction, in
terms of the generalized one. Going back to our previous example, a book having
Genre = Fantasy can be abstractly described as simply Fiction, using
SectionThemes instead of BookGenres.

Generalization/Specialization Relationships Between Enumerated Types 103

There is an important rule that you need to bear in mind when using this feature.
An enumerated type that specializes from another cannot have root items of their
own; all the items that they introduce must be subitems of others. If we allowed
specialized enumerated types to introduce new root items, we would be breaking
the possibility for abstraction, since an object described in terms of the specialized
type could potentially take values corresponding to the new root items which
cannot be abstracted out into items of the generalized types. For example, imagine
we could add a root AudioBooks item to BookGenres. A book having
Genre = AudioBooks could not be possibly described in terms of SectionThemes,
since SectionThemes would contain no reference whatsoever to audio books, and
AudioBooks would not be a subitem of any other item.

Summary

An enumerated type can specialize from another enumerated type.
A specialized enumerated type inherits all the items from its generalized type.
Specialized enumerated types cannot introduce root items.

Exercises

14. Imagine that you need to develop an urban planning model for a town council.
In the council, overall, buildings are simply categorized as residential, com-
mercial or industrial. However, the council planning department needs addi-
tional detail, having types such as detached house, factory, mall or apartment
block. Create two enumerated types linked by a generalization/specialization
relationship and having the necessary items. Add extra items that you can think
of if you wish.

104 10 Advanced Enumerated Types

Chapter 11
Advanced Features

Abstract In this chapter, we elaborate on the ideas of properties, attributes and
semi-associations, all of them introduced in earlier chapters and collectively called
features. We introduce some additional characteristics of features, such as the idea
that features which must preserve the order of their instances may be marked as
sorted in a model. We also explain that semi-associations that connect a class to
another that is mentioned on its definition should be marked as strong, to capture
the fact that a definitional dependency exists between the classes. Then, we deal
with the awkward but common phenomenon that some self-associations involve a
single role and therefore a single semi-association; we explain that these are called
symmetric self-associations and present a special notation for them. Finally, we
explain that associations with overall semantics of “contains”, “shares” or “refers
to” can be depicted through a compact notation, which results in tidier diagrams.

Throughout various chapters in Part II, we described the concepts of property
(Chap. 5), attribute (Chap. 6) and semi-association (Chap. 8). Despite being very
different, these three concepts have a lot in common:

• All three belong to classes; that is, a class may have properties, attributes and
semi-associations.

• All three are identified by a name and further described through a definition.
• All three have a cardinality.

Given these commonalities, it makes sense to treat properties, attributes and
semi-associations from a common point of view for some purposes. The word that
we will use to refer to the three of them together is features. Thus, we can say that
classes possess features, which have a name and a cardinality, and there are three
kinds of features: properties, attributes and semi-associations.

In this chapter, we introduce and discuss additional details about features, some
of which apply equally to all three kinds.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_11

105

Sorted Features

Imagine that you want to represent the fact that a book may have multiple authors.
You can use an association between Book and Person with a cardinality 1..*. This is
a good start, but it does not allow us to represent the order of the authors in the
book. The authors of a book have a meaningful order, and we should not change it.
This is not so in other cases; for example, the trees of a forest or the houses in a
town do not have a clear and precisely defined order. In those cases where a
collection of things must be represented with a strict order, we can mark the
corresponding feature as sorted. See the diagram in Fig. 11.1. Here, the “^” sign
(called a circumflex accent or, informally, a caret) next to the cardinality of the
Person class signals the fact that authors of a book are sorted. In other words, a
book with three authors would have a first author, then a second and then a third
one, and this order is meaningful. Similarly, the “^” sign after the cardinality for the
Person.FamilyName attribute indicates that a person’s family names have a
meaningful order: there is a first family name and then a second family name.

Evidently, sorted features have always a maximum cardinality greater than one,
because it would not make sense to sort a single item. Sorted features are not very
common, and sometimes, you can employ alternative ways to model them which
are more readable or elegant. For example, see the model depicted in Fig. 11.2.

Book

Title: 1 Text
Year: 1 Number
Publisher: 0..1 Text

Person

GivenName: 1 Text
FamilyName: 1..2^ Text
Nationality: 1..* Text

Wrote0..* 1..*^

Author

Fig. 11.1 In this model, the authors of a book are sorted, as indicated by the “^” sign next to the
Person cardinality. Also, a person’s family names are sorted too

Book

Title: 1 Text
Year: 1 Number
Publisher: 0..1 Text

Person

GivenName: 1 Text
FirstFamilyName: 1 Text
SecondFamilyName: 0..1 Text
Nationality: 1..* Text

Wrote0..* 1..* ^

Author

Fig. 11.2 In this model, the sorted Person.FamilyName attribute from Fig. 11.1 has been
replaced by two separate attributes for the first and second family names

106 11 Advanced Features

Here, we have replaced the sorted Person.FamilyName attribute from Fig. 11.1
with two separate attributes for the first and second family names. This allows us to
be more expressive in the model and distinguish more readily between first and
second surnames. Of course, this strategy would not be an option if the maximum
cardinality were higher than two, because we should not add too many attributes to
a class, especially if a maximum is not clearly known.

Strong Semi-Associations

In Chap. 8, we described how associations help us represent the connections
between categories in a model. Sometimes, associations correspond to connections
between well differentiated categories that have autonomous existence; some other
times, however, associations represent connections that tie together parts of a
complex or aggregate concept. The association in Fig. 11.2, for example, is of the
first type: books and persons are very different things, and the Wrote association
represents a connection between these very different things. Consider now the
example in Fig. 11.3. This represents the fact that monuments may undergo dif-
ferent changes over their lifetime. The Change class has a Date attribute to capture
when a change has occurred and a Description attribute to describe the change.
Also, Change is associated with Monument so that we can know which changes
affect which monuments. The short arrow with a circular base next to Change, in
addition, indicates that the semi-association in this direction is strong; that is, the
definition of Change relies strongly on Monument. For example, we could have a
definition as follows.

A change is an event that modifies one or more monument in a significant manner.

Note that the definition of Change directly mentions Monument. Without a clear
idea of what a monument is, the concept of change would remain poorly defined.
To reflect the fact that Change depends so much on Monument, we say that the
semi-association representing which monuments are affected by a change is a strong
one. In other words, we can say that a strong semi-association, despite being a
semi-association as any other, binds the two classes together in an especially tight
fashion; in our example, Monument is almost part of Change. You may think that

Monument

Name: 1 Text
Location: 1 Text

Change

Date: 1 Time
Description: 1 Text

Affects1 ..* 0..*

Fig. 11.3 The short arrow with a round base next to Change indicates a strong semi-association

Sorted Features 107

this is counter-intuitive and that it is Change what is part of Monument, since
common sense tells us that “monuments have changes”. However, we are defining
classes here, rather than objects, and therefore, we must describe things at the
category (rather than entity) level. It is true that “monuments have changes”, but
from a category perspective, it is the Change category which “has”, or mentions,
the Monument category and hence the strong semi-association from Change to
Monument.

The concept of strong semi-association is similar, but different, to that of whole/
part association that we described in Chap. 8. In both cases, classes are tightly
related to each other. However, whole/part associations denote a structural
dependency by which instances of one class, the part, contribute to making up
instances of the other class, the whole. This is the case, for example, of a forest and
its trees, or a town and its buildings. Note that the fact that a structural relationship
of aggregation exists does not mean that we need to define one class in terms of the
other, which is what strong semi-associations are about. And, conversely, a class
that is defined in terms of another (and, therefore, has a strong semi-association to
it) does not need to be an aggregate, as shown by the example in Fig. 11.3. Having
said this, you can have whole/part associations which, at the same time, are strong.
Also, you cannot have an association where both semi-associations are “whole”, but
you can have an association where both semi-associations are strong. However, this
would result in two tightly coupled classes, since each of them would be defined in
terms of the other.

In any case, a strong semi-association usually entails a very clear consequence:
instances of the “source” class do not make sense in the absence of accompanying
instances of the “target” class. In our example of Fig. 11.3, an isolated change does
not make sense; it necessarily needs an accompanying monument to provide the
required context. Use strong semi-associations sparingly, since they introduce very
tight couplings between classes, which may be detrimental to model quality as we
will describe in Chap. 31.

Symmetric Self-Associations

In Chap. 8, we introduced the concept of self-associations, that is associations
which connect a class to itself. Figure 11.4 illustrates two of these associations.
Diagram A in Fig. 11.4 depicts a well-formed and meaningful association, repre-
senting the fact that every person is a parent of zero to many child persons and
every person is, at the same time, a child of two parents. Note that, although there is
only one class involved in the association, it plays different roles in relation to each
semi-association. In other words, and according to diagram A in Fig. 11.4, each
conceivable person instance will have two sets of linked persons: one for his/her
children and one for his/her parents. These two sets are mutually exclusive: if one
person is my child, then this person cannot possibly be my parent, and vice versa.
For this reason, self-associations like this are called asymmetric.

108 11 Advanced Features

See now diagram B in Fig. 11.4. Here, we are trying to represent the fact that
every place may have a number of neighbouring places, or places which are close to
it. How we define “close to” or “neighbouring” is irrelevant to this example. Note
that, in this case, the roles played by the class are identical for both ends, because if
a place is close to another, then this second place must necessarily be close to the
original one. That is, each conceivable place instance will have a single set of linked
places, namely its neighbours. For this reason, self-associations like this are called
symmetric. The model in part B of Fig. 11.4, however, is illegal, as marked by the
large asterisk next to it, because a class cannot have multiple semi-associations with
identical role names. Fortunately, ConML provides a specific way to represent
symmetric self-associations. Before we describe it, let us bear in mind what a
symmetric self-association means. First of all, and by definition, the two
semi-associations of a symmetric self-association look identical to each other: they
have the same role, the same cardinality and even the same name and definition. For
example, you need to describe both semi-associations of the self-association in part
A of Fig. 11.4 if you want to provide its complete details and semantics; one
semi-association will provide details in one direction, and its inverse will describe
the other. However, you only need to describe the association in part B of Fig. 11.4
in one direction to achieve similar results, because the description in the inverse
direction would be identical. For this reason, the two semi-associations of a sym-
metric self-association are, in fact, only one, which is an inverse of itself. See
Fig. 11.5.

Person

GivenName: 1 Text
FamilyName: 1 Text

IsParentOf

0..*

Child

2Parent

Place

Name: 1 Text
Coordinate X: 1 Number
Coordinate Y: 1 Number

IsCloseTo

0..*

0..*NeighbouringPlace

NeighbouringPlace

(A) (B)

Fig. 11.4 Two self-associations. In A, an asymmetric self-association with two distinct roles. In
B, a symmetric self-association with the same role on both ends. The asterisk indicates that this is
an illegal model

Person

GivenName: 1 Text
FamilyName: 1 Text

IsParentOf

0..*

Child

2Parent

Place

Name: 1 Text
Coordinate X: 1 Number
Coordinate Y: 1 Number

IsCloseTo

0..* NeighbouringPlace

(A) (B)

Fig. 11.5 Using Fig. 11.4 as a starting point, we have now redefined part B by using an
asymmetric self-association

Symmetric Self-Associations 109

Here, the line going out of the Place class and ending in a slanted segment
represents a symmetric self-association. Note that a single name, cardinality and
role are depicted, meaning that only one semi-association is involved. In this
manner, part B in Fig. 11.5 represents the fact that every place may be close to zero
or more other places, which are called its neighbours.

Symmetric self-associations are quite common. Think, for example, of an
archaeological site and all the sites that are visible from it, or an author and his/her
co-authors, or a person and his/her spouse. All these cases correspond to symmetric
self-associations.

Technical
Interestingly, UML is unable to model symmetric self-associations, because
UML requires that associations have at least two “ends” and that each “end”
has a different “name” or role. If you use UML, there is no way in which you
can represent this kind of associations in your models.

Compact Notation for Associations

So far, we have been using lines in our diagrams to represent associations, as
shown, for example, in Fig. 11.3. This is convenient and conveys very well the idea
that an association represents a connection between two things. However, diagrams
can grow very intricate if we use lines to depict every association, especially in the
case of classes that are connected to many others. Think, for example, of a Location
class that is used by many other classes in the model to describe the location of
something, be it a site, a town, an artefact or an event. Having lines from all these
classes to Location would result in a messy and unreadable diagram.

For this reason, ConML offers the possibility to use a compact notation for very
common types of associations that usually occur for classes that are connected to
many others. There are three particular cases, described in Table 11.1.

The first kind of association that can be depicted in compact notation corre-
sponds to “contains” associations. These occur whenever instances of a class
contain or aggregate instances of the related class, for example a forest and its trees,
or a town and its buildings. These are necessarily whole/part associations and need
a clearly defined opposite role and a 0..1 cardinality on the participant class. This

Table 11.1 Types of associations that can be depicted in compact notation

Overall semantics Keyword Whole/part Opposite role Participant cardinality

Contains con Yes Defined 0..1

Shares sha Yes Defined 0..*

Refers to ref No Defined 0..*

110 11 Advanced Features

means that the contained object is exclusively “owned” by the container. See
Fig. 11.6. In part B, note that the “contains” association is depicted as an extra line
of text inside the lower section of the Town class box. Evidently, this shows the
association from the perspective of only one class; as shown in part B of Fig. 11.6,
only the Town class shows signs of its association to Building. We have chosen
Town instead of Building because it is towns which contain buildings, rather than
the other way around. A “contains” association in compact form takes the following
form:

OppositeRole: Cardinality con OppositeClassName

The opposite role is, precisely, the role that we have defined for the opposite
class in the association. The cardinality is whatever cardinality the opposite class
has in the association, con is a special word in ConML to indicate a “contains”
association in compact form, and the opposite class name indicates which other
class is involved in the association. The cardinality of the participant class (Town in
our example) is omitted, because it is always 0..1 for “contains” associations, as
shown in Table 11.1, indicating exclusive containment.

The second kind of association that can be depicted in compact notation cor-
responds to “shares” associations. These occur whenever instances of a class
contain or aggregate instances of the related class in a shared manner, for example a
group of people and its members, or a house and its inhabitants. Like in the
previous case, these are necessarily whole/part associations and need a clearly
defined opposite role and a 0..* cardinality on the participant class. This means that

Town

Name: 1 Text
Population: 1 Number

Building

Material: 1..* enum Materials
NumberOfFloors: 1 Number

0..1 1..*

ComponentBuilding

Town

Name: 1 Text
Population: 1 Number
ComponentBuilding: 1..* con Building

Building

Material: 1..* enum Materials
NumberOfFloors: 1 Number

(A)

(B)

Fig. 11.6 A “Contains” association expressed in expanded (regular) notation in A and in compact
notation in B. The two diagrams are completely equivalent, but we save one line in B

Compact Notation for Associations 111

the contained object is not exclusively “owned” by the container, but potentially
shared among many of them. Consider Fig. 11.7. In part B, note that the “shares”
association is depicted as an extra line of text inside the lower section of the
GroupOfPeople class box. As in the previous case, this shows the association from
the perspective of only one class; as shown in part B of Fig. 11.7, only the
GroupOfPeople class shows signs of its association to Person. We have chosen
GroupOfPeople instead of Person because it is groups which contain people, not
the other way around. A “shares” association in compact form takes the following
form:

OppositeRole: Cardinality sha OppositeClassName

The opposite role is, precisely, the role that we have defined for the opposite
class in the association. The cardinality is whatever cardinality the opposite class
has in the association, sha is a special word in ConML to indicate a “shares”
association in compact form, and the opposite class name indicates which other
class is involved in the association. The cardinality of the participant class
(GroupOfPeople in our example) is omitted, because it is always 0..* for “shares”
associations, as shown in Table 11.1, indicating shared aggregation.

The last kind of associations that may be depicted compactly corresponds to
“refers to” associations. These occur when instances of a class refer to instances of
the related class, for example a building and its location, or a change and the
monuments to which it applies. These associations are never whole/part and, like in
the previous case, need a clearly defined opposite role; the cardinality on the
participant class is always 0..*. See Fig. 11.8.

GroupOfPeople

Name: 1 Text

Person

GivenName: 1 Text
FamilyName: 1 Text

0..* 1..*

Member

GroupOfPeople

Name: 1 Text
Member: 1..* sha Person

Person

GivenName: 1 Text
FamilyName: 1 Text

(A)

(B)

Fig. 11.7 A “Shares” association expressed in expanded (regular) notation in A and in compact
notation in B. The two diagrams are completely equivalent, but we save one line in B

112 11 Advanced Features

In part B, note that the “refers to” association is depicted as an extra line of text
inside the lower section of the Monument class box. Like in the previous case, this
shows the association from the perspective of only one class, Monument in our
example. Again, we have chosen Monument instead of Town because it is monu-
ments which refer to towns in order to express their locations, rather than the other
way around. A “refers to” association in compact form takes the following form:

OppositeRole: Cardinality ref OppositeClassName

Like in the previous case, the opposite role is the role that we have defined for
the opposite class in the association, and the cardinality is whatever cardinality the
opposite class has in the association. The special word ref indicates a “refers to”
association in compact form, and the opposite class name indicates which other
class is involved in the association. Also, like in the previous case, the cardinality of
the participant class (Monument in our example) is omitted, because it is always 0..*
for “refers to” associations, as shown in Table 11.1.

Compact notation for associations can save you from drawing many lines in a
diagram, thus resulting in a tidier and more readable diagram. However, be aware
that compact notation “buries” associations inside classes, which may hinder the
visibility of the overall structure of the model. Also, bear in mind that the role of the
participant class or the names of the semi-associations cannot be shown when using
compact notation, which may be a serious drawback sometimes. Use your judge-
ment to decide whether to use compact or expanded notation for associations that
permit it.

Monument

Name: 1 Text
Description: 0..1 Text

Town

Name: 1 Text
Population: 1 Number

0.. * 1

Loca on

Monument

Name: 1 Text
Description: 0..1 Text
Location: 1 ref Town

Town

Name: 1 Text
Population: 1 Number

IsLocatedIn

(A)

(B)

Fig. 11.8 A “refers to” association expressed in expanded (regular) notation in A and in compact
notation in B. The two diagrams are completely equivalent, but we save one line in B

Compact Notation for Associations 113

Summary

A feature is either a property, an attribute, or a semi-association.
Features which must preserve the order of their instances must be marked as

sorted in a model.
Semi-associations that connect a class to another that is mentioned on its defi-

nition should be marked as strong.
Some self-associations involve a single role and therefore a single

semi-association; they are called symmetric self-associations, and there is a special
notation for them.

Associations with overall semantics of “contains”, “shares” or “refers to” can be
depicted through a compact notation, which results in tidier diagrams.

Exercises

15. Create a type model to represent the concept of ‘person’, including a person’s
phone numbers and jobs. Bear in mind that a person may have multiple phone
numbers such as home, work, etc. Also consider that a person may have, at
most, a primary job and a secondary job. Use sorted features where you see fit.

16. Create a type model to represent the fact that heritage elements may be assessed
over time by different people, each assessment being about one particular
heritage element. Include in your model classes for heritage elements, assess-
ment and people. Mark which semi-associations are strong.

17. Imagine that you are studying a group of artists and their works. Some artists
may have met others during their life; also, some artists may have studied under
other artists. Create a type model for the concept of ‘artist’ and include asso-
ciations for the two situations described above. Use symmetric self-associations
where suitable.

18. Imagine that you are surveying an area and recording archaeological sites and
the associated material. Each archaeological site is located at a particular place,
and each find corresponds to a particular site. Draw a diagram for this situation,
including classes to represent sites, places and finds. Use compact notation for
associations where appropriate.

114 11 Advanced Features

Chapter 12
Advanced Generalization

Abstract In this chapter, we elaborate on the notions of generalization and spe-
cialization, already introduced in earlier chapters. First, we explain that a class may
not have multiple specializations, but it can have multiple generalizations. We
describe how classes participating in multiple generalizations inherit features via all
of them simultaneously, and how the concept of dominant generalization plays a
major role in this mechanism. We also describe some scenarios where classes may
be deemed illegal as a consequence of their place in a specialization structure,
especially due to feature name clashes.

In Chap. 9, we introduced generalization/specialization relationships and described
how they work as the basis to organize classes in meaningful specialization hier-
archies. We said that a class may be specialized or not but, if it is, then it can have
only one specialization (usually with multiple specialized classes) according to a
well-known discriminant. In other words, a class cannot be specialized multiple
times. However, and as we mentioned in passing, a class may have multiple gen-
eralizations. In this chapter, we explain what this means and what consequences it
entails. We also discuss some special situation that can appear when constructing
complex specialization hierarchies.

Multiple Generalization

Imagine that we want to create a model to represent the concept of ‘feature’ in
archaeology, and that we have arrived to the following definition for the Feature
class:

A feature is a place having boundaries with material properties that distinguish it from its
surroundings and, also, a material entity that shapes the space where it is located,
influencing visibility and/or mobility over it.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_12

115

You may or may not agree with this definition, but let us assume it is acceptable
for the sake of argument. Note that the definition has two parts:

• “…a place having boundaries with material properties that distinguish it from its
surroundings…”

• “…a material entity that shapes the space where it is located, influencing visi-
bility and/or mobility over it”.

Each of these two parts is in genus plus differentia form. The first part states that
a feature is a kind of place, and the second says that a feature is a kind of material
entity. Remember from Chap. 9 that the genus in the definition of a class refers to
the same concept as the class’ superclass. This means that Feature, having a
two-part definition, must have two superclasses. Look at Fig. 12.1. Here, the
Feature class participates in two separate generalization relationships. On the one
hand, it is a subclass of Place according to Origin, together with its sibling class
NaturalPlace, because natural places are not human made, whereas features are
human made. On the other hand, Feature is a subclass of MaterialEntity according
to SpatialSignificance together with its sibling Artefact, since features are spatially
mediated whereas artefacts are not. Again, the point here is not whether this con-
ceptualization is good or not, but to focus on the fact that a class, Feature, is defined
through a double generalization.

Note that, because of the double generalization, the rule of inheritance that we
introduced in Chap. 9 applies to Feature through both of its superclasses. The rule
says that anything that we may say about a class also applies to all its subclasses. As
a consequence, Feature in our example inherits simultaneously via two paths: it
inherits the CoordinateX and CoordinateY attributes from Place, and also the
Material attribute from MaterialEntity. This makes sense since, according to its
definition, a feature is both a place and a material entity and, as such, is expected to
have coordinates (as any other place) and be made of matter (as any other material
entity).

Place

CoordinateX: 1 Number
CoordinateY: 1 Number

MaterialEn ty (A)

Material: 1..* enum Materials

Feature

Description: 0..1 Text

ArtefactNaturalPlace

Origin Spa alRelevance

Fig. 12.1 The Feature class has two superclasses, which means that it is involved in two separate
generalization relationships

116 12 Advanced Generalization

Technical
Multiple generalization is often named “multiple inheritance” in the con-
ceptual modelling and object-oriented programming literature. Although it is
true that multiple generalization entails multiple inheritance, they are not the
same thing. Generalization is a structural relationship between classes,
whereas inheritance is a phenomenon that occurs as a consequence of gen-
eralization. For this reason, we think that the term “multiple generalization” is
more expressive, since it points to the root issue rather than one of its con-
sequences. If you are not a purist, then you can assume that, for practical
matters, both “multiple generalization” and “multiple inheritance” mean the
same.

In our example above, Feature is defined as a blend of two things, and as a
consequence, it has two separate generalization relationships. In theory, it is pos-
sible that a class has an even larger number of generalizations, although this is very
rare. Even classes like Feature here, with a double generalization, are uncommon.
In addition, it is often possible to argue that a class with double or multiple gen-
eralization can better be modelled through aggregation. Consider the example
depicted in Fig. 12.2. In this example, the same situation has been modelled in two
different manners: through multiple generalization, and through aggregation. In
Fig. 12.2A, we can see the same solution as in Fig. 12.1. In B, however, the
generalization relationships have been replaced by whole/part associations with a
cardinality of 1. The difference is crucial: in A, we are saying that a feature is a kind
of place and also a kind of material entity. As such, Feature inherits everything
from its superclasses. In B, on the other hand, we are saying that a feature contains,
or is composed of, a place and a material entity. In consequence, Feature does not
inherit anything from Place and MaterialEntity. A hybrid solution where Feature
would have a single generalization towards either Place or MaterialEntity, plus a
whole/part association with the other, is also possible; in this case, we would be
saying that a feature is a kind of place and contains a material entity (or the other
way around). Also, solutions where plan associations, instead of whole/part asso-
ciations, are used, are also possible. Which solution is best depends on the
semantics of the particular classes involved, the purpose of the model, and its
overall structure. When trying to decide, look at how we refer to the involved
concepts in spoken language; does it make sense to say that “a feature is located in a
place”? Does it make sense to say that “a feature is a material entity”?

Multiple generalization is a very powerful technique that can solve very specific
situations when needed. However, try not to overuse it.

Multiple Generalization 117

Technical
In some communities, multiple generalization has a bad reputation of being
unnecessary or even harmful. This is especially so in the context of some
object-oriented programming languages. In fact, many modern languages
such as C# or Java do not support it, although others such as C++ or Python
do. Most negative views of multiple generalization, or multiple inheritance as
it is often called, derives from the fact that it is difficult to implement in a
language compiler from a programming point of view. In addition, multiple
inheritance has been overused by programmers in situations where it does not
make sense, such as scenarios where you want a class to “reuse” features of
another class, even though no subsumption semantics exist between the
underlying concepts.

Conceptual modelling is different from programming. Reasons about
difficulty to implement or inappropriate use in programming should not affect
us, so feel free to use multiple generalization if it makes sense in your models.

Place

CoordinateX: 1 Number
CoordinateY: 1 Number

MaterialEn ty (A)

Material: 1..* enum Materials

Feature

Description: 0..1 Text

Origin Spa alRelevance

Feature

Description: 0..1 Text

Place

CoordinateX: 1 Number
CoordinateY: 1 Number

MaterialEn ty (A)

Material: 1..* enum Materials

1
1

0..*0..*

Loca on
Materiality

(A)

(B)

Fig. 12.2 Multiple
generalization and
aggregation. In A, Feature is
defined as being a kind of
place and also a kind of
material entity. In B, Feature
is defined as being composed
of a place (its location) plus a
material entity (its materiality)

118 12 Advanced Generalization

Dominant Generalizations

The fact that a class may have multiple superclasses opens the door to a number of
potential issues. For example, look at the situation in Fig. 12.3.

Here, our running example has been extended to include a top-level class,
ArchaeologicalEntity, bearing an Id attribute to represent the fact that we want to
assign a unique identifier to any archaeological entity that is recorded. This may
seem an innocent move, but consider the following. Both Place and MaterialEntity
inherit the Id attribute. In addition, Feature inherits everything from Place and
MaterialEntity, which now includes the Id attribute for each of them. This means
that Feature would seem to inherit the Id attribute twice, once through Place and
once through MaterialEntity. This would not make sense, since we do not want to
have entities with two identifiers; also, a class cannot have multiple attributes
having the same name. This situation is often called the “diamond problem” in the
conceptual modelling literature, since the four classes involved are usually arranged
in a diamond shape.

ConML solves the diamond problem by asking you, the modeller, to decide
which of the generalizations of Feature should dominate in case of conflict. We
said in the previous section that a feature is both a place and a material entity, and
hence the double generalization. But we did not specify any priority. Now we must
think about this. Is a feature mainly a place, which also has something of a material
entity? Or, to the contrary, is a feature mostly a material entity that also has a touch

Place

CoordinateX: 1 Number
CoordinateY: 1 Number

MaterialEn ty (A)

Material: 1..* enum Materials

Feature

Description: 0..1 Text

ArtefactNaturalPlace

Origin Spa alRelevance

ArchaeologicalEn ty (A)

Id: 1 Text

Kind

Fig. 12.3 The model from Fig. 12.1 has been augmented with a top-level class
ArchaeologicalEntity. In this situation, Feature is subject to the “diamond problem”

Dominant Generalizations 119

of place? Depending on the purpose of the model and our conceptualization of the
involved categories, we must choose one or the other. Look at Fig. 12.4. Here, the
small dot next to the right-hand side generalization line coming out of Feature
marks the dominant generalization. We have chosen to make MaterialEntity, rather
than Place, dominate over Feature; we could have chosen the other way around,
but we thought that features are essentially material entities, their place component
being secondary. Again, you may choose differently depending on your purpose
and conceptual framework.

Once a dominant generalization has been established, any inheritance conflict is
resolved by prioritising this generalization over any other (remember that a class
may potentially have multiple generalizations, not just two). In our example, the Id
attribute that would be inherited twice by Feature is inherited only once via the
MaterialEntity path, thus solving the diamond problem. Having a clear dominant
generalization is also necessary when features are redefined, as described in
Chap. 17.

Always mark the dominant generalization whenever a class has multiple gen-
eralizations. To decide which one to choose, think about the concept you are trying
to model, and select which of its superclasses gives it more semantic weight.

Place

CoordinateX: 1 Number
CoordinateY: 1 Number

MaterialEn ty (A)

Material: 1..* enum Materials

Feature

Description: 0..1 Text

ArtefactNaturalPlace

Origin Spa alRelevance

ArchaeologicalEn ty (A)

Id: 1 Text

Kind

Fig. 12.4 The model from Fig. 12.3 has been completed by marking the dominant generalization
for Feature with a selector dot

120 12 Advanced Generalization

Other Inheritance Issues

In addition to the diamond problem, there are some situations where inheritance
conflicts yield invalid models. Consider the situation depicted in Fig. 12.5.

Here, the HeritageElement.Name attribute is inherited by Object and Agent and
then, in turn, by Person. However, Person declares a Name attribute of itself. This
would cause two attributes with the same name to coexist in the same class, which
is illegal. In general, if a feature inherited by a class results in a name clash with a
feature owned by the class, the class is deemed illegal. Note that situations like
these are unlikely to happen, because the fact that two features (such as the attri-
butes in our example) share the same name indicates that they probably have very
similar semantics. If this is the case, you should rethink your model and consolidate
the two attributes into a single one, which would immediately solve the problem.
Alternatively, you can find a better name for one of the involved features (or both)
if they truly have different semantics.

A similar situation can occur when the conflict is between different features in
different classes. Consider the example in Fig. 12.6. Here, the Feature class inherits
two different attributes that happen to have the same name. Note that this is different
from the diamond problem described in the previous section. In the diamond
problem, one attribute is inherited twice via different paths; now, we have two
different attributes with the same name. As long as these attributes are kept in their
respective classes (Structure and Place in the example), there is no problem. But
when a class is introduced that inherits from both, a clash ensues, producing an
invalid model. If you find a problem like this, you should rename at least one of the
attributes so that inheritance does not result in a name clash.

HeritageElement (A)

Name: 0..1 Text

AgentObject

Person

Name: 1 Text

Kind

Fig. 12.5 The Person class
inherits a Name attribute,
which clashes with its own
Name attribute. The asterisk
indicates that this is an invalid
model

Other Inheritance Issues 121

Summary

A class may not have multiple specializations, but it can have multiple
generalizations.

When a class participates in multiple generalizations, it inherits via all of them
simultaneously.

In a class with multiple generalizations, one of the must be marked as dominant,
so that clashes due to features inherited through multiple paths can be resolved.

If a feature inherited by a class results in a name clash with a feature owned by
the class, the class is deemed illegal.

If a feature inherited by a class from a given ancestor class results in a name
clash with a different feature inherited by the class from a second ancestor class, the
class is deemed illegal.

Exercises

19. Imagine that you are given a model having an Event class to describe things that
happen in a particular time and place, as well as a Group class to describe
groups of people. You need to introduce a new class to represent social acts
such as people going to church or having a party. Use multiple generalization
and/or associations to connect the new class to the existing ones.

Structure

Description: 0..1 Text

Place

Description: 1 Text

Feature

Fig. 12.6 The Feature class
inherits two different
Description attributes via
different paths. The two
attributes clash once inherited.
The asterisk indicates that this
is an invalid model

122 12 Advanced Generalization

Chapter 13
Model Architecture

Abstract In this chapter, we deal with the issue of organizing large and complex
models so that they are easier to use and maintain. We introduce the notion of
model architecture, which refers to the way in which we organize a model into a
meaningful structure, so that classes and other elements are easy to locate and
change. We explain how packages can be used to provide a model with a good
architecture. Packages are groups of classes and enumerated types that share a
common theme. For example, we can put all the classes related to interventions
(such as Excavation or Survey) in a model about archaeology data management into
an Interventions package.

The examples that we have been using so far to illustrate concepts and propose
exercises involve very simple models of only a few classes. However, models
created to solve real-world scenarios can grow much larger, sometimes in the
hundreds or even thousands of classes. As you can imagine, managing a model that
large can get complicated. Tasks such as adding a new class or altering the way in
which two classes are associated can have unexpected effects on other areas of the
model. To mitigate this and fight against complexity, the notion of model archi-
tecture must be introduced. Model architecture refers to the way in which we
organize a model into a meaningful structure, so that classes and other elements are
easy to locate and change according to some clear principles. Imagine a type model
of a few hundred classes interconnected by dozens of associations. In the absence of
architecture, the classes and association would make up a homogeneous mesh, in
which everything is connected to everything in a more or less direct fashion.
A good architecture would arrange these classes into meaningful groups, so that
classes inside a group would be closely related, whereas classes of different groups,
while still being related, would hold a much weaker connection.

In this manner, architecture gives “texture” to a model by creating “lumps” of
classes and other elements. A model without an architecture is like a book with no
chapters or paragraph breaks; finding or changing something is extremely difficult.
Contrarily, a model with a well-designed architecture is similar to a book with a
clear chapter structure and nicely separated paragraphs: finding information and

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_13

123

changing it becomes much easier. Of course, architecture becomes more relevant as
a model grows larger. Since you can never foresee how large your models will
grow, it is good practice to consider architectural principles from the beginning,
since retrofitting an architecture into a model that has grown large without one is
often tedious and difficult.

Technical
The ability to provide structure through architecture is one of the biggest
advantages of using conceptual modelling to represent the world at a high
level of abstraction over the usage of data encoding techniques such as linked
data by themselves. Using RDF [33], for example, data is viewed as a col-
lection of subject–predicate–object triples, where any of the triple compo-
nents may point to a resource or data type, and object components may
additionally contain a literal. This allows for the construction of interlinked
data “atoms” in more or less large meshes. However, there is no way to
provide coarse-grained structure to these meshes. Conversely, conceptual
modelling provides several levels of granularity and texture: for example,
objects encapsulate atomic data values; whole/part associations create larger
aggregates; and packages, as we discuss in this chapter, can organize related
classes together. Other mechanisms such as patterns or clusters, which we
describe in further chapters, also help in architecting a conceptual model.

Packages

In order to organize classes and other elements into meaningful groups in a type
model, we use packages.

We define a package as follows:

Definition
A package is a group of related classes, enumerated types and possibly sub-
packages.

As its name indicates, a package packs together classes and enumerated types
that are related in some manner. For example, imagine that we want to create a
model to describe archaeological intervention processes. We would need a few
classes to represent the archaeological features and elements on which interventions
occur; we would also need a few classes to represent the excavations, surveys and
other relevant processes that operate on the former, and finally, we would need

124 13 Model Architecture

some classes to describe the places and other spatially related concepts to help us
locate where everything takes place. As you can see, it is easy to come up with a
rough idea of what class groups may exist in the model. Each of these groups would
become a package.

A package has a name which briefly describes what the package is about. In our
previous example, we could name our packages ArchaeologicalRecord,
Interventions and Places, for example. A package may also have a description that
declares the common theme of the elements grouped by it.

Note that packages group together related classes and enumerated types. Other
model elements, such as generalizations, attributes and associations, are grouped
indirectly, since they are tightly connected to classes. For example, if we put our
Excavation class into the Interventions package, then all the attributes and
semi-associations of this class will also be in the package, albeit indirectly. Classes
and enumerated types that belong to a package are usually referred to by using the
package name as a prefix of their own name and using a colon as separator. For
example, we would refer to the Excavation class in the Interventions package as
Interventions:Excavation. If this class had a Date attribute, for example, we would
refer to it as Interventions:Excavation.Date.

Packages are not meant to be isolated from each other; in fact, type models are
usually continuous, so that it is possible to travel from any class to any other by
navigating associations. In this regard, associations between classes may cross
package boundaries and thus provide the “glue” between packages. Consider the
situation shown in Fig. 13.1. There are three classes in the Interventions package
and another three in the Places package. Note that each class is placed in a package
together with classes of a common theme. Although an association connects classes
of different packages, most relationships occur within packages. In this manner, we
keep dependencies between packages under control. Dependencies and model
quality are a complex topic on which we elaborate in Chap. 31.

Also in Fig. 13.1, note that package names are shown explicitly as part of class
names, as we described above. This is convenient when you want to show classes

Interventions:Process (A)

StartDate: 1 Time
EndDate: 0..1 Time

Interventions:Excavation Interventions:Survey

Places:Location

Name: 0..1 Text

TakesPlaceIn 10..*

Places:Town

TypeOfWork Shape

Places:Area

Coordinates: ?

IsSupportedBy

0..*0..*

0..*

0..*

Fig. 13.1 A few classes in two different packages. Package names are used as prefixes to class
names

Packages 125

from different packages in a single diagram, but it can turn tedious when all the
classes in your diagram belong to the same package. Imagine that you wanted to
draw a diagram focusing on the Interventions package. You could do something
like in Fig. 13.2. Here, an overall package declaration is made by writing the
special word package followed by the package name that we are focussing on. Any
class that is shown without an explicit package prefix to its name must be now
interpreted as belonging to this declared package. You can still mix in some classes
with explicit names, like Places:Location in the example.

In any case, bear in mind that packages are optional, that is, you can use
packages to organize your models if you need to, or ignore them if not necessary.
Most simple models with ten or twenty classes perhaps do not strictly need
packages. Still, add them if you plan to grow your model or if there is a neat
grouping of classes that you want to make.

Finally, packages can be nested. If you look again at the definition of package at
the beginning of this section, you will see that it mentions subpackages.
A “subpackage” is simply a package that is nested inside another package. You can
use this to organize classes and enumerated types in very large models into hier-
archical groups. For example, imagine that we develop our model from earlier in
this section much further, adding a few dozen classes in the ArchaeologicalRecord
package. We may want to add different subpackages to group together classes
related to features, artefacts, stratigraphy and other areas of the archaeological
record. Subpackages are named like regular packages and usually referred to by

Process (A)

StartDate: 1 Time
EndDate: 0..1 Time

Excava on Survey

0..*

TypeOfWork

IsSupportedBy

0..*0..*

Places:Loca on

Name: 0..1 Text

TakesPlaceIn 1

package Interven ons

Fig. 13.2 Classes in the Interventions package plus an external class. Note the “package”
declaration at the top left of the diagram

126 13 Model Architecture

using the same prefix system described above for packaged elements. For example,
our package about stratigraphy would be referred to as ArchaeologicalRecord:
Stratigraphy, and the Deposit class inside it would be referred to as
ArchaeologicalRecord:Stratigraphy:Deposit.

Summary

Providing a model with a clear and well-designed architecture is very important
and absolutely crucial if the model is complex.

Packages are groups of classes and enumerated types that share a common
theme.

Packages are optional and can be nested inside other packages.

Exercises

20. Take the model in Fig. 13.1 as a basis, and complete it by adding a Team class
to represent the teams that carry out interventions, as well as a Report class to
represent the documents generated by these teams. Put these classes in an
existing package or create a new package if you think it is necessary.

Packages 127

Chapter 14
Vagueness

Abstract In this chapter, we deal with the fact that many aspects of the world are
unclear, imprecise or not well defined, and when we try to represent them in a
model, we are often confronted with the need to either remove or explicitly manage
this vagueness. To this end, we introduce two kinds of vagueness: ontological and
epistemic, the first dealing with entities that are naturally imprecise, and the second
dealing with the fact that our knowledge about things is not always complete and
accurate. To help in dealing with vagueness, we introduce null and unknown
semantics. By using the null special keyword in a model, we can state that a fact
does not exist; by using the unknown special keyword, we can state that a fact
exists, but we are not aware of what it is. Then, we move on to describe some
specific techniques to express ontological and epistemic vagueness in conceptual
models. We focus on the use of abstract enumerated items (introduced in an earlier
chapter), arbitrary time resolution, and the explicit modelling of vague situations
through classes and features.

Conceptual modelling is a highly analytical technique through which we break
reality down into small parts in order to represent it. Traditionally, and especially in
engineering areas, conceptual modelling has excelled at capturing extremely
well-detailed pictures of the world; however, it has struggled with vagueness.
Despite our analytical efforts, many aspects of the world are unclear, imprecise or
not well defined. When we try to represent them in a model, we are often con-
fronted with the need to make arbitrary decisions in order to remove the vagueness.
For example, think of something as simple as a hill that you are familiar with. This
hill is probably a very clear entity to you, and you will probably even give it a name
to individuate it from other entities. However, hills do not have clearly established
boundaries. For example, is the slope part of the hill? How far do we need to walk
to stop calling the place a hill? We may resort to administrative or legal boundaries
to solve this, but these boundaries are themselves the result of an arbitrary decision
made by someone according to some criteria. Depending on who you ask, what
criteria you use and what your purpose is, your hill may encompass little or much
territory.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_14

129

Vagueness has traditionally represented a problem for conceptual modelling, and
the usual approach to dealing with it has been to ignore it or to simplify our
conceptions of reality so that most vagueness is removed. Although this approach is
useful in some scenarios, it should not be used all the time. ConML attempts to
address vagueness through a few mechanisms that we introduce in this chapter.

Ontological and Epistemic Vagueness

The first thing we need to consider when discussing vagueness is that it comes in
two flavours. On the one hand, there is ontological vagueness, also called impre-
cision, which refers to things in the world that are not clear-cut. A good example is
that of natural places: if you are sitting at the top of our above-mentioned hill, you
may certainly state that you are on the hill. If you are sitting at the bottom of the
valley next to the hill, you can safely say that you are not on the hill anymore.
Between these two extremes, there is a gradient of imprecision, so that if you start
walking downhill from the top towards the valley, it is difficult, or even impossible,
to determine when you stop being on the hill and start being outside it. In fact, “on
the hill” and “outside the hill” are simplifications that do not make much sense
when we are dealing with continuous phenomena. The sorites paradox [3, “Sorites
Paradox”] is a well-known manifestation of this. This paradox says that if we take a
grain of sand out of a big heap, the heap will still be a heap, because removing a
single grain from a large heap does not make it stop being a heap. Using this logic
and repeating the process, we can take a second grain, and the heap will still be a
heap. The paradox becomes evident as we keep going until we have removed all the
grains of sand in the heap and still claim that there is a heap where nothing is left.
The error here is to assume that ‘being a heap’ is a clear-cut predicate, when it is
not. Because of the nature of the ‘heap’ concept, whether something is a heap or not
is imprecise. Similarly, the boundaries of a city or a hill are also imprecise. In
summary, we define ontological vagueness as follows.

Definition
A characteristic of a category is ontologically vague, or imprecise, if any
statement about an entity of this category stays true even when the quality
expressed for said characteristic varies.

Think about the surface area of a city. According to our definition above, the
City.Area attribute is imprecise, because we can make statement about a given city
c such as c.Area = 8512 and c.Area = 8592 and, despite the variation, both of them
are true.

On the other hand, there is epistemic vagueness, or uncertainty, which refers to
situations where our knowledge about something is unclear or incomplete. For

130 14 Vagueness

example, we can use radiocarbon techniques to date the age of an artefact, but the
results will invariably contain an error margin, so that our knowledge about the
artefact’s age will be vague. Note that it is not the artefact age what is vague here; in
fact, that particular artefact has a very precise age. On the contrary, it is our
knowledge about it that is vague. Consider another example: we usually estimate
population sizes of cities or villages through rough approximations such as in
“Sydney has 5 million people”; however, there is a particular number of people,
down to the very last digit, who are registered as Sydney dwellers at any moment.
Since we do not know the exact number, and using it would be too cumbersome, we
resort to a good enough approximation. This approximation contains uncertainty. In
this manner, we define epistemic vagueness as follows.

Definition
An object, value or reference is epistemically vague, or uncertain, if the
belief that the statement represented by it is true is not complete.

According to this, the value s.Population = 5.000.000, where s stands for
Sydney, is uncertain, because we are not completely sure that the statement is true.

There are a few differences between the two kinds of vagueness that we should
consider. To start with, ontological vagueness affects some facts and phenomena,
whereas epistemic vagueness affects every fact and phenomenon. There are char-
acteristics, such as ‘how many children Alexander the Great had’, that contain no
ontological vagueness: it was either zero, or one, or two, etc. However, any fact or
phenomena are potentially known, unknown or partially unknown to us. This is
why we say that epistemic vagueness is a cross-cutting concern that applies to
anything, whereas ontological vagueness is an intrinsic property of some things
only.

Note also that one good way to fight against epistemic vagueness is to use
inaccuracy. For example, if we are not sure about the number of children of
Alexander the Great, we can say that “he had between 2 and 5” and be pretty safe.
Giving an interval is less accurate than giving a fixed number, and therefore more
encompassing, so the chances that the true answer falls within the interval are
larger. In other words, by decreasing accuracy we increase the chances that what we
state is true, and this way we diminish uncertainty.

In addition, and in relation to the previous, ontological vagueness is universal, in
the sense that, being intrinsic to the facts or phenomena, it will always be the same
regardless of who observes or describes these facts or phenomena. Contrarily,
epistemic vagueness is related to our knowledge about things, so that it will vary
subjectively depending on who observes or describes something. In other words,
you may know very well how many children Alexander the Great had, but I may
ignore it or have doubts about it.

Ontological and Epistemic Vagueness 131

However, both ontological and epistemic vagueness admit degrees. That is to
say, a fact can be more or less imprecise, and a value or object may be more or less
uncertain. Vagueness is gradual rather than a black and white phenomenon.

Null and Unknown Semantics

To help deal with vagueness, ConML incorporates two special words that we can
use to describe values and objects: null and unknown. We introduced null in
Chap. 4 when discussing objects with non-existing values. We now complete this
with additional scenarios and in opposition to unknown.

We can use null in a model to state that a value or an object does not exist.
Existence pertains to the ontology of things. Consider the example in Fig. 14.1.
Here, we write Style = null as part of object b to represent the fact that this building
does not have a style. This does not mean that we do not know what style it is, but
that it lacks a style altogether. Similarly, we write Owner = unknown as part of
object c to indicate that this building does have an owner, but we do not know about
them. As we explained in Chap. 6, a value may be null if its type attribute has a
minimum cardinality of zero; this is the case for Building.Style. By deciding which
attributes and semi-associations have zero minimum cardinalities when creating a
type model, you are indicating which values and references may be null in any
conforming instance model and thus capture a very rough form of ontological
vagueness, that of simple absence. On the other hand, and as we said in the previous
section, epistemic vagueness applies to everything, and so we can use unknown for
any attribute or semi-association, regardless of its cardinality, in order to express
epistemic vagueness. Fig. 14.1 uses compact notation for the Owner
semi-association, but unknown can also be used with extended notation. See, for
example, Fig. 14.2.

Fig. 14.1 Some objects showing null and unknown values and references

132 14 Vagueness

Here, the fact that building c’s owner is unknown is represented by an
IsOwnedBy link from the c object to a person instance having unknown as identifier.
Also, note that values for the unknown object are omitted. This object stands for c’s
owner, which exists, but about which we know nothing.

Table 14.1 summarizes the meaning of null and unknown.
We also said in Chap. 4 that the concept of existence in conceptual modelling is

rather informal. In fact, when we say that null means that a fact does not exist, and
that unknown means that a fact does exist, we are talking about existence in the
portion of the world that we are interested in. This may correspond to actual
existence or not; for example, if we develop a model to describe British legends, we
may include an object to represent the sword Excalibur. This sword exists as far as
the model is concerned; that is, it is a part of the portion of reality that we are trying
to model. Whether Excalibur is fictional or real does not matter in this context.

You must also bear in mind that values with some special contents may be easily
confused with null or unknown, but they are different. For example, a value of zero
for an attribute of type Number is a regular value and should not be confused with a
null or unknown value. Similarly, a value of an empty text for an attribute of type
Text is also a regular value, not related to null or unknown. In other words,
Description = “” and Description = null are very different things: the former states

Building

Name: 1 Text
Style: 0..* Text

Person

GivenName: 1 Text
FamilyName: 1 Text
Nationality: 1..* Text
DateOfBirth: 1 Time

IsOwnedBy 0.. 10..*

Owner

c: Building

Name = “Cathedral ”
Style = “Gothic ”

unknown: PersonIsOwnedBy

Owner

Fig. 14.2 The Owner semi-association in Fig. 14.1 is now depicted using extended notation. Note
the unknown object on the bottom right

Table 14.1 Semantics of null and unknown as compared to non-vague information

Expression Statement about
fact

Statement about knowledge on
fact

Example

null Fact does not exist n/a Style = null

unknown Fact exists Fact is not known by us Owner = unknown

(others) Fact exists Fact is known by us Name = “Cathedral”

Null and Unknown Semantics 133

that there is a description, that we know about it, and that it is “” (an empty text);
the latter states that there is no description.

Technical
If you are familiar with database development or computer programming, you
may have come across situations where “magic” values such as zeros or
empty strings are employed with special meanings, often used to indicate
unknown or unavailable information. For example, a Year column in a
database table holding excavation data may contain zeros to indicate that the
excavation year is unknown. This is an implementation trick, which may
work correctly if the necessary precautions (such as documenting it properly,
writing special code to handle such cases or hiding them altogether from
users) are taken by the programmer. However, you should not use these tricks
in conceptual modelling because, conceptually, a special value is still a value.
Instead, use null and unknown in your conceptual models as often as nec-
essary and as described above.

Finally, we must remark that null and unknown are only very partial solutions to
the problem of vagueness. In particular, null only allows us to state that something
does not exist, but we cannot express degrees of imprecision, like in the case of the
boundaries of a hill as exemplified above. Similarly, unknown is useful to declare
that something is not known, but we cannot describe partial certainty or doubt.
A comprehensive treatment of vagueness in conceptual modelling is not possible
yet. We hope that additional research on this field will improve this situation over
the next few years. The following sections, as well as Chap. 18 on metainformation,
present additional techniques that can help us cope with vagueness in the meantime.

Using Abstract Enumerated Items

In Chap. 7, we introduced enumerated types and said that enumerated items can be
organized in hierarchies. This is one of the examples we used:

Hierarchical enumerated types, as we explained, may be used to represent
subsumption or aggregation between items. In the example above, Galicia and

134 14 Vagueness

Andalusia are part of Spain, and Spain, together with France and Germany, is part
of Europe. When we use an enumerated type like this to specify the location of
something, we can choose what level of detail we want to use. Consider the
situation in Fig. 14.3. Here, object p specifies the birthplace of the represented
person by using a leaf enumerated item which, in this case, is at depth 2 in the
hierarchy. Object q, however, uses an item at depth 0. As we said in Chap. 7, an
item at depth 0 is much more abstract than an item at depth 2, and for this reason we
can say that p is being more precise than q in the specification of its birthplace.

We can use varying depth of enumerated items to model different levels of
vagueness, both ontological and epistemic. In the example above, we are using
Europe as a value because we do not know exactly where Matthew Rooster (rep-
resented here by object q) was born. By stating BirthPlace = Europe, we are being
purposefully inaccurate, and thus providing a representation of the world that is
much less vague. Contrarily, we are sure that Frederick Rooster was born in
Andalusia, so we can be much more accurate for object p and use a depth 2
enumerated item. This is a case of epistemic vagueness: the more details we have
about something, the more accurate about it that we can be in the model and still be
safe.

Hierarchical enumerated items can also be used to model ontological vagueness.
Imagine, for example, that we want to express where the bell-beaker culture took
place. We know that it happened in Western Europe, but its boundaries are naturally
(ontologically) vague; for this reason, the best thing we can do is say Europe (or
WesternEurope if this were an option in the enumerated type) instead of trying to be

p: Person

GivenName = “Frederick”
FamilyName = “Rooster”
Nationality = “American”; “French”
BirthPlace = Andalusia

Person

GivenName: 1 Text
FamilyName: 1 Text
Nationality: 1..* Text
BirthPlace: 1 enum WorldRegions

q: Person

GivenName = “Matthew”
FamilyName = “Rooster”
Nationality = “American”
BirthPlace = Europe

Fig. 14.3 Objects p and q use different levels of detail for the enumerated attribute BirthPlace

Using Abstract Enumerated Items 135

more specific. Note that, in this case, accuracy is not at play here, since we are
dealing with an ontologically imprecise characteristic, rather than dealing with a
relationship between a characteristic and our imperfect knowledge about it.

Sometimes, using abstract enumerated items can create ambiguous situations.
For example, imagine that we are mapping language usage and, for a particular
language, we state that a.DistributionArea = Europe. This may mean two things:

• The language is spoken in some uncertain area within Europe. We do not know
where exactly, so we state Europe as an epistemically vague fact.

• The language is spoken throughout Europe. We are sure that it is spoken in the
whole continent, so we state Europe as an epistemically certain fact.

The first interpretation entails epistemic vagueness, but the second does not.
From the value statement a.DistributionArea = Europe, we cannot tell which one is
the correct interpretation, and thus ambiguity ensues. Situations like these often
appear when the enumerated type being used uses hierarchical items to represent
aggregation, like in our world regions example. When the enumerated type rep-
resents subsumption, ambiguity rarely appears. In any case, be aware of the pos-
sibility of ambiguity and, if it exists, try to model your information in a different
manner, as described at the end of this chapter.

Using Arbitrary Time Resolution

Another manner to express vagueness in a model is to use the arbitrary resolution of
the Time data type. We described simple data types back in Chap. 6 and defined the
Time type as one for which values are time points of any precision and not limited
to the usual scheme of days, months, years, hours, minutes and seconds. Some
example values could be 8 June 1917 at 17:30, May 2012 or late twelfth century.
Since the Time type allows for a varying level of detail, we can choose to be more
or less specific when stating a time “point”. Consider the example in Fig. 14.4.
Here, object p uses a quite detailed expression to describe Frederick Rooster’s date
of birth, since we have a high degree of confidence about it. However, object q uses
a less detailed expression for Matthew Rooster’s date of birth, because we are not as
sure. We know he was born sometime in early 1919, so that is all we can state
safely. Like in the case of hierarchical enumerated items, we are being purposefully
inaccurate to gain in certainty and thus fight epistemic vagueness.

You can think of attributes of the Time type as being able to refer to any point in
time, but this “point” can be as “thin” or “thick” as you need. However, note that,
like in the case of abstract enumerated items, this may raise some ambiguities in
certain situations. For example, imagine that we are trying to describe when a
building was constructed, and that we express it as b.ConstructionDate = late
eighteenth century. There are two potential interpretations for this:

136 14 Vagueness

• The building was constructed at some uncertain point within the late eighteenth
century. Since we are not sure when, we state late eighteenth century as an
epistemically vague fact.

• The building was constructed throughout the late eighteenth century. We are
sure that construction was ongoing throughout the whole period, so we state late
eighteenth century as an epistemically certain fact.

The first interpretation claims that construction took place at some point within
the stated “thick” point of late eighteenth century, which we do not know for sure
so that late eighteenth century is the best we can do. The second interpretation, on
the contrary, claims that construction took place throughout the whole of the late
eighteenth century; we do not state such a long period because we are not sure when
construction actually happened, but because we are certain that it took that much
time.

Other situations are not ambiguous like this, because our prior knowledge, as
well as the definitions of the involved attributes, don’t allow for it. For example, if
we say that someone was born in the late eighteenth century, we can safely assume
the first interpretation above rather than the second one. This is because we know
that people are born at a very specific moment, so the second interpretation would
not make sense. You should be aware of the possibility of ambiguity and, when
detected, try to model your attributes in a different manner to avoid it, as we
describe in the next section.

p: Person

GivenName = “Frederick”
FamilyName = “Rooster”
Nationality = “American”; “French”
DateOfBirth = 11 June 1915

Person

GivenName: 1 Text
FamilyName: 1 Text
Nationality: 1..* Text
DateOfBirth: 1 Time

q: Person

GivenName = “Matthew”
FamilyName = “Rooster”
Nationality = “American”
DateOfBirth = Early 1919

Fig. 14.4 Objects p and q use different levels of detail for the time-typed attribute DateOfBirth

Using Arbitrary Time Resolution 137

Modelling Vagueness Explicitly

So far, we have described a few mechanisms that are built into ConML to model
some kinds of vagueness: null and unknown, abstract enumerated items and arbi-
trary time resolution. However, there are situations where none of these approaches
works. Some of these situations are of an ontological nature and involve the
description of imprecise qualities or quantities in scenarios where the approaches
presented in previous sections are not appropriate. This may be due to the fact that
the characteristic being described is not of a Time or enumerated type, so that the
techniques discussed above cannot be used, or to the fact that, even if these tech-
niques can be used, ambiguity would result. For example, we may want to docu-
ment the surface area of a valley, which is inherently imprecise and of a numeric
type, or we may want to document when a particular architectural style started
being fashionable, which despite being of a Time type, using “thick” time points
would be ambiguous as described in the previous section.

Other situations that also require an alternative approach to the modelling of
vagueness are of an epistemic nature, and involve the need to express a variable
degree of certainty about something. For example, we may want to state that we are
not too sure that a particular book was written by someone, or that it is possible, but
not very likely, that a building was destroyed in the late seventeenth century.

In situations like these, we must model vagueness explicitly in our model. This
often entails adding attributes to the class involved to represent the degree of
ontological or epistemic vagueness for a given characteristic. Consider the example
in Fig. 14.5. Here, the Settlement class is used to represent archaeological settle-
ments. In addition to the Population attribute, which is intended to describe how
many people lived there, there is a PopulationMargin attribute, which is meant to

Settlement

Name: 1 Text
Population: 1 Number
PopulationMargin: 1 Number

s: Settlement

Name = “Skara Brae”
Population = 50
PopulationMargin = 10

Fig. 14.5 The Settlement
class explicitly represents
epistemic vagueness through
its PopulationMargin
attribute

138 14 Vagueness

capture the error margin that we estimate for the population figure. As exemplified
by the s object, Skara Brae is estimated to have housed about 50 people, and we
estimate the error of this statement as plus/minus 10 people, which yields a range of
40–60 people in the settlement. Using an extra attribute to express an error margin
is very common in many disciplines and is routinely used, for example, to convey
radiocarbon dates.

Extra attributes can also be employed to represent our certainty about an epis-
temically vague characteristic, like in the example shown in Fig. 14.6. Here, the
Event class is used to describe historical events. Note how the Certainty attribute is
employed to capture what our certainty is about a particular event having happened
as described. According to the example, we are sure that the fall of the Berlin Wall
occurred in November 1989, and we consider it likely that Jesus of Nazareth was
born in 4 BC.

The two examples above explicitly describe epistemic vagueness through
additional attributes. Note that, however, this technique can also be employed to
describe ontological vagueness. Consider the situation in Fig. 14.7. Here, the Place
class uses a pair of attributes to represent the surface area of a place in square
kilometres. By using AreaMin and AreaMax attributes, we can specify what the
smallest and largest areas are that would be considered true for a place. Our defi-
nition of ontological vagueness states that a statement about an ontologically vague
characteristic stays true even when the quality expressed for this characteristic
varies, as explained at the beginning of the chapter. By using an attribute pair, we
can express the valid range of variability and, in this manner, describe the inherent
imprecision much better than with a single value.

Event

Description: 1 Text
Moment: 1 Time
Certainty: 1 enum Certainty

e: Event

Description = “Fall of Berlin Wall”
Moment = November 1989
Certainty = Certain

f: Event

Description = “Birth of Jesus of Nazareth”
Moment = 4 BC
Certainty = Likely

Fig. 14.6 The Event class represents our certainty about an event happening through its Certainty
attribute

Modelling Vagueness Explicitly 139

Of course, you can combine the different techniques described here to represent
vagueness in your models. Complex situations are rarely solved through a single
technique, so feel free to mix and match as necessary.

Summary

Ontological vagueness, or imprecision, is about entities in the world that have
fuzzy characteristics.

Some characteristics are inherently imprecise, while others are not.
Epistemic vagueness, or uncertainty, is about our knowledge being unclear or

incomplete about something.
Everything is subject to uncertainty.
Ontological and epistemic vagueness admit degrees.
We can be purposefully inaccurate in order to gain certainty. However, this

may entail ambiguity in some situations.
We can use the null special word in a model to express the fact that something

does not exist.
We can use the unknown special word in a model to express the fact that

something exists, but do not know about it.
Abstract enumerated items in a hierarchical enumerated type, as well as “thick”

time points, can be useful to add inaccuracy to a model so that uncertainty is
decreased.

Vagueness can also be modelled explicitly through extra attributes that represent
the ontological variability of the characteristic being represented, or our degree of
uncertainty about it.

Place

Name: 1 Text
AreaMin: 1 Number
AreaMax: 1 Number

c: Place

Name = “Sydney”
AreaMin = 12,000
AreaMax = 14,000

Fig. 14.7 The Place class
represents the ontological
vagueness of areas through a
pair of attributes

140 14 Vagueness

Exercises

21. Below you can find a list of characteristics. For each of them, state whether it
admits ontological vagueness, epistemic vagueness, none or both.

• A building’s height.
• A town’s name.
• The number of participants in an event.
• The starting date of a war.
• The entities affected by a social change process.

22. Create a type model to represent the fact that events happen at a particular place
and time, and involve a number of people. Pay special attention to feature
cardinalities, which will determine what features may take a null value. Then,
create an instance model based on the former, to represent the event of the
writing of the Voynich manuscript.

23. Modify the type model from the previous exercise with extra attributes to
represent the ontological imprecision of the time when events occur.

Exercises 141

Chapter 15
Temporality

Abstract In this chapter, we deal with the fact that the world is far from static, and
changes constantly, making the models that we construct today invalid tomorrow if
the things that they represent change in a significant way. We explain why simply
updating values and links is not sufficient to mitigate this and introduce the
aspect-oriented notion of phase as a solution. Phases are object “slices” that are
valid for a particular moment or period of time. We explain how phase selectors can
be used on values and links to create diachronic instance models. Then, we
introduce the notion of temporal features so that time-aware type models can be
constructed and adequately connected to conforming instance models. Similarly,
the notion of temporal aspect is described as a central time-oriented class in a type
model. Finally, the chapter ends with a discussion of explicit temporal modelling in
absence of phases by using specific class features to describe temporal validity.

From the very beginning of this book, we have emphasized that models represent
the world. However, the world is far from static and changes constantly. For this
reason, a model that we construct today may become invalid tomorrow if the things
that it represents change in a significant way. Although this applies to all kinds of
models, instance models are much more sensitive to the passing of time than type
models, because they represent specific entities that exist in the world rather than
abstractions. For example, we can state today that Height = 8 for a particular
building, but this building may be extended, destroyed or otherwise altered in the
future in a manner that changes its height, rendering our statement invalid. You may
think that this is an easy problem to solve: it would be enough to keep the model up
to date in accordance with whatever we observe. However, this solution has an
important drawback: if we update Height = 8 so that it becomes Height = 12 when
a new level is added to the building, we are losing the information that, at some
stage, the building was 8 m high, which may be very valuable. In other words, an
approach based on keeping the model up to date results in a freeze-frame picture of
the world which, if we are lucky and diligent, will show a static picture of the last
known state of things, with no historical information at all. Very often, however, we
are interested in a diachronic view of the world, one that captures its history as well

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_15

143

as the current state, so preserving information related to previous states of the world
in the model becomes a crucial concern.

This problem also affects type models, but in a much weaker manner. Type
models represent categories of things, which constitute abstractions that we develop
in order to organize the world. Constructed abstractions usually take the shape and
definition that we want to give them and are much less exposed to the usual changes
in the concrete world than actual entities. For this reason, the risk that a type model
becomes “out of sync” with the represented subjects is much lower than in the case
of an instance model and often negligible for most practical purposes. In this
chapter, we focus on the management of the temporality in instance models, using
an approach based on the concept of aspect. An aspect is a cross-cutting concern
that is modelled separately from the portion of the world being studied and then
“woven” into the rest of the model through special mechanisms. Both temporality
and subjectivity (described in the next chapter) are treated as aspects in ConML.

Technical
In the world of databases, the “bitemporal” approach to managing time is
quite popular [34, 35]. According to this approach, anything that is stored in a
database may be timestamped with two different pieces of data: its validity
time and its transaction time. Validity time refers to when the information is
considered to be true or applicable. For example, consider the fact of ‘the
construction of the Sphinx of Giza’. Its validity time would be 2500 BCE,
meaning that this is when the sphinx was constructed. Transaction time,
contrarily, refers to when a fact has been recorded. If we take the mainstream
views on the Sphinx of Giza, we should say that it was in 1949 when the
construction of the sphinx was determined as 2500 BCE, so this fact’s
transaction time would be 1949.

This approach, although practical in some scenarios, has been criticized
[36, 37] because it confuses information and metainformation. Validity time
is part of the information that we are dealing with and describes the associated
entity in the world; in our example, saying that the construction of the Sphinx
of Giza happened in 2500 BCE describes the sphinx. Contrarily, transaction
time does not describe the entity: saying that it was in 1949 when the date of
construction was estimated does not add information about the sphinx, but
about the process of its description. In other words, and in relation to the
entity being represented, validity time is information, whereas transaction
time is metainformation. Mixing up the two hinders modularity and thus
model quality, as described in Chap. 31.

For an extensive discussion on metainformation, please see Chap. 17.

144 15 Temporality

Phases

Imagine that we are interested in recording the usage of a number of buildings. We
may develop a model like that in Fig. 15.1. If we apply this model, we may end up
with objects like those in Fig. 15.2. Here, the building represented by object b is
used as a hospital, and the building represented by c is used as a temple. Note two
things. First of all, there is no indication in the model as to when it is applicable. In
other words, we do not know when building b was used at a hospital or when c was
used as a temple. Often, we make the assumption that the model is valid now, that
is, currently. But “currently” is a moving target, as we described above. Secondly,
there is no way in which we can record the history of use changes that a building
has gone through over time. That is to say, we cannot capture statements like “this
building was used as a hospital during the sixteenth and seventeenth centuries, but
today it is used for office space”. We could create a very contrived model that used
additional classes to represent this, but it would be tedious and unnecessary
complex.

To address these problems, ConML introduces the notion of a phase. A phase is
a version of an object that is applicable only at a certain point in time, and by “point
in time”, we mean anything from a very “thin” instant or a very “thick” period.
When using phases, we can think of an object as a stack of “slices”, each one being
a phase, and all of them making up the whole object. Look at Fig. 15.3. This is an
informal drawing of what we are after. Object b is pictured as a stack of versions,
each one having a different value for Use, and corresponding to a particular period.
The complete b object is the collection of versions that are stacked on top of each
other. However, this is not the right way to depict object phases. Look at the
diagram in Fig. 15.4.

Building

Address: 1 Text
Use: 0..* enum BuildingUse

Fig. 15.1 The Building class with a Use attribute to record building usage

b: Building

Address = “San Roque, 2”
Use = Hospital

c: Building

Address = “Obradoiro, 1”
Use = Temple

Fig. 15.2 Some instances of Building showing values for Use at some uncertain point in time

Phases 145

Here, three phases are shown for object b. The fact that the three rectangles in
the figure correspond to phases rather than complete objects is indicated by a phase
selector, that is, an expression written under the object identifier and class and
prefixed by an at sign @. Also, note that the three boxes show the same identifier, b;
this indicates that all of them refer to the same object. The @ sign can be read as
“at”, so that the leftmost box in Fig. 15.4 can be read as “object b of type Building
at sixteenth and seventeenth centuries”.

Also, note that in Fig. 15.4, none of the three boxes stands for the complete
b object. Actually, it would be difficult to draw the complete b object as a box by
employing the usual rules, since we would not know what to write for the Use
attribute, as it varies depending on time. In cases like this, we can use the ellipsis
notation to omit a particular value for attributes that are temporal, as in Use = ….

Phase selectors may be used on links as well. Consider the case in Fig. 15.5.

b: Building
@ 16c to 17c

Address = “San Roque, 2”
Use = Hospital

b: Building
@ 18c to 1890s

Address = “San Roque, 2”
Use = School

b: Building
@ 1988 to present

Address = “San Roque, 2”
Use = OfficeSpace

Fig. 15.4 Three object phases for object b, each with a different phase selector and a different
value for Use. You can imagine a time axis flowing from left to right

d: Building

Address = “16 Chasey Rd. ”
Use = Housing

e: Building

Address = “131 High Street ”
Use = Housing ; RetailShopping

p: Person

GivenName = “Matthew ”
FamilyName = “Rooster ”
Nationality = “American ”
BirthPlace = Europe

Fig. 15.5 Two links labelled with phase selectors, indicating their time validity

b: Building

Address = “San Roque, 2”
Use = Hospital

b: Building

Address = “San Roque, 2”
Use = School

b: Building

Address = “San Roque, 2”
Use = OfficeSpace

From 1988

18c to 1890s
16c and 17c

Fig. 15.3 Informal depiction
of the phases of building
b showing different values for
Use for different periods. The
asterisk indicates that this is
not a syntactically correct
model

146 15 Temporality

Here, two links of the same type are shown between the object for person p and
two building objects. Note the phase selectors next to the semi-association names
on the links. This model is stating that Matthew Rooster owned the house on 16
Chasey Rd. between 1931 and 1962, and the building at 131 High Street between
1950 and 1969. This indicates that two phases for object p exist: one for the first
period of time, and holding a reference to building d, plus a second one for the
second period of time and holding a reference to building e.

Either with values or links, there may be the case that the information to be
represented is the same for two or more time periods. For example, look again at
Fig. 15.5; we may need to say that Matthew Rooster owned the Chasey Rd. house
between 1931 and 1962, but also between 1966 and 1968. Instead of drawing two
links, each labelled with a different phase selector, we can draw a single link and
label it with a combined selector, as in Owns @ 1931–1962; 1966–1968.
A semicolon is used to separate different time periods.

Phases are optional. This means that we can create a new phase for an object
when we alter a value or a reference, but we are not obliged to. For example, look
again at Fig. 15.4. Imagine that we had written Use = Commercial instead of
Use = School for the phase in the middle, which would be wrong. We can correct
the mistake by rewriting the wrong value as Use = School as soon as we detect the
issue, and we do not need to create a new phase for it, since the change does not
involve a modification in the entity being described.

The time validity stated by a phase selector works by limiting the representa-
tional power of the corresponding model element to the time period mentioned. For
example, the 16c to 17c phase selector on the leftmost phase in Fig. 15.4 means that
whatever is stated by that phase, namely that object b has Address = “San Roque,
2” and Use = Hospital, is only valid between the sixteenth and seventeenth cen-
turies. The phase states nothing about the represented entity outside of this range. In
Fig. 15.4, we can see two other phases that complement the first one, covering all
the time line between the sixteenth century and the present, and thus giving us a
fairly complete diachronic view of the building. However, this does not need to be
the case: sometimes you will find a single phase making a statement that is only
applicable for a given period of time; outside that time, we have no information
whatsoever. The phase selectors on the links in Fig. 15.5 work in a similar way.

Finally, bear in mind that phases are useful to represent the ontological change of
the world being modelled. That is, you should use phases when the portion of the
world being modelled actually changes. You should not use phases to represent
changes in our knowledge of the world or to fix mistakes. Use phases to represent
actual changes to, for example, someone’s name, or a building’s height or materials,
or the owners of a piece of land. Do not use phases to represent situations involving
a change of mind about something, either because we obtain new information that
allows us to come up with a better account or because we realize that we were
wrong. For example, imagine that we describe a building b as having b.
ConstructionDate = 1715, and later, we find new evidence that makes us realize
that we were wrong, and the correct construction date is 1717. Do not use a phase to

Phases 147

record this change, since it is our knowledge about the building what has changed,
rather than the building itself.

In this regard, you must realize that, sometimes, we include classes in our
models that are of an interpretive nature. For example, we may have an Assessment
class in a model about heritage preservation. This class could have attributes such as
Description, Diagnosis, Date and Author. This class is not representing entities in
the physical world, but our subjective interpretation about a specific aspect of them.
If you write a diagnosis about a building and later you change your mind, you can
use a new phase to document the change in your interpretation, despite the fact that
the building itself has not changed. This is because the Assessment class represents
your ideas about the building, and these have actually changed.

Temporal Features

In the previous section, we explored how phases can help us represent specific
values or links that are valid only for a specific period of time. In Fig. 15.4, for
example, we used the Building.Use attribute as a time-varying characteristic that
takes different values over time, while the Building.Address attribute stays
unchanged. In fact, we can differentiate three kinds of features regarding its time
variability:

• Those attributes or semi-associations that cannot change over time. These are
called constant. For example, Person.PlaceOfBirth; once a person is born, there
is no way in which their birth place can change.

• Those attributes or semi-associations that may change over time, but for which
we are not interested in tracking their variations. These are called variable. For
example, Person.Age, assuming that it is enough for us to know how old a
person is today.

• Those attributes or semi-associations that may change over time and for which
we want to track their variations. These are called temporal. For example,
Person.Name, assuming that we are interested in keeping a historical record of
the different names used by a person over their lifetime.

Note that this difference is barely ontological, but mostly arises from our
modelling decisions. In other words, whether a feature is constant, variable or
temporal is not a property of the underlying characteristic being modelled, but of
the specific manner in which we choose to represent it. For example, a model to
manage loans in a library will probably consider the Person.Name attribute to be
variable, because knowing the currently valid name of library customers is enough.
However, a model for a biographical study of a family would probably consider
Person.Name as temporal, in order to maintain a historical trace of the different
names used by each family members. Your model domain area and its purpose will
determine whether a feature is constant, variable or temporal.

148 15 Temporality

Temporal features must be explicitly marked as such in a type model. Constant
and variable features, contrarily, are not marked. Look at the example in Fig. 15.6.

Here, the Building.Use attribute has been marked as temporal by adding an
upper case T in parentheses at the end of the line. This is called a temporal aspect
marker. Similarly, the Person.Owns semi-association has also been marked as
temporal. Other features in the model are not marked, meaning that they are either
constant or variable.

Note that associations can be temporal in both ways or only one way; that is, one
semi-association can be temporal while its inverse is not. The Person.Owns
semi-association Fig. 15.6 is temporal, and although its inverse is not explicitly
depicted in the diagram, it makes sense to assume that it would be temporal too,
since a building can change its owner over time. But consider, for example, the
association Person.IsTheAuthorOf pointing at Book. This would be temporal too,
since a person can write additional books in the future, and thus, the collection of
their authored books changes over time. However, the inverse semi-association
Book.WasWrittenBy pointing at Person is not temporal but constant because, once a
book is written, its author cannot change. You can explicitly show the names and
temporal markers of both semi-associations in a diagram if you need to show that an
association is temporal in both ways.

In addition, bear in mind that marking temporal features in a type model
determines how phases will work in the associated instance models. When a
variable (that is, not temporal) feature of a class is changed in an object, its value is
simply overwritten. However, when a temporal feature is changed in an object, a
new phase for the object may be created, so that the previous value of the feature is
preserved in the older phase, and the new value is recorded in the new phase. This is
illustrated in Fig. 15.7. In Fig. 15.7A, the value for Address, a non-temporal
attribute, is changed. This results in the old value being lost and overwritten by the
new one, so that, after the change, object b holds the new value. No phases are
involved. In Fig. 15.7B, however, the value for Use, a temporal attribute, is
changed. This results in a new phase being created so that the old Use value is
preserved in the previous phase, and the new value is recorded in the new one.

In summary, if you want to keep track of the changes of a feature over time,
mark it as temporal in your type model. Otherwise, leave it unmarked.

Building

Address: 1 Text
Use: 0..* enum BuildingUse (T)

Person

GivenName: 1 Text
FamilyName: 1 Text
Nationality: 1..* Text
BirthPlace: 1 enum WorldRegions

Owns (T) 0..*0..1

Fig. 15.6 In this diagram, the Building.Use attribute and the Person.Owns semi-association have
been marked as temporal

Temporal Features 149

Temporal Aspect

In the previous sections, we have described the concept of a phase selector, that is,
an expression prefixed by an @ character that indicates when a phase applies. See,
for example, Fig. 15.4. But, what are these expressions? How are they constructed?

We cannot write anything as a phase selector expression; whatever we use, it
must follow a very specific rule: it must resolve to an object that represents a point
in time. In other words, the expression in a phase selector is not a random
description of a period or moment, but must be a reference to an object that
represents a period or moment. For example, if we use @ 18c to 1890s as a phase
selector expression, as in Fig. 15.4, then this expression, 18c to 1890s, must be a
reference to an object that represents the period from the eighteenth century to the
decade of the 1890s. We have said that objects represent entities in the world;
objects used as phase selector expressions represent a very specific kind of entity:
points in time, however “thick” or “thin”. All the objects used in phase selectors in
an instance model, furthermore, must be instances of a particular class. Which class
it is and how it is named and characterized is up to us, but it must be a single class,
in order to guarantee a homogeneous treatment of temporality in the model. Look at
the example in Fig. 15.8. Here, two phases of an object are shown, together with
their type class, Building. In addition, a Moment class is shown as part of the type
model. Note that this class is marked with a temporal aspect marker, a T, in square
brackets before its name. This means that this particular class, and no other, con-
stitutes the temporal aspect of the model. The temporal aspect of a model is a class
that represents temporal entities such as moments, instants, events, periods, stages
or any other kind of time-related construct. Note that this class is not associated or

b: Building

Address = “Camino Norte”
Use = Hospital

b: Building

Address = “San Roque, 2”
Use = Hospital

b: Building
@ 16c to 17c

Address = “Camino Norte”
Use = Hospital

b: Building
@ 16c to 17c

Address = “Camino Norte ”
Use = Hospital b: Building

@ 18c to 1890s

Address = “ Camino Norte”
Use = School

(A)

(B)

Fig. 15.7 Changes in an object when a feature is altered. In A, a non-temporal attribute is altered,
so the old value is overwritten. In B, a temporal attribute is altered, so that a new phase is created.
The large grey arrows represent the alteration event

150 15 Temporality

explicitly related in any manner to the Building class; in fact, the aspect class does
not need to (although it can) be connected to other classes in the model, because it
is used in a very particular way: its instances are the objects referred to by phase
selector expressions. The expressions 16c to 17c and 18c to 1890s in Fig. 15.8 are,
in fact, references to instances of the Moment class. A more explicit representation
of this is shown in Fig. 15.9. Here, the phase selector expressions for the b phases
are now depicted as referring explicitly to the m and n objects, which are also
shown as instances of the Moment class. This is equivalent to the model in
Fig. 15.8, although more verbose: if you take the leftmost b phase, note that its
phase selector points to m, which is an instance of the Moment class having
Time = 16c to 17c. This is, in fact, equivalent to the previous diagram. In practice,
we usually avoid the explicit depiction of temporal phase instances like in Fig. 15.9
in order to save paper or screen real estate and assume instead that the necessary
objects exist and have the values described by the expressions in the phase selec-
tors. However, you should feel free to depict these objects explicitly if you need to

Building

Address: 1 Text
Use: 0..* enum BuildingUse (T)

b: Building
@ 16c to 17c

Address = “San Roque, 2”
Use = Hospital

b: Building
@ 18c to 1890s

Address = “San Roque, 2”
Use = School

[T] Moment

Time: 1 Time
Description: 0..1 Text

Fig. 15.8 Two phases of object b, which is an instance of the Building class. In addition, the
temporal aspect Moment class is shown

Building

Address: 1 Text
Use: 0..* enum BuildingUse (T)

b: Building
@ m

Address = “San Roque, 2”
Use = Hospital

b: Building
@ n

Address = “San Roque, 2”
Use = School

[T] Moment

Time: 1 Time
Description: 0..1 Text

m: Moment

Time = 16c to 17c
Description = “Early Modern Age ”

n: Moment

Time = 18c to 1890s
Description = null

Fig. 15.9 The phase selector expressions from Fig. 15.8 are now shown as explicit references to
object identifiers; the corresponding objects are shown as instances ofMoment, the temporal aspect
class

Temporal Aspect 151

display other values or information about them. For example, object m in Fig. 15.9
contains a value for the Description attribute, which may be interesting to show in
the diagram. In any case, remember that the only objects that you can refer to in
phase selector expressions, either directly or indirectly, are those of the temporal
aspect class, in our example above, Moment.

Of course, we can use inheritance and abstraction here (as described in Chap. 9)
to obtain greater flexibility. For example, imagine that we want to use temporality
in a model to track the changes in landscape forms. Sometimes, landscape elements
stay stable for long periods of time, while some others they change as a response to
processes of various kinds. Imagine also that we represent stable periods through a
StablePeriod class and changing processes through a Process class. We would like
to use instances of both Process and StablePeriod to mark phases of landscape
elements, but we said that phase selector expressions must refer instances of a
single class. We can solve this by acknowledging that both Process and
StablePeriod are kinds of occurrences, and in this manner, we could introduce an
abstract class Occurrence from which Process and StablePeriod would specialize.
Occurrence would be our temporal aspect class, as shown in Fig. 15.10. This model
states that the ridge #18 had a height of 23 m during the long stable period of wind
action that started in the seventeenth century; then, the ridge had a height of 35 m
during the mining stage period that local villagers caused between 1942 and 1965.
Note how objects of both types Process and StablePeriod can be used in phase
selector expressions, because, through abstraction, all of them can be seen as
instances of Occurrence, which is the temporal aspect class. This allows you to
represent different kinds of temporal entities in your model as long as all of them
have the appropriate semantics as subclasses of the temporal aspect class.

LansdscapeElement

Name: 1 Text
Height: 1 Number (T)

[T] Occurrence (A)

Description: 0..1 Text
Start: 1 Time
End: 0..1 Time

Process

Agents: 0..1 Text

StablePeriod

Nature

p: Process

Description = “Mining stage ”
Start = 1942
End = 1965
Agents = “Local villagers ”

le: LandscapeElement
@ s

Name = “Ridge #18”
Height = 23 m

s: StablePeriod

Description = “Wind action ”
Start = 17c
End = null

le: LandscapeElement
@ p

Name = “Ridge #18”
Height = 35 m

Fig. 15.10 An abstract temporal aspect class, Occurrence, is shown with two specialized classes,
Process and StablePeriod. Instances of either subclass may be used in phase selector expressions

152 15 Temporality

Of course, managing temporality as described so far is optional in a model. Use
it only if you need to. If you do not, then you do not need a temporal aspect class,
temporal marked features or phases.

Modelling Temporality Without Aspects

The approach described so far to represent the passing of time in conceptual models
is based on treating time as a cross-cutting aspect. This means that a temporal aspect
class is defined independently to the rest of the model in order to represent the
necessary time-related entities and then the spots in the model (namely, features)
where this class is to be applied are specified by using temporal aspect markers.
However, this is not the only approach we can use, although is probably the most
powerful and expressive in most cases. When appropriate, you can also use an
explicit representation of time in the relevant classes. For example, consider the
situation in Fig. 15.11. These two models are roughly equivalent. In Fig. 15.11A,
the aspect-oriented technique described in previous sections is used: The Use
attribute is marked as temporal, and we assume there is a temporal aspect class
defined in the model. In Fig. 15.11B, on the contrary, time is explicitly represented:
the time-dependent attribute Use has been factored out into a separate
BuildingStatus class that contains, in addition, attributes to locate each particular
building status in time. By using these classes, we could document a building as an
instance of Building, and then attach to it as many instances of BuildingStatus as
needed, adding more as the building’s use changes over time. This class can be
extended later with additional time-dependent attributes if necessary.

Building

Address: 1 Text

BuildingStatus

ValidFrom: 1 Time
ValidTo: 0..1 Time
Use: 0..* enum BuildingUse

Building

Address: 1 Text
Use: 0..* enum BuildingUse (T)

1..*1

(A)

(B)

Fig. 15.11 Two equivalent models. In A, temporality is managed as an aspect, by using a
temporal marker and a (not depicted) temporal aspect class. In B, temporality is managed explicitly
through a separate class holding time-related attributes

Temporal Aspect 153

Note the major differences between the two approaches. The model in
Fig. 15.11A is much smaller and simpler to develop, maintain and understand. The
model in Fig. 15.11B, on the contrary, shows time in a more explicit fashion. Note
also that BuildingStatus.Use in Fig. 15.11B is not marked as temporal; this would
be redundant, since changes in a building’s use are already recorded through
multiple instances of BuildingStatus. In general, we suggest that you use the aspect
approach in Fig. 15.11A and only consider the explicit approach when you are
developing a class that has strong temporal semantics. For example, classes that
represent events, periods or processes, such as BuildingStatus in our example
above, are good candidate for explicit temporal management Other classes should
use the aspect-based approach described throughout this chapter.

Summary

Models are likely to get out of sync with the entities that they represent as they
change over time.

You can use phases to represent specific moments or periods of an entity and
provide values or links that apply only during this time.

In this manner, an object can be seen as a sequence of phases that describes how
the represented entity has changed over time.

Each phase is characterized by a phase selector, which indicates when its values
are valid. Similarly, phase selectors can also be added to links, so that they indicate
when the link is valid.

Phases are useful to represent ontological change in the underlying entity, rather
than epistemic change of our knowledge about it.

For a value or link to be labelled with a phase, the corresponding feature (an
attribute or semi-association) must be marked as temporal in the associated type
model.

The expressions in phase selectors refer to instances of a special class in the type
model designated as the temporal aspect class.

Time can also be modelled in the absence of aspects for classes with strong
temporal semantics, by using features that explicitly represent the passing of time.

Exercises

24. Below, you can find a list of characteristics. For each of them, state whether it
should be modelled as constant, variable or temporal. Assume that we are
trying to represent the internal workings of a museum.

• The museum’s name.
• The museum’s inauguration date.

154 15 Temporality

• The items on display as part of the permanent collection.
• The number of visitors recorded each year.

25. Create a type model to represent archaeological sites and their occupation by
different groups of people at different moments in time. Also, include in the
model the ability to document the archaeological features found on the sites as
they are excavated. Use aspect-based or explicit temporality as you see fit.

26. Using the model from Exercise 25 as a basis, create an instance model repre-
senting the following situation. The hillfort of Baroña was occupied between
the first century BCE and the first century CE. It was excavated for the first time
in 1933, and a large rampart was documented. Then, it was excavated again
between 1980 and 1984 and two roundhouses described.

Exercises 155

Chapter 16
Subjectivity

Abstract In this chapter, we deal with the fact that models are strongly shaped by
the background, training, purpose and even cognitive preferences of the people
constructing them and are therefore highly subjective. For this reason, two models
having the same scope and purpose and created by different people will probably
clash. In this context, we propose a theory of disagreement by which clashes in
models can be ascribed to predication, classification or existence conflicts and
introduce the aspect-oriented notion of perspective to address predication clashes.
Like phases, perspectives are object “slices” that are valid from the viewpoint of
some particular agent only. We explain how perspective selectors can be used on
values and links to create multivocal instance models. Then, we introduce the
notion of subjective features so that viewpoint-aware type models can be con-
structed and adequately connected to conforming instance models. Similarly, the
notion of subjective aspect is described as a central agent-oriented class in a type
model. Then, we discuss how explicit subjective modelling can be carried out in
absence of perspectives, and by using specific class features to describe agent
validity. The chapter ends with an explanation on how to combine subjective and
temporal concerns in the same model.

As we described in the introductory chapters of this book, conceptual models are
made of concepts in our minds. Being abstract things, they are strongly shaped by
our background, training, purpose and even cognitive preferences. In other words,
models are highly subjective. Two people constructing a model of the same things
and having the same purpose would probably end up with very different results,
very much like two people writing a description of something would probably write
very different accounts. This means that a model that is useful for its creator, in the
sense that it faithfully represents their perceived reality, may not be useful to other
people, because the representations in the model are subjectively judged as flawed,
awkward or incomplete. Like in the case of temporality, this applies to instance as
well as type models, although instance models are much more sensitive to sub-
jective disagreements than type models, because they represent specific entities that
are perceived subjectively rather than shared abstractions. For example, I can state

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_16

157

that ConservationStatus = Good for a particular building, but you may think that
ConservationStatus = Poor, rendering my statement invalid to you. In the case of
temporality, the linear advancement of time allows us to give more importance to
some phases than others in some situations, such as considering the latest phase of an
object to be the most useful, since it represents the most recent knowledge that we
have about the entity. However, subjective views are not naturally ordered like phases
are, so shortcuts like this cannot be taken. If we do not pay attention to subjectivity
when constructing models, then we will end up with a representation of the world that
is hegemonic and alienating to others. Instead, we should be interested in a multivocal
view of the world, where different points of view are recorded or, at least, the only
one that is recorded is clearly identified in terms of its authorship.

This problem also affects type models, but in a much weaker manner. Type
models represent categories of things, which constitute abstractions that we develop
in order to organize the world. Constructed abstractions are usually developed on top
of shared consensus, and for this reason, they are much less prone to subjective
disagreement. Consequently, the risk that a type model is disputed within the com-
munity that created it is much lower than in the case of instance models and often
negligible for most practical purposes. As we did in the case of temporality, we focus
in this chapter on managing the subjectivity of instance models, using also an
approach based on the concept of aspects. Remember that an aspect is a cross-cutting
concern that is modelled separately from the portion of the world being studied, and
then “woven” into the rest of the model through special mechanisms.

Technical
As opposed to temporality, which has been studied in the database and
information modelling literature, there are no works as far as we know that
study the modelling of subjectivity. The tradition in the conceptual modelling
community has a strong engineering bias which, being based on a classical
view of science, usually rejects subjectivity as something to avoid and
remove. This may be one of the major factors why subjectivity has not been
studied so far in these fields.

Since little or no studies exist on subjectivity in conceptual modelling, we
propose here a simple but useful theoretical framework.

Theoretical Framework

In our context, “subjectivity” refers to the fact that two or more agents may disagree
about something. As a consequence, the conceptual models created by these agents
will be different even if they share the same scope and purpose. We distinguish
three kinds of disagreements, from the lightest to the strongest:

158 16 Subjectivity

• A disagreement of the first kind, or predication conflict, occurs when two agents
assign different values to a particular characteristic of a given entity. Consider an
object a of type T, which has an attribute P; agent 1 would say a.P = x, while
agent 2 would say a.P = y. In situations like this, both agents agree that there
exists an object a and that it is of type T, but they disagree on the value of its
attribute P. An example is the one in the previous section about the conservation
status of a building.

• A disagreement of the second kind, or classification conflict, occurs when two
agents classify a given entity in different manners. Consider an object a; agent 1
would say that a is of type P, while agent 2 would say that a is of type
Q. Usually, different types mean different sets of features. In situations like
these, both agents agree that there exists an object a, but they disagree on what
kind of thing it is and, as a consequence, what properties it has. For example,
one archaeologist may think that a particular find is a broken bone knife,
whereas another may think it is part of a sculpted idol.

• A disagreement of the third kind, or existence conflict, occurs when two agents
disagree on the existence of an entity, either because one believes it exists while
the other believes it does not, or because the two agents discretize the world
along different seams (see Chap. 2). Consider an object a; agent 1 would say
that a exists, while agent 2 would say that a does not exist as such. For example,
I know that the computer I am using to type this exists, whereas my grand-
mother, who watches me from her corner, lacks the idea of a computer and
therefore conceptualizes the LCD display as a TV set; from her perspective, the
computer as such does not exist.

ConML can successfully represent disagreements of the first kind, but not the
second or third kinds. This is quite good, since most other modelling languages such
as UML cannot represent disagreements at all. The following sections describe how
predication conflicts can be represented in ConML through the use of perspectives.

Perspectives

Imagine that we are interested in recording the conservation status of a series of
buildings. We may develop a model like in Fig. 16.1. If we apply this model, we
may end up with objects like those in Fig. 16.2. Here, the building represented by
object b is judged to be in a good state of conservation, whereas the building
represented by c is judged to be in an acceptable state. Note two things. Firstly,
there is no indication in the model as to who made these judgements. In other
words, we do not know who thinks that building b is in a good state, or who thinks
that c is in an acceptable state. We may make the assumption that status information
about a building is an objective fact, but it is not. Secondly, there is no way in
which we can capture the variable points of views of different people or groups with
regard to a building’s conservation status, that is, what we called a disagreement of

Theoretical Framework 159

the first kind in the previous section. In other words, we cannot capture statements
like “this building is OK according to the local town council, but in need of
restoration according to the construction company”.

To address these problems, ConML introduces the notion of a perspective.
A perspective is a version of an object that corresponds to the judgment of a certain
person or group. When using perspectives, we can think of an object as a stack of
“slices”, each one being a perspective, and all of them making up the whole object.
This is very similar to what we did with phases in the previous chapter. Look at
Fig. 16.3. This is an informal drawing of what we need. Object b is pictured as a
stack of versions, each one having a different value for Status, and corresponding to
a particular person or group. The complete b object is the collection of versions that
are stacked on top of each other. However, this is not the right way to depict object
perspectives. Look at the diagram in Fig. 16.4. Here, three perspectives are shown
for object b. The fact that the three rectangles in the figure correspond to per-
spectives rather than complete objects is indicated by a perspective selector, that is,
an expression written under the object identifier and class and prefixed by a dollar
sign $. Also, note that the three boxes show the same identifier, b; this indicates that
all of them refer to the same object. The $ sign can be read as “according to”, so that
the leftmost box in Fig. 16.4 can be read as “object b of type Building according to
Alice”.

Building

Address: 1 Text
Status: 0..1 enum ConservationStatus

Fig. 16.1 The Building class
with a Status attribute to
record conservation status

b: Building

Address = “San Roque, 2”
Status = Good

c: Building

Address = “Obradoiro, 1”
Status = Acceptable

Fig. 16.2 Some instances of
Building showing values for
Status

b: Building

Address = “San Roque, 2”
Status = Good

b: Building

Address = “San Roque, 2”
Status = Poor

b: Building

Address = “San Roque, 2”
Status = Acceptable

Local neighbours

Town Council

Alice

Fig. 16.3 Informal depiction of the perspectives on building b showing different values for Status
for different people or groups. The asterisk indicates that this is not a syntactically correct model

160 16 Subjectivity

Note that, in Fig. 16.4, none of the three boxes stands for the complete b object.
Actually, it would be difficult to draw the complete b object as a box employing the
usual rules, since we would not know what to write for the Status attribute as it
varies depending on who we ask. In cases like this, we can use the ellipsis notation
to omit a particular value for attributes that are subjective, as in Status = ….

Perspective selectors may be used on links as well. Consider the case depicted in
Fig. 16.5. Here, two links of the same type are shown between the object for book
b and two person objects. Note the perspective selectors next to the
semi-association names on the links. This model is stating that the book “Marked
Up” was inspired by the life of Frederick Rooster according to Alice, but Bob
thinks that it was Matthew Rooster who actually inspired the book. This indicates
that two perspectives for object b exist: one for Alice, and holding a reference to
person p, plus a second one for Bob, and holding a reference to building q.

Either with values or links, there may be the case that the information to be
represented is the same for two or more persons or groups. For example, look again
at Fig. 16.5; we may need to say that both Alice and Bob agree that “Marked Up”
was inspired by the life of Matthew Rooster. Instead of drawing two links, each
labelled with a different perspective selector, we can draw a single link and label it
with a combined selector, as in InspiredBy $ Alice; Bob. A semicolon is used to
separate different references to people or groups.

b: Building
$ Alice

Address = “San Roque, 2”
Status = Good

b: Building
$ Town Council

Address = “San Roque, 2”
Status = Poor

b: Building
$ Local neighbours

Address = “San Roque, 2”
Status = Acceptable

Fig. 16.4 Three object perspectives for object b, each with a different perspective selector and a
different value for Use. You can imagine a time axis flowing from left to right

q: Person

GivenName = “Matthew”
FamilyName = “Rooster”
Nationality = “American”
BirthPlace = Europe

p: Person

GivenName = “Frederick”
FamilyName = “Rooster”
Nationality = “American”; “French”
BirthPlace = Andalusiab: Book

Title = “Marked Up”
Year = 2001
Publisher = null

Fig. 16.5 Two links labelled with perspective selectors, indicating their time validity

Perspectives 161

Like phases, perspectives are optional. This means that we can create a new
perspective for an object when someone provides a value or a reference for it, but
we are not obliged to. For example, look again at Fig. 16.4. Imagine that we had
written Status = Excellent instead of Status = Poor for the perspective in the
middle, which would be wrong. We can correct the mistake by rewriting the wrong
value as Status = Poor as soon as we detect the issue, and we do not need to create
a new perspective for it, since the change does not involve recording the judgment
of a new person or group.

Like in the case of temporality, the subjective validity stated by a perspective
selector works by limiting the representational power of the corresponding model
element to the subjective views of the mentioned person or group. For example, the
Alice perspective selector on the leftmost perspective in Fig. 16.4 means that
whatever is stated by that perspective, namely that object b has Address = “San
Roque, 2” and Status = Good, is only valid for Alice. The perspective states
nothing about the represented entity as far as other people are concerned. In
Fig. 16.4 we can see two other perspectives that complement the first one, covering
the opinions of other relevant agents, and thus giving us a fairly complete multi-
vocal view of the building. However, this does not need to be the case: sometimes
you will find a single perspective making a statement that is only applicable to a
single person or group, and we would have no information whatsoever about what
others may think. The perspective selectors on the links in Fig. 16.5 work in a
similar way.

Finally, and as opposed to temporality, bear in mind that perspectives are useful
to represent the epistemic variations of people’s views about the world being
modelled, rather than actual changes in the world. That is, you should use per-
spectives to capture different interpretive views on something that otherwise
remains unchanged. You should not use perspectives to represent actual changes in
the world. For example, use perspectives to represent views on a building’s style or
influences or on the value or importance of a heritage element. Also, do use per-
spectives to represent situations when you change your mind about something,
either because you obtain new information that allows you to come up with a better
account or because you realize that you were wrong. For example, imagine that you
describe an archaeological artefact a as having a.EstimatedDating = 11c BCE, and
later you find new evidence that allows you to refine your estimate as 9 BCE. If you
were interested in keeping track of your research process, you could use a per-
spective to record this change in your views, since it is your knowledge about the
artefact, rather than the artefact itself, what has changed.

162 16 Subjectivity

Subjective Features

In the previous section, we explored how perspectives can help us represent specific
values or links that are valid only according to someone. In Fig. 16.4, for example,
we used the Building.Status attribute as an agent-varying characteristic that takes
different values for different people or groups, while the Building.Address attribute
stays unchanged. In fact, we can differentiate two kinds of features regarding its
subjective variability:

• Those attributes or semi-associations that are fairly objective and therefore are
not expected to vary regardless of who documents something. These are called
objective. For example, Building.Height; anyone who can measure the height of
a building will produce similar or identical results.

• Those attributes or semi-associations that are determined interpretively and for
which we want to track their variations. These are called subjective. For
example, Building.Status, assuming that we are interested in keeping a multi-
vocal record of the different status judgments made by different people.

Like in the case of temporal features described in the previous chapter, this
difference is barely ontological, but arises mostly from our modelling decisions. In
other words, whether a feature is objective or subjective is not a property of the
underlying characteristic being modelled, but of the specific manner in which we
choose to represent it. For example, a model to manage the architecture heritage in a
city will probably consider the Buliding.ConstructionDate attribute as constant,
because the model users would be most interested in managing a shared and
objectified view on what the construction date is for each building. However, a
model to study the research process of a group of architects would probably con-
sider Building.ConstructionDate as subjective, in order to document the multivocal
variability of different researchers or even the same one over time. Your model
domain area and its purpose will determine whether a feature is objective or
subjective.

In this regard, we must clarify how subjective features can be used to track the
changes of opinion of one individual over time. This would seem to be connected to
temporality rather than (or in addition to) subjectivity, but it is not, because
changing our mind about something does not entail an ontological change in the
something being represented. When we change our mind, we can think of our
points of view before the change and after the change as two different subjectivities.
For example, imagine that I change my mind from thinking that a particular
building is very representative of a style, to thinking that it isn’t. Two subjectivities
are involved: me before I changed my mind and me afterwards. In this manner, we
would have two perspectives in the model, each corresponding to one of these
subjectivities. In summary, do not assume that each subjective agent needs to be a
different individual; it may also correspond to a single individual in different
moments over time.

Subjective Features 163

Subjective features, like temporal features, must be explicitly marked as such in
a type model. Objective features, contrarily, are not marked. Look at the example in
Fig. 16.6. Here, the Book.Genre attribute has been marked as subjective by adding
an upper case S in parentheses at the end of the line. This is called a subjective
aspect marker. Similarly, the Book.InspiredBy semi-association has also been
marked as subjective. Other features in the model are not marked, meaning that they
are considered objective.

As opposed to the case of temporality, associations that are subjective in one
way are almost certainly subjective in the inverse way too; that is, if one
semi-association is subjective, then its inverse is subjective too. The Book.
InspiredBy semi-association Fig. 16.6 is subjective, and although its inverse is not
explicitly depicted in the diagram, it makes sense to assume that it would be
subjective too. The reason for this is that subjectivity is about our interpretation of
the world, rather than the world itself; since the two semi-associations that make up
an association represent the same fact in the world, albeit expressed differently, it
makes sense to think that we will have the same subjective views about them,
because they are actually manifestations of a single fact.

In addition, and like in the case of temporality, bear in mind that marking
subjective features in a type model determines how perspectives will work in the
associated instance models. When an objective feature of a class is changed in an
object, its value is simply overwritten. However, when a subjective feature is
changed in an object, a new perspective for the object may be created, so that the
existing value of the feature is preserved in one perspective, and the new value is
recorded in the new perspective. This is illustrated in Fig. 16.7. In Fig. 16.7A, the
value for Address, an objective attribute, is changed to fix a mistake. This results in
the old value being lost and overwritten by the new one, so that, after the change,
object b holds the new value. No perspectives are involved. In Fig. 16.7B, however,
the value for Status, a subjective attribute, is changed. This results in a new per-
spective being created so that the old Status value is preserved in the previously
existing perspective, and the new value is recorded in the new one.

In summary, if you want to keep track of the different views of people about a
feature, mark it as subjective in your type model. Otherwise, leave it unmarked.

Person

GivenName: 1 Text
FamilyName: 1 Text
Nationality: 1..* Text
BirthPlace: 1 enum WorldRegions

Book

Title: 1 Text
Year: 1 Time
Genre: 0..* enum BookGenres (S)

InspiredBy (S) 0..*0..*

Fig. 16.6 In this diagram, the Book.Genre attribute and the Book.InspiredBy semi-association
have been marked as subjective

164 16 Subjectivity

Subjective Aspect

In previous sections, we have described the concept of a perspective selector, that
is, an expression prefixed by a $ character that indicates the author of a perspective.
See, for example, Fig. 16.4. These expressions are constructed in a manner that is
very similar to that of phase selectors. We cannot write anything as a perspective
selector expression; whatever we use, it must resolve to an object that represents an
agent capable of issuing a judgment. In other words, the expression in a perspective
selector is not a random description of a person or group, but must be a reference to
an object that represents a person or group. For example, if we use $ Alice as a
perspective selector expression, as in 81, then this expression, Alice, must be a
reference to an object that represents this person named Alice. We have said that
objects represent entities in the world; objects used as perspective selector
expressions represent a very specific kind of entity: people or groups of people. All
the objects used in perspective selectors in an instance model, furthermore, must be
instances of a particular class. Which class it is and how it is named and charac-
terized is up to us, but it must be a single class, in order to guarantee a homoge-
neous treatment of subjectivity in the model. Look at the example in Fig. 16.8.
Here, two perspectives of an object are shown, together with their type class,
Building. In addition, an Agent class is shown as part of the type model. Note that
this class is marked with a subjective aspect marker, an S, in square brackets before
its name. This means that this particular class, and no other, constitutes the sub-
jective aspect of the model. The subjective aspect of a model is a class that rep-
resents subject entities such as people, communities, organizations, groups or any
other kind of agent-related construct. Note that this class is not associated or

b: Building

Address = “San Roque, 21”
Status = Acceptable

b: Building

Address = “San Roque, 2”
Status = Acceptable

b: Building
$ Alice

Address = “San Roque, 2”
Status = Good

b: Building
$ Alice

Address = “San Roque, 2”
Status = Good

b: Building
$ Town Council

Address = “San Roque, 2”
Status = Poor

(B)

(A)

Fig. 16.7 Changes in an object when a feature is altered. In A, an objective attribute is altered, so
the old value is overwritten. In B, a subjective attribute is altered, so that a new perspective is
created. The large grey arrows represent the alteration event

Subjective Aspect 165

explicitly related in any manner to the Building class; in fact, the aspect class does
not need to (although it can) be connected to other classes in the model, because it
is used in a very particular way: its instances are the objects referred to by per-
spective selector expressions. The expressions Alice and Town Council in Fig. 16.8
are, in fact, references to instances of the Agent class. A more explicit representation
of this can be seen in Fig. 16.9. Here, the perspective selector expressions for the
b perspectives are now depicted as referring explicitly to the j and k objects, which
are also shown as instances of the Agent class. This is equivalent to the model in
Fig. 16.8, although more verbose: if you take the leftmost b perspective, note that
its perspective selector points to j, which is an instance of the Agent class having
Name = “Alice”. This is, in fact, equivalent to the previous diagram. In practice, we
usually avoid the explicit depiction of subjective perspective instances like in
Fig. 16.9 in order to save paper or screen real estate and assume instead that the
necessary objects exist and have the values described by the expressions in the
perspective selectors. However, you should feel free to depict these objects

b: Building
$ Alice

Address = “San Roque, 2”
Status = Good

b: Building
$ Town Council

Address = “San Roque, 2”
Status = Poor

Building

Address: 1 Text
Status: 0..1 enum ConservationStatus (S)

[S] Agent

Name: 1 Text

Fig. 16.8 Two perspectives of object b, which is an instance of the Building class. In addition, the
subjective aspect Agent class is shown

Building

Address: 1 Text
Status: 0..1 enum ConservationStatus (S)

b: Building
$ j

Address = “San Roque, 2”
Status = Good

b: Building
$ k

Address = “San Roque, 2”
Status = Poor

[S] Agent

Name: 1 Text
Address: 0..1 Text

j: Agent

Name = “Alice”
Address = “San Roque, 24”

k: Agent

Name = “Town Council”
Address = null

Fig. 16.9 The perspective selector expressions from Fig. 16.8 are now shown as explicit
references to object identifiers; the corresponding objects are shown as instances of Agent, the
subjective aspect class

166 16 Subjectivity

explicitly if you need to display other values or information about them. For
example, object j in Fig. 16.9 contains a value for the Address attribute that shows
that the person corresponding to this agent lives on the same street as the building
being assessed, which may be interesting to consider. In any case, remember that
the only objects that you can refer to in perspective selector expressions, either
directly or indirectly, are those of the subjective aspect class; in our example above,
Agent.

Of course, we can use inheritance and abstraction here (as described in Chap. 9)
to obtain greater flexibility, as we explained in the previous chapter for the temporal
aspect class. For example, imagine that we want to use subjectivity in a model to
document feedback to a museum by its visitors. Some of these visitors are spe-
cialists in cultural heritage; some are groups of students that issue a shared com-
ment, and some are individuals from the general public. Imagine also that we
represent specialists and members of the general public through a Person class, and
student groups through a Group class. We would like to use instances of both
Person and Group to mark perspectives of comments, but we said that perspective
selector expressions must refer instances of a single class. We can solve this by
acknowledging that both Person and Group are kinds of agents, and in this manner,
we could introduce an abstract class Agent from which Person and Group would
specialize. Agent would be our subjective aspect class. Look at Fig. 16.10. This
model states that the permanent collection of the museum is of excellent quality
according to Claire Jones, but of a mere good quality according to a group of 27
people. Note how objects of both types Person and Group can be used in per-
spective selector expressions, because, through abstraction, all of them can be seen
as instances of Agent, which is the subjective aspect class. This allows you to
represent different kinds of subjective entities in your model as long as all of them
have the appropriate semantics as subclasses of the subjective aspect class.

MuseumCollec on

Name: 1 Text
Quality: 1 enum QualityLevel

[S] Agent (A)

Person

Name: 1 Text
Address: 0..1 Text

Group

Number Of People: 1 Number

Nature

p: Person

Name = “Claire Jones”
Address = null

mc: MuseumCollec on
$ p

Name = “Permanent”
Quality = Excellent

g: Group

NumberOfPeople = 27

mc: MuseumCollec on
$ g

Name = “Permanent”
Quality = Good

Fig. 16.10 An abstract subjective aspect class, Agent, is shown with two specialized classes,
Person and Group. Instances of either subclass may be used in perspective selector expressions

Subjective Aspect 167

Like in the case of temporality, managing subjectivity as described so far is
optional in a model. Use it only if you need to. If you do not, then you do not need a
subjective aspect class, subjective marked features or perspectives.

Modelling Subjectivity Without Aspects

The approach described so far to represent multivocality in conceptual models is
based on treating subjectivity as a cross-cutting aspect, like we did for temporality.
This means that a subjective aspect class is defined independently to the rest of the
model in order to represent the necessary time-related entities, and then the spots in
the model (namely, features) where this class is to be applied are specified by using
subjective aspect markers. However, this is not the only approach we can use,
although is probably the most powerful and expressive in most cases. When
appropriate, you can also use an explicit representation of subjectivity in the rel-
evant classes. For example, consider the situation in Fig. 16.11. These models are
roughly equivalent. In Fig. 16.11A, the aspect-oriented technique described in
previous sections is used: The Status attribute is marked as subjective, and we
assume there is a subjective aspect class defined in the model. In Fig. 16.11B, on
the contrary, subjectivity is explicitly represented: the subject-dependent attribute
Status has been factored out into a separate BuildingStatus class that contains, in
addition, an attribute to assign each particular building status to an agent. By using
these classes, we could document a building as an instance of Building, and then
attach to it as many instances of BuildingStatus as needed, adding more as the
building is assessed by different people or groups. This class can be extended later
with additional subject-dependent attributes if necessary.

Note the major differences between the two approaches. The model in
Fig. 16.11A is much smaller and simpler to develop, maintain and understand. The

Building

Address: 1 Text

BuildingStatus

Author: 1 Text
Status: 0..1 ConservationStatus

Building

Address: 1 Text
Status: 0..1 enum ConservationStatus (S)

1 ..*1

(A)

(B)

Fig. 16.11 Two equivalent models. In A, subjectivity is managed as an aspect, by using a
subjective marker and a (not depicted) subjective aspect class. In B, subjectivity is managed
explicitly through a separate class holding a subject-related attribute

168 16 Subjectivity

model in Fig. 16.11B, on the contrary, shows subjectivity in a more explicit
fashion. Note also that BuildingStatus.Status in Fig. 16.11B is not marked as
subjective; this would be redundant, since perspectives on a building’s status are
already recorded through multiple instances of BuildingStatus. In general, we
suggest that you use the aspect approach in Fig. 16.11A, and only consider the
explicit approach when you are developing a class that has strong subjective
semantics. For example, classes that represent points of view, assessments or
interpretations, such as BuildingStatus in our example above, are good candidate for
explicit subjective management Other classes should use the aspect-based approach
described throughout this chapter.

Combining Temporality and Subjectivity

As we have explained throughout this chapter and the previous one, both tempo-
rality and subjectivity are often managed through an aspect-oriented approach.
Although the semantics of these two aspects are very different, they are imple-
mented in a very similar manner as far as ConML syntax is concerned. Sometimes
you will need to combine both aspects; for example, you may find an attribute that
is both temporal and subjective, such as Monument.Status. In this situation, you
would be interested to manage temporality because monuments change over time,
and keeping a historical record of how they changed may be relevant to your goals;
at the same time, different people or groups may have different views on a mon-
ument’s conservation status, so keeping track of multivocal information is also
likely to be relevant.

In order to manage both temporality and subjectivity in your model, you only
need to apply the techniques described in these two chapters at the same time.
Specifically,

• In your type model, create in your model both a temporal aspect class and a
subjective aspect class and mark them with the appropriate aspect markers.
Usually, they will be different classes.

• Also in your type model, mark your temporal features with the temporal marker,
your subjective features with the subjective marker and those features that are
both temporal and subjective with both markers.

• In your instance model, use combined temporal and subjective selectors to
depict phase-perspectives.

Consider the example in Fig. 16.12. Here, the two boxes at the bottom are
combined phase-perspectives. That is, each box represents the views of a particular
person or group at a particular moment in time. Note that phase and perspective
selectors are both used to depict this. Correspondingly, the Monument.Status
attribute is marked as both temporal and subjective by using a capital T and S
separated by a comma and surrounded by parentheses.

Modelling Subjectivity Without Aspects 169

Summary

Models are likely to appear invalid to some people unless we consider their sub-
jective points of view.

You can use perspectives to represent specific points of view on an entity and
provide values or links that apply only for the people holding these points of view.

In this manner, an object can be seen as a collection of perspectives that
describes what different people think about the represented entity.

Each perspective is characterized by a perspective selector, which indicates to
whom its values are valid. Similarly, perspective selectors can also be added to
links, so that they indicate for whom the link is valid.

Perspectives are useful to represent epistemic change of our knowledge about
the underlying entity, rather than ontological change of the entity itself.

For a value or link to be labelled with a perspective, the corresponding feature
(an attribute or semi-association) must be marked as subjective in the associated
type model.

The expressions in perspective selectors refer to instances of a special class in
the type model designated as the subjective aspect class.

Subjectivity can also be modelled in the absence of aspects for classes with
strong subjective semantics, by using features that explicitly represent the author of
the point of view.

Subjectivity can be combined with temporality in order to obtain models that
describe the world in a diachronic and multivocal manner at the same time.

Monument

Name: 1 Text
Type: 1..* enum MonumentType
Status: 0..1 enum ConservationStatus (T, S)

a: Monument
@ 1969 $ Luengo

Name = “Baroña Hillfort ”
Type = AncientSettlement
Status = Poor

a: Monument
@ 1982 $ Calo & Soeiro

Name = “Baroña Hillfort ”
Type = AncientSettlement
Status = Acceptable

Fig. 16.12 Two phase-perspectives of object a, which is an instance of the Monument class. The
temporal and subjective classes are not shown

170 16 Subjectivity

Exercises

27. Below you can find a list of characteristics. For each of them, state whether it
should be modelled as objective or subjective. Assume that we are trying to
represent the internal workings of a museum.

• The museum’s inauguration date.
• The quality of the lighting conditions in the exhibition halls.
• The estimated dating of each item in the permanent collection.
• The maximum allowed number of visitors that can be inside the museum at

any given time.

28. Create a type model to represent the archaeological impact and correction work
done a team during the construction of a pipeline. Pay special attention to the
impact assessments and corrective measures that should be taken. Use
aspect-based or explicit subjectivity as you see fit.

29. Using the model from Exercise 28 as a basis, create an instance model repre-
senting the following situation. A heavily deteriorated tumulus is found during
the works, and the team decides that no correction measures should be taken
given its poor status. This is in contrast with the views of the local council, who
issues an assessment by which signalling and documentation is required. In
addition, some unidentified features are discovered, which seem to be well
enough preserved as to deserve a quick excavation documentation.

Exercises 171

Chapter 17
Feature Redefinition

Abstract In this chapter, we describe the situation of inherited features not fitting
the abstraction level or particular semantics of the recipient class. Since inherited
features cannot be removed or ignored, we introduce a redefinition mechanism to
alter some of their properties in a controlled manner. After describing the overall
concept of feature redefinition, the chapter provides a comprehensive description of
what redefinition rules exist to regulate how inherited features may be altered.

Previous chapters, especially Chaps. 9 and 12, have introduced and discussed
generalization and inheritance. According to what we said, every feature in a class
is either inherited from an ancestor or freshly declared by the class itself. In
Fig. 9.10, for example, Barn inherits Height and Material from Building and,
together with its own Capacity, propagates them down to ProtectedBarn and
NonProtectedBarn. However, there are often cases where an inherited feature does
not quite fit the abstraction level or particular semantics of the recipient class. This
often happens in deep specialization hierarchies, where a feature that is declared at a
very high abstraction level is passed down through inheritance to very specific
classes, each with its own peculiar semantics. Of course, we cannot remove or
ignore the feature; doing so would break the rule of inheritance. But we can alter
some of its properties in a controlled way in order to adapt it to the recipient class.
This is called redefining a feature.

Redefinition of Features

Imagine that we are interested in studying how different people employ material
objects such as books during their daily lives. We may develop a model such as the
one in Fig. 17.1. Here, we have decided that every element we are working with
may have a name, and hence we have defined the Element.Name attribute. Also, we
have defined two subtypes of elements: material elements on the one hand, which
have books as a particular subtype, and persons on the other hand. Note that we are

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_17

173

interested in documenting books’ titles, as well as people’s full names, among other
characteristics.

Due to inheritance, every descendant of Element inherits the Name attribute,
which is precisely what we wanted when we said that every element we work with
may have a name. However, we are already documenting books’ titles through the
Book.Title attribute, which in practice work as their names; in fact, we often des-
ignate books by their title, and no other name is used. As a consequence, having
both Name (inherited) as well as Title (owned) in the Book class is redundant.
Something similar happens with the Person.FullName attribute: someone’s full
name usually works as that person’s only name, and we don’t need a separate Name
attribute in this class.

You could argue that, in order to eliminate redundancy, we should remove the
Book.Title and Person.FullName attributes, so that the inherited Name attribute is
all we have to name things. However, this would have two unwanted consequences.
First of all, using the words “title” and “full name” is much more specific than just
“name”. When we are describing things at the very abstract level of elements,
“name” is all we can say; however, when we are discussing books, using the more
specific “title” makes more sense and is more readable and intuitive to everyone.
Similarly, using “full name” for a person provides more information than just
“name”. The second unwanted consequence is that elements may or may not have a
name, as described by the 0..1 cardinality of the Element.Name attribute. However,
books always have a name (their title), and people always have a name (their full
name). In other words, what was optional at the very high level of abstraction of
elements becomes mandatory at the much more specific level of people and books.

We can use feature redefinition to eliminate redundancy and keep a readable and
useful model. By using redefinition, we don’t add a new attribute to Book to

Element (A)

Name: 0..1 Text

MaterialElement (A)

Material: 1..* enum Materials

Person

FullName: 1 Text
Age: 1 Number
Gender: 1 enum Genders

Book

Title: 1 Text
Author: 1..* Text

Nature

Nature

Fig. 17.1 Classes Book and
Person inherit Element.Name,
which becomes redundant and
ill-adjusted

174 17 Feature Redefinition

document books’ titles, but redefine the inherited Element.Name as necessary.
Similarly, we avoid the owned attribute Person.FullName; instead, we redefine the
inherited Element.Name attribute so that it expresses people’s full names.
According to the discussion above, these redefinitions would involve changing the
name of the inherited attribute and adjusting its cardinality. Look at Fig. 17.2. Here,
the Book.Title attribute is a redefinition of the original Element.Name. This is
indicated by the name of the original attribute in square brackets after the redefi-
nition name, as in Title [Name]. This can be read as “title, redefining name”. Also,
note that the cardinality of Title is 1, while the cardinality of Name was 0..1.
Similarly, the Person.FullName attribute is a redefinition of Element.Name too, and
its cardinality has also been changed from the original 0..1 to 1.

Not only attributes can be redefined. Properties and semi-associations can be
redefined too. Consider the situation in Fig. 17.3.

Element (A)

Name: 0..1 Text

MaterialElement (A)

Material: 1..* enum Materials

Person

FullName [Name]: 1 Text
Age: 1 Number
Gender: 1 enum Genders

Book

Title [Name]: 1 Text
Author: 1..* Text

Nature

Nature

Fig. 17.2 Classes Book and
Person redefine the inherited
Element.Name attribute to
match their specific semantics

Phrase

Text: 1 Text

Thing (A)Designates0..*

Name

Toponym Place

Coordinates: ?

IsNameOf [Designates]

1..*0..*
Name

0..*

Fig. 17.3 Class Toponym redefines the Designates inherited semi-association, changing its name,
cardinality and opposite class

Redefinition of Features 175

Here, the Toponym class inherits the Phrase.Designates semi-association and
redefines it to the name of “IsNameOf” and cardinality 1..* instead of 0..*. It also
changes the opposite class, from Thing to Place. This model states that every phrase
may designate a number of things, but every toponym, as a specific kind of phrase,
is always the name of at least one place, which is a kind of thing. As you can see,
redefinition is very useful to adjust the semantics of an inherited feature, such as
Phrase.Designates in our example, to the more concrete semantics of the recipient
class.

A few notes must be made about feature redefinition. First of all, if the redefi-
nition does not change the name of the original feature, then you do not need to
repeat it outside the square brackets. Look at the example in Fig. 17.4. Here, the
Toponym class redefines Phrase.Designates, changing its cardinality and opposite
class; however, it does not change its name, so that we just write the original name
(which stays unchanged) in square brackets.

Secondly, and as illustrated by the previous examples, redefinition allows us to
change the name of a feature. However, we should not change it in a way that
breaks the semantics of the original feature. For example, it would not make sense
to rename the Phrase.Designates semi-association in Fig. 17.4 to “IsLocatedIn”,
since being located in a place is something very different to designating a place.
Remember the rule of inheritance from Chap. 9: anything that we may say about a
class also applies to all its subclasses. This means that since Phrase has a
Designates association to Thing, then all its subclasses, including Toponym, should
have it too. Adjusting the name of the semi-association while preserving the overall
semantics is fine; changing it radically so that it means something else is not.

Thirdly, redefining a semi-association, like in Fig. 17.4, does not automatically
redefine the inverse semi-association. For example, we can assume that the inverse
of Phrase.Designates would be named “IsDesignatedBy” or something like that.
Toponym inherits Phrase.Designates and redefines it to have a different cardinality
and opposite class. At the same time, Place inherits Thing.IsDesignatedBy, but this
is not redefined, so it stays unchanged; this means that Place would have an
inherited IsDesignatedBy semi-association pointing to Phrase, rather than

Phrase

Text: 1 Text

Thing (A)Designates0..*

Name

Toponym Place

Coordinates: ?

[Designates]0..*

Name

1..*

0..*

Fig. 17.4 Class Toponym redefines the Designates inherited semi-association, changing its
cardinality and opposite class

176 17 Feature Redefinition

Toponym. If we wanted to redefine this inverse semi-association as well, we would
need to explicitly indicate it in the diagram through a name in square brackets.

Finally, the examples above show how redefinition can change the name and
cardinality of features, as well as the opposite class of semi-associations. However,
we can change many other things by following a set of very specific rules, as
described in the next section.

Redefinition Rules

You can redefine an inherited property, attribute or semi-association by following
these rules.

All Feature Kinds

You can change a feature’s name as long as the overall semantics is preserved. In
particular, and to avoid breaking the rule of inheritance, you must ensure that the
new name is a synonym, a quasi-synonym or a hyponym of the original one. To
verify that your redefined name is good, use abstraction to imagine what an instance
of the specialized class would look like if described in terms of the superclass. For
example, look again at Fig. 17.3, and imagine what an instance of Toponym would
look like if described in terms of Phrase: if we call this instance t, then the
collection of places referred to through t.IsNameOf would now be referred to as t.
Designates and would be considered abstract things instead of places. Saying that a
toponym designates things, instead of saying that it is the name of places, still
makes sense, despite being a bit too abstract, so the name change should be fine. If
we had renamed the original semi-association to, say, “IsLocatedIn”, then the result
would be very different, because the collection of places referred to through t.
IsNameOf would now be referred to as t.IsLocatedIn and would be considered
abstract things instead of places. Since it does not make sense to say that a phrase is
located in a number of places, the renaming is unacceptable.

Similarly, you can change a feature’s definition as long as the overall semantics
is preserved. The same rules as in the case of names apply: you must ensure that the
new definition is nearly equivalent to the original one or subsumed by it.

The cardinality of a feature can be changed if the new cardinality is more
restrictive than the original one, that is, if the new cardinality is a subset of the
original one. For example, if the cardinality of the original feature is 1..*, the
redefinition may specify 2..* or 1, but not 0..*.

The sorted semantics of a feature can be changed from non-sorted to sorted, that
is, a non-sorted original feature can be redefined as sorted. However, the opposite
change is not possible.

The temporal semantics of a feature can be changed from temporal to
non-temporal and vice versa.

Redefinition of Features 177

Similarly, the subjective semantics of a feature can be changed from subjective
to non-subjective and vice versa.

Attributes

The data type of an attribute can be changed if the new data type can be “coerced”
into that of the original attribute, as indicated in Table 17.1. For example, if the data
type of the original attribute is Text, the redefinition attribute may specify Number,
because Number can be coerced into Text, but not the other way around. As you
can see, any type can be coerced into Data, and any type except for Data can be
coerced into Text. This means that attributes of the Data and Text types are the most
flexible, since they can be redefined into almost any other types.

Finally, an enumerated attribute can be coerced into a different enumerated type
only if the new enumerated type is a descendant of the original one, as described in
Chap. 10.

Semi-Associations

The role of a semi-association can be changed as long as the overall semantics is
preserved, like in the case of names and definitions above. You must ensure that the
new role is nearly equivalent to the original one or subsumed by it.

The strong semantics of a semi-association can be changed from non-strong to
strong, that is, a non-strong original semi-association can be redefined as strong.
However, the opposite change is not possible.

Finally, the opposite class of a semi-association can be changed if the opposite
class of the new semi-association is a descendant of the opposite class of the
original semi-association. This is what we did in Fig. 17.3: the opposite class of

Table 17.1 Data type coercion rules

…be coerced into this type?

Boolean Number Time Text Data Enumerated

Can a
value of
this
type…

Boolean n/a Yes Yes

Number n/a Yes Yes

Time n/a Yes Yes

Text n/a Yes

Data n/a

Enumerated Yes Yes (See
caption)

Blank cells indicate “No”
An enumerated type can be coerced into another enumerated type if the source enumerated type is
a descendant of the target enumerated type

178 17 Feature Redefinition

Phrase.Designates, which is Thing, can be changed into Place when Toponym
redefines the semi-association because Place is a descendant of Thing. We could
not have changed it to a class that was not a descendant of Thing.

The whole/part semantics of a semi-association cannot be changed. That is, if a
semi-association is whole/part, you cannot make it non-whole/part in a redefinition.
Similarly, if a semi-association is not whole/part, you cannot make it whole/part in
a redefinition.

Summary

It is possible to redefine an inherited feature in order to adjust it to the specific
semantics of the recipient class.

All types of features can be redefined: properties, attributes and semi-associations.
Redefining a semi-association has no effect on the inverse semi-association.
A collection of redefinition rules determines what can be changed and how

during redefinition.
In general, a redefined feature must preserve the semantics of the original one, in

order to obey the rule of inheritance.

Exercises

30. Imagine that a study is to be carried out on how the people from a neigh-
bourhood use some specific buildings over the day. The following model states
that, for the purposes of the study, every person may be using a building at any
point in time. Taking this model as a basis, add the necessary classes, attributes
and associations to reflect the fact that there are two kinds of buildings to be
considered in the study: houses, where people live, and factories, where people
work. Use feature redefinition wherever necessary.

Building

Name: 1 Text

Person

Name: 1 Text
Age: 1 Number

Uses 0..10..*

Occupant

Redefinition Rules 179

Chapter 18
Metainformation

Abstract In this chapter, we deal with the common but often misunderstood issue
of “data about data”, or metadata, also called metainformation. To begin with, we
explain how the term “metadata” is often used in the digital humanities and other
fields in a loose manner, producing ambiguity and confusion. We then carefully
pinpoint proper usage. After that, we describe the fact that metainformation is also
information, the “meta” prefix being a mere qualifier that does not indicate
something of a radically different nature. In particular, we show that metainfor-
mation is information that, at some point, plays the role of informing us about other
information but which, apart from this, constitutes regular information, so every
technique and tool that we may use on information is also applicable to metain-
formation. Then, we examine some typical scenarios of metainformation usage,
including the expression of uncertainty and a better implementation of “transaction
time” than the one often offered by the well-known bitemporal approach.

If you are minimally aware of the digital humanities boom and the involved
technologies, you have likely heard the word “metadata”. Usually, metadata is
defined as “data about data”, or something similar. For example, imagine that an
anthropologist is studying the social practices of teenagers in a large city. In this
context, relevant data would probably include the description of the involved
communities and groups, what social acts they carry out and how or why. Metadata,
in turn, would include data about who documented the above-mentioned social acts
or interviewed the relevant community members, when it was done and how reli-
able this data is. In fact, metadata describes data very much like data describes
things in the world.

There are three issues with this conception. First, the prefix “meta” means
“beyond” or “after” in Greek; “metadata” thus means “beyond the data”.
Furthermore, the “meta” prefix in “metadata” is qualifying the root word “data”, so
one would assume that metadata is one particular kind of data, like office chairs are
a particular kind of chairs. However, most of the literature in the digital humanities
conceptualizes and treats metadata as if it was something different and separate to

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_18

181

regular data, as if metadata was essentially different to data. An example related to
cultural heritage is that of Doerr’s on metadata [23].

The second issue is that, by taking this approach, we are contradicting the fact
that the “meta” prefix is relative; in other words, a piece of data may be “meta” in
relation to another, but not “meta” in relation to a third one. For example, consider
again the example that we described above about the social practices study in the
city. We said that the data about who documented what and how constitutes what
we call “metadata”. Now, what would happen if someone, at the later stage, decided
to study the research process that was used in that study? What we agreed that was
metadata in the study would be primary data to them, and they would certainly
generate metadata about it. So the same corpus of data is “meta” in one context but
not in another.

Lastly, there is the issue that the word “metadata” is often used with a different
sense to what we describe above. More and more, it is being employed to refer to
the formal definition of the “shape” or structure of the data. For example, consider a
database created by the researchers working on our example project. This database
would contain data describing the social acts and the communities that are observed
in the city. The structure of the database, including what tables and columns it has,
of what data types and what relationships exist between them, would be called (by
some) “metadata” or a “metadata schema”. It is true that, in a sense, the structure of
a database somehow describes the data that it holds; or, along the same lines, a type
model somehow describes any instance model that conforms to it. However, this
usage of “metadata” is confusing, because the structure of a database not only
describes what data types and lengths each column has, but also determines what
data is to be considered to start with. In other words, this kind of metadata not only
describes the data, but also (and most importantly) specifies what the scope of the
data is. This is extremely different to the situation described at the top of this
chapter, where metadata truly describes the data without actually determining its
scope. This is a good rule of thumb: metadata of the first kind documents other data
and, as such, constitutes an additional layer of information that enhances our
understanding of the data. If we strip some data of its metadata, we will lose some
information, but the data will still be there. To the contrary, metadata of the second
kind cannot possibly be removed from the data it describes, since it constitutes its
very structure. For these reasons, we avoid the term “metadata” in the second sense
and use it only to mean “data that describes other data”, as in the first sense.

Furthermore, and as explained in Chap. 1, conceptual modelling works at the
information or knowledge level, rather than at the data level, so in any case we
should prefer “metainformation” rather than “metadata”.

Technical
The software engineering literature has used the term “metamodel” for a long
time. A metamodel, in this context, is a model that represents other models.
A metamodel is a model like any other and is composed of the same “stuff” as
other models. However, the entities that it happens to represent are models

182 18 Metainformation

and model elements, rather than, say, buildings or people. Metamodels in
software engineering are used to specify languages, methodologies and other
artefacts in a semi-formal fashion. Some examples are [38–40].

Metainformation as Information

Metainformation (rather than “metadata”) can be very useful to describe or docu-
ment different facets of model elements, such as who created or changed them, who
owns them, what sources of information were used to derive them, when they were
created or altered, what language they are expressed in, what quality, reliability or
certainty applies to them, what usage rights exist in relation to them, etc.

We define metainformation as follows:

Definition
Metainformation is information that, in a given context, is relevant because
it describes other information.

According to this, metainformation is such only in specific contexts, and only
because it plays a certain role, namely, to describe other information. In our
example above about the social practices study, the information about who recorded
what and when is metainformation only in the context of the mentioned study,
because it describes the information recorded by the anthropologists. It would not
be metainformation, but regular information, in the context of the research process
study that takes place afterwards.

Technical
You can find a comprehensive treatment of the metainformation approach
taken here in [41].

Since metainformation is information, and it may be seen as plain information
rather than metainformation, we should treat it very much like regular information
and document it through regular instance models instead of through specifically
designed languages or formalisms. Consider the example in Fig. 18.1. Here, a and
c are objects that, in this context, play the role of metainformation. They are shown
explicitly connected to the class that they document through a metainformation
relationship. Note that this relationship is depicted as a line going from the
metainformation object to the model element being described, in our case, the

18 Metainformation 183

Building class. This line has a hollow round end on the side of the documented
model element, which can be read as “applies to”. In this manner, and according to
the figure, both author a (Alice, an archaeologist) and work context c (project
AB123 of Acme Ltd. on 12 June 2016) apply to the Building class. Or, in other
words, Alice, the archaeologist, is the author of class Building, which was created
for the AB123 project of Acme Ltd. on 12 June 2016.

Note also that objects a and c in the example are of types Author and
WorkContext, respectively, but these classes are not shown in the diagram.
However, they must exist so that their instances a and c can exist in turn. Usually,
metainformation classes are not shown in diagrams where metainformation objects
are used, for the sake of simplicity. Also, the type model where metainformation
classes are defined is very usually a different model to the one being documented.
That is to say, the Author and WorkContext classes in our example are not part of
the same model as Building. The reason behind this is that metainformation type
models usually contain classes about the very specific kinds of things, such as
authors, work contexts, information quality, provenance and related matters,
regardless of what model we are trying to document. For example, the Author and
WorkContext classes from our example may be used to document a model about
cultural heritage but also a model about genomics or car manufacturing. For this
reason, it is usual to find metainformation classes in models that are especially
oriented to being independent of the particular domain being described. Having said
this, nothing prevents us from using instances of classes in a model to document
elements in that same model.

Also, and despite the fact that our example above shows metainformation for a
class, bear in mind that metainformation can be applied to any kind of model
element, both at the type and instance levels. For example, you can document
classes, attributes, associations, generalizations, objects, values and links through
metainformation. The example in Fig. 18.2 shows a few of these situations.

Building

Height: 1 Number
Material: 1..* enum Materials

a: Author

Name = “Alice”
Role = “Archaeologist”

c: WorkContext

Project = “Project AB123”
Organization = “Acme Ltd.”
Date = 12 June 2016

Fig. 18.1 Two metainformation objects a and c, explicitly connected to the class that they
describe

184 18 Metainformation

Here, different authors are shown for a class, an attribute, an association and an
object. By convention, the round end of a metainformation relationship line doc-
umenting a class must intersect the class box perimeter, as shown for object
a. Conversely, the round end of a metainformation relationship line documenting an
attribute is usually placed in line with the attribute text without intersecting the class
box line, to avoid confusion, as shown for object b. In any case, showing a lot of
metainformation on a diagram can quickly become cumbersome, so unless you are
trying to make a point or highlight something, metainformation is usually conveyed
in a separate document using structured text descriptions. Still, and even when
metainformation objects are not drawn as boxes in a diagram, metainformation is
information expressed through objects, as we described at the beginning of this
chapter.

And precisely because metainformation is information, we can document it too
through metainformation, thus chaining metainformation relationships. This is not a
very common thing to do, but it can be useful in some scenarios. See the example in
Fig. 18.3. This model says that Alice, the archaeologist, created the Building class
and that Bob, the architect, created the metainformation object a. Chained
metainformation relationships like this can be useful in scenarios where quality
control is paramount and we not only need to document our models, but also the
documentation about the models itself.

Building

Height: 1 Number
Material: 1..* enum Materials

a: Author

Name = “Alice”
Role = “Archaeologist ”

b: Author

Name = “Bob”
Role = “Architect ”

Person

GivenName: 1 Text
FamilyName: 1 Text
Nationality: 1..* Text
DateOfBirth: 1 Time

IsOwnedBy 0..10..*

Owner

c: Author

Name = “Claire”
Role = “Archaeologist ”

d: Author

Name = “David”
Role = “Archaeologist ”

p: Person

GivenName = “Matthew ”
FamilyName = “Rooster ”
Nationality = “American ”
DateOfBirth = Early 1919

Fig. 18.2 The Building class, the Building.Material attribute, the Building.IsOwnedBy association
and the p object are documented by metainformation

Metainformation as Information 185

Specific Uses of Metainformation

As we described in the previous section, metainformation is useful to document a
wide range of facets about model elements, such as their authorship, provenance or
quality. In this section, we describe a few specific metainformation-related sce-
narios that solve issues posed in previous chapters of the book.

Expressing Uncertainty

In Chap. 14, we discussed vagueness and, in particular, epistemic vagueness or
uncertainty, which corresponds to those situations where our knowledge about
something is unclear or incomplete. We also said that uncertainty affects every fact
and phenomenon, since we can be more or less sure about anything.
Metainformation can help us capture what degree of uncertainty exists for any
particular model element, such as an object, a value or a link. Consider the example
in Fig. 18.4.

Building

Height: 1 Number
Material: 1..* enum Materials

a: Author

Name = “Alice”
Role = “Archaeologist ”

b: Author

Name = “Bob”
Role = “Architect ”

Fig. 18.3 Metainformation chaining. The Building class is documented by object a which, in
turn, is documented by object b

b: Building

Address = “16 Chasey Rd. ”
Use = Housing

p: Person

GivenName = “Matthew ”
FamilyName = “Rooster ”
Nationality = “American ”
BirthPlace = Europe

Owns

u1: UncertaintyRecord

Likelihood = Certain

u2: UncertaintyRecord

Likelihood = Probable

u3: UncertaintyRecord

Likelihood = Dubious

Fig. 18.4 Metainformation is used here, through various UncertaintyRecord objects, to document
the uncertainty of various model elements

186 18 Metainformation

Here, several UncertaintyRecord objects are used to document the likelihood
that various model elements are as described. Specifically, the diagram states that it
is certain that person p was named Matthew Rooster, had American nationality and
was born in Europe; it is probable that he owned the 16 Chasey Rd. house; and it is
dubious that this was the actual address of the house. The example uses an
UncertaintyRecord class with a single Likelihood attribute, but you can create your
own classes to express uncertainty in any manner that is relevant to your model.

Implementing Transaction Time

In Chap. 15, we introduced temporality and briefly described the bitemporal
approach that is common in the database literature. According to this approach,
there are two time-related pieces of data that can be relevant for any piece of
information: when it holds true and when it was recorded. We criticized this
approach because these two concerns are very different and should not be managed
together; the former relates to the information being dealt with and is implemented
through the temporality techniques described in Chap. 15, whereas the latter relates
to the metainformation about the information being dealt with. Consider the
example in Fig. 18.5. Here, several DocumentationRecord objects are used to
describe who documented various entities, when they did it and what method was
employed to do it. Specifically, the diagram states that Alice created the p object on
6 February using an interactive session with the computer; then, Claire created the
b object on 9 February through mass import of data; and finally, Alice created the
link between p and b on 11 February through an interactive session again. You can
see how the “transaction time”, or time of recording, is documented in this scenario
together with other relevant data such as the operator and the documentation
method. Again, our metainformation approach gives you full liberty to define the
metainformation classes that you need and apply them to any relevant model
elements.

Summary

Most approaches to documenting information in the literature treat metadata as
essentially different to regular data. Also, they focus on the data level instead of the
information or knowledge levels.

Metainformation is defined as information that, in a given context, is relevant
because it describes other information. As a consequence, metainformation is
information too.

Metainformation is useful to document who created a model element, what
sources of information were used to obtain it, when it was created, what quality or

Specific Uses of Metainformation 187

reliability applies to it, what usage rights exist in relation to it and many other
things.

Metainformation can be expressed by attaching metainformation objects to the
relevant model elements through a special metainformation relationship.

Every kind of model element can be documented in this manner, from classes
and attributes to objects and links.

Metainformation is particularly useful to express uncertainty and implement the
concept of transaction time described in the database literature.

Exercises

31. Below you can find a list of characteristics. For each of them, state whether it
constitutes metainformation or regular information.

• A book’s author in a model describing a library.
• The architect who designed a building in a monument management system.
• The author of a photograph of a building in a monument management

system.

b: Building

Address = “16 Chasey Rd.”
Use = Housing

p: Person

GivenName = “Matthew”
FamilyName = “Rooster”
Nationality = “American”
BirthPlace = Europe

Owns

d1: Documenta onRecord

Operator = “Alice”
Date = 6 February 2016 17:23:08
Method = InteractiveSession

d3: Documenta onRecord

Operator = “Claire”
Date = 9 February 2016 9:43:56
Method = MassImport

d2: Documenta onRecord

Operator = “Alice”
Date = 11 February 2016 11:22:18
Method = InteractiveSession

Fig. 18.5 Metainformation is used here, through various DocumentationRecord objects, to
describe when various model elements were created, by whom and by which method

188 18 Metainformation

• The author of a photograph in a historical documentation management
system.

• The date when a ritual was first performed in a particular country.
• The date when a ritual was first documented in a particular country.

32. Create two type models, one for the following scenario and one for the nec-
essary metainformation that would be necessary to collect. A study is to be
carried out to analyse the feedback of visitors to a museum. For each visitor
willing to participate in the study, a museum assistant will record their personal
details, together with the date of the visit, the visitor’s opinion about the quality
of the exhibition and an optional comment by the visitor. It is necessary to
document when each visit was recorded and who did it.

33. Using the models from the previous exercise as a basis, create an instance
model plus the associated metainformation objects to describe the following
situation. Alice, 54, visits the museum on 11 March 2016 and agrees to par-
ticipate in the study. Bob is the assigned museum assistant who interviews her.
Alice states that she found the collection to be of average quality and makes no
further comments.

Exercises 189

Part 3
Recap of Part III

This is the end of Part III. In this part, we have built on top of the basic conceptual
modelling constructs presented in the previous one by adding more details and
additional techniques to model specific situations. We have also introduced
advanced modelling techniques in relation to the “soft” issues of vagueness, tem-
porality and subjectivity, and discussed new topics including metainformation and
feature redefinition. By now, you should be able to construct and interpret complex
models of cultural heritage in a variety of settings.

This part concludes the description of ConML. Most of the contents of the
ConML Technical Specification [32] have been covered in this book so far. If you
need additional information on the background justification for ConML, see [42].

Part IV
A Model of Cultural Heritage

Up to this point, we have been studying the concepts and techniques of conceptual
modelling. In this part, we change the angle and focus instead on presenting a
comprehensive conceptualization (an “ontology”) of cultural heritage based on
CHARM (www.charminfo.org). Crucial conceptual areas of cultural heritage are
discussed, including tangible entities, agents, performative entities, valorizations,
representations, locations and occurrences. An example model involving a variety
of related situations is developed over the chapters to illustrate how the different
areas in CHARM fit together.

Once you complete this part, you will be able to construct and understand
cultural heritage models based on CHARM and use CHARM as an infrastructure to
express your own conceptualizations of cultural heritage phenomena.

Chapter 19
An Ontology for Cultural Heritage

Abstract In this chapter we introduce the foundations of CHARM, the Cultural
Heritage Abstract Reference Model (www.charminfo.org). We describe the benefits
of using CHARM to explore, document and communicate portions of archaeo-
logical and anthropological entities, among other things. We also consider some
objections that are often posited against the use of CHARM or similar approaches,
such as whether cultural heritage can be modelled at all, or whether having a
common shared conceptual framework is possible or convenient. Then we discuss
different approaches to the conceptualization of cultural heritage, exploring how in
recent times we have seen a shift from an intrinsic value position to that of an
extrinsic (or granted) value. We also deal with the issue of whether cultural heritage
can or should be seen as a process rather than a collection of things. After that, we
introduce some key concepts for an ontology of cultural heritage, offering clear and
brief definitions for each of them. These concepts include culture, cultural product,
cultural value, heritage value and cultural heritage. The chapter ends with a brief
introduction to the three major concepts in CHARM: valuable entities, valoriza-
tions, and representations.

Cultural heritage is a complex reality with which people from multiple fields often
interact. Cultural heritage specialists usually include anthropologists, archaeolo-
gists, architects, archivists, geographers, geoscientists, historians, palaeobiologists
and sociologists, among others. Teams of experts working on cultural heritage are
becoming larger and more heterogeneous, and are generating more and more
information about their findings, observations, hypotheses and conclusions. In
addition, non-specialists also play a crucial role in cultural heritage; the general
public and the society at large are major actors in the construction and interpretation
of cultural heritage.

In interacting with cultural heritage, different agents need to express what they
find, observe, interpret and conclude. This need for expression comes from two
sources and serves two purposes. First of all, it helps us understand the world in
which we live; it supports our exploration, validation and reasoning about it.
Secondly, it helps us to communicate with others; we can thus document our

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_19

195

observations, hypotheses and conclusions about cultural heritage; we can convey
them to others; and others can therefore reuse them later.

Helping us to explore, reason about, document and communicate the world is
what conceptual models excel at, as we explained in Chap. 3. Conceptual models,
in addition, often work as “ontologies” of the world, as described in Chap. 1. In
other words, a conceptual model (a type model, more specifically) describes what
categories of things are relevant to us, what characteristics they have and how they
relate to each other. CHARM is a pre-defined (but flexible and extensible) model of
cultural heritage; by providing this, we can help others to fulfil the
above-mentioned goals of exploring, reasoning about, documenting and commu-
nicating cultural heritage, and in such a way that mutual understanding between
collaborators is straightforward.

You may think that a pre-defined model of cultural heritage cannot possibly
work. The next few sections explain why it does.

What Is CHARM?

CHARM stands for Cultural Heritage Abstract Reference Model. Firstly, CHARM
is a model, that is, a purposeful representation of something relevant. Remember
from Part I that every model necessarily entails a simplification, which removes
some details from the represented entities and allows us to manage information that
would be too complex to handle otherwise. Secondly, CHARM is a model of
cultural heritage. By “cultural heritage” here we mean anything that may be the
recipient of certain kind of value ascribed by an individual or group, plus the
associated valorizations ascribed to said things, plus the representations of these
things that may exist. In this way, CHARM not only represents the specific entities
that might receive cultural heritage value, but also other entities which are necessary
to describe and understand the former.

Thirdly, CHARM is a reference model. This means that CHARM is intended to
be used by a wide and diverse range of organizations and individuals in order to
achieve a common understanding. And, finally, CHARM is an abstract model. This
means that, in order for CHARM to be used by a wide and diverse range of users,
the model cannot be too specific about what it represents, since each organization,
project and situation has different and unique needs, and even different and unique
preferences and stances on what cultural heritage is about. CHARM provides an
abstract view that can be, hopefully, shared by everyone, but it is up to each of us to
define our own particularities by using extension mechanisms (see Chap. 33). This
means that you do not use CHARM straight out of the box; rather, you need to
extend it into a particular model that suits your specific needs.

196 19 An Ontology for Cultural Heritage

Motivation and Benefits of CHARM

There is an ongoing tension in any modelling activity. On the one hand, we strive
to express things in a manner that is as clear and understandable as possible, so that
as many people as possible can benefit from it. This leads us to adopt conventions,
standards, shared views of reality and agreed-upon approaches. But, on the other
hand, we know that each project or task (such as an archaeological excavation or an
ethnographic study) has its own peculiarities and specific needs, and so it needs a
particular, unique way of expressing things. This leads us to employ special,
unrepeatable ways of representing things to obtain the best possible fit for our
purpose. Adopting conventions and employing unique solutions are, in fact, two
contradictory strategies, each one having its pros and cons.

The overall adoption of standards, or widely shared conventions to conceptualize
cultural heritage, has the obvious advantage of making interoperation and under-
standability much easier. However, it has a major drawback: everyone must adapt
its way of working to what the standard dictates. Usually, this is not feasible or
desirable, especially in research settings. A good example is ISO 21127 [21], also
known as the CIDOC Conceptual Reference Model (CRM) [20], a
museum-oriented standard that, while being well known in the cultural heritage
community, is far from being mainstream in its adoption; despite the claim that
CIDOC CRM can be extended and adjusted, this has not resulted in its wide
adoption. The opposite strategy, that of totally avoiding standards and having each
project or task to use its own particular conceptualization, has the benefit of pro-
viding an optimal fit for purpose; however, shared understanding and interoperation
are very difficult in a setting like this.

CHARM adopts a new hybrid approach based on model extension, which has
been employed by ISO for some ontology-related work [43, 44]. According to this
approach, the shared standard must stipulate as few concepts as possible, and
always at a very high level of abstraction, so that it is highly likely to be acceptable
to a wide range of specialists. In addition, anyone wishing to use the standard must
extend it; that is, add specific classes, attributes, associations and other model
elements in order to provide the necessary details to adapt the standard to the
specific needs of a given project or task. The result of carrying out an extension is
called a particular model . The details of how particular models are constructed
through extension are given in Chap. 33.

The extension approach employed by CHARM combines the advantages of the
two previous strategies. On the one hand, it allows us to address the peculiarities of
our projects by creating a particular model that is optimally fit to each of them. On
the other hand, we are still using CHARM as a shared infrastructure, and therefore,
interoperation and mutual understandability with other models created by other
people also using CHARM is very easy.

CHARM contains over 160 classes and covers many areas in cultural heritage,
including:

Motivation and Benefits of CHARM 197

• Tangible entities such as places, buildings or books.
• Performative entities such as social acts, songs or trades.
• Occurrences such as processes, situations and changes.
• Abstract entities such as beliefs and category systems.
• Norms such as rights, obligations or conventions.
• Agents such as people or communities.
• Representations such as maps or photographs.
• Valorizations such as research works or community stances.
• Derived entities such as sites, landscapes or styles.
• Measures of length, area, mass and other quantities.
• Locations, including absolute and relative.

The following sections, and the remaining chapters of this part, describe CHARM
in full detail. You will find a number of definitions and explanations of what
cultural heritage is about according to CHARM. Often, you may feel that you do
not agree with some of these definitions. When this happens, we suggest you keep
reading until you obtain a comprehensive view of the full model and learn how
everything falls into place.

Objections to CHARM

You may argue that cultural heritage cannot be described through a single model,
since there might be multiple approaches to it, especially across cultures. Of course,
we agree that different cultures have different views on what is valuable and what
should be preserved and passed on to future generations. However, CHARM and the
rest of this book assume a Western contemporary culture, which is that of the author
and ascribes meaning to the term “cultural heritage” only in this context. In this sense,
we adopt a humble position by acknowledging that we cannot possibly represent the
conceptions of cultural heritage held by cultures that are different to our own, and
therefore, we should stick to ours. This means that CHARM is likely to be
impractical to represent cultural heritage as seen by cultures different to the Western
contemporary one, although it can be used to describe other cultures’ cultural heritage
as seen by us. In summary, and for the sake of clarity, CHARM and the rest of this
book assume that the concept of ‘cultural heritage’ occurs within the Western con-
temporary culture and makes no attempt to model other points of view.

Even so, you may think that cultural heritage cannot be modelled at all, or at least
not through the approaches presented in this book. CHARM is a conceptual model
based on the object-oriented paradigm inherent to ConML, which is highly linguistic
as described in Part I. CHARM represents things in terms of classes, attributes and
associations; this is what human language does through nouns, adjectives and verbs,
and through mechanisms such as subsumption and classification, as described in
Chap. 2. We cannot avoid modelling; the mere usage of language to share knowledge

198 19 An Ontology for Cultural Heritage

and communicate ideas implies a great deal of informal modelling and a shared
understanding of reality. This is what CHARM does.

Still, you may argue that a common and shared understanding is not necessarily
good, because tolerant conflict between incompatible discourses is what makes
humanities and social sciences richer. We do not deny the value of conflict and
debate for many purposes in the construction of intersubjective realities. However,
there are pragmatic reasons that make a shared understanding a valuable resource.
The exchange of information between individuals and organizations, especially if
they do not share a similar background, is highly facilitated if a common and shared
frame of reference is used. In fact, knowledge exchange is not possible unless some
kind of shared frame of reference exists. Similarly, the existence of a well-known
model helps us to reuse knowledge over time for new purposes and thus more easily
create new knowledge based on the work of others. In addition, even when deep
conceptual disagreements exist between theoretical positions, a minimum common
frame of reference is necessary in order to discuss these disagreements. For example,
some may think that history is just the simple listing of chronologically ordered
events, while others would probably call this chronicle and insist that history is
something else. For this discussion to take place, a shared notion of what “list”,
“event” and “chronology” mean must exist. Note that we are not saying that every
party involved must use the same terms; we are saying that every party involved
must know what others mean when using whatever terms. Precisely, CHARM aims
to develop such a common frame of reference for the field of cultural heritage.

Nevertheless, you may think that you do not need a model as large or deep as
CHARM for your particular field of interest. If this is so, you must bear in mind that
CHARM is a descriptive, rather than prescriptive, model. That is, CHARM gives
you some conceptual aids, but it does not tell you how you must conceptualize each
thing in the world. In addition, you do not need to use everything in CHARM: you
can pick only the elements that are useful to you, and extend them to match
precisely the needs of your organization and project, and even your personal
preferences, discarding the rest. By using CHARM, your information will be
readily understandable by others with minimum effort and will benefit from a model
that has been proven to work in a number of situations and conditions.

Approaches to Cultural Heritage

Co-authored with César Parcero-Oubiña, Incipit CSIC
Nowadays, cultural heritage is a contested concept, not only in practical terms (as
in, should something be considered cultural heritage?), but also in theoretical terms.
Although at a very general level, both legal and popular, a widespread consideration
of cultural heritage exists as a cultural and identity legacy composed of objects,
monuments and traditions, the last decades have witnessed the development of
theoretical arguments challenging this vision. Reactions against these traditional
views of cultural heritage have gained strong impetus in the specialized literature,

Objections to CHARM 199

so that at first sight, there is currently no consensus on how cultural heritage should
be defined or, more precisely, on what constitutes cultural heritage. In the words of
Bendix [45], “Each grouping of practitioners and experts harbours its own con-
ception of heritage; their expectations seldom harmonise with one another”. We
discuss some common approaches to cultural heritage in the rest of this section.

Cultural Heritage as a Process

Starting with the most recent and challenging approaches, triggered by the emergence
of the now-contested concept of ‘intangible heritage’, voices began to be raised
contesting the old and solid idea that cultural heritage was a matter of antiquity,
authenticity and materiality [46]. A booming literature has developed in the last few
decades that argues in favour of a different definition of cultural heritage.

Following this line, cultural heritage has been defined in different ways that always
highlight the social processes that give meaning and significance to things. For
instance, cultural heritage has been defined as “a mode of cultural production in the
present that has recourse to the past” [47], “a mode of cultural production that gives the
endangered or the outmoded a second life as an exhibition of itself” [48], “a form of
communicative practice” [49], “a field of social/cultural action” [50] or “a social and
cultural process that mediates a sense of cultural, social and political change” [51].

What lies behind these definitions is the idea that cultural heritage is not com-
posed of passive and given things from the past, but of active social processes in the
present. This reaction against a things-based view of cultural heritage has been
expressed as provocatively as “there is no such thing as heritage” [52]. Cultural
heritage would be in the processes through which people engage with what is
around them. Cultural heritage would be a process of valorization, of giving dif-
ferent values and meanings to things, understanding “thing” here in its widest
meaning, as any discrete manifestation that happens in the world. And by “things”,
we include here other things such as events [47].

Active processes by agents involving subjective perceptions and actions are
therefore considered to be the main components of cultural heritage according to
this view. We use the term “valorization” to refer to all such processes (as described
in further sections and chapters). Even in its most extreme and radical forms, these
definitions do not mean that valorizations are the only component involved in the
construction of cultural heritage; by definition, something needs to exist in order to
engage with it. As stated by [52], “Heritage becomes not so much the thing or place
identified by the AHD [the Authorised Heritage Discourse, meaning the traditional
practice, see below] as ‘heritage’, but instead the values and meanings that are
constructed at and around them”.

Consequently, and even if considered simply as pure raw matter, things (again,
in the broadest sense of the word) also play a role in the creation of cultural heritage

200 19 An Ontology for Cultural Heritage

according to this view. Though passive and circumstantial, things are also part of
the picture, since for a valorization to happen something must exist as the recipient
or object of that valorization. Therefore, viewing heritage as a process means
bringing actions to the forefront and pushing things into the background. This is
precisely the opposite of the traditional views of cultural heritage, which apparently
have considered it as being composed of things alone.

Cultural Heritage as Things

Long before the development of the trends referred to above, cultural heritage was
viewed as consisting of things having special and usually inherent values. In fact,
this is still what is agreed as the “common-sense definition”, or the “natural way of
thinking about it”, as criticized by [52]. Cultural heritage is, from this widespread
point of view, a collection of things (including here a wide range of sensorial
elements, from objects to traditions) with an inherent, objective value. Processes of
valorization, perception or reception play no apparent role in this view of cultural
heritage. As argued in a recent paper [53], “This process [the changes in the concept
of cultural heritage] is based on the substitution of an objective logic characterizing
the historic monument with a subjective logic of heritage”.

Surely enough, a significant change has come about in how cultural heritage is
defined. However, it is not equally obvious that this change can be described in
terms of the incorporation of a previously non-existent subjectivity. It is arguable
that an objective logic behind the concept of monument has ever existed. Whether
within the realm of cultural heritage norms and policies, or in the academic practice
that simultaneously developed the very notion of cultural heritage, a process of
valuation or valorization has always existed behind the consideration of some
objects as part of cultural heritage. As a good example, not too far in time, the
Venice Charter [54] states that “The concept of an historic monument (…) applies
not only to great works of art but also to more modest works of the past which have
acquired cultural significance with the passing of time” (our emphasis).

Even within the very concept of ‘monument’, an essential component of judg-
ment has always existed. Why are some things culturally significant, and others are
not? What exactly does “cultural significance” mean? Who assigns it, and how? In
any case, it should be quite obvious that, seen from an analytical perspective, the
condition or potential of anything as part of cultural heritage is not intrinsic to
things, because significance is not an inherent property of things [55]. Although the
loss of centrality of the concept of ‘monument’ has helped to eradicate this idea, the
very concept of monument is not different to that respect: monumentality is not a
property of things, but a value given by some common agreement [56].

As arguable as it is, the conception of cultural heritage behind formulations such
as that from the Venice Charter is above all restrictive, but not concrete at all: no
objective references are laid down to discern which entities do have a cultural
significance and which do not. Traditional approaches of this kind, according to

Approaches to Cultural Heritage 201

[57], relied on the knowledge of experts who, based upon their disciplinary edu-
cation in academic fields such as art history, history or archaeology, were implicitly
assumed to be the only people capable to “identify the innate value and significance
(…) often defined in terms of historical, scientific, educational or more generally
‘cultural’” [51, 58, 59]. That is what Smith labels as an ‘authorised heritage dis-
course’ [51, Chap. 1], which is very clearly stated in such an influential document
as the UNESCO World Heritage Convention of 1972 [60]: “For the purpose of this
Convention, the following shall be considered as ‘cultural heritage’: monuments:
architectural works, works of monumental sculpture and painting, elements or
structures of an archaeological nature, inscriptions, cave dwellings and combina-
tions of features, which are of outstanding universal value from the point of view of
history, art or science”.

A subjective, valorative process is always present here. No matter how much this
judgment could be based on criteria that are shared by and agreed upon by all
potential experts, so that the final diagnosis would always be the same, it still
remains as a conventional adscription of something abstract (a value) to something
concrete (an object) that does not hold the former inherently. This is accurately
expressed by [61]: “Recognizing the fundamental contingency of heritage values
does not preclude the possibility of some values that are universally held (or nearly
so). These socially constructed values—think of the Great Pyramids, for instance—
are seen as universal because they are so widely held, not because they are objective
truths”.

If the existence of such an objective truth were the case, and as pointed out by
[62], this significance could be perceived by anyone, anywhere and at any time, in
the same way that anyone can perceive specific colours or forms. This is not the
case, even when a limited group of experts refer to a limited subset of cultural
heritage: as pointed out by [63], expert approaches to such a concrete thing as
‘heritage sites’ have been largely characterized by “…an ad hoc approach (…)
[implying that] the outcome is a number of small studies, none of which are easily
comparable to each other. (…) As a result, much of the discourse surrounding
heritage sites continues to be based upon an innate understanding of these places”.

Thus, the main difference between the two approaches described above is not a
change in the objective or subjective condition of cultural heritage. The assumption
of the existence of an inherent value within things was (is) a false belief. The very
concept of value implies a subjective and external judgment. The main difference
lies in the context that is the origin of the valorizations that convert things into
cultural heritage: who has the legitimacy to turn things into cultural heritage, from
what standpoint it is done, and with what relationships to these things. The focus
moved from the realm of the experts to the wider field of what is often rather
vaguely labelled as “the community”, “social groups” or simply “society”. This
does not mean that experts and their judgment play no role at all in the current
practices of cultural heritage. What it does mean is that experts’ judgment is no
longer considered to be the one that decides which things should be considered as a
part of cultural heritage.

202 19 An Ontology for Cultural Heritage

Infrastructural Concepts

The previous section described various positions in relation to what cultural her-
itage is. In this section, we clarify what notions we adopt, and how they will be used
throughout this book. Some of these terms and concepts have been explored and
justified in [64].

Definition
A culture is the collection of shared beliefs and norms that guide human
action within a group.

This definition has several consequences. Firstly, a culture occurs within a group
and is local to it, so that it may not be applicable outside that group. This does not
mean that we cannot observe, understand or reason about someone else’s culture;
we can, but it is their culture as opposed to ours, and therefore, it guides their
actions rather than ours.

Secondly, culture guides human action. This means that cultural beliefs and
norms do not fully determine what we do; rather, they influence and shape it
without exerting a complete control. Other factors such as our biology, individual
differences, or chance also play a part.

Finally, culture is composed of beliefs and norms, which implies that culture is
abstract. Non-abstract entities such as books, films or songs are not part of the
culture, but constitute cultural products.

This definition of “culture” does not capture the fact that a culture changes and
evolves over time according to human action and other influencing factors. The
reason for this is that it could not be otherwise, so this fact does not add to the
definition. Still, it is an important characteristic of the culture concept.

Definition
A cultural product is a thing generated within a group and that, as a
consequence, reflects the culture of this group.

This definition means that everything that we produce is a cultural product.
Buildings, songs, social performances, dressing styles and many other things are
cultural products. Things that are unintentionally produced by us, such as crop
marks or pollution, are also cultural products. Things that are not produced by us,
such as birds, mountains or the Moon, are not cultural products. You may argue that
birds, mountains and the Moon are indeed cultural products as we hold subjective
and culture-dependent conceptions about them. This is true; however, these con-
ceptions constitute representations of birds, mountains and the Moon, rather than
being identical to them. In this regard, distinguishing between a thing and its

Infrastructural Concepts 203

representations is of paramount importance, as it allows us to compare and reason
about different perspectives on the same things.

Having said that, different cultural products involve different degrees of cultural
influence. A landscape, for example, is a cultural product, but is strongly deter-
mined by the natural, non-cultural features of the terrain and environment, such as
its geology or climate. However, the design of a company’s logo is very strongly
determined by our culture, bearing almost no non-cultural influences.

Regardless of whether they are cultural products or not, things may receive
cultural value.

Definition
Cultural value is the agreed-upon importance that a group grants to
something as an acknowledgement that this thing incarnates values or rules
representative of a culture that is relevant to them.

This definition may look a bit complicated. Let us unpack it. First, cultural value is
about the importance that we grant to something. Note that the definition requires
that this importance has been agreed upon; in other words, cultural value is assigned
by consensus, rather than on an individual basis. For example, I may consider a
particular book in my collection to be extremely valuable, but since this importance
is something that only concerns me, this would not constitute cultural value.

Also, note that cultural value is granted to something. In other words, cultural
value is not intrinsic to the thing receiving it, but is something external to it, which
is added by a group in specific circumstances. The thing receiving cultural value, in
addition, does not need to be a cultural product. We can give cultural value to a
building (which is a cultural product) but also to the Moon (which is not). Note here
that things that are not cultural products, such as the Moon, may still incarnate
values or rules of a culture, not by design but through other means such as social
consensus, convention or even chance.

As discussed previously, you may argue here that the Moon (or birds, or the
oceans) are indeed cultural products, since they are interpreted by groups within
certain cultural settings, and they are conceptualized according to each group’s
culture. We agree that these phenomena occur, but this does not mean that the
Moon or birds constitute cultural products, because they have not been generated
through human action. In other words, they would still exist, and be very similar to
what they actually are, had humans never appeared on Earth. Having said this, it is
true that the meaning of birds or the Moon for a certain group is culturally con-
structed, but not the underlying physical entities on which this meaning occurs.
Remember to always differentiate between a representation (especially, an inter-
pretation) and what the representation refers to, as this is what allows us to consider
multi-vocal scenarios.

In addition, we grant cultural value to something as a consequence of recog-
nizing that this thing embodies or represents some of the values and rules of a

204 19 An Ontology for Cultural Heritage

culture that is relevant to us. In other words, cultural value appears when we
acknowledge that something is representative of a culture. This means that cultural
value is never caused by situations not involving the embodiment of cultural values
and rules; for example, the importance that we give something because it has a high
economic value or because it is very rare would not constitute cultural value, but
value of some other kind.

Finally, note that the values and rules that are embodied in something receiving
cultural value do not need to pertain to our own culture. The definition only requires
that this culture is relevant to the group granting cultural value, but this admits
many variations. In the simplest scenario, we often give something cultural value
because we agree that it embodies our own culture; for example, the novel On the
Road by Jack Kerouac is often valued by contemporary American society as an
insightful and powerful embodiment of some of their own cultural values.
Situations like this are depicted by Fig. 19.1.

But we may also give something cultural value because we agree that it
embodies a different culture that we want to study, admire or even censure, among
other possibilities. An example would be ikebana, the Japanese art of flower
arrangement, which is usually valued by Western societies because of its supposed
embodiment of parts of the Japanese culture. This is shown in Fig. 19.2.

We may even give something cultural value because we agree that it represents
what used to be our culture in the past or what we think will be our culture in the
future. An example would be the novels written by Jane Austen, which often are
culturally valued by the contemporary English society as good representatives of

A

G C

Fig. 19.1 A group G grants cultural value to a thing A because A embodies G’s culture C. This
diagram and others in this chapter do not use ConML notation. The solid arrow with a black head
means ‘grants value’; the dashed arrow with a simple head means ‘embodies’

A

G1 C1

G2 C2

Fig. 19.2 A group G1 grants
cultural value to a thing
A because A embodies another
group G2’s culture C2, and
G1 considers C2 to be
relevant

Infrastructural Concepts 205

the values and norms of the English society of the late eighteenth and early nine-
teenth centuries. Figure 19.3 shows an example.

Cultural value is necessary to make something cultural heritage, but not enough.
In this regard, note that something may receive cultural value and still not be part of
cultural heritage. For example, the outdoors binge drinking parties that many
teenagers go to in many Spanish towns definitely embody values from our culture.
However, most of us would agree that they are not part of cultural heritage, as we
do not consider them to be of cultural importance.

To make something part of cultural heritage, heritage value is necessary in
addition to cultural value.

Definition
Heritage value is the agreed-upon importance that a group grants to
something as an acknowledgement that this thing may potentially benefit a
relevant group in the future.

Like in the case of cultural value, heritage value is granted to something by a group
as the result of consensus. However, there is a substantial difference to the previous
case. For heritage value, the reason why the value is granted does not reside in the
embodiment of cultural values and rules, but in the shared belief that the thing being
valued can produce certain benefits in the future. Like in the previous case, these
benefits may be for our own group or some other group that is relevant to us. For
example, most Italians value their Roman age monuments because of the potential
economic benefits that these bring through tourism. This situation is illustrated by
Fig. 19.4.

As in the previous case, the thing being valued does not need to be a cultural
product, but can be anything. We can grant heritage value to cultural products such
as a building, or to other things such as Antarctica or the oceans.

Also as in the previous case, the group receiving the benefit in a heritage
valuation may be different to the one granting the value, as long as its culture is
relevant; it can be a group that we want to study, admire or censure, among other
possibilities. For example, most Western archaeologists probably agree in valuing
the Uluru rock formation in Australia as potentially beneficial to the Aboriginal

Time

...

A

G 2 C2G 1 C1

1 2

Fig. 19.3 A group G grants
cultural value to thing A in
moment 2 because
A embodies what used to be
G’s culture C in a past
moment 1

206 19 An Ontology for Cultural Heritage

communities of the area in relation to their identity, beliefs and even tourism-related
revenue (despite the potential negative consequences of mass tourism). This is
depicted in Fig. 19.5.

Note that the fact that a group agrees with or supports the value granting of
another group does not mean that the first group also grants the same value. For
example, city dwellers in Western societies often agree with, and support, the
valuation that some farmers and country dwellers make of traditional ways of living
as being likely beneficial in the future as income generators (through ecotourism,
for example) and elements of social cohesion. This does not mean that city dwellers
are granting this value themselves. This is illustrated in Fig. 19.6.

Heritage value falls within what in ethics is called instrumental value [3,
“Instrumental Rationality”]. In other words, things don’t receive heritage value as
an end of itself, but are granted this value for a very particular purpose, namely,

A

G C

Fig. 19.4 A group G grants
heritage value to thing
A because A may benefit G in
the future. The solid line with
a cross stroke at the end
means ‘may benefit’

A

G1 C1

G2 C2

Fig. 19.5 A group G1 grants
heritage value to thing
A because A may benefit
another group G2 in the
future, and G1 considers G2’s
culture C2 to be relevant

A

G1 C1

G2 C2

A

G1 C1

G2 C2

Fig. 19.6 A group G1 grants
heritage value to thing
A because A may benefit G1
in the future. At the same
time, another group G2 agrees
with and supports G1’s value
granting. The solid arrow with
a hollow head means ‘agrees
with and supports’

Infrastructural Concepts 207

because we expect that a benefit will be obtained in the future from the valued
things. Cultural value, contrarily, is not instrumental but intrinsic [3, “Intrinsic vs.
Extrinsic Value”]; things with cultural value are not supposed to be “useful” or
involved in any beneficial process; rather, we value them as an end of itself.

A consequence of our definition above is that anything that is consensually
believed to have potential to benefit a group may be granted heritage value. This
includes, for example, something of very high economic value such as an oil
reserve; this constitutes economic heritage, also known as estate. Note that heritage
value is necessary to make something cultural heritage, but not enough; for
example, an oil reserve, despite having heritage value, would not be considered
cultural heritage by most of us as it lacks the necessary cultural value.

To make something part of cultural heritage, cultural value is necessary in
addition to heritage value. Both cultural and heritage values are so combined into
the compound concept of ‘cultural heritage value’.

Definition
Cultural heritage value is the agreed-upon importance that a group grants
to something as an acknowledgement that that this thing incarnates values or
rules representative of a culture that is relevant to them, and that it may
potentially benefit a relevant group in the future.

Cultural heritage value combines the main notion of heritage value with the need
for cultural value. This theory of cultural heritage, based on importance and
potential future benefit, resonates with the overall view of heritage embodied in
Resolution 11 of the World Archaeological Congress 30th Anniversary Plenary,
also known as the Kyoto 2016 Statement on the Future Collaboration of
International Archaeological Learned Communities [65] which, in point 1, commits
to “protect vitally important traditions and heritages […] for the well-being of
diverse communities across the world”. The future well-being mentioned in this
statement corresponds to the potential future benefits in our theory.

Also, and as in previous cases, the group granting the value is often the same
group that is potentially benefitted; for example, the French or the Italian usually
value their food and food-related customs as representative of their respective
cultures and believe that preserving these customs may benefit them in the future in
terms of good health, social belonging and tourism. This is shown in Fig. 19.7.

It may also be the case that the expected benefit falls on the group doing the
value granting even when the culture embodied by the valued thing is that of a
different group if such a culture is considered to be relevant. An example would be
the value assigned by researchers in anthropology or archaeology to the material
culture of Maya art, due to the potential benefits that it may bring to present and
future Western societies in terms of generation of new knowledge and under-
standing. This is shown in Fig. 19.8.

208 19 An Ontology for Cultural Heritage

Alternatively, it may be the case that the culture embodied by the thing being
valued is that of the same group doing the value granting, while the expected
benefits fall on a different group. This would be the case, for example, of the value
that used to be granted to Christian beliefs and norms by Christopher Columbus and
his supporters during his trips to America; while believing that Christianity was a
good representation of their own culture, they also thought that it would benefit
American natives. This is shown in Fig. 19.9.

So far, we have illustrated only a few typical situations, and many others are
possible. Also, we have extensively employed the notion of ‘benefits’ in our def-
initions. But, what kind of benefits can be expected from cultural heritage? At least,
the following:

• Scientific-technical. Something is valued because of its potentiality to generate
new knowledge or goods within a group. For example, this includes situations
where researchers learn new things about the world or engineers construct things
that are needed or wanted.

A

G C

Fig. 19.7 A group G grants
cultural heritage value to
thing A because A, which
embodies G’s culture C, may
benefit G in the future

A

G1 C1

G2 C2

Fig. 19.8 A group G1 grants
cultural heritage value to
thing A because A, which
embodies G2’s culture C2,
may benefit G1 in the future,
and G1 considers C2 to be
relevant

A

G1 C1

G2 C2

Fig. 19.9 A group G1 grants
cultural heritage value to
thing A because A, which
embodies G1’s culture C1,
may benefit G2 in the future,
and G1 considers C2 to be
relevant

Infrastructural Concepts 209

• Administrative. Something is valued because of its expected capacity to
organize, provide cohesion to, and in general socially improve a group. For
example, this includes situations where the managers develop policies in order
to decrease the group’s crime or poverty rates or increase the overall health or
well-being of its members.

• Community. Something is valued because of its expected capacity to generate
feelings of identity, belonging and continuity on the members of a group. For
example, this includes situations where the people in a village or region
maintain or reinforce their collective identity.

• External. Something is valued because of its expected capacity to induce
feelings of admiration, fascination, and strangeness on the members of a
group. For example, this includes situations where tourists or visitors are per-
suaded to admire something so far new and remarkable to them, and thus adopt
a positive stance about it.

Cultural heritage value constitutes the basis for cultural heritage. Note that cultural
heritage value may be given by anyone, as long as consensus is involved, rather
than specialists only as in the traditional views described in previous sections.
Through consensus, anyone may grant cultural heritage value to anything and of
any of the types described above: scientific-technical, administrative, community or
external.

Definition
Cultural heritage is the set of things that are granted cultural heritage value
by a group.

In other words, something is part of the cultural heritage of a group if it receives
cultural heritage value from this group. Note that cultural heritage, like all the
previous concepts discussed in this chapter, is local to a group, because it is based
on cultural heritage value, which is also local to a group. Something may be cultural
heritage to a group but not to another. Note also that “group” here means any group,
from a few individuals sharing some commonalities, to the whole world.

Also, note that cultural heritage is a collection of things . In this regard, anything
may, at least in principle, be part of cultural heritage, depending on what value is
granted to it. Interestingly, and as pointed out above, the things that compose
cultural heritage do not need to be cultural products. For example, the biodiversity
of the Amazon rainforest or the continent of Antarctica is often considered to be
part of cultural heritage by many, but neither of them are cultural products in the
sense we describe above. Figure 19.10 depicts cultural heritage plus other related
concepts. Here, things inside C have received cultural value, such as binge drinking
parties or Uluru. Things inside H have received heritage value, such as an oil
reserve, Uluru or the oceans. Things inside the intersection CH, such as Uluru,
receive both kinds of value and, therefore, are said to be cultural heritage. Things in

210 19 An Ontology for Cultural Heritage

C but not in H are culturally valued, but lack the potentiality to provide benefits in
the future. Things in H but not in C may produce benefits, but they do not embody a
relevant culture.

As an additional consequence, this solves the sometimes muddled discussion
about natural versus cultural heritage . In our usage of the term “cultural heritage”,
the word “cultural” points to the fact that whatever makes up cultural heritage does
it because it embodies some relevant culture. It does not point to the fact that
cultural value is granted within a culture; it would not make sense to point to this, as
it is always the case and therefore it adds nothing to the definition. Since “cultural”
in “cultural heritage” means that cultural heritage embodies a culture, then other
kinds of heritage that are still heritage but do not embody a culture (H and not CH
in Fig. 19.10) should not be called “cultural heritage”. For example, Antarctica or
the oceans may be termed “natural heritage”; an oil reserve may be classed as
“economic heritage”.

The definition above also implies that cultural heritage is not a process , as
claimed by some authors and described in the previous section. A process is
something that occurs in time and has a start and an end, so that sentences such as
“before X”, “after X” or “during X”, where X is the process, make sense. For
example, a war is a process, and so we can say things like “before the war” or
“during the war”; however, it does not make sense to say “before cultural heritage”
or “during cultural heritage”. What definitely is a process, however, is the collection
of practices or activities by which something is granted cultural heritage value; this
has been called the process of heritage formation by some authors. But cultural
heritage formation and cultural heritage are not the same thing, like a house and its
construction are not the same thing. The authors who claim that cultural heritage is
a process, such as Smith or Waterton [51, 52], have mixed up the process of
heritage formation and heritage itself in their enthusiasm to highlight the val-
orization processes as opposed to the things being valorized. We agree that val-
orization processes are the key to cultural heritage formation, but this does not mean
that the process and the thing undergoing the process are the same thing.

Things having
heritage value

Things having
cultural value

Cultural heritage

C H

CH

Fig. 19.10 Cultural heritage is the collection of things that have both cultural and heritage value

Infrastructural Concepts 211

Technical
In this book, we commit to an ontological position often called the substance
paradigm. This position maintains that things are the primary entities in the
world, and changes to things, which also exist, are subsidiary to the former.
The substance paradigm has been the mainstream position in Western phi-
losophy for centuries, but is significantly opposed by the process paradigm.
This approach argues that change and “becoming” are the primary kinds of
entities that exist, and static physical things are just a secondary phenomenon.
Although the process paradigm has its merits and the substance paradigm
cannot explain everything, we have adopted the latter here for the sake of
simplicity and intuitiveness, and the definitions and discussion in this chapter
are especially based on it.

For more information on the process paradigm, see [3, “Process
Philosophy”].

At this stage, we must clarify that the process of heritage formation is not neces-
sarily linear. That is, situations where an entity receives heritage value and thus
becomes cultural heritage may occur, but things are usually more complex. For
example, heritage value is often constructed on top of previously existing values,
and collections of entities may receive value as a set rather than one by one. Also,
the very fact that an entity receives value and becomes cultural heritage may have a
significant impact on the cultural setting where this occurs, thus closing a loop and
producing feedback. The statement “entity plus value equals heritage” works as a
definition, but should not be taken as a description of the heritage formation
process.

Additionally, the definition given above shows that many of the usual subdi-
visions of cultural heritage that are commonly found, such as artistic heritage,
intangible heritage, archaeological heritage, industrial heritage, are very ambiguous.
Adjectives like these are usually applied to the word “heritage” to describe a
collection of barely related aspects, including the nature of the underlying things
that are considered heritage, or the academic discipline under which they have been
studied. For example, intangible heritage is actually heritage composed by things
which happen to be intangible or immaterial; in this case, the adjective “intangible”
refers to a property of the things receiving cultural heritage value, but says nothing
about how they are studied. Contrarily, archaeological heritage refers to things that
have been studied by archaeology, regardless of their kind. Similarly, industrial
heritage refers to things that have had (or still have) an industrial function,
regardless of what disciplines study them and whether or not they are material. To
avoid this confusion and overlapping designations, we adopt an approach here that
avoids any qualifications of cultural heritage and instead categorizes only the things
that receive cultural heritage value. In this manner, we can speak of immaterial

212 19 An Ontology for Cultural Heritage

entities or industrial entities, but not of immaterial or industrial heritage, for
example.

You may have noticed that a key element is missing from the definitions above
that is often cited as a crucial component of cultural heritage: the fact of preser-
vation. Cultural heritage is to be preserved, and many authors consider this char-
acteristic an essential and definitional trait of cultural heritage. We have not
included it in the definitions above because we do not think it is a definitional
characteristic, but a derived one. In this regard, the inherent potentiality of the
things that constitute cultural heritage (as per the definition of “cultural heritage
value”) to provide benefits in the future usually entails a desire to preserve them
over time. In other words, since, by definition, we believe that cultural heritage can
be beneficial in the future, then we are usually impelled to preserve it. In this
manner, our will to preserve cultural heritage is captured as a direct consequence of
the provided definitions.

You may think that the definition of cultural heritage given above is too brief
and simple, and that cultural heritage is too complex and intricate as to be defined
by a single short sentence. However, bear in mind that the power of the definition
rests on the other concepts that have been defined before, on which the definition
stands. Chaining definitions like this is what allows us to develop a comprehensive
and expressive conceptualization of very complex portions of reality.

Finally, you may think that other definitions of cultural heritage are possible, and
that one should not be forced to accept the one provided here. We agree. The
definitions given here work as a motivation for CHARM, but you can use CHARM
even if you do not agree with these definitions. The only principles you need to
agree with if you want to use CHARM are these:

• Cultural heritage is a collection of things, rather than a process.
• What makes a thing to be part of cultural heritage is some kind of value,

externally assigned by agents.

In addition, and once we have agreed to the principles above, bear in mind that most
definitions of cultural heritage that you may be able to think of are, in fact, special
cases of the definition given here. For example, some argue that cultural heritage
should be composed only of those that a relevant authority in the government of a
state has recognized as such through legal or administrative procedures. Regardless
of whether you agree or not with this definition, it is easy to see how it can be
formulated as a special case of our definition that “cultural heritage is the set of
things that are granted cultural heritage value by a group”, by limiting this group to
be composed of specialists from the corresponding authority, and the associated
benefit (as referred to by “cultural heritage value is the agreed-upon importance that
a group grants to something as an acknowledgement that this thing incarnates
values or rules representative of a culture that is relevant to the group, and that it
may potentially benefit a relevant group in the future”) to be of an administrative
kind. We would end up with definitions such as:

Infrastructural Concepts 213

• Cultural heritage is the set of things that are granted cultural heritage value by a
relevant state authority.

• Cultural heritage value, in turn, is the agreed-upon importance that said
authority grants to something as an acknowledgement that this thing incarnates
values or rules representative of and relevant to our culture, and that it may
potentially benefit us in the future.

As you can see, this old-fashioned but plausible definition of cultural heritage can
be obtained by replacing some terms in the provided definitions so that the groups
and values involved are limited to specific scenarios. In general, we can argue that
the definitions provided here are abstract enough as to encompass any sensible
definition of cultural heritage that anybody may want to employ.

The Basic Concepts of CHARM

The conceptualization described in the previous section works as an infrastructure
for the definition of CHARM. In this manner, CHARM is constructed around three
basic pillars:

• Valuable entities. These are the things in the world that have received, currently
receive, or may receive cultural heritage value. Almost anything can be a
valuable entity, and CHARM does not impose any restrictions in this regard.

• Valorizations. These are the cultural heritage values that are granted to things,
and are shaped by the four kinds of benefits outlined in the previous section.

• Representations. These are accounts or portrayals of other things, including
valuable entities and valorizations, which are used as intermediaries when we
interact with cultural heritage.

As you can see from this organization, CHARM starts from the basis that valuable
entities and valorizations are different and separate things, although valorizations
are always applied to valuable entities. In other words, things do not have an
intrinsic cultural heritage value; there needs to be a valorization for this to happen.

The remaining chapters in this part describe CHARM in its entirety, according to
the conceptual principles that we have established here. If you would rather have a
quick overview of the contents of CHARM, rather than a comprehensive expla-
nation, see the CHARM White Paper [66].

Summary

CHARM is a very abstract conceptual model of cultural heritage, intended to be
used by different individuals and organizations as a common and shared reference.

214 19 An Ontology for Cultural Heritage

CHARM cannot be used as is; you need to extend it first by adding the nec-
essary details for your specific situations and thus obtaining a particular model.

CHARM covers most areas related to cultural heritage, including tangible,
performative, abstract and derived entities, as well as occurrences, agents, repre-
sentations, valorizations and locations.

CHARM is based on the precept that things do not possess intrinsic cultural
heritage value; there needs to be a group who grants something value for it to
become cultural heritage.

Cultural value may be granted to something if it embodies or represents the
culture of a relevant group.

Heritage value may be granted to something if it is likely to produce benefits to
a relevant group.

Cultural heritage value is a combination of the two former; it is granted to
things that embody the culture of a relevant group and are likely to produce benefits
to a relevant group.

Cultural heritage is the collection of things that are granted cultural heritage
value, regardless of whether they are cultural products or not.

Based on these ideas, CHARM is organized around the concepts of valuable
entities, valorizations and representations.

Summary 215

Chapter 20
Overview of CHARM

Abstract In this chapter, we provide a comprehensive overview of the complete
CHARM, using the major concepts introduced in the previous chapter. We explain
the major notions of primary and derived entities, tangible entities, agents, mani-
festations, performative entities, occurrences, abstract entities, valorizations and
virtual entities. We also describe how these major concepts are organized in the
model and how they relate to each other.

We closed the previous chapter saying that CHARM is organized around three
major ideas: valuable entities, valorizations and representations. In this chapter, we
describe the specific classes and related model elements that implement these
notions. In general, we will describe the classes in CHARM from the most abstract
to the most concrete.

A full reference of CHARM is available online at http://www.charminfo.org/
Reference, including a complete description of each class, attribute,
semi-association and enumerated type, as well as comprehensive diagrams and a
full-text search feature. The version of CHARM described in this book is 0.9.4.2,
the latest at the time of writing. However, it is possible that the online reference
shows a newer version if you visit the Website long after the publication of this
book.

Top View of CHARM

Look at the diagram in Fig. 20.1. This shows the classes at the “top” of CHARM,
that is, its most abstract classes. Most of the other 160-plus classes in the model are
descendants of these. At the top, you can see ValuableEntity, which represents an
entity that has received, currently receives or may receive cultural heritage value.
As introduced in the previous chapter, almost anything can be a valuable entity,
which agrees with the notion of value-based cultural heritage. Each valuable entity
may have a number of names; this allows us to refer to them as necessary.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_20

217

http://www.charminfo.org/Reference
http://www.charminfo.org/Reference

There are two kinds of valuable entities, implemented by the classes
PrimaryEntity and DerivedEntity. A primary entity is a valuable entity which, when
perceived, is understood without the need of explicit interpretive processes. This
does not mean that primary entities are completely objective or that everyone
understands them in the same manner. Different people usually understand primary
entities in different ways since their perception is mediated by different and implicit
subjectivities that shape the primary entity distinctly. What it does mean is that
anyone who perceives a primary entity will understand it as such, be able to
distinguish it from other entities in the world and be able to categorize it, without
the aid of external or additional information. You may recall the two premises of
conceptual modelling that we introduced in Chap. 2. First, we said that reality can
be discretized into separate things; then, we added that things can be categorized in
a meaningful way. Primary entities, precisely, are defined as those things that can be
discretized and categorized immediately and by anyone, whatever the form or
manner, without additional information. Examples of primary entities include a
mountain, a house, a book or a song; anyone who sees a mountain or a house, or
holds a book in their hands, or hears a song, is capable of separating these entities
from the rest of the world as something specific and will assign them to a category
that feels appropriate to them.

DerivedEn ty (A)PrimaryEn ty (A)

Basis

1..*

0..*

0..*

0..1

0..*

1

ValuableEn ty (A)

Name: 0..* Text

ModeOfUnderstanding

Source

[T] Occurrence (A)

VirtualEn ty

[S] Agent (A)

Valoriza on (A)

AbstractEn ty (A)

TangibleEn ty (A)

Performa veEn ty (A)

Manifesta on (A)

Generates

IsAnOutcomeOf

(T)

Nature

(T)

(T)

Fig. 20.1 Topmost view of CHARM

218 20 Overview of CHARM

A derived entity, on the contrary, is a valuable entity that is not understood in an
immediate and implicit manner when perceived but requires an explicit reception
process. In other words, derived entities cannot be immediately discretized and
categorized by anyone when perceived, in the absence of an external explanation.
An example of derived entity would be that of an archaeological site; an archae-
ologist more or less familiar with a site may recognize it when they see it; however,
someone who is not familiar with the site or, more especially, someone who has no
archaeological training may not be able to separate the site from its surrounding
environment or assign it to a category. Archaeological sites are the product of
complex interpretations based on material evidences, background knowledge and
context, and it may be very difficult for someone unfamiliar with it to recognize a
site as such in the absence of an explicit description of these interpretive aspects.

Each derived entity has a number of valuable entities as a basis. This means that
derived entities are always grounded on at least another valuable entity. For
example, an archaeological site is defined around a place; the place acts as the basis
for the site. Derived entities are explored in depth in Chap. 29; the remainder of this
chapter focuses on primary entities.

There are multiple subtypes of primary entities, depending on the main mode of
understanding. First of all, the class TangibleEntity represents a primary entity that
is fundamentally perceived in a direct fashion and through its materiality. As the
class name indicates, tangible entities are composed of matter and can be touched.
Examples of tangible entities include a place, a house, a book, a hole in the ground
or a painting. Chapter 22 describes tangible entities in detail.

Second, the class Agent represents a primary entity corresponding to a person or
group of people. Basically, agents are people but they can be described in terms of
the role that they play in their community or in a heritage-related study. Also,
agents include groups, such as the neighbours of a village, a business organization
or a family.

The Agent class constitutes CHARM’s subjective aspect. This means that per-
spectives of objects for any subjective feature that may appear in CHARM are
multi-vocally situated in terms of agents. Chapter 23 describes agents in depth and
explains how they can be used to construct perspectives and manage subjectivity in
CHARM.

Third, the class Manifestation represents a primary entity corresponding to a
human expression at a given time and place, and which is fundamentally perceived
in a direct fashion and through performative aspects. Manifestations constitute
performances carried out by people at a particular time and place, such as Mike
Oldfield playing Crises at Wembley on 22 July 1983, or Martin Luther King, Jr.
and others during the rally in Memphis on 29 March 1968. When Mike Oldfield
played Crises again in 1995 at a different venue, that constituted a different
manifestation.

Fourth, the class PerformativeEntity represents a primary entity that abstracts
similar manifestations and is fundamentally perceived in an indirect fashion
through them. Performative entities are interpretive constructs that are built from
the perception and interpretation of similar manifestations. As such, their ontology

Top View of CHARM 219

is much more subjective than that of tangible entities (the materiality of which gives
them certain objectivity) or even manifestations (the phenomenology of which
plays a similar role to materiality in the previous case). For example, after observing
Mike Oldfield play at different venues over time, we may construct the abstraction
‘Mike Oldfield concert’, which can be described and studied as such and as a
separate thing from each of the associated manifestations, namely, each individual
concert. The ‘Mike Oldfield concert’ construct is a performative entity. Similarly,
constructions such as the Burning Man of Black Rock City or attending mass on
Sunday are performative entities. We perceive them through the specific manifes-
tations they may have, such as particular editions of Burning Man or particular
groups of people attending mass at specific times and places.

Note the whole/part association between PerformativeEntity and Manifestation.
It states that each performative entity is composed of a number of manifestations,
which may vary over time. Also, it states that each manifestation may be part of a
performative entity. In fact, many manifestations are never aggregated into a per-
formative entity, such as one-off performances that do not present a clear pattern.
Note that the performative entity, to which a manifestation belongs, if any, is not
temporal; that is, a manifestation is unchangeably connected to a particular per-
formative entity, or to none at all. Chapter 24 describes manifestations and per-
formative entities in detail.

Fifth, the class Occurrence represents a primary entity corresponding to an
event or situation that happens in relation to one or more valuable entities. In other
words, an occurrence is something that occurs in relation to other primary entities
and cannot be described or understood in the absence of them. An example of
occurrence is the construction of a building; the building is a tangible entity, but its
construction, as such, is an occurrence. Similarly, a war, the erosion of a rock by the
wind, the burning of wood in a hut to cook food or the high crime rates in a city are
all occurrences.

It is important to note that the Occurrence class constitutes CHARM’s temporal
aspect. This means that phases of objects for any temporal feature that may appear
in CHARM are situated in time in terms of occurrences. Chapter 25 describes
occurrences in depth and explains how they can be used to construct phases and
manage temporality in CHARM.

Sixth, the class Abstract-Entity represents a primary entity that is socially
constructed and comprised of abstractions or ideas only, with no concrete real-
ization whatsoever. Abstract entities pertain to the realm of ideas, and they do not
manifest materially. This does not mean that other entities that represent abstract
entities cannot exist; on the contrary, abstract entities are often embodied and
communicated through representations. However, and as opposed to performative
entities, abstract entities are seldom realized in their entirety when represented by
other entities in this manner. Examples of abstract entities include languages such
as English or Aymaran, beliefs such as Christianity or Marxism, norms and con-
ventions, or valorizations. Chapter 26 explores abstract entities in detail.

Valorizations, comprising the second basic notion in CHARM, are represented
by the Valorization class, which is a subclass of AbstractEntity. A valorization is an

220 20 Overview of CHARM

abstract entity of a discursive nature that adds cultural heritage value to other
valuable entities through interpretive processes that have been agreed upon within
a group or discipline. Valorizations are constructed interpretively, rather than by
observation or description. However, not every interpretation is a valorization; a
valorization must have been relatively agreed upon within a given group or dis-
cipline. Each valorization is built on one or more valuable entities, and each val-
orization may use other valorizations as base. Examples of valorizations include a
research essay about an archaeological site, the impact assessment of a motorway
on a nearby monument, or the identity and belonging feelings of the members of a
community about their local church.

Note the association between Valorization and DerivedEntity. It means that
every valorization may generate a number of derived entities or, in other words,
every derived entity is always an outcome of a particular source valorization. In this
manner, the model captures the fact that derived entities are constructed interpre-
tively through specific valorizations. Chapter 28 describes valorizations in greater
detail.

Finally, the class VirtualEntity represents a primary entity that can be perceived
only by intermediation of an artificial device. Virtual entities often correspond to
highly technological information records such as encoded recordings or computer
files, which cannot be perceived without the necessary mechanical, electrical or
electronic devices. Examples of virtual entities include a digital photograph stored
as a computer file or an audio recording on magnetic tape. The VirtualEntity class is
not abstract and has no subclasses.

Summary

The things that may receive cultural heritage value are called valuable entities in
CHARM.

There are two kinds of valuable entities: primary entities, which can be
immediately discretized and categorized when perceived in the absence of addi-
tional information, and derived entities, which cannot.

Derived entities are always grounded on some basis valuable entities.
There are multiple kinds of primary entities depending on their nature.
Tangible entities are composed of matter and perceived mostly through their

materiality.
Manifestations are performances that involve specific people at a given time

and place.
Performative entities are abstractions constructed to stand for similar

manifestations.
Occurrences are events or situations that happen in relation to other valuable

entities.
Abstract entities are socially constructed abstractions with no concrete

realization.

Top View of CHARM 221

Valorizations are a subtype of abstract entities and correspond to agreed-upon
interpretive discourses that add cultural heritage value to other valuable entities.

Valorizations may generate derived entities as a result.
Agents are people and groups of people.
Virtual entities are things that can only be perceived through intermediary

devices.

Exercises

34. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• The oldest member of a family.
• A period of abandonment of a settlement.
• A voodoo ritual performed in Limbé, Haiti, on 22 June 1972.
• A leaf in a book.
• Feminism.
• A rocky outcrop.
• The Klondike gold rush of the late nineteenth century.
• The obligation to pilgrimage to Mecca in some Islamic societies.
• The Rolling Stones.
• A recording in a vinyl LP.
• The Chinese New Year festival celebrated all over the world.

222 20 Overview of CHARM

Chapter 21
CHARM General Concepts

Abstract In this chapter, we describe the elements in CHARM that can be used in
a model to provide context or auxiliary information. First, notions related to
measures are described, including named measures. Then, the concept of location is
introduced, and a distinction is made between absolute and relative locations.
Different kinds of locations are explored and defined, from absolute points and lines
to relative locations given by reference to other entities.

Before we continue to discuss each area of CHARM in detail, we need to describe
some classes that work to provide context for other entities in the model.
Specifically, CHARM contains classes representing quantitative measures, which
can be used to describe tangible entities, as well as classes representing locations,
which can be used to situate valuable entities in space. Measures and locations
describe characteristics of other classes and are always used in combination with
valuable entities of some kind, so they have no autonomous existence of their own.
For this reason, measures and locations are not considered to be valuable entities in
CHARM.

Measures

Fig. 21.1 depicts measures in CHARM. Here, measures are represented by two
classes: NamedMeasure and Measure. A named measure is a measure qualified by
a specific name, and it always describes one particular tangible entity through the
associated measure. A measure, in turn, is the amount or degree that something has
in relation to a given quantity. A measure always has a value, which expresses the
actual measurement being done; a margin, which optionally describes the tolerance
or error variance that can be expected in the measurement; and a certainty, which
subjectively expresses how sure we are that the measure is as documented,
expressed through the Certainty enumerated type. The Margin and Certainty

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_21

223

attributes constitute an explicit implementation of vagueness as described in
Chap. 14.

There are various subclasses of Measure depending on the quantity being
measured: MeasureOfLength to quantify lengths, width, depths, diameters and
similar things; MeasureOfArea to document areas and surfaces; MeasureOfVolume
to measure capacities and volumes; MeasureOfMass to quantify weights; and
MeasureOfAngle to document angles. Each of these subclasses contains a Unit
attribute to document what units are employed to express the measurement,
expressed through the respective enumerated types LengthMeasurementUnit,
AreaMeasurementUnit, VolumeMeasurementUnit, MassMeasurementUnit and
AngleMeasurementUnit.

Measure (A)

Value: 1 Number
Margin: 0..1 Number
Certainty: 0..1 enum Certainty (S)

0..1 1NamedMeasure

Name: 1 Text

Quan ty

MeasureOfLength

Unit: 1 enum LengthMeasurementUnit

MeasureOfArea

Unit: 1 enum AreaMeasurementUnit

MeasureOfVolume

Unit: 1 enum VolumeMeasurementUnit

MeasureOfMass

Unit: 1 enum MassMeasurementUnit

MeasureOfAngle

Unit: 1 enum AngleMeasurementUnit

TangibleEn tyDescribes 1

0..*

Fig. 21.1 Measures in CHARM

224 21 CHARM General Concepts

The NamedMeasure and Measure classes often work together. For example,
imagine that we want to describe the diameter and weight of a vase. The vase would
be the tangible entity being described. We would define two instances of named
measure linked to the vase: one having Name = “Weight”, linked to a measure of
mass, and another one having Name = “Diameter”, linked to a measure of length.
Then, we would document the value, margin, certainty and units employed for each
of the two measures. This is illustrated in Fig. 21.2. Notice how the measure objects
describe the actual measures of the vase, and the associated named measure objects
describe what those measures are measuring. By using named measures and
measures together like this, we can describe a wide range of quantitative aspects of
any tangible entity.

Locations

Fig. 21.3 shows location-related classes in CHARM. As you can see, every valu-
able entity in CHARM may be located at a number of locations, which may vary
over time. The Location class is a very abstract way of expressing a location, and
corresponds to a specification of the spatial situation of a valuable entity, which can
be accomplished in a number of ways as established by its many descendant
classes.

To start with, Location is specialized into AbsoluteLocation and
RelativeLocation. An absolute location is a location of a direct kind, based on a
spatial reference system and which is independent of the spatial situation of any
other entity. In other words, absolute locations allow us to state where something is
without referring to any other valuable entity, by specifying a set of coordinates in a
particular reference system. The reference system of an absolute location is rep-
resented by the ReferenceSystem attribute, which is expressed in terms of the
associated enumerated type SpatialReferenceSystem. This enumerated type takes its

te: TangibleEn ty

Name = “Vase”

nm1: NamedMeasure

Name = “Diameter”

nm2: NamedMeasure

Name = “Weight”

Describes

Describes

m1: MeasureOfLength

Value = 17.3
Margin = null
Certainty = Likely
Unit = Centimetre

m2: MeasureOfMass

Value = 821
Margin = 10
Certainty = Certain
Unit = Gram

Fig. 21.2 Objects representing a vase weighing 821 ± 10 g and likely to be 17.3 cm in diameter

Measures 225

items from the EPSG Geodetic Parameter Dataset of the International Association
of Oil and Gas Producers (OGP); see http://www.epsg.org/ for a comprehensive list.
There are two kinds of absolute locations, represented by SimpleAbsoluteLocation
and CompoundAbsoluteLocation. A simple absolute location is an absolute loca-
tion of an atomic kind, representing a simple spatial position, such as a point or a
polygon. A compound absolute location, in turn, is an absolute location that is
composed of other absolute locations. For example, some things such as an
aggregation of buildings are located through a collection of points or areas rather
than a single point or area.

Also, there are several specific classes for simple absolute locations depending
on the spatial dimension being used, namely Point, Line, Area and Volume. A point
is a simple absolute location corresponding to a simple set of X and Y coordinates;
a line is a simple absolute location corresponding to a sequence of points that
compose a line; an area is a simple absolute location corresponding to a sequence of
points that enclose an area; and a volume is a simple absolute location corre-
sponding to a sequence of points that bound a volume. Note also that lines, areas
and volumes are always expressed in terms of sequences of points; also, each point
has X and Y coordinates plus an optional Z coordinate. In this manner, it is possible
to locate any valuable entity in zero, one, two or three dimensions. For example, we
could locate a road by using a multi-point line in 2D or 3D or an ashlar block in a
wall by using a volume with 3D information.

A relative location, as opposed to an absolute location, is a location of an
indirect kind, based on the reference to other valuable entities. Instead of using a

0..*

1..*

2..*^^*..4 ^*..3 0..* 0..*0..*

0..*0..*

Atomicity

SpatialDimension

ValuableEntity Location (A)

ModeOfLocating

IsLocatedAt (T)

RelativeLocation (A) AbsoluteLocation (A)

ReferenceSystem: 1 enum SpatialReferenceSystem

ModeOfLocating

Compound
AbsoluteLocation

Simple
AbsoluteLocation (A)

VolumeAreaLine
Point

X: 1 Number
Y: 1 Number
Z: 0..1 Number

RelativeLocation
ByDistanceAndBearing

StartingPoint: 1 ref ValuableEntity
Distance: 1 con MeasureOfLength
Bearing: 1 con MeasureOfAngle

RelativeLocation
ByIntermediateDistance

Source: 1 ref ValuableEntity
Destination: 1 ref ValuableEntity
Distance: 1 con MeasureOfLength

RelativeLocation
ByReference

Reference: 1 ref ValuableEntity
Description: 0..1 Text

Fig. 21.3 Locations in CHARM

226 21 CHARM General Concepts

http://www.epsg.org/

spatial reference system and a set of coordinates, relative locations work by
expressing where something is in relation to other things. There are three kinds of
relative locations. The RelativeLocationByReference class corresponds to a relative
location that uses a reference valuable entity plus an optional description in order
to locate something. Using this kind of location, we could say, for example, that a
village is located close to a road or that a celebration is often held in a particular
town square. The valuable entities being used as reference (the road and the town
square in our examples) are represented by the Reference semi-association, and the
Description attribute can document any relevant information that may aid to find
the located thing.

The second type of relative location is given by the
RelativeLocationByIntermediateDistance class, which corresponds to a relative
location that uses two reference valuable entities plus a distance between them in
order to locate something. Using this kind of location, we can say, for example, that
a battle happened 8 km from Brussels in direction to Antwerp. The valuable entities
being used as “from” and “to” reference places (Brussels and Antwerp in our
example) are represented by the Source and Destination semi-associations, and the
location distance (8 km in our example) is represented by the Distance
semi-association. Note that Distance is not a Number-typed attribute but a
semi-association to MeasureOfLength, so that different units, certainty degrees and
error margins can be used.

Finally, the third type of relative location is given by the
RelativeLocationByDistanceAndBearing class, which corresponds to a relative
location that uses a reference valuable entity, a bearing and a distance in order to
locate something. Using this kind of location, we can say, for example, that a
church is 850 m south-west of a particular house. The valuable entity being used for
reference (the house in our example) is represented by the StartingPoint
semi-association. The distance from this point where the located thing can be found
is represented by the Distance semi-association, which points, like in the previous
case, to MeasureOfLength. And the direction in which this distance should be
measured is represented by the Bearing semi-association, which points to
MeasureOfAngle, thus allowing for multiple combinations of linear and angular
units and measures.

Figure 21.4 shows an example of location classes being used in different man-
ners. This example states the following situation. A celebration (object ve1) was
located next to a church (object ve2) between 1932 and 1965. This church, in turn,
was documented as being located 16 km (object m1) north-east (object m2) from a
village (object ve3) as of June 2007. This village, in turn, has been located since the
eighteenth century around an area given by three points (objects p1, p2 and p3)
forming a triangle. Here, you can see how relative locations work by locating
something in relation to something else, and how absolute locations are expressed
in terms of coordinates and a spatial reference system. Also, you can see how
locations can be “chained” in order to construct complex geographical networks.

Locations 227

Summary

There are some classes in CHARM that are designed to provide context for other
classes: measures and locations.

Measure classes allow you to express named measures of tangible entities by
indicating a value, an error margin, a certainty level and the units being used.

There are different types of measures, depending on what quantity is being
measured: length, area, volume, mass and angle.

Location classes allow you to express where valuable entities are in space, either
in absolute or relative terms.

Absolute location classes work by specifying a coordinate set in a given ref-
erence system and can use zero, one, two or three dimensions.

Relative locations work by using other valuable entities as reference, and
providing distances, bearings or textual descriptions to aid in the location.

Exercises

35. Create a CHARM-compliant instance model to describe the following situation.
In 1979, a ceremonial pool measuring 2.5 m by an estimated 1.8 m was found
inside a crypt, which is built between 0.6 and 1.1 m below the ground surface.
This crypt is located in the outskirts of the town of Scheden in Germany.

ve1: ValuableEn ty

Name = “Celebration”

l1: Rela veLoca on
ByReference

Description = “Next to”

IsLocatedAt @ 1932-1965

ve2: ValuableEn ty

Name = “Church”

Reference
l2: Rela veLoca on

ByDistanceAndBearing

IsLocatedAt @ Jun-2007

m1: MeasureOfLength

Value = 16
Margin = null
Certainty = Certain
Unit = Kilometre

m2: MeasureOfAngle

Value = 45
Margin = null
Certainty = Certain
Unit = Degree

Distance

Bearing

ve3: ValuableEn ty

Name = “Village”

Star ngPoint

l3: Area

ReferenceSystem = ETRS89IsLocatedAt @ 18c-present

p2: Point

ReferenceSystem = ETRS89
X = 42.886287
Y = -8.821444
Z = null

p1: Point

ReferenceSystem = ETRS89
X = 42.887039
Y = -8.823762
Z = null

p3: Point

ReferenceSystem = ETRS89
X = 42.887749
Y = -8.821796
Z = null

RefersTo

RefersTo

Fig. 21.4 Objects representing various valuable entities and their locations. Note how relative
locations use other valuable entities as reference

228 21 CHARM General Concepts

Chapter 22
Tangible Entities

Abstract In this chapter, we introduce CHARM tangible entities, that is, those
which are fundamentally perceived in a direct fashion and through their materiality.
We explore the different types of tangible entities in CHARM, including places
(such as a valley), structures (such as a wall or a building), objects (such as a coin or
a pebble), stratigraphies and samples. Other more uncommon kinds of entities are
also discussed, such as material aspects (such as graffiti on a wall).

Tangible entities are perhaps the most intuitive and straightforward ones to think
about when we discuss cultural heritage. As described in the previous chapters, the
class TangibleEntity represents a primary entity that is fundamentally perceived in
a direct fashion and through its materiality. Tangible entities are composed of
matter and can be touched. Examples include a place, a house, a book, a hole in the
ground or a painting.

This chapter discusses how tangible entities are conceptualized in CHARM and
what subtypes there are. Figure 22.1 shows an overview of tangible entities. As you
can see, there are four major kinds of tangible entities depending on their nature:
places, material entities, stratigraphic entities and samples. Stratigraphic entities and
samples are methodological tangible entities, because they are strongly determined
by the methodology being used. These classes are discussed in the remainder of this
chapter.

Places

The class Place corresponds to a tangible entity that is defined by a region in
physical space. The identity of a place is given by its location in space plus other
properties (size, shape, orientation) of the corresponding region, rather than its
materiality, which is secondary and does not determine the identity of the place. In
other words, a place is what it is because it is in a particular region of space. We can
change its materiality, for example by constructing a building or digging a hole, and

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_22

229

the place is likely to stay the same place. However, we cannot move a place to a
different spot and still consider it the same place. Figure 22.2 shows more details
about places. As you can see, places may be subdivided into subplaces, that is,
smaller places that are spatially contained inside them; conversely, places may be
aggregated into frame places, or places containing them. For example, a region may
contain multiple areas, and multiple regions, in turn, may belong to a continent.

Also following the diagram, Place is specialized into two subclasses,
NonMaterial Place and StructureEntity, depending on the materiality of the place
boundaries. A non-material place is a place having boundaries with material
characteristics that do not distinguish it from its surroundings. In other words, a
non-material place is a place which, despite being recognized as such, has fuzzy,
imprecise or materially unclear boundaries, since there is no materiality that clearly
establishes where the place begins and where its surroundings end. This kind of
boundary corresponds to what have been called “fiat boundaries” by Smith and
Varzi [67], and they are often subject to imprecision as described in Chap. 14.
Examples of non-material places include a mountain or a forest.

Land divisions are a particular kind of non-material places. The LandDivision
class corresponds to a non-material place that has been defined with a land
management purpose. Since they are management-oriented, land divisions always

Nature

PrimaryEntity

TangibleEntity (A)

Methodological
TangibleEntity (A)

Code [Name]: 1 Text

SampleStratigraphicEntity (A)

Place (A) MaterialEntity (A)

Nature

Fig. 22.1 Overview of tangibles entities in CHARM

230 22 Tangible Entities

have (at least) one name. Note that the whole/part self-association that
LandDivision inherits from Place is redefined in order to cater for the specific
cardinalities of land divisions. Examples of land divisions are countries, states,
provinces or municipalities.

In opposition to NonMaterialPlace, the class StructureEntity represents places
having boundaries with material characteristics that distinguish them from their
surroundings. In fact, StructureEntity could be also named “MaterialPlace”, since it
stands for those places that do have clear material boundaries around them. Note in
Fig. 22.2 that StructureEntity specializes not only from Place, but also from
MaterialEntity and that, in fact, this latter specialization is the dominant one. This
means that structure entities are places but, more strongly, are material entities too.
For this reason, we discuss them in the following section together with other
material entities.

Note that a place’s location is not intrinsically determined in CHARM. This
allows you to describe and study places regardless of where they are, or even
describe hypothetical or imaginary places that cannot be located in the physical
world. If you want to document where a place is, you need to use the location
classes described in Chap. 21.

0..*SubPlace

0..*FramePlace

TangibleEntity

Place (A)

Nature

MaterialEntity

MaterialityOfBoundaries Nature

StructureEntity (A)NonMaterialPlace

LandDivision

[Name]: 1..* Text

Type

0..*SubDivision
[SubPlace]

0..1
FrameDivision
[FramePlace]

(T
)

Fig. 22.2 Places in CHARM

Places 231

Material Entities

The class MaterialEntity corresponds to a tangible entity that is defined by its
materiality. As opposed to places, the identity of a material entity is given by its
materiality and the properties of this (such as composition, texture and size). The
spatial location of a material entity is secondary and does not determine its identity.
In principle, we could move a material entity to a different spot and, as long as we
do not alter its material configuration, it would likely stay the same material entity.
Figure 22.3 shows details about material entities. The matter that defines each
material entity is represented by the Material attribute, which is expressed in terms
of the associated Material enumerated type. This enumerated type includes a
hierarchy of items such as Ceramic, Bone or Wood.

MaterialEntity is specialized into four subclasses according to their nature:
StructureEntity, ObjectEntity, Deposit and MaterialAspect. The first subclass,
StructureEntity, is also a subclass of Place, as we introduced in the previous sec-
tion. A structure entity corresponds to a place having boundaries with material
characteristics that distinguish it from its surroundings and, also, a material entity
that shapes the space where it is located, influencing visibility and/or mobility over
it. A structure entity is a place and a material entity at the same time. As a place, it
has very specific and materially well-defined boundaries, since the associated
materiality clearly establishes the division between the place and its surroundings.
This kind of boundaries corresponds to the concept of “bona fide boundaries” as
described by Smith and Varzi [67]. As a material entity, its existence alters the
visibility and/or mobility over the surrounding area, as a consequence of the
materiality involved. Due to this materiality, structure entities often have
well-defined and quite precise boundaries, unlike the non-material places discussed
in the previous section. The concept of structure entity roughly corresponds to what
in some fields is often referred to as “non-movable elements”. Usage of this term,

StructureEn ty (A) ObjectEn ty (A) MaterialAspect

0..*

1..*

Support

Deposit

TangibleEn ty

Nature

Place

MaterialityOfBoundaries

MaterialEn ty (A)

Material: 1..* enum Material (T)

Nature

Fig. 22.3 Material entities in CHARM

232 22 Tangible Entities

however, has been discarded because it is difficult to define and because it is based
on a characteristic (the movability of things) that is circumstantial and prone to
exceptions. Structure entities include, for example, buildings, enclosures, ditches
and caves.

Another kind of material entity is given by the ObjectEntity class. An object
entity, in contrast to structure entities, is a material entity that does not shape the
space where it is located, not influencing visibility or mobility over it. An object
entity does not alter the visibility and/or mobility over the surrounding area, as
opposed to the case with structure entities. This is usually because object entities are
smaller, more mobile and less dependent on their spatial context than structure
entities. The concept of object entity roughly corresponds to what is often referred
to as “movable element” in some fields. Like in the previous case, however, usage
of this term has been discarded because it is difficult to define and because it is
based on a characteristic (the movability of things) that is circumstantial and prone
to exceptions. Object entities include, for example, books, vases and pebbles.

A third kind of material entity is described by the Deposit class. A deposit is a
material entity corresponding to matter that has deposited gradually through
accumulative processes. As such, deposits are usually tightly integrated in their
environment, and sometimes are difficult to discern. Also, they are often under-
ground. As we describe in the next section, deposits constitute the “raw matter” of
which many stratigraphies are made.

Finally, the fourth kind of material entity is given by the MaterialAspect class. A
material aspect is a material entity that is inextricably embedded into another
material entity, called its support, and which has been added to it after the creation
of the latter. A material aspect always constitutes an integral part of its support,
even though it has been added to it once it existed. Examples of material aspects
include graffiti on a wall, the painting on a canvas or a rock carving. Note that the
support of a material aspect can be any kind of material entity, although most
material aspects are supported by either structure entities or object entities.

The following sections describe structure entities and object entities in greater
detail.

Structure Entities

StructureEntity is an abstract class and has a hierarchy of descendants that allows us
to model structures in quite precise ways. See Fig. 22.4. StructureEntity has a
temporal whole/part association to MaterialEntity, which allows us to document
what things are contained in a structure, such as a house being inside an enclosure.
StructureEntity is specialized into two subclasses: CompleteStructure and
StructureFragment. A completestructure is a structure entity having an unaltered
material integrity. This means that the entity we are describing has not been
fragmented after its creation in any significant manner. Sometimes this is difficult to
determine, especially for things that are specifically created to be broken. Note that

Material Entities 233

complete structures can be contained in larger frame structures and also be
decomposed into smaller substructures. For example, a farm belonging to a village
can be decomposed into a main building and various outbuildings. Complete
structures include, for example, a house, a trench or a cave.

In opposition to complete structures, a structure fragment is a structure entity
corresponding to a separate portion of a complete structure having an altered
material integrity. In other words, structure fragments are what remains after a
complete structure is broken down. This is captured in the model by the whole/part
association between CompleteStructure and StructureFragment. A structure

StructureEn ty (A)

Place

MaterialityOfBoundaries

MaterialEn ty

Nature

CompleteStructure (A) StructureFragment

MaterialIntegrity

0..*

Fragment

1

0..*

0..*

SubStructure
[SubPlace]

FrameStructure
[FramePlace]

NaturalStructure ProducedStructure (A)

Production Technique: 1..*
enum ProductionTechnique

Origin

Uninten onalStructure Constructed Structure (A)

Construction Technique: 1..*
enum ConstructionTechnique (T)

Inten onality

Construc on Construc veElement

TypeOfFunc onality

0..*

1..*

0..*

Co
nt

en
t

0..*

0..1

0..1

Is
Re

us
ed

As
 (T

)

(T)

(T)

(T
)

(T)

(T
)

Element

Fig. 22.4 Structure entities in CHARM

234 22 Tangible Entities

fragment, in addition, may be reused over time as a different thing. For example, an
ashlar block from a wall can be used later as part of a road paving.

CompleteStructure, in turn, is specialized into NaturalStructure and
ProducedStructure depending on origin. A natural structure is a complete structure
in the genesis of which no direct human intervention was involved. Examples of
natural structures include a grotto or a rocky outcrop. A produced structure, on the
contrary, is a complete structure in the genesis of which direct human intervention
was involved. Since humans are involved in the creation of produced structures, the
ProducedStructure class has a ProductionTechnique attribute that represents the
technique by which the structure was created, expressed in terms of the associated
enumerated type ProductionTechnique, which contains the items Industrial and
Manual.

ProducedStructure is further specialized into UnintentionalStructure and
ConstructedStructure according to intentionality. An unintentional structure is a
produced structure in the genesis of which involves a direct human intervention
having a purpose different to that of creating said structure. In other words,
unintentional structures are created by accident or as a by-product of an action
intended to do something else. Examples of unintentional structures include fos-
silized plough marks or a path created by repeatedly treading on grass. In oppo-
sition, a constructed structure, which may also be called an intentional structure, is a
produced structure created by the intentional modification and/or bounding of
physical space through the addition and/or removal of materials, and which, by
virtue of the structural arrangement of its parts, or that of its own within a bigger
whole, performs a given function. This means that constructed structures are
intentionally produced for a particular purpose that is dependent on its material
organization. Since constructed structures are intentional, the ConstructedStructure
class has a ConstructionTechnique attribute that represents the general approach to
the use of materials to compose the structure, including their nature, treatment and
disposition; this is expressed in terms of the associated enumerated type
ConstructionTechnique, which contains a hierarchy of items such asMortar, Textile
or Stonework.

ConstructedStructure is finally specialized into two classes, Construction and
ConstructiveElement, depending on the type of functionality involved. A con-
struction is a constructed entity that provides direct functionality to its users.
Constructions, being intentionally materialized places, are defined by the struc-
turation of space. Also, constructions possess direct functionality for their users;
this means that a construction’s structure provides it with functionality that people
using it can harness directly. Examples of constructions include a church, a
megalithic tomb, a livestock pen, a monastery or a pit. In opposition, a constructive
element is a constructed entity which, despite not providing direct functionality to
its users, constitutes a material part of a larger constructed entity, to which it
contributes structure and/or function. A constructive element is always a part of a
larger constructed structure, as defined by the whole/part association between
ConstructedStructure and ConstructiveElement in Fig. 22.4. A constructive ele-
ment does not possess direct functionality for people, but for the constructed entity

Material Entities 235

to which it belongs. For example, the columns of a house serve the house as a
whole; the house, in turn, serves its users. Examples of constructive elements
include a pillar of a bridge, the roof of a building or the access system of a livestock
pen.

Object Entities

ObjectEntity is an abstract class and has a hierarchy of descendants that allows us to
model objects by using a similar organization to that of structures and
StructureEntity. See Fig. 22.5. ObjectEntity has a temporal whole/part
self-association, which allows us to document what objects are located inside

ObjectEntity (A)

MaterialEntity

Nature

Complete Object (A) ObjectFragment

MaterialIntegrity

0..*

Fragment

1

0..*

0..*

SubObject

FrameObject

Natural Object Produced Object (A)

Production Technique: 1..*
enum ProductionTechnique

Origin

Unintentional Object IntentionalObject

Intentionality

0..* Content

0..*

0..1

0..1
Is

Re
us

ed
As

 (T
)

(T)

(T)

(T)

(T
)

Fig. 22.5 Object entities in CHARM

236 22 Tangible Entities

another object, such as a basket containing tools. ObjectEntity is specialized into
two subclasses: CompleteObject and ObjectFragment, following the same pattern
as in the case of structures. A complete object is an object entity having an unal-
tered material integrity. This means that the object we are describing has not been
fragmented after its creation in any significant manner. Like in the case of struc-
tures, this can be difficult to determine in some cases, especially for objects that are
specifically created to be broken. Note that complete objects can be contained in
larger frame objects and also be decomposed into smaller subobjects. For example,
a buckle belonging to a belt can be decomposed into a frame, a prong and other
parts. Example of complete objects includes a belt, a hammer or a pebble. There are
material things that may be difficult to categorize as either structures or objects,
such as a car or a pole planted in the ground. CHARM is not prescriptive in this
regard: you can model them as either objects or structures, depending on what
makes the more sense to your modelling purpose.

In opposition to complete objects, an object fragment is an object entity cor-
responding to a separate portion of a complete object having an altered material
integrity. In other words, object fragments are what remains after a complete object
is broken down. This is captured in the model by the whole/part association
between CompleteObject and ObjectFragment. An object fragment, in addition,
may be reused over time as a different thing. For example, a shard from a broken
clay beaker can be reused later as a loom weight.

CompleteObject, in turn, is specialized into NaturalObject and ProducedObject
depending on origin. A natural object is a complete object in the genesis of which
no direct human intervention was involved. Examples of natural objects include a
pebble or a clamshell. A produced object, on the contrary, is a complete object in
the genesis of which direct human intervention was involved. Since humans are
involved in the creation of produced objects, the ProducedObject class has a
ProductionTechnique attribute identical to that of ProducedStructure, which rep-
resents the technique by which the object was created, expressed in terms of the
associated enumerated type ProductionTechnique, which contains the items
Industrial and Manual.

Finally, ProducedObject is further specialized into UnintentionalObject and
IntentionalObject according to intentionality. An unintentional object is a produced
object in the genesis of which involves a direct human intervention having a
purpose different to that of creating said object. In other words, unintentional
objects are created by accident or as a by-product of an action intended to do
something else. Examples of unintentional objects include a coprolite or knapping
flakes. In opposition, an intentional object is a produced object in the genesis of
which involves a deliberate human intervention having the purpose of creating said
object. This means that intentional objects are intentionally produced for a partic-
ular purpose. Examples of intentional objects include a book or a necklace.

Material Entities 237

Stratigraphic Entities

The class StratigraphicEntity corresponds to a methodological tangible entity that
corresponds to one or more stratigraphic units. Stratigraphic entities are method-
ologically created and their definition is highly influenced by the methodology
being used. The identity of a stratigraphic entity is given by its materiality, dating
and relationships to other stratigraphic entities. Figure 22.6 shows details about
stratigraphic entities. Note that StratigraphicEntity is a subclass of
MethodologicalTangibleEntity; as a consequence, it inherits the Code attribute that
we can use to document the unique code assigned to each stratigraphic entity.

StratigraphicEntity is specialized into StratigraphicSequence and Stratigraphic
Unit according to atomicity. A stratigraphic sequence is a stratigraphic entity com-
posed of a collection of stratigraphic units that are physically interrelated.
Stratigraphic sequences allow us to group and manage the stratigraphic units of a
particular place as a cohesive whole. This is supported by the whole/part association
from Place to StratigraphicSequence. Note that, because stratigraphic sequences are
assigned to places, we can equally describe the underground stratigraphy of a site or
the above-ground stratigraphy of a structure such as a building.

Stra graphicSequence 1..*1

Atomicity

Stratum (A) Interface0..10..1

Envelope

Spa alDimension

StratumByDeposit 0..* 1

A ribu onOfMaterial

0..*
0..1

[Comprises
MaterialFrom]1 0..*

[Comprises
MaterialFrom]

Nature

TangibleEn ty

Methodological
TangibleEn ty (A)

Code [Name]: 1 Text

Stra graphicEn ty (A)

Nature

Stra graphicUnit (A)

StratumByObject ObjectEn tyDeposit

Place

MaterialEn ty
Comprises

MaterialFrom1 0..*

Fig. 22.6 Stratigraphic entities in CHARM

238 22 Tangible Entities

A stratigraphic unit, in turn, is a stratigraphic entity made of matter or the trace
of removed matter, arranged as a layer with regard to others, and reflecting a
specific order of deposition, construction or destruction. Every stratigraphic unit
belongs to a stratigraphic sequence as described by the whole/part association
between these two classes.

There are two kinds of stratigraphic units depending on spatial dimension. On
the one hand, Stratum represents a stratigraphic unit consisting of a material
volume. The material that makes up a stratum is always taken from a particular
material entity, as specified by the ComprisesMaterialFrom semi-association. On
the other hand, Interface represents a stratigraphic unit consisting of a material
surface. Strata and interfaces can be connected by an envelope relationship, so that
an interface is the envelope of a particular stratum, although we can also have
interfaces that are not enveloping any stratum or strata without a documented
envelope.

Finally, Stratum is specialized into StratumByDeposit and StratumByObject
depending on the attribution of material. A stratum by deposit is a stratum com-
prising matter from a deposit, while a stratum by object is a stratum comprising
matter from an object entity. Strata by deposit correspond to sections of deposits, or
whole deposits, that are methodologically created; this is the most typical case of
strata in archaeological settings. Similarly, strata by object correspond to objects or
object fragments that appear embedded in a stratigraphic sequence and, therefore,
are considered to be a stratum like any other. This is often the case when describing
stratigraphies of constructed entities or when recording objects embedded in
deposits in archaeological contexts. As you can see in Fig. 22.6, the two classes
redefine the ComprisesMaterialFrom semi-association of Stratum to point to the
specific classes Deposit and ObjectEntity.

The separate conceptualization that CHARM makes of the matter that makes up
things (through MaterialEntity and its subclasses), and its stratigraphic study
(through StratigraphicEntity and its subclasses) means that you can easily describe
and interpret each of them separately or in an interconnected manner. The advan-
tages of this approach have been described in depth and illustrated in [15].

In addition to the stratigraphic entities depicted in Fig. 22.6, CHARM includes
some classes to describe stratigraphic relationships. See Fig. 22.7. Here, the
StratigraphicRelationship class represents any relationship between two stratigraphic
units, and as a consequence has two associations towards StratigraphicUnitwith roles
Source and Destination, which stand for the two stratigraphic units being connected
through a relationship. Depending on the contiguity of the units,
StratigraphicRelationship is specialized into PhysicalStratigraphicRelationship and
NonPhysicalStratigraphicRelationship. A physical stratigraphic relationship is a
stratigraphic relationship between two adjacent stratigraphic units, which provides
information about the temporal order between them. This means that the units being
connected through a relationship of this kind must physically touch, and the way they
touch may provide information about their temporal sequence. To document this,
PhysicalStratigraphicRelationship has an attribute TemporalOrder, which is

Stratigraphic Entities 239

expressed in terms of the TemporalOrder enumerated type, which contains items
Prior, Contemporary and Posterior.

Unlike the physical, a non-physical stratigraphic relationship is a stratigraphic
relationship between two non-adjacent stratigraphic units. This means that the
units connected by a relationship of this kind do not physically touch.
NonPhysicalStratigraphicRelationship only has one subclass, Stratigraphic-
RelationshipOfEquivalence, which represents a non-physical stratigraphic rela-
tionship that indicates the material and interpretative equivalence of the involved
stratigraphic units. Equivalence, in this context, means that the two stratigraphic
units connected by this relationship pertain to the same material entity (either a
deposit or an object). This stratigraphic relationship is symmetric; that is, if we state
in a model that a unit A is equivalent to another unit B, this implies that B is also
equivalent to A.

PhysicalStratigraphicRelationship, in turn, is specialized into ThreeDimen-
sionalStratigraphicRelationship and TwoDimensionalStratigraphicRelationship,
depending on its spatial dimension. A three-dimensional stratigraphic relationship
is a physical stratigraphic relationship having a three-dimensional source strati-
graphic unit; that is, a stratum. This is shown in the model by the fact that this class
redefines the Source semi-association to point to Stratum rather than
StratigraphicUnit. There are multiple types of three-dimensional stratigraphic
relationships, depending on the physical disposition of the stratigraphic units
involved. StratigraphicRelationshipOfJoining represents a three-dimensional
stratigraphic relationship consisting of a source stratum that horizontally touches
the destination stratigraphic unit without fusing with it. This stratigraphic rela-
tionship is symmetric; that is, if we state in a model that unit A joins unit B, this
implies that B also joins A. This stratigraphic relationship allows all temporal

Destination

1
0..*

SpatialDimension

[Source][Source]

0..* 0..*

1 1

PhysicalDispositionPhysicalDisposition

Source

1

0..*

StratigraphicRelationship (A)

ContiguityOfStratigraphicUnits

MeaningOfRelationship

StratigraphicUnit

NonPhysical
StratigraphicRelationship (A)

StratigraphicRelationship
OfEquivalence

Physical
StratigraphicRelationship (A)

TemporalOrder: 1 enum TemporalOrder

InterfaceStratum

ThreeDimensional
StratigraphicRelationship (A)

TwoDimensional
StratigraphicRelationship (A)

StratigraphicRelationship
OfCutting

StratigraphicRelationship
OfJoining

StratigraphicRelationship
OfAbutment

StratigraphicRelationship
OfSupport

StratigraphicRelationship
OfCoverage

StratigraphicRelationship
OfFilling

Fig. 22.7 Stratigraphic relationships in CHARM

240 22 Tangible Entities

orders: the source stratum may be prior, contemporary or posterior to the desti-
nation stratigraphic unit. An example of this relationship would be two walls that
come together at a corner. StratigraphicRelationshipOfAbutment represents a three-
dimensional stratigraphic relationship consisting of a source stratum that hori-
zontally fuses with the destination stratigraphic unit. Like the previous, this
stratigraphic relationship is symmetric; that is, if we state in a model that unit A
abuts unit B, this implies that B also abuts A. Also like the previous, this strati-
graphic relationship allows all temporal orders: the source stratum may be prior,
contemporary or posterior to the destination stratigraphic unit. An example of this
relationship would be a wall that, after being erected, is extended along the same
plane using a different kind of masonry.

StratigraphicRelationshipOfSupport represents a three-dimensional strati-
graphic relationship consisting of a source stratum that touches the destination
stratigraphic unit vertically and from above, resting on it. This stratigraphic rela-
tionship is anti-symmetric; that is, if we state in a model that unit A is supported by
unit B, this implies that B cannot be supported by A. This stratigraphic relationship
allows all temporal orders: the source stratum may be prior, contemporary or
posterior to the destination stratigraphic unit. However, the most frequent situation
is that the source stratum is posterior to the destination stratigraphic unit. An
example of this relationship would be a deposit that accumulated on top of another.
StratigraphicRelationshipOfCoverage represents a three-dimensional stratigraphic
relationship consisting of a source stratum that attaches tightly to the surface of the
destination stratigraphic unit, covering it. Like the previous, this stratigraphic
relationship is anti-symmetric; that is, if we state in a model that unit A covers unit
B, this implies that B cannot cover A. This stratigraphic relationship allows one
temporal order only: the source stratum is always posterior to the destination
stratigraphic unit. An example of this relationship would be a paint or rendering
layer applied to a wall or other structure. Finally, StratigraphicRelationship-
OfFilling represents a three-dimensional stratigraphic relationship consisting of a
source stratum that fills a concavity of the destination stratigraphic unit. Again, this
stratigraphic relationship is anti-symmetric; that is, if we state in a model that unit A
fills unit B, this implies that B cannot fill A. This stratigraphic relationship allows
one temporal order only: the source stratum is always posterior to the destination
stratigraphic unit. An example of this relationship would be a deposit of gravel or
dirt filling out a pit.

The other subclass of PhysicalStratigraphicRelationship is TwoDimensional-
StratigraphicRelationship, which represents a physical stratigraphic relationship
having a two-dimensional source stratigraphic unit, that is, an interface. This is
shown in Fig. 22.7 by the fact that this class redefines the Source semi-association to
point to Interface rather than StratigraphicUnit. There is only one subclass of
TwoDimensionalStratigraphicRelationship, namely StratigraphicRelationship-
OfCutting, which represents a two-dimensional stratigraphic relationship consisting
of a source interface pertaining to a trace of removal of matter from the destination
stratigraphic unit. This stratigraphic relationship is anti-symmetric; that is, if we state
in a model that unit A cuts unit B, this implies that B cannot cut A. Obviously, this

Stratigraphic Entities 241

stratigraphic relationship allows one temporal order only: the source interface is
always posterior to the destination stratigraphic unit. An example of this relationship
would be a hole dug in the ground.

You may think that having so many types of stratigraphic relationships is
overkill and that one or two would suffice for the accurate documentation of
stratigraphic sequences. However, bear in mind that the conceptualization of
stratigraphy in CHARM must cater for both underground sequences as well as
constructed sequences such as those of walls and other structures. Also, different
methodologies and approaches to stratigraphy employ relationships that are slightly
different. In any case, you do not need to use all the relationships that are described
in CHARM; if only a couple of them are enough for your model, you can safely
ignore the rest.

Samples

The Sample class is the last one in the TangibleEntity specialization hierarchy.
A sample is a methodological tangible entity corresponding to a fragment of
another tangible entity the properties of which it aims to represent. Like in the case
of stratigraphic entities, the definition of samples is highly influenced by the
methodology being used. Examples of samples include a sample of water from a
stream or each “slice” in a stratigraphic sample column. Figure 22.8 shows details
about samples. Being methodologically defined, Sample inherits the Code attribute
from MethodologicalTangibleEntity. Sample also has an association to
TangibleEntity that allows us to document what thing a sample is aiming to
represent.

Source

1

0..*

Nature

TangibleEntity (A)

Re
pr

es
en

tsMethodological
TangibleEntity (A)

Code [Name]: 1 Text

Sample

Nature

Fig. 22.8 Samples in
CHARM

242 22 Tangible Entities

Example Model

Let’s imagine that we want to document a bone fragment that appeared inside a
cattle enclosure during an archaeological survey in Kojetín, Czech Republic on 16
June 1998. The cattle enclosure is part of a farm dating back from the eighteenth
century and is built of rubble and mortar. The bone fragment is 3.25 cm long and
clearly belongs to a larger unknown object, but no other fragments have appeared.
A sample is taken from the bone fragment for later analysis. You can see a model
for this situation in Fig. 22.9. This model uses many of the classes that we have
described in this chapter, including Construction, LandDivision, ObjectFragment,
IntentionalObject and Sample. Also, it integrates measures and locations from the
previous chapter. In further chapters, we add extra information to this model as we
learn about new classes in CHARM.

Summary

Tangible entities are composed of matter and are perceived directly through their
materiality.

Places are tangible entities that are defined by where they are, rather than what
they are made of.

Material entities are tangible entities that are defined by their matter.
Structure entities are places with a material boundary, and also material entities

that influence the visibility and/or mobility over the space where they are located.
Object entities, on the contrary, are material entities that do not influence the

space where they are located.

c2: Construc on

Name = “Cattle Enclosure”
Material = IgneousRock; Mortar
ProductionTechnique = Manual
ConstructionTechnique = RubbleStonework

c1: Construc on

Name = “Farm”
Material = IgneousRock; Mortar; VegetalFiber; Wood
ProductionTechnique = Manual; Industrial
ConstructionTechnique = RubbleStonework; Woodwork

ld: LandDivision

Name = “Kojetín”

of: ObjectFragment

Name = “Fragment 63.1”
Material = Bone

io1: Inten onalObject

Name = “Object 63”
Material = Bone
ProductionTechnique = unknown

s: Sample

Code = “K/63.1/1”

SubStructure

FrameStructure

IsLocatedAt @ Since 18c

@
 1

99
8

Content

@ 16 June 1998

Fragment

@ 16 June 1998

Represents

Source

l: Rela veLoca on
ByReference

Description = “In” Reference

nm1: NamedMeasure

Name = “Length”

Describes m1: MeasureOfLength

Value = 3.25
Margin = null
Certainty = Certain
Unit = Centimetre

RefersTo

Fig. 22.9 Example model involving a number of tangible entities, locations and measures

Example Model 243

Both structure and object entities can be classified into wholes and fragments,
and wholes can be in turn classified as natural, unintentional or intentional.

Stratigraphic entities are tangible entities corresponding to matter or traces of
removed matter, arranged in layers and reflecting deposition, construction or
destruction processes.

Stratigraphic units include strata that take their material from deposits or
objects, as well as interfaces.

Stratigraphic units can be related one to another through various kinds of
physical and non-physical stratigraphic relationships.

Samples are tangible entities that aim to represent other tangible entity through
their materiality.

Exercises

36. Below you can find a list of entities. For each of them, state what CHARM class
of those described in this chapter would be more suitable to model it.

• A cave.
• The paintings in the cave.
• A sacred tree.
• A clay pot.
• The lid of the clay pot.
• A millstone that is being reused as part of a paving.
• The materials of a collapsed wall as found during excavation.
• A set of Galician bagpipes.
• A river.
• A gate in a cattle pen.

37. Create a CHARM-compliant instance model to describe the following situation.
The Dombate dolmen in Galicia, Spain, consists of a polygonal chamber
formed by seven vertical granite slabs, covered by a single capstone and pro-
tected by a tumulus made of rocky fragments and compacted dirt. All the
vertical slabs have been decorated with geometric paintings. A small idol was
found inside the dolmen.

244 22 Tangible Entities

Chapter 23
Agents

Abstract In this chapter, we introduce the major concepts to describe CHARM
agents, that is, those entities corresponding to a person or a group of people. We
explore different kinds of agents and introduce the distinction between identity
agents (which provide identity) and roles (which do not). We also explain that
agents work in CHARM as the subjective aspect class, so that instance models can
be constructed such that subjective information is recorded depending on which
agent states their views.

Agents represent people in CHARM. As we said in Chap. 19, people are a crucial
component in cultural heritage processes, since it is people who give value to things
so that they become cultural heritage. Also as introduced in previous chapters, the
Agent class represents a primary entity corresponding to a person or group of
people. This means that people, in CHARM, can be treated individually or as
members of a group. Examples of agents include a particular individual, the mayor
of Paris, the Amish community in Pennsylvania or an organization such as the
International Monetary Fund. Agents are also the major way in which we can
express subjective information in CHARM. In fact, Agent is the subjective aspect
class in CHARM, as shown in Fig. 23.1. As shown in the diagram, agents may
make use of other valuable entities, as captured by the intermediate Use class. A use
is a description of a situation of usage of some valuable entities by some particular
agents. The type of use that an agent makes of something is characterized by the
Type attribute in terms of the UseType enumerated type, which defines items such
as Recreational, Symbolic or Transformative. This allows us to document, for
example, that a particular community uses a forest for extractive purposes or that a
person employs an object with symbolic goals.

There are two kinds of agents, represented by the classes SpecificAgent and
MethodologicalRoleOfAgent. A methodological role of agent is an agent described

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_23

245

in terms of the role it plays within the context of the usage of a particular
methodology, whereas a specific agent is an agent described in terms of its specific
characteristics, regardless of the methodological role that it may play. This allows
us to consider agents per se, regardless of our involvement with them (in the latter
case), or within the context of a particular project or task (in the former case). Also,
it allows us to keep track of who plays what methodological roles by using the
MethodologicallyPlays association.

There may be potentially many different methodological roles that agents may
play; however, CHARM only incorporates the very common Informant class,
which corresponds to a methodological role of agent that occurs when the asso-
ciated agent provides information that is modelled in the context of an ethno-
graphic methodology.

Regarding specific agents, there are two subclasses according to identity rigid-
ness: IdentityAgent and AgentRole. An identity agent is a specific agent possessing

PrimaryEn ty

[S] Agent (A) Use

Type: 1..* enum UseType

ValuableEn ty

MakesUse (T)

0..*1..*

RefersTo

0..*

1..*

RealmOfDefini on

MethodologicalRole
OfAgent (A)

Informant

Biography: 0..1 Text (S)

Role

SpecificAgent (A)

Iden tyRigidness

Iden tyAgent (A) AgentRole

IsPlayedBy (T)0..1

0..*

MethodologicallyPlays (T)

0..*

1

Atomicity

GroupOfPeople (A)
Person

GivenName: 0..1 Text
FamilyName: 0..1 Text
FullName [Name]: 0..1 Text

0..*

Member

0..*

(T
)

Organiza onCommunity

GroupingPhenomenon

Fig. 23.1 Overview of agents in CHARM

246 23 Agents

social identity, which is reflexively expressed. In other words, identity agents
self-recognize themselves as what they are. There are two kinds of identity agents
according to atomicity, modelled by the Person and GroupOfPeople classes. A
person is, evidently, an identity agent corresponding to a single individual and, as
such, is characterized by FamilyName, GivenName and FullName attributes. A
group of people, in turn, is an identity agent corresponding to multiple individuals.
The GroupOfPeople class, consequently, has a whole/part association towards
SpecificAgent so that we can document who is a member of which groups.

There are two kinds of groups of people, depending on the groping phe-
nomenon, as described by classes Community and Organization. A community is a
group of people who share a common culture and identify themselves as belonging
to said group. Examples include the people in a village or the French-speaking
cultural elites in Quebec. An organization, on the other hand, is a group of people
who share a common corporate identity and act together towards a common goal.
Examples include a commercial company such as Microsoft or a local gardening
club in a town.

Finally, an agent role is a specific agent not possessing a social identity, but
defined through a set of responsibilities that another agent must take in a given
context. Agent roles are “labels” or “positions” that get defined within a group and
may be fulfilled by other agents over time, such as ‘the mayor of the town’ or ‘the
eldest member in the family’. This is expressed through the IsPlayedBy association
from AgentRole to SpecificAgent.

Expressing Points of View with Agents

As we said at the beginning of this chapter, Agent is the subjective aspect class in
CHARM. This means that every subjective attribute or semi-association that is
instantiated must refer to an agent as the mechanism to assign it a point of view. In
other words, we use agents in CHARM to express who says what. We can use any
of the descendant classes from Agent for this purpose. For example, we could
document the description and degree of certainty of a reported event by specifying
different values for Occurrence.Description and Occurrence.Certainty (see
Chap. 25) according to who informs us about it. We can use individual people,
groups or even roles as sources of information for this purpose. Figure 23.2 shows
an example. In the figure, a person p, named Alice Doe, is playing the method-
ological role of informant. The data collected as part of her informant record (object
i) is self-reported, and therefore is qualified by a perspective selector pointing to
herself. In addition, the fire of 1971, which supposedly destroyed the town hall
building, is documented by object dch, which is also shown as Alice’s perspective
and consequently qualified with the appropriate perspective selector. In summary,
this model can be read as “Alice Doe is an informant in this project, and she reports
her details to be…; also, she believes that a fire destroyed the town hall in 1971”.

23 Agents 247

Example Model

Please look again at the Example Model section in the previous chapter. Now we
extend the previous situation with additional information. The town people in
Kojetín use the fields next to the cattle enclosure where the bone fragment was
found to celebrate an annual summer festival. You can see the augmented model in
Fig. 23.3. Here, the model has been completed with an instance of Community to
represent the town people, as well as an instance of Use linked to an instance of
NonMaterialPlace so that the use that people make of the adjacent fields for the
summer festival is captured. In further chapters, we show how to represent the
summer festival itself.

p: Person

GivenName = “Alice”
FamilyName = “Doe”
FullName = “Alice Doe”

i: Informant
$ p

Name = “Alice Doe”
Biography = ...

IsPlayedBy

dch: Destruc onChange
$ i

Name = “Fire of 1971”
Description = …
Certainty = Likely

c: Construc on

Name = “Town Hall”
Material = IgneousRock; Wood
ProductionTechnique = Industrial
ConstructionTechnique = Stonework; Woodwork

Substrate

Fig. 23.2 Example model involving subjective facts

c2: Construc on

Name = “Cattle Enclosure”
Material = IgneousRock; Mortar
ProductionTechnique = Manual
ConstructionTechnique = RubbleStonework

c1: Construc on

Name = “Farm”
Material = IgneousRock; Mortar; VegetalFiber; Wood
ProductionTechnique = Manual; Industrial
ConstructionTechnique = RubbleStonework; Woodwork

SubStructure

FrameStructure

@
 1

99
8

nmp1: NonMaterialPlace

Name = “Adjacent fields”

@
 1

99
8

FramePlace

SubPlace

com1: Community

Name = “Kojetín local people”

u1: Use

Type = Symbolic; Recreational

MakesUse @ Since 18cRefersTo

Fig. 23.3 Augmented example model involving agents

248 23 Agents

Summary

An agent is a person or group of people.
Agents can be used to qualify subjective information, since Agent is the sub-

jective aspect class in CHARM.
Informants constitute a particular kind of methodological role that agents may

take.
A community is a group of people with a common culture and self-identification

as such.
An organization is a group of people who pursue a common goal.
An agent role is a “position” that exists within a group and which may be

fulfilled by other agents over time.

Exercises

38. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• The winner of a yearly sporting competition.
• The members of a Quaker meeting for worship.
• A person who reports relevant information about their community.
• The Russian people.

39. Create a CHARM-compliant instance model to describe the following situation.
A family belonging to a large group has a representative in a government
council. In April 1911, this person dies, and a new individual is chosen as a
representative.

Summary 249

Chapter 24
Manifestations and Performative Entities

Abstract In this chapter, we introduce the closely related notions of manifestation
and performative entity in CHARM. Manifestations are human expressions at a
given time and place, which are fundamentally perceived in a direct fashion and
through performative aspects. Performative entities, in turn, abstract similar man-
ifestations and are fundamentally perceived in an indirect fashion through them. For
both manifestations and performative entities, differences are made to distinguish
social acts, understandings and expressive designs. In relation to the latter, different
kinds are discussed, such as sound, gestural or language expressive designs, which
include proper names and other linguistic constructs.

Manifestations and performative entities are closely related, and very often they are
confused with each other. As we described in Chap. 20, the class Manifestation
represents a primary entity corresponding to a human expression at a given time
and place, which is fundamentally perceived in a direct fashion and through
performative aspects. Manifestations take place when someone manifests some-
thing somewhere and sometime and are observable only if you happen to be there
and then; examples include a live concert, a Catholic mass, the inauguration of a
new house by a family, someone singing a tune to themselves or a baker preparing
halva.

Sometimes, we observe manifestations that are similar in content (that is, in what
people do) and which tend to occur at the same or similar places and perhaps
regularly over time. When this happens, we are able to study the overall recurring
phenomenon as well as its individual incarnations. For example, after repeatedly
observing that thousands of people usually get together every year at the end of
summer in Black Rock City, USA, to burn a large wooden human figure and carry
out other experimental art activities, we end up giving that pattern a name
(“Burning Man”) and describing the phenomenon in general terms, by focusing on
what usually happens rather than what actually happened one or another time. Such
an abstract construction is called a performative entity. As we described in
Chap. 20, the class PerformativeEntity represents a primary entity that abstracts
similar manifestations and is fundamentally perceived in an indirect fashion

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_24

251

through them. Performative entities do not actually happen; what happens is the
associated manifestations. Examples of performative entities include the Burning
Man festival, the Otello opera, the Catholic mass liturgy or the preparation of halva.

This chapter discusses how manifestations and performative entities are con-
ceptualized in CHARM, what subtypes of each there are, and how they relate to
each other, as depicted in Fig. 24.1. As you can see here, each performative entity
may manifest a number of manifestations over time; at the same time, each man-
ifestation may realize a particular performative entity whenever it occurs. The
descendant hierarchies of Manifestation and PerformativeEntity are extremely
similar, almost a mirror image of one another, and the ManifestsAs association
depicted in Fig. 24.1 is accordingly redefined by each pair of descendant classes. In
the remainder of this chapter, performative entities are discussed first, then followed
by manifestations.

Performative Entities

The class PerformativeEntity corresponds to a primary entity that abstracts similar
manifestations and is fundamentally perceived in an indirect fashion through them.
Performative entities are interpretive constructs that are built from the perception
and interpretation of specific manifestations. As such, their ontology is much more
subjective than that of tangible entities (the materiality of which gives them certain
objectivity) or even manifestations (the phenomenology of which plays a similar
role to materiality in the previous case). As opposed to abstract entities (see
Chap. 26), performative entities constitute abstractions constructed from specific
manifestations, which incarnate them in full. This means that performative entities
are secondary and dependent on the associated manifestations, whereas abstract
entities do not depend on anything for their definition. Figure 24.2 shows details
about performative entities.

PrimaryEntity

0..*0..1PerformativeEntity (A) Manifestation (A)ManifestsAs (T)

Realizes

Fig. 24.1 The relationship between manifestations and performative entities in CHARM

252 24 Manifestations and Performative Entities

The agents that usually participate in each performative entity are represented by
the UsualPerformer association. In addition, any other valuable entities that may be
involved in each particular performative entity are represented by the
FormallyInvolves association; the name of this association alludes to the fact that
the involvement of these valuable entities is expected in any manifestation of the
performative entity being described, but the specific valuable entities that are
actually involved in each of them are documented separately. Finally, the
ManifestsAs association captures the fact that each performative entity necessarily
manifests as a number of manifestations over time.

PerformativeEntity is specialized into three subclasses according to their nature:
ExpressiveDesign, SocialAct and Understanding. An expressive design corresponds
to a performative entity that has the main function of conveying a message between
people. Expressive designs may be intentionally created or emerge more or less
unintentionally. In either case, they are based on universal expression phenomena,
that is, basic expressive modes that appear in every culture and every time: natural
language, sound, gestures and forms. This classification is only related to the
expression vehicle being used and does not consider the specific manner in which
the expressive design is rendered on a material medium; for example, a language
design could be just oral, be written down or be preserved as an audio recording.
These specific rendering modes of an expressive design on a medium constitute
representations, which are dealt with in Chap. 27. Expressive designs include, for
example, folk tales, melodies, hand gestures and computer icons.

Another kind of performative entity is given by the SocialAct class. A social act
is a performative entity that captures specific practices shared by a group. Social
acts may be manifested individually or collectively; for example, one may pray
alone or in a group. In either case, praying is the social act and, as such, constitutes
a practice that expresses values shared by a group, even when it is performed by a
single person. Social acts include, for example, mass celebrations, binge drinking
parties or town fairs.

Finally, the third kind of performative entity is given by the Understanding
class. An understanding is a performative entity that captures human experiences,

PerformativeEntity (A)

UsualPerformer: 0..* ref Agent (T)

PrimaryEntity

ValuableEntityFormallyInvolves (T)

0..* 0..*

ExpressiveDesign (A) SocialAct Understanding (A)

Nature

Manifestation ManifestsAs (T)

0..* 0..1

Fig. 24.2 Performative entities in CHARM

Performative Entities 253

insights or traditions as maintained and transmitted by individuals. An under-
standing is always held by some people, practiced by them, and transmitted to
others, who carry out performing in a similar manner. Understandings include, for
example, particular cooking or fishing techniques or traditional trades.

The following sections describe the different kinds of performative entities in
greater detail.

Expressive Designs

ExpressiveDesign is an abstract class and has a hierarchy of descendants that allows
us to model expressive designs in quite precise ways. Look at the diagram in
Fig. 24.3. ExpressiveDesign shows a Contents attribute, which represents the
“substance” matter of the associated message being conveyed. Note that a Data type
is employed, since the contents of a message can be of any type, and not necessarily
textual. In addition, the association FormallyDesignates connects expressive
designs to those valuable entities that are designated, or referred to, by the
expressive design. ExpressiveDesign is specialized into a number of subclasses,
depending on the universal expression phenomenon involved:
LanguageExpressiveDesign, SoundExpressiveDesign, GesturalExpressiveDesign,
FormalExpressiveDesign and CombinedExpressiveDesign. A language expressive
design is an expressive design based on human language as vehicle of expression.
This is probably the most intuitive kind of expressive design, since natural language
constitutes the most immediate communication manner between us. In fact,
LanguageExpressiveDesign is associated to the Language class (to be described in
Chap. 26) so that a particular language expressive design is always expressed in a
particular language. Also, the Contents attribute is redefined as of type Text,
because linguistic messages are easily represented as such.

LanguageExpressiveDesign is specialized into two subclasses: Discourse and
ProperName. A discourse is a language expressive design of a narrative nature.
Discourses usually correspond to complete sentences or groups of them. Discourse
includes, for example, the text of a speech or a poem. A proper name, in turn, is a
language expressive design having the purpose of designating entities. Proper
names are usually short phrases or single words with which people refer to things.
ProperName redefines the Name attribute (inherited from ValuableEntity) so that it
can only hold one value, namely, the proper name being described. Also, proper
names are special in the sense that their contents coincide with their name; for
example, the contents of the proper name with name “Sydney” are also “Sydney”.
This is not the case for discourses; for example, the contents of the discourse with
name “The Catcher in the Rye” constitute the complete text of the novel.

In turn, ProperName is specialized into two subclasses: Toponym and
Anthroponym. A toponym is a proper name having the purpose of designating
places. In this regard, Toponym redefines the FormallyDesignates association so

254 24 Manifestations and Performative Entities

Pe
rf

or
m

a
ve

En
ty

Ex
pr

es
si

ve
De

si
gn

 (A
)

C
on

te
nt

s:
 1

 D
at

a

Va
lu

ab
le

En
ty

Fo
rm

al
ly

De
sig

na
te

s (
T)

0.
.*

0.
.*

De
sig

na
to

r

Co
m

bi
ne

dE
xp

re
ss

iv
eD

es
ig

n

U
ni

ve
rs

al
Ex

pr
es

sio
nP

he
no

m
en

on

So
un

dE
xp

re
ss

iv
eD

es
ig

n
G

es
tu

ra
lE

xp
re

ss
iv

eD
es

ig
n

Fo
rm

al
Ex

pr
es

si
ve

De
si

gn
La

ng
ua

ge
Ex

pr
es

si
ve

De
si

gn
 (A

)

[C
on

te
nt

s]
: 1

 T
ex

t

Di
sc

ou
rs

e
Pr

op
er

N
am

e

[N
am

e]
: 1

 T
ex

t

Fu
nc

on

To
po

ny
m

An
th

ro
po

ny
m

Do
m

ai
nO

fR
ef

er
en

ce

0.
.*

2.
.*

La
ng

ua
ge

1
*..0

Va
lu

ab
le

En
ty

[F
or

m
al

ly
De

sig
na

te
s]

 (T
)

1.
.*

0.
.*

De
sig

na
to

r

Id
en

ty
Ag

en
t

[F
or

m
al

ly
De

sig
na

te
s]

 (T
)

0.
.*

1 .
.*

De
sig

na
to

r

Pl
ac

e
[F

or
m

al
ly

De
sig

na
te

s]
 (T

)

0.
.*

De
sig

na
to

r
1 .

.*

La
nd

Di
vi

si
on

[Is
Fo

rm
al

ly
De

sig
na

te
dA

s]
 (T

)

0.
.*

1 .
.*

De
sig

na
to

r

F
ig
.
24

.3
E
xp

re
ss
iv
e
de
si
gn

s
in

C
H
A
R
M

Performative Entities 255

that it points to Place (Chap. 22) rather than the more abstract ValuableEntity. In
addition, there is the requirement that every land division is named through at least
one toponym, as a consequence of the fact that land divisions are created for
management purposes, as described in Chap. 22. To reflect this, the class
LandDivision redefines the inherited association to Toponym so that the cardinality
is 1..*. Examples of toponym include city or mount names such as “Sydney” or
“Everest”.

An anthroponym, similarly, is a proper name having the purpose of designating
people. Like in the previous case, Anthroponym redefines the FormallyDesignates
association so that it points to IdentityAgent rather than ValuableEntity.
Anthroponyms may be individual proper name such as “Alice” or “Bob” but can
also be group names such as “Hitorangi”, “the French people” or “Microsoft”.

As opposed to language expressive designs, a sound expressive design is an
expressive design based on sound as vehicle of expression. Despite the fact that
language communication implies sound when in spoken form, communication
through sound is possible beyond language. Examples of sound expressive designs
include a melody, tutting or whistling to express joy or displeasure.

Similarly, a gestural expressive design is an expressive design based on the
position and movement of the human body, optionally augmented by accessories, as
a vehicle of expression. Examples of gestural expressive designs include a dance or
non-verbal communication through facial expressions.

A formal expressive design, in turn, is an expressive design based on the formal
properties of its parts, as well as on the relationships between them, as a vehicle of
expression. Examples of formal expressive designs include a logotype, a
three-dimensional model of a building or a Harris matrix.

Finally, a combined expressive design is an expressive design that aggregates
other expressive designs, potentially of different types and therefore using different
vehicles of expression. Examples of combined expressive designs include a song
(which includes the lyrics, which are a language design, plus the music, which is a
sound design) or an opera (which includes the former plus a gestural design).

Social Acts

SocialAct is a concrete class, as shown in Fig. 24.4.

PerformativeEntity

SocialAct

UsualParticipant [UsualPerformer]: 0..* ref Agent (T)

Fig. 24.4 Social acts in
CHARM

256 24 Manifestations and Performative Entities

SocialAct redefines the inherited UsualPerformer association as
UsualParticipant, to reflect the fact that people participate in social acts.

Understandings

Understanding is an abstract class and has a hierarchy of descendants that allows us
to model understandings with more detail. Look at the diagram in Fig. 24.5. In a
similar way as with social acts, Understanding redefines the UsualPerformer
association as UsualOwner, to reflect the fact that understandings are always
“owned” by people. Furthermore, the Supports self-association captures the fact
that some understandings support some others. For example, some special angling
techniques are necessary in order to perform some fisherman trade styles. Finally,
Understanding is specialized into three subclasses, depending on what the appli-
cation mode is: Knowledge, Trade and Technique. A knowledge is an under-
standing related to people’s memory, ability to perceive or ability to use
information. In other words, knowledges represent what people know and are able
to apply for practical purposes. Examples of knowledges include fishing or
administering herbal medicine.

A trade, in turn, is an understanding related to people’s habitual occupation,
which may require specific knowledges or techniques that have been acquired.
Trades describe what people do for a living and are often supported by other kinds
of understandings through the above-mentioned Supports association. Examples of
trades include fisherman or cobbler.

PerformativeEntity

Understanding (A)

UsualOwner [UsualPerformer]: 0..* ref Agent (T)

Supports0..*

0..*

Knowledge Trade Technique

Application

Fig. 24.5 Understandings in CHARM

Performative Entities 257

A technique, finally, is an understanding related to a particular way of doing
which, usually supported by knowledge, includes both the process that is followed
as well as the products that are used and produced. Techniques correspond to the
manner in which people do things and often involve following a particular process
and employing or creating particular artefacts. Examples of techniques include
trawling fishing or oil painting on canvas.

Manifestations

As we described above, a manifestation is a primary entity corresponding to a
human expression at a given time and place, which is fundamentally perceived in a
direct fashion and through performative aspects. Looking at it from the other way
around, performative entities are abstractions that we construct after detecting
patterns in a series of manifestations. As a consequence, manifestations are orga-
nized in CHARM in a manner that closely resembles that of performative entities,
and the class hierarchy under Manifestation is extremely similar to that of
PerformativeEntity. The classes in both parallel hierarchies are connected in pairs
through redefinitions of the association shown in Fig. 24.1, connecting Trade to
ManifestationOfTrade, SocialAct to ManifestationOfSocialAct and so on. Since
each pair of classes redefines the association in a similar way, we do not show it in
the diagrams for the sake of simplicity. Figure 24.6 shows details about manifes-
tations. The agents that participate in each manifestation are represented by the
Performer association. Note that this represents the actual performers of a mani-
festation, rather than the usual performers that PerformativeEntity described. For
this reason, the minimum cardinality of the association is 1 rather than 0 as it was
for PerformativeEntity, since by definition a manifestation requires at least one
person. In addition, any other valuable entities that become involved in each

Manifestation (A)

Performer: 1..* ref Agent

PrimaryEntity

ValuableEntityActuallyInvolves

0..* 0..*

ManifestationOf
ExpressiveDesign (A)

ManifestationOf
SocialAct

ManifestationOf
Understanding (A)

Nature

PerformativeEntity Realizes

0..1 0..*

Fig. 24.6 Manifestations in CHARM

258 24 Manifestations and Performative Entities

particular manifestation are represented by the ActuallyInvolves association; the
name of this association alludes to the fact that the involvement of these valuable
entities is actual, as opposed to the formal or expected involvement that we
described for PerformativeEntity. Finally, the Realizes association, inverse to
ManifestsAs previously described, captures the fact that each manifestation may
realize a particular performative entity. Note that a manifestation does not need
necessarily to realize a performative entity and hence the 0..1 cardinality; in fact,
manifestations that do not fall in a known pattern such as those of an improvised
nature cannot be linked to a meaningful performative entity.

Like PerformativeEntity above, Manifestation is specialized into three subclasses
according to their nature: ManifestationOfExpressiveDesign, ManifestationOfSocialAct
and ManifestationOfUnderstanding. A manifestation of expressive design corresponds
to a manifestation that realizes a given expressive design. In other words, if expressive
designs are specific ways to communicate, manifestations of expressive designs con-
stitute particular usages of the former. For example, Mike Oldfield’s Crises (a song)
constitutes an expressive design; each time Crises is played, this constitutes a mani-
festation of an expressive design.

Another kind of manifestation is given by the ManifestationOfSocialAct class,
which corresponds to a manifestation that realizes a given social act. These
manifestations correspond to the actual performances of the associated social act by
specific people in specific places and at specific times. For example, ‘rock concert’
is a social act; every time a rock concert happens, this constitutes a manifestation of
the ‘rock concert’ social act.

Finally, the third kind of performative entity is given by the
ManifestationOfUnderstanding class, which corresponds to a manifestation that
realizes a given understanding. These manifestations describe actual performances
of trades, techniques or knowledges. For example, ‘trawl fishing’ is an under-
standing; every time someone uses trawl fishing somewhere, this constitutes a
manifestation of the former understanding.

The following sections describe the different kinds of manifestations in greater
detail.

Manifestations of Expressive Designs

ManifestationOfExpressiveDesign is an abstract class and has a hierarchy of
descendants that allows us to model these manifestations in quite precise ways.
Look at the diagram in Fig. 24.7. ManifestationOfExpressiveDesign, like its per-
formative counterpart, shows a Contents attribute that represents the “substance”
matter of the associated message being conveyed. In the previous case, this referred
to the usual message that is expected; in this case, it refers to the actual conveyed
message. In addition, the association ActuallyDesignates, analogous to Formally
Designates of the performative classes, connects manifestations of expressive
designs to those valuable entities that are actually designated, or referred to, by the

Manifestations 259

M
an

ife
st

a
on

M
an

ife
st

a
on

O
f

Ex
pr

es
si

ve
De

si
gn

 (A
)

C
on

te
nt

s:
 1

 D
at

a

Va
lu

ab
le

En
ty

Ac
tu

al
ly

De
sig

na
te

s

0.
.*

0.
.*

De
sig

na
to

r

M
an

ife
st

a
on

O
f

Co
m

bi
ne

dE
xp

re
ss

iv
eD

es
ig

n

U
ni

ve
rs

al
Ex

pr
es

sio
nP

he
no

m
en

on

M
an

ife
st

a
on

O
f

So
un

dE
xp

re
ss

iv
eD

es
ig

n
M

an
ife

st
a

on
O

f
G

es
tu

ra
lE

xp
re

ss
iv

eD
es

ig
n

M
an

ife
st

a
on

O
f

Fo
rm

al
Ex

pr
es

si
ve

De
si

gn
M

an
ife

st
a

on
O

f
La

ng
ua

ge
Ex

pr
es

si
ve

De
si

gn
 (A

)

[C
on

te
nt

s]
: 1

 T
ex

t

M
an

ife
st

a
on

O
f

Di
sc

ou
rs

e
M

an
ife

st
a

on
O

f
Pr

op
er

N
am

e

[N
am

e]
: 1

 T
ex

t

Fu
nc

on

M
an

ife
st

a
on

O
f

To
po

ny
m

M
an

ife
st

a
on

O
f

An
th

ro
po

ny
m

Do
m

ai
nO

fR
ef

er
en

ce

0.
.*

2.
.*

La
ng

ua
ge

En
co

di
ng

1
*..0

Va
lu

ab
le

En
ty

[A
ct

ua
lly

De
sig

na
te

s]
1.

.*
0.

.*

De
sig

na
to

r

Id
en

ty
Ag

en
t

[A
ct

ua
lly

De
sig

na
te

s]

0.
.*

1.
.*

De
sig

na
to

r

Pl
ac

e
[A

ct
ua

lly
De

sig
na

te
s] 0.

.*
De

sig
na

to
r

1.
.*

F
ig
.
24

.7
M
an
if
es
ta
tio

ns
of

ex
pr
es
si
ve

de
si
gn

s
in

C
H
A
R
M

260 24 Manifestations and Performative Entities

manifestations. Like its counterpart, ManifestationOfExpressiveDesign is special-
ized into a number of subclasses, depending on the universal expression phe-
nomenon involved: ManifestationOfLanguageExpressiveDesign, ManifestationOf
SoundExpressiveDesign, ManifestationOfGesturalExpressiveDesign, Manifestation
OfFormalExpressiveDesign and ManifestationOfCombinedExpressiveDesign. As
you can imagine, a manifestation of language expressive design is a manifestation
that realizes a given language expressive design. These manifestations correspond
to the utterance of specific instances of the linguistic contents of the associated
expressive design by specific people in specific places and at specific times. As
such, ManifestationOfLanguageExpressiveDesign is associated to the Language
Encoding class (to be described in Chap. 26) so that a particular manifestation of
language expressive design is always conveyed by using a particular encoding.
Also, the Contents attribute is redefined as of type Text, because linguistic mes-
sages are easily represented as such.

ManifestationOfLanguageExpressiveDesign is specialized into two subclasses:
ManifestationOfDiscourse and ManifestationOfProperName. A manifestation of
discourse is a manifestation that realizes a given discourse. Similarly, a manifes-
tation of proper name is a manifestation that realizes a given proper name.

In turn, ManifestationOfProperName is specialized into two subclasses:
ManifestationOfToponym and ManifestationOfAnthroponym. A manifestation of
toponym is a manifestation that realizes a given toponym. Like its performative
counterpart, ManifestationOfToponym redefines the ActuallyDesignates association
so that it points to Place (Chap. 22) rather than the more abstract ValuableEntity.

A manifestation of anthroponym, in turn, is a manifestation that realizes a given
anthroponym. Again like in the previous case, ManifestationOfAnthroponym
redefines the ActuallyDesignates association so that it points to IdentityAgent rather
than ValuableEntity.

As opposed to manifestations of language expressive designs, a manifestation of
sound expressive design is a manifestation that realizes a given sound expressive
design. Examples include someone humming a melody or tutting or someone
whistling to express joy or displeasure.

Similarly, a manifestation of gestural expressive design is a manifestation that
realizes a given gestural expressive design. Examples include a dance being per-
formed or someone giving the Nazi salute.

A manifestation of formal expressive design, in turn, is a manifestation that
realizes a given formal expressive design. Examples include a particular copy of a
logotype, a sketch being drawn or a particular rendering of a three-dimensional
model of a building.

Finally, a manifestation of combined expressive design is a manifestation that
realizes a given combined expressive design. Examples include a song being sung
(which includes the lyrics being uttered, which are a manifestation of language
design, plus the music being sung, which is a manifestation of sound design) or an

Manifestations 261

opera performance (which includes the former plus a manifestation of gestural
design).

Manifestations of Social Acts

ManifestationOfSocialAct is a concrete class, as shown in Fig. 24.8.
ManifestationOfSocialAct redefines the inherited Performer association as
Participant, to reflect the fact that people participate in social acts.

Manifestations of Understandings

ManifestationOfUnderstanding is an abstract class, having a hierarchy of descen-
dants that allows us to model understandings with more detail. Look at the diagram
in Fig. 24.9. Like with manifestations of social acts,ManifestationOfUnderstanding
redefines the Performer association as Owner, to reflect the fact that understandings
are always “owned” by people, as we said above. Furthermore, the Supports
self-association captures the fact that some manifestations of understandings support
some others. Finally, ManifestationOf Understanding is specialized into three
subclasses, depending on what the application mode is:ManifestationOfKnowledge,
ManifestationOfTrade and ManifestationOfTechnique. A manifestation of knowl-
edge is a manifestation that realizes a given knowledge. In other words, these
manifestations correspond to the possession and usage of instances of the associated
knowledge by specific people in specific places and at specific times. Examples
include someone providing herbal medicine at some specific point or someone in the
act of fishing.

A manifestation of trade, in turn, is a manifestation that realizes a given trade.
These correspond to the carrying out of instances of the associated trade by specific
people in specific places and at specific times. Examples include a fisherman or a
cobbler carrying out their trades.

Manifestation

ManifestationOfSocialAct

Participant [Performer]: 1..* ref Agent

Fig. 24.8 Manifestations of
social acts in CHARM

262 24 Manifestations and Performative Entities

Finally, a manifestation of technique is a manifestation that realizes a given
technique. These correspond to the execution of instances of the associated tech-
nique by specific people in specific places and at specific times. Examples include
someone trawl fishing or painting with oil on canvas.

Example Model

Look again at the Example Model sections in previous chapters and consider the
following additions. The fields next to the cattle enclosure where the bone fragment
was found are used by the local townsfolk as part of old grounds where summer
harvest festivities are celebrated every year. A written account of the 1836 cele-
bration is found in a historical document kept in a local library, which also quotes
the words of a song that used to be sung at the festival. You can see a model for this
situation in Fig. 24.10. This model augments the previous ones with instances of
some of the classes that we have described in this chapter, including SocialAct,
ManifestationOfSocialAct and Discourse. Most of the objects from the previous
chapter are omitted for simplicity, but you can easily see how the model is a single
continuous mesh, thus potentially connecting the bone fragment described in pre-
vious chapters to the summer festival described here and the agents that participate
in it. In further chapters, we will keep adding extra information to this model as we
learn about new classes in CHARM.

Manifestation

ManifestationOfUnderstanding (A)

Owner [Performer]: 1..* ref Agent

Supports0..*

0..*

ManifestationOf
Knowledge

ManifestationOf
Trade

ManifestationOf
Technique

Application

Fig. 24.9 Manifestations of understandings in CHARM

Manifestations 263

Summary

Performative entities should not be confused with Manifestations; the latter
constitute performances carried out by someone at some place and some time,
whereas the former are abstract constructs that we manage in order to describe the
latter.

Each particular kind of performative entity is repeatedly realized by manifes-
tations of that kind.

Expressive designs are meant to convey a message between people through
language, sound, gestures, forms or a combination of these.

Social acts embody specific practices shared by a group.
Understandings capture human experiences, insights or traditions as maintained

and transmitted by individuals.

Exercises

40. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• An opera performance.
• The lyrics of Wuthering Heights by Kate Bush.
• The name “Uluru” as spoken by a tourist.
• The well-known thumbs-up hand sign.

sa: SocialAct

Name = “Kojetín summer festival”

FormallyInvolves @Since 18c

c2: Construction

Name = “Cattle Enclosure”
Material = IgneousRock; Mortar
ProductionTechnique = Manual
ConstructionTechnique = RubbleStonework

nmp2: NonMaterialPlace

Name = “Kojetín summer festival grounds”

SubPlace

FramePlace
@

 1
9c

msa: ManifestationOfSocialAct

Name = “Kojetín summer festival of 1836”

Re
al

ize
s

ActuallyInvolves

d: Discourse

Name = “Unknown song”
Contents = ...

FormallyInvolves @19c

l: Language

Name = “Moravian”nmp1: NonMaterialPlace

Name = “Adjacent fields”

FramePlace

SubPlace

@
 1

9c

Fig. 24.10 Augmented example model involving performative entities and manifestations

264 24 Manifestations and Performative Entities

• The way in which craftsmen construct Galician bagpipes.
• Flamenco.
• A jazz jam session.

41. Create a CHARM-compliant instance model to describe the following situation.
In 1991, the relics of Russian monk, St. Seraphim of Sarov, were rediscovered
after being hidden in a museum for a long time. This was received with awe in
post-Soviet Russia, so a procession was formed to take the relics from Moscow
to the St. Seraphim-Diveyevo convent in the town of Sarov.

Exercises 265

Chapter 25
Occurrences

Abstract In this chapter, we introduce CHARM occurrences, which correspond to
events or situations that happen in relation to other valuable entities. We distinguish
between absolute and relative occurrences and, within the latter, between circum-
stances (such as the building of a house), situations (such as a high unemployment
rate) and activities (such as an archaeological excavation). We also explain that
occurrences work in CHARM as the temporal aspect class, so that instance models
can be constructed such that temporal information is recorded diachronically in
terms of the associated occurrences.

As introduced in previous chapters, an occurrence is a primary entity corre-
sponding to an event or situation that happens in relation to one or more valuable
entities. Occurrences are things that happen in time and in a more or less close
relationship to other valuable entities. The construction of a building, a war or the
drifting of the coastline due to erosion constitute occurrences.

Occurrences play an important role in CHARM, since they are the major way in
which we can express time-related concerns. In fact, Occurrence is the temporal
aspect class in CHARM, as shown in Fig. 25.1. The Occurrence class, in addition
to inheriting the Name attribute from ValuableEntity, declares two additional
attributes: Description and Certainty. The Description attribute represents what
happened during the occurrence, especially in relation to the associated valuable
entities. The Certainty attribute, in turn, is useful to represent the degree of certainty
that exists with regard to the occurrence having happened as described. Certainty
degrees are expressed through the associated Certainty enumerated type, which
allows values Possible, Likely and Certain. Note that both Description and
Certainty are marked as subjective. This allows us to document occurrences as
interpreted by specific individuals or groups.

Occurrences may happen within specific cultural classification contexts; for
example, the construction of a building may be documented as belonging to the
Late Middle Ages. This is captured through the OccursInTheContextOf association
towards the CulturalClassification class (see Chap. 29). Furthermore, occurrences

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_25

267

can be connected to other occurrences through the Causes association so that cause/
effect networks can be modelled.

There are two kinds of occurrences: relative and absolute. Relative occurrences
are always located in time in relation to other occurrences, whereas absolute
occurrences are located in time through dates or similar data. A relative occurrence
can be located in time through the OccursAt association to a related absolute
occurrence; for example, we could say that the construction of a building (a relative
occurrence) happened between the late sixteenth century and 1612 (an absolute
occurrence).

In addition, relative occurrences can be related to other occurrences (of
whichever kind) through the intermediate RelationshipBetweenOccurrences class.
This class carries a Relationship attribute expressed in terms of the
RelativeTimeRelationship enumerated type, which allows values such as
OccursBefore, StartsDuring or EndsAtTheSameTimeAs. This allows us, for
example, to state that a mass migration started before the end of a war or that the
collapse of a building happened during a particular year.

Finally, relative occurrences are further specialized as circumstances, situations
and activities, depending on their relationship to other valuable entities. The
remaining of this chapter describes the different kinds of occurrences in greater
detail.

PrimaryEntity

[T] Occurrence (A)

Description: 0..1 Text (S)
Certainty: 0..1 enum Certainty (S)

RelativeOccurrence (A) AbsoluteOccurrence (A)

CulturalClassification

ModeOfTimeDetermination

OccursAt 0..10..*

OccursInTheContextOf

CulturalContext0..*

0..*

Causes (T)

0..* Effect

0..* Cause

RelationshipBetween
Occurrences

Relationship: 1 enum
 RelativeTimeRelationship

RefersTo

Target
10..*

Source

1

0..*

Circumstance (A) Situation Activity (A)

RelationToValuableEntities

Fig. 25.1 Overview of occurrences in CHARM

268 25 Occurrences

Absolute Occurrences

The class AbsoluteOccurrence corresponds to an occurrence that is directly situ-
ated in time, usually through an explicit time reference. Like absolute locations in
Chap. 21, which were defined as not depending on anything else but an absolute
frame of reference, absolute occurrences behave in a similar way, being usually
characterized by specific dates and/or times. Figure 25.2 shows details about
absolute occurrences. AbsoluteOccurrence is specialized into three classes
according to nature: PointInTime, TimeSpan and CompoundAbsoluteOccurrence. A
point in time is an absolute occurrence of a simple nature that happens in a
relatively short time. As such, points in time are characterized by a Moment attri-
bute of type Time. As we described in Chap. 6, the Time data type does not imply a
conventional date/time as given through day, month, year, hour, minute and second;
to the contrary, it can describe any point, as “thick” or “thin” as needed. For this
reason, points in time can be documented as taking as much or as little time as
necessary. Examples of points in time include the year 1931 or the eleventh century.

A timespan, in turn, corresponds to an absolute occurrence that spans from one
point in time to another. This fact is captured by the two whole/part associations
with Start and End roles towards PointInTime. An example time span could be the
period between 8 and 16 June 2001.

Finally, a compound absolute occurrence is an absolute occurrence of a complex
nature as determined by a collection of other absolute occurrences. In other words,
compound absolute occurrences are collections of points in time or time spans (or
other compound absolute occurrences), so they frequently represent discontinuous
portions of time. Example compound absolute occurrences include the years in
which a manned spatial flight took place, or the “ice age” periods on Earth.

AbsoluteOccurrence (A)

PointInTime

Moment: 1 Time

Nature

TimeSpan CompoundAbsoluteOccurrence

Start End1 1
0..* 0..*

0..*

2..*

Fig. 25.2 Absolute occurrences in CHARM

Absolute Occurrences 269

Circumstances

The class Circumstance corresponds to a relative occurrence that happens inher-
ently to one or more valuable entities. Like absolute locations in Chap. 21, which
were defined as not depending on anything else but an absolute frame of reference,
absolute occurrences behave in a similar way, being usually characterized by a date
or time span. Figure 25.3 shows details about circumstances. Circumstance has an
IsInherentTo association towards ValuableEntity. This captures the fact that cir-
cumstances are inherent to valuable entities and cannot occur by themselves. For
example, the construction of a building inheres the building and cannot be
explained in its absence. Furthermore, Circumstance is specialized into Phase and
Change according to nature. A phase is a circumstance that corresponds to a stable
period of the associated entities. Phases are useful to document periods of stability

Circumstance (A) ValuableEntity

RelativeOccurrence (A)

IsInherentTo

1..*0..*
Substrate

Phase Change (A)

Nature

Fr
am

eP
ha

se

0..*

0..*

SimpleChange (A) CompoundChange

Atomicity
0..*

2..*

CreationChange ModificationChange DestructionChange

EffectsCaused

Fig. 25.3 Circumstances in CHARM

270 25 Occurrences

of things in relation to whatever variable and are often relatively long in time.
Examples of phases include ‘in construction’ or ‘first occupation’ (regarding a
building), or ‘abandoned’ (with regard to a site).

A change, contrarily, is a circumstance that corresponds to an instable moment
of the associated entities. Changes entail some alteration to the associated valuable
entities and are often shorter in time than phases, although some changes are very
slow and definitely longer than many phases.

The specific nature of a change is captured by subclasses; Change is specialized
into SimpleChange and CompoundChange. A simple change is a change of an
atomic nature, whereas a compound change is a change of a complex nature, which
corresponds to the occurrence of a number of different but related changes.
Compound changes, in fact, are defined through an aggregation of two or more
changes, thus allowing us to document changes in things that involve multiple
aspects or variables at the same time, such as a situation where an object is
destroyed in order to create another.

SimpleChange is specialized into CreationChange, ModificationChange and
DestructionChange, depending on the effects caused on the associated valuable
entities. A creation change is a simple change that describes the creation of the
associated entities. It is safe to assume that the entities associated to a creation
change do not exist before the change happens. Creation changes include, for
example, the construction of a building or the starting of a fire.

A modification change, in turn, is a simple change that describes the modifi-
cation of the associated entities. Modification changes necessary alter the associ-
ated valuable entities, but they do not need to modify all of their properties.
Modification changes include, for example, the refurbishment of a building or the
variation of a few words in a song.

Finally, a destruction change is a simple change that describes the destruction of
the associated entities. It is safe to assume that the entities associated to a
destruction change do not exist after the change happens. Destruction changes
include, for example, the extinction of a species or the collapse of a settlement.

Situations

The class Situation corresponds to a relative occurrence that happens as configured
by other valuable entities. Situations constitute “the state of things”, and while they
are not inherent to those things, they are strongly affected by them. Figure 25.4
shows details about situations. Situation has a temporal IsConfiguredBy association
towards ValuableEntity. This captures the fact that situations are configured by
other valuable entities over time and cannot be understood without them. For
example, the situation of gender discrimination in the workplace is configured by a
set of values, norms and processes that strongly influence it. There is a single
subclass of Circumstance, namely Phenomenon. A phenomenon is a situation
perceived and conceptualized by some particular agents. In other words, a

Circumstances 271

phenomenon is a situation as seen from the viewpoint of someone. This is modelled
through the IsPerceivedBy association. Examples of phenomena include gender
discrimination as experienced by a particular individual, or the global financial
crisis as experienced by a particular bank.

Activities

The class Activity corresponds to a relative occurrence that happens separately
from other valuable entities. Activities are the least dependent on valuable entities
of all occurrences. Still, they can be mediated by them. Figure 25.5 shows details
about activities. Activity has a temporal IsMediatedBy association towards
ValuableEntity. This captures the fact that activities, despite happening quite
independently from other valuable entities, can still be mediated or modulated by
them over time. For example, the action of wind erosion over a wall is affected by
the materials of the wall and its orientation. There are two subclasses of Activity:
Process and Action. A process is an activity of a complex nature, usually affecting
multiple valuable entities. In other words, a process is usually composed of other
activities, such as subprocesses or individual actions; also, a process often affects,
or is affected by, a number of valuable entities. Processes also tend to take a long
time to happen as compared to other activities. Examples of processes include a
war, a mass migration or the construction of a settlement.

Process has one subclass, Project, which corresponds to a process mediated by
agents and purposefully managed. This means that a project is a special kind of
project that is organized and managed by some agents in order to achieve a goal.
This is captured by the redefined IsMediatedBy association towards Agent.

Situation

RelativeOccurrence (A)

Phenomenon

Nature

ValuableEntityIsConfiguredBy (T)

0..* 0..*

AgentIsPerceivedBy

0..* 1..*

Fig. 25.4 Situations in CHARM

272 25 Occurrences

Examples of projects include carrying out a survey campaign, the planned devel-
opment of a city or waging a war.

In contrast, an action is an activity of a simple nature, usually affecting a few
valuable entities. This means that actions are rarely decomposed into other activ-
ities, and they affect, or are affected by, a very small number of valuable entities.
Actions also tend to take a much shorter time to happen as compared to processes.
Examples of actions include the erosion of a rock by the wind, the burning of wood
in a hut to cook food or the visit to a museum.

Like in the case of Process, Action also has a management-oriented subclass,
Task, which corresponds to an action mediated by agents and purposefully man-
aged. In other words, tasks are actions that are organized and managed in order to
achieve a goal. Like in the previous case, this is captured by the redefined
IsMediatedBy association towards Agent. Examples of tasks include planning a
survey campaign, building a roof or interviewing a group of people.

Activity (A)

RelativeOccurrence (A)

ValuableEntityIsMediatedBy (T)

0..* 0..*

Process Action

NatureFrameProcess

0..*

0..*

Project

Management

Task

Management

0..1 FrameTask

0..* SubTask

Agent
1..*

1..*

[IsMediatedBy] (T)

[IsMediatedBy] (T)

0..*0..*

Fig. 25.5 Activities in CHARM

Activities 273

Expressing Time with Occurrences

As we said at the beginning of this chapter, Occurrence is the temporal aspect class
in CHARM. This means that every temporal attribute or semi-association that is
instantiated must refer to an occurrence as the mechanism to locate it in time. In
other words, we use occurrences in CHARM to express when things happen. Since
Occurrence has a wide range of descendant classes, we can use any of them for this
purpose. For example, we could document the different materials that were used in
a tower over time by specifying different values for MaterialEntity.Material in
different phases of the tower. Or we could document how the usual participants in a
social act have changed over time by linking the social act to different agents
through the SocialAct.UsualParticipant association as different changes or pro-
cesses take place. Phases, changes and processes are specific types of occurrence
and hence the power of temporal expression in CHARM. Figure 25.6 shows an
example. In the figure, the social act sa, representing attendance to mass in a
particular town, is shown as having the local neighbours (community c1) as usual
participants. Also, the tourists (community c2) are shown as being usual partici-
pants in relation to a particular situation, s, corresponding to the intense affluence of
tourists to the town, which started in the 1960s. In summary, the model can be read
as “Intense affluence of tourists started in the 1960s. Since then, tourists have
become usual participants in local mass celebrations together with the local
neighbours”.

s: Situa on

Name = “Intense tourism affluence”
Description = …
Certainty = Certain

ts: TimeSpan

Name = null
Description = null
Certainty = Certain
Start = 1960s
End = null

OccursAt

sa: SocialAct

Name = “Attendance to mass”

c1: Community

Name = “Local Neighbours”

c2: Community

Name = “Tourists”

HasUsualPar cipant @ s

HasUsualPar cipant

Fig. 25.6 Example model involving temporal facts

274 25 Occurrences

Example Model

Refer to the Example Model section in previous chapters, and consider the fol-
lowing additional information. A documentation team finds out that the cattle
enclosure was probably built in 1781. We can use occurrences to explicitly describe
the temporal aspects of the model, including the new information about the
enclosure as well as the fact that the bone fragment was found during a particular
survey. You can see a model for this situation in Fig. 25.7. This model augments
the ones in previous chapters by showing instances of some Occurrence subtypes,
including a CreationChange, Task and PointInTime. Some of the objects from
previous chapters are omitted for simplicity. Note that a task to represent the
archaeological survey has been added, and its identifier t1 used as in the aspect
markers for associations involving the bone fragment. Also, the construction of the
enclosure is explicitly modelled through a creation change associated to the year
1781.

Summary

Occurrences are useful to document events or situations that are related to other
valuable entities.

Occurrences can be used to qualify temporal information, since Occurrence is
the temporal aspect class in CHARM.

c2: Construc on

Name = “Cattle Enclosure”
Material = IgneousRock; Mortar
ProductionTechnique = Manual
ConstructionTechnique = RubbleStonework

of: ObjectFragment

Name = “Fragment 63.1”
Material = Bone

io1: Inten onalObject

Name = “Object 63”
Material = Bone
ProductionTechnique = unknown

Content

@ t1

Fragment

@ t1

t1: Task
$ SurveyTeam

Name = “Archaeological survey”
Description = null
Certainty = Certain

pit1: PointInTime
$ SurveyTeam

Name = null
Description = null
Certainty = Certain
Moment = 16 June 1998

Start

End

cch: Crea onChange
$ Documenta onTeam

Name = “Construction of enclosure”
Description = null
Certainty = Likely

Substrate

rbo1: Rela onshipBetweenOccurrences

Relationship = OccursDuring

pit2: PointInTime
$Documenta onTeam

Name = null
Description = null
Certainty = Likely
Moment = 1781

Source RefersTo

Target

Fig. 25.7 Augmented example model involving various occurrences

Example Model 275

Absolute occurrences are characterized by time values indicating when they
occurred.

Relative occurrences are characterized by their relationships to other
occurrences.

Circumstances represent things that happen to other valuable entities and
therefore are inherent in them.

Situations represent the “state of things” and are configured by other valuable
entities.

Activities represent relatively independent occurrences, although they can also
be mediated or affected by other valuable entities.

Exercises

42. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• The time span between 8 June 2001 and 19 January 2002.
• The period of time that a concentration camp survivor spent there.
• The refurbishment of an old house.
• The fourteenth century.
• The interwar period of 1918–1939 in Europe.
• The sinking of the Titanic.
• The construction of the Great Pyramid of Giza.

43. Create a CHARM-compliant instance model to describe the following situation.
An archaeological excavation takes place between June and September 2013.
As a consequence of it, an old wall is exposed and heavily altered by wind
erosion over the following months.

276 25 Occurrences

Chapter 26
Abstract Entities

Abstract In this chapter, we introduce abstract entities in CHARM, which are
those that are socially constructed and comprised of abstractions or ideas only, with
no concrete realization whatsoever. We explore some kinds of abstract entities,
including category systems, languages and, very importantly, culturally shared
concepts such as beliefs, values and norms. Norms are further explored, and a
distinction is made between conventions, rights, obligations and prohibitions.

So far we have described tangible entities, which are mainly perceived through their
materiality; performative entities, which are perceived through the performance of
the associated manifestations and occurrences, which are things that happen in time.
We now look at abstract entities, which correspond to a primary entity that is
socially constructed and comprised of abstractions or ideas only, with no concrete
realization whatsoever. As opposed to tangible entities, abstract entities lack
materiality. As opposed to performative entities, they do not manifest or are per-
formed by agents. However, abstract entities can still be communicated through
representations, as described in Chap. 27. Figure 26.1 shows an overview of
abstract entities. As you can see, abstract entities include very different things. In
fact, AbstractEntity is specialized into CategorySystem, Language,
LanguageEncoding, SharedConcept, Culture and Valorization, depending on their
nature. A category system is an abstract entity corresponding to a collection of
categories that work together for a well-known purpose. We can use category
systems to organize reality in any meaningful way. For example, prehistoric periods
such as Neolithic or Bronze Age make up a category system. Similarly, tree fam-
ilies or species such as Oak or Pine also make up a category system. A category
system is composed of individual categories, although this is not visible in Fig. 26.1
since categories are dealt with in Chap. 29.

A language is an abstract entity corresponding to a human language. This is
usually a natural spoken language such as French or Mandarin, but it can also be a
constructed language such as Láadan or a non-spoken language such as the
American Sign Language.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_26

277

A language encoding, in turn, is an abstract entity corresponding to an alphabet,
syllabary or logography. Language encodings can always express at least one
language, which is captured by the Supports association. Many language encodings
are writing systems, but some are not, such as oral or gestural encodings. Examples
of language encodings include the Cyrillic script, Egyptian hieroglyphs, Braille,
Silbo Gomero or Katakana.

A shared concept is an abstract entity corresponding to a mental state that is
shared by many individuals. Shared concepts are ideas that exist in the “collective
mind” of a society or group, which is captured by the association to Agent with role
Owner. Also, shared concepts are usually described with regard to their conceptual
content, through the Description attribute. SharedConcept has two subclasses:
Belief and Norm. A belief is a shared concept corresponding to the assumption that
a given set of statements are correct. According to the classical conceptualization of
knowledge, introduced in Chap. 1, beliefs that are true and can be justified are the
basis of knowledge. Examples of beliefs include religions (such as Islam or
Catholicism), worldviews (such as atheism or humanism) or ideologies (such as
Marxism or feminism).

A particular kind of belief, modelled by the Value class, corresponds to a belief
about the degree of importance of something. A norm, on the other hand, is a
shared concept corresponding to a law, rule or piece of guidance applying to one
or more agents, possibly in relation to some valuable entities. Norms are a complex
matter and are discussed in a separate section below.

A culture, in turn, is an abstract entity corresponding to the collection of shared
beliefs and norms that guide human action within a group. Note that this definition

AbstractEntity (A)

PrimaryEntity

CategorySystem

[Name]: 1..* Text

Nature

Language LanguageEncoding SharedConcept (A)

Owner: 1..* ref Agent
Description: 0..1 Text

Culture

Owner: 1..* ref Agent

Valorization (A)

Belief Norm (A)

Value

Nature

Nature

Supports

0..*1..* 1..* 0..*

Fig. 26.1 Overview of abstract entities in CHARM

278 26 Abstract Entities

matches the one we gave in Chap. 19 and is captured by the strong whole/part
association from Culture towards SharedConcept. Also, the link between a culture
and the associated group is captured by the association to Agent with role Owner.

Finally, a valorization is an abstract entity of a discursive nature that adds
cultural heritage value to other valuable entities through interpretive processes that
have been agreed upon within a group or discipline. As we said in Chap. 20,
valorizations are interpretive constructs built on one or more valuable entities.
Valorizations constitute a very important part of CHARM and are described in
detail in Chap. 28.

Norms

A norm, as introduced above, is a shared concept corresponding to a law, rule or
piece of guidance applying to one or more agents, possibly in relation to some
valuable entities. Figure 26.2 shows details about norms. Some norms may imply
other norms, as captured by the Implies self-association. For example, the right of
ownership over a house usually implies a right to use the house as well as the
obligation to keep it in good condition. Also, norms always apply to some agents,
as described by the IsNormativeSubjectOf association. Furthermore, norms may
refer to other valuable entities as captured by the RefersTo association. For
example, the house ownership norm mentioned above applies to the house owner
and refers to the house. In this regard, norms connect agents to other valuable
entities, establishing what is expected from the former over the latter. Notice also
that norms do not necessarily need to be written and formal; in fact, many norms are
tacit and informal.

There are two kinds of norms depending on their atomicity, described by
CompoundNorm and SimpleNorm. A compound norm is a norm of a complex
nature, corresponding to the aggregation of other norms. For example, the con-
stitution of a country or the Ten Commandments in the Bible constitute compound
norms.

A simple norm, to the contrary, is a norm of an atomic nature. There are four
different subclasses of SimpleNorm: Convention, Right, Obligation and Prohibition.
A convention is a simple norm that impels its subjects to behave in a particular
manner. In other words, conventions drive people to behave in certain ways,
usually through tradition or custom. Examples of a convention include the custom
to shake hands when being introduced to someone in the Western world, or the
unspoken “pecking order” that is observed when sharing food in some groups.

A right is a simple norm that grants its subjects specific liberties, guarantees or
benefits. Through rights, people are allowed to behave in certain ways that are
considered acceptable within their group. There are different kinds of rights
depending on the nature of what is being granted: RightToDo, RightOfUse,
RightOfOwnership and RightOfCustody. A right to do is a right that grants its
subjects the benefit to carry out the associated valuable entities. For example, the

26 Abstract Entities 279

right to demonstrate in public spaces allows citizens to carry out a particular social
act. A right of use, in turn, is a right that grants its subjects the benefit of being able
to use the associated valuable entities. For example, the right to live in a rented
house grants the subjects permission to use the house according to the agreed
conditions. A right of ownership is a right that grants its subjects the benefit of
owning the associated valuable entities. For example, buying a house and
becoming its owner grants the involved people certain rights over it. Finally, a right
of custody is a right that grants its subjects the benefit of keeping the associated
valuable entities in their possession. For example, a museum often has the right to
keep a collection of objects even when they are owned by someone else.

An obligation, on the other hand, is a simple norm that that imposes specific
duties or responsibilities to its subjects. Obligations strongly drive people to behave
in certain ways and often impose penalties when the expected behaviour is not
fulfilled. As with rights, there are different kinds of obligations depending on the

Norm (A)

SharedConcept

Agent ValuableEntity
RefersTo 0..*0..*

0..*1..* IsNormativeSubjectOf (T)

Implies

0..*NormativeEffect
NormativeCause 0..*

CompoundNorm

Atomicity 0..*

2..*

SimpleNorm (A)

Nature

Convention Right (A) Obligation (A) Prohibition (A)

RightToDo

RightOfUse

RightOfOwnership

RightOfCustody

ObligationToDo

ObligationToConserve

ObligationToAllowUse

ThirdParty: 1..* ref Agent

ProhibitionToDo

ProhibitionToUse

NatureOfTheGrant NatureOfTheDuty NatureOfTheBan

Fig. 26.2 Norms in CHARM

280 26 Abstract Entities

nature of the imposed duty: ObligationToDo, ObligationToConserve and
ObligationToAllowUse. An obligation to do is an obligation that requires its
subjects to carry out the associated valuable entities. Examples include the obli-
gation to go through conscripted military service in some countries or the
requirement to pay out a debt. Note that obligations to do refer to the occurrence
that is expected to take place. For example, an obligation to pay a debt would be
linked to the action of paying, rather than the debt itself. An obligation to conserve,
in turn, is an obligation that requires its subjects to keep the associated valuable
entities in good condition. An example would be the requirement that the owner of
a heritage-listed building maintains it according to certain standards. Finally, an
obligation to allow use is an obligation that requires its subjects to allow the use of
the associated valuable entities to certain third parties. The involved third parties
are modelled by the ThirdParty association to Agent. Examples of obligations to
allow use include a museum, who may keep a right of custody to some objects, but
also an obligation to let citizens visit them; or the above-mentioned owner of a
heritage-listed building, who despite keeping a right of ownership over the building,
also has the obligation to allow others to enjoy it according to some guidelines.

Lastly, a prohibition is a simple norm that forbids its subjects from doing
something. If conventions guide you, rights allow you and obligations compel you,
then prohibitions disallow you. As with the previous cases, there are different kinds
of prohibition depending on the ban being imposed: ProhibitionToDo and
ProhibitionToUse. A prohibition to do is a prohibition that forbids its subjects from
carrying out the associated valuable entities. For example, in some countries
people cannot demonstrate publicly or drink alcohol. Like in the case of obligations
to do, a prohibition to do refers to the occurrence that is not expected to take place.
For example, a prohibition to drink alcohol in a particular place would be linked to
the activity of drinking alcohol, rather than the drink itself or the associated place. A
prohibition to use, in turn, is a prohibition that forbids its subjects from using the
associated valuable entities. Examples include the ban on black citizens to employ
certain kinds of public transport in the USA during the mid-twentieth century, or
the prohibition for Jews to fly the Reich flag during the rule of the Nuremberg Laws
in Nazi Germany.

Norms constitute a complex aspect of the culture and, consequently, are central
to cultural heritage. Some other aspects related to normativity, such as privacy and
trust, are not currently considered by CHARM, but a proposal has been put forward
in [16].

Example Model

Refer to the Example Model section in previous chapters, and consider the fol-
lowing additional information. One of the activities that is traditionally carried out
during the summer festival is the making of bone tools, and only men are allowed to
do it. You can see a model for this situation in Fig. 26.3.

Norms 281

This model augments the ones in previous chapters by showing instances of
some AbstractEntity subtypes, namely CompoundNorm, Convention and
ProhibitionToDo. As usual, some of the objects from previous chapters are omitted
for simplicity. Note how the set of rules that govern the summer festival have been
modelled as a compound convention, and two of these rules, the custom to make
bone tools and the prohibition for women to participate, have been modelled as
parts.

Summary

Abstract entities are composed of ideas, and they are not performed by people like
performative entities do.

Shared concepts are inter-subjective ideas within a group.
A culture is a collection of shared concepts that belongs to a group.
Norms, a specific type of shared concept, connect agents to other valuable

entities in relation to socially accepted behaviour.
Conventions are norms that guide people.
Rights are norms that grant people liberties or benefits.

sa: SocialAct

Name = “Kojetín summer festival”

cn: Convention

Name = “Bone tool making”
Description = ...

cpcn: CompoundNorm

Name = “Summer festival customs”

Re
fe

rs
To

ptd: ProhibitionToDo

Name = “Gender selection”
Description = “Women cannot participate

in tool making”

RefersTo

com2: Community

Name = “Kojetín local women”

com1: Community

Name = “Kojetín local people”

NormativeSubject NormativeSubject

@
Si

nc
e

18
c

@
Si

nc
e

18
c

Fig. 26.3 Augmented example model involving abstract entities

282 26 Abstract Entities

Obligations are norms that impose requirements on people.
Prohibitions are norms that forbid people from doing something.

Exercises

44. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• The custom to exchange business cards when meeting someone.
• The heraldry conventions of canting arms.
• Marxism.
• The preference for male rather than female children in some cultures.
• The entitlement to keep what one has inherited.
• The set of race and ethnicity labels used by the US Census.

Summary 283

Chapter 27
Representations

Abstract In this chapter, we introduce the notion of representation in CHARM,
which corresponds to the fact that certain contents are persistently captured on an
embodiment, reflecting the forms and characteristics of the former. Other
representation-oriented relationships are also discussed, such as those related to
reference and copying.

The previous few chapters have described most of CHARM’s classes under
ValuableEntity, with only valorizations and derived entities to be described in
forthcoming chapters. In addition to valuable entities and valorizations, Chap. 19
mentioned representations as the third major component of CHARM. In this
chapter, we deal with them.

Representations play a crucial role in the world of cultural heritage. It is through
representations that we reason about, feel, learn and study the world where we live.
For example, an excavation report describing the work that was done on site is a
representation of that site. Also, the tombs that we use to bury the deceased are
constructed, placed and kept according to our culture, and hence, we can say that
they represent it, or aspects of it. As a third example, conceptual modelling itself is
a representational activity, as explained in Chap. 1, so every time that we create a
model of some aspect of cultural heritage we are also representing it.

The word “representation” is ambiguous and can have two meanings. On the one
hand, representation means the process of re-presenting something, that is, the
process of creating something else that, in one way or another, looks like the
original thing. But representation also means the resulting product of this process.
For example, we can say that a photograph of the cathedral in Burgos is a repre-
sentation of the building. However, we can also say that the process of choosing the
framing, time and technique in order to take the picture constitutes the process of
representation. This ambiguity is difficult to avoid, and we will try to be as clear as
possible throughout this chapter. Most of the times that we use the word “repre-
sentation” we will be referring the products, not the process.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_27

285

Representations, Contents and Embodiment

We conceptualize a representation (the product, not the process) as an entity that
captures the properties of something else, so that we can obtain information about
the latter by looking at the former. For example, the photograph of the cathedral is a
representation because we can learn about the cathedral by looking at the photo-
graph. This brings up the issue of whether representations are always intentionally
constructed or not. Some authors argue that an entity that captures the properties of
something else is a representation, regardless of how, when and why it was created.
In this regard, the photograph is a representation of the cathedral, but then, the
cathedral is also a representation of the photograph. Taking this even further, there
are things that fortuitously look like something else without any human interven-
tion; for example, the Ursa Major constellation looks like a bear to many, so it
would be a representation of bears according to this stance. However, stretching the
concept of representation so much makes it almost useless, because we would be
putting intentional designs and random coincidences of nature under the same term.
For this reason, and especially within the field of cultural heritage, we prefer to save
the term “representation” for those things that have been constructed by people and,
as a result, look like something else. Notice that we do not include intentionality in
this notion: a representation may or may not have been deliberately designed to
look like whatever it represents. The only requirement is that it has been built by
humans and, as a consequence, it re-presents something that the humans know
about. The photograph of the cathedral would be an example of an intentional
representation. The tombs that we use to bury our dead may be representing values
and norms in our culture in a non-deliberate way.

In CHARM, the class Representation corresponds to the fact that certain con-
tents are persistently captured on an embodiment, reflecting the forms and char-
acteristics of the former. In other words, a representation connects together contents
and embodiment. Figure 27.1 shows an overview of representations. As shown in
the diagram, Representation has a Describes association towards ValuableEntity.
This allows us to document the contents that are captured by a representation. In our
example with the photograph of the cathedral, the cathedral would be the contents.
In addition, Representation has an IsEmbodiedIn association towards
PrimaryEntity. This allows us to document the entities that embody the contents. In
our photograph example, the piece of paper where the photograph is printed in the
case of an old film photograph, or the computer file where it is stored in the case of
a digital photograph, constitutes the embodiment.

Several points must be clarified. First of all, it may be tricky to distinguish
between a representation and its embodiment. Distinguishing representation and
contents is easy: nobody would mistake the photograph of the cathedral for the
cathedral itself. However, it is easier to mix up a representation and its embodiment,
because we usually and informally refer to the embodiment as a “representation”.
For example, think of an old photograph of the cathedral that is printed on paper.
The piece of paper with an image of the cathedral that you can hold with your hands

286 27 Representations

is not the representation; it is a physical object and, as such, would be described in
CHARM as an intentional object. The representation is the fact that this piece of
paper displays a photographic image of the cathedral. In other words, a represen-
tation is a fact, rather than an object.

Secondly, and in relation to the former, notice in Fig. 27.1 that Representation
does not descend from ValuableEntity. Representations are not considered to be
valuable entities in CHARM because what gets valued is the entity holding
the representation, that is, the primary entity that we call the embodiment, or the
contents. In our previous example, cultural heritage value may be ascribed to the
piece of paper showing the cathedral, as well as the cathedral itself, but not to
the fact that the cathedral is represented in that particular piece of paper.

Finally, you can see that the Representation class in CHARM has no subclasses.
This does not mean that there cannot be different kinds of representations. In fact,
photographs, maps, sheet music, sketches or class diagrams constitute well-known
kinds of representations. The Representation class could be subtyped according to
the form of representation, that is, the collection of techniques and conventions that
are employed in order to embody some contents. However, CHARM does not
include classes like these because there can be very many, and it would be
impractical to list all of them. If you want to add your own representation subtypes,
see Chap. 33 where the topic of model extension is introduced.

In summary, representations are facts involving the capture of properties of some
contents on a particular embodiment, where both the contents and the embodiment
are (relatively) independent entities. Examples of representations include a map of a
place (the contents) drawn on paper (the embodiment), or a fairy tale (the
embodiment) that alludes to Christian elements (the contents).

Representation

Entity

ValuableEntityPrimaryEntity IsEmbodiedIn1..* 0..*

Embodiment

Describes0..* 1..*

Contents

TangibleEntity

MaterialEntity

WasCopiedFrom

0..1
Master

0..* Copy

WasCreatedFrom

0..* Reference

0..*
Result

Fig. 27.1 Overview of representations in CHARM

Representations, Contents and Embodiment 287

Other Relational Connections

In addition to the Representation class itself, CHARM incorporates two associa-
tions that can be useful to document relational connections between entities, as
depicted in Fig. 27.1. First of all, PrimaryEntity has a WasCreatedFrom self-
association. This is useful to describe situations where an entity (called the result)
has been created by taking other entities (called the reference) as a starting point.
For example, the acanthus leaves in a Corinthian capital are sculpted by looking
(directly or indirectly) to a real leaf of a plant in the Acanthus genus. Therefore,
we can say that a Corinthian capital was created from a plant leaf. The
WasCreatedFrom association is useful to document situations where result and
reference bear some similarity of any kind, even when the materiality, purpose or
overall configuration do not coincide. For example, some old flying machines were
inspired by bird or bat wings.

Secondly, and in addition to the previous, MaterialEntity has a WasCopiedFrom
self-association. This is useful to describe situations where an entity (called the
copy) has been created by imitating most or all the properties of another (called the
master). For example, the Nashville Parthenon is a full-scale replica of the original,
so we would say that the former was copied from the latter. The WasCopiedFrom
association is “stronger” than WasCreatedFrom, since it requires a much higher
degree of resemblance between the two entities involved. Also, most cases of
copying entail an implicit WasCreatedFrom relationship as well.

Example Model

Refer to the Example Model section in previous chapters, and consider the fol-
lowing additional information. By using the bone fragment as a starting point, a
speculative reconstruction of the original tool of which the fragment is supposed to
be a part is crafted in plastic and displayed in a local museum. A map showing the
location of the original find is also displayed. You can see a model for this situation
in Fig. 27.2. This model augments the ones in previous chapters by showing
instances of Representation, as well as a WasCreatedFrom link. Note how the
reconstruction (object io3) was created from the bone fragment, but represents the
complete bone tool (object io1).

288 27 Representations

Summary

Representations are facts about some properties of an entity being reproduced on
another.

In this manner, representations connect an entity, called the contents, to another,
called the embodiment.

In addition to representations, reference and copy situations between entities can
be documented.

Exercises

45. Create a CHARM-compliant instance model to describe the following situation.
A historical map of north-east Hokkaido is to be exhibited at a museum. In
order to protect the map, a replica is made and exhibited instead of the original.

c2: Construction

Name = “Cattle Enclosure”
Material = IgneousRock; Mortar
ProductionTechnique = Manual
ConstructionTechnique = RubbleStonework

of: ObjectFragment

Name = “Fragment 63.1”
Material = Bone

io1: IntentionalObject

Name = “Object 63”
Material = Bone
ProductionTechnique = unknown

Content

@ 16 June 1998

Fragment

@ 16 June 1998

io2: IntentionalObject

Name = “Find Map”
Material = Paper
ProductionTechnique = Industrial

r1: Representation

Contents

Embodiment

io3: IntentionalObject

Name = “Reconstruction”
Material = PetroleumProduct
ProductionTechnique = Manual

r2: Representation

Contents

Embodiment

Reference

Result

W
as

Cr
ea

te
dF

ro
m

Fig. 27.2 Augmented example model involving representations and relational connections

Summary 289

Chapter 28
Valorizations

Abstract In this chapter, we introduce the key idea of valorization in CHARM, as
a particular case of abstract entity (explored in an earlier chapter). Valorizations are
defined as abstract entities of a discursive nature that add cultural heritage value to
other valuable entities through interpretive processes that have been agreed upon
within a group or discipline. Different kinds of valorizations are discussed,
including scientific-technical, administrative, community and external ones.

Together with valuable entities and representations, valorizations constitute one of
the major building blocks of CHARM. As we described in Chap. 19, things become
part of cultural heritage because someone gives them value. Cultural heritage value
is captured in CHARM in the form of valorizations.

The Valorization class corresponds to an abstract entity of a discursive nature
that adds cultural heritage value to other valuable entities through interpretive
processes that have been agreed upon within a group or discipline. Note that
valorizations are abstract entities, which were described in Chap. 26. This means
that everything we said there about abstract entities in general also applies to
valorizations. For example, valorizations do not manifest or are performed by
agents, as opposed to performative entities; however, they can still be communi-
cated through representations. In addition, valorizations, being abstract entities, are
also valuable entities. This means that valorizations can add value not only to
tangible or performative entities but also to other valorizations. This allows us to
describe chained valorizations to represent the complex interpretive networks that
occur within cultural heritage.

Also, remember that valorizations are constructed interpretively, rather than by
observation or description. However, not every interpretation is a valorization; a
valorization must have been relatively agreed upon within a group or discipline.
Each valorization is built on one or more valuable entities and may use other
valorizations as a base. Figure 28.1 shows an overview of valorizations in
CHARM. The Valorization class declares a Contents attribute, which represents the
interpretive discourse inherent to the valorization. In addition, Valorization has
three associations. First of all, valorizations can be linked to the agents that issue

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_28

291

them through IsIssuedBy, thus allowing us to document who gave what value.
Secondly, valorizations can be linked to the things that get valued through
Valorizes, so that we can document what is being valued by whom. Finally, val-
orizations can take into account other pre-existing valorizations when being con-
structed; this is captured in CHARM by the self-association BuildsOn, so that we
can express what other valorizations are being taken into account when a new one is
issued. Note that all the features in Valorization, including the Contents attribute
and the three associations, are marked temporal, so that we can keep track of how a
valorization changes over time.

Since valorizations encapsulate the cultural heritage value that people give to
things, they are organized in CHARM according to the types of cultural heritage
value that we described at the end of Chap. 19: scientific-technical, administrative,

AbstractEntity

Valorization (A)

Contents: 1 Text (T)

Agent ValuableEntityValorizes (T)0..* 1..*

Object
IsIssuedBy (T)1..* 0..*

Issuer

BuildsOn (T)

esaB *..0

0..*

PointOfView

ExpertValorization (A) NonExpertValorization (A)

ExternalValorizationCommunityValorization

PointOfViewPointOfView

ScientificTechnicalValorization (A)

Discipline: 1 Text

AdministrativeValorization (A)

ResearchValorization

ConditionValorization

EconomicValorization

ImpactValorization

CorrectiveValorization

ProtectionValorization

UseValorization

AppliesTo

0..*

0..*

Purpose Purpose

Fig. 28.1 Valorizations in CHARM

292 28 Valorizations

community and external. However, this is done in two specialization steps. As
shown above, Valorization has two subclasses: ExpertValorization and
NonExpertValorization. An expert valorization is a valorization produced by
consensus within a group of experts, and issued in a formal manner. In opposition,
a non-expert valorization is a valorization produced by a community from a non-
expert and non-scientific perspective, and issued in an informal manner. Note that a
valorization is expert or non-expert depending on the point of view taken by the
issuers, and not who the issuers are or what their background is. For example, a
government-employed heritage manager would be issuing expert valorizations
when carrying out their job, but a non-expert valorization when visiting a nearby
monument and filling out an opinion survey at the exit. Similarly, a member of a
local community would be issuing a non-expert valorization when judging the
importance of the local chapel for their daily life, but an expert valorization when
joining other citizens in a local association to issue a press release about the effects
of tourism on the village.

The major differences between expert and non-expert valorizations include the
following. Expert valorizations are always issued formally and explicitly, very often
in writing, and following a well-known methodology. Usually, the issuers are aware
that they are issuing a valorization. Also, expert valorizations are usually com-
municated to others by the same people who issue them. Examples of expert
valorizations include a research paper about an archaeological site or the decision to
establish a curtilage around a monument to protect it from various threats.
Non-expert valorizations, on the contrary, are always issued informally, rarely in
writing, and never follow a specific methodology. Often, the issuers are not aware
that they are issuing a valorization. Also, non-expert valorizations are rarely
communicated and, when they are, it is usually people other than the issuers who do
it. An example of non-expert valorization is the feeling of identity and belonging
experienced by a local member of a community about their village.

The following sections describe the different kinds of expert and non-expert
valorizations in detail.

Expert Valorizations

An expert valorization, as introduced above, is a valorization produced by consensus
within a group of experts, and issued in a formal manner (see Fig. 28.1). There are
two kinds of expert valorizations depending on the point of view, represented by the
classes ScientificTechnicalValorization and AdministrativeValorization. A scientific-
technical valorization is an expert valorization produced from the perspective of a
specific discipline. Usually, scientific-technical valorizations are produced by
researchers or technical staff, but this does not need to be the case.

Depending on the purpose, there are three kinds of scientific-technical val-
orizations, given by the classes ResearchValorization, ConditionValorization and
EconomicValorization. A research valorization is a scientific-technical valorization

28 Valorizations 293

produced with the purpose of generating new knowledge about the valorized object.
A typical example of research valorization is a scientific article in a journal. A
condition valorization, in turn, is a scientific-technical valorization produced with
the purpose of determining the condition or status of the valorized object. An
example of condition valorization is a technical report on the state of the structure
of a historical building and the necessary maintenance actions. Finally, an economic
valorization is a scientific-technical valorization produced with the purpose of
ascribing an economic value to the valorized object. An example of economic
valorization is the valuation of a work of art.

As opposed to scientific-technical valorizations, an administrative valorization is
an expert valorization produced from the perspective of heritage management. The
word “administrative” in the name of this class refers to the administration or
management of cultural heritage, rather than public administration. Having said
this, administrative valorizations are usually produced within a competent authority
for cultural heritage management.

Depending on purpose, there are four kinds of administrative valorizations, given
by the classes ImpactValorization, CorrectiveValorization, ProtectionValorization
and UseValorization. An impact valorization is an administrative valorization
produced with the purpose of determining the impact that one or more external
factors have caused, are causing or will cause on the valorized object. An example
of an impact valorization is an archaeological impact assessment due to the planned
construction of a road next to a megalithic necropolis. Complementarily, a corrective
valorization is an administrative valorization produced from one or more impact
valorizations, with the purpose of mitigating or removing said impact on the val-
orized object. Note that, to implement this, CorrectiveValorization has an AppliesTo
association towards ImpactValorization. An example of corrective valorization is a
list of precautions to implement during the construction of a road next to a megalithic
necropolis, plus the directions for an excavation intended to gather minimal infor-
mation about the archaeological structures that are unearthed during the works. A
protection valorization is an administrative valorization produced with the purpose
of protecting the valorized object from destruction or alteration, either by legal,
physical or other means. An example of a protection valorization is the declaration
of a historical town as a UNESCOWorld Heritage Site. Finally, a use valorization is
an administrative valorization produced with the purpose of regulating the modes of
utilization of the valorized object. An example of use valorization is an urban
development plan that establishes specific zoning classes for different areas in a city.

Non-expert Valorizations

A non-expert valorization, as introduced at the beginning of this chapter, is a
valorization produced by a community from a non-expert and non-scientific per-
spective, and issued in an informal manner (see Fig. 28.1). There are two kinds of
non-expert valorizations depending on the point of view, represented by the classes

294 28 Valorizations

CommunityValorization and ExternalValorization. A community valorization is a
non-expert valorization expressed in terms of identity, continuity and/or closeness.
An example of community valorization is the sense of belonging and attachment
that neighbours of a village feel towards their local chapel and associated social
practices. Contrarily, an external valorization is a non-expert valorization expressed
in terms of wonder and distant appreciation. An example of external valorization is
the sense of awe and respect that pilgrims or tourists experience when entering a
large Gothic cathedral for the first time.

Example Model

Look again at the Example Model section in previous chapters, and consider the
following additional information. In 2005, a group of people in Kojetín starts
promoting the preservation of the old summer festival. One year later, they are
successful as the regional Heritage Department lists the festival as a protected
immaterial heritage element. You can see a model for this situation in Fig. 28.2.
This model adds two valorization objects to the ones in previous chapters. On the
one hand, the appreciation by the local people of the summer festival (as well as the
festival grounds) is represented by object cv. On the other hand, the recognition of

sa: SocialAct

Name = “Kojetín summer festival”

FormallyInvolves @Since 18cnmp2: NonMaterialPlace

Name = “Kojetín summer festival grounds”

cv: CommunityValorization

Name = “Local Appreciation”
Contents = ...

Valorizes @2005Valorizes @2005

Object Object

com1: Community

Name = “Kojetín local people” Issuer

IsIssuedBy @2005

pv: ProtectionValorization

Name = “Heritage Listing”
Contents = ...

o: Organization

Name = “Heritage Department”

IsIssuedBy @2006

Issuer

Va
lo

riz
es

 @
20

06

Object

Base

Bu
ild

sO
n

@
20

06

Fig. 28.2 Augmented example model involving valorizations

Non-expert Valorizations 295

the heritage value by the Heritage Department is represented by object pv. Note
how the protection valorization pv builds on top of the existing community val-
orization cv.

Summary

Valorizations constitute the interpretive cultural heritage value that is given to
some valuable entities by some agents.

There are different kinds of valorizations depending on the point of view taken
by the issuers, regardless of who they are or what their background is.

Expert valorizations are formally and explicitly produced, usually in writing,
and are often communicated to others by the same issuers.

Expert valorizations can be scientific-technical or administrative.
Non-expert valorizations are informally and implicitly produced, rarely in

writing, and are seldom communicated to others; when they are, it is usually people
other than the issuers who do it.

Non-expert valorizations can be community or external.

Exercises

46. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• The decision of a Heritage Department to strongly limit the materials and
colours that can be used to construct new houses in a traditional
neighbourhood.

• The disagreement of part of the local population with that decision.
• The admiration that the beautiful and tidy neighbourhood evokes in tourists

and visitors.
• The report of the Heritage Department assessing the negative effects of

ongoing unkempt construction in the neighbourhood.

296 28 Valorizations

Chapter 29
Derived Entities

Abstract In this chapter, we explore CHARM derived entities in depth, empha-
sizing the fact that they cannot be understood in an immediate and implicit manner
when perceived, but require an explicit reception process. We show how val-
orizations constitute the “glue” that connects derived entities to the valuable entities
that constitute their basis. Also, we explore some common kinds of derived entities,
including cultural landscapes, sites, styles and cultural resources.

Derived entities constitute the counterpart to primary entities. As we explained in
Chap. 20, primary entities (including tangible, performative and abstract entities, as
well as agents, manifestations and occurrences) are understood by any observer
without the need of explicit reception processes. In other words, there is no inter-
pretive process that needs to be explained in order for someone to understand the
entity. To the contrary, derived entities need a reception process in order to be
understood as such. By “understood”, we mean two things: being able to separate
the entity from its surrounding environment and assigning it to a category. These
two cognitive tasks correspond to the premises of conceptual modelling that we
described in Chap. 2 and constitute the basic mechanisms through which we
understand the world. We used the example of an archaeological site as a derived
entity. An archaeologist who is more or less familiar with the site should recognize
it when they see it; however, someone who is not familiar with the site or, more
specifically, someone who has no archaeological training may not be able to sep-
arate the site from its surrounding environment or assign it to a meaningful category
such as ‘site’. Archaeological sites and other derived entities are the product of
more or less complex interpretations based on material evidences, background
knowledge, and context, and it may be very difficult for someone unfamiliar with
these aspects to recognize them as such in the absence of an explicit description of
these interpretive elements.

A derived entity, therefore, is a valuable entity that is not understood in an
immediate and implicit manner when perceived but requires an explicit reception
process. This reception process entails describing and/or explaining the interpretive
processes that took place in order to define the derived entity. In our previous

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_29

297

example, a visitor with no archaeological background may be able to finally “see”
the site once an explanation is given of the material evidences that were found, how
they relate to previous knowledge of the area and the associated culture, and what
assumptions or conclusions were involved in the archaeological work.

Figure 29.1 shows an overview of valorizations in CHARM. Derived entities are
called “derived” because each of them has a number of other valuable entities as a
basis, from which they derive. This is implemented in CHARM by the Basis
semi-association role. For example, an archaeological site is usually defined around
a place; this place acts as the basis for the site. Or, in other words, the site has been
derived from the place. In this regard, we can say that derived entities are a result of
deriving more or less tentative conclusions from a collection of primary entities
through interpretation. The interpretation that produces the derived entity is cap-
tured in CHARM through the Source semi-association role. For example, the site
mentioned above is a site because someone, possibly an archaeologist, issued a
valorization stating so. In this manner, derived entities are always linked to the
valorization that created them, as well as the underlying valuable entities on which
this valorization rests. In addition, a derived entity, being an interpretive construct,
is often situated within a particular cultural context. This is captured by the
IsAscribedTo association in CHARM.

As you can see in Fig. 29.1, derived entities are specialized along the same lines
as valorizations. This makes sense, given the connection between the two. As
shown above, Derived Entity has two subclasses: ExpertDerivedEntity and
NonExpertDerivedEntity, depending on the type of the source valorization. An
expert derived entity is a derived entity that results from an expert valorization. In
opposition, a non-expert derived entity is a derived entity that results from a non-
expert valorization. Remember from the previous chapter that a valorization is
expert or non-expert depending on the point of view taken by the issuers, and not

ValuableEntity

DerivedEntity (A)

Basis: 1..* sha ValuableEntity
Source: 1 ref Valorization

CulturalClassificationIsAscribedTo0..* 0..*

CulturalAscription

ExpertDerivedEntity (A)

TypeOfSourceValorization

NonExpertDerivedEntity (A)

Fig. 29.1 Overview of derived entities in CHARM

298 29 Derived Entities

who the issuers are or what their background is. As a consequence, a derived entity
would be called “expert” or “non-expert” depending on this point of view rather
than other characteristics of the issuer agent.

The following sections describe the different kinds of expert and non-expert
derived entities in detail.

Expert Derived Entities

An expert derived entity, as introduced above, is a derived entity that results from
an expert valorization. Figure 29.2 shows expert derived entities in detail. As
shown in the diagram, ExpertDerivedEntity redefines the inherited Source val-
orization to be of type ExpertValorization. From now on you will see that each
derived entity class redefines this to match the necessary valorization type. To start
with, the ScientificTechnicalDerivedEntity class corresponds to an expert derived
entity that results from a scientific-technical valorization. As such, it redefines

ExpertDerivedEntity (A)

[Source]: 1 ref ExpertValorization

TypeOfSourceValorization

CulturalResource (A)

[Source]: 1 ref AdministrativeValorization

PredominanceOfPartsOrWhole

SimpleCulturalResource AggregateCulturalResource

0..*

0..*

ScientificTechnicalDerivedEntity (A)

[Source]: 1 ref ScientificTechnicalValorization

PredominanceOfPartsOrWhole

SimpleScientificTechnical
DerivedEntity (A)

AggregateScientificTechnical
DerivedEntity (A)

0..*

0..*

CulturalLandscape

Nature Nature

StratigraphicGroup

[Basis]: 1..* sha StratigraphicUnit

ObjectSet

[Basis]: 1..* sha ObjectEntity (T)

Site

[Basis]: 1..* sha PrimaryEntity (T)

Category (A)

[Name]: 1..* Text
Definition: 1 Text

CategorySystem1..* 0..1

DerivedEntity

0..1 0..*

SuperType
SubType

AimOfCategorization

Style PrimaryEntityType

[Basis]: 1..* sha PrimaryEntity (T)

CulturalClassification

0..1 0..*

[SuperType]
[SubType]

0..1

[SuperType]

0..1

[SuperType]

0..*

[SubType]

0..*

[SubType]

0..1

0..*

FrameGroup

SubGroup

0..1

0..*

FrameSite

SubSite

Fig. 29.2 Expert derived entities in CHARM

29 Derived Entities 299

Source as being of type ScientificTechnicalValorization. There are two kinds of
scientific-technical derived entities, depending on the predominance of parts or
whole, represented by the classes SimpleScientificTechnicalDerivedEntity and
AggregateScientificTechnicalDerivedEntity. A simple scientific-technical derived
entity is a scientific-technical derived entity in which the cohesion of the whole
dominates over the diversity and variety of its parts. In other words, these are
entities that appear to us as a cohesive whole rather than a collection of things,
despite the fact that they may be decomposable into parts. Contrarily, an aggregate
scientific-technical derived entity is a scientific-technical derived entity in which,
being composed of other scientific-technical derived entities, the diversity and
variety of the parts dominate over the cohesion of the whole. In other words, these
are entities that appear to us as a collection of things rather than a single monolithic
one. A good example is provided by the only subclass of
AggregateScientificTechnicalDerivedEntity, namely CulturalLandscape, which
corresponds to an aggregate scientific-technical derived entity corresponding to a
system of places plus optionally other spatially nearby valuable entities that are
interpreted as being culturally related. This means that cultural landscapes are
defined as collections of loosely related entities within a particular area. Examples
of cultural places may include the Great Wall of China or the ancient Lower Egypt
area. In both cases, the cultural landscape encompasses not only the associated
geographic area but also the relevant tangible, performative and abstract entities as
well as agents, manifestations and occurrences.

SimpleScientificTechnicalDerivedEntity, on the other hand, has a number of
subclasses: ObjectSet, StratigraphicGroup, Site and Category. An object set is a
simple scientific-technical derived entity corresponding to a collection of object
entities that cannot be separated without the set losing its integrity. In other words,
an object set is a collection of objects having a strong connection, such as the
Treasure of Villena or all the artefacts belonging to a household. Object sets are
useful to treat multiple objects that share something as a whole. Accordingly,
ObjectSet redefines Basis as being of type ObjectEntity.

A stratigraphic group, in turn, is a simple scientific-technical derived entity
corresponding to a set of stratigraphic units that jointly work towards a common
structural and/or functional goal. Stratigraphic groups allow us to treat multiple
stratigraphic units as a whole as long as there is a supporting interpretation. For
example, when we describe a stratigraphy in terms of “phases”, “activities” or
similar terms, we are actually interpreting sets of the underlying stratigraphic units
as cohesive groups. StratigraphicGroup redefines Basis as being of type
StratigraphicUnit.

A site is a simple scientific-technical derived entity corresponding to a spatial
region having an abnormally high density of primary entities that are considered to
be the result of a focussed human activity. We have mentioned above that sites are
usually defined around a place, and for this reason we may assume that Site should
redefine Basis to be of type Place. However, this is not the case because some sites
may be difficult to locate in space due to secondary displacements of materials.
Accordingly, Site redefines Basis to be of type PrimaryEntity, thus leaving the

300 29 Derived Entities

possibility open to define a site around a place or other kinds of primary entities
such as structures, objects or even performative entities.

Finally, a category is a simple scientific-technical derived entity corresponding
to a type or kind of valuable entities that share some common properties.
Categories are usually organized into category systems, such as the organization of
prehistoric or historic stages of a certain area into a periodization system or the
organization of species and genera of living beings into a taxonomy. There are three
kinds of categories in CHARM depending on the aim of categorization, corre-
sponding to the classes Style, PrimaryEntityType and CulturalClassification. A
style is a category aimed at the definition of a specific, multi-dimensional and
recognizable kind in terms of representative characteristics. This means that styles
allow us to refer to a wide range of things by specifying what characteristics are
expected for something to be a member of the category. Examples of styles include
‘cubism’, ‘Penha’ or ‘Moche’.

A primary entity type, in turn, is a category aimed at defining a grouping of
similar primary entities. This definition is quite wide and allows us to use primary
entity types to organize primary entities in any way we want. Accordingly, this
class redefines Basis as being of type PrimaryEntity We should make an important
point here. Primary entities, as any other, are expected to be organized in CHARM
through specific subclasses, such as ObjectFragment or SocialAct. This class,
however, is provided as an additional mechanism to represent categories in a model,
which may be useful in those cases where using a class for each category would be
too cumbersome or inadequate. Examples of types of primary entities include
‘megalithic tomb’, ‘oak tree’ or ‘Christmas carol’. We could add aMegalithic Tomb
class to CHARM in order to characterize something as such. However, if there are
too many categories to model, or we do not need to document different things
depending on what category something belongs to, then we may as well avoid
introducing any classes and using instances of PrimaryEntityType, probably col-
lected into a cohesive category system.

Finally, a cultural classification is a category aimed at defining a specific cul-
tural context. Examples of cultural classifications include ‘Early Roman’, ‘Olmec’
or ‘post-soviet’.

So far, we have described scientific-technical derived entities. As a counterpart,
the Cultural Resource class corresponds to an expert derived entity that results from
an administrative valorization. As such, it redefines Source as being of type
AdministrativeValorization. Note that cultural resources may have been called
“administrative derived entities” for better symmetry with the rest of the model.
However, we chose to name them “cultural resources” given the fact that there is a
well-known term in the cultural heritage field. Like in the previous case, there are
two kinds of cultural resources, depending on the predominance of parts or whole,
represented by the classes SimpleCulturalResource and AggregateCultural
Resource. A simple cultural resource is a cultural resource in which the cohesion of
the whole dominates over the diversity and variety of its parts. Again as before,
these are entities that appear to us as a cohesive whole rather than a collection of
things, despite the fact that they can often be decomposed into parts. Examples of

Expert Derived Entities 301

simple cultural resources include a cathedral, a painting or a traditional celebration,
understood as interpreted realities. Note that the cathedral per se could be probably
modelled in CHARM as a construction. However, once an administrative val-
orization claims its relevance as an element of cultural heritage, the cathedral plus
the valorization become a cultural resource. Similar things can be said about the
painting or the traditional celebration.

In opposition, an aggregate cultural resource is a cultural resource in which,
being composed of other cultural resources, the diversity and variety of the parts
dominate over the cohesion of the whole. In other words, these are entities that
appear to us as a collection of things rather than a single monolithic one. Examples
of aggregate cultural resources include a series of interpreted archaeological sites in
a region or a city’s historical set of neighbourhoods.

Non-expert Derived Entities

A non-expert derived entity, as introduced above, is a derived entity that results
from a non-expert valorization. Figure 29.3 shows expert derived entities in detail.
As shown above, NonExpertDerivedEntity redefines the inherited Source val-
orization to be of type NonExpertValorization, along the lines of previous derived
entity classes. There are two subclasses: CommunityDerivedEntity and
ExternalDerivedEntity. A community derived entity corresponds to a non-expert
derived entity that results from a community valorization. As such, it redefines
Source as being of type CommunityValorization. Examples of community derived

NonExpertDerivedEntity (A)

[Source]: 1 ref NonExpertValorization

CommunityDerivedEntity

[Source]: 1 ref CommunityValorization

ExternalDerivedEntity

[Source]: 1 ref ExternalValorization

TypeOfSourceValorization

DerivedEntity

Fig. 29.3 Non-expert derived entities in CHARM

302 29 Derived Entities

entities include the land that is felt as one’s own by a local community or the areas
considered to be “manso” (tame) and “bravo” (wild) by the neighbours of a village.

In contrast, an external derived entity corresponds to a non-expert derived entity
that results from an external valorization. As such, it redefines Source as being of
type ExternalValorization. An example of external derived entity is the constructed
image and reputation of a community as viewed by a different group, based perhaps
on prejudice and stereotyping.

Example Model

Look again at the Example Model section in the previous chapters and consider the
following additional information. Right after the summer festival is heritage listed
in 2006 by the regional Heritage Department, the complete festival grounds plus the
associated farm and festival practices are delimited as a whole and added to a larger
“traditional Bečva” cultural landscape. You can see a model for this situation in
Fig. 29.4. This model adds two derived entities to the ones in previous chapters. On
the one hand, the delimitation of the festival grounds plus other elements (such as
the festival practice itself) as a meaningful whole is represented by object s, a site.
Then, a valorization uv is shown to document the decision by the Heritage
Department to include site s into the pre-existing “traditional Bečva” cultural
landscape cl. Finally, the fact that the site is now part of the cultural landscape is
captured by a phase of object cl for 2006 showing the newly created site s as well as
the valorization uv as elements of its basis.

sa: SocialAct

Name = “Kojetín summer festival”

FormallyInvolves @Since 18cnmp2: NonMaterialPlace

Name = “Kojetín summer festival grounds”

rv: ResearchValorization

Name = “Area delimitation”
Contents = ...

Valorizes @2006Valorizes @2006

Object Object

Issuer

IsIssuedBy @2006

uv: UseValorization

Name = “Inclusion in Area”
Contents = ...

o: Organization

Name = “Heritage Department”

IsIssuedBy @2006

Issuer

s: Site

Name = “Traditional Kojetín”
Basis = nmp2; sa

IsAnOutcomeOf

Source

cl: CulturalLandscape
@2006

Name = “Traditional Bečva Area”
Basis = nmp2; sa; uv; s

Bu
ild

sO
n

@
20

06

Fig. 29.4 Augmented example model involving derived entities

Non-expert Derived Entities 303

Summary

Derived entities are valuable entities that are not understood immediately unless
assisted by an explicit reception process.

Derived entities are created as a result of valorizations.
The reception process that is needed for people to understand a derived entity

entails an explanation of the associated valorization.
Derived entities are based on other valuable entities, which support the asso-

ciated valorization.
Derived entities are organized like valorizations, into expert and non-expert

types, and then into scientific-technical, administrative, community and external
subtypes.

Exercises

47. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• The Early Neolithic period in Europe.
• The “Extraterrestrial Highway” in Nevada, USA.
• Machu Picchu in Peru.
• The sacred kondō in a Buddhist temple.
• The romantic literature of the eighteenth–nineteenth centuries.
• A collection of Yoruba masks in a museum.

304 29 Derived Entities

Part 4
Recap of Part IV

This is the end of Part IV. In this part, we have explored the Cultural Heritage
Abstract Reference Model (CHARM) in depth. We started by proposing an
ontology for cultural heritage on which CHARM is supported. This ontology sees
cultural heritage as a collection of things that have received cultural heritage value,
which is granted by people on the grounds of cultural representativeness and
potential benefits. Taking this ontology as a basis, we described the three major
aspects of CHARM: valuable entities, valorizations and representations. Then, we
gave definitions, descriptions and examples for most of the classes in the model.

Although the three major aspects of CHARM make sense from a philosophical
point of view, we must emphasize that valorizations and derived entities are also
valuable entities and, in fact, almost every class in CHARM is a descendant of
ValuableEntity. This allows us to describe recursive situations where a valorization
is developed on top of previous valorizations or derived entities are constructed
taking other derived entities as a basis.

We must also emphasize that CHARM is an abstract reference model. As such, it
is not intended to be used by itself as a finished product. In fact, this would be quite
difficult, since it does not contain classes that are specific enough as to be directly
useful. Before you can use CHARM, you need to extend it in order to construct a
particular model. Chapter 33 explains how to do this.

Part V
Applying Conceptual Modelling

In this part, we discuss various techniques and concerns that you can or should use
when doing conceptual modelling for cultural heritage, such as modelling patterns
or quality factors. Also, we introduce additional issues that need conceptual
modelling as a basis, including model extension and the development of database
systems to record and manage information.

After completing this part, you will have a comprehensive view of conceptual
modelling and its potentialities for cultural heritage. You should be able to use
conceptual modelling for your cultural heritage work in a practical and straight-
forward manner.

Chapter 30
Modelling Patterns

Abstract In this chapter, we deal with the issue that many common situations that
repeatedly arise when doing conceptual modelling can be codified as patterns and
applied when necessary. We introduce the notion of modelling pattern, which is
taken from the architecture and software engineering worlds, and involves a known
problem, an application context, and a suggested solution. Then, we explore various
kinds of patterns and document the most common ones. We start with hierarchical
patterns for aggregation and subsumption, and then, we move to cover composite
and state patterns.

Developing conceptual models is a highly creative task. As with other tasks where
creation and problem-solving are involved (such as designing bridges or formu-
lating social policies), you will need a good dose of originality and background
knowledge. However, you will also find situations where you find yourself making
the same choices and repeating the same steps that you have previously done,
perhaps for a different model or even in a totally different area. In fact, there are
common situations that come up again and again, and which have been repeatedly
modelled over time by many people. We have accumulated a lot of knowledge
about common situations, and we know how to model them fairly well. Instead of
tackling them as if they were new, it is wise to draw on the experience of others
when looking at a recurring problem, very much like a doctor does when finding
very common symptoms or a civil engineer when confronted with very usual
topographic and traffic conditions. Well-known solutions to common situations are
called design patterns or simply patterns.

A pattern is often defined as a proven solution to a well-known problem in a
specific context. In this manner, a pattern always involves a solution that relies on a
clear and explicitly formulated problem to solve, and a particular context. In our
case, the problems to solve are situations to be modelled; the context is often given
by other parts of the model, as well as the model purpose; and the solution is
provided in terms of model elements to create. For example, a very simplistic
pattern is illustrated in Table 30.1.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_30

309

In the text above, the problem to solve is given by the first line, the context is
provided by the second line, and the solution is suggested by the third. Of course,
using a whole/part association when we have two categories related by aggregation
semantics is quite trivial, so this pattern is barely worthwhile. However, some more
complex situations that appear very often benefit enormously from having clear
patterns that can be applied to them.

Patterns, however, will not give you all the details to construct your model. In
the example above, the pattern does not suggest a name for the classes or tell you
whether the classes make sense or not in your model. What it says is that you may
want to add two classes plus a whole/part association if some well-known situation
and context are given. Always treat patterns as a recommendation, guidance or
advice rather than a strict law to be obeyed.

Patterns originated with the work of architect Christopher Alexander in the
1970s. Alexander proposed a system of proven solutions to well-known and
recurring situations that often appear when designing buildings or urban landscapes.
His work became a source of inspiration for a wide community in software engi-
neering, who have since applied the pattern concept to the design and construction
of information-related artefacts.

Technical
Christopher Alexander, together with some collaborators, wrote a famous
trilogy where patterns are explained. In The Oregon Experiment [68],
Alexander describes an experimental approach to the planning of a university
campus that would later serve as a basis to develop the theory of design
patterns. In A Pattern Language [69], a large number of specific patterns are
described and documented so that they can be reused by others. In The
Timeless Way of Building [70], finally, he proposes a comprehensive theory
of architecture based on the notion of design patterns.

The work of Alexander has been tremendously influential in software
engineering as well as architecture. A classic text on design patterns applied
to the construction of software is [71].

The remainder of this chapter explores some patterns that you can apply to the
conceptual modelling of cultural heritage.

Table 30.1 Sample pattern

Problem You have a category of things that are composed of entities of another category

Context You need to describe entities of both categories with detail

Solution Model each category as a class, and link them through a whole/part association

310 30 Modelling Patterns

Hierarchical Aggregation Patterns

Hierarchies are everywhere. From the arrangement of divisions and departments in
corporations to land divisions in the territory, to the way we manage files on our
computers, we employ hierarchies as a fundamental approach to organize the world.
A hierarchy is a structure composed of elements that may be ‘above’, ‘below’ or ‘at
the same level as’ each other. For example, countries such as France or Italy are ‘at
the same level’ because all of them are countries. Also, all European countries are
‘above’ regions such as Brittany or Lazio, and ‘below’ the Europe continent. We
use quotes around ‘above’, ‘below’ and ‘at the same level’ because these terms are
used metaphorically, and the exact semantics of the relationships vary from one
hierarchy to the next. In any case, any hierarchy will always show relationships of
the three kinds.

The particular level at which an element is positioned within a hierarchy is called
the element’s rank. In the example above, we could say that Europe has a rank of 1,
France and Italy (as well as any other European countries) would have a rank of 2,
and regions such as Brittany or Lazio would be at rank 3.

Some hierarchies are defined by the way in which elements make up others or,
seen from the opposite point of view, how elements can be decomposed into others.
In cases like this, the ‘above’ and ‘below’ relationships have the actual semantics of
‘composed of’ and ‘part of’, respectively. This corresponds to the concept of
aggregation. A common example is that of land divisions, as mentioned above. We
can say that France is composed of (i.e. aggregates) regions such as Brittany,
Normandy and Corsica, and that France, together with Italy and other countries, is
part of Europe. We could go on by saying that Europe, together with other con-
tinents such as the Americas and Asia, makes up the world. And that Brittany itself,
for example, is divided into departments such as Morbihan and Côtes-d’Armor.

In this example, each rank in the hierarchy can be referred to by a well-known
name, such as “continent”, “country”, “region” or “department”. Furthermore, there
are clear rules that establish how ranks are related to each other: countries make up
a continent, departments make up a region, etc. It would not make sense to have a
department as part of a continent without an intermediate country and region. In
other words, the hierarchy has a fixed, named and well-differentiated set of ranks
that relate to each other in a fixed sequence. Hierarchies like this are sometimes
called taxonomies. In contrast, other hierarchies have a number of ranks that is not
fixed, each rank lacking a distinct name or definition that may differentiate it from
the rest. Hierarchies like this are called recursive hierarchies. For example, think of
the way in which folders are nested within each other in your computer’s file
system. The number of depth levels (i.e. ranks) at which a folder may exist is not
fixed, and each level of folders does not have a particular name or definition; all are
equally folders, which happen to be at one level or another.

A word of caution is worth putting here. The human mind tends to name things
in order to organize the world. As a consequence, sometimes we would find our-
selves naming the different ranks of a recursive hierarchy for the sake of clarity,

Hierarchical Aggregation Patterns 311

especially if we are too fond of tidiness and structure. For example, we could say
things like “this is a second-level folder” or “this is a subfolder”. However, folders,
subfolders and second-level folders in your computer are entities of exactly the
same kind: they do not exhibit different characteristics or can be defined in different
ways. They only receive those names because they happen to be at one particular
place in the hierarchy. In fact, you can move a second-level folder so that it
becomes third-level, without any changes to the folder’s characteristics or appel-
lation. For this reason, if a hierarchy looks recursive to you, then it is probably so.
However, if a hierarchy looks like a taxonomy, think twice before modelling it as
such. Try to come up with names or definitions for elements at different ranks; if
you cannot, then the hierarchy is probably recursive despite the fact that we may
sometimes assign names to ranks for practical purposes. This difference is important
because taxonomies and recursive hierarchies are modelled in very different ways.

In addition, when modelling an aggregation hierarchy, we need to decide
whether we need to describe the involved entities with detail or, on the contrary, we
only need to refer to them and use them as labels. An example of a descriptive
hierarchy would be a model of land divisions where we need to document the name,
population and coordinates of each country, region and department. On the con-
trary, an example of a reference hierarchy would be a model of a list of historical
periods such as Roman Age, Middle Ages (Early, High and Late), and Renaissance
where we only use them to categorize or classify other things, such as buildings or
works of art, but we do not need to describe any characteristics of each period.

The next sections describe how to model descriptive and reference aggregation
hierarchies, taking into account whether they are taxonomic or recursive.

Descriptive Aggregation

A descriptive aggregation hierarchy is an aggregation hierarchy that allows us to
describe each entity in the hierarchy with detail, considering its type and the
potential peculiarities that it may exhibit in terms of attributes and associations.

If the hierarchy is a taxonomy, then we may apply the Taxonomical
Decomposition pattern. This involves using a separate class for each rank in the
hierarchy and a separate whole/part association for each connection between ranks.
See Fig. 30.1 for an example.

Continent

Name: 1 Text

Country

Name: 1 Text
FormOfGovernment: 1
 enum FormOfGovernment

Region

Name: 1 Text

Department

Name: 1 Text1..*

1..* 1 1

1..* 1..*

Fig. 30.1 Type model using the Taxonomical Decomposition pattern. Each rank is represented by
a class, and each relationship is represented by a whole/part association

312 30 Modelling Patterns

In the figure, note that some classes and associations have different features; for
example, Country has a FormOfGovernment attribute, and the whole/part associ-
ation between it and Continent has a 1..* cardinality on the whole side. This is
because each rank in the taxonomy constitutes a different concept and, as such, has
a different name and may have a different definition that manifests as different
attributes and cardinalities in the model.

Taxonomical decompositions are very useful when the associated conceptual-
ization of the world in terms of ranks and relationships is very clear. However, they
can be too rigid for situations that exhibit irregularities. For example, the model in
Fig. 30.1 may work well for France or Italy, but there are countries which are not
divided into regions and departments. Some countries may use a two-level division
like this but with different names, such as Spain, which uses autonomous regions
and provinces; some others may use a totally different taxonomy with fewer or
more ranks, or even different ranking systems within each subdivision.

Table 30.2 shows a concise description of the Taxonomical Decomposition
pattern.

If the aggregation hierarchy to be modelled is recursive rather than a taxonomy,
then we may apply the Recursive Decomposition pattern. This involves using a
single class to represent any entity involved in the hierarchy, no matter what its
rank, plus a whole/part self-association to represent connections between entities.
See Fig. 30.2 for an example about historical periods. In the figure, historical
periods such as the Roman Age or the Late Middle Ages are represented by the
Period class. This is so regardless of each period’s rank. Aggregation connections
between periods are captured by the whole/part self-association, so that any period
may have zero, one or more subperiods, and optionally be part of one frame period.
A single class is sufficient because the hierarchy being modelled does not involve

Table 30.2 Taxonomical Decomposition pattern

Problem You have an aggregation taxonomy

Context You need to describe entities at each rank with detail

Solution Model each category as a separate class, and link them through a set of whole/part
associations

Period

Name: 1 Text
StartsIn: 1 Time
EndsIn: 0..1 Time

0..*

0..1

SubPeriod

FramePeriod

Fig. 30.2 Type model using
the Recursive Decomposition
pattern. A single class and
whole/part self-association are
used to represent the complete
hierarchy

Hierarchical Aggregation Patterns 313

different concepts; all periods are just periods, no matter where they are in the
hierarchy. Note also that role names are used in the model to clarify how periods
relate to each other: either as subperiods or frame periods.

If different names and definitions were to be introduced at each rank, as for
example with geological aeons, eras, periods and epochs, then we would be
transforming this recursive hierarchy into a taxonomy, and the Taxonomical
Decomposition pattern described above, rather than the Recursive Decomposition
pattern described here, would be applicable.

Recursive decompositions are very useful when the number of ranks in the
hierarchy is undefined, so that an arbitrary number of nesting levels may occur.
Cardinalities of the whole/part self-association must be chosen carefully, and a
minimum of zero is almost always needed. Otherwise, the hierarchy would be
infinite. For example, if the model depicted in Fig. 30.2 had a 1..* cardinality on the
SubPeriod end, then every period would need to have at least one subperiod; and
each of these, at least one sub-sub-period, and so on and so forth. As introduced in
Chap. 8, infinite regress is uncommon in the physical world and rarely useful
because it tends to produce information that is very difficult to manage.

Table 30.3 shows a concise description of the Recursive Decomposition pattern.
Finally, bear in mind that the whole/part associations involved in the modelling

of descriptive aggregations can be easily transformed into plain associations (i.e.
without whole/part semantics) if the categories involved so require. Although
aggregation is a phenomenon that is usually best modelled through whole/part
semantics, there may be cases where regular associations are preferred. Use your
own judgment to decide.

Reference Aggregation

A reference aggregation hierarchy, as opposed to a descriptive one, is an aggre-
gation hierarchy for which we do not need to document the involved entities, but
only refer to them as a means to categorize or classify other things. Imagine, for
example, that we do not need to gather information about the form of government
or population of each country, region and department, but only use a list of these
places to document where different buildings are located.

Table 30.3 Recursive Decomposition pattern

Problem You have an aggregation recursive hierarchy

Context You need to describe the involved entities with detail

Solution Model all the categories in the hierarchy through a single class plus a whole/part
self-association with clear role names

314 30 Modelling Patterns

In cases like this, and regardless of whether the hierarchy is a taxonomy or not,
we may apply the Reference Decomposition pattern. This involves the modelling of
instances for the whole hierarchy as an enumerated type, and then referring to this
type through attributes in the relevant classes. For example, we could define the
following enumerated type in our model.

Then, we would use the enumerated type as illustrated in Fig. 30.3.
Table 30.4 shows a concise description of the Reference Decomposition pattern.

Hierarchical Subsumption Patterns

The previous section described some patterns to model situations involving
aggregation hierarchies. Now, we focus on a different kind of hierarchies, namely
those based on subsumption rather than aggregation. Aggregation hierarchies, as
described above, capture the way in which entities are ‘above’ or ‘below’ other
entities over different ranks; in subsumption hierarchies, however, the elements that

Building

ConstructionYear: 1 Time
Location: 1 enum Place

Fig. 30.3 Type model using the Reference Decomposition pattern. The whole hierarchy is
represented as an enumerated type (not shown in the diagram) and referenced by the Building.
Location attribute

Table 30.4 Reference Decomposition pattern

Problem You have an aggregation hierarchy of any kind

Context You need to use entities in the hierarchy as labels to categorize or classify other
entities

Solution Model instances for the whole hierarchy as an enumerated type, and then refer to it
through attributes in the relevant classes

Hierarchical Aggregation Patterns 315

are ‘above’ or ‘below’ others are not entities but categories. In this regard, sub-
sumption hierarchies organize categories, rather than entities, in a hierarchical
manner. In line with this, the elements of a subsumption hierarchy are not com-
posed of others or are part of others. Instead, elements are hypernyms or hyponyms
of one another. This corresponds to the generalization/specialization relationships
that we have been studying throughout the book, and especially in Chap. 9. Note
that, in a subsumption hierarchy, the elements ‘below’ one element are not its parts,
but subtypes of it. Similarly, an element that is ‘above’ others is not an aggregate
but a supertype. Figure 22.1 constitutes a good example; in fact, the whole of
CHARM is organized around a central generalization/specialization hierarchy that
starts at the abstract-most Entity class and goes all the way down to very concrete
classes such as Construction or Person. Many models exhibit a central
generalization/specialization hierarchy like this, and, in fact, the most common way
to introduce a new class into a model is to place it into an existing generalization/
specialization hierarchy.

Subsumption hierarchies, like aggregation ones, can also be taxonomic or
recursive. An example of a taxonomic subsumption hierarchy is the usual classi-
fication of living beings in kingdoms, phyla, classes, orders, families, etc. Each of
these words (“phylum”, “class”, “order”, etc.) refers to a particular rank in the
hierarchy and has its own definition. However, rank names do not need to be
explicitly included in a model of a subsumption hierarchy, because it is the rela-
tionships between the categories, rather than their ranks, what matters. Also, tax-
onomic subsumption hierarchies are not very common, though, and most
subsumption hierarchies that you will find as generalization/specialization trees are
of a recursive nature. All the generalization/specialization hierarchies in CHARM,
for example, are of a recursive nature, since there is no particular name or definition
for the classes at each level in the hierarchy.

When modelling a subsumption hierarchy, and like in the case of aggregation
hierarchies, we need to decide whether we need to document instances of each
category in the hierarchy or, to the contrary, just list the involved categories so that
they can be used as labels to characterize other entities. Whether the hierarchy is a
taxonomy or not does not matter in this case, since both are modelled in the same
manner. The next sections describe how to model descriptive and reference sub-
sumption hierarchies.

Descriptive Subsumption

A descriptive subsumption hierarchy is a subsumption hierarchy that allows us to
document instances of the categories involved in the hierarchy, considering its
particular type and the potential peculiarities that it may exhibit in terms of attri-
butes and associations. The pattern to apply is called Descriptive Subtyping and
involves using separate classes for each category involved in the hierarchy, plus

316 30 Modelling Patterns

generalization/specialization relationships to link them in the appropriate rank
levels. See Fig. 30.4 for an example. The figure shows a subsumption hierarchy
with three ranks. At the top, the Building class is specialized into House, Barn and
ShoppingMall, and House is in turn specialized into three additional classes. Ranks
are clearly visible as they are defined by generalization/specialization relationships.

Note that, as we introduced above, whether this is a taxonomic or recursive
hierarchy does not matter much as long as the model is concerned. You may argue
that the classes at the top rank (Building) are ‘structure types’, the classes at rank 2
(House, Barn and ShoppingMall) are ‘building types’, and the classes at the bottom
rank (Bungalow, FarmHouse and Villa) are ‘house types’. This would constitute a
taxonomy. However, there is no meaningful way in which we could capture these
terms and their possible definitions in the model.

Table 30.5 shows a concise description of the Descriptive Subtyping pattern.

Building

Height: 1 Number
Material: 1..* enum Materials

House

NumberOfOccupants: 1 Number

ShoppingMall

OpeningHours: 1 Text

Barn

Capacity: 1 Number

Bungalow FarmHouse Villa

Function

Structure

Fig. 30.4 Type model using the Descriptive Subtyping pattern. Each category involved in the
hierarchy is represented by a class, and these are connected together by generalization/
specialization relationships to organize the relevant ranks

Table 30.5 Descriptive Subtyping pattern

Problem You have a subsumption hierarchy

Context You need to describe instances of the categories in the hierarchy with detail

Solution Model each category as a separate class, and organize them in ranks by linking
them through generalization/specialization relationships

Hierarchical Subsumption Patterns 317

A few issues may appear when applying this pattern. First of all, you must be
careful to respect the rule of inheritance that we described in Chap. 9: anything that
we may say about a class also applies to all its subclasses. This means that defi-
nitions and features of any class in the hierarchy must be applicable to every
downstream class. If it is not, then the hierarchy is incorrect. For example, the
definition of the House class in Fig. 30.4 must be such that it also applies to
Bungalow, FarmHouse and Villa.

Secondly, and in relation to the previous one, you must strive to place features at
the right level of abstraction. For example, the NumberOfOccupants attribute in
Fig. 30.4 has been placed in the House class, because it was determined that every
house has a number of occupants (whatever it is), regardless of whether it is a
bungalow, a farmhouse, a villa or any other kind of house that we might add later.
However, barns do not have occupants, so that it would not make sense to place this
attribute in a class higher up in the hierarchy so that Barn would inherit it.

Lastly, sometimes you may find the need to develop parallel subsumption
hierarchies to represent structures of varying abstraction that are connected at each
rank. A good example of this is that of Valorization and DerivedEntity in CHARM.
As described in Chap. 29, DerivedEntity is specialized along the same lines as
Valorization, and the Source association between both is refined for each pair
classes. In this manner, Valorization is associated to DerivedEntity,
ExpertValorization is associated to ExpertDerivedEntity, CommunityValorization is
associated to CommunityDerivedEntity, etc. We say that the two subsumption
hierarchies are parallel because they have the same structure and the same number
of ranks, and a class from each is connected into a pair at each point in the
hierarchy. Although not extremely common, this scenario is not rare, and you will
find it every now and then once you have spent some time developing models.

Reference Subsumption

A reference subsumption hierarchy, as opposed to a descriptive one, is a sub-
sumption hierarchy for which we do not need to document instances of the involved
categories, but only refer to these categories as a means to label or classify other
things. Imagine, for example, that we do not need to gather information about the
number of occupants of houses or the capacity of barns, but only express what
kinds of buildings (houses, barns, etc.) are shown in each photograph of a historical
collection.

In cases like this, and regardless of whether the hierarchy is a taxonomy or not,
we may apply the Reference Subtyping pattern. This involves the modelling of the
categories in the hierarchy as an enumerated type, and then referring to this type
through attributes in the relevant classes. For example, we could define the fol-
lowing enumerated type in our model.

318 30 Modelling Patterns

Then, we would use the enumerated type as illustrated in Fig. 30.5.
Table 30.6 shows a concise description of the Reference Subtyping pattern.

Composite Patterns

So far, we have described aggregation and subsumption hierarchies as different
kinds of structures. This is usually so, and the patterns described above can be very
useful when dealing with them. However, sometimes we will find that hierarchies
may present a combined nature where both aggregation and subsumption play a
central role. Imagine again how files are organized in your computer. There is a
hierarchical file system where folders can contain other folders as well as files.
Also, files and folders are different kinds of things, but present many common
characteristics: they always reside inside a folder, they have a name and a size, and
they can be renamed, deleted or moved around. From a conceptual modelling point
of view, two observations can be easily made. First, there is aggregation at work
here, since a folder contains other folders as well as files. Second, there is sub-
sumption as well, since both files and folders are special cases of a more abstract
construct that we may call a file system item. As we described in Chap. 9, a direct
consequence of subsumption is abstraction, the phenomenon by which we can

Photograph

Author: 1 Text
Year: 1 Time
BuildingTypesDepicted: 0..* enum BuildingType

Fig. 30.5 Type model using the Reference Subtyping pattern. The whole hierarchy is represented
as an enumerated type (not shown in the diagram) and referenced by the Photograph.
BuildingTypesDepicted attribute

Table 30.6 Reference Subtyping pattern

Problem You have a subsumption hierarchy of any kind

Context You need to use categories in the hierarchy as labels to classify other entities

Solution Model categories in the hierarchy as an enumerated type, and then refer to it
through attributes in the relevant classes

Hierarchical Subsumption Patterns 319

discard details and focus only on what is essential. When carrying out operations
such as renaming, moving or deleting, we do not need to know whether something
is a file or a folder, since these operations are the same for both kinds of things: we
can abstract and consider them equivalent. Figure 30.6 shows a summary of these
ideas. In Fig. 30.6A, we state the fact that folders may contain files as well as other
folders. In Fig. 30.6B, we represent the fact that both folders and files are subtypes
of an abstract construct called FileSystemItem. By using abstraction, we have
factored out every characteristic that is common to Folder and File and moved them
up to FileSystemItem. In order to provide a complete model of your computer’s file
system, these two situations must be reconciled in a single model. To do this, we
need to realize that Folder and File in Fig. 30.6A share a common characteristic
that has not been abstracted out into FileSystemItem in Fig. 30.6B: namely the fact
that both classes are located on the part end of a whole/part association with Folder.
On the one hand, File is evidently related to Folder through a whole/part associ-
ation in which File acts as the part and Folder as the whole. Perhaps not as
evidently, Folder is also related to Folder through a whole/part association in which
Folder acts as the part through the SubFolder role; in this case, Folder also works
as the whole through the ParentFolder role, since this is a whole/part
self-association. Since both File and Folder share the characteristic of being parts
of Folder, then this should be abstracted out into FileSystemInfo together with the
Name and Size attributes. Figure 30.7 shows the result. Here, the situations depicted
in Fig. 30.6A and B have been consolidated into a single model, showing that there
are two kinds of file system items, folders and files, both having a name and a size.
Furthermore, both may be contained in a folder. The structure in Fig. 30.7 corre-
sponds to a Composite pattern.

This pattern is very common. Think, for example, of the way in which norms are
modelled in CHARM, as described in Chap. 26. An excerpt of Fig. 26.2 is shown
here as Fig. 30.8. Here, we state that there are two kinds of norms depending on
their atomicity: simple norms and compound norms, and that compound norms, in
turn, are composed of either simple norms or other compound norms. Of course,

Folder

Name: 1 Text
Size: 1 Number

File

Name: 1 Text
Size: 1 Number
Type: 1 enum FileType

0..*1

0..*

0..1

Folder File

Type: 1 enum FileType

FileSystemItem (A)

Name: 1 Text
Size: 1 Number

(A) (B)

SubFolder

ParentFolder Kind

Fig. 30.6 Both aggregation and subsumption play a part in structuring a computer file system. In
A, folders are composed of files as well as other folders. In B, folders and files are both subtypes of
file system items

320 30 Modelling Patterns

this occurs within a much larger context that involves other classes and associations
(see Fig. 26.2 for a larger view), but the fact that these three classes are organized in
a Composite pattern is still true.

In a Composite pattern, there are always three elements:

• An atomic category, the instances of which may be parts of instances of an
aggregate category.

• An aggregate category, the instances of which are composed of instances of the
same category or the atomic category.

• An abstract category, which generalizes the two previous ones by capturing all
their common characteristics, most importantly the fact that their instances may
be parts of instances of the aggregate category.

In our previous examples, the atomic categories were File and SimpleNorm; the
aggregate categories were Folder and CompoundNorm; and the abstract categories
were FileSystemItem and Norm.

Composite patterns are useful to generate heterogeneous hierarchies where
instances of the atomic category always appear in leaf position, and instances of the
aggregate category appear as either leaf or non-leaf positions. Figure 30.9 shows an
example.

Folder File

Type: 1 enum FileType

FileSystemItem (A)

Name: 1 Text
Size: 1 Number

Kind

0..*

0..1

Fig. 30.7 The A and B
situations from Fig. 30.6 have
been reconciled into a single
model

Norm (A)

Name: 0..* Text

CompoundNorm

Atomicity 0..*

2..*

SimpleNorm (A)

Fig. 30.8 Norms in CHARM
are modelled by using a
Composite pattern. See
Fig. 26.2 for a complete
diagram

Composite Patterns 321

cn1: CompoundNorm

Name = “United States Constitution”

sn1: SimpleNorm

Name = “Preamble”

cn2: CompoundNorm

Name = “Articles”

sn2: SimpleNorm

Name = “Article 1”

sn3: SimpleNorm

Name = “Article 2”

cn3: CompoundNorm

Name = “Amendments”

sn4: SimpleNorm

Name = “First Amendment”

cn4: CompoundNorm

Name = “Liberty Amendments”

Fig. 30.9 Fragment of an instance model conforming to the type model in Fig. 30.8. Compound
norms have been shaded grey, and simple norms have been left unshaded

322 30 Modelling Patterns

Figure 30.9 represents a small part of the United States Constitution. Compound
norms such as the constitution itself as well as the articles block or the liberty
amendments block are shaded in grey. Simple norms, such as the preamble or the
individual articles or amendments, are shown in white. Note that instances of
SimpleNorm, the atomic category, appear always in leaf positions, that is, do not
have anything ‘below’ them, whereas instances of CompoundNorm, the aggregate
category, appear elsewhere in the hierarchy. Any application of the Composite
pattern will show this behaviour.

Table 30.7 shows a concise description of the Composite pattern.
Sometimes you will see cases of the Composite pattern that seem to be “upside

down”. Look, for example, at how constructed structures are modelled in CHARM,
as per Chap. 22. Constructed structures were roughly defined as structures created
by the intentional modification and/or bounding of physical space through the
addition and/or removal of materials, and which, by virtue of the structural
arrangement of its parts, or that of its own within a bigger whole, perform a given
function. There are two kinds of constructed structures. Firstly, constructions
provide direct functionality to their users and include buildings, pits or cattle
enclosures. Secondly, constructive elements which, despite not providing direct
functionality to their users, constitute a material part of larger constructed entities,
to which they contribute structure and/or function, and include the columns of a
house or the access system of a cattle enclosure. Figure 30.10 shows the corre-
sponding class diagram. Here, as opposed to what the Composite pattern says, the
whole/part association goes from the abstract class to one of the concrete classes
rather than the other way around. Let us examine what the semantics of this are.
Like in the case of a genuine Composite pattern, there is both aggregation and
subsumption at work here. Aggregation plays a role in stating that constructed
structures may be composed of constructive elements. Subsumption, in turn, is
important to express that constructive elements and constructions are subtypes of
constructed structures. Note that, here, both concrete classes (Construction and
ConstructiveElement in our example) inherit the fact that they may be composed of
something. In this sense, both are aggregates, and there is no atomic category. One
of the aggregates (ConstructiveElement in the example) is composable, in the sense
that it can be part of the aggregates, whereas the other (Construction) is not
composable, because it cannot.

Table 30.7 Composite pattern

Problem You have a situation involving an aggregate category whose instances may be
composed of instances of the same aggregate category as well as an atomic
category

Context You need to document entities of both the aggregate and atomic categories, as well
as the hierarchical relationships between them

Solution Model the aggregate and atomic categories as classes, and introduce an abstract
class that generalizes both. Use a whole/part association from the aggregate class to
the abstract class

Composite Patterns 323

As opposed to a true Composite pattern, this situation cannot generate a hier-
archy with instances of the atomic category always appearing in leaf positions,
since there is no atomic category. Rather, “upside down” situations like this gen-
erate heterogeneous hierarchies where instances of the composable class anywhere
in the hierarchy, either as leaf or non-leaf, and instances of the non-composable
class appearing only in a root position. Figure 30.11 shows an example. In
Fig. 30.11, note that there is only one instance of Construction at the root of the
hierarchy, since Construction is the non-composable class; it does not participate in
the whole/part association as depicted in Fig. 30.10.

Situations like this where an “upside down” Composite pattern seems to be
involved correspond to the Inverted Composite pattern. In an Inverted Composite
pattern, there are always three elements:

• A composable category, the instances of which may be parts of instances of
other categories as well as be composed of instances of the same category.

• A non-composable category, the instances of which cannot be part of any other
things, but which can be composed of instances of the composable category.

• An abstract category, which generalizes the two previous ones by capturing all
their common characteristics, most importantly the fact that their instances may
be composed of instances of the composable category.

In our previous example, the composable category was ConstructiveElement; the
non-composable category was Construction; and the abstract category was
ConstructedStructure.

Table 30.8 shows a concise description of the Inverted Composite pattern.
There is one final remark to make. When applying the Composite or Inverted

Composite patterns, bear in mind that minimum cardinalities for every whole/part
semi-association must almost certainly be zero. As we said when discussing

ConstructedStructure (A)

Name: 0..* Text
ConstructionTechnique: 1..*
 enum ConstructionTechnique (T)

Construction ConstructiveElement

TypeOfFunctionality

0..*

1..*

(T
)

Fig. 30.10 Constructed structures in CHARM are modelled by using an apparently “upside
down” Composite pattern. See Fig. 22.4 for a complete diagram

324 30 Modelling Patterns

ce1: Construc veElement

Name = “Stylobate”
ConstructionTechnique = ...

ce2: Construc veElement

Name = “Colonnade”
ConstructionTechnique = ...

ce3: Construc veElement

Name = “Front Columns”
ConstructionTechnique = ...

ce4: Construc veElement

Name = “Column #1”
ConstructionTechnique = ...

ce5: Construc veElement

Name = “Back Columns”
ConstructionTechnique = ...

ce6: Construc veElement

Name = “Entablature”
ConstructionTechnique = ...

c1: Construc on

Name = “The Parthenon”
ConstructionTechnique = ...

Fig. 30.11 Fragment of an instance model conforming to the type model in Fig. 30.10.
Constructions have been shaded grey, and constructive elements have been left unshaded

Composite Patterns 325

hierarchical aggregation patterns earlier in this chapter, using minimum cardinalities
greater than zero would produce an infinite aggregation regress, which is usually
undesirable.

State Patterns

So far, we have explored patterns related to the aggregation and subsumption of
things. However, patterns can also be useful in other areas of modelling. A very
relevant case is that of capturing the different states or modes that may apply to
something. For example, consider the Building class that we have been using
throughout the book for multiple examples. In addition to having characteristics
such as their height or style, buildings may be in different states. For example, they
can be new, used, old or ruined. They can be protected or not. They can work as
housing, public spaces, commercial venues, etc. We have usually modelled these
optional situations through specialization, as illustrated in Chap. 9. However,
specialization has some limitations that we should address.

First, some subtypes of buildings pertain to the “essence” of the building itself,
whereas others do not. For example, whether a building is a house, a barn or a
shopping mall is quite essential; in other words, if a building is a house, then it
cannot (usually) be also a barn or a shopping mall, and it is unlikely that it gets
transformed or changed into a barn or a shopping mall. And, if a house were
transformed into a barn or a shopping mall, we would probably consider it a
different building rather than the same one. We can conclude that the building
function is an essential characteristic of the category. Other subtypes, however, are
not as essential. For example, whether a building is protected or not can definitely
change over time, and the building that undergoes the transition does not stop being
the same building. In this case, the building protection is not essential but quite
accidental to the building category. Essential distinctions can be adequately mod-
elled through generalization/specialization hierarchies, and the rigidity imposed by
these hierarchies is rarely an obstacle since things seldom change their essential
characteristics. Accidental distinctions, however, may also be modelled through

Table 30.8 Inverted Composite pattern

Problem You have a situation involving a composable category whose instances may be
parts of instances of the same composable category as well as a non-composable
category

Context You need to document entities of both the composable and non-composable
categories, as well as the hierarchical relationships between them

Solution Model the composable and non-composable categories as classes, and introduce an
abstract class that generalizes both. Use a whole/part association from the abstract
class to the composable class

326 30 Modelling Patterns

specialization, but this usually results in models that are too rigid. See Fig. 30.12.
Now imagine that we have an unprotected building that we want to document. We
would add an object of type NonProtectedBuilding. Imagine that, later, this
building gets protected. We should “move” the object to ProtectedBuilding instead.
However, and as we explained back in Chap. 5, an object can only have one class
as its type, and this class can never vary. Indeed, the model in Fig. 30.12 is
probably quite poor for any possible purpose, since the distinction between pro-
tected and non-protected buildings is accidental rather than essential, so we should
not use specialization to construct categories like these. Rather, we should realize
that being protected or not are possible states of buildings, rather than kinds of
buildings.

A second limitation of generalization/specialization relationships is that subtypes
of a class are exclusive, meaning that an object can only be an instance of one of
them. This is again due to the fact that objects have one and only one class as their
type. In Fig. 30.12, it is quite evident that a building cannot be protected and not
protected at the same time, so this would not be a problem here. However, consider
a situation involving the modelling of how people interact with an ethnographic
study about tourism. Some people will be researchers, some will be informants,
some will be members of the local community, and some will be tourists. This is
shown in Fig. 30.13. Now imagine that we need to record the details about an
informant. According to the figure, we would add an object having Informant as its
type. However, this person may also be a tourist or a community member, or even a
researcher. Indeed, any combination of roles is possible. We cannot have multiple
type classes for an object, so this would be a problem. Again, we should realize that
the roles that someone plays in relation to something are not an essential part of that
person, but some accidental characteristic; for this reason, using specialization to
capture this is not a good idea.

Building

Height: 1 Number
Style: 0..* enum Style

ProtectedBuilding

Year: 1 Time
Justification: 1 Text

NonProtectedBuilding

Fig. 30.12 Buildings’
protection status modelled as
a specialization hierarchy

State Patterns 327

When trying to model states of things, you should use the State pattern. To use
this pattern, you need to consider three aspects:

• The category that can be in a number of states. In our previous example, this
would correspond to the Person class.

• The discriminant that captures what the possible states are about. In our previous
example, this was represented by the Role discriminant.

• The list of possible states that the above category can go through depending on
the above discriminant. In our previous example, this corresponds to the sub-
classes of Person.

Instead of using a generalization/specialization rooted in the category class, we use
a different strategy. See Fig. 30.14. Here, a new PersonRole abstract class has been
introduced to capture the discriminant, and the specialization hierarchy is rooted in
this new class instead of Person. Also, Person and PersonRole are connected
through a whole/part association with strong semantics on the PersonRole side,
meaning that a person role does not make sense without an accompanying person.
The class that captures the discriminant, PersonRole in our example, is called the
state class.

Person

Name: 1 Text
Gender: 1 enum Gender

Researcher

Area: 1..* Text

Role

Informant

Phone: 1 Text

CommunityMember Tourist

HomeCountry: 1 Text

Fig. 30.13 Roles of people modelled as a specialization hierarchy

Person

Name: 1 Text
Gender: 1 enum Gender

PersonRole (A)0..*1

Researcher

Area: 1..* Text

Informant

Phone: 1 Text

CommunityMember Tourist

HomeCountry: 1 Text

Fig. 30.14 Possible roles of people modelled by using a state pattern

328 30 Modelling Patterns

Note a few things about the model in Fig. 30.14. First, we still have a spe-
cialization hierarchy capturing the necessary categories to document the different
roles of people in relation to the project. However, these are not subtypes of Person,
but subtypes of PersonRole. Applying specialization semantics, this means that
researchers, informants, community members and tourists are not kinds of people
but kinds of roles that people may play. This is exactly what we wanted to express.

Secondly, note that the Person and PersonRole classes are tightly coupled.
Person has a whole/part association towards PersonRole, which, in turn, is defined
in terms of Person. This expressed the fact that person roles are not independent
entities but, to the contrary, they are inherent to persons. As an example, Fig. 30.15
shows how a particular person playing the role of informant would be documented
through this model. Note that the fact that p is an informant is not shown through
instantiation, but through the fact that p aggregates an object of the Informant type.
Finally, and most importantly, note that this model can be easily used and extended
to cater for the needs that we outlined at the beginning of this section. For example,
we can easily express that a person plays multiple roles simultaneously, as shown in
Fig. 30.16.

Also, we can capture the temporality of the roles that a person plays by simply
making the whole/part association temporal. This would allow us to document not
only what roles a person plays, but also when they played each. Figure 30.17 shows
an example.

State patterns are not as common as Composite or hierarchical patterns; how-
ever, they are extremely useful when you need them. The
MethodologicalRoleOfAgent class in CHARM, for example, is a state class of
SpecificAgent, as described in Chap. 23.

Table 30.9 shows a concise description of the State pattern.
The State pattern can be easily extended to cater for multiple concurrent state

discriminants. For example, we could add another state class to the model in

p: Person

Name = “Alice”
Gender = Female

pr1: Informant

Phone = “123 456 789”

Fig. 30.15 A person playing
the role of informant,
documented by using the
model in Fig. 30.14

p: Person

Name = “Alice”
Gender = Female

pr1: Informant

Phone = “123 456 789”

pr2: Tourist

HomeCountry = “Australia”

Fig. 30.16 A person playing
the simultaneous roles of
informant and tourist,
documented by using the
model in Fig. 30.14

State Patterns 329

p: Person

Name = “Alice”
Gender = Female

pr1: Informant

Phone = “123 456 789”

pr2: Tourist

HomeCountry = “Australia”

@ 5-Jun-2016

@ 2 to 19 Jun 2016

Fig. 30.17 A person playing the roles of informant and tourist at different times, documented by
using a variant of the model in Fig. 30.14 with a temporal whole/part association

Table 30.9 State pattern

Problem You want to document the different states or modes that entities of a category may
be in

Context You need to describe each state with detail, and perhaps combine them and add
temporal information

Solution Model the category undergoing states as a class, and the state discriminant as a new
abstract class. Connect both by using a whole/part association from the former to
the latter, and use strong semantics in the opposite direction. Add as many
subclasses of the state class as necessary to represent each of the relevant states

Person

Name: 1 Text
Gender: 1 enum Gender

PersonRole (A)0..*
1

Researcher

Area: 1..* Text

Informant

Phone: 1 Text

CommunityMember Tourist

HomeCountry: 1 Text

(T)

PersonOccupation (A)

Student

School: 1 Text

Employed

Organization: 1 Text

Retired

1

0..*

Fig. 30.18 A new state class has been added to the model in Fig. 30.14 to capture the occupation
of people in addition to their relationship to the project

330 30 Modelling Patterns

Fig. 30.14 in order to describe a different range of states that people can go through,
and combine them at will. For example, imagine that, in addition to knowing the
roles that people play in relation to our project, we also want to document whether
they study, work or are retired (or a combination). Figure 30.18 shows the result.

By using this model, we can capture complex situations such as “Alice, a retired
community college student from Australia, visited us as a tourist between 2 and 19
June 2016, and was also an informant of the project on 5 June 2016”. Figure 30.19
shows this. Using the State pattern multiple times on a single category, like this, is
called the Multi-State pattern. Table 30.10 shows a concise description of this
pattern.

Summary

A design pattern (or just pattern for short) is a well-known solution to a recurring
problem in a particular context.

Patterns provide guidance and advice, but they are not laws that must be
obeyed no matter what.

To document entities involved in an aggregation hierarchy with detail, apply a
Taxonomical Decomposition pattern if the hierarchy is a taxonomy, or a
Recursive Decomposition pattern if the hierarchy is recursive.

p: Person

Name = “Alice”
Gender = Female

pr1: Informant

Phone = “123 456 789”

pr2: Tourist

HomeCountry = “Australia”

@ 5-Jun-2016

@ 2 to 19 Jun 2016

po1: Student

School = “North Sydney
 Community College”

po2: Re red

Fig. 30.19 A person playing multiple roles from two different discriminants, documented by
using the model in Fig. 30.18

Table 30.10 Multi-State pattern

Problem You want to document multiple sets of different states or modes that entities of a
category may be in

Context You need to describe each state with detail, and perhaps combine them and add
temporal information, within or across state sets

Solution Model the category undergoing states as a class, and each of the state discriminants
as a new abstract class. Connect the category class to each state class by using a
whole/part association from the former to the latter, and use strong semantics in the
opposite direction. Add as many subclasses of each state class as necessary to
represent each of the relevant states

State Patterns 331

To list and use the entities involved in an aggregation hierarchy as labels, apply a
Reference Decomposition pattern.

To document instances of the categories involved in a subsumption hierarchy
with detail, apply a Descriptive Subtyping pattern.

To list and use the categories in a subsumption hierarchy as labels, apply a
Reference Subtyping pattern.

To document entities of an atomic and an aggregate category, where instances of
the aggregate may be composed of instances of either the aggregate or atomic
categories, apply a Composite pattern.

To document entities of a composable and a non-composable category, where
instances of the composable category may be parts of instances of either the
composable or non-composable categories, apply an Inverted Composite pattern.

To document the states that an entity may be in, optionally using temporal
semantics, apply a State pattern. Multiple state patterns can be combined into a
Multi-State pattern.

Exercises

48. Below you can find a list of modelling situations. For each of them, state what
pattern you would apply, if any.

• A family tree including only parent–child relationships.
• The fact that archaeological sites may be excavated or not, and when.
• A study of urban landscapes where cities are considered to be composed of

neighbourhoods, neighbourhoods are composed of areas, and areas are
composed of streets.

• The description of author’s marks on artworks, which may be placed on the
artwork itself or on a previous mark.

• The composition of a thesaurus of traditional trades to tag a collection of
literary works that may mention them.

332 30 Modelling Patterns

Chapter 31
Constructing Quality Models

Abstract In this chapter, we introduce the concept of quality as related to con-
ceptual models and provide two non-exclusive approaches through which a model’s
quality may be assessed: how well the model allows us to achieve our purpose and
how well the model can be understood or modified. Each of these is fleshed out into
various quality factors, including functional ones such as correctness and robustness
as well as non-functional ones, such as usability or readability. Then, we introduce
the notion of modularity as a way to achieve better quality in conceptual models,
using Bertrand Meyer’s influential work in software languages. We define a module
as a portion of a model that exhibits high internal cohesion and low external
coupling and explore five quality criteria that can help us produce more modular
models: decomposability, composability, understandability, proportion and pro-
tection. Finally, the chapter closes with a discussion on the cost of quality and the
need to achieve a balance between quality, time and resources.

We have said throughout this book that models are created for a purpose. As any
other goal-oriented human creation, models can be of a varying degree of quality;
that is, some models are of good quality whereas others are not so good. What do
we mean by quality? Roughly speaking, the quality of a goal-oriented artefact is
related to its capacity to help us achieve its goal. In the case of models, this means
that a good model is one that represents the modelling scope in an appropriate
manner so that we can successfully do whatever we thought about when con-
structing the model. As described in Chap. 3, the major goal areas of models
include exploration, documentation, communication, design and interoperability.
A model that allows us to successfully explore, document, communicate, design
and/or interoperate, therefore, would be a good model.

We must also consider other factors when thinking about model quality. For
example, a model may allow us to carry out the intended purpose very nicely, but
what if it is extremely difficult to change when the scope changes? What if it is
difficult to understand by others or even ourselves? What if it contains redundant or

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_31

333

irrelevant classes or attributes? Factors like these are also important despite not
being directly related to the model’s purpose. This chapter explores model quality
in general and gives some advice on how to construct high-quality models.

Quality Factors

We said above that model quality is related to two major concerns:

• How well the model allows us to achieve our purpose.
• How well the model can be understood or modified.

The first is often expressed in terms of correctness, robustness and related quality
factors, whereas the second is usually expressed in terms of “-ilities” such as
maintainability, usability, readability. Quality factors can be expressed in terms of
degree rather than as a binary yes/no. In other words, they are not black or white
properties of models, but properties that can be possessed in a variable amount.
Whether they can be easily measured or not, however, is another question. For
example, giving figures for how correct or usable a model is can be very difficult.

Also, you must bear in mind that it is impossible to maximize all quality factors
for any given model. Ideally, we would like our models to score very high for
everything. However, quality factors overlap with each other and are often inter-
related in complex manners, so that increasing quality for some factors entails a
decrease for some others. For example, making a model more robust usually
implies making it less readable. Quality is a matter of priorities and trade-offs. For
example, you may decide that your particular modelling purpose suggests that
robustness is not that important (perhaps because the model will be used in a very
well-known setting), but readability is crucial since the model is going to be used by
beginners. In this case, you would place readability above robustness in your scale
of priorities and trade off robustness for readability every time (or most times) that a
modelling decision must be made that involves both.

The following sections explore the main model quality factors.

Functional Quality Factors

Functional quality factors are those that are directly related to the ability of a model
to achieve the purpose for which it was created.

334 31 Constructing Quality Models

Correctness

A model is correct if it represents its scope according to the intended purpose in a
complete, precise and accurate way.

• A model is more or less complete depending on how much of the scope it
represents. A model that captures the whole scope is fully complete; a model
that leaves relevant things out is incomplete to some degree.

• A model is more or less precise depending on how much detail is incorporated
about the entities that are represented. A model that incorporates the right
amount of detail is very precise; a model that is vague or lacks necessary detail
is imprecise.

• A model is more or less accurate depending on how well its scope is repre-
sented. A model that uses elements that faithfully represent its scope is highly
accurate; a model that does not match its scope, even if it is highly precise, is
inaccurate.

Correction constitutes the essential quality factor; if a model ranks high in other
quality factors such as robustness or usability, but lacks in correctness, then it is a
poor model. Consequently, correction must be always at the top of the scale of
priorities when creating a model.

A correct model allows us to carry out our purpose, and an incorrect model does
not. Furthermore, we can rely on a correct model as a convenient representation of
reality, whereas an incorrect model is unreliable. You may think that this clashes
with what we said back in Chap. 1, regarding George Box’s aphorism, that “all
models are wrong; some models are useful”. It does not. What Box means by
“wrong” is that all models leave things out when simplifying their scope in order to
represent it. In this sense, models are “wrong” or, rather, incomplete. However,
good models must still be correct in the sense described here of being complete,
having the necessary precision, and being as accurate as possible.

Note also that precision and accuracy are independent of each other. Precision is
about the level of detail in the model, regardless of how well this detail matches the
scope being represented. Accuracy, on the other hand, is about having a good
match, regardless of how much detail the model employs. A model can be highly
precise and very inaccurate at the same time, such as a model using many classes
with many attributes to express something that does not match, or even contradicts,
the observed reality. A model can also be very imprecise but highly accurate, such
as one using very few elements and making a very shallow description of its scope,
but matching it very well.

Quality Factors 335

Robustness

A model is robust if it allows us to achieve our purpose even in unexpected
conditions. In other words, robustness is about going beyond correctness and
reaching out for more. Figure 31.1 shows an example.

In Fig. 31.1A, a model is provided for a project aiming to study how utensils
found in traditional houses are employed by their owners. It covers the whole scope
by including the House and Utensil classes, it does it with adequate precision, and it
is quite accurate. Overall, model A is acceptably correct. The model in Fig. 31.1B,
however, adds an intermediate level of abstraction to the specialization hierarchy by
adding the Structure and Object abstract classes. These classes are not strictly
necessary for the above-mentioned study, and in fact, they contribute no attributes
or new associations. However, imagine that, midway through the project, the need
to include other objects in addition to utensils, such as pieces of furniture, comes
up. If we were using model A, we would need to add a new PieceOfFurniture class,
make it specialize from MaterialElement and connect it to House with an associ-
ation to capture the fact that pieces of furniture are located in houses. This asso-
ciation would be very similar to the one coming out of Utensil, and thus redundant.
We would end up with a model that is overly complex and harder to understand.
Instead, if we were using model B from the beginning, we could easily add
PieceOfFurniture under Object, and that would be all. In model B, the Structure
and Object classes are there to cater for future extension needs despite the fact that
they are not strictly needed to start with.

MaterialElement (A)

Name: 1 Text
Material: 1..* enum Material
Description: 0..1 Text

House

Address: 0..1 Text

Type

Utensil

Kind: 1 enum UtensilKind

MaterialElement (A)

Name: 1 Text
Material: 1..* enum Material
Description: 0..1 Text

House

Address: 0..1 Text

Type

Utensil

Kind: 1 enum UtensilKind

Structure (A) Object (A)

Type Type
IsLocatedIn (T)

0..1 0..*

IsLocatedIn (T)

0..1 0..*

(A) (B)

Fig. 31.1 Model A is correct, but model B is much more robust. See the text for a complete
explanation

336 31 Constructing Quality Models

Sometimes, robustness is said to be about underpromising and overdelivering.
Both models A and B in Fig. 31.1 “promise” to help us document utensils in
houses; however, model B “overdelivers” by allowing us to document other kinds
of objects (and other kinds of structures, too) with very little effort.

Non-functional Quality Factors

Non-functional quality factors are those that are not directly related to the ability of
a model to achieve the purpose for which it was created. Rather, they describe how
well the model can be used or changed.

Usability

A model is more or less usable depending on how easy it is to apply. As opposed to
correctness, which is described in terms of the model’s properties in relation to its
scope and purpose, usability is empirically defined in terms of how useful the model
is for its users. Of course, incorrect models are usually highly unusable, but models
that are correct may still be not too usable. For example, a model may be complete,
precise and accurate (i.e. correct), but use awkward terminology for class and
feature names, or be too hard to understand. Aspects such as elegance, aesthetics,
balance and presentation also play an important role regarding usability. Even the
manner in which the model is introduced to its potential users can have an impact.
For example, is the model attractive? Is it easy to grasp for its users? Is it expressed
in their own terminology?

Efficiency

A model is more or less efficient depending on how many elements it needs to
describe its scope. A model that employs many classes, features and other elements
to describe a simple scope is an inefficient model, since it requires a lot of cognitive
effort from its users. However, a model that employs few classes and features to
describe a complex scope would be highly efficient. In this regard, models work as
text: use as few words as possible (but not fewer) to express what you need to say.

Efficiency has a positive impact on usability. The more efficient a model is, the
easier it is to use.

Quality Factors 337

Maintainability

A model is more or less maintainable depending on how easy or difficult it is to
change it. “Maintaining” a model means keeping it up to date when its scope or
purpose changes. This usually entails making small alternations. A model that was
“designed for change”, therefore, would be more maintainable than one created
with only short-term goals in mind.

Readability

A model is more or less readable depending on how easy or difficult it is for users
to understand what it is supposed to express. A very readable model is one that
users “see through” into the represented scope; an unreadable model, on the con-
trary, stands between the user and its scope, hindering comprehension.

Readability is crucial for maintainability and usability. If you cannot read a
model, you will not be able to use it or change it.

Modularity

The previous section described quality factors. So far, we have learnt what a good
model should be like. However, how do we get there? The answer is modularity.

If you look at a modern car, or any other piece of engineering, you will notice
that they are highly modular. This means that they are made of small parts that can
be easily exchanged when they wear out or stop working. For example, you can
replace your car’s spark plugs when they get too old. This ability needs to be
designed into the car from its inception; that is, car engineers must foresee the fact
that spark plugs eventually will become old, and a replacement will be needed. In
consequence, they design cars in a modular fashion so that old spark plugs can be
easily removed and new ones inserted.

Modularity is the property of a system (such as a car or a model) by which this
system, rather than being a large monolithic unit, can be understood in terms of
component modules. A module, in turn, is a portion of a system that exhibits two
complementary properties:

• High internal cohesion
• Low external coupling.

By internal cohesion, we mean that a module cannot be split in parts easily,
because everything inside it is intimately interrelated. Think of our car example
again: you can certainly disassemble a spark plug, but its parts are so intimately
connected to work as a whole, that it is more practical to consider the spark plug as

338 31 Constructing Quality Models

a cohesive thing rather than an assembly of parts when looking at the car as a
system. When we say that modules exhibit high internal cohesion, we mean that a
module may be made of parts, but these parts work together as a whole and are
difficult or inconvenient to separate.

Of course, a spark plug can be disassembled, and if you think from the per-
spective of a spark plug manufacturer, they will probably have a very clear vision of
spark plugs as assemblies of smaller parts. However, this does not contradict what
we said above; when looking at a car as a system, then spark plugs are better seen as
units; when focussing on a spark plug as a system, then we can decompose it into
elements. But spark plug manufacturers do not worry too much about the details of
other components in the car. This is to say, we can shift our abstraction level from
the car as a system to the spark plug as a system, each time seeing the immediate
constituent parts as modules.

The second property of modules is related to external coupling. This means that
a module is connected to other modules in a weaker manner than the parts of the
module to one another. In other words, a module does have connections to other
modules in the system; however, these connections are not as strong as the con-
nections that exist within a module. In our car example, spark plugs are designed to
work together with other engine parts; however, they can be easily removed and
replaced, and they are manufactured separately, which shows that their connection
to the rest of the engine is not as strong.

If you think of a car engine as a mesh of small parts, where each part is related to
many others, modules make up the “lumps” in this mesh. See Fig. 31.2 for an
illustration. Note how, in Fig. 31.2B, parts within modules are strongly connected
to other parts within the module, whereas very few connections exist between
modules. This is precisely what we mean by high internal cohesion and low
external coupling.

You may recall the concept of package that we discussed in Chap. 13.
A package is a group of related classes, enumerated types and possibly subpack-
ages. Packages comprise one of the major mechanisms by which we can organize
models in a modular fashion. The classes and enumerated types within any given
package are supposed to be closely related to each other and work together as a
comprehensive whole. At the same time, associations or generalization/
specialization relationships to classes in other packages are supposed to be fewer
and weaker. We can use packages to clearly establish modules in a model, although
this is not compulsory. We can also establish modules by designing classes and
relationships between them in a manner such that high cohesion and low coupling
are attained.

The modules in a system can be made to correspond to any well-defined con-
cern. For example, when describing how a car works, we often talk about the
electrical subsystem, the fuel subsystem or the steering elements. Electrical, fuel
and steering are valid modules, because they correspond to parts of the car with
high internal cohesion and low external coupling. In this case, we have modularized
the car according to the function of the different parts. But we might have used a
different criterion. Think, for example, of CHARM, as described throughout

Modularity 339

Part IV. CHARM is modularized in terms of types of things, and thus we have
tangible entities, agents, manifestations, performative entities, occurrences, etc.
Classes within each of these modules work together as a whole to describe a portion
of the cultural heritage world and are connected to classes in other modules through
fewer and weaker relationships.

At this point, you may be wondering how modularity is related to quality. In
brief, the more modular a model is, the higher its quality. The reasons behind this
are explained in the next section.

Meyer’s Five Criteria

In his 1997 book “Object-Oriented Software Construction” [72, Chap. 3], Bertrand
Meyer describes five criteria that must be satisfied by a system in order to be called
highly modular. Meyer is discussing software systems, but his arguments can be

(A)

(B)

Fig. 31.2 Informal depiction of a system made of small parts. In A, some parts are closely
connected to other parts, forming “lumps” that are loosely linked to other “lumps”. In B, “lumps”
are highlighted

340 31 Constructing Quality Models

adapted for conceptual models as well. Based on Meyer’s work, the five modularity
criteria for conceptual modelling are:

• Decomposability
• Composability
• Understandability
• Proportion (called “Continuity” by Meyer)
• Protection.

Each criterion is described throughout the next sections.

Decomposability

A model exhibits modular decomposability if it can be easily decomposed into
modules. Large modules, similarly, should be decomposable into submodules, and
perhaps repeat this a few times until you obtain modules of a manageable size.

Decomposability is the key strategy to tackle complexity. By applying a
“divide-and-conquer” approach, a model can be seen as a collection of interrelated
modules, and work in each module can be carried out in a more or less independent
fashion once their relationships are clear.

For example, CHARM can be easily seen as a collection of modules such as
tangible entities, performative entities, agents, abstract entities. Performative enti-
ties, in turn, can be seen as a collection of modules such as expressive designs and
understandings.

Composability

Related to the previous, modular composability in a model means that modules in
the model, and even the model as a whole, can be easily composed into larger
systems. This means that each module, in addition to comprising a relatively
self-contained unit, can be connected to other modules. And the whole model itself
can be connected to other models.

For example, the performative entities and agents modules in CHARM can be
composed into a larger element by using the PerformativeEntity.UsualPerformer
association that links both modules.

Together, composability and decomposability make up the basis for modularity.
The remaining three criteria provide further insights into why high modularity leads
to high quality.

Meyer’s Five Criteria 341

Understandability

A model exhibits modular understandability if each module can be understood by a
human without looking at other modules. This is based on modular decomposition,
since we need to be able to decompose something into modules in order to
understand each module.

Modular understandability is a crucial criterion for quality, because under-
standing a whole non-trivial model is usually a daunting task for anyone. Modular
understandability has a positive impact on usability and readability. For example,
look again at Fig. 24.3. By looking at this figure, which depicts the expressive
designs module in CHARM, you can easily learn what subtypes of expressive
designs exist in CHARM, see that every expressive design may formally designate
a number of valuable entities, and that some specific kinds of expressive design,
such as toponyms and anthroponyms, are related to places and agents, respectively.
You can understand all this by looking at this figure only, because CHARM is
constructed in a manner such that good modular understandability is achieved. In
other words, you do not need to look at the rest of CHARM to understand how
expressive designs work.

A model with low modular understandability would be very difficult to grasp,
and therefore to use or maintain, because you would need to look at most of its
elements in order to understand even a small part.

Proportion

A model exhibits modular proportion if making a small change requires a small
effort, and making a large change requires a large effort. In other words, the amount
of work needed to carry out a change in the model must be proportionate to the
magnitude of the change.

Modular proportion is also a crucial criterion for quality, and it has a clear
positive impact on maintainability. A model with low modular proportion would
require a large effort even to make small changes, which would make it difficult to
maintain or adapt. Your modelling scope or purpose will likely change over the
lifetime of the model, and you will need to adjust the model as needed. A model
that becomes too difficult to change, even for small alterations, is a poor model.

Imagine that we wanted to incorporate a new way of locating things into
CHARM. Because everything related to locations is placed in a locations module,
as shown in Fig. 21.3, we would only need to modify a few classes in this module,
at most, to incorporate the change. Thanks to the modular organization of the
model, any other class such as those in the tangible entities or agents modules
would be immediately able to use this new location class without further adaptation.

342 31 Constructing Quality Models

Imagine, to the contrary, that every class related to tangible entities in CHARM
had an embedded Location attribute or something like this. If we wanted to add a
new way of locating things, we would need to change every class in the tangible
entities modules, which would be a lot of work. By keeping location-related classes
in a separate module, we achieve a good degree of modular proportion.

Protection

A model exhibits modular protection if defects or issues in one module are kept
isolated from affecting neighbouring modules. In other words, a model has good
modular protection if we hide as much as we can inside modules and allow
neighbouring modules to “know” as little as possible about other module’s details.
Modular protection has a positive impact on robustness.

For example, consider the fact that the derived entities module in CHARM is
organized around the same specialization discriminants as the valorizations module,
yielding a parallel hierarchy, as depicted in Fig. 29.1 and following. For this reason,
we can say that the derived entities module “knows” the structure of the val-
orizations module and follows it. If the way in which valorizations is ever found to
be incorrect, this would make the derived entities module also incorrect. In this
regard, CHARM’s quality is not perfect, and better modular protection would be
valuable here. However, quality comes to a cost.

The Cost of Quality

Quality comes to a cost. As we introduced at the beginning of this chapter when we
described the car and spark plugs example, modularity must be engineered into a
system from its inception. And this means extra work, time and cost. As in any
other development process, you must often find a balance between what is
acceptable quality and what takes too long or costs too much. Perfect quality is
never feasible, but low quality is undesirable. Depending on how much time and
resources you have to develop your model and how familiar you are with the
modelling scope, you should trade quality for time or cost as appropriate.

Summary

Quality is a measure of how well a model allows us to carry out its intended
purpose.

Meyer’s Five Criteria 343

Quality is also related to how well the model can be used or changed to satisfy a
changing purpose.

Maximizing every quality factor is not possible. You must make trade-offs
depending on your priorities and available resources.

A model must be correct in terms of completeness, precision and accuracy.
A model may go beyond correction and strive for robustness, so that it works

even under unexpected conditions.
A model should be usable, that is, easy to apply for the intended users.
A model should also be efficient, that is, it should use as few elements as

possible to express what it needs to express.
A model should be maintainable, that is, easy to alter when its scope or purpose

changes.
A model should be readable, that is, easy to understand by a potential user.
The more modular a model is, the higher its quality.
A module is a collection of model elements that exhibit high internal cohesion

and low external coupling.
A good model must be decomposable into modules, and a large module must

also be decomposable into smaller ones.
A good module must be composable (together with others) to make up larger

modules or a complete model.
A good module is understandable without the need to look at other modules.
A good module shows proportion regarding changes and effort, being easy to

alter for small changes and harder to alter for larger changes.
A good module is protected from defects or issues in other modules through the

hiding of details.
Quality comes to a cost. Do not aim for perfection; make realistic trade-offs.

Exercises

49. Below you can find a list of modelling situations. For each of them, describe the
three quality factors that you consider the most important, and in what order.

• A model for a short research project involving only one person.
• A shared model to be implemented as a database in a large company for a

wide range of projects.
• A government-sponsored large model intended as a reference for anyone in

a given country doing archaeological fieldwork.

50. Look at the diagram below. What changes would you make in order to improve
the model’s quality in relation to the different quality factors?

344 31 Constructing Quality Models

51. Consider a model containing the classes listed below. Describe how you would
group these classes into modules, and explain why.

• Barn
• Farm
• FarmAnimal
• FarmingActivity
• FishingActivity
• Forest
• House
• HuntingActivity
• Orchard
• Stream
• TraditionalSettlement
• Well

Exercises 345

Chapter 32
The Modelling Process

Abstract In this chapter, we explain how a model is constructed, using a
process-oriented approach. We distinguish two major kinds of scenarios when
doing conceptual modelling: constructing a model from scratch and altering an
existing model to adapt, enhance or improve it. We link back to the philosophical
underpinnings of modelling that were discussed in Chap. 2 to establish a basic
modelling processes consisting of four different tasks: perceive what is to be
modelled, conceptualize the relevant entities into ideas, formalize these ideas by
using a modelling language and depicting the resulting model for exploration,
communication or whatever other purpose. We emphasize that these activities
should be tackled in an iterative and incremental manner, rather than linearly. Then,
we focus on the specific scenario of altering an existing model and introduce the
notion of refactoring as a way to improve the quality of a model by changing it, but
while maintaining the purpose and scope untouched. After this, we provide some
specific techniques that can be used when creating or modifying a model, such as
word highlighting, using refactoring cues and finding model symmetry and cov-
erage. The chapter finishes with a discussion on the issue of model implementation,
which involves adding detail to the model in order to obtain a useful product such
as a database or a surveying form. In this context, we explore the concept of
“implementation noise” and separation of concerns, especially in relation to linked
data technologies.

The previous parts in the book have described a modelling language, ConML, and
presented a model, CHARM, constructed with it. Using a chess analogy, you now
know what the different pieces look like and how they move on the board, and you
have seen the outcomes of a game played by proficient players. However, you are
still relatively far from being able to play chess well. Or, in other words, you still
need to understand how the process of modelling works. Going from a fuzzy
understanding to a well-engineered model is not trivial in most cases, and the
quality of the resulting model will be better or worse depending on what process is
followed and what practices are applied. In this chapter, we focus on the modelling
process.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_32

347

There are two major kinds of scenarios when you are doing conceptual mod-
elling. Sometimes you need to create a model from scratch, and the only “input”
that you have is a set of vague ideas or fuzzy understanding of what is to be
modelled. Some other times you want to alter an existing model to adapt, enhance
or improve it; in this case, you start with a model and you also have some vague
ideas or fuzzy understanding of how it must be altered. The outcome of the process
in either case is a model. Since both cases involve vague ideas as a start and a
model as an outcome, we will focus on this situation as the general case and add the
necessary remarks when needed to cater for other more specific situations. In
addition, altering a model may involve interoperability requirements that are
described in Chap. 33.

Creating a Model from Scratch

The best approach to modelling is an iterative and incremental one. By iterative we
mean that the process that you follow is repeated in multiple “passes”, rather than
being carried out just once. By incremental we mean that the products that you
generate (and, specifically, the final model) are constructed in increments or small
changes, rather than going from zero to complete in a single go. Usually, every time
that you cycle through the process you add something to the resulting model, thus
uniting the iterative and incremental properties of the approach. However, the first
time you carry out the process the model does not exist yet. Consequently, the first
iteration requires some special work in order to create the first version of your
model.

Figure 32.1 reproduces a figure from Chap. 2. As you can see in the figure, the
conceptual modelling process involves four basic tasks:

A

B

Entity A

Entity B

perceive
depictconceptualize

Formal
concept A

Formal
concept B

Informal
concept A

Informal
concept B

formalize

Fig. 32.1 Overview of the modelling process. This is identical to Fig. 2.1

348 32 The Modelling Process

1. Perceive what is to be modelled. This includes identifying what the scope is and
what its boundaries are, determining what entities are inside (and which are left
outside), and making sure that we can discretize these entities in relation to each
other. Remember that the ability to discretize or “cut” reality into separate things
was the first premise that we assumed for conceptual modelling in Chap. 2.

2. Conceptualize the relevant entities into ideas. This includes assigning a cate-
gory to each entity to be modelled and deciding what details are kept and which
are discarded. Remember that the ability to classify entities into categories was
the second premise that we assumed for conceptual modelling in Chap. 2. Also,
remember that the decision on what to keep and what to drop must be strongly
guided by the modelling purpose.

3. Formalize these ideas by using a modelling language. This includes using the
best language constructs to represent each thing being modelled. For example,
and assuming that we are using ConML, we must decide at this stage if
something is to be modelled as an attribute or an association. The result of this
task is a model in our head.

4. Depict the resulting model for exploration, communication or whatever other
application. This includes the graphical representation of the model on paper or
screen by using diagrams or similar artefacts. Remember that the major kinds of
applications that we described in Chap. 3 included exploration, documentation,
communication, design and interoperability.

These tasks are usually carried out in sequence. That is, we cannot depict a
model that we have not created before. And we cannot model something in our
head that we have not previously conceptualized or perceived. However, and as
introduced above, we perform these tasks iteratively; this means that we repeat
them again and again until the resulting model remains stable, as shown in
Fig. 32.2. In the figure, the four tasks (perceive, conceptualize, formalize and de-
pict) are performed in sequence. The perceive task looks at the entities around us;
the conceptualize task helps us assimilate them in our mind; the formalize task
produces the model, and the depict task puts it on paper or screen. The first time
around the formalize and depict tasks will create the model and diagrams; on further
iterations, they will modify the existing ones. Now look at the decision diamond at

Start Changes?Perceive Conceptualize Formalize Depict End

Yes

No

DiagramsModelEntities

Fig. 32.2 Iterative and incremental modelling process

Creating a Model from Scratch 349

the end of the sequence: if the results (model and diagrams) have not changed from
the previous time around, then we are done, and we can consider our model (and
diagrams) final. However, if the results have changed, even so slightly, we need to
go back to the perceive task and start a new iteration taking into account the interim
model that we got. This new iteration will possibly alter the model and diagrams,
and so on.

For example, imagine that we want to construct a model to represent the
conflicting views of local communities and tourists about the Berlin Wall. The
following may happen:

1. We examine what we know about the Berlin Wall in order to perceive it, focus
on the materiality of the wall as a first step and realize that the Berlin Wall
should not be seen, for our purpose, as a monolithic whole, but as a collection
of elements such as the remaining sections of the wall, the checkpoints and
other associated structures.

2. We conceptualize these elements and categorize them as structure fragments
and constructive elements, all of them located in a common place. We also
decide to document materials, visibility and relationships to additional struc-
tures and landmarks that may exist.

3. We formalize the above by creating a model having classes such as
WallSection, Checkpoint, AssociatedStructure and ExternalStructure.

4. We depict a diagram containing the above classes as well as some tentative
relationships among them.

5. We have a new model (plus diagram), so we start a new iteration.
6. We go again to perceiving, by focussing this time on the communities that we

want to contemplate. We find that we at least need to differentiate between Jews
and non-Jews and nationals versus visitors or tourists.

7. We conceptualize these as different communities, which may have potentially
different relationships to each Berlin Wall element.

8. We formalize the above by introducing a new Community class. Since we need
to associate this class to WallSection, Checkpoint and AssociatedStructure, we
decide to generalize these three into an abstract WallElement class and add two
associations between it and Community to represent positive and negative
relationships, respectively.

9. We depict the changes by rearranging our diagram into a new one.
10. We have changed the model (and diagram), so we start a new iteration.

We will stop here our fictional description. You can imagine that the process
continues in cycles until we find ourselves unable to find anything to add or change
in the model and diagrams, and we stop.

There are a few things that must be emphasized. First, the distinction between
perceiving, conceptualizing, formalizing and depicting is helpful but a bit artificial.
It may help you to focus selectively on each of the tasks when you start modelling,
but once you gain some experience, you will find yourself “just modelling”, which
will certainly involve all the previous four aspects in a fuzzy continuum. In fact,

350 32 The Modelling Process

you will find many occasions when jumping from one task to another feels ade-
quate. For example, you may be depicting your altered diagram and realize that a
class is better conceptualized in a different way, so you just jump back and
reconceptualize the class before coming back to depicting. Jumps like this are fine,
and you will find yourself skipping forward or jumping back very often. However,
try to adhere to the ideal sequence the first few times so that you learn how to focus
on each kind of task.

Second, and as indicated above, do not attempt to create a model in a single go.
This is possible only for very simple situations and to very experienced modellers,
and even in these cases, you are likely to make serious mistakes. Iterate over the
process until the model stabilizes and you are happy with it.

Third, be aware that the model will be in a state of flux while you work on it. In
other words, the model will provide only a very partial representation of its scope
while you are still iterating. During this work, you can use properties (see Chap. 5)
to capture modelling concerns that are still not very clear. As you come back to
them during subsequent iterations, you will be able to refine properties into either
attributes or associations to other classes.

Finally, beware of “analysis paralysis”. That is, don’t forget that eventually you
must stop iterating. The fact that we propose an iterative approach does not mean
that the model is never done or it is always fluid. This is not so. Avoid perfec-
tionism and gold plating your work, and stop iterating once you are confident that
no further changes are needed in the model.

Modifying an Existing Model

To modify an existing model, use the same approach as to create a new one, but
consider the existing model from iteration one. Given the iterative and incremental
approach that we have described above, creating a model from scratch actually
consists of creating an initial model during the first iteration, and then making
changes to it during the following iterations until complete. For this reason,
modifying an existing model is very much like creating one from scratch, but
without the first iteration.

The only significant difference between the two scenarios may be the fact that,
when modifying a model, the starting point already involves a model that is finished
and therefore solid and stable, rather than a work in progress. For this reason, any
changes that we make should be aligned with the overall spirit of the model and its
underlying philosophy. For example, imagine that the starting model contains a
specialization hierarchy where different kinds of buildings are described through a
single Building class having a Kind attribute of an enumerated type. If you need to
add a few extra building types, try to avoid adding specific classes to do it; rather,
add new enumerated items for the necessary building kinds. Change the modelling
decisions embedded in the starting model only if you have very compelling reasons
to do so. For example, if you wanted to document different things depending on the

Creating a Model from Scratch 351

kind of building in the previous example, then you would need to remove the
enumerated type attribute and instead create a specialization hierarchy rooted on
Building.

When making changes to a model, sometimes we find the need to alter a part of
it in order to enhance its quality, rather than change what is expressed in the model.
In other words, we may find the need to change how the model says what it says,
without changing what it says. Making a change of this kind is called refactoring
the model. Refactoring involves changes that preserve what the model expresses,
but hopefully improve the way in which it does so. Consider Fig. 32.3. In the
figure, the original model contains a Painting class describing the painting’s title,
year and technique, as well as its author name and nationality. The AuthorName and
AuthorNationality attributes are blatantly calling to be extracted, given the noun
adjunct “author” in their names. The refactored model shows that a new Author
class has been created, and the necessary attributes moved over to it. Note that the
original and refactored models both express the same: the fact that paintings are
painted by an author having a name and a nationality. No information has been
added or removed to the model. However, the refactored model has better quality as
it is more modular and easier to understand and extend.

The topic of model refactoring has received a significant amount of attention in
the software engineering literature, often in the context of the Unified Modeling
Language (UML).

Painting

Title: 1 Text
Year: 1 Time
Technique: 1..* enum Technique
AuthorName: 1 Text
AuthorNationality: 1 Text

Painting

Title: 1 Text
Year: 1 Time
Technique: 1..* enum Technique

Person

Name: 1 Text
Nationality: 1 Text

AuthorPa
in

te
d

0..*

1

(A) (B)

Fig. 32.3 Refactoring a model. In A, an original model is shown. In B, a refactored model is
shown after extracting two attributes as a new class from A

352 32 The Modelling Process

Specific Techniques

In the previous sections, we have described what we should do in order to create or
modify a model. However, we did not say much about how to do it. Now we
present some techniques that can help us to perceive, conceptualize, formalize and
depict our models.

Word Highlighting

This technique can help us identify and conceptualize classes, attributes and
associations, so it is especially useful during the perceive and conceptualize tasks.
The technique assumes that you have some sort of written description of the sit-
uation that you are trying to model. If you do not, do it yourself and write it down.
A short text describing what is supposed to be in the model should suffice.

Once you have this text, highlight all the nouns, adjectives and verbs using
different colours for each. You can do this on the computer or on paper. Then make
an alphabetical list with all the nouns, another with the adjectives and another one
with the verbs. Remove any duplicates, and bear in mind that some nouns,
adjectives or verbs may encompass multiple words, such as “common room”, “very
small” or “carry out”.

The nouns list will contain mostly candidate classes and attributes. The count-
able nouns will suggest categories that may eventually become a class in your
model, such as “house”, “folk song” or “place”. Perhaps, many of the nouns in the
list do not make sense as classes; reject them straight away. It is always better to
have to reject half of the nouns than to forget an essential class. Also, be aware that
lists of nouns in the text (such as “…public, private and commons land plots”) may
suggest subtypes of some abstract concept, and that some countable names will be
better modelled as enumerated items rather than classes. Finally, some countable
nouns (such as “child” or “residence”) may point at role names in associations
rather than classes. In cases like this, try to find the corresponding association by
looking up the associated verb, as described below.

On the other hand, most uncountable nouns (such as “size” or “importance”) will
suggest attributes which, again, may or may not make sense. Like in the previous
case, you will need to select and discard those that are not adequate, and transform
the others if needed. For example, a noun such as “size” may be relevant to your
model, but adding a Size attribute may not be appropriate, since it is too complex to
describe and does not have a clear data type; instead, you may want to decompose
“size” into separate attributes for Width and Height.

The adjectives list, in turn, will contain samples of values that should be per-
missible in the model. For example, if you find an adjective such as “circular”
referring to a particular noun, this would be an indication that the class associated to

Specific Techniques 353

this noun will need a Shape or similar attribute that can take values such as
“circular”.

The verbs list, finally, will contain potential associations. Transitive verbs, which
are associated to a subject and an object, are especially relevant. Again, discard
those that do not make sense, and check which nouns in the text are related by verbs
which do. Remember that associations can usually be expressed from two different
points of view, so you may find that there are two different verbs hinting at the same
association.

Also, when converting a noun, adjective or verb from your lists into a model
element, always remember to modify the words as necessary so that you adhere to
good naming conventions as described in Part I. For example, class names should
be countable nouns in singular.

Figure 32.4 shows an example involving the modelling of megalithic tumuli. In
the example, nouns are highlighted with light grey rectangles, adjectives are
underlined and verbs are highlighted with darker grey rounded rectangles.
Duplicates have been removed for simplicity. The lists of nouns, once sorted and
put in singular, are as follows.

• Burial
• Chamber tomb
• Cist
• Dolmen
• Enclosure
• House
• Long barrow
• Method of inhumation
• Passage grave
• Round barrow
• Shape
• Tumulus

Some nouns look like very good class candidates, such as “tumulus” or “burial”.
Others, like “method of inhumation”, look like candidates for enumerated types,
since it seems to encompass other nouns in the list such as “cist”, “dolmen” and

Fig. 32.4 An example of a text where word highlighting is being used to help identify and
conceptualize classes, attributes and associations. Text taken from “Tumulus”, Wikipedia, The
Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Tumulus&oldid=739167972
(accessed 28 September 2016)

354 32 The Modelling Process

https://en.wikipedia.org/w/index.php?title=Tumulus&oldid=739167972

“chamber tomb”. Finally, some other nouns such as “shape” look like good attri-
bute candidates. Note that the fact that we have highlighted the adjectives “long”
and “round” in relation to “tumulus” reinforces the idea that “shape” should become
an attribute of this class.

The list of verbs is as follows. Associated subject and object nouns are shown in
parenthesis.

• Constructed on top of (tumulus, burial).
• Involve (method of inhumation, dolmen/cist/enclosure/house/chamber tomb).

The first item, “constructed on top of”, looks like a very good candidate for an
association, since it links a subject (“tumulus”) and an object (“burial”) that we also
found interesting as class candidates in the nouns list. In turn, the second item,
“involve”, looks more like “grammatical noise” used to enumerate a list of possible
inhumation method types, rather than a real association. This is also very inter-
esting, because it gives us a clue that a specialization hierarchy or an enumerated
type should be involved.

A tentative model constructed from the above text and lists is shown in
Fig. 32.5. The TumulusShape enumerated type would contain items such as
LongBarrow and RoundBarrow. The MethodOfInhumation enumerated type would
contain items such as Dolmen, Cist or ChamberTomb, possibly arranged in a
hierarchy.

The word highlighting technique can be extremely useful to identify what should
be in the model, but it does not help much with formalizing it as specific model
elements. We need other techniques for this.

Refactoring Cues

While you develop your model, keep an eye on signs that some refactoring may be
needed. For example, look for classes that have no attributes and no generalization/
specialization relationships to other classes. These “empty” classes may make sense
in your model, but often they are superfluous and can be removed. If you remove an
“empty” class, make sure that you incorporate its semantics into other elements of
the model.

Also, look for “islands” in the model, that is, classes or collections of classes that
are disconnected from the rest. In a good model, you can always navigate from any

Tumulus

Shape: 1 enum TumulusShape

Burial

Method: 1 enum MethodOfInhumation

IsConstructedOnTopOf

1..*0..1

Fig. 32.5 Tentative model constructed from the text and lists above. See the text for enumerated
types

Specific Techniques 355

class to any other by traversing associations and generalization/specialization
relationships. If you cannot find a route between two classes in the model, then you
have an “island” that you must resolve. The most obvious way to do it is by adding
an association, but don’t do it before making sure that the new association makes
sense. Alternatively, you can resolve an “island” by adding a generalization/
specialization relationship or incorporating a class to an already existing
generalization/specialization relationship. Finally, there might be the case that you
are attempting to model a situation having a very wide scope or that is too vague; in
this case, perhaps you need to split your model in two or discard one of the
“islands” altogether.

In addition, look inside the classes for hints about the need to refactor. For
example, and as we discussed above, noun adjuncts (that is, nouns working as
qualifiers such as “author” in AuthorName) in attribute names often suggest that a
new class should be extracted from an existing one, especially if multiple attributes
share the same noun adjunct (AuthorName, AuthorAddress, etc.). Figure 32.3
shows a good example.

Also, look for hints that your model may benefit from the application of patterns.
A specialization hierarchy sometimes is better expressed as a State pattern, and
whole/part associations linking a class to its superclass may be calling for a
Composite pattern. Sometimes, patterns emerge by themselves, and you will realize
that you have created a Composite or State pattern without thinking about it; this is
very good. Some other times you will need to stop and refactor your model to
“shape” it in the proper way. Modelling patterns were discussed in Chap. 30.

Finally, be aware of model quality issues. Always try to keep a good degree of
modularity, and observe the five principles of modular quality that we discussed in
Chap. 31.

Striving for Symmetry and Coverage

Another valuable idea to bear in mind when modelling is that of symmetry. By this
we refer to the fact that the overall structure of the classes and other model elements
should be clearly organized and balanced in relation to well-defined axes. If you
look at CHARM, for example, you will see that both structures (Fig. 22.4) and
objects (Fig. 22.5) are modelled by using a similar scheme around fragmentation,
origin and intentionality of the material entities. Although the models for structures
and objects are different, they are “symmetric” in the sense that they are organized
using common criteria, which helps with readability and usability.

Similarly, valorizations (Fig. 28.1) and derived entities (Fig. 29.1 and follow-
ing) in CHARM are organized according to the perspective of the associated agent,
which yields two parallel hierarchies exhibiting very strong symmetry. In this case,
however, and as we introduced in the previous chapter, this also entails a certain
degree of redundancy and hinders modular protection. Once again, quality is a
matter of trade-offs, and in this case the extra symmetry gained by having two

356 32 The Modelling Process

parallel hierarchies was considered to be more valuable than the lost modular
protection.

In addition to symmetry, you should strive for coverage in your models. By this
we mean that you should make sure that your model covers the target scope without
leaving anything out. Using again CHARM as an example, the model is supposed
to cover all the possible manifestations of cultural heritage. Similarly, and at a lower
level of abstraction, tangible entities, for example, are also supposed to cover all
possible kinds of tangible things that may be of interest in relation to cultural
heritage. If we found something in the world that was interesting to cultural heritage
and could not be ascribed to any class in CHARM, we would have found a cov-
erage issue, and the model should be amended.

Coverage issues are especially significant when developing specialization hier-
archies. Whenever you specialize a class into subclasses, make sure that every
possible case is considered, that is, that the subclasses represent all possible kinds in
relation to the associated discriminant. For example, look at Fig. 24.3 about
expressive designs. The specialization under ExpressiveDesign must guarantee that
every expressive design that we can think of is easily accommodated as one of the
five subclasses. If we could think of an expressive design that is not a language,
sound, gestural, formal or compound expressive design, then we should augment
the model by adding a new subclass or expanding an existing subclass to cater for
the “outlying” entity.

Implementing Models

We have said throughout this book that modelling always involves a purpose.
Sometimes, however, you may need to go beyond the model in order to achieve
your purpose. For example, imagine that you create a model with the purpose of
documenting some monuments in a city. The model is necessary, but you will not
be able to actually document the monuments unless you construct a database or
some other tool that allows you to gather and store the necessary information. Or,
for example, you may need to develop a mobile phone app so that tourists can find
monuments in your city and provide feedback about them. In either case, the
database and the mobile phone app would be constructed by using your model as a
starting point and would be shaped and organized as dictated by the model. In this
regard, the model acts as a blueprint or specification. In fact, an implementation of a
model is an artefact that is constructed by using the model as a specification of its
structure and/or functionality. Implementations are usually computer-oriented
artefacts such as databases or other software and/or hardware systems.
Implementing a model is a very complex topic, and a multitude of technologies and
approaches may be involved. Chapter 34 provides specific advice on the devel-
opment of database systems, but many other types of implementations are possible.
The remainder of this section discusses some general aspects of model
implementation.

Specific Techniques 357

First of all, you must bear in mind that implementation entails adding detail to
the model. For example, a type model composed of a few classes, attributes and
associations gives you the overall structure of a very small part of the world; if you
want to implement a database that conforms to this model, you will need to make a
number of decisions such as what database tables you will create, which columns
you will have in each table and of which data types. The specific kinds of details
that you add to a model during implementation are strongly determined by the type
of implementation artefact being constructed, as well as the selected technologies.
For example, you do not add the same kind of details when creating a database or a
mobile phone app; and, at an even lower level of abstraction, you do not add the
same kind of details when creating an app for Android phones or an app for iOS
phones.

Abstraction, in fact, plays a crucial role during implementation. We said back in
Chap. 1 that a model is a simplification of the world and, as such, modelling entails
removing details from the represented scope. Implementing a model, interestingly,
entails adding details to the model. The kind of details that you add during
implementation, however, is totally different to those that you removed during
modelling. Similarly, the model’s purpose is your guide to deciding what details to
remove while modelling. During implementation, the kind of artefact being con-
structed and the chosen technologies work as guides to what kinds of details should
be incorporated.

In any case, a model is the most abstract artefact between two much more
concrete things: the scope that it represents and the implementations constructed
from it. It is not possible, or extremely difficult and error-prone, to construct
implementations by directly looking at the scope without modelling. That is why
architects create plans when they need to build a house: the plans are supposed to
capture the needs of the house owners, the conditions of the environment and other
relevant concerns. Then, the actual house is constructed by using the plans as a
guide. It would be extremely difficult to construct a good house without plans, only
by looking at the terrain and talking to the future owners. Similarly, models are
needed to bridge the gap between the scope and the implementation through the use
of abstraction.

However, you may find multiple occasions where models are skipped altogether
in information systems development. For example, it is not uncommon to see
projects where linked data RDF or OWL representations of knowledge are devel-
oped from scratch by looking at the entities to be represented. This is analogous to
someone attempting to construct a house by going straight into lying bricks without
having developed any blueprints, and evidently not a good practice. RDF or OWL
representations are intended to be used by computers, whereas conceptual models
are targeted at humans. For this reason, RDF or OWL representations constitute
implementations, very much like databases or mobile phone apps. You need to
develop them by using conceptual models as guidance.

There is an additional consequence of model implementation that must be
highlighted. Sometimes we create a model while knowing that this model will be
eventually implemented, perhaps even knowing what kind of implementation

358 32 The Modelling Process

technology will be used. For example, we may be creating a model that we know
will be implemented as a relational database on Microsoft SQL Server once it is
finished. In cases like this, it is extremely easy to incorporate implementation
concerns into the modelling process, which is, again, not a good practice. For
example, in the previous example, we might be tempted to incorporate “id” or
“key” attributes to the classes in the model because we know that database tables
will need primary key columns once the model is implemented. However, entities
in the world rarely have ids or keys; we assign these only to take stock or store
information about them into a computer system. Since ids or keys are not properties
of the entities themselves, they should not be in the model. Rather, we should wait
until the model is implemented and then, and only then, add these details.

Projects using linked data technologies are especially at risk here, since these
technologies, by their own nature, make us incorporate, from the very beginning,
issues that are completely disconnected from the things being modelled but pertain
to the computing domain. For example, you need to decide on URIs and names-
paces and other computer-related artefacts when creating a class in OWL. This goes
against the good practice of keeping conceptual models free of “implementation
noise”. If you use linked data technologies to implement your models, make sure
that you do not bring the implementation concerns that are inherent to these
technologies into your models.

There is a simple way to determine whether something should be in a conceptual
model or not, which works most of the time. When in doubt, ask yourself “does this
characteristic apply to the entity in the absence of a model?”. If the answer is
affirmative, then you should put it in the model; if negative, the characteristic is
likely to be “implementation noise”. For example, would the ISBN of a book apply
to the book in the absence of a model? Clearly, yes: books have ISBNs regardless
of whether we model them or not; for this reason, book ISBNs can be part of a
model. Would the scanned image of the book cover be part of the book in the
absence of a model? Clearly, no: books do not have a scanned image attached to
them; we attach a scanned cover image for the purpose of implementing a model.
Consequently, scanned cover images should not be part of a model.

In summary, do your models first, and make sure they are free from imple-
mentation issues. Once you are happy with them, implement them as
computer-oriented artefacts.

Summary

Modelling is iterative and incremental; you iterate over a process to gradually
construct a result.

You may want to refactor your model in order to enhance its quality while
keeping the scope and purpose.

Word highlighting is a good starting point for modelling.
Watch for refactoring cues while you are modelling.

Implementing Models 359

Strive for symmetry and coverage in your model.
Model before you implement.
Avoid implementation noise in your models.

Exercises

52. Construct a type model from the text below, using the word highlighting
technique.

Tourist guides must always accompany a group during the tours. Each tour
may visit one or more areas of the mansion, including halls, gardens and the
cellar. Tours must be booked in advance with the guide by a contact person,
specifying when the visit is to occur, which areas are to be visited and how
many people will be in the group.

53. Below you can find a list of concerns that are likely to come up during the
modelling of a museum collection. For each of them, state whether it is a
genuine conceptual concern that should be captured in a model or, to the
contrary, it is an implementation issue that should be left out of the model and
tackled only during implementation.

• The name given to each artefact in the collection, such as “Lithic arrow
head”.

• The number of decimals to use when stating artefact dimensions.
• The id assigned to each artefact sample by museum technicians.
• The sections of the museum Website where each artefact is to be shown.

360 32 The Modelling Process

Chapter 33
Extending Models

Abstract In this chapter, we continue with the discussion on model modification
from the previous one, but now focusing on the specifics of model extension and
particular models. We explain that, as opposed to refactoring or other kinds of
changes, extension entails making changes to a model while guaranteeing that the
resulting particular model is Liskov-compatible with the original one, so that
interoperability becomes possible. We define what Liskov compatibility means, and
then, we consider different kinds of needs for model extension, including adding
extra elements, and modifying or removing existing elements. Then, we provide a
comprehensive list of model extension mechanisms and associated reinterpretation
rules. Extension mechanisms regulate what kinds of changes we can carry out on a
model while keeping it Liskov-compatible with the original one, whereas reinter-
pretation rules specify how the resulting model must be reinterpreted for the sake of
interoperability. Finally, we provide a worked example that illustrates the creation
of a particular model using CHARM as a base, its use and its reinterpretation for
interoperability.

In the previous chapter, we learnt how to create or modify models. We assumed that
a model is created by someone and then used by that same person or delivered to
someone else. These model users receive the model and are supposed to use it for
some particular purpose, perhaps involving specific implementations. Sometimes,
however, a model cannot be used straightaway and must be adjusted or tuned for
the desired usage scenario. This may be so for a number of reasons, most of them
involving the addition of extra detail to the model, or organizing the model ele-
ments in a particular manner that is better suited to the task at hand.

In fact, models are rarely “frozen” untouchable once they are created. Contrarily,
they must remain open to adjustments and tweaking for whatever purpose they are
employed. However, it is necessary to regulate how this tweaking may take place;
otherwise, we run the risk of altering the model so much that it loses any resem-
blance to its original form. Imagine the following situation. A company specialized
in archaeological monitoring of public works develops a conceptual model for the
management of their excavations. The model is intended to work as the basis for the

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_33

361

implementation of a central database system, a tablet app for fieldwork data col-
lection and a fieldwork guide on recording best practices. Each of these applications
will likely need to add specific details to the model in order to adapt it to the
technologies and organizational setting where it is to be deployed. However,
indiscriminately adding classes and features to the model, or modifying existing
ones, may well result in a model that bears little resemblance to the original. In
order to control and manage the ways in which models may be altered, we must
differentiate between plain changes, which may alter the model in any direction,
and model extension. Plain changes are what you make while constructing the
model, in any way you judge appropriate. While changing a model, you are free to
add, modify or delete as much as you want. However, extending a model means
adding new elements or changing existing ones while guaranteeing that the
resulting model is fully compatible with the original one. In this context, the result
of extending a model is called a particular model, and the model it is based on is
called the base model. Similarly, model elements (such as classes, attributes or
enumerated items) added to a model during the extension process are called
extended model elements or, in short, extended elements, whereas the elements that
pre-exist in the base model are called reused elements.

Extension makes sense when you want to provide the freedom to alter or tweak
the model, but within limits so that the resulting model will always be compatible
with the original one. In practice, this means that the scope and goal of the original
model will be honoured, and only slightly changed if at all. This chapter describes
what extension mechanisms exist and how they can be applied to create useful
particular models.

Reasons for Extension

Extending a model may be necessary for a number of reasons. Most often, the need
is related to the addition of extra detail, the modification or tuning of existing model
elements, including their removal in very specific circumstances, or the arrange-
ment of model elements in specific ways. In this section, we explore what these
scenarios entail.

Adding Extra Model Elements

Adding classes, features and other model elements is the most common reason to
extend a model. For example, in Chap. 19, we explained that CHARM is an
abstract reference model and, as such, is not expected to be used as is, but extended
into particular models. When constructing a particular model from CHARM, you
will very likely want to add new classes that specialize from the classes in CHARM
to represent the specific categories that you need to describe your scope.

362 33 Extending Models

For example, imagine that you are extending CHARM to describe the towns and
urban areas where specific trading processes take place. In this situation, you would
probably add classes such as City, Square or TradingActivity as specializations of
LandDivision, Construction and Process, respectively. The resulting particular
model would be identical to CHARM, plus these new three classes. Of course, you
may as well add attributes to the new classes and connect them to others through
new associations. You may also add attributes and associations to classes that
already exist in CHARM. In any case, the resulting particular model would be a
superset of CHARM.

Modifying Existing Model Elements

Sometimes, adjusting the base model to your needs cannot be fully accomplished
by adding elements alone, and you need to modify the contents of the base model
themselves. A simple case of this corresponds to the renaming a class or feature to
adjust it to your preferred terminology. Imagine that you are extending CHARM as
described in the previous section. The CHARM class ExpressiveDesign (and its
subclasses) may be very useful to represent how people communicate during
trading activities; however, you prefer to talk about “communication acts” rather
than “expressive designs”, and therefore you rename the class. Similarly, you may
rename an attribute or association name to best fit your usual terminology.

Model elements can be modified in more profound ways, though. For example,
you may need to adjust the cardinality of an attribute or semi-association, or make
an attribute subjective or temporal. In situations like these, we need to be very
careful with what we alter, since some changes may make the resulting particular
model not compatible with the base model.

Removing Existing Model Elements

As an extreme case of modification, you may want to fully remove some classes or
features from the base model, because you do not need them or they do not make
sense in your project or situation. Going back to our CHARM example above about
trading activities, you may remove all the CHARM classes relating to stratigraphy,
because they are not relevant to your scope. You can also remove specific attributes
or associations; for example, you may be interested in using the Occurrence class in
CHARM, but you are not interested in documenting the certainty of each instance,
so you remove the Certainty attribute from the class.

As in the previous situation, the particular model that results from removing
elements may or may not be compatible with the base model.

The remaining sections in this chapter describe how to ensure that compatibility
is maintained when extending a model.

Reasons for Extension 363

Liskov Compatibility

In the previous section, we said that extending a model may involve adding new
elements or changing or deleting existing ones while guaranteeing that the resulting
model is fully compatible with the original one. But, what do we exactly mean by
“compatible”?

To answer this question, we build on the work by Barbara Liskov on type
substitutability [28]. We briefly touched on this in Chap. 9 when discussing
generalization/specialization relationships. Basically, Liskov’s substitution princi-
ple states that if class S is a subtype (i.e. a descendant) of class T, then objects of
type T can be safely replaced with objects of type S. We exemplified this by stating
that if you ask me for a fruit and I give you an apple, you cannot complain that I
have not fulfilled your request. In this example, Apple is a subtype of Fruit.

Liskov’s substitution principle regulates what it means to say that a class is a
subtype of another class from a practical point of view. We can extend this principle
to regulate how models work together, in the following manner.

Liskov Compatibility
A type model P is Liskov-compatible with another type model B if any
existing or potential instance model K that conforms to P also conforms to B.

First of all, note that Liskov compatibility occurs between type models. In this
regard, we can say that a type model is (or is not) Liskov-compatible with another
type model. Instance models do not contain classes, so it does not make sense to
discuss whether or not they are Liskov-compatible with anything.

Secondly, and despite what we said in the previous paragraph, note that Liskov
compatibility is defined through instance models. In other words, we need to
examine all the instance models of a type model in order to determine whether this
type model is or is not Liskov-compatible with another one.

However, it would be impractical to examine every instance model of a given
type model, because there may be too many of them and, most importantly, because
we cannot possibly examine all potential instance models. In practice, we never
look at each individual instance model to determine whether two type models are
Liskov-compatible or not. Rather, we apply some criteria that, if held, guarantee
that any possible instance model of a type model will also conform to a second type
model.

Liskov compatibility is relevant to model extension because a particular model
must be Liskov-compatible with its base model for the sake of interoperability. In
other words, a model that is not Liskov-compatible with another cannot be said to
be its particular model. Let us use an example. Consider the three type models in
Fig. 33.1.

364 33 Extending Models

Now, let us try to answer the questions of whether B or C in Fig. 33.1 is
Liskov-compatible with a. First, let us observe that type model A is extremely
simple, and so any instance models that conform to it will be exclusively composed
of instances of Building.

With regard to particular model B, it extends the base model A by simply adding
a House subclass to Building. This means that any instance model that conforms to
B will potentially contain instances of House as well as Building. Since House is a
subtype of Building, we can apply abstraction (see Chap. 9) and treat any instance
of House as if it were a direct instance of Building. In this manner, we can pretend
that House is not there (as required by the base model A) and still make sense of
any instance of House, since they are understandable (through abstraction) as
instances of Building. We do not need to examine every possible instance model
conforming to B; we know that they will always conform to A as well. This means
that B is Liskov-compatible with A and, therefore, we can say that B is a particular
model based on A.

With regard to C, it extends the base model A by simply adding an Event class
and connecting it to Building through an association. This model is not much more
complex than B. However, let us consider what instance models of C would look
like. Any instance model that conforms to C will potentially contain instances of
both Building and Event, as well as links between them. The instances of Building
present no problem, since this class also exists in A. However, what are we sup-
posed to do with instances of Event? Type model A does not have any class that can
work as type for them, and therefore, we cannot guarantee that instance models of C
will also conform to A. This means that C, as it stands, is not Liskov-compatible
with A and, therefore, we cannot say that C is a particular model based on A.

In Chap. 3, we discussed interoperability as one of the motivations to carry out
conceptual modelling. We said there that conceptual modelling can help us to
compare and relate information sets that obey to different conceptualizations, and,
in this manner, facilitate the mutual understanding between different people, groups
or communities. We also discussed interoperability in the context of model quality
(Chap. 31) and the modelling process (Chap. 32). In a nutshell, two models are

Building

Materials: 1..* enum Material
Height: 1 Number

Building

Materials: 1..* enum Material
Height: 1 Number

House

OccupantCount: 1 Number

Function

Building

Materials: 1..* enum Material
Height: 1 Number

Event

Moment: 1 Time
Description: 1 Text

OccursTo

0..*

0..*

(A) (B) (C)

Fig. 33.1 In A, a simple type model. In B, a type model that extends A by adding a subclass. In
C, a type model that extends A by adding a class and an association

Liskov Compatibility 365

interoperable if they can work together. Liskov compatibility is the basis on which
models (and their implementations) can interoperate. For example, a database
constructed as an implementation of type model B can easily interoperate with a
survey form constructed according to type model A in Fig. 33.1. However, none of
them could easily interoperate with an information system constructed as an
implementation of type model C, since this is not Liskov-compatible with either of
them.

Extension Mechanisms and Reinterpretation Rules

If you take a type model and make some changes, it is likely that the model will
cease being Liskov-compatible with the original one and, therefore, cannot be
called a particular model. This would mean that the resulting model is not com-
patible with the original, which in turn means that interoperation between both
becomes difficult. So, what kinds of changes may we exert on a type model and still
guarantee that the resulting model stays Liskov-compatible with it?

Some approaches to model extension are very conservative in what kinds of
changes they allow. This is convenient because it limits the amount of variation that
can be introduced in a model, so that the result always resembles the original. Under
conservative approaches like these, the model in Fig. 33.1C cannot be said to be
compatible with the model in A. In ConML, however, we prefer to be liberal
regarding changes and instead introduce a collection of rules that regulate how an
instance model conforming to a particular model should be reinterpreted so that it
still conforms to the base model. In this manner, we allow changes that would
normally break compatibility, but add some rules that help us reinterpret the result
so that compatibility is maintained. In this context, extension mechanisms constitute
those kinds of operations that we can safely perform on a model so that the result
stays Liskov-compatible with the original, and reinterpretation rules are the
associated instructions that help us to recast the associated instance models. The
remainder of this section describes every single extension mechanism together with
the corresponding reinterpretation rules. For this discussion, we always assume an
instance model K conforming to a particular model P that has been extended from a
base model B. You may want to have the online CHARM reference at www.
charminfo.org/Reference handy to follow through the examples.

Adding Enumerated Types and Items

You can add enumerated types or items to a model during extension. If you add an
enumerated type that specializes from another in the base model, remember that the
new enumerated type may not declare root enumerated items, as described in

366 33 Extending Models

http://www.charminfo.org/Reference
http://www.charminfo.org/Reference

Chap. 10. This is not a limitation of extension, but of enumerated type
generalization.

Regarding enumerated items, if you add non-root items to an enumerated type in
the base model, the following reinterpretation rule applies:

RR.1
A value in K pointing at an extended non-root enumerated item in P is
reinterpreted as pointing to the most immediate ancestor of said enumerated
item that exists in B.

Let us use an example. Imagine that you want to extend theMaterial enumerated
type in CHARM and, to this purpose, you add items Steel and Bronze under
CHARM-provided Alloy. Values such as Material = Bronze in an instance model
would be reinterpreted as Material = Alloy when interoperating with other
CHARM-derived models. This makes sense, as Alloy is the closest abstraction of
Bronze that exists in CHARM.

Alternatively, you may add root items to an enumerated type in the base model.
In this case, the following reinterpretation rule applies:

RR.2
A value in K pointing at an extended root enumerated item in P is reinter-
preted as unknown.

For example, imagine that we extend CHARM’s ConstructionTechnique enu-
merated type by adding 3DPrinting at root level, since there is no enumerated item
with the necessary semantics to work as an ancestor for this one. Values such as
Technique = 3DPrinting in an instance model would be reinterpreted as
Technique = unknown when interoperating with other CHARM-derived models.
This makes a lot of sense, since the semantics of 3DPrinting, not being a
descendant of any CHARM-provided enumerated items, cannot be safely inferred.

Adding Classes

You can add classes to a model during extension. Most often, you will add non-root
classes, i.e. classes that specialize from other classes pre-existing in the base model.
In these cases, the following reinterpretation rule applies:

Extension Mechanisms and Reinterpretation Rules 367

RR.3
An object in K having a non-root extended class in P as type is reinterpreted
to have the most immediate ancestor of said class that exists in B as type.

For example, imagine that we extend CHARM by adding a specialized House
class under Construction. Objects of type House in an instance model would be
reinterpreted as being of type Construction when interoperating with other
CHARM-derived models. This makes sense, as House does not exist in CHARM,
but it can be safely abstracted as Construction as described in Chap. 9. Another
example can be found in Fig. 33.1B.

You may also add root classes during extension, that is classes that do not
specialize from any other class. In cases like this, the following reinterpretation rule
applies:

RR.4
An object in K having a root extended class in P as type is reinterpreted as
non-existing.

A good example is shown in Fig. 33.1C. Instance models conforming to C
would contain instances of Event, which cannot be abstracted into anything in
model A. However, we can ignore them during reinterpretation so that C stays
Liskov-compatible with A. In other words, Event objects in an instance model
conforming to C would be ignored, as if they did not exist, when interoperating
with other A-derived models.

Note that adding root classes during model extension is uncommon, for two
reasons. Firstly, extending a model is a process during which the base model’s
scope and goal should be roughly maintained. Adding a non-root class, however,
entails adding a new semantic field into the model, which is likely to significantly
augment its scope. Consequently, root classes are rarely added. Secondly, many
models are organized around a major specialization hierarchy having a very abstract
root class at the top. For example, CHARM has Entity as its root class. This class is
so abstract that almost anything can be considered to be an instance of it. In this
manner, any class that we wanted to add during an extension of CHARM could be
safely placed as a direct or indirect subclass of Entity, so the need to add non-root
classes disappears.

368 33 Extending Models

Adding Features

You can also add attributes or associations to a model during extension, involving
reused or extended classes. If they involve extended classes, you do not need to
worry, as the corresponding objects will be ignored during reinterpretation.
However, if the added features pertain to reused classes, then the following rein-
terpretation rules apply:

RR.5
A value in K having an extended attribute in P as type that belongs to a reused
class is reinterpreted as non-existing.

RR.6
A link in K having an extended association in P as type that connects reused
classes is reinterpreted as non-existing.

Let us use an example. Imagine that we extend CHARM’s Person class by
adding a Gender attribute to it. Values such as p.Gender = Female in an instance
model would be ignored when interoperating with other CHARM-derived models.
In other words, values of Gender would be dropped from any instances of Person
as if they had never existed.

Modifying Packages, Enumerated Types, Enumerated Items
and Classes

You can rename a package, an enumerated type, an enumerated item or a class as
you wish, so that the model element better fits your terminological preferences.
When doing this, the following reinterpretation rule applies:

RR.7
An object in K referring to a renamed package, enumerated type, enumerated
item or class in P as type is reinterpreted as referring to the original model
element in B.

For example, imagine that we extend CHARM and rename the
ManifestationOfExpressiveDesign class as “CommunicativeEvent”. Any instances

Extension Mechanisms and Reinterpretation Rules 369

of CommunicativeEvent in a particular model would be reinterpreted as instances of
ManifestationOfExpressiveDesign for the sake of interoperability.

Modifying Features

You can rename features in a particular model in the same manner that you can
rename other kinds of model elements, as described in the previous section. The
same reinterpretation rule applies.

In addition, you can change some properties of attributes and semi-associations
in a model during extension by using the redefinition mechanism described in
Chap. 18. For example, you could extend CHARM by adding a ResearchPaper
subclass under ResearchValorization, and then redefine the Name attribute as Title,
also changing its cardinality from 0..* to 1.

Feature redefinition is a standard part of ConML, so no specific extension
mechanisms or reinterpretation rules apply here. Also for this reason, feature
redefinition is the simplest and safest way to modify features in a particular model.

Hiding Attributes

You can hide an attribute in a particular model if you can guarantee that every of its
instances will always have the same value. To do this, you annotate the attribute to
be hidden and specify the default value to use. For example, imagine that you have
an Address class in the base model having attributes such as Street, PostCode, Town
and Country. If you are certain that your particular model will only be used to
describe things in Brazil, for example, then the Country attribute becomes super-
fluous, so you can hide it by annotating it in the particular model with the default
value Country = Brazil. When doing this, the following reinterpretation rule
applies:

RR.8
An object in K having a class in P as type for which an attribute has been
hidden is reinterpreted as having the specified default values in P for said
attribute.

In the previous example, instances of Address in the particular model will not
show values for Country, since it has been hidden by assuming that we work only
in Brazil. However, when these instances are reinterpreted to conform to the base
model, then the specified default value Country = Brazil is assumed.

370 33 Extending Models

Deleting Enumerated Types or Items

You can delete an enumerated type during extension if you have also deleted every
class (see below) that contains attributes of that type. And you can delete enu-
merated items during extension without any limitations. No reinterpretation rules
apply.

For example, imagine that you extend CHARM and delete every class related to
stratigraphic entities, as you are not interested in them. In this case, you could also
delete the TemporalOrder enumerated type, because no other classes refer to it.

Deleting Classes

You can delete a class during extension if:

1. You delete every one of its descendant classes. That is, if you delete a class, then
you must delete the whole specialization hierarchy rooted in the class, if any.

2. No classes are kept in the model having semi-associations pointing to the
deleted class with a minimum cardinality greater than zero. That is, you can
delete a class if it is not referenced by other (non-deleted) classes with a min-
imum cardinality greater than zero.

3. The class is not an aspect class (subjective or temporal) or, if it is, there are no
features in the model marked with the corresponding aspect. In other words, you
cannot delete an aspect class if the model contains features marked with that
aspect.

For example, in a CHARM extension, we could easily delete the TangibleEntity
class if we also deleted all of its descendants (as per point 1 above), as well as
NamedMeasure, since this contains a semi-association with cardinality 1 towards
TangibleEntity (as per point 2 above). We could not, however, delete Occurrence,
since it constitutes the temporal aspect of the model and there are features marked
as temporal (as per point 3 above). Similarly, we could delete NamedMeasure and
Measure, plus all its descendants, if we were not interested in measuring things, but
we could not delete TangibleEntity and keep NamedMeasure, as the latter points to
the former through an association with cardinality of 1.

No reinterpretation rules apply.

Deleting Features

You can delete a feature during model extension only if it has a minimum cardi-
nality of zero. In the case of associations, you can delete a complete binary

Extension Mechanisms and Reinterpretation Rules 371

association if both semi-associations have minimum cardinalities of zero. When
doing this for attributes, the following reinterpretation rule applies:

RR.9
An object in K having as type a reused class in P from which an attribute has
been deleted is reinterpreted as having a value with null contents for that
attribute in B.

For example, we may delete the EvaluableEntity.Name attribute when extending
CHARM, as it has 0..* cardinality. Any instances of EvaluableEntity in an instance
model conformant to the resulting particular model would be seen as having
Name = null for the sake of interoperability with CHARM.

In the case of associations, no reinterpretation rules apply.

Worked Example

So far, we have stated the extension mechanisms and associated reinterpretation
rules that can be used to construct particular models. Let us now use an example.

Creating a Particular Model

Imagine that we want to extend CHARM for a research project involving Iron Age
hillforts in Atlantic Europe. We are interested in documenting the archaeological
features (such as walls and ramparts), the associated pottery finds and the location
of everything by using coordinates. We are not interested, however, in recording
measurements, managing valorizations or documenting other kinds of things such
as occurrences, agents or performative entities. The resulting particular model
would look like that in Fig. 33.2.

Let us look at the figure in detail. To start with, it is evident that this model is
much smaller than CHARM; it contains only 24 classes as opposed to over 160.
Most of the classes in CHARM have been deleted because they are not relevant to
our purpose. In particular, all classes in the agents, performative, manifestations,
occurrences, abstract, valorizations and derived hierarchies have been deleted. The
only classes that we have kept are those related to tangible entities and absolute
locations, as these comprise the model’s scope. Then, a few classes have been
added to capture the specificity of our project, shaded in grey in the figure. These
include Hillfort and House as subtypes of Construction, Wall and Rampart as
subtypes of ConstructiveElement, and Find and PotteryFind under ObjectEntity.
We have decided to place Wall and Rampart under ConstructiveElement, rather

372 33 Extending Models

than Construction, by reading the definitions of ConstructiveElement and
Construction in CHARM, and realizing that walls and ramparts do not provide a
direct functionality to their end users but are components of larger structures. As
always, the semantics of subtyping must be carefully observed. In relation to Find,
you may wonder why it is necessary, as it contributes no features to the model and
only has one subclass. Indeed, we may have omitted Find and placed PotteryFind
right under ObjectEntity; however, we decided to add the apparently superfluous
Find for two reasons. From an ontological perspective, the word “pottery” in
“PotteryFind” is an adjective, indicating that pottery finds are one particular kind of
finds (which is exactly what we have reflected in the model). From a more practical
perspective, having the Find class in the model means that adding other kinds of
finds such as lithics or bone in the future is very easy; we would only need to add
classes such as LithicFind or BoneFind under Find. If we did not have Find, we
would need to add it whenever we needed these additional find kind classes. This
improves the quality of the model lowering the effort needed to make changes in the
future, as described under the “Proportion” quality criteria in Chap. 31.

Hillfort

[Name]: 1..* Text

WallHouse Rampart

Length: 1 Number
Height: 1 Number

Find

Po eryFind

IsDecorated: 1 Boolean

StructureEn ty (A)

Place (A)

MaterialityOfBoundaries

MaterialEn ty (A)

Material: 1..* enum Material (T)

Nature

CompleteStructure (A)

MaterialIntegrity

0..*

0..*

SubStructure
[SubPlace]

FrameStructure
[FramePlace]

ProducedStructure (A)

Production Technique: 1..*
enum ProductionTechnique

Origin

Constructed Structure (A)

Construction Technique: 1..*
enum ConstructionTechnique (T)

Inten onality

Construc on Construc veElement

TypeOfFunc onality

0..*

1..*

0..*

Content

0..*

(T
)

(T
)

(T
)

(T
)

ObjectEn ty (A)
0..* Content

0..*

(T)

(T)

PrimaryEn ty (A)

TangibleEn ty (A)

Id: 1 Text

Nature

ValuableEn ty (A)

Name: 0..* Text

ModeOfUnderstanding

Nature

TypeOfFunc onality TypeOfFunc onality

Material

Kind

0..*SubPlace

0..*FramePlace

2..*^3..*^ 0..* 0..*

0..*0..*

Atomicity

Spa alDimension

Loca on (A)

ModeOfLoca ng

IsLocatedAt (T)

AbsoluteLoca on (A)

ReferenceSystem: 1 enum SpatialReferenceSystem

Simple
AbsoluteLoca on (A)

AreaLine
Point

X: 1 Number
Y: 1 Number
Z: 0..1 Number

Atomicity
hide WGS84

hide Manual

Element

Fig. 33.2 Particular model for Iron Age hillfort study, extended from CHARM. Grey shading
indicates model elements that have been added or changed as part of the extension process.
Strikeout text indicates deleted elements

Worked Example 373

In addition to deleting many classes and adding some new ones, we have carried
out other changes to CHARM during extension. For example, we have hidden the
AbsoluteLocation.ReferenceSystem attribute by specifying a default value of
WGS84. By doing this, absolute locations such as points and areas would not need
to incorporate the reference system they are employing, as WGS84 will be assumed
throughout. Similarly, we have hidden ProducedStructure.ProductionTechnique by
specifying a default value of Manual, as we assume that every construction and
constructive element that we will document in relation to hillforts will have been
built manually rather than industrially. Also, note that we have deleted the Point.Z
attribute, as we are only interested in 2D coordinates for location purposes in our
project. We have also added an Id attribute to TangibleEntity in order to capture the
fact that every tangible entity documented during the project will be assigned a text
identifier. You may challenge this decision as not too ontologically solid, as tan-
gible entities do not have an id of themselves, as described in the previous chapter.
However, we will accept the Id attribute for pragmatic reasons in this case.

Finally, note that we have added no new associations. How are we going to
document the fact that finds appear inside houses or next to walls, or that walls are
part of houses, and houses and ramparts part of hillforts? We do not need to add
anything to the model to support this; the associations provided by CHARM by
default work perfectly. For example, we can document the fact that a house is part
of a hillfort by using the whole/part self-association in CompleteStructure, inherited
by Hillfort and House. Likewise, we can document the fact that a wall is part of a
house by using the whole/part association from ConstructedStructure and
ConstructiveElement, which is similarly inherited. Inheritance also helps with the
location of entities. Note that every class under ValuableEntity inherits the
IsLocatedAt semi-association towards Location; this means that we can document
the location of any valuable entity no matter what kind it is. For example, we could
document the area coordinates for a hillfort or the point coordinates for a pottery
find.

Using the Particular Model

Let us imagine now that we use the particular model in Fig. 33.2 to document a few
hillforts. Figure 33.3 depicts a sample instance model showing this. According to
the figure, the Wide Fields hillfort is located in an area described by three points
and consist of two rubble stone houses, one of which is named a workshop, as well
as a 12-m-long rampart. Two pottery finds have been documented inside the
workshop house. A few aspects of this instance model are worth mentioning. First
of all, note that, despite conforming to a CHARM-extended particular model (see
Fig. 33.2), the concepts being employed in this instance model (‘hillfort’, ‘rampart’,
‘pottery find’, etc.) are specific to the task at hand. The complexity of CHARM is
barely appreciated here, as the instance model focusses on the specific classes that
are relevant to the project. Most of these classes have been added by us during

374 33 Extending Models

extension, such as Hillfort or Rampart, but others are reused straight from
CHARM, such as Point or Area. Similarly, some attributes have been added during
extension, such as Rampart.Length or PotteryFind.IsDecorated, while others are
reused from CHARM, such as ConstructionTechnique or Material. This show how
extension allows you to reuse whatever is relevant from the base model and add the
missing detail to make the model work for your particular needs.

Secondly, note that this is a very small and simple instance model. A realistic
one would probably contain many more elements with many more attribute values
and links. Also, a realistic model is likely to incorporate extended enumerated
types, something that we have not shown in this example for the sake of simplicity.
For example, we could have extended theMaterials enumerated type in CHARM to
add our own kinds of rock that are relevant to documenting the walls and ramparts
of the hillforts in the project. Finally, and as we have pointed out before, note that
drawing a diagram of an instance model such as that in Fig. 33.3 is not the best
option to represent large and complex data sets. If we had documented dozens of

hf1: Hillfort

Id = “HF307A02 ”
Name = “Wide Fields ”
Material = Rock
ConstructionTechnique =

ModelledEarth; RubbleStoneWork

h1: House

Id = “H02001”
Name = null
Material = Rock

ConstructionTechnique = RubbleStoneWork

h2: House

Id = “H02002”
Name = “Workshop”
Material = Rock

ConstructionTechnique = RubbleStoneWork

SubStructure

SubStructure

Fr
am

eS
tr

uc
tu

re

r1: Rampart

Id = “R02001”
Name = null
Material = Rock
ConstructionTechnique =

ModelledEarth; RubbleStoneWork
Length = 12
Height = 2.4

Fr
am

eS
tr

uc
tu

re

Element

pf1: Po eryFind

Id = “F0201083P”
Name = null
Material = Ceramic
IsDecorated = true

pf2: Po eryFind

Id = “F0201235P”
Name = nul
Material = Ceramic
IsDecorated = false

a1: AreaIsLocatedAt

p1: Point

X = -0.218750
Y = 52.491621

p2: Point

X = -0.218648
Y = 52.491601

p3: Point

X = -0.218698
Y = 52.491734

Fig. 33.3 Instance model conforming to the type model in Fig. 33.2, describing an Iron Age
hillfort plus related entities

Worked Example 375

hillforts having hundreds of houses and thousands of finds, a diagram would be
impractical. In these cases, a database, perhaps complemented by a geographical
information system, would be a better option. Chapter 34 describes how to con-
struct databases from type models.

Interoperating with Other Models

We said at the beginning of this chapter that the goal of model extension is
interoperation and that, for this purpose, instance models confirming to a particular
type model can be reinterpreted to conform to the base model. So, how would the
instance model in Fig. 33.3 be reinterpreted to conform to CHARM? To answer
this, we need to apply the reinterpretation rules that we have described in the
previous section to the model elements in Fig. 33.3. For example, every instance of
Hillfort in Fig. 33.3 must be reinterpreted as an instance of Construction in
CHARM, as per the reinterpretation rule RR.3. In the case of object hf1 in
Fig. 33.3, its type in P is Hillfort, and the most immediate ancestor in B is
Construction. Therefore, hf1 would be reinterpreted as an instance of Construction.
Other rules would need to be applied as well to cater for added and removed
features, hidden attributes, etc. Figure 33.4 shows the final result of reinterpretation.

Let us examine the diagram in the figure. At a first glance, its structure resembles
that of Fig. 33.3 very much; in fact, it is easy to see that the mesh of objects that
make up the instance model has not changed. This is good, as it constitutes a
manifestation of the fact that we have not altered the information that much.
However, the types and contents of individual objects have been slightly altered.
For example, the classes being used as types are now those of CHARM, such as
Construction, ConstructiveElement and ObjectEntity, rather than Hillfort, House,
Rampart and PotteryFind. Similarly, the attributes that had been added during the
extension process are now gone, and the attributes that we had hidden reappear with
their default values, such as ReferenceSystem and ProductionTechnique.

There are several consequences to reinterpretation. Firstly, the information in the
reinterpreted model is more abstract than it was in the source model (see Fig. 33.3).
This is logical, as reinterpretation always takes information expressed in terms of a
particular model and recasts it in terms of a more abstract base model. In other
words, we are losing some details by reinterpreting. For example, we are losing the
identifiers of things, the dimensions of ramparts and whether pottery finds are
decorated or not. Also, we are losing specificity with regard to what things are. For
example, hf1, h1 and h2 are described as being all constructions in Fig. 33.3, but
were differentiated as hillforts and houses in Fig. 33.4. This information loss is
what allows us to move from a more concrete to a more abstract level of
description.

A second consequence is that the instance model in Fig. 33.4 is clearly
CHARM-conformant. This means that anyone who is familiar with CHARM can
read and understand the model, even if they are not aware of the particular model

376 33 Extending Models

that we have used in our project. Think about this. We constructed a particular
model for a project by using CHARM as a base, and then, we employed this
particular model to document some entities. And now we are saying that anyone
who is familiar with CHARM can understand our data, even if they are unfamiliar
with our project. This is a very powerful consequence of extension and reinter-
pretation at work.

Finally, imagine that other people are creating their own particular models by
extending CHARM like we did, each for a different purpose, scope and approach.
Some may be documenting the folklore associated with traditional settlements,
some may be studying the reuse processes of monuments in urban areas, and some
may be looking at museum visitors. No matter what, all their instance models would
be reinterpretable as CHARM-conformant, like we did in our example. And all the
reinterpreted models would be understandable by all parties, no matter how specific
the particular models were. In other words, anyone would be able to read, under-
stand and reuse the information from any project, and integrate or compare it with
their own. This is exactly what we mean by interoperation.

Fig. 33.4 The instance model from Fig. 33.3, after being reinterpreted to conform to CHARM

Worked Example 377

Summary

A type model can be extended to obtain a particular model that contains the
necessary detail for a specific project or purpose.

A particular model remains interoperable with the base model from which it has
been extended, thanks to Liskov compatibility.

During extension, you can add new model elements as well as modify, hide or
delete existing ones.

There are some rules that you must follow when extending a model in order to
guarantee interoperability.

An instance of a particular model can always be reinterpreted to conform to the
base model by following some reinterpretation rules.

By applying reinterpretation rules to various instance models, the information in
them can be easily integrated and compared.

Exercises

54. Create a particular model by extending CHARM to document reuse processes
of urban spaces such as town squares. You should make sure that the model can
describe the different uses that various agents make of urban spaces, and how
some uses produce the appearance or disappearance of other uses. Feel free to
add the necessary elements to capture whatever information seems relevant to
you, but keep the model simple.

55. Use the type model created in the previous exercise to document the fact that
the overtaking of a particular town square by teenager groups for evening
recreational purposes has displaced its use as an improvised parking lot. Draw
the corresponding instance model.

378 33 Extending Models

Chapter 34
Developing Database Systems

Abstract In this chapter, we focus on what is likely to be the most common and
demanded application of conceptual modelling: that of the development of database
systems. We start by introducing databases for those who are not familiar with them
and especially relational databases. We introduce the notions of tables, columns,
rows, primary keys, foreign keys and relationships and provide some examples of
how a simple relational database works. Then, we provide a comprehensive list of
mapping guidelines that can be used to construct a relational database from a
conceptual model. Ten different mapping guidelines are provided, to implement
enumerated types and items, classes and attributes, specialization hierarchies and
associations. Finally, a worked example is provided to illustrate how a relational
database is constructed from a simple type model.

Databases have been used to store and manage information since the 1960s and
have become so mainstream that practically every digital device, from large server
clusters to hand-held devices and mobile phones, uses databases today. From an
intuitive point of view, a database is simply an organized collection of data. The
specific manner in which data is organized is important, since different approaches
to do it yield different limitations and capabilities regarding retrieval, querying,
alteration and reporting. Since the late 1970s, the most widespread and popular
approach to organize databases is the relational approach. Despite what many
believe, “relational” in “relational database” does not refer to the relationships that
exist between data items; to the contrary, it is a vestige of the mathematical
underpinnings of what was called the “relational model” in the 1970s. According to
this model, a “relation” is a collection of data rows having the same structure; in
other words, relational databases are so called because they work on relations, or
lists, of data rows. Other approaches exist to database organization; in fact, the last
few years have seen an increase of non-relational approaches. Still, the relational
approach is by far the most used today and is likely to stay like this for decades. In
this chapter, we will assume the relational approach for our discussion.

Discussing databases assumes that data resides on a computer, rather than on
paper or other medium. In addition, it is often assumed that this computer also

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6_34

379

contains software that is capable of manipulating the data in the database according
to some specific rules. The software systems designed to manage databases are
called (not very originally) database management systems, or DBMSs for short.
Many relational DBMSs (RDBMSs for short) are available in the market, and you
may have heard of, or even used, products such as Microsoft Access, MySQL,
FileMaker Pro, Microsoft SQL Server or Oracle. Some of these systems, such as
Access, can run on a personal computer, while others such as Oracle are designed
for larger servers that attend many users simultaneously. Practically, all modern
RBDMSs employ the Structured Query Language (SQL) to provide instructions to
the system. Decades ago, it was expected that database users would learn SQL and
issue SQL commands to the computer to query or modify the data. Today, this is
not so anymore, and databases are rarely exposed directly to end users except for
small personal ones or for learning purposes. Instead, databases are usually
employed today as back-end systems that are accessed by software applications that
provide a friendly user interface so that common operations on the data can be
easily carried out. As a consequence, you do not need to learn SQL to use databases
anymore. In fact, you probably use many databases every day without even real-
izing, through mobile apps or interactive systems on your computer, mobile phone,
smart TV or the Web.

In any case, databases are excellent at storing and managing data, even very
large amounts of it. As we have stated in a few occasions before, instance models
are a poor solution when you want to document a large number of entities; in cases
like this, you should put your data into a database. A database like this will be an
implementation, in the terms described in Chap. 32; in other words, you will
construct your database by using a conceptual model for guidance.

This chapter starts with a brief summary of how relational databases work,
which you can skip if you are already familiar with them. Then, it provides some
guidelines to construct databases from conceptual models.

Notions of Relational Database Systems

Tables

A relational database is, roughly speaking, a collection of tables, not very different
to what you see when you use a spreadsheet application such as Microsoft Excel.
Since a database usually contains many tables, each one has a name. Often, each
table is designed (and named accordingly) to store data about a particular category
in the world; in this manner, we may have tables named Sites, Finds and
Excavations in a database for archaeology.

Tables are composed of columns and rows. However, and as opposed to a
spreadsheet, columns and rows in a relational table work in very different ways. In a

380 34 Developing Database Systems

spreadsheet, columns and rows are interchangeable; that is, you can easily transpose
data and use the horizontal and vertical directions as you please. For example, you
could list some finds data in a spreadsheet by using a row for each find and each
column for a particular data item of the find, such as its material or dimensions. But
you could do it the other way around: you could lay out the data for each find
vertically, in a column, and use rows for each data item. The layout is a matter of
convenience. In the relational world, however, columns and rows are not inter-
changeable, as we describe below.

Columns

A column in a table corresponds to an item of data that you want to record, such as
someone’s first name or the latitude (or longitude) of a location. Each column has a
name, such as FirstName or Latitude. Columns in a table are fixed, in the sense that
you must know what columns a table has and what their names are. You can add
and remove columns while constructing or modifying a database, of course, but
usually you do not modify a table’s columns during regular use.

A column, in addition, has a data type, which indicates what kind of data items
can be stored under this column. Common data types supported by most RDBMSs
include Booleans, integer numbers, decimal numbers, dates and times, or texts of
various maximum lengths. Each RDBMS has its own particular data types; for
example, Microsoft Access differentiates between Short Text and Long Text, calls
Yes/No to Boolean and distinguishes between six kinds of numeric data types
depending on their maximum number of digits, precision and other characteristics.
In some systems, columns are called “fields”.

Technical
The variety of data types in RDBMSs may seem overwhelming at first,
especially as compared to the simple ConML data types. The reason why
RDBMSs offer such a variety of data types is performance. First of all, some
data types take more storage space in the database than others. For example,
storing a number as single floating point takes 4 bytes, whereas storing it as
double floating point takes 8 bytes. When you are storing millions of rows,
this difference may amount to megabytes in storage space. In principle, you
should always choose the “smallest” data type that satisfies your require-
ments. For example, double floating point offers more precision (roughly,
more decimal places) than single floating point. Use single if you do not need
the extra precision and double if you do.

Secondly, some data types are faster than others when performing sear-
ches, comparing or carrying our computations on the data. Some even may

Notions of Relational Database Systems 381

restrict what kinds of operations are possible. For example, you may sort a
table on a column of the Short Text data type, but you cannot sort a table on a
column of the Long Text data type in Microsoft Access. However, Short Text
can store text strings up to 255 characters long, whereas Long Text has no
upper limit. You should choose Short Text for the sake of sorting, unless you
need the extra maximum length offered by Long Text.

At this point, you may have observed many similarities between database col-
umns and ConML attributes. Both have a name and a data type, although ConML
data types are fewer and much simpler than the data types of a typical RDBMS. In
fact, database columns are a natural implementation mechanism of ConML attri-
butes, as we will describe in the next section.

Rows

A row in a table contains the data items that, collectively, describe a given entity.
For example, imagine a Sites table in an archaeological database, having columns
such as Name, Location and Dating. Each row in the table would correspond to a
particular site and would describe it through its name, location and dating.
Figure 34.1 shows an example. In this example, the Sites table includes three
columns of textual data types and contains four data rows. The top data row, for
example, refers to the Monte Albán site in Oaxaca, and the second describes the
Skara Brae site in Orkney. Here, we show rows alphabetically sorted by Name,
although tables are not intrinsically sorted in a relational database; you can sort your
data in any way you please when you retrieve it.

Note also the null value for Stonehenge’s dating. In the world of databases, null
means that data does not exist, without any indication of what this may be so. As
opposed to conceptual modelling, databases do not distinguish between ontological
and epistemic absence of data (see Chap. 14). In other words, table in Fig. 34.1
states that there is no dating information for Stonehenge, but it does not say whether
this data does not exist or we are not aware of it.

Sites
Name LocaƟon DaƟng
Monte Albán Oaxaca, Mexico Classic American
Skara Brae Orkney, UK Neolithic
Stonehenge Wiltshire, UK (null)
Troy Çanakkale, Turkey Bronze Age

Fig. 34.1 A very simple
Sites table containing three
columns and four rows

382 34 Developing Database Systems

Databases and Models

The example above shows an important fact of relational databases: tables and
columns determine the structure of your data, whereas rows are your data. In other
words, tables and columns play a role similar to that of type models in conceptual
modelling, while rows are analogous to instance models. In the same manner that
columns and attributes have commonalities, rows and objects are similar as well:
each row represents an entity in the world and is arranged in a manner that is
established by the pre-existing structure of the table columns; in the world of
conceptual modelling, each object represents an entity in the world and is arranged
in a manner that is established by the pre-existing structure of its type class. By
following this reasoning, we may say that Fig. 34.1 shows the database equivalent
of having a Site class with Name, Location and Dating attributes, and four Site
instances with the necessary values. Note, however, that tables are usually named in
plural (as in “Sites”), to reflect the fact that they constitute collections of rows; this
is opposed to classes, which are named in singular. A bigger difference between
classes and tables is that classes represent categories in the world, whereas tables
are just lists of rows. In fact, a table may store data for a category in the world, but it
does not have to. Some tables store auxiliary or implementation data that does not
clearly correspond to any relevant category, and this is fine.

The similarities described above may make you think that relational databases
are somehow equivalent to conceptual models or that they can replace them. This is
not the case, because databases and conceptual models work at very different levels
of abstraction, as described in Chap. 32 when discussing implementations. Using a
construction metaphor, a conceptual model corresponds to the plans that the
architect produces, and the house that is constructed from them corresponds to the
database. Constructing a house without a clear design and the necessary plans
would be a bad idea; in the same manner, constructing a database without a clear
design and the necessary conceptual model is a bad idea. You need conceptual
modelling as a tool to determine what you are going to store in your database and
what structure it will have. This idea is the focus of the next section. But, before, we
will explore some additional basic notions of relational database systems.

Primary Keys

We said above that every row in a table describes a particular entity in the world. In
conceptual modelling, we had an object’s identifier as a way to distinguish one
object from others. In the relational database world, we have a similar construct: the
primary key. A primary key is a data item in each row having the purpose to
uniquely identify it and distinguish it from other rows in the same table. Imagine a

Notions of Relational Database Systems 383

Persons table with columns FirstName, LastName and Age. It is perfectly possible
that we have two rows with identical values, because two different people may
share the same name and age. The primary key would allow us to tell the two rows
apart and know which one represents which person.

Sometimes, the primary key is defined through regular columns in the table. For
example, we could say that the primary key of our Sites table above corresponds to
the Name column. No two sites in the table share the same name, so this primary
key would work fine. However, it is possible (although perhaps unlikely) that we
add a new site row at a later stage having a name that clashes with an existing site in
the table; this would cause a problem as we would have two rows with identical
primary keys, which cannot be. To avoid situations like this, it is highly recom-
mended that primary keys are defined in terms of an artificially introduced column
that has no real-world semantics. By “real-world semantics”, we mean data that
describes some observable characteristic of the entities being described, such as a
person’s name or a site’s location. A good primary key, in this manner, is similar to
an object’s identifier, being external to the entity and purely assigned by us for data
management purposes. A good primary key can be a sequential number, a random
string of characters or any other thing. Consider the example in Fig. 34.2. In
Fig. 34.2A, the structure of the Sites table is described by listing its columns, each
one with its name and data type. In B, a new Id column has been added with the
AutoNumber data type and marked as “PK” (primary key) to make up the table’s
primary key. The AutoNumber data type in Microsoft Access is an equivalent to
Integer, but it makes the system to generate sequential numbers every time you add
a new row to the table, making it a perfect choice for primary key columns. Of
course, you can use other data types for your primary keys if you want. Other
RDBMSs do not have an AutoNumber data type, but may have an equivalent one.

Having a primary key in each table is generally not compulsory. However, it is
necessary for certain operations, as we describe below. Since the cost of adding it is
small, we recommend that you always add a primary key to your tables and that you
define it in terms of an artificially added column as described above, using an
self-numbering data type if available.

Sites
Name Short Text
Loca on Short Text
Da ng Short Text

Sites

Name Short Text
Loca on Short Text
Da ng Short Text

Id AutoNumber PK

(A) (B)

Fig. 34.2 The structure of the Sites table from the previous example. In A, the table as it was
defined. In B, a primary key column has been added

384 34 Developing Database Systems

Relationships and Foreign Keys

In the same way that classes can be connected through associations in conceptual
modelling, tables in a database can be connected through relationships. A rela-
tionship is a formal connection between a column in one table and the primary key
of another. For example, imagine a database with a Sites table, as described above,
plus a Finds table. This is shown in Fig. 34.3. As it is, the database would allow us
to store sites data as well as finds data, but there is no way to record in the database
which site each find was found in. To do this, we need to establish a relationship
from Finds to Sites. We do this by adding a new column to Finds that can store the
Id of the corresponding row in Sites. Figure 34.4 shows the result. Here, we have
added a SiteOfOrigin column to the Finds table, with an Integer data type so that it
can store the same information as Id on Sites. In addition, we have marked this
column as a foreign key to the Sites Id column. A foreign key is a column that,
precisely, is expected to store values that can be found in another table’s primary
key, thus “pointing” at it. Figure 34.5 shows some sample data for this. Here, the
SiteOfOrigin column in Finds stores values taken from the Sites primary key col-
umn, that is Id. You can interpret this as a pointer or reference. For example, the
Finds row with Id 19 is a pottery vase fragment found in site 312, which is Monte
Albán. Note that multiple rows in Finds may point to the same row in Sites,
allowing for multiple finds per site. In fact, finds 19 and 28 are recorded as coming
from site 312. However, we can only have one site per find, since the SiteOfOrigin
column can only store one integer value. This asymmetry is the reason why you
always must place your foreign key in the table from which you need to look up a
single row on another table. This is akin to establishing a one-to-many association

Sites

Name Short Text
Loca on Short Text
Da ng Short Text

Id AutoNumber PK
Finds

Material Short Text
Descrip on Long Text
Width Integer

Id AutoNumber PK

Length Integer
Height Integer

Fig. 34.3 Sample Sites and Finds tables

Sites

Name Short Text
Loca on Short Text
Da ng Short Text

Id AutoNumber PK
Finds

Material Short Text
Descrip on Long Text
Width Integer

Id AutoNumber PK

Length Integer
Height Integer
SiteOfOrigin Integer FK Sites

Fig. 34.4 The database from Fig. 34.3 after adding a relationship from Finds to Sites

Notions of Relational Database Systems 385

between classes in conceptual modelling; you need to place the foreign key on the
table corresponding to the “many” side of the association. Also, note that we may
use null values to state that a find has no assigned site. For example, we could
replace the value 312 under SiteOfOrigin for find 19 with null; this would mean that
find 19 has no assigned site.

Having a foreign key like SiteOfOrigin in the example usually means that the
RDBMS that you use will enforce referential integrity on the column. This means
that you will not be able to enter any value under this column, but only values that
can be found under the referenced primary key column. For example, you could not
enter 318 under SiteOfOrigin in the previous example, as there is no row in the Sites
table with this id. Referential integrity is an excellent mechanism to make sure that
your data stays consistent. Some RDBMSs apply referential integrity as soon as you
define a foreign key, while others let you decide whether you want to use it or not.
It is always a good idea to use it unless you have a very good reason not to, which
should happen very rarely.

We have said above that a foreign key points to another table’s primary key.
This is usually so, but it also may be the case that a foreign key points to the
primary key of the same table. This is analogous to self-associations as described in
Chap. 8 and allows us to connect rows in a table to other rows in the same table.
These foreign keys are sometime called self-foreign keys. We will see practical
applications of this mechanism in the next section.

Now, what if we wanted a many-to-many connection between tables? Imagine
that we add a Persons table to the database to keep track of who worked on each
site over time. We would like to connect this table to Sites in such a manner that
every person may be assigned to multiple sites and every site may have multiple
people assigned. We cannot achieve this by adding a foreign key as described
above; we need to add a relationship table instead. A relationship table is a database
table that has the only purpose to connect two other tables and bears no actual data
but only foreign keys. Figure 34.6 shows an example.

Id Name LocaƟon DaƟng
312 Monte Albán Oaxaca, Mexico Classic American
319 Skara Brae Orkney, UK Neolithic
320 Stonehenge Wiltshire, UK (null)
335 Troy Çanakkale, Turkey Bronze Age

Id Material DescripƟon Width Length Height SiteOfOrigin
19 Po ery Vase fragment 7 11 30 312
20 Po ery Vase fragment 6 30 21 335
26 Stone Kitchen utensil 9 28 20 319
28 Po ery Uniden fied fragment 11 64 42 312

Sites

Finds

Fig. 34.5 Sample data for Sites and Finds table. Note the foreign key SiteOfOrigin in Finds
storing values from the Sites primary key

386 34 Developing Database Systems

Here, a PersonsInSites relationship table has been added. This table contains
foreign keys to both Persons and Sites, the two tables that we want to connect. Note
that the columns are named after the associated tables. The relationship table does
not contain any other columns, not even one for a primary key. Each row in a
relationship table like this will store a pointer to rows in each of the related tables
and in our case, Persons and Sites. Figure 34.7 shows some sample data. In this
example, PersonsInSites stores values taken from the primary keys of Persons and
Sites, the tables that we want to connect. Like any other foreign keys, these values
must be interpreted as pointers or references to the corresponding rows. For
example, the data in PersonsInSites indicates that person 8 (Aspen) has worked on
sites 319 (Skara Brae) and 335 (Troy) and that person 19 has worked on site 319
only (Skara Brae). We can also use the relationship table the other way around, to
look up what people have worked on a given site. For example, it is easy to see that
site 319 (Skara Brae) has been visited by persons 8 (Aspen) and 19 (Gertraud).

Sites

Name Short Text
Loca on Short Text
Da ng Short Text

Id AutoNumber PK
Persons

GivenName Short Text
FamilyName Short Text

Id AutoNumber PK

PersonsInSites
Person Integer FK Persons
Site Integer FK Sites

Fig. 34.6 Database structure having Persons and Sites tables, plus a PersonsInSites relationship
table to connect the two

Persons
Id GivenName FamilyName
8 Aspen Schwarz
17 Zeinab Carbone
19 Gertraud Kuijpers

Sites
Id Name LocaƟon DaƟng
312 Monte Albán Oaxaca, Mexico Classic American
319 Skara Brae Orkney, UK Neolithic
320 Stonehenge Wiltshire, UK (null)
335 Troy Çanakkale, Turkey Bronze Age

PersonsInSites
Person Site
8 319
8 335
19 319
17 335
17 312

Fig. 34.7 Sample contents of
the database in Fig. 34.6.
Note the foreign keys in
PersonsInSites pointing at
primary keys in Persons and
Sites

Notions of Relational Database Systems 387

When using relationship tables, you do not need to use null values to indicate
missing data; you just simply omit the necessary row. For example, according to the
example above, nobody has ever worked on site 320 (Stonehenge), because no row
in the PersonsInSites table contains 320 under Site.

Additional Database Concepts

Relational databases are a very mature technology, and some RDBMSs are rich in
features that you may never use to their full extent. Also, we cannot cover much
more in this brief introduction to database systems. We will only mention two
additional concepts that may be useful to you.

When you foresee that a column will be used very often to carry out searches or
sortings, you may want to index it. An index is a data structure that accompanies a
table and which pre-computes the necessary information so that searches and
sortings on the indexed columns are much faster. For example, you may want to
index the Name column of Sites if you think you will often search sites by name or
sort sites on their name. Of course, you can index many columns, even all of them,
for better performance. But bear in mind that as indexes improve performance when
searching or sorting, they decrease it when adding new rows or modifying or
deleting existing ones. Often, you will need to do some trial-and-error testing to find
a good compromise. In any case, primary keys are always indexed automatically by
the system. Foreign keys are not automatically indexed, but you may want to index
them because they are often employed to look up rows.

A second interesting concept is that of constraints and validation rules.
Most RDBMS let you assign constraints to a column in order to limit what values
may be stored there. The simplest and most common kind of constraint, supported
by virtually every RDBMS, is nullability. This involves specifying whether data for
a column may be null or not. Usually, columns that must always hold a value
should be defined as not nullable, whereas columns that may hold values but may
also be blank should be defined as nullable. Nullable columns are usually labelled
as such next to their data type specification.

Other kinds of constraints are possible, although they vary a lot between
RDBMSs. Most let us establish a maximum length for text columns, in order to
limit the amount of data that can be entered. Also, some RDBMSs support
user-defined constraints. For example, you may add a constraint under Age in
Person stating that its values must be between 18 and 99, to minimize spurious data
or typos. You could also add a constraint to make sure that values under
GivenName and FamilyName use initial capitals. Constraints are often useful to
validate data, although they are rarely enough to ensure data quality overall.

In this section, we have discussed the very basics of relational databases. The
following section uses the concepts introduced here to describe how databases can
be designed and constructed from conceptual models.

388 34 Developing Database Systems

Mapping Guidelines

As we have explained elsewhere, one of the frequent purposes of a conceptual
model is to document relevant entities. In these cases, you construct a type model
that describes the categories of things that you are interested in, and then, you create
an instance model to represent actual things conforming to this type model.
A database is an ideal device to store and manipulate large or complex instance
models. However, you cannot put an instance model directly into a database,
because the relational world organizes data in tables, columns and rows, and an
instance model needs objects, values and links. Fortunately, we can “translate”
between the object-oriented paradigm of conceptual models and the relational
paradigm of databases. This is achieved through mapping guidelines, which
describe how to implement each kind of conceptual modelling construct in terms of
database constructs. In this section, we provide some mapping guidelines that will
allow you to create relational databases from conceptual models. These guidelines
are not set in stone, and you may find different approaches to implementation from
different sources. The guidelines that we present here have been used by the author
for some time and are often employed for teaching and research purposes.
However, please bear in mind that these are just guidelines, not strict rules, and
other options are indeed possible.

The first mapping guideline is very simple.

MG.1
A type model is implemented as a database structure. An instance model is
implemented as the database contents.

This means that you can implement a whole type model as a database structure,
that is a collection of tables. It also means that an instance model conforming to that
type model will be implemented as the data contents of that database. If you want to
implement multiple instance models conforming to the same type model, you will
need to make copies of the database structure.

Implementing Enumerated Types and Items

All the enumerated types and items in your type model can be easily implemented
as a single table.

MG.2
Create a table EnumeratedItems if there are enumerated types in the model.
Add an Id column for the primary key, a text EnumeratedTypeName column

Mapping Guidelines 389

for the enumerated type name, a text Name column for the enumerated item
name and a nullable integer Parent column as a self-foreign key.

For example, imagine that we have the following enumerated types in a model:

WorldRegions: Europe
France
Germany
Spain

Asia
China
Japan

Colours: Red
Green
Blue

According to MG.2, your database structure would look like that in Fig. 34.8.
Now, you would populate this table with the data from the two enumerated types
defined above, as shown in Fig. 34.9. The EnumeratedItems table is generic; that is,
it can store any enumerated types, plus their items, that you may have in your
model. Also, if you add new enumerated types or items in the future, or want to
change the existing ones, you do not need to alter the database structure: you simply
add new rows to the table or modify the existing ones.

Note in Fig. 34.9 that every row corresponds to an enumerated item, no matter
what type it belongs to. Correspondingly, each enumerated item has its own pri-
mary key as provided by the Id column. The EnumeratedTypeName stores the name
of the enumerated type each item belongs to, repeating values as much as necessary.
The Name column stores the enumerated item name. Finally, the Parent column

EnumeratedItems

EnumeratedTypeName Short Text
Name Short Text

Id AutoNumber PK

Parent Integer (null) FK EnumeratedItems

Fig. 34.8 Database structure
implementing generic
enumerated types and items

EnumeratedItems
Id EnumeratedTypeName Name Parent
1 WorldRegions Europe (null)
2 WorldRegions France 1
3 WorldRegions Germany 1
4 WorldRegions Spain 1
5 WorldRegions Asia (null)
6 WorldRegions China 5
7 WorldRegions Japan 5
8 Colours Red (null)
9 Colours Green (null)
10 Colours Blue (null)

Fig. 34.9 Enumerated type
and item contents for the
WorldRegions and Colours
enumerated types

390 34 Developing Database Systems

works as a self-foreign key, storing the id of each item’s parent item. For root items,
this column stores a null value, since root items do not have a parent.

In this manner, we can store enumerated items in the database and keep a unique
identifier for each of them that we will use later.

Implementing Classes and Attributes

In general, you will need to create a database table for each class in your model and
a column for each attribute. This may change slightly for classes involved in
specialization hierarchies, as we discuss below.

MG.3
Create a table for each class, named after the class but using the plural. This is
called a class-table. Add an Id column for the primary key and a column for
each single-valued attribute declared by the class, choosing the appropriate
data type and nullability.

For example, imagine that we have the class shown in Fig. 34.10 in our type
model. According to MG.3, your database structure would look like that in
Fig. 34.11. In class-tables like this, each row corresponds to an instance of the
associated class, Building in our example. Also, each column stores the value for
the corresponding attribute in the class. For example, the Height column will store
values for each instance’s height in our example.

The choice of data type can be tricky. As we described in the previous section,
RDBMSs often provide a wide range of data type options. You will need to
evaluate the semantics and expected values for each attribute and select the best

Building

Height: 1 Number
Style: 0..1 enum Styles
Description: 0..1 Text

Fig. 34.10 Sample class to
be implemented in a database

Buildings

Height Integer
Style Integer (null)

Id AutoNumber PK

Descrip on Long Text (null)
FK EnumeratedItems

Fig. 34.11 Database
structure implementing the
Building class in Fig. 34.10

Mapping Guidelines 391

database data type. For example, if you are using Microsoft Access, Integer would
look like a good option for Height, as it can store numbers without decimals in a
more than acceptable range. Similarly, Long Text looks like a good option for
Description; Short Text would not be suitable, as it is limited to 255 characters of
text, and we know that building descriptions may well go above this. In any case,
attributes having a zero minimum cardinality, such as Style or Description in the
example, must be implemented as nullable columns, since instances may have no
values for them; correspondingly, attributes having greater than zero minimum
cardinality, such as Height in our example, must be implemented as not nullable
columns in order to avoid blanks.

Look now at how we have implemented the Style enumerated attribute in
Fig. 34.11. We have chosen an Integer data type, as the column is defined to be a
foreign key to the EnumeratedItems table that we created earlier. This establishes a
relationship between the Buildings table and EnumeratedItems, so that the values
under Style in Buildings will correspond to enumerated item ids. Consider the
example in Fig. 34.12. In this example, the EnumeratedItems table stores data for
the Styles enumerated type. The Buildings table, in turn, contains data for two
buildings. The first one, with Id 4, is an 11-m-high Baroque old town hospital, and
the second one, with Id 5, is of Romanesque style. Note how each value under Style
refers to a row in the EnumeratedItems table. This manner to implement
enumerated-typed attributes can be summarized as an additional mapping guideline:

MG.4
Implement enumerated-typed attributes as an Integer column in the
class-table, defined as a foreign key to the EnumeratedItems table.

Note that all the attributes in the example above have a maximum cardinality of
1. In other words, they are not multi-valued. This makes database implementation
straightforward, as they can be implemented as columns in the corresponding table.
But what if our model contains multi-valued attributes? In this case, we cannot use
a column as above, since a column can only store one single value.

Id EnumeratedTypeName Name Parent
15 Styles Romanesque (null)
16 Styles Baroque (null)
17 Styles Neoclassical (null)

Id Height Style DescripƟon
4 11 16 Old town hospital.
5 8 15 (null)

EnumeratedItems

Buildings

Fig. 34.12 Sample data
content for the Buildings and
EnumeratedItems tables

392 34 Developing Database Systems

MG.5
For each multi-valued attribute in a class, add a new table named after the
associated class and attribute. This is called an attribute-table. Add a column
named after the class of Integer type and defined as a foreign key to the
associated class-table, plus a not nullable column named after the attribute,
choosing the appropriate data type.

For example, imagine that we modify the previous sample class to incorporate a
multi-valued attribute, as shown in Fig. 34.13. Incorporating MG.5, your database
structure would look like that in Fig. 34.14. Here, the Buildings class-table
implements most of the Building class, but leaves out the Style attribute, as it has a
greater than zero maximum cardinality. There is a specific attribute-table, named
Buildings_Style, to do this. In this table, each row represents a particular style of a
given building. The Building column stores the associated building id, and the Style
column stores the id of the corresponding enumerated item. Figure 34.15 shows
some sample data. In this case, note that the Buildings table does not hold any
information about the buildings’ style. This is stored separately in the
Buildings_Style table. Here, building 4 (the old town hospital) is stated to have
styles 16 (Baroque) and 17 (Neoclassical), and building 5 is stated to be of style 15
(Romanesque).

When using attribute-tables like this, the choice of data type for the attribute
being implemented follows the same rules as we described for class-tables. In our
example, we implemented the Style attribute as an Integer plus a foreign key to

Building

Height: 1 Number
Style: 0..* enum Styles
Descrip tion: 0..1 Text

Fig. 34.13 The Building
class from Fig. 34.10 after
changing the Styles attribute
to become multi-valued

Buildings

Height Integer
Id AutoNumber PK

Descrip on Long Text (null)

Buildings_Style
Building Integer FK Buildings
Style Integer FK EnumeratedItems

Fig. 34.14 Database structure implementing the Building class in Fig. 34.13

Mapping Guidelines 393

EnumeratedItems, which is the best option for enumerated attributes. However, and
as opposed to regular class-tables, you never use nullable columns in
attribute-tables, since the absence of data is not indicated by null values but by not
entering any rows in the attribute-table.

Implementing Specialization Hierarchies

Most classes in a type model are likely to be involved in a specialization hierarchy.
The guidelines that we gave above to implement classes should be applied as a
general case, but they need to be slightly altered for classes having generalized or
specialized classes. There are three approaches to implementing a specialization
hierarchy in a relational database:

1. Single table. You create a single table to implement all the classes in the
hierarchy, with columns for all the attributes together.

2. One table per leaf class. You create a table for each class in a leaf position in
the hierarchy, with columns for each owned or inherited attribute.

3. One table per class. You create a table for each class in the hierarchy, with
columns for each declared attribute.

We describe the details of each approach below, including its pros and cons in
relation to the others.

Single table. In this approach, you create a single table to implement all the
classes in the specialization hierarchy.

EnumeratedItems
Id EnumeratedTypeName Name Parent
15 Styles Romanesque (null)
16 Styles Baroque (null)
17 Styles Neoclassical (null)

Buildings
Id Height DescripƟon
4 11 Old town hospital.
5 8 (null)

Buildings_Style
Building Style
4 16
4 17
5 15

Fig. 34.15 Sample data
content for the Buildings,
Buildings_Style and
EnumeratedItems tables

394 34 Developing Database Systems

MG.6
Create a table for all the classes in the hierarchy, named after the root class
but using the plural. Add an Id column for the primary key, a Type column for
the row type and a column for each single-valued attribute declared by the
class or any of its descendants, choosing the appropriate data type and
nullability.

For example, imagine that we have the specialization hierarchy shown in
Fig. 34.16 in our type model. According to MG.6, your database structure would
look like that in Fig. 34.17.

In tables like this, each row corresponds to an instance of the root class in the
hierarchy, Building in our example. Since the root class has a number of subclasses,
the instances of Building that we will document by using this model are going to be

Building (A)

Height: 1 Number

House (A)

NumberOfOccupants: 1 Number

ShoppingMall

OpeningHours: 1 Text

Barn

Capacity: 1 Number

Bungalow

HasLoft: 1 Boolean

FarmHouse

NumberOfOutbuildings: 1 Number

Func on

Structure

Fig. 34.16 A specialization hierarchy to be implemented in a database

Buildings

Height Integer

Id AutoNumber PK

NumberOfOccupants Integer (null)

Type Short Text

Capacity Integer (null)
OpeningHours Short Text (null)
HasLo Yes/No (null)
NumberOfOutbuildings Integer (null)

Fig. 34.17 Database
structure implementing the
specialization hierarchy in
Fig. 34.16 using a single table

Mapping Guidelines 395

not just buildings but, more specifically, bungalows, farm houses, barns or shop-
ping malls. Consequently, different rows in the Buildings table will correspond to
buildings of different types: one row may be describing a bungalow, the next row a
shopping mall, the next a farmhouse, etc. The Type column has the purpose of,
precisely, recording what kind of building each row is. See Fig. 34.18. Here, the
building with Id 4 is a bungalow, as indicated by the value “Bungalow” under Type.
However, the building with Id 5 is a shopping mall, and the one with Id 6 is a barn.
In this case, we have decided to implement the Type column as having a text data
type, so that we can store the name of the class corresponding to each row. This is a
clear but not very optimal way to implement this column, as texts take a lot of
storage space in the database. If you are planning to store a large number of rows in
your database, you may want to implement Type as an integer column and keep
some encoding that allows you to distinguish rows according to their type. For
example, you could decide that Type 1 means Bungalow, Type 2 means
FarmHouse, etc. In any case, the Type column dictates how the rest of the columns
in the table should be interpreted. For example, note that row with Id 4 in the
example above, corresponding to a bungalow, has values for Height,
NumberOfOccupants and HasLoft, which is what we would expect from the type
model from which the table was implemented. Other columns such as Capacity or
OpeningHours do not make sense for bungalows, since they belong to other classes
in the model, and for this reason, they hold null values in the table. The row with Id
5, for example, corresponds to a shopping mall, so it has values for Height and
OpeningHours, as dictated by the model, but does not have values for
NumberOfOccupants or HasLoft. In this manner, when retrieving data from a table
that implements a complete specialization hierarchy, you must always look at the
value under Type before you attempt to interpret what is stored under other
columns.

In addition, note that all the columns corresponding to attributes in descendant
classes have been defined as nullable in Fig. 34.17, regardless of their minimum
cardinality. This is necessary to allow null values in rows of various types, as
described above.

This approach to implementing specialization hierarchies is simple and neat, as it
concentrates all the information in a single table. It also allows for the easy retrieval
of rows that correspond to any particular class in the hierarchy. For example, if you
wanted to get all the buildings in the database, you would just query for all the rows
in Buildings. If you only wanted the farmhouses, you would query the table with a
filter on Type = “FarmHouse”. If you wanted all houses, you would query the table

Buildings
Id Type Height NumberOfOccupants Capacity OpeningHours HasLoŌ NumberOfOutbuildings
4 Bungalow 5 3 (null) (null) true (null)
5 ShoppingMall 13 (null) (null) 9:00 to 19:00 (null) (null)
6 Barn 7 (null) 8500 (null) (null) (null)
7 FarmHouse 8 5 (null) (null) (null) 3

Fig. 34.18 Sample data content for the Buildings table in Fig. 34.17

396 34 Developing Database Systems

with a filter on Type = “Bungalow” OR Type = “FarmHouse”. This approach,
however, has the disadvantage that it generates a lot of null values, as illustrated in
Fig. 34.18. Depending on the RDBMS that you use, this may result in lower
performance and wasted storage space. It also generates a single set of identifiers
(primary keys) for all buildings, regardless of their type. This may be good or bad
depending on how you plan to use your database.

One table per leaf class. In this approach, you create a table for every class in a
leaf position in the specialization hierarchy.

MG.7
Create a table for every leaf class in the hierarchy, named after the class but
using the plural. In each table, add an Id column for the primary key and a
column for each single-valued attribute owned or inherited by the class,
choosing the appropriate data type and nullability.

We will use the specialization hierarchy depicted in Fig. 34.16 to illustrate this
approach. According to MG.7, your database structure would look like that in
Fig. 34.19.

As opposed to the previous approach, here we do not need a Type column, since
each row is placed in a table that corresponds to its particular type. All bungalow
rows are stored in the Bungalows table, all barn rows in the Barns table, etc. We
only need to create tables for leaf classes because non-leaf classes are abstract, and
therefore, they cannot have direct instances.

One big advantage of this approach is that it is highly optimal regarding data
storage. However, it has the drawback that it becomes harder to query the database
for information related to non-leaf classes. For example, if we wanted to retrieve all
the houses in the database, regardless of whether they are bungalows or farmhouses,
we would need to retrieve all bungalows and then all farmhouses and then con-
solidate the results. Retrieving all buildings that match some criteria (e.g. that are
over 10 m high) is even less optimal, as you would have to apply the filter to each
individual table and then consolidate the results. Many RDBMSs support union
queries, which allow you to perform the consolidation in the database itself. In any

Bungalows

Height Integer
Id AutoNumber PK

NumberOfOccupants Integer
HasLo Yes/No

FarmHouses

Height Integer
Id AutoNumber

NumberOfOccupants Integer
NumberOfOutbuildings Integer

Barns

Height Integer
Id AutoNumber PK

Capacity Integer

ShoppingMalls

Height Integer
Id AutoNumber PK

OpeningHours Short Text

PK

Fig. 34.19 Database structure implementing the specialization hierarchy in Fig. 34.16 using one
table per leaf class

Mapping Guidelines 397

case, be aware that this approach generates separate sets of identifiers (primary
keys) for each leaf class-table, so that you may end up having a bungalow with Id 4
and a barn with Id 4 as well. This means that you will need to introduce a dis-
criminant when consolidating data from multiple tables, either manually or on a
union query if supported.

One table per class. In this approach, you create a table for every class in the
specialization hierarchy.

MG.8
Create a table for every class in the hierarchy, named after the class but using
the plural. For the table corresponding to the root class, add an Id column for
the primary key; for the other tables, add an Id column for the primary key
and make it a foreign key to the table corresponding to the generalized class.
Then, for each table, add a column for each single-valued attribute declared
by the class, choosing the appropriate data type and nullability.

Like in the previous case, we will use the specialization hierarchy depicted in
Fig. 34.16 to illustrate this approach. According to MG.8, your database structure
would look like that in Fig. 34.20.

This approach resembles the previous one, but goes one step beyond to
implement a table for every class in the hierarchy, including abstract classes. Also,
the tables are related through foreign keys reproducing the generalization rela-
tionships in the model. The table corresponding to the root class, Buildings in our
example, has a regular Id column as primary key, defined as AutoNumber as usual.
However, tables corresponding to subclasses of the root, such as Houses, do not
incorporate an AutoNumber primary key; rather, they use a non-automated Integer
column that links back to the primary key in Buildings. In this manner, a row in
Houses would have a corresponding row in Buildings, connected through a com-
mon Id. Figure 34.21 shows an example. Here, note that the data for every building
is scattered across multiple tables. For example, the data for the bungalow with Id 4
is distributed between the Buildings table (which stores the height), Houses (which
stores the number of occupants) and Bungalows (which stores whether there is a

Bungalows
Id Integer
HasLo Yes/No

FarmHouses
Id
NumberOfOutbuildings Integer

Barns
Id
Capacity Integer

ShoppingMalls
Id
OpeningHours Short Text

Buildings

Height Integer
Id AutoNumber PK

Houses
Id Integer PK, FK Buildings
NumberOfOccupants Integer

PK, FK Houses Integer PK, FK Houses

Integer PK, FK Buildings Integer PK, FK Buildings

Fig. 34.20 Database structure implementing the specialization hierarchy in Fig. 34.16 using one
table per class

398 34 Developing Database Systems

loft). Each non-root table traces back to the previous through its Id. For example,
note that there is a row with Id 4 in the three tables mentioned; this means that these
rows pertain to the same entity; in other words, they collectively hold data that
describes the same thing in the world.

An advantage of this approach is that no redundancy exists. Attributes that
belong to abstract classes in the model, such as Height, are implemented in one
place only, rather than in multiple tables as in the previous approach. Avoiding
redundancy like this improves modularity and hence quality. However, this results
in data for every instance being scattered across multiple tables, which makes
retrieval much more difficult than with previous approaches. For example, if you
wanted to retrieve all bungalows in the database, you would need to retrieve all the
rows in the Bungalows table and then the rows in Houses and Buildings with
matching ids and then consolidate the results. This is often carried out through a
database mechanism called a join, and most RDBMSs support joins as part of their
query facilities.

Implementing Associations

There are many kinds of associations as we described in previous sections.
However, all of them are implemented in very similar ways when constructing a
relational database. There are two approaches to consider:

1. One-to-many. Associations having a maximum cardinality of 1 in at least one
direction are implemented as a column.

2. Many-to-many. Associations having maximum cardinalities larger than 1 in
both directions are implemented as a relationship table.

We describe the details of each approach below.
One-to-many. Use this approach when the association to be implemented has at

least one semi-association with a maximum cardinality of 1.

Buildings
Id Height
4 5
5 13
6 7
7 8

Houses
Id NumberOfOccupants
4 3
7 5

Bungalows
Id HasLoŌ
4 true

FarmHouses
Id NumberOfOutbuildings
7 3

Barns
Id Capacity
6 8500

ShoppingMalls
Id OpeningHours
5 9:00 to 19:00

Fig. 34.21 Sample data
content for the tables in
Fig. 34.20. This is the same
data as in Fig. 34.18, but laid
out in a different fashion

Mapping Guidelines 399

MG.9
Find the table that implements the class in the “many” side of the association.
Add a column named after the corresponding semi-association or its role, and
make it a foreign key to the table corresponding to the “one” side of the
association.

For example, imagine that we have the type model shown in Fig. 34.22.
According to MG.9, your database structure would look like that in Fig. 34.23.

Most of the database structure here has been implemented by following MG.3
above. However, look at the new column Location in the Buildings table. This
column implements the IsLocatedIn association in Fig. 34.22. Following MG.9, the
table corresponding to the class in the “many” side of the association is Buildings.
The new column has been named after the role in the semi-association pointing at
the “one” table, and it has been made a foreign key to this table. In this manner,
each row in Buildings not only contains data about the building’s height and
description; now, it also points to the row describing the city where the building is
located. Since the cardinality for this semi-association is 0..1, we have defined this
column as nullable, in order to allow for buildings that are not located in any city.

Traversing the association in the opposite direction can be done in an indirect
manner. Imagine that you want to know what buildings in your database are located
in a particular city. Since there is no column in Cities pointing at Buildings, you
would need to query the Buildings table for all those rows having Location equal to
the id of the city you are interested in.

Building

Height: 1 Number
Style: 0..1 enum Styles
Descrip tion: 0..1 Text

City

Name: 1 Text
Population: 1 Number

IsLocatedIn 0..10..*

Loca on

Fig. 34.22 Sample model to be implemented in a database

Buildings

Height Integer
Id AutoNumber PK

Descrip on Long Text (null)

CiƟes

Name Short Text
Id AutoNumber PK

Popula on Integer

Loca on Integer (null) FK Ci es

Fig. 34.23 Database
structure implementing the
model in Fig. 34.22

400 34 Developing Database Systems

Finally, there is an uncommon situation that you should be aware of. Sometimes,
we have one-to-one associations, that is associations with maximum cardinality of 1
in both directions. This is rare, but can occur. In these cases, you apply MG.9
equally, but since there is no “many” side to the association, you can place the
implementation column in either table. Do not place a column in each table to
obtain a “double link”, because this produces a redundant situation that is difficult
to maintain.

Many-to-many. Use this approach when both semi-associations in the associ-
ation to be implemented have a maximum cardinality greater than 1.

MG.10
Create a table for the association, named after the involved classes and the
association itself, using the plural. Add two columns to this table, named after
each of the involved classes or the associated semi-association roles, and
make them foreign keys to the corresponding tables.

For example, imagine that we have the type model shown in Fig. 34.24.
According to MG.10, your database structure would look like that in Fig. 34.25.

Like in the previous case, the Buildings and Organizations tables in this example
have been created by applying MG.3 above. The Organizations_Use_Buildings
relationship table, however, has been created by following MG.10. Note that it has
been named after the association being implemented plus the corresponding classes.
Also, note that it contains two columns defined as foreign keys to the classes
connected by the association. The Organization column may have been named
User instead, as this is the role name employed by the corresponding
semi-association in the model. Rows in this table store pairs of ids describing links
between a building and an organization. If you want to link a building to multiple
organizations, you will need to enter the id of the building in multiple rows, each of
them having a different organization id. And vice versa, if you want to link an
organization to multiple buildings, you will need to enter the id of the organization
in multiple rows, each of them having a different building id.

No matter what approach you use to implement an association, you will always
need tables in the database corresponding to the classes to be connected. If these
classes are involved in a specialization hierarchy, you may not have implemented
tables for them; for example, look at MG.6 above and Fig. 34.17. If you want to
implement an association involving a class for which no table has been created, you

Building

Height: 1 Number
Description: 0..1 Text

OrganizaƟon

Name: 1 Text

Uses 0..10..*

User

Fig. 34.24 Sample model to be implemented in a database

Mapping Guidelines 401

will need to add the table to the database. For this reason, it is a good idea to
consider whether classes in a specialization hierarchy are involved in associations
before you decide on an approach to implement them. The example in the next
section shows this in practice.

Worked Example

Let us develop a complete worked example. Imagine that we have the type model
shown in Fig. 34.26 and that we want to implement it as a relational database.

The model is composed of a small specialization hierarchy rooted on
Archaeological-Element, plus an associated Site class. First of all, we have an
enumerated type in the model, Materials, so we will need an EnumeratedItems
table. We might use a single table approach to implement ArchaeologicalElement
plus descendants, but this would be a bad idea, since Find is involved in an
association, which means that we will need a table for Find. The one table per leaf
class approach would not work either, as we will need a table for
ArchaeologicalElement as it is also involved in associations. For this reason, we
choose a one table per class approach. Note also that the ArchaeologicalElement.
Material attribute is multi-valued, so we will need an attribute-table for it. Finally,

Buildings

Height Integer
Id AutoNumber PK

Descrip on Long Text (null)

OrganizaƟons

Name Short Text
Id AutoNumber PK

OrganizaƟons_Use_Buildings

Building Integer
Organiza on Integer FK Organiza ons

FK Buildings

Fig. 34.25 Database
structure implementing the
model in Fig. 34.24

Site

Name: 1 Text
Longitude: 1 Number
Latitude: 1 Number

Find

IsDecorated: 1 Boolean

Feature

Dimensions: 0..1 Text

ArchaeologicalElement (A)

Id: 1 Text
Material: 1..* enum Materials
Description: 0..1 Text

Kind

AppearedIn0..1 0..* IsAssociatedTo0..*

0..*

Fig. 34.26 Sample model to be implemented in a database

402 34 Developing Database Systems

the AppearsIn association, being one-to-many, will be implemented as a column,
whereas IsAssociatedTo, being many-to-many, will need a relationship table.
Figure 34.27 shows the final database structure.

Summary

Databases constitute an excellent technology to store and manipulate large col-
lections of data.

The relational paradigm to databases organizes data in terms of tables, columns
and rows.

A relational database can be a very good way to store your instance models.
The structure of your database will be constructed after your type model. The

contents of the database will correspond to an instance model.
There are some mapping guidelines to help you construct a database based on a

type model.
Enumerated types and items are implemented as a single generic table.
Usually, you will have one table per class in the model and one column per

single-valued attribute.
Multi-valued attributes need each a special table.
Specialization hierarchies can be implemented as a single table, as one table per

leaf class or as one table per class. Each approach has some pros and cons.
One-to-many associations are implemented as a column in the table for the

“many” side.
Many-to-many associations are implemented as a relationship table.

EnumeratedItems

EnumeratedTypeName Short Text
Name Short Text

Id AutoNumber PK

Parent Integer (null) FK EnumeratedItems

Sites

Name Short Text
Id AutoNumber PK

Longitude Decimal
La tude Decimal

ArchaeologicalElements

Descrip on Long Text (null)
Id AutoNumber PK

ArchaeologicalElements_Material

Material Integer
ArchaeologicalElement Integer FK ArchaeologicalElements

FK EnumeratedItems

Features

Dimensions Long Text (null)
Id Integer PK, FK ArchaeologicalElements

Finds

IsDecorated Yes/No
Id Integer PK, FK ArchaeologicalElements

Finds_AreAssociatedTo_ArchaeologicalElements
Find Integer
ArchaeologicalElement Integer FK ArchaeologicalElements

FK Finds

AppearedIn Integer (null) FK Sites

Fig. 34.27 Database structure for the model in Fig. 34.26

Worked Example 403

Exercises

56. Look at the type model below. Create the structure for a relational database
mapping the model.

Museum

Name: 1 Text
Location: 1 Text

Person

GivenName: 1 Text
FamilyName: 1 Text

Visit

Date: 1 Time
Duration: 1 Number
Assessment: 0..1 Text

TakesPlaceIn

1 0..*

Involves

Visitor
0..* 1..*

CiƟzen

PlaceOfResidence: 1 Text

MemberOfStaff

StaffId: 1 Text

Kind

404 34 Developing Database Systems

Part 5
Recap of Part V

This is the end of Part V. In this part, we have explored some topics about the
application of conceptual modelling techniques to real-world situations, including
modelling patterns, quality issues, the modelling process, model extension and the
construction of relational databases from models. Although most of these themes
have been discussed introductorily, you now have the basis to explore them in
greater depth if you are so inclined.

It is worth mentioning here that most of the contents in this part have been
presented in the form of guidelines or recommendations to construct better models.
Patterns are a proven approach to reusing established knowledge, and the incre-
mental and iterative process described in Chap. 32 is based on well-tested
methodological solutions that are common in information systems development.
This emphasis on quality is not gratuitous, as there is a big difference between
knowing how to model and knowing how to model well. Most texts on computing
or information technologies for the humanities describe the basics, but few address
the necessary concerns to go beyond those basics and pave your way towards
professional competence.

This is also the end of the book. If you have reached this far, you are probably
better at conceptual modelling now than many software engineers. If you manage to
apply your newly gained skills to archaeology, anthropology and other humanities
related to the cultural heritage, then this book has fulfilled its goal.

Solutions to Exercises

This section contains proposed solutions to the exercises suggested along the book.
Please bear in mind that most exercises don’t have a single correct solution; in
modelling, one problem usually has multiple valid solutions depending on your
purpose, situation and even personal preferences. Take the following solutions as a
guide rather than absolute answers.

1. Find a picture of the painting Automat by Edward Hopper on the web. Imagine
you want to describe the painting to someone who doesn’t know about it. Draw
a diagram showing three objects that represent entities in the painting. Don’t
forget to give the objects meaningful identifiers and categories.

p: Person c: Cup t: Table

2. Complete the objects from Exercise 1 by adding some values to them. Focus on
values related to the appearance of the entities in the painting. You can make up
some characteristics if you want. Remember that objects of the same category
must be described having the same list of value names.

p: Person

Age = 27
Gender = “Female”
Posture = “Sitting”

t: Table

Shape = “Round ”
Colour = “White”; “Brown”

c: Cup

Colour = “White”

3. Further complete the previous model by adding links between the objects. You
may add as many links as needed. Focus on the physical and spatial relation-
ships between entities in the painting.

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6

407

p: Person

Age = 27
Gender = “Female”
Posture = “Sitting” t: Table

Shape = “Round”
Colour = “White”; “Brown”

c: Cup

Colour = “White”

4. Imagine that you want to study how buildings are organized to make up towns.
Draw a diagram showing two or three classes that describe this situation. Give
the classes good names, and define them. Add some properties to the classes to
represent the relevant characteristics.

Town

Name: 1 ?

Street

Name: 1 ?
Length : 1 ?

Building

Number : 1 ?
Style: 0..* ?
ConstructionYear : 1 ?

A town is an aggregation of buildings that make up streets.
A street is a space within a town that organizes buildings along a line.
A building is a construction in a town.

5. Look again at the diagram you created for Exercise 4, and convert as many
properties into attributes in it. Use the best data types and re-think the
cardinalities.

Town

Name: 1 Text

Street

Name: 1 Text
Length : 1 Number

Building

Number : 1 Number
Style: 0..* Text
ConstructionYear : 1 Time

6. Draw a diagram showing some objects instantiated from the classes in the
previous exercise for some particular town that you are familiar with.

408 Solutions to Exercises

Town

Name: 1 Text

Street

Name: 1 Text
Length : 1 Number

Building

Number : 1 Number
Style: 0..* Text
ConstructionYear : 1 Time

t: Town

Name = “Sydney”

s: Street

Name = “ Walker Street”
Length = 72

b1: Building

Number = 21
Style = “Queen Anne”
ConstructionYear = 1919

b2: Building

Number = 23
Style = “Federation”; “Art Deco”
ConstructionYear = 1933

7. Look back at the diagram you created for Exercise 6 and add an attribute to
describe the style of the buildings, if you don’t have it yet. Use an enumerated
type for this attribute, and update the corresponding values. Document the
enumerated items separately.

Town

Name: 1 Text

Building

Number : 1 Number
Style: 0..* enum BuildingStyles
ConstructionYear : 1 Time

t: Town

Name = “Sydney ”

b1: Building

Number = 21
Style = QueenAnne
ConstructionYear = 1919

b2: Building

Number = 23
Style = Federation ; ArtDeco
ConstructionYear = 1933

Street

Name: 1 Text
Length : 1 Number

s: Street

Name = “ Walker Street”
Length = 72

BuildingStyles: Federation
QueenAnne
ArtDeco
ArtNouveau

8. Look back at the classes in the diagram that you created for the previous
exercise, and add as many associations between them as you need in order to
represent the relationships between buildings and other entities. Use adequate
names, cardinalities and roles. Use plain associations or whole/part associations
if needed.

Solutions to Exercises 409

Town

Name: 1 Text
Building

Number : 1 Number
Style: 0..* enum BuildingStyles
ConstructionYear : 1 Time

Street

Name: 1 Text
Length : 1 Number

Is
Lo

ca
te

dI
n

1..*

0..*

0..*

0..*
1

1

9. Working on the previous model, add an association to represent the fact that
some buildings can be seen from other buildings.

Town

Name: 1 Text

Building

Number: 1 Number
Style: 0..* enum BuildingStyles
ConstructionYear: 1 Time

Street

Name: 1 Text
Length: 1 Number

Is
Lo

ca
te

dI
n

1..*

0..*

0..*

0..*

1

1

IsVisibleFrom

0..*0..*

10. Take the model from Exercise 9 and draw some objects that instantiate the
classes in it for a town you are familiar with. Include the necessary values and
links, as dictated by the attributes and associations.

410 Solutions to Exercises

Town

Name: 1 Text

Building

Number : 1 Number
Style: 0..* enum BuildingStyles
ConstructionYear : 1 Time

Street

Name: 1 Text
Length: 1 Number

Is
Lo

ca
te

dI
n

1..*

0..*

0..*

0..*

1

1

IsVisibleFrom

0..*0..*

t: Town

Name = “Sydney”
b1: Building

Number = 21
Style = QueenAnne
ConstructionYear = 1919

b2: Building

Number = 23
Style = Federation ; ArtDeco
ConstructionYear = 1933

s: Street

Name = “Walker Street ”
Length = 72

Is
Lo

ca
te

dI
n

Is
Lo

ca
te

dI
n

Is
Vi

sib
le

Fr
om

Note. The instantiation arrows for s, b1 and b2 have been omitted for the sake
of clarity.

11. Create a type model containing an ArchaeologicalSite class plus classes to
represent tumuli, hillforts and villages. Use generalization relationships with the
necessary discriminants.

Solutions to Exercises 411

ArchaeologicalSite (A)

Grave (A) Se lement (A)

Tumulus Hillfort Village

FuncƟon

ArchitectureArchitecture

12. Add attributes to the previous model to represent the sites’ coordinates and the
estimated population for hillforts and villages. Remember the rule of
inheritance.

ArchaeologicalSite (A)

Coordinate X : 1 Number
Coordinate Y : 1 Number

Grave (A) Se lement (A)

EstimatedPopulation : 0..1 Number

Tumulus Hillfort Village

FuncƟon

ArchitectureArchitecture

13. Draw an instance model with some objects for the Village class in the previous
type model. Give them the necessary values.

412 Solutions to Exercises

ArchaeologicalSite (A)

Coordinate X : 1 Number
Coordinate Y : 1 Number

Grave (A) Se lement (A)

EstimatedPopulation : 0..1 Number

Tumulus Hillfort Village

FuncƟon

ArchitectureArchitecture

v1: Village

Coordinate X = 3.343056
Coordinate Y = 59.048611
EstimatedPopulation = 45

v2: Village

Coordinate X = 43.738607
Coordinate Y = -98.034180
EstimatedPopulation = 700

14. Imagine that you need to develop an urban planning model for a town council.
In the council, overall, buildings are simply categorized as residential, com-
mercial or industrial. However, the council planning department needs addi-
tional detail, having types such as detached house, factory, mall, or apartment
block. Create two enumerated types linked by a generalization/specialization
relationship and having the necessary items. Add extra items that you can think
of if you wish.

Solutions to Exercises 413

BuildingKind: Residential
Commercial
Industrial

PlanningBuildingType (specialized from BuildingKind):
Residential (inherited)

House
AttachedHouse
DetachedHouse

ApartmentBlock
Commercial (inherited)

Mall
RetailShop

Industrial (inherited)
Factory
Yard

15. Create a type model to represent the concept of ‘person’, including a person’s
phone numbers and jobs. Bear in mind that a person may have multiple phone
numbers such as home, work, etc. Also consider that a person may have, at
most, a primary job and a secondary job. Use sorted features where you see fit.

Person

Jobs: 0..2^ Text

PhoneNumber

Location: 1 Text
Number: 1 Text

0..*1

16. Create a type model to represent the fact that heritage elements may be assessed
over time by different people, each assessment being about one particular
heritage element. Include in your model classes for heritage elements, assess-
ment, and people. Mark which semi-associations are strong.

HeritageElement Assessment

Date: 1 Time
Description: 1 Text

RefersTo 0..*1

Person

Name: 1 Text

Author

1 IsMadeBy

0..*

Consider the definition “an assessment is an interpretive statement made by an
author about a heritage element”. This means that the definition of the
Assessment class depends on those of HeritageEement and Person.

414 Solutions to Exercises

17. Imagine that you are studying a group of artists and their works. Some artists may
have met others during their life; also, some artists may have studied under other
artists.Create a typemodel for the concept of ‘artist’ and include associations for the
two situations described above. Use symmetric self-associations where suitable.

Ar st

Name: 1 Text

Met

Acquaintance0..*

StudiedUnder

0..* Master

Student

0..*

18. Imagine that you are surveying an area and recording archaeological sites and
the associated material. Each archaeological site is located at a particular place,
and each find corresponds to a particular site. Draw a diagram for this situation,
including classes to represent sites, places and finds. Use compact notation for
associations where appropriate.

Site

Name: 1 Text
Location: 1 ref Place
Material: 0..* con Find

Place

Name: 1..* Text
Coordinate X: 1 Number
Coordinate Y: 1 Number

Find

Materials: 1 Text
Description: 0..1 Text

19. Imagine that you are given a model having an Event class to describe things that
happen in a particular time and place, as well as a Group class to describe
groups of people. You need to introduce a new class to represent social acts
such as people going to church or having a party. Use multiple generalization
and/or associations to connect the new class to the existing ones.

Event

Date: 1 Time
Place: 1 Text

Group

NumberOfPeople: 1 Number

SocialAct

Name: 0..1 Text

Purpose

Involves

1ParƟcipants

0..*

Solutions to Exercises 415

20. Take the model in Fig. 14.1 as a basis, and complete it by adding a Team class
to represent the teams that carry out interventions, as well as a Report class to
represent the documents generated by these teams. Put these classes in an
existing package or create a new package if you think it’s necessary.

Interven ons:Process (A)

StartDate: 1 Time
EndDate: 0..1 Time

Interven ons:Excava on Interven ons:Survey

Places:Loca on

Name: 0..1 Text

TakesPlaceIn 10..*

Places:Town

TypeOfWork Shape

Places:Area

Coordinates: ?

IsSupportedBy

0..*0..*

0..*

0..*

Interven ons:Team

Director: 1 Text
Participants: 0..* Text

IsCarriedOutBy

1

0..*

Results:Report

Title: 1 Text
Date: 1 Time
PageCount: 1 Number

WasWriƩenBy

0..*

1 Author

IsAbout

1

0..*

21. Below you can find a list of characteristics. For each of them, state whether it
admits ontological vagueness, epistemic vagueness, none, or both.
Every characteristic admits epistemic vagueness. Regarding ontological
vagueness, see the following list.

• A building’s height. No ontological vagueness. We can be more or less
accurate when measuring or reporting a building’s height (which relates to
epistemic vagueness), but the height is well defined in a clear-cut manner.

• A town’s name. There may be some ontological vagueness. Some towns are
known by a range of name variations of a common root, including abbre-
viations. For example, New York is also known as New York City and
NYC. This can be considered a case of ontological vagueness.

• The number of participants in an event. Ontological vagueness may exist
depending of our understanding. If we refer to each of the events that take
place (such as in ‘the US presidential election of 6 November 2012’), then
the number of participants is well defined in a clear-cut fashion, so no
ontological vagueness exists. If, on the contrary, we refer to the abstract
description of a family of related events (such as in ‘the US presidential
elections’), then the number of participants refers to an approximation of
what is usual and/or expected; in this case, there is considerable ontological
vagueness.

416 Solutions to Exercises

• The starting date of a war. There is ontological vagueness. A war is a
complex and diffuse process that does not start at any particular instant, but
usually has a wide array of underlying causes. The transition from ‘not
being at war’ to ‘being at war’ is gradual, and therefore we can say that
there is some ontological vagueness. However, this vagueness may be
removed if we consider the official date on a declaration of war document.

• The entities affected by a social change process. There is ontological
vagueness. The concept of ‘affected by’ is quite imprecise, and there are
many degrees of something affecting something else, from the most direct
and obvious to the most indirect and questionable. For this reason, the
collection of entities that are affected by a social change process is onto-
logically vague.

22. Create a type model to represent the fact that events happen at a particular place
and time, and involve a number of people. Pay special attention to feature
cardinalities, which will determine what features may take a null value. Then
create an instance model based on the former, to represent the event of the
writing of the Voynich manuscript.

Event

Description: 1 Text
Place: 1 Text
Time: 1 Time

Person

Name: 1 Text

Involves

1..*0..*

e: Event

Description = “Writing of the Voynich manuscript”
Place = unknown
Time = early 15th century

unknown: PersonInvolves

23. Modify the type model from the previous exercise with extra attributes to
represent the ontological imprecision of the time when events occur.

Event

Description: 1 Text
Place: 1 Text
TimeMin: 1 Time
TimeMax: 1 Time

Person

Name: 1 Text

Involves

1..*0..*

Solutions to Exercises 417

24. Below you can find a list of characteristics. For each of them, state whether it
should be modelled as constant, variable or temporal. Assume that we are
trying to represent the internal workings of a museum.

Please bear in mind that whether you model something as constant, variable or
temporal is strongly influenced by your particular interests and the model’s
purpose. You may not agree with the answers below.

• The museum’s name. This should be variable, because although it may
change over time, we are not interested in keeping track of the different
names that the museum had over time.

• The museum’s inauguration date. This should be constant, because the
museum’s inauguration date, once happened, cannot change.

• The items on display as part of the permanent collection. This should be
temporal, because although the collection is permanent, new items may be
added to it at any time, and old items retired. It would be interesting to keep
track of what items were in the collection when, so this feature should
probably be modelled as temporal.

• The number of visitors recorded each year. This should be constant. Once
the number of visitors for a year has been calculated and documented, this
figure will not change.

25. Create a type model to represent archaeological sites and their occupation by
different groups of people at different moments in time. Also, include in the
model the ability to document the archaeological features found on the sites as
they are excavated. Use aspect-based or explicit temporality as you see fit.

ArchaeologicalSite

Name: 1 Text

Occupa on

From: 1 Time
To: 0..1 Time
Description: 0..1 Text

1..*1

Feature

Description: 1 Text

1

0..*

[T] Period

From: 1 Time
To: 0..1 Time

Contains (T)

IsLocatedIn

The relationship between sites and occupations has been modelled by using
explicit time attributes on Occupation, since this is a class with strong temporal
semantics. The relationship between sites and features, however, is modelled by
using aspect-based temporality, because Feature has no time semantics, and
still it’s interesting to know when each feature as found within a site.

418 Solutions to Exercises

26. Using the model from Exercise 25 as a basis, create an instance model repre-
senting the following situation. The hillfort of Baroña was occupied between
the 1st century BCE and the 1st century CE. It was excavated for the first time
in 1933 and a large rampart was documented. Then it was excavated again
between 1980 and 1984 and two roundhouses described.

a: ArchaeologicalSite

Name = “Baroña Hillfort ”

o: Occupa on

From = 1c BCE
To = 1c CE
Description = null

f1: Feature

Description = “Large rampart ”

Contains @ 1933 -present

f2: Feature

Description = “Roundhouse 1”

Contains @ 1980s -present

f3: Feature

Description = “Roundhouse 2”

Contains @ 1980s -present

27. Below you can find a list of characteristics. For each of them, state whether it
should be modelled as objective or subjective. Assume that we are trying to
represent the internal workings of a museum.

• The museum’s inauguration date. This should be objective, because the
museum’s inauguration date, whatever it is and whether different people
know about it or not, is an established fact.

• The quality of the lighting conditions in the exhibition halls. This should be
subjective, because different people may hold different judgments about
how well lit the exhibition halls are. This is especially so if the people being
considered through the subjective aspect class include museum visitors.

• The estimated dating of each item in the permanent collection. This should
be objective, because the creation or construction date of an object is an
established fact. Usually we employ estimates to describe these dates, but
the fact that we cannot determine the dates with accuracy does not mean that
the creation date of an object constitutes a judgment or an opinion.

• The maximum allowed number of visitors that can be inside the museum at
any given time. This should be objective, especially if the museum capacity
is regulated by law.

Solutions to Exercises 419

28. Create a type model to represent the archaeological impact and correction work
done a team during the construction of a pipeline. Pay special attention to the
impact assessments and corrective measures that should be taken. Use
aspect-based or explicit subjectivity as you see fit.

ArchaeologicalEn ty

Name: 1 Text
Status: 1 enum ConservationStatus (S)

Correc onMeasure

Actions: 1 Text
Priority: 1 enum UrgencyLevels

AppliesTo (S)1 0..*

Target

[S] Agent

Name: 1 Text

The ArcheologicalEntity.Status attribute has been modelled as subjective in
order to capture the different views of agents. Similarly, the
CorrectionMeasure.AppliesTo semi-association has been modelled as subjec-
tive to document who supports the application of what correction measures.

29. Using the model from Exercise 28 as a basis, create an instance model repre-
senting the following situation. A heavily deteriorated tumulus is found during
the works, and the team decides that no correction measures should be taken
given its poor status. This is in contrast with the views of the local council, who
issues an assessment by which signalling and documentation is required. In
addition, some unidentified features are discovered, which seem to be well
enough preserved as to deserve a quick excavation documentation.

t: ArchaeologicalEn ty
$ Team

Name = “Tumulus ”
Status = VeryPoor

t: ArchaeologicalEn ty
$ Local Council

Name = “Tumulus”
Status = unknown

t: ArchaeologicalEn ty

Name = “Tumulus”
Status = ...

cm1: Correc onMeasure

Actions = “Signalling and documentation.”
Priority = Moderate

AppliesTo $ Local Council

u: ArchaeologicalEn ty

Name = “ Unidentified features”
Status = Good

cm2: Correc onMeasure

Actions = “Excavation and documentation.”
Priority = Urgent

AppliesTo $ Team; Local Council

30. Imagine that a study is to be carried out on how the people from a neigh-
bourhood use some specific buildings over the day. The following model states
that, for the purposes of the study, every person may be using a building at any
point in time. Taking this model as a basis, add the necessary classes, attributes
and associations to reflect the fact that there are two kinds of buildings to be
considered in the study: houses, where people live, and factories, where people
work. Use feature redefinition wherever necessary.

420 Solutions to Exercises

Building

Name: 1 Text

Person

Name: 1 Text
Age: 1 Number

Uses 0..10..*

Occupant

House

Factory

Use

LivesIn [Occupies] 1

0..*

IsUsedBy

Hosts [IsUsedBy]

Inhabitant

WorksAt [Occupies] 0..1

WorkPlace

Home

Employs [IsUsedBy]

1..*
Worker

31. Below you can find a list of characteristics. For each of them, state whether it
constitutes metainformation or regular information.

• A book’s author in a model describing a library. This is regular information,
because the entities being described by the library model are presumably
books, and a book’s author is a characteristic of the book.

• The architect who designed a building in a monument management system.
This is regular information, because the entities being described by the
monument management model probably include buildings, and a building’s
architect is a characteristic of the building.

• The author of a photograph of a building in a monument management
system. This is metainformation, because the entities being described by the
monument management model would include buildings but not photos. In
this model, photos constitute information about the buildings, so a photo’s
author constitutes information about information, and hence
metainformation.

• The author of a photograph in a historical documentation management
system. This is regular information, because the entities being described by
the historical documentation management model would probably include
historical photographs, and a photo’s author is a characteristic of the photo.

• The date when a ritual was first performed in a particular country. This is
regular information if we assume that we are studying rituals, because the
date when a ritual was first performed is a characteristic of the ritual.

• The date when a ritual was first documented in a particular country. This is
metainformation if we assume that we are studying rituals, because the date
when a ritual was first documented is not a characteristic of the ritual, but of
the information about it, and hence metainformation.

Solutions to Exercises 421

32. Create two type models, one for the following scenario, and one for the nec-
essary metainformation that would be necessary to collect. A study is to be
carried out to analyse the feedback of visitors to a museum. For each visitor
willing to participate in the study, a museum assistant will record their personal
details, together with the date of the visit, the visitor’s opinion about the quality
of the exhibition, and an optional comment by the visitor. It is necessary to
document when each visit was recorded and who did it.
The model for the scenario is as follows.

Visitor

Name: 1 Text
Age: 1 Number
Gender: 1 enum Genders

Visit

Date: 1 Time
ReportedQuality: 1 enum QualityLeve ls
Comments: 0..1 Text

1..*1

The model for the required metainformation is as follows.

VisitMetainforma on

Recording Time: 1 Time
Author: 1 Text

33. Using the models from the previous exercise as a basis, create an instance
model plus the associated metainformation objects to describe the following
situation. Alice, 54, visits the museum on 11 March 2016 and agrees to par-
ticipate in the study. Bob is the assigned museum assistant who interviews her.
Alice states that she found the collection to be of average quality and makes no
further comments.

v: Visitor

Name = “Alice”
Age = 54
Gender = Female

w: Visit

Date = 11 March 2016
ReportedQuality = Average
Comments = null

m: VisitMetainforma on

RecordingTime = 11 March 2016 13:21
Author = “Bob”

422 Solutions to Exercises

34. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• The oldest member in a family. This is an agent.
• A period of abandonment of a settlement. This is an occurrence.
• A voodoo ritual performed in Limbé, Haiti on 22 June 1972. This is a

manifestation.
• A leaf in a book. This is a tangible entity.
• Feminism. This is an abstract entity.
• A rocky outcrop. This is a tangible entity.
• The Klondike gold rush in the late 19th century. This is an occurrence.
• The obligation to pilgrimage to Mecca in some Islamic societies. This is an

abstract entity.
• The Rolling Stones. This is an agent.
• A recording in a vinyl LP. This is a virtual entity.
• The Chinese New Year festival celebrated all over the world. This is a

performative entity.

35. Create a CHARM-compliant instance model to describe the following situation.
In 1979, a ceremonial pool measuring 2.5 m by an estimated 1.8 m was found
inside a crypt, which is built between 0.6 and 1.1 m below the ground surface.
This crypt is located in the outskirts of the town of Scheden in Germany.

Solutions to Exercises 423

te1: TangibleEn ty

Name = “Ceremonial pool”

nm1: NamedMeasure

Name = “Length”

m1: MeasureOfLength

Value = 2.5
Margin = null
Certainty = Certain
Unit = Metre

nm2: NamedMeasure

Name = “Width”

m2: MeasureOfLength

Value = 1.8
Margin = null
Certainty = Likely
Unit = Metre

Describes

Describes

te2: TangibleEn ty

Name = “Crypt”

l1: Rela veLoca on
ByReference

Description = “Inside”

Is
Lo

ca
te

dA
t

@
 1

97
9

Reference

nm3: NamedMeasure

Name = “Underground Depth”

m3: MeasureOfLength

Value = 0.85
Margin = 0.25
Certainty = Certain
Unit = Metre

Describes

l2: Rela veLoca on
ByReference

Description = “Outskirts”

ve3: ValuableEn ty

Name = “Scheden, Germany”

Reference

Is
Lo

ca
te

dA
t

@
 1

97
9

36. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• A cave. This is a natural structure.
• The paintings in the cave. This is a material aspect.
• A sacred tree. This is probably best modelled as a natural structure, although

it may be modelled as a natural object as well.
• A clay pot. This is an intentional object.
• The lid of the clay pot. This is an intentional object too. The fact that it is a

component of a larger object does not mean it’s not a complete and
intentional object.

424 Solutions to Exercises

• A mill stone that is being reused as part of a paving. This is a complete
object. The fact that it is being reused as a part of a structure does not affect
this.

• The materials of a collapsed wall as found during excavation. This is a
deposit.

• A set of Galician bagpipes. This is an intentional object.
• A river. This is a non-material place.
• A gate in a cattle pen. This is a constructive element.

37. Create a CHARM-compliant instance model to describe the following situation.
The Dombate dolmen in Galicia, Spain consists of a polygonal chamber formed
by seven vertical granite slabs, covered by a single capstone and protected by a
tumulus made of rocky fragments and compacted dirt. All the vertical slabs
have been decorated with geometric paintings. A small idol was found inside
the dolmen.

c: Construc on

Name = “Dombate Dolmen”
Material = IgneousRock
ProductionTechnique = Manual
ConstructionTechnique = Stonework; ModelledEarth

ce3: Construc veElement

Name = “Tumulus”
Material = IgneousRock
ProductionTechnique = Manual
ConstructionTechnique = Stonework; ModelledEarth

ce2: Construc veElement

Name = “Capstone”
Material = IgneousRock
ProductionTechnique = Manual
ConstructionTechnique = Stonework

ce1: Construc veElement

Name = “Walls”
Material = IgneousRock
ProductionTechnique = Manual
ConstructionTechnique = Stonework

ma: MaterialAspect

Name = “Paintings”
Material = Organic; MineralTransform; Vegetal

Support

Content

io: Inten onalObject

Name = “Idol”
Material = IgneousRock
ProductionTechnique = Manual

38. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• The winner of a yearly sporting competition. This is an agent role, since it
constitutes a recognized “label” that different people “play” over time.

• The members of a Quaker meeting for worship. This is an organization.
• A person who reports relevant information about their community. This

would be best modelled as an informant, linked to a person.
• The Russian people. This is a community.

39. Create a CHARM-compliant instance model to describe the following situation.
A family belonging to a large group has a representative in a government

Solutions to Exercises 425

council. In April 1911, this person dies, and a new individual is chosen as a
representative.

c2: Community

Name = “Family”

c1: Community

Name = “Large group”

ar: AgentRole

Name = “Representative”

o: Organiza on

Name = “Government Council”

p1: Person

FirstName = unknown
LastName = unknown
FullName = unknown

p2: Person

FirstName = unknown
LastName = unknown
FullName = unknown

Is
Pl

ay
ed

By
 @

U
p

to
 A

pr
il

19
11

Is
Pl

ay
ed

By
 @

Fr
om

 A
pr

il
19

11

40. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• An opera performance. This is a manifestation of combined expressive
design, since it includes at least sound (the music), language (the lyrics), and
gestural (the choreography) components.

• The lyrics of Wuthering Heights by Kate Bush. This is a language
expressive design.

• The name “Uluru” as spoken by a tourist. This is a manifestation of
toponym.

• The well-known thumbs-up hand sign. This is a gestural expressive design.
• The way in which craftsmen construct Galician bagpipes. This is a

knowledge.
• Flamenco. This is a combined expressive design.
• A jazz jam session. This is a manifestation of social act.

41. Create a CHARM-compliant instance model to describe the following situation.
In 1991, the relics of Russian monk St. Seraphim of Sarov were rediscovered
after being hidden in a museum for a long time. This was received with awe in
post-Soviet Russia, so a procession was formed to take the relics from Moscow
to the St. Seraphim-Diveyevo convent in the town of Sarov

426 Solutions to Exercises

Note that an important aspect of the manifestation of social act that is central to
this model, namely the moment when it happened, cannot be documented by
using the CHARM classes described so far. Further chapters will allow for this.

42. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• The time span between 8 June 2001 and 19 January 2002. This should be a
time span.

• The period of time that a concentration camp survivor spent there. This is a
phenomenon.

• The refurbishment an old house. This is a modification change.
• The 14th century. This is a point in time.
• The inter-war period of 1918–1939 in Europe. This is a phase starting and

ending at particular points in time.
• The sinking of the Titanic. If you consider that the Titanic was destroyed at

this event, then it should be modelled as a destruction change. Alternatively,
you can model it as a modification change if you consider the underwater
wreck still to be the Titanic.

• The construction of the Great Pyramid of Giza. This is probably best
modelled as a project.

43. Create a CHARM-compliant instance model to describe the following situation.
An archaeological excavation takes place between June and September 2013.
As a consequence of it, an old wall is exposed and heavily altered by wind
erosion over the following months.

io: Inten onalObject

Name = “Relics of St. Seraphim of Sarov”
Material = Organic
ProductionTechnique = Manual

c: Construc on

Name = “St. Seraphim-Diveyevo convent”
Material = ...
ProductionTechnique = ...
ConstructionTechnique = ...

ld: LandDivision

Name = “Moscow”

msa: Manifesta onOfSocialAct

Name = “St. Seraphim Procession”

ActuallyInvolves

ActuallyInvolves

ActuallyInvolves

c: Community

Name = “Orthodox religious people” ParƟcipant

Solutions to Exercises 427

p: Project
$ Excava onTeam

Name = “Archaeological Excavation”
Description = null
Certainty = Certain

sf: StructureFragment

Name = “Wall remains”
Material = Rock

mch: Modifica onChange
$ Excava onTeam

Name = “Alteration by wind erosion”
Description = null
Certainty = Certain

Substrate

IsInherentToCauses @ ts1

EffectCause

pit1: PointInTime
$ Excava onTeam

Name = “Start of excavation”
Description = null
Certainty = Certain
Moment = June 2013

pit2: PointInTime
$ Excava onTeam

Name = “End of excavation”
Description = null
Certainty = Certain
Moment = September 2013

Start

End

ts1: TimeSpan
$ Excava onTeam

Name = “Period of excavation”
Description = null
Certainty = Certain

O
ccursAt

rbo1: Rela onshipBetweenOccurrences

Relationship = StartsDuringAndEndsAfter

Source

Target

RefersTo

44. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• The exchange of cards in business meetings. This is a convention.
• The heraldry conventions of canting arms. This is a language encoding.
• Marxism. This is a belief.
• The preference for male rather than female children in some cultures. This is

a value.
• The entitlement to keep what one has inherited. This is a right of ownership.
• The set of race and ethnicity labels used by the US Census. This is a

category system.

45. Create a CHARM-compliant instance model to describe the following situation.
A historical map of North-East Hokkaido is to be exhibited at a museum. In
order to protect the map, a replica is made and exhibited instead of the original.

428 Solutions to Exercises

nmp: NonMaterialPlace

Name = “North-East Hokkaido”

io1: Inten onalObject

Name = “Historical Map”
Material = Paper
ProductionTechnique = Manual

io2: Inten onalObject

Name = “Reproduction of Historical Map”
Material = Paper
ProductionTechnique = Industrial

r: Representa on

WasCopiedFrom

Master Copy

Embodiment

Contents

46. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• The decision of a Heritage Department to strongly limit the materials and
colours that can be used to construct new houses in a traditional neigh-
bourhood. This is a use valorization.

• The disagreement of part of the local population with that decision. This is a
community valorization.

• The admiration that the beautiful and tidy neighbourhood evokes in tourists
and visitors. This is an external valorization.

• The report of the Heritage Department assessing the negative effects of
ongoing unkempt construction in the neighbourhood. This is an impact
valorization.

47. Below you can find a list of entities. For each of them, state what CHARM
class of those described in this chapter would be more suitable to model it.

• The Early Neolithic period in Europe. This is a cultural classification.
• The “Extraterrestrial Highway” in Nevada, United States. This is a cultural

landscape.
• Machu Picchu in Peru. This is a site.
• The sacred kondō in a Buddhist temple. This is a community derived entity.
• The romantic literature of the 18th-19th centuries. This is a style.
• A collection of Yoruba masks in a museum. This is an object collection.

Solutions to Exercises 429

48. Below you can find a list of modelling situations. For each of them, state what
pattern you would apply, if any.

• A family tree including only parent-child relationships. This can be mod-
elled as a recursive decomposition pattern, since all the instances in the
hierarchy belong to the same category and can be modelled through a
Person class. A self-association would implement the parent/child rela-
tionship between persons.

• The fact that archaeological sites may be excavated or not, and when. This
can be modelled as a state pattern. The category being described would be
ArchaeologicalSite, the state class would be ExcavationStatus, and there
would be subclasses such as Excavated and Non-Excavated for each of the
states. The whole/part association between ArchaeologicalSite and
ExcavationStatus should be temporal in order to capture when each state is
current for any given site.

• A study of urban landscapes where cities are considered to be composed of
neighbourhoods, and these or areas, and these of streets. This can be
modelled as a taxonomic decomposition pattern, since there are distinct
names and definitions for the ranks in the hierarchy. City, Neighbourhood,
Area and Street would be necessary classes. Specific whole/part associations
between each class pair would implement the connections.

• The description of author’s marks on artworks, which may be placed on the
artwork itself or on a previous mark. This can be modelled as an inverted
composite pattern. The composable category would be Mark, the
non-composable would be Artwork, and the abstract category would be, for
example, ArtisticElement. A whole/part association would connect
ArtisticElement to Mark.

• The composition of a thesaurus of traditional trades to tag a collection of
literary works that may mention them. This can be modelled as a reference
subtyping pattern. The different traditional trades could be listed as enu-
merated items in a TraditionalTrades enumerated type and arranged hier-
archically as necessary.

49. Below you can find a list of modelling situations. For each of them, describe the
three quality factors that you consider the most important, and in what order.

• A model for a short research project involving only one person. This would
need correctness in the first place, because correctness cannot be compro-
mised for anything else. Then, it would probably need robustness, since
research projects tend to reveal parts of the world that were not too well
known in advance, and the model should work even in situations that
deviate slightly from its original design. Finally, it would need usability to
make its application easier.

• A sharedmodel to be implemented as a database in a large company for a wide
range of projects. This would need correctness in the first place, for the reason
stated above. Then, usability would be necessary to maximize acceptance

430 Solutions to Exercises

across the different members of the company. Finally, efficiency would be
necessary to make the database implementation as smooth as possible.

• A large model intended as a reference for anyone in a given country doing
archaeological fieldwork. Once again, correctness would be the top priority.
Them, usability would help the many users to adopt the model easily.
Finally, maintainability would be necessary to support the evolution of the
model in the long term, since an investment like this should be expected to
persist for a long time.

50. Look at the diagram below. What changes would you make in order to improve
the model’s quality in relation to the different quality factors?
Several changes are applicable:

• The SocialPractice.Name2 attribute is difficult to understand. To improve
readability and maintainability, it should be renamed to something else. For
example, if it is meant to capture an alternative name for social acts, then
AlternativeName would be better.

• Also in relation to the SocialPractice.Name and Name2 attributes, there
might be a correctness or robustness issue here. If social acts are known to
have one or two names at most, then the model may work as it is, but it
would not be very robust, since finding a social act with more than two
names would be make it difficult to document. A better way to solve this
would be to use a single SocialPractice.Name attribute with 1..* cardinality.

• The SocialPractice.Type attribute is redundant with the generalization/
specialization relationship of SocialPractice, which hinders efficiency and
maintainability. If any social practice is documented as either a demonstra-
tion, a ritual or a sports event, then we don’t need to state its type through an
attribute, because the instantiated class already expresses that information.
For this reason, the SocialPractice.Type attribute should be removed.

• Similarly, the Participants attribute in each of the three specialized classes
are also redundant, which hinders efficiency and maintainability. Since all
the subclasses of SocialPractice have the same attribute, it can be easily
moved to the superclass.

• Also in relation to the Participants attributes, it is not very readable. Are we
supposed to describe who participates in the social practices, or just state the
number of participants? Since the attribute data type is Number, it would seem
the latter. A better name for the attribute would be NumberOfParticipants.

51. Consider a model containing the classes listed below. Describe how you would
group these classes into modules, and explain why.
The classes can be modularized as follows:

• Barn, Farm, House, TraditionalSettlement and Well are kinds of construc-
tions. Forest, Orchard and Stream are natural places. All of them may be
organized as a module describing places and physical structures, as well as
the spatial relationships between them.

Solutions to Exercises 431

• FamingActivity, FishingActivity and HuntingActivity are kinds of activities
that people may carry out in different places. They could be grouped into a
separate module that describes what kinds of activities are carried out in
which places from the previous module.

• Finally, FarmAnimal doesn’t seem to have a tightly coupled relationship with
any of the other classes, so it would remain by itself, or in a separate module
just in case that other classes are added later to the model to represent things
that may be in places and involved in activities, such as tools or utensils.

This arrangement would allow a model user to understand how places are
represented by looking at the first module, and activities by looking at the
second. Also, each module can be extended with new classes (such as City in
the first or MiningActivity in the second) independently from each other.

52. Construct a type model from the text below, using the word highlighting
technique.

TouristGuide

Name: 1 Text

MansionArea (A)

Name: 1 Text

Hall Garden Cellar

FuncƟon

0..* 1Booking

DayAndTime: 1 Time

Visits 1..*0..*Manages 0..*1

Group

ContactName: 1 Text
NumberOfPeople: 1 Number

RefersTo 1

0..*

53. Below you can find a list of concerns that are likely to come up during the
modelling of a museum collection. For each of them, state whether it is a
genuine conceptual concern that should be captured in a model or, to the
contrary, it is an implementation issue that should be left out of the model and
tackled only during implementation.

• The name given to each artefact in the collection, such as “Lithic arrow
head”. An artefact’s name does apply to the artefact even in the absence of a
model, so this should be part of the conceptual model.

• The number of decimals to use when stating artefact dimensions. The number of
decimals to use to state a number is an information storage and/or display
concern; as such, it doesn’t apply to the associatedartefact, but to itsmanagement
within an information system. This should not be part of a conceptual model.

• The id assigned to each artefact sample by museum technicians. Samples are
entities that are methodologically constructed, and therefore it is common to
assign ids to them.From thisperspective, a sample’s iddoesapply to the sample
even in the absence of a model, so it should be part of a conceptual model.

• The sections of the museum web where each artefact is to be shown. The
museum web is an implementation, and therefore any reference to it should
not be part of a conceptual model of the museum collection.

432 Solutions to Exercises

54. Create a particular model by extending CHARM to document reuse processes
of urban spaces such as town squares. You should make sure that the model can
describe the different uses that various agents make of urban spaces, and how
some uses produce the appearance or disappearance of other uses. Feel free to
add the necessary elements to capture whatever information seems relevant to
you, but keep the model simple.
In the following diagram, model elements shaded in grey have been added
during extension.

Pr
im

ar
yE

n
ty

 (A
)

O
cc

ur
re

nc
e

(A
)

D
es

cr
ip

tio
n:

 0
..1

 T
ex

t
C

er
ta

in
ty

: 0
..1

 e
nu

m
 C

er
ta

in
ty

Re
la

ve
O

cc
ur

re
nc

e
(A

)

M
od

eO
fT

im
eD

et
er

m
in

aƟ
on

Ca
us

es

0.
.*

Eff
ec

t

0.
.*

Ca
us

e

Si
tu

a
on

Re
la
Ɵo

nT
oV

alu
ab

le
En

ƟƟ
es

Ci
rc

um
st

an
ce

 (A
)

Is
In

he
re

nt
To

1.
.*

0.
.*

Su
bs

tr
at

e

Ch
an

ge
 (A

)Na
tu

re

Si
m

pl
eC

ha
ng

e
(A

)

At
om

ici
ty

Cr
ea

on
Ch

an
ge

D
es

tr
uc

on
Ch

an
ge

Eff
ec

ts
Ca

us
ed

Va
lu

ab
le

En
ty

(A
)

N
am

e:
 0

..*
 T

ex
t

M
od

eO
fU

nd
er

st
an

di
ng

Na
tu

re

A
c

vi
ty

 (A
)

Is
M

ed
ia

te
dB

y

0.
.*

0.
.*

A
c

on

Na
tu

re

St
ru

ct
ur

eE
n

ty
 (A

)

Pl
ac

e
(A

) M
at

er
ia

lit
yO

fB
ou

nd
ar

ie
s

M
at

er
ia

lE
n

ty
 (A

)

M
at

er
ia

l:
1.

.*
en

um
 M

at
er

ia
l

Na
tu

re

Co
m

pl
et

eS
tr

uc
tu

re
 (A

)

M
at

er
ia

lIn
te

gr
ity

Pr
od

uc
ed

St
ru

ct
ur

e
(A

)

Pr
od

uc
tio

nT
ec

hn
iq

ue
: 1

..*
en

um
 P

ro
du

ct
io

nT
ec

hn
iq

ue

Or
ig

in

Co
ns

tr
uc

te
dS

tr
uc

tu
re

 (A
)

C
on

st
ru

ct
io

nT
ec

hn
iq

ue
: 1

..*
en

um
 C

on
st

ru
ct

io
nT

ec
hn

iq
ue

 (T
)

In
te

nƟ
on

al
ity

Co
ns

tr
uc

onTy
pe

O
fF

un
cƟ

on
ali

ty

Ta
ng

ib
le

En
ty

 (A
)

Na
tu

re

hi
de

un
kn

ow
n

Sq
ua

re

[N
am

e]
: 1

 T
ex

tTy
pe

O
fF

un
cƟ

on
ali

ty

hi
de

un
kn

ow
n

hi
de

un
kn

ow
n

hi
de

un
kn

ow
n

A
ge

nt
 (A

) Re
al

m
O

fD
efi

ni
Ɵo

n

Sp
ec

ifi
cA

ge
nt

 (
A)

Id
en

Ɵt
yR

ig
id

ne
ss

Id
en

ty
A

ge
nt

 (A
)

At
om

ici
ty

G
ro

up
O

fP
eo

pl
e

(A
)

Co
m

m
un

it
yGr
ou

pi
ng

Ph
en

om
en

on

Co
m

po
un

dC
ha

ng
e0.

.*

2.
.*

0.
.*

0.
.*

Is
Co

nfi
gu

re
dB

y

Solutions to Exercises 433

55. Use the type model created in the previous exercise to document the fact that
the overtaking of a particular town square by teenager groups for evening
recreational purposes has displaced its use as an improvised parking lot. Draw
the corresponding instance model.

s1: Situa on

Name = “Use as parking lot”
Description =

“The town square is used
as an improvised parking lo t.”

ch1: Destruc onChange

Name = null
Description =

“Use as parking lot disappears.”

s2: Situa on

Name = “Use by teenagers”
Description =

“The town square is used
for evening recreational
purposes by teenagers.”

ch2: Crea onChange

Name = null
Description =

“Use by teenagers appears.”

Substrate Substrate

ch3: CompoundChange

Name = null
Descrip tion =

“Use changes from
parking lot to recreational.”

c1: Community

Name = “Local teenagers”

ac1: Ac on

Name = “Takeover”
Descrip tion = null

IsMediatedBy

Ca
us

es

Cause

Effect

sq1: Square

Name = “Town Square”
IsConfiguredBy IsConfiguredBy

56. Look at the type model below. Create the structure for a relational database
mapping the model.
The following database structure is suggested. The single table approach was
used to implement the People specialization hierarchy, as none of the
descendant classes are involved in associations. A relationship table was used
to implement the many-to-many Involves association.

434 Solutions to Exercises

Museums

Name Short Text
LocaƟon Short Text

Id AutoNumber PK

Visits

Date Date/Time
DuraƟon Integer

Id AutoNumber PK

Assessment Long Text (null)
TakesPlaceIn Integer FK Museums

Persons

GivenName Short Text
FamilyName Short Text

Id AutoNumber PK

PlaceOfResidence Short Text (null)
StaffId Short Text (null)

Type Short Text

Visits_Involve_Persons
Visit Integer FK Visits
Person Integer FK Persons

Solutions to Exercises 435

References

1. Partridge C, Gonzalez-Perez C, Henderson-Sellers B (2013) Are Conceptual Models
Concept Models? In: Ng W, Storey VC, Trujillo JC (eds) Conceptual Modeling, vol LNCS
8217. Springer, pp 96–105. https://doi.org/10.1007/978-3-642-41924-9_9

2. Ackoff RL (1989) From Data to Wisdom. Journal of Applied Systems Analysis 16: pp. 3–9
3. Stanford University (2015) Stanford Encyclopedia of Philosophy. Center for the Study of

Language and Information. http://plato.stanford.edu/. Accessed 23 July 2015
4. Stead S, Doerr M, Bruseker G, Daskalaki M (2016) Is that a good concept? Paper presented

at the Computer Application and Quantitative Methods in Archaeology (CAA) 2016, Oslo
(Norway),

5. Olivé A (2007) Conceptual Modeling of Information Systems. Springer. https://doi.org/10.
1007/978-3-540-39390-0

6. Gonzalez-Perez C, Henderson-Sellers B A Representation-Theoretical Analysis of the OMG
Modelling Suite. In: Fujita H, Mejri M (eds) The 4th International Conference on Software
Methodologies, Tools and Techniques, Amsterdam, 28–30 September 2005 2005. Frontiers
in Artificial Intelligence and Applications. IOS Press, pp 252–262

7. Partridge C (2005) Business Objects: Re-Engineering for Re-Use. 2nd edition. The BORO
Centre,

8. Gruber T (1993) A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition 5 (2):199–220

9. Gonzalez-Perez C (2017) How Ontologies Can Help in Software Engineering. In: Cunha J,
Fernandes J, Lämmel R, Saraiva J, Zaytsev V (eds) Grand Timely Topics in Software
Engineering. GTTSE 2015. Lecture Notes in Computer Science, vol 10223. Springer, Cham

10. Lakoff G (1990) Women, Fire, and Dangerous Things. University of Chicago Press,
11. Fowler M, Kendall S (2000) UML Distilled. Object Technology Series, Second edition.

Addison-Wesley, Reading, MA
12. OMG (2006) Unified Modelling Language Specification: Infrastructure. version 2. Object

Management Group,
13. Blanco Rotea R (2015) Arquitectura y Paisaje. Fortificaciones de Frontera en el Sur de

Galicia y Norte de Portugal. UPV/EHU, Vitoria-Gasteiz
14. Parthenios P (2012) Using ConML to Visualize the Main Historical Monuments of Crete.

Paper presented at the Computer Applications and Quantitative Methods in Archaeology
(CAA) 2012, Southampton, UK,

15. Martín-Rodilla P, Gonzalez-Perez C, Mañana-Borrazás P (2016) A Conceptual and Visual
Proposal to Decouple Material and Interpretive Information about Stratigraphic Data. In:
Campana S, Scopigno R, Carpentiero G, Cirillo M (eds) Keep the Revolution Going:
Proceedings of the 43rd Annual Conference on Computer Applications and Quantitative
Methods in Archaeology. Archaeopress, pp 201–211

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6

437

https://doi.org/10.1007/978-3-642-41924-9_9
http://plato.stanford.edu/
https://doi.org/10.1007/978-3-540-39390-0
https://doi.org/10.1007/978-3-540-39390-0

16. Pavlidis M, Mouratidis H, Gonzalez-Perez C, Kalloniatis C (2016) Addressing Privacy and
Trust Issues in Cultural Heritage Modelling. In: Lambrinoudakis C, Gabillon A (eds) Risks
and Security of Internet and Systems. LNCS, vol 9572. Springer, pp 3–16. https://doi.org/10.
1007/978-3-319-31811-0_1

17. Gonzalez-Perez C, Blanco-Rotea R, Mato C, Camiruaga Osés I (2010) A Formal Language
for the Description of Historical Architectural Elements. In: Contreras F, Farjas M, Melero FJ
(eds) Proceedings of the 38th Annual Conference on Computer Applications and
Quantitative Methods in Archaeology, CAA2010 Amsterdam University Press,

18. Gonzalez-Perez C, Martín-Rodilla P, Parcero-Oubiña C, Fábrega-Álvarez P, Güimil-Fariña
A Extending an Abstract Reference Model for Transdisciplinary Work in Cultural Heritage.
In: Dodero JM, Palomo-Duarte M, Karampiperis P (eds) 6th Metadata and Semantics
Research Conference (MTSR 2012), Cádiz (Spain), 2012. vol Communications in Computer
and Information Science 343. Springer, pp 190–201. https://doi.org/10.1007/978-3-642-
35233-1_20

19. Cobas Fernández I (2016) El concepto de paisaje cultural como recurso para la educación
patrimonial en la educación secundaria, vol 37. Cadernos de Arqueoloxía e Patrimonio
(CAPA). Incipit CSIC,

20. CIDOC (2011) The CIDOC Conceptual Reference Model. http://www.cidoc-crm.org/.
Accessed 26 November 2012

21. ISO (2014) Information and documentation—A reference ontology for the interchange of
cultural heritage information. 2 edn. International Organization for Standardization, Geneva

22. Binding C, May K, Tudhope D (2008) Semantic Interoperability in Archaeological Datasets:
Data Mapping and Extraction Via the CIDOC CRM. In: Christensen-Dalsgaard B,
Castelli D, Jurik BA, Lippincott J (eds) Research and Advanced Technology for Digital
Libraries. LNCS, vol 5173. Springer, pp 280–290. https://doi.org/10.1007/978-3-540-87599-
4_30

23. Doerr M (2003) The CIDOC Conceptual Reference Module. An Ontological Approach to
Semantic Interoperability of Metadata. AI Magazine 24 (3):75–92

24. Gonzalez-Perez C, Martín-Rodilla P (2015) Integration of Archaeological Datasets through
the Gradual Refinement of Models. In: Giligny F, Djindjian F, Costa L, Moscati P, Robert S
(eds) 21st Century Archaeology: Concepts, Methods and Tools - Proceedings of the 42nd

Annual Conference on Computer Applications and Quantitative Methods in Archaeology.
Archaeopress, pp 193–204

25. Coad P, Yourdon E (1990) Object Oriented Analysis. 2nd Edition edn. Prentice-Hall,
26. Harnad S (2005) To Cognize is to Categorize: Cognition is Categorization. In: Lefebvre C,

Cohen H (eds) Handbook of Categorization: Summer Institute in Cognitive Sciences on
Categorisation. Elsevier,

27. McGinn C (2015) Philosophy of Language: The Classics Explained. The MIT Press,
28. Liskov B, Wing JM (1994) A Behavioral Notion of Subtyping. ACM Transactions on

Programming Languages and Systems 16 (6):1811–1841
29. Guarino N (1998) Some Ontological Principles for Designing Upper Level Lexical

Resources. In: Rubio, Gallardo, Castro, Tejada (eds) Proc. of First International Conference
on Language Resources and Evaluation. Granada,

30. Rosch E (1978) Principles of categorization. In: Rosch E, Lloyd B (eds) Cognition and
Categorization. Lawrence Elbaum Associates,

31. Gonzalez-Perez C, Martín-Rodilla P (2015) Teaching Conceptual Modelling in Humanities
and Social Sciences. Paper presented at the II Congreso Internacional de Humanidades
Digitales Hispánicas, Madrid, 5–7 October 2015

32. Incipit (2016) ConML Technical Specification. version 1.4.5. Incipit, CSIC,
33. World Wide Web Consortium (2004) RDF/XML Syntax Specification (Revised). World

Wide Web Consortium,
34. Snodgrass RT, Ahn I (1986) Temporal Databases. Computer 19 (9):35–42

438 References

https://doi.org/10.1007/978-3-319-31811-0_1
https://doi.org/10.1007/978-3-319-31811-0_1
https://doi.org/10.1007/978-3-642-35233-1_20
https://doi.org/10.1007/978-3-642-35233-1_20
http://www.cidoc-crm.org/
https://doi.org/10.1007/978-3-540-87599-4_30
https://doi.org/10.1007/978-3-540-87599-4_30

35. Svinterikou M, Theodoulidis B (1999) TUML: A Method for Modelling Temporal
Information Systems. In: Jarke M, Oberweis A (eds) Advanced Information Systems
Engineering. Lecture Notes in Computer Science, vol 1626. Springer, pp 456–461

36. Gonzalez-Perez C, Martín-Rodilla P, Blanco-Rotea R (2015) Expressing Temporal and
Subjective Information about Archaeological Entities. In: Traviglia A (ed) Across Space and
Time: Proceedings of the CAA 2013 Conference. Amsterdam University Press,

37. Gonzalez-Perez C (2013) Modelling Temporality and Subjectivity in ConML. In:
Wieringa R, Nurcan S (eds) 7th IEEE International Conference on Research Challenges in
Information Science (RCIS 2013). IEEE Computer Society, Paris (France), pp 1–6

38. Henderson-Sellers B (2011) Bridging Metamodels and Ontologies in Software Engineering.
Journal of Systems and Software 84 (2):301–313. https://doi.org/10.1016/j.jss.2010.10.025

39. Atkinson C, Kühne T, Henderson-Sellers B (2000) To Meta or Not To Meta - That Is the
Question. J OO Prog 13 (8):32–25

40. Gonzalez-Perez C, Henderson-Sellers B (2008) Metamodelling for Software Engineering.
Wiley, Chichester (UK)

41. Gonzalez-Perez C, Martín-Rodilla P (2017) An Alternative Approach to Metainformation
Conceptualisation and Use. In: Mayr HC, Guizzardi G, Ma H, Pastor O (eds) Conceptual
Modeling (Proceedings of the 36th Int.Conf. ER 2017, Valencia, Nov. 6–9, 2016). Springer,

42. Gonzalez-Perez C (2012) A Conceptual Modelling Language for the Humanities and Social
Sciences. In: Rolland C, Castro J, Pastor O (eds) Sixth International Conference on Research
Challenges in Information Science (RCIS), 2012. IEEE Computer Society, pp 396–401.
https://doi.org/10.1109/RCIS.2012.6240430

43. Henderson-Sellers B, Gonzalez-Perez C, McBride T, Low G (2014) An ontology for ISO
software engineering standards: 1) Creating the infrastructure. Computer Standards &
Interfaces 36 (3):563–576. https://doi.org/10.1016/j.csi.2013.11.001

44. Gonzalez-Perez C, Henderson-Sellers B, McBride T, Low G, Larrucea X (2016) An
ontology for ISO software engineering standards: 2) Proof of concept and application.
Computer Standards & Interfaces 48:112–123. https://doi.org/10.1016/j.csi.2016.04.007

45. Bendix R (2009) Heritage between Economy and Politics: An Assessment from the
Perspective of Cultural Anthropology. In: Smith L, Akagawa N (eds) Intangible Heritage.
Routledge, pp 253–269

46. Munjeri D (2004) Tangible and Intangible Heritage: from Difference to Convergence.
Museum International 56 (1–2):12–20. https://doi.org/10.1111/j.1350-0775.2004.00453.x

47. Kirshenblatt-Gimblett B (2004) Intangible Heritage as Metacultural Production. Museum
International 56 (1–2):52–65

48. Kirshenblatt-Gimblett B (1995) Theorizing Heritage. Ethnomusicology 39 (3):367–380
49. Dicks B (2000) Heritage, Place and Community. University of Wales Press,
50. Byrne D, Brayshaw H, Ireland T (2003) Social Significance: a Discussion Paper. NSW

National Parks and Wildlife Service,
51. Smith L (2006) Uses of Heritage. Routledge,
52. Waterton E, Smith L (2009) There is No Such Thing as Heritage. In: Waterton E, Smith L

(eds) Taking Archaeology out of Heritage. Cambridge Scholars Press, pp 10–27
53. Vecco M (2010) A Definition of Cultural Heritage: From the Tangible to the Intangible.

Journal of Cultural Heritage 11 (3):321–324
54. ICOMOS (1964) International Charter for the Conservation and Restoration of Monuments

and Sites.
55. Tainter JA, Lucas GJ (1983) Epistemology of the Significance Concept. American Antiquity

48 (4):707–719. https://doi.org/10.2307/279772
56. Avrami E, Mason R, de la Torre M (2000) Values and Heritage Conservation. The Getty

Conservation Institute,
57. Turnpenny M (2007) Cultural Heritage, an Ill‐Defined Concept? A Call for Joined‐up Policy.

International Journal of Heritage Studies 10 (3):295–307. https://doi.org/10.1080/
1352725042000234460

References 439

https://doi.org/10.1016/j.jss.2010.10.025
https://doi.org/10.1109/RCIS.2012.6240430
https://doi.org/10.1016/j.csi.2013.11.001
https://doi.org/10.1016/j.csi.2016.04.007
https://doi.org/10.1111/j.1350-0775.2004.00453.x
https://doi.org/10.2307/279772
https://doi.org/10.1080/1352725042000234460
https://doi.org/10.1080/1352725042000234460

58. Mason R (2004) Fixing Historic Preservation: A Constructive Critique of “Significance”.
Places 16 (1):64–72

59. Smith L (2004) Archaeological Theory and the Politics of Cultural Heritage. Routledge,
60. UNESCO (1972) UNESCO World Heritage Convention. UNESCO, Paris (France)
61. Mason R (2002) Assessing Values in Conservation Planning: Methodological Issues and

Choices. In: de la Torre M (ed) Assessing the Values of Cultural Heritage. The Getty
Conservation Institute, pp 5–30

62. Lipe WD (1984) Value and Meaning in Cultural Resources. In: Cleere H (ed) Approaches to
the Archaeological Heritage. Cambridge University Press, pp 1–11

63. Garden MCE (2006) The Heritagescape: Looking at Landscapes of the Past. International
Journal of Heritage Studies 12 (5):394–411. https://doi.org/10.1080/13527250600821621

64. Gonzalez-Perez C, Parcero Oubiña C (2011) A Conceptual Model for Cultural Heritage
Definition and Motivation. In: Zhou M, Romanowska I, Wu Z, Xu P, Verhagen P
(eds) Revive the Past: Proceeding of the 39th Conference on Computer Applications and
Quantitative Methods in Archaeology. Amsterdam University Press, pp 234–244

65. World Archaeological Congress 30th Anniversary Plenary (2016) Resolution 11. WAC,
Kyoto

66. Incipit (2016) CHARM White Paper. version 1.0.6. Incipit, CSIC,
67. Smith B, Varzi AC (2005) Fiat and bona fide boundaries: Towards an ontology of spatially

extended objects. In: Hirtle SC, Frank AU (eds) Spatial Information Theory: A Theoretical
Basis for GIS. LNCS, vol 1329. Springer, pp 103–119. https://doi.org/10.1007/3-540-63623-
4_45

68. Alexander C (1975) The Oregon Experiment. Oxford University Press, New York
69. Alexander C, Ishikawa S, Silverstein M (1977) A Pattern Language. Oxford University

Press, New York
70. Alexander C (1979) The Timeless Way of Building. Oxford University Press, New York
71. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley,
72. Meyer B (1997) Object-Oriented Software Construction. 2nd edition. Prentice-Hall, Upper

Saddle River, NJ

440 References

https://doi.org/10.1080/13527250600821621
https://doi.org/10.1007/3-540-63623-4_45
https://doi.org/10.1007/3-540-63623-4_45

List of CHARM Model Elements

Enumerated Types
AngleMeasurementUnit, 224
AreaMeasurementUnit, 224
Certainty, 227, 267
ConstructionTechnique, 235
LengthMeasurementUnit, 224
MassMeasurementUnit, 224
Material, 233
ProductionTechnique, 235, 243
RelativeTimeRelationship, 268
SpatialReferenceSystem, 225
UseType, 248
VolumeMeasurementUnit, 224

Classes
AbsoluteLocation, 226
AbsoluteOccurrence, 269
AbstractEntity, 221, 227
Action, 278
Activity, 273
AdministrativeValorization, 301
Agent, 222, 247, 277, 281, 282
AgentRole, 247
AggregateCulturalResource, 301
AggregateScientificTechnicalDerivedEntity,

300
Anthroponym, 256
Area, 230
Belief, 278
Category, 301
CategorySystem, 277, 301
Change, 271
Circumstance, 271
CombinedExpressiveDesign, 254
Community, 248
CommunityDerivedEntity, 302
CommunityValorization, 302
CompleteObject, 237
CompleteStructure, 235

CompoundAbsoluteLocation, 225
CompoundAbsoluteOccurrence, 269
CompoundChange, 271
CompoundNorm, 275
ConditionValorization, 293
ConstructedStructure, 235
Construction, 239
ConstructiveElement, 235
Convention, 275
CorrectiveValorization, 294
CreationChange, 271
CulturalClassification, 301
CulturalLandscape, 300
CulturalResource, 301
Culture, 281
Deposit, 233
DerivedEntity, 221, 299
Discourse, 254
EconomicValorization, 294
ExpertDerivedEntity, 298, 299
ExpertValorization, 299
ExpressiveDesign, 254
ExternalDerivedEntity, 290
ExternalValorization, 295
FormalExpressiveDesign, 254
GesturalExpressiveDesign, 254
GroupOfPeople, 247
IdentityAgent, 246, 256, 261
ImpactValorization, 294
Informant, 249
IntentionalObject, 235
Interface, 241
Knowledge, 259
LandDivision, 231, 256
Language, 278
LanguageEncoding, 278
LanguageExpressiveDesign, 261
Line, 226
Location, 227

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6

441

Manifestation, 221, 252, 261
ManifestationOfAnthroponym, 261
ManifestationOfCombinedExpressiveDesign,

261
ManifestationOfDiscourse, 261
ManifestationOfExpressiveDesign, 259
ManifestationOfFormalExpressiveDesign, 259
ManifestationOfGesturalExpressiveDesign,

259
ManifestationOfKnowledge, 262
ManifestationOfLanguageExpressiveDesign,

261
ManifestationOfProperName, 261
ManifestationOfSocialAct, 262, 263
ManifestationOfSoundExpressiveDesign, 253
ManifestationOfTechnique, 262
ManifestationOfToponym, 261
ManifestationOfTrade, 262
ManifestationOfUnderstanding, 259, 262
MaterialAspect, 233
MaterialEntity, 239
Measure, 224
MeasureOfAngle, 224
MeasureOfArea, 224
MeasureOfLength, 227
MeasureOfMass, 224
MeasureOfVolume, 224
MethodologicalRoleOfAgent, 245
MethodologicalTangibleEntity, 238, 242
ModificationChange, 271
NamedMeasure, 225
NaturalObject, 237
NaturalStructure, 235
NonExpertDerivedEntity, 298, 299
NonExpertValorization, 292, 302
NonMaterialPlace, 230
NonPhysicalStratigraphicRelationship, 239
Norm, 278, 279
ObjectEntity, 233, 236, 300
ObjectFragment, 237
ObjectSet, 300
Obligation, 280
ObligationToAllowUse, 281
ObligationToConserve, 281
ObligationToDo, 281
Occurrence, 220, 267
Organization, 247
PerformativeEntity, 219, 251, 252
Person, 247
Phase, 270
Phenomenon, 271
PhysicalStratigraphicRelationship, 239
Place, 229, 232, 256, 261
Point, 226

PointInTime, 269
PrimaryEntity, 218, 301
PrimaryEntityType, 301
Process, 272
ProducedObject, 237
ProducedStructure, 235
Prohibition, 281
ProhibitionToDo, 281
ProhibitionToUse, 281
Project, 272
ProperName, 254
ProtectionValorization, 294
RelativeLocation, 226
RelativeLocationByDistanceAndBearing, 227
RelativeLocationByIntermediateDistance, 227
RelativeLocationByReference, 227
ResearchValorization, 293
Right, 279
RightOfCustody, 280
RightOfOwnership, 280
RightOfUse, 280
RightToDo, 279
Sample, 242
ScientificTechnicalDerivedEntity, 299
ScientificTechnicalValorization, 293
SharedConcept, 278
SimpleAbsoluteLocation, 226
SimpleChange, 271
SimpleCulturalResource, 301
SimpleNorm, 279
SimpleScientificTechnicalDerivedEntity, 300
Site, 300
Situation, 271
SocialAct, 253, 256
SoundExpressiveDesign, 254
SpecificAgent, 245
StratigraphicEntity, 238
StratigraphicGroup, 300
StratigraphicRelationship, 239
StratigraphicRelationshipOfAbutment, 241
StratigraphicRelationshipOfCoverage, 241
StratigraphicRelationshipOfCutting, 241
StratigraphicRelationshipOfEquivalence, 240
StratigraphicRelationshipOfFilling, 241
StratigraphicRelationshipOfJoining, 240
StratigraphicRelationshipOfSupport, 241
StratigraphicSequence, 238
StratigraphicUnit, 239, 300
Stratum, 239
StratumByDeposit, 239
StratumByObject, 239
StructureEntity, 231, 232, 233
StructureFragment, 234
Style, 301

442 List of CHARM Model Elements

TangibleEntity, 219, 229
Task, 273
Technique, 258
ThreeDimensionalStratigraphicRelationship,

240
TimeSpan, 269
Toponym, 254
Trade, 257
TwoDimensionalStratigraphicRelationship,

241

Understanding, 253, 257
UnintentionalObject, 237
UnintentionalStructure, 235
Use, 245
UseValorization, 294
Valorization, 221, 279, 291
ValuableEntity, 217
Value, 278
VirtualEntity, 221
Volume, 226

List of CHARM Model Elements 443

Index

A
Abstract class, 94
Abstraction, 177

between classes, 88, 152, 167
between enumerated items, 61, 135
between enumerated types, 103

Abstract marker, 94
Accuracy, 131, 135
Accuracy (quality factor), 335
Aggregation, 61, 73, 117, 134, 311
Ancestor class, 82
Architecture, 123
Aspect, 144, 158

subjective, 165, 219
temporal, 150, 220

Aspect marker
subjective, 164, 165
temporal, 149, 150

Association, 66
compact notation, 110
name, 69
self, 74, 108
whole/part, 73, 108, 117, 124

Asymmetric self-association, 108
Attribute, 50, 105

cardinality, 51
definition, 51
inheritance, 87
name, 51
type, 51

B
Base model, 362
Bitemporal approach, 144, 187
Bona fide boundary, 232
Boolean data type, 52
Boundary

bona fide, 232
fiat, 230

C
C#, 61, 118
C++, 118
Canonical definition, 39
Cardinality, 41, 51, 68, 105
Category, 7, 10, 28, 45

classical, 44
radial, 44

CHARM, 196
objections, 198
version, 217

CIDOC CRM, 20, 72, 197
Class, 36

abstract, 94
ancestor, 82
concrete, 94
definition, 37, 85
descendant, 82
diagram, 95
in packages, 124
invariant, 39
leaf, 82
name, 36
opposite, 67
participant, 67
root, 82
variable, 39

Classical category, 44
Classification, 11, 28, 46, 55, 76, 90, 198

conflict, 159
Cluster, 124
Cohesion, 338
Column (relational database), 381
Communication, 19
Compact notation, 110
Completeness (quality factor), 335
Composability (quality criterion), 341
Composite pattern, 320
con (keyword), 111

© Springer International Publishing AG 2018
C. Gonzalez-Perez, Information Modelling for Archaeology and Anthropology,
https://doi.org/10.1007/978-3-319-72652-6

445

Conceptual model, 4
Concrete class, 94
Conflict

classification, 159
existence, 159
predication, 159

Conformance, 95
ConML, 99

metamodel, 99
Constant feature, 148
Correctness (quality factor), 335
Coupling, 339
Coverage, 357
Cultural heritage, 210
Cultural heritage

as a collection of things, 201, 210
as a process, 200, 211
formation, 211
vs. natural heritage, 211

Cultural heritage value, 208
Cultural product, 203
Cultural value, 204
Culture, 203

D
Data, 5
Database, 379
Data data type, 52, 55
Data type, 52

Boolean, 52
Data, 52, 55
Number, 52, 53
Text, 52, 54
Time, 52, 54, 136

Data type (relational database), 381
Decomposability (quality criterion), 341
Definition, 37, 51, 68, 85, 105

canonical, 39
extensional, 44
intensional, 44

Descendant class, 82
Descriptive Subtyping pattern, 316
Design, 19
Diagram, 28

class, 95
object, 32

Diamond problem, 119
Disagreement, 159
Discriminant, 83
Documentation, 18
Dominant generalization, 120

E
Efficiency (quality factor), 337
Ellipsis, 55, 78, 146
Entity, 7, 10, 26
Enum (keyword), 59
Enumerated item, 58, 134

absolute name, 62
depth, 61, 135
leaf, 61, 135
name, 58
root, 61

Enumerated type, 58, 101, 134
in packages, 124
name, 58

Epistemic vagueness, 130, 186
Existence, 11, 27

conflict, 159
Exploration, 18
Extended model element, 362
Extension, 197, 362

mechanisms, 366
Extensional definition, 44

F
false (keyword), 52
Feature, 105

cardinality, 105
constant, 148
definition, 105
name, 105
objective, 163
redefinition, 173
sorted, 106
subjective, 163
temporal, 148
variable, 148

Fiat boundary, 230
Foreign key (relational database), 385
Functional quality factors, 334

G
Generalization, 80

discriminant, 83
dominant, 120
multiple, 116
of enumerated types, 103

Genus plus differentia, 37, 85

H
Heritage value, 206
Hierarchy, 311

446 Index

enumerated items, 60, 134
rank, 311
recursive, 311
specialization, 82

Hypernym, 80
Hyponym, 80, 177

I
Identifier, 27
Identity, 11, 27
Implementation, 357
Imprecision, 130, 130
Inaccuracy, 131, 135
Incremental product, 348
Infinite regress, 75, 314, 326
Information, 5
Inheritance

between classes, 87, 152, 167
between enumerated types, 103
multiple, 117
rule, 87, 173, 176, 318

Instance, 45, 55, 76
Instance model, 32
Instantiation, 45, 90
Intensional definition, 44
Interoperability, 20, 197, 365
Invariant, 39
Inverse semi-association, 69
Inverted Composite pattern, 324
Is-a relationship, 90
Iterative process, 348

J
Java, 61, 118

K
Keyword

con, 111
enum, 59
false, 52
null, 30, 132
package, 126
ref, 113
sha, 112
true, 52
unknown, 132

Knowledge, 5, 5
Knowledge engineering, vii

L
Leaf class, 82
Leaf enumerated item, 61, 135
Linguistic relativity, 13
Link, 31, 76

name, 32
reading direction, 32

Linked data, 5, 124, 358
Liskov compatibility, 364
Liskov’s substitution principle, 87, 364

M
Maintainability (quality factor), 338
Marker

abstract, 94
subjective aspect, 164, 165
temporal aspect, 149, 150

Mereology, 74
Metadata, 181
Metainformation, 144, 183

relationship, 183
Metamodel, 182
Model, 3

architecture, 123
base, 362
extension, 197, 362
implementation, 357
instance, 32
particular, 196, 197, 362
quality, 352, 356
refactoring, 352, 355
reinterpretation, 366
scope, 3, 349
type, 95

Model element, 14
extended, 362
reused, 362

Modelling
applications, 18, 349
formality, 12
languages, 12, 349
pattern, 309, 356
premises, 9, 218, 349
process, 347
purpose, 4, 31, 349
scope, 3, 349
tension, 197

Modelling language, 98
Modularity, 338, 356
Module, 338

cohesion, 338
coupling, 339

Multiple generalization, 116
Multiple inheritance, 117
Multi-State pattern, 331

N
Name, 36, 41, 51, 67, 105, 125
Natural heritage, 211

Index 447

Non-functional quality factors, 337
Null, 43
null (keyword), 30, 132
Nullability, 43
Number data type, 52, 53

O
Object, 26, 45

category, 28, 45
diagram, 32
identifier, 27

Objective feature, 163
Object-oriented paradigm, 26
Ontological vagueness, 130, 130
Ontology, 8
Opposite class, 67

P
Package, 124, 339

name, 125
package (keyword), 126
Part, 73
Participant class, 67
Particular, 7
Particular model, 196, 197, 362
Pattern, 124, 309, 356

Composite, 320
Descriptive Subtyping, 316
Inverted Composite, 324
Multi-State, 331
Recursive Decomposition, 313
Reference Decomposition, 315
Reference Subtyping, 318
State, 328
Taxonomical Decomposition, 312

Perspective, 160
selector, 160, 165

Phase, 145
selector, 146, 150

Phase-perspective, 169
Precision (quality factor), 335
Predication, 11, 30

conflict, 159
Primary key (relational database), 383
Primary semi-association, 69
Property, 40, 105, 351

cardinality, 41
inheritance, 87
name, 41
nullable, 43

Proportion (quality criterion), 342
Protection (quality criterion), 343
Python, 61, 118

Q
Quality, 333, 352, 356

cost, 343
Quality factors

functional, 334
non-functional, 337

R
Radial category, 44
Rank, 311
RDF, 124
Readability (quality factor), 338
Recursive Decomposition pattern, 313
Redefinition of features, 173
ref (keyword), 113
Refactoring, 352, 355
Reference Decomposition pattern, 315
Reference Subtyping pattern, 318
Reflexivity, 75
Reinterpretation rules, 366
Relational database, 379

column, 381
data type, 381
foreign key, 385
primary key, 383
relationship, 385
relationship table, 386
row, 382
table, 380

Relationship (relational database), 385
Relationship table (relational database), 386
Representation, 3, 286
Reused model element, 362
Rigid designator, 28
Robustness (quality factor), 336
Role, 71
Root class, 82
Root enumerated item, 61, 104
Row (relational database), 382
Rule of inheritance, 87, 173, 176, 318

S
Scope, 3, 349
Secondary semi-association, 69
Selector

perspective, 160, 165
phase, 146, 150

Self-association, 74, 108
asymmetric, 108
symmetric, 109

Semantic web, 5
Semi-association, 66, 105

cardinality, 68

448 Index

definition, 68
inheritance, 87
inverse, 69
name, 67
primary, 69
role, 71
secondary, 69
strong, 107
whole/part, 73, 108

sha (keyword), 112
Software engineering, vii, 6
Sorted feature, 106
Specialization, 80

discriminant, 83
hierarchy, 82
of enumerated types, 103

Specificity gradient, 94
State class, 328
State pattern, 328
Strong semi-association, 107
Structured Query Language (SQL), 380
Subclass, 81
Subjective aspect, 165, 219
Subjective aspect marker, 164, 165
Subjective feature, 163
Subsumption, 11, 61, 79, 90, 134, 198, 315
Superclass, 81
Symmetric self-association, 109
Symmetry, 356

T
Table (relational database), 380
Taxonomical Decomposition pattern, 312
Taxonomy, 311
Temporal aspect, 150, 220

Temporal aspect marker, 149, 150
Temporal feature, 148
Text data type, 52, 54
Time data type, 52, 54, 136
Token, 7
Transaction time, 144
true (keyword), 52
Type, 46

vs. token, 7
Type model, 95

U
UML, 12, 61, 72, 110, 352
Uncertainty, 130, 186
Understandability (quality criterion), 342
Universal, 7
unknown (keyword), 132
Usability (quality factor), 337

V
Vagueness, 129

epistemic, 130, 186
ontological, 130, 130

Validity time, 144
Value, 29, 30, 55

contents, 30
multiple, 30
name, 29

Variable, 39
Variable feature, 148

W
Whole, 73
Whole/part, 73, 108, 117, 124

Index 449

	Preface
	Contents
	About the Author
	Introduction to Conceptual Modelling
	1 What Is Conceptual Modelling?
	Abstract
	Summary

	2 Premises and Foundations of Conceptual Modelling
	Abstract
	Premises
	Linguistic Connections
	Conceptual Modelling Languages
	What Are Conceptual Models Made Of?
	Summary

	3 Benefits and Applications of Conceptual Modelling
	Abstract
	Exploration
	Documentation
	Communication
	Design
	Interoperability
	Summary

	The Basics of Conceptual Modelling
	4 Objects
	Abstract
	Objects
	Values
	Links
	Instance Models
	Summary
	Exercises

	5 Classes
	Abstract
	Classes
	Definition
	Invariants and Variables
	Properties
	Cardinality
	Limitations of Classes
	Objects as Instances of Classes
	Summary
	Exercises

	6 Attributes
	Abstract
	Attributes
	Data Types
	Boolean
	Number
	Time
	Text
	Data

	Values as Instances of Attributes
	Summary
	Exercises

	7 Enumerated Types
	Abstract
	Enumerated Types and Enumerated Items
	Hierarchical Enumerated Types
	Summary
	Exercises

	8 Associations
	Abstract
	Associations and Semi-Associations
	Roles
	Whole/Part Semantics
	Self-Associations
	Links as Instances of Associations
	Summary
	Exercises

	9 Generalization and Specialization
	Abstract
	Generalization/Specialization Relationships Between Classes
	Discriminants
	Generalization and Class Definitions
	Inheritance
	Abstraction
	Generalization and Objects
	The Is-A Confusion
	Avoiding Multiple Specialization
	Abstract Classes
	Type Models
	Summary
	Exercises

	Recap of Part II
	Advanced Conceptual Modelling
	10 Advanced Enumerated Types
	Abstract
	Generalization/Specialization Relationships Between Enumerated Types
	Summary
	Exercises

	11 Advanced Features
	Abstract
	Sorted Features
	Strong Semi-Associations
	Symmetric Self-Associations
	Compact Notation for Associations
	Summary
	Exercises

	12 Advanced Generalization
	Abstract
	Multiple Generalization
	Dominant Generalizations
	Other Inheritance Issues
	Summary
	Exercises

	13 Model Architecture
	Abstract
	Packages
	Summary
	Exercises

	14 Vagueness
	Abstract
	Ontological and Epistemic Vagueness
	Null and Unknown Semantics
	Using Abstract Enumerated Items
	Using Arbitrary Time Resolution
	Modelling Vagueness Explicitly
	Summary
	Exercises

	15 Temporality
	Abstract
	Phases
	Temporal Features
	Temporal Aspect
	Modelling Temporality Without Aspects
	Summary
	Exercises

	16 Subjectivity
	Abstract
	Theoretical Framework
	Perspectives
	Subjective Features
	Subjective Aspect
	Modelling Subjectivity Without Aspects
	Combining Temporality and Subjectivity
	Summary
	Exercises

	17 Feature Redefinition
	Abstract
	Redefinition of Features
	Redefinition Rules
	All Feature Kinds
	Attributes
	Semi-Associations

	Summary
	Exercises

	18 Metainformation
	Abstract
	Metainformation as Information
	Specific Uses of Metainformation
	Expressing Uncertainty
	Implementing Transaction Time

	Summary
	Exercises

	Recap of Part III
	A Model of Cultural Heritage
	19 An Ontology for Cultural Heritage
	Abstract
	What Is CHARM?
	Motivation and Benefits of CHARM
	Objections to CHARM
	Approaches to Cultural Heritage
	Cultural Heritage as a Process
	Cultural Heritage as Things

	Infrastructural Concepts
	The Basic Concepts of CHARM
	Summary

	20 Overview of CHARM
	Abstract
	Top View of CHARM
	Summary
	Exercises

	21 CHARM General Concepts
	Abstract
	Measures
	Locations
	Summary
	Exercises

	22 Tangible Entities
	Abstract
	Places
	Material Entities
	Structure Entities
	Object Entities

	Stratigraphic Entities
	Samples
	Example Model
	Summary
	Exercises

	23 Agents
	Abstract
	Expressing Points of View with Agents
	Example Model
	Summary
	Exercises

	24 Manifestations and Performative Entities
	Abstract
	Performative Entities
	Expressive Designs
	Social Acts
	Understandings

	Manifestations
	Manifestations of Expressive Designs
	Manifestations of Social Acts
	Manifestations of Understandings

	Example Model
	Summary
	Exercises

	25 Occurrences
	Abstract
	Absolute Occurrences
	Circumstances
	Situations
	Activities
	Expressing Time with Occurrences
	Example Model
	Summary
	Exercises

	26 Abstract Entities
	Abstract
	Norms
	Example Model
	Summary
	Exercises

	27 Representations
	Abstract
	Representations, Contents and Embodiment
	Other Relational Connections
	Example Model
	Summary
	Exercises

	28 Valorizations
	Abstract
	Expert Valorizations
	Non-expert Valorizations
	Example Model
	Summary
	Exercises

	29 Derived Entities
	Abstract
	Expert Derived Entities
	Non-expert Derived Entities
	Example Model
	Summary
	Exercises

	Recap of Part IV
	Applying Conceptual Modelling
	30 Modelling Patterns
	Abstract
	Hierarchical Aggregation Patterns
	Descriptive Aggregation
	Reference Aggregation

	Hierarchical Subsumption Patterns
	Descriptive Subsumption
	Reference Subsumption

	Composite Patterns
	State Patterns
	Summary
	Exercises

	31 Constructing Quality Models
	Abstract
	Quality Factors
	Functional Quality Factors
	Correctness
	Robustness
	Non-functional Quality Factors
	Usability
	Efficiency
	Maintainability
	Readability

	Modularity
	Meyer’s Five Criteria
	Decomposability
	Composability
	Understandability
	Proportion
	Protection

	The Cost of Quality
	Summary
	Exercises

	32 The Modelling Process
	Abstract
	Creating a Model from Scratch
	Modifying an Existing Model
	Specific Techniques
	Word Highlighting
	Refactoring Cues
	Striving for Symmetry and Coverage

	Implementing Models
	Summary
	Exercises

	33 Extending Models
	Abstract
	Reasons for Extension
	Adding Extra Model Elements
	Modifying Existing Model Elements
	Removing Existing Model Elements

	Liskov Compatibility
	Extension Mechanisms and Reinterpretation Rules
	Adding Enumerated Types and Items
	Adding Classes
	Adding Features
	Modifying Packages, Enumerated Types, Enumerated Items and Classes
	Modifying Features
	Hiding Attributes
	Deleting Enumerated Types or Items
	Deleting Classes
	Deleting Features

	Worked Example
	Creating a Particular Model
	Using the Particular Model
	Interoperating with Other Models

	Summary
	Exercises

	34 Developing Database Systems
	Abstract
	Notions of Relational Database Systems
	Tables
	Columns
	Rows
	Databases and Models
	Primary Keys
	Relationships and Foreign Keys
	Additional Database Concepts

	Mapping Guidelines
	Implementing Enumerated Types and Items
	Implementing Classes and Attributes
	Implementing Specialization Hierarchies
	Implementing Associations

	Worked Example
	Summary
	Exercises

	Recap of Part V
	Solutions to Exercises
	References
	List of CHARM Model Elements
	Index

